-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathegnn.py
453 lines (394 loc) · 16.6 KB
/
egnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
from typing import Optional, List
from torch import nn
import torch
def aggregated_sum(
data: torch.Tensor,
index: torch.LongTensor,
num_segments: int,
mean: bool = False
):
index = index.unsqueeze(1).repeat(1, data.size(1))
agg = data.new_full((num_segments, data.size(1)), 0).scatter_add_(0, index, data)
if mean:
counts = data.new_full((num_segments, data.size(1)), 0).scatter_add_(0, index, torch.ones_like(data))
agg = agg / counts.clamp(min=1)
return agg
def n_nodes2mask(
n_nodes: torch.LongTensor
):
max_n_nodes = n_nodes.max()
mask = torch.cat(
[torch.cat([n_nodes.new_ones(1, n), n_nodes.new_zeros(1, max_n_nodes - n)], dim=1) for n in n_nodes], dim=0
).bool()
return mask
class EGC(nn.Module):
def __init__(
self,
coord_dim: int,
node_dim: int,
message_dim: int,
edge_attr_dim: Optional[int] = 0,
out_node_dim: Optional[int] = None,
is_residual: Optional[bool] = False,
act_name: Optional[str] = 'silu',
has_attention: Optional[bool] = False,
has_vel: Optional[bool] = False,
has_vel_norm: Optional[bool] = False,
normalize: Optional[bool] = False,
aggr_coord: Optional[str] = 'mean',
aggr_hidden: Optional[str] = 'sum',
has_coord_act: Optional[bool] = False
):
super(EGC, self).__init__()
assert aggr_coord == 'mean' or aggr_coord == 'sum'
assert aggr_hidden == 'mean' or aggr_hidden == 'sum'
self.coord_dim = coord_dim
self.node_dim = node_dim
self.message_dim = message_dim
self.edge_attr_dim = edge_attr_dim
self.out_node_dim = node_dim if out_node_dim is None else out_node_dim
assert not is_residual or self.out_node_dim == node_dim, 'Skip connection allowed iff out_node_dim == node_dim'
self.is_residual = is_residual
self.has_attention = has_attention
self.has_vel = has_vel
self.has_vel_norm = has_vel_norm
self.normalize = normalize
self.aggr_coord = aggr_coord
self.aggr_hidden = aggr_hidden
self.has_coord_act = has_coord_act
act = {'tanh': nn.Tanh(), 'lrelu': nn.LeakyReLU(), 'silu': nn.SiLU()}[act_name]
self.edge_mlp = nn.Sequential(
nn.Linear(node_dim + node_dim + edge_attr_dim + 1, message_dim),
act,
nn.Linear(message_dim, message_dim),
act
)
self.node_mlp = nn.Sequential(
nn.Linear(message_dim + node_dim, message_dim),
act,
nn.Linear(message_dim, self.out_node_dim)
)
last_coord_layer = nn.Linear(message_dim, 1, bias=False)
# torch.nn.init.xavier_uniform_(last_coord_layer.weight, gain=0.001)
last_coord_layer.weight.data.zero_()
self.coord_mlp = nn.Sequential(
nn.Linear(message_dim, message_dim),
act,
last_coord_layer,
nn.Tanh() if has_coord_act else nn.Identity()
)
if has_attention:
self.attention_mlp = nn.Sequential(
nn.Linear(message_dim, 1),
nn.Sigmoid()
)
if has_vel:
self.vel_mlp = nn.Sequential(
nn.Linear(node_dim + 1 if has_vel_norm else node_dim, node_dim // 2),
act,
nn.Linear(node_dim // 2, 1),
)
def edge_model(
self,
node_feat: torch.Tensor,
edge_index: torch.LongTensor,
coord_radial: torch.Tensor,
edge_weight: Optional[torch.Tensor] = None,
edge_attr: Optional[torch.Tensor] = None
):
if node_feat.ndim == 2:
out = self.edge_model_sparse(node_feat, edge_index, coord_radial, edge_weight, edge_attr)
else:
out = self.edge_model_dense(node_feat, edge_index, coord_radial, edge_weight, edge_attr)
return out
def coord_model(
self,
coord: torch.Tensor,
coord_diff: torch.Tensor,
edge_feat: torch.Tensor,
edge_index: torch.LongTensor,
node_feat: Optional[torch.Tensor] = None,
