-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChBetaLogistic.tex
196 lines (151 loc) · 8.2 KB
/
ChBetaLogistic.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\Sec{Beta-Logistic Distribution}
\label{sec:BetaLogistic}
\phantomsection
\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Beta-Logistic}
\phantomsection
\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Standard Beta-Logistic}
The {\bf beta-logistic } (Prentice, beta-prime exponential, generalized logistic type IV, exponential generalized beta prime, exponential generalized beta type II, log-F, generalized F, Fisher-z, generalized Gompertz-Verhulst type II) distribution~\cite{Prentice1976, McDonald1991, Johnson1995, Morton2000}
is a four parameter, continuous, univariate, unimodal probability density, with infinite support. The functional form in the most straightforward parameterization is
\begin{align}
\notag
\label{BetaLogistic}
\opr{BetaLogistic}(x\given \pLoc, \pScale,\alpha,\gamma)
& =
\frac{1}{B(\alpha, \gamma) \Left| \pScale\Right|}
\frac{e^{-\alpha \frac{x-\pLoc}{\pScale} }} { \Left(1 + e^{-\frac{x-\pLoc}{\pScale} }\Right)^{\alpha+\gamma} } \checked
\\ &
\ x, \pLoc, \pScale,\alpha,\gamma \text{ in } {\mathbb R}
\\ \notag & \alpha,\gamma >0
\end{align}
The four real parameters consist of a location parameter $\pLoc$, a scale parameter $\pScale$, and two positive shape parameters $\alpha$ and $\gamma$. The {\bf standard beta-logistic} distribution has zero location $\pLoc=0$ and unit scale $\pScale=1$.
The beta-logistic distribution is perhaps most commonly referred to as `generalized logistic', but this terminology is ambiguous, since many types of generalized logistic distribution have been investigated, and this distribution is not `generalized' in the same sense used elsewhere in this survey (See `generalized' \S \ref{sec:notation}). Therefore, we select the name `beta-logistic' as a less ambiguous terminology that mirrors the names beta, beta-prime, and beta-exponential.
\SSec{Special cases}
\dist{Burr type II} (generalized logistic type I, exponential-Burr, skew-logistic) distribution~\cite{Burr1942,Johnson1994}:
\begin{align}
\label{BurrII}
\opr{BurrII}(x\given \pLoc, \pScale, \gamma)
& = \frac{\gamma}{|\pScale|} \frac{e^{- \frac{x-\pLoc}{\pScale} } } { \Left(1 + e^{-\frac{x-\pLoc}{\pScale} }\Right)^{\gamma+1} }
\checked
\\
& = \opr{BetaLogistic}(x\given \pLoc, \pScale, 1, \gamma) \checked
\notag
\end{align}
\begin{figure}[t!]
\begin{center}
\includegraphics[width=\textwidth]{pdfBurrII}
\end{center}
\caption[Burr II distributions]{Burr type II distributions, $\opr{BurrII}(x\given0,1,\gamma)$}
\end{figure}
\dist{Reversed Burr type II} (generalized logistic type II) distribution~\cite{Johnson1994}:
\begin{align}
\label{RevBurrII}
\opr{RevBurrII}(x\given \alpha)
& = \frac{\gamma}{|\pScale|} \frac{e^{+ \frac{x-\pLoc}{\pScale} } } { \Left(1 + e^{+\frac{x-\pLoc}{\pScale} }\Right)^{\gamma+1} }
\checked
\\
& = \opr{BurrII}(x\given \pLoc, -\pScale, \gamma) \notag \checked \\
& = \opr{BetaLogistic}(x\given \pLoc, -\pScale, 1, \gamma) \notag \checked \\
& = \opr{BetaLogistic}(x\given \pLoc, +\pScale, \gamma, 1) \notag \checked
\notag
\end{align}
By setting the $\lambda$ parameter to $1$ (instead of $\alpha$) we get a reversed Burr type II.
\begin{table*}[ptb]
\begin{center}
\caption[Beta-logistic distribution -- Special cases]{Special cases of the beta-logistic distribution}
~\\
{\renewcommand{\arraystretch}{1.25}
\begin{tabular}{llccccl}
\eqref{BetaLogistic} & Beta-Logistic & $\pLoc$ & $\pScale$ & $\alpha$ & $\gamma$ \\
\hline
\eqref{BurrII} & Burr type II &. & . & 1 & . & \\
\eqref{RevBurrII}& Reversed Burr type II & . & . & . & 1 &\\
\eqref{CentralLogistic}& Central-Logistic & . & . & $\alpha$ & $\alpha$ & \\
\eqref{Logistic}& Logistic & . & . & 1 & 1 & \\
\eqref{HyperbolicSecant}& Hyperbolic secant & . & . & $\tfrac{1}{2}$ & $\tfrac{1}{2}$ & \\
\end{tabular}
}
\end{center}
\end{table*}
\input{PropertiesTableBetaLogistic}
\pagebreak[4]
\dist{Central-logistic} (generalized logistic type III, symmetric Prentice, symmetric beta-logistic) distribution~\cite{Johnson1995}:
\begin{align}
\label{CentralLogistic}
\opr{CentralLogistic}(x\given \pLoc,\pScale,\alpha)
& =
\frac{1}{B(\alpha, \alpha) |\pScale|}
\frac{e^{-\alpha \frac{x-\pLoc}{\pScale} }} { \Left(1 + e^{-\frac{x-\pLoc}{\pScale} }\Right)^{2\alpha} } \checked
\\ \notag & = \frac{1}{B(\alpha, \alpha) |\pScale|} \bigl[\tfrac{1}{2} \op{sech} \Left(\tfrac{x-\pLoc}{2\pScale} \Right)\bigr]^{2\alpha}
\checked
\\ \notag & = \opr{BetaLogistic}(x\given \pLoc,\pScale,\alpha,\alpha) \checked
\end{align}
With equal shape parameters the beta-logistic is symmetric. This distribution limits to the Laplace distribution~\eqref{Laplace}.
