-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPropertiesTableAmoroso.tex
80 lines (75 loc) · 2.87 KB
/
PropertiesTableAmoroso.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\begin{table*}[pt!]
\caption[Amoroso distribution -- Properties]{Properties of the Amoroso distribution}
%\addcontentsline{toc}{subsection}{Amoroso}
\begin{align*}
\text{\hyperref[PropertiesSec]{Properties}} \quad& \\
\text{notation} \quad & \op{Amoroso}(x\given a, \theta, \alpha, \beta) \checked
\\
\text{PDF} \quad &
\frac{1}{\Gamma(\alpha)}
\Left|\frac{\beta}{\theta}\Right|
\Left(\frac{x-a}{\theta}\Right)^{\alpha \beta -1}
\exp \Left\{
- \Left(\frac{x-a}{\theta}\Right)^{\beta}
\Right\}
\checked
\hspace{-8em}
\\
\text{CDF / CCDF } \quad & 1-Q\Left(\alpha, \Left(\tfrac{x - a }{\theta}\Right)^{\beta}\Right)
\checked & \tfrac{\theta}{\beta}>0 \, \big/ \, \tfrac{\theta}{\beta}<0
%\\
%& Q(\alpha, \Left(\tfrac{x - a }{\theta}\Right)^{\beta})
%& \tfrac{\beta}{\theta}<0
\\
\text{parameters}\quad & a,\ \theta,\ \alpha,\ \beta\ \text{in } \Real, \ \alpha>0 \checked
\\
\text{support} \quad & x \geq a & \theta > 0 \checked
\\
& x\leq a & \theta < 0 \checked
\\
%\text{median} \quad & \cdots
%\\
\text{mode} \quad& a+ \theta (\alpha-\tfrac{1}{\beta})^{\frac{1}{\beta}} \checked
& \alpha \beta \geq 1 \checked
\\ & a & \alpha \beta \le 1
\\
\text{mean} \quad& a + \theta \frac{\Gamma(\alpha+\frac{1}{\beta})}{\Gamma(\alpha)} \checked
& \alpha + \tfrac{1}{\beta} \geq 0
\\
\text{variance} \quad& \theta^2 \Left[ \frac{\Gamma(\alpha+\frac{2}{\beta})}{\Gamma(\alpha)} -
\frac{\Gamma(\alpha+\frac{1}{\beta})^2}{\Gamma(\alpha)^2} \Right] \checked
& \alpha + \tfrac{2}{\beta} \geq 0
\\
\text{skew} \quad & \op{sgn}(\tfrac{\beta}{\theta})\ \Left[ \tfrac{\Gamma(\alpha+\frac{3}{\beta})}{\Gamma(\alpha)} - 3 \tfrac{\Gamma(\alpha+\frac{2}{\beta})\Gamma(\alpha+\frac{1}{\beta})}{\Gamma(\alpha)^2} + 2 \tfrac{\Gamma(\alpha+\frac{1}{\beta})^3}{\Gamma(\alpha)^3} \Right]
\hspace{-3em}
\\ & \qquad \qquad \qquad \qquad \Big /
\Left[ \tfrac{\Gamma(\alpha+\frac{2}{\beta})}{\Gamma(\alpha)} -
\tfrac{\Gamma(\alpha+\frac{1}{\beta})^2}{\Gamma(\alpha)^2} \Right]^{3/2}
\hspace{-3em}
\checked
\\
\text{ex. kurtosis} \quad &
\bigg[ \tfrac{\Gamma(\alpha+\frac{4}{\beta})}{\Gamma(\alpha)}
- 4 \tfrac{\Gamma(\alpha+\frac{3}{\beta})\Gamma(\alpha+\frac{1}{\beta})}{\Gamma(\alpha)^2}
+ 6 \tfrac{\Gamma(\alpha+\frac{2}{\beta})\Gamma(\alpha+\frac{1}{\beta})^2}{\Gamma(\alpha)^3}
\hspace{-3em}
\checked
\\ & \qquad
-3 \tfrac{\Gamma(\alpha+\frac{1}{\beta})^4}{\Gamma(\alpha)^4} \bigg]
\Big /
\Left[ \tfrac{\Gamma(\alpha+\frac{2}{\beta})}{\Gamma(\alpha)} -
\tfrac{\Gamma(\alpha+\frac{1}{\beta})^2}{\Gamma(\alpha)^2} \Right]^{2}
-3
\hspace{-3em}
\\
\text{entropy} \quad&
\ln \frac{|\theta| \Gamma(\alpha)}{|\beta|} +\alpha + \Left( \sfrac{1}{\beta} - \alpha\Right) \psi(\alpha) \checked &
\text{\cite{Dadpay2007}}
%\\
%\text{MGF} \quad & \cdots
%\\
%\text{CF} \quad & \cdots
\end{align*}
\end{table*}