vel: Optional[torch.Tensor] = None
):
if coord.ndim == 2:
out = self.coord_model_sparse(coord, coord_diff, edge_feat, edge_index, node_feat, vel)
else:
out = self.coord_model_dense(coord, coord_diff, edge_feat, edge_index, node_feat, vel)
return out
def node_model(
self,
node_feat: torch.Tensor,
edge_feat: torch.Tensor,
edge_index: torch.LongTensor,
n_nodes: Optional[torch.LongTensor] = None
):
if node_feat.ndim == 2:
out = self.node_model_sparse(node_feat, edge_feat, edge_index)
else:
out = self.node_model_dense(node_feat, edge_feat, edge_index, n_nodes)
return out
def coord2radial(
self,
coord: torch.Tensor,
edge_index: torch.LongTensor
):
if coord.ndim == 2:
out = self.coord2radial_sparse(coord, edge_index)
else:
out = self.coord2radial_dense(coord, edge_index)
return out
def edge_model_sparse(
self,
node_feat: torch.Tensor,
edge_index: torch.LongTensor,
coord_radial: torch.Tensor,
edge_weight: Optional[torch.Tensor] = None,
edge_attr: Optional[torch.Tensor] = None
):
if edge_attr is not None:
assert edge_attr.size(1) == self.edge_attr_dim
edge_feat = torch.cat([node_feat[edge_index[0]], node_feat[edge_index[1]], coord_radial, edge_attr], dim=1)
else:
edge_feat = torch.cat([node_feat[edge_index[0]], node_feat[edge_index[1]], coord_radial], dim=1)
out = self.edge_mlp(edge_feat)
if edge_weight is not None:
out = edge_weight.unsqueeze(1) * out
if self.has_attention:
out = self.attention_mlp(out) * out
return out
def coord_model_sparse(
self,
coord: torch.Tensor,
coord_diff: torch.Tensor,
edge_feat: torch.Tensor,
edge_index: torch.LongTensor,
node_feat: Optional[torch.Tensor] = None,
vel: Optional[torch.Tensor] = None
):
trans = coord_diff * self.coord_mlp(edge_feat)
coord_agg = aggregated_sum(trans, edge_index[0], coord.size(0), mean=self.aggr_coord == 'mean')
if self.has_vel:
if self.has_vel_norm:
vel_scale = self.vel_mlp(torch.cat([node_feat, torch.norm(vel, p=2, dim=-1, keepdim=True)], dim=-1))
else:
vel_scale = self.vel_mlp(node_feat)
vel = vel_scale * vel + coord_agg
coord = coord + vel
return coord, vel
else:
coord = coord + coord_agg
return coord
def node_model_sparse(
self,
node_feat: torch.Tensor,
edge_feat: torch.Tensor,
edge_index: torch.LongTensor,
):
edge_feat_agg = aggregated_sum(edge_feat, edge_index[0], node_feat.size(0), mean=self.aggr_hidden == 'mean')
out = self.node_mlp(torch.cat([node_feat, edge_feat_agg], dim=1))
if self.is_residual:
out = node_feat + out
return out
def coord2radial_sparse(
self,
coord: torch.Tensor,
edge_index: torch.LongTensor
):
coord_diff = coord[edge_index[0]] - coord[edge_index[1]]
coord_radial = torch.sum(coord_diff ** 2, 1, keepdim=True)
if self.normalize:
coord_diff = coord_diff / (torch.sqrt(coord_radial).detach() + 1)
return coord_diff, coord_radial
def edge_model_dense(
self,
node_feat: torch.Tensor,
adj: torch.LongTensor,
coord_radial: torch.Tensor,
adj_weight: Optional[torch.Tensor] = None,
edge_attr: Optional[torch.Tensor] = None
):
node_feat_exp = node_feat.unsqueeze(2).expand(-1, -1, node_feat.size(1), -1)
edge_feat = torch.cat([node_feat_exp, node_feat_exp.permute(0, 2, 1, 3)], dim=-1)
if edge_attr is not None:
assert edge_attr.size(-1) == self.edge_attr_dim
edge_feat = torch.cat([edge_feat, coord_radial.unsqueeze(-1), edge_attr], dim=-1)
else:
edge_feat = torch.cat([edge_feat, coord_radial.unsqueeze(-1)], dim=-1)
out = self.edge_mlp(edge_feat) * adj.unsqueeze(-1)
if adj_weight is not None:
out = adj_weight.unsqueeze(-1) * out
if self.has_attention:
