-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBaseline_CNN_Model.py
249 lines (221 loc) · 9.63 KB
/
Baseline_CNN_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from torchvision import transforms
from utils import compute_accuracy, get_predictions
import numpy as np
from torch.utils.data.sampler import SubsetRandomSampler
from argparse import ArgumentParser
from collections import OrderedDict
import logging
import os
from torchvision.datasets import MNIST, ImageFolder
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.logging import TestTubeLogger
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def max_pool_out_size(in_size, nb_max_pool_layers=2):
h, w = in_size
for i in range(nb_max_pool_layers):
h = int(np.floor((h - 2) / 2 + 1))
w = int(np.floor((w - 2) / 2 + 1))
return h, w
class BaselineCNNModel(LightningModule):
def __init__(self, hparams):
super(BaselineCNNModel, self).__init__()
self.hparams = hparams
self.get_datasets()
self.train_batch_size = self.hparams.train_batch_size
self.val_batch_size = self.hparams.val_batch_size
self.test_batch_size = self.hparams.test_batch_size
np.random.seed(143)
self.num_workers = 4 if device == 'cpu' else 1
self.in_channels, self.input_height, self.input_width = self.input_size
self.h, self.w = self.input_height, self.input_width
self.nb_classes = 10
self.features = nn.Sequential(
nn.Conv2d(in_channels=self.in_channels, out_channels=256, kernel_size=(5, 5),
stride=1, padding=2),
nn.ReLU(),
# nn.MaxPool2d(kernel_size=(2, 2), stride=2),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=(5, 5), stride=1,
padding=2),
nn.ReLU(),
# nn.MaxPool2d(kernel_size=(2, 2), stride=2),
nn.Conv2d(in_channels=256, out_channels=128, kernel_size=(5, 5),
stride=1, padding=2),
nn.ReLU() # ,
# nn.MaxPool2d(kernel_size=(2, 2), stride=2)
)
self.classifier = nn.Sequential(
nn.Linear(in_features=self.h * self.w * 128, out_features=328),
nn.ReLU(),
nn.Linear(in_features=328, out_features=192),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(in_features=192, out_features=10)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.forward(x)
loss = F.cross_entropy(y_hat, y)
predictions = get_predictions(y_hat)
accuracy = compute_accuracy(predictions, y)
tqdm_dict = {'train_loss': loss, 'train_acc': accuracy}
output = OrderedDict({
'loss': loss,
'progress_bar': tqdm_dict,
'log': tqdm_dict
})
return output
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.forward(x)
loss = F.cross_entropy(y_hat, y)
predictions = get_predictions(y_hat)
accuracy = compute_accuracy(predictions, y)
output = OrderedDict({
'val_loss': loss,
'val_acc': accuracy
})
return output
def validation_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
avg_accuracy = torch.stack([x['val_acc'] for x in outputs]).mean()
tqdm_dict = {'val_loss': avg_loss, 'val_acc': avg_accuracy}
output = OrderedDict({
'progress_bar': tqdm_dict,
'log': tqdm_dict,
'val_loss': avg_loss
})
return output
def test_step(self, batch):
x, y = batch
y_hat = self.forward(x)
predictions = get_predictions(y_hat)
loss = F.cross_entropy(y_hat, y)
accuracy = compute_accuracy(predictions, y)
output = OrderedDict({
'test_loss': loss,
'test_acc': accuracy
})
return output
def test_end(self, outputs):
avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean()
avg_accuracy = torch.stack([x['test_acc'] for x in outputs]).mean()
tqdm_dict = {'test_loss': avg_loss, 'test_acc': avg_accuracy}
output = OrderedDict({
'progress_bar': tqdm_dict,
'log': tqdm_dict,
'test_loss': avg_loss
})
return output
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
def get_datasets(self):
if self.hparams.dataset == "MNIST":
t = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
self.train_dataset = MNIST(root='./data', train=True,
transform=t,
target_transform=None, download=True)
self.val_dataset = MNIST(root='./data', train=False,
transform=t,
target_transform=None, download=True)
self.input_size = [1, 28, 28]
self.nb_classes = 10
elif self.hparams.dataset == "HB":
t = transforms.Compose(
[transforms.Resize([28, 28]),
transforms.ToTensor()])
self.train_dataset = ImageFolder(root='./data/HB/training',
transform=t)
self.val_dataset = ImageFolder(root='./data/HB/testing',
transform=t)
self.input_size = [3, 28, 28]
self.nb_classes = 4
else:
self.train_dataset = None
self.val_dataset = None
# if not(self.train_dataset == None):
# N = len(self.train_dataset)
# idx = np.arange(N)
# train_prop = self.hparams.train_prop
# indices = np.random.permutation(idx)
# num_train = int(np.floor(train_prop * N))
# train_indices = indices[0:num_train]
# val_indices = indices[num_train:]
# self.train_sampler = SubsetRandomSampler(train_indices)
# self.val_sampler = SubsetRandomSampler(val_indices)
@pl.data_loader
def train_dataloader(self):
# return DataLoader(dataset=self.train_dataset, batch_size=self.train_batch_size,
# sampler=self.train_sampler,
# num_workers=self.num_workers)
return DataLoader(dataset=self.train_dataset, batch_size=self.train_batch_size)
@pl.data_loader
def val_dataloader(self):
# OPTIONAL
# return DataLoader(dataset=self.train_dataset, batch_size=self.val_batch_size,
# sampler=self.val_sampler,
# num_workers=self.num_workers)
return DataLoader(dataset=self.val_dataset, batch_size=self.val_batch_size)
# @pl.data_loader
# def test_dataloader(self):
# # OPTIONAL
# return DataLoader(dataset=self.testing_dataset, batch_size=self.test_batch_size,
# num_workers=self.num_workers)
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser])
parser.add_argument('--epochs', default=10, type=int,
help="the max number of epochs (default: 10)",
metavar="max_nb_epochs")
parser.add_argument('--train_batch_size', default=128, type=int,
help="batch_size used for training (default: 32)",
metavar="train_batch_size",
dest="train_batch_size")
parser.add_argument('--val_batch_size', default=128, type=int,
help="batch_size used during validation (default: 64)",
metavar="val_batch_size",
dest="val_batch_size")
parser.add_argument('--lr', default=1e-5, type=float,
help="initial learning rate (default: 1e-5)",
metavar='lr')
parser.add_argument('--overfit_pct', default=0.0, type=float,
help="the proportion of the data to use to overfit (default=0.0)\nuse this to see if things are working",
dest='overfit_pct')
return parser
def get_args():
parent_parser = ArgumentParser(add_help=False)
parent_parser.add_argument('--dataset', default='MNIST', type=str,
help="The dataset to use (default: MNIST, choices: ['MNIST', 'HB])",
choices=['MNIST', 'HB'],
metavar='dataset')
parser = BaselineCNNModel.add_model_specific_args(parent_parser)
return parser.parse_args()
def main(hparams):
model = BaselineCNNModel(hparams)
save_path = os.path.join('./Logs', hparams.dataset, "BaselineCNN")
# tt_logger = TestTubeLogger(save_dir=save_dir, name="BaselineCNNModel")
if not(torch.cuda.is_available()):
trainer = Trainer(overfit_pct=hparams.overfit_pct, default_save_path=save_path)
else:
trainer = Trainer(overfit_pct=hparams.overfit_pct, default_save_path=save_path,
gpus=1, min_nb_epochs=50, max_nb_epochs=100)
if hparams.evaluate:
trainer.run_evaluation()
else:
trainer.fit(model)
if __name__ == '__main__':
hparams = get_args()
print(hparams)
main(hparams)