-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChUniform.tex
95 lines (73 loc) · 4.38 KB
/
ChUniform.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\subpart{Zero shape parameters}
\Sec{Uniform Distribution}
\label{sec:Uniform}
The simplest continuous distribution is a uniform density over an interval.
\dist{Uniform} (flat, rectangular) distribution:
\begin{align}
\label{Uniform}
\opr{Uniform}(x\given a,s) =& \frac{1}{|s|} \checked
\\
& \text{for } a, s \text{ in } \mathbb{R}, \checked
\notag\\
\text{ support } & x\in [a,a+s], \quad s>0 \checked
\notag \\
& x\in [a+s,a], \quad s<0 \notag \checked
\end{align}
The uniform distribution is also commonly parameterized with the boundary points, $a$ and $b=a+s$, rather than location $a$ and scale $s$ as here.
Note that the discrete analog of the continuous uniform distribution is also often referred to as the uniform distribution.
\SSec{Special cases}
The {\bf standard uniform} distribution covers the unit interval, $x\in[0,1]$.
\begin{align}
\label{StdUniform}
\opr{StdUniform}(x) = \opr{Uniform}(x\given 0,1) \checked
\end{align}
The {\bf standardized uniform} distribution, with zero mean and unit variance, is $\opr{Uniform}(x\given -\sqrt{3},2\sqrt{3})$.
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Half uniform}
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Unbounded uniform}
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Degenerate}
Three limits of the uniform distribution are important. If one of the boundary points is infinite (infinite scale), then we obtain an improper (unnormalizable) {\bf half-uniform} distribution. In the limit that both boundary points reach infinity (with opposite signs) we obtain an {\bf unbounded uniform} distribution.
In the alternative limit that the boundary points converge, we obtain a {\bf degenerate} (delta, Dirac) \label{Delta} distribution, wherein the entire probability density is concentrated on a single point.
\SSec{Interrelations}
Uniform distributions, with finite, semi-infinite, or infinite support, are limits of many distribution families. The finite uniform distribution is a special case of the beta distribution \eqref{Beta}.
\begin{align*}
\opr{Uniform}(x\given a,s) &= \opr{Beta}(x\given a, s, 1,1) \checked
\\
&\qquad= \opr{CentralBeta}(x\given a+\tfrac{s}{2}, s) \checked
\end{align*}
Similarly, the semi-infinite uniform distribution is a limit of the Pareto \eqref{Pareto}, beta prime \eqref{BetaPrime}, Amoroso \eqref{Amoroso}, gamma \eqref{Gamma}, and exponential \eqref{Exp} distributions, and the infinite support uniform distribution is a limit of the normal \eqref{Normal}, Cauchy \eqref{Cauchy}, logistic \eqref{Logistic} and gamma-exponential \eqref{GammaExp} distributions, among others.
The order statistics \secref{OrderStatistic} of the uniform distribution is the beta distribution~\eqref{Beta}.
\[
\opr{OrderStatistic}_{\opr{Uniform}(a,s)}(x \given \alpha, \gamma) = \opr{Beta}(x\given a, s, \alpha, \gamma)
\checked
\notag
\]
\begin{figure}[t]
\begin{center}
\includegraphics[width=\textwidth]{pdfUniform}
\end{center}
\caption[Uniform distribution]{Uniform distribution, $\opr{Uniform}(x\given a,s)$ \eqref{Uniform}}
\end{figure}
The standard uniform distribution is related to every other continuous distribution via the inverse probability integral transform (Smirnov transform)\index{Smirnov transform}\index{inverse probability integral transform}. If $X$ is a random variable and $F_X^{-1}(z)$ is the inverse of the corresponding cumulative distribution function then
\[
X \sim F_X^{-1}\bigl( \opr{StdUniform}() \bigr) \ . \checked
\notag
\]
If the inverse cumulative distribution function has a tractable closed form, then inverse transform sampling\index{inverse transform sampling} can provide an efficient method of sampling random numbers from the distribution of interest. See appendix~\secref{sec:random}.
The power function distribution \eqref{PowerFn} is related to the uniform distribution via a Weibull transform.
\[
\opr{PowerFn}(a,s,\beta) \sim a + s\ \opr{StdUniform}()^{\tfrac{1}{\beta}} \checked
\notag
\]
The sum of $n$ independent standard uniform variates is the Irwin-Hall \eqref{IrwinHall} distribution,
\[
\sum_{i=1}^{n} \opr{Uniform}_i(0,1) \sim \opr{IrwinHall}(n) \checked
\notag
\]
and the product is the uniform-product distribution \eqref{UniformProduct}.
\[
\prod_{i=1}^{n} \opr{Uniform}_i(0,1) \sim \opr{UniformProduct}(n) \checked
\notag
\]
\input{PropertiesTableUniform}