out = self.attention_mlp(out) * out
return out
def coord_model_dense(
self,
coord: torch.Tensor,
coord_diff: torch.Tensor,
edge_feat: torch.Tensor,
adj: torch.LongTensor,
node_feat: Optional[torch.Tensor] = None,
vel: Optional[torch.Tensor] = None
):
trans = coord_diff * self.coord_mlp(edge_feat)
coord_agg = torch.sum(trans * adj.unsqueeze(-1), dim=2)
if self.aggr_coord == 'mean':
coord_agg = coord_agg / adj.sum(dim=-1, keepdim=True).clamp(min=1)
if self.has_vel:
if self.has_vel_norm:
vel_scale = self.vel_mlp(torch.cat([node_feat, torch.norm(vel, p=2, dim=-1, keepdim=True)], dim=-1))
else:
vel_scale = self.vel_mlp(node_feat)
vel = vel_scale * vel + coord_agg
coord = coord + vel
return coord, vel
else:
coord = coord + coord_agg
return coord
def node_model_dense(
self,
node_feat: torch.Tensor,
edge_feat: torch.Tensor,
adj: torch.LongTensor,
n_nodes: torch.LongTensor
):
edge_feat_agg = torch.sum(edge_feat * adj.unsqueeze(-1), dim=2)
if self.aggr_hidden == 'mean':
edge_feat_agg = edge_feat_agg / adj.sum(dim=-1, keepdim=True).clamp(min=1)
out = self.node_mlp(torch.cat([node_feat, edge_feat_agg], dim=-1))
if self.is_residual:
out = node_feat + out
out = out * n_nodes2mask(n_nodes).unsqueeze(-1)
return out
def coord2radial_dense(
self,
coord: torch.Tensor,
adj: torch.LongTensor
):
coord_diff = (coord.unsqueeze(2) - coord.unsqueeze(1)) * adj.unsqueeze(-1)
coord_radial = (coord_diff ** 2).sum(-1)
if self.normalize:
coord_diff = coord_diff / (torch.sqrt(coord_radial).detach() + 1).unsqueeze(-1)
return coord_diff, coord_radial
def forward(
self,
coord: torch.Tensor,
node_feat: torch.Tensor,
edge_index: torch.LongTensor,
edge_weight: Optional[torch.Tensor] = None,
edge_attr: Optional[torch.Tensor] = None,
vel: Optional[torch.Tensor] = None,
n_nodes: Optional[torch.LongTensor] = None
):
# if coord has 3 (2) dims then input is dense (sparse) and providing n_nodes is (not) mandatory
assert coord.ndim == 2 or n_nodes is not None
# if self.has_vel is True then velocity must be provided
assert not self.has_vel or vel is not None
coord_diff, coord_radial = self.coord2radial(coord, edge_index)
edge_feat = self.edge_model(node_feat, edge_index, coord_radial, edge_weight, edge_attr)
if self.has_vel:
coord, vel = self.coord_model(coord, coord_diff, edge_feat, edge_index, node_feat, vel)
node_feat = self.node_model(node_feat, edge_feat, edge_index, n_nodes)
return coord, node_feat, vel
else:
coord = self.coord_model(coord, coord_diff, edge_feat, edge_index)
node_feat = self.node_model(node_feat, edge_feat, edge_index, n_nodes)
return coord, node_feat
def __repr__(self):
return self.__class__.__name__ + \
'(coord_dim=%d, node_dim=%d, message_dim=%d, edge_attr_dim=%d, act=%s, res=%s, vel=%s, attention=%s)' % \
(self.coord_dim, self.node_dim, self.message_dim, self.edge_attr_dim,
str(self.edge_mlp[1]), self.is_residual, self.has_vel, self.has_attention)
class EGNN(nn.Module):
def __init__(
self,
layers: List[EGC]
):
super(EGNN, self).__init__()
self.layers = nn.Sequential(*layers)
def forward(
self,
coord: torch.Tensor,
node_feat: torch.Tensor,
edge_index: torch.LongTensor,
edge_weight: Optional[torch.Tensor] = None,
edge_attr: Optional[torch.Tensor] = None,
vel: Optional[torch.Tensor] = None,
n_nodes: Optional[torch.LongTensor] = None
):
out = None
for layer in self.layers:
out = layer(coord, node_feat, edge_index, edge_weight, edge_attr, vel, n_nodes)
if len(out) == 3:
coord, node_feat, vel = out
else:
coord, node_feat = out
assert isinstance(out, tuple)
