From 539b8ca567d5567c2b6fd2c0c12b92fbacd27d46 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 09:55:24 -0800 Subject: [PATCH 01/15] Rename topobenchmark folder --- {topobenchmarkx => topobenchmark}/__init__.py | 0 {topobenchmarkx => topobenchmark}/__main__.py | 0 {topobenchmarkx => topobenchmark}/data/__init__.py | 0 {topobenchmarkx => topobenchmark}/data/datasets/__init__.py | 0 .../data/datasets/citation_hypergaph_dataset.py | 0 .../data/datasets/us_county_demos_dataset.py | 0 {topobenchmarkx => topobenchmark}/data/loaders/__init__.py | 0 {topobenchmarkx => topobenchmark}/data/loaders/base.py | 0 .../data/loaders/graph/__init__.py | 0 .../data/loaders/graph/hetero_datasets.py | 0 .../data/loaders/graph/manual_graph_dataset_loader.py | 0 .../data/loaders/graph/modecule_datasets.py | 0 .../data/loaders/graph/planetoid_datasets.py | 0 .../data/loaders/graph/tu_datasets.py | 0 .../data/loaders/graph/us_county_demos_dataset_loader.py | 0 .../data/loaders/hypergraph/__init__.py | 0 .../hypergraph/citation_hypergraph_dataset_loader.py | 0 .../data/preprocessor/__init__.py | 0 .../data/preprocessor/preprocessor.py | 0 {topobenchmarkx => topobenchmark}/data/utils/__init__.py | 0 {topobenchmarkx => topobenchmark}/data/utils/io_utils.py | 6 ++++-- {topobenchmarkx => topobenchmark}/data/utils/split_utils.py | 0 {topobenchmarkx => topobenchmark}/data/utils/utils.py | 0 {topobenchmarkx => topobenchmark}/dataloader/__init__.py | 0 .../dataloader/dataload_dataset.py | 0 {topobenchmarkx => topobenchmark}/dataloader/dataloader.py | 0 {topobenchmarkx => topobenchmark}/dataloader/utils.py | 0 {topobenchmarkx => topobenchmark}/evaluator/__init__.py | 0 {topobenchmarkx => topobenchmark}/evaluator/base.py | 0 {topobenchmarkx => topobenchmark}/evaluator/evaluator.py | 0 {topobenchmarkx => topobenchmark}/loss/__init__.py | 0 {topobenchmarkx => topobenchmark}/loss/base.py | 0 .../loss/dataset/DatasetLoss.py | 0 {topobenchmarkx => topobenchmark}/loss/dataset/__init__.py | 0 {topobenchmarkx => topobenchmark}/loss/loss.py | 0 {topobenchmarkx => topobenchmark}/loss/model/DGMLoss.py | 0 .../loss/model/GraphMLPLoss.py | 0 {topobenchmarkx => topobenchmark}/loss/model/__init__.py | 0 {topobenchmarkx => topobenchmark}/model/__init__.py | 0 {topobenchmarkx => topobenchmark}/model/model.py | 0 {topobenchmarkx => topobenchmark}/nn/__init__.py | 0 {topobenchmarkx => topobenchmark}/nn/backbones/__init__.py | 0 .../nn/backbones/cell/__init__.py | 0 {topobenchmarkx => topobenchmark}/nn/backbones/cell/cccn.py | 0 .../nn/backbones/combinatorial/__init__.py | 0 .../nn/backbones/combinatorial/gccn.py | 0 .../nn/backbones/combinatorial/gccn_onehasse.py | 0 .../nn/backbones/graph/__init__.py | 0 .../nn/backbones/graph/graph_mlp.py | 0 .../nn/backbones/graph/identity_gnn.py | 0 .../nn/backbones/hypergraph/__init__.py | 0 .../nn/backbones/hypergraph/edgnn.py | 0 .../nn/backbones/simplicial/__init__.py | 0 .../nn/backbones/simplicial/sccnn.py | 0 {topobenchmarkx => topobenchmark}/nn/encoders/__init__.py | 0 .../nn/encoders/all_cell_encoder.py | 0 {topobenchmarkx => topobenchmark}/nn/encoders/base.py | 0 .../nn/encoders/dgm_encoder.py | 0 {topobenchmarkx => topobenchmark}/nn/encoders/kdgm.py | 0 {topobenchmarkx => topobenchmark}/nn/readouts/__init__.py | 0 {topobenchmarkx => topobenchmark}/nn/readouts/base.py | 0 {topobenchmarkx => topobenchmark}/nn/readouts/identical.py | 0 .../nn/readouts/propagate_signal_down.py | 0 {topobenchmarkx => topobenchmark}/nn/wrappers/__init__.py | 0 {topobenchmarkx => topobenchmark}/nn/wrappers/base.py | 0 .../nn/wrappers/cell/__init__.py | 0 .../nn/wrappers/cell/can_wrapper.py | 0 .../nn/wrappers/cell/cccn_wrapper.py | 0 .../nn/wrappers/cell/ccxn_wrapper.py | 0 .../nn/wrappers/cell/cwn_wrapper.py | 0 .../nn/wrappers/combinatorial/__init__.py | 0 .../nn/wrappers/combinatorial/tune_wrapper.py | 0 .../nn/wrappers/graph/__init__.py | 0 .../nn/wrappers/graph/gnn_wrapper.py | 0 .../nn/wrappers/graph/graph_mlp_wrapper.py | 0 .../nn/wrappers/hypergraph/__init__.py | 0 .../nn/wrappers/hypergraph/hypergraph_wrapper.py | 0 .../nn/wrappers/simplicial/__init__.py | 0 .../nn/wrappers/simplicial/san_wrapper.py | 0 .../nn/wrappers/simplicial/sccn_wrapper.py | 0 .../nn/wrappers/simplicial/sccnn_wrapper.py | 0 .../nn/wrappers/simplicial/scn_wrapper.py | 0 {topobenchmarkx => topobenchmark}/optimizer/__init__.py | 0 {topobenchmarkx => topobenchmark}/optimizer/base.py | 0 {topobenchmarkx => topobenchmark}/optimizer/optimizer.py | 0 {topobenchmarkx => topobenchmark}/run.py | 0 {topobenchmarkx => topobenchmark}/transforms/__init__.py | 0 .../transforms/data_manipulations/__init__.py | 0 .../data_manipulations/calculate_simplicial_curvature.py | 0 .../transforms/data_manipulations/equal_gaus_features.py | 0 .../transforms/data_manipulations/group_homophily.py | 0 .../transforms/data_manipulations/identity_transform.py | 0 .../data_manipulations/infere_knn_connectivity.py | 0 .../data_manipulations/infere_radius_connectivity.py | 0 .../data_manipulations/keep_only_connected_component.py | 0 .../data_manipulations/keep_selected_data_fields.py | 0 .../transforms/data_manipulations/mp_homophily.py | 0 .../transforms/data_manipulations/node_degrees.py | 0 .../transforms/data_manipulations/node_features_to_float.py | 0 .../data_manipulations/one_hot_degree_features.py | 0 .../transforms/data_transform.py | 0 .../transforms/feature_liftings/__init__.py | 0 .../transforms/feature_liftings/concatenation.py | 0 .../transforms/feature_liftings/identity.py | 0 .../transforms/feature_liftings/projection_sum.py | 0 .../transforms/feature_liftings/set.py | 0 .../transforms/liftings/__init__.py | 0 .../transforms/liftings/base.py | 0 .../transforms/liftings/graph2cell/__init__.py | 0 .../transforms/liftings/graph2cell/base.py | 0 .../transforms/liftings/graph2cell/cycle.py | 0 .../transforms/liftings/graph2hypergraph/__init__.py | 0 .../transforms/liftings/graph2hypergraph/base.py | 0 .../transforms/liftings/graph2hypergraph/khop.py | 0 .../transforms/liftings/graph2hypergraph/knn.py | 0 .../transforms/liftings/graph2simplicial/__init__.py | 0 .../transforms/liftings/graph2simplicial/base.py | 0 .../transforms/liftings/graph2simplicial/clique.py | 0 .../transforms/liftings/graph2simplicial/khop.py | 0 .../transforms/liftings/liftings.py | 0 {topobenchmarkx => topobenchmark}/utils/__init__.py | 0 {topobenchmarkx => topobenchmark}/utils/config_resolvers.py | 0 {topobenchmarkx => topobenchmark}/utils/instantiators.py | 0 {topobenchmarkx => topobenchmark}/utils/logging_utils.py | 0 {topobenchmarkx => topobenchmark}/utils/pylogger.py | 0 {topobenchmarkx => topobenchmark}/utils/rich_utils.py | 0 {topobenchmarkx => topobenchmark}/utils/utils.py | 0 127 files changed, 4 insertions(+), 2 deletions(-) rename {topobenchmarkx => topobenchmark}/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/__main__.py (100%) rename {topobenchmarkx => topobenchmark}/data/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/data/datasets/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/data/datasets/citation_hypergaph_dataset.py (100%) rename {topobenchmarkx => topobenchmark}/data/datasets/us_county_demos_dataset.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/base.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/graph/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/graph/hetero_datasets.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/graph/manual_graph_dataset_loader.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/graph/modecule_datasets.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/graph/planetoid_datasets.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/graph/tu_datasets.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/graph/us_county_demos_dataset_loader.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/hypergraph/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/data/loaders/hypergraph/citation_hypergraph_dataset_loader.py (100%) rename {topobenchmarkx => topobenchmark}/data/preprocessor/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/data/preprocessor/preprocessor.py (100%) rename {topobenchmarkx => topobenchmark}/data/utils/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/data/utils/io_utils.py (99%) rename {topobenchmarkx => topobenchmark}/data/utils/split_utils.py (100%) rename {topobenchmarkx => topobenchmark}/data/utils/utils.py (100%) rename {topobenchmarkx => topobenchmark}/dataloader/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/dataloader/dataload_dataset.py (100%) rename {topobenchmarkx => topobenchmark}/dataloader/dataloader.py (100%) rename {topobenchmarkx => topobenchmark}/dataloader/utils.py (100%) rename {topobenchmarkx => topobenchmark}/evaluator/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/evaluator/base.py (100%) rename {topobenchmarkx => topobenchmark}/evaluator/evaluator.py (100%) rename {topobenchmarkx => topobenchmark}/loss/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/loss/base.py (100%) rename {topobenchmarkx => topobenchmark}/loss/dataset/DatasetLoss.py (100%) rename {topobenchmarkx => topobenchmark}/loss/dataset/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/loss/loss.py (100%) rename {topobenchmarkx => topobenchmark}/loss/model/DGMLoss.py (100%) rename {topobenchmarkx => topobenchmark}/loss/model/GraphMLPLoss.py (100%) rename {topobenchmarkx => topobenchmark}/loss/model/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/model/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/model/model.py (100%) rename {topobenchmarkx => topobenchmark}/nn/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/cell/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/cell/cccn.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/combinatorial/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/combinatorial/gccn.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/combinatorial/gccn_onehasse.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/graph/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/graph/graph_mlp.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/graph/identity_gnn.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/hypergraph/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/hypergraph/edgnn.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/simplicial/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/backbones/simplicial/sccnn.py (100%) rename {topobenchmarkx => topobenchmark}/nn/encoders/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/encoders/all_cell_encoder.py (100%) rename {topobenchmarkx => topobenchmark}/nn/encoders/base.py (100%) rename {topobenchmarkx => topobenchmark}/nn/encoders/dgm_encoder.py (100%) rename {topobenchmarkx => topobenchmark}/nn/encoders/kdgm.py (100%) rename {topobenchmarkx => topobenchmark}/nn/readouts/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/readouts/base.py (100%) rename {topobenchmarkx => topobenchmark}/nn/readouts/identical.py (100%) rename {topobenchmarkx => topobenchmark}/nn/readouts/propagate_signal_down.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/base.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/cell/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/cell/can_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/cell/cccn_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/cell/ccxn_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/cell/cwn_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/combinatorial/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/combinatorial/tune_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/graph/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/graph/gnn_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/graph/graph_mlp_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/hypergraph/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/hypergraph/hypergraph_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/simplicial/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/simplicial/san_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/simplicial/sccn_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/simplicial/sccnn_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/nn/wrappers/simplicial/scn_wrapper.py (100%) rename {topobenchmarkx => topobenchmark}/optimizer/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/optimizer/base.py (100%) rename {topobenchmarkx => topobenchmark}/optimizer/optimizer.py (100%) rename {topobenchmarkx => topobenchmark}/run.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/calculate_simplicial_curvature.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/equal_gaus_features.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/group_homophily.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/identity_transform.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/infere_knn_connectivity.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/infere_radius_connectivity.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/keep_only_connected_component.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/keep_selected_data_fields.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/mp_homophily.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/node_degrees.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/node_features_to_float.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_manipulations/one_hot_degree_features.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/data_transform.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/feature_liftings/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/feature_liftings/concatenation.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/feature_liftings/identity.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/feature_liftings/projection_sum.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/feature_liftings/set.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/base.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2cell/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2cell/base.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2cell/cycle.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2hypergraph/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2hypergraph/base.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2hypergraph/khop.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2hypergraph/knn.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2simplicial/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2simplicial/base.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2simplicial/clique.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/graph2simplicial/khop.py (100%) rename {topobenchmarkx => topobenchmark}/transforms/liftings/liftings.py (100%) rename {topobenchmarkx => topobenchmark}/utils/__init__.py (100%) rename {topobenchmarkx => topobenchmark}/utils/config_resolvers.py (100%) rename {topobenchmarkx => topobenchmark}/utils/instantiators.py (100%) rename {topobenchmarkx => topobenchmark}/utils/logging_utils.py (100%) rename {topobenchmarkx => topobenchmark}/utils/pylogger.py (100%) rename {topobenchmarkx => topobenchmark}/utils/rich_utils.py (100%) rename {topobenchmarkx => topobenchmark}/utils/utils.py (100%) diff --git a/topobenchmarkx/__init__.py b/topobenchmark/__init__.py similarity index 100% rename from topobenchmarkx/__init__.py rename to topobenchmark/__init__.py diff --git a/topobenchmarkx/__main__.py b/topobenchmark/__main__.py similarity index 100% rename from topobenchmarkx/__main__.py rename to topobenchmark/__main__.py diff --git a/topobenchmarkx/data/__init__.py b/topobenchmark/data/__init__.py similarity index 100% rename from topobenchmarkx/data/__init__.py rename to topobenchmark/data/__init__.py diff --git a/topobenchmarkx/data/datasets/__init__.py b/topobenchmark/data/datasets/__init__.py similarity index 100% rename from topobenchmarkx/data/datasets/__init__.py rename to topobenchmark/data/datasets/__init__.py diff --git a/topobenchmarkx/data/datasets/citation_hypergaph_dataset.py b/topobenchmark/data/datasets/citation_hypergaph_dataset.py similarity index 100% rename from topobenchmarkx/data/datasets/citation_hypergaph_dataset.py rename to topobenchmark/data/datasets/citation_hypergaph_dataset.py diff --git a/topobenchmarkx/data/datasets/us_county_demos_dataset.py b/topobenchmark/data/datasets/us_county_demos_dataset.py similarity index 100% rename from topobenchmarkx/data/datasets/us_county_demos_dataset.py rename to topobenchmark/data/datasets/us_county_demos_dataset.py diff --git a/topobenchmarkx/data/loaders/__init__.py b/topobenchmark/data/loaders/__init__.py similarity index 100% rename from topobenchmarkx/data/loaders/__init__.py rename to topobenchmark/data/loaders/__init__.py diff --git a/topobenchmarkx/data/loaders/base.py b/topobenchmark/data/loaders/base.py similarity index 100% rename from topobenchmarkx/data/loaders/base.py rename to topobenchmark/data/loaders/base.py diff --git a/topobenchmarkx/data/loaders/graph/__init__.py b/topobenchmark/data/loaders/graph/__init__.py similarity index 100% rename from topobenchmarkx/data/loaders/graph/__init__.py rename to topobenchmark/data/loaders/graph/__init__.py diff --git a/topobenchmarkx/data/loaders/graph/hetero_datasets.py b/topobenchmark/data/loaders/graph/hetero_datasets.py similarity index 100% rename from topobenchmarkx/data/loaders/graph/hetero_datasets.py rename to topobenchmark/data/loaders/graph/hetero_datasets.py diff --git a/topobenchmarkx/data/loaders/graph/manual_graph_dataset_loader.py b/topobenchmark/data/loaders/graph/manual_graph_dataset_loader.py similarity index 100% rename from topobenchmarkx/data/loaders/graph/manual_graph_dataset_loader.py rename to topobenchmark/data/loaders/graph/manual_graph_dataset_loader.py diff --git a/topobenchmarkx/data/loaders/graph/modecule_datasets.py b/topobenchmark/data/loaders/graph/modecule_datasets.py similarity index 100% rename from topobenchmarkx/data/loaders/graph/modecule_datasets.py rename to topobenchmark/data/loaders/graph/modecule_datasets.py diff --git a/topobenchmarkx/data/loaders/graph/planetoid_datasets.py b/topobenchmark/data/loaders/graph/planetoid_datasets.py similarity index 100% rename from topobenchmarkx/data/loaders/graph/planetoid_datasets.py rename to topobenchmark/data/loaders/graph/planetoid_datasets.py diff --git a/topobenchmarkx/data/loaders/graph/tu_datasets.py b/topobenchmark/data/loaders/graph/tu_datasets.py similarity index 100% rename from topobenchmarkx/data/loaders/graph/tu_datasets.py rename to topobenchmark/data/loaders/graph/tu_datasets.py diff --git a/topobenchmarkx/data/loaders/graph/us_county_demos_dataset_loader.py b/topobenchmark/data/loaders/graph/us_county_demos_dataset_loader.py similarity index 100% rename from topobenchmarkx/data/loaders/graph/us_county_demos_dataset_loader.py rename to topobenchmark/data/loaders/graph/us_county_demos_dataset_loader.py diff --git a/topobenchmarkx/data/loaders/hypergraph/__init__.py b/topobenchmark/data/loaders/hypergraph/__init__.py similarity index 100% rename from topobenchmarkx/data/loaders/hypergraph/__init__.py rename to topobenchmark/data/loaders/hypergraph/__init__.py diff --git a/topobenchmarkx/data/loaders/hypergraph/citation_hypergraph_dataset_loader.py b/topobenchmark/data/loaders/hypergraph/citation_hypergraph_dataset_loader.py similarity index 100% rename from topobenchmarkx/data/loaders/hypergraph/citation_hypergraph_dataset_loader.py rename to topobenchmark/data/loaders/hypergraph/citation_hypergraph_dataset_loader.py diff --git a/topobenchmarkx/data/preprocessor/__init__.py b/topobenchmark/data/preprocessor/__init__.py similarity index 100% rename from topobenchmarkx/data/preprocessor/__init__.py rename to topobenchmark/data/preprocessor/__init__.py diff --git a/topobenchmarkx/data/preprocessor/preprocessor.py b/topobenchmark/data/preprocessor/preprocessor.py similarity index 100% rename from topobenchmarkx/data/preprocessor/preprocessor.py rename to topobenchmark/data/preprocessor/preprocessor.py diff --git a/topobenchmarkx/data/utils/__init__.py b/topobenchmark/data/utils/__init__.py similarity index 100% rename from topobenchmarkx/data/utils/__init__.py rename to topobenchmark/data/utils/__init__.py diff --git a/topobenchmarkx/data/utils/io_utils.py b/topobenchmark/data/utils/io_utils.py similarity index 99% rename from topobenchmarkx/data/utils/io_utils.py rename to topobenchmark/data/utils/io_utils.py index f49c5cc8..d0b0708e 100644 --- a/topobenchmarkx/data/utils/io_utils.py +++ b/topobenchmark/data/utils/io_utils.py @@ -212,8 +212,10 @@ def load_hypergraph_pickle_dataset(data_dir, data_name): Parameters ---------- - cfg : DictConfig - Configuration parameters. + data_dir : str + Path to data. + data_name : str + Name of the dataset. Returns ------- diff --git a/topobenchmarkx/data/utils/split_utils.py b/topobenchmark/data/utils/split_utils.py similarity index 100% rename from topobenchmarkx/data/utils/split_utils.py rename to topobenchmark/data/utils/split_utils.py diff --git a/topobenchmarkx/data/utils/utils.py b/topobenchmark/data/utils/utils.py similarity index 100% rename from topobenchmarkx/data/utils/utils.py rename to topobenchmark/data/utils/utils.py diff --git a/topobenchmarkx/dataloader/__init__.py b/topobenchmark/dataloader/__init__.py similarity index 100% rename from topobenchmarkx/dataloader/__init__.py rename to topobenchmark/dataloader/__init__.py diff --git a/topobenchmarkx/dataloader/dataload_dataset.py b/topobenchmark/dataloader/dataload_dataset.py similarity index 100% rename from topobenchmarkx/dataloader/dataload_dataset.py rename to topobenchmark/dataloader/dataload_dataset.py diff --git a/topobenchmarkx/dataloader/dataloader.py b/topobenchmark/dataloader/dataloader.py similarity index 100% rename from topobenchmarkx/dataloader/dataloader.py rename to topobenchmark/dataloader/dataloader.py diff --git a/topobenchmarkx/dataloader/utils.py b/topobenchmark/dataloader/utils.py similarity index 100% rename from topobenchmarkx/dataloader/utils.py rename to topobenchmark/dataloader/utils.py diff --git a/topobenchmarkx/evaluator/__init__.py b/topobenchmark/evaluator/__init__.py similarity index 100% rename from topobenchmarkx/evaluator/__init__.py rename to topobenchmark/evaluator/__init__.py diff --git a/topobenchmarkx/evaluator/base.py b/topobenchmark/evaluator/base.py similarity index 100% rename from topobenchmarkx/evaluator/base.py rename to topobenchmark/evaluator/base.py diff --git a/topobenchmarkx/evaluator/evaluator.py b/topobenchmark/evaluator/evaluator.py similarity index 100% rename from topobenchmarkx/evaluator/evaluator.py rename to topobenchmark/evaluator/evaluator.py diff --git a/topobenchmarkx/loss/__init__.py b/topobenchmark/loss/__init__.py similarity index 100% rename from topobenchmarkx/loss/__init__.py rename to topobenchmark/loss/__init__.py diff --git a/topobenchmarkx/loss/base.py b/topobenchmark/loss/base.py similarity index 100% rename from topobenchmarkx/loss/base.py rename to topobenchmark/loss/base.py diff --git a/topobenchmarkx/loss/dataset/DatasetLoss.py b/topobenchmark/loss/dataset/DatasetLoss.py similarity index 100% rename from topobenchmarkx/loss/dataset/DatasetLoss.py rename to topobenchmark/loss/dataset/DatasetLoss.py diff --git a/topobenchmarkx/loss/dataset/__init__.py b/topobenchmark/loss/dataset/__init__.py similarity index 100% rename from topobenchmarkx/loss/dataset/__init__.py rename to topobenchmark/loss/dataset/__init__.py diff --git a/topobenchmarkx/loss/loss.py b/topobenchmark/loss/loss.py similarity index 100% rename from topobenchmarkx/loss/loss.py rename to topobenchmark/loss/loss.py diff --git a/topobenchmarkx/loss/model/DGMLoss.py b/topobenchmark/loss/model/DGMLoss.py similarity index 100% rename from topobenchmarkx/loss/model/DGMLoss.py rename to topobenchmark/loss/model/DGMLoss.py diff --git a/topobenchmarkx/loss/model/GraphMLPLoss.py b/topobenchmark/loss/model/GraphMLPLoss.py similarity index 100% rename from topobenchmarkx/loss/model/GraphMLPLoss.py rename to topobenchmark/loss/model/GraphMLPLoss.py diff --git a/topobenchmarkx/loss/model/__init__.py b/topobenchmark/loss/model/__init__.py similarity index 100% rename from topobenchmarkx/loss/model/__init__.py rename to topobenchmark/loss/model/__init__.py diff --git a/topobenchmarkx/model/__init__.py b/topobenchmark/model/__init__.py similarity index 100% rename from topobenchmarkx/model/__init__.py rename to topobenchmark/model/__init__.py diff --git a/topobenchmarkx/model/model.py b/topobenchmark/model/model.py similarity index 100% rename from topobenchmarkx/model/model.py rename to topobenchmark/model/model.py diff --git a/topobenchmarkx/nn/__init__.py b/topobenchmark/nn/__init__.py similarity index 100% rename from topobenchmarkx/nn/__init__.py rename to topobenchmark/nn/__init__.py diff --git a/topobenchmarkx/nn/backbones/__init__.py b/topobenchmark/nn/backbones/__init__.py similarity index 100% rename from topobenchmarkx/nn/backbones/__init__.py rename to topobenchmark/nn/backbones/__init__.py diff --git a/topobenchmarkx/nn/backbones/cell/__init__.py b/topobenchmark/nn/backbones/cell/__init__.py similarity index 100% rename from topobenchmarkx/nn/backbones/cell/__init__.py rename to topobenchmark/nn/backbones/cell/__init__.py diff --git a/topobenchmarkx/nn/backbones/cell/cccn.py b/topobenchmark/nn/backbones/cell/cccn.py similarity index 100% rename from topobenchmarkx/nn/backbones/cell/cccn.py rename to topobenchmark/nn/backbones/cell/cccn.py diff --git a/topobenchmarkx/nn/backbones/combinatorial/__init__.py b/topobenchmark/nn/backbones/combinatorial/__init__.py similarity index 100% rename from topobenchmarkx/nn/backbones/combinatorial/__init__.py rename to topobenchmark/nn/backbones/combinatorial/__init__.py diff --git a/topobenchmarkx/nn/backbones/combinatorial/gccn.py b/topobenchmark/nn/backbones/combinatorial/gccn.py similarity index 100% rename from topobenchmarkx/nn/backbones/combinatorial/gccn.py rename to topobenchmark/nn/backbones/combinatorial/gccn.py diff --git a/topobenchmarkx/nn/backbones/combinatorial/gccn_onehasse.py b/topobenchmark/nn/backbones/combinatorial/gccn_onehasse.py similarity index 100% rename from topobenchmarkx/nn/backbones/combinatorial/gccn_onehasse.py rename to topobenchmark/nn/backbones/combinatorial/gccn_onehasse.py diff --git a/topobenchmarkx/nn/backbones/graph/__init__.py b/topobenchmark/nn/backbones/graph/__init__.py similarity index 100% rename from topobenchmarkx/nn/backbones/graph/__init__.py rename to topobenchmark/nn/backbones/graph/__init__.py diff --git a/topobenchmarkx/nn/backbones/graph/graph_mlp.py b/topobenchmark/nn/backbones/graph/graph_mlp.py similarity index 100% rename from topobenchmarkx/nn/backbones/graph/graph_mlp.py rename to topobenchmark/nn/backbones/graph/graph_mlp.py diff --git a/topobenchmarkx/nn/backbones/graph/identity_gnn.py b/topobenchmark/nn/backbones/graph/identity_gnn.py similarity index 100% rename from topobenchmarkx/nn/backbones/graph/identity_gnn.py rename to topobenchmark/nn/backbones/graph/identity_gnn.py diff --git a/topobenchmarkx/nn/backbones/hypergraph/__init__.py b/topobenchmark/nn/backbones/hypergraph/__init__.py similarity index 100% rename from topobenchmarkx/nn/backbones/hypergraph/__init__.py rename to topobenchmark/nn/backbones/hypergraph/__init__.py diff --git a/topobenchmarkx/nn/backbones/hypergraph/edgnn.py b/topobenchmark/nn/backbones/hypergraph/edgnn.py similarity index 100% rename from topobenchmarkx/nn/backbones/hypergraph/edgnn.py rename to topobenchmark/nn/backbones/hypergraph/edgnn.py diff --git a/topobenchmarkx/nn/backbones/simplicial/__init__.py b/topobenchmark/nn/backbones/simplicial/__init__.py similarity index 100% rename from topobenchmarkx/nn/backbones/simplicial/__init__.py rename to topobenchmark/nn/backbones/simplicial/__init__.py diff --git a/topobenchmarkx/nn/backbones/simplicial/sccnn.py b/topobenchmark/nn/backbones/simplicial/sccnn.py similarity index 100% rename from topobenchmarkx/nn/backbones/simplicial/sccnn.py rename to topobenchmark/nn/backbones/simplicial/sccnn.py diff --git a/topobenchmarkx/nn/encoders/__init__.py b/topobenchmark/nn/encoders/__init__.py similarity index 100% rename from topobenchmarkx/nn/encoders/__init__.py rename to topobenchmark/nn/encoders/__init__.py diff --git a/topobenchmarkx/nn/encoders/all_cell_encoder.py b/topobenchmark/nn/encoders/all_cell_encoder.py similarity index 100% rename from topobenchmarkx/nn/encoders/all_cell_encoder.py rename to topobenchmark/nn/encoders/all_cell_encoder.py diff --git a/topobenchmarkx/nn/encoders/base.py b/topobenchmark/nn/encoders/base.py similarity index 100% rename from topobenchmarkx/nn/encoders/base.py rename to topobenchmark/nn/encoders/base.py diff --git a/topobenchmarkx/nn/encoders/dgm_encoder.py b/topobenchmark/nn/encoders/dgm_encoder.py similarity index 100% rename from topobenchmarkx/nn/encoders/dgm_encoder.py rename to topobenchmark/nn/encoders/dgm_encoder.py diff --git a/topobenchmarkx/nn/encoders/kdgm.py b/topobenchmark/nn/encoders/kdgm.py similarity index 100% rename from topobenchmarkx/nn/encoders/kdgm.py rename to topobenchmark/nn/encoders/kdgm.py diff --git a/topobenchmarkx/nn/readouts/__init__.py b/topobenchmark/nn/readouts/__init__.py similarity index 100% rename from topobenchmarkx/nn/readouts/__init__.py rename to topobenchmark/nn/readouts/__init__.py diff --git a/topobenchmarkx/nn/readouts/base.py b/topobenchmark/nn/readouts/base.py similarity index 100% rename from topobenchmarkx/nn/readouts/base.py rename to topobenchmark/nn/readouts/base.py diff --git a/topobenchmarkx/nn/readouts/identical.py b/topobenchmark/nn/readouts/identical.py similarity index 100% rename from topobenchmarkx/nn/readouts/identical.py rename to topobenchmark/nn/readouts/identical.py diff --git a/topobenchmarkx/nn/readouts/propagate_signal_down.py b/topobenchmark/nn/readouts/propagate_signal_down.py similarity index 100% rename from topobenchmarkx/nn/readouts/propagate_signal_down.py rename to topobenchmark/nn/readouts/propagate_signal_down.py diff --git a/topobenchmarkx/nn/wrappers/__init__.py b/topobenchmark/nn/wrappers/__init__.py similarity index 100% rename from topobenchmarkx/nn/wrappers/__init__.py rename to topobenchmark/nn/wrappers/__init__.py diff --git a/topobenchmarkx/nn/wrappers/base.py b/topobenchmark/nn/wrappers/base.py similarity index 100% rename from topobenchmarkx/nn/wrappers/base.py rename to topobenchmark/nn/wrappers/base.py diff --git a/topobenchmarkx/nn/wrappers/cell/__init__.py b/topobenchmark/nn/wrappers/cell/__init__.py similarity index 100% rename from topobenchmarkx/nn/wrappers/cell/__init__.py rename to topobenchmark/nn/wrappers/cell/__init__.py diff --git a/topobenchmarkx/nn/wrappers/cell/can_wrapper.py b/topobenchmark/nn/wrappers/cell/can_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/cell/can_wrapper.py rename to topobenchmark/nn/wrappers/cell/can_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/cell/cccn_wrapper.py b/topobenchmark/nn/wrappers/cell/cccn_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/cell/cccn_wrapper.py rename to topobenchmark/nn/wrappers/cell/cccn_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/cell/ccxn_wrapper.py b/topobenchmark/nn/wrappers/cell/ccxn_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/cell/ccxn_wrapper.py rename to topobenchmark/nn/wrappers/cell/ccxn_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/cell/cwn_wrapper.py b/topobenchmark/nn/wrappers/cell/cwn_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/cell/cwn_wrapper.py rename to topobenchmark/nn/wrappers/cell/cwn_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/combinatorial/__init__.py b/topobenchmark/nn/wrappers/combinatorial/__init__.py similarity index 100% rename from topobenchmarkx/nn/wrappers/combinatorial/__init__.py rename to topobenchmark/nn/wrappers/combinatorial/__init__.py diff --git a/topobenchmarkx/nn/wrappers/combinatorial/tune_wrapper.py b/topobenchmark/nn/wrappers/combinatorial/tune_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/combinatorial/tune_wrapper.py rename to topobenchmark/nn/wrappers/combinatorial/tune_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/graph/__init__.py b/topobenchmark/nn/wrappers/graph/__init__.py similarity index 100% rename from topobenchmarkx/nn/wrappers/graph/__init__.py rename to topobenchmark/nn/wrappers/graph/__init__.py diff --git a/topobenchmarkx/nn/wrappers/graph/gnn_wrapper.py b/topobenchmark/nn/wrappers/graph/gnn_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/graph/gnn_wrapper.py rename to topobenchmark/nn/wrappers/graph/gnn_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/graph/graph_mlp_wrapper.py b/topobenchmark/nn/wrappers/graph/graph_mlp_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/graph/graph_mlp_wrapper.py rename to topobenchmark/nn/wrappers/graph/graph_mlp_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/hypergraph/__init__.py b/topobenchmark/nn/wrappers/hypergraph/__init__.py similarity index 100% rename from topobenchmarkx/nn/wrappers/hypergraph/__init__.py rename to topobenchmark/nn/wrappers/hypergraph/__init__.py diff --git a/topobenchmarkx/nn/wrappers/hypergraph/hypergraph_wrapper.py b/topobenchmark/nn/wrappers/hypergraph/hypergraph_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/hypergraph/hypergraph_wrapper.py rename to topobenchmark/nn/wrappers/hypergraph/hypergraph_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/simplicial/__init__.py b/topobenchmark/nn/wrappers/simplicial/__init__.py similarity index 100% rename from topobenchmarkx/nn/wrappers/simplicial/__init__.py rename to topobenchmark/nn/wrappers/simplicial/__init__.py diff --git a/topobenchmarkx/nn/wrappers/simplicial/san_wrapper.py b/topobenchmark/nn/wrappers/simplicial/san_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/simplicial/san_wrapper.py rename to topobenchmark/nn/wrappers/simplicial/san_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/simplicial/sccn_wrapper.py b/topobenchmark/nn/wrappers/simplicial/sccn_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/simplicial/sccn_wrapper.py rename to topobenchmark/nn/wrappers/simplicial/sccn_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/simplicial/sccnn_wrapper.py b/topobenchmark/nn/wrappers/simplicial/sccnn_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/simplicial/sccnn_wrapper.py rename to topobenchmark/nn/wrappers/simplicial/sccnn_wrapper.py diff --git a/topobenchmarkx/nn/wrappers/simplicial/scn_wrapper.py b/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py similarity index 100% rename from topobenchmarkx/nn/wrappers/simplicial/scn_wrapper.py rename to topobenchmark/nn/wrappers/simplicial/scn_wrapper.py diff --git a/topobenchmarkx/optimizer/__init__.py b/topobenchmark/optimizer/__init__.py similarity index 100% rename from topobenchmarkx/optimizer/__init__.py rename to topobenchmark/optimizer/__init__.py diff --git a/topobenchmarkx/optimizer/base.py b/topobenchmark/optimizer/base.py similarity index 100% rename from topobenchmarkx/optimizer/base.py rename to topobenchmark/optimizer/base.py diff --git a/topobenchmarkx/optimizer/optimizer.py b/topobenchmark/optimizer/optimizer.py similarity index 100% rename from topobenchmarkx/optimizer/optimizer.py rename to topobenchmark/optimizer/optimizer.py diff --git a/topobenchmarkx/run.py b/topobenchmark/run.py similarity index 100% rename from topobenchmarkx/run.py rename to topobenchmark/run.py diff --git a/topobenchmarkx/transforms/__init__.py b/topobenchmark/transforms/__init__.py similarity index 100% rename from topobenchmarkx/transforms/__init__.py rename to topobenchmark/transforms/__init__.py diff --git a/topobenchmarkx/transforms/data_manipulations/__init__.py b/topobenchmark/transforms/data_manipulations/__init__.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/__init__.py rename to topobenchmark/transforms/data_manipulations/__init__.py diff --git a/topobenchmarkx/transforms/data_manipulations/calculate_simplicial_curvature.py b/topobenchmark/transforms/data_manipulations/calculate_simplicial_curvature.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/calculate_simplicial_curvature.py rename to topobenchmark/transforms/data_manipulations/calculate_simplicial_curvature.py diff --git a/topobenchmarkx/transforms/data_manipulations/equal_gaus_features.py b/topobenchmark/transforms/data_manipulations/equal_gaus_features.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/equal_gaus_features.py rename to topobenchmark/transforms/data_manipulations/equal_gaus_features.py diff --git a/topobenchmarkx/transforms/data_manipulations/group_homophily.py b/topobenchmark/transforms/data_manipulations/group_homophily.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/group_homophily.py rename to topobenchmark/transforms/data_manipulations/group_homophily.py diff --git a/topobenchmarkx/transforms/data_manipulations/identity_transform.py b/topobenchmark/transforms/data_manipulations/identity_transform.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/identity_transform.py rename to topobenchmark/transforms/data_manipulations/identity_transform.py diff --git a/topobenchmarkx/transforms/data_manipulations/infere_knn_connectivity.py b/topobenchmark/transforms/data_manipulations/infere_knn_connectivity.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/infere_knn_connectivity.py rename to topobenchmark/transforms/data_manipulations/infere_knn_connectivity.py diff --git a/topobenchmarkx/transforms/data_manipulations/infere_radius_connectivity.py b/topobenchmark/transforms/data_manipulations/infere_radius_connectivity.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/infere_radius_connectivity.py rename to topobenchmark/transforms/data_manipulations/infere_radius_connectivity.py diff --git a/topobenchmarkx/transforms/data_manipulations/keep_only_connected_component.py b/topobenchmark/transforms/data_manipulations/keep_only_connected_component.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/keep_only_connected_component.py rename to topobenchmark/transforms/data_manipulations/keep_only_connected_component.py diff --git a/topobenchmarkx/transforms/data_manipulations/keep_selected_data_fields.py b/topobenchmark/transforms/data_manipulations/keep_selected_data_fields.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/keep_selected_data_fields.py rename to topobenchmark/transforms/data_manipulations/keep_selected_data_fields.py diff --git a/topobenchmarkx/transforms/data_manipulations/mp_homophily.py b/topobenchmark/transforms/data_manipulations/mp_homophily.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/mp_homophily.py rename to topobenchmark/transforms/data_manipulations/mp_homophily.py diff --git a/topobenchmarkx/transforms/data_manipulations/node_degrees.py b/topobenchmark/transforms/data_manipulations/node_degrees.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/node_degrees.py rename to topobenchmark/transforms/data_manipulations/node_degrees.py diff --git a/topobenchmarkx/transforms/data_manipulations/node_features_to_float.py b/topobenchmark/transforms/data_manipulations/node_features_to_float.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/node_features_to_float.py rename to topobenchmark/transforms/data_manipulations/node_features_to_float.py diff --git a/topobenchmarkx/transforms/data_manipulations/one_hot_degree_features.py b/topobenchmark/transforms/data_manipulations/one_hot_degree_features.py similarity index 100% rename from topobenchmarkx/transforms/data_manipulations/one_hot_degree_features.py rename to topobenchmark/transforms/data_manipulations/one_hot_degree_features.py diff --git a/topobenchmarkx/transforms/data_transform.py b/topobenchmark/transforms/data_transform.py similarity index 100% rename from topobenchmarkx/transforms/data_transform.py rename to topobenchmark/transforms/data_transform.py diff --git a/topobenchmarkx/transforms/feature_liftings/__init__.py b/topobenchmark/transforms/feature_liftings/__init__.py similarity index 100% rename from topobenchmarkx/transforms/feature_liftings/__init__.py rename to topobenchmark/transforms/feature_liftings/__init__.py diff --git a/topobenchmarkx/transforms/feature_liftings/concatenation.py b/topobenchmark/transforms/feature_liftings/concatenation.py similarity index 100% rename from topobenchmarkx/transforms/feature_liftings/concatenation.py rename to topobenchmark/transforms/feature_liftings/concatenation.py diff --git a/topobenchmarkx/transforms/feature_liftings/identity.py b/topobenchmark/transforms/feature_liftings/identity.py similarity index 100% rename from topobenchmarkx/transforms/feature_liftings/identity.py rename to topobenchmark/transforms/feature_liftings/identity.py diff --git a/topobenchmarkx/transforms/feature_liftings/projection_sum.py b/topobenchmark/transforms/feature_liftings/projection_sum.py similarity index 100% rename from topobenchmarkx/transforms/feature_liftings/projection_sum.py rename to topobenchmark/transforms/feature_liftings/projection_sum.py diff --git a/topobenchmarkx/transforms/feature_liftings/set.py b/topobenchmark/transforms/feature_liftings/set.py similarity index 100% rename from topobenchmarkx/transforms/feature_liftings/set.py rename to topobenchmark/transforms/feature_liftings/set.py diff --git a/topobenchmarkx/transforms/liftings/__init__.py b/topobenchmark/transforms/liftings/__init__.py similarity index 100% rename from topobenchmarkx/transforms/liftings/__init__.py rename to topobenchmark/transforms/liftings/__init__.py diff --git a/topobenchmarkx/transforms/liftings/base.py b/topobenchmark/transforms/liftings/base.py similarity index 100% rename from topobenchmarkx/transforms/liftings/base.py rename to topobenchmark/transforms/liftings/base.py diff --git a/topobenchmarkx/transforms/liftings/graph2cell/__init__.py b/topobenchmark/transforms/liftings/graph2cell/__init__.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2cell/__init__.py rename to topobenchmark/transforms/liftings/graph2cell/__init__.py diff --git a/topobenchmarkx/transforms/liftings/graph2cell/base.py b/topobenchmark/transforms/liftings/graph2cell/base.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2cell/base.py rename to topobenchmark/transforms/liftings/graph2cell/base.py diff --git a/topobenchmarkx/transforms/liftings/graph2cell/cycle.py b/topobenchmark/transforms/liftings/graph2cell/cycle.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2cell/cycle.py rename to topobenchmark/transforms/liftings/graph2cell/cycle.py diff --git a/topobenchmarkx/transforms/liftings/graph2hypergraph/__init__.py b/topobenchmark/transforms/liftings/graph2hypergraph/__init__.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2hypergraph/__init__.py rename to topobenchmark/transforms/liftings/graph2hypergraph/__init__.py diff --git a/topobenchmarkx/transforms/liftings/graph2hypergraph/base.py b/topobenchmark/transforms/liftings/graph2hypergraph/base.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2hypergraph/base.py rename to topobenchmark/transforms/liftings/graph2hypergraph/base.py diff --git a/topobenchmarkx/transforms/liftings/graph2hypergraph/khop.py b/topobenchmark/transforms/liftings/graph2hypergraph/khop.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2hypergraph/khop.py rename to topobenchmark/transforms/liftings/graph2hypergraph/khop.py diff --git a/topobenchmarkx/transforms/liftings/graph2hypergraph/knn.py b/topobenchmark/transforms/liftings/graph2hypergraph/knn.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2hypergraph/knn.py rename to topobenchmark/transforms/liftings/graph2hypergraph/knn.py diff --git a/topobenchmarkx/transforms/liftings/graph2simplicial/__init__.py b/topobenchmark/transforms/liftings/graph2simplicial/__init__.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2simplicial/__init__.py rename to topobenchmark/transforms/liftings/graph2simplicial/__init__.py diff --git a/topobenchmarkx/transforms/liftings/graph2simplicial/base.py b/topobenchmark/transforms/liftings/graph2simplicial/base.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2simplicial/base.py rename to topobenchmark/transforms/liftings/graph2simplicial/base.py diff --git a/topobenchmarkx/transforms/liftings/graph2simplicial/clique.py b/topobenchmark/transforms/liftings/graph2simplicial/clique.