-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4_compute_metrics_aiib2023.py
67 lines (47 loc) · 2.04 KB
/
4_compute_metrics_aiib2023.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from light_training.dataloading.dataset import get_train_test_loader_from_test_list
from monai.utils import set_determinism
import torch
import os
import numpy as np
import SimpleITK as sitk
from medpy import metric
import argparse
from tqdm import tqdm
from scoring_metrics.task1 import evaluation_branch_metrics
set_determinism(123)
parser = argparse.ArgumentParser()
parser.add_argument("--pred_name", required=True, type=str)
results_root = "prediction_results"
# results_root = "prediction_results_v2"
args = parser.parse_args()
pred_name = args.pred_name
def cal_metric(gt, pred, voxel_spacing):
iou, DLR, DBR, precision, leakages, total_length, detected_num = evaluation_branch_metrics("1", gt, pred)
return np.array([iou, DLR, DBR, precision, leakages, total_length, detected_num])
if __name__ == "__main__":
data_dir = "./data/fullres/train"
raw_data_dir = "./data/raw_data/AIIB23_Train_T1/"
from test_list_aiib23 import test_list
train_ds, test_ds = get_train_test_loader_from_test_list(data_dir, test_list)
print(len(test_ds))
all_results = np.zeros((24,7))
ind = 0
for batch in tqdm(test_ds, total=len(test_ds)):
properties = batch["properties"]
case_name = properties["name"]
gt_itk = os.path.join(raw_data_dir, "gt", f"{case_name}.nii.gz")
voxel_spacing = [1, 1, 1]
gt_itk = sitk.ReadImage(gt_itk)
gt_array = sitk.GetArrayFromImage(gt_itk).astype(np.int32)
pred_itk = sitk.ReadImage(f"./{results_root}/{pred_name}/{case_name}.nii.gz")
pred_array = sitk.GetArrayFromImage(pred_itk)
m = cal_metric(gt_array, pred_array, [1, 1, 1])
print(f"m is {m}")
all_results[ind] = m
ind += 1
os.makedirs(f"./{results_root}/result_metrics/", exist_ok=True)
np.save(f"./{results_root}/result_metrics/{pred_name}.npy", all_results)
result = np.load(f"./{results_root}/result_metrics/{pred_name}.npy")
print(result.shape)
print(result.mean(axis=0))
print(result.std(axis=0))