return out
def test_egnn_equivariance():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
num_nodes, node_dim, message_dim, coord_dim = 6, 8, 16, 3
egnn = EGNN([
EGC(coord_dim, node_dim, message_dim, has_attention=True, has_vel=True, has_vel_norm=True),
EGC(coord_dim, node_dim, message_dim, has_attention=True, has_vel=True, has_vel_norm=True)
]).to(device)
node_feat = torch.randn(num_nodes, node_dim).to(device)
vel_1 = torch.randn(num_nodes, coord_dim).to(device)
W = torch.randn(num_nodes, num_nodes).sigmoid().to(device)
W = (torch.tril(W) + torch.tril(W, -1).T)
edge_index = (W.fill_diagonal_(0) > 0.5).nonzero().T
for i in range(50):
print(i)
rotation = torch.nn.init.orthogonal_(torch.empty(coord_dim, coord_dim)).to(device)
vel_2 = torch.matmul(rotation, vel_1.T).T
translation = torch.randn(1, coord_dim).to(device)
in_coord_1 = torch.randn(num_nodes, coord_dim).to(device)
in_coord_2 = torch.matmul(rotation, in_coord_1.T).T + translation
out_coord_1 = egnn(in_coord_1, node_feat, edge_index, vel=vel_1)[0]
out_coord_2 = egnn(in_coord_2, node_feat, edge_index, vel=vel_2)[0]
out_coord_1_aug = torch.matmul(rotation, out_coord_1.T).T + translation
assert torch.allclose(out_coord_2, out_coord_1_aug, atol=1e-6)
print('Test succeeded.')
def test_equivalence_sparse_dense():
from utils import pad3d, edge_index2adj_with_weight
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
node_dim, message_dim, coord_dim = 8, 16, 3
egnn = EGNN([
EGC(coord_dim, node_dim, message_dim, has_attention=True, has_vel=True, aggr_hidden='mean'),
EGC(coord_dim, node_dim, message_dim, has_attention=True, has_vel=True, aggr_hidden='mean')
]).to(device)
n_nodes = torch.LongTensor([5, 6, 8, 4]).to(device)
offset_nodes = [0] + torch.Tensor.tolist(n_nodes.cumsum(0))
num_nodes = n_nodes.sum().item()
coord = torch.randn(num_nodes, coord_dim).to(device)
node_feat = torch.randn(num_nodes, node_dim).to(device)
vel = torch.randn(num_nodes, coord_dim).to(device)
W = torch.block_diag(*[torch.randn(n, n).sigmoid() for n in n_nodes]).to(device)
W = (torch.tril(W) + torch.tril(W, -1).T)
edge_index = (W.fill_diagonal_(0) > 0.5).nonzero().T
edge_weight = W[edge_index[0], edge_index[1]]
coord_pad = pad3d(coord, n_nodes)
node_feat_pad = pad3d(node_feat, n_nodes)
vel_pad = pad3d(vel, n_nodes)
adj, adj_weight = edge_index2adj_with_weight(edge_index, edge_weight, n_nodes)
out1_sparse, out2_sparse, out3_sparse = egnn(coord, node_feat, edge_index, edge_weight, vel=vel)
print(out1_sparse.shape, out2_sparse.shape)
out1_dense, out2_dense, out3_dense = egnn(coord_pad, node_feat_pad, adj, adj_weight, vel=vel_pad, n_nodes=n_nodes)
print(out1_dense.shape, out2_dense.shape)
count = 0
for i, n in enumerate(n_nodes):
if torch.allclose(out1_sparse[offset_nodes[i]:offset_nodes[i + 1]], out1_dense[i][:n], atol=1e-6):
count = count + 1
assert out1_dense[i][n:].sum().item() == 0
print('Test succeeded.' if count == n_nodes.size(0) else 'Test failed.')
count = 0
for i, n in enumerate(n_nodes):
if torch.allclose(out2_sparse[offset_nodes[i]:offset_nodes[i + 1]], out2_dense[i][:n], atol=1e-6):
count = count + 1
assert out2_dense[i][n:].sum().item() == 0
print('Test succeeded.' if count == n_nodes.size(0) else 'Test failed.')
count = 0
for i, n in enumerate(n_nodes):
if torch.allclose(out3_sparse[offset_nodes[i]:offset_nodes[i + 1]], out3_dense[i][:n], atol=1e-6):
count = count + 1
assert out3_dense[i][n:].sum().item() == 0
print('Test succeeded.' if count == n_nodes.size(0) else 'Test failed.')