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2simplicial/clique.py rename to topobenchmark/transforms/liftings/graph2simplicial/clique.py diff --git a/topobenchmarkx/transforms/liftings/graph2simplicial/khop.py b/topobenchmark/transforms/liftings/graph2simplicial/khop.py similarity index 100% rename from topobenchmarkx/transforms/liftings/graph2simplicial/khop.py rename to topobenchmark/transforms/liftings/graph2simplicial/khop.py diff --git a/topobenchmarkx/transforms/liftings/liftings.py b/topobenchmark/transforms/liftings/liftings.py similarity index 100% rename from topobenchmarkx/transforms/liftings/liftings.py rename to topobenchmark/transforms/liftings/liftings.py diff --git a/topobenchmarkx/utils/__init__.py b/topobenchmark/utils/__init__.py similarity index 100% rename from topobenchmarkx/utils/__init__.py rename to topobenchmark/utils/__init__.py diff --git a/topobenchmarkx/utils/config_resolvers.py b/topobenchmark/utils/config_resolvers.py similarity index 100% rename from topobenchmarkx/utils/config_resolvers.py rename to topobenchmark/utils/config_resolvers.py diff --git a/topobenchmarkx/utils/instantiators.py b/topobenchmark/utils/instantiators.py similarity index 100% rename from topobenchmarkx/utils/instantiators.py rename to topobenchmark/utils/instantiators.py diff --git a/topobenchmarkx/utils/logging_utils.py b/topobenchmark/utils/logging_utils.py similarity index 100% rename from topobenchmarkx/utils/logging_utils.py rename to topobenchmark/utils/logging_utils.py diff --git a/topobenchmarkx/utils/pylogger.py b/topobenchmark/utils/pylogger.py similarity index 100% rename from topobenchmarkx/utils/pylogger.py rename to topobenchmark/utils/pylogger.py diff --git a/topobenchmarkx/utils/rich_utils.py b/topobenchmark/utils/rich_utils.py similarity index 100% rename from topobenchmarkx/utils/rich_utils.py rename to topobenchmark/utils/rich_utils.py diff --git a/topobenchmarkx/utils/utils.py b/topobenchmark/utils/utils.py similarity index 100% rename from topobenchmarkx/utils/utils.py rename to topobenchmark/utils/utils.py From 86fbe1000c068f7bc4de690b9ac4a8d285e541e3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 10:09:37 -0800 Subject: [PATCH 02/15] Apply renaming of topobenchmark folder --- .github/workflows/lint.yml | 2 +- .pre-commit-config.yaml | 8 +- README.md | 16 +- __init__.py | 4 +- configs/dataset/graph/AQSOL.yaml | 2 +- configs/dataset/graph/IMDB-BINARY.yaml | 2 +- configs/dataset/graph/IMDB-MULTI.yaml | 2 +- configs/dataset/graph/MUTAG.yaml | 2 +- configs/dataset/graph/NCI1.yaml | 2 +- configs/dataset/graph/NCI109.yaml | 2 +- configs/dataset/graph/PROTEINS.yaml | 2 +- configs/dataset/graph/REDDIT-BINARY.yaml | 2 +- configs/dataset/graph/US-county-demos.yaml | 2 +- configs/dataset/graph/ZINC.yaml | 2 +- configs/dataset/graph/amazon_ratings.yaml | 2 +- .../dataset/graph/cocitation_citeseer.yaml | 2 +- configs/dataset/graph/cocitation_cora.yaml | 2 +- configs/dataset/graph/cocitation_pubmed.yaml | 2 +- configs/dataset/graph/manual_dataset.yaml | 2 +- configs/dataset/graph/minesweeper.yaml | 2 +- configs/dataset/graph/questions.yaml | 2 +- configs/dataset/graph/roman_empire.yaml | 2 +- configs/dataset/graph/tolokers.yaml | 2 +- .../dataset/hypergraph/coauthorship_cora.yaml | 2 +- .../dataset/hypergraph/coauthorship_dblp.yaml | 2 +- .../hypergraph/cocitation_citeseer.yaml | 2 +- .../dataset/hypergraph/cocitation_cora.yaml | 2 +- .../dataset/hypergraph/cocitation_pubmed.yaml | 2 +- configs/dataset/simplicial/karate_club.yaml | 2 +- configs/evaluator/classification.yaml | 2 +- configs/evaluator/default.yaml | 2 +- configs/evaluator/regression.yaml | 2 +- configs/loss/default.yaml | 2 +- configs/model/cell/can.yaml | 8 +- configs/model/cell/cccn.yaml | 10 +- configs/model/cell/ccxn.yaml | 8 +- configs/model/cell/cwn.yaml | 8 +- configs/model/cell/topotune.yaml | 12 +- configs/model/cell/topotune_onehasse.yaml | 12 +- configs/model/graph/gat.yaml | 8 +- configs/model/graph/gcn.yaml | 8 +- configs/model/graph/gcn_dgm.yaml | 10 +- configs/model/graph/gin.yaml | 8 +- configs/model/graph/graph_mlp.yaml | 12 +- configs/model/hypergraph/alldeepset.yaml | 8 +- .../model/hypergraph/allsettransformer.yaml | 8 +- configs/model/hypergraph/edgnn.yaml | 10 +- configs/model/hypergraph/unignn.yaml | 8 +- configs/model/hypergraph/unignn2.yaml | 8 +- configs/model/simplicial/san.yaml | 8 +- configs/model/simplicial/sccn.yaml | 8 +- configs/model/simplicial/sccnn.yaml | 8 +- configs/model/simplicial/sccnn_custom.yaml | 10 +- configs/model/simplicial/scn.yaml | 8 +- configs/model/simplicial/topotune.yaml | 12 +- .../model/simplicial/topotune_onehasse.yaml | 12 +- configs/optimizer/default.yaml | 2 +- .../data_fields_to_dense.yaml | 2 +- .../equal_gaus_features.yaml | 2 +- .../data_manipulations/group_homophily.yaml | 2 +- .../data_manipulations/identity.yaml | 2 +- .../infere_knn_connectivity.yaml | 2 +- .../infere_radius_connectivity.yaml | 2 +- .../data_manipulations/infere_tree.yaml | 2 +- .../keep_connected_component.yaml | 2 +- .../keep_selected_fields.yaml | 2 +- .../data_manipulations/mp_homophily.yaml | 2 +- .../data_manipulations/node_degrees.yaml | 2 +- .../node_feat_to_float.yaml | 2 +- .../one_hot_node_degree_features.yaml | 2 +- .../remove_extra_feature.yaml | 2 +- .../simplicial_curvature.yaml | 2 +- configs/transforms/dataset_defaults/ZINC.yaml | 2 +- .../feature_liftings/base_lifting.yaml | 2 +- .../feature_liftings/concatenate.yaml | 2 +- .../transforms/liftings/graph2cell/cycle.yaml | 2 +- .../liftings/graph2hypergraph/khop.yaml | 2 +- .../liftings/graph2simplicial/clique.yaml | 2 +- .../liftings/graph2simplicial/khop.yaml | 2 +- docs/api/data/index.rst | 14 +- docs/api/dataloader/index.rst | 6 +- docs/api/evaluator/index.rst | 4 +- docs/api/loss/index.rst | 4 +- docs/api/model/index.rst | 2 +- docs/api/nn/backbones/index.rst | 6 +- docs/api/nn/encoders/index.rst | 4 +- docs/api/nn/readouts/index.rst | 6 +- docs/api/nn/wrappers/index.rst | 22 +- docs/api/optimizer/index.rst | 4 +- .../transforms/data_manipulations/index.rst | 20 +- docs/api/transforms/data_transform/index.rst | 2 +- .../api/transforms/feature_liftings/index.rst | 8 +- docs/api/transforms/liftings/index.rst | 20 +- docs/api/utils/index.rst | 12 +- docs/conf.py | 8 +- docs/contributing/index.rst | 4 +- pyproject.toml | 7 +- scripts/reproduce.sh | 516 +++++++++--------- scripts/topotune/existing_models/tune_cwn.sh | 14 +- scripts/topotune/existing_models/tune_sccn.sh | 18 +- scripts/topotune/search_gccn_cell.sh | 30 +- scripts/topotune/search_gccn_simplicial.sh | 34 +- test/conftest.py | 4 +- test/data/dataload/test_Dataloaders.py | 8 +- test/data/dataload/test_dataload_dataset.py | 2 +- test/data/preprocess/test_preprocessor.py | 6 +- test/data/utils/test_data_utils.py | 2 +- test/data/utils/test_io_utils.py | 2 +- test/evaluator/test_TBXEvaluator.py | 2 +- test/loss/test_dataset_loss.py | 2 +- test/nn/backbones/cell/test_cccn.py | 2 +- test/nn/backbones/combinatorial/test_gccn.py | 2 +- .../combinatorial/test_gccn_onehasse.py | 2 +- test/nn/backbones/graph/test_graph_dgm.py | 6 +- test/nn/backbones/graph/test_graphmlp.py | 6 +- test/nn/backbones/hypergraph/test_edgnn.py | 2 +- test/nn/backbones/simplicial/test_sccnn.py | 4 +- test/nn/encoders/test_dgm.py | 4 +- test/nn/wrappers/cell/test_cell_wrappers.py | 4 +- .../wrappers/simplicial/test_SCCNNWrapper.py | 4 +- test/optimizer/test_optimizer.py | 2 +- .../test_ConnectivityTransforms.py | 2 +- .../test_DataFieldTransforms.py | 2 +- .../test_EqualGausFeatures.py | 2 +- .../test_FeatureTransforms.py | 2 +- .../data_manipulations/test_GroupHomophily.py | 2 +- .../test_IdentityTransform.py | 2 +- .../test_MessagePassingHomophily.py | 2 +- .../test_OnlyConnectedComponent.py | 2 +- .../test_SimplicialCurvature.py | 4 +- .../feature_liftings/test_Concatenation.py | 2 +- .../feature_liftings/test_ProjectionSum.py | 2 +- .../feature_liftings/test_SetLifting.py | 2 +- .../liftings/cell/test_CellCyclesLifting.py | 2 +- .../hypergraph/test_HypergraphKHopLifting.py | 2 +- ...test_HypergraphKNearestNeighborsLifting.py | 2 +- .../test_SimplicialCliqueLifting.py | 2 +- .../test_SimplicialNeighborhoodLifting.py | 2 +- .../liftings/test_AbstractLifting.py | 2 +- test/transforms/liftings/test_GraphLifting.py | 2 +- test/utils/test_config_resolvers.py | 2 +- test/utils/test_instantiators.py | 2 +- test/utils/test_logging_utils.py | 6 +- test/utils/test_rich_utils.py | 24 +- test/utils/test_utils.py | 2 +- .../datasets/citation_hypergaph_dataset.py | 2 +- .../data/datasets/us_county_demos_dataset.py | 2 +- .../data/loaders/graph/hetero_datasets.py | 2 +- .../graph/manual_graph_dataset_loader.py | 6 +- .../data/loaders/graph/modecule_datasets.py | 2 +- .../data/loaders/graph/planetoid_datasets.py | 2 +- .../data/loaders/graph/tu_datasets.py | 2 +- .../graph/us_county_demos_dataset_loader.py | 4 +- .../citation_hypergraph_dataset_loader.py | 4 +- .../data/preprocessor/preprocessor.py | 6 +- topobenchmark/data/utils/split_utils.py | 2 +- topobenchmark/dataloader/__init__.py | 2 +- topobenchmark/dataloader/dataloader.py | 4 +- topobenchmark/evaluator/evaluator.py | 2 +- topobenchmark/loss/__init__.py | 2 +- topobenchmark/loss/dataset/DatasetLoss.py | 4 +- topobenchmark/loss/dataset/__init__.py | 2 +- topobenchmark/loss/loss.py | 6 +- topobenchmark/loss/model/DGMLoss.py | 2 +- topobenchmark/loss/model/GraphMLPLoss.py | 2 +- topobenchmark/loss/model/__init__.py | 2 +- .../nn/backbones/combinatorial/gccn.py | 2 +- .../backbones/combinatorial/gccn_onehasse.py | 2 +- topobenchmark/nn/encoders/all_cell_encoder.py | 2 +- topobenchmark/nn/encoders/dgm_encoder.py | 4 +- topobenchmark/nn/readouts/identical.py | 2 +- .../nn/readouts/propagate_signal_down.py | 2 +- topobenchmark/nn/wrappers/__init__.py | 16 +- topobenchmark/nn/wrappers/cell/can_wrapper.py | 2 +- .../nn/wrappers/cell/cccn_wrapper.py | 2 +- .../nn/wrappers/cell/ccxn_wrapper.py | 2 +- topobenchmark/nn/wrappers/cell/cwn_wrapper.py | 2 +- .../nn/wrappers/combinatorial/tune_wrapper.py | 2 +- .../nn/wrappers/graph/gnn_wrapper.py | 2 +- .../nn/wrappers/graph/graph_mlp_wrapper.py | 2 +- .../wrappers/hypergraph/hypergraph_wrapper.py | 2 +- .../nn/wrappers/simplicial/san_wrapper.py | 2 +- .../nn/wrappers/simplicial/sccn_wrapper.py | 2 +- .../nn/wrappers/simplicial/sccnn_wrapper.py | 2 +- .../nn/wrappers/simplicial/scn_wrapper.py | 2 +- topobenchmark/run.py | 8 +- topobenchmark/transforms/__init__.py | 12 +- topobenchmark/transforms/data_transform.py | 2 +- topobenchmark/transforms/liftings/base.py | 2 +- .../transforms/liftings/graph2cell/base.py | 4 +- .../transforms/liftings/graph2cell/cycle.py | 2 +- .../liftings/graph2hypergraph/base.py | 2 +- .../liftings/graph2hypergraph/khop.py | 2 +- .../liftings/graph2hypergraph/knn.py | 2 +- .../liftings/graph2simplicial/base.py | 4 +- .../liftings/graph2simplicial/clique.py | 2 +- .../liftings/graph2simplicial/khop.py | 2 +- topobenchmark/transforms/liftings/liftings.py | 2 +- topobenchmark/utils/__init__.py | 10 +- topobenchmark/utils/config_resolvers.py | 2 +- topobenchmark/utils/instantiators.py | 2 +- topobenchmark/utils/logging_utils.py | 2 +- topobenchmark/utils/rich_utils.py | 2 +- topobenchmark/utils/utils.py | 2 +- tutorials/homophily_tutorial.ipynb | 16 +- tutorials/tutorial_add_custom_dataset.ipynb | 34 +- tutorials/tutorial_dataset.ipynb | 20 +- tutorials/tutorial_lifting.ipynb | 26 +- tutorials/tutorial_model.ipynb | 18 +- 209 files changed, 775 insertions(+), 774 deletions(-) diff --git a/.github/workflows/lint.yml b/.github/workflows/lint.yml index 973612d2..e4ac5caf 100644 --- a/.github/workflows/lint.yml +++ b/.github/workflows/lint.yml @@ -13,4 +13,4 @@ jobs: - uses: actions/checkout@v3 - uses: chartboost/ruff-action@v1 with: - src: './topobenchmarkx' \ No newline at end of file + src: './topobenchmark' \ No newline at end of file diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index c0d1c920..6075b0ad 100755 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -22,7 +22,7 @@ repos: hooks: - id: ruff-format - - repo: https://github.com/numpy/numpydoc - rev: v1.6.0 - hooks: - - id: numpydoc-validation + # - repo: https://github.com/numpy/numpydoc + # rev: v1.6.0 + # hooks: + # - id: numpydoc-validation diff --git a/README.md b/README.md index 2c7ed2b3..194b83b7 100755 --- a/README.md +++ b/README.md @@ -56,7 +56,7 @@ If you do not have conda on your machine, please follow [their guide](https://do First, clone the `TopoBenchmark` repository and set up a conda environment `tbx` with python 3.11.3. ``` -git clone git@github.com:geometric-intelligence/topobenchmarkx.git +git clone git@github.com:geometric-intelligence/topobenchmark.git cd TopoBenchmark conda create -n tbx python=3.11.3 ``` @@ -79,13 +79,13 @@ This command installs the `TopoBenchmark` library and its dependencies. Next, train the neural networks by running the following command: ``` -python -m topobenchmarkx +python -m topobenchmark ``` Thanks to `hydra` implementation, one can easily override the default experiment configuration through the command line. For instance, the model and dataset can be selected as: ``` -python -m topobenchmarkx model=cell/cwn dataset=graph/MUTAG +python -m topobenchmark model=cell/cwn dataset=graph/MUTAG ``` **Remark:** By default, our pipeline identifies the source and destination topological domains, and applies a default lifting between them if required. @@ -160,7 +160,7 @@ To implement and train a GCCN, run the following command line with the desired c ``` -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/PROTEINS \ dataset.split_params.data_seed=1 \ model=cell/topotune\ @@ -284,25 +284,25 @@ For ease of use, TopoBenchmark employs in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/cell/cccn.yaml b/configs/model/cell/cccn.yaml index da6e7dd7..ec6c0893 100755 --- a/configs/model/cell/cccn.yaml +++ b/configs/model/cell/cccn.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: cccn model_domain: cell feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -14,20 +14,20 @@ feature_encoder: - 1 backbone: - _target_: topobenchmarkx.nn.backbones.cell.cccn.CCCN + _target_: topobenchmark.nn.backbones.cell.cccn.CCCN in_channels: ${model.feature_encoder.out_channels} n_layers: 4 dropout: 0.0 backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.CCCNWrapper + _target_: topobenchmark.nn.wrappers.CCCNWrapper _partial_: true wrapper_name: CCCNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/cell/ccxn.yaml b/configs/model/cell/ccxn.yaml index cdf45b1c..7066f08a 100755 --- a/configs/model/cell/ccxn.yaml +++ b/configs/model/cell/ccxn.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: ccxn model_domain: cell feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -22,14 +22,14 @@ backbone_additional_params: hidden_channels: ${model.feature_encoder.out_channels} backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.CCXNWrapper + _target_: topobenchmark.nn.wrappers.CCXNWrapper _partial_: true wrapper_name: CCXNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/cell/cwn.yaml b/configs/model/cell/cwn.yaml index e8a64f3c..1e699dd4 100755 --- a/configs/model/cell/cwn.yaml +++ b/configs/model/cell/cwn.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: cwn model_domain: cell feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 64 @@ -19,14 +19,14 @@ backbone: n_layers: 4 backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.CWNWrapper + _target_: topobenchmark.nn.wrappers.CWNWrapper _partial_: true wrapper_name: CWNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/cell/topotune.yaml b/configs/model/cell/topotune.yaml index f9f2f0ad..c1acf732 100755 --- a/configs/model/cell/topotune.yaml +++ b/configs/model/cell/topotune.yaml @@ -1,11 +1,11 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: topotune model_domain: cell tune_gnn: IdentityGCN feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -16,9 +16,9 @@ feature_encoder: - 2 backbone: - _target_: topobenchmarkx.nn.backbones.combinatorial.gccn.TopoTune + _target_: topobenchmark.nn.backbones.combinatorial.gccn.TopoTune GNN: - _target_: topobenchmarkx.nn.backbones.graph.${model.tune_gnn} + _target_: topobenchmark.nn.backbones.graph.${model.tune_gnn} in_channels: ${model.feature_encoder.out_channels} out_channels: ${model.feature_encoder.out_channels} hidden_channels: ${model.feature_encoder.out_channels} @@ -35,14 +35,14 @@ backbone: activation: relu backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.combinatorial.TuneWrapper + _target_: topobenchmark.nn.wrappers.combinatorial.TuneWrapper _partial_: true wrapper_name: TuneWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/cell/topotune_onehasse.yaml b/configs/model/cell/topotune_onehasse.yaml index ed4324d7..d0b8c601 100644 --- a/configs/model/cell/topotune_onehasse.yaml +++ b/configs/model/cell/topotune_onehasse.yaml @@ -1,11 +1,11 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: topotune_onehasse model_domain: cell tune_gnn: IdentityGCN feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -16,9 +16,9 @@ feature_encoder: - 2 backbone: - _target_: topobenchmarkx.nn.backbones.combinatorial.gccn_onehasse.TopoTune_OneHasse + _target_: topobenchmark.nn.backbones.combinatorial.gccn_onehasse.TopoTune_OneHasse GNN: - _target_: topobenchmarkx.nn.backbones.graph.${model.tune_gnn} + _target_: topobenchmark.nn.backbones.graph.${model.tune_gnn} in_channels: ${model.feature_encoder.out_channels} out_channels: ${model.feature_encoder.out_channels} hidden_channels: ${model.feature_encoder.out_channels} @@ -34,14 +34,14 @@ backbone: activation: relu backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.combinatorial.TuneWrapper + _target_: topobenchmark.nn.wrappers.combinatorial.TuneWrapper _partial_: true wrapper_name: TuneWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/graph/gat.yaml b/configs/model/graph/gat.yaml index 1841d3c2..60b19151 100755 --- a/configs/model/graph/gat.yaml +++ b/configs/model/graph/gat.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: gat model_domain: graph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -22,14 +22,14 @@ backbone: concat: true backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.GNNWrapper + _target_: topobenchmark.nn.wrappers.GNNWrapper _partial_: true wrapper_name: GNNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: NoReadOut # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/graph/gcn.yaml b/configs/model/graph/gcn.yaml index 36bf8ca4..da203138 100755 --- a/configs/model/graph/gcn.yaml +++ b/configs/model/graph/gcn.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: gcn model_domain: graph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 64 @@ -19,14 +19,14 @@ backbone: act: relu backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.GNNWrapper + _target_: topobenchmark.nn.wrappers.GNNWrapper _partial_: true wrapper_name: GNNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: NoReadOut # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/graph/gcn_dgm.yaml b/configs/model/graph/gcn_dgm.yaml index c27f7699..79e310cb 100755 --- a/configs/model/graph/gcn_dgm.yaml +++ b/configs/model/graph/gcn_dgm.yaml @@ -1,16 +1,16 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: gcn model_domain: graph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: DGMStructureFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 64 proj_dropout: 0.0 loss: - _target_: topobenchmarkx.loss.model.DGMLoss + _target_: topobenchmark.loss.model.DGMLoss loss_weight: 10 backbone: @@ -22,14 +22,14 @@ backbone: act: relu backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.GNNWrapper + _target_: topobenchmark.nn.wrappers.GNNWrapper _partial_: true wrapper_name: GNNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: NoReadOut # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/graph/gin.yaml b/configs/model/graph/gin.yaml index 6f941c95..826bc6ec 100755 --- a/configs/model/graph/gin.yaml +++ b/configs/model/graph/gin.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: gin model_domain: graph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -19,14 +19,14 @@ backbone: act: relu backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.GNNWrapper + _target_: topobenchmark.nn.wrappers.GNNWrapper _partial_: true wrapper_name: GNNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: NoReadOut # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/graph/graph_mlp.yaml b/configs/model/graph/graph_mlp.yaml index 34fe5072..b85f14a0 100755 --- a/configs/model/graph/graph_mlp.yaml +++ b/configs/model/graph/graph_mlp.yaml @@ -1,36 +1,36 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: GraphMLP model_domain: graph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 proj_dropout: 0.0 backbone: - _target_: topobenchmarkx.nn.backbones.GraphMLP + _target_: topobenchmark.nn.backbones.GraphMLP in_channels: ${model.feature_encoder.out_channels} hidden_channels: ${model.feature_encoder.out_channels} order: 2 dropout: 0.0 loss: - _target_: topobenchmarkx.loss.model.GraphMLPLoss + _target_: topobenchmark.loss.model.GraphMLPLoss r_adj_power: 2 tau: 1. loss_weight: 0.5 backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.GraphMLPWrapper + _target_: topobenchmark.nn.wrappers.GraphMLPWrapper _partial_: true wrapper_name: GraphMLPWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: NoReadOut # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/hypergraph/alldeepset.yaml b/configs/model/hypergraph/alldeepset.yaml index 8e251a16..f9f338a4 100755 --- a/configs/model/hypergraph/alldeepset.yaml +++ b/configs/model/hypergraph/alldeepset.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: alldeepset model_domain: hypergraph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -27,14 +27,14 @@ backbone: #num_features: ${model.backbone.hidden_channels} backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.HypergraphWrapper + _target_: topobenchmark.nn.wrappers.HypergraphWrapper _partial_: true wrapper_name: HypergraphWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/hypergraph/allsettransformer.yaml b/configs/model/hypergraph/allsettransformer.yaml index c23133f4..cab55055 100755 --- a/configs/model/hypergraph/allsettransformer.yaml +++ b/configs/model/hypergraph/allsettransformer.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: allsettransformer model_domain: hypergraph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 128 @@ -21,14 +21,14 @@ backbone: mlp_dropout: 0. backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.HypergraphWrapper + _target_: topobenchmark.nn.wrappers.HypergraphWrapper _partial_: true wrapper_name: HypergraphWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/hypergraph/edgnn.yaml b/configs/model/hypergraph/edgnn.yaml index 02e575be..c57aaf87 100755 --- a/configs/model/hypergraph/edgnn.yaml +++ b/configs/model/hypergraph/edgnn.yaml @@ -1,17 +1,17 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: edgnn model_domain: hypergraph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 128 proj_dropout: 0.0 backbone: - _target_: topobenchmarkx.nn.backbones.hypergraph.edgnn.EDGNN + _target_: topobenchmark.nn.backbones.hypergraph.edgnn.EDGNN num_features: ${model.feature_encoder.out_channels} input_dropout: 0. dropout: 0. @@ -22,14 +22,14 @@ backbone: aggregate: 'add' backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.HypergraphWrapper + _target_: topobenchmark.nn.wrappers.HypergraphWrapper _partial_: true wrapper_name: HypergraphWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/hypergraph/unignn.yaml b/configs/model/hypergraph/unignn.yaml index cb1d279a..1fffd96d 100755 --- a/configs/model/hypergraph/unignn.yaml +++ b/configs/model/hypergraph/unignn.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: unignn2 model_domain: hypergraph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -17,14 +17,14 @@ backbone: n_layers: 1 backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.HypergraphWrapper + _target_: topobenchmark.nn.wrappers.HypergraphWrapper _partial_: true wrapper_name: HypergraphWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/hypergraph/unignn2.yaml b/configs/model/hypergraph/unignn2.yaml index f3f8dc4b..c139437e 100755 --- a/configs/model/hypergraph/unignn2.yaml +++ b/configs/model/hypergraph/unignn2.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: unignn2 model_domain: hypergraph feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 128 @@ -21,14 +21,14 @@ backbone: layer_drop: 0.0 backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.HypergraphWrapper + _target_: topobenchmark.nn.wrappers.HypergraphWrapper _partial_: true wrapper_name: HypergraphWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/simplicial/san.yaml b/configs/model/simplicial/san.yaml index 338a634f..78b4a07b 100755 --- a/configs/model/simplicial/san.yaml +++ b/configs/model/simplicial/san.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: san model_domain: simplicial feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 64 @@ -23,14 +23,14 @@ backbone: epsilon_harmonic: 1e-1 backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.SANWrapper + _target_: topobenchmark.nn.wrappers.SANWrapper _partial_: true wrapper_name: SANWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/simplicial/sccn.yaml b/configs/model/simplicial/sccn.yaml index 91144079..0aa50526 100755 --- a/configs/model/simplicial/sccn.yaml +++ b/configs/model/simplicial/sccn.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: sccn model_domain: simplicial feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -18,14 +18,14 @@ backbone: update_func: "sigmoid" backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.SCCNWrapper + _target_: topobenchmark.nn.wrappers.SCCNWrapper _partial_: true wrapper_name: SCCNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/simplicial/sccnn.yaml b/configs/model/simplicial/sccnn.yaml index e631c7e2..67ec3342 100755 --- a/configs/model/simplicial/sccnn.yaml +++ b/configs/model/simplicial/sccnn.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: sccnn model_domain: simplicial feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -31,14 +31,14 @@ backbone: n_layers: 1 backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.SCCNNWrapper + _target_: topobenchmark.nn.wrappers.SCCNNWrapper _partial_: true wrapper_name: SCCNNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/simplicial/sccnn_custom.yaml b/configs/model/simplicial/sccnn_custom.yaml index 09697984..8418aeb0 100755 --- a/configs/model/simplicial/sccnn_custom.yaml +++ b/configs/model/simplicial/sccnn_custom.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: sccnn model_domain: simplicial feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -15,7 +15,7 @@ feature_encoder: - 2 backbone: - _target_: topobenchmarkx.nn.backbones.simplicial.sccnn.SCCNNCustom + _target_: topobenchmark.nn.backbones.simplicial.sccnn.SCCNNCustom in_channels_all: - ${model.feature_encoder.out_channels} - ${model.feature_encoder.out_channels} @@ -31,14 +31,14 @@ backbone: n_layers: 1 backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.SCCNNWrapper + _target_: topobenchmark.nn.wrappers.SCCNNWrapper _partial_: true wrapper_name: SCCNNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/simplicial/scn.yaml b/configs/model/simplicial/scn.yaml index c6a0f0a8..0c94ec0e 100755 --- a/configs/model/simplicial/scn.yaml +++ b/configs/model/simplicial/scn.yaml @@ -1,10 +1,10 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: scn model_domain: simplicial feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -22,14 +22,14 @@ backbone: n_layers: 1 backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.SCNWrapper + _target_: topobenchmark.nn.wrappers.SCNWrapper _partial_: true wrapper_name: SCNWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/simplicial/topotune.yaml b/configs/model/simplicial/topotune.yaml index 4e7bf859..ebe19a61 100755 --- a/configs/model/simplicial/topotune.yaml +++ b/configs/model/simplicial/topotune.yaml @@ -1,11 +1,11 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: topotune model_domain: simplicial tune_gnn: GIN feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -16,9 +16,9 @@ feature_encoder: - 2 backbone: - _target_: topobenchmarkx.nn.backbones.combinatorial.gccn.TopoTune + _target_: topobenchmark.nn.backbones.combinatorial.gccn.TopoTune GNN: - _target_: topobenchmarkx.nn.backbones.graph.${model.tune_gnn} + _target_: topobenchmark.nn.backbones.graph.${model.tune_gnn} in_channels: ${model.feature_encoder.out_channels} out_channels: ${model.feature_encoder.out_channels} hidden_channels: ${model.feature_encoder.out_channels} @@ -35,14 +35,14 @@ backbone: activation: relu backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.combinatorial.TuneWrapper + _target_: topobenchmark.nn.wrappers.combinatorial.TuneWrapper _partial_: true wrapper_name: TuneWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/model/simplicial/topotune_onehasse.yaml b/configs/model/simplicial/topotune_onehasse.yaml index 4bf21276..6a7d35d4 100644 --- a/configs/model/simplicial/topotune_onehasse.yaml +++ b/configs/model/simplicial/topotune_onehasse.yaml @@ -1,11 +1,11 @@ -_target_: topobenchmarkx.model.TBXModel +_target_: topobenchmark.model.TBXModel model_name: topotune_onehasse model_domain: simplicial tune_gnn: GCN feature_encoder: - _target_: topobenchmarkx.nn.encoders.${model.feature_encoder.encoder_name} + _target_: topobenchmark.nn.encoders.${model.feature_encoder.encoder_name} encoder_name: AllCellFeatureEncoder in_channels: ${infer_in_channels:${dataset},${oc.select:transforms,null}} out_channels: 32 @@ -16,9 +16,9 @@ feature_encoder: - 2 backbone: - _target_: topobenchmarkx.nn.backbones.combinatorial.gccn_onehasse.TopoTune_OneHasse + _target_: topobenchmark.nn.backbones.combinatorial.gccn_onehasse.TopoTune_OneHasse GNN: - _target_: topobenchmarkx.nn.backbones.graph.${model.tune_gnn} + _target_: topobenchmark.nn.backbones.graph.${model.tune_gnn} in_channels: ${model.feature_encoder.out_channels} out_channels: ${model.feature_encoder.out_channels} hidden_channels: ${model.feature_encoder.out_channels} @@ -34,14 +34,14 @@ backbone: activation: relu backbone_wrapper: - _target_: topobenchmarkx.nn.wrappers.combinatorial.TuneWrapper + _target_: topobenchmark.nn.wrappers.combinatorial.TuneWrapper _partial_: true wrapper_name: TuneWrapper out_channels: ${model.feature_encoder.out_channels} num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} readout: - _target_: topobenchmarkx.nn.readouts.${model.readout.readout_name} + _target_: topobenchmark.nn.readouts.${model.readout.readout_name} readout_name: PropagateSignalDown # Use in case readout is not needed Options: PropagateSignalDown num_cell_dimensions: ${infere_num_cell_dimensions:${oc.select:model.feature_encoder.selected_dimensions,null},${model.feature_encoder.in_channels}} # The highest order of cell dimensions to consider hidden_dim: ${model.feature_encoder.out_channels} diff --git a/configs/optimizer/default.yaml b/configs/optimizer/default.yaml index cb76ab94..e8d503cc 100644 --- a/configs/optimizer/default.yaml +++ b/configs/optimizer/default.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.optimizer.TBXOptimizer +_target_: topobenchmark.optimizer.TBXOptimizer # Full compatibility with all available torch optimizers and schedulers optimizer_id: Adam # torch id of the optimizer diff --git a/configs/transforms/data_manipulations/data_fields_to_dense.yaml b/configs/transforms/data_manipulations/data_fields_to_dense.yaml index 40fa2e71..0c5da8e0 100755 --- a/configs/transforms/data_manipulations/data_fields_to_dense.yaml +++ b/configs/transforms/data_manipulations/data_fields_to_dense.yaml @@ -1,3 +1,3 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "DataFieldsToDense" transform_type: "data manipulation" \ No newline at end of file diff --git a/configs/transforms/data_manipulations/equal_gaus_features.yaml b/configs/transforms/data_manipulations/equal_gaus_features.yaml index c671ea7a..f918552c 100755 --- a/configs/transforms/data_manipulations/equal_gaus_features.yaml +++ b/configs/transforms/data_manipulations/equal_gaus_features.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "EqualGausFeatures" transform_type: "data manipulation" diff --git a/configs/transforms/data_manipulations/group_homophily.yaml b/configs/transforms/data_manipulations/group_homophily.yaml index d07de392..0699e1a5 100755 --- a/configs/transforms/data_manipulations/group_homophily.yaml +++ b/configs/transforms/data_manipulations/group_homophily.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "GroupCombinatorialHomophily" transform_type: "data manipulation" top_k: 10 diff --git a/configs/transforms/data_manipulations/identity.yaml b/configs/transforms/data_manipulations/identity.yaml index c5deadbe..422be56f 100755 --- a/configs/transforms/data_manipulations/identity.yaml +++ b/configs/transforms/data_manipulations/identity.yaml @@ -1,3 +1,3 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "Identity" transform_type: null \ No newline at end of file diff --git a/configs/transforms/data_manipulations/infere_knn_connectivity.yaml b/configs/transforms/data_manipulations/infere_knn_connectivity.yaml index ab7435ca..a403f028 100755 --- a/configs/transforms/data_manipulations/infere_knn_connectivity.yaml +++ b/configs/transforms/data_manipulations/infere_knn_connectivity.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "InfereKNNConnectivity" transform_type: "data manipulation" args: diff --git a/configs/transforms/data_manipulations/infere_radius_connectivity.yaml b/configs/transforms/data_manipulations/infere_radius_connectivity.yaml index d96fe764..bf4936e4 100755 --- a/configs/transforms/data_manipulations/infere_radius_connectivity.yaml +++ b/configs/transforms/data_manipulations/infere_radius_connectivity.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "InfereRadiusConnectivity" transform_type: "data manipulation" args: diff --git a/configs/transforms/data_manipulations/infere_tree.yaml b/configs/transforms/data_manipulations/infere_tree.yaml index 67560efc..23944323 100755 --- a/configs/transforms/data_manipulations/infere_tree.yaml +++ b/configs/transforms/data_manipulations/infere_tree.yaml @@ -1,3 +1,3 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "InferTreeConnectivity" #split_params: ${dataset.split_params} diff --git a/configs/transforms/data_manipulations/keep_connected_component.yaml b/configs/transforms/data_manipulations/keep_connected_component.yaml index 57515139..b0fee212 100644 --- a/configs/transforms/data_manipulations/keep_connected_component.yaml +++ b/configs/transforms/data_manipulations/keep_connected_component.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "KeepOnlyConnectedComponent" transform_type: "data manipulation" num_components: 1 \ No newline at end of file diff --git a/configs/transforms/data_manipulations/keep_selected_fields.yaml b/configs/transforms/data_manipulations/keep_selected_fields.yaml index 864f80d3..8997cc12 100644 --- a/configs/transforms/data_manipulations/keep_selected_fields.yaml +++ b/configs/transforms/data_manipulations/keep_selected_fields.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "KeepSelectedDataFields" transform_type: "data manipulation" # Fields that must be for pipeline diff --git a/configs/transforms/data_manipulations/mp_homophily.yaml b/configs/transforms/data_manipulations/mp_homophily.yaml index 431b5371..b02b1dcd 100755 --- a/configs/transforms/data_manipulations/mp_homophily.yaml +++ b/configs/transforms/data_manipulations/mp_homophily.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "MessagePassingHomophily" transform_type: "data manipulation" num_steps: 10 diff --git a/configs/transforms/data_manipulations/node_degrees.yaml b/configs/transforms/data_manipulations/node_degrees.yaml index 1d666d32..14b6cb34 100755 --- a/configs/transforms/data_manipulations/node_degrees.yaml +++ b/configs/transforms/data_manipulations/node_degrees.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "NodeDegrees" transform_type: "data manipulation" selected_fields: ["edge_index"] # "incidence" diff --git a/configs/transforms/data_manipulations/node_feat_to_float.yaml b/configs/transforms/data_manipulations/node_feat_to_float.yaml index 53686954..e66be399 100755 --- a/configs/transforms/data_manipulations/node_feat_to_float.yaml +++ b/configs/transforms/data_manipulations/node_feat_to_float.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "NodeFeaturesToFloat" transform_type: "data manipulation" diff --git a/configs/transforms/data_manipulations/one_hot_node_degree_features.yaml b/configs/transforms/data_manipulations/one_hot_node_degree_features.yaml index 573d5248..9e14c022 100755 --- a/configs/transforms/data_manipulations/one_hot_node_degree_features.yaml +++ b/configs/transforms/data_manipulations/one_hot_node_degree_features.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "OneHotDegreeFeatures" transform_type: "data manipulation" diff --git a/configs/transforms/data_manipulations/remove_extra_feature.yaml b/configs/transforms/data_manipulations/remove_extra_feature.yaml index 9bca7003..b0cb693a 100755 --- a/configs/transforms/data_manipulations/remove_extra_feature.yaml +++ b/configs/transforms/data_manipulations/remove_extra_feature.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "RemoveExtraFeatureFromProteins" transform_type: "data manipulation" remove_first_n_features: 1 diff --git a/configs/transforms/data_manipulations/simplicial_curvature.yaml b/configs/transforms/data_manipulations/simplicial_curvature.yaml index 2fb00b26..75aee95f 100755 --- a/configs/transforms/data_manipulations/simplicial_curvature.yaml +++ b/configs/transforms/data_manipulations/simplicial_curvature.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "CalculateSimplicialCurvature" transform_type: "data manipulation" diff --git a/configs/transforms/dataset_defaults/ZINC.yaml b/configs/transforms/dataset_defaults/ZINC.yaml index 1c759853..d73b8c9b 100644 --- a/configs/transforms/dataset_defaults/ZINC.yaml +++ b/configs/transforms/dataset_defaults/ZINC.yaml @@ -1,4 +1,4 @@ -# USE python -m topobenchmarkx transforms.one_hot_node_degree_features.degrees_fields=x to run this config +# USE python -m topobenchmark transforms.one_hot_node_degree_features.degrees_fields=x to run this config defaults: - data_manipulations: node_degrees - data_manipulations@one_hot_node_degree_features: one_hot_node_degree_features diff --git a/configs/transforms/feature_liftings/base_lifting.yaml b/configs/transforms/feature_liftings/base_lifting.yaml index 12036020..d7e038be 100755 --- a/configs/transforms/feature_liftings/base_lifting.yaml +++ b/configs/transforms/feature_liftings/base_lifting.yaml @@ -1,3 +1,3 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "ProjectionSum" transform_type: "feature_lifting" \ No newline at end of file diff --git a/configs/transforms/feature_liftings/concatenate.yaml b/configs/transforms/feature_liftings/concatenate.yaml index 6c621489..13e5e9b3 100755 --- a/configs/transforms/feature_liftings/concatenate.yaml +++ b/configs/transforms/feature_liftings/concatenate.yaml @@ -1,3 +1,3 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_name: "ConcatentionLifting" transform_type: null \ No newline at end of file diff --git a/configs/transforms/liftings/graph2cell/cycle.yaml b/configs/transforms/liftings/graph2cell/cycle.yaml index 23244043..d0d4b0fc 100644 --- a/configs/transforms/liftings/graph2cell/cycle.yaml +++ b/configs/transforms/liftings/graph2cell/cycle.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_type: 'lifting' transform_name: "CellCycleLifting" complex_dim: ${oc.select:dataset.parameters.max_dim_if_lifted,3} diff --git a/configs/transforms/liftings/graph2hypergraph/khop.yaml b/configs/transforms/liftings/graph2hypergraph/khop.yaml index 9fc6d185..8b2dfe30 100755 --- a/configs/transforms/liftings/graph2hypergraph/khop.yaml +++ b/configs/transforms/liftings/graph2hypergraph/khop.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_type: 'lifting' transform_name: "HypergraphKHopLifting" k_value: 1 diff --git a/configs/transforms/liftings/graph2simplicial/clique.yaml b/configs/transforms/liftings/graph2simplicial/clique.yaml index a3419278..3a16c357 100755 --- a/configs/transforms/liftings/graph2simplicial/clique.yaml +++ b/configs/transforms/liftings/graph2simplicial/clique.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_type: 'lifting' transform_name: "SimplicialCliqueLifting" complex_dim: ${oc.select:dataset.parameters.max_dim_if_lifted,3} diff --git a/configs/transforms/liftings/graph2simplicial/khop.yaml b/configs/transforms/liftings/graph2simplicial/khop.yaml index 02f86a9a..4330771e 100755 --- a/configs/transforms/liftings/graph2simplicial/khop.yaml +++ b/configs/transforms/liftings/graph2simplicial/khop.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmarkx.transforms.data_transform.DataTransform +_target_: topobenchmark.transforms.data_transform.DataTransform transform_type: 'lifting' transform_name: "SimplicialKHopLifting" max_k_simplices: 5000 diff --git a/docs/api/data/index.rst b/docs/api/data/index.rst index 06e32475..5f3eb2c7 100644 --- a/docs/api/data/index.rst +++ b/docs/api/data/index.rst @@ -12,35 +12,35 @@ The `data` module of `TopoBenchmarkX` consists of several submodules: Datasets -------- -.. automodule:: topobenchmarkx.data.datasets.us_county_demos_dataset +.. automodule:: topobenchmark.data.datasets.us_county_demos_dataset :members: Load ---- -.. automodule:: topobenchmarkx.data.loaders.base +.. automodule:: topobenchmark.data.loaders.base :members: -.. automodule:: topobenchmarkx.data.loaders.loaders +.. automodule:: topobenchmark.data.loaders.loaders :members: Preprocess ---------- -.. automodule:: topobenchmarkx.data.preprocessor.preprocessor +.. automodule:: topobenchmark.data.preprocessor.preprocessor :members: Utils ----- -.. automodule:: topobenchmarkx.data.utils.io_utils +.. automodule:: topobenchmark.data.utils.io_utils :members: -.. automodule:: topobenchmarkx.data.utils.split_utils +.. automodule:: topobenchmark.data.utils.split_utils :members: -.. automodule:: topobenchmarkx.data.utils.utils +.. automodule:: topobenchmark.data.utils.utils :members: \ No newline at end of file diff --git a/docs/api/dataloader/index.rst b/docs/api/dataloader/index.rst index 6d30dc25..e3421add 100644 --- a/docs/api/dataloader/index.rst +++ b/docs/api/dataloader/index.rst @@ -4,11 +4,11 @@ DataLoader The `dataloader` module implements custom dataloaders for training. -.. automodule:: topobenchmarkx.dataloader.dataload_dataset +.. automodule:: topobenchmark.dataloader.dataload_dataset :members: -.. automodule:: topobenchmarkx.dataloader.dataloader +.. automodule:: topobenchmark.dataloader.dataloader :members: -.. automodule:: topobenchmarkx.dataloader.utils +.. automodule:: topobenchmark.dataloader.utils :members: \ No newline at end of file diff --git a/docs/api/evaluator/index.rst b/docs/api/evaluator/index.rst index c6eb7db5..167688bb 100644 --- a/docs/api/evaluator/index.rst +++ b/docs/api/evaluator/index.rst @@ -4,9 +4,9 @@ Evaluator This module implements custom Python classes to evaluate performances of models in `TopoBenchmarkX`. -.. automodule:: topobenchmarkx.evaluator.base +.. automodule:: topobenchmark.evaluator.base :members: -.. automodule:: topobenchmarkx.evaluator.evaluator +.. automodule:: topobenchmark.evaluator.evaluator :members: diff --git a/docs/api/loss/index.rst b/docs/api/loss/index.rst index 4f0d195d..56ce1796 100644 --- a/docs/api/loss/index.rst +++ b/docs/api/loss/index.rst @@ -4,8 +4,8 @@ Loss This module implements custom Python classes to compute losses in `TopoBenchmarkX`. -.. automodule:: topobenchmarkx.loss.base +.. automodule:: topobenchmark.loss.base :members: -.. automodule:: topobenchmarkx.loss.loss +.. automodule:: topobenchmark.loss.loss :members: diff --git a/docs/api/model/index.rst b/docs/api/model/index.rst index 839f5738..f7338935 100644 --- a/docs/api/model/index.rst +++ b/docs/api/model/index.rst @@ -4,5 +4,5 @@ Model This module implements custom Python classes to represent models leveraging pytorch-lightning within `TopoBenchmarkX`. -.. automodule:: topobenchmarkx.model.model +.. automodule:: topobenchmark.model.model :members: \ No newline at end of file diff --git a/docs/api/nn/backbones/index.rst b/docs/api/nn/backbones/index.rst index 01909597..0dff2b96 100644 --- a/docs/api/nn/backbones/index.rst +++ b/docs/api/nn/backbones/index.rst @@ -2,11 +2,11 @@ Backbones ********* -.. automodule:: topobenchmarkx.nn.backbones.cell.cccn +.. automodule:: topobenchmark.nn.backbones.cell.cccn :members: -.. automodule:: topobenchmarkx.nn.backbones.hypergraph.edgnn +.. automodule:: topobenchmark.nn.backbones.hypergraph.edgnn :members: -.. automodule:: topobenchmarkx.nn.backbones.simplicial.sccnn +.. automodule:: topobenchmark.nn.backbones.simplicial.sccnn :members: \ No newline at end of file diff --git a/docs/api/nn/encoders/index.rst b/docs/api/nn/encoders/index.rst index 93f05e23..36f0ce77 100644 --- a/docs/api/nn/encoders/index.rst +++ b/docs/api/nn/encoders/index.rst @@ -2,8 +2,8 @@ Encoders ******** -.. automodule:: topobenchmarkx.nn.encoders.base +.. automodule:: topobenchmark.nn.encoders.base :members: -.. automodule:: topobenchmarkx.nn.encoders.all_cell_encoder +.. automodule:: topobenchmark.nn.encoders.all_cell_encoder :members: \ No newline at end of file diff --git a/docs/api/nn/readouts/index.rst b/docs/api/nn/readouts/index.rst index 3ff705c7..d2bab1c0 100644 --- a/docs/api/nn/readouts/index.rst +++ b/docs/api/nn/readouts/index.rst @@ -2,11 +2,11 @@ Readouts ******** -.. automodule:: topobenchmarkx.nn.readouts.base +.. automodule:: topobenchmark.nn.readouts.base :members: -.. automodule:: topobenchmarkx.nn.readouts.identical +.. automodule:: topobenchmark.nn.readouts.identical :members: -.. automodule:: topobenchmarkx.nn.readouts.propagate_signal_down +.. automodule:: topobenchmark.nn.readouts.propagate_signal_down :members: \ No newline at end of file diff --git a/docs/api/nn/wrappers/index.rst b/docs/api/nn/wrappers/index.rst index b915848a..2c2d72da 100644 --- a/docs/api/nn/wrappers/index.rst +++ b/docs/api/nn/wrappers/index.rst @@ -2,35 +2,35 @@ Wrappers ******** -.. automodule:: topobenchmarkx.nn.wrappers.base +.. automodule:: topobenchmark.nn.wrappers.base :members: -.. automodule:: topobenchmarkx.nn.wrappers.cell.can_wrapper +.. automodule:: topobenchmark.nn.wrappers.cell.can_wrapper :members: -.. automodule:: topobenchmarkx.nn.wrappers.cell.cccn_wrapper +.. automodule:: topobenchmark.nn.wrappers.cell.cccn_wrapper :members: -.. automodule:: topobenchmarkx.nn.wrappers.cell.ccxn_wrapper +.. automodule:: topobenchmark.nn.wrappers.cell.ccxn_wrapper :members: -.. automodule:: topobenchmarkx.nn.wrappers.cell.cwn_wrapper +.. automodule:: topobenchmark.nn.wrappers.cell.cwn_wrapper :members: -.. automodule:: topobenchmarkx.nn.wrappers.graph.gnn_wrapper +.. automodule:: topobenchmark.nn.wrappers.graph.gnn_wrapper :members: -.. automodule:: topobenchmarkx.nn.wrappers.hypergraph.hypergraph_wrapper +.. automodule:: topobenchmark.nn.wrappers.hypergraph.hypergraph_wrapper :members: -.. automodule:: topobenchmarkx.nn.wrappers.simplicial.san_wrapper +.. automodule:: topobenchmark.nn.wrappers.simplicial.san_wrapper :members: -.. automodule:: topobenchmarkx.nn.wrappers.simplicial.sccn_wrapper +.. automodule:: topobenchmark.nn.wrappers.simplicial.sccn_wrapper :members: -.. automodule:: topobenchmarkx.nn.wrappers.simplicial.sccnn_wrapper +.. automodule:: topobenchmark.nn.wrappers.simplicial.sccnn_wrapper :members: -.. automodule:: topobenchmarkx.nn.wrappers.simplicial.scn_wrapper +.. automodule:: topobenchmark.nn.wrappers.simplicial.scn_wrapper :members: \ No newline at end of file diff --git a/docs/api/optimizer/index.rst b/docs/api/optimizer/index.rst index 28f49b85..9e69f4bf 100644 --- a/docs/api/optimizer/index.rst +++ b/docs/api/optimizer/index.rst @@ -4,8 +4,8 @@ Optimizer This module implements a custom Python class to manage `PyTorch` optimizers and learning rate schedulers in `TopoBenchmarkX`. -.. automodule:: topobenchmarkx.optimizer.base +.. automodule:: topobenchmark.optimizer.base :members: -.. automodule:: topobenchmarkx.optimizer.optimizer +.. automodule:: topobenchmark.optimizer.optimizer :members: diff --git a/docs/api/transforms/data_manipulations/index.rst b/docs/api/transforms/data_manipulations/index.rst index 3c238f72..d6331196 100644 --- a/docs/api/transforms/data_manipulations/index.rst +++ b/docs/api/transforms/data_manipulations/index.rst @@ -2,32 +2,32 @@ Data Manipulations ****************** -.. automodule:: topobenchmarkx.transforms.data_manipulations.calculate_simplicial_curvature +.. automodule:: topobenchmark.transforms.data_manipulations.calculate_simplicial_curvature :members: -.. automodule:: topobenchmarkx.transforms.data_manipulations.equal_gaus_features +.. automodule:: topobenchmark.transforms.data_manipulations.equal_gaus_features :members: -.. automodule:: topobenchmarkx.transforms.data_manipulations.identity_transform +.. automodule:: topobenchmark.transforms.data_manipulations.identity_transform :members: -.. automodule:: topobenchmarkx.transforms.data_manipulations.infere_knn_connectivity +.. automodule:: topobenchmark.transforms.data_manipulations.infere_knn_connectivity :members: -.. automodule:: topobenchmarkx.transforms.data_manipulations.infere_radius_connectivity +.. automodule:: topobenchmark.transforms.data_manipulations.infere_radius_connectivity :members: -.. automodule:: topobenchmarkx.transforms.data_manipulations.keep_only_connected_component +.. automodule:: topobenchmark.transforms.data_manipulations.keep_only_connected_component :members: -.. automodule:: topobenchmarkx.transforms.data_manipulations.keep_selected_data_fields +.. automodule:: topobenchmark.transforms.data_manipulations.keep_selected_data_fields :members: -.. automodule:: topobenchmarkx.transforms.data_manipulations.node_degrees +.. automodule:: topobenchmark.transforms.data_manipulations.node_degrees :members: -.. automodule:: topobenchmarkx.transforms.data_manipulations.node_features_to_float +.. automodule:: topobenchmark.transforms.data_manipulations.node_features_to_float :members: -.. automodule:: topobenchmarkx.transforms.data_manipulations.one_hot_degree_features +.. automodule:: topobenchmark.transforms.data_manipulations.one_hot_degree_features :members: \ No newline at end of file diff --git a/docs/api/transforms/data_transform/index.rst b/docs/api/transforms/data_transform/index.rst index 046d2271..8550d47f 100644 --- a/docs/api/transforms/data_transform/index.rst +++ b/docs/api/transforms/data_transform/index.rst @@ -2,5 +2,5 @@ Data Transform ************** -.. automodule:: topobenchmarkx.transforms.data_transform +.. automodule:: topobenchmark.transforms.data_transform :members: \ No newline at end of file diff --git a/docs/api/transforms/feature_liftings/index.rst b/docs/api/transforms/feature_liftings/index.rst index f79244a7..b71f1c13 100644 --- a/docs/api/transforms/feature_liftings/index.rst +++ b/docs/api/transforms/feature_liftings/index.rst @@ -2,14 +2,14 @@ Feature Liftings **************** -.. automodule:: topobenchmarkx.transforms.feature_liftings.concatenation +.. automodule:: topobenchmark.transforms.feature_liftings.concatenation :members: -.. automodule:: topobenchmarkx.transforms.feature_liftings.identity +.. automodule:: topobenchmark.transforms.feature_liftings.identity :members: -.. automodule:: topobenchmarkx.transforms.feature_liftings.projection_sum +.. automodule:: topobenchmark.transforms.feature_liftings.projection_sum :members: -.. automodule:: topobenchmarkx.transforms.feature_liftings.set +.. automodule:: topobenchmark.transforms.feature_liftings.set :members: \ No newline at end of file diff --git a/docs/api/transforms/liftings/index.rst b/docs/api/transforms/liftings/index.rst index 8ec4228d..5fe244e6 100644 --- a/docs/api/transforms/liftings/index.rst +++ b/docs/api/transforms/liftings/index.rst @@ -2,32 +2,32 @@ Liftings ******** -.. automodule:: topobenchmarkx.transforms.liftings.base +.. automodule:: topobenchmark.transforms.liftings.base :members: -.. automodule:: topobenchmarkx.transforms.liftings +.. automodule:: topobenchmark.transforms.liftings :members: -.. automodule:: topobenchmarkx.transforms.liftings.graph2cell.base +.. automodule:: topobenchmark.transforms.liftings.graph2cell.base :members: -.. automodule:: topobenchmarkx.transforms.liftings.graph2cell.cycle +.. automodule:: topobenchmark.transforms.liftings.graph2cell.cycle :members: -.. automodule:: topobenchmarkx.transforms.liftings.graph2hypergraph.base +.. automodule:: topobenchmark.transforms.liftings.graph2hypergraph.base :members: -.. automodule:: topobenchmarkx.transforms.liftings.graph2hypergraph.khop +.. automodule:: topobenchmark.transforms.liftings.graph2hypergraph.khop :members: -.. automodule:: topobenchmarkx.transforms.liftings.graph2hypergraph.knn +.. automodule:: topobenchmark.transforms.liftings.graph2hypergraph.knn :members: -.. automodule:: topobenchmarkx.transforms.liftings.graph2simplicial.base +.. automodule:: topobenchmark.transforms.liftings.graph2simplicial.base :members: -.. automodule:: topobenchmarkx.transforms.liftings.graph2simplicial.clique +.. automodule:: topobenchmark.transforms.liftings.graph2simplicial.clique :members: -.. automodule:: topobenchmarkx.transforms.liftings.graph2simplicial.khop +.. automodule:: topobenchmark.transforms.liftings.graph2simplicial.khop :members: \ No newline at end of file diff --git a/docs/api/utils/index.rst b/docs/api/utils/index.rst index 6af9d046..3df42dda 100644 --- a/docs/api/utils/index.rst +++ b/docs/api/utils/index.rst @@ -4,20 +4,20 @@ Utils This module implements implements additional utilities to handle the training process. -.. automodule:: topobenchmarkx.utils.config_resolvers +.. automodule:: topobenchmark.utils.config_resolvers :members: -.. automodule:: topobenchmarkx.utils.instantiators +.. automodule:: topobenchmark.utils.instantiators :members: -.. automodule:: topobenchmarkx.utils.logging_utils +.. automodule:: topobenchmark.utils.logging_utils :members: -.. automodule:: topobenchmarkx.utils.pylogger +.. automodule:: topobenchmark.utils.pylogger :members: -.. automodule:: topobenchmarkx.utils.rich_utils +.. automodule:: topobenchmark.utils.rich_utils :members: -.. automodule:: topobenchmarkx.utils.utils +.. automodule:: topobenchmark.utils.utils :members: \ No newline at end of file diff --git a/docs/conf.py b/docs/conf.py index 4a7734a2..80a102a8 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -67,7 +67,7 @@ latex_documents = [ ( master_doc, - "topobenchmarkx.tex", + "topobenchmark.tex", "TopoBenchmarkX Documentation", "PyT-Team", "manual", @@ -75,16 +75,16 @@ ] man_pages = [ - (master_doc, "topobenchmarkx", "TopoBenchmarkX Documentation", [author], 1) + (master_doc, "topobenchmark", "TopoBenchmarkX Documentation", [author], 1) ] texinfo_documents = [ ( master_doc, - "topobenchmarkx", + "topobenchmark", "TopoBenchmarkX Documentation", author, - "topobenchmarkx", + "topobenchmark", "One line description of project.", "Miscellaneous", ), diff --git a/docs/contributing/index.rst b/docs/contributing/index.rst index 2d58b05b..c26aecda 100644 --- a/docs/contributing/index.rst +++ b/docs/contributing/index.rst @@ -13,7 +13,7 @@ community effort, and everyone is welcome to contribute. Making Changes -------------- -The preferred way to contribute to topobenchmarkx is to fork the `upstream +The preferred way to contribute to topobenchmark is to fork the `upstream repository `__ and submit a "pull request" (PR). Follow these steps before submitting a PR: @@ -107,7 +107,7 @@ A docstring is a well-formatted description of your function/class/module which its purpose, usage, and other information. There are different markdown languages/formats used for docstrings in Python. The most common -three are reStructuredText, numpy, and google docstring styles. For topobenchmarkx, we are +three are reStructuredText, numpy, and google docstring styles. For topobenchmark, we are using the numpy docstring standard. When writing up your docstrings, please review the `NumPy docstring guide `_ to understand the role and syntax of each section. Following this syntax is important not only for readability, diff --git a/pyproject.toml b/pyproject.toml index 76c11371..76668357 100755 --- a/pyproject.toml +++ b/pyproject.toml @@ -132,14 +132,15 @@ convention = "numpy" [tool.ruff.lint.per-file-ignores] "__init__.py" = ["F403"] +"tests/*" = ["D"] [tool.setuptools.dynamic] -version = {attr = "topobenchmarkx.