From d5acc87c2d49008fce4717db498f1875e191e92a Mon Sep 17 00:00:00 2001 From: Justin Braaten Date: Mon, 16 Oct 2023 18:50:51 +0000 Subject: [PATCH 1/2] Optimize create_timeseries for memory --- geemap/timelapse.py | 28 ++++++++++++++++++++++++---- 1 file changed, 24 insertions(+), 4 deletions(-) diff --git a/geemap/timelapse.py b/geemap/timelapse.py index 55be029cbe..e602f532fc 100644 --- a/geemap/timelapse.py +++ b/geemap/timelapse.py @@ -730,6 +730,7 @@ def create_timeseries( reducer="median", drop_empty=True, date_format=None, + parallel_scale=1 ): """Creates a timeseries from a collection of images by a specified frequency and reducer. @@ -743,6 +744,7 @@ def create_timeseries( reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'. drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True. date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'. + parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. Returns: ee.ImageCollection: The timeseries. @@ -791,16 +793,20 @@ def create_image(date): if region is None: sub_col = collection.filterDate(start, end) - image = sub_col.reduce(reducer) + image = sub_col.reduce(reducer, parallel_scale) else: sub_col = collection.filterDate(start, end).filterBounds(region) - image = sub_col.reduce(reducer).clip(region) + image = ee.Image(ee.Algorithms.If( + ee.Algorithms.ObjectType(region).equals("FeatureCollection"), + sub_col.reduce(reducer).clipToCollection(region), + sub_col.reduce(reducer).clip(region) + )) return image.set( { "system:time_start": ee.Date(date).millis(), "system:date": ee.Date(date).format(date_format), - "empty": sub_col.size().eq(0), + "empty": sub_col.limit(1).size().eq(0), } ).rename(bands) @@ -859,6 +865,7 @@ def create_timelapse( loop=0, mp4=False, fading=False, + parallel_scale=1 ): """Create a timelapse from any ee.ImageCollection. @@ -908,6 +915,7 @@ def create_timelapse( loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. mp4 (bool, optional): Whether to create an mp4 file. Defaults to False. fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). + parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. Returns: str: File path to the timelapse gif. @@ -932,6 +940,7 @@ def create_timelapse( reducer=reducer, drop_empty=True, date_format=date_format, + parallel_scale=parallel_scale ) # rename the bands to remove the '_reducer' characters from the band names. @@ -1492,6 +1501,7 @@ def sentinel2_timeseries( reducer="median", drop_empty=True, date_format=None, + parallel_scale=1 ): """Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work. Images include both level 1C and level 2A imagery. @@ -1509,6 +1519,7 @@ def sentinel2_timeseries( reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'. drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True. date_format (str, optional): Format of the date. Defaults to None. + parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. Returns: object: Returns an ImageCollection containing annual Sentinel 2 images. @@ -1573,7 +1584,7 @@ def maskS2clouds(image): collection = collection.select(bands) ts = create_timeseries( - collection, start, end, roi, bands, frequency, reducer, drop_empty, date_format + collection, start, end, roi, bands, frequency, reducer, drop_empty, date_format, parallel_scale ) return ts @@ -3499,6 +3510,8 @@ def sentinel2_timelapse( kwargs["reducer"] = "median" if "drop_empty" not in kwargs: kwargs["drop_empty"] = True + if "parallel_scale" not in kwargs: + kwargs["parallel_scale"] = 1 kwargs["date_format"] = date_format col = sentinel2_timeseries( roi, @@ -4471,6 +4484,7 @@ def modis_ocean_color_timeseries( reducer="median", drop_empty=True, date_format=None, + parallel_scale=1 ): """Creates a ocean color timeseries from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI @@ -4484,6 +4498,7 @@ def modis_ocean_color_timeseries( reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'. drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True. date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'. + parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. Returns: ee.ImageCollection: The timeseries. @@ -4518,6 +4533,7 @@ def modis_ocean_color_timeseries( reducer, drop_empty, date_format, + parallel_scale ) return ts @@ -4694,6 +4710,7 @@ def dynamic_world_timeseries( drop_empty=True, date_format=None, return_type="hillshade", + parallel_scale=1 ): """Create Dynamic World timeseries. @@ -4707,6 +4724,7 @@ def dynamic_world_timeseries( drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True. date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'. return_type (str, optional): The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade". + parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. Returns: ee.ImageCollection: An ImageCollection of the Dynamic World land cover timeseries. @@ -4771,6 +4789,7 @@ def dynamic_world_timeseries( reducer, drop_empty, date_format, + parallel_scale ) if return_type == "class": @@ -4805,6 +4824,7 @@ def dynamic_world_timeseries( "mean", drop_empty, date_format, + parallel_scale ) prob_images = ee.ImageCollection( From 85c94f8229821d09a78d2b2ac384748eaf171c23 Mon Sep 17 00:00:00 2001 From: Justin Braaten Date: Mon, 16 Oct 2023 12:00:21 -0700 Subject: [PATCH 2/2] Add missing `parallel_scale` arguments --- geemap/timelapse.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/geemap/timelapse.py b/geemap/timelapse.py index e602f532fc..3195226816 100644 --- a/geemap/timelapse.py +++ b/geemap/timelapse.py @@ -799,8 +799,8 @@ def create_image(date): sub_col = collection.filterDate(start, end).filterBounds(region) image = ee.Image(ee.Algorithms.If( ee.Algorithms.ObjectType(region).equals("FeatureCollection"), - sub_col.reduce(reducer).clipToCollection(region), - sub_col.reduce(reducer).clip(region) + sub_col.reduce(reducer, parallel_scale).clipToCollection(region), + sub_col.reduce(reducer, parallel_scale).clip(region) )) return image.set( {