-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPropertiesTableBetaPrime.tex
63 lines (59 loc) · 1.99 KB
/
PropertiesTableBetaPrime.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\begin{table*}[tp]
\caption[Beta prime distribution -- Properties] {Properties of the beta prime distribution}
\begin{align*}
\text{\hyperref[PropertiesSec]{Properties}} \quad& \\
\text{notation} \quad & \op{BetaPrime}(x\given a, s, \alpha,\gamma) \checked
\\
\text{PDF}\quad & \frac{1}{B(\alpha, \gamma)} \frac{1}{|s|}
\Left(\frac{x-a}{s}\Right)^{\alpha -1} \Left(1+ \frac{x-a}{s} \Right)^{-\alpha-\gamma } \checked
\hspace{-2em}
\\
\text{CDF / CCDF} \quad &
\frac{B\big(\alpha, \gamma; (1+(\tfrac{x-a}{s})^{-1})^{-1} \big) }{B(\alpha,\gamma)} \checked
\hspace{-8em}
& s >0 \,\big/ \, s<0
\\
& \quad = I\Left( \alpha,\gamma; (1+(\tfrac{x-a}{s})^{-1})^{-1} \Right) \checked
\\
\text{parameters}\quad & a,\ s,\ \alpha,\ \gamma, \text{ in } \Real \checked
\\ & \alpha>0, \gamma>0 \checked
\\
\text{support} \quad & x \geq a & s > 0 \checked
\\
& x\leq a & s < 0 \checked
\\
%\text{median} \quad & \cdots
%\\
\text{mode} \quad & a + s \frac{\alpha-1}{\gamma+1} & \alpha\geq 1 \checked \\
& a &\alpha<1 \checked
\\
\text{mean} \quad & a+s \frac{ \alpha}{\gamma-1} \checked
& \gamma >1
\\
\text{variance} \quad &s^2
\frac{\alpha(\alpha+\gamma-1)}{(\gamma-2)(\gamma-1)^2} \checked
\hspace{-8em}
& \gamma>2
\\
\text{skew} \quad & \text{not simple}
\\
\text{ex. kurtosis} \quad & \text{not simple}
\\
%\text{entropy} \quad & \ln \frac{1}{B(\alpha, \gamma)} \Left|\frac{1}{s}\Right|
% +(1-\alpha) \big[ \psi(\alpha) - \psi(\gamma)\big]
% \hspace{-8em}
%\\
%& \quad +(\alpha+\gamma) \big[ \psi(\alpha+\gamma) - \psi(\gamma)\big] \checked & \text{\cite[Eq.~(15)]{Tahmasebi2010}} % Not correct?
%\\
\text{MGF} \quad & \text{none}
%\\
%\text{CF} \quad & \cdots
% Possibly expression in terms of second confluence hypergeometric function?
% See wikipedia under F distribution
%\\
%\text{moments} \quad & \frac{B(\alpha+k,\gamma-k)}B(\alpha,\gamma)}
% Only if a =0, s=1. How do moments scale with scale?
\end{align*}
\end{table*}