__version__"} +version = {attr = "topobenchmark.__version__"} [tool.setuptools.packages.find] include = [ - "topobenchmarkx", - "topobenchmarkx.*" + "topobenchmark", + "topobenchmark.*" ] [tool.mypy] diff --git a/scripts/reproduce.sh b/scripts/reproduce.sh index ebab3f84..e06a4565 100644 --- a/scripts/reproduce.sh +++ b/scripts/reproduce.sh @@ -26,264 +26,264 @@ run_command() { # List of commands to execute commands=( - 'python -m topobenchmarkx model=cell/cccn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=32 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=cell/cccn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=64 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/ZINC optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/ccxn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=32 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=cell/cwn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/MUTAG optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=32 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gat dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=32 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/amazon_ratings optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gcn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=graph/gin dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/MUTAG optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=32 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/roman_empire optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/PROTEINS optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.All_num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/ZINC optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/cocitation_cora optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -# 'python -m topobenchmarkx model=simplicial/sccn dataset=graph/roman_empire optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/MUTAG optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=32 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/cocitation_cora optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/MUTAG optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/ZINC optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/cocitation_cora optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=simplicial/scn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=cell/cccn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=cell/cccn dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=cell/ccxn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=cell/ccxn dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=cell/cwn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=cell/cwn dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=graph/gat dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=graph/gat dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=graph/gcn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=graph/gcn dataset=graph/tolokers optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=graph/gin dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=graph/gin dataset=graph/tolokers optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=hypergraph/allsettransformer dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=hypergraph/edgnn dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -'python -m topobenchmarkx model=hypergraph/unignn2 dataset=graph/tolokers optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=simplicial/sccn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=simplicial/sccn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=simplicial/sccn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=simplicial/sccnn_custom dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=simplicial/scn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=simplicial/scn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' -#'python -m topobenchmarkx model=simplicial/scn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' + 'python -m topobenchmark model=cell/cccn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=32 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=cell/cccn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=64 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/ZINC optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/ccxn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=32 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=cell/cwn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/MUTAG optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=32 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gat dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=32 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/amazon_ratings optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gcn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=graph/gin dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/MUTAG optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=32 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/roman_empire optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/PROTEINS optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.All_num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/edgnn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/ZINC optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/cocitation_cora optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/MUTAG optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/cocitation_cora optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +# 'python -m topobenchmark model=simplicial/sccn dataset=graph/roman_empire optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/MUTAG optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=32 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/NCI109 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/cocitation_cora optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/minesweeper optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/MUTAG optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=64 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/NCI1 optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/NCI109 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BirthRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=DeathRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=Election dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MigraRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=UnemploymentRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=BachelorRate dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/US-county-demos optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.loader.parameters.task_variable=MedianIncome dataset.loader.parameters.year=2012 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/ZINC optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/cocitation_cora optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/cocitation_pubmed optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=simplicial/scn dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=cell/cccn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=cell/cccn dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=cell/ccxn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=cell/ccxn dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=cell/cwn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=cell/cwn dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=graph/gat dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=3 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=graph/gat dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=graph/gcn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=graph/gcn dataset=graph/tolokers optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=graph/gin dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=graph/gin dataset=graph/tolokers optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=hypergraph/allsettransformer dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=hypergraph/edgnn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.All_num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=hypergraph/edgnn dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.All_num_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +'python -m topobenchmark model=hypergraph/unignn2 dataset=graph/tolokers optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=simplicial/sccn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=simplicial/sccn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=simplicial/sccn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=simplicial/sccnn_custom dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=simplicial/scn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=simplicial/scn dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' +#'python -m topobenchmark model=simplicial/scn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBenchmarkX_main --multirun' ) # Iterate over the commands and run them diff --git a/scripts/topotune/existing_models/tune_cwn.sh b/scripts/topotune/existing_models/tune_cwn.sh index e2bd341c..f0e6f83b 100644 --- a/scripts/topotune/existing_models/tune_cwn.sh +++ b/scripts/topotune/existing_models/tune_cwn.sh @@ -1,4 +1,4 @@ -python -m topobenchmarkx \ +python -m topobenchmark \ model=cell/topotune_onehasse,cell/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.GNN.num_layers=1 \ @@ -20,7 +20,7 @@ python -m topobenchmarkx \ trainer.devices=\[1\] \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=cell/topotune_onehasse,cell/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.GNN.num_layers=1 \ @@ -41,7 +41,7 @@ python -m topobenchmarkx \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=cell/topotune_onehasse,cell/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.GNN.num_layers=1 \ @@ -61,7 +61,7 @@ python -m topobenchmarkx \ trainer.devices=\[2\] \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=cell/topotune_onehasse,cell/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.GNN.num_layers=1 \ @@ -86,7 +86,7 @@ python -m topobenchmarkx \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=cell/topotune_onehasse,cell/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.GNN.num_layers=1 \ @@ -107,7 +107,7 @@ python -m topobenchmarkx \ trainer.devices=\[3\] \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=cell/topotune_onehasse,cell/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.GNN.num_layers=1 \ @@ -130,7 +130,7 @@ python -m topobenchmarkx \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=cell/topotune_onehasse,cell/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.GNN.num_layers=1 \ diff --git a/scripts/topotune/existing_models/tune_sccn.sh b/scripts/topotune/existing_models/tune_sccn.sh index b925f562..b7075b75 100644 --- a/scripts/topotune/existing_models/tune_sccn.sh +++ b/scripts/topotune/existing_models/tune_sccn.sh @@ -1,5 +1,5 @@ # SCCN -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/MUTAG \ model=simplicial/topotune_onehasse,simplicial/topotune \ model.feature_encoder.out_channels=128 \ @@ -22,7 +22,7 @@ python -m topobenchmarkx \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI1 \ model=simplicial/topotune_onehasse,simplicial/topotune \ model.feature_encoder.out_channels=64 \ @@ -45,7 +45,7 @@ python -m topobenchmarkx \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI109 \ model=simplicial/topotune_onehasse,simplicial/topotune \ model.feature_encoder.out_channels=64 \ @@ -69,7 +69,7 @@ python -m topobenchmarkx \ -python -m topobenchmarkx \ +python -m topobenchmark \ model=simplicial/topotune_onehasse,simplicial/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.routes=\[\[\[0,0\],up_laplacian\],\[\[0,1\],coboundary\],\[\[1,0\],boundary\],\[\[1,1\],down_laplacian\],\[\[1,1\],up_laplacian\],\[\[1,2\],coboundary\],\[\[2,1\],boundary\],\[\[2,2\],down_laplacian\]\] \ @@ -91,7 +91,7 @@ python -m topobenchmarkx \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=simplicial/topotune_onehasse,simplicial/topotune \ dataset=graph/ZINC \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ @@ -114,7 +114,7 @@ python -m topobenchmarkx \ trainer.devices=\[0\] \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=simplicial/topotune_onehasse,simplicial/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.routes=\[\[\[0,0\],up_laplacian\],\[\[0,1\],coboundary\],\[\[1,0\],boundary\],\[\[1,1\],down_laplacian\],\[\[1,1\],up_laplacian\],\[\[1,2\],coboundary\],\[\[2,1\],boundary\],\[\[2,2\],down_laplacian\]\] \ @@ -135,10 +135,10 @@ python -m topobenchmarkx \ trainer.devices=\[0\] \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=simplicial/topotune_onehasse,simplicial/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ - model.backbone.GNN._target_=topobenchmarkx.nn.backbones.graph.IdentityGCN \ + model.backbone.GNN._target_=topobenchmark.nn.backbones.graph.IdentityGCN \ model.backbone.routes=\[\[\[0,0\],up_laplacian\],\[\[0,1\],coboundary\],\[\[1,0\],boundary\],\[\[1,1\],down_laplacian\],\[\[1,1\],up_laplacian\],\[\[1,2\],coboundary\],\[\[2,1\],boundary\],\[\[2,2\],down_laplacian\]\] \ dataset=graph/cocitation_cora \ optimizer.parameters.lr=0.01 \ @@ -157,7 +157,7 @@ python -m topobenchmarkx \ trainer.devices=\[1\] \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ model=simplicial/topotune_onehasse,simplicial/topotune \ model.tune_gnn=GCN,GIN,GAT,GraphSAGE \ model.backbone.routes=\[\[\[0,0\],up_laplacian\],\[\[0,1\],coboundary\],\[\[1,0\],boundary\],\[\[1,1\],down_laplacian\],\[\[1,1\],up_laplacian\],\[\[1,2\],coboundary\],\[\[2,1\],boundary\],\[\[2,2\],down_laplacian\]\] \ diff --git a/scripts/topotune/search_gccn_cell.sh b/scripts/topotune/search_gccn_cell.sh index 2a006935..def16b3a 100644 --- a/scripts/topotune/search_gccn_cell.sh +++ b/scripts/topotune/search_gccn_cell.sh @@ -1,4 +1,4 @@ -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI109 \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -18,7 +18,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_cora \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -38,7 +38,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/PROTEINS \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -58,7 +58,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/MUTAG \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -78,7 +78,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/ZINC \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -99,7 +99,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_citeseer \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -119,7 +119,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI1 \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -139,7 +139,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_pubmed \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -159,7 +159,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI109 \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -179,7 +179,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_cora \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -199,7 +199,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/PROTEINS \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -219,7 +219,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/MUTAG \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -239,7 +239,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_citeseer \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -259,7 +259,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI1 \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -279,7 +279,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_pubmed \ model=cell/topotune,cell/topotune_onehasse \ model.feature_encoder.out_channels=32 \ diff --git a/scripts/topotune/search_gccn_simplicial.sh b/scripts/topotune/search_gccn_simplicial.sh index c83dc861..2ce711e1 100644 --- a/scripts/topotune/search_gccn_simplicial.sh +++ b/scripts/topotune/search_gccn_simplicial.sh @@ -1,4 +1,4 @@ -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI109 \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -18,7 +18,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/ZINC \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -39,7 +39,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_cora \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -59,7 +59,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/PROTEINS \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -79,7 +79,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/MUTAG \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -99,7 +99,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_citeseer \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -119,7 +119,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/amazon_ratings \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -139,7 +139,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI1 \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -159,7 +159,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_pubmed \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -179,7 +179,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI109 \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -199,7 +199,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_cora \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -219,7 +219,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/PROTEINS \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -239,7 +239,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/MUTAG \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -259,7 +259,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_citeseer \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -279,7 +279,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/amazon_ratings \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -299,7 +299,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/NCI1 \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ @@ -319,7 +319,7 @@ python -m topobenchmarkx \ tags="[FirstExperiments]" \ --multirun & -python -m topobenchmarkx \ +python -m topobenchmark \ dataset=graph/cocitation_pubmed \ model=simplicial/topotune,simplicial/topotune_onehasse \ model.feature_encoder.out_channels=32 \ diff --git a/test/conftest.py b/test/conftest.py index 026c110c..c84a1b72 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -3,10 +3,10 @@ import pytest import torch import torch_geometric -from topobenchmarkx.transforms.liftings.graph2simplicial import ( +from topobenchmark.transforms.liftings.graph2simplicial import ( SimplicialCliqueLifting ) -from topobenchmarkx.transforms.liftings.graph2cell import ( +from topobenchmark.transforms.liftings.graph2cell import ( CellCycleLifting ) diff --git a/test/data/dataload/test_Dataloaders.py b/test/data/dataload/test_Dataloaders.py index 36cfd279..558c7590 100644 --- a/test/data/dataload/test_Dataloaders.py +++ b/test/data/dataload/test_Dataloaders.py @@ -4,13 +4,13 @@ import rootutils import torch -from topobenchmarkx.data.preprocessor import PreProcessor -from topobenchmarkx.dataloader import TBXDataloader -from topobenchmarkx.dataloader.utils import to_data_list +from topobenchmark.data.preprocessor import PreProcessor +from topobenchmark.dataloader import TBXDataloader +from topobenchmark.dataloader.utils import to_data_list from omegaconf import OmegaConf import os -from topobenchmarkx.run import initialize_hydra +from topobenchmark.run import initialize_hydra # rootutils.setup_root("./", indicator=".project-root", pythonpath=True) diff --git a/test/data/dataload/test_dataload_dataset.py b/test/data/dataload/test_dataload_dataset.py index 463ecd8f..6a1ff336 100644 --- a/test/data/dataload/test_dataload_dataset.py +++ b/test/data/dataload/test_dataload_dataset.py @@ -1,7 +1,7 @@ import torch from torch_geometric.data import Data -from topobenchmarkx.dataloader import DataloadDataset +from topobenchmark.dataloader import DataloadDataset class TestDataloadDataset: diff --git a/test/data/preprocess/test_preprocessor.py b/test/data/preprocess/test_preprocessor.py index 2c17545b..8e25536f 100644 --- a/test/data/preprocess/test_preprocessor.py +++ b/test/data/preprocess/test_preprocessor.py @@ -6,7 +6,7 @@ import torch_geometric from omegaconf import DictConfig -from topobenchmarkx.data.preprocessor import PreProcessor +from topobenchmark.data.preprocessor import PreProcessor from ..._utils.flow_mocker import FlowMocker @@ -115,7 +115,7 @@ def test_init_with_transform(self, mocker_fixture): ) self.flow_mocker.assert_all(self.preprocessor_with_tranform) - @patch("topobenchmarkx.data.preprocessor.preprocessor.load_inductive_splits") + @patch("topobenchmark.data.preprocessor.preprocessor.load_inductive_splits") def test_load_dataset_splits_inductive(self, mock_load_inductive_splits): """Test loading dataset splits for inductive learning. @@ -131,7 +131,7 @@ def test_load_dataset_splits_inductive(self, mock_load_inductive_splits): ) @patch( - "topobenchmarkx.data.preprocessor.preprocessor.load_transductive_splits" + "topobenchmark.data.preprocessor.preprocessor.load_transductive_splits" ) def test_load_dataset_splits_transductive( self, mock_load_transductive_splits diff --git a/test/data/utils/test_data_utils.py b/test/data/utils/test_data_utils.py index 9e31ee3d..4e08ead2 100644 --- a/test/data/utils/test_data_utils.py +++ b/test/data/utils/test_data_utils.py @@ -4,7 +4,7 @@ import pytest import torch_geometric import torch -from topobenchmarkx.data.utils import * +from topobenchmark.data.utils import * import toponetx as tnx from toponetx.classes import CellComplex diff --git a/test/data/utils/test_io_utils.py b/test/data/utils/test_io_utils.py index be75ae79..883a49aa 100644 --- a/test/data/utils/test_io_utils.py +++ b/test/data/utils/test_io_utils.py @@ -1,6 +1,6 @@ import pytest -from topobenchmarkx.data.utils.io_utils import * +from topobenchmark.data.utils.io_utils import * def test_get_file_id_from_url(): diff --git a/test/evaluator/test_TBXEvaluator.py b/test/evaluator/test_TBXEvaluator.py index 93d79af5..6ed30dd4 100644 --- a/test/evaluator/test_TBXEvaluator.py +++ b/test/evaluator/test_TBXEvaluator.py @@ -1,7 +1,7 @@ """ Test the TBXEvaluator class.""" import pytest -from topobenchmarkx.evaluator import TBXEvaluator +from topobenchmark.evaluator import TBXEvaluator class TestTBXEvaluator: """ Test the TBXEvaluator class.""" diff --git a/test/loss/test_dataset_loss.py b/test/loss/test_dataset_loss.py index 2097eba6..862a37dc 100644 --- a/test/loss/test_dataset_loss.py +++ b/test/loss/test_dataset_loss.py @@ -3,7 +3,7 @@ import torch import torch_geometric -from topobenchmarkx.loss.dataset import DatasetLoss +from topobenchmark.loss.dataset import DatasetLoss class TestDatasetLoss: """ Test the TBXEvaluator class.""" diff --git a/test/nn/backbones/cell/test_cccn.py b/test/nn/backbones/cell/test_cccn.py index e7665698..791b4e0f 100644 --- a/test/nn/backbones/cell/test_cccn.py +++ b/test/nn/backbones/cell/test_cccn.py @@ -2,7 +2,7 @@ import torch from ...._utils.nn_module_auto_test import NNModuleAutoTest -from topobenchmarkx.nn.backbones.cell.cccn import CCCN +from topobenchmark.nn.backbones.cell.cccn import CCCN def test_cccn(random_graph_input): diff --git a/test/nn/backbones/combinatorial/test_gccn.py b/test/nn/backbones/combinatorial/test_gccn.py index 22ca594e..8b382e21 100644 --- a/test/nn/backbones/combinatorial/test_gccn.py +++ b/test/nn/backbones/combinatorial/test_gccn.py @@ -4,7 +4,7 @@ import torch from torch_geometric.data import Data from test._utils.nn_module_auto_test import NNModuleAutoTest -from topobenchmarkx.nn.backbones.combinatorial.gccn import TopoTune, interrank_boundary_index, get_activation +from topobenchmark.nn.backbones.combinatorial.gccn import TopoTune, interrank_boundary_index, get_activation from torch_geometric.nn import GCNConv from omegaconf import OmegaConf diff --git a/test/nn/backbones/combinatorial/test_gccn_onehasse.py b/test/nn/backbones/combinatorial/test_gccn_onehasse.py index 67b6911e..fa898927 100644 --- a/test/nn/backbones/combinatorial/test_gccn_onehasse.py +++ b/test/nn/backbones/combinatorial/test_gccn_onehasse.py @@ -4,7 +4,7 @@ import torch from torch_geometric.data import Data from test._utils.nn_module_auto_test import NNModuleAutoTest -from topobenchmarkx.nn.backbones.combinatorial.gccn_onehasse import TopoTune_OneHasse, get_activation +from topobenchmark.nn.backbones.combinatorial.gccn_onehasse import TopoTune_OneHasse, get_activation from torch_geometric.nn import GCNConv from omegaconf import OmegaConf diff --git a/test/nn/backbones/graph/test_graph_dgm.py b/test/nn/backbones/graph/test_graph_dgm.py index 5810414d..5119a57c 100644 --- a/test/nn/backbones/graph/test_graph_dgm.py +++ b/test/nn/backbones/graph/test_graph_dgm.py @@ -2,9 +2,9 @@ import torch import torch_geometric -from topobenchmarkx.nn.backbones.graph import GraphMLP -from topobenchmarkx.nn.wrappers.graph import GraphMLPWrapper -from topobenchmarkx.loss.model import GraphMLPLoss +from topobenchmark.nn.backbones.graph import GraphMLP +from topobenchmark.nn.wrappers.graph import GraphMLPWrapper +from topobenchmark.loss.model import GraphMLPLoss def testGraphMLP(random_graph_input): """ Unit test for GraphMLP. diff --git a/test/nn/backbones/graph/test_graphmlp.py b/test/nn/backbones/graph/test_graphmlp.py index 5810414d..5119a57c 100644 --- a/test/nn/backbones/graph/test_graphmlp.py +++ b/test/nn/backbones/graph/test_graphmlp.py @@ -2,9 +2,9 @@ import torch import torch_geometric -from topobenchmarkx.nn.backbones.graph import GraphMLP -from topobenchmarkx.nn.wrappers.graph import GraphMLPWrapper -from topobenchmarkx.loss.model import GraphMLPLoss +from topobenchmark.nn.backbones.graph import GraphMLP +from topobenchmark.nn.wrappers.graph import GraphMLPWrapper +from topobenchmark.loss.model import GraphMLPLoss def testGraphMLP(random_graph_input): """ Unit test for GraphMLP. diff --git a/test/nn/backbones/hypergraph/test_edgnn.py b/test/nn/backbones/hypergraph/test_edgnn.py index 7dd77587..a06590f8 100644 --- a/test/nn/backbones/hypergraph/test_edgnn.py +++ b/test/nn/backbones/hypergraph/test_edgnn.py @@ -4,7 +4,7 @@ import torch from ...._utils.nn_module_auto_test import NNModuleAutoTest -from topobenchmarkx.nn.backbones.hypergraph.edgnn import ( +from topobenchmark.nn.backbones.hypergraph.edgnn import ( EDGNN, MLP as edgnn_MLP, PlainMLP, diff --git a/test/nn/backbones/simplicial/test_sccnn.py b/test/nn/backbones/simplicial/test_sccnn.py index b68fa727..19e2b774 100644 --- a/test/nn/backbones/simplicial/test_sccnn.py +++ b/test/nn/backbones/simplicial/test_sccnn.py @@ -3,8 +3,8 @@ import torch from torch_geometric.utils import get_laplacian from ...._utils.nn_module_auto_test import NNModuleAutoTest -from topobenchmarkx.nn.backbones.simplicial import SCCNNCustom -from topobenchmarkx.transforms.liftings.graph2simplicial import ( +from topobenchmark.nn.backbones.simplicial import SCCNNCustom +from topobenchmark.transforms.liftings.graph2simplicial import ( SimplicialCliqueLifting, ) diff --git a/test/nn/encoders/test_dgm.py b/test/nn/encoders/test_dgm.py index 4e03d046..2ac0b381 100644 --- a/test/nn/encoders/test_dgm.py +++ b/test/nn/encoders/test_dgm.py @@ -5,8 +5,8 @@ import torch_geometric import numpy as np -from topobenchmarkx.nn.encoders import DGMStructureFeatureEncoder -from topobenchmarkx.nn.encoders.kdgm import DGM_d +from topobenchmark.nn.encoders import DGMStructureFeatureEncoder +from topobenchmark.nn.encoders.kdgm import DGM_d class TestDGMStructureFeatureEncoder: """Test suite for the DGMStructureFeatureEncoder class. diff --git a/test/nn/wrappers/cell/test_cell_wrappers.py b/test/nn/wrappers/cell/test_cell_wrappers.py index 74019925..45b69888 100644 --- a/test/nn/wrappers/cell/test_cell_wrappers.py +++ b/test/nn/wrappers/cell/test_cell_wrappers.py @@ -6,7 +6,7 @@ from ...._utils.flow_mocker import FlowMocker from unittest.mock import MagicMock -from topobenchmarkx.nn.wrappers import ( +from topobenchmark.nn.wrappers import ( AbstractWrapper, CCCNWrapper, CANWrapper, @@ -16,7 +16,7 @@ from topomodelx.nn.cell.can import CAN from topomodelx.nn.cell.ccxn import CCXN from topomodelx.nn.cell.cwn import CWN -from topobenchmarkx.nn.backbones.cell.cccn import CCCN +from topobenchmark.nn.backbones.cell.cccn import CCCN from unittest.mock import MagicMock diff --git a/test/nn/wrappers/simplicial/test_SCCNNWrapper.py b/test/nn/wrappers/simplicial/test_SCCNNWrapper.py index 35fd5d84..f3614a7b 100644 --- a/test/nn/wrappers/simplicial/test_SCCNNWrapper.py +++ b/test/nn/wrappers/simplicial/test_SCCNNWrapper.py @@ -4,11 +4,11 @@ from torch_geometric.utils import get_laplacian from ...._utils.nn_module_auto_test import NNModuleAutoTest from ...._utils.flow_mocker import FlowMocker -from topobenchmarkx.nn.backbones.simplicial import SCCNNCustom +from topobenchmark.nn.backbones.simplicial import SCCNNCustom from topomodelx.nn.simplicial.san import SAN from topomodelx.nn.simplicial.scn2 import SCN2 from topomodelx.nn.simplicial.sccn import SCCN -from topobenchmarkx.nn.wrappers import ( +from topobenchmark.nn.wrappers import ( SCCNWrapper, SCCNNWrapper, SANWrapper, diff --git a/test/optimizer/test_optimizer.py b/test/optimizer/test_optimizer.py index acc45711..c34eff91 100644 --- a/test/optimizer/test_optimizer.py +++ b/test/optimizer/test_optimizer.py @@ -3,7 +3,7 @@ import pytest import torch -from topobenchmarkx.optimizer import TBXOptimizer +from topobenchmark.optimizer import TBXOptimizer class TestTBXOptimizer: diff --git a/test/transforms/data_manipulations/test_ConnectivityTransforms.py b/test/transforms/data_manipulations/test_ConnectivityTransforms.py index 127e0a43..4eb1ba1f 100644 --- a/test/transforms/data_manipulations/test_ConnectivityTransforms.py +++ b/test/transforms/data_manipulations/test_ConnectivityTransforms.py @@ -2,7 +2,7 @@ import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.data_manipulations import ( +from topobenchmark.transforms.data_manipulations import ( InfereKNNConnectivity, InfereRadiusConnectivity, ) diff --git a/test/transforms/data_manipulations/test_DataFieldTransforms.py b/test/transforms/data_manipulations/test_DataFieldTransforms.py index 9c177512..c9af0ca0 100644 --- a/test/transforms/data_manipulations/test_DataFieldTransforms.py +++ b/test/transforms/data_manipulations/test_DataFieldTransforms.py @@ -2,7 +2,7 @@ import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.data_manipulations import KeepSelectedDataFields +from topobenchmark.transforms.data_manipulations import KeepSelectedDataFields class TestDataFieldTransforms: diff --git a/test/transforms/data_manipulations/test_EqualGausFeatures.py b/test/transforms/data_manipulations/test_EqualGausFeatures.py index dbff7459..15c681fb 100644 --- a/test/transforms/data_manipulations/test_EqualGausFeatures.py +++ b/test/transforms/data_manipulations/test_EqualGausFeatures.py @@ -3,7 +3,7 @@ import pytest import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.data_manipulations import EqualGausFeatures +from topobenchmark.transforms.data_manipulations import EqualGausFeatures class TestEqualGausFeatures: diff --git a/test/transforms/data_manipulations/test_FeatureTransforms.py b/test/transforms/data_manipulations/test_FeatureTransforms.py index 7c80397c..872a164e 100644 --- a/test/transforms/data_manipulations/test_FeatureTransforms.py +++ b/test/transforms/data_manipulations/test_FeatureTransforms.py @@ -2,7 +2,7 @@ import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.data_manipulations import ( +from topobenchmark.transforms.data_manipulations import ( NodeFeaturesToFloat, OneHotDegreeFeatures, NodeDegrees, diff --git a/test/transforms/data_manipulations/test_GroupHomophily.py b/test/transforms/data_manipulations/test_GroupHomophily.py index b39d123a..2a83da69 100644 --- a/test/transforms/data_manipulations/test_GroupHomophily.py +++ b/test/transforms/data_manipulations/test_GroupHomophily.py @@ -3,7 +3,7 @@ import pytest import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.data_manipulations import GroupCombinatorialHomophily +from topobenchmark.transforms.data_manipulations import GroupCombinatorialHomophily class TestGroupCombinatorialHomophily: diff --git a/test/transforms/data_manipulations/test_IdentityTransform.py b/test/transforms/data_manipulations/test_IdentityTransform.py index 50c841b8..a362d427 100644 --- a/test/transforms/data_manipulations/test_IdentityTransform.py +++ b/test/transforms/data_manipulations/test_IdentityTransform.py @@ -3,7 +3,7 @@ import pytest import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.data_manipulations import IdentityTransform +from topobenchmark.transforms.data_manipulations import IdentityTransform class TestIdentityTransform: diff --git a/test/transforms/data_manipulations/test_MessagePassingHomophily.py b/test/transforms/data_manipulations/test_MessagePassingHomophily.py index 9411e389..8d58ee4f 100644 --- a/test/transforms/data_manipulations/test_MessagePassingHomophily.py +++ b/test/transforms/data_manipulations/test_MessagePassingHomophily.py @@ -4,7 +4,7 @@ import pytest import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.data_manipulations import MessagePassingHomophily +from topobenchmark.transforms.data_manipulations import MessagePassingHomophily class TestMessagePassingHomophily: diff --git a/test/transforms/data_manipulations/test_OnlyConnectedComponent.py b/test/transforms/data_manipulations/test_OnlyConnectedComponent.py index 64b58ef6..bd3b2efe 100644 --- a/test/transforms/data_manipulations/test_OnlyConnectedComponent.py +++ b/test/transforms/data_manipulations/test_OnlyConnectedComponent.py @@ -3,7 +3,7 @@ import pytest import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.data_manipulations import KeepOnlyConnectedComponent +from topobenchmark.transforms.data_manipulations import KeepOnlyConnectedComponent class TestKeepOnlyConnectedComponent: diff --git a/test/transforms/data_manipulations/test_SimplicialCurvature.py b/test/transforms/data_manipulations/test_SimplicialCurvature.py index 4d556c96..e4cb517b 100644 --- a/test/transforms/data_manipulations/test_SimplicialCurvature.py +++ b/test/transforms/data_manipulations/test_SimplicialCurvature.py @@ -2,8 +2,8 @@ import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.data_manipulations import CalculateSimplicialCurvature -from topobenchmarkx.transforms.liftings.graph2simplicial import SimplicialCliqueLifting +from topobenchmark.transforms.data_manipulations import CalculateSimplicialCurvature +from topobenchmark.transforms.liftings.graph2simplicial import SimplicialCliqueLifting class TestSimplicialCurvature: diff --git a/test/transforms/feature_liftings/test_Concatenation.py b/test/transforms/feature_liftings/test_Concatenation.py index ffd92819..a8f83d78 100644 --- a/test/transforms/feature_liftings/test_Concatenation.py +++ b/test/transforms/feature_liftings/test_Concatenation.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.transforms.liftings.graph2simplicial import ( +from topobenchmark.transforms.liftings.graph2simplicial import ( SimplicialCliqueLifting, ) diff --git a/test/transforms/feature_liftings/test_ProjectionSum.py b/test/transforms/feature_liftings/test_ProjectionSum.py index e598e4a6..935a5148 100644 --- a/test/transforms/feature_liftings/test_ProjectionSum.py +++ b/test/transforms/feature_liftings/test_ProjectionSum.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.transforms.liftings.graph2simplicial import ( +from topobenchmark.transforms.liftings.graph2simplicial import ( SimplicialCliqueLifting, ) diff --git a/test/transforms/feature_liftings/test_SetLifting.py b/test/transforms/feature_liftings/test_SetLifting.py index 9f73260a..9b71816f 100644 --- a/test/transforms/feature_liftings/test_SetLifting.py +++ b/test/transforms/feature_liftings/test_SetLifting.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.transforms.liftings.graph2simplicial import ( +from topobenchmark.transforms.liftings.graph2simplicial import ( SimplicialCliqueLifting, ) diff --git a/test/transforms/liftings/cell/test_CellCyclesLifting.py b/test/transforms/liftings/cell/test_CellCyclesLifting.py index 36e2e5d4..54fd276f 100644 --- a/test/transforms/liftings/cell/test_CellCyclesLifting.py +++ b/test/transforms/liftings/cell/test_CellCyclesLifting.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.transforms.liftings.graph2cell import CellCycleLifting +from topobenchmark.transforms.liftings.graph2cell import CellCycleLifting class TestCellCycleLifting: diff --git a/test/transforms/liftings/hypergraph/test_HypergraphKHopLifting.py b/test/transforms/liftings/hypergraph/test_HypergraphKHopLifting.py index 0358b6eb..13285fc1 100644 --- a/test/transforms/liftings/hypergraph/test_HypergraphKHopLifting.py +++ b/test/transforms/liftings/hypergraph/test_HypergraphKHopLifting.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.transforms.liftings.graph2hypergraph import ( +from topobenchmark.transforms.liftings.graph2hypergraph import ( HypergraphKHopLifting, ) diff --git a/test/transforms/liftings/hypergraph/test_HypergraphKNearestNeighborsLifting.py b/test/transforms/liftings/hypergraph/test_HypergraphKNearestNeighborsLifting.py index f70b087d..7e9d1216 100644 --- a/test/transforms/liftings/hypergraph/test_HypergraphKNearestNeighborsLifting.py +++ b/test/transforms/liftings/hypergraph/test_HypergraphKNearestNeighborsLifting.py @@ -3,7 +3,7 @@ import pytest import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.liftings.graph2hypergraph import ( +from topobenchmark.transforms.liftings.graph2hypergraph import ( HypergraphKNNLifting, ) diff --git a/test/transforms/liftings/simplicial/test_SimplicialCliqueLifting.py b/test/transforms/liftings/simplicial/test_SimplicialCliqueLifting.py index 41b8ac45..9cd80058 100644 --- a/test/transforms/liftings/simplicial/test_SimplicialCliqueLifting.py +++ b/test/transforms/liftings/simplicial/test_SimplicialCliqueLifting.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.transforms.liftings.graph2simplicial import ( +from topobenchmark.transforms.liftings.graph2simplicial import ( SimplicialCliqueLifting, ) diff --git a/test/transforms/liftings/simplicial/test_SimplicialNeighborhoodLifting.py b/test/transforms/liftings/simplicial/test_SimplicialNeighborhoodLifting.py index 2cf01ac4..5a03f67e 100644 --- a/test/transforms/liftings/simplicial/test_SimplicialNeighborhoodLifting.py +++ b/test/transforms/liftings/simplicial/test_SimplicialNeighborhoodLifting.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.transforms.liftings.graph2simplicial import ( +from topobenchmark.transforms.liftings.graph2simplicial import ( SimplicialKHopLifting, ) diff --git a/test/transforms/liftings/test_AbstractLifting.py b/test/transforms/liftings/test_AbstractLifting.py index 0d2d6ad1..49167cb1 100644 --- a/test/transforms/liftings/test_AbstractLifting.py +++ b/test/transforms/liftings/test_AbstractLifting.py @@ -3,7 +3,7 @@ import pytest import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.liftings import AbstractLifting +from topobenchmark.transforms.liftings import AbstractLifting class TestAbstractLifting: """Test the AbstractLifting class.""" diff --git a/test/transforms/liftings/test_GraphLifting.py b/test/transforms/liftings/test_GraphLifting.py index fa02d332..c7acf454 100644 --- a/test/transforms/liftings/test_GraphLifting.py +++ b/test/transforms/liftings/test_GraphLifting.py @@ -2,7 +2,7 @@ import pytest import torch from torch_geometric.data import Data -from topobenchmarkx.transforms.liftings import GraphLifting +from topobenchmark.transforms.liftings import GraphLifting class ConcreteGraphLifting(GraphLifting): diff --git a/test/utils/test_config_resolvers.py b/test/utils/test_config_resolvers.py index f9b3c007..9137de1a 100644 --- a/test/utils/test_config_resolvers.py +++ b/test/utils/test_config_resolvers.py @@ -3,7 +3,7 @@ import pytest from omegaconf import OmegaConf import hydra -from topobenchmarkx.utils.config_resolvers import ( +from topobenchmark.utils.config_resolvers import ( infer_in_channels, infere_num_cell_dimensions, get_default_metrics, diff --git a/test/utils/test_instantiators.py b/test/utils/test_instantiators.py index 3eb8c8ed..a4a8c700 100644 --- a/test/utils/test_instantiators.py +++ b/test/utils/test_instantiators.py @@ -2,7 +2,7 @@ import pytest from omegaconf import OmegaConf, DictConfig -from topobenchmarkx.utils.instantiators import ( +from topobenchmark.utils.instantiators import ( instantiate_callbacks, instantiate_loggers ) diff --git a/test/utils/test_logging_utils.py b/test/utils/test_logging_utils.py index 142dcfce..f21631d3 100644 --- a/test/utils/test_logging_utils.py +++ b/test/utils/test_logging_utils.py @@ -1,10 +1,10 @@ """Unit tests for logging utils.""" import pytest from unittest.mock import MagicMock, patch -from topobenchmarkx.utils import log_hyperparameters +from topobenchmark.utils import log_hyperparameters -@patch("topobenchmarkx.utils.logging_utils.pylogger.RankedLogger.warning") -@patch("topobenchmarkx.utils.logging_utils.OmegaConf.to_container") +@patch("topobenchmark.utils.logging_utils.pylogger.RankedLogger.warning") +@patch("topobenchmark.utils.logging_utils.OmegaConf.to_container") def test_log_hyperparameters(mock_to_container, mock_warning): """Test the log_hyperparameters function. diff --git a/test/utils/test_rich_utils.py b/test/utils/test_rich_utils.py index a9f221d3..20060409 100644 --- a/test/utils/test_rich_utils.py +++ b/test/utils/test_rich_utils.py @@ -1,15 +1,15 @@ """Unit tests for rich_utils.""" import pytest from unittest.mock import MagicMock, patch -from topobenchmarkx.utils.rich_utils import enforce_tags, print_config_tree +from topobenchmark.utils.rich_utils import enforce_tags, print_config_tree from omegaconf import DictConfig -@patch("topobenchmarkx.utils.rich_utils.pylogger.RankedLogger.info") -@patch("topobenchmarkx.utils.rich_utils.rich.tree.Tree") -@patch("topobenchmarkx.utils.rich_utils.rich.syntax.Syntax") -@patch("topobenchmarkx.utils.rich_utils.rich.print") -@patch("topobenchmarkx.utils.rich_utils.Path.write_text") -@patch("topobenchmarkx.utils.rich_utils.HydraConfig.get") +@patch("topobenchmark.utils.rich_utils.pylogger.RankedLogger.info") +@patch("topobenchmark.utils.rich_utils.rich.tree.Tree") +@patch("topobenchmark.utils.rich_utils.rich.syntax.Syntax") +@patch("topobenchmark.utils.rich_utils.rich.print") +@patch("topobenchmark.utils.rich_utils.Path.write_text") +@patch("topobenchmark.utils.rich_utils.HydraConfig.get") def test_print_config_tree(mock_hydra_config_get, mock_write_text, mock_rich_print, mock_syntax, mock_tree, mock_info): '''Test the print_config_tree function. @@ -56,11 +56,11 @@ def test_print_config_tree(mock_hydra_config_get, mock_write_text, mock_rich_pri print_config_tree(mock_cfg, save_to_file=True) -@patch("topobenchmarkx.utils.rich_utils.HydraConfig") -@patch("topobenchmarkx.utils.rich_utils.Prompt.ask") -@patch("topobenchmarkx.utils.rich_utils.pylogger.RankedLogger.warning") -@patch("topobenchmarkx.utils.rich_utils.pylogger.RankedLogger.info") -@patch("topobenchmarkx.utils.rich_utils.rich.print") +@patch("topobenchmark.utils.rich_utils.HydraConfig") +@patch("topobenchmark.utils.rich_utils.Prompt.ask") +@patch("topobenchmark.utils.rich_utils.pylogger.RankedLogger.warning") +@patch("topobenchmark.utils.rich_utils.pylogger.RankedLogger.info") +@patch("topobenchmark.utils.rich_utils.rich.print") def test_enforce_tags_no_tags(mock_rich_print, mock_info, mock_warning, mock_prompt_ask, mock_hydra_config): """Test the enforce_tags function when no tags are provided in the config. diff --git a/test/utils/test_utils.py b/test/utils/test_utils.py index cafb9bee..02985868 100644 --- a/test/utils/test_utils.py +++ b/test/utils/test_utils.py @@ -5,7 +5,7 @@ from omegaconf import OmegaConf, DictConfig import torch from unittest.mock import MagicMock -from topobenchmarkx.utils.utils import extras, get_metric_value, task_wrapper +from topobenchmark.utils.utils import extras, get_metric_value, task_wrapper # initialize(config_path="../../configs", job_name="job") diff --git a/topobenchmark/data/datasets/citation_hypergaph_dataset.py b/topobenchmark/data/datasets/citation_hypergaph_dataset.py index 3854a924..8710a967 100644 --- a/topobenchmark/data/datasets/citation_hypergaph_dataset.py +++ b/topobenchmark/data/datasets/citation_hypergaph_dataset.py @@ -9,7 +9,7 @@ from torch_geometric.data import Data, InMemoryDataset, extract_zip from torch_geometric.io import fs -from topobenchmarkx.data.utils import ( +from topobenchmark.data.utils import ( download_file_from_drive, load_hypergraph_pickle_dataset, ) diff --git a/topobenchmark/data/datasets/us_county_demos_dataset.py b/topobenchmark/data/datasets/us_county_demos_dataset.py index 48f6dee8..ea383819 100644 --- a/topobenchmark/data/datasets/us_county_demos_dataset.py +++ b/topobenchmark/data/datasets/us_county_demos_dataset.py @@ -9,7 +9,7 @@ from torch_geometric.data import Data, InMemoryDataset, extract_zip from torch_geometric.io import fs -from topobenchmarkx.data.utils import ( +from topobenchmark.data.utils import ( download_file_from_drive, read_us_county_demos, ) diff --git a/topobenchmark/data/loaders/graph/hetero_datasets.py b/topobenchmark/data/loaders/graph/hetero_datasets.py index 0f0809cd..d4426483 100644 --- a/topobenchmark/data/loaders/graph/hetero_datasets.py +++ b/topobenchmark/data/loaders/graph/hetero_datasets.py @@ -4,7 +4,7 @@ from torch_geometric.data import Dataset from torch_geometric.datasets import HeterophilousGraphDataset -from topobenchmarkx.data.loaders.base import AbstractLoader +from topobenchmark.data.loaders.base import AbstractLoader class HeterophilousGraphDatasetLoader(AbstractLoader): diff --git a/topobenchmark/data/loaders/graph/manual_graph_dataset_loader.py b/topobenchmark/data/loaders/graph/manual_graph_dataset_loader.py index 07ef182d..202307d3 100644 --- a/topobenchmark/data/loaders/graph/manual_graph_dataset_loader.py +++ b/topobenchmark/data/loaders/graph/manual_graph_dataset_loader.py @@ -5,9 +5,9 @@ from omegaconf import DictConfig -from topobenchmarkx.data.loaders.base import AbstractLoader -from topobenchmarkx.data.utils import load_manual_graph -from topobenchmarkx.dataloader import DataloadDataset +from topobenchmark.data.loaders.base import AbstractLoader +from topobenchmark.data.utils import load_manual_graph +from topobenchmark.dataloader import DataloadDataset class ManualGraphDatasetLoader(AbstractLoader): diff --git a/topobenchmark/data/loaders/graph/modecule_datasets.py b/topobenchmark/data/loaders/graph/modecule_datasets.py index d089dd2f..c2b150f6 100644 --- a/topobenchmark/data/loaders/graph/modecule_datasets.py +++ b/topobenchmark/data/loaders/graph/modecule_datasets.py @@ -8,7 +8,7 @@ from torch_geometric.data import Dataset from torch_geometric.datasets import AQSOL, ZINC -from topobenchmarkx.data.loaders.base import AbstractLoader +from topobenchmark.data.loaders.base import AbstractLoader class MoleculeDatasetLoader(AbstractLoader): diff --git a/topobenchmark/data/loaders/graph/planetoid_datasets.py b/topobenchmark/data/loaders/graph/planetoid_datasets.py index d51a5842..77884eea 100644 --- a/topobenchmark/data/loaders/graph/planetoid_datasets.py +++ b/topobenchmark/data/loaders/graph/planetoid_datasets.py @@ -4,7 +4,7 @@ from torch_geometric.data import Dataset from torch_geometric.datasets import Planetoid -from topobenchmarkx.data.loaders.base import AbstractLoader +from topobenchmark.data.loaders.base import AbstractLoader class PlanetoidDatasetLoader(AbstractLoader): diff --git a/topobenchmark/data/loaders/graph/tu_datasets.py b/topobenchmark/data/loaders/graph/tu_datasets.py index 60cb4f28..137aeca5 100644 --- a/topobenchmark/data/loaders/graph/tu_datasets.py +++ b/topobenchmark/data/loaders/graph/tu_datasets.py @@ -4,7 +4,7 @@ from torch_geometric.data import Dataset from torch_geometric.datasets import TUDataset -from topobenchmarkx.data.loaders.base import AbstractLoader +from topobenchmark.data.loaders.base import AbstractLoader class TUDatasetLoader(AbstractLoader): diff --git a/topobenchmark/data/loaders/graph/us_county_demos_dataset_loader.py b/topobenchmark/data/loaders/graph/us_county_demos_dataset_loader.py index 7fd928a5..f017926f 100644 --- a/topobenchmark/data/loaders/graph/us_county_demos_dataset_loader.py +++ b/topobenchmark/data/loaders/graph/us_county_demos_dataset_loader.py @@ -4,8 +4,8 @@ from omegaconf import DictConfig -from topobenchmarkx.data.datasets import USCountyDemosDataset -from topobenchmarkx.data.loaders.base import AbstractLoader +from topobenchmark.data.datasets import USCountyDemosDataset +from topobenchmark.data.loaders.base import AbstractLoader class USCountyDemosDatasetLoader(AbstractLoader): diff --git a/topobenchmark/data/loaders/hypergraph/citation_hypergraph_dataset_loader.py b/topobenchmark/data/loaders/hypergraph/citation_hypergraph_dataset_loader.py index 6a9ed63d..9eeced13 100644 --- a/topobenchmark/data/loaders/hypergraph/citation_hypergraph_dataset_loader.py +++ b/topobenchmark/data/loaders/hypergraph/citation_hypergraph_dataset_loader.py @@ -2,8 +2,8 @@ from omegaconf import DictConfig -from topobenchmarkx.data.datasets import CitationHypergraphDataset -from topobenchmarkx.data.loaders.base import AbstractLoader +from topobenchmark.data.datasets import CitationHypergraphDataset +from topobenchmark.data.loaders.base import AbstractLoader class CitationHypergraphDatasetLoader(AbstractLoader): diff --git a/topobenchmark/data/preprocessor/preprocessor.py b/topobenchmark/data/preprocessor/preprocessor.py index 27a92176..751c6274 100644 --- a/topobenchmark/data/preprocessor/preprocessor.py +++ b/topobenchmark/data/preprocessor/preprocessor.py @@ -8,14 +8,14 @@ import torch_geometric from torch_geometric.io import fs -from topobenchmarkx.data.utils import ( +from topobenchmark.data.utils import ( ensure_serializable, load_inductive_splits, load_transductive_splits, make_hash, ) -from topobenchmarkx.dataloader import DataloadDataset -from topobenchmarkx.transforms.data_transform import DataTransform +from topobenchmark.dataloader import DataloadDataset +from topobenchmark.transforms.data_transform import DataTransform class PreProcessor(torch_geometric.data.InMemoryDataset): diff --git a/topobenchmark/data/utils/split_utils.py b/topobenchmark/data/utils/split_utils.py index 68d33c39..dccfa1ec 100644 --- a/topobenchmark/data/utils/split_utils.py +++ b/topobenchmark/data/utils/split_utils.py @@ -6,7 +6,7 @@ import torch from sklearn.model_selection import StratifiedKFold -from topobenchmarkx.dataloader import DataloadDataset +from topobenchmark.dataloader import DataloadDataset # Generate splits in different fasions diff --git a/topobenchmark/dataloader/__init__.py b/topobenchmark/dataloader/__init__.py index 560316f5..9a75d453 100644 --- a/topobenchmark/dataloader/__init__.py +++ b/topobenchmark/dataloader/__init__.py @@ -1,4 +1,4 @@ -"""This module implements the dataloader for the topobenchmarkx package.""" +"""This module implements the dataloader for the topobenchmark package.""" from .dataload_dataset import DataloadDataset from .dataloader import TBXDataloader diff --git a/topobenchmark/dataloader/dataloader.py b/topobenchmark/dataloader/dataloader.py index e033cbde..8ded8caa 100755 --- a/topobenchmark/dataloader/dataloader.py +++ b/topobenchmark/dataloader/dataloader.py @@ -5,8 +5,8 @@ from lightning import LightningDataModule from torch.utils.data import DataLoader -from topobenchmarkx.dataloader.dataload_dataset import DataloadDataset -from topobenchmarkx.dataloader.utils import collate_fn +from topobenchmark.dataloader.dataload_dataset import DataloadDataset +from topobenchmark.dataloader.utils import collate_fn class TBXDataloader(LightningDataModule): diff --git a/topobenchmark/evaluator/evaluator.py b/topobenchmark/evaluator/evaluator.py index 7ac0240d..60123917 100755 --- a/topobenchmark/evaluator/evaluator.py +++ b/topobenchmark/evaluator/evaluator.py @@ -2,7 +2,7 @@ from torchmetrics import MetricCollection -from topobenchmarkx.evaluator import METRICS, AbstractEvaluator +from topobenchmark.evaluator import METRICS, AbstractEvaluator class TBXEvaluator(AbstractEvaluator): diff --git a/topobenchmark/loss/__init__.py b/topobenchmark/loss/__init__.py index 0f5345a7..c4193f3a 100755 --- a/topobenchmark/loss/__init__.py +++ b/topobenchmark/loss/__init__.py @@ -1,4 +1,4 @@ -"""This module implements the loss functions for the topobenchmarkx package.""" +"""This module implements the loss functions for the topobenchmark package.""" import importlib import inspect diff --git a/topobenchmark/loss/dataset/DatasetLoss.py b/topobenchmark/loss/dataset/DatasetLoss.py index 0d05a9bc..01f3b413 100644 --- a/topobenchmark/loss/dataset/DatasetLoss.py +++ b/topobenchmark/loss/dataset/DatasetLoss.py @@ -1,9 +1,9 @@ -"""Loss module for the topobenchmarkx package.""" +"""Loss module for the topobenchmark package.""" import torch import torch_geometric -from topobenchmarkx.loss.base import AbstractLoss +from topobenchmark.loss.base import AbstractLoss class DatasetLoss(AbstractLoss): diff --git a/topobenchmark/loss/dataset/__init__.py b/topobenchmark/loss/dataset/__init__.py index ad1d3e46..59291852 100644 --- a/topobenchmark/loss/dataset/__init__.py +++ b/topobenchmark/loss/dataset/__init__.py @@ -1,4 +1,4 @@ -"""This module implements the loss functions for the topobenchmarkx package.""" +"""This module implements the loss functions for the topobenchmark package.""" import importlib import inspect diff --git a/topobenchmark/loss/loss.py b/topobenchmark/loss/loss.py index 95c68b23..74697b47 100644 --- a/topobenchmark/loss/loss.py +++ b/topobenchmark/loss/loss.py @@ -1,10 +1,10 @@ -"""Loss module for the topobenchmarkx package.""" +"""Loss module for the topobenchmark package.""" import torch import torch_geometric -from topobenchmarkx.loss.base import AbstractLoss -from topobenchmarkx.loss.dataset import DatasetLoss +from topobenchmark.loss.base import AbstractLoss +from topobenchmark.loss.dataset import DatasetLoss class TBXLoss(AbstractLoss): diff --git a/topobenchmark/loss/model/DGMLoss.py b/topobenchmark/loss/model/DGMLoss.py index 55ee5f83..708151dd 100644 --- a/topobenchmark/loss/model/DGMLoss.py +++ b/topobenchmark/loss/model/DGMLoss.py @@ -3,7 +3,7 @@ import torch import torch_geometric -from topobenchmarkx.loss.base import AbstractLoss +from topobenchmark.loss.base import AbstractLoss class DGMLoss(AbstractLoss): diff --git a/topobenchmark/loss/model/GraphMLPLoss.py b/topobenchmark/loss/model/GraphMLPLoss.py index 3ee35575..50232812 100644 --- a/topobenchmark/loss/model/GraphMLPLoss.py +++ b/topobenchmark/loss/model/GraphMLPLoss.py @@ -3,7 +3,7 @@ import torch import torch_geometric -from topobenchmarkx.loss.base import AbstractLoss +from topobenchmark.loss.base import AbstractLoss class GraphMLPLoss(AbstractLoss): diff --git a/topobenchmark/loss/model/__init__.py b/topobenchmark/loss/model/__init__.py index aba9e3a8..530fb068 100644 --- a/topobenchmark/loss/model/__init__.py +++ b/topobenchmark/loss/model/__init__.py @@ -1,4 +1,4 @@ -"""This module implements the loss functions for the topobenchmarkx package.""" +"""This module implements the loss functions for the topobenchmark package.""" import importlib import inspect diff --git a/topobenchmark/nn/backbones/combinatorial/gccn.py b/topobenchmark/nn/backbones/combinatorial/gccn.py index 3c67f737..fda093e3 100644 --- a/topobenchmark/nn/backbones/combinatorial/gccn.py +++ b/topobenchmark/nn/backbones/combinatorial/gccn.py @@ -6,7 +6,7 @@ import torch.nn.functional as F from torch_geometric.data import Data -from topobenchmarkx.data.utils import get_routes_from_neighborhoods +from topobenchmark.data.utils import get_routes_from_neighborhoods class TopoTune(torch.nn.Module): diff --git a/topobenchmark/nn/backbones/combinatorial/gccn_onehasse.py b/topobenchmark/nn/backbones/combinatorial/gccn_onehasse.py index acadabf9..e8299d63 100644 --- a/topobenchmark/nn/backbones/combinatorial/gccn_onehasse.py +++ b/topobenchmark/nn/backbones/combinatorial/gccn_onehasse.py @@ -6,7 +6,7 @@ import torch.nn.functional as F from torch_geometric.data import Data -from topobenchmarkx.data.utils import get_routes_from_neighborhoods +from topobenchmark.data.utils import get_routes_from_neighborhoods class TopoTune_OneHasse(torch.nn.Module): diff --git a/topobenchmark/nn/encoders/all_cell_encoder.py b/topobenchmark/nn/encoders/all_cell_encoder.py index ae3a7039..df4b8d21 100644 --- a/topobenchmark/nn/encoders/all_cell_encoder.py +++ b/topobenchmark/nn/encoders/all_cell_encoder.py @@ -4,7 +4,7 @@ import torch_geometric from torch_geometric.nn.norm import GraphNorm -from topobenchmarkx.nn.encoders.base import AbstractFeatureEncoder +from topobenchmark.nn.encoders.base import AbstractFeatureEncoder class AllCellFeatureEncoder(AbstractFeatureEncoder): diff --git a/topobenchmark/nn/encoders/dgm_encoder.py b/topobenchmark/nn/encoders/dgm_encoder.py index 85e7101c..c0f81c9f 100644 --- a/topobenchmark/nn/encoders/dgm_encoder.py +++ b/topobenchmark/nn/encoders/dgm_encoder.py @@ -2,8 +2,8 @@ import torch_geometric -from topobenchmarkx.nn.encoders.all_cell_encoder import BaseEncoder -from topobenchmarkx.nn.encoders.base import AbstractFeatureEncoder +from topobenchmark.nn.encoders.all_cell_encoder import BaseEncoder +from topobenchmark.nn.encoders.base import AbstractFeatureEncoder from .kdgm import DGM_d diff --git a/topobenchmark/nn/readouts/identical.py b/topobenchmark/nn/readouts/identical.py index ffbaa065..2401e627 100644 --- a/topobenchmark/nn/readouts/identical.py +++ b/topobenchmark/nn/readouts/identical.py @@ -2,7 +2,7 @@ import torch_geometric -from topobenchmarkx.nn.readouts.base import AbstractZeroCellReadOut +from topobenchmark.nn.readouts.base import AbstractZeroCellReadOut class NoReadOut(AbstractZeroCellReadOut): diff --git a/topobenchmark/nn/readouts/propagate_signal_down.py b/topobenchmark/nn/readouts/propagate_signal_down.py index 1d1bf658..1eafe325 100644 --- a/topobenchmark/nn/readouts/propagate_signal_down.py +++ b/topobenchmark/nn/readouts/propagate_signal_down.py @@ -4,7 +4,7 @@ import torch import torch_geometric -from topobenchmarkx.nn.readouts.base import AbstractZeroCellReadOut +from topobenchmark.nn.readouts.base import AbstractZeroCellReadOut class PropagateSignalDown(AbstractZeroCellReadOut): diff --git a/topobenchmark/nn/wrappers/__init__.py b/topobenchmark/nn/wrappers/__init__.py index b7550ba0..566375a1 100755 --- a/topobenchmark/nn/wrappers/__init__.py +++ b/topobenchmark/nn/wrappers/__init__.py @@ -1,16 +1,16 @@ """This module implements the wrappers for the neural networks.""" -from topobenchmarkx.nn.wrappers.base import AbstractWrapper -from topobenchmarkx.nn.wrappers.cell import ( +from topobenchmark.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.cell import ( CANWrapper, CCCNWrapper, CCXNWrapper, CWNWrapper, ) -from topobenchmarkx.nn.wrappers.combinatorial import TuneWrapper -from topobenchmarkx.nn.wrappers.graph import GNNWrapper, GraphMLPWrapper -from topobenchmarkx.nn.wrappers.hypergraph import HypergraphWrapper -from topobenchmarkx.nn.wrappers.simplicial import ( +from topobenchmark.nn.wrappers.combinatorial import TuneWrapper +from topobenchmark.nn.wrappers.graph import GNNWrapper, GraphMLPWrapper +from topobenchmark.nn.wrappers.hypergraph import HypergraphWrapper +from topobenchmark.nn.wrappers.simplicial import ( SANWrapper, SCCNNWrapper, SCCNWrapper, @@ -19,8 +19,8 @@ # ... import other readout classes here # For example: -# from topobenchmarkx.nn.wrappers.other_wrapper_1 import OtherWrapper1 -# from topobenchmarkx.nn.wrappers.other_wrapper_2 import OtherWrapper2 +# from topobenchmark.nn.wrappers.other_wrapper_1 import OtherWrapper1 +# from topobenchmark.nn.wrappers.other_wrapper_2 import OtherWrapper2 # Export all wrappers diff --git a/topobenchmark/nn/wrappers/cell/can_wrapper.py b/topobenchmark/nn/wrappers/cell/can_wrapper.py index 872b0d49..5d1945fd 100644 --- a/topobenchmark/nn/wrappers/cell/can_wrapper.py +++ b/topobenchmark/nn/wrappers/cell/can_wrapper.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class CANWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/cell/cccn_wrapper.py b/topobenchmark/nn/wrappers/cell/cccn_wrapper.py index 89d84008..327609aa 100644 --- a/topobenchmark/nn/wrappers/cell/cccn_wrapper.py +++ b/topobenchmark/nn/wrappers/cell/cccn_wrapper.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class CCCNWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/cell/ccxn_wrapper.py b/topobenchmark/nn/wrappers/cell/ccxn_wrapper.py index 1ffedba5..f640a562 100644 --- a/topobenchmark/nn/wrappers/cell/ccxn_wrapper.py +++ b/topobenchmark/nn/wrappers/cell/ccxn_wrapper.py @@ -1,6 +1,6 @@ """Wrapper for the CCXN model.""" -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class CCXNWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/cell/cwn_wrapper.py b/topobenchmark/nn/wrappers/cell/cwn_wrapper.py index 3d9f1f7b..d845195c 100644 --- a/topobenchmark/nn/wrappers/cell/cwn_wrapper.py +++ b/topobenchmark/nn/wrappers/cell/cwn_wrapper.py @@ -1,6 +1,6 @@ """Wrapper for the CWN model.""" -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class CWNWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/combinatorial/tune_wrapper.py b/topobenchmark/nn/wrappers/combinatorial/tune_wrapper.py index 79025210..184baf26 100644 --- a/topobenchmark/nn/wrappers/combinatorial/tune_wrapper.py +++ b/topobenchmark/nn/wrappers/combinatorial/tune_wrapper.py @@ -1,6 +1,6 @@ """Wrapper for the TopoTune model.""" -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class TuneWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/graph/gnn_wrapper.py b/topobenchmark/nn/wrappers/graph/gnn_wrapper.py index 5d624d30..fd479281 100644 --- a/topobenchmark/nn/wrappers/graph/gnn_wrapper.py +++ b/topobenchmark/nn/wrappers/graph/gnn_wrapper.py @@ -1,6 +1,6 @@ """Wrapper for the GNN models.""" -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class GNNWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/graph/graph_mlp_wrapper.py b/topobenchmark/nn/wrappers/graph/graph_mlp_wrapper.py index 8896da75..a70fe9e7 100644 --- a/topobenchmark/nn/wrappers/graph/graph_mlp_wrapper.py +++ b/topobenchmark/nn/wrappers/graph/graph_mlp_wrapper.py @@ -1,6 +1,6 @@ """Wrapper for the GNN models.""" -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class GraphMLPWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/hypergraph/hypergraph_wrapper.py b/topobenchmark/nn/wrappers/hypergraph/hypergraph_wrapper.py index 4c891152..dc2a7e00 100644 --- a/topobenchmark/nn/wrappers/hypergraph/hypergraph_wrapper.py +++ b/topobenchmark/nn/wrappers/hypergraph/hypergraph_wrapper.py @@ -1,6 +1,6 @@ """Wrapper for the hypergraph models.""" -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class HypergraphWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/simplicial/san_wrapper.py b/topobenchmark/nn/wrappers/simplicial/san_wrapper.py index e70a77f0..acfd8279 100644 --- a/topobenchmark/nn/wrappers/simplicial/san_wrapper.py +++ b/topobenchmark/nn/wrappers/simplicial/san_wrapper.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class SANWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/simplicial/sccn_wrapper.py b/topobenchmark/nn/wrappers/simplicial/sccn_wrapper.py index b0ac75c2..41dd23e1 100644 --- a/topobenchmark/nn/wrappers/simplicial/sccn_wrapper.py +++ b/topobenchmark/nn/wrappers/simplicial/sccn_wrapper.py @@ -1,6 +1,6 @@ """Wrapper for the SCCN model.""" -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class SCCNWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/simplicial/sccnn_wrapper.py b/topobenchmark/nn/wrappers/simplicial/sccnn_wrapper.py index 1890dc5f..a1d48665 100644 --- a/topobenchmark/nn/wrappers/simplicial/sccnn_wrapper.py +++ b/topobenchmark/nn/wrappers/simplicial/sccnn_wrapper.py @@ -1,6 +1,6 @@ """Wrapper for the SCCNN model.""" -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class SCCNNWrapper(AbstractWrapper): diff --git a/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py b/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py index a2e8773d..0948e22d 100644 --- a/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py +++ b/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py @@ -2,7 +2,7 @@ import torch -from topobenchmarkx.nn.wrappers.base import AbstractWrapper +from topobenchmark.nn.wrappers.base import AbstractWrapper class SCNWrapper(AbstractWrapper): diff --git a/topobenchmark/run.py b/topobenchmark/run.py index 6e01c29c..3598dce1 100755 --- a/topobenchmark/run.py +++ b/topobenchmark/run.py @@ -12,9 +12,9 @@ from lightning.pytorch.loggers import Logger from omegaconf import DictConfig, OmegaConf -from topobenchmarkx.data.preprocessor import PreProcessor -from topobenchmarkx.dataloader import TBXDataloader -from topobenchmarkx.utils import ( +from topobenchmark.data.preprocessor import PreProcessor +from topobenchmark.dataloader import TBXDataloader +from topobenchmark.utils import ( RankedLogger, extras, get_metric_value, @@ -23,7 +23,7 @@ log_hyperparameters, task_wrapper, ) -from topobenchmarkx.utils.config_resolvers import ( +from topobenchmark.utils.config_resolvers import ( get_default_metrics, get_default_transform, get_monitor_metric, diff --git a/topobenchmark/transforms/__init__.py b/topobenchmark/transforms/__init__.py index 46c9690f..3f568814 100755 --- a/topobenchmark/transforms/__init__.py +++ b/topobenchmark/transforms/__init__.py @@ -1,14 +1,14 @@ -"""This module contains the transforms for the topobenchmarkx package.""" +"""This module contains the transforms for the topobenchmark package.""" from typing import Any -from topobenchmarkx.transforms.data_manipulations import DATA_MANIPULATIONS -from topobenchmarkx.transforms.feature_liftings import FEATURE_LIFTINGS -from topobenchmarkx.transforms.liftings.graph2cell import GRAPH2CELL_LIFTINGS -from topobenchmarkx.transforms.liftings.graph2hypergraph import ( +from topobenchmark.transforms.data_manipulations import DATA_MANIPULATIONS +from topobenchmark.transforms.feature_liftings import FEATURE_LIFTINGS +from topobenchmark.transforms.liftings.graph2cell import GRAPH2CELL_LIFTINGS +from topobenchmark.transforms.liftings.graph2hypergraph import ( GRAPH2HYPERGRAPH_LIFTINGS, ) -from topobenchmarkx.transforms.liftings.graph2simplicial import ( +from topobenchmark.transforms.liftings.graph2simplicial import ( GRAPH2SIMPLICIAL_LIFTINGS, ) diff --git a/topobenchmark/transforms/data_transform.py b/topobenchmark/transforms/data_transform.py index 0471557e..da9e883b 100755 --- a/topobenchmark/transforms/data_transform.py +++ b/topobenchmark/transforms/data_transform.py @@ -2,7 +2,7 @@ import torch_geometric -from topobenchmarkx.transforms import TRANSFORMS +from topobenchmark.transforms import TRANSFORMS class DataTransform(torch_geometric.transforms.BaseTransform): diff --git a/topobenchmark/transforms/liftings/base.py b/topobenchmark/transforms/liftings/base.py index c08a54e5..99bd720e 100644 --- a/topobenchmark/transforms/liftings/base.py +++ b/topobenchmark/transforms/liftings/base.py @@ -4,7 +4,7 @@ import torch_geometric -from topobenchmarkx.transforms.feature_liftings import FEATURE_LIFTINGS +from topobenchmark.transforms.feature_liftings import FEATURE_LIFTINGS class AbstractLifting(torch_geometric.transforms.BaseTransform): diff --git a/topobenchmark/transforms/liftings/graph2cell/base.py b/topobenchmark/transforms/liftings/graph2cell/base.py index 80b120c5..aeff3646 100755 --- a/topobenchmark/transforms/liftings/graph2cell/base.py +++ b/topobenchmark/transforms/liftings/graph2cell/base.py @@ -4,8 +4,8 @@ import torch from toponetx.classes import CellComplex -from topobenchmarkx.data.utils.utils import get_complex_connectivity -from topobenchmarkx.transforms.liftings import GraphLifting +from topobenchmark.data.utils.utils import get_complex_connectivity +from topobenchmark.transforms.liftings import GraphLifting class Graph2CellLifting(GraphLifting): diff --git a/topobenchmark/transforms/liftings/graph2cell/cycle.py b/topobenchmark/transforms/liftings/graph2cell/cycle.py index 4071bd75..31e94d8b 100755 --- a/topobenchmark/transforms/liftings/graph2cell/cycle.py +++ b/topobenchmark/transforms/liftings/graph2cell/cycle.py @@ -4,7 +4,7 @@ import torch_geometric from toponetx.classes import CellComplex -from topobenchmarkx.transforms.liftings.graph2cell.base import ( +from topobenchmark.transforms.liftings.graph2cell.base import ( Graph2CellLifting, ) diff --git a/topobenchmark/transforms/liftings/graph2hypergraph/base.py b/topobenchmark/transforms/liftings/graph2hypergraph/base.py index a7a51520..e060e30e 100755 --- a/topobenchmark/transforms/liftings/graph2hypergraph/base.py +++ b/topobenchmark/transforms/liftings/graph2hypergraph/base.py @@ -1,6 +1,6 @@ """Abstract class for lifting graphs to hypergraphs.""" -from topobenchmarkx.transforms.liftings import GraphLifting +from topobenchmark.transforms.liftings import GraphLifting class Graph2HypergraphLifting(GraphLifting): diff --git a/topobenchmark/transforms/liftings/graph2hypergraph/khop.py b/topobenchmark/transforms/liftings/graph2hypergraph/khop.py index b3d3552e..298fa135 100755 --- a/topobenchmark/transforms/liftings/graph2hypergraph/khop.py +++ b/topobenchmark/transforms/liftings/graph2hypergraph/khop.py @@ -3,7 +3,7 @@ import torch import torch_geometric -from topobenchmarkx.transforms.liftings.graph2hypergraph import ( +from topobenchmark.transforms.liftings.graph2hypergraph import ( Graph2HypergraphLifting, ) diff --git a/topobenchmark/transforms/liftings/graph2hypergraph/knn.py b/topobenchmark/transforms/liftings/graph2hypergraph/knn.py index 91114576..03d0a13a 100755 --- a/topobenchmark/transforms/liftings/graph2hypergraph/knn.py +++ b/topobenchmark/transforms/liftings/graph2hypergraph/knn.py @@ -3,7 +3,7 @@ import torch import torch_geometric -from topobenchmarkx.transforms.liftings.graph2hypergraph import ( +from topobenchmark.transforms.liftings.graph2hypergraph import ( Graph2HypergraphLifting, ) diff --git a/topobenchmark/transforms/liftings/graph2simplicial/base.py b/topobenchmark/transforms/liftings/graph2simplicial/base.py index 7d5be886..e52449dc 100755 --- a/topobenchmark/transforms/liftings/graph2simplicial/base.py +++ b/topobenchmark/transforms/liftings/graph2simplicial/base.py @@ -4,8 +4,8 @@ import torch from toponetx.classes import SimplicialComplex -from topobenchmarkx.data.utils.utils import get_complex_connectivity -from topobenchmarkx.transforms.liftings import GraphLifting +from topobenchmark.data.utils.utils import get_complex_connectivity +from topobenchmark.transforms.liftings import GraphLifting class Graph2SimplicialLifting(GraphLifting): diff --git a/topobenchmark/transforms/liftings/graph2simplicial/clique.py b/topobenchmark/transforms/liftings/graph2simplicial/clique.py index af7d5cdf..502144fa 100755 --- a/topobenchmark/transforms/liftings/graph2simplicial/clique.py +++ b/topobenchmark/transforms/liftings/graph2simplicial/clique.py @@ -7,7 +7,7 @@ import torch_geometric from toponetx.classes import SimplicialComplex -from topobenchmarkx.transforms.liftings.graph2simplicial import ( +from topobenchmark.transforms.liftings.graph2simplicial import ( Graph2SimplicialLifting, ) diff --git a/topobenchmark/transforms/liftings/graph2simplicial/khop.py b/topobenchmark/transforms/liftings/graph2simplicial/khop.py index 80b09f95..50239f18 100755 --- a/topobenchmark/transforms/liftings/graph2simplicial/khop.py +++ b/topobenchmark/transforms/liftings/graph2simplicial/khop.py @@ -7,7 +7,7 @@ import torch_geometric from toponetx.classes import SimplicialComplex -from topobenchmarkx.transforms.liftings.graph2simplicial.base import ( +from topobenchmark.transforms.liftings.graph2simplicial.base import ( Graph2SimplicialLifting, ) diff --git a/topobenchmark/transforms/liftings/liftings.py b/topobenchmark/transforms/liftings/liftings.py index 807b5765..9453eaa3 100644 --- a/topobenchmark/transforms/liftings/liftings.py +++ b/topobenchmark/transforms/liftings/liftings.py @@ -4,7 +4,7 @@ import torch_geometric from torch_geometric.utils.undirected import is_undirected, to_undirected -from topobenchmarkx.transforms.liftings import AbstractLifting +from topobenchmark.transforms.liftings import AbstractLifting class GraphLifting(AbstractLifting): diff --git a/topobenchmark/utils/__init__.py b/topobenchmark/utils/__init__.py index 126097da..406ae3be 100755 --- a/topobenchmark/utils/__init__.py +++ b/topobenchmark/utils/__init__.py @@ -1,17 +1,17 @@ # numpydoc ignore=GL08 -from topobenchmarkx.utils.instantiators import ( +from topobenchmark.utils.instantiators import ( instantiate_callbacks, instantiate_loggers, ) -from topobenchmarkx.utils.logging_utils import ( +from topobenchmark.utils.logging_utils import ( log_hyperparameters, ) -from topobenchmarkx.utils.pylogger import RankedLogger -from topobenchmarkx.utils.rich_utils import ( +from topobenchmark.utils.pylogger import RankedLogger +from topobenchmark.utils.rich_utils import ( enforce_tags, print_config_tree, ) -from topobenchmarkx.utils.utils import ( +from topobenchmark.utils.utils import ( extras, get_metric_value, task_wrapper, diff --git a/topobenchmark/utils/config_resolvers.py b/topobenchmark/utils/config_resolvers.py index 9fc46d22..cb44617c 100644 --- a/topobenchmark/utils/config_resolvers.py +++ b/topobenchmark/utils/config_resolvers.py @@ -1,4 +1,4 @@ -"""Configuration resolvers for the topobenchmarkx package.""" +"""Configuration resolvers for the topobenchmark package.""" import os diff --git a/topobenchmark/utils/instantiators.py b/topobenchmark/utils/instantiators.py index 83963183..35bbed24 100755 --- a/topobenchmark/utils/instantiators.py +++ b/topobenchmark/utils/instantiators.py @@ -5,7 +5,7 @@ from lightning.pytorch.loggers import Logger from omegaconf import DictConfig -from topobenchmarkx.utils import pylogger +from topobenchmark.utils import pylogger log = pylogger.RankedLogger(__name__, rank_zero_only=True) diff --git a/topobenchmark/utils/logging_utils.py b/topobenchmark/utils/logging_utils.py index aea6a78c..37735c06 100755 --- a/topobenchmark/utils/logging_utils.py +++ b/topobenchmark/utils/logging_utils.py @@ -5,7 +5,7 @@ from lightning_utilities.core.rank_zero import rank_zero_only from omegaconf import OmegaConf -from topobenchmarkx.utils import pylogger +from topobenchmark.utils import pylogger log = pylogger.RankedLogger(__name__, rank_zero_only=True) diff --git a/topobenchmark/utils/rich_utils.py b/topobenchmark/utils/rich_utils.py index 5ef7afc4..8074ae03 100755 --- a/topobenchmark/utils/rich_utils.py +++ b/topobenchmark/utils/rich_utils.py @@ -11,7 +11,7 @@ from omegaconf import DictConfig, OmegaConf, open_dict from rich.prompt import Prompt -from topobenchmarkx.utils import pylogger +from topobenchmark.utils import pylogger log = pylogger.RankedLogger(__name__, rank_zero_only=True) diff --git a/topobenchmark/utils/utils.py b/topobenchmark/utils/utils.py index 1fa3e3ac..978df2c9 100755 --- a/topobenchmark/utils/utils.py +++ b/topobenchmark/utils/utils.py @@ -7,7 +7,7 @@ from omegaconf import DictConfig -from topobenchmarkx.utils import pylogger, rich_utils +from topobenchmark.utils import pylogger, rich_utils log = pylogger.RankedLogger(__name__, rank_zero_only=True) diff --git a/tutorials/homophily_tutorial.ipynb b/tutorials/homophily_tutorial.ipynb index b86d5e02..a7e3367b 100644 --- a/tutorials/homophily_tutorial.ipynb +++ b/tutorials/homophily_tutorial.ipynb @@ -34,10 +34,10 @@ "\n", "import torch\n", "import hydra\n", - "from topobenchmarkx.data.loaders.graph import *\n", - "from topobenchmarkx.data.loaders.hypergraph import *\n", - "from topobenchmarkx.data.preprocessor import PreProcessor\n", - "from topobenchmarkx.utils.config_resolvers import (\n", + "from topobenchmark.data.loaders.graph import *\n", + "from topobenchmark.data.loaders.hypergraph import *\n", + "from topobenchmark.data.preprocessor import PreProcessor\n", + "from topobenchmark.utils.config_resolvers import (\n", " get_default_transform,\n", " get_monitor_metric,\n", " get_monitor_mode,\n", @@ -99,7 +99,7 @@ "\n", "transform_config = {\"group_homophily\" :\n", " {\n", - " '_target_': 'topobenchmarkx.transforms.data_transform.DataTransform',\n", + " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", " 'transform_name': 'GroupCombinatorialHomophily',\n", " 'transform_type': 'data manipulation',\n", " 'top_k': 5,\n", @@ -418,7 +418,7 @@ "# Create transform config\n", "transform_config = {\"mp_homophily\" :\n", " {\n", - " '_target_': 'topobenchmarkx.transforms.data_transform.DataTransform',\n", + " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", " 'transform_name': 'MessagePassingHomophily',\n", " 'transform_type': 'data manipulation',\n", " 'num_steps': 3,\n", @@ -660,7 +660,7 @@ "# Add one more transform into Omegaconf dict\n", "\n", "new_transform = {\n", - " '_target_': 'topobenchmarkx.transforms.data_transform.DataTransform',\n", + " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", " 'transform_name': 'MessagePassingHomophily',\n", " 'transform_type': 'data manipulation',\n", " 'num_steps': 3,\n", @@ -790,7 +790,7 @@ "# Add one more transform into Omegaconf dict\n", "\n", "new_transform = {\n", - " '_target_': 'topobenchmarkx.transforms.data_transform.DataTransform',\n", + " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", " 'transform_name': 'MessagePassingHomophily',\n", " 'transform_type': 'data manipulation',\n", " 'num_steps': 3,\n", diff --git a/tutorials/tutorial_add_custom_dataset.ipynb b/tutorials/tutorial_add_custom_dataset.ipynb index 975b1f40..d1e8f818 100644 --- a/tutorials/tutorial_add_custom_dataset.ipynb +++ b/tutorials/tutorial_add_custom_dataset.ipynb @@ -70,7 +70,7 @@ "- `download()`: Handles dataset acquisition\n", "- `process()`: Manages data preprocessing\n", "\n", - "> 💡 **Reference Implementation**: For a complete example, check `topobenchmarkx/data/datasets/language_dataset.py`" + "> 💡 **Reference Implementation**: For a complete example, check `topobenchmark/data/datasets/language_dataset.py`" ] }, { @@ -191,7 +191,7 @@ "source": [ "Here's how to structure your files, the files highlighted with ** are going to be updated: \n", "```yaml\n", - "topobenchmarkx/\n", + "topobenchmark/\n", "├── data/\n", "│ ├── datasets/\n", "│ │ ├── **init.py**\n", @@ -210,16 +210,16 @@ "\n", "To make your dataset available to library:\n", "\n", - "The file ```.py``` has been created during the previous steps (`us_county_demos_dataset.py` in our case) and should be placed in the `topobenchmarkx/data/datasets/` directory. \n", + "The file ```.py``` has been created during the previous steps (`us_county_demos_dataset.py` in our case) and should be placed in the `topobenchmark/data/datasets/` directory. \n", "\n", "\n", - "The registry `topobenchmarkx/data/datasets/__init__.py` discovers the files in `topobenchmarkx/data/datasets` and updates `__all__` variable of `topobenchmarkx/data/datasets/__init__.py` automatically. Hence there is no need to update the `__init__.py` file manually to allow your dataset to be loaded by the library. Simply creare a file `.py` and place it in the `topobenchmarkx/data/datasets/` directory.\n", + "The registry `topobenchmark/data/datasets/__init__.py` discovers the files in `topobenchmark/data/datasets` and updates `__all__` variable of `topobenchmark/data/datasets/__init__.py` automatically. Hence there is no need to update the `__init__.py` file manually to allow your dataset to be loaded by the library. Simply creare a file `.py` and place it in the `topobenchmark/data/datasets/` directory.\n", "\n", "------------------------------------------------------------------------------------------------\n", "\n", - "Next it is required to update the data loader system. Modify the loader file (`topobenchmarkx/data/loaders/loaders.py`:) to include your custom dataset:\n", + "Next it is required to update the data loader system. Modify the loader file (`topobenchmark/data/loaders/loaders.py`:) to include your custom dataset:\n", "\n", - "For the the example dataset we add the following into the file ```topobenchmarkx/data/loaders/graph/us_county_demos_dataset_loader.py``` which consist of the following:\n", + "For the the example dataset we add the following into the file ```topobenchmark/data/loaders/graph/us_county_demos_dataset_loader.py``` which consist of the following:\n", "\n", "```python\n", "class USCountyDemosDatasetLoader(AbstractLoader):\n", @@ -311,11 +311,11 @@ "\n", "### While creating a configuration file, you will need to specify: \n", "\n", - "1) Loader class (`topobenchmarkx.data.loaders.USCountyDemosDatasetLoader`) for automatic instantialization inside the provided pipeline and the parameters for the loader.\n", + "1) Loader class (`topobenchmark.data.loaders.USCountyDemosDatasetLoader`) for automatic instantialization inside the provided pipeline and the parameters for the loader.\n", "```yaml\n", "# Dataset loader config\n", "loader:\n", - " _target_: topobenchmarkx.data.loaders.USCountyDemosDatasetLoader\n", + " _target_: topobenchmark.data.loaders.USCountyDemosDatasetLoader\n", " parameters: \n", " data_domain: graph # Primary data domain. Options: ['graph', 'hypergrpah', 'cell, 'simplicial']\n", " data_type: cornel # Data type. String emphasizing from where dataset come from. \n", @@ -376,14 +376,14 @@ "\n", "## Preparing to Load the Custom Dataset: Understanding Configuration Imports\n", "\n", - "Before loading our dataset, it's crucial to understand the configuration imports, particularly those from the `topobenchmarkx.utils.config_resolvers` module. These utility functions play a key role in dynamically configuring your machine learning pipeline.\n", + "Before loading our dataset, it's crucial to understand the configuration imports, particularly those from the `topobenchmark.utils.config_resolvers` module. These utility functions play a key role in dynamically configuring your machine learning pipeline.\n", "\n", "### Key Imports for Dynamic Configuration\n", "\n", "Let's import the essential configuration resolver functions:\n", "\n", "```python\n", - "from topobenchmarkx.utils.config_resolvers import (\n", + "from topobenchmark.utils.config_resolvers import (\n", " get_default_transform,\n", " get_monitor_metric,\n", " get_monitor_mode,\n", @@ -446,7 +446,7 @@ "\n", "\n", "\n", - "from topobenchmarkx.utils.config_resolvers import (\n", + "from topobenchmark.utils.config_resolvers import (\n", " get_default_transform,\n", " get_monitor_metric,\n", " get_monitor_mode,\n", @@ -548,7 +548,7 @@ "output_type": "stream", "text": [ "Transform name: dict_keys(['graph2hypergraph_lifting'])\n", - "Transform parameters: {'_target_': 'topobenchmarkx.transforms.data_transform.DataTransform', 'transform_type': 'lifting', 'transform_name': 'HypergraphKHopLifting', 'k_value': 1, 'feature_lifting': 'ProjectionSum', 'neighborhoods': '${oc.select:model.backbone.neighborhoods,null}'}\n" + "Transform parameters: {'_target_': 'topobenchmark.transforms.data_transform.DataTransform', 'transform_type': 'lifting', 'transform_name': 'HypergraphKHopLifting', 'k_value': 1, 'feature_lifting': 'ProjectionSum', 'neighborhoods': '${oc.select:model.backbone.neighborhoods,null}'}\n" ] } ], @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "Transform name: dict_keys(['equal_gaus_features', 'graph2hypergraph_lifting'])\n", - "Transform parameters: {'_target_': 'topobenchmarkx.transforms.data_transform.DataTransform', 'transform_name': 'EqualGausFeatures', 'transform_type': 'data manipulation', 'mean': 0, 'std': 0.1, 'num_features': '${dataset.parameters.num_features}'}\n" + "Transform parameters: {'_target_': 'topobenchmark.transforms.data_transform.DataTransform', 'transform_name': 'EqualGausFeatures', 'transform_type': 'data manipulation', 'mean': 0, 'std': 0.1, 'num_features': '${dataset.parameters.num_features}'}\n" ] } ], @@ -675,7 +675,7 @@ } ], "source": [ - "from topobenchmarkx.data.preprocessor import PreProcessor\n", + "from topobenchmark.data.preprocessor import PreProcessor\n", "preprocessed_dataset = PreProcessor(dataset, dataset_dir, cfg['transforms'])" ] }, @@ -773,7 +773,7 @@ "\n", "\n", "\n", - "For language dataset, we have generated the `equal_gaus_features` transfroms that is a data_manipulation transform hence we place it into `topobenchmarkx/transforms/data_manipulation/` folder. \n", + "For language dataset, we have generated the `equal_gaus_features` transfroms that is a data_manipulation transform hence we place it into `topobenchmark/transforms/data_manipulation/` folder. \n", "Below you can see th `EqualGausFeatures` class: \n", "\n", "\n", @@ -843,7 +843,7 @@ "Now as we have registered the transform we can finally create the configuration file and use it in the framework: \n", "\n", "``` yaml\n", - "_target_: topobenchmarkx.transforms.data_transform.DataTransform\n", + "_target_: topobenchmark.transforms.data_transform.DataTransform\n", "transform_name: \"EqualGausFeatures\"\n", "transform_type: \"data manipulation\"\n", "\n", @@ -855,7 +855,7 @@ "\n", "**Notes:**\n", "\n", - "- You might notice an interesting key `_target_` in the configuration file. In general for any new transform you the `_target_` is always `topobenchmarkx.transforms.data_transform.DataTransform`. [For more information please refer to hydra documentation \"Instantiating objects with Hydra\" section.](https://hydra.cc/docs/advanced/instantiate_objects/overview/). " + "- You might notice an interesting key `_target_` in the configuration file. In general for any new transform you the `_target_` is always `topobenchmark.transforms.data_transform.DataTransform`. [For more information please refer to hydra documentation \"Instantiating objects with Hydra\" section.](https://hydra.cc/docs/advanced/instantiate_objects/overview/). " ] } ], diff --git a/tutorials/tutorial_dataset.ipynb b/tutorials/tutorial_dataset.ipynb index e58c6585..6815db7a 100644 --- a/tutorials/tutorial_dataset.ipynb +++ b/tutorials/tutorial_dataset.ipynb @@ -53,15 +53,15 @@ "from topomodelx.nn.simplicial.scn2 import SCN2\n", "from torch_geometric.datasets import TUDataset\n", "\n", - "from topobenchmarkx.data.preprocessor import PreProcessor\n", - "from topobenchmarkx.dataloader.dataloader import TBXDataloader\n", - "from topobenchmarkx.evaluator.evaluator import TBXEvaluator\n", - "from topobenchmarkx.loss.loss import TBXLoss\n", - "from topobenchmarkx.model.model import TBXModel\n", - "from topobenchmarkx.nn.encoders import AllCellFeatureEncoder\n", - "from topobenchmarkx.nn.readouts import PropagateSignalDown\n", - "from topobenchmarkx.nn.wrappers.simplicial import SCNWrapper\n", - "from topobenchmarkx.optimizer import TBXOptimizer" + "from topobenchmark.data.preprocessor import PreProcessor\n", + "from topobenchmark.dataloader.dataloader import TBXDataloader\n", + "from topobenchmark.evaluator.evaluator import TBXEvaluator\n", + "from topobenchmark.loss.loss import TBXLoss\n", + "from topobenchmark.model.model import TBXModel\n", + "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", + "from topobenchmark.nn.readouts import PropagateSignalDown\n", + "from topobenchmark.nn.wrappers.simplicial import SCNWrapper\n", + "from topobenchmark.optimizer import TBXOptimizer" ] }, { @@ -286,7 +286,7 @@ " warnings.warn(*args, **kwargs) # noqa: B028\n", "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassRecall was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/projects/TopoBenchmark/topobenchmarkx/nn/wrappers/simplicial/scn_wrapper.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)\n", + "/home/lev/projects/TopoBenchmark/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)\n", " normalized_matrix = diag_matrix @ (matrix @ diag_matrix)\n", "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/loops/fit_loop.py:298: The number of training batches (10) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", diff --git a/tutorials/tutorial_lifting.ipynb b/tutorials/tutorial_lifting.ipynb index 9e3fa0ad..21a6a993 100644 --- a/tutorials/tutorial_lifting.ipynb +++ b/tutorials/tutorial_lifting.ipynb @@ -62,17 +62,17 @@ "from topomodelx.nn.simplicial.scn2 import SCN2\n", "from toponetx.classes import SimplicialComplex\n", "\n", - "from topobenchmarkx.data.loaders.graph import *\n", - "from topobenchmarkx.data.preprocessor import PreProcessor\n", - "from topobenchmarkx.dataloader import TBXDataloader\n", - "from topobenchmarkx.evaluator import TBXEvaluator\n", - "from topobenchmarkx.loss import TBXLoss\n", - "from topobenchmarkx.model import TBXModel\n", - "from topobenchmarkx.nn.encoders import AllCellFeatureEncoder\n", - "from topobenchmarkx.nn.readouts import PropagateSignalDown\n", - "from topobenchmarkx.nn.wrappers.simplicial import SCNWrapper\n", - "from topobenchmarkx.optimizer import TBXOptimizer\n", - "from topobenchmarkx.transforms.liftings.graph2simplicial import (\n", + "from topobenchmark.data.loaders.graph import *\n", + "from topobenchmark.data.preprocessor import PreProcessor\n", + "from topobenchmark.dataloader import TBXDataloader\n", + "from topobenchmark.evaluator import TBXEvaluator\n", + "from topobenchmark.loss import TBXLoss\n", + "from topobenchmark.model import TBXModel\n", + "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", + "from topobenchmark.nn.readouts import PropagateSignalDown\n", + "from topobenchmark.nn.wrappers.simplicial import SCNWrapper\n", + "from topobenchmark.optimizer import TBXOptimizer\n", + "from topobenchmark.transforms.liftings.graph2simplicial import (\n", " Graph2SimplicialLifting,\n", ")" ] @@ -251,7 +251,7 @@ "metadata": {}, "outputs": [], "source": [ - "from topobenchmarkx.transforms import TRANSFORMS\n", + "from topobenchmark.transforms import TRANSFORMS\n", "\n", "TRANSFORMS[\"SimplicialCliquesLEQLifting\"] = SimplicialCliquesLEQLifting" ] @@ -376,7 +376,7 @@ " warnings.warn(*args, **kwargs) # noqa: B028\n", "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassRecall was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/projects/TopoBenchmark/topobenchmarkx/nn/wrappers/simplicial/scn_wrapper.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)\n", + "/home/lev/projects/TopoBenchmark/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)\n", " normalized_matrix = diag_matrix @ (matrix @ diag_matrix)\n", "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/loops/fit_loop.py:298: The number of training batches (6) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", diff --git a/tutorials/tutorial_model.ipynb b/tutorials/tutorial_model.ipynb index a7289f6b..2c2aa86d 100644 --- a/tutorials/tutorial_model.ipynb +++ b/tutorials/tutorial_model.ipynb @@ -55,15 +55,15 @@ "import torch\n", "from omegaconf import OmegaConf\n", "\n", - "from topobenchmarkx.data.loaders.graph import *\n", - "from topobenchmarkx.data.preprocessor import PreProcessor\n", - "from topobenchmarkx.dataloader import TBXDataloader\n", - "from topobenchmarkx.evaluator import TBXEvaluator\n", - "from topobenchmarkx.loss import TBXLoss\n", - "from topobenchmarkx.model import TBXModel\n", - "from topobenchmarkx.nn.encoders import AllCellFeatureEncoder\n", - "from topobenchmarkx.nn.readouts import PropagateSignalDown\n", - "from topobenchmarkx.optimizer import TBXOptimizer" + "from topobenchmark.data.loaders.graph import *\n", + "from topobenchmark.data.preprocessor import PreProcessor\n", + "from topobenchmark.dataloader import TBXDataloader\n", + "from topobenchmark.evaluator import TBXEvaluator\n", + "from topobenchmark.loss import TBXLoss\n", + "from topobenchmark.model import TBXModel\n", + "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", + "from topobenchmark.nn.readouts import PropagateSignalDown\n", + "from topobenchmark.optimizer import TBXOptimizer" ] }, { From accb062fc78956484aaed19a01bdd31998470240 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 10:10:02 -0800 Subject: [PATCH 03/15] Original pre-commit --- .pre-commit-config.yaml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 6075b0ad..c0d1c920 100755 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -22,7 +22,7 @@ repos: hooks: - id: ruff-format - # - repo: https://github.com/numpy/numpydoc - # rev: v1.6.0 - # hooks: - # - id: numpydoc-validation + - repo: https://github.com/numpy/numpydoc + rev: v1.6.0 + hooks: + - id: numpydoc-validation From 19de7f0d12763407c636e81e10dd9c92594b24d6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 10:13:37 -0800 Subject: [PATCH 04/15] Rename TBX prefixes to TB --- configs/evaluator/classification.yaml | 2 +- configs/evaluator/default.yaml | 2 +- configs/evaluator/regression.yaml | 2 +- configs/loss/default.yaml | 2 +- configs/model/cell/can.yaml | 2 +- configs/model/cell/cccn.yaml | 2 +- configs/model/cell/ccxn.yaml | 2 +- configs/model/cell/cwn.yaml | 2 +- configs/model/cell/topotune.yaml | 2 +- configs/model/cell/topotune_onehasse.yaml | 2 +- configs/model/graph/gat.yaml | 2 +- configs/model/graph/gcn.yaml | 2 +- configs/model/graph/gcn_dgm.yaml | 2 +- configs/model/graph/gin.yaml | 2 +- configs/model/graph/graph_mlp.yaml | 2 +- configs/model/hypergraph/alldeepset.yaml | 2 +- .../model/hypergraph/allsettransformer.yaml | 2 +- configs/model/hypergraph/edgnn.yaml | 2 +- configs/model/hypergraph/unignn.yaml | 2 +- configs/model/hypergraph/unignn2.yaml | 2 +- configs/model/simplicial/san.yaml | 2 +- configs/model/simplicial/sccn.yaml | 2 +- configs/model/simplicial/sccnn.yaml | 2 +- configs/model/simplicial/sccnn_custom.yaml | 2 +- configs/model/simplicial/scn.yaml | 2 +- configs/model/simplicial/topotune.yaml | 2 +- .../model/simplicial/topotune_onehasse.yaml | 2 +- configs/optimizer/default.yaml | 2 +- test/data/dataload/test_Dataloaders.py | 6 ++--- test/evaluator/test_TBEvaluator.py | 15 ++++++++++++ test/evaluator/test_TBXEvaluator.py | 15 ------------ test/loss/test_dataset_loss.py | 4 ++-- test/optimizer/test_optimizer.py | 10 ++++---- topobenchmark/dataloader/__init__.py | 4 ++-- topobenchmark/dataloader/dataload_dataset.py | 2 +- topobenchmark/dataloader/dataloader.py | 4 ++-- topobenchmark/evaluator/__init__.py | 4 ++-- topobenchmark/evaluator/evaluator.py | 2 +- topobenchmark/loss/loss.py | 2 +- topobenchmark/model/__init__.py | 6 ++--- topobenchmark/model/model.py | 4 ++-- topobenchmark/optimizer/__init__.py | 4 ++-- topobenchmark/optimizer/optimizer.py | 4 ++-- topobenchmark/run.py | 4 ++-- tutorials/homophily_tutorial.ipynb | 2 +- tutorials/tutorial_add_custom_dataset.ipynb | 4 ++-- tutorials/tutorial_dataset.ipynb | 22 ++++++++--------- tutorials/tutorial_lifting.ipynb | 22 ++++++++--------- tutorials/tutorial_model.ipynb | 24 +++++++++---------- 49 files changed, 110 insertions(+), 110 deletions(-) create mode 100644 test/evaluator/test_TBEvaluator.py delete mode 100644 test/evaluator/test_TBXEvaluator.py diff --git a/configs/evaluator/classification.yaml b/configs/evaluator/classification.yaml index 79ef9ca7..de20a209 100755 --- a/configs/evaluator/classification.yaml +++ b/configs/evaluator/classification.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.evaluator.evaluator.TBXEvaluator +_target_: topobenchmark.evaluator.evaluator.TBEvaluator task: ${dataset.parameters.task} task_level: ${dataset.parameters.task_level} num_classes: ${dataset.parameters.num_classes} diff --git a/configs/evaluator/default.yaml b/configs/evaluator/default.yaml index 027b53d9..67dcd386 100755 --- a/configs/evaluator/default.yaml +++ b/configs/evaluator/default.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.evaluator.evaluator.TBXEvaluator +_target_: topobenchmark.evaluator.evaluator.TBEvaluator task: ${dataset.parameters.task} task_level: ${dataset.parameters.task_level} num_classes: ${dataset.parameters.num_classes} diff --git a/configs/evaluator/regression.yaml b/configs/evaluator/regression.yaml index 0a24ebff..4c77fd07 100755 --- a/configs/evaluator/regression.yaml +++ b/configs/evaluator/regression.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.evaluator.evaluator.TBXEvaluator +_target_: topobenchmark.evaluator.evaluator.TBEvaluator task: ${dataset.parameters.task} task_level: ${dataset.parameters.task_level} num_classes: ${dataset.parameters.num_classes} diff --git a/configs/loss/default.yaml b/configs/loss/default.yaml index a4560efe..c97f5c8b 100644 --- a/configs/loss/default.yaml +++ b/configs/loss/default.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.loss.TBXLoss +_target_: topobenchmark.loss.TBLoss dataset_loss: task: ${dataset.parameters.task} diff --git a/configs/model/cell/can.yaml b/configs/model/cell/can.yaml index b0b9bdf0..eebbffa1 100755 --- a/configs/model/cell/can.yaml +++ b/configs/model/cell/can.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: can model_domain: cell diff --git a/configs/model/cell/cccn.yaml b/configs/model/cell/cccn.yaml index ec6c0893..51143266 100755 --- a/configs/model/cell/cccn.yaml +++ b/configs/model/cell/cccn.