\dist{Logistic} (sech-square, hyperbolic secant square, logit) distribution~\cite{Verhulst1845, Balakrishnan1991, Johnson1995}:
\begin{align}
\label{Logistic}
\opr{Logistic}(x\given \pLoc,\pScale)
& =
\frac{1}{ \Left| \pScale\Right|}
\frac{e^{-\frac{x-\pLoc}{\pScale} }} { \Left(1 + e^{-\frac{x-\pLoc}{\pScale} }\Right)^{2} } \checked
\\ \notag & = \frac{1}{4 |\pScale|} \op{sech}^2 \Left(\frac{x-\pLoc}{\pScale} \Right) \checked
\\ \notag & = \opr{BetaLogistic}(x\given \pLoc,\pScale,1,1) \checked
\end{align}
\dist{Hyperbolic secant} (inverse hyperbolic cosine, inverse cosh) distribution~\cite{Johnson1995,Perks1932,Talacko1956}:
\begin{align}
\label{HyperbolicSecant}
\opr{HyperbolicSecant}(x\given \pLoc, \pScale)
& =
\frac{1}{\pi |\pScale|}
\frac{1}{e^{+\sfrac{x-\pLoc}{2\pScale}} + e^{- \sfrac{x-\pLoc}{2\pScale} }} \checked
\\ & = \frac{1}{2 \pi |\pScale|} \op{sech}(\sfrac{x-\pLoc}{2\lambda}) \notag \checked
\\ \notag & = \opr{BetaLogistic}(x\given \pLoc, \pScale,\tfrac{1}{2},\tfrac{1}{2}) \checked
\end{align}
The hyperbolic secant cumulative distribution function features the Gudermannian sigmoidal function, $\op{gd}(z)$ . \index{Gudermannian function}
\begin{align*}
\op{HyperbolicSecantCDF}(x\given \pLoc, \pScale) & = \frac{1}{\pi}\op{gd}(\frac{x-\pLoc}{2 \pScale}) \checked \\
& = \frac{2}{\pi} \arctan(e^\frac{x-\pLoc}{2\pScale}) - \frac{1}{2} \checked
\end{align*}
The standardized hyperbolic secant distribution (zero mean, unit variance) is $\opr{HyperbolicSecant}(x\given 0, 1/\pi)\checked$.
\newcommand{\oo}{\infty}
\begin{figure}[t!]
\begin{center}
\includegraphics[width=\textwidth]{pdfSymBetaLogistic}
\end{center}
\caption[Central-logistic distributions]{Special cases of the symmetric central-logistic distribution~\eqref{CentralLogistic}: Standardized (zero mean, unit variance) normal~($\alpha\rightarrow\oo$), logistic~($\alpha=1$), hyperbolic secant~($\alpha=\tfrac{1}{2}$), and Laplace~($\alpha\rightarrow 0$) (low to high peaks).}
\end{figure}
\SSec{Interrelations}
The beta-logistic distribution arises as a limit of the generalized beta-prime distribution \secref{sec:BetaPrime}. The analogous limit of the generalized beta distribution leads to the beta-exponential family \secref{sec:BetaExp}.
The beta-logistic distribution is the log transform of the beta prime distribution.
\[
\opr{BetaLogistic}(0,1,\alpha,\gamma) \sim - \ln \opr{BetaPrime}(0,1,\alpha,\gamma) \checked
\notag
\]
It follows that beta-logistic variates are related to ratios of gamma variates.
\[
\opr{BetaLogistic}(\pLoc,\pScale,\alpha,\gamma) \sim \pLoc - \pScale \ln \frac{\opr{StdGamma}_1(\gamma)}{\opr{StdGamma}_2(\alpha) }
\notag
\checked
\]
Negating the scale parameter is equivalent to interchanging the two shape parameters.
\[
\opr{BetaLogistic}(x\given \pLoc,+\pScale,\alpha,\gamma) = \opr{BetaLogistic}(x\given \pLoc, - \pScale,\gamma,\alpha) \checked
\notag
\]
The beta-logistic distribution, with integer $\alpha$ and $\gamma$ is the logistic order statistics distribution~\cite{Birnbaum1963,Jones2004}~\secref{OrderStatistic}.
\[
\opr{OrderStatistic}_{\opr{Logistic}(\pLoc,\pScale)} (x \given \gamma, \alpha ) = \opr{BetaLogistic}(x\given \pLoc, \pScale, \alpha, \gamma) \checked
\notag
\]
The beta-logistic limits to the gamma exponential~\eqref{GammaExp} and Laplace \eqref{Laplace} distributions.
\[
\opr{GammaExp}(x\given \nu, \lambda, \alpha) & =
{\lim_{\gamma\rightarrow\infty} \opr{BetaLogistic}(x \given \nu+\lambda/\ln\gamma,\lambda, \alpha, \gamma) }
\checked
\notag
\\
\opr{Laplace}(x\given \eta,\theta) & =
\lim_{\alpha\rightarrow 0} \opr{BetaLogistic}( x\given \eta, \theta\alpha\,\alpha,\alpha) \checked
\notag
\]