diff --git a/15-eco.Rmd b/15-eco.Rmd index 3c4068be3..dc9c8837a 100644 --- a/15-eco.Rmd +++ b/15-eco.Rmd @@ -457,7 +457,7 @@ task = mlr3spatiotempcv::as_task_regr_st( Using an `sf` object as the backend automatically provides the geometry information needed for the spatial partitioning later on. Additionally, we got rid of the columns `id` and `spri`, since these variables should not be used as predictors in the modeling. -Next, we go on to construct the a random forest\index{random forest} learner from the **ranger** package [@wright_ranger_2017]. +Next, we go on to construct a random forest\index{random forest} learner from the **ranger** package [@wright_ranger_2017]. ```{r 15-eco-21} lrn_rf = lrn("regr.ranger", predict_type = "response")