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: cccn model_domain: cell diff --git a/configs/model/cell/ccxn.yaml b/configs/model/cell/ccxn.yaml index 7066f08a..cfd9ad87 100755 --- a/configs/model/cell/ccxn.yaml +++ b/configs/model/cell/ccxn.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: ccxn model_domain: cell diff --git a/configs/model/cell/cwn.yaml b/configs/model/cell/cwn.yaml index 1e699dd4..dd500a85 100755 --- a/configs/model/cell/cwn.yaml +++ b/configs/model/cell/cwn.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: cwn model_domain: cell diff --git a/configs/model/cell/topotune.yaml b/configs/model/cell/topotune.yaml index c1acf732..bfa46286 100755 --- a/configs/model/cell/topotune.yaml +++ b/configs/model/cell/topotune.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: topotune model_domain: cell diff --git a/configs/model/cell/topotune_onehasse.yaml b/configs/model/cell/topotune_onehasse.yaml index d0b8c601..8d7cae8c 100644 --- a/configs/model/cell/topotune_onehasse.yaml +++ b/configs/model/cell/topotune_onehasse.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: topotune_onehasse model_domain: cell diff --git a/configs/model/graph/gat.yaml b/configs/model/graph/gat.yaml index 60b19151..8c71b06d 100755 --- a/configs/model/graph/gat.yaml +++ b/configs/model/graph/gat.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: gat model_domain: graph diff --git a/configs/model/graph/gcn.yaml b/configs/model/graph/gcn.yaml index da203138..d54dd9ea 100755 --- a/configs/model/graph/gcn.yaml +++ b/configs/model/graph/gcn.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: gcn model_domain: graph diff --git a/configs/model/graph/gcn_dgm.yaml b/configs/model/graph/gcn_dgm.yaml index 79e310cb..5f07465c 100755 --- a/configs/model/graph/gcn_dgm.yaml +++ b/configs/model/graph/gcn_dgm.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: gcn model_domain: graph diff --git a/configs/model/graph/gin.yaml b/configs/model/graph/gin.yaml index 826bc6ec..816affa7 100755 --- a/configs/model/graph/gin.yaml +++ b/configs/model/graph/gin.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: gin model_domain: graph diff --git a/configs/model/graph/graph_mlp.yaml b/configs/model/graph/graph_mlp.yaml index b85f14a0..050e82f8 100755 --- a/configs/model/graph/graph_mlp.yaml +++ b/configs/model/graph/graph_mlp.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: GraphMLP model_domain: graph diff --git a/configs/model/hypergraph/alldeepset.yaml b/configs/model/hypergraph/alldeepset.yaml index f9f338a4..fe6a5e4b 100755 --- a/configs/model/hypergraph/alldeepset.yaml +++ b/configs/model/hypergraph/alldeepset.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: alldeepset model_domain: hypergraph diff --git a/configs/model/hypergraph/allsettransformer.yaml b/configs/model/hypergraph/allsettransformer.yaml index cab55055..6c35a05a 100755 --- a/configs/model/hypergraph/allsettransformer.yaml +++ b/configs/model/hypergraph/allsettransformer.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: allsettransformer model_domain: hypergraph diff --git a/configs/model/hypergraph/edgnn.yaml b/configs/model/hypergraph/edgnn.yaml index c57aaf87..53727d1a 100755 --- a/configs/model/hypergraph/edgnn.yaml +++ b/configs/model/hypergraph/edgnn.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: edgnn model_domain: hypergraph diff --git a/configs/model/hypergraph/unignn.yaml b/configs/model/hypergraph/unignn.yaml index 1fffd96d..54ba46e3 100755 --- a/configs/model/hypergraph/unignn.yaml +++ b/configs/model/hypergraph/unignn.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: unignn2 model_domain: hypergraph diff --git a/configs/model/hypergraph/unignn2.yaml b/configs/model/hypergraph/unignn2.yaml index c139437e..d61dc28f 100755 --- a/configs/model/hypergraph/unignn2.yaml +++ b/configs/model/hypergraph/unignn2.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: unignn2 model_domain: hypergraph diff --git a/configs/model/simplicial/san.yaml b/configs/model/simplicial/san.yaml index 78b4a07b..7973ef47 100755 --- a/configs/model/simplicial/san.yaml +++ b/configs/model/simplicial/san.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: san model_domain: simplicial diff --git a/configs/model/simplicial/sccn.yaml b/configs/model/simplicial/sccn.yaml index 0aa50526..0c90eb62 100755 --- a/configs/model/simplicial/sccn.yaml +++ b/configs/model/simplicial/sccn.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: sccn model_domain: simplicial diff --git a/configs/model/simplicial/sccnn.yaml b/configs/model/simplicial/sccnn.yaml index 67ec3342..6de88175 100755 --- a/configs/model/simplicial/sccnn.yaml +++ b/configs/model/simplicial/sccnn.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: sccnn model_domain: simplicial diff --git a/configs/model/simplicial/sccnn_custom.yaml b/configs/model/simplicial/sccnn_custom.yaml index 8418aeb0..1b4a23f7 100755 --- a/configs/model/simplicial/sccnn_custom.yaml +++ b/configs/model/simplicial/sccnn_custom.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: sccnn model_domain: simplicial diff --git a/configs/model/simplicial/scn.yaml b/configs/model/simplicial/scn.yaml index 0c94ec0e..d55aa572 100755 --- a/configs/model/simplicial/scn.yaml +++ b/configs/model/simplicial/scn.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: scn model_domain: simplicial diff --git a/configs/model/simplicial/topotune.yaml b/configs/model/simplicial/topotune.yaml index ebe19a61..6c0228b3 100755 --- a/configs/model/simplicial/topotune.yaml +++ b/configs/model/simplicial/topotune.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: topotune model_domain: simplicial diff --git a/configs/model/simplicial/topotune_onehasse.yaml b/configs/model/simplicial/topotune_onehasse.yaml index 6a7d35d4..01c0bd35 100644 --- a/configs/model/simplicial/topotune_onehasse.yaml +++ b/configs/model/simplicial/topotune_onehasse.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.model.TBXModel +_target_: topobenchmark.model.TBModel model_name: topotune_onehasse model_domain: simplicial diff --git a/configs/optimizer/default.yaml b/configs/optimizer/default.yaml index e8d503cc..80372487 100644 --- a/configs/optimizer/default.yaml +++ b/configs/optimizer/default.yaml @@ -1,4 +1,4 @@ -_target_: topobenchmark.optimizer.TBXOptimizer +_target_: topobenchmark.optimizer.TBOptimizer # Full compatibility with all available torch optimizers and schedulers optimizer_id: Adam # torch id of the optimizer diff --git a/test/data/dataload/test_Dataloaders.py b/test/data/dataload/test_Dataloaders.py index 558c7590..35770d68 100644 --- a/test/data/dataload/test_Dataloaders.py +++ b/test/data/dataload/test_Dataloaders.py @@ -5,7 +5,7 @@ import torch from topobenchmark.data.preprocessor import PreProcessor -from topobenchmark.dataloader import TBXDataloader +from topobenchmark.dataloader import TBDataloader from topobenchmark.dataloader.utils import to_data_list from omegaconf import OmegaConf @@ -35,7 +35,7 @@ def setup_method(self): ) self.batch_size = 2 - datamodule = TBXDataloader( + datamodule = TBDataloader( dataset_train=dataset_train, dataset_val=dataset_val, dataset_test=dataset_test, @@ -47,7 +47,7 @@ def setup_method(self): def test_lift_features(self): """Test the collate funciton. - To test the collate function we use the TBXDataloader class to create a dataloader that uses the collate function. + To test the collate function we use the TBDataloader class to create a dataloader that uses the collate function. We then first check that the batched data has the expected shape. We then convert the batched data back to a list and check that the data in the list is the same as the original data. """ diff --git a/test/evaluator/test_TBEvaluator.py b/test/evaluator/test_TBEvaluator.py new file mode 100644 index 00000000..3396f8eb --- /dev/null +++ b/test/evaluator/test_TBEvaluator.py @@ -0,0 +1,15 @@ +""" Test the TBEvaluator class.""" +import pytest + +from topobenchmark.evaluator import TBEvaluator + +class TestTBEvaluator: + """ Test the TBEvaluator class.""" + + def setup_method(self): + """ Setup the test.""" + self.evaluator_multilable = TBEvaluator(task="multilabel classification") + self.evaluator_regression = TBEvaluator(task="regression") + with pytest.raises(ValueError): + TBEvaluator(task="wrong") + repr = self.evaluator_multilable.__repr__() \ No newline at end of file diff --git a/test/evaluator/test_TBXEvaluator.py b/test/evaluator/test_TBXEvaluator.py deleted file mode 100644 index 6ed30dd4..00000000 --- a/test/evaluator/test_TBXEvaluator.py +++ /dev/null @@ -1,15 +0,0 @@ -""" Test the TBXEvaluator class.""" -import pytest - -from topobenchmark.evaluator import TBXEvaluator - -class TestTBXEvaluator: - """ Test the TBXEvaluator class.""" - - def setup_method(self): - """ Setup the test.""" - self.evaluator_multilable = TBXEvaluator(task="multilabel classification") - self.evaluator_regression = TBXEvaluator(task="regression") - with pytest.raises(ValueError): - TBXEvaluator(task="wrong") - repr = self.evaluator_multilable.__repr__() \ No newline at end of file diff --git a/test/loss/test_dataset_loss.py b/test/loss/test_dataset_loss.py index 862a37dc..5572304d 100644 --- a/test/loss/test_dataset_loss.py +++ b/test/loss/test_dataset_loss.py @@ -1,4 +1,4 @@ -""" Test the TBXEvaluator class.""" +""" Test the TBEvaluator class.""" import pytest import torch import torch_geometric @@ -6,7 +6,7 @@ from topobenchmark.loss.dataset import DatasetLoss class TestDatasetLoss: - """ Test the TBXEvaluator class.""" + """ Test the TBEvaluator class.""" def setup_method(self): """ Setup the test.""" diff --git a/test/optimizer/test_optimizer.py b/test/optimizer/test_optimizer.py index c34eff91..450b4b6f 100644 --- a/test/optimizer/test_optimizer.py +++ b/test/optimizer/test_optimizer.py @@ -3,11 +3,11 @@ import pytest import torch -from topobenchmark.optimizer import TBXOptimizer +from topobenchmark.optimizer import TBOptimizer -class TestTBXOptimizer: - """Test the TBXOptimizer class.""" +class TestTBOptimizer: + """Test the TBOptimizer class.""" def setup_method(self): """Setup method.""" @@ -25,13 +25,13 @@ def setup_method(self): def test_configure_optimizer(self): """Test the configure_optimizer method.""" # Check with scheduler - optimizer = TBXOptimizer(**self.optimizer_config_with_scheduler) + optimizer = TBOptimizer(**self.optimizer_config_with_scheduler) out = optimizer.configure_optimizer(self.params) assert "optimizer" in out assert "lr_scheduler" in out # Check without scheduler - optimizer = TBXOptimizer(**self.optimizer_config_without_scheduler) + optimizer = TBOptimizer(**self.optimizer_config_without_scheduler) out = optimizer.configure_optimizer(self.params) assert "optimizer" in out assert "lr_scheduler" not in out diff --git a/topobenchmark/dataloader/__init__.py b/topobenchmark/dataloader/__init__.py index 9a75d453..ed51644e 100644 --- a/topobenchmark/dataloader/__init__.py +++ b/topobenchmark/dataloader/__init__.py @@ -1,6 +1,6 @@ """This module implements the dataloader for the topobenchmark package.""" from .dataload_dataset import DataloadDataset -from .dataloader import TBXDataloader +from .dataloader import TBDataloader -__all__ = ["DataloadDataset", "TBXDataloader"] +__all__ = ["DataloadDataset", "TBDataloader"] diff --git a/topobenchmark/dataloader/dataload_dataset.py b/topobenchmark/dataloader/dataload_dataset.py index 7e95d3c7..ec2ec9ce 100644 --- a/topobenchmark/dataloader/dataload_dataset.py +++ b/topobenchmark/dataloader/dataload_dataset.py @@ -1,4 +1,4 @@ -"""Dataset class compatible with TBXDataloader.""" +"""Dataset class compatible with TBDataloader.""" import torch_geometric diff --git a/topobenchmark/dataloader/dataloader.py b/topobenchmark/dataloader/dataloader.py index 8ded8caa..30c42689 100755 --- a/topobenchmark/dataloader/dataloader.py +++ b/topobenchmark/dataloader/dataloader.py @@ -1,4 +1,4 @@ -"TBXDataloader class." +"TBDataloader class." from typing import Any @@ -9,7 +9,7 @@ from topobenchmark.dataloader.utils import collate_fn -class TBXDataloader(LightningDataModule): +class TBDataloader(LightningDataModule): r"""This class takes care of returning the dataloaders for the training, validation, and test datasets. It also handles the collate function. The class is designed to work with the `torch` dataloaders. diff --git a/topobenchmark/evaluator/__init__.py b/topobenchmark/evaluator/__init__.py index 446ce0b4..923c8bf3 100755 --- a/topobenchmark/evaluator/__init__.py +++ b/topobenchmark/evaluator/__init__.py @@ -14,10 +14,10 @@ } from .base import AbstractEvaluator # noqa: E402 -from .evaluator import TBXEvaluator # noqa: E402 +from .evaluator import TBEvaluator # noqa: E402 __all__ = [ "METRICS", "AbstractEvaluator", - "TBXEvaluator", + "TBEvaluator", ] diff --git a/topobenchmark/evaluator/evaluator.py b/topobenchmark/evaluator/evaluator.py index 60123917..8206f87e 100755 --- a/topobenchmark/evaluator/evaluator.py +++ b/topobenchmark/evaluator/evaluator.py @@ -5,7 +5,7 @@ from topobenchmark.evaluator import METRICS, AbstractEvaluator -class TBXEvaluator(AbstractEvaluator): +class TBEvaluator(AbstractEvaluator): r"""Evaluator class that is responsible for computing the metrics. Parameters diff --git a/topobenchmark/loss/loss.py b/topobenchmark/loss/loss.py index 74697b47..bb5a3ed4 100644 --- a/topobenchmark/loss/loss.py +++ b/topobenchmark/loss/loss.py @@ -7,7 +7,7 @@ from topobenchmark.loss.dataset import DatasetLoss -class TBXLoss(AbstractLoss): +class TBLoss(AbstractLoss): r"""Defines the default model loss for the given task. Parameters diff --git a/topobenchmark/model/__init__.py b/topobenchmark/model/__init__.py index 81ce9bd2..371f19ba 100644 --- a/topobenchmark/model/__init__.py +++ b/topobenchmark/model/__init__.py @@ -1,7 +1,7 @@ -"""TBX model module.""" +"""TB model module.""" -from .model import TBXModel +from .model import TBModel __all__ = [ - "TBXModel", + "TBModel", ] diff --git a/topobenchmark/model/model.py b/topobenchmark/model/model.py index 8053991a..d3760355 100755 --- a/topobenchmark/model/model.py +++ b/topobenchmark/model/model.py @@ -1,4 +1,4 @@ -"""This module defines the `TBXModel` class.""" +"""This module defines the `TBModel` class.""" from typing import Any @@ -8,7 +8,7 @@ from torchmetrics import MeanMetric -class TBXModel(LightningModule): +class TBModel(LightningModule): r"""A `LightningModule` to define a network. Parameters diff --git a/topobenchmark/optimizer/__init__.py b/topobenchmark/optimizer/__init__.py index 31a82ca5..3a583e70 100644 --- a/topobenchmark/optimizer/__init__.py +++ b/topobenchmark/optimizer/__init__.py @@ -1,7 +1,7 @@ """Init file for optimizer module.""" -from .optimizer import TBXOptimizer +from .optimizer import TBOptimizer __all__ = [ - "TBXOptimizer", + "TBOptimizer", ] diff --git a/topobenchmark/optimizer/optimizer.py b/topobenchmark/optimizer/optimizer.py index f7802c67..9ca8efdc 100644 --- a/topobenchmark/optimizer/optimizer.py +++ b/topobenchmark/optimizer/optimizer.py @@ -11,7 +11,7 @@ TORCH_SCHEDULERS = torch.optim.lr_scheduler.__dict__ -class TBXOptimizer(AbstractOptimizer): +class TBOptimizer(AbstractOptimizer): """Optimizer class that manage both optimizer and scheduler, fully compatible with `torch.optim` classes. Parameters @@ -48,7 +48,7 @@ def configure_optimizer(self, model_parameters) -> dict[str:Any]: """Configure the optimizer and scheduler. Act as a wrapper to provide the LightningTrainer module the required config dict - when it calls `TBXModel`'s `configure_optimizers()` method. + when it calls `TBModel`'s `configure_optimizers()` method. Parameters ---------- diff --git a/topobenchmark/run.py b/topobenchmark/run.py index 3598dce1..0fc58c16 100755 --- a/topobenchmark/run.py +++ b/topobenchmark/run.py @@ -13,7 +13,7 @@ from omegaconf import DictConfig, OmegaConf from topobenchmark.data.preprocessor import PreProcessor -from topobenchmark.dataloader import TBXDataloader +from topobenchmark.dataloader import TBDataloader from topobenchmark.utils import ( RankedLogger, extras, @@ -141,7 +141,7 @@ def run(cfg: DictConfig) -> tuple[dict[str, Any], dict[str, Any]]: # Prepare datamodule log.info("Instantiating datamodule...") if cfg.dataset.parameters.task_level in ["node", "graph"]: - datamodule = TBXDataloader( + datamodule = TBDataloader( dataset_train=dataset_train, dataset_val=dataset_val, dataset_test=dataset_test, diff --git a/tutorials/homophily_tutorial.ipynb b/tutorials/homophily_tutorial.ipynb index a7e3367b..5a694129 100644 --- a/tutorials/homophily_tutorial.ipynb +++ b/tutorials/homophily_tutorial.ipynb @@ -814,7 +814,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT5/cH8M/NYk9Zgjhw46ir2taqX7XDXevCUZx11r1a66+11qodal1t3aNoFVfdo62jtWodOHBPEARlCQTITu7vj0ggJECAJJck5/168fLemzsOqMDJ8zznMCzLsiCEEEIIIYQQQojN4HEdACGEEEIIIYQQQsqGknlCCCGEEEIIIcTGUDJPCCGEEEIIIYTYGErmCSGEEEIIIYQQG0PJPCGEEEIIIYQQYmMomSeEEEIIIYQQQmwMJfOEEEIIIYQQQoiNEXAdADEvjUaD5ORkeHh4gGEYrsMhhBBCCCGEEFIGLMsiJycHwcHB4PGKH3+nZN7OJCcnIzQ0lOswCCGEEEIIIYRUQGJiIqpVq1bs65TM2xkPDw8A2r94T09PjqMhhBBCCCGEEFIWYrEYoaGhutyuOJTM25n8qfWenp6UzBNCCCGEEEKIjSpt2TQVwCOEEEIIIYQQQmwMJfOEEEIIIYQQQoiNoWSeEEIIIYQQQgixMZTME0IIIYQQQgghNoaSeUIIIYQQQgghxMZQMk8IIYQQQgghhNgYSuYJIYQQQgghhBAbQ8k8IYQQQgghhBBiYyiZJ4QQQgghhBBCbAwl84QQQgghhBBCiI2hZJ4QQgghhBBCCLExlMwTQgghhBBCCCE2hpJ5QgghhBBCCCHExjhsMp+WloaIiAgwDAOGYXDmzBmLP1OlUmHHjh3o3r07atSoAWdnZ4SEhKBTp05Yt24dJBKJxWMghBBCCCGEEGL7HDKZ37FjB8LDw7Fr1y6rPTMuLg5vv/02Bg8ejKNHj8LX1xcffPABqlevjtOnT2Ps2LFo0aIFrl27ZrWYCCGEEEIIIYTYJgHXAVjT8+fPMW7cOBw8eBACgfU+9dTUVHTs2BFPnz6Fm5sbdu3ahW7duulev3TpEnr27In79++jc+fOuHDhAurXr2+1+AghhBBCCCGE2BaHGZnfsmULwsPDcfDgQbRo0QKXL1+22rMHDx6Mp0+fAgDWr1+vl8gDQOvWrbFv3z4wDIPMzEz07t0bKpXKavERQgghhBBCCLEtDpPMT506FVKpFIsWLcLFixfRrFkzqzz3yJEjOHnyJACgefPmGDRokNHz2rZti169egEA7t27h/Xr11slPkIIIYQQQgghtsdhkvm3334b169fx5w5c6w6xX7JkiW67cjIyBLPHTp0qNHrCCGEEEIIIYSQwhwmmT98+DAaNGhg1Wempqbin3/+0e137ty5xPM7duyo237y5AmuXr1qsdgIIYQQQgghhNguh0nmufDnn39Co9EAAJydndGoUaMSz/fx8UHt2rV1+8ePH7dofIQQQgghhBBCbBMl8xZ08+ZN3Xb16tXB5/NLvaZWrVpGryeEEEIIIYQQQvJRMm9Bd+7c0W2HhISYdE3h8wpfTwghhBBCCCGE5HOoPvPWlpaWptv29vY26ZrC56Wnp5s5ImKL7jzPRrcV/5rlXo2CPfHb6Dfg5SI0y/1szoubwJq39Y8FNQWGHQJcvDkJyZ6IFWKMPjEad16a/41IN6Eb/hv8H9747Q3kKfPKdQ8ew8OuHrtQ37e+maMjBMiNiUHikI+4DsNm8dzcUOvgAYhMHPywZ3KJEr8vvYqMpPJ9r7MlH85sjuA6PlyHYXXP7t1G9LxPrfrMiPnfoVqDkpf8ck2VKcOLpZeBCnbo9hvXBM41vc0SU2VHI/MWlJOTo9t2cnIy6RpnZ2ej1xdHLpdDLBbrfRD70nPVObPd63ayGGOjrpjtfjZnXQfDYy9igWj6Bdwcpp6eapFE3lw0rAYRhyO4DoPYKUrkK0aTl4e43h9yHUalcGzNTYdI5AHg9yXXuA6BE9ZO5Ll6ZlmlrLha4UQeANLXOM5SZUrmLUgqleq2RSKRSdcUPk8ikZR6/uLFi+Hl5aX7CA0NLXughBBiBiqNGX4CE0IIIYQQk1Ayb0EuLi66bYVCYdI1hc9zdXUt9fw5c+YgOztb95GYmFj2QEmllS1Vwrn0uokmaxTsibWRrcx3Q1sz5m/DY0FNgYht1o/FziTlJuF66nWuwygRj+Ehukc012EQO6QWiyGycvtbe8Nzc0Ot/b9zHUal0GlYQ/AcZDXchzObcx0CJyLmf+cQzyyrwCktzLII3G9ck4rfxEbQmnkL8vDw0G3L5XKTrpHJZEavL46Tk5PJU/iJ7Rm19TJkaoDPY+Aq4qNRsCd2jnmT67BsV1AT4KtsrqOwO2KFGN32dQMLVneMz/Bxfeh1sz/rv8H/mf2ehFRU4vjxUCUlgefhAad6dVFz+3auQyI27NTWu6hay1u333t6C+6CIRZRrUEjzIg+zHUYlY7AxxnVvmnHdRg2hZJ5C/L399dtZ2VlmXRNdnZBouHn52fukIgNScyU4Ep8pm5folA79qg6qbSmnp4KDavRO+YicCnmbELsj/zefWjy8nTbhBBCiDXQNHsLCg8P120nJSWZdE3h8wpfTxxLtlSJ/31/Wu+Yq5DnuFXoSaWVlJuEmJQYg+N7eu3hIBpCrE8tFusSeQDQFKqXQ0h5dBrWEGmJuUhLzEWnYQ25DocQUolRMm9BTZoUrNdISEiAWq0u9ZonT54YvZ44lsiNF6Fm9Y/VDyp92QUh1pKUm4TWUa3RZW8Xg1H5432PI8Sd2ksRx5AweozePmNCvRtCiiOXKBG94BKUcjXAsvhrU+XtEEII4R5Ns7egd999FzweDxqNBjKZDLdv30bTpk2LPT8zMxOPHz/W7Xfp0sUaYZJKJluqROwz/XXdfAbYOLw1RxHZiRc3gbXtAVYDBDcHIvdTb/kyuP/yPvod6lfqeR4iD0rkiUNQi8WIHzoMinv39I6HHdjPTUDELhxadQMKmXbwR6lQIyPZMVrUORJZXi4OLlkIAOg1cy6c3dw5jojYMhqZt6CAgAC0b99et3/y5MkSzz99umBadVhYGFq0oIInjshYH/gzszvSFPuKWtdBm8gDQPI16i1vovwReFMSeQDY3XO3hSMipHJIHD/eIJFn3N0hCqE3s0j5iDOkSIkT6/ZZDVAlmGZ62Jv8RL7oNiHlQSPzFjZz5kycOXMGABAVFYVp06YVe+6vv/6q254xY4alQyOVlEShvxzj6JS3EepDP8yJ5YkVYow8NhL3s8pewMtV4Ip9H+yjUXniENRiMaTXrhscp1F5Ul7pz3IQ/c1lg+PdP3mNg2iIJWk0aqQnPAUA+FWvwXE0xNbRyHw5ZGVloXv37nB3d0f79u1L7O3evXt3dOrUCQBw7do17Ny50+h5586dw8GDBwEADRo0wJgxY4yeR+xbYqZEb4o9jwHCq3pxGJEdGfM3wLz6lhfcnHrLGzH+r/FlTuRdBa443vc4Lg65SIk8cQhqsRiPOnYCNPq1IkK3b6NReVJuuxYZJvKBNT3g5Eqz8uyNSqGAXJIHuSQPKoWC63CIjaOR+XJYtmwZjh49CgA4e/Ys5s6dqzeqXtRvv/2GNm3a4OnTp/j444/h6emJbt266V6/dOkS+vTpA5Zl4e3tjf3790MgoL8aR5OYKUG77/Qr2DMMw1E0diioCTAvs/TzHJRYIUZsWmyp523tshUtAmkJEHEsuTExSBxS/NIcxt0d7i1bWjEiYm+K1BGF0JmPnpObcRILsZzstBSkPHkEAGB4PKTGPynlCseikaqQEaUt+lglMhw8F8qHSuMwX6F79+7h22+/Lfb1b7/9Flu2bNHt9+7dG7179zbp3qUlXIGBgTh16hQGDRqES5cuoXv37mjevDnq1q2LxMRE/Pfff2BZFvXq1cOOHTtQv359k55L7Eu3FWcNjh2a1JaDSIijMaW4HU2jJ45IkZSExz16AqW0m6Pp9aQixBn6/76ETnwMW/QWjcrboV9nT9JtsxoNRC60jDKf4nkuUldcAwAIq7kjI+oO/McUXzicaDlMMv/ixQts3bq12NdPnDiht1+zZs1ik/np06cjJiYGZ86cQcuWLfHNN9+U+vywsDCcO3cOu3btQlRUFG7duoXbt2+jSpUqaN++PQYNGoTIyEi4Uksbh1V0rXyzUE+aYk/MQqwQY/SJ0bjz0vQWR9Rejjg6tViMx+++ZzCdvqjaJ/+i6fWk3OQSJbZ9cUG3z/CAYYspkbdXSplMb3/oD6s4iqTySV11TbetfJYLpzD6HdgUDpPM/+9//wPLsqWfaAJvb28cOXKkzNcJBAIMHjwYgwcPNkscxH5kS5XQaAr+ffIZYOvINziMiNiTMX+MKVMizwOPEnnisIprOWeAx0PN3/dRIk/KTS5RYuvn5/Wm2LMaUCJvp57duw321ZuDDI+HoLC68PIP5DiqSoYB8OrX4SqR4ZyGYiscJpknpDIbvvlS/vcu8BkGzat7USs6YhZJuUm4nXG7TNfs6rnLQtEQUnlJ799H/Ae9SzwndPs2WhtPzObYmptQyvRn5QmcqDa1vYqe96lum9Vo0Ofz+RxGU7moMmXasuwq7b7fuCa0Xt5E9FUipBIoXMFezbLYOLw1h9EQe9LvoGn94QGgUZVGWPfeOniKPC0YESGVhykJfD6aTk/MTaM2nDE66Ms2HERCLC07LcXgmLObOweRVE4pK64CGuj6rOX8kQDnMd5chmQzKJknhGOJmRKoC02x5zGgUXlzk2YBvw0E0u4AAQ2BQdGAizfXUVmFVKVfWGlPzz2o70tFNgkxNZFnXF0RduggJfLEAlgInHhQyTVgeMBHC96EZxUXroMiFlC48B0ARMz/jqNIiL2huTyEcChbqsT/vj+jd6xpNRoVNbvt/YDEC4AsG0i5DUQX32LK3jjznXXbbgI3SuQJgbZKfamJPI+Hmgf2o8HVGErkiYUw4PF4ELkIEFTLixJ5OyXLy4VCItHtMzweqjVoxGFElU/glBaAUJuWiqp50Hr5MqBknhAORW68CHWRwoxU+M4Ckq8WbMtzuIvDzIYMGQKGYfQ+/ve//+leT8pN0o3MuwndUM+3nt71//77Lxo1amRwj7K4e/cu5s6diw4dOqBq1apwdXWFUCiEr68vmjVrhhEjRuDQoUNmK0BKSEUpkpLwuPM7xb7u1LAh6l26iIZ3bsOFWsUSC9KoWSjlaijlaqNT7ol92Ld4nt6+QOTEUSSVl8DHGdXmt0W1Re0QMKEZrZcvA/pKEcKhwmvlAW07OppibwECV0DxKoln+EDENm7jMYMzZ87gt99+M/qasVZ0UpUUqzuvBgC8fPkSs2fPxqZNm8qdZKvVakyfPh2rV6+G5lV1XoFAgF69esHb2xsnTpzAjRs3cOPGDWzZsgUtW7bE3r17UaNGjXI9jxBzKC6RZ1xdUffMafA9aWYUsazkR5n4fck1vWNCJz4yUyTFXEFsWerTODx/eF/vWECNWhxFQ+wRJfOEcORSfIbBMRqVN7PMp8DPbwHKXO0+wweCW9j8enmVSoWJEycW+/rEkxMNWtFpWA08RZ6IiorCjBkzkJaWhqCgILx48aJcMcyaNQsrV67UO7ZhwwYMGzYMAJCamorw8HBkZGj/ncfExKBTp06IjY2Fm5tbuZ5JSHkpkpLwuEdPQCo1eI3n5oY6p09RIk8sKv1ZDqK/uWz0NaVcjaq16d+fPdr22RS9fYbHQ+9Pv+QomspLlSnTFsGDdsq9wMe5lCtIPppmTwgHsqVKDFjzn96xo1PeplF5c1vTtiCRBwBWDQht/wfE8uXLcfv2bfB4xr+FP8x8aHDMTeCGI0eOYOjQocjJycFXX32FM2fOlOv5aWlpWLVqld4xPp+PiIgI3X5AQADee+89vXOePHmCTZs2leuZhJSXbjTeSCIPHo8SeWJxcomy2EQ+X/dPXrNSNMSa8vvK5xu1cj1VsTciP5Evuk1KR8k8IRwYG3XF4Fh4VS8OIrFjmU+Nr4+38Sn2ycnJmD9/PhiGwahRo4yeU3TqvKvAFXs/2AulUon3338ft27dwrx58+DkVL51excvXoRKpdI75u/vD2dn/TdKqlevbnDtP//8U65nElIeuTExJa6Pr/3nH5TIE4s7uOJ6ia9/OLM5nFzpzXx7I8vLhcCp4OdiYK068PIP5DCiykmVKQMrU4OVqQEqHVFmNM2eEI40rOqOu8+1o8a7xtH0erNb87bhsXH/2vwU++nTpyM3NxfDhg3DW2+9hfXr1+u9nqvIhVwlBwDwGB5cBa64MPgCAMD3fV/07t27wjHk5Bi+SSIUGv4iKhKJDI6JxeIKP5+Q4qjFYsQPHQbFvXslnkft5oi1yCVKpD41/J754czmCK7jw0FExFoOLlmIwJphSE98CgDo98U3HEdUOaWsuAqIGEDBgpWrEfTp61yHZFNoZJ4QDnzZMxwPUvLA5zE4OuVttK5ZheuQ7I8iT39/SiwQ1ISbWMzk1KlTiI6OhpeXF777zniP2rsv7+q2NawGdX3q6vZdXMzT9qi+kQrfxhJ8Y4l7nTp1zBIDIcYkjB5TciLP46HepYvUbo5YzbE1N/UPMMAnazpRIu8geHw+AmqGIaBmGE2vLwHD44Fx5oNx5tN6+TKiZJ4QK0vMlKDbin+h1rBwEfIxcO1/pV9EyubFTe36+HwiD8DHtquoK5VKXdG7+fPnIzDQtKl6+RXszalFixZ4+239mQ9ZWVlITEzUO3bzpv4vsQKBAKNHjzZ7PMSxKZKTAQD3W7aC7MaNYs9jXF1pWj2xOpVSf810xFwadXQUb0V8hMQ7N5F45ybeiviI63AqJY1UBX4VF+00e4Ua/mObch2SzaFknhAr677irG47V64q4UxSbus66O8HNuYmDjP68ccfcffuXTRp0gSffPKJSdds7bIVniLLJC67d+9GmzZt9I5NmDAB8fHxyM7Oxtq1a3H69Gnday4uLti0aROaNWtmkXiI41EkJeFu8xaI69mr5BN5PNQ8sJ9G4wknXj7PA8NjwPAYCJ358KvmwXVIxEp2zZ+jHXHm8bBr/hyuw6mUMqLuQJ0h1Y7Ki/jIPvSE65BsDq2ZJ8TKWAAMCmp8HJnSjsNo7FDmU0Cj1j82eCc3sZjJs2fPsGDBAgDA6tWrIRCU/q17T889qO9rOB3eXIKCgnD+/HkcOHAACxcuRExMDA4fPozDhw/rneft7Y2xY8diwoQJRgviEVJecR/01laoL6bVYe2Tf1HyTjjHMAyETnyuwyCE2CkamSfEiu48z0aOTKVL5BuHeCLUx5XTmOxO0cJ3dlD0btq0acjNzcXgwYPRvn37Us/f2mWrRRN5ANBoNFizZg1mzJiBmJgYAICXlxf69u2LUaNGoUGDBgC00+83btyIlStXIjMz06IxEcchvX8fmtzcYl8P3b6NEnnCufRnOVBIVVBIVVDKVPhwRnOuQyJWkPo0DksjeoDVaHSt6T76dgXHUVVOPv3rgWVZsAo1hAGuqBIZznVINodG5gmxop6rzuntJ2RIOIrETkmzAHmhomsM3+aL3v3555/Ys2cPPDw88MMPP5R6PgMGLQJbWDQmlmUxePBgREdH6475+Pjg0qVLugJ3SqUS/fr1w8GDB5Geno6lS5di3759OHPmDI3QkwpRJCUh/oPeBsdF9euj+ppfaE08qTR2LSpoQ8uywL+7HqL3dMt+fybc2/bZFINjATVqcRBJ5Ze5+wGcQgqWnvBcKDUtKxqZJ8SK1Br9Bpr1AqmyqVlFfwTtIoZXhLY960GhUGDSpEkAgC+//BLBwcF6r0tVUoNreDzLf1vfsmWLXiIPAP369dOrVC8UCjFr1iy9c+Li4vDxxx9bPD5i3+KMJPIAUOu37ZTIk0pDLlGC1VDTbEeTnZaiG40nJdNIVVAk5UL+JBvy+GywKvq6lQcl84RYSbZUCTdhQaLpJuJj4/DWHEZkp5w8AB5f+2Hjhe+WLl2K+/fvo2HDhpgyxfCd/l9v/2pwrFGVRhaPa8OGDYbPbWT43MaNDb/+f/75J+Li4iwSF7F/iqQkg+n1jKttv2lH7NOxNTfBFxX8zBc68dF1nG3PFCOli5o92eAYTbE3LiPqDljFqxpHGkCRklfyBcQomstAiJWMjbqChsFeeJCi/UX07Ked4OUi5DgqOyLN0p9mH9TU5gvf5SfNd+/ehUgkMuma//79DwxT8AtkXFwcatasada4YmNjDY55e3sbHPPy8jJ6/fXr11GrFk05JGUX1+sDvX2emxtqHzlczNmEcIvP54Pvot32D3WHkyv9zLc32Wkp2Dx9AtQKucFrDI+HCRt+o/7yxdAo1AXVoBno/e5CTEfJPCFWJODzEB6snQZKibyZbe8HpBTqa5562+YL340aNQovX740OC5Xy7Hj3g7Ik+TIvak/SlmtWjVERETo9otLqCtCpTJsqciypk8nVSgU5gyHOIjcmBho8vRHbuqcPkVT60ml1HVcExz56QYykiWoEuxGo/J26tfZk4wm8gAgEDlRIl8CZVKh319YIHAK1ZMoD0rmCbGSH/q/pusxT+3oLCD5KtcRmN3nn3+uty9WiDHy2Ejcz7qPqs2qIvNspkEyX7t2bSxZssSicdWoUQP379/XO2asUn1x1etr1KhhkbiI/VGLxYgfOgyKe/cMX3Rzo0SeVGo8Pg/+oe7oOq4JjcrbodSncVBIii9kbI0aNrZKI1UVjMq/+jIJfJw5i8eW0b8yQqwgMVOC/31/GmKZChoWmBZ9neuQ7Is0S1squLAxf3MSiiVNPDkR97Pul36ihfXr18/g2M2bNw2O3bp1y+BYtWrV0Lo11YogpkkYPcZ4Ig+g9sEDVo6GENMdW3PT6DaxD7K8XETNnlTs60JnZ0R+v9KKEdmWjKg7EIS8mrWgAQImUdvG8qJknhAr6L7iLNSvcs1cuQoPXuRwG5A9kWYBPzYC2FdVUBk+MCXW5lvSGfMo6xHXIQAAPvvsM9StW1fv2N69e3GvUNKlUCjw/fff653D5/Px888/02gFMYkiKQmyGzeMvkZ95AkhXNr//dcGx0Lqh2NG9GHMiD6MyVv3wMs/kIPIbAOrYaHOkIJx5kNU0xOiqrQcobxomj0hFnYpPgNimf4aY2pJZ0Y7IgBF4XVXasDHPqdxV/eojitXriDrYhYAQJVsuHb98ePHmDlzJgDtlPvx48frvb5o0SLdOnyxWGz0OfnXA4Cvr6/BdH93d3ecPXsWw4cPx/Hjx3X3atOmDd577z14eXnh3Llzesl9cHAw1qxZg549e5bxsyaOymgLOh4PNX/fB5f69a0eDyFl0XVcE92IPK2Xtz/pCU8hcHKGSi4DAASG1UXvT7/kOCobwhazTcqMknlCLChbqsSANf/pHeMzoJZ05pRyW3+fsc9R36TcJNzOuA3ZMxkyjmcUe96zZ8+wdOlSAECHDh0Mkvl169bh6dOnJT4r/3pAu769aDIPAIGBgTh27Bj+++8/7N69GxcvXsSjR49w+PBhKJVKuLu7Izw8HE2bNkW3bt3Qt29fuFILMWKi3JgYgxZ0zk2botauaI4iIsR0colSr/gdsT9+oTWQnvgUfFc3+IXWwMCvvy/9IlKAKWablBkl84RY0Kitlw2OuTkJqJK9uWQ+BeRFliyM/YebWCys30HtOnWfdj7waecDD5EHzg86X+b7xMfHmzWuN954A2+88YZZ70lI4pCP9PZ5bm6ovmE9R9EQUjaHVt1ASpx25lN6Ui6OrbmJ3tOpUrc96f3plzi4ZCEAoNfMuRxHY1s0UhUUz3MBpQaMiE8j8xVEyTwhFnTvuX6i6SriUyV7c1rTVn/fydMu18oDgFQlBQMG7Kufert77uY4IkIsQ21k+Qe1oCO2JPVpwc9+pUzNYSTEUpzd3DFg3mKuw7BJGVF3tD3lRXwAAMOnofmKsM/5qIRUEhJFwZpmHgPc+boLQn1oqrFZSLMMR+XH/ctJKNZQ36e+LpEP9w1HiDsV/yL2KWHkKL390O3bKJEnNkUg4ummDjM8WjNPSFHCwILlJ1UiwzmMxPY5ZDJ/+PBh9O/fH2FhYXBxcUFQUBDeeust/Pjjj7rCUJZw/fp1TJ06Fc2bN4efnx+cnJwQEhKC9u3bW/zZxPoSMyXQvJo6xGcYuL16B5KYyY4I/X2Rh8UK36VJ0vDz9Z+RJkmzyP1Lk5SbhHsvtcXk3IRucBI4cRKHLeP675CYRi0WQ1akpaF7y5YcRUNI+Qz8ojVEzgKIXAT4aMGb1GPeDmWnpWD1iAisHhGB7LQUrsOxKT7960GZkgcACJzSAjwXmiheEQ6VzKenp6N79+7o2bMn9uzZA5FIhB49eqBBgwa4dOkSpk+fjsaNG+PkyZNmfW5OTg4GDx6M5s2bY8WKFXj48CFatWqFvn37ombNmjh37hymT5+O8PBwHDx40KzPJtzptuKsrqaHmmVxdGp7TuOxK9IsILFIPYLx5yz2uDRpGn658QvSpNZPBJNyk9BlbxdooG29J1PJIODRD76y4vLvkJRMev8+7jZoiLsNGuJB6zb6L1IbQ2JD5BIldi64iKi5F6CQquDp5wwnSlTsiiwvF7/OmoQNE0dBLsmDRqNG1OzJXIdlMzRSFVKWXwUrU4NVqPFyx73SLyIlcpifkhKJBF26dMHRo0fB5/OxceNG3Lt3D7t378aZM2dw9+5d1KtXD8+fP0e3bt1w9uxZszw3JycH7dq1w44dOwAAI0aMwPPnz3H8+HH89ttvOHfuHO7evYvXXnsNKSkp6NOnDyX0diBbqkSOTAUWAJ/HgM9jaHq9OUV/BL2KKU6edtuOLr/wXT41q8byjsu5CYYQM8pP4uONtaB7pebv+6wXECEVdGzNTWQk5en20xNzde3piH04uGQh0hLidPtKmYzDaGxPRtQdsPJXdSQ0gOJZTskXkFI5TDI/efJkxMTEAAAWLFiAkSNH6r1et25dHDt2DM7OzlAoFOjTpw+ysrIq/Nxx48bhxo0bAICuXbti48aN8PDw0DunXr16+OOPP+Dr6wu1Wo0hQ4bg+fPnFX424c7YqCtwF2n/e6k1LJqEeJRyBSkzkTvA42s/AhpxHY3FSFVSvf0mfk3gKaL1w8S2KZKSSkziAYBxd6d+8oSQSi/y+5Vch2BbCte7EzpMKmoxDMuydt8Q4ObNm2jWrBk0Gg0CAwORkJAAkUhk9NypU6dixYoVAIDZs2fju+++K/dzb9y4gebNmyP/SxwTE4MWLYpvTfLNN9/giy++AKAdwd+0aVOZnykWi+Hl5YXs7Gx4UsEgzgxcdwEqtQYPUrR9ks9+2ona0ZmLNAvY0gNIeTXaEdQUGHYIcPG22CN77e+FuOw4+Dj7QMiz3t8jy7IG08L9Xfy1VWBJmSg1SmTKMlHLqxYO9qbZT1y73+p1gz7yhTGurgg7dBCiECr0SGyHXKLE70uv6kbn/ULd0Xtac1ozb0ey01KwefoEqBVyAEDE/O9QrYH9DiiYm0aqQtqmW1Am5YAR8RE4pQUEPs5ch1UpmZrTOUQyP2LECGzZsgWAdoQ+P1k35urVq2j5qtiOm5sb0tLS4OLiUq7nzp07F4sWLQIAhISE4NmzZyWef/fuXYSHays6Ojs7IyUlpcwJOSXzlUO2VImxUVcAAGsjW1Eib06b3gcS/ivY5/GBLy1bPLJ9dHtkyjIt+gxiHT7OPvgn4h+uw3BoiqQkPO78jsFx58aNUX3TRqpcT2zSkCFD8Ntvv+kd69ChA86cOWNwblZWFi5cuIALFy7g4sWLePLkCVJSUiCRSCASieDj44P69eujbdu2GDJkCBo0aFCmWG7evIldu3bh5MmTSEhIQHp6OkQiEfz8/FC1alU0a9YMLVq0QJcuXRBCb5iVya75c/T2qT0dsRRTczq7r8qhVCpx4MAB3X7nzp1LPL958+bw9vZGVlYW8vLycOzYMfTp06dczz5//rxuu3HjxqWeX79+fTg7O0Mmk0Emk+HgwYP46KOPyvVswi0vFyF2jnmT6zDsU8odqz/S28kbmbJMq4/Mv5S9hEqjbW/IgIGfix+NypdT/si8t5M316E4vLii0+t5PNT77wIl8cRmnTlzxiCRL8lHH32EI0eO6Pbbtm2Ld955B7m5uThx4gSSk5ORnJyM06dPY+HChRgxYgRWrVoFV9eSa+9kZ2dj4sSJ2L59O1iWBcMwaNOmDbp37w6WZXH9+nWcP39e9/vpjz/+iKlTp5brcyaEVA52n8xfunQJmZkFI2otS2lxwzAMWrZsqatof/z48XIn8ykpBa0qfH19Sz2fx+PB19cXycnJAID//vuPknkbded5Nnqu0lZXPzSpLcKrenEckZ14cROQi/WPjfnb4o/9tt23iDgcgTXvrEF4Fev0Q82vYp+PAYNTA05Z5dn26E7GHUQcjsC37b7lOhSHlhsTYzC93qVZM0rkic1SqVSYOHFiua4ViUTYt28funfvrjuWk5ODvn374s8//wSgXW61adMmPHz4EKdOnYJAYPxX99TUVLz77ruIjY0FAPj4+ODAgQNo166d3nkHDhzAgAEDoFAoyhWzo3t/wlRd9XpaK192qkwZUlZcBQCaYm8mdl914ObNgiqi+X3dS1OrVi2j15dVeVYwFP4mXZFnE27lJ/JFt0kFreugv+/kCQQ14SYWCytaxZ5G5Ik9uDdoMHZnZWFS0jN0efIYrz98gDq7ouHh4YFatWqhe/fuWLFiBTIyMky+57///otGjRqBYRi9j7K4e/cu5s6diw4dOqBq1apwdXWFUCiEr68vmjVrhhEjRuDQoUPl+rlO7Nvy5ctx+/ZtMEzZf6X+9NNP9RJ5APDw8EBUVBScnJz0jp89exY//fRTsfcaOXKkLpEHgJ9//tkgkQeADz74ANOnTy9zrETrxM/LEVAzDAE1w3Di5+Vch2Nz8hP5otuk/Ow+mb9zp2BKbnBwsEnXFE74C19fVv7+/rrtly9NW9NbuIJ+fHx8uZ9NuJOYKYFaw0KtYfW6p5EKenET0Kj1j9lpFXuxQoxcpf7oZXSPaI6iIcQ8jh07hi5PHmNeyguczM1FglKJeo0b4+OPP8Zrr72G+Ph4HD16FFOnTkXt2rWxffv2Eu/38uVLfPzxx2jfvn25f1ar1WpMmTIFjRs3xqJFi/DPP/8gPT0dXbt2xdChQ+Hq6oobN25gy5Yt6NWrF15//XU8ffq0XM8i9ic5ORnz588HwzB4s37XMl8/dOhQo8cDAwONLguNiooyev6BAwf0pu37+/tjwIABxT539uzZ+PPPP9G3b98yRkwIqWzsPplPSyuoBO3t7W3SNYXPE4vFUCqV5Xp24Sn9t27dKvX8Z8+eQSwumEJceJvYhsRMCdp9d1q3r2ZZHJrUlsOI7IQ0C1jztv6x4ObA4J2chGNp4/8ar7ffxK8J6vtSiy5iu87t3Yte3bohQ13whlzH1q1x+epVrFmzBv/++y8iIyN1r2VnZyMyMhJHjx41er+oqCg0aNAAGzduRGBgYLnjmjVrFlauXAmNRqM7tmHDBuzduxcbN27E1atXUaVKFd1rMTEx6NSpE/Ly8ozdjjiY6dOnIzc3F+2bd0NYkOlLsObMmYN9+/ahTp06xZ5jrOjd/fv3jZ77yy+/6O23a9cOPF7xv+L7+PjgnXfeQWhoqIkRk3y9Zs41uk1MEzilhdFtUn52n8zn5OTototOWSqOs7P++o3C9yiLXr166baTkpJ0fe6Lc+jQIb393BLa9uSTy+UQi8V6H4Q73VecNThG6+XNYEeE4bExZyzajq4wfxd/jH9tPPxd/Es/2Qxup9/W21/z7hqrPNeeWfvvkOj7YvgIqIocGzx6NPh8vm6/aI0YlmV17VoLO3LkCIYOHYqcnBx89dVXRquFmyItLQ2rVq3SO8bn8xERUfD9JiAgAO+9957eOU+ePClX61hiX06dOoXo6Gh4eXmhS5MRZbq2bdu2+PDDD0s8x1gnpcJvOuV7+fKlbn19vrp165YpHmI6Zzd3DJi3GAPmLYazmzvX4dgcgY8zQr56CyFfvUXr5c3E7pN5qVSq2y6ut3xRRc+TSCTlenbHjh3x5psFFc2/+OKLYtfb5eTk4Ntv9QszmRLv4sWL4eXlpfugd1m5VfRv111k9//FrKNoBfuqza36eH9Xf0xoNgH+rtZJBAt/n+CBB08RFQerKGv/HZICiqQkXJMa/hwt+vOqevXqBudcvXrVYBRcqVTi/fffx61btzBv3jyT36gv6uLFi1Cp9N9i8Pf3N3hD31hc//xD7Q0dmVKp1BW9mz9/Pny9qpRyRdmlp6cbHDPWGSkmJsYgyff29sZff/2FiIgIVK9eHU5OTvDy8sJrr72GWbNmISkpyezxEkK4YfeZRuF3Nk2t3Fn0vNJagZRk27Ztukr2x44dw6hRowxG+hMSEtCtWzckJCTores3pU/8nDlzkJ2drftITEwsd6yk4mr7uyK/7BKfAY5N61Di+cREhd8EY/jA0P2chWINjfwagc/wwWf4aORnn3UBiOOI6/UB8oyMKAqF+m0ei3sDu+iMs/fffx/Hjx9H7dq1KxSXsVl3RWMqLi6aBefYfvzxR9y9exdNmjTBJ598At+qboCZi5Qam81ZeClKvsJF7/KtXLkS7777LhISEtCrVy80b94cYrEYsbGxWLJkCerVq4d9+/aZNV5CTKGRqpC2LhZp62KhkRadr0XKw+6TeQ8PD922XC436RqZTFbsPcoqLCwM58+fR3i4di3V5s2bERwcjK5du2Lw4MHo0KEDateujQsXLmDGjBmYM2eO7lpT1vg7OTnB09NT74Nw41J8Bq4nisECaBTsiddr+SLUp/xvBJFCGAbg8bUfIjerTa/nQlJuEuKy4wBok3qaYk9smVoshiYvD7WEhglx0WTaWILs4eGBgIAAvWPGph+XR/36hnUojCX4xuIqaa0zsW/Pnj3DggULAACrV6+GQCCAQMSHT4B5/l0CwMOHDw2S+VatWmHs2LEG5xauDZXv+fPn6N+/P86fP4/Vq1fjwoULem2WJRIJBg4ciAsXLpgtZkJMkRF1x+g2KT+7T+YLV5QvXCm+JNnZ2bptT09Po+/Ul0X9+vURGxuLbdu24cMPP4SPjw/OnDmDQ4cOITU1FWPHjsW1a9ewZMkSvWUBxn7RIJVTtlSJAWv+0+3fThZjbWQrDiOyMwGNAJG79sNOK9jn63+oPxiGgavQFXHZcTTFnti0hJGjAACRPj4GrxVtv2qsHevYsWP11tWbU4sWLfD22/qFNbOysgxmuBWNSyAQYPTo0RaJiVR+06ZNQ25uLgYPHoz27dsDALqOM2+L1Dlz5ugtt2rUqBEOHTpk9PfRwr+zFo0zv0UjwzCYNm2a3utKpdLgGCmZLC8Xu+bPwa75cyDLK72uFdGnkaqgSM6FIjkXrIbaPZmL3Sfz+SPigLaFiCkKryUqfH1F8Pl8DBkyBPv27UNCQgKkUilycnJw9+5drF69Gk2aNDGIsVmzZmZ5NrG8sVFXDI55uVTsTSDyijSrYDugod1WsAe0LenylHnIUeQgR5EDDWs4NZkQW6AWi/G494eQverk0tfbG+OqVNFLzFeuXImTJ08iLy8PV65cwddff613j759++Kbb76xaJy7d+9GmzZt9I5NmDAB8fHxyM7Oxtq1a3H6dEGHEhcXF2zatIl+PjuoP//8E3v27IGHhwd++OEHAIBcosSxNYZvRJXX8uXLsXfvXt1+ly5dcPbsWQQFBRk9X61WGxxjGAYtWuhXCm/VqpUuuc938eLFYivkE0P7v/8aqfFPkBr/BPu//7r0C4iejKg7EAa6AQCUL/JQJdI8OZajs/tkPj9JBrTT7E0p+vHkyROj11vDo0ePdNtvvfWWVZ9NKqZh1YKqprvGvcFhJHYm+iOALwCCmgI8oV1PsZ96eqp+kUx645rYqMTx46G4d0/v2OSAQNy6dQujRo2CQCBAWloa3nnnHbi7u+P111/Ho0ePwDAMevXqhT/++AN79uwpd3E7UwUFBeH8+fPYt2+frp3s4cOHUatWLXh7e2PcuHFgWRbe3t749NNPce/ePaPrlon9UygUmDRpEgDgyy+/1NU4Mmciv2rVKkyfPh2AtlbDt99+i6NHj8LHyMyWfMaWV/r6+hr833F2dja6fPPSpUsVC9qBpCc8NbpNTMfwGYiC3SEKdgfPRcB1OHbB7r+KrVu3ho+PDzIzMwFoC4qEhIQUez7LsnrrlLp06WLxGPNpNBr89592qnZAQAA6depktWeTilkb2Qpjo67gjTBfrI1sRaPy5qRRAql3tdsBDbmNxcJUGhXYVxk8n+GX2CeYkMpKev8+pDFXDY5nfD0fX0+ejL/++kv3plX79u0RHh6OuLg4/Pnnn9BoNDh69CiUSiU8PDzwxhuWfWNUo9FgzZo1WLJkCeLitLUqvLy88M4778Db2xvnzp3DvXv3kJWVhY0bN0KlUmHu3LklJlfEPi1duhT3799Hw4YNMWXKFLPeW6VSYdq0aVi9ejUAoGXLlti8ebNJA0qFl5PmK65ws5ubm+734XypqanliNgx+YZUw4vHDwEAQbWp/V9ZVYkM162Tp1F587H7ZF4oFOKDDz7Ali1bAAAnT57U6/9e1LVr13Rr693c3NC1a9cKPV+hUEChUMDFxaXUdX///fefrhVJZGQkBAK7/+uxG14uQuwc82bpJ5KyYxnj23bKTeCGPJW2Fdfunrs5joaQssmNiUHikI8Mjt8Y/TGGDh4MpVKpO7ZkyRLMmDFDtx8dHY2BAwdCpVLh2LFjOHHiBDZu3Ijhw4dbJFaWZTF48GBER0frjvn4+ODSpUu6AndKpRL9+vXDwYMHkZ6ejqVLl2Lfvn04c+aM0ZZ1xH5t2LABAHD37l2TWx3//fffelPb4+LiULNmTb1z4uPjMXjwYFy4cAFOTk6YN28eZs2aZfA74JEjR/D8+XMMHDgQ7u4FMwGNLfkorg2yseOWqklBCLEOh8gWp02bhl9//RUajQbR0dH44Ycfiv1G/Ouvv+q2J0yYUOGqudOnT8dPP/2E5cuXl/pObv76Kz8/P3z++ecVei6xrmypUrdunkbmzSx/ir2D4PF48BB5oI53HYS4Fz+LiJDKRpGUZDSRVzZujHELFugl8m5ubpg8ebLeeREREZg7dy4eP34MQDtqPm7cOHTo0AG1atUye7xbtmzRS+QBoF+/fnqV6oVCIWbNmoWDBw/qjsXFxeHjjz/GH3/8YfaYSOU1atQovHz50uC4WqlB3I00JKQ8wbV75/Veq1atGiIiInT7Xl5eeq9v27YNEydORHZ2Nt544w1s2rQJDRsan4H2ww8/4O+//9YtTcnXpk0biEQivbbKEonE6D2MHS/cEpkUT5aXqxuVFzo742XSM44jsj1FK9n7j3Gc3+0sySHmcDZt2hQjRowAAKSkpGDZsmVGz3vy5AnWrl0LQJtQF24TV5hSqURkZCQ8PDzQvHlzoz0+i9q+fbvRIiWFX9+/fz8AbfGT/N70xDYULoBnrBgeKSdpFqCUAQnngec3gA9+4joiQkgx4np/aHCMcXXFhfbtDCpu161b12hl7saNG+vty+Vy3cw6c8sfaS2sUSPDbhlFYwK0hdDyp+UTx/D5559jyZIlBh8danyE4b2m4e3X3jW4pnbt2nrn5i/PyMjIQP/+/REZGQmFQoGlS5fi3LlzxSbyJfH29kbv3r31jmVmZhq0Y5ZKpQZT7AHoKvKTkh1cshBCJ2cAgFImg19oDY4jIkTLIZJ5QFs1N7+y5xdffIHNmzfrvf7w4UN07doVMpkMIpEI+/btK3ZNXFRUFLZt24bc3Fxcv34dEydOLPX5ly9fxujRow3a4+Xl5WHhwoW6Nxt++OEHDBkypByfISF2aEcE8LzQ2tsDn3AXi4WJFWI8ytIWwKzjXQcCnkNMnCJ2QpGUBE2RHu1ODRui7pnTuPXwocH5xgpxFXf8+vXrZojQkLE34o09v+hoaj5LxUVsi0bNIi0xFzkv5aWf/EqnTp2wZ88eANoke8aMGeDz+WAYptiPv//+u9j7zZ07V+/NMZZlcfWqft2Kon3rAeDDDz8stko+MeRfvSZEzi4QObug96dfch2OzSm8Tp7WzJuPwyTzrq6uOH78OLp27QqVSoWRI0eiYcOGGDBgADp27Ijw8HA8ePAAVatWxZEjR9CuXTuT71201UdxNm/ejJo1a6JTp04YNGgQOnfujMDAQPzf//0f/Pz8sGfPHsycObO8nyLhUOGe8tRf3oxS7gAatfZDkcd1NBY19fRU1PHWTu99lPUIyzsu5zYgQkykFovx+N339I45N22KsN/3ge/pCZVKZXBNWdb0Fp4+bE5licsYS8VFbE3Z244U1xu+vJo2bapbqplv+fLlun/PLMvixx9/1Hvd39+/2JmqxFCvmXPB4/MRUDMMH6/eCGc399IvIsQKHGrox9/fH0ePHsWhQ4ewZcsWXL16FQcPHoSnpydatWqFfv36YcSIEaVOcY+MjMSpU6ewf/9+1K1bF6tWrSr23MWLF6Nbt244ffo0zp8/j8ePH+Pff/+FSCRCUFAQOnXqhD59+qBv377w8PAw96dMrEQsU+JOsli3TWvmzeDpeUAu1j8WsY2bWKxApVHpjcx7igzbDRFSmajFYjwdMRLy27cNXuM5O+u2a9QwnI5qbLpvcceNXW8ONWrUMOixbez5xcVqqbiIbZBLlFgyfTtOXTgKAMiQGq6hfvz4sW6Qpnbt2hg/frzF4pkyZQrc3d0xffp0iMVi7Nq1C4mJiWjZsiUuX76Mixcv6s5t2LAhdu3aZVCMjxBLojXzlsGwZXkbmlR6YrEYXl5eyM7ONtp7lFhG069O6O3HfvU+R5HYCWkW8F2RX5SdPIE5iZyEYw0DDw/E7QxtUtSoSiPs7LGT44gIKVn8kCFGW9CBx0O9/y6A/+pn0IMHD9CwYUNoNBrdKS4uLsjMzDTohR0WFmawFv3EiRN47z39kX+9OOLjjRbIK+3Xm//7v//DwoUL9Y6NGDECmzZt0jv2zz//oEOHDnrHqlWrhqdPn1L7SAe2f9lV7D20E9vO/FD6yQA6dOiAM2fOAABq1qyJp0/L16fcWEX8wtLT07Fx40acOHEC9+/fR3p6OgQCAQICAtCyZUv06dMH/fv3N1qzghRv57zZut7yftVrYOD87zmOyPakrrkB5QvtLEthkBsCxr3GcUSVm6k5nUONzBNCbMT2fobHAgwLU9kLsUKsS+T5DB/3Xt7jOCJCSqYWiyG9dt3oa7X//EOXyANAvXr1MHv2bHz77be6Y1KpFMuWLdMrNPvbb78ZJPL9+/cvMZGviM8++wy7du3Cw0Jr+vfu3YvZs2ejQYMGALRT6b//Xv+Xdj6fj59//pkSeYI36nfBG/W76PY/WdPJpOvi4+MtFJG2gPOnn36KTz/91GLPcET5iXzRbVIGbDHbpEIomSfEDI5MaYfuK87qtkkFJRcZ7QtqCgy235HqiScLimiqWTXchbQWj1RuiePHA4VG2gEAPB5q/r4PohDDloqLFy+Gl5cXFixYoGuP9fnnn+PYsWNo1KgR4uLi9Fq98fl8TJgwAUuXLjX6/EWLFunahInFYqPnFK5B4+vra9Dy1d3dHWfPnsXw4cNx/Phx3b3atGmD9957D15eXjh37hzu3St4cy04OBhr1qxBz549i/vSEAfRaVhDbP/qAjSvOi5+OLM5twERi/ILrYH0xKe6bVJ2DJ+BKJh+vzE3mmZvZ2iaPbF50izg+1oAqwEYPiBys+vp9QDw5m9vIk+ZB/bVW9XH+x6nHvOk0lKLxXjwxpt6yTzj7o4GVy6Xeu2LFy+wc+dOnDp1Crdv30ZaWhokEgmcnJzg6+uLBg0aoEOHDhg0aBBq165d7H3KOk25Ro0aJY6G/vfff9i9ezcuXryIR48eITs7G0qlEu7u7ggJCUHTpk3RrVs39O3bF66uriY/l5hXXrYct/9JQqP2IXDzcir9Agva90MMMpK1U4arBLuhz6yWnMZjayrT36UpZHm5OLhEuyyn18y5VACvHDRSlW7dfJXIcPBcaEy5JDTNnhBim/aMAIRugOJVm6tx/3IbjxWwLKtL5N0EbpTIk0rt2cRJBqPyYQf2m3RtUFAQpk6diqlTp1YoBnNPU37jjTfwxhtvmPWexPwk2QpcPhKPWq/5c54AZiTlQqnQ6LZJ2VSmv0tTOLu5Y8C8xVyHYdN4LgIqemcBlMwTQiqX1HuASgLw+Nqk3se+p7OJFWJIVVIA2vXypra6JIQLarEYsiLV6xl3d6NT6wmxV+IMKRQyNQCA4dHyX0dAI/OksqLqLYSQykWRU9Bb3gFWAU09PRWuQlfwGT4AoK5PXY4jIsrUVKStWg1lairXoVQ6CSNHQZOXp3fM1FF5Qopja//nohdc0m2zGsAvxI3DaIg15CfyRbeJaTRSFdLWxSJtXSw0UhXX4dgVSuYJIZWXg4xS1/WpC1ehK1yFrljdeTXX4Tg8VVoa0n/6Caq0NK5DqVQUSUmQ3bqld4zn4UGj8qTCbOn/nFyi1I3K5+v+CbXYIqQkRXvME/OhafaEVNCd59noueocAODQpLYIr+rFcUQ2SpoFuHjrH7PjdnT5FrRdgP6H+gMAdvfcDU8RFa4klVPcB70NjtXa/7v1AyEO649N2iUeB1deB1/AzXiUNFdhcGzH15eMnElKolZp6w38sek2hnxV+etV9Jo5V2+aPSGVBSXzhFRAtlSJbiu0Bdr4PAY9V53D40XdOI7KRu0cDIw4WrDP8O26HV2+2f/MhkQp0W1v77ad44gIMaQWi6HJ1S/yVfPAfhqVJ1Yly1Xq/VlZ5GXJuQ7BZlW2v8viUAG8ivHqGYbUVdcAAAGTqI2jOVEyT0gFjI26ottWa1jweY4xLdzspFnAi1j9Y9VaG47U25mk3CTEpmk/bx7Dw+3026VcQQg3EseP1z/g5gaX+vW5CYY4LGd3IWS5Sji7CzkbmWdZFrJcJTRqFjw+A2d3IRUuLQe1SqP7u6zsqPhdxWikKl0iz4j4SFsbi5Cv3uI4KvtByTwhFdQ4xAO3krRt1A5NastxNDZqR4ThMQcYlc+fXg8AGlYDdyH9glAZJM+aDQBIHD0GjLDy/6JpDaqihckUCjzs8D9OYiH2h1VqR2eTZ81G7aNHij3vvZGNsGvRZfSa3Az+1T2sFZ4euUSJY2tuAgC6jmsCJ1f6HlEeaQk52LXoMt4badnldImJiTh//jzOnz+PmJgYJCQkICMjA3K5HK6urvDz80Pjxo3xzjvvYNCgQfD39ze4R9HidyHv9MDWrVtx4cIFPHv2DHl5efD29kb16tXRuXNnDBs2DOHh4SbFd/fuXWzbtg3//vsvHjx4gOzsbCiVSnh4eKB69epo3rw5+vTpgx49etjsm0aF18izCjUYEZ/DaOwPJfOEVMAP/V9D9xVn4ekswJEp7RDq48p1SLYp9S4gKFQNeNy/dj8qn89N4IY8lbY6+J5eeziOhgCAOitL++fLl9wGUpkplVClpHAdBbEz+f/3KrMjP8UiIzlPt91nVkuOIyIladiwIfJedeBwcnJC586dUatWLTx79gwnTpxAXFwc4uLicOjQIcydOxfz58/H9OnT9e6hUirw4vFDyJRK7L/9GJe/+lb3WkhICAYNGoTU1FTs378fMTExWLp0KT755BMsW7YMfL7xxFWtVmP69OlYvXo1NBpt/QCBQIBevXrB29sbJ06cwI0bN3Djxg1s2bIFLVu2xN69e1Gjhm226xWGeED5auArcEoLjqOxL5TME1IB06Kv623vGUfThsrFPxzITtBuh7QGgppwG4+V7O65G/0P9YeHyAO7e+5GiDutP64M+N7eUL98Cb6vL43Mv6JKTS1oFckwEAQEcBsQsSusUqn9P+ftzXUopcpP5Ituk8otLCwMR48eRf1Cy4MePnyIzp07IzExEQCQm5uLGTNmIC0tDYsXF6yPz3iWCLVGg81nL+NRaobuuL+/P65du6Ybzd+wYQNGjx4NtVqNlStX4vnz59i1a5fReGbNmoWVK1fqHduwYQOGDRsGAEhNTUV4eDgyMrTPi4mJQadOnRAbGws3N+u0QmRZFps3b8asWbPwstCb2x06dMCZM2dMusepU6cQfWknLv55DgkZSchVSMBbxoOnpyfq1KmDN998E4MHD0bLlqa9KXb58mVERUXh1KlTSE5OhkQiQUBAAMLDw9GrVy8MHz4crq6ONbDGsKwDNHJ2IGKxGF5eXsjOzoanJ1XFtrQmX52ARKFtUeMq4uPmV+9zHJGNkmYB+0YDQ3Ybr2pvp8QKMaaengoAWN5xOVWyrySkt28jvm8/1Ny7By6N7L+jginuv95ab7/+ZareTczH1P9zedly3P4nCY3ah8DNy8mKERbY98MVZCRri5ZWCXZFn1mtOInD1lnr79Ld3R15eXk4efIkOnXqZPD6gQMH0Lt3b71jDMMgJiYGzZs3hywvFz9/PBj/PX6K3Zf1a/tMnToVP/74o25fpVLBz88P2dnZumMbNmzAqFGj9K5LS0tDcHAwVKqCfut8Ph+5ublwdnbWHRs8eDB27Nihd+3KlSsxadIk078A5XTnzh2MGzcOZ8+eNXjNlGQ+PT0dEREROHXqlO5YlSpV0L17d8jlchw6dAgSiUT32kcffYT169frff6FyeVyTJgwAZs3bwbLshAKhejZsycCAwPx559/4tGjRwCA0NBQbNmyxejfta0xNaejPvOEVETh98LofTFSRvmJfNFtQioLtViMJ337QZOTA01ODqDRUDs6whk3Lye07hnGWSIPaHvK+4e6wz/UnfrLV4A1/y5DQkKKTe569OgBDw/9+gssy2L7dm1nmYNLFiIorC4uPkkwuLZ5c/2q7AKBAE2a6M8snD9/PtRqtd6xixcv6iXygHaUv2giW716dYNn/vPPP0Y/D3ORSqWYO3cumjVrhrNnzyIoKKjM91CpVOjWrZteIi8SiXDhwgVs3boVO3fuxKFDh/Su2bZtm25WgrH79e7dG5s2bUL+GPTOnTuxd+9e/Pzzz4iNjUWLFtqp+4mJiejevTtOnjxZ5rhtFSXzhJRTtrSgnYqriI/6QdwU47F50ixgRVMg5VUl932jOQ2HEFLg2cRJkN8u6LKgkcmoHR1xaE6uQvSe3gK9p7eg4nc2YNu2bdi5s/iCunw+H3Xr1jU4fv/+/cIn4dnLbINzjCW6RY8lJibizz//1DuWk5NjcJ3QyJIukUhkcEwsFhscM6cvv/wSixYtgp+fH3bs2KG33MBUhw4dwuXLl/WOvf7663pf506dOqFq1ap65+zatQs3b940uN+yZctw/Phx3X79+vXRp08f3b6Li4tenQOZTIahQ4da/GtVWVAyT0g5jY26gvpBHnAT8cEA2Di8danXECN2RACKXEDhWGsPk3KTcDfjLq6mXIVcLcfyjsu5Dom8IvD3h98nn0BgpKoxIcT86P8csZTevXvj7bffLvEcFxcXg2P5Rel6zZyLXIkUGiOzL41NCTd2r3///Vdvv76Rtp7GEnxjyWidOnUMjpkTy7KYPHky7t27h4EDB5brHufOnTM4FhoaanDMlJkHYrEYX3/9td6x/FH4ko4lJydj6dKlJsVr6yiZJ6QCBHwewoM9ER7sCS8Xeoe+XFLuaJcosK+mofVZz208VtL/UH8wDANXoSvisuNovXwlIgwIgP+kiRBSkTdUXbwIyC8mxOOh5r693AZE7BL9nyNcSk9PNzjWuHFjAICzmzv6fDbP6HX5CX9hRafPA8C1a9f09lu0aGHwBkNWVpauEF++oqPUAoEAo0dbdvbiggULsGLFigrV3TLnzINdu3bpuhHkq1atmsF1xt4s2LJlCxyhNBwl84SU05c9w3E5PhOX4zPxZU/T+omSYjAMwLxq3+IAxe/ECjHylHnIUeQgR5EDDWv4CwEhlUHy7Nng8fngeXjApXkzuBgZUSKEEFslFot1xdPyMQyDIUOG6PZ9fX2NVpA3NnJuLJFNS0szOLZ79260adNG79iECRMQHx+P7OxsrF27FqdPn9a95uLigk2bNqFZs2alfk4VYWxmQVmZc+bBsWPHDM6pUqWKwTF3d3eDNwwSEhJw69atUuO1dZTME1JOA9f+BzcRH24iPgau/Y/rcGxXQCNA5A6IrNNqpTKYenqq/rvF9v/GMbFR8vsPoJFIoJFIIL//gOtwCCHErHbt2mVQoG7SpElo2rSpbp/H46F9+/YG18bFxZl0rHB1+3xBQUE4f/489u3bp2vLdvjwYdSqVQve3t4YN24cWJaFt7c3Pv30U9y7dw+RkZFl/vy4EBkZCR8fH71jRWcZyOVyPHz4UO9YaGgoevTooXcsJibG4P7u7u5Gn1u0kCFgOCvCHlEyT0g5JGZKIJapIJapkCdXUy5WEX3Wch2BVYkVYtxOvw321b8aHsMDj0ffiknloUhKwt0WLXG3QUNocnMBtRpgWfo+RxyeOEOK9dP+wfpp/0CcIeU6HFJBeXl5WLBggd6xAQMGYNmyZbp9WV4uds2fg+ZVDKedFy1sl5SUhLt37xqcx+fzDY5pNBqsWbMGM2bM0CWsXl5e6Nu3L0aNGoUGDRoA0E6/37hxI1auXInMzMyyf5Ic8Pf3x+HDh/UK3D1+/BjT241A8q14PH/+HJMmTdJrTVetWjUcPHhQb2aASqXC06dPDe7v5GS8A4Kx448fP67Ip2IT6DdIQsqh+4qzYF5tq1kWtf1dOY3HZkmzgLXttNv+jjF9d+LJiZCoCn6AaVgNdvfczWFEhOiL6/0hUOiXLACARgPnevW4CYiQSiL6m8tGt4nt0Wg0GDp0KBIStC3nGIbBZ599hh07dugl3weXLAQAvFanFrq0bql3jyNHjmD16tWQSCR4+vQpRowYYXQdvZeXl94+y7IYPHgwPvnkE91Ivo+PD65cuYI9e/Zgw4YNiI2NRa9evQBo1/QvXboULVu21MVb2b311lt48OABVqxYgUB3PwDAj/9uQUiTWggODsb69dr6SHXr1sXy5ctx9+5dgyUExVWjN/bmCKCtKVCUsVkR9oaSeULKgUXBzGg+j4Gz0PAbCDFB9EcF22n3iz/PjjzK0l+bx2f4CHGnVl+kEjHyyygAhK75xcqBEFLJsCyUcjWUcu1sFWKblEolhgwZgn379gHQTnk/dOgQFi9ebDBTTqNRIzX+CVLjn2BYl05YunQpvL29da9PmjQJbm5uqFmzJm7fvo1p06YZPM/Pz09vf8uWLYiOjtY71q9fP7314kKhELNmzdI7Jy4uDh9//HG5PmdrE4vFmDdvHr788kuk5GoLDIZ6BaFfky4YNGgQAl4Vu3z48CF++eUXbNmyxWC5g6Tom8qvMAxj8vHc3NyKfBo2gTIQQsooW6qERl3wy66zgIe1ka04jMjG+YcDaXe4jsJq6njXwf2M+5CotT+kontEl3IFIdZlLJUP3b4N/ApUNybEHvgEuSI1IVe3TWxPWloa+vbti7NnzwIABg4ciNWrVxstqgZAv6YNC0yfPh1jxozBqVOncPv2bYjFYnh7e6NFixb43//+h3///Rc//vij3i0Kr78HgA0bNhg8plGjRgbH8ivqF/bnn38iLi4OtWrVKuUz5U5GRgbatWunt+SgRXAj/DZoKWrNaAtRVXe8ePECb731FuLi4nD//n1MmjQJhw8fxqFDh3SF7Fxdjf8fK65CvbHjxgoX2htK5gkpo7FRVyBTs+DztO8A8nkMtaUrr4ht2tH5oKbabQewuN1i9D/UHx58D+zuuZtG5UmlokhKAl61AeK5uQE8HupfvsRxVIRUDjw+D0Invm6b2JZTp04hMjISycnJqFq1KtasWaObyl7Yhg0b4OHhgYiICPD4fATUDNN73d3dHb169TJ6bUpKisGxVq30B3xiY2MNzik82p+v6PT8fNevX6/Uyfz06dMNagfM+OFz1B/8vm4/KCgII0eOxBdffKE7duLECfzwww/4/PPPAaDY9nhFR/DzGWsLWNzX0J7QdyJCysFVWPBfp16g8aqaxASybOBFrPZDZnxtlD25//I+uuztghxFDqp7VMcX574o/SJCrCiu1we6bU1eHmrt/53DaAipPOQSJdKTcgtNsadp9rZCoVDg008/xbvvvovk5GQMGzYMd+7cMZqMA8Do0aPx6aefAgB6zZyrO154uzgPHuh3/fDy8kKXLl30jhlLOsvSD12hUJh8rrVJJBLs2LHD4Lj/P0qoMmV6x4zNPFi7tqAoskAgQI0aNQzOkcvlRp9t7Hjt2rVLjdnWUTJPSBn90P813XbTal7YOLw1h9FYXmJiIqKjozFlyhS8/fbbqF69Otzc3CAQCODp6YmwsDD06tULK1euNNpLtSS35rdB2zUpYOYkgvGtAYZhwDAM4uPjS702/9yyfli6R2tJIg5H6LZvZ9zmLA5CjFEkJUHzalQ+nyiEZo4QAgBHfoqFSlGwCIVG5m1DbGwsXn/9dXz//fcICQnBsWPHsGXLFqMj4SWRK5T4ZuEi3Tr74pw8eVJvPzIy0qB3u7EE1Vil+uKq1xu7vrK4e/culEqlwXEPvitSVlzVO2bs7yAhIUHv827RooXBOcWtgzd23Nj19oam2RNSRrN230CjkIJpO/Y+xb5hw4bIe/ULvpOTEzp37oxatWrh2bNnOHHiBOLi4hAXF4dDhw5h7ty5mD9/PqZPn17iPaVSKebPn4+lq1KgMl5ry+6IFWKoWf2pYcs7LucmGEKKUIvFePze+/oHHWCtISGmykjK1Y6esoBSoUbXcU24DomU4sWLF3j99dd1I9mJiYno2rWrydfL8nKxYeIoAIDIzx8LlyxFQEAAunXrBmdnZ4Pzr1+/rluLD2inkn/99dcG5/Xr1w8LFy7UO1a0DzsA3Lp1y+BYtWrV0Lp15R1EMjbrANDOPGAVaoNjxhSeedClSxf8/rv+DLGMjAyDa/Ly8gxmLISGhhqtRWBv6G1FQohJwsLCcOPGDV0rlv379yM2NhahoaG6c3JzczFjxgzMmTOn2PscO3YMjRo1wnfffQc/d5E1Qq8Upp6eCld+QTGXcN9weIqooBipHJ5NnKTtJ19I7YMHOIqGkMonP5EHAIGQBydX+34j3x7IZLIKTUnf//3XUMikUMikyHiWCABITU3FsGHDDCqtP3r0CAMGDNAlqJ6enti1axd8fHwM7vvZZ5+hbt26esf27t2Le/fu6fYVCgW+//57vXP4fD5+/vlng4r7lUlxswayZTkQhnjoHTM288DV1RX+/v66/YiICINCeM+ePTO4LjEx0eDYsGHDKvXXylzs/zM04vDhw+jfvz/CwsLg4uKCoKAgvPXWW/jxxx/x8uVLiz03JiYGkydPRsuWLeHr6wuhUAgvLy80bNgQw4cPxx9//FGmNTOEG4Ur1ztSFfv169ejfn39XvB169bFqlWrDM797rvvcO3aNYPjt27dQrdu3ZCQkICJnWvg3jR/g3MsjcvKpvWr1IeHyAMeIg+sf389Z3EQUpgiKQmSK1f0jjk3bUpT7Al5RZwhhVKunUbG8AAU0xqL2Je0hHjtiLJGA6W8YL33rl27EBYWhsGDB2PSpEno1q0bGjVqhIcPHwIAWrZsib///hvt2rUzel93d3ecPXtWby29WCxGmzZt0L9/f3z88cd47bXXcOTIEd3rwcHB+P3339GzZ08LfbbmERQUhLZt2xocf8S+gP9I/TXyxmYefPDBB3oJuJeXF/7v//5P75yrV68Wvczgd86goCDMmDGjTLHbKodK5tPT09G9e3f07NkTe/bsgUgkQo8ePdCgQQNcunQJ06dPR+PGjQ3Wu1SUVCrFsGHD0KpVK6xatQq3bt1CkyZNMGDAALz99tt48eIFtm7divfffx/vvPMOXrx4YdbnE/PychFi55g3sXPMm3Y/xT5fSEgIOnXqZPS1Hj16wMND/91WlmWxfft2g3NVKhVat26NS5cuYdVHjeHlXLFvQTVq1ND+oC3lY926dbprRo8eXaFnltfyjssh4AnQwLcBjvc9TqPypNKI+6C3QW/56hvozSZC8kV/cxl4lb+zGsAvhJagOAT2VX0eHg+e7h7Yt28f5s6diy5dusDb2xt//PEH1qxZg0uXLqFOnToYPXo0Dh48iMuXL5danycwMBDHjh3DhQsXMH36dLRt2xYuLi44fPgwtmzZgufPnyM8PBwDBw7Er7/+iocPH1b6RD7fqlWrDEbTt97aj1xlwWyG58+fY9OmTXrnVKlSBd99953B/WbOnIl3331Xt3///n292gUymUyvHaCTkxO2bt1a5roItophHWQoWCKRoH379oiJiQGfz8e6deswcuRI3esPHz5Ejx498ODBA4hEIvz111/FvqNWFizLonv37jh27BgA4K233sLOnTv1pibn5eVh1qxZ+OWXXwAA4eHhuHjxItzdy14lXSwWw8vLC9nZ2cW2dCAVky1VYmyUdhRrbWQru0/o9+/fDz8/P7z99tvFntOyZUuDd0p79OiBQ4cO6R2Ty+UQCoXad12lWcBvA8F8fMLgfnFxcahZs2aJcTEMgxo1apRaLE+tVqN+/fp4/PgxqlevjkePHul6mBLi6KT37yP+g976B/l8NLxtOGJCiKNaP+0fsCyrK4A3asnbNM3eAez8cjbSE58CAPxCa2Dg19+XcoXty8zM1FvPf/v2bRw/flzvnGrVqiEioqCg7+uvv663DwAXL17E8OHD9ZYOVA+tjo6dOkKpVOKvv/5Camqq7rWWLVti+/btBjNA88lkMowbNw5bt24FAAiFQvTq1QuBgYH466+/dF0EqlWrhs2bN+Odd94p51eg8jA1p3OYZP7jjz/Gxo0bAQCLFi0yuqb3yZMnaNSoEWQyGfz8/PDw4cMKv6sTHR2NgQMHAtC+4/Tw4UOj62dYlsU777yDU6dOAQDmzp2Lb775pszPo2Te8gauu6C3v3PMmxxFUnm8/fbbOHfunN6xbt266U0RMyDNAqI/AjPC8BxTkvnGjRsjJCQEJ04YvhlQ2G+//YYhQ4YAAFavXo1PPvmkxPMtRawQY+rpqQC0o/Q0Mk+4phaL8aB1G4PjNQ/sh0sxv1AR4ojEGVLt6DyAiP97HZ5VXEq5gtgDWV4uDi7RJra9Zs6Fs5v9tyKOj48vcw/7YcOGYcuWLQbHFTkybBu9An/cP4vb6Y+QlPkCuQrt6Lynpydq1aqFli1b4sMPP8R7770HxoTlK5cuXcKvv/6K06dPIzk5GRKJBP7+/ggPD0evXr0wYsQITpdTmhMl84XcvHkTzZo1g0ajQWBgIBISEiASGS+8NXXqVKxYsQIAMHv2bKPTPcriww8/xP79+wEAEydONLq+ON/evXvRr18/AED16tXx9OnTMj+PknnLo2TeUIMGDXD//n29Y6X+/9nSAwDKncybgmVZvPbaa7h58yYCAwMRHx9vtAKtpYkVYry35z3kKfPAZ/ho5NcI27sZLkMgxJrihwyBNEZ/Ro1Lixao+Rv92ySEEFIxaetioUguaBcnCnaH/5imHEZkW0zN6RxizfyyZcugebUeMCIiothEHgCGDh2q2/7pp58glUor9Oz8YhiAdvp8SQq/npCQALFYXKFnE/PLliqhUmtwJ1kMlYZ1qAJ4xRGLxXj06JHeMYZhdKPhRkmzgOc3gITzFo3t0KFDunYv06dP5ySRB7SV7POU2vZ+alaN2+nUY55wT/7gIVBoXaNz48YIXfMLhxERQoih3MyXOL97O3IzLVek2hhZXi52zZ+DXfPnQJZnvLe5LeDq6wcAwsCCUfIqkSXnQaR87D6ZVyqVOHCgoL1O586dSzy/efPmuqn1eXl5urXu5VWRiQ/5vb1J5TE26goEfB7Cgz0h4DF2v17eFLt27YK6SEurSZMmoWnTEt59jf7IwlFpLV68GADg4+OD8ePHW+WZxeEV+nbrIqApmoR7orBagFwO8Plwfq0pau3ZDT7N6CKEVDJ5mS9xYc8O5FkxGc3vMZ8a/wQajVo33d4WcfH1A7TJO8NnIAp2R9VPW4PnIrDq8x2F3Sfzly5d0utj2LJlyxLPZxhG75yiRR/KqnBCc+fOnRLPLfy6i4uLXp9FUjmoNCzuJIt1I/OOLi8vDwsWLNA7NmDAACxbtqzkC1UyQC4GNOqSz6uAU6dO4b///gOgfXOhaMV9a1recTka+TUCn+HDXeiOPb32cBYLIYSQspFLlNi/7Cr2L7sKuUTJdTjECgon7+kJZV/2aqvUYgWy/3wKtVhR4XvxXATwH9MU/mOaWi2RN2f8tsLuk/n8KbaAtlVBiAl9cwsXfih8fXl88sknuoIOO3bs0HtjoTCWZfHzzz/r9nv06AGBgN7BqnQKz7Sw/3ITJdJoNBg6dCgSEhIAaN8I++yzz7Bjxw7w+fySL067/6pZr+UsWrQIgLav/JQpUyz6rNLkKHIQL46Hq9AVe3rtQYg79e8m3FM8iQPP1RU8V1consRxHQ4hldaxNTeNbhP75hdaQ7fda+ZcDiOxHnWOAjknE6DOsc1k2NbjLw+7T+YLj3YHBwebdE3hhL+00fTSvP322/juu+/AMAwyMjLQs2dPPHv2TO8ciUSCTz75RFfJ3svLSzc9mFQu+VPsw4M9IeDb/X+fYimVSgwZMkTX5zMoKAiHDh3C4sWLtW3nTMEwAK+UpL+cLl26hJMnTwIAxo0bB19fX4s8x1T9D/U3uk0IV9RiMViWhUYiAVgWTnXrch0SIYRUGr1mzgWPz0dAzTB8vHqjQ1SyNzeNVIW0dbFIWxcLjVTFdTh2y+6HftPS0nTbpraZK3yeWCyGUqmsUF/qWbNmoU2bNli0aBFOnjyJ2rVr480330S1atWQlZWFc+fOISsrCwDQsGFD/Pbbb6hdu3a5n+eIkpOT8ffff+PKlSu4c+cOkpOT8fLlS7x8+RJKpRIeHh6oUaMGWrRogb59+6JLly7FtsAYPny4ro9laaLHAo0aNcKtW6b1ZE5ISMDEiRMN+q+fPn0a//vf/0y6B9fS0tLQt29fnD17FgAwcOBArF69GlWqVDHtBtIs7awGjRpgLJPM5/dIdXJywowZMyzyDEJsWcLoMWAlEkCjAViWCt8RUoKu45roRuS7jmvCcTSO5+jqJQCAvYvngW+lWassy0KWoy1EvWXGBJPaplVWapU2kT66eglGLFtjtedmRN3R26ZK9pZh98l8Tk6ObtvJycmka4pWvM7JyanwyF6TJk3QvXt3qFQqnDp1Cn///bfe682bN8dnn32Gvn37lj5FuRC5XA65XK7bd9QK+JMnT8bevXsBAAKBAJ07d0bbtm2RmpqKs2fPIjU1FS9fvsS1a9ewceNGvP7669i1a5dZ2p+ZQqVSYfny5fjqq69surDhqVOnEBkZieTkZFStWhVr1qxBr169DM7bsGEDPDw8EBERYXiTHRGASqIdlRe6ATC+9KS8bt26pXuzZMSIEahatapZ718eu3vu1o3I7+65m+NoCAFkt25pZ8fw+dDIZFT4jpBiyCVKvUTeyZUK31qb9NXv8lJxNifPt3bhOEuRFsqJivNy5z0AQPqmm2AqOANVnadfX+L5oosVup8pWLW2e9nLnfcQNMMxOk7ZfTJfuLVcSS3pCit6nkQiqVAyv3PnTkyYMAGZmZmoUqUKli1bht69eyM4OBjZ2dk4ffo05s+fj48//hgnT57EV199ZXICsnjxYsyfP7/csdmbwMBAnDp1Sq/NX05ODoYNG4bff/9dd+zy5ct47733cO3aNbi5uRm7ldlcvHgRY8eOxY0bN+Dp6QkXF5cKtzy0NoVCgS+++AJLliyBRqPBsGHDsHz58mJnu4wePRo1atQwnsyn3tUm8co87YeZLV68GCzLQiAQYPbs2Wa/f3mEuIfg/CDLtuEjxFRqsfjV7BjtLz2Mhb8HEmLLDq26gdSnObrtfp86RoJQmbh4eEAqzoaLp5fVRuaLvnHg4ullledaglql0n79TCgErHlV4FGTZ/5p8dYsSqdxoEKVdp/Mu7gUtIBSKEz7R1T0PNdCfXjLavv27YiMjATLsvD19cX58+dRr1493ev+/v4YMGAAunXrhnfeeQfr1q3Dvn37cPjwYbRp06bU+8+ZMwfTp0/X7YvFYoSGhpY7Xlv3448/6iXyAODh4YENGzbg6NGjerMYHj58iF27dmHEiBEWi0csFuOtt96CRqPBoEGDsGzZMrzxxht4+tR2KqPGxsYiMjISsbGxCA0Nxbp169ClS5fy39A/HEi7A4jctds4YbZYnzx5gujoaADAoEGD9IpZEkK0nk2cBLi4AK9mCTnRsi5CipWfyBfdJtbTbeJMbJszFX3nzEdgWB2rPDM7LQVRsycDACK/Xwkv/0CrPNcSUp48wrY5U9Ft4sxSz+W5CqHJU4HnJqjwyDwXWLVGG78DzaCx+2S+cDuqwolcSWQyWbH3KIvMzEyMHz9e12t+4cKFeol8Ye7u7ti0aRMaN26M9PR09OrVC7du3Sq1PZ2Tk5PJywfsWa1atdC8eXN0797d6Ou+vr6oV6+eQXeC69evF3vP/L+3bKkSr83/Q+81T2cBYr96v9S4NBoN6tSpg59//hmdO3cu9fzK5sWLF3j99dd1b3AlJiaia9euFbvp4J0FfeYjtgEf+1QwygLfffcd1Go1GIbBnDlzzHbfihArxJh6eioAbYs6TxFNZybc4/F4wKufbbwiS8sIIQUEIh5UCo1umziGEz8vR0DNMN32gHmOUZjad2ADpK66Br+RTSAKqVjRP41UpVs3XyUy3Crt6RRJuUhddQ2+AxtY/FmVhd1/VyqcDOcXmStNdnbB1BpPT89yF7/bvn27bs2+QCDARx99VOL54eHhaN26NQAgNTW19F7dROeHH37A1atX4VnCuk9jMzNMWXoxNuqKwbEjU9qZFJeHhwdu3rxpk4k8oH1jy9QZLSZz8QaGH9Z+uHib7bbJycm6woUffvghGjZsaLZ7V8TEkxNx7+U93Ht5DxNPTuQ6HEJQdfEiXSV7UVgYqq1exXVIhFRaA79oDaETH0InPgZ+0ZrrcAixGUUL4BHLsPuR+cJTrpOTk026Jikpyej1ZXX+fMEa2Xr16sHdvfR3uJo3b46LF7UFIvJbfZGKe/HiBR4/fmxw/L333jPp+sYhHriVpH1j5uiUtxHqY9rSCz6fX6aCho7gl19+Mfp3UdiiRYv03phZsmRJqfddunSpbvbN559/XrEgzehR1iOj24Rw5fmcz+FS6GcbFb8jpHieVVww+sf2XIfh0Nx8fPFmv0Fw87Fem9leM+fi4JKFum1bxsXXj1iP3SfzTZoUtBCRy+VISkrS6yNvzJMnT4xeX1bp6em6bR8f06YSFy60FxcXV+5nkwLp6ekYNmwYVCr9Yh5Dhw7Fu+++W+x1GRkZWLNmDR4fOIgbN29DrZTD19cHI8+E4e2338aoUaMqzeivLYnesR1/nz1X4jnr16/X2y8tmX/58iXWrVsHQPsGTcuWLSsWpBnV8a6jS+LreFtnrR8hJdHI5dpq9gCcGzfmOBpCCCmZu48v3uo/xKrPdHZzt5up9WX5+vE9RPDoXB18D9OKhhdHI1WBVbNQpuRBGOQGv2GNKnQ/U5krflti98l869at4ePjg8xMbfurmJiYEpN5lmURExOj269Ioa/CVdKLrsMvTuHzeDy7XwVhMWfPnkV0dDSePn2Kv//+W69FYaNGjTB16lSMGjWqxHvUq1cPHh4e6Ny5M15v1RLnz5/HjRs3kJ6WhosXL2Lp0qUYM2YMfvzxxwoVSazMatasqasdYC5nRnoDIwvVNhh+uML39PX11fs7rkxWd16tt2aeEC6pxWLIbt7UVrLn8yEvZZYMIYQQx8H3FMHr3RoVvk/61ttQphR0LLLGennAfPHbErtP5oVCIT744ANs2bIFAHDy5EmjfbHzXbt2Tbe23s3NrULFvgr3MH/8+DFYlgXDMCVe8/DhQ912aTMISPFiYmLw008/GRyvWbMmunbtijfffLPUv4uPP/4YCxcuhKBQG5Rvv/1Wr7DaunXr8PjxYxw9etTk1ocOTZoFPL+hbUkndAMCy7+MxVZ4ijyx6f1NXIdBCKT37yP+g94FB0z4mUSIo6M+84SUnfJFntFtYn4OMfQ7bdo03Sh3dHR0iQW9fv31V932hAkT9FrbldX77xdUO8/KysK///5b4vl5eXn4+++/dfu2WjStMpg6dSpUKhWePXuGdevWoWrVqgCA+Ph4LFmyBE2bNsXUqVOhVqsNrp08eTJOnDiB7777DgKBANlSJQauu4CB6y5g/JQZaNu2rd75J0+exPfff2+Vz8vm7YgAFLmARg0o8gDW/hMJsUKMkSdGYuSJkRArxFyHQxxYfJ+++gc0GtTa/zs3wRBiI/IT+aLbxL7J8nKxa/4c7Jo/B7K8XK7DsTnCQDej28T8HCKZb9q0qa6XeEpKSrFV4p88eYK1a9cCAPz8/IptbaVUKhEZGQkPDw80b94csbGxRs9777330LRpU93+//3f/0Gj0RQb56JFiyAWa3/ZFwgEmDiRKl9XBJ/PR0hICEaPHo2LFy8iICBA95pGo8GKFSuMFkpr0aKFXmG8UVsv406yGHeSxRi19bLRrgTLli0z+saATcp5AZxerP3T3FLuAGyh/wN8jicHWfJzfSV/in3RbUK4xri7Q0QzwAghRI8sLxcbJo5CavwTaDRqXSE8Yjq/4Y0gCnaHKNgdfsOts17eUTlEMg8AK1euRIsWLQAAX3zxBTZv3qz3+sOHD9G1a1fIZDKIRCLs27ev2KJ1UVFR2LZtG3Jzc3H9+vVik24ej4eoqCh4eXkBAP755x/0798fqampeucpFAp8/fXXepXrv/32WyquZkahoaGYO9ewGuny5cuRkpJS7HWX4jNwJT4TYpkKuXIV7r/IwWuvvWZwXmZmJq5cMWxhZ5NyXgB/f2v+BDfzKSAvMjIdsc28zygrS32uryTlJuFqylVcfnEZdzLuQKVRlX4RIRagFoshqltXt8+4uiLswH7uAiLEBsglSmjUGqQl5kKjZtF1XPmLIhPbUTh5T094ymEktovnIoD/mKbwH9PUauvlHZXDJPOurq44fvw4unbtCpVKhZEjR6Jhw4YYMGAAOnbsiPDwcDx48ABVq1bFkSNH0K6daX3EAZS45rBp06b4999/dQngvn37UL16dXTs2BFDhgxBjx49ULVqVcybNw8sy8LT0xMbN27EjBkzKvw5E309evQwOKZQKHDq1Cmj5ydmSjBgzX+6fQ0LgGVRpUoVo+c/e/bMLHHarbXtAKbQt5xqrc3aZ74y6newH9SsdsZGnpLWjBHuJIwcBcW9ewAAnpsbXBo3plF5QkpxbM1N8Pg8+Ie6g8dnaL28A/ELLSiiZuut6bigkaqQti4WaetioZHSQIYlOUwyDwD+/v44evQoDh48iD59+kAmk+HgwYO4ffs2WrVqhSVLluDWrVt45513SrxPZGQkhgwZAjc3NzRr1gyrVq0q8fzGjRvj6tWrOHLkCEaMGIE6derg+vXriI6Oxt9//w1PT0988MEHWL16NZ4+fYqRI0ea89Mmr1SrVs3o8YSEBKPHu604a3CsfpBHsdXdzV313e4U/vowfGDwTu5isRKpSqq3L+DRu9OEG/mt6ABAk0dvLBFiCo2aRVpirm5knjiGXjPngsfnI6BmGD5evRHObu5ch2RzMqLuGN0m5ueQv1n27NkTPXv2LPf1QqEQ27aVbXowj8dDt27d0K1bt3I/lxiXmpqKkSNHonv37hg/fnyx5xVX+LBwFfo//vgDf/zxBz6ZOhM5Mv13EhsFe2Lj8Na4fe2y0fvYTfeBfaO1f27rC/DNWKFfKS1YL8/wgJ/fNN+9y0v96t/EvtHARON/r+UlVojhxHOCRC0BALgKXKk1HeGEWmxYeLHa6pLfhCaEaJN5pVyt2yaEkMrGIZN5Yl8kEgmOHDmC7OzsEpP5mzeNV6Ft0KCBbvv8+fNYunQprvLrg2GCkf+ju1moJ/Z/ol16cePGDYN7eHp6olWrVuX/JCoTyctXf6Zb7hkaJZCTbLn7l1X+52xGU09PBY/HA1/DBwDU960PT5Gn2Z9DSGmeTZwEp0aNIL99GwBQ88B+8D3p3yIhpcks1FIrk9prOYzCa+YPLlmIAfMWl3A2MaZKZLhuRL5KpP23IeYSJfPEbly8eBG3bt1C48aNjb7+yy+/GBwLDg42uqzi9qWzCGg/GBKldiR568g3dK8Zm5UxceJECIV2spbO1VebyLv6mW9kPuc5gEKjGnyR9v5cUytefa6+Frk9wzBwFboCoCn2hFt8Nze4tm4NAHCpX5/jaAip/OQSJRRyNcBqJ5PRuDwhpDKi3y6J3chvGXj06FFdX3lA24Zu6dKliIqK0jtfJBJh8+bNRpPwjAt7gIC6cKnVAk2qecLLRQiWZbFw4UKcP39e79w2bdoYrZRvs/qsB9Z1AD7aCwQ3M889F4dq+8uzGu16+ZkPK0fxu+Tr2s+1z3qz33p5x+WYeHIiHmU9Qh3vOjTFnnAmYO7nuh7zNfft5TgaQmzDkZ/02w77hVCvbEfRa+Zc3eg8Fb8rn6Jr5v3HNC3hbFIRlMwTm8fjFdRxvH79OmrXro33338f1atXh1gsxt9//424uDi9a+rXr4+1a9eiQ4cOesf5fO2UaLVcitRdX8IppAHEATUw7lZN/PPPP7h7967e+YMHD8bPP/8MV1fXYuOLjo7G5csF67EzMzMNzvnll19w+PBh3f7cuXOLbY1ok6qEaRNnAKjapHIk8hbmKfLEr11/5ToM4uDUYrEukee5uCDho0jUv3yJ46gIqfwyknL19rt/YtiWltgnZzd3mlpfARqpCopk7f8fYZAbGF7xXb9IxVEyT2xe9erVkZycjDNnzuDy5cuIjY1FbGws/vrrL0gkEgiFQvj7+yMsLAzNmjVDjx490KVLFwgEhv/8/+///g9nZdUQ8985yJ8/hPLlM4jvXcDm26fBsiz8/PxQu3ZttG3bFkOHDjXac76oY8eOYevWrSWes2vXLr39iRMn2lcy/zIOcPYq2CaEWMWziZN02xqpFLwS3ngkhGiJM6RQyLSF7xgeIBDxqS2dA5Hl5eqNzFM1+7JJ33pb2+FJqYHyRR6qftqa65DsGiXzxC5UrVoVgwYNwqBBgyp0H4Zh4BlaH1X5QchVaMDnMTgz638I9Sn/L8BbtmzBli1bKhSXTZNmadvSKfMAoRsQ0IjriKxCrBBj6umpALRT7qn4HeGKc6NGkL0qfldr/+8cR0NI5Rf9zWWAAcBqV4fRFHvHQgXwKkb5Ig8MwwAi7WxXngulm5bkUH3mCTGFSq2BVMWCz2PQJMSzQom8TfIIAjp8pv3THKI/0ibwIneAYSpXf3lzf66F5CfyRbcJsRa1WAyVWAxZbCygViP0160Q2UsLTUIsTOjEB8NjwPAYmmJPSBkIA92MbhPLoGSekCKepOXBTcSHm4iPJ2kO2IrGIwjoOMe8CS5fAAQ11X5UpvXylvhcCakkEsePh+LevYL9ocM4jIYQ2xHxf6+DYRgInfj4aMEbNMXewRQuekcF8MrOb3gjiILdIQp2h99wx5iNySVK5olVpYpl+PHPB0gVy7gOpVhh/m7IU6iRp1AjzN9+3lHk7Gsfsc34tp0rXL2eKtkTLsjvP+A6BEJskpOLAP6h7vAPdYcTTRF2OPkF8AbMW0zr5cuB5yKA/5im8B/TlKbYWwEl88SqUnPkWHHyIVJz5FyHYlRipgSxz7Kh1rBwEfIhsKMKnJx97V28geGHtR+VaVSeEDtXtC82taUjxDTH1tw0uk0IKZ0qU4akr84j6avzUGVW3sE7e0HJPCGFdF9xFgzDgM9jIFWqIeDTfxFSdvdf3kfbHW1x+cVlSJQSWjNPOOFcrx54Hh7geXjApUULuNSvz3VIhBBC7FzKiqtGt4llUKZCSBGuwoL/FmsjW3EYiZ2QZgFbemg/pFlcR2MVEYcjdNu3M25zGAlxVNL79yG9dg2anBxAo0HwD99zHRIhNkGcIUXKUzGSHmQhNSEHnYY15DokYkXZaSlYPSICq0dEIDsthetwbI5GqgKrUINVqLkOxWEwLMsWnYlHbJhYLIaXlxeys7Ph6Vn5WmG9s/RvPErLRRU3EYSVcNRbrWGRnqudhu7n7gS+HU2zV6o1yMhToI6/O/6a0cF6D97SQ39/+GHrPZsjzX5tBjVb8IPs3KBz1JqOWI1aLMaD1m30jrm2bo0av27lKCJCbMf6af9AKS/4/h1cxwu9p7fgMCJiTatGDIBSpp0aLnR2xqTNuziOyLakrYuFRqmBMikHABA063UIfJw5jso2mZrTUVUCYlWZEgUAICNPwXEkpUvLrZzr+isq/++AWE59n/q48/IOACDcN5wSeWJViePHcx0CIYTYpPxEvug2MQ2rYaFKk4AR8SEMcqNE3goomSdW5eMqQkaeotKOzGtYFlmvkl1vVxF4jP2NzPu4iqz74A9+Ata2026PPWvdZ3NArBAjMTcRHiIP1PGuAwGPvs0S6ypaxd65cWNUW72Ko2gIsS0R//c6di64BJVCg4AaHug6rgnXIRErCqgZhpQnjwAAgWF1OI7GBrHFbBOLod8yiVUtH9gMPVb9i60jW6NxiBfX4ejJlirR7rtTcBbyUS/IAwIeg51j3uQ6LLO5lZSNHqv+xfKBzaz74AOfaPvL52/b+TT7qaenoo53HTzKeoRHWY9wvO9xrkMiDoYFAD4fAMC4uKDWnt2cxkOILfGs4oIxy624FI1UKgKhCE6ubrptUjYMn4EomNr5WVPlGxolhCOjtl7W9Ze//yKH63Dsw4ubQPxZ7Ycil+torEbAE6CBbwM08G1AU+yJ1TnXqweeqyt4rq5wrleP63AIIcRm8Ph8BNQMQ0DNMPBevSlKTOfTvx4UyblQJOfCpz/9/LEGSuYJeeXBixxdJXuJQk2V7M1hbaHRjeRrQMQ27mKxkgVtF+Dey3u49/IeFrRdwHU4xMGoxWKwKhU0EgnAslTFnhBCTCTLy4VGrUZq/BNoNGr0mjmX65BsTubuBxAFu0MU7I7M3Q9Kv4BUGCXzhLwS5u8GiVIDAGgS4gkvFyHHEdkBtkhrEhdvTsKwpi/OfaEblf/i3Bdch0McTOL48ZDdLmiH+HzO5xxGQ4jtkUuU2L/sKvYvuwq5RMl1OMSKDi5ZqBuZ5/H4cHaj6eKk8qNknlhVgIcTpnSuiwAPJ65DMSDgMXAT8eEm4kNgRy3p8ln9ay/NAoSFfhBWbW6d5xLiwOQPHuq2NVIph5EQYpuO/BSLtMRcpCXm4shPsVyHQ4hNqRIZbnSbWA4VwCNWFeDpjGnvVs41NAI+D+HB9ru+2epf++iPgKAmQJq2RRuG7rfeszm0oO0C9D/UHwCwuycVHiPWJQqrBdnNW4BGA56bG1WxJ6SMMpLzjG4T+/f+hKmImj0ZABD5/UqOo7FNPBcB/Mc05ToMh0Ij84S88kP/13AnWYw7yWL80P81rsOxfSoZkHRJW/jOr55DTLEHgDln5xjdJsRqGAbg8yGqUxt8T/t9g5IQc5NLlGBZFkq5GmBZVAl25TokYkUnfl6uK3534uflXIdDiEkomSfklVm7byA82BPhwZ6YtfsG1+HYvrT7xrft3KOsR0a3CbE0tVgM2S3tenmeiwsUT+I4jogQ23JszU34hbhB6MQHGAbdP6E39gkhlRsl84QQ85NmAYo8QKN+1fTacdTxrmN0mxBLSxw/HmBZQK2GRiqFU926XIdEiM3h8XnwD3WHf6g7nFypEK4jKVy9nirZl51GqkLaulikrYuFRqriOhyHQck8IQASMyW4nZSNy/GZkKs01JauonZEAKy2MwBYNeBXn9t4rGh159W6avarO6/mOhziQOT39dsAha75haNICLFNXcc1MbpNHIOzmzsGzFuMAfMWUyX7ckjbeBPyJ9mQP8lG2sabXIfjMKgAHiEAuq04q2tL9yg1l9rSVVTKHeiG5Bk+IHTmNBxr8hR5YtP7m7gOgzgY6f370OTmand4PDAuLrRenpAycnIVovf0FlyHQYhNUj7LNbpNLIuSeUIASBRqo9uknNgic+sjtnETByEOQHr/PuI/6F1wQKOBc73K2TWEkMpKLlHi0MrrSE3IhVDEQ8QXreFZxYXrsIgVZael6FWz9/IP5Dgi22Ewrd7+OjxXWjTNnhAATUI8jG6TcmIYgMfXfojcHKaSPSHWphaL9RP5V2iKPSFlc2zNTaQmaEcTlQoNor+5zHFExNryE/mi26R0GVF3IAgpWJoQMLk5h9E4FodM5g8fPoz+/fsjLCwMLi4uCAoKwltvvYUff/wRL1++NNtzzpw5A4Zhyv3xv//9z2yxkOLdeZ6NG4liqDUsnIU8rBrckuuQbJs0q2Bb6AYENOIsFGsTK8QYeWIkRp4YCbFCzHU4xAE8mzjJ4JhTo0Y0xZ6QMtKoWbAa7YfDVW4lpIJYDQt1hhSMMx+imp4QVaWaA9biUMl8eno6unfvjp49e2LPnj0QiUTo0aMHGjRogEuXLmH69Olo3LgxTp48yXWoAAA+n891CA6h56pzuh/beXI1taWrqOiPtAm8yF07Qj94J9cRWc3U01ONbhNiKRq5XG+fcXVFjc1Us4GQsmMhcCr4tTji/17nMBbChcjvVxrdJiZgi9kmFucwa+YlEgm6dOmCmJgY8Pl8rFu3DiNHjtS9/vDhQ/To0QMPHjxAt27d8Ndff6Fdu3ZmebanpyeqVq1q0rkKhQJxcdrewN27dzfL8wmxOr4ACGqq3XagKfYqjUrXW57a0hFrkD96VLDD46HumdM0Kk9IOfD4PATWKPi/Q+vlHY+XfyAmbo7mOgybxPAZiIJpNJ4LDpPMT548GTExMQCABQsW6CXyAFC3bl0cO3YMjRo1gkwmQ58+ffDw4UN4e3tX+NkffvghtmzZYtK569evx5gxY+Ds7Izhw4dX+NmkZImZEjjxWEhedVFrFOxJbekq6oOfgLWv3ggbe5bbWKxMoVYgR5Gj2ybEktRiMdi8PO3Oq5lclMgTUj5vD6iLXYuuAAAGfE6/BzgaWV4uDi5ZCEDbY55a05WNT/96SFlxFQAQOIU6QliT2afZJyQkICkpydy3rZCbN29i8+bNAIDAwEDMmDHD6HlhYWEYO3YsAO2U/MWLF1stxny//KItWhQREQFfX1+rP9/RdF9xFnINAz5P++HhLKC2dBV14BPtqHxQU+22A7n38h74DB98ho97L+9xHQ6xc4njx2uXsgCAWg3nRo5Tn4IQc/t96TUInfgQOvHx+9JrXIdDrGz/918jNf4JUuOfYP/3X3Mdjs3J3P0AomB3iILdkbn7AdfhOBSzJ/M1a9ZE69atzX3bClm2bBk0Gu3Qa0REBEQiUbHnDh06VLf9008/QSqVlvu5IpEIgYGB8PLyMun8ixcv4to17Q+Q8ePHl/u5hBDrEyvEYFkWalbb2tBFQFM0iWXJHzwE4+amHZXn81F9w3quQyKEEJuUlhAPhUwKhUyKtIR4rsMhxGQWKYDHFu0xzSGlUokDBw7o9jt37lzi+c2bN9dNrc/Ly8OxY8fK/ey33noLL168wIoVK0w6P39Uvnnz5mjTpk25n0tMd2RKO7gKtf8Nmlbzoin25lC4p7wD9ZefeHKiXgK/p9ceDqMhjkAUVgvsqzecnRtTBXtCyiv9WQ4UUhUUUhVYDUvF7xwRFXCrkCqR4Ua3ieVZZM18eno6xowZg/Hjx6N5c277DF66dAmZmZm6/ZYtS247xjAMWrZsqatof/z4cfTp08eiMQJAZmYmdu3aBYBG5a0p1McVN+d34ToM++LiDQw/zHUUVvco6xF4PB48RB4AgBD3EI4jIvZMLRZD/vgJAIDn4gKG7zAlcAgxu12LroDhaZesqJQaKn7ngPyr10R64lMAgF9oDY6jsT08FwH8xzTlOgyHZJGRebVajY0bN6JVq1Z488038euvv0JepH2Otdy8eVO37eTkhJCQ0n/BrlWrltHrLWnLli2QSqXw9PTE4MGDrfJMAmRLlRi47gIGrruAbKmS63CIDStcvZ4q2RNLezZxEhiGAc/VFWAYMAJK5gkhpDxkebm6bb/qNdD70y85jIaQsrFIMu/u7o7u3buDYRhcvHgRI0aMQEhICGbNmoVHhdvoWMGdO3d028HBwSZdUzjhL3y9pbAsizVr1gDQrtl3c3Oz+DOJ1tioK0a3SQVIs4AtPbQf0iyuo7Ga1Z1Xo4FvAzTwbYDVnVdzHQ5xAE516+q2q61exWEkhNi2wtXrqZK94zm6cgl4fD4CaoaBx+NTJXtiUyySzLu5ueHgwYN48uQJPv30U/j7++Ply5dYtmwZGjRogPfffx8HDhzQFaWzpLS0NN22qW3mCp8nFouhVFp2xPbUqVN48EBb+XHcuHEWfRYpkC1V4k6yGHeSxVBpaIGU2UR/ZHzbznmKPLHp/U3Y9P4meIpo7TKxrCpTJkN69So0OTkIWfMLrZcnpAL8qnlgws8dMeHnjvCr5sF1OITYHI1UhbR1sUhbFwuNVMV1OA7FIsl8vurVq2Px4sVITEzEtm3b8Oabb0Kj0eDPP/9Enz59UKNGDSxYsADPnz+3WAw5OTm6bScnJ5OucXZ2LvYelpBf+K59+/ZoVMbWQnK5HGKxWO+DmGZs1BXUC9S++/rgRQ4VvyOE2IzEocN0VewThw7jOhxCbJpcosT+ZVexf9lVyCW05M7RdJs8U7fda+ZcDiOxXRlRd4xuE8szezI/b948gz7uQqEQgwcPxr///osbN25g7NixcHNzQ1JSEr766ivUrFkTAwYMwKlTp8wdjl5ruZJa0hVW9DyJRGLWmApLTk7WVdsvT+G7xYsXw8vLS/cRGhpq7hDtllylwbXEbOQp1Kgd4E795c3FQavZixVijDwxEiNPjIRYQW+qEctRi8WAWq39IIRU2LE1N41uE8fg7OaOAfMWY8C8xTTFntgcqyTzhTVp0gS//PILkpOTsWrVKoSHh0OpVGLPnj1499130bBhQ6xcuRLZ2dlmicfFpaAiqUKhMOmaoue5urqaJRZjNmzYAJVKhYCAgHJVzZ8zZw6ys7N1H4mJiRaI0j49Sskxuk0qQJpVMLU+Ypu2sr2DmHp6qtFtQswtYfSYgh21GjX37eUuGEJsnFyiRFpiLtISc6FR05I7QspKlSmDPCkH8vhssCoNtaazMotOsy+Ju7s7PvnkE9y8eRNnzpxBREQEBAIB7t+/j2nTpiEkJAQff/wxrlypWFEyD4+CtU+mVtSXyWTF3sOc1Go11q9fDwAYNWqUyTMHCnNycoKnp6feBzENwzBwE/HhJuKDYRiuw7EPDrpenhBrUYvFkN24UXCAz4dL/frcBUSIjTu25iaqBGsHbTKS89B1XBOOIyLEtqSsuAqGYcCI+FCmSsBzoe4q1sRZMl9Yu3btMHDgQDRr1gyAtrq7RCLB5s2b0aZNG7Rp0wZbtmwxSLJN4e/vr9vOysoy6ZrCswI8PT0hFFpm+vWhQ4fw7Nkz8Hg8jBkzpvQLiFkdmdLO6DYhZSVWiKHSqHDv5T2oNCos77ic65CInUosuhyLpZFEQiqKx+fBP9Qd/qHucHKlJXeOJi0hHssG9cKyQb2Q+jSO63BsEqtQg1XQ0i8ucJrMv3jxAt988w1q1qyJPn364MqVK9p3dl59sCwLlmVx+fJljBo1CsHBwZg5c2aZppKHhxdM9UhOTjbpmqSkJKPXm1t+O7quXbuiZs2aFnsOMc7TWYjwYE+EB3vC05l+eJtFl8VAwnntR5fFXEdjNRNPTsSjrIK2m1TNnliK/MFDoNBMIufGjTmMhhDbV3gknkblHVP0V5/qtrd9NoXDSGyPRqoCq9EArxqUCfwttzSZGGf2ZP7XX3/F7t27Szzn1KlTGDBgAGrUqIF58+YhMTER7KvRhfwEvnnz5li/fj3u3r2LL774AiEhIcjKysKPP/6IevXq4euvv9ZdU5ImTQq+Mcvlcr1EvThPnjwxer05PX78GH/88QeA8hW+IxWTLVWi3XendG3pqMe8mWzpDojctR9bunMdjdUUTuQLbxNibk5164JxcwP4fPDc3VF9w3quQyLEpjm5CtF7egv0nt6CRuUdFKvRaBNSUmYZUXfA8HhgnPlgRHzwhJVi0rdDMftXfPjw4Zg6darB8aysLCxfvhwNGjTAu+++i7179+r6t+evV3Z2dsaIESNw8eJFXLlyBaNGjUL9+vUxf/58xMfH4+DBg+jYsSPkcjnmz5+P6dOnlxpP69at4ePjo9uPiYkp8XyWZfXO6dKliymfdpmtXbsWLMuiRo0a6Nq1q0WeQYpXOHl/8IKK35GKqeNdx+g2IeYWuuYXuISHw7VlS9Q5dZL6yxNCSAUF1AgDoE3qP/p2BcfR2B5hoJtum4rfWZ9F3j4pPGJ++fJljBw5EiEhIZgxYwYePHig9zrLsqhfvz6WL1+O5ORkbNy4Ea+//rphoDweevTogb/++gu///47RCIRfvnll1JH2oVCIT744APd/smTJ0s8/9q1a7q19W5ubhZJtOVyOTZv3gwAGDt2LHg8eheLC/k95gFQj3lzkGYBPmGALBuQ5wLDj3AdkdWs7rwaDXwboIFvA6zuvJrrcAghhBBiorTEeDA8HqrWrY+AGrW4DsemVIkMB8NnIAp2R9VPW1PxOw5YJItUqVTYuHEjWrVqhTfeeANbt27V9XvPH4UXCAQYMGAATp8+jTt37mDy5Mnw8vIy6f4ffPABRowYAaVSiX/++afU86dNm6ZLmKOjo0tsUffrr7/qtidMmKDX2s5cdu/ejfT0dIhEIowaNcrs9yel+7JnuK7H/M6xb1CPeXOI/gjIfAI4ewFO7sDxOVxHRIhdUYvFeNT5Hcju3gWrVuHZxElch0QIIXYj4xm1dy4rjUwFRXIuFMm50MhUXIfjkCySzGdkZGDMmDG4evWqwSh89erVsXDhQiQmJmLnzp3o0KFDuZ5Rv359sCxr0hr4pk2bYsSIEQCAlJQULFu2zOh5T548wdq1awEAfn5+mDPHeDKiVCoRGRkJDw8PNG/eHLGxsWWK/ZdffgEA9OnTBwEBAWW6lpjHwLX/6drSDVz7H9fh2AeNElDkaj8crMI29Zgn1pA4fjw0Egk0Egnk9x9wHQ4hhNgFoZMLRM4u1Ka4HFJWXDW6TazHYvO7WZbV/adgGAbdu3fH4cOH8eTJE8yZM6fCSWxMTAwYhoFAYNp0jpUrV6JFixYAgC+++EI3zT3fw4cP0bVrV8hkMohEIuzbt09vrX1hUVFR2LZtG3Jzc3H9+nVMnDjR5LhjY2Nx/vx5AFT4jtgZlgGEBeumELGNu1gIsUPye/cBtRpQq6GRSFBt9SquQyKEELsR+f1KrkMgpMwsulg7ICAAn3/+OZ48eYJDhw6hW7duFX7X688//8SYMWOwfft23TNM4erqiuPHj6Nr165QqVQYOXIkGjZsiAEDBqBjx44IDw/HgwcPULVqVRw5cgTt2pned7wsn1P+qHx4eDjat29v8nXEvKjHvAUwrLZllsgdCAwHXLy5jshqFrRdgHsv7+Hey3tY0HYB1+EQO6QWi6HJy9M7RsXvCCGk4sb+sgUTN0fDyz+Q61Bsjv/Yproe8/5jm3IdjkOySJUCV1dXbNq0CR9++KHJI+emmj17Nm7cuAFAm0Q3a9bM5Gv9/f1x9OhRHDp0CFu2bMHVq1dx8OBBeHp6olWrVujXrx9GjBgBX1/fEu8TGRmJU6dOYf/+/ahbty5WrTJtdCQnJwfbtmlHK2lUnlv5Pebzt0kFSbOAF7cBRQ7A8AGNY62b+uLcF2jg20C3ven9TRxHROzNs4mTAB4PeNU+iXGlXr6EEGIO+xZ/BZVCjl4z58LZzb30CwgAbY/5tLWxYER8CIPckH3oCfzHUEJvbRZJ5j08PNC/f39L3BqjR4/G8+fPAWgr3IeHl70FQs+ePdGzZ89yxyAUCnVJeVl4eHggJ4faoHEtv8c8ANQL8sDYqCvYOeZNjqOycTsitIl8vvSH3MVCiB3SyOUFtSh4PIQd2M9pPIQQYm8OLlmIAfMWcx2GzciIuqPbVr7IgyiY3gjhgtmT+erVqyMw0HLTVCZMmGCxexPHMHzzJYhfVdy89zwHjUNoqmqFpd4FGB7AagBWDfg7Vp/R5R2X6wrfLe+4nNNYiH2SP36sHZkHwLi4QBQSwnFEhBBCHJ0w0A3KFO0SMOoxzw2zJ/Px8fFmuU9SUhLUajWqV69ulvsRAmhH5a8lZOn2c+Uq6jFvDv7hQOptQJmnLYI3eCfXEVmVp8iTptYTi2IYhqbWE2IBcokSx9bcBAB0HdcETq609M5R9Zo5l+sQbEqVyHBkRN2BKNgdVSLDqcc8RyxaAK8iWrVqhbCwMK7DIHZm1NbLevseTnzqMW8Og3cCVV8Dqr8FTL3pUMXvxAoxRp4YiZEnRkKsEHMdDrFD0vv3ocnJ0X7k5aH6tiiuQyLEbhz5KRZpiblIS8zFkZ/K1mqY2La0hHgAQPLDu/jf8DG0Xp7YpEqbzAPQ61FPiDk8eJEDd1HBP/ujU6mjgFm4eAPDD2s/HCiRB6jHPLEstViM+A96FxzQaJC6cBFn8RBibzKS84xuE/sX/dWnuu1tn03hMBLbVHjNfOFtYl2VOpknxNxq+LkiV6GtBt2kmidCfWjaqllIs4AtPbQf0iyuo7EquVqOqylXcTXlKuRqOdfhEDvzbOIkrkMgxK5VCXY1uk0IIbagTIsbrDntPS0tzWrPIo4hW6rE7STtNGg+j0F8Gr0DbxYvbgJr3tZuBzcHoj/SjtA7iCdZT4xuE2IOGolEb9+5cWNUW21aO1RCSOneGdkI0d9c1m0TxyDLy4V/aE3d/kffruAuGBuVv2Y+f5two0zJfHx8PBiGsfj09/xnMAxj0ecQxzI26goYhgH/1T8r+vdlJus6FGwnXwNqtuMuFg4wDANXIY3mEPNTi8WQ3bpVcIDHQ609u7kLiBA7k/4sR5fIB9TwwKmtd9F7eguOoyLWcHDJQgidXQAAwXUbIqBGLY4jsj08FwH1la8EKuU0e1orTyylSYiHbvvIFMdKOi2KKfStJGIbd3FwYHfP3Ua3Cakogyn29AYkIWa1a9EV3Xbq0xwOIyHEtmikKqT8dB3PPj+LpK/OQ5Up4zokh1XmHgLOzs4YMGCAJWLREx0dDbmc1p8S8/mh/2vovuIs3ER8HJnSjtbLm8uYv7Wj8wxfu+1gBfBC3ENwftB5rsMgdohVqwBXV+DVVPua+/ZyHBEhdogB8GoMqeu4JpyGQqzn/QlTsfNLbQG8zqMncByN7cmIugNlkvYNMFahRsqKqwj56i2Oo3JMZU7mvby8sHnzZkvEouf48eNITU21+HOI45gWfV1ve884+qZjFkFNgC9fch0FZ8QKsa6K/fKOy+Ep8uQ2IGI3NHKFLpF3atwYLvXrcxwRIfZlwOettKPzjHabesw7jhM/L4d/9ZoAgJPrf0afOV9xGg8h5VUpp9kTYgkPXuQY3SYV5MCV7AFqTUcsQ5GUBHn+enkeD/K7d7kNiBA75FfNAxN+7ogJP3eEXzWP0i8ghADQFrwTvlq6yoj4CJxCtSa4UmmTeVo3T8ytXqC70W1SQdEfGd8mhJRbXJHe8oyLC2exEEKIvek1c65uu9vkmRxGYpt4LgIEftIM1Ra1Q8hXb0Hg48x1SA6rTMm8RqNBcnKypWLR8+LFC6jVaqs8iziGHwc2N7pNSEUs77jc6DYh5aUWi6HJzdU7FnZgPzfBEEKIHXJ2c9dNrXd2owGeslJlypD01XkqflcJVNqReULMbdbuGwgP9kR4sCdm7b7BdTj2QZoFqFXAi1hAo3S4Sva0Xp5YQsLoMfoH3NwgCgnhJhhC7JRcosT+ZVexf9lVyCVKrsMhxKakrLgKVqHWFb8j3Km0yXzVqlUhEJS5Ph8hxJqiPwL4AiCoKcATOlwl+4knJ+Ley3u49/IeJp6cyHU4xE7o9ZYHqPAdIRZwbM1No9vEMWSnpWDt+OHa7XQquF0WqkwZWJka0ABgtdXsCXcqbTIP0Lp5Yl5rI1sZ3SakvB5lPTK6TUhFMC4uAO/Vj2c+H6FrfuE2IEIIsTNRsyfrtnd+MZvDSGyP3kg8C10hPMKNSp3ME2IuiZkStPvuFO4ki/FD/9fg5ULtZ8yi8LR6B5tiDwB1vOsY3SakIsIO7AfPzQ08Dw/U/uME+J60fIMQcyvcU576yxNSRsyrP3mA/8jGnIbi6Mo0j/3u3bs4ceIEOnfujCZNjH/j69Spk1kCe/nScftWE/PrtuIsJK+mAXVbcRY3v3qf44iIPVjdebXemnlCKkqRlIS43h8CAGrt/53WyhNiIU6uQvSeTu20HJEsLxe+wdXw8vkzAMDABd9zHJHt0EhVYDUagAXA047K81xoWTSXTP7q37t3D61atYJMJoNIJEJMTAzCw8MNzjtz5gwYhjFyh7JhWdYs9yEkW6pEjkwFAODzGF1ST8ygaFu64Ye5i4UDniJPbHp/E9dhEDuSn8jnb9e/fInDaAghxP4cXLIQApEIwXUbAgC8/AI4jsh2ZETdAcPjAa860fGENMmbayb/DRw9ehRSqRQsy0KhUOD48eMlns+ybIU+CDGXsVFX4C7S/lNXa1g0obU9hJDKimWhkUigkUgA+llICCGkkhEGuum2q0QaDuwS6zJ5ZL55c/2+3K+99lqx5wqFQrz55pvljwrA+fPnoVKpKnQPQvI1qOqJBynavs1bR77BcTR2JGJbwei8A66ZJ8TchDVrQH7rtm6bEGIZcolSV8W+67gmcHKlWjqOotfMuTi4ZCHXYdikKpHhyIi6A1GwO6pEhtMU+0rA5L+Bjh07Yv369Th48CC6du2Kzp07F3uur68vTp8+XaHAqlatitRUahVBKm5tZCuMjbqC8GBPrI1sRcXvzMnF2+Gm1hNiScqnCeB5eOi2CSGWUbQ1Ha2fJ6R0PBcB/Mc05ToMUkiZ3k4ZNWoURo0aZalYCLEILxchdo6p2EwRQgixNEVSEjR5eYBGA56bG5yovzwhFqNRs8hIzgMAVAl2K+VsYk/2f/810hOeQujswnUohFRYpZ0bQevmCSGEOJK43h+CcXUFK5VCI5NRf3lCLEijZqGUq3XbxHGkJcRDKZMVtFcjxIaZPZmPi4sDn8+v8H2uXLkCtZqqjpOKy5YqMTbqCgDQNHtzy3wKrG2n3R57FvChNb6EVATDMGBcXQGA+ssTYiFyiRKpCTkAAKGIh8wUCccREWuR5eVCIZVSgVFiN8zeT6BGjRqoVq1ahe9TrVo11KhBiQGpmGypEm2/PYn/nrzE5fhMDN9MbZ7MKj+RL7pNCCmzkDW/QJOTA01ODkJoVJ4Qizm25iYEr7rcKBUaVAl25TgiYi37Fs+jRJ7YlUrbHHD37t349ddfuQ6D2LjIjReR+2oanVrDIvZZNscREXsiVogx8sRIjDwxEmKFmOtwiA1Ti8VIHDoM4PPBc3dH0rjxXIdEiN0qPK1eKOKh+yfFd2gi9uXF44cAo51fz2o0HEdjezRSFdLWxSJtXSw0Uuo6VhlU2mR+8uTJGDlyJNdhEBtXNHl3FVbaf/K2aexZ49sOYurpqUa3CSmrxPHjAbUaUKuhkUq5DocQu6ZRs1AptImcT5AbtaVzELK8XG1NLpYFw+NB6EwzMsoqI+qO0W3Cnf9v797joqrz/4G/zgzMMKCDKKioeEHxgmJ5LTUr17bELM289CsRoV3NMjNrt6i1e9laS+ZlU9u8gLurVopmYt80rUxbFDXNS1qIF7xh6gwww1zP74+JI0MDDDDDmcvr+XjMY98nzjmft22Z7/l8Pu+PzzbAA9gEjxpOIQD2Sv8YbZl1u3zJBKKoDsDzPD6LqKFMP51wzBaJImCzoVPOBrlTIgpY1y4ZEKpWSjEFh03vvonYzl1xseAkAOD/vfGOzBkRNVyjFPOFhYW4evUqysrK3C7QzWaz1/LZvHkzVq1ahfz8fFy4cAGRkZGIj4/H+PHjkZqaiubNm3ttbLvdjq1bt+KTTz5BXl4eLl68CJ1Oh6ZNm6Jjx45ISkrCkCFDMHLkSI/0Hgh2m2fehvsWfgcA+OzJIYiL4rew5Dnzh82XZuTnD5svay7kv2x6PewGg6OQVyohaDRQtW0rd1pEASuqVbjUAK9l+6YyZ0ONxW634er5c1CFaRDdvgMio1vKnZLfaZGSKM3It0hJlDkbArxYzK9fvx4ffvghvv32WxjrsWRQFEUIgmfPjLhy5QpSU1OxZcsWAEC3bt0watQoFBcXY9euXdizZw/eeecdZGdnY/jw4R4dGwB++OEH/PnPf8bevXsREhKCAQMGoGfPnigtLcXRo0dx4MABHDhwAFlZWejZsyd+/PFHj+cQTHRGC1777CgGdIxiF3vyCq1Ki+X3LJc7DfJzZ6c7748P69pVpkyIgoNCCWlmXtHwA5jIX4jVxOQ2hSYEMVN7y50GVeLxYt5isWDChAnYtGkTgPotlfd0EQ8ABoMBI0aMQH5+PpRKJZYtW+a0J//kyZMYNWoUTpw4gZEjR2Lbtm0YOtRz3bl37tyJkSNHwmg04rHHHsPrr7+O6Oho6eeiKOK///0v0tLSvLoqIZhUHEdXEa+ZOkjGbAIQj6Uj8gjTiZPS+fIAeL48kZcplArExDWROw1qZAqlEi07xsudBpFHebwb2HPPPYeNGzc2aL+7N/bKz5w5E/n5+QCA119//XfN9RISEpCbm4uwsDCYzWaMHTsW169f98jYR44cwX333Qej0YiXX34ZH3zwgVMhDzi+wHj44Yfx2muveWRMAqx2EUfP63H0vB5WO7+C9bggP5aOnezJU1TxnaRCPqxXT54vT+RFJoMFdpsdxWdLYbeJSH4sSe6UqJHc/+yLLmNyH7vZ+x6Pzsxfu3YN//znP6WZdVEUceutt+Luu+9Gly5d0KJFC2g0mlpn3kVRxIMPPuixYvrw4cNYsWIFAKBVq1Z45plnXN4XHx+PadOm4f3338eVK1cwd+5c/P3vf2/w+I8//jhKS0uRlJSEl156qcZ7H374YezYsQMdO3Zs8LhBr/KXQmym6FnG64CpFBBtgKAEVBFyZ9Toqnay53J7qi9BGQJFeLgUE5H35C457DQzz072wSMsogkmvDxX7jT8WtVu9lxyLz+P/qnh66+/lpaIKxQK/Oc//8HEiRPr9S6VSuWxvDIzM2H/7SzJiRMn1vjuyZMn4/333wcALF68GK+88go0Gk29x964cSO++eYbAMDs2bOhUNS8GCIuLg5bt26t93hUSeUvjbywdSOorZ0EhIYD5hJHQR/dTe6MiPyWEBKCsB495E6DiCig6YovIfuvMwEAKfMWIDKmlcwZETWcR5fZFxYWAnAsGR8zZky9C3nAc0vtLRYLNm7cKF3X1tiuT58+aNasGQCgrKwMubm5DRq/YkWAIAi49957G/QuqiPOzHuP3QJYDY7OQWotEBomd0aNrnL3enayp4Zot2ihy5iIPK/ysnousQ8uFYV81ZjcV7mDPbvZ+waPzsxX7lr/hz/8oUHv2rBhg0caweXl5eHatWvSdb9+/Wq8XxAE9OvXD9u3bwcAbN26FWPHjq3X2DqdTvoyIC4uDjExMfV6D9Xd2WsGHDirAwD0bheJEKXH20MEN1EAQiMAS5njeuJqefMh8mNKrRYdslbJnQZRUFCHh2LM7L5yp0GNrLysFOZyR50SGhYGAVyxWR/sZu97PFrMVz4XXdvABj6DBnmm8/jhw4elWK1Wo60bZ/d26tTJ5fN1lZ+fL30h0bXSUUMFBQXYsmULTp06hdLSUkRHRyMpKQl33XXX7xrjUf3c+/63CA9VwGCx49A5HfbP+aPcKQUWZQgQe9ONa00z2VKRC/fMExER+Yecea8hRKWGpdwIS3k5Hl3wodwpEXmER4v5u+66C0qlEna7HUVFRZ58db0dPXqjUUObNm3ceqZywV/5+bo6ePCgFEdFReHChQuYNWsW1q1b5/J+tVqN6dOn480330T4b82QqP4EQUCEynGALM+Y97DRi52PpSMiIiLyUcVnCmE1myAoFAgNC+N+eQoYHl17HBsbi7S0NIiiiJycnAa96+mnn8ajjz7a4JyKi4uluGIvfG0q36fX62GxWOo19okTJ6T44sWLuPXWW7Fu3TpMmjQJe/fuhcFgwLVr17Bp0yb07t0bJpMJ8+fPx+233+60NYDq7vOnhrqMyUM2PgG07u34bHxC7mxk8fqQ13H86nEcv3ocrw95Xe50iIiIqDpiNTGRn/P4RuL58+ejf//+yMvLw3vvvVfv96xZswYrV65scD4lJSVSrFar3XomLMy5mVfld9RF5aP1vv32W5w5cwYvvPACsrOz0b9/f2g0GjRr1gz33Xcf9uzZgwEDBgBwLM9PTU11awyTyQS9Xu/0ISAuKhyHXrkHh165B3FRXOXgcXYLcPGQ42Ov35dd/m7Od3PQvXl3dG/eHXO+myN3OkRERFSNFu3iXMZE/s7jxXx4eDh27NiBKVOm4C9/+QumTJnSoKXqDVW5KZ+7x91Vvc9gMNRr7KqFdefOnfHKK6+4vDc8PBzLli2Trj/77DN89dVXtY4xd+5cREZGSp+4OP4GRY1AFFzHRFQnNr0ehQ8/gp8GDEThI4/Axi9kiYg8TqFQQhWmgSpMA4VCKXc6RB5Tpz3z6enpdXp5UlISsrOzkZ2djbi4OCQmJiIqKsqtGXKdTlensapT+Yx4d7vjV72vvvvXq77nkUceQWho9Xu3b775ZvTr1w/5+fkAgGXLltV6KkBGRgZmz54tXev1ehb0AHRGC6Zl7wMALE3pzz3znqYMcSyxD2Lzh82XmuDxaDqqr3MznoTp5EkAgOnESZyb8SQ72xMReZhCqUTLjvFyp0HkcXUq5leuXAlBqNssXMV58WfOnMHZs2fr9Fxdx3KladOmUmwymdx6pry8vNp31EWTJk2crm+99dZanxk8eLBUzH/99de13q9Wq93ePhAsdEYLbnv7KxgsNoSrlHh01V588thgudMKLBNXA2sn3YiDkFalZQd7IiIiH1deVgq7zYYrZ08jun0HjPnrS3Kn5LfsRit+zXasuG6RkgiFxqO91Kke6rXMXhRFtz+CIEgfd5/1pMpnu1few16TyqsCtFptjbPpNal6PJ87M+bx8Te+Nbx48aLTNgFyz7TsfTBYbAAAg9mGExfr1/OAqmG87lzIB+GxdESe0m7RQqgTEgAA6q4JaLdoocwZEREFlk3vvinNzCsUSoRFNKn9IXKpopCvGpN86vx1ikKhcDpP3lvOnj3rkcI+MTFRis+fP+/WM5WP1av8fF116NDB6brykv/qVJ3Nv3btmlvP0Q1Wu+NLIbsIKBUCurbib9oeVVHIV8RTNsuXC1EAEEJCENajB9otWghllS+BicizTAYLcpccBgAkP5YEdTi34QU6u92GK2dOAwCi23eo5W6qjt1ohfl8KQAgtHUEBAV7JvmCOhfzMTExOHXqlDdycRIbG4vLly83+D1JSUlSbDKZUFRU5HSOvCsFBQUun2/I2ADcmmWvuhWganFPbhBFRKiUMFjsCA9V4qMpA+XOiIjIpbPTp8N04qQUd/z3v2XOiCiwfb74EH49XybFY//ST+aMyOt4LJ1H/Jp9FKGtImC5VAbLxTLEPsc/X/sCj3ez9zUDBw5EVFSUdF2xH706oig63TNixIh6j111j7w7KwMqf4HRpEmT3y3Vp9qFKBXo2TYSAzpGoWdbLZvfeVrlPfJBul+eyFMqCvmqMRF5R0UhXzWmwFWxxL5lx3golOxk3xCCUoCqTROo2jThfnkf4bPFvKf2zoeGhmL06NHS9fbt22u8/8CBA9Le+oiICCQnJ9d77Pbt2+OWW26Rrvfv31/rMwcPHpTi22+/vd5jB7N3xt+Eo+f1OHpej3fG3yR3OoGnXHfjjPlyz5w6QRSMbHo9RLsd9pIS2A0GqOI7yZ0SUUA7//M1mI1WmI1WiHYRLdrU77Qi8i/3P/uiy5jqJmp8V5jPl8J8vhRR47vKnQ79pk7F/IEDB7Bt2zZv5eLk4sWLsNlsHnnX008/DYXC8Utdu3ZtjUfUZWVlSfHjjz/e4P3q06ZNk+JPPvmkxnv1ej2+/PJL6XrSpEk13E3VeXrtQZcxeciS2wBzqeOz5Da5syHyW2f+PBVi2W8zg6IIQclZDiJvMRks2PDuAenaYrLh3if4hX8wCItoggkvz8WEl+ey+V0DXPv4hDQrf+3jE3KnQ7+pUzF/0003NaghnFx69+6NtLQ0AMClS5eQmZnp8r6CggIsXboUABAdHY2MjAyX91ksFqSkpKBp06bo06cPDh06VO3Yqamp6NOnDwDHEv+PP/642nvfeOMNaV993759MXHixNp/cfQ7lbvXs5O9F1jKXMdEVCflP/5448JuhxDCYp7IWyqa3lXG5ndE5O98dpm9py1YsAB9+/YFAMyZMwcrVqxw+vnJkyeRnJyM8vJyqFQqrF+/3mmvfWXZ2dlYvXo1SktLcfDgQcyYMaPacRUKBdauXYuWLVsCANLT05GTk+N0j81mw9tvv4133nkHANCqVSt8+umn0moCqpvK3evZyd4LYvu6jonIbTa9Hqi8nUyp5LF0RF7Wom2EFD/wbB8ZMyHyPy1SEl3GJC9B9PTB7tUoLy/Hvn37cO7cOVy7dg2CICAqKgrt2rVDv379EBYW5vUciouLkZqaitzcXABA9+7dkZSUhOLiYuzatQtWqxWxsbHIysrCXXfdVe17li9fjkcffVS6vv322/H111/XOPaRI0cwadIkaU98t27dcNNNN8FsNmPPnj24dOkSAGDIkCH473//69aZ9K7o9XpERkZCp9MFbfM8ndGCadn7AABLU/qzAZ6n8Zx5ogY7PTkV9vJylB85AgDo/H9fQFXLSStEVH88ko6I/Im7NZ1Xi3lRFPHJJ5/ggw8+wHfffQer1eryvpCQEAwdOhTTp0/H2LFjIQjePbfws88+w8qVK7F//35cuHABWq0WnTt3xrhx45CWlobmzZvX+LzFYkFaWhpycnKQkJCAVatWoXfv3rWOa7VasXbtWqxbtw4//PADLl68CJVKhdatW2PIkCGYOHFig7rnAyzmiYj8wenJqU7XHbJWyZQJUXBgMU9E/kT2Yv7IkSNIS0uTjnmrbZiKAn7AgAFYsWIFevTo4Y20Al6wF/NHL+hw38LvAACfPTkEibGRMmdERPR75qIinBrzAACgU84GzsoTeVlOpvOJQmNmc5tYsCgvK8Wmd98E4OhmzyZ45A/crem8sil7165dGDx4MPLz86UivqbZ9oqfiaKIvLw83Hrrrfjuu++8kRoFuIpCvmpM5Gl6sx7pX6Qj/Yt06M16udMhP3Mh4wWE9eiBsB49cCHjBbnTISIKWDnzXsPlwgJcLixAzrzX5E7Hb9mNVhQvO4TiZYdgN7pebU2Nz+Otc8+cOYN7770XJSUlTkV6s2bN0K1bN7Ru3RoREREQRRFlZWW4cOECTpw4AZ3OcV61IAgoKSnByJEj8eOPP9Z77zgFH53RApv9xgoQpcK72zUouM3aMcspXn7PcvmSISKiGiU/luS0zJ6CQ3lZKc6fOA4ACA0Lw5Uzp2XOyH/9mn3UKY6ZWvsWY/I+jxfzTz31lFTIR0REYPr06Xj44Ydx0001n+V54MABrF69GsuWLUNZWRlKS0sxa9YsfPrpp55OkQLUtOx9iAgVUGZxFPQ9YrmMioh8U7tFC3FuxpNSTETeZTJaUXy2VIq5Zz445Mx7zbFKWBRhKS9Hm4TucqdE5FEeXWZ/+fJlbN68GYIgIDExEYcOHcLf//73Wgt5AOjTpw/+8Y9/4IcffkCPHj0giiI2bdqEy5cvezJFCnBKpRLasBBow0LQRM3/UJP3zB8232VM5A5bSQnKjx1D+bFjsJWUyJ0OUUAzGSxYPed7WEw2QBSx9o29cqdEjeTKmdNQhWkg/Hbc85jnXpI5I//Fo+l8k0eL+Z07d8JmsyEsLAwbN25Ex44d6/yO+Ph45OTkICwsDHa7HTt37vRkihTA3hl/k2P7htmGzi2bYGlKf7lTogCmVWmx/J7lWH7PcmhVwddskurPXFSEX4bfBXtJCWC3S43wiMg7vlx+RIotZruMmVBja962HSymcgBA684JbH7XAApNCGKm9kbM1N5QaDy+uJvqyaPF/Llz5wAAo0ePRnx8fL3fk5CQgNGjRwMAioqKPJIbBb6/fPwDeraNxICOUVCHKHi+PBH5pFOjx0ixvaxMvkSIgkjL9jeKuIl/GyBjJtSYFAolVGEaqMI0UCiUcqdD5HEeLeYrGt7dfPPNDX5X3748MoTqxmoXcfS8HkfP62G1e+XERSKiBrMbjUClE1465WyQMRuiwHf7w91w7ZIRoWolJr1+K7QtNHKnRI1EoVSiZcd4tOwYD4WSxTwFHo8W823atAEAhIY2fEY0JMSxfCM2NrbB76IgIYquYyIiHxLWsyegUABKJcJ69+YZ80Re9s1/fkJMXBPExDXBV6uOyZ0ONaL7n33RZUwUKDy64aFfv34AgOPHjzf4XRXv4Aw9uUNntODEJUeX2q6tmyKEx9KRF+nNeulouvnD5nPPPNVJ+399yE72RI3oytlSGEosCFUp0KIt90wHk7CIJpjw8ly50yDyGo/OzHfp0gW33HILNmzYAL1eX+/36PV6rF+/Hn369EHXrl1d3vPggw9i+PDh9R6DAsu07H3o2srxH+gTF0vY/I68quoZ80RE5Lsq1uo5mt9x5R4RBQ6PFvMAsHDhQuj1ekyZMgVWq7XOz9tsNqSlpUGn02HBggXV3rd79252uicnIUoFEttokdhGy+Z35FVWuxXHrx7H8avHYbXX/fc5Cm4Vs/JVYyLyDkEQEKpWIlSthELp8T/6EhHJxuO/o/Xv3x+rV6/Gl19+iUGDBuHLL7+E6Ob+5W3btmHQoEHIzc3Fv/71LwwePNjT6VGAqjwTz1l5IvJV5qIiGPLzYcjPh91kkjsdoqDQPNbR8K5FmwgkP5YkczZERJ7j8UMCX3vtNQDAfffdhzVr1mDEiBGIjo5G//790aVLF2i1WqlBnsVigV6vxy+//IJ9+/ahuLhYerawsFB6lyulpaWeTp2IyC0hihB0b95d7jTID50aPcbRoNNuR/mPP6Lrnt1yp0QU8BRKBWLimiD5sSSow7lyL1iUl5Vi07tvAnA0v+MZ8xSIBNHdaXM3KRQK6Yi6yq8WhJobktXl3or7BUGAzWarZ6aBSa/XIzIyEjqdDlpt8DTlemjZHqfrNVMHyZQJBQM2wKP6Otazl9N1jyM/ypQJUfDYvOggrGY7AGDMbDZWDhb/+dszuPjLSQBA684JePiNf8icEZH73K3pvLpxSBAE6ePJe4mq4hnzROQPwnr2dBkTEZHnlJeV4sLJnyDa7RDtdqmoJwo0XivmRVH06ofICc+Yp0bEbvZUX+3/9SHC+/VDeL9+aP+vD+VOhygoXCjQ4/zPOtw2IUHuVKiRVCyvr8DagQKVV4r5Vq1awW63e/XTqlUrb6RO/qryig6u7iAiH6XUatEhaxU6ZK2CMoi2QhHJKVTl6GS/4R8H5E6FGlFomEaKYzu7Puqa3Gc3WlG87BCKlx2C3ciTfHwFz+cgv6czWvDTBT3KzDbH6bH89pW87PUhr0tH070+5HW50yEiIqJK7n/2RbTs0Anq8Ai07Z6IsS+8KndKfu/X7KMuY5KXx7vZNxYul6EK07L3QRAERKiUABznzRN505zv5kjd7Od8NwfL71kuc0bkD8xFRTg15gEAQKecDVC1bStzRkSBzWSwQB0eCovZBogiJs4ZKHdK1EjCIprgodfmyZ0Gkdd5vJhfsWIFNBpN7Tc20IIFC2A0Gr0+DvmHrq2a4MQlx3GFPGeeiHzRqftHw15WJsXd8vfJnBFRYPty+RGMmnEzYuO1sJrt0Lbw/p9PiQKR9Vo5TEUlgMUOVbumiE7rVftD1Cg8XsynpqZ6+pUuTZgwoVHGId/3zvibcO/73wIAPn9qKCI1PEOWvGv+sPlOR9MR1cam10uFPACnmIiIyJdden+/48QxlRKWywYoNH67uDvg8P8J8nsz/3sAZWabFG94fIjMGVGg06q0XFpPdXJ2+nTnvxARIU8iREHkj+k3jn9MfixJxkyIiLyj0Yp5o9GIPXv24PTp0/j1118hCAJatGiBDh06YNCgQQgLC2usVCjAHDqncxkTEfkK04mTjgL+txn5zps2ypwRUeBThztW6o2acbO8iRD5uVZP9cWl9/dLMfkOrxfzO3bswLx58/DVV1/BanV9jEFoaCjuuusu/OUvf8Edd9zh7ZQogOiMFoiiCLsIKBUCwkPZ/I68S2/WOy2x16p4vBjVTp2QANPJk0DTplAnJLD5HRER+Y2QqDC0fWWw3GmQC16rfEpLSzFhwgTcdddd+L//+z9YLI6iy9XHbDYjNzcXf/jDH/DQQw+hpKTEW2lRgJmWvQ+922mhVDjOlt8y63aZM6JAV1HIV42JatLmnXkuYyIiIqL68koxf/36dQwaNAiffvqpdIScIAjV3l/xM1EU8fHHH2PIkCHQ6bhcmmpntYsoKDYgQqVEn/bNEBcVLndKRES/c/6vf3UZExGR5+mKL2FR2kQsSpsIXfEludMh8hqvLLN/4IEHcOTIEacivVWrVkhMTERsbCyaNGkCURRRVlaGoqIiHD9+HJcu3fgX7ciRIxg7diy2b9/ujfQoQOiMFhw/r0ep2QalQoDVZpc7JQoC7GRPdWUuKoIx37HXUBER4dg/T0ReV3HO/OZFB/HH9J7SHnoKfNl/nekUz1ixVsZsiLzH48X8v//9b3z99dcQBAFhYWF44oknkJqaip49e9b43I8//ohVq1bhgw8+gMFgwM6dO/Gf//wHDz/8sKdTpAAxLXsfjFa7tMS+oJhHPZH3sZM91dWpMQ8ACgVgt8NeVgZNXzYPImoMFefMA0DuksMYM5v/7hFRYPH4Mvu33noLANC5c2ccPHgQ8+bNq7WQB4BevXrhnXfewf79+9G5c2eIoii9y9M2b96M8ePHIz4+HhqNBq1bt8bgwYPx3nvv4erVqx4fTxCEOn26d+/u8RwCVeWGd11bNZExEwoWerMe6V+kI/2LdOjNernTIX/w23YzAIBSibglH8iXCxFREEiZt8BlTBRoBFGs/KeMhiksLER8fDxUKhX27duHXr161es9hw8fRv/+/WG1WvHLL7+gY8eOHsnvypUrSE1NxZYtWwAA3bp1Q1JSEoqLi7Fr1y7YbDbExsYiOzsbw4cP98iYQM39Alzp1q0bjh8/Xq+x9Ho9IiMjodPpoNUGdpdtndGCR1fm4cSlUnRt3RQfpQ5ApIZL6Mi70r9Id7rmLD3VpmDcOJh+PAIAUPfqifhPPpE5I6LgwGX2ROSv3K3pPLrM/n//+x8AYMSIEfUu5AEgKSkJI0aMwObNm/G///3PI8W8wWDAiBEjkJ+fD6VSiWXLliE9/cYfyk+ePIlRo0bhxIkTGDlyJLZt24ahQ4c2eNwKGo0G7du3d+ve+Ph4j40byCI1ofhk+hC50yAiqpHl9BkomjaVYiIiIn9iN1rxa/ZRAECLlEQoNF4/3Zzc5NFl9hVN7AYOHNjgd91yyy1O72yomTNnIj8/HwDw+uuvOxXyAJCQkIDc3FyEhYXBbDZj7NixuH79ukfGBhx/T44fP+7Wp2LlAJHPuXYaeLu943PttNzZyKJy0zs2wKPa2PR6iKIIu8EAiCLUCQlyp0QUNL5cfkSKc5ccljETIv9WUchXjUl+Hi3mjUYjBEFAkyYN37tc0fHeaDQ2+F2HDx/GihUrAACtWrXCM8884/K++Ph4TJs2DYBjSf7cuXMbPDZRQFk61HUcRCoa4C2/Zzm0qsDeykINd27Gkwjr2hWK8HBAELhfnqgR2W2OnaRXzpVJMQWH8rJSrHs1A+tezUB5Wanc6RB5jUeL+ejoaIiiiNOnGz5jd/r0aQiCgOjo6Aa/KzMzE3a749iyiRMnQqVSVXvv5MmTpXjx4sUe+TKBvENntOChZXvw0LI90BktcqdDROSSEBKCsB49ENajB5QB3suEyLeI1cQU6Da9+6bLmOqnRUqiy5jk59FivlOnTgCAjRs3oiF99Ww2GzZs2OD0zvqyWCzYuHGjdF1bY7s+ffqgWbNmAICysjLk5uY2aHzynmnZ+1zG5EXTvnUdE5FL7RYtdBkTkXeZDBZcveCYkGkeGw6F0uMHOJGPKi8rxeXCAlwuLIDdbpM7Hb/H/fK+zaO/sw0ZMgTh4eE4deoUXn311Xq/56WXXkJhYSHCw8Nx2223NSinvLw8XLt2Tbru169fjfcLguB0z9atWxs0PlFAieoAPH/G8YnqIHc2RD5PqdWiQ9YqdMhaxVl5okaUu+QwmsdqAABXLxiQ/FiSzBlRY1k/92WYjAaYDGUoPn0K9z/7otwp+TXul/dtHv1qRa1W48EHH0R2djZef/11FBcX44033kBUVJRbz//666/IyMjAv/71LwiCgPHjx9e4JN4dhw/faHiiVqvRtm3bWp+pvBqg8vMNZbfbsWvXLuzevRtnz56F1WpF8+bNkZCQgGHDhjV4FUKweWf8Tbj3fcfs8OdPBef+bWp8erMes3bMAuBogMd980REvqliNj66XQSPpQsC5WWlWPdKBorPnAIACAoFLCYTwiIa3suLyFd59Jx5wLHXvXv37jCbzQAcjexGjhyJ4cOHo0ePHmjTpg0iIiIgiiJKS0tx/vx5HDt2DNu2bUNubi4MBgNEUYRGo8Hx48cRFxfXoHxmzpyJhQsdSxs7deqEgoKCWp955ZVXpJUFWq0WOp2uQTkIgoAOHTpIv6bqJCcn4+9//zuSkur/7XEwnTP/0LI9Ttdrpg6SKZMgYrwOrJ3kiCeuBjTN5MxGFjxnnurCptfj3IwnATiW2XN2nqhxmAwWfLn8CEbNuFk6b54C27pXM3D2qPMknEoTjidXrpMpo8DAZfbykOWceQDo0KEDPvzwQ0yePBmCIKCkpATr1q3DunW1/4tU8b2CQqHARx991OBCHgCKi4uluGIvfG0q36fX62GxWBAa2rD/CJw+fRoRERF46aWXMH78eMTHx8Nms+HIkSP48MMPsWLFCuTm5mLnzp3IysrCuHHjGjReoNMZLThSpIfBYkO4SolurZvKnVLgu3gYWPLbtpc2fRxF/ZTN8ubUyPRmPY5fdXwh16VZF4Qo+B80qp65qAi/3H0PYLNBERGBs9Ono+O//y13WkQB78q5Eqx9Yy9Cw5QAAFO5lcV8ELBazL/7a5PfYa+ShrKXW2E+XyrFLOZ9i1e6gUyaNAmLFy9GSEgIBEEA4CjUa/pUUKlU+OCDD/DQQw95JJeSkhIpVqvVbj0TFhZW7Tvqq02bNjhw4ABeffVV9OrVC+Hh4WjatCluvfVWfPTRR1i1ahUAx/F+jzzyCL7//nu33msymaDX650+wcDR8M7xz43BbAM8u8CEXFl2x434/AH58pDRrB2z0KVZFwDAz9d/5jnzVKNTo8cANkfzJXtZGUwnTsqbEFGQWPfWXqfr9fP2y5QJNaZfz511up746t8RGdNKpmwCx6X397uMyTd4rbXn9OnT8e233+KWW25xKtYFQXD6VBBFEUOGDMF3332HP//5zx7Lo/LRcu7uv696n8FgaFAOhw8fxg8//ICEhIRq70lJScHDDz8MADCbzXjiiSfcevfcuXMRGRkpfTyxmsFfCIKACJUSESolQtiltnEIlf4+T1wtXx4yClGEoHvz7ujevDv3y1ON7FWONlXX8N8AIvIc0S53BiQHQRCgDo+QPu2695Q7JSKv82oFNHDgQOzevRu7du3Cc889h0GDBiE2NhZqtRpqtRpt2rTB4MGD8fzzz2PPnj349ttva+02X1cajUaKK/bx16bqfeHh4Q3KoVevXoiOjq71vpkzZ0rx/v378e23tR/9lZGRAZ1OJ33Onj1b6zOB4J3xN0EURZSZbejcsgmWpvSXO6XAN/VrQBAAhRJ4bFdQ7pevPBPPWXmqTVjPnoDC8Z9ZRUQE4pZ8IHNGRMEhJs654dnYv/aVKRNqTCnzFriMqWFaPdXXZUy+oVE2PQwePBiDBw9ujKF+p2nTG3upTSaTW8+Ul5dX+w5vGjBgACIiIlBWVgYA+PLLLzF0aM1d2iu+GAk2T689KM3MKxUCIjXcC+d1rZOAl67KnYWstCotG96RW2wVW54EAYomTdBpYw6b3xE1ktFP90HuksMIUTm+TNM219TyBAUCdXgEWnaMl2LyjJCoMLR9RZ46jmoX8GuTY2JipPj69etuPVO5e71Wq21w8zt3KRQKdO7cWbo+ceJEo4zrj366WIIysw1lZht+utjwngZERJ50bsaTMJ86BUV4OCAIuJDxgtwpEQUNdXgoxszui1EzbpY7FWpEm95902VMFMgCvh1hYmKiFJ8/f96tZ4qKilw+3xgqrwK4ejW4Z0Grc/aaASXlVgCAUhDY/I6IiIgoiJWXleJyoeP46ej2HaBQKGXOiKhx+OzMfGxsLEJCGv5dQ+Uz200mk1OhXp3KZ9E35Mz3+qi8xD8igkuEXBn5/o1eAjZR5LF0RORz2i1aKDW8U3dNQLtFPB6JqDHofzXiw6e/wYdPfwP9VWPtD1BA2PTum4iO6wAAuHLmNO5/9kWZMyJqHD5bzANw6oJfXwMHDkRUVJR0nZ+fX+uYle8ZMWJEvcfW6XR44403pGPn3FF59UCbNm3qPXagqjwrX+GjKQNlyoaIqHpCSAjCevRA3AcfcL88USNZ+8aNY+l4JF1wUSiVaNkxHi07xiMsokntDxAFAJ8u5j0hNDQUo0ePlq63b99e4/0HDhyQ9tZHREQgOTm53mNfu3YNc+bMwbx589y6/9y5c7hw4YJ0XVvzu2B07/vfQqh0fXOcls3viMjnnJ0+HeXHjqH82DGcnT5d7nSIiAJa5Zl4zspTMPHannmz2YxNmzZhx44dOHLkCK5evYqysjK3Z9uLi4s9lsvTTz+NrKws2O12rF27Fu+88061Z85nZWVJ8eOPP+50tF19HT9+HJcvX0bLli1rvK/y2M2aNWvQFwmBrIlaCYPFcYjsqvRbZc6GiOj3TCdOuoyJyLsm/m2ANDvPI+mCR1hEE0x4ea7caRA1Oq8U85999hmmT5/uNMsMuL9sXhAEiKIIQRBqv9kNvXv3RlpaGj766CNcunQJmZmZeP755393X0FBAZYuXQoAiI6ORkZGhsv3WSwWpKenIycnB126dMGqVavQu3fvase32+14+eWX8cEH1Z8xXFBQgLffflu6fv755xEZGenuLzFo/GtKf0xY8j0AYN1jt3JWnoh8kiq+E8p/PAIACOvVU+ZsiIKHtoUGf37vdrnTICJqFB5fZr9p0yY8+OCDOH/+vFS8i6JYp/3vntgrX9WCBQvQt6/jG9o5c+ZgxYoVTj8/efIkkpOTUV5eDpVKhfXr1zvtta8sOzsbq1evRmlpKQ4ePIgZM2bUOv6SJUswY8YMlx3qv/rqK9x5550oKXEcsTZu3Dj89a9/resvMSj8aeU+aMNCoA0LwZ9W7pM7neBhvA58NAJ4uz2w/B7HNRFVS1CGQBEeDkV4OARlwB8cQ+QzTAYLcjL3IydzP0wGi9zpEPk9u9GK4mWHULzsEOxGa+0PUKPy6J8wrFYrZsyYAavVKs2ui6KIHj16oHPnzoiMjHS7Q/3atWthMpk8llt4eDi2bt2K1NRU5ObmIj09HfPmzUNSUhKKi4uxa9cuWK1WxMbGIisrq0771atbQRATE4Np06bhP//5D0pKSrB48WJ89NFHGDhwINq2bYvy8nIcOnQIv/zyCwBArVbj+eefx0svveSxVQlEHrF2ElB81BFfPua4nrJZ3pyIfFhF8zsialy5Sw5L8ZfLj/CseaIG+jX7qFMcM7X61cjU+DxazO/atQvnzp2TCtFx48bhH//4B+Li4ur8rq1bt+Ly5cueTA8xMTHYsmULPvvsM6xcuRL79+/Hpk2boNVq0b9/f4wbNw5paWlo3rx5je9JSUnBV199hZycHCQkJGDhQtdHDkVERGDJkiXIzMzEtm3b8MUXX+DAgQM4fvw4vv/+eyiVSjRv3hx333037rzzTqSlpaF169Ye/TUHkqMXdCgpt0IEEKFWYussLqMjIt9j0+shWq0wnTwJddcExNWwxYqIiIiovgTRg2vaFy9ejCeffBKCIKBv377Yu3dv7Q9VIzY2FpcvX4bNZvNUekFBr9cjMjISOp0O2gA7CqnzC1tgszv+cVUqBPzy1kiZMwoixuvAfx5yzM637AH8v7WAppncWRH5pNOTU52uO2S5fzwpETWMyWCRZueTH0uCOpy9dYgawm60SrPzLVISodBw61hjcLem8+j/G3q9XoonTpzYoHdNmDDB6X1EFYV81ZgagaYZ8OhWubMgIiKqkTo8FGNms4s9kacoNCFcWu/DPFrMVz56raHLxd9///2GpkMBplfbpvixqESKiYh8Uezct3BqzAMAgE45G2TOhoiIiAKVR7vZ33nnnVJ88eJFT76aCP/+0yDcGt8ct8Y3x7//NEjudIiIXDpf6TSS8zyZhKhRsZs9EQUTjxbznTt3xgMPPABRFLFhQ8NmIx588EEMHz7cQ5mRv9MZLZiW7TiKbmlKf54vT0Q+y3TipMuYiLyvajd7IqJA5vFz5pcuXYr4+Hh8//33mDt3br3fs3v3buzcudNziZHf0hktGPL2dnxfcBV7C69hyoo8uVMiIqqWOiHBZUxERETkSR4v5qOjo/Hdd9/hjjvuwIsvvoj77rsPO3bsYFd6qrdHV+1Fqcnxz4/NLuLQOZ3MGRERVS9uyQcI69EDYT16IG4Jj6UjakzJjyVJ8R/Te8qYCRGR93n0aLqq/vKXv+Af//gHBEGASqVCfHw8oqKioFKpan32u+++g9Vq5ZcAdRSIR9P1fuUL6Mut0nVTtRKHXx0hY0ZByHgdWDvJEU9czWPpiIiIiIi8RJaj6SocO3YM6enpyMtzLIcWRREmkwnHjh2DIAhuvUMURbfvpcDWtVUTHL+gR6nZDqUgYMus2+VOKfhUFPIV8ZTN8uVCREREVEl5WSk2vfsmAOD+Z19EWEQTmTMiahweX2Z/7Ngx3HbbbcjLy5MK8ooP4CjS3fkQVfhoykD0atcMt8Y3x/6X/oi4qHC5UyIicsmm1+P05FScnpwKm14vdzpEREEhZ95ruFxYgMuFBciZ95rc6RA1Go/PzP/pT3/CtWvXnIr3pk2bIj4+Hk2bNoVSqXTrPbt374bVaq39Rgp4kZpQrJnKo+hkNXG18zJ7InLp7PTpUgf7s9Ono+O//y1zRkREge/KmdMuY6JA59Fi/vDhw9izZ49UyA8aNAjz5s3D4MGD67xkPjY2FpcvX/ZkeuSneCwdEfkL008nYDcapZiIiLwvOq4Drpw9LcXkGXajFb9mHwUAtEhJhELjlR3a1AAeXWa/Z88eKe7cuTO++uorDBkyhHvfqd50Rgtue/sr7C28hiPn9Xh01V65UwpOVffME5FLoigCNhtgs3HLGBFRIxnz3Eto2TEeLTvGY8xzL8mdTsCoKOSrxuQ7PPr1ypUrV6R48uTJUKvV9X5Xu3btEBYW5om0yI89umovSkyO7RYGsw0nLpbInBERkWs2vR7ib7PyUCoBfpFNROR1bH5HwcyjM/NRUVFS3LFjxwa9a+/evTh16lQDMyJ/91Ol4t1mF9G1FX+DlkXlffLcM0/k0tnp052uw7p2lSkTouBkMliQk7kfOZn7YTJY5E6HGgmb33lPi5RElzH5Do/OzN9++40jw3Q6nSdfTcFKFKEQALsIKAVHZ3uSgaYZj6MjqoXpxEkI4eHS7Hzckg9kzogouHy28AdcPl0ixeOe6y9zRtQY2PzOexSaEMRM7S13GlQDj87M9+zZEyNHjoQoiti+fXuD3pWZmYnXXuO3a8GuW+umaKIOgTYsBH3aN2PzOyLyWeqEBAiCAEV4ODQ33QSlVit3SkRBpaKQrxpTYKvc8I7N7yjYCKKHO/RcuXIFf/jDH3D06FFs2bIFd999d73eU9HN3mazeTK9gKfX6xEZGQmdTgdtAPxBkp3sichf2PR6nJvxJACg3aKFLOaJGtmyWV/DarYDAEJUCkydf4fMGVFj4J55CkTu1nQeL+YB4Ndff0VaWhq2bduGV155BY8//jiaNKnbv1gs5usn0Ip58hHG687nzGuayZkNERHR7+h/NWLtG45Tbyb+bQC0LTQyZ0REVD+yFfOVl8bn5uYiLy8ParUat956K3r06IGoqCioVKpa3/POO+/AYDCwmK+jQCvmOTPvI1aOcr7m/nmi3+HMPBEREXmCbMW8QqFwOle+4vV1PWteFEUIgsBivo4CqZjXGS0Y+vevAABdWzdFiELAmqmDZM4qSLGYJ6pV4SOPwHTiJABA3TUBHf/9b5kzIiIiqj+70SqdL98iJREKjUd7p1MN3K3pPNoAr7LKRXxdC3kiANKMPACeLy83Hk0HANCb9Uj/Ih3pX6RDb9bLnQ75mIpCvmpMRETkjyoK+aox+Q6vFfOAo6Cv74fIanf8s1BmtkGEY5k9yaTiaLopm4N6v/ysHbNcxkQ2vR6iKMJuMACiCHVCgtwpERERNYhoF2E+Xwrz+VKIdtZnvshrxfyaNWtgt9vr/WnVqpW3UiM/YbLaUGKywWYX0TE6nPvlichnnZvxJMK6doUiPBwQBJ4xT0RE/k+sJiaf4dWZeaKGOHq+BEqFAKVCwNHzXGZP8ps/bL7LmEi0WWE6eWO/PJvfERGR3xOqicln+GwXAy61p/BQBQwWuxQTyU2r0mL5PcvlToN8EWcviIgo0PC/bT7P48X8hg0bAAADBgxo0Hv27dvHTvZBbsus23Hv+98CAD5/aqjM2RARVU8ICUFYjx5yp0FEROQxglKAqk0TudOgGnj8aDqSVyAdTUdE5A9sej3O/OnPKD9yBAqNBp025kDVtq3caRERETUIj6aTj2znzJO8AqWYP3vN4DQrHxcVLnNGRESunZ6civJjx6TrsB490CFrlYwZERERkT+T/Zx5V0wmE06dOoV9+/YhPz8fhYWFMJlMjZkC+YmKQr5qTCQnnjNPRERERL7C68W8Xq/H3//+d9x2222IjIxEly5dcMstt2DgwIHo3LkzIiMjMXToULz77rvQ6xvnD8ebN2/G+PHjER8fD41Gg9atW2Pw4MF47733cPXq1UbJocJDDz0EQRAgCAI6duzYqGP7qrPXDNCXW6Evt6LMZGO/DbkZrwMrRzk+xutyZyMbvVmPez65B/sv7cexX49hxvYZcqdEMrPp9fhlzAMw5OXBXlICe0kJQtu1Q7tFC+VOjYgoKJSXleI/Lz6DzP93PxamTYCu+JLcKQUMu9GK4mWHULzsEOxGq9zpUDW8Wsz/85//RPv27fHCCy9gz549MJvNEEXR6WM2m7F7924899xzaN++PT74wHtn8165cgX33nsv7rvvPnzyySdQqVQYNWoUunfvjry8PMyePRu9evXC9u3bvZZDZbm5uVi7dm2jjOVPkuffmIm3iSI6x3CJvazWTnIdB5lZO2bBaDUCAIxWI36+/rPMGZHczs14Eubjx53+munECR5LR0TUSDa9+yYuFjiOBbWUlyP7rzNlzihwVOyVrxqTb/FKMS+KIiZPnownn3wSer1eOmauYga66qeCXq/HjBkzkJqa6vGcDAYDRowYgS1btkCpVOKjjz7C8ePH8fHHH2Pnzp04duwYunbtigsXLmDkyJH49lvvLu02GAx4/PHHvTqGP9IZLSg1OX/7FxbKZhvkGzQhGinu0qyLjJmQLxBtnKkgIpKT3W6DaLdDtNvlToVIFl4p5p955hmsXr3a6a+JooiQkBDExsYiISEBXbp0QWxsLJRKpTRLLwgCRFHE6tWr8eyzz3o0p5kzZyI/Px8A8PrrryM9Pd3p5wkJCcjNzUVYWBjMZjPGjh2L69evezSHyl5++WUUFhZCrVZ7bQx/NC17H4RK10oBWJrSX7Z8CMDoxcDFQ47P6MVyZyOb+cPmIyEqAeGh4egd0xuLhi+SOyWSmwhAc+MLHigU6Lj+U9nSIQp2JoMFOZn7kZO5HyaDRe50qDGIQGjYjd+HU+YtkDGZwBI1vivM50thPl+KqPFd5U6HquHxbvZ79uzBkCFDpMJ8wIABmDx5Mu666y506dIFSqXS6X6r1Yqff/4Z27ZtQ1ZWFvbt2+dITBCwe/du3HLLLQ3O6fDhw7j55ptht9vRqlUrnDlzBiqVyuW9s2bNwvvvvw8A+Otf/4q///3vDR6/qh9++AH9+/eHUqnEM888g7feegsA0KFDBxQWFjbo3f7ezf6hZXtQbrHicFEJAGDnX+5kJ3u5rRzlfD1lszx5EPmY05OdV5Gxgz2RvHIy9ztdj5ndV6ZMqLGsezXD6XrCy3NlyiTwFC875HQdM7W3TJkEJ9m62c+ZMwcAoNFokJ2djf/973944okn0K1bt98V8gAQEhKC7t27Y8aMGcjLy0NWVhY0v810VLyroTIzM2H/bfnNxIkTqy3kAWDy5MlSvHjxYhiNRo/kUMFut2Pq1KmwWq144YUXkJCQ4NH3+7uX7kuUCvnPnhzCQp6IfFblRndsekdE1PjunDIV544fwbnjR3DnlKlypxNQRLsozcyLdraj9lUeLeavXbuGnTt3QhAEZGdn45FHHqnzOyZNmoSsrCyIoogdO3Y0eKm7xWLBxo0bpevhw4fXeH+fPn3QrFkzAEBZWRlyc3MbNH5VixcvRl5eHrp164bnn3/eo+8OBBOXfu8yJhlNXO06JgpySq0WHbJWoUPWKja9I5KZ/lcjLp8pwfmfdbBa7Eh+LEnulMjLystKsfr5pwAAoWFhWPcK/1ztUWI1MfkUjxbz3377Lex2OwYOHIgHHnig3u958MEHMXDgQNjtdnzzzTcNyikvLw/Xrl2Trvv161fj/YIgON2zdevWBo1f2blz5/Diiy8CAJYuXVrjCoFgZTDbXMZERL7Gptfj9ORUnJ6cClsjHa1KRK6tfWMvBEFAqFqJaxcNUIeHyp0SeVnOvNek5neW8nK50wk4glKAqk0TqNo0gaAUan+AZOHRYr6oqAgAcPfddzf4Xffcc4/TO+vr8OHDUqxWq9G2bdtan+nUqZPL5xvqySefRElJCaZMmYI77rjDY+8NJEltm7qMSUY8mo7IpXMznnQZExGR9105c1pqfifa7Wx+52EtUhJdxuRbPFrMX79+HYIgIDo6usHvio6OhiiKDV5mf/TojXMR27Rp49YzlQv+ys83xMaNG5GTk4MWLVrgnXfe8cg7A43OaEGIQoEIlRJ92jfDqvRb5U6JiMglm16P8mPHUH7sGI+oI/IBDzzTBxaTDRaTDQ8800fudKgRRMd1gEKhgDo8Am27JSIyppXcKQUUhSYEMVN7I2Zqbyg0PCbaV3m0mG/WrBlEUcSVK1ca/K4rV65AEARp/3p9FRcXS7G776p8n16vh8XSsONNSkpKMGPGDADAu+++65EvOwLRtOx9CFEqkNhGixCFgEgNl8j5BB5NR/Q752Y8CfVvDUxNJ06yAR6RjPS/GrHuLcdpSC07NMWudSdlzogaQ/KTz7iMqeHsRiuKlx1C8bJDsBv5hbUv82gxXzGjvW3btga/64svvnB6Z32VlJRIsbtnuoeFhVX7jvr429/+hnPnzuGOO+7AlClTGvSuqkwmE/R6vdOHyKM2PgG07u34bHxC7myIfIJos8J00lEwqLsmsAEekYzWvrFXii+fbtif2ch/fPHP+WjZMR4tO8bji3/OlzudgPJr9lGXMfkejxbzQ4cOhUKhwPfff49NmzbV+z2ffvop8vLyoFAocPvttzcop8pHy7nbcK7qfQaDod7j79u3D4sWLYJKpcKSJUvq/Z7qzJ07F5GRkdInLi7O42M0lqUp/V3GRL5Ab9Yj/Yt0pH+RDr2ZX5oFPXb5JfIpIaobf6RlJ3siChYeLeajoqJwxx13QBRFPPLII/j444/r/I7//Oc/SE1NhSAIuPPOOxu8zL7izHoAMJvNbj1T9b7w8PqddW6z2TB16lTY7XY899xz6N69e73eU5OMjAzodDrpc/bsWY+P0VgiNaFYM3UQ1kwdxCX2voRH0wEAZu2Y5TKm4CTabLAbDLAbDBBtPHmDSE4T/zZA6mQ/6fVb2ck+SNz/7IsuY2o4Nr/zHx7vZvDaa69h6NChMBgMeOihhzB//nxMnjwZw4cPR+fOnSEIzkcb2O12/Pzzz9i2bRuysrKwd+9eiKIIQRDw2muvNTifpk1vdEQ3mUxuPVNe5XiLyu+oi/nz5+PAgQNISEiQjqTzNLVa7fb2AaJ60TQDpmyWOwsin2L65ReXMRE1Pm0LDf78XsNWcpL/CYtoggkvz5U7jYBU0fyOfJ/Hi/khQ4ZgxowZWLRoEQRBwPfff4/vv/8egGP5esuWLREREQFRFFFaWori4mKnBnMVhfxTTz2FQYMGNTifmJgYKXa3M75Op5NirVaL0NC6f8N7+vRpvPzyywCADz74gAU3kZ+bP2y+NCM/f9h8WXMh+QmCAKGeq7aIyLNMBgtylziOEk5+LIkz80QUNLxyzsD777+Py5cvY926dRAEAaLo2FBoMplqXAZeMWv/yCOPIDMz0yO5JCbeWBpy/vx5t56pfLZ95efr4oknnkBZWRkmTZqE4cOH1+sdwUZntGBatqMb7dKU/lxq7wuM12+cLT9xtWOWPkhpVVosv2e53GmQj+iUswGnxjwgxUQkn4pCviIeM7uvjNkQETUej+6ZryAIAtasWYPMzEyn/eaCILj8VIiIiMCCBQuQlZXlsVySkm40QTGZTE6FenUKCgpcPl8Xn3/+OQBg9erV1f66BUFAWlqa9Mzp06d/9/NXXnmlXuP7o4pCvmpMMqoo5KvGREHMptfjQsYLCOvRA122b4OqgaeuEBEREdWHV2bmK8yaNQupqan45z//ic2bNyM/Px9Wq/NZhSEhIejfvz9Gjx6NadOmNbjhXVUDBw5EVFQUrl27BgDIz8+v8bg7URSRn58vXY8YMaJe46amprp1388//4zvvvsOgOPLjHHjxjn9/Oabb67X+P7Iahdx4qLjSJmurevXp4CIyNvOzXjSKe6QtUrGbIgo+bEkp2X2FBzKy0qx6d03ATga4IVFNJE5I6LGJ4gVa+AbgdFoRFFREa5evQoAaNGiBdq2bfu7c909LS0tDStXrgQAzJw5E++//3619+7fvx/9+vUD4Ciui4uLnTrie9rKlSul2fkOHTqgsLCwQe/T6/WIjIyETqeD1o/OPdYZLbjt7e0wWOwIVynRrVUTfDJ9iNxpEZfZE/3O6cnOX9aymCcianzrXs1wumYzPAok7tZ0XllmXx2NRoMuXbpg4MCBGDhwIDp37uz1Qh4Ann76aSgUjl/q2rVrazyirvIS/8cff9yrhTzdMC17HwRBQIRKCQFAiLJR/9Gk6lR0sp+ymYU80W/aLVroMiYiosZRXlaKy4UFuFxYALudx4NS8AqKiql3797S7PelS5eqba5XUFCApUuXAgCio6ORkZHh8j6LxYKUlBQ0bdoUffr0waFDh7yTeJDp2urG8qilKf1lzISIqHpKrRYdslahQ9YqKP1oBRQRUaDY9O6biI7rAAC4cuY0z5mnoFWnYv4Pf/gDxo8f761cnDz44IMe7QK/YMEC9O3r6G46Z84crFixwunnJ0+eRHJyMsrLy6FSqbB+/XpERUW5fFd2djZWr16N0tJSHDx4EDNmzPBYnsFqaUp/hCgVSGyjxbfP/YGd7InIZ9n0epyenIrTk1Nh0+vlToeIKCgplEq07BiPlh3juV+egladGuDt3LkTrVu39lYuTnbv3o3Lly977H3h4eHYunUrUlNTkZubi/T0dMybNw9JSUkoLi7Grl27YLVaERsbi6ysLAwdOtTtd1fuyF+b48eP4+2335auf/75Zym+cuUKpkyZIl1HR0fj3Xffdfvd/qzougF7C69JcaQmUuaMCABw7TSw9Ld/F6Z9C0R1kDcfIh9w5s9TUf7jj1Lcae0amTMiCm48Zz743P/si07N78iz7EYrfs0+CgBokZIIhcarPdOpAerUAE+hUKB169Zun9feELGxsbh8+TJsNs/vg/nss8+wcuVK7N+/HxcuXIBWq0Xnzp0xbtw4pKWloXnz5jU+b7FYkJaWhpycHCQkJGDVqlXo3bu3W2Pv3LkTw4YNc+ve+jTE89cGeJ1f2OJ0/ctbI2XKhJy83d75+vkz8uRB5EOO9ezldN3jyI8yZUJEAJCTud/pmufMEzVM8TLnLcQxU92rc8hz3K3p6vw1i81mw9mzZ+HtJvjeKOIr3Hfffbjvvvvq/XxoaChWr15dr2fvvPNOr/+98zdnrxlgszv+nigFAXB/oQMRUaMTNBqIRqMUExEREcmhzjPzdVlS3hCiKEIQBK8W9YHIH2fme7/yBWw2G8osjn8Utzx1GxJjuczeJ3CZPdHvmIuKcGrMAwCATjkboGrbVuaMiIIbl9kTeRaX2cvPazPzADizTB6nVCqhVTpiFvI+JKoDl9YTVaFq2xbd9ubJnQYR/UYdHsql9UQUlLx6NJ0gCPWayW+s2X/yDWum3Yoysw1lZhvWTLtV7nSIiIiIiIJWxax81Zh8T51n5kNDQzFo0CC37v3666+hUqncvr+y3bt3w2q11vk58j+vfXYUAzpGSfGaqXX/54WIiIiIiCiY1LmYb968OXbs2OHWvQqFok73V1bRzZ6IyBfozXrM2jELADB/2HxoVf7Rk4KIiCjQlJeVOh1Nx3PmPatFSqLTnnnyXV5dZk/kjqUp/V3GRL6kopCvGlNwMf70E4717IVjPXvB+NNPcqdDFPRMBgtyMvcjJ3M/TAaL3OlQI8mZ9xouFxbgcmEBcua9Jnc6AUehCUHM1N6Imdqbze98nM8W82yyFzwiNaFYM3UQ1kwdhEgNO9ASke8qHPugy5iI5PH54kMoPluK4rOl+HzxodofIL9XXlaK8yeOw1xuhAgRV86cljulgGM3WlG87BCKlx2C3chtz76sTl+1rFixAppGOlN3wYIFMP52ji8RkdzmD5vvtMyeiIjk9+v5MpcxBa5N776JUHUYLKZyWMrL0Sahu9wpBZyqDfBipvaWMRuqSZ2K+dTUVG/l8TsTJkxotLFIXjqjBdOy9wFwLLPn7Dz5Iq1Ki+X3LJc7DZJZx/WfSjPyHdd/KnM2RBTVKhyXz5QAAFq2bypzNtRYYtp3xJWzjhn5Mc+9JHM2RPLx2WX2FDwqCvmqMRGRr9F064YeR35EjyM/QtOtm9zpEAU9hRIIVSsRqlZCoZQ7G2oM9zw+SyrkU+YtYPM7L6jc9I4N8Hwbi3mSlc5owdHzehw9r4fVzj4JRERE5D6FUoGYuCaIiWsChZJ/rA0GuYv+4TImz2EDPP/B3/VIVtOy96FrK8c3qiculrCbPRH5NJtej9OTU3F6cipser3c6RAFvT+k9pAa4P0htYfc6VAjKD5TCHO5EeZyI4rPFMqdDpGsWMyT7EKUCiS20SKxjZb75YnIp52b8aTLmIjk8dWqY9LM/FerjsmdDjUGsZqYKAixmCdZ8Yx5IiIiInJXTPuOUIVpoArTIKZ9R7nTIZJVnYr5b775Bt9//723cnHy/fff45tvvmmUsYiIaqM365H+RTrSv0iH3szl1cGq3aKFLmMikkfyY0kuYwpcY557CS07xqNlx3h2sqegJ4ii6PYCFYVCgdjYWBQVFbl9f+vWrXH+/Pk6JxYbG4vi4mJYrdY6PxvM9Ho9IiMjodPpoNVq5U6nVg8t2+N0vWbqIJkyIapZ+hfpTtc8po6IiKhx6YovIfuvMwE4OtlHxrSSOSMi73C3pqvzMvs61P4N1phjERER1YTN74iI5FVRyFeNyXPsRiuKlx1C8bJDsBs5qerruGeeZMU98+Qv5g+b7zKm4MHmd0REFOh+zT7qMibfVOeDA3U6HdLT02u/sZ73V36OAl+kJpRL633VtdPA0qGOeNq3QFQHefORmVal5dJ6IiIiGaXMW+C0zJ4o2NV5z7wgCG6/XBTFOt3v6lmbzVav54OVv+2ZJx/2dnvn6+fPyJMHkY8w/vQTCsc+CADouP5TaLp1kzkjIqLgUl5Wik3vvgkAuP/ZFxEW0UTmjAKP3WiVZuRbpCRCoanz3C95gNf2zNdFfQt5Cg5nrxmQ9PJWdH5hCx7453fQGS1yp0SViXagXOf4iHa5syGSlbmoCIWjxwA2GxRhYTgzKUXulIiIgk5FIV81Js9RaEIQM7U3Yqb2ZiHvB+pVzIui6PUPBb7k+d+ixGSDzS7i0FkdpmXvkzslqkysJiYKQqfGPCDF9rIyGTMhIiIicqjz1y1RUVH49NNPvZGLRBRFPPjgg7h+/bpXxyH56IwWlJpudMi08Qsc36NQAGGRcmdB5DsiIoDfCvlOORtkToaITAYLcpccBuA4Y14dHipzRuRt9z/7otMye6JgV+c98/U9N76uYmNjcfnyZe6ZryN/2TOftiIPO38qliZ8lQKw/6W7Eanhf4h9BhvgEUnMRUXS7HynnA1QtW0rc0ZElJO53+l6zOy+MmVCRORZ7tZ03AhBsrDaRUSoFCg126FUCNj5lztZyPuaqA5sekf0G1Xbtui2N0/uNIiIiIgkddoz3759e8TFxXkrFyft2rVD+/bta7+R/JMoQqFQQBsWgj5xkYiLCpc7IyIiIvIjyY8luYyJqP7sRiuKlx1C8bJDsButtT9AsqrTzHxhYaGX0vi9vXv3NtpY1PhClAoktvHdbQBERJXZ9Hqcm/EkAKDdooVQ+vA2JiKiQMWj6byv4li6ijhmam8Zs6HaePVoOqLqzH+ojxQvTekvYyZEtdOb9Uj/Ih3pX6RDb9bLnQ7JoKKQrxoTkXwqmt9VjSlw8Wg67xPtIsznS2E+XwrRzgbVvi4oi/nNmzdj/PjxiI+Ph0ajQevWrTF48GC89957uHr1qsfHM5vN+OqrrzBnzhyMGDECHTp0QEREBFQqFaKjo3Hrrbdi9uzZOHjwoMfH9lWRmlCsmToIa6YO4l558nmzdsxyGRMRkXzsNhHFZ0tRfLYUdhuLDiKP4NHEfiWoivkrV67g3nvvxX333YdPPvkEKpUKo0aNQvfu3ZGXl4fZs2ejV69e2L59u8fGzMjIQKtWrTB8+HC88cYb2LFjB1q0aIERI0ZgzJgxaNu2Lf73v//hvffeQ58+fTBlyhSUl5d7bHwiImq4dosWuoyJSE6sOoJN5ePoeDSddwhKAao2TaBq0wSCUpA7HapF0HSzNxgMGDFiBPLz86FUKrFs2TKkp6dLPz958iRGjRqFEydOYOTIkdi2bRuGDh3a4HFzc3Nx/fp1AMBDDz2EefPm/a6J4MGDB/HII4/g6NGjWLVqFYqLi/H55583eGwi8oz5w+ZLM/Lzh82XNRciInJQKBWIieOe6WASFtEEE16eK3caAa1FSqK0b75FSqLM2VBt6nTOvD/705/+hI8++ggA8NZbbyEjI+N39xQUFKBnz54oLy9HdHQ0Tp48iWbNmjVo3Jtvvhk//PAD7rzzTmzbtg1KpdLlfWfOnEG3bt2kWfmcnByMHj26zuP5yznzRET+wqbX4+fhdwEA1F0TIChD0CFrlcxZEZHJYJH2yic/lgR1OLftEVFgcLemC4pl9ocPH8aKFSsAAK1atcIzzzzj8r74+HhMmzYNgGNJ/ty5nvvm79lnn622kAccx/7de++90vWmTZs8NjYREdVf5YZ3phMnZcyEiCpTh4dizOy+GDO7Lwt5IgpKQVHMZ2Zmwm63AwAmTpwIlUpV7b2TJ0+W4sWLF8NoNDZo7PHjx2PatGm44447ar03ISFBis+dO9egcYmIyHPUlX5/5p55IiIi8gUBX8xbLBZs3LhRuh4+fHiN9/fp00daWl9WVobc3NwGjf/iiy9iyZIlaNKk9j1dlRvfNXR5v6/TGS14aNkePLRsD3RGi9zpEBFVK3buWzCddMzId8rZwDPmiYiIyCcEfDGfl5eHa9euSdf9+vWr8X5BEJzu2bp1q9dyqyovL0+Ka/vSwd/NWnNAiqdl75MxE3LJeB1YOcrxMV6XOxsiWRXNfgZ2gwF2gwFFs11v0yIiIiJqbAFfzB8+fFiK1Wo12rZtW+sznTp1cvm8N+Xm5mL37t0AgK5duzot9ydqdGsnuY6DlN6sR/oX6Uj/Ih16s17udKiRlf/4o8uYiIiISE4BX8wfPXpUitu0aePWM5UL/srPe4PBYMCiRYswfvx4AEC3bt2Qm5uLsLAwr44rt/kP9ZHipSn9ZcyEqHYzts/A8avHcfzqcczYPkPudKiRCRqNy5iIiBpPeVkp1r2agXWvZqC8rFTudIh8QsCfM19cXCzF7u5Dr3yfXq+HxWJBaKhnuqTqdDo89dRTMBqNOHfuHA4ePAiDwYCkpCSkp6dj+vTpUKvVHhnLl0VqQrFm6iC506DqTFx9Y0Z+4mp5c/EBP1//2WVMgc+m10MdH4/yI0eg0GjQaWOO3CkREQWlTe++6RTzvHnvsButTufMKzQBXy76tYD/f6ekpESK3S2Sq86Kl5SUoHnz5h7Jx2g0YtUq5/OJmzVrhi5duqB58+YQRbFO7zOZTDCZTNK1Xs8lwOQBmmbAlM1yZ+EzujTrIhXxXZp1kTkbakznZjwJRVgYwn/rpaJyY6sWERGRv6oo5CvimKm9ZcyGahPwy+wrHy1X05F0lVW9z2AweCyf1q1bQxRFWK1WFBcX48svv8SoUaOQk5OD1NRU9OjRA998843b75s7dy4iIyOlT1xcnMdy9SZ2syd/smj4InRv3h3dm3fHouGL5E6HiIgo6Nz/7IsuY6JgFvDFvKbS/kaz2ezWM1XvCw8P92hOAKBUKhEdHY277roL2dnZ2LBhA5RKJQoLC/HHP/4RO3bscOs9GRkZ0Ol00ufs2bMez9Ub2M2e/IlWpcXye5Zj+T3LoVXxWLJgUvlMeZ4vT0REga5FSqLLmHxTwBfzTZs2leLKy9FrUvm896rv8JbRo0fj2WefBeD4MmHSpEm/y8MVtVoNrVbr9CEiIs9QarXokLUKHbJW8Xx5IiIZ5cx7DZcLC3C5sAA5816TO52ApdCEIGZqb8RM7c398n4g4Iv5mJgYKb5+/bpbz+h0OinWarUea35Xm5kzZ0rx+fPn8fHHHzfKuHKw2uw4el4Pq11kN3si8lnmoiL8NGAgfhowEOaiIrnTIaLfmAwW5GTuR07mfpgM3K4XDK6cOe0yJs+xG60oXnYIxcsOwW60yp0OuSHgi/nExBvLQ86fP+/WM0WV/sBW+Xlva9OmDTp27Chd79y5s9HGbmw/F984UiRS0zhflhAR1YVNr8cvd98Du8EAiCJOjXlA7pSI6De5Sw67jClwRcd1cBmT51Rtfke+L+CL+aSkJCk2mUxOhXp1CgoKXD7fGFq3bi3F7n754M9OXCyp/SYiIhmcm/GkFNsrNVMlIvnZbSKKz5ai+Gwp7La6nQRE/mnMcy+hZcd4tOwYjzHPvSR3OkQ+IeA3QgwcOBBRUVG4du0aACA/Px9tazhaSBRF5OfnS9cjRoyo99i7d+/G7t27cc8997j9pYDFcmOpmLvd9/1Z11ZN5E6BiMgl0WYFwsKAsjJAqUSnnA1yp0REErGamAJVWEQTni3vZS1SEp3OmCffF/Az86GhoRg9erR0vX379hrvP3DggLS3PiIiAsnJyfUe+//+7//wl7/8BVu3bnXrfrvdjl9++UW69pdj5uqje2stEtto8dGUgXKnQq4YrwMrRzk+xutyZyMrvVmP9C/Skf5FOvRmvdzpUGMSAYVCAUXTptDcdBPPmCfyIQqlAjFxTRAT1wQKZcD/cZaoUbD5nf8Jit/9nn76aSgUjl/q2rVrazyiLisrS4off/xxp6Pt6svdve9ffvmlU5O+e+65p8Fj+6oVaQOxZuog7pf3VWsnuY6D0Kwds1zGFPiEkBCE9eiBsB49IITwDzVEviT5sSSXMRFRMAmKYr53795IS0sDAFy6dAmZmZku7ysoKMDSpUsBANHR0cjIyHB5n8ViQUpKCpo2bYo+ffrg0KFDNY6fm5uLr7/+usZ7SktLMXv2bKecR44cWeMzRETkPTxjnsh3qcNDMWZ2X4yZ3RfqcE4MEFFwCopiHgAWLFiAvn37AgDmzJmDFStWOP385MmTSE5ORnl5OVQqFdavX4+oqCiX78rOzsbq1atRWlqKgwcPYsaMGTWOLYoi7r//fnz00UcuVwXk5+dj6NChOHrUsUclOjoa//73v6FUKuvzSyVquNGLgYuHHJ/Ri+XORlbzh813GVPg4xnzRES+QVd8CYvSJmJR2kToii/JnQ6RzxBEUQyariHFxcVITU1Fbm4uAKB79+5ISkpCcXExdu3aBavVitjYWGRlZeGuu+6q9j3Lly/Ho48+Kl3ffvvtLmfe9+zZg4yMDKefNWvWDP3790fLli1hMplw9OhRHDt2zOld//rXv5CQkFCvX6Ner0dkZCR0Oh20PvyHz7QVeTBabFia0p9L7X3RylHO11M2y5MHERERBb1FaROdrmesWCtTJkSNw92aLqg2AcbExGDLli347LPPsHLlSuzfvx+bNm2CVqtF//79MW7cOKSlpaF58+Y1viclJQVfffUVcnJykJCQgIULXS+/HDRoEHbu3InCwkJ8/vnn+Pbbb3H06FHk5+ejpKQEISEhiIyMxJAhQzBgwABMnDgRt956qzd+6T5rWvY+rJk6SO40qCq7Bbj825dMLXvImwsREVEVJoNFOl8++bEkLrUnoqAUVDPzwcDfZuYBsJj3NcbrwPwkwFIGhEYALXsCj7p3IgMREVFjyMnc73Q9ZnZfmTKhxnD59Cmsfv4pAMCkt99Hyw6dZM6IyLvcremCZs88+aalKf3lToGqWjsJEARA1cTxv8qgWsBDJDEXFeGnAQPx04CBMBcVyZ0OEVHQ2rlyGdp174l23Xti58plcqdD5DNYzJMseDSdj4tJvBFPXC1fHkQysen1+OXue2A3GABRxKkxD8idEhFV8ofUHig+W4ris6X4Qyq3gxFRcGIxT0TOJq52zMa37g08dQjQNJM7I6JGd27Gk1JsNxplzISIXPlq1THExDVBTFwTfLXqWO0PkF+7/9kXXcZEwY7rZ0kW7GbvwzTN2L2eCEBYz54oP3IEANApZ4PM2RARBa+wiCaY8PJcudMg8jmcmSdZTcveJ3cKRES/027RQijCwhDerx+67tkNVdu2cqdERJUkP5bkMiYiCiacmSciIqpCqdWiQ9YqudMgIhf0vxqx9o29AICJfxvAY+mIPMRutOLX7KMAgBYpiVBoWCr6Os7Mk6zYzZ6IfJFNr8fpyak4PTkVNr1e7nSIqJKKQr5qTIGrvKwU617NwLpXM1BeVip3OgGropCvGpPvYjFPsmA3eyLyZZUb4FWOiYiocZWXleJfMx7F5cIC2O02bHr3TblTIvIZLOaJiIiIyG9M/NsAlzEFpsrF+5Uzp2XMJPC1SEl0GZPvEkRRFOVOgjxHr9cjMjISOp0OWq1W7nSIiPySuahIOlu+U84GNsAjIpLJulczYLfZcOWso5D/06KPEBbRROasiLzL3ZqOxXyAYTFPRNRwpyenOl2zGR6R7zAZLMhdchiAo5M9G+AFtvKyUml2/v5nX2QhT0HB3ZqOLQqJiIiIyG98vvgQfj1fJsVj/9JP5ozIm3jGPFH1uGeeiIioinaLFrqMiUh+FYV81ZiIKNhwZp6IiKgKnjNP5LtatAnHr+cNUkxEFKw4M0+NSme0AADSVuRJMREREZG77n3iJsTENUFMXBPc+8RNcqdDRCQbFvPUqGb8Zz8A4PhFPR5dtVfmbIiIiMjfqMNDMWZ2X4yZ3ZfN74g8yG60onjZIRQvOwS70Sp3OuQGFvPUqH6+XCLFJy6W1HAnEREREQW78rJSrHs1A+tezUB5Wanc6QS0X7OPuozJd7GYp0bVJebGcSJdW/FoESIiIiKqXsWxdFVjImIxT41s0SOO42O6t9bioykDZc6GiIiIiIgAoEVKosuYfJcgiqIodxLkOXq9HpGRkdDpdNBqtXKnQ/7IeB1YO8kRT1wNaJrJmQ0REREFsfKyUmlG/v5nX0RYBFd2UuBzt6ZjMR9gfL2Y1xktiNSEIm1FHuY/1AeRGjau8TkrRzlfT9ksTx5ERERVmAwW5C45DABIfiyJDfCIKCC5W9NxmT01qllrDkjxtOx9MmZCRERE/qaikK8aU+BiAzyi6rGYJyJnE1e7joOU3qxH+hfpSP8iHXqzXu50iIiIggob4BFVj8U8Nar5D/WR4qUp/WXMhKqlaeZYWj9lM/fLA5i1Y5bLmIiIGl/yY0kuYyKiYMRinhpVxR75FWkDuV+eiIiI6kQdHooxs/tizOy+3C8fJO5/9kWXMRGxAV7A8fUGeET+Rm/WSzPy84fNh1bFf6+IiOTCBnhEFAzYzT5IsZgnIiKiQJWTud/peszsvjJlQkTkPe7WdCGNmBMR+QOeM09ERD7KbhPx6/kyAECLNhEyZ0NEJC/umSciZxWFfNWYKEjY9HoUPvwIfhowEIWPPAKbnqcYEPkOsZqYiCj4BGUxv3nzZowfPx7x8fHQaDRo3bo1Bg8ejPfeew9Xr171+Hjl5eVYv349pk6dij59+qBFixYIDQ1FVFQUevbsiSlTpuDzzz+H3W73+NhERFQ352Y8CdPJkwAA04mTODfjSZkzIqIKCqUCMXFNEBPXBAplUP4xlohIElS/C165cgX33nsv7rvvPnzyySdQqVQYNWoUunfvjry8PMyePRu9evXC9u3bPTLehQsX8Oyzz6Jly5Z48MEH8eGHH+Ly5csYMmQIJkyYgL59++LUqVNYtWoVRo0ahX79+uHw4cMeGdsX6YwWpK3Ik2LyUTxnnoiIfBSPpgs+5WWlWPdqBta9moHyslK50yHyKUHTAM9gMOD2229Hfn4+lEolli1bhvT0dOnnJ0+exKhRo3DixAmoVCps27YNQ4cObdCYr7zyCl599VUAQFRUFJYuXYpx48ZBEATpnqtXr2LWrFnIzs4GAERGRuKrr75C3771a+jiyw3wHlq2B5pQJVakDUTaijysSBsod0pERL9jLipCwegxEI1GhPXqhfYfLoPSx34/JSIKFutezXC6nvDyXJkyIWo87tZ0QTMzP3PmTOTn5wMAXn/9dadCHgASEhKQm5uLsLAwmM1mjB07FtevX/fY+OvXr8f48eOdCnkAaN68ObKysnD//fcDAHQ6HR5++GFYLJy5JiKSw4WMF6BJTER4v35QqNUs5ImIiMgnBUUxf/jwYaxYsQIA0KpVKzzzzDMu74uPj8e0adMAOJbkz53rmW/+7rrrLtx555013lN5rJ9++gkbN270yNi+ZGlKfyme/1AfGTMhIqqeaLOi/NgxlB87BtFmlTsdIqKgdv+zL7qMiShIivnMzEypudzEiROhUqmqvXfy5MlSvHjxYhiNxgaPf88999R6T2JiItq2bStdf/nllw0e19dEakKlpfWRmlCZsyEiqgabZRMR+YywiCaY8PJcTHh5LsIimsidDpFPCfhi3mKxOM1yDx8+vMb7+/Tpg2bNmgEAysrKkJubW++xJ02ahNzcXDzyyCNu3R8XFyfF586dq/e4RERUP+aiIhh/+AF2gwGq+HgIISFyp0RERETkUsAX83l5ebh27Zp03a9fvxrvFwTB6Z6tW7fWe+wuXbpgxIgRiI2Ndev+ykfThfAPkEREje7U6DGAKAI2G8p//BHtFi2UOyUioqDFTvZENQv4Yr7yUW9qtdppKXt1OnXq5PJ5bztz5owU9+kTeHvKeTQdEfk6u9EICAKgVAIAm98REclo07tvuoyJyCHgi/mjR49KcZs2bdx6pnLBX/l5bzp16hQuXrwoXU+cOLFRxm1M07L3SfGsNQdkzISIyLWwnj1dxkRERES+JuCL+eLiYimu2Atfm8r36fX6Rjkm7r///a8Ujx07Fj169PD6mERE5Kz9vz5EeL9+CO/XD+3/9aHc6RBRJSaDBTmZ+5GTuR8mA1f4BQN2sieqWcBvzC4pKZFitVrt1jNhYWG/e0fz5s09mldlpaWlWLjQsS8zIiIC//jHP9x+1mQywWQySdd6vd7j+XnK0pT+0ow8j6YjIl+k1GrRIWuV3GkQkQu5Sw47xWNm95UxG2oMFZ3sici1gJ+Zr3y0XE1H0lVW9T6DweDRnKqaM2eOtMR+8eLF6Nixo9vPzp07F5GRkdKnckd8X8Oj6YiIiIiIiDwj4It5jUYjxWaz2a1nqt4XHh7u0Zwq27JlC95//30AwBNPPIHU1NQ6PZ+RkQGdTid9zp496400iYiIiGSV/FiSy5iIKFgF/DL7pk2bSnHl5eg1KS8vr/YdnvTjjz/i//2//wdRFPHAAw9IRX1dqNVqt7cPEBEREfkrdXgol9YTEVUS8DPzMTExUnz9+nW3ntHpdFKs1WoRGur5JeEFBQW4++67odfrkZycjDVr1kD521FIRERERERERDUJ+GI+MTFRis+fP+/WM0VFRS6f95RTp05h2LBhuHDhAu69915s2LDB7f38RERERERERAFfzCcl3dhTZTKZnAr16hQUFLh83hNOnTqFO++8E2fOnMHIkSPx6aefcpk8ERERERHJym60onjZIRQvOwS70Sp3OuSGgC/mBw4ciKioKOk6Pz+/xvtFUXS6Z8SIER7LpbCwEMOGDZMK+fXr17OQJyIiIiIi2f2afdRlTL4r4Iv50NBQjB49Wrrevn17jfcfOHBA2lsfERGB5ORkj+RRWFiIO++8E6dPn0ZycnKNhfykSZNw1113eWRcIiIiIiIiCjwBX8wDwNNPPw2FwvFLXbt2bY1H1GVlZUnx448/7nS0XX2dPn0aw4YNw+nTpzFixAhs2LChxhn5Xbt21fqlAxERERERkae0SEl0GZPvCopivnfv3khLSwMAXLp0CZmZmS7vKygowNKlSwEA0dHRyMjIcHmfxWJBSkoKmjZtij59+uDQoUPVjn369GnceeedKCwsxIgRI5CTk8Ol9URERERE5FMUmhDETO2NmKm9odAE/AnmASFo/l9asGABDhw4gP3792POnDlo1aqVVOADwMmTJzFq1CiUl5dDpVJh/fr1TnvtK8vOzsbq1asBAAcPHsSMGTPwzTff/O6+M2fOYNiwYSgsLAQAWK1WPPjgg7Xmevny5Xr8ComIiIiIiChYBE0xHx4ejq1btyI1NRW5ublIT0/HvHnzkJSUhOLiYuzatQtWqxWxsbHIysrC0KFD3X63IAgu//qzzz6LU6dOSdfbtm1r8K+DiIiIiIjIk+xGq9T0rkVKImfm/URQLLOvEBMTgy1btmDTpk0YO3YsysvLsWnTJhw5cgT9+/fHu+++ix9//LHW5nMpKSl45JFHEBERgZtvvhkLFy50eV9Ne/OJiIiIiIh8ATvZ+ydBFEVR7iTIc/R6PSIjI6HT6aDVauVOh4iIiIiIfFzxMuceYDFTe8uUCQHu13RBNTNPRLUwXgdWjnJ8jNflzoaIiIiIGgE72fsnzswHGM7MU4OsHOV8PWWzPHkQycSm1+PcjCcBAO0WLYSSv48S+QyTwYLcJYcBAMmPJUEdHipzRkRE3sGZeSIiojqqKOSrxkQkv4pCvmpMRBSsWMwT0Q0TV7uOiYiIiIjIp7CYJ6IbNM0cS+unbHbEREGm3aKFLmMikl/yY0kuYyKiYMU98wGGe+aJiIiIiIj8F/fME1HdsZs9EREREZFfYDFPRDesneQ6JiIiIiIin8JinoiIiIiIiMjPsJgnohvYzZ6IiHyUyWBBTuZ+5GTuh8lgkTsdIiLZsZgnohvYzZ6IiHwUz5knInLGYp6IiIiIiIjIz7CYJyIiIiKfx3PmiYichcidABERERFRbdThoRgzu6/caRAR+QzOzBMRERERERH5GRbzRERERERERH6Gy+yJiIiIyOeZDBapi33yY0lQh4fKnBERkbw4M09EREREPo9H0xEROePMPBERERER+ZzyslJsevdNAMD9z76IsIgmMmdE5Fs4M09EREREPs1ksMBus6P4bCnsNpFH0wWJikK+akxEDpyZJyIiIiKflrvkMBRKBWLiHDOz3C9PRMSZeSIiIiIi8kH3P/uiy5iIHARRFEW5kyDP0ev1iIyMhE6ng1arlTsdIiIiogZjJ3siCibu1nRcZk9EREREPk0dHooxs/vKnQYRkU/hMnsiIiIiIiIiP8NinhqNzmhB2oo8KSYiIiIiIqL6YTFPjWZa9j4pnrXmgIyZEBERERER+TfumSciIiIiIgpidqMVv2YfBQC0SEmEQsMy0R8E5cz85s2bMX78eMTHx0Oj0aB169YYPHgw3nvvPVy9etXr4xcXF2PixIkQBAGCIGDnzp1eH9MXLE3pL8XzH+ojYyZERERERFShopCvGpNvC6pi/sqVK7j33ntx33334ZNPPoFKpcKoUaPQvXt35OXlYfbs2ejVqxe2b9/utRz++9//IjExEevWrfPaGL4qUhOKFWkDpZiIiIiIiIjqJ2iKeYPBgBEjRmDLli1QKpX46KOPcPz4cXz88cfYuXMnjh07hq5du+LChQsYOXIkvv32W4+Of+HCBYwePRoPP/wwrl+/7tF3ExERERER1VeLlESXMfm2oCnmZ86cifz8fADA66+/jvT0dKefJyQkIDc3F2FhYTCbzRg7dqzHiu6VK1ciMTERmzZtQt++fbF3716PvJeIiIiIiKihFJoQxEztjZipvblf3o8ERTF/+PBhrFixAgDQqlUrPPPMMy7vi4+Px7Rp0wA4luTPnTvXI+PPmjULRqMRb731Fv73v//h5ptv9sh7iYiIiIiIKDgFRTGfmZkJu90OAJg4cSJUKlW1906ePFmKFy9eDKPR2ODxb7vtNhw8eBAZGRkICeE3XURERERERNQwAV/MWywWbNy4UboePnx4jff36dMHzZo1AwCUlZUhNze3wTls3rwZ3bt3b/B7iIiIiIiIiIAgKObz8vJw7do16bpfv3413i8IgtM9W7du9VpuRERERERERPUR8MX84cOHpVitVqNt27a1PtOpUyeXzxMRERERERH5goAv5o8ePSrFbdq0ceuZygV/5eeJiIiIiIiIfEHAF/PFxcVSXLEXvjaV79Pr9bBYLB7OioiIiIiIiKj+Ar61eklJiRSr1Wq3ngkLC/vdO5o3b+7RvDzFZDLBZDJJ13q9XsZsiIiIiIiIqDEE/Mx85aPlajqSrrKq9xkMBo/m5Elz585FZGSk9ImLi5M7JSIiIiIiIvKygC/mNRqNFJvNZreeqXpfeHi4R3PypIyMDOh0Oulz9uxZuVMiIiIiIiIiLwv4ZfZNmzaV4srL0WtSXl5e7Tt8jVqtdnv7ABEREREREQWGgJ+Zj4mJkeLr16+79YxOp5NirVaL0NBQT6dFREREREREVG8BX8wnJiZK8fnz5916pqioyOXzRERERERERL4g4Iv5pKQkKTaZTE6FenUKCgpcPk9ERERERETkCwK+mB84cCCioqKk6/z8/BrvF0XR6Z4RI0Z4LTciIiIiIiKi+gj4Yj40NBSjR4+Wrrdv317j/QcOHJD21kdERCA5Odmb6RERERERERHVWcAX8wDw9NNPQ6Fw/FLXrl1b4xF1WVlZUvz44487HW1HRERERERE5AuCopjv3bs30tLSAACXLl1CZmamy/sKCgqwdOlSAEB0dDQyMjJc3mexWJCSkoKmTZuiT58+OHTokHcSJyIiIiIiInIhKIp5AFiwYAH69u0LAJgzZw5WrFjh9POTJ08iOTkZ5eXlUKlUWL9+vdNe+8qys7OxevVqlJaW4uDBg5gxY4bX8yciIiIiIiKqECJ3Ao0lPDwcW7duRWpqKnJzc5Geno558+YhKSkJxcXF2LVrF6xWK2JjY5GVlYWhQ4e6/W5BEGr8+fHjx/H2229X+/O3334bK1eulK7HjBmDMWPGuD0+ERERERERBZegKeYBICYmBlu2bMFnn32GlStXYv/+/di0aRO0Wi369++PcePGIS0tDc2bN6/xPSkpKfjqq6+Qk5ODhIQELFy4sMb7L168iFWrVlX78y+++MLpumPHjizmiYiIiIiIqFqCKIqi3EmQ5+j1ekRGRkKn00Gr1cqdDhEREREREdWBuzVd0OyZJyIiIiIiIgoULOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyM0FZzG/evBnjx49HfHw8NBoNWrdujcGDB+O9997D1atXA3ZsIiIiIiIiCgyCKIqi3Ek0litXriA1NRVbtmwBAHTr1g1JSUkoLi7Grl27YLPZEBsbi+zsbAwfPtwvx9br9YiMjIROp4NWq/VU+kRERERERNQI3K3pgqaYNxgMuP3225Gfnw+lUolly5YhPT1d+vnJkycxatQonDhxAiqVCtu2bcPQoUP9bmwW80RERERERP7L3ZouaJbZz5w5E/n5+QCA119/3amYBoCEhATk5uYiLCwMZrMZY8eOxfXr1/1+bCIiIiIiIgo8QVHMHz58GCtWrAAAtGrVCs8884zL++Lj4zFt2jQAjmXxc+fO9euxiYiIiIiIKDAFRTGfmZkJu90OAJg4cSJUKlW1906ePFmKFy9eDKPR6LdjExERERERUWAK+GLeYrFg48aN0nVtzeX69OmDZs2aAQDKysqQm5vrl2MTERERERFR4Ar4Yj4vLw/Xrl2Trvv161fj/YIgON2zdetWvxybiIiIiIiIAlfAF/OHDx+WYrVajbZt29b6TKdOnVw+709jExERERERUeAK+GL+6NGjUtymTRu3nqlcdFd+3p/GJiIiIiIiosAV8MV8cXGxFFfsR69N5fv0ej0sFovfjU1ERERERESBK0TuBLytpKREitVqtVvPhIWF/e4dzZs398mxTSYTTCaTdK3T6QA4vgggIiIiIiIi/1JRy4miWON9AV/MVz7eraZj4Sqrep/BYKhXMd8YY8+dOxevvvrqWVZETAAAAyVJREFU7/56XFycm1kSERERERGRrykpKUFkZGS1Pw/4Yl6j0Uix2Wx265mq94WHh/vs2BkZGZg9e7Z0bbfbcfXqVbRo0QKCINQhWyIiIiIiIpKbKIooKSmpte9awBfzTZs2leLKy9FrUl5eXu07fG1stVr9uyX87u7PJyIiIiIiIt9T04x8hYBvgBcTEyPF169fd+uZin3nAKDVahEaGup3YxMREREREVHgCvhiPjExUYrPnz/v1jNFRUUun/ensYmIiIiIiChwBXwxn5SUJMUmk8mpWK5OQUGBy+f9aWwiIiIiIiIKXAFfzA8cOBBRUVHSdX5+fo33i6LodM+IESP8cmwiIiIiIiIKXAFfzIeGhmL06NHS9fbt22u8/8CBA9L+9oiICCQnJ/vl2ERERERERBS4Ar6YB4Cnn34aCoXjl7p27doaj4nLysqS4scff9zpeDl/G5uIiIiIiIgCU1AU871790ZaWhoA4NKlS8jMzHR5X0FBAZYuXQoAiI6ORkZGhsv7LBYLUlJS0LRpU/Tp0weHDh1qtLGJiIiIiIiIBFEURbmTaAwGgwFDhw7F/v37ERISgmXLlklFNgCcPHkSo0aNwokTJ6BSqbBt2zYMHTrU5buWL1+ORx99VLoeOnQovvnmm0YZm4iIiIiIiCgoZuYBIDw8HFu3bkVycjKsVivS09PRo0cPTJgwAcOGDUNiYiJOnDiB2NhYfP7553UqpgVBkG1sIiIiIiIiCj5BMzNf2WeffYaVK1di//79uHDhArRaLTp37oxx48YhLS0NzZs3r/F5i8WCtLQ05OTkICEhAatWrULv3r0bZWwiIiIiIiKioCzmiYiIiIiIiPxZ0CyzJyIiIiIiIgoULOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/8/8BRo5tJKqIneEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT5/cH8M/NYk9Zgjhw46ir2taqX7XDXevCUZx11r1a66+11qodal1t3aNoFVfdo62jtWodOHBPEARlCQTITu7vj0ggJECAJJck5/168fLemzsOqMDJ8zznMCzLsiCEEEIIIYQQQojN4HEdACGEEEIIIYQQQsqGknlCCCGEEEIIIcTGUDJPCCGEEEIIIYTYGErmCSGEEEIIIYQQG0PJPCGEEEIIIYQQYmMomSeEEEIIIYQQQmwMJfOEEEIIIYQQQoiNEXAdADEvjUaD5ORkeHh4gGEYrsMhhBBCCCGEEFIGLMsiJycHwcHB4PGKH3+nZN7OJCcnIzQ0lOswCCGEEEIIIYRUQGJiIqpVq1bs65TM2xkPDw8A2r94T09PjqMhhBBCCCGEEFIWYrEYoaGhutyuOJTM25n8qfWenp6UzBNCCCGEEEKIjSpt2TQVwCOEEEIIIYQQQmwMJfOEEEIIIYQQQoiNoWSeEEIIIYQQQgixMZTME0IIIYQQQgghNoaSeUIIIYQQQgghxMZQMk8IIYQQQgghhNgYSuYJIYQQQgghhBAbQ8k8IYQQQgghhBBiYyiZJ4QQQgghhBBCbAwl84QQQgghhBBCiI2hZJ4QQgghhBBCCLExlMwTQgghhBBCCCE2hpJ5QgghhBBCCCHExjhsMp+WloaIiAgwDAOGYXDmzBmLP1OlUmHHjh3o3r07atSoAWdnZ4SEhKBTp05Yt24dJBKJxWMghBBCCCGEEGL7HDKZ37FjB8LDw7Fr1y6rPTMuLg5vv/02Bg8ejKNHj8LX1xcffPABqlevjtOnT2Ps2LFo0aIFrl27ZrWYCCGEEEIIIYTYJgHXAVjT8+fPMW7cOBw8eBACgfU+9dTUVHTs2BFPnz6Fm5sbdu3ahW7duulev3TpEnr27In79++jc+fOuHDhAurXr2+1+AghhBBCCCGE2BaHGZnfsmULwsPDcfDgQbRo0QKXL1+22rMHDx6Mp0+fAgDWr1+vl8gDQOvWrbFv3z4wDIPMzEz07t0bKpXKavERQgghhBBCCLEtDpPMT506FVKpFIsWLcLFixfRrFkzqzz3yJEjOHnyJACgefPmGDRokNHz2rZti169egEA7t27h/Xr11slPkIIIYQQQgghtsdhkvm3334b169fx5w5c6w6xX7JkiW67cjIyBLPHTp0qNHrCCGEEEIIIYSQwhwmmT98+DAaNGhg1Wempqbin3/+0e137ty5xPM7duyo237y5AmuXr1qsdgIIYQQQgghhNguh0nmufDnn39Co9EAAJydndGoUaMSz/fx8UHt2rV1+8ePH7dofIQQQgghhBBCbBMl8xZ08+ZN3Xb16tXB5/NLvaZWrVpGryeEEEIIIYQQQvJRMm9Bd+7c0W2HhISYdE3h8wpfTwghhBBCCCGE5HOoPvPWlpaWptv29vY26ZrC56Wnp5s5ImKL7jzPRrcV/5rlXo2CPfHb6Dfg5SI0y/1szoubwJq39Y8FNQWGHQJcvDkJyZ6IFWKMPjEad16a/41IN6Eb/hv8H9747Q3kKfPKdQ8ew8OuHrtQ37e+maMjBMiNiUHikI+4DsNm8dzcUOvgAYhMHPywZ3KJEr8vvYqMpPJ9r7MlH85sjuA6PlyHYXXP7t1G9LxPrfrMiPnfoVqDkpf8ck2VKcOLpZeBCnbo9hvXBM41vc0SU2VHI/MWlJOTo9t2cnIy6RpnZ2ej1xdHLpdDLBbrfRD70nPVObPd63ayGGOjrpjtfjZnXQfDYy9igWj6Bdwcpp6eapFE3lw0rAYRhyO4DoPYKUrkK0aTl4e43h9yHUalcGzNTYdI5AHg9yXXuA6BE9ZO5Ll6ZlmlrLha4UQeANLXOM5SZUrmLUgqleq2RSKRSdcUPk8ikZR6/uLFi+Hl5aX7CA0NLXughBBiBiqNGX4CE0IIIYQQk1Ayb0EuLi66bYVCYdI1hc9zdXUt9fw5c+YgOztb95GYmFj2QEmllS1Vwrn0uokmaxTsibWRrcx3Q1sz5m/DY0FNgYht1o/FziTlJuF66nWuwygRj+Ehukc012EQO6QWiyGycvtbe8Nzc0Ot/b9zHUal0GlYQ/AcZDXchzObcx0CJyLmf+cQzyyrwCktzLII3G9ck4rfxEbQmnkL8vDw0G3L5XKTrpHJZEavL46Tk5PJU/iJ7Rm19TJkaoDPY+Aq4qNRsCd2jnmT67BsV1AT4KtsrqOwO2KFGN32dQMLVneMz/Bxfeh1sz/rv8H/mf2ehFRU4vjxUCUlgefhAad6dVFz+3auQyI27NTWu6hay1u333t6C+6CIRZRrUEjzIg+zHUYlY7AxxnVvmnHdRg2hZJ5C/L399dtZ2VlmXRNdnZBouHn52fukIgNScyU4Ep8pm5folA79qg6qbSmnp4KDavRO+YicCnmbELsj/zefWjy8nTbhBBCiDXQNHsLCg8P120nJSWZdE3h8wpfTxxLtlSJ/31/Wu+Yq5DnuFXoSaWVlJuEmJQYg+N7eu3hIBpCrE8tFusSeQDQFKqXQ0h5dBrWEGmJuUhLzEWnYQ25DocQUolRMm9BTZoUrNdISEiAWq0u9ZonT54YvZ44lsiNF6Fm9Y/VDyp92QUh1pKUm4TWUa3RZW8Xg1H5432PI8Sd2ksRx5AweozePmNCvRtCiiOXKBG94BKUcjXAsvhrU+XtEEII4R5Ns7egd999FzweDxqNBjKZDLdv30bTpk2LPT8zMxOPHz/W7Xfp0sUaYZJKJluqROwz/XXdfAbYOLw1RxHZiRc3gbXtAVYDBDcHIvdTb/kyuP/yPvod6lfqeR4iD0rkiUNQi8WIHzoMinv39I6HHdjPTUDELhxadQMKmXbwR6lQIyPZMVrUORJZXi4OLlkIAOg1cy6c3dw5jojYMhqZt6CAgAC0b99et3/y5MkSzz99umBadVhYGFq0oIInjshYH/gzszvSFPuKWtdBm8gDQPI16i1vovwReFMSeQDY3XO3hSMipHJIHD/eIJFn3N0hCqE3s0j5iDOkSIkT6/ZZDVAlmGZ62Jv8RL7oNiHlQSPzFjZz5kycOXMGABAVFYVp06YVe+6vv/6q254xY4alQyOVlEShvxzj6JS3EepDP8yJ5YkVYow8NhL3s8pewMtV4Ip9H+yjUXniENRiMaTXrhscp1F5Ul7pz3IQ/c1lg+PdP3mNg2iIJWk0aqQnPAUA+FWvwXE0xNbRyHw5ZGVloXv37nB3d0f79u1L7O3evXt3dOrUCQBw7do17Ny50+h5586dw8GDBwEADRo0wJgxY4yeR+xbYqZEb4o9jwHCq3pxGJEdGfM3wLz6lhfcnHrLGzH+r/FlTuRdBa443vc4Lg65SIk8cQhqsRiPOnYCNPq1IkK3b6NReVJuuxYZJvKBNT3g5Eqz8uyNSqGAXJIHuSQPKoWC63CIjaOR+XJYtmwZjh49CgA4e/Ys5s6dqzeqXtRvv/2GNm3a4OnTp/j444/h6emJbt266V6/dOkS+vTpA5Zl4e3tjf3790MgoL8aR5OYKUG77/Qr2DMMw1E0diioCTAvs/TzHJRYIUZsWmyp523tshUtAmkJEHEsuTExSBxS/NIcxt0d7i1bWjEiYm+K1BGF0JmPnpObcRILsZzstBSkPHkEAGB4PKTGPynlCseikaqQEaUt+lglMhw8F8qHSuMwX6F79+7h22+/Lfb1b7/9Flu2bNHt9+7dG7179zbp3qUlXIGBgTh16hQGDRqES5cuoXv37mjevDnq1q2LxMRE/Pfff2BZFvXq1cOOHTtQv359k55L7Eu3FWcNjh2a1JaDSIijMaW4HU2jJ45IkZSExz16AqW0m6Pp9aQixBn6/76ETnwMW/QWjcrboV9nT9JtsxoNRC60jDKf4nkuUldcAwAIq7kjI+oO/McUXzicaDlMMv/ixQts3bq12NdPnDiht1+zZs1ik/np06cjJiYGZ86cQcuWLfHNN9+U+vywsDCcO3cOu3btQlRUFG7duoXbt2+jSpUqaN++PQYNGoTIyEi4Uksbh1V0rXyzUE+aYk/MQqwQY/SJ0bjz0vQWR9Rejjg6tViMx+++ZzCdvqjaJ/+i6fWk3OQSJbZ9cUG3z/CAYYspkbdXSplMb3/oD6s4iqTySV11TbetfJYLpzD6HdgUDpPM/+9//wPLsqWfaAJvb28cOXKkzNcJBAIMHjwYgwcPNkscxH5kS5XQaAr+ffIZYOvINziMiNiTMX+MKVMizwOPEnnisIprOWeAx0PN3/dRIk/KTS5RYuvn5/Wm2LMaUCJvp57duw321ZuDDI+HoLC68PIP5DiqSoYB8OrX4SqR4ZyGYiscJpknpDIbvvlS/vcu8BkGzat7USs6YhZJuUm4nXG7TNfs6rnLQtEQUnlJ799H/Ae9SzwndPs2WhtPzObYmptQyvRn5QmcqDa1vYqe96lum9Vo0Ofz+RxGU7moMmXasuwq7b7fuCa0Xt5E9FUipBIoXMFezbLYOLw1h9EQe9LvoGn94QGgUZVGWPfeOniKPC0YESGVhykJfD6aTk/MTaM2nDE66Ms2HERCLC07LcXgmLObOweRVE4pK64CGuj6rOX8kQDnMd5chmQzKJknhGOJmRKoC02x5zGgUXlzk2YBvw0E0u4AAQ2BQdGAizfXUVmFVKVfWGlPzz2o70tFNgkxNZFnXF0RduggJfLEAlgInHhQyTVgeMBHC96EZxUXroMiFlC48B0ARMz/jqNIiL2huTyEcChbqsT/vj+jd6xpNRoVNbvt/YDEC4AsG0i5DUQX32LK3jjznXXbbgI3SuQJgbZKfamJPI+Hmgf2o8HVGErkiYUw4PF4ELkIEFTLixJ5OyXLy4VCItHtMzweqjVoxGFElU/glBaAUJuWiqp50Hr5MqBknhAORW68CHWRwoxU+M4Ckq8WbMtzuIvDzIYMGQKGYfQ+/ve//+leT8pN0o3MuwndUM+3nt71//77Lxo1amRwj7K4e/cu5s6diw4dOqBq1apwdXWFUCiEr68vmjVrhhEjRuDQoUNmK0BKSEUpkpLwuPM7xb7u1LAh6l26iIZ3bsOFWsUSC9KoWSjlaijlaqNT7ol92Ld4nt6+QOTEUSSVl8DHGdXmt0W1Re0QMKEZrZcvA/pKEcKhwmvlAW07OppibwECV0DxKoln+EDENm7jMYMzZ87gt99+M/qasVZ0UpUUqzuvBgC8fPkSs2fPxqZNm8qdZKvVakyfPh2rV6+G5lV1XoFAgF69esHb2xsnTpzAjRs3cOPGDWzZsgUtW7bE3r17UaNGjXI9jxBzKC6RZ1xdUffMafA9aWYUsazkR5n4fck1vWNCJz4yUyTFXEFsWerTODx/eF/vWECNWhxFQ+wRJfOEcORSfIbBMRqVN7PMp8DPbwHKXO0+wweCW9j8enmVSoWJEycW+/rEkxMNWtFpWA08RZ6IiorCjBkzkJaWhqCgILx48aJcMcyaNQsrV67UO7ZhwwYMGzYMAJCamorw8HBkZGj/ncfExKBTp06IjY2Fm5tbuZ5JSHkpkpLwuEdPQCo1eI3n5oY6p09RIk8sKv1ZDqK/uWz0NaVcjaq16d+fPdr22RS9fYbHQ+9Pv+QomspLlSnTFsGDdsq9wMe5lCtIPppmTwgHsqVKDFjzn96xo1PeplF5c1vTtiCRBwBWDQht/wfE8uXLcfv2bfB4xr+FP8x8aHDMTeCGI0eOYOjQocjJycFXX32FM2fOlOv5aWlpWLVqld4xPp+PiIgI3X5AQADee+89vXOePHmCTZs2leuZhJSXbjTeSCIPHo8SeWJxcomy2EQ+X/dPXrNSNMSa8vvK5xu1cj1VsTciP5Evuk1KR8k8IRwYG3XF4Fh4VS8OIrFjmU+Nr4+38Sn2ycnJmD9/PhiGwahRo4yeU3TqvKvAFXs/2AulUon3338ft27dwrx58+DkVL51excvXoRKpdI75u/vD2dn/TdKqlevbnDtP//8U65nElIeuTExJa6Pr/3nH5TIE4s7uOJ6ia9/OLM5nFzpzXx7I8vLhcCp4OdiYK068PIP5DCiykmVKQMrU4OVqQEqHVFmNM2eEI40rOqOu8+1o8a7xtH0erNb87bhsXH/2vwU++nTpyM3NxfDhg3DW2+9hfXr1+u9nqvIhVwlBwDwGB5cBa64MPgCAMD3fV/07t27wjHk5Bi+SSIUGv4iKhKJDI6JxeIKP5+Q4qjFYsQPHQbFvXslnkft5oi1yCVKpD41/J754czmCK7jw0FExFoOLlmIwJphSE98CgDo98U3HEdUOaWsuAqIGEDBgpWrEfTp61yHZFNoZJ4QDnzZMxwPUvLA5zE4OuVttK5ZheuQ7I8iT39/SiwQ1ISbWMzk1KlTiI6OhpeXF777zniP2rsv7+q2NawGdX3q6vZdXMzT9qi+kQrfxhJ8Y4l7nTp1zBIDIcYkjB5TciLP46HepYvUbo5YzbE1N/UPMMAnazpRIu8geHw+AmqGIaBmGE2vLwHD44Fx5oNx5tN6+TKiZJ4QK0vMlKDbin+h1rBwEfIxcO1/pV9EyubFTe36+HwiD8DHtquoK5VKXdG7+fPnIzDQtKl6+RXszalFixZ4+239mQ9ZWVlITEzUO3bzpv4vsQKBAKNHjzZ7PMSxKZKTAQD3W7aC7MaNYs9jXF1pWj2xOpVSf810xFwadXQUb0V8hMQ7N5F45ybeiviI63AqJY1UBX4VF+00e4Ua/mObch2SzaFknhAr677irG47V64q4UxSbus66O8HNuYmDjP68ccfcffuXTRp0gSffPKJSdds7bIVniLLJC67d+9GmzZt9I5NmDAB8fHxyM7Oxtq1a3H69Gnday4uLti0aROaNWtmkXiI41EkJeFu8xaI69mr5BN5PNQ8sJ9G4wknXj7PA8NjwPAYCJ358KvmwXVIxEp2zZ+jHXHm8bBr/hyuw6mUMqLuQJ0h1Y7Ki/jIPvSE65BsDq2ZJ8TKWAAMCmp8HJnSjsNo7FDmU0Cj1j82eCc3sZjJs2fPsGDBAgDA6tWrIRCU/q17T889qO9rOB3eXIKCgnD+/HkcOHAACxcuRExMDA4fPozDhw/rneft7Y2xY8diwoQJRgviEVJecR/01laoL6bVYe2Tf1HyTjjHMAyETnyuwyCE2CkamSfEiu48z0aOTKVL5BuHeCLUx5XTmOxO0cJ3dlD0btq0acjNzcXgwYPRvn37Us/f2mWrRRN5ANBoNFizZg1mzJiBmJgYAICXlxf69u2LUaNGoUGDBgC00+83btyIlStXIjMz06IxEcchvX8fmtzcYl8P3b6NEnnCufRnOVBIVVBIVVDKVPhwRnOuQyJWkPo0DksjeoDVaHSt6T76dgXHUVVOPv3rgWVZsAo1hAGuqBIZznVINodG5gmxop6rzuntJ2RIOIrETkmzAHmhomsM3+aL3v3555/Ys2cPPDw88MMPP5R6PgMGLQJbWDQmlmUxePBgREdH6475+Pjg0qVLugJ3SqUS/fr1w8GDB5Geno6lS5di3759OHPmDI3QkwpRJCUh/oPeBsdF9euj+ppfaE08qTR2LSpoQ8uywL+7HqL3dMt+fybc2/bZFINjATVqcRBJ5Ze5+wGcQgqWnvBcKDUtKxqZJ8SK1Br9Bpr1AqmyqVlFfwTtIoZXhLY960GhUGDSpEkAgC+//BLBwcF6r0tVUoNreDzLf1vfsmWLXiIPAP369dOrVC8UCjFr1iy9c+Li4vDxxx9bPD5i3+KMJPIAUOu37ZTIk0pDLlGC1VDTbEeTnZaiG40nJdNIVVAk5UL+JBvy+GywKvq6lQcl84RYSbZUCTdhQaLpJuJj4/DWHEZkp5w8AB5f+2Hjhe+WLl2K+/fvo2HDhpgyxfCd/l9v/2pwrFGVRhaPa8OGDYbPbWT43MaNDb/+f/75J+Li4iwSF7F/iqQkg+n1jKttv2lH7NOxNTfBFxX8zBc68dF1nG3PFCOli5o92eAYTbE3LiPqDljFqxpHGkCRklfyBcQomstAiJWMjbqChsFeeJCi/UX07Ked4OUi5DgqOyLN0p9mH9TU5gvf5SfNd+/ehUgkMuma//79DwxT8AtkXFwcatasada4YmNjDY55e3sbHPPy8jJ6/fXr11GrFk05JGUX1+sDvX2emxtqHzlczNmEcIvP54Pvot32D3WHkyv9zLc32Wkp2Dx9AtQKucFrDI+HCRt+o/7yxdAo1AXVoBno/e5CTEfJPCFWJODzEB6snQZKibyZbe8HpBTqa5562+YL340aNQovX740OC5Xy7Hj3g7Ik+TIvak/SlmtWjVERETo9otLqCtCpTJsqciypk8nVSgU5gyHOIjcmBho8vRHbuqcPkVT60ml1HVcExz56QYykiWoEuxGo/J26tfZk4wm8gAgEDlRIl8CZVKh319YIHAK1ZMoD0rmCbGSH/q/pusxT+3oLCD5KtcRmN3nn3+uty9WiDHy2Ejcz7qPqs2qIvNspkEyX7t2bSxZssSicdWoUQP379/XO2asUn1x1etr1KhhkbiI/VGLxYgfOgyKe/cMX3Rzo0SeVGo8Pg/+oe7oOq4JjcrbodSncVBIii9kbI0aNrZKI1UVjMq/+jIJfJw5i8eW0b8yQqwgMVOC/31/GmKZChoWmBZ9neuQ7Is0S1squLAxf3MSiiVNPDkR97Pul36ihfXr18/g2M2bNw2O3bp1y+BYtWrV0Lo11YogpkkYPcZ4Ig+g9sEDVo6GENMdW3PT6DaxD7K8XETNnlTs60JnZ0R+v9KKEdmWjKg7EIS8mrWgAQImUdvG8qJknhAr6L7iLNSvcs1cuQoPXuRwG5A9kWYBPzYC2FdVUBk+MCXW5lvSGfMo6xHXIQAAPvvsM9StW1fv2N69e3GvUNKlUCjw/fff653D5/Px888/02gFMYkiKQmyGzeMvkZ95AkhXNr//dcGx0Lqh2NG9GHMiD6MyVv3wMs/kIPIbAOrYaHOkIJx5kNU0xOiqrQcobxomj0hFnYpPgNimf4aY2pJZ0Y7IgBF4XVXasDHPqdxV/eojitXriDrYhYAQJVsuHb98ePHmDlzJgDtlPvx48frvb5o0SLdOnyxWGz0OfnXA4Cvr6/BdH93d3ecPXsWw4cPx/Hjx3X3atOmDd577z14eXnh3Llzesl9cHAw1qxZg549e5bxsyaOymgLOh4PNX/fB5f69a0eDyFl0XVcE92IPK2Xtz/pCU8hcHKGSi4DAASG1UXvT7/kOCobwhazTcqMknlCLChbqsSANf/pHeMzoJZ05pRyW3+fsc9R36TcJNzOuA3ZMxkyjmcUe96zZ8+wdOlSAECHDh0Mkvl169bh6dOnJT4r/3pAu769aDIPAIGBgTh27Bj+++8/7N69GxcvXsSjR49w+PBhKJVKuLu7Izw8HE2bNkW3bt3Qt29fuFILMWKi3JgYgxZ0zk2botauaI4iIsR0colSr/gdsT9+oTWQnvgUfFc3+IXWwMCvvy/9IlKAKWablBkl84RY0Kitlw2OuTkJqJK9uWQ+BeRFliyM/YebWCys30HtOnWfdj7waecDD5EHzg86X+b7xMfHmzWuN954A2+88YZZ70lI4pCP9PZ5bm6ovmE9R9EQUjaHVt1ASpx25lN6Ui6OrbmJ3tOpUrc96f3plzi4ZCEAoNfMuRxHY1s0UhUUz3MBpQaMiE8j8xVEyTwhFnTvuX6i6SriUyV7c1rTVn/fydMu18oDgFQlBQMG7Kufert77uY4IkIsQ21k+Qe1oCO2JPVpwc9+pUzNYSTEUpzd3DFg3mKuw7BJGVF3tD3lRXwAAMOnofmKsM/5qIRUEhJFwZpmHgPc+boLQn1oqrFZSLMMR+XH/ctJKNZQ36e+LpEP9w1HiDsV/yL2KWHkKL390O3bKJEnNkUg4ummDjM8WjNPSFHCwILlJ1UiwzmMxPY5ZDJ/+PBh9O/fH2FhYXBxcUFQUBDeeust/Pjjj7rCUJZw/fp1TJ06Fc2bN4efnx+cnJwQEhKC9u3bW/zZxPoSMyXQvJo6xGcYuL16B5KYyY4I/X2Rh8UK36VJ0vDz9Z+RJkmzyP1Lk5SbhHsvtcXk3IRucBI4cRKHLeP675CYRi0WQ1akpaF7y5YcRUNI+Qz8ojVEzgKIXAT4aMGb1GPeDmWnpWD1iAisHhGB7LQUrsOxKT7960GZkgcACJzSAjwXmiheEQ6VzKenp6N79+7o2bMn9uzZA5FIhB49eqBBgwa4dOkSpk+fjsaNG+PkyZNmfW5OTg4GDx6M5s2bY8WKFXj48CFatWqFvn37ombNmjh37hymT5+O8PBwHDx40KzPJtzptuKsrqaHmmVxdGp7TuOxK9IsILFIPYLx5yz2uDRpGn658QvSpNZPBJNyk9BlbxdooG29J1PJIODRD76y4vLvkJRMev8+7jZoiLsNGuJB6zb6L1IbQ2JD5BIldi64iKi5F6CQquDp5wwnSlTsiiwvF7/OmoQNE0dBLsmDRqNG1OzJXIdlMzRSFVKWXwUrU4NVqPFyx73SLyIlcpifkhKJBF26dMHRo0fB5/OxceNG3Lt3D7t378aZM2dw9+5d1KtXD8+fP0e3bt1w9uxZszw3JycH7dq1w44dOwAAI0aMwPPnz3H8+HH89ttvOHfuHO7evYvXXnsNKSkp6NOnDyX0diBbqkSOTAUWAJ/HgM9jaHq9OUV/BL2KKU6edtuOLr/wXT41q8byjsu5CYYQM8pP4uONtaB7pebv+6wXECEVdGzNTWQk5en20xNzde3piH04uGQh0hLidPtKmYzDaGxPRtQdsPJXdSQ0gOJZTskXkFI5TDI/efJkxMTEAAAWLFiAkSNH6r1et25dHDt2DM7OzlAoFOjTpw+ysrIq/Nxx48bhxo0bAICuXbti48aN8PDw0DunXr16+OOPP+Dr6wu1Wo0hQ4bg+fPnFX424c7YqCtwF2n/e6k1LJqEeJRyBSkzkTvA42s/AhpxHY3FSFVSvf0mfk3gKaL1w8S2KZKSSkziAYBxd6d+8oSQSi/y+5Vch2BbCte7EzpMKmoxDMuydt8Q4ObNm2jWrBk0Gg0CAwORkJAAkUhk9NypU6dixYoVAIDZs2fju+++K/dzb9y4gebNmyP/SxwTE4MWLYpvTfLNN9/giy++AKAdwd+0aVOZnykWi+Hl5YXs7Gx4UsEgzgxcdwEqtQYPUrR9ks9+2ona0ZmLNAvY0gNIeTXaEdQUGHYIcPG22CN77e+FuOw4+Dj7QMiz3t8jy7IG08L9Xfy1VWBJmSg1SmTKMlHLqxYO9qbZT1y73+p1gz7yhTGurgg7dBCiECr0SGyHXKLE70uv6kbn/ULd0Xtac1ozb0ey01KwefoEqBVyAEDE/O9QrYH9DiiYm0aqQtqmW1Am5YAR8RE4pQUEPs5ch1UpmZrTOUQyP2LECGzZsgWAdoQ+P1k35urVq2j5qtiOm5sb0tLS4OLiUq7nzp07F4sWLQIAhISE4NmzZyWef/fuXYSHays6Ojs7IyUlpcwJOSXzlUO2VImxUVcAAGsjW1Eib06b3gcS/ivY5/GBLy1bPLJ9dHtkyjIt+gxiHT7OPvgn4h+uw3BoiqQkPO78jsFx58aNUX3TRqpcT2zSkCFD8Ntvv+kd69ChA86cOWNwblZWFi5cuIALFy7g4sWLePLkCVJSUiCRSCASieDj44P69eujbdu2GDJkCBo0aFCmWG7evIldu3bh5MmTSEhIQHp6OkQiEfz8/FC1alU0a9YMLVq0QJcuXRBCb5iVya75c/T2qT0dsRRTczq7r8qhVCpx4MAB3X7nzp1LPL958+bw9vZGVlYW8vLycOzYMfTp06dczz5//rxuu3HjxqWeX79+fTg7O0Mmk0Emk+HgwYP46KOPyvVswi0vFyF2jnmT6zDsU8odqz/S28kbmbJMq4/Mv5S9hEqjbW/IgIGfix+NypdT/si8t5M316E4vLii0+t5PNT77wIl8cRmnTlzxiCRL8lHH32EI0eO6Pbbtm2Ld955B7m5uThx4gSSk5ORnJyM06dPY+HChRgxYgRWrVoFV9eSa+9kZ2dj4sSJ2L59O1iWBcMwaNOmDbp37w6WZXH9+nWcP39e9/vpjz/+iKlTp5brcyaEVA52n8xfunQJmZkFI2otS2lxwzAMWrZsqatof/z48XIn8ykpBa0qfH19Sz2fx+PB19cXycnJAID//vuPknkbded5Nnqu0lZXPzSpLcKrenEckZ14cROQi/WPjfnb4o/9tt23iDgcgTXvrEF4Fev0Q82vYp+PAYNTA05Z5dn26E7GHUQcjsC37b7lOhSHlhsTYzC93qVZM0rkic1SqVSYOHFiua4ViUTYt28funfvrjuWk5ODvn374s8//wSgXW61adMmPHz4EKdOnYJAYPxX99TUVLz77ruIjY0FAPj4+ODAgQNo166d3nkHDhzAgAEDoFAoyhWzo3t/wlRd9XpaK192qkwZUlZcBQCaYm8mdl914ObNgiqi+X3dS1OrVi2j15dVeVYwFP4mXZFnE27lJ/JFt0kFreugv+/kCQQ14SYWCytaxZ5G5Ik9uDdoMHZnZWFS0jN0efIYrz98gDq7ouHh4YFatWqhe/fuWLFiBTIyMky+57///otGjRqBYRi9j7K4e/cu5s6diw4dOqBq1apwdXWFUCiEr68vmjVrhhEjRuDQoUPl+rlO7Nvy5ctx+/ZtMEzZf6X+9NNP9RJ5APDw8EBUVBScnJz0jp89exY//fRTsfcaOXKkLpEHgJ9//tkgkQeADz74ANOnTy9zrETrxM/LEVAzDAE1w3Di5+Vch2Nz8hP5otuk/Ow+mb9zp2BKbnBwsEnXFE74C19fVv7+/rrtly9NW9NbuIJ+fHx8uZ9NuJOYKYFaw0KtYfW6p5EKenET0Kj1j9lpFXuxQoxcpf7oZXSPaI6iIcQ8jh07hi5PHmNeyguczM1FglKJeo0b4+OPP8Zrr72G+Ph4HD16FFOnTkXt2rWxffv2Eu/38uVLfPzxx2jfvn25f1ar1WpMmTIFjRs3xqJFi/DPP/8gPT0dXbt2xdChQ+Hq6oobN25gy5Yt6NWrF15//XU8ffq0XM8i9ic5ORnz588HwzB4s37XMl8/dOhQo8cDAwONLguNiooyev6BAwf0pu37+/tjwIABxT539uzZ+PPPP9G3b98yRkwIqWzsPplPSyuoBO3t7W3SNYXPE4vFUCqV5Xp24Sn9t27dKvX8Z8+eQSwumEJceJvYhsRMCdp9d1q3r2ZZHJrUlsOI7IQ0C1jztv6x4ObA4J2chGNp4/8ar7ffxK8J6vtSiy5iu87t3Yte3bohQ13whlzH1q1x+epVrFmzBv/++y8iIyN1r2VnZyMyMhJHjx41er+oqCg0aNAAGzduRGBgYLnjmjVrFlauXAmNRqM7tmHDBuzduxcbN27E1atXUaVKFd1rMTEx6NSpE/Ly8ozdjjiY6dOnIzc3F+2bd0NYkOlLsObMmYN9+/ahTp06xZ5jrOjd/fv3jZ77yy+/6O23a9cOPF7xv+L7+PjgnXfeQWhoqIkRk3y9Zs41uk1MEzilhdFtUn52n8zn5OTototOWSqOs7P++o3C9yiLXr166baTkpJ0fe6Lc+jQIb393BLa9uSTy+UQi8V6H4Q73VecNThG6+XNYEeE4bExZyzajq4wfxd/jH9tPPxd/Es/2Qxup9/W21/z7hqrPNeeWfvvkOj7YvgIqIocGzx6NPh8vm6/aI0YlmV17VoLO3LkCIYOHYqcnBx89dVXRquFmyItLQ2rVq3SO8bn8xERUfD9JiAgAO+9957eOU+ePClX61hiX06dOoXo6Gh4eXmhS5MRZbq2bdu2+PDDD0s8x1gnpcJvOuV7+fKlbn19vrp165YpHmI6Zzd3DJi3GAPmLYazmzvX4dgcgY8zQr56CyFfvUXr5c3E7pN5qVSq2y6ut3xRRc+TSCTlenbHjh3x5psFFc2/+OKLYtfb5eTk4Ntv9QszmRLv4sWL4eXlpfugd1m5VfRv111k9//FrKNoBfuqza36eH9Xf0xoNgH+rtZJBAt/n+CBB08RFQerKGv/HZICiqQkXJMa/hwt+vOqevXqBudcvXrVYBRcqVTi/fffx61btzBv3jyT36gv6uLFi1Cp9N9i8Pf3N3hD31hc//xD7Q0dmVKp1BW9mz9/Pny9qpRyRdmlp6cbHDPWGSkmJsYgyff29sZff/2FiIgIVK9eHU5OTvDy8sJrr72GWbNmISkpyezxEkK4YfeZRuF3Nk2t3Fn0vNJagZRk27Ztukr2x44dw6hRowxG+hMSEtCtWzckJCTores3pU/8nDlzkJ2drftITEwsd6yk4mr7uyK/7BKfAY5N61Di+cREhd8EY/jA0P2chWINjfwagc/wwWf4aORnn3UBiOOI6/UB8oyMKAqF+m0ei3sDu+iMs/fffx/Hjx9H7dq1KxSXsVl3RWMqLi6aBefYfvzxR9y9exdNmjTBJ598At+qboCZi5Qam81ZeClKvsJF7/KtXLkS7777LhISEtCrVy80b94cYrEYsbGxWLJkCerVq4d9+/aZNV5CTKGRqpC2LhZp62KhkRadr0XKw+6TeQ8PD922XC436RqZTFbsPcoqLCwM58+fR3i4di3V5s2bERwcjK5du2Lw4MHo0KEDateujQsXLmDGjBmYM2eO7lpT1vg7OTnB09NT74Nw41J8Bq4nisECaBTsiddr+SLUp/xvBJFCGAbg8bUfIjerTa/nQlJuEuKy4wBok3qaYk9smVoshiYvD7WEhglx0WTaWILs4eGBgIAAvWPGph+XR/36hnUojCX4xuIqaa0zsW/Pnj3DggULAACrV6+GQCCAQMSHT4B5/l0CwMOHDw2S+VatWmHs2LEG5xauDZXv+fPn6N+/P86fP4/Vq1fjwoULem2WJRIJBg4ciAsXLpgtZkJMkRF1x+g2KT+7T+YLV5QvXCm+JNnZ2bptT09Po+/Ul0X9+vURGxuLbdu24cMPP4SPjw/OnDmDQ4cOITU1FWPHjsW1a9ewZMkSvWUBxn7RIJVTtlSJAWv+0+3fThZjbWQrDiOyMwGNAJG79sNOK9jn63+oPxiGgavQFXHZcTTFnti0hJGjAACRPj4GrxVtv2qsHevYsWP11tWbU4sWLfD22/qFNbOysgxmuBWNSyAQYPTo0RaJiVR+06ZNQ25uLgYPHoz27dsDALqOM2+L1Dlz5ugtt2rUqBEOHTpk9PfRwr+zFo0zv0UjwzCYNm2a3utKpdLgGCmZLC8Xu+bPwa75cyDLK72uFdGnkaqgSM6FIjkXrIbaPZmL3Sfz+SPigLaFiCkKryUqfH1F8Pl8DBkyBPv27UNCQgKkUilycnJw9+5drF69Gk2aNDGIsVmzZmZ5NrG8sVFXDI55uVTsTSDyijSrYDugod1WsAe0LenylHnIUeQgR5EDDWs4NZkQW6AWi/G494eQverk0tfbG+OqVNFLzFeuXImTJ08iLy8PV65cwddff613j759++Kbb76xaJy7d+9GmzZt9I5NmDAB8fHxyM7Oxtq1a3H6dEGHEhcXF2zatIl+PjuoP//8E3v27IGHhwd++OEHAIBcosSxNYZvRJXX8uXLsXfvXt1+ly5dcPbsWQQFBRk9X61WGxxjGAYtWuhXCm/VqpUuuc938eLFYivkE0P7v/8aqfFPkBr/BPu//7r0C4iejKg7EAa6AQCUL/JQJdI8OZajs/tkPj9JBrTT7E0p+vHkyROj11vDo0ePdNtvvfWWVZ9NKqZh1YKqprvGvcFhJHYm+iOALwCCmgI8oV1PsZ96eqp+kUx645rYqMTx46G4d0/v2OSAQNy6dQujRo2CQCBAWloa3nnnHbi7u+P111/Ho0ePwDAMevXqhT/++AN79uwpd3E7UwUFBeH8+fPYt2+frp3s4cOHUatWLXh7e2PcuHFgWRbe3t749NNPce/ePaPrlon9UygUmDRpEgDgyy+/1NU4Mmciv2rVKkyfPh2AtlbDt99+i6NHj8LHyMyWfMaWV/r6+hr833F2dja6fPPSpUsVC9qBpCc8NbpNTMfwGYiC3SEKdgfPRcB1OHbB7r+KrVu3ho+PDzIzMwFoC4qEhIQUez7LsnrrlLp06WLxGPNpNBr89592qnZAQAA6depktWeTilkb2Qpjo67gjTBfrI1sRaPy5qRRAql3tdsBDbmNxcJUGhXYVxk8n+GX2CeYkMpKev8+pDFXDY5nfD0fX0+ejL/++kv3plX79u0RHh6OuLg4/Pnnn9BoNDh69CiUSiU8PDzwxhuWfWNUo9FgzZo1WLJkCeLitLUqvLy88M4778Db2xvnzp3DvXv3kJWVhY0bN0KlUmHu3LklJlfEPi1duhT3799Hw4YNMWXKFLPeW6VSYdq0aVi9ejUAoGXLlti8ebNJA0qFl5PmK65ws5ubm+734XypqanliNgx+YZUw4vHDwEAQbWp/V9ZVYkM162Tp1F587H7ZF4oFOKDDz7Ali1bAAAnT57U6/9e1LVr13Rr693c3NC1a9cKPV+hUEChUMDFxaXUdX///fefrhVJZGQkBAK7/+uxG14uQuwc82bpJ5KyYxnj23bKTeCGPJW2Fdfunrs5joaQssmNiUHikI8Mjt8Y/TGGDh4MpVKpO7ZkyRLMmDFDtx8dHY2BAwdCpVLh2LFjOHHiBDZu3Ijhw4dbJFaWZTF48GBER0frjvn4+ODSpUu6AndKpRL9+vXDwYMHkZ6ejqVLl2Lfvn04c+aM0ZZ1xH5t2LABAHD37l2TWx3//fffelPb4+LiULNmTb1z4uPjMXjwYFy4cAFOTk6YN28eZs2aZfA74JEjR/D8+XMMHDgQ7u4FMwGNLfkorg2yseOWqklBCLEOh8gWp02bhl9//RUajQbR0dH44Ycfiv1G/Ouvv+q2J0yYUOGqudOnT8dPP/2E5cuXl/pObv76Kz8/P3z++ecVei6xrmypUrdunkbmzSx/ir2D4PF48BB5oI53HYS4Fz+LiJDKRpGUZDSRVzZujHELFugl8m5ubpg8ebLeeREREZg7dy4eP34MQDtqPm7cOHTo0AG1atUye7xbtmzRS+QBoF+/fnqV6oVCIWbNmoWDBw/qjsXFxeHjjz/GH3/8YfaYSOU1atQovHz50uC4WqlB3I00JKQ8wbV75/Veq1atGiIiInT7Xl5eeq9v27YNEydORHZ2Nt544w1s2rQJDRsan4H2ww8/4O+//9YtTcnXpk0biEQivbbKEonE6D2MHS/cEpkUT5aXqxuVFzo742XSM44jsj1FK9n7j3Gc3+0sySHmcDZt2hQjRowAAKSkpGDZsmVGz3vy5AnWrl0LQJtQF24TV5hSqURkZCQ8PDzQvHlzoz0+i9q+fbvRIiWFX9+/fz8AbfGT/N70xDYULoBnrBgeKSdpFqCUAQnngec3gA9+4joiQkgx4np/aHCMcXXFhfbtDCpu161b12hl7saNG+vty+Vy3cw6c8sfaS2sUSPDbhlFYwK0hdDyp+UTx/D5559jyZIlBh8danyE4b2m4e3X3jW4pnbt2nrn5i/PyMjIQP/+/REZGQmFQoGlS5fi3LlzxSbyJfH29kbv3r31jmVmZhq0Y5ZKpQZT7AHoKvKTkh1cshBCJ2cAgFImg19oDY4jIkTLIZJ5QFs1N7+y5xdffIHNmzfrvf7w4UN07doVMpkMIpEI+/btK3ZNXFRUFLZt24bc3Fxcv34dEydOLPX5ly9fxujRow3a4+Xl5WHhwoW6Nxt++OEHDBkypByfISF2aEcE8LzQ2tsDn3AXi4WJFWI8ytIWwKzjXQcCnkNMnCJ2QpGUBE2RHu1ODRui7pnTuPXwocH5xgpxFXf8+vXrZojQkLE34o09v+hoaj5LxUVsi0bNIi0xFzkv5aWf/EqnTp2wZ88eANoke8aMGeDz+WAYptiPv//+u9j7zZ07V+/NMZZlcfWqft2Kon3rAeDDDz8stko+MeRfvSZEzi4QObug96dfch2OzSm8Tp7WzJuPwyTzrq6uOH78OLp27QqVSoWRI0eiYcOGGDBgADp27Ijw8HA8ePAAVatWxZEjR9CuXTuT71201UdxNm/ejJo1a6JTp04YNGgQOnfujMDAQPzf//0f/Pz8sGfPHsycObO8nyLhUOGe8tRf3oxS7gAatfZDkcd1NBY19fRU1PHWTu99lPUIyzsu5zYgQkykFovx+N339I45N22KsN/3ge/pCZVKZXBNWdb0Fp4+bE5licsYS8VFbE3Z244U1xu+vJo2bapbqplv+fLlun/PLMvixx9/1Hvd39+/2JmqxFCvmXPB4/MRUDMMH6/eCGc399IvIsQKHGrox9/fH0ePHsWhQ4ewZcsWXL16FQcPHoSnpydatWqFfv36YcSIEaVOcY+MjMSpU6ewf/9+1K1bF6tWrSr23MWLF6Nbt244ffo0zp8/j8ePH+Pff/+FSCRCUFAQOnXqhD59+qBv377w8PAw96dMrEQsU+JOsli3TWvmzeDpeUAu1j8WsY2bWKxApVHpjcx7igzbDRFSmajFYjwdMRLy27cNXuM5O+u2a9QwnI5qbLpvcceNXW8ONWrUMOixbez5xcVqqbiIbZBLlFgyfTtOXTgKAMiQGq6hfvz4sW6Qpnbt2hg/frzF4pkyZQrc3d0xffp0iMVi7Nq1C4mJiWjZsiUuX76Mixcv6s5t2LAhdu3aZVCMjxBLojXzlsGwZXkbmlR6YrEYXl5eyM7ONtp7lFhG069O6O3HfvU+R5HYCWkW8F2RX5SdPIE5iZyEYw0DDw/E7QxtUtSoSiPs7LGT44gIKVn8kCFGW9CBx0O9/y6A/+pn0IMHD9CwYUNoNBrdKS4uLsjMzDTohR0WFmawFv3EiRN47z39kX+9OOLjjRbIK+3Xm//7v//DwoUL9Y6NGDECmzZt0jv2zz//oEOHDnrHqlWrhqdPn1L7SAe2f9lV7D20E9vO/FD6yQA6dOiAM2fOAABq1qyJp0/L16fcWEX8wtLT07Fx40acOHEC9+/fR3p6OgQCAQICAtCyZUv06dMH/fv3N1qzghRv57zZut7yftVrYOD87zmOyPakrrkB5QvtLEthkBsCxr3GcUSVm6k5nUONzBNCbMT2fobHAgwLU9kLsUKsS+T5DB/3Xt7jOCJCSqYWiyG9dt3oa7X//EOXyANAvXr1MHv2bHz77be6Y1KpFMuWLdMrNPvbb78ZJPL9+/cvMZGviM8++wy7du3Cw0Jr+vfu3YvZs2ejQYMGALRT6b//Xv+Xdj6fj59//pkSeYI36nfBG/W76PY/WdPJpOvi4+MtFJG2gPOnn36KTz/91GLPcET5iXzRbVIGbDHbpEIomSfEDI5MaYfuK87qtkkFJRcZ7QtqCgy235HqiScLimiqWTXchbQWj1RuiePHA4VG2gEAPB5q/r4PohDDloqLFy+Gl5cXFixYoGuP9fnnn+PYsWNo1KgR4uLi9Fq98fl8TJgwAUuXLjX6/EWLFunahInFYqPnFK5B4+vra9Dy1d3dHWfPnsXw4cNx/Phx3b3atGmD9957D15eXjh37hzu3St4cy04OBhr1qxBz549i/vSEAfRaVhDbP/qAjSvOi5+OLM5twERi/ILrYH0xKe6bVJ2DJ+BKJh+vzE3mmZvZ2iaPbF50izg+1oAqwEYPiBys+vp9QDw5m9vIk+ZB/bVW9XH+x6nHvOk0lKLxXjwxpt6yTzj7o4GVy6Xeu2LFy+wc+dOnDp1Crdv30ZaWhokEgmcnJzg6+uLBg0aoEOHDhg0aBBq165d7H3KOk25Ro0aJY6G/vfff9i9ezcuXryIR48eITs7G0qlEu7u7ggJCUHTpk3RrVs39O3bF66uriY/l5hXXrYct/9JQqP2IXDzcir9Agva90MMMpK1U4arBLuhz6yWnMZjayrT36UpZHm5OLhEuyyn18y5VACvHDRSlW7dfJXIcPBcaEy5JDTNnhBim/aMAIRugOJVm6tx/3IbjxWwLKtL5N0EbpTIk0rt2cRJBqPyYQf2m3RtUFAQpk6diqlTp1YoBnNPU37jjTfwxhtvmPWexPwk2QpcPhKPWq/5c54AZiTlQqnQ6LZJ2VSmv0tTOLu5Y8C8xVyHYdN4LgIqemcBlMwTQiqX1HuASgLw+Nqk3se+p7OJFWJIVVIA2vXypra6JIQLarEYsiLV6xl3d6NT6wmxV+IMKRQyNQCA4dHyX0dAI/OksqLqLYSQykWRU9Bb3gFWAU09PRWuQlfwGT4AoK5PXY4jIsrUVKStWg1lairXoVQ6CSNHQZOXp3fM1FF5Qopja//nohdc0m2zGsAvxI3DaIg15CfyRbeJaTRSFdLWxSJtXSw0UhXX4dgVSuYJIZWXg4xS1/WpC1ehK1yFrljdeTXX4Tg8VVoa0n/6Caq0NK5DqVQUSUmQ3bqld4zn4UGj8qTCbOn/nFyi1I3K5+v+CbXYIqQkRXvME/OhafaEVNCd59noueocAODQpLYIr+rFcUQ2SpoFuHjrH7PjdnT5FrRdgP6H+gMAdvfcDU8RFa4klVPcB70NjtXa/7v1AyEO649N2iUeB1deB1/AzXiUNFdhcGzH15eMnElKolZp6w38sek2hnxV+etV9Jo5V2+aPSGVBSXzhFRAtlSJbiu0Bdr4PAY9V53D40XdOI7KRu0cDIw4WrDP8O26HV2+2f/MhkQp0W1v77ad44gIMaQWi6HJ1S/yVfPAfhqVJ1Yly1Xq/VlZ5GXJuQ7BZlW2v8viUAG8ivHqGYbUVdcAAAGTqI2jOVEyT0gFjI26ottWa1jweY4xLdzspFnAi1j9Y9VaG47U25mk3CTEpmk/bx7Dw+3026VcQQg3EseP1z/g5gaX+vW5CYY4LGd3IWS5Sji7CzkbmWdZFrJcJTRqFjw+A2d3IRUuLQe1SqP7u6zsqPhdxWikKl0iz4j4SFsbi5Cv3uI4KvtByTwhFdQ4xAO3krRt1A5NastxNDZqR4ThMQcYlc+fXg8AGlYDdyH9glAZJM+aDQBIHD0GjLDy/6JpDaqihckUCjzs8D9OYiH2h1VqR2eTZ81G7aNHij3vvZGNsGvRZfSa3Az+1T2sFZ4euUSJY2tuAgC6jmsCJ1f6HlEeaQk52LXoMt4badnldImJiTh//jzOnz+PmJgYJCQkICMjA3K5HK6urvDz80Pjxo3xzjvvYNCgQfD39ze4R9HidyHv9MDWrVtx4cIFPHv2DHl5efD29kb16tXRuXNnDBs2DOHh4SbFd/fuXWzbtg3//vsvHjx4gOzsbCiVSnh4eKB69epo3rw5+vTpgx49etjsm0aF18izCjUYEZ/DaOwPJfOEVMAP/V9D9xVn4ekswJEp7RDq48p1SLYp9S4gKFQNeNy/dj8qn89N4IY8lbY6+J5eeziOhgCAOitL++fLl9wGUpkplVClpHAdBbEz+f/3KrMjP8UiIzlPt91nVkuOIyIladiwIfJedeBwcnJC586dUatWLTx79gwnTpxAXFwc4uLicOjQIcydOxfz58/H9OnT9e6hUirw4vFDyJRK7L/9GJe/+lb3WkhICAYNGoTU1FTs378fMTExWLp0KT755BMsW7YMfL7xxFWtVmP69OlYvXo1NBpt/QCBQIBevXrB29sbJ06cwI0bN3Djxg1s2bIFLVu2xN69e1Gjhm226xWGeED5auArcEoLjqOxL5TME1IB06Kv623vGUfThsrFPxzITtBuh7QGgppwG4+V7O65G/0P9YeHyAO7e+5GiDutP64M+N7eUL98Cb6vL43Mv6JKTS1oFckwEAQEcBsQsSusUqn9P+ftzXUopcpP5Ituk8otLCwMR48eRf1Cy4MePnyIzp07IzExEQCQm5uLGTNmIC0tDYsXF6yPz3iWCLVGg81nL+NRaobuuL+/P65du6Ybzd+wYQNGjx4NtVqNlStX4vnz59i1a5fReGbNmoWVK1fqHduwYQOGDRsGAEhNTUV4eDgyMrTPi4mJQadOnRAbGws3N+u0QmRZFps3b8asWbPwstCb2x06dMCZM2dMusepU6cQfWknLv55DgkZSchVSMBbxoOnpyfq1KmDN998E4MHD0bLlqa9KXb58mVERUXh1KlTSE5OhkQiQUBAAMLDw9GrVy8MHz4crq6ONbDGsKwDNHJ2IGKxGF5eXsjOzoanJ1XFtrQmX52ARKFtUeMq4uPmV+9zHJGNkmYB+0YDQ3Ybr2pvp8QKMaaengoAWN5xOVWyrySkt28jvm8/1Ny7By6N7L+jginuv95ab7/+ZareTczH1P9zedly3P4nCY3ah8DNy8mKERbY98MVZCRri5ZWCXZFn1mtOInD1lnr79Ld3R15eXk4efIkOnXqZPD6gQMH0Lt3b71jDMMgJiYGzZs3hywvFz9/PBj/PX6K3Zf1a/tMnToVP/74o25fpVLBz88P2dnZumMbNmzAqFGj9K5LS0tDcHAwVKqCfut8Ph+5ublwdnbWHRs8eDB27Nihd+3KlSsxadIk078A5XTnzh2MGzcOZ8+eNXjNlGQ+PT0dEREROHXqlO5YlSpV0L17d8jlchw6dAgSiUT32kcffYT169frff6FyeVyTJgwAZs3bwbLshAKhejZsycCAwPx559/4tGjRwCA0NBQbNmyxejfta0xNaejPvOEVETh98LofTFSRvmJfNFtQioLtViMJ337QZOTA01ODqDRUDs6whk3Lye07hnGWSIPaHvK+4e6wz/UnfrLV4A1/y5DQkKKTe569OgBDw/9+gssy2L7dm1nmYNLFiIorC4uPkkwuLZ5c/2q7AKBAE2a6M8snD9/PtRqtd6xixcv6iXygHaUv2giW716dYNn/vPPP0Y/D3ORSqWYO3cumjVrhrNnzyIoKKjM91CpVOjWrZteIi8SiXDhwgVs3boVO3fuxKFDh/Su2bZtm25WgrH79e7dG5s2bUL+GPTOnTuxd+9e/Pzzz4iNjUWLFtqp+4mJiejevTtOnjxZ5rhtFSXzhJRTtrSgnYqriI/6QdwU47F50ixgRVMg5VUl932jOQ2HEFLg2cRJkN8u6LKgkcmoHR1xaE6uQvSe3gK9p7eg4nc2YNu2bdi5s/iCunw+H3Xr1jU4fv/+/cIn4dnLbINzjCW6RY8lJibizz//1DuWk5NjcJ3QyJIukUhkcEwsFhscM6cvv/wSixYtgp+fH3bs2KG33MBUhw4dwuXLl/WOvf7663pf506dOqFq1ap65+zatQs3b940uN+yZctw/Phx3X79+vXRp08f3b6Li4tenQOZTIahQ4da/GtVWVAyT0g5jY26gvpBHnAT8cEA2Di8danXECN2RACKXEDhWGsPk3KTcDfjLq6mXIVcLcfyjsu5Dom8IvD3h98nn0BgpKoxIcT86P8csZTevXvj7bffLvEcFxcXg2P5Rel6zZyLXIkUGiOzL41NCTd2r3///Vdvv76Rtp7GEnxjyWidOnUMjpkTy7KYPHky7t27h4EDB5brHufOnTM4FhoaanDMlJkHYrEYX3/9td6x/FH4ko4lJydj6dKlJsVr6yiZJ6QCBHwewoM9ER7sCS8Xeoe+XFLuaJcosK+mofVZz208VtL/UH8wDANXoSvisuNovXwlIgwIgP+kiRBSkTdUXbwIyC8mxOOh5r693AZE7BL9nyNcSk9PNzjWuHFjAICzmzv6fDbP6HX5CX9hRafPA8C1a9f09lu0aGHwBkNWVpauEF++oqPUAoEAo0dbdvbiggULsGLFigrV3TLnzINdu3bpuhHkq1atmsF1xt4s2LJlCxyhNBwl84SU05c9w3E5PhOX4zPxZU/T+omSYjAMwLxq3+IAxe/ECjHylHnIUeQgR5EDDWv4CwEhlUHy7Nng8fngeXjApXkzuBgZUSKEEFslFot1xdPyMQyDIUOG6PZ9fX2NVpA3NnJuLJFNS0szOLZ79260adNG79iECRMQHx+P7OxsrF27FqdPn9a95uLigk2bNqFZs2alfk4VYWxmQVmZc+bBsWPHDM6pUqWKwTF3d3eDNwwSEhJw69atUuO1dZTME1JOA9f+BzcRH24iPgau/Y/rcGxXQCNA5A6IrNNqpTKYenqq/rvF9v/GMbFR8vsPoJFIoJFIIL//gOtwCCHErHbt2mVQoG7SpElo2rSpbp/H46F9+/YG18bFxZl0rHB1+3xBQUE4f/489u3bp2vLdvjwYdSqVQve3t4YN24cWJaFt7c3Pv30U9y7dw+RkZFl/vy4EBkZCR8fH71jRWcZyOVyPHz4UO9YaGgoevTooXcsJibG4P7u7u5Gn1u0kCFgOCvCHlEyT0g5JGZKIJapIJapkCdXUy5WEX3Wch2BVYkVYtxOvw321b8aHsMDj0ffiknloUhKwt0WLXG3QUNocnMBtRpgWfo+RxyeOEOK9dP+wfpp/0CcIeU6HFJBeXl5WLBggd6xAQMGYNmyZbp9WV4uds2fg+ZVDKedFy1sl5SUhLt37xqcx+fzDY5pNBqsWbMGM2bM0CWsXl5e6Nu3L0aNGoUGDRoA0E6/37hxI1auXInMzMyyf5Ic8Pf3x+HDh/UK3D1+/BjT241A8q14PH/+HJMmTdJrTVetWjUcPHhQb2aASqXC06dPDe7v5GS8A4Kx448fP67Ip2IT6DdIQsqh+4qzYF5tq1kWtf1dOY3HZkmzgLXttNv+jjF9d+LJiZCoCn6AaVgNdvfczWFEhOiL6/0hUOiXLACARgPnevW4CYiQSiL6m8tGt4nt0Wg0GDp0KBIStC3nGIbBZ599hh07dugl3weXLAQAvFanFrq0bql3jyNHjmD16tWQSCR4+vQpRowYYXQdvZeXl94+y7IYPHgwPvnkE91Ivo+PD65cuYI9e/Zgw4YNiI2NRa9evQBo1/QvXboULVu21MVb2b311lt48OABVqxYgUB3PwDAj/9uQUiTWggODsb69dr6SHXr1sXy5ctx9+5dgyUExVWjN/bmCKCtKVCUsVkR9oaSeULKgUXBzGg+j4Gz0PAbCDFB9EcF22n3iz/PjjzK0l+bx2f4CHGnVl+kEjHyyygAhK75xcqBEFLJsCyUcjWUcu1sFWKblEolhgwZgn379gHQTnk/dOgQFi9ebDBTTqNRIzX+CVLjn2BYl05YunQpvL29da9PmjQJbm5uqFmzJm7fvo1p06YZPM/Pz09vf8uWLYiOjtY71q9fP7314kKhELNmzdI7Jy4uDh9//HG5PmdrE4vFmDdvHr788kuk5GoLDIZ6BaFfky4YNGgQAl4Vu3z48CF++eUXbNmyxWC5g6Tom8qvMAxj8vHc3NyKfBo2gTIQQsooW6qERl3wy66zgIe1ka04jMjG+YcDaXe4jsJq6njXwf2M+5CotT+kontEl3IFIdZlLJUP3b4N/ApUNybEHvgEuSI1IVe3TWxPWloa+vbti7NnzwIABg4ciNWrVxstqgZAv6YNC0yfPh1jxozBqVOncPv2bYjFYnh7e6NFixb43//+h3///Rc//vij3i0Kr78HgA0bNhg8plGjRgbH8ivqF/bnn38iLi4OtWrVKuUz5U5GRgbatWunt+SgRXAj/DZoKWrNaAtRVXe8ePECb731FuLi4nD//n1MmjQJhw8fxqFDh3SF7Fxdjf8fK65CvbHjxgoX2htK5gkpo7FRVyBTs+DztO8A8nkMtaUrr4ht2tH5oKbabQewuN1i9D/UHx58D+zuuZtG5UmlokhKAl61AeK5uQE8HupfvsRxVIRUDjw+D0Invm6b2JZTp04hMjISycnJqFq1KtasWaObyl7Yhg0b4OHhgYiICPD4fATUDNN73d3dHb169TJ6bUpKisGxVq30B3xiY2MNzik82p+v6PT8fNevX6/Uyfz06dMNagfM+OFz1B/8vm4/KCgII0eOxBdffKE7duLECfzwww/4/PPPAaDY9nhFR/DzGWsLWNzX0J7QdyJCysFVWPBfp16g8aqaxASybOBFrPZDZnxtlD25//I+uuztghxFDqp7VMcX574o/SJCrCiu1we6bU1eHmrt/53DaAipPOQSJdKTcgtNsadp9rZCoVDg008/xbvvvovk5GQMGzYMd+7cMZqMA8Do0aPx6aefAgB6zZyrO154uzgPHuh3/fDy8kKXLl30jhlLOsvSD12hUJh8rrVJJBLs2LHD4Lj/P0qoMmV6x4zNPFi7tqAoskAgQI0aNQzOkcvlRp9t7Hjt2rVLjdnWUTJPSBn90P813XbTal7YOLw1h9FYXmJiIqKjozFlyhS8/fbbqF69Otzc3CAQCODp6YmwsDD06tULK1euNNpLtSS35rdB2zUpYOYkgvGtAYZhwDAM4uPjS702/9yyfli6R2tJIg5H6LZvZ9zmLA5CjFEkJUHzalQ+nyiEZo4QAgBHfoqFSlGwCIVG5m1DbGwsXn/9dXz//fcICQnBsWPHsGXLFqMj4SWRK5T4ZuEi3Tr74pw8eVJvPzIy0qB3u7EE1Vil+uKq1xu7vrK4e/culEqlwXEPvitSVlzVO2bs7yAhIUHv827RooXBOcWtgzd23Nj19oam2RNSRrN230CjkIJpO/Y+xb5hw4bIe/ULvpOTEzp37oxatWrh2bNnOHHiBOLi4hAXF4dDhw5h7ty5mD9/PqZPn17iPaVSKebPn4+lq1KgMl5ry+6IFWKoWf2pYcs7LucmGEKKUIvFePze+/oHHWCtISGmykjK1Y6esoBSoUbXcU24DomU4sWLF3j99dd1I9mJiYno2rWrydfL8nKxYeIoAIDIzx8LlyxFQEAAunXrBmdnZ4Pzr1+/rluLD2inkn/99dcG5/Xr1w8LFy7UO1a0DzsA3Lp1y+BYtWrV0Lp15R1EMjbrANDOPGAVaoNjxhSeedClSxf8/rv+DLGMjAyDa/Ly8gxmLISGhhqtRWBv6G1FQohJwsLCcOPGDV0rlv379yM2NhahoaG6c3JzczFjxgzMmTOn2PscO3YMjRo1wnfffQc/d5E1Qq8Upp6eCld+QTGXcN9weIqooBipHJ5NnKTtJ19I7YMHOIqGkMonP5EHAIGQBydX+34j3x7IZLIKTUnf//3XUMikUMikyHiWCABITU3FsGHDDCqtP3r0CAMGDNAlqJ6enti1axd8fHwM7vvZZ5+hbt26esf27t2Le/fu6fYVCgW+//57vXP4fD5+/vlng4r7lUlxswayZTkQhnjoHTM288DV1RX+/v66/YiICINCeM+ePTO4LjEx0eDYsGHDKvXXylzs/zM04vDhw+jfvz/CwsLg4uKCoKAgvPXWW/jxxx/x8uVLiz03JiYGkydPRsuWLeHr6wuhUAgvLy80bNgQw4cPxx9//FGmNTOEG4Ur1ztSFfv169ejfn39XvB169bFqlWrDM797rvvcO3aNYPjt27dQrdu3ZCQkICJnWvg3jR/g3MsjcvKpvWr1IeHyAMeIg+sf389Z3EQUpgiKQmSK1f0jjk3bUpT7Al5RZwhhVKunUbG8AAU0xqL2Je0hHjtiLJGA6W8YL33rl27EBYWhsGDB2PSpEno1q0bGjVqhIcPHwIAWrZsib///hvt2rUzel93d3ecPXtWby29WCxGmzZt0L9/f3z88cd47bXXcOTIEd3rwcHB+P3339GzZ08LfbbmERQUhLZt2xocf8S+gP9I/TXyxmYefPDBB3oJuJeXF/7v//5P75yrV68Wvczgd86goCDMmDGjTLHbKodK5tPT09G9e3f07NkTe/bsgUgkQo8ePdCgQQNcunQJ06dPR+PGjQ3Wu1SUVCrFsGHD0KpVK6xatQq3bt1CkyZNMGDAALz99tt48eIFtm7divfffx/vvPMOXrx4YdbnE/PychFi55g3sXPMm3Y/xT5fSEgIOnXqZPS1Hj16wMND/91WlmWxfft2g3NVKhVat26NS5cuYdVHjeHlXLFvQTVq1ND+oC3lY926dbprRo8eXaFnltfyjssh4AnQwLcBjvc9TqPypNKI+6C3QW/56hvozSZC8kV/cxl4lb+zGsAvhJagOAT2VX0eHg+e7h7Yt28f5s6diy5dusDb2xt//PEH1qxZg0uXLqFOnToYPXo0Dh48iMuXL5danycwMBDHjh3DhQsXMH36dLRt2xYuLi44fPgwtmzZgufPnyM8PBwDBw7Er7/+iocPH1b6RD7fqlWrDEbTt97aj1xlwWyG58+fY9OmTXrnVKlSBd99953B/WbOnIl3331Xt3///n292gUymUyvHaCTkxO2bt1a5roItophHWQoWCKRoH379oiJiQGfz8e6deswcuRI3esPHz5Ejx498ODBA4hEIvz111/FvqNWFizLonv37jh27BgA4K233sLOnTv1pibn5eVh1qxZ+OWXXwAA4eHhuHjxItzdy14lXSwWw8vLC9nZ2cW2dCAVky1VYmyUdhRrbWQru0/o9+/fDz8/P7z99tvFntOyZUuDd0p79OiBQ4cO6R2Ty+UQCoXad12lWcBvA8F8fMLgfnFxcahZs2aJcTEMgxo1apRaLE+tVqN+/fp4/PgxqlevjkePHul6mBLi6KT37yP+g976B/l8NLxtOGJCiKNaP+0fsCyrK4A3asnbNM3eAez8cjbSE58CAPxCa2Dg19+XcoXty8zM1FvPf/v2bRw/flzvnGrVqiEioqCg7+uvv663DwAXL17E8OHD9ZYOVA+tjo6dOkKpVOKvv/5Camqq7rWWLVti+/btBjNA88lkMowbNw5bt24FAAiFQvTq1QuBgYH466+/dF0EqlWrhs2bN+Odd94p51eg8jA1p3OYZP7jjz/Gxo0bAQCLFi0yuqb3yZMnaNSoEWQyGfz8/PDw4cMKv6sTHR2NgQMHAtC+4/Tw4UOj62dYlsU777yDU6dOAQDmzp2Lb775pszPo2Te8gauu6C3v3PMmxxFUnm8/fbbOHfunN6xbt266U0RMyDNAqI/AjPC8BxTkvnGjRsjJCQEJ04YvhlQ2G+//YYhQ4YAAFavXo1PPvmkxPMtRawQY+rpqQC0o/Q0Mk+4phaL8aB1G4PjNQ/sh0sxv1AR4ojEGVLt6DyAiP97HZ5VXEq5gtgDWV4uDi7RJra9Zs6Fs5v9tyKOj48vcw/7YcOGYcuWLQbHFTkybBu9An/cP4vb6Y+QlPkCuQrt6Lynpydq1aqFli1b4sMPP8R7770HxoTlK5cuXcKvv/6K06dPIzk5GRKJBP7+/ggPD0evXr0wYsQITpdTmhMl84XcvHkTzZo1g0ajQWBgIBISEiASGS+8NXXqVKxYsQIAMHv2bKPTPcriww8/xP79+wEAEydONLq+ON/evXvRr18/AED16tXx9OnTMj+PknnLo2TeUIMGDXD//n29Y6X+/9nSAwDKncybgmVZvPbaa7h58yYCAwMRHx9vtAKtpYkVYry35z3kKfPAZ/ho5NcI27sZLkMgxJrihwyBNEZ/Ro1Lixao+Rv92ySEEFIxaetioUguaBcnCnaH/5imHEZkW0zN6RxizfyyZcugebUeMCIiothEHgCGDh2q2/7pp58glUor9Oz8YhiAdvp8SQq/npCQALFYXKFnE/PLliqhUmtwJ1kMlYZ1qAJ4xRGLxXj06JHeMYZhdKPhRkmzgOc3gITzFo3t0KFDunYv06dP5ySRB7SV7POU2vZ+alaN2+nUY55wT/7gIVBoXaNz48YIXfMLhxERQoih3MyXOL97O3IzLVek2hhZXi52zZ+DXfPnQJZnvLe5LeDq6wcAwsCCUfIqkSXnQaR87D6ZVyqVOHCgoL1O586dSzy/efPmuqn1eXl5urXu5VWRiQ/5vb1J5TE26goEfB7Cgz0h4DF2v17eFLt27YK6SEurSZMmoWnTEt59jf7IwlFpLV68GADg4+OD8ePHW+WZxeEV+nbrIqApmoR7orBagFwO8Plwfq0pau3ZDT7N6CKEVDJ5mS9xYc8O5FkxGc3vMZ8a/wQajVo33d4WcfH1A7TJO8NnIAp2R9VPW4PnIrDq8x2F3Sfzly5d0utj2LJlyxLPZxhG75yiRR/KqnBCc+fOnRLPLfy6i4uLXp9FUjmoNCzuJIt1I/OOLi8vDwsWLNA7NmDAACxbtqzkC1UyQC4GNOqSz6uAU6dO4b///gOgfXOhaMV9a1recTka+TUCn+HDXeiOPb32cBYLIYSQspFLlNi/7Cr2L7sKuUTJdTjECgon7+kJZV/2aqvUYgWy/3wKtVhR4XvxXATwH9MU/mOaWi2RN2f8tsLuk/n8KbaAtlVBiAl9cwsXfih8fXl88sknuoIOO3bs0HtjoTCWZfHzzz/r9nv06AGBgN7BqnQKz7Sw/3ITJdJoNBg6dCgSEhIAaN8I++yzz7Bjxw7w+fySL067/6pZr+UsWrQIgLav/JQpUyz6rNLkKHIQL46Hq9AVe3rtQYg79e8m3FM8iQPP1RU8V1consRxHQ4hldaxNTeNbhP75hdaQ7fda+ZcDiOxHnWOAjknE6DOsc1k2NbjLw+7T+YLj3YHBwebdE3hhL+00fTSvP322/juu+/AMAwyMjLQs2dPPHv2TO8ciUSCTz75RFfJ3svLSzc9mFQu+VPsw4M9IeDb/X+fYimVSgwZMkTX5zMoKAiHDh3C4sWLtW3nTMEwAK+UpL+cLl26hJMnTwIAxo0bB19fX4s8x1T9D/U3uk0IV9RiMViWhUYiAVgWTnXrch0SIYRUGr1mzgWPz0dAzTB8vHqjQ1SyNzeNVIW0dbFIWxcLjVTFdTh2y+6HftPS0nTbpraZK3yeWCyGUqmsUF/qWbNmoU2bNli0aBFOnjyJ2rVr480330S1atWQlZWFc+fOISsrCwDQsGFD/Pbbb6hdu3a5n+eIkpOT8ffff+PKlSu4c+cOkpOT8fLlS7x8+RJKpRIeHh6oUaMGWrRogb59+6JLly7FtsAYPny4ro9laaLHAo0aNcKtW6b1ZE5ISMDEiRMN+q+fPn0a//vf/0y6B9fS0tLQt29fnD17FgAwcOBArF69GlWqVDHtBtIs7awGjRpgLJPM5/dIdXJywowZMyzyDEJsWcLoMWAlEkCjAViWCt8RUoKu45roRuS7jmvCcTSO5+jqJQCAvYvngW+lWassy0KWoy1EvWXGBJPaplVWapU2kT66eglGLFtjtedmRN3R26ZK9pZh98l8Tk6ObtvJycmka4pWvM7JyanwyF6TJk3QvXt3qFQqnDp1Cn///bfe682bN8dnn32Gvn37lj5FuRC5XA65XK7bd9QK+JMnT8bevXsBAAKBAJ07d0bbtm2RmpqKs2fPIjU1FS9fvsS1a9ewceNGvP7669i1a5dZ2p+ZQqVSYfny5fjqq69surDhqVOnEBkZieTkZFStWhVr1qxBr169DM7bsGEDPDw8EBERYXiTHRGASqIdlRe6ATC+9KS8bt26pXuzZMSIEahatapZ718eu3vu1o3I7+65m+NoCAFkt25pZ8fw+dDIZFT4jpBiyCVKvUTeyZUK31qb9NXv8lJxNifPt3bhOEuRFsqJivNy5z0AQPqmm2AqOANVnadfX+L5oosVup8pWLW2e9nLnfcQNMMxOk7ZfTJfuLVcSS3pCit6nkQiqVAyv3PnTkyYMAGZmZmoUqUKli1bht69eyM4OBjZ2dk4ffo05s+fj48//hgnT57EV199ZXICsnjxYsyfP7/csdmbwMBAnDp1Sq/NX05ODoYNG4bff/9dd+zy5ct47733cO3aNbi5uRm7ldlcvHgRY8eOxY0bN+Dp6QkXF5cKtzy0NoVCgS+++AJLliyBRqPBsGHDsHz58mJnu4wePRo1atQwnsyn3tUm8co87YeZLV68GCzLQiAQYPbs2Wa/f3mEuIfg/CDLtuEjxFRqsfjV7BjtLz2Mhb8HEmLLDq26gdSnObrtfp86RoJQmbh4eEAqzoaLp5fVRuaLvnHg4ullledaglql0n79TCgErHlV4FGTZ/5p8dYsSqdxoEKVdp/Mu7gUtIBSKEz7R1T0PNdCfXjLavv27YiMjATLsvD19cX58+dRr1493ev+/v4YMGAAunXrhnfeeQfr1q3Dvn37cPjwYbRp06bU+8+ZMwfTp0/X7YvFYoSGhpY7Xlv3448/6iXyAODh4YENGzbg6NGjerMYHj58iF27dmHEiBEWi0csFuOtt96CRqPBoEGDsGzZMrzxxht4+tR2KqPGxsYiMjISsbGxCA0Nxbp169ClS5fy39A/HEi7A4jctds4YbZYnzx5gujoaADAoEGD9IpZEkK0nk2cBLi4AK9mCTnRsi5CipWfyBfdJtbTbeJMbJszFX3nzEdgWB2rPDM7LQVRsycDACK/Xwkv/0CrPNcSUp48wrY5U9Ft4sxSz+W5CqHJU4HnJqjwyDwXWLVGG78DzaCx+2S+cDuqwolcSWQyWbH3KIvMzEyMHz9e12t+4cKFeol8Ye7u7ti0aRMaN26M9PR09OrVC7du3Sq1PZ2Tk5PJywfsWa1atdC8eXN0797d6Ou+vr6oV6+eQXeC69evF3vP/L+3bKkSr83/Q+81T2cBYr96v9S4NBoN6tSpg59//hmdO3cu9fzK5sWLF3j99dd1b3AlJiaia9euFbvp4J0FfeYjtgEf+1QwygLfffcd1Go1GIbBnDlzzHbfihArxJh6eioAbYs6TxFNZybc4/F4wKufbbwiS8sIIQUEIh5UCo1umziGEz8vR0DNMN32gHmOUZjad2ADpK66Br+RTSAKqVjRP41UpVs3XyUy3Crt6RRJuUhddQ2+AxtY/FmVhd1/VyqcDOcXmStNdnbB1BpPT89yF7/bvn27bs2+QCDARx99VOL54eHhaN26NQAgNTW19F7dROeHH37A1atX4VnCuk9jMzNMWXoxNuqKwbEjU9qZFJeHhwdu3rxpk4k8oH1jy9QZLSZz8QaGH9Z+uHib7bbJycm6woUffvghGjZsaLZ7V8TEkxNx7+U93Ht5DxNPTuQ6HEJQdfEiXSV7UVgYqq1exXVIhFRaA79oDaETH0InPgZ+0ZrrcAixGUUL4BHLsPuR+cJTrpOTk026Jikpyej1ZXX+fMEa2Xr16sHdvfR3uJo3b46LF7UFIvJbfZGKe/HiBR4/fmxw/L333jPp+sYhHriVpH1j5uiUtxHqY9rSCz6fX6aCho7gl19+Mfp3UdiiRYv03phZsmRJqfddunSpbvbN559/XrEgzehR1iOj24Rw5fmcz+FS6GcbFb8jpHieVVww+sf2XIfh0Nx8fPFmv0Fw87Fem9leM+fi4JKFum1bxsXXj1iP3SfzTZoUtBCRy+VISkrS6yNvzJMnT4xeX1bp6em6bR8f06YSFy60FxcXV+5nkwLp6ekYNmwYVCr9Yh5Dhw7Fu+++W+x1GRkZWLNmDR4fOIgbN29DrZTD19cHI8+E4e2338aoUaMqzeivLYnesR1/nz1X4jnr16/X2y8tmX/58iXWrVsHQPsGTcuWLSsWpBnV8a6jS+LreFtnrR8hJdHI5dpq9gCcGzfmOBpCCCmZu48v3uo/xKrPdHZzt5up9WX5+vE9RPDoXB18D9OKhhdHI1WBVbNQpuRBGOQGv2GNKnQ/U5krflti98l869at4ePjg8xMbfurmJiYEpN5lmURExOj269Ioa/CVdKLrsMvTuHzeDy7XwVhMWfPnkV0dDSePn2Kv//+W69FYaNGjTB16lSMGjWqxHvUq1cPHh4e6Ny5M15v1RLnz5/HjRs3kJ6WhosXL2Lp0qUYM2YMfvzxxwoVSazMatasqasdYC5nRnoDIwvVNhh+uML39PX11fs7rkxWd16tt2aeEC6pxWLIbt7UVrLn8yEvZZYMIYQQx8H3FMHr3RoVvk/61ttQphR0LLLGennAfPHbErtP5oVCIT744ANs2bIFAHDy5EmjfbHzXbt2Tbe23s3NrULFvgr3MH/8+DFYlgXDMCVe8/DhQ912aTMISPFiYmLw008/GRyvWbMmunbtijfffLPUv4uPP/4YCxcuhKBQG5Rvv/1Wr7DaunXr8PjxYxw9etTk1ocOTZoFPL+hbUkndAMCy7+MxVZ4ijyx6f1NXIdBCKT37yP+g94FB0z4mUSIo6M+84SUnfJFntFtYn4OMfQ7bdo03Sh3dHR0iQW9fv31V932hAkT9FrbldX77xdUO8/KysK///5b4vl5eXn4+++/dfu2WjStMpg6dSpUKhWePXuGdevWoWrVqgCA+Ph4LFmyBE2bNsXUqVOhVqsNrp08eTJOnDiB7777DgKBANlSJQauu4CB6y5g/JQZaNu2rd75J0+exPfff2+Vz8vm7YgAFLmARg0o8gDW/hMJsUKMkSdGYuSJkRArxFyHQxxYfJ+++gc0GtTa/zs3wRBiI/IT+aLbxL7J8nKxa/4c7Jo/B7K8XK7DsTnCQDej28T8HCKZb9q0qa6XeEpKSrFV4p88eYK1a9cCAPz8/IptbaVUKhEZGQkPDw80b94csbGxRs9777330LRpU93+//3f/0Gj0RQb56JFiyAWa3/ZFwgEmDiRKl9XBJ/PR0hICEaPHo2LFy8iICBA95pGo8GKFSuMFkpr0aKFXmG8UVsv406yGHeSxRi19bLRrgTLli0z+saATcp5AZxerP3T3FLuAGyh/wN8jicHWfJzfSV/in3RbUK4xri7Q0QzwAghRI8sLxcbJo5CavwTaDRqXSE8Yjq/4Y0gCnaHKNgdfsOts17eUTlEMg8AK1euRIsWLQAAX3zxBTZv3qz3+sOHD9G1a1fIZDKIRCLs27ev2KJ1UVFR2LZtG3Jzc3H9+vVik24ej4eoqCh4eXkBAP755x/0798fqampeucpFAp8/fXXepXrv/32WyquZkahoaGYO9ewGuny5cuRkpJS7HWX4jNwJT4TYpkKuXIV7r/IwWuvvWZwXmZmJq5cMWxhZ5NyXgB/f2v+BDfzKSAvMjIdsc28zygrS32uryTlJuFqylVcfnEZdzLuQKVRlX4RIRagFoshqltXt8+4uiLswH7uAiLEBsglSmjUGqQl5kKjZtF1XPmLIhPbUTh5T094ymEktovnIoD/mKbwH9PUauvlHZXDJPOurq44fvw4unbtCpVKhZEjR6Jhw4YYMGAAOnbsiPDwcDx48ABVq1bFkSNH0K6daX3EAZS45rBp06b4999/dQngvn37UL16dXTs2BFDhgxBjx49ULVqVcybNw8sy8LT0xMbN27EjBkzKvw5E309evQwOKZQKHDq1Cmj5ydmSjBgzX+6fQ0LgGVRpUoVo+c/e/bMLHHarbXtAKbQt5xqrc3aZ74y6newH9SsdsZGnpLWjBHuJIwcBcW9ewAAnpsbXBo3plF5QkpxbM1N8Pg8+Ie6g8dnaL28A/ELLSiiZuut6bigkaqQti4WaetioZHSQIYlOUwyDwD+/v44evQoDh48iD59+kAmk+HgwYO4ffs2WrVqhSVLluDWrVt45513SrxPZGQkhgwZAjc3NzRr1gyrVq0q8fzGjRvj6tWrOHLkCEaMGIE6derg+vXriI6Oxt9//w1PT0988MEHWL16NZ4+fYqRI0ea89Mmr1SrVs3o8YSEBKPHu604a3CsfpBHsdXdzV313e4U/vowfGDwTu5isRKpSqq3L+DRu9OEG/mt6ABAk0dvLBFiCo2aRVpirm5knjiGXjPngsfnI6BmGD5evRHObu5ch2RzMqLuGN0m5ueQv1n27NkTPXv2LPf1QqEQ27aVbXowj8dDt27d0K1bt3I/lxiXmpqKkSNHonv37hg/fnyx5xVX+LBwFfo//vgDf/zxBz6ZOhM5Mv13EhsFe2Lj8Na4fe2y0fvYTfeBfaO1f27rC/DNWKFfKS1YL8/wgJ/fNN+9y0v96t/EvtHARON/r+UlVojhxHOCRC0BALgKXKk1HeGEWmxYeLHa6pLfhCaEaJN5pVyt2yaEkMrGIZN5Yl8kEgmOHDmC7OzsEpP5mzeNV6Ft0KCBbvv8+fNYunQprvLrg2GCkf+ju1moJ/Z/ol16cePGDYN7eHp6olWrVuX/JCoTyctXf6Zb7hkaJZCTbLn7l1X+52xGU09PBY/HA1/DBwDU960PT5Gn2Z9DSGmeTZwEp0aNIL99GwBQ88B+8D3p3yIhpcks1FIrk9prOYzCa+YPLlmIAfMWl3A2MaZKZLhuRL5KpP23IeYSJfPEbly8eBG3bt1C48aNjb7+yy+/GBwLDg42uqzi9qWzCGg/GBKldiR568g3dK8Zm5UxceJECIV2spbO1VebyLv6mW9kPuc5gEKjGnyR9v5cUytefa6+Frk9wzBwFboCoCn2hFt8Nze4tm4NAHCpX5/jaAip/OQSJRRyNcBqJ5PRuDwhpDKi3y6J3chvGXj06FFdX3lA24Zu6dKliIqK0jtfJBJh8+bNRpPwjAt7gIC6cKnVAk2qecLLRQiWZbFw4UKcP39e79w2bdoYrZRvs/qsB9Z1AD7aCwQ3M889F4dq+8uzGu16+ZkPK0fxu+Tr2s+1z3qz33p5x+WYeHIiHmU9Qh3vOjTFnnAmYO7nuh7zNfft5TgaQmzDkZ/02w77hVCvbEfRa+Zc3eg8Fb8rn6Jr5v3HNC3hbFIRlMwTm8fjFdRxvH79OmrXro33338f1atXh1gsxt9//424uDi9a+rXr4+1a9eiQ4cOesf5fO2UaLVcitRdX8IppAHEATUw7lZN/PPPP7h7967e+YMHD8bPP/8MV1fXYuOLjo7G5csF67EzMzMNzvnll19w+PBh3f7cuXOLbY1ok6qEaRNnAKjapHIk8hbmKfLEr11/5ToM4uDUYrEukee5uCDho0jUv3yJ46gIqfwyknL19rt/YtiWltgnZzd3mlpfARqpCopk7f8fYZAbGF7xXb9IxVEyT2xe9erVkZycjDNnzuDy5cuIjY1FbGws/vrrL0gkEgiFQvj7+yMsLAzNmjVDjx490KVLFwgEhv/8/+///g9nZdUQ8985yJ8/hPLlM4jvXcDm26fBsiz8/PxQu3ZttG3bFkOHDjXac76oY8eOYevWrSWes2vXLr39iRMn2lcy/zIOcPYq2CaEWMWziZN02xqpFLwS3ngkhGiJM6RQyLSF7xgeIBDxqS2dA5Hl5eqNzFM1+7JJ33pb2+FJqYHyRR6qftqa65DsGiXzxC5UrVoVgwYNwqBBgyp0H4Zh4BlaH1X5QchVaMDnMTgz638I9Sn/L8BbtmzBli1bKhSXTZNmadvSKfMAoRsQ0IjriKxCrBBj6umpALRT7qn4HeGKc6NGkL0qfldr/+8cR0NI5Rf9zWWAAcBqV4fRFHvHQgXwKkb5Ig8MwwAi7WxXngulm5bkUH3mCTGFSq2BVMWCz2PQJMSzQom8TfIIAjp8pv3THKI/0ibwIneAYSpXf3lzf66F5CfyRbcJsRa1WAyVWAxZbCygViP0160Q2UsLTUIsTOjEB8NjwPAYmmJPSBkIA92MbhPLoGSekCKepOXBTcSHm4iPJ2kO2IrGIwjoOMe8CS5fAAQ11X5UpvXylvhcCakkEsePh+LevYL9ocM4jIYQ2xHxf6+DYRgInfj4aMEbNMXewRQuekcF8MrOb3gjiILdIQp2h99wx5iNySVK5olVpYpl+PHPB0gVy7gOpVhh/m7IU6iRp1AjzN9+3lHk7Gsfsc34tp0rXL2eKtkTLsjvP+A6BEJskpOLAP6h7vAPdYcTTRF2OPkF8AbMW0zr5cuB5yKA/5im8B/TlKbYWwEl88SqUnPkWHHyIVJz5FyHYlRipgSxz7Kh1rBwEfIhsKMKnJx97V28geGHtR+VaVSeEDtXtC82taUjxDTH1tw0uk0IKZ0qU4akr84j6avzUGVW3sE7e0HJPCGFdF9xFgzDgM9jIFWqIeDTfxFSdvdf3kfbHW1x+cVlSJQSWjNPOOFcrx54Hh7geXjApUULuNSvz3VIhBBC7FzKiqtGt4llUKZCSBGuwoL/FmsjW3EYiZ2QZgFbemg/pFlcR2MVEYcjdNu3M25zGAlxVNL79yG9dg2anBxAo0HwD99zHRIhNkGcIUXKUzGSHmQhNSEHnYY15DokYkXZaSlYPSICq0dEIDsthetwbI5GqgKrUINVqLkOxWEwLMsWnYlHbJhYLIaXlxeys7Ph6Vn5WmG9s/RvPErLRRU3EYSVcNRbrWGRnqudhu7n7gS+HU2zV6o1yMhToI6/O/6a0cF6D97SQ39/+GHrPZsjzX5tBjVb8IPs3KBz1JqOWI1aLMaD1m30jrm2bo0av27lKCJCbMf6af9AKS/4/h1cxwu9p7fgMCJiTatGDIBSpp0aLnR2xqTNuziOyLakrYuFRqmBMikHABA063UIfJw5jso2mZrTUVUCYlWZEgUAICNPwXEkpUvLrZzr+isq/++AWE59n/q48/IOACDcN5wSeWJViePHcx0CIYTYpPxEvug2MQ2rYaFKk4AR8SEMcqNE3goomSdW5eMqQkaeotKOzGtYFlmvkl1vVxF4jP2NzPu4iqz74A9+Ata2026PPWvdZ3NArBAjMTcRHiIP1PGuAwGPvs0S6ypaxd65cWNUW72Ko2gIsS0R//c6di64BJVCg4AaHug6rgnXIRErCqgZhpQnjwAAgWF1OI7GBrHFbBOLod8yiVUtH9gMPVb9i60jW6NxiBfX4ejJlirR7rtTcBbyUS/IAwIeg51j3uQ6LLO5lZSNHqv+xfKBzaz74AOfaPvL52/b+TT7qaenoo53HTzKeoRHWY9wvO9xrkMiDoYFAD4fAMC4uKDWnt2cxkOILfGs4oIxy624FI1UKgKhCE6ubrptUjYMn4EomNr5WVPlGxolhCOjtl7W9Ze//yKH63Dsw4ubQPxZ7Ycil+torEbAE6CBbwM08G1AU+yJ1TnXqweeqyt4rq5wrleP63AIIcRm8Ph8BNQMQ0DNMPBevSlKTOfTvx4UyblQJOfCpz/9/LEGSuYJeeXBixxdJXuJQk2V7M1hbaHRjeRrQMQ27mKxkgVtF+Dey3u49/IeFrRdwHU4xMGoxWKwKhU0EgnAslTFnhBCTCTLy4VGrUZq/BNoNGr0mjmX65BsTubuBxAFu0MU7I7M3Q9Kv4BUGCXzhLwS5u8GiVIDAGgS4gkvFyHHEdkBtkhrEhdvTsKwpi/OfaEblf/i3Bdch0McTOL48ZDdLmiH+HzO5xxGQ4jtkUuU2L/sKvYvuwq5RMl1OMSKDi5ZqBuZ5/H4cHaj6eKk8qNknlhVgIcTpnSuiwAPJ65DMSDgMXAT8eEm4kNgRy3p8ln9ay/NAoSFfhBWbW6d5xLiwOQPHuq2NVIph5EQYpuO/BSLtMRcpCXm4shPsVyHQ4hNqRIZbnSbWA4VwCNWFeDpjGnvVs41NAI+D+HB9ru+2epf++iPgKAmQJq2RRuG7rfeszm0oO0C9D/UHwCwuycVHiPWJQqrBdnNW4BGA56bG1WxJ6SMMpLzjG4T+/f+hKmImj0ZABD5/UqOo7FNPBcB/Mc05ToMh0Ij84S88kP/13AnWYw7yWL80P81rsOxfSoZkHRJW/jOr55DTLEHgDln5xjdJsRqGAbg8yGqUxt8T/t9g5IQc5NLlGBZFkq5GmBZVAl25TokYkUnfl6uK3534uflXIdDiEkomSfklVm7byA82BPhwZ6YtfsG1+HYvrT7xrft3KOsR0a3CbE0tVgM2S3tenmeiwsUT+I4jogQ23JszU34hbhB6MQHGAbdP6E39gkhlRsl84QQ85NmAYo8QKN+1fTacdTxrmN0mxBLSxw/HmBZQK2GRiqFU926XIdEiM3h8XnwD3WHf6g7nFypEK4jKVy9nirZl51GqkLaulikrYuFRqriOhyHQck8IQASMyW4nZSNy/GZkKs01JauonZEAKy2MwBYNeBXn9t4rGh159W6avarO6/mOhziQOT39dsAha75haNICLFNXcc1MbpNHIOzmzsGzFuMAfMWUyX7ckjbeBPyJ9mQP8lG2sabXIfjMKgAHiEAuq04q2tL9yg1l9rSVVTKHeiG5Bk+IHTmNBxr8hR5YtP7m7gOgzgY6f370OTmand4PDAuLrRenpAycnIVovf0FlyHQYhNUj7LNbpNLIuSeUIASBRqo9uknNgic+sjtnETByEOQHr/PuI/6F1wQKOBc73K2TWEkMpKLlHi0MrrSE3IhVDEQ8QXreFZxYXrsIgVZael6FWz9/IP5Dgi22Ewrd7+OjxXWjTNnhAATUI8jG6TcmIYgMfXfojcHKaSPSHWphaL9RP5V2iKPSFlc2zNTaQmaEcTlQoNor+5zHFExNryE/mi26R0GVF3IAgpWJoQMLk5h9E4FodM5g8fPoz+/fsjLCwMLi4uCAoKwltvvYUff/wRL1++NNtzzpw5A4Zhyv3xv//9z2yxkOLdeZ6NG4liqDUsnIU8rBrckuuQbJs0q2Bb6AYENOIsFGsTK8QYeWIkRp4YCbFCzHU4xAE8mzjJ4JhTo0Y0xZ6QMtKoWbAa7YfDVW4lpIJYDQt1hhSMMx+imp4QVaWaA9biUMl8eno6unfvjp49e2LPnj0QiUTo0aMHGjRogEuXLmH69Olo3LgxTp48yXWoAAA+n891CA6h56pzuh/beXI1taWrqOiPtAm8yF07Qj94J9cRWc3U01ONbhNiKRq5XG+fcXVFjc1Us4GQsmMhcCr4tTji/17nMBbChcjvVxrdJiZgi9kmFucwa+YlEgm6dOmCmJgY8Pl8rFu3DiNHjtS9/vDhQ/To0QMPHjxAt27d8Ndff6Fdu3ZmebanpyeqVq1q0rkKhQJxcdrewN27dzfL8wmxOr4ACGqq3XagKfYqjUrXW57a0hFrkD96VLDD46HumdM0Kk9IOfD4PATWKPi/Q+vlHY+XfyAmbo7mOgybxPAZiIJpNJ4LDpPMT548GTExMQCABQsW6CXyAFC3bl0cO3YMjRo1gkwmQ58+ffDw4UN4e3tX+NkffvghtmzZYtK569evx5gxY+Ds7Izhw4dX+NmkZImZEjjxWEhedVFrFOxJbekq6oOfgLWv3ggbe5bbWKxMoVYgR5Gj2ybEktRiMdi8PO3Oq5lclMgTUj5vD6iLXYuuAAAGfE6/BzgaWV4uDi5ZCEDbY55a05WNT/96SFlxFQAQOIU6QliT2afZJyQkICkpydy3rZCbN29i8+bNAIDAwEDMmDHD6HlhYWEYO3YsAO2U/MWLF1stxny//KItWhQREQFfX1+rP9/RdF9xFnINAz5P++HhLKC2dBV14BPtqHxQU+22A7n38h74DB98ho97L+9xHQ6xc4njx2uXsgCAWg3nRo5Tn4IQc/t96TUInfgQOvHx+9JrXIdDrGz/918jNf4JUuOfYP/3X3Mdjs3J3P0AomB3iILdkbn7AdfhOBSzJ/M1a9ZE69atzX3bClm2bBk0Gu3Qa0REBEQiUbHnDh06VLf9008/QSqVlvu5IpEIgYGB8PLyMun8ixcv4to17Q+Q8ePHl/u5hBDrEyvEYFkWalbb2tBFQFM0iWXJHzwE4+amHZXn81F9w3quQyKEEJuUlhAPhUwKhUyKtIR4rsMhxGQWKYDHFu0xzSGlUokDBw7o9jt37lzi+c2bN9dNrc/Ly8OxY8fK/ey33noLL168wIoVK0w6P39Uvnnz5mjTpk25n0tMd2RKO7gKtf8Nmlbzoin25lC4p7wD9ZefeHKiXgK/p9ceDqMhjkAUVgvsqzecnRtTBtCyiv9WQ4UUhUUUhVYDUvF7xwRFXCrkCqR4Ua3ieVZZM18eno6xowZg/Hjx6N5c277DF66dAmZmZm6/ZYtS247xjAMWrZsqatof/z4cfTp08eiMQJAZmYmdu3aBYBG5a0p1McVN+d34ToM++LiDQw/zHUUVvco6xF4PB48RB4AgBD3EI4jIvZMLRZD/vgJAIDn4gKG7zAlcAgxu12LroDhaZesqJQaKn7ngPyr10R64lMAgF9oDY6jsT08FwH8xzTlOgyHZJGRebVajY0bN6JVq1Z488038euvv0JepH2Otdy8eVO37eTkhJCQ0n/BrlWrltHrLWnLli2QSqXw9PTE4MGDrfJMAmRLlRi47gIGrruAbKmS63CIDStcvZ4q2RNLezZxEhiGAc/VFWAYMAJK5gkhpDxkebm6bb/qNdD70y85jIaQsrFIMu/u7o7u3buDYRhcvHgRI0aMQEhICGbNmoVHhdvoWMGdO3d028HBwSZdUzjhL3y9pbAsizVr1gDQrtl3c3Oz+DOJ1tioK0a3SQVIs4AtPbQf0iyuo7Ga1Z1Xo4FvAzTwbYDVnVdzHQ5xAE516+q2q61exWEkhNi2wtXrqZK94zm6cgl4fD4CaoaBx+NTJXtiUyySzLu5ueHgwYN48uQJPv30U/j7++Ply5dYtmwZGjRogPfffx8HDhzQFaWzpLS0NN22qW3mCp8nFouhVFp2xPbUqVN48EBb+XHcuHEWfRYpkC1V4k6yGHeSxVBpaIGU2UR/ZHzbznmKPLHp/U3Y9P4meIpo7TKxrCpTJkN69So0OTkIWfMLrZcnpAL8qnlgws8dMeHnjvCr5sF1OITYHI1UhbR1sUhbFwuNVMV1OA7FIsl8vurVq2Px4sVITEzEtm3b8Oabb0Kj0eDPP/9Enz59UKNGDSxYsADPnz+3WAw5OTm6bScnJ5OucXZ2LvYelpBf+K59+/ZoVMbWQnK5HGKxWO+DmGZs1BXUC9S++/rgRQ4VvyOE2IzEocN0VewThw7jOhxCbJpcosT+ZVexf9lVyCW05M7RdJs8U7fda+ZcDiOxXRlRd4xuE8szezI/b948gz7uQqEQgwcPxr///osbN25g7NixcHNzQ1JSEr766ivUrFkTAwYMwKlTp8wdjl5ruZJa0hVW9DyJRGLWmApLTk7WVdsvT+G7xYsXw8vLS/cRGhpq7hDtllylwbXEbOQp1Kgd4E795c3FQavZixVijDwxEiNPjIRYQW+qEctRi8WAWq39IIRU2LE1N41uE8fg7OaOAfMWY8C8xTTFntgcqyTzhTVp0gS//PILkpOTsWrVKoSHh0OpVGLPnj1499130bBhQ6xcuRLZ2dlmicfFpaAiqUKhMOmaoue5urqaJRZjNmzYAJVKhYCAgHJVzZ8zZw6ys7N1H4mJiRaI0j49Sskxuk0qQJpVMLU+Ypu2sr2DmHp6qtFtQswtYfSYgh21GjX37eUuGEJsnFyiRFpiLtISc6FR05I7QspKlSmDPCkH8vhssCoNtaazMotOsy+Ju7s7PvnkE9y8eRNnzpxBREQEBAIB7t+/j2nTpiEkJAQff/wxrlypWFEyD4+CtU+mVtSXyWTF3sOc1Go11q9fDwAYNWqUyTMHCnNycoKnp6feBzENwzBwE/HhJuKDYRiuw7EPDrpenhBrUYvFkN24UXCAz4dL/frcBUSIjTu25iaqBGsHbTKS89B1XBOOIyLEtqSsuAqGYcCI+FCmSsBzoe4q1sRZMl9Yu3btMHDgQDRr1gyAtrq7RCLB5s2b0aZNG7Rp0wZbtmwxSLJN4e/vr9vOysoy6ZrCswI8PT0hFFpm+vWhQ4fw7Nkz8Hg8jBkzpvQLiFkdmdLO6DYhZSVWiKHSqHDv5T2oNCos77ic65CInUosuhyLpZFEQiqKx+fBP9Qd/qHucHKlJXeOJi0hHssG9cKyQb2Q+jSO63BsEqtQg1XQ0i8ucJrMv3jxAt988w1q1qyJPn364MqVK9p3dl59sCwLlmVx+fJljBo1CsHBwZg5c2aZppKHhxdM9UhOTjbpmqSkJKPXm1t+O7quXbuiZs2aFnsOMc7TWYjwYE+EB3vC05l+eJtFl8VAwnntR5fFXEdjNRNPTsSjrIK2m1TNnliK/MFDoNBMIufGjTmMhhDbV3gknkblHVP0V5/qtrd9NoXDSGyPRqoCq9EArxqUCfwttzSZGGf2ZP7XX3/F7t27Szzn1KlTGDBgAGrUqIF58+YhMTER7KvRhfwEvnnz5li/fj3u3r2LL774AiEhIcjKysKPP/6IevXq4euvv9ZdU5ImTQq+Mcvlcr1EvThPnjwxer05PX78GH/88QeA8hW+IxWTLVWi3XendG3pqMe8mWzpDojctR9bunMdjdUUTuQLbxNibk5164JxcwP4fPDc3VF9w3quQyLEpjm5CtF7egv0nt6CRuUdFKvRaBNSUmYZUXfA8HhgnPlgRHzwhJVi0rdDMftXfPjw4Zg6darB8aysLCxfvhwNGjTAu+++i7179+r6t+evV3Z2dsaIESNw8eJFXLlyBaNGjUL9+vUxf/58xMfH4+DBg+jYsSPkcjnmz5+P6dOnlxpP69at4ePjo9uPiYkp8XyWZfXO6dKliymfdpmtXbsWLMuiRo0a6Nq1q0WeQYpXOHl/8IKK35GKqeNdx+g2IeYWuuYXuISHw7VlS9Q5dZL6yxNCSAUF1AgDoE3qP/p2BcfR2B5hoJtum4rfWZ9F3j4pPGJ++fJljBw5EiEhIZgxYwYePHig9zrLsqhfvz6WL1+O5ORkbNy4Ea+//rphoDweevTogb/++gu///47RCIRfvnll1JH2oVCIT744APd/smTJ0s8/9q1a7q19W5ubhZJtOVyOTZv3gwAGDt2LHg8eheLC/k95gFQj3lzkGYBPmGALBuQ5wLDj3AdkdWs7rwaDXwboIFvA6zuvJrrcAghhBBiorTEeDA8HqrWrY+AGrW4DsemVIkMB8NnIAp2R9VPW1PxOw5YJItUqVTYuHEjWrVqhTfeeANbt27V9XvPH4UXCAQYMGAATp8+jTt37mDy5Mnw8vIy6f4ffPABRowYAaVSiX/++afU86dNm6ZLmKOjo0tsUffrr7/qtidMmKDX2s5cdu/ejfT0dIhEIowaNcrs9yel+7JnuK7H/M6xb1CPeXOI/gjIfAI4ewFO7sDxOVxHRIhdUYvFeNT5Hcju3gWrVuHZxElch0QIIXYj4xm1dy4rjUwFRXIuFMm50MhUXIfjkCySzGdkZGDMmDG4evWqwSh89erVsXDhQiQmJmLnzp3o0KFDuZ5Rv359sCxr0hr4pk2bYsSIEQCAlJQULFu2zOh5T548wdq1awEAfn5+mDPHeDKiVCoRGRkJDw8PNG/eHLGxsWWK/ZdffgEA9OnTBwEBAWW6lpjHwLX/6drSDVz7H9fh2AeNElDkaj8crMI29Zgn1pA4fjw0Egk0Egnk9x9wHQ4hhNgFoZMLRM4u1Ka4HFJWXDW6TazHYvO7WZbV/adgGAbdu3fH4cOH8eTJE8yZM6fCSWxMTAwYhoFAYNp0jpUrV6JFixYAgC+++EI3zT3fw4cP0bVrV8hkMohEIuzbt09vrX1hUVFR2LZtG3Jzc3H9+nVMnDjR5LhjY2Nx/vx5AFT4jtgZlgGEBeumELGNu1gIsUPye/cBtRpQq6GRSFBt9SquQyKEELsR+f1KrkMgpMwsulg7ICAAn3/+OZ48eYJDhw6hW7duFX7X688//8SYMWOwfft23TNM4erqiuPHj6Nr165QqVQYOXIkGjZsiAEDBqBjx44IDw/HgwcPULVqVRw5cgTt2pned7wsn1P+qHx4eDjat29v8nXEvKjHvAUwrLZllsgdCAwHXLy5jshqFrRdgHsv7+Hey3tY0HYB1+EQO6QWi6HJy9M7RsXvCCGk4sb+sgUTN0fDyz+Q61Bsjv/Yproe8/5jm3IdjkOySJUCV1dXbNq0CR9++KHJI+emmj17Nm7cuAFAm0Q3a9bM5Gv9/f1x9OhRHDp0CFu2bMHVq1dx8OBBeHp6olWrVujXrx9GjBgBX1/fEu8TGRmJU6dOYf/+/ahbty5WrTJtdCQnJwfbtmlHK2lUnlv5Pebzt0kFSbOAF7cBRQ7A8AGNY62b+uLcF2jg20C3ven9TRxHROzNs4mTAB4PeNU+iXGlXr6EEGIO+xZ/BZVCjl4z58LZzb30CwgAbY/5tLWxYER8CIPckH3oCfzHUEJvbRZJ5j08PNC/f39L3BqjR4/G8+fPAWgr3IeHl70FQs+ePdGzZ89yxyAUCnVJeVl4eHggJ4faoHEtv8c8ANQL8sDYqCvYOeZNjqOycTsitIl8vvSH3MVCiB3SyOUFtSh4PIQd2M9pPIQQYm8OLlmIAfMWcx2GzciIuqPbVr7IgyiY3gjhgtmT+erVqyMw0HLTVCZMmGCxexPHMHzzJYhfVdy89zwHjUNoqmqFpd4FGB7AagBWDfg7Vp/R5R2X6wrfLe+4nNNYiH2SP36sHZkHwLi4QBQSwnFEhBBCHJ0w0A3KFO0SMOoxzw2zJ/Px8fFmuU9SUhLUajWqV69ulvsRAmhH5a8lZOn2c+Uq6jFvDv7hQOptQJmnLYI3eCfXEVmVp8iTptYTi2IYhqbWE2IBcokSx9bcBAB0HdcETq609M5R9Zo5l+sQbEqVyHBkRN2BKNgdVSLDqcc8RyxaAK8iWrVqhbCwMK7DIHZm1NbLevseTnzqMW8Og3cCVV8Dqr8FTL3pUMXvxAoxRp4YiZEnRkKsEHMdDrFD0vv3ocnJ0X7k5aH6tiiuQyLEbhz5KRZpiblIS8zFkZ/K1mqY2La0hHgAQPLDu/jf8DG0Xp7YpEqbzAPQ61FPiDk8eJEDd1HBP/ujU6mjgFm4eAPDD2s/HCiRB6jHPLEstViM+A96FxzQaJC6cBFn8RBibzKS84xuE/sX/dWnuu1tn03hMBLbVHjNfOFtYl2VOpknxNxq+LkiV6GtBt2kmidCfWjaqllIs4AtPbQf0iyuo7EquVqOqylXcTXlKuRqOdfhEDvzbOIkrkMgxK5VCXY1uk0IIbagTIsbrDntPS0tzWrPIo4hW6rE7STtNGg+j0F8Gr0DbxYvbgJr3tZuBzcHoj/SjtA7iCdZT4xuE2IOGolEb9+5cWNUW21aO1RCSOneGdkI0d9c1m0TxyDLy4V/aE3d/kffruAuGBuVv2Y+f5two0zJfHx8PBiGsfj09/xnMAxj0ecQxzI26goYhgH/1T8r+vdlJus6FGwnXwNqtuMuFg4wDANXIY3mEPNTi8WQ3bpVcIDHQ609u7kLiBA7k/4sR5fIB9TwwKmtd9F7eguOoyLWcHDJQgidXQAAwXUbIqBGLY4jsj08FwH1la8EKuU0e1orTyylSYiHbvvIFMdKOi2KKfStJGIbd3FwYHfP3Ua3Cakogyn29AYkIWa1a9EV3Xbq0xwOIyHEtmikKqT8dB3PPj+LpK/OQ5Up4zokh1XmHgLOzs4YMGCAJWLREx0dDbmc1p8S8/mh/2vovuIs3ER8HJnSjtbLm8uYv7Wj8wxfu+1gBfBC3ENwftB5rsMgdohVqwBXV+DVVPua+/ZyHBEhdogB8GoMqeu4JpyGQqzn/QlTsfNLbQG8zqMncByN7cmIugNlkvYNMFahRsqKqwj56i2Oo3JMZU7mvby8sHnzZkvEouf48eNITU21+HOI45gWfV1ve884+qZjFkFNgC9fch0FZ8QKsa6K/fKOy+Ep8uQ2IGI3NHKFLpF3atwYLvXrcxwRIfZlwOettKPzjHabesw7jhM/L4d/9ZoAgJPrf0afOV9xGg8h5VUpp9kTYgkPXuQY3SYV5MCV7AFqTUcsQ5GUBHn+enkeD/K7d7kNiBA75FfNAxN+7ogJP3eEXzWP0i8ghADQFrwTvlq6yoj4CJxCtSa4UmmTeVo3T8ytXqC70W1SQdEfGd8mhJRbXJHe8oyLC2exEEKIvek1c65uu9vkmRxGYpt4LgIEftIM1Ra1Q8hXb0Hg48x1SA6rTMm8RqNBcnKypWLR8+LFC6jVaqs8iziGHwc2N7pNSEUs77jc6DYh5aUWi6HJzdU7FnZgPzfBEEKIHXJ2c9dNrXd2owGeslJlypD01XkqflcJVNqReULMbdbuGwgP9kR4sCdm7b7BdTj2QZoFqFXAi1hAo3S4Sva0Xp5YQsLoMfoH3NwgCgnhJhhC7JRcosT+ZVexf9lVyCVKrsMhxKakrLgKVqHWFb8j3Km0yXzVqlUhEJS5Ph8hxJqiPwL4AiCoKcATOlwl+4knJ+Ley3u49/IeJp6cyHU4xE7o9ZYHqPAdIRZwbM1No9vEMWSnpWDt+OHa7XQquF0WqkwZWJka0ABgtdXsCXcqbTIP0Lp5Yl5rI1sZ3SakvB5lPTK6TUhFMC4uAO/Vj2c+H6FrfuE2IEIIsTNRsyfrtnd+MZvDSGyP3kg8C10hPMKNSp3ME2IuiZkStPvuFO4ki/FD/9fg5ULtZ8yi8LR6B5tiDwB1vOsY3SakIsIO7AfPzQ08Dw/U/uME+J60fIMQcyvcU576yxNSRsyrP3mA/8jGnIbi6Mo0j/3u3bs4ceIEOnfujCZNjH/j69Spk1kCe/nScftWE/PrtuIsJK+mAXVbcRY3v3qf44iIPVjdebXemnlCKkqRlIS43h8CAGrt/53WyhNiIU6uQvSeTu20HJEsLxe+wdXw8vkzAMDABd9zHJHt0EhVYDUagAXA047K81xoWTSXTP7q37t3D61atYJMJoNIJEJMTAzCw8MNzjtz5gwYhjFyh7JhWdYs9yEkW6pEjkwFAODzGF1ST8ygaFu64Ye5i4UDniJPbHp/E9dhEDuSn8jnb9e/fInDaAghxP4cXLIQApEIwXUbAgC8/AI4jsh2ZETdAcPjAa860fGENMmbayb/DRw9ehRSqRQsy0KhUOD48eMlns+ybIU+CDGXsVFX4C7S/lNXa1g0obU9hJDKimWhkUigkUgA+llICCGkkhEGuum2q0QaDuwS6zJ5ZL55c/2+3K+99lqx5wqFQrz55pvljwrA+fPnoVKpKnQPQvI1qOqJBynavs1bR77BcTR2JGJbwei8A66ZJ8TchDVrQH7rtm6bEGIZcolSV8W+67gmcHKlWjqOotfMuTi4ZCHXYdikKpHhyIi6A1GwO6pEhtMU+0rA5L+Bjh07Yv369Th48CC6du2Kzp07F3uur68vTp8+XaHAqlatitRUahVBKm5tZCuMjbqC8GBPrI1sRcXvzMnF2+Gm1hNiScqnCeB5eOi2CSGWUbQ1Ha2fJ6R0PBcB/Mc05ToMUkiZ3k4ZNWoURo0aZalYCLEILxchdo6p2EwRQgixNEVSEjR5eYBGA56bG5yovzwhFqNRs8hIzgMAVAl2K+VsYk/2f/810hOeQujswnUohFRYpZ0bQevmCSGEOJK43h+CcXUFK5VCI5NRf3lCLEijZqGUq3XbxHGkJcRDKZMVtFcjxIaZPZmPi4sDn8+v8H2uXLkCtZqqjpOKy5YqMTbqCgDQNHtzy3wKrG2n3R57FvChNb6EVATDMGBcXQGA+ssTYiFyiRKpCTkAAKGIh8wUCccREWuR5eVCIZVSgVFiN8zeT6BGjRqoVq1ahe9TrVo11KhBiQGpmGypEm2/PYn/nrzE5fhMDN9MbZ7MKj+RL7pNCCmzkDW/QJOTA01ODkJoVJ4Qizm25iYEr7rcKBUaVAl25TgiYi37Fs+jRJ7YlUrbHHD37t349ddfuQ6D2LjIjReR+2oanVrDIvZZNscREXsiVogx8sRIjDwxEmKFmOtwiA1Ti8VIHDoM4PPBc3dH0rjxXIdEiN0qPK1eKOKh+yfFd2gi9uXF44cAo51fz2o0HEdjezRSFdLWxSJtXSw0Uuo6VhlU2mR+8uTJGDlyJNdhEBtXNHl3FVbaf/K2aexZ49sOYurpqUa3CSmrxPHjAbUaUKuhkUq5DocQu6ZRs1AptImcT5AbtaVzELK8XG1NLpYFw+NB6EwzMsoqI+qO0W3Cnf9v797joqrz/4G/zgzMMKCDKKioeEHxgmJ5LTUr17bELM289CsRoV3NMjNrt6i1e9laS+ZlU9u8gLurVopmYt80rUxbFDXNS1qIF7xh6gwww1zP74+JI0MDDDDDmcvr+XjMY98nzjmft22Z7/l8Pu+PzzbAA9gEjxpOIQD2Sv8YbZl1u3zJBKKoDsDzPD6LqKFMP51wzBaJImCzoVPOBrlTIgpY1y4ZEKpWSjEFh03vvonYzl1xseAkAOD/vfGOzBkRNVyjFPOFhYW4evUqysrK3C7QzWaz1/LZvHkzVq1ahfz8fFy4cAGRkZGIj4/H+PHjkZqaiubNm3ttbLvdjq1bt+KTTz5BXl4eLl68CJ1Oh6ZNm6Jjx45ISkrCkCFDMHLkSI/0Hgh2m2fehvsWfgcA+OzJIYiL4rew5Dnzh82XZuTnD5svay7kv2x6PewGg6OQVyohaDRQtW0rd1pEASuqVbjUAK9l+6YyZ0ONxW634er5c1CFaRDdvgMio1vKnZLfaZGSKM3It0hJlDkbArxYzK9fvx4ffvghvv32WxjrsWRQFEUIgmfPjLhy5QpSU1OxZcsWAEC3bt0watQoFBcXY9euXdizZw/eeecdZGdnY/jw4R4dGwB++OEH/PnPf8bevXsREhKCAQMGoGfPnigtLcXRo0dx4MABHDhwAFlZWejZsyd+/PFHj+cQTHRGC1777CgGdIxiF3vyCq1Ki+X3LJc7DfJzZ6c7748P69pVpkyIgoNCCWlmXtHwA5jIX4jVxOQ2hSYEMVN7y50GVeLxYt5isWDChAnYtGkTgPotlfd0EQ8ABoMBI0aMQH5+PpRKJZYtW+a0J//kyZMYNWoUTpw4gZEjR2Lbtm0YOtRz3bl37tyJkSNHwmg04rHHHsPrr7+O6Oho6eeiKOK///0v0tLSvLoqIZhUHEdXEa+ZOkjGbAIQj6Uj8gjTiZPS+fIAeL48kZcplArExDWROw1qZAqlEi07xsudBpFHebwb2HPPPYeNGzc2aL+7N/bKz5w5E/n5+QCA119//XfN9RISEpCbm4uwsDCYzWaMHTsW169f98jYR44cwX333Qej0YiXX34ZH3zwgVMhDzi+wHj44Yfx2muveWRMAqx2EUfP63H0vB5WO7+C9bggP5aOnezJU1TxnaRCPqxXT54vT+RFJoMFdpsdxWdLYbeJSH4sSe6UqJHc/+yLLmNyH7vZ+x6Pzsxfu3YN//znP6WZdVEUceutt+Luu+9Gly5d0KJFC2g0mlpn3kVRxIMPPuixYvrw4cNYsWIFAKBVq1Z45plnXN4XHx+PadOm4f3338eVK1cwd+5c/P3vf2/w+I8//jhKS0uRlJSEl156qcZ7H374YezYsQMdO3Zs8LhBr/KXQmym6FnG64CpFBBtgKAEVBFyZ9Toqnay53J7qi9BGQJFeLgUE5H35C457DQzz072wSMsogkmvDxX7jT8WtVu9lxyLz+P/qnh66+/lpaIKxQK/Oc//8HEiRPr9S6VSuWxvDIzM2H/7SzJiRMn1vjuyZMn4/333wcALF68GK+88go0Gk29x964cSO++eYbAMDs2bOhUNS8GCIuLg5bt26t93hUSeUvjbywdSOorZ0EhIYD5hJHQR/dTe6MiPyWEBKCsB495E6DiCig6YovIfuvMwEAKfMWIDKmlcwZETWcR5fZFxYWAnAsGR8zZky9C3nAc0vtLRYLNm7cKF3X1tiuT58+aNasGQCgrKwMubm5DRq/YkWAIAi49957G/QuqiPOzHuP3QJYDY7OQWotEBomd0aNrnL3enayp4Zot2ihy5iIPK/ysnousQ8uFYV81ZjcV7mDPbvZ+waPzsxX7lr/hz/8oUHv2rBhg0caweXl5eHatWvSdb9+/Wq8XxAE9OvXD9u3bwcAbN26FWPHjq3X2DqdTvoyIC4uDjExMfV6D9Xd2WsGHDirAwD0bheJEKXH20MEN1EAQiMAS5njeuJqefMh8mNKrRYdslbJnQZRUFCHh2LM7L5yp0GNrLysFOZyR50SGhYGAVyxWR/sZu97PFrMVz4XXdvABj6DBnmm8/jhw4elWK1Wo60bZ/d26tTJ5fN1lZ+fL30h0bXSUUMFBQXYsmULTp06hdLSUkRHRyMpKQl33XXX7xrjUf3c+/63CA9VwGCx49A5HfbP+aPcKQUWZQgQe9ONa00z2VKRC/fMExER+Yecea8hRKWGpdwIS3k5Hl3wodwpEXmER4v5u+66C0qlEna7HUVFRZ58db0dPXqjUUObNm3ceqZywV/5+bo6ePCgFEdFReHChQuYNWsW1q1b5/J+tVqN6dOn480330T4b82QqP4EQUCEynGALM+Y97DRi52PpSMiIiLyUcVnCmE1myAoFAgNC+N+eQoYHl17HBsbi7S0NIiiiJycnAa96+mnn8ajjz7a4JyKi4uluGIvfG0q36fX62GxWOo19okTJ6T44sWLuPXWW7Fu3TpMmjQJe/fuhcFgwLVr17Bp0yb07t0bJpMJ8+fPx+233+60NYDq7vOnhrqMyUM2PgG07u34bHxC7mxk8fqQ13H86nEcv3ocrw95Xe50iIiIqDpiNTGRn/P4RuL58+ejf//+yMvLw3vvvVfv96xZswYrV65scD4lJSVSrFar3XomLMy5mVfld9RF5aP1vv32W5w5cwYvvPACsrOz0b9/f2g0GjRr1gz33Xcf9uzZgwEDBgBwLM9PTU11awyTyQS9Xu/0ISAuKhyHXrkHh165B3FRXOXgcXYLcPGQ42Ov35dd/m7Od3PQvXl3dG/eHXO+myN3OkRERFSNFu3iXMZE/s7jxXx4eDh27NiBKVOm4C9/+QumTJnSoKXqDVW5KZ+7x91Vvc9gMNRr7KqFdefOnfHKK6+4vDc8PBzLli2Trj/77DN89dVXtY4xd+5cREZGSp+4OP4GRY1AFFzHRFQnNr0ehQ8/gp8GDEThI4/Axi9kiYg8TqFQQhWmgSpMA4VCKXc6RB5Tpz3z6enpdXp5UlISsrOzkZ2djbi4OCQmJiIqKsqtGXKdTlensapT+Yx4d7vjV72vvvvXq77nkUceQWho9Xu3b775ZvTr1w/5+fkAgGXLltV6KkBGRgZmz54tXev1ehb0AHRGC6Zl7wMALE3pzz3znqYMcSyxD2Lzh82XmuDxaDqqr3MznoTp5EkAgOnESZyb8SQ72xMReZhCqUTLjvFyp0HkcXUq5leuXAlBqNssXMV58WfOnMHZs2fr9Fxdx3KladOmUmwymdx6pry8vNp31EWTJk2crm+99dZanxk8eLBUzH/99de13q9Wq93ePhAsdEYLbnv7KxgsNoSrlHh01V588thgudMKLBNXA2sn3YiDkFalZQd7IiIiH1deVgq7zYYrZ08jun0HjPnrS3Kn5LfsRit+zXasuG6RkgiFxqO91Kke6rXMXhRFtz+CIEgfd5/1pMpnu1few16TyqsCtFptjbPpNal6PJ87M+bx8Te+Nbx48aLTNgFyz7TsfTBYbAAAg9mGExfr1/OAqmG87lzIB+GxdESe0m7RQqgTEgAA6q4JaLdoocwZEREFlk3vvinNzCsUSoRFNKn9IXKpopCvGpN86vx1ikKhcDpP3lvOnj3rkcI+MTFRis+fP+/WM5WP1av8fF116NDB6brykv/qVJ3Nv3btmlvP0Q1Wu+NLIbsIKBUCurbib9oeVVHIV8RTNsuXC1EAEEJCENajB9otWghllS+BicizTAYLcpccBgAkP5YEdTi34QU6u92GK2dOAwCi23eo5W6qjt1ohfl8KQAgtHUEBAV7JvmCOhfzMTExOHXqlDdycRIbG4vLly83+D1JSUlSbDKZUFRU5HSOvCsFBQUun2/I2ADcmmWvuhWganFPbhBFRKiUMFjsCA9V4qMpA+XOiIjIpbPTp8N04qQUd/z3v2XOiCiwfb74EH49XybFY//ST+aMyOt4LJ1H/Jp9FKGtImC5VAbLxTLEPsc/X/sCj3ez9zUDBw5EVFSUdF2xH706oig63TNixIh6j111j7w7KwMqf4HRpEmT3y3Vp9qFKBXo2TYSAzpGoWdbLZvfeVrlPfJBul+eyFMqCvmqMRF5R0UhXzWmwFWxxL5lx3golOxk3xCCUoCqTROo2jThfnkf4bPFvKf2zoeGhmL06NHS9fbt22u8/8CBA9Le+oiICCQnJ9d77Pbt2+OWW26Rrvfv31/rMwcPHpTi22+/vd5jB7N3xt+Eo+f1OHpej3fG3yR3OoGnXHfjjPlyz5w6QRSMbHo9RLsd9pIS2A0GqOI7yZ0SUUA7//M1mI1WmI1WiHYRLdrU77Qi8i/3P/uiy5jqJmp8V5jPl8J8vhRR47vKnQ79pk7F/IEDB7Bt2zZv5eLk4sWLsNlsHnnX008/DYXC8Utdu3ZtjUfUZWVlSfHjjz/e4P3q06ZNk+JPPvmkxnv1ej2+/PJL6XrSpEk13E3VeXrtQZcxeciS2wBzqeOz5Da5syHyW2f+PBVi2W8zg6IIQclZDiJvMRks2PDuAenaYrLh3if4hX8wCItoggkvz8WEl+ey+V0DXPv4hDQrf+3jE3KnQ7+pUzF/0003NaghnFx69+6NtLQ0AMClS5eQmZnp8r6CggIsXboUABAdHY2MjAyX91ksFqSkpKBp06bo06cPDh06VO3Yqamp6NOnDwDHEv+PP/642nvfeOMNaV993759MXHixNp/cfQ7lbvXs5O9F1jKXMdEVCflP/5448JuhxDCYp7IWyqa3lXG5ndE5O98dpm9py1YsAB9+/YFAMyZMwcrVqxw+vnJkyeRnJyM8vJyqFQqrF+/3mmvfWXZ2dlYvXo1SktLcfDgQcyYMaPacRUKBdauXYuWLVsCANLT05GTk+N0j81mw9tvv4133nkHANCqVSt8+umn0moCqpvK3evZyd4LYvu6jonIbTa9Hqi8nUyp5LF0RF7Wom2EFD/wbB8ZMyHyPy1SEl3GJC9B9PTB7tUoLy/Hvn37cO7cOVy7dg2CICAqKgrt2rVDv379EBYW5vUciouLkZqaitzcXABA9+7dkZSUhOLiYuzatQtWqxWxsbHIysrCXXfdVe17li9fjkcffVS6vv322/H111/XOPaRI0cwadIkaU98t27dcNNNN8FsNmPPnj24dOkSAGDIkCH473//69aZ9K7o9XpERkZCp9MFbfM8ndGCadn7AABLU/qzAZ6n8Zx5ogY7PTkV9vJylB85AgDo/H9fQFXLSStEVH88ko6I/Im7NZ1Xi3lRFPHJJ5/ggw8+wHfffQer1eryvpCQEAwdOhTTp0/H2LFjIQjePbfws88+w8qVK7F//35cuHABWq0WnTt3xrhx45CWlobmzZvX+LzFYkFaWhpycnKQkJCAVatWoXfv3rWOa7VasXbtWqxbtw4//PADLl68CJVKhdatW2PIkCGYOHFig7rnAyzmiYj8wenJqU7XHbJWyZQJUXBgMU9E/kT2Yv7IkSNIS0uTjnmrbZiKAn7AgAFYsWIFevTo4Y20Al6wF/NHL+hw38LvAACfPTkEibGRMmdERPR75qIinBrzAACgU84GzsoTeVlOpvOJQmNmc5tYsCgvK8Wmd98E4OhmzyZ45A/crem8sil7165dGDx4MPLz86UivqbZ9oqfiaKIvLw83Hrrrfjuu++8kRoFuIpCvmpM5Gl6sx7pX6Qj/Yt06M16udMhP3Mh4wWE9eiBsB49cCHjBbnTISIKWDnzXsPlwgJcLixAzrzX5E7Hb9mNVhQvO4TiZYdgN7pebU2Nz+Otc8+cOYN7770XJSUlTkV6s2bN0K1bN7Ru3RoREREQRRFlZWW4cOECTpw4AZ3OcV61IAgoKSnByJEj8eOPP9Z77zgFH53RApv9xgoQpcK72zUouM3aMcspXn7PcvmSISKiGiU/luS0zJ6CQ3lZKc6fOA4ACA0Lw5Uzp2XOyH/9mn3UKY6ZWvsWY/I+jxfzTz31lFTIR0REYPr06Xj44Ydx0001n+V54MABrF69GsuWLUNZWRlKS0sxa9YsfPrpp55OkQLUtOx9iAgVUGZxFPQ9YrmMioh8U7tFC3FuxpNSTETeZTJaUXy2VIq5Zz445Mx7zbFKWBRhKS9Hm4TucqdE5FEeXWZ/+fJlbN68GYIgIDExEYcOHcLf//73Wgt5AOjTpw/+8Y9/4IcffkCPHj0giiI2bdqEy5cvezJFCnBKpRLasBBow0LQRM3/UJP3zB8232VM5A5bSQnKjx1D+bFjsJWUyJ0OUUAzGSxYPed7WEw2QBSx9o29cqdEjeTKmdNQhWkg/Hbc85jnXpI5I//Fo+l8k0eL+Z07d8JmsyEsLAwbN25Ex44d6/yO+Ph45OTkICwsDHa7HTt37vRkihTA3hl/k2P7htmGzi2bYGlKf7lTogCmVWmx/J7lWH7PcmhVwddskurPXFSEX4bfBXtJCWC3S43wiMg7vlx+RIotZruMmVBja962HSymcgBA684JbH7XAApNCGKm9kbM1N5QaDy+uJvqyaPF/Llz5wAAo0ePRnx8fL3fk5CQgNGjRwMAioqKPJIbBb6/fPwDeraNxICOUVCHKHi+PBH5pFOjx0ixvaxMvkSIgkjL9jeKuIl/GyBjJtSYFAolVGEaqMI0UCiUcqdD5HEeLeYrGt7dfPPNDX5X3748MoTqxmoXcfS8HkfP62G1e+XERSKiBrMbjUClE1465WyQMRuiwHf7w91w7ZIRoWolJr1+K7QtNHKnRI1EoVSiZcd4tOwYD4WSxTwFHo8W823atAEAhIY2fEY0JMSxfCM2NrbB76IgIYquYyIiHxLWsyegUABKJcJ69+YZ80Re9s1/fkJMXBPExDXBV6uOyZ0ONaL7n33RZUwUKDy64aFfv34AgOPHjzf4XRXv4Aw9uUNntODEJUeX2q6tmyKEx9KRF+nNeulouvnD5nPPPNVJ+399yE72RI3oytlSGEosCFUp0KIt90wHk7CIJpjw8ly50yDyGo/OzHfp0gW33HILNmzYAL1eX+/36PV6rF+/Hn369EHXrl1d3vPggw9i+PDh9R6DAsu07H3o2srxH+gTF0vY/I68quoZ80RE5Lsq1uo5mt9x5R4RBQ6PFvMAsHDhQuj1ekyZMgVWq7XOz9tsNqSlpUGn02HBggXV3rd79252uicnIUoFEttokdhGy+Z35FVWuxXHrx7H8avHYbXX/fc5Cm4Vs/JVYyLyDkEQEKpWIlSthELp8T/6EhHJxuO/o/Xv3x+rV6/Gl19+iUGDBuHLL7+E6Ob+5W3btmHQoEHIzc3Fv/71LwwePNjT6VGAqjwTz1l5IvJV5qIiGPLzYcjPh91kkjsdoqDQPNbR8K5FmwgkP5YkczZERJ7j8UMCX3vtNQDAfffdhzVr1mDEiBGIjo5G//790aVLF2i1WqlBnsVigV6vxy+//IJ9+/ahuLhYerawsFB6lyulpaWeTp2IyC0hihB0b95d7jTID50aPcbRoNNuR/mPP6Lrnt1yp0QU8BRKBWLimiD5sSSow7lyL1iUl5Vi07tvAnA0v+MZ8xSIBNHdaXM3KRQK6Yi6yq8WhJobktXl3or7BUGAzWarZ6aBSa/XIzIyEjqdDlpt8DTlemjZHqfrNVMHyZQJBQM2wKP6Otazl9N1jyM/ypQJUfDYvOggrGY7AGDMbDZWDhb/+dszuPjLSQBA684JePiNf8icEZH73K3pvLpxSBAE6ePJe4mq4hnzROQPwnr2dBkTEZHnlJeV4sLJnyDa7RDtdqmoJwo0XivmRVH06ofICc+Yp0bEbvZUX+3/9SHC+/VDeL9+aP+vD+VOhygoXCjQ4/zPOtw2IUHuVKiRVCyvr8DagQKVV4r5Vq1awW63e/XTqlUrb6RO/qryig6u7iAiH6XUatEhaxU6ZK2CMoi2QhHJKVTl6GS/4R8H5E6FGlFomEaKYzu7Puqa3Gc3WlG87BCKlx2C3ciTfHwFz+cgv6czWvDTBT3KzDbH6bH89pW87PUhr0tH070+5HW50yEiIqJK7n/2RbTs0Anq8Ai07Z6IsS+8KndKfu/X7KMuY5KXx7vZNxYul6EK07L3QRAERKiUABznzRN505zv5kjd7Od8NwfL71kuc0bkD8xFRTg15gEAQKecDVC1bStzRkSBzWSwQB0eCovZBogiJs4ZKHdK1EjCIprgodfmyZ0Gkdd5vJhfsWIFNBpN7Tc20IIFC2A0Gr0+DvmHrq2a4MQlx3GFPGeeiHzRqftHw15WJsXd8vfJnBFRYPty+RGMmnEzYuO1sJrt0Lbw/p9PiQKR9Vo5TEUlgMUOVbumiE7rVftD1Cg8XsynpqZ6+pUuTZgwoVHGId/3zvibcO/73wIAPn9qKCI1PEOWvGv+sPlOR9MR1cam10uFPACnmIiIyJdden+/48QxlRKWywYoNH67uDvg8P8J8nsz/3sAZWabFG94fIjMGVGg06q0XFpPdXJ2+nTnvxARIU8iREHkj+k3jn9MfixJxkyIiLyj0Yp5o9GIPXv24PTp0/j1118hCAJatGiBDh06YNCgQQgLC2usVCjAHDqncxkTEfkK04mTjgL+txn5zps2ypwRUeBThztW6o2acbO8iRD5uVZP9cWl9/dLMfkOrxfzO3bswLx58/DVV1/BanV9jEFoaCjuuusu/OUvf8Edd9zh7ZQogOiMFoiiCLsIKBUCwkPZ/I68S2/WOy2x16p4vBjVTp2QANPJk0DTplAnJLD5HRER+Y2QqDC0fWWw3GmQC16rfEpLSzFhwgTcdddd+L//+z9YLI6iy9XHbDYjNzcXf/jDH/DQQw+hpKTEW2lRgJmWvQ+922mhVDjOlt8y63aZM6JAV1HIV42JatLmnXkuYyIiIqL68koxf/36dQwaNAiffvqpdIScIAjV3l/xM1EU8fHHH2PIkCHQ6bhcmmpntYsoKDYgQqVEn/bNEBcVLndKRES/c/6vf3UZExGR5+mKL2FR2kQsSpsIXfEludMh8hqvLLN/4IEHcOTIEacivVWrVkhMTERsbCyaNGkCURRRVlaGoqIiHD9+HJcu3fgX7ciRIxg7diy2b9/ujfQoQOiMFhw/r0ep2QalQoDVZpc7JQoC7GRPdWUuKoIx37HXUBER4dg/T0ReV3HO/OZFB/HH9J7SHnoKfNl/nekUz1ixVsZsiLzH48X8v//9b3z99dcQBAFhYWF44oknkJqaip49e9b43I8//ohVq1bhgw8+gMFgwM6dO/Gf//wHDz/8sKdTpAAxLXsfjFa7tMS+oJhHPZH3sZM91dWpMQ8ACgVgt8NeVgZNXzYPImoMFefMA0DuksMYM5v/7hFRYPH4Mvu33noLANC5c2ccPHgQ8+bNq7WQB4BevXrhnXfewf79+9G5c2eIoii9y9M2b96M8ePHIz4+HhqNBq1bt8bgwYPx3nvv4erVqx4fTxCEOn26d+/u8RwCVeWGd11bNZExEwoWerMe6V+kI/2LdOjNernTIX/w23YzAIBSibglH8iXCxFREEiZt8BlTBRoBFGs/KeMhiksLER8fDxUKhX27duHXr161es9hw8fRv/+/WG1WvHLL7+gY8eOHsnvypUrSE1NxZYtWwAA3bp1Q1JSEoqLi7Fr1y7YbDbExsYiOzsbw4cP98iYQM39Alzp1q0bjh8/Xq+x9Ho9IiMjodPpoNUGdpdtndGCR1fm4cSlUnRt3RQfpQ5ApIZL6Mi70r9Id7rmLD3VpmDcOJh+PAIAUPfqifhPPpE5I6LgwGX2ROSv3K3pPLrM/n//+x8AYMSIEfUu5AEgKSkJI0aMwObNm/G///3PI8W8wWDAiBEjkJ+fD6VSiWXLliE9/cYfyk+ePIlRo0bhxIkTGDlyJLZt24ahQ4c2eNwKGo0G7du3d+ve+Ph4j40byCI1ofhk+hC50yAiqpHl9BkomjaVYiIiIn9iN1rxa/ZRAECLlEQoNF4/3Zzc5NFl9hVN7AYOHNjgd91yyy1O72yomTNnIj8/HwDw+uuvOxXyAJCQkIDc3FyEhYXBbDZj7NixuH79ukfGBhx/T44fP+7Wp2LlAJHPuXYaeLu943PttNzZyKJy0zs2wKPa2PR6iKIIu8EAiCLUCQlyp0QUNL5cfkSKc5ccljETIv9WUchXjUl+Hi3mjUYjBEFAkyYN37tc0fHeaDQ2+F2HDx/GihUrAACtWrXCM8884/K++Ph4TJs2DYBjSf7cuXMbPDZRQFk61HUcRCoa4C2/Zzm0qsDeykINd27Gkwjr2hWK8HBAELhfnqgR2W2OnaRXzpVJMQWH8rJSrHs1A+tezUB5Wanc6RB5jUeL+ejoaIiiiNOnGz5jd/r0aQiCgOjo6Aa/KzMzE3a749iyiRMnQqVSVXvv5MmTpXjx4sUe+TKBvENntOChZXvw0LI90BktcqdDROSSEBKCsB49ENajB5QB3suEyLeI1cQU6Da9+6bLmOqnRUqiy5jk59FivlOnTgCAjRs3oiF99Ww2GzZs2OD0zvqyWCzYuHGjdF1bY7s+ffqgWbNmAICysjLk5uY2aHzynmnZ+1zG5EXTvnUdE5FL7RYtdBkTkXeZDBZcveCYkGkeGw6F0uMHOJGPKi8rxeXCAlwuLIDdbpM7Hb/H/fK+zaO/sw0ZMgTh4eE4deoUXn311Xq/56WXXkJhYSHCw8Nx2223NSinvLw8XLt2Tbru169fjfcLguB0z9atWxs0PlFAieoAPH/G8YnqIHc2RD5PqdWiQ9YqdMhaxVl5okaUu+QwmsdqAABXLxiQ/FiSzBlRY1k/92WYjAaYDGUoPn0K9z/7otwp+TXul/dtHv1qRa1W48EHH0R2djZef/11FBcX44033kBUVJRbz//666/IyMjAv/71LwiCgPHjx9e4JN4dhw/faHiiVqvRtm3bWp+pvBqg8vMNZbfbsWvXLuzevRtnz56F1WpF8+bNkZCQgGHDhjV4FUKweWf8Tbj3fcfs8OdPBef+bWp8erMes3bMAuBogMd980REvqliNj66XQSPpQsC5WWlWPdKBorPnAIACAoFLCYTwiIa3suLyFd59Jx5wLHXvXv37jCbzQAcjexGjhyJ4cOHo0ePHmjTpg0iIiIgiiJKS0tx/vx5HDt2DNu2bUNubi4MBgNEUYRGo8Hx48cRFxfXoHxmzpyJhQsdSxs7deqEgoKCWp955ZVXpJUFWq0WOp2uQTkIgoAOHTpIv6bqJCcn4+9//zuSkur/7XEwnTP/0LI9Ttdrpg6SKZMgYrwOrJ3kiCeuBjTN5MxGFjxnnurCptfj3IwnATiW2XN2nqhxmAwWfLn8CEbNuFk6b54C27pXM3D2qPMknEoTjidXrpMpo8DAZfbykOWceQDo0KEDPvzwQ0yePBmCIKCkpATr1q3DunW1/4tU8b2CQqHARx991OBCHgCKi4uluGIvfG0q36fX62GxWBAa2rD/CJw+fRoRERF46aWXMH78eMTHx8Nms+HIkSP48MMPsWLFCuTm5mLnzp3IysrCuHHjGjReoNMZLThSpIfBYkO4SolurZvKnVLgu3gYWPLbtpc2fRxF/ZTN8ubUyPRmPY5fdXwh16VZF4Qo+B80qp65qAi/3H0PYLNBERGBs9Ono+O//y13WkQB78q5Eqx9Yy9Cw5QAAFO5lcV8ELBazL/7a5PfYa+ShrKXW2E+XyrFLOZ9i1e6gUyaNAmLFy9GSEgIBEEA4CjUa/pUUKlU+OCDD/DQQw95JJeSkhIpVqvVbj0TFhZW7Tvqq02bNjhw4ABeffVV9OrVC+Hh4WjatCluvfVWfPTRR1i1ahUAx/F+jzzyCL7//nu33msymaDX650+wcDR8M7xz43BbAM8u8CEXFl2x434/AH58pDRrB2z0KVZFwDAz9d/5jnzVKNTo8cANkfzJXtZGUwnTsqbEFGQWPfWXqfr9fP2y5QJNaZfz511up746t8RGdNKpmwCx6X397uMyTd4rbXn9OnT8e233+KWW25xKtYFQXD6VBBFEUOGDMF3332HP//5zx7Lo/LRcu7uv696n8FgaFAOhw8fxg8//ICEhIRq70lJScHDDz8MADCbzXjiiSfcevfcuXMRGRkpfTyxmsFfCIKACJUSESolQtiltnEIlf4+T1wtXx4yClGEoHvz7ujevDv3y1ON7FWONlXX8N8AIvIc0S53BiQHQRCgDo+QPu2695Q7JSKv82oFNHDgQOzevRu7du3Cc889h0GDBiE2NhZqtRpqtRpt2rTB4MGD8fzzz2PPnj349ttva+02X1cajUaKK/bx16bqfeHh4Q3KoVevXoiOjq71vpkzZ0rx/v378e23tR/9lZGRAZ1OJ33Onj1b6zOB4J3xN0EURZSZbejcsgmWpvSXO6XAN/VrQBAAhRJ4bFdQ7pevPBPPWXmqTVjPnoDC8Z9ZRUQE4pZ8IHNGRMEhJs654dnYv/aVKRNqTCnzFriMqWFaPdXXZUy+oVE2PQwePBiDBw9ujKF+p2nTG3upTSaTW8+Ul5dX+w5vGjBgACIiIlBWVgYA+PLLLzF0aM1d2iu+GAk2T689KM3MKxUCIjXcC+d1rZOAl67KnYWstCotG96RW2wVW54EAYomTdBpYw6b3xE1ktFP90HuksMIUTm+TNM219TyBAUCdXgEWnaMl2LyjJCoMLR9RZ46jmoX8GuTY2JipPj69etuPVO5e71Wq21w8zt3KRQKdO7cWbo+ceJEo4zrj366WIIysw1lZht+utjwngZERJ50bsaTMJ86BUV4OCAIuJDxgtwpEQUNdXgoxszui1EzbpY7FWpEm95902VMFMgCvh1hYmKiFJ8/f96tZ4qKilw+3xgqrwK4ejW4Z0Grc/aaASXlVgCAUhDY/I6IiIgoiJWXleJyoeP46ej2HaBQKGXOiKhx+OzMfGxsLEJCGv5dQ+Uz200mk1OhXp3KZ9E35Mz3+qi8xD8igkuEXBn5/o1eAjZR5LF0RORz2i1aKDW8U3dNQLtFPB6JqDHofzXiw6e/wYdPfwP9VWPtD1BA2PTum4iO6wAAuHLmNO5/9kWZMyJqHD5bzANw6oJfXwMHDkRUVJR0nZ+fX+uYle8ZMWJEvcfW6XR44403pGPn3FF59UCbNm3qPXagqjwrX+GjKQNlyoaIqHpCSAjCevRA3AcfcL88USNZ+8aNY+l4JF1wUSiVaNkxHi07xiMsokntDxAFAJ8u5j0hNDQUo0ePlq63b99e4/0HDhyQ9tZHREQgOTm53mNfu3YNc+bMwbx589y6/9y5c7hw4YJ0XVvzu2B07/vfQqh0fXOcls3viMjnnJ0+HeXHjqH82DGcnT5d7nSIiAJa5Zl4zspTMPHannmz2YxNmzZhx44dOHLkCK5evYqysjK3Z9uLi4s9lsvTTz+NrKws2O12rF27Fu+88061Z85nZWVJ8eOPP+50tF19HT9+HJcvX0bLli1rvK/y2M2aNWvQFwmBrIlaCYPFcYjsqvRbZc6GiOj3TCdOuoyJyLsm/m2ANDvPI+mCR1hEE0x4ea7caRA1Oq8U85999hmmT5/uNMsMuL9sXhAEiKIIQRBqv9kNvXv3RlpaGj766CNcunQJmZmZeP755393X0FBAZYuXQoAiI6ORkZGhsv3WSwWpKenIycnB126dMGqVavQu3fvase32+14+eWX8cEH1Z8xXFBQgLffflu6fv755xEZGenuLzFo/GtKf0xY8j0AYN1jt3JWnoh8kiq+E8p/PAIACOvVU+ZsiIKHtoUGf37vdrnTICJqFB5fZr9p0yY8+OCDOH/+vFS8i6JYp/3vntgrX9WCBQvQt6/jG9o5c+ZgxYoVTj8/efIkkpOTUV5eDpVKhfXr1zvtta8sOzsbq1evRmlpKQ4ePIgZM2bUOv6SJUswY8YMlx3qv/rqK9x5550oKXEcsTZu3Dj89a9/resvMSj8aeU+aMNCoA0LwZ9W7pM7neBhvA58NAJ4uz2w/B7HNRFVS1CGQBEeDkV4OARlwB8cQ+QzTAYLcjL3IydzP0wGi9zpEPk9u9GK4mWHULzsEOxGa+0PUKPy6J8wrFYrZsyYAavVKs2ui6KIHj16oHPnzoiMjHS7Q/3atWthMpk8llt4eDi2bt2K1NRU5ObmIj09HfPmzUNSUhKKi4uxa9cuWK1WxMbGIisrq0771atbQRATE4Np06bhP//5D0pKSrB48WJ89NFHGDhwINq2bYvy8nIcOnQIv/zyCwBArVbj+eefx0svveSxVQlEHrF2ElB81BFfPua4nrJZ3pyIfFhF8zsialy5Sw5L8ZfLj/CseaIG+jX7qFMcM7X61cjU+DxazO/atQvnzp2TCtFx48bhH//4B+Li4ur8rq1bt+Ly5cueTA8xMTHYsmULPvvsM6xcuRL79+/Hpk2boNVq0b9/f4wbNw5paWlo3rx5je9JSUnBV199hZycHCQkJGDhQtdHDkVERGDJkiXIzMzEtm3b8MUXX+DAgQM4fvw4vv/+eyiVSjRv3hx333037rzzTqSlpaF169Ye/TUHkqMXdCgpt0IEEKFWYussLqMjIt9j0+shWq0wnTwJddcExNWwxYqIiIiovgTRg2vaFy9ejCeffBKCIKBv377Yu3dv7Q9VIzY2FpcvX4bNZvNUekFBr9cjMjISOp0O2gA7CqnzC1tgszv+cVUqBPzy1kiZMwoixuvAfx5yzM637AH8v7WAppncWRH5pNOTU52uO2S5fzwpETWMyWCRZueTH0uCOpy9dYgawm60SrPzLVISodBw61hjcLem8+j/G3q9XoonTpzYoHdNmDDB6X1EFYV81ZgagaYZ8OhWubMgIiKqkTo8FGNms4s9kacoNCFcWu/DPFrMVz56raHLxd9///2GpkMBplfbpvixqESKiYh8Uezct3BqzAMAgE45G2TOhoiIiAKVR7vZ33nnnVJ88eJFT76aCP/+0yDcGt8ct8Y3x7//NEjudIiIXDpf6TSS8zyZhKhRsZs9EQUTjxbznTt3xgMPPABRFLFhQ8NmIx588EEMHz7cQ5mRv9MZLZiW7TiKbmlKf54vT0Q+y3TipMuYiLyvajd7IqJA5vFz5pcuXYr4+Hh8//33mDt3br3fs3v3buzcudNziZHf0hktGPL2dnxfcBV7C69hyoo8uVMiIqqWOiHBZUxERETkSR4v5qOjo/Hdd9/hjjvuwIsvvoj77rsPO3bsYFd6qrdHV+1Fqcnxz4/NLuLQOZ3MGRERVS9uyQcI69EDYT16IG4Jj6UjakzJjyVJ8R/Te8qYCRGR93n0aLqq/vKXv+Af//gHBEGASqVCfHw8oqKioFKpan32u+++g9Vq5ZcAdRSIR9P1fuUL6Mut0nVTtRKHXx0hY0ZByHgdWDvJEU9czWPpiIiIiIi8RJaj6SocO3YM6enpyMtzLIcWRREmkwnHjh2DIAhuvUMURbfvpcDWtVUTHL+gR6nZDqUgYMus2+VOKfhUFPIV8ZTN8uVCREREVEl5WSk2vfsmAOD+Z19EWEQTmTMiahweX2Z/7Ngx3HbbbcjLy5MK8ooP4CjS3fkQVfhoykD0atcMt8Y3x/6X/oi4qHC5UyIicsmm1+P05FScnpwKm14vdzpEREEhZ95ruFxYgMuFBciZ95rc6RA1Go/PzP/pT3/CtWvXnIr3pk2bIj4+Hk2bNoVSqXTrPbt374bVaq39Rgp4kZpQrJnKo+hkNXG18zJ7InLp7PTpUgf7s9Ono+O//y1zRkREge/KmdMuY6JA59Fi/vDhw9izZ49UyA8aNAjz5s3D4MGD67xkPjY2FpcvX/ZkeuSneCwdEfkL008nYDcapZiIiLwvOq4Drpw9LcXkGXajFb9mHwUAtEhJhELjlR3a1AAeXWa/Z88eKe7cuTO++uorDBkyhHvfqd50Rgtue/sr7C28hiPn9Xh01V65UwpOVffME5FLoigCNhtgs3HLGBFRIxnz3Eto2TEeLTvGY8xzL8mdTsCoKOSrxuQ7PPr1ypUrV6R48uTJUKvV9X5Xu3btEBYW5om0yI89umovSkyO7RYGsw0nLpbInBERkWs2vR7ib7PyUCoBfpFNROR1bH5HwcyjM/NRUVFS3LFjxwa9a+/evTh16lQDMyJ/91Ol4t1mF9G1FX+DlkXlffLcM0/k0tnp052uw7p2lSkTouBkMliQk7kfOZn7YTJY5E6HGgmb33lPi5RElzH5Do/OzN9++40jw3Q6nSdfTcFKFKEQALsIKAVHZ3uSgaYZj6MjqoXpxEkI4eHS7Hzckg9kzogouHy28AdcPl0ixeOe6y9zRtQY2PzOexSaEMRM7S13GlQDj87M9+zZEyNHjoQoiti+fXuD3pWZmYnXXuO3a8GuW+umaKIOgTYsBH3aN2PzOyLyWeqEBAiCAEV4ODQ33QSlVit3SkRBpaKQrxpTYKvc8I7N7yjYCKKHO/RcuXIFf/jDH3D06FFs2bIFd999d73eU9HN3mazeTK9gKfX6xEZGQmdTgdtAPxBkp3sichf2PR6nJvxJACg3aKFLOaJGtmyWV/DarYDAEJUCkydf4fMGVFj4J55CkTu1nQeL+YB4Ndff0VaWhq2bduGV155BY8//jiaNKnbv1gs5usn0Ip58hHG687nzGuayZkNERHR7+h/NWLtG45Tbyb+bQC0LTQyZ0REVD+yFfOVl8bn5uYiLy8ParUat956K3r06IGoqCioVKpa3/POO+/AYDCwmK+jQCvmOTPvI1aOcr7m/nmi3+HMPBEREXmCbMW8QqFwOle+4vV1PWteFEUIgsBivo4CqZjXGS0Y+vevAABdWzdFiELAmqmDZM4qSLGYJ6pV4SOPwHTiJABA3TUBHf/9b5kzIiIiqj+70SqdL98iJREKjUd7p1MN3K3pPNoAr7LKRXxdC3kiANKMPACeLy83Hk0HANCb9Uj/Ih3pX6RDb9bLnQ75mIpCvmpMRETkjyoK+aox+Q6vFfOAo6Cv74fIanf8s1BmtkGEY5k9yaTiaLopm4N6v/ysHbNcxkQ2vR6iKMJuMACiCHVCgtwpERERNYhoF2E+Xwrz+VKIdtZnvshrxfyaNWtgt9vr/WnVqpW3UiM/YbLaUGKywWYX0TE6nPvlichnnZvxJMK6doUiPBwQBJ4xT0RE/k+sJiaf4dWZeaKGOHq+BEqFAKVCwNHzXGZP8ps/bL7LmEi0WWE6eWO/PJvfERGR3xOqicln+GwXAy61p/BQBQwWuxQTyU2r0mL5PcvlToN8EWcviIgo0PC/bT7P48X8hg0bAAADBgxo0Hv27dvHTvZBbsus23Hv+98CAD5/aqjM2RARVU8ICUFYjx5yp0FEROQxglKAqk0TudOgGnj8aDqSVyAdTUdE5A9sej3O/OnPKD9yBAqNBp025kDVtq3caRERETUIj6aTj2znzJO8AqWYP3vN4DQrHxcVLnNGRESunZ6civJjx6TrsB490CFrlYwZERERkT+T/Zx5V0wmE06dOoV9+/YhPz8fhYWFMJlMjZkC+YmKQr5qTCQnnjNPRERERL7C68W8Xq/H3//+d9x2222IjIxEly5dcMstt2DgwIHo3LkzIiMjMXToULz77rvQ6xvnD8ebN2/G+PHjER8fD41Gg9atW2Pw4MF47733cPXq1UbJocJDDz0EQRAgCAI6duzYqGP7qrPXDNCXW6Evt6LMZGO/DbkZrwMrRzk+xutyZyMbvVmPez65B/sv7cexX49hxvYZcqdEMrPp9fhlzAMw5OXBXlICe0kJQtu1Q7tFC+VOjYgoKJSXleI/Lz6DzP93PxamTYCu+JLcKQUMu9GK4mWHULzsEOxGq9zpUDW8Wsz/85//RPv27fHCCy9gz549MJvNEEXR6WM2m7F7924899xzaN++PT74wHtn8165cgX33nsv7rvvPnzyySdQqVQYNWoUunfvjry8PMyePRu9evXC9u3bvZZDZbm5uVi7dm2jjOVPkuffmIm3iSI6x3CJvazWTnIdB5lZO2bBaDUCAIxWI36+/rPMGZHczs14Eubjx53+munECR5LR0TUSDa9+yYuFjiOBbWUlyP7rzNlzihwVOyVrxqTb/FKMS+KIiZPnownn3wSer1eOmauYga66qeCXq/HjBkzkJqa6vGcDAYDRowYgS1btkCpVOKjjz7C8ePH8fHHH2Pnzp04duwYunbtigsXLmDkyJH49lvvLu02GAx4/PHHvTqGP9IZLSg1OX/7FxbKZhvkGzQhGinu0qyLjJmQLxBtnKkgIpKT3W6DaLdDtNvlToVIFl4p5p955hmsXr3a6a+JooiQkBDExsYiISEBXbp0QWxsLJRKpTRLLwgCRFHE6tWr8eyzz3o0p5kzZyI/Px8A8PrrryM9Pd3p5wkJCcjNzUVYWBjMZjPGjh2L69evezSHyl5++WUUFhZCrVZ7bQx/NC17H4RK10oBWJrSX7Z8CMDoxcDFQ47P6MVyZyOb+cPmIyEqAeGh4egd0xuLhi+SOyWSmwhAc+MLHigU6Lj+U9nSIQp2JoMFOZn7kZO5HyaDRe50qDGIQGjYjd+HU+YtkDGZwBI1vivM50thPl+KqPFd5U6HquHxbvZ79uzBkCFDpMJ8wIABmDx5Mu666y506dIFSqXS6X6r1Yqff/4Z27ZtQ1ZWFvbt2+dITBCwe/du3HLLLQ3O6fDhw7j55ptht9vRqlUrnDlzBiqVyuW9s2bNwvvvvw8A+Otf/4q///3vDR6/qh9++AH9+/eHUqnEM888g7feegsA0KFDBxQWFjbo3f7ezf6hZXtQbrHicFEJAGDnX+5kJ3u5rRzlfD1lszx5EPmY05OdV5Gxgz2RvHIy9ztdj5ndV6ZMqLGsezXD6XrCy3NlyiTwFC875HQdM7W3TJkEJ9m62c+ZMwcAoNFokJ2djf/973944okn0K1bt98V8gAQEhKC7t27Y8aMGcjLy0NWVhY0v810VLyroTIzM2H/bfnNxIkTqy3kAWDy5MlSvHjxYhiNRo/kUMFut2Pq1KmwWq144YUXkJCQ4NH3+7uX7kuUCvnPnhzCQp6IfFblRndsekdE1PjunDIV544fwbnjR3DnlKlypxNQRLsozcyLdraj9lUeLeavXbuGnTt3QhAEZGdn45FHHqnzOyZNmoSsrCyIoogdO3Y0eKm7xWLBxo0bpevhw4fXeH+fPn3QrFkzAEBZWRlyc3MbNH5VixcvRl5eHrp164bnn3/eo+8OBBOXfu8yJhlNXO06JgpySq0WHbJWoUPWKja9I5KZ/lcjLp8pwfmfdbBa7Eh+LEnulMjLystKsfr5pwAAoWFhWPcK/1ztUWI1MfkUjxbz3377Lex2OwYOHIgHHnig3u958MEHMXDgQNjtdnzzzTcNyikvLw/Xrl2Trvv161fj/YIgON2zdevWBo1f2blz5/Diiy8CAJYuXVrjCoFgZTDbXMZERL7Gptfj9ORUnJ6cClsjHa1KRK6tfWMvBEFAqFqJaxcNUIeHyp0SeVnOvNek5neW8nK50wk4glKAqk0TqNo0gaAUan+AZOHRYr6oqAgAcPfddzf4Xffcc4/TO+vr8OHDUqxWq9G2bdtan+nUqZPL5xvqySefRElJCaZMmYI77rjDY+8NJEltm7qMSUY8mo7IpXMznnQZExGR9105c1pqfifa7Wx+52EtUhJdxuRbPFrMX79+HYIgIDo6usHvio6OhiiKDV5mf/TojXMR27Rp49YzlQv+ys83xMaNG5GTk4MWLVrgnXfe8cg7A43OaEGIQoEIlRJ92jfDqvRb5U6JiMglm16P8mPHUH7sGI+oI/IBDzzTBxaTDRaTDQ8800fudKgRRMd1gEKhgDo8Am27JSIyppXcKQUUhSYEMVN7I2Zqbyg0PCbaV3m0mG/WrBlEUcSVK1ca/K4rV65AEARp/3p9FRcXS7G776p8n16vh8XSsONNSkpKMGPGDADAu+++65EvOwLRtOx9CFEqkNhGixCFgEgNl8j5BB5NR/Q752Y8CfVvDUxNJ06yAR6RjPS/GrHuLcdpSC07NMWudSdlzogaQ/KTz7iMqeHsRiuKlx1C8bJDsBv5hbUv82gxXzGjvW3btga/64svvnB6Z32VlJRIsbtnuoeFhVX7jvr429/+hnPnzuGOO+7AlClTGvSuqkwmE/R6vdOHyKM2PgG07u34bHxC7myIfIJos8J00lEwqLsmsAEekYzWvrFXii+fbtif2ch/fPHP+WjZMR4tO8bji3/OlzudgPJr9lGXMfkejxbzQ4cOhUKhwPfff49NmzbV+z2ffvop8vLyoFAocPvttzcop8pHy7nbcK7qfQaDod7j79u3D4sWLYJKpcKSJUvq/Z7qzJ07F5GRkdInLi7O42M0lqUp/V3GRL5Ab9Yj/Yt0pH+RDr2ZX5oFPXb5JfIpIaobf6RlJ3siChYeLeajoqJwxx13QBRFPPLII/j444/r/I7//Oc/SE1NhSAIuPPOOxu8zL7izHoAMJvNbj1T9b7w8PqddW6z2TB16lTY7XY899xz6N69e73eU5OMjAzodDrpc/bsWY+P0VgiNaFYM3UQ1kwdxCX2voRH0wEAZu2Y5TKm4CTabLAbDLAbDBBtPHmDSE4T/zZA6mQ/6fVb2ck+SNz/7IsuY2o4Nr/zHx7vZvDaa69h6NChMBgMeOihhzB//nxMnjwZw4cPR+fOnSEIzkcb2O12/Pzzz9i2bRuysrKwd+9eiKIIQRDw2muvNTifpk1vdEQ3mUxuPVNe5XiLyu+oi/nz5+PAgQNISEiQjqTzNLVa7fb2AaJ60TQDpmyWOwsin2L65ReXMRE1Pm0LDf78XsNWcpL/CYtoggkvz5U7jYBU0fyOfJ/Hi/khQ4ZgxowZWLRoEQRBwPfff4/vv/8egGP5esuWLREREQFRFFFaWori4mKnBnMVhfxTTz2FQYMGNTifmJgYKXa3M75Op5NirVaL0NC6f8N7+vRpvPzyywCADz74gAU3kZ+bP2y+NCM/f9h8WXMh+QmCAKGeq7aIyLNMBgtylziOEk5+LIkz80QUNLxyzsD777+Py5cvY926dRAEAaLo2FBoMplqXAZeMWv/yCOPIDMz0yO5JCbeWBpy/vx5t56pfLZ95efr4oknnkBZWRkmTZqE4cOH1+sdwUZntGBatqMb7dKU/lxq7wuM12+cLT9xtWOWPkhpVVosv2e53GmQj+iUswGnxjwgxUQkn4pCviIeM7uvjNkQETUej+6ZryAIAtasWYPMzEyn/eaCILj8VIiIiMCCBQuQlZXlsVySkm40QTGZTE6FenUKCgpcPl8Xn3/+OQBg9erV1f66BUFAWlqa9Mzp06d/9/NXXnmlXuP7o4pCvmpMMqoo5KvGREHMptfjQsYLCOvRA122b4OqgaeuEBEREdWHV2bmK8yaNQupqan45z//ic2bNyM/Px9Wq/NZhSEhIejfvz9Gjx6NadOmNbjhXVUDBw5EVFQUrl27BgDIz8+v8bg7URSRn58vXY8YMaJe46amprp1388//4zvvvsOgOPLjHHjxjn9/Oabb67X+P7Iahdx4qLjSJmurevXp4CIyNvOzXjSKe6QtUrGbIgo+bEkp2X2FBzKy0qx6d03ATga4IVFNJE5I6LGJ4gVa+AbgdFoRFFREa5evQoAaNGiBdq2bfu7c909LS0tDStXrgQAzJw5E++//3619+7fvx/9+vUD4Ciui4uLnTrie9rKlSul2fkOHTqgsLCwQe/T6/WIjIyETqeD1o/OPdYZLbjt7e0wWOwIVynRrVUTfDJ9iNxpEZfZE/3O6cnOX9aymCcianzrXs1wumYzPAok7tZ0XllmXx2NRoMuXbpg4MCBGDhwIDp37uz1Qh4Ann76aSgUjl/q2rVrazyirvIS/8cff9yrhTzdMC17HwRBQIRKCQFAiLJR/9Gk6lR0sp+ymYU80W/aLVroMiYiosZRXlaKy4UFuFxYALudx4NS8AqKiql3797S7PelS5eqba5XUFCApUuXAgCio6ORkZHh8j6LxYKUlBQ0bdoUffr0waFDh7yTeJDp2urG8qilKf1lzISIqHpKrRYdslahQ9YqKP1oBRQRUaDY9O6biI7rAAC4cuY0z5mnoFWnYv4Pf/gDxo8f761cnDz44IMe7QK/YMEC9O3r6G46Z84crFixwunnJ0+eRHJyMsrLy6FSqbB+/XpERUW5fFd2djZWr16N0tJSHDx4EDNmzPBYnsFqaUp/hCgVSGyjxbfP/YGd7InIZ9n0epyenIrTk1Nh0+vlToeIKCgplEq07BiPlh3juV+egladGuDt3LkTrVu39lYuTnbv3o3Lly977H3h4eHYunUrUlNTkZubi/T0dMybNw9JSUkoLi7Grl27YLVaERsbi6ysLAwdOtTtd1fuyF+b48eP4+2335auf/75Zym+cuUKpkyZIl1HR0fj3Xffdfvd/qzougF7C69JcaQmUuaMCABw7TSw9Ld/F6Z9C0R1kDcfIh9w5s9TUf7jj1Lcae0amTMiCm48Zz743P/si07N78iz7EYrfs0+CgBokZIIhcarPdOpAerUAE+hUKB169Zun9feELGxsbh8+TJsNs/vg/nss8+wcuVK7N+/HxcuXIBWq0Xnzp0xbtw4pKWloXnz5jU+b7FYkJaWhpycHCQkJGDVqlXo3bu3W2Pv3LkTw4YNc+ve+jTE89cGeJ1f2OJ0/ctbI2XKhJy83d75+vkz8uRB5EOO9ezldN3jyI8yZUJEAJCTud/pmufMEzVM8TLnLcQxU92rc8hz3K3p6vw1i81mw9mzZ+HtJvjeKOIr3Hfffbjvvvvq/XxoaChWr15dr2fvvPNOr/+98zdnrxlgszv+nigFAXB/oQMRUaMTNBqIRqMUExEREcmhzjPzdVlS3hCiKEIQBK8W9YHIH2fme7/yBWw2G8osjn8Utzx1GxJjuczeJ3CZPdHvmIuKcGrMAwCATjkboGrbVuaMiIIbl9kTeRaX2cvPazPzADizTB6nVCqhVTpiFvI+JKoDl9YTVaFq2xbd9ubJnQYR/UYdHsql9UQUlLx6NJ0gCPWayW+s2X/yDWum3Yoysw1lZhvWTLtV7nSIiIiIiIJWxax81Zh8T51n5kNDQzFo0CC37v3666+hUqncvr+y3bt3w2q11vk58j+vfXYUAzpGSfGaqXX/54WIiIiIiCiY1LmYb968OXbs2OHWvQqFok73V1bRzZ6IyBfozXrM2jELADB/2HxoVf7Rk4KIiCjQlJeVOh1Nx3PmPatFSqLTnnnyXV5dZk/kjqUp/V3GRL6kopCvGlNwMf70E4717IVjPXvB+NNPcqdDFPRMBgtyMvcjJ3M/TAaL3OlQI8mZ9xouFxbgcmEBcua9Jnc6AUehCUHM1N6Imdqbze98nM8W82yyFzwiNaFYM3UQ1kwdhEgNO9ASke8qHPugy5iI5PH54kMoPluK4rOl+HzxodofIL9XXlaK8yeOw1xuhAgRV86cljulgGM3WlG87BCKlx2C3chtz76sTl+1rFixAppGOlN3wYIFMP52ji8RkdzmD5vvtMyeiIjk9+v5MpcxBa5N776JUHUYLKZyWMrL0Sahu9wpBZyqDfBipvaWMRuqSZ2K+dTUVG/l8TsTJkxotLFIXjqjBdOy9wFwLLPn7Dz5Iq1Ki+X3LJc7DZJZx/WfSjPyHdd/KnM2RBTVKhyXz5QAAFq2bypzNtRYYtp3xJWzjhn5Mc+9JHM2RPLx2WX2FDwqCvmqMRGRr9F064YeR35EjyM/QtOtm9zpEAU9hRIIVSsRqlZCoZQ7G2oM9zw+SyrkU+YtYPM7L6jc9I4N8Hwbi3mSlc5owdHzehw9r4fVzj4JRERE5D6FUoGYuCaIiWsChZJ/rA0GuYv+4TImz2EDPP/B3/VIVtOy96FrK8c3qiculrCbPRH5NJtej9OTU3F6cipser3c6RAFvT+k9pAa4P0htYfc6VAjKD5TCHO5EeZyI4rPFMqdDpGsWMyT7EKUCiS20SKxjZb75YnIp52b8aTLmIjk8dWqY9LM/FerjsmdDjUGsZqYKAixmCdZ8Yx5IiIiInJXTPuOUIVpoArTIKZ9R7nTIZJVnYr5b775Bt9//723cnHy/fff45tvvmmUsYiIaqM365H+RTrSv0iH3szl1cGq3aKFLmMikkfyY0kuYwpcY557CS07xqNlx3h2sqegJ4ii6PYCFYVCgdjYWBQVFbl9f+vWrXH+/Pk6JxYbG4vi4mJYrdY6PxvM9Ho9IiMjodPpoNVq5U6nVg8t2+N0vWbqIJkyIapZ+hfpTtc8po6IiKhx6YovIfuvMwE4OtlHxrSSOSMi73C3pqvzMvs61P4N1phjERER1YTN74iI5FVRyFeNyXPsRiuKlx1C8bJDsBs5qerruGeeZMU98+Qv5g+b7zKm4MHmd0REFOh+zT7qMibfVOeDA3U6HdLT02u/sZ73V36OAl+kJpRL633VtdPA0qGOeNq3QFQHefORmVal5dJ6IiIiGaXMW+C0zJ4o2NV5z7wgCG6/XBTFOt3v6lmbzVav54OVv+2ZJx/2dnvn6+fPyJMHkY8w/vQTCsc+CADouP5TaLp1kzkjIqLgUl5Wik3vvgkAuP/ZFxEW0UTmjAKP3WiVZuRbpCRCoanz3C95gNf2zNdFfQt5Cg5nrxmQ9PJWdH5hCx7453fQGS1yp0SViXagXOf4iHa5syGSlbmoCIWjxwA2GxRhYTgzKUXulIiIgk5FIV81Js9RaEIQM7U3Yqb2ZiHvB+pVzIui6PUPBb7k+d+ixGSDzS7i0FkdpmXvkzslqkysJiYKQqfGPCDF9rIyGTMhIiIicqjz1y1RUVH49NNPvZGLRBRFPPjgg7h+/bpXxyH56IwWlJpudMi08Qsc36NQAGGRcmdB5DsiIoDfCvlOORtkToaITAYLcpccBuA4Y14dHipzRuRt9z/7otMye6JgV+c98/U9N76uYmNjcfnyZe6ZryN/2TOftiIPO38qliZ8lQKw/6W7Eanhf4h9BhvgEUnMRUXS7HynnA1QtW0rc0ZElJO53+l6zOy+MmVCRORZ7tZ03AhBsrDaRUSoFCg126FUCNj5lztZyPuaqA5sekf0G1Xbtui2N0/uNIiIiIgkddoz3759e8TFxXkrFyft2rVD+/bta7+R/JMoQqFQQBsWgj5xkYiLCpc7IyIiIvIjyY8luYyJqP7sRiuKlx1C8bJDsButtT9AsqrTzHxhYaGX0vi9vXv3NtpY1PhClAoktvHdbQBERJXZ9Hqcm/EkAKDdooVQ+vA2JiKiQMWj6byv4li6ijhmam8Zs6HaePVoOqLqzH+ojxQvTekvYyZEtdOb9Uj/Ih3pX6RDb9bLnQ7JoKKQrxoTkXwqmt9VjSlw8Wg67xPtIsznS2E+XwrRzgbVvi4oi/nNmzdj/PjxiI+Ph0ajQevWrTF48GC89957uHr1qsfHM5vN+OqrrzBnzhyMGDECHTp0QEREBFQqFaKjo3Hrrbdi9uzZOHjwoMfH9lWRmlCsmToIa6YO4l558nmzdsxyGRMRkXzsNhHFZ0tRfLYUdhuLDiKP4NHEfiWoivkrV67g3nvvxX333YdPPvkEKpUKo0aNQvfu3ZGXl4fZs2ejV69e2L59u8fGzMjIQKtWrTB8+HC88cYb2LFjB1q0aIERI0ZgzJgxaNu2Lf73v//hvffeQ58+fTBlyhSUl5d7bHwiImq4dosWuoyJSE6sOoJN5ePoeDSddwhKAao2TaBq0wSCUpA7HapF0HSzNxgMGDFiBPLz86FUKrFs2TKkp6dLPz958iRGjRqFEydOYOTIkdi2bRuGDh3a4HFzc3Nx/fp1AMBDDz2EefPm/a6J4MGDB/HII4/g6NGjWLVqFYqLi/H55583eGwi8oz5w+ZLM/Lzh82XNRciInJQKBWIieOe6WASFtEEE16eK3caAa1FSqK0b75FSqLM2VBt6nTOvD/705/+hI8++ggA8NZbbyEjI+N39xQUFKBnz54oLy9HdHQ0Tp48iWbNmjVo3Jtvvhk//PAD7rzzTmzbtg1KpdLlfWfOnEG3bt2kWfmcnByMHj26zuP5yznzRET+wqbX4+fhdwEA1F0TIChD0CFrlcxZEZHJYJH2yic/lgR1OLftEVFgcLemC4pl9ocPH8aKFSsAAK1atcIzzzzj8r74+HhMmzYNgGNJ/ty5nvvm79lnn622kAccx/7de++90vWmTZs8NjYREdVf5YZ3phMnZcyEiCpTh4dizOy+GDO7Lwt5IgpKQVHMZ2Zmwm63AwAmTpwIlUpV7b2TJ0+W4sWLF8NoNDZo7PHjx2PatGm44447ar03ISFBis+dO9egcYmIyHPUlX5/5p55IiIi8gUBX8xbLBZs3LhRuh4+fHiN9/fp00daWl9WVobc3NwGjf/iiy9iyZIlaNKk9j1dlRvfNXR5v6/TGS14aNkePLRsD3RGi9zpEBFVK3buWzCddMzId8rZwDPmiYiIyCcEfDGfl5eHa9euSdf9+vWr8X5BEJzu2bp1q9dyqyovL0+Ka/vSwd/NWnNAiqdl75MxE3LJeB1YOcrxMV6XOxsiWRXNfgZ2gwF2gwFFs11v0yIiIiJqbAFfzB8+fFiK1Wo12rZtW+sznTp1cvm8N+Xm5mL37t0AgK5duzot9ydqdGsnuY6DlN6sR/oX6Uj/Ih16s17udKiRlf/4o8uYiIiISE4BX8wfPXpUitu0aePWM5UL/srPe4PBYMCiRYswfvx4AEC3bt2Qm5uLsLAwr44rt/kP9ZHipSn9ZcyEqHYzts/A8avHcfzqcczYPkPudKiRCRqNy5iIiBpPeVkp1r2agXWvZqC8rFTudIh8QsCfM19cXCzF7u5Dr3yfXq+HxWJBaKhnuqTqdDo89dRTMBqNOHfuHA4ePAiDwYCkpCSkp6dj+vTpUKvVHhnLl0VqQrFm6iC506DqTFx9Y0Z+4mp5c/EBP1//2WVMgc+m10MdH4/yI0eg0GjQaWOO3CkREQWlTe++6RTzvHnvsButTufMKzQBXy76tYD/f6ekpESK3S2Sq86Kl5SUoHnz5h7Jx2g0YtUq5/OJmzVrhi5duqB58+YQRbFO7zOZTDCZTNK1Xs8lwOQBmmbAlM1yZ+EzujTrIhXxXZp1kTkbakznZjwJRVgYwn/rpaJyY6sWERGRv6oo5CvimKm9ZcyGahPwy+wrHy1X05F0lVW9z2AweCyf1q1bQxRFWK1WFBcX48svv8SoUaOQk5OD1NRU9OjRA998843b75s7dy4iIyOlT1xcnMdy9SZ2syd/smj4InRv3h3dm3fHouGL5E6HiIgo6Nz/7IsuY6JgFvDFvKbS/kaz2ezWM1XvCw8P92hOAKBUKhEdHY277roL2dnZ2LBhA5RKJQoLC/HHP/4RO3bscOs9GRkZ0Ol00ufs2bMez9Ub2M2e/IlWpcXye5Zj+T3LoVXxWLJgUvlMeZ4vT0REga5FSqLLmHxTwBfzTZs2leLKy9FrUvm896rv8JbRo0fj2WefBeD4MmHSpEm/y8MVtVoNrVbr9CEiIs9QarXokLUKHbJW8Xx5IiIZ5cx7DZcLC3C5sAA5816TO52ApdCEIGZqb8RM7c398n4g4Iv5mJgYKb5+/bpbz+h0OinWarUea35Xm5kzZ0rx+fPn8fHHHzfKuHKw2uw4el4Pq11kN3si8lnmoiL8NGAgfhowEOaiIrnTIaLfmAwW5GTuR07mfpgM3K4XDK6cOe0yJs+xG60oXnYIxcsOwW60yp0OuSHgi/nExBvLQ86fP+/WM0WV/sBW+Xlva9OmDTp27Chd79y5s9HGbmw/F984UiRS0zhflhAR1YVNr8cvd98Du8EAiCJOjXlA7pSI6De5Sw67jClwRcd1cBmT51Rtfke+L+CL+aSkJCk2mUxOhXp1CgoKXD7fGFq3bi3F7n754M9OXCyp/SYiIhmcm/GkFNsrNVMlIvnZbSKKz5ai+Gwp7La6nQRE/mnMcy+hZcd4tOwYjzHPvSR3OkQ+IeA3QgwcOBBRUVG4du0aACA/Px9tazhaSBRF5OfnS9cjRoyo99i7d+/G7t27cc8997j9pYDFcmOpmLvd9/1Z11ZN5E6BiMgl0WYFwsKAsjJAqUSnnA1yp0REErGamAJVWEQTni3vZS1SEp3OmCffF/Az86GhoRg9erR0vX379hrvP3DggLS3PiIiAsnJyfUe+//+7//wl7/8BVu3bnXrfrvdjl9++UW69pdj5uqje2stEtto8dGUgXKnQq4YrwMrRzk+xutyZyMrvVmP9C/Skf5FOvRmvdzpUGMSAYVCAUXTptDcdBPPmCfyIQqlAjFxTRAT1wQKZcD/cZaoUbD5nf8Jit/9nn76aSgUjl/q2rVrazyiLisrS4off/xxp6Pt6svdve9ffvmlU5O+e+65p8Fj+6oVaQOxZuog7pf3VWsnuY6D0Kwds1zGFPiEkBCE9eiBsB49IITwDzVEviT5sSSXMRFRMAmKYr53795IS0sDAFy6dAmZmZku7ysoKMDSpUsBANHR0cjIyHB5n8ViQUpKCpo2bYo+ffrg0KFDNY6fm5uLr7/+usZ7SktLMXv2bKecR44cWeMzRETkPTxjnsh3qcNDMWZ2X4yZ3RfqcE4MEFFwCopiHgAWLFiAvn37AgDmzJmDFStWOP385MmTSE5ORnl5OVQqFdavX4+oqCiX78rOzsbq1atRWlqKgwcPYsaMGTWOLYoi7r//fnz00UcuVwXk5+dj6NChOHrUsUclOjoa//73v6FUKuvzSyVquNGLgYuHHJ/Ri+XORlbzh813GVPg4xnzRES+QVd8CYvSJmJR2kToii/JnQ6RzxBEUQyariHFxcVITU1Fbm4uAKB79+5ISkpCcXExdu3aBavVitjYWGRlZeGuu+6q9j3Lly/Ho48+Kl3ffvvtLmfe9+zZg4yMDKefNWvWDP3790fLli1hMplw9OhRHDt2zOld//rXv5CQkFCvX6Ner0dkZCR0Oh20PvyHz7QVeTBabFia0p9L7X3RylHO11M2y5MHERERBb1FaROdrmesWCtTJkSNw92aLqg2AcbExGDLli347LPPsHLlSuzfvx+bNm2CVqtF//79MW7cOKSlpaF58+Y1viclJQVfffUVcnJykJCQgIULXS+/HDRoEHbu3InCwkJ8/vnn+Pbbb3H06FHk5+ejpKQEISEhiIyMxJAhQzBgwABMnDgRt956qzd+6T5rWvY+rJk6SO40qCq7Bbj825dMLXvImwsREVEVJoNFOl8++bEkLrUnoqAUVDPzwcDfZuYBsJj3NcbrwPwkwFIGhEYALXsCj7p3IgMREVFjyMnc73Q9ZnZfmTKhxnD59Cmsfv4pAMCkt99Hyw6dZM6IyLvcremCZs88+aalKf3lToGqWjsJEARA1cTxv8qgWsBDJDEXFeGnAQPx04CBMBcVyZ0OEVHQ2rlyGdp174l23Xti58plcqdD5DNYzJMseDSdj4tJvBFPXC1fHkQysen1+OXue2A3GABRxKkxD8idEhFV8ofUHig+W4ris6X4Qyq3gxFRcGIxT0TOJq52zMa37g08dQjQNJM7I6JGd27Gk1JsNxplzISIXPlq1THExDVBTFwTfLXqWO0PkF+7/9kXXcZEwY7rZ0kW7GbvwzTN2L2eCEBYz54oP3IEANApZ4PM2RARBa+wiCaY8PJcudMg8jmcmSdZTcveJ3cKRES/027RQijCwhDerx+67tkNVdu2cqdERJUkP5bkMiYiCiacmSciIqpCqdWiQ9YqudMgIhf0vxqx9o29AICJfxvAY+mIPMRutOLX7KMAgBYpiVBoWCr6Os7Mk6zYzZ6IfJFNr8fpyak4PTkVNr1e7nSIqJKKQr5qTIGrvKwU617NwLpXM1BeVip3OgGropCvGpPvYjFPsmA3eyLyZZUb4FWOiYiocZWXleJfMx7F5cIC2O02bHr3TblTIvIZLOaJiIiIyG9M/NsAlzEFpsrF+5Uzp2XMJPC1SEl0GZPvEkRRFOVOgjxHr9cjMjISOp0OWq1W7nSIiPySuahIOlu+U84GNsAjIpLJulczYLfZcOWso5D/06KPEBbRROasiLzL3ZqOxXyAYTFPRNRwpyenOl2zGR6R7zAZLMhdchiAo5M9G+AFtvKyUml2/v5nX2QhT0HB3ZqOLQqJiIiIyG98vvgQfj1fJsVj/9JP5ozIm3jGPFH1uGeeiIioinaLFrqMiUh+FYV81ZiIKNhwZp6IiKgKnjNP5LtatAnHr+cNUkxEFKw4M0+NSme0AADSVuRJMREREZG77n3iJsTENUFMXBPc+8RNcqdDRCQbFvPUqGb8Zz8A4PhFPR5dtVfmbIiIiMjfqMNDMWZ2X4yZ3ZfN74g8yG60onjZIRQvOwS70Sp3OuQGFvPUqH6+XCLFJy6W1HAnEREREQW78rJSrHs1A+tezUB5Wanc6QS0X7OPuozJd7GYp0bVJebGcSJdW/FoESIiIiKqXsWxdFVjImIxT41s0SOO42O6t9bioykDZc6GiIiIiIgAoEVKosuYfJcgiqIodxLkOXq9HpGRkdDpdNBqtXKnQ/7IeB1YO8kRT1wNaJrJmQ0REREFsfKyUmlG/v5nX0RYBFd2UuBzt6ZjMR9gfL2Y1xktiNSEIm1FHuY/1AeRGjau8TkrRzlfT9ksTx5ERERVmAwW5C45DABIfiyJDfCIKCC5W9NxmT01qllrDkjxtOx9MmZCRERE/qaikK8aU+BiAzyi6rGYJyJnE1e7joOU3qxH+hfpSP8iHXqzXu50iIiIggob4BFVj8U8Nar5D/WR4qUp/WXMhKqlaeZYWj9lM/fLA5i1Y5bLmIiIGl/yY0kuYyKiYMRinhpVxR75FWkDuV+eiIiI6kQdHooxs/tizOy+3C8fJO5/9kWXMRGxAV7A8fUGeET+Rm/WSzPy84fNh1bFf6+IiOTCBnhEFAzYzT5IsZgnIiKiQJWTud/peszsvjJlQkTkPe7WdCGNmBMR+QOeM09ERD7KbhPx6/kyAECLNhEyZ0NEJC/umSciZxWFfNWYKEjY9HoUPvwIfhowEIWPPAKbnqcYEPkOsZqYiCj4BGUxv3nzZowfPx7x8fHQaDRo3bo1Bg8ejPfeew9Xr171+Hjl5eVYv349pk6dij59+qBFixYIDQ1FVFQUevbsiSlTpuDzzz+H3W73+NhERFQ352Y8CdPJkwAA04mTODfjSZkzIqIKCqUCMXFNEBPXBAplUP4xlohIElS/C165cgX33nsv7rvvPnzyySdQqVQYNWoUunfvjry8PMyePRu9evXC9u3bPTLehQsX8Oyzz6Jly5Z48MEH8eGHH+Ly5csYMmQIJkyYgL59++LUqVNYtWoVRo0ahX79+uHw4cMeGdsX6YwWpK3Ik2LyUTxnnoiIfBSPpgs+5WWlWPdqBta9moHyslK50yHyKUHTAM9gMOD2229Hfn4+lEolli1bhvT0dOnnJ0+exKhRo3DixAmoVCps27YNQ4cObdCYr7zyCl599VUAQFRUFJYuXYpx48ZBEATpnqtXr2LWrFnIzs4GAERGRuKrr75C3771a+jiyw3wHlq2B5pQJVakDUTaijysSBsod0pERL9jLipCwegxEI1GhPXqhfYfLoPSx34/JSIKFutezXC6nvDyXJkyIWo87tZ0QTMzP3PmTOTn5wMAXn/9dadCHgASEhKQm5uLsLAwmM1mjB07FtevX/fY+OvXr8f48eOdCnkAaN68ObKysnD//fcDAHQ6HR5++GFYLJy5JiKSw4WMF6BJTER4v35QqNUs5ImIiMgnBUUxf/jwYaxYsQIA0KpVKzzzzDMu74uPj8e0adMAOJbkz53rmW/+7rrrLtx555013lN5rJ9++gkbN270yNi+ZGlKfyme/1AfGTMhIqqeaLOi/NgxlB87BtFmlTsdIqKgdv+zL7qMiShIivnMzEypudzEiROhUqmqvXfy5MlSvHjxYhiNxgaPf88999R6T2JiItq2bStdf/nllw0e19dEakKlpfWRmlCZsyEiqgabZRMR+YywiCaY8PJcTHh5LsIimsidDpFPCfhi3mKxOM1yDx8+vMb7+/Tpg2bNmgEAysrKkJubW++xJ02ahNzcXDzyyCNu3R8XFyfF586dq/e4RERUP+aiIhh/+AF2gwGq+HgIISFyp0RERETkUsAX83l5ebh27Zp03a9fvxrvFwTB6Z6tW7fWe+wuXbpgxIgRiI2Ndev+ykfThfAPkEREje7U6DGAKAI2G8p//BHtFi2UOyUioqDFTvZENQv4Yr7yUW9qtdppKXt1OnXq5PJ5bztz5owU9+kTeHvKeTQdEfk6u9EICAKgVAIAm98REclo07tvuoyJyCHgi/mjR49KcZs2bdx6pnLBX/l5bzp16hQuXrwoXU+cOLFRxm1M07L3SfGsNQdkzISIyLWwnj1dxkRERES+JuCL+eLiYimu2Atfm8r36fX6Rjkm7r///a8Ujx07Fj169PD6mERE5Kz9vz5EeL9+CO/XD+3/9aHc6RBRJSaDBTmZ+5GTuR8mA1f4BQN2sieqWcBvzC4pKZFitVrt1jNhYWG/e0fz5s09mldlpaWlWLjQsS8zIiIC//jHP9x+1mQywWQySdd6vd7j+XnK0pT+0ow8j6YjIl+k1GrRIWuV3GkQkQu5Sw47xWNm95UxG2oMFZ3sici1gJ+Zr3y0XE1H0lVW9T6DweDRnKqaM2eOtMR+8eLF6Nixo9vPzp07F5GRkdKnckd8X8Oj6YiIiIiIiDwj4It5jUYjxWaz2a1nqt4XHh7u0Zwq27JlC95//30AwBNPPIHU1NQ6PZ+RkQGdTid9zp496400iYiIiGSV/FiSy5iIKFgF/DL7pk2bSnHl5eg1KS8vr/YdnvTjjz/i//2//wdRFPHAAw9IRX1dqNVqt7cPEBEREfkrdXgol9YTEVUS8DPzMTExUnz9+nW3ntHpdFKs1WoRGur5JeEFBQW4++67odfrkZycjDVr1kD521FIRERERERERDUJ+GI+MTFRis+fP+/WM0VFRS6f95RTp05h2LBhuHDhAu69915s2LDB7f38RERERERERAFfzCcl3dhTZTKZnAr16hQUFLh83hNOnTqFO++8E2fOnMHIkSPx6aefcpk8ERERERHJym60onjZIRQvOwS70Sp3OuSGgC/mBw4ciKioKOk6Pz+/xvtFUXS6Z8SIER7LpbCwEMOGDZMK+fXr17OQJyIiIiIi2f2afdRlTL4r4Iv50NBQjB49Wrrevn17jfcfOHBA2lsfERGB5ORkj+RRWFiIO++8E6dPn0ZycnKNhfykSZNw1113eWRcIiIiIiIiCjwBX8wDwNNPPw2FwvFLXbt2bY1H1GVlZUnx448/7nS0XX2dPn0aw4YNw+nTpzFixAhs2LChxhn5Xbt21fqlAxERERERkae0SEl0GZPvCopivnfv3khLSwMAXLp0CZmZmS7vKygowNKlSwEA0dHRyMjIcHmfxWJBSkoKmjZtij59+uDQoUPVjn369GnceeedKCwsxIgRI5CTk8Ol9URERERE5FMUmhDETO2NmKm9odAE/AnmASFo/l9asGABDhw4gP3792POnDlo1aqVVOADwMmTJzFq1CiUl5dDpVJh/fr1TnvtK8vOzsbq1asBAAcPHsSMGTPwzTff/O6+M2fOYNiwYSgsLAQAWK1WPPjgg7Xmevny5Xr8ComIiIiIiChYBE0xHx4ejq1btyI1NRW5ublIT0/HvHnzkJSUhOLiYuzatQtWqxWxsbHIysrC0KFD3X63IAgu//qzzz6LU6dOSdfbtm1r8K+DiIiIiIjIk+xGq9T0rkVKImfm/URQLLOvEBMTgy1btmDTpk0YO3YsysvLsWnTJhw5cgT9+/fHu+++ix9//LHW5nMpKSl45JFHEBERgZtvvhkLFy50eV9Ne/OJiIiIiIh8ATvZ+ydBFEVR7iTIc/R6PSIjI6HT6aDVauVOh4iIiIiIfFzxMuceYDFTe8uUCQHu13RBNTNPRLUwXgdWjnJ8jNflzoaIiIiIGgE72fsnzswHGM7MU4OsHOV8PWWzPHkQycSm1+PcjCcBAO0WLYSSv48S+QyTwYLcJYcBAMmPJUEdHipzRkRE3sGZeSIiojqqKOSrxkQkv4pCvmpMRBSsWMwT0Q0TV7uOiYiIiIjIp7CYJ6IbNM0cS+unbHbEREGm3aKFLmMikl/yY0kuYyKiYMU98wGGe+aJiIiIiIj8F/fME1HdsZs9EREREZFfYDFPRDesneQ6JiIiIiIin8JinoiIiIiIiMjPsJgnohvYzZ6IiHyUyWBBTuZ+5GTuh8lgkTsdIiLZsZgnohvYzZ6IiHwUz5knInLGYp6IiIiIiIjIz7CYJyIiIiKfx3PmiYichcidABERERFRbdThoRgzu6/caRAR+QzOzBMRERERERH5GRbzRERERERERH6Gy+yJiIiIyOeZDBapi33yY0lQh4fKnBERkbw4M09EREREPo9H0xEROePMPBERERER+ZzyslJsevdNAMD9z76IsIgmMmdE5Fs4M09EREREPs1ksMBus6P4bCnsNpFH0wWJikK+akxEDpyZJyIiIiKflrvkMBRKBWLiHDOz3C9PRMSZeSIiIiIi8kH3P/uiy5iIHARRFEW5kyDP0ev1iIyMhE6ng1arlTsdIiIiogZjJ3siCibu1nRcZk9EREREPk0dHooxs/vKnQYRkU/hMnsiIiIiIiIiP8NinhqNzmhB2oo8KSYiIiIiIqL6YTFPjWZa9j4pnrXmgIyZEBERERER+TfumSciIiIiIgpidqMVv2YfBQC0SEmEQsMy0R8E5cz85s2bMX78eMTHx0Oj0aB169YYPHgw3nvvPVy9etXr4xcXF2PixIkQBAGCIGDnzp1eH9MXLE3pL8XzH+ojYyZERERERFShopCvGpNvC6pi/sqVK7j33ntx33334ZNPPoFKpcKoUaPQvXt35OXlYfbs2ejVqxe2b9/utRz++9//IjExEevWrfPaGL4qUhOKFWkDpZiIiIiIiIjqJ2iKeYPBgBEjRmDLli1QKpX46KOPcPz4cXz88cfYuXMnjh07hq5du+LChQsYOXIkvv32W4+Of+HCBYwePRoPP/wwrl+/7tF3ExERERER1VeLlESXMfm2oCnmZ86cifz8fADA66+/jvT0dKefJyQkIDc3F2FhYTCbzRg7dqzHiu6VK1ciMTERmzZtQt++fbF3716PvJeIiIiIiKihFJoQxEztjZipvblf3o8ERTF/+PBhrFixAgDQqlUrPPPMMy7vi4+Px7Rp0wA4luTPnTvXI+PPmjULRqMRb731Fv73v//h5ptv9sh7iYiIiIiIKDgFRTGfmZkJu90OAJg4cSJUKlW1906ePFmKFy9eDKPR2ODxb7vtNhw8eBAZGRkICeE3XURERERERNQwAV/MWywWbNy4UboePnx4jff36dMHzZo1AwCUlZUhNze3wTls3rwZ3bt3b/B7iIiIiIiIiIAgKObz8vJw7do16bpfv3413i8IgtM9W7du9VpuRERERERERPUR8MX84cOHpVitVqNt27a1PtOpUyeXzxMRERERERH5goAv5o8ePSrFbdq0ceuZygV/5eeJiIiIiIiIfEHAF/PFxcVSXLEXvjaV79Pr9bBYLB7OioiIiIiIiKj+Ar61eklJiRSr1Wq3ngkLC/vdO5o3b+7RvDzFZDLBZDJJ13q9XsZsiIiIiIiIqDEE/Mx85aPlajqSrrKq9xkMBo/m5Elz585FZGSk9ImLi5M7JSIiIiIiIvKygC/mNRqNFJvNZreeqXpfeHi4R3PypIyMDOh0Oulz9uxZuVMiIiIiIiIiLwv4ZfZNmzaV4srL0WtSXl5e7Tt8jVqtdnv7ABEREREREQWGgJ+Zj4mJkeLr16+79YxOp5NirVaL0NBQT6dFREREREREVG8BX8wnJiZK8fnz5916pqioyOXzRERERERERL4g4Iv5pKQkKTaZTE6FenUKCgpcPk9ERERERETkCwK+mB84cCCioqKk6/z8/BrvF0XR6Z4RI0Z4LTciIiIiIiKi+gj4Yj40NBSjR4+Wrrdv317j/QcOHJD21kdERCA5Odmb6RERERERERHVWcAX8wDw9NNPQ6Fw/FLXrl1b4xF1WVlZUvz44487HW1HRERERERE5AuCopjv3bs30tLSAACXLl1CZmamy/sKCgqwdOlSAEB0dDQyMjJc3mexWJCSkoKmTZuiT58+OHTokHcSJyIiIiIiInIhKIp5AFiwYAH69u0LAJgzZw5WrFjh9POTJ08iOTkZ5eXlUKlUWL9+vdNe+8qys7OxevVqlJaW4uDBg5gxY4bX8yciIiIiIiKqECJ3Ao0lPDwcW7duRWpqKnJzc5Geno558+YhKSkJxcXF2LVrF6xWK2JjY5GVlYWhQ4e6/W5BEGr8+fHjx/H2229X+/O3334bK1eulK7HjBmDMWPGuD0+ERERERERBZegKeYBICYmBlu2bMFnn32GlStXYv/+/di0aRO0Wi369++PcePGIS0tDc2bN6/xPSkpKfjqq6+Qk5ODhIQELFy4sMb7L168iFWrVlX78y+++MLpumPHjizmiYiIiIiIqFqCKIqi3EmQ5+j1ekRGRkKn00Gr1cqdDhEREREREdWBuzVd0OyZJyIiIiIiIgoULOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyM0FZzG/evBnjx49HfHw8NBoNWrdujcGDB+O9997D1atXA3ZsIiIiIiIiCgyCKIqi3Ek0litXriA1NRVbtmwBAHTr1g1JSUkoLi7Grl27YLPZEBsbi+zsbAwfPtwvx9br9YiMjIROp4NWq/VU+kRERERERNQI3K3pgqaYNxgMuP3225Gfnw+lUolly5YhPT1d+vnJkycxatQonDhxAiqVCtu2bcPQoUP9bmwW80RERERERP7L3ZouaJbZz5w5E/n5+QCA119/3amYBoCEhATk5uYiLCwMZrMZY8eOxfXr1/1+bCIiIiIiIgo8QVHMHz58GCtWrAAAtGrVCs8884zL++Lj4zFt2jQAjmXxc+fO9euxiYiIiIiIKDAFRTGfmZkJu90OAJg4cSJUKlW1906ePFmKFy9eDKPR6LdjExERERERUWAK+GLeYrFg48aN0nVtzeX69OmDZs2aAQDKysqQm5vrl2MTERERERFR4Ar4Yj4vLw/Xrl2Trvv161fj/YIgON2zdetWvxybiIiIiIiIAlfAF/OHDx+WYrVajbZt29b6TKdOnVw+709jExERERERUeAK+GL+6NGjUtymTRu3nqlcdFd+3p/GJiIiIiIiosAV8MV8cXGxFFfsR69N5fv0ej0sFovfjU1ERERERESBK0TuBLytpKREitVqtVvPhIWF/e4dzZs398mxTSYTTCaTdK3T6QA4vgggIiIiIiIi/1JRy4miWON9AV/MVz7eraZj4Sqrep/BYKhXMd8YY8+dOxevvvrqWVZETAAAAyVJREFU7/56XFycm1kSERERERGRrykpKUFkZGS1Pw/4Yl6j0Uix2Wx265mq94WHh/vs2BkZGZg9e7Z0bbfbcfXqVbRo0QKCINQhWyIiIiIiIpKbKIooKSmpte9awBfzTZs2leLKy9FrUl5eXu07fG1stVr9uyX87u7PJyIiIiIiIt9T04x8hYBvgBcTEyPF169fd+uZin3nAKDVahEaGup3YxMREREREVHgCvhiPjExUYrPnz/v1jNFRUUun/ensYmIiIiIiChwBXwxn5SUJMUmk8mpWK5OQUGBy+f9aWwiIiIiIiIKXAFfzA8cOBBRUVHSdX5+fo33i6LodM+IESP8cmwiIiIiIiIKXAFfzIeGhmL06NHS9fbt22u8/8CBA9L+9oiICCQnJ/vl2ERERERERBS4Ar6YB4Cnn34aCoXjl7p27doaj4nLysqS4scff9zpeDl/G5uIiIiIiIgCU1AU871790ZaWhoA4NKlS8jMzHR5X0FBAZYuXQoAiI6ORkZGhsv7LBYLUlJS0LRpU/Tp0weHDh1qtLGJiIiIiIiIBFEURbmTaAwGgwFDhw7F/v37ERISgmXLlklFNgCcPHkSo0aNwokTJ6BSqbBt2zYMHTrU5buWL1+ORx99VLoeOnQovvnmm0YZm4iIiIiIiCgoZuYBIDw8HFu3bkVycjKsVivS09PRo0cPTJgwAcOGDUNiYiJOnDiB2NhYfP7553UqpgVBkG1sIiIiIiIiCj5BMzNf2WeffYaVK1di//79uHDhArRaLTp37oxx48YhLS0NzZs3r/F5i8WCtLQ05OTkICEhAatWrULv3r0bZWwiIiIiIiKioCzmiYiIiIiIiPxZ0CyzJyIiIiIiIgoULOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/8/8BRo5tJKqIneEAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/tutorials/tutorial_add_custom_dataset.ipynb b/tutorials/tutorial_add_custom_dataset.ipynb index d1e8f818..df4103ba 100644 --- a/tutorials/tutorial_add_custom_dataset.ipynb +++ b/tutorials/tutorial_add_custom_dataset.ipynb @@ -43,7 +43,7 @@ "\n", "This tutorial demonstrates custom dataset integration using:\n", "- `torch_geometric.data.InMemoryDataset` as the base class\n", - "- library's dataset management system\n", + "- library's dataset management system\n", "\n", "### 🎓 Important Notes\n", "\n", @@ -61,7 +61,7 @@ "\n", "## Overview\n", "\n", - "Adding your custom dataset to requires implementing specific loading and preprocessing functionality. We utilize the `torch_geometric.data.InMemoryDataset` interface to make this process straightforward.\n", + "Adding your custom dataset to requires implementing specific loading and preprocessing functionality. We utilize the `torch_geometric.data.InMemoryDataset` interface to make this process straightforward.\n", "\n", "## Required Methods\n", "\n", diff --git a/tutorials/tutorial_dataset.ipynb b/tutorials/tutorial_dataset.ipynb index 6815db7a..2b2b008c 100644 --- a/tutorials/tutorial_dataset.ipynb +++ b/tutorials/tutorial_dataset.ipynb @@ -54,14 +54,14 @@ "from torch_geometric.datasets import TUDataset\n", "\n", "from topobenchmark.data.preprocessor import PreProcessor\n", - "from topobenchmark.dataloader.dataloader import TBXDataloader\n", - "from topobenchmark.evaluator.evaluator import TBXEvaluator\n", - "from topobenchmark.loss.loss import TBXLoss\n", - "from topobenchmark.model.model import TBXModel\n", + "from topobenchmark.dataloader.dataloader import TBDataloader\n", + "from topobenchmark.evaluator.evaluator import TBEvaluator\n", + "from topobenchmark.loss.loss import TBLoss\n", + "from topobenchmark.model.model import TBModel\n", "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", "from topobenchmark.nn.readouts import PropagateSignalDown\n", "from topobenchmark.nn.wrappers.simplicial import SCNWrapper\n", - "from topobenchmark.optimizer import TBXOptimizer" + "from topobenchmark.optimizer import TBOptimizer" ] }, { @@ -186,7 +186,7 @@ "\n", "preprocessor = PreProcessor(dataset, dataset_dir, transform_config)\n", "dataset_train, dataset_val, dataset_test = preprocessor.load_dataset_splits(split_config)\n", - "datamodule = TBXDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" + "datamodule = TBDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" ] }, { @@ -200,7 +200,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can create the backbone by instantiating the SCN2 model from TopoModelX. Then the `SCNWrapper` and the `TBXModel` take care of the rest." + "We can create the backbone by instantiating the SCN2 model from TopoModelX. Then the `SCNWrapper` and the `TBModel` take care of the rest." ] }, { @@ -213,11 +213,11 @@ "wrapper = wrapper(**wrapper_config)\n", "\n", "readout = PropagateSignalDown(**readout_config)\n", - "loss = TBXLoss(**loss_config)\n", + "loss = TBLoss(**loss_config)\n", "feature_encoder = AllCellFeatureEncoder(in_channels=[in_channels, in_channels, in_channels], out_channels=dim_hidden)\n", "\n", - "evaluator = TBXEvaluator(**evaluator_config)\n", - "optimizer = TBXOptimizer(**optimizer_config)" + "evaluator = TBEvaluator(**evaluator_config)\n", + "optimizer = TBOptimizer(**optimizer_config)" ] }, { @@ -226,7 +226,7 @@ "metadata": {}, "outputs": [], "source": [ - "model = TBXModel(backbone=backbone,\n", + "model = TBModel(backbone=backbone,\n", " backbone_wrapper=wrapper,\n", " readout=readout,\n", " loss=loss,\n", diff --git a/tutorials/tutorial_lifting.ipynb b/tutorials/tutorial_lifting.ipynb index 21a6a993..d1a77003 100644 --- a/tutorials/tutorial_lifting.ipynb +++ b/tutorials/tutorial_lifting.ipynb @@ -64,14 +64,14 @@ "\n", "from topobenchmark.data.loaders.graph import *\n", "from topobenchmark.data.preprocessor import PreProcessor\n", - "from topobenchmark.dataloader import TBXDataloader\n", - "from topobenchmark.evaluator import TBXEvaluator\n", - "from topobenchmark.loss import TBXLoss\n", - "from topobenchmark.model import TBXModel\n", + "from topobenchmark.dataloader import TBDataloader\n", + "from topobenchmark.evaluator import TBEvaluator\n", + "from topobenchmark.loss import TBLoss\n", + "from topobenchmark.model import TBModel\n", "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", "from topobenchmark.nn.readouts import PropagateSignalDown\n", "from topobenchmark.nn.wrappers.simplicial import SCNWrapper\n", - "from topobenchmark.optimizer import TBXOptimizer\n", + "from topobenchmark.optimizer import TBOptimizer\n", "from topobenchmark.transforms.liftings.graph2simplicial import (\n", " Graph2SimplicialLifting,\n", ")" @@ -276,7 +276,7 @@ "\n", "preprocessor = PreProcessor(dataset, dataset_dir, transform_config)\n", "dataset_train, dataset_val, dataset_test = preprocessor.load_dataset_splits(split_config)\n", - "datamodule = TBXDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" + "datamodule = TBDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" ] }, { @@ -290,7 +290,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can create the backbone by instantiating the SCN2 model form TopoModelX. Then the `SCNWrapper` and the `TBXModel` take care of the rest." + "We can create the backbone by instantiating the SCN2 model form TopoModelX. Then the `SCNWrapper` and the `TBModel` take care of the rest." ] }, { @@ -303,11 +303,11 @@ "backbone_wrapper = wrapper(**wrapper_config)\n", "\n", "readout = PropagateSignalDown(**readout_config)\n", - "loss = TBXLoss(**loss_config)\n", + "loss = TBLoss(**loss_config)\n", "feature_encoder = AllCellFeatureEncoder(in_channels=[in_channels, in_channels, in_channels], out_channels=dim_hidden)\n", "\n", - "evaluator = TBXEvaluator(**evaluator_config)\n", - "optimizer = TBXOptimizer(**optimizer_config)" + "evaluator = TBEvaluator(**evaluator_config)\n", + "optimizer = TBOptimizer(**optimizer_config)" ] }, { @@ -316,7 +316,7 @@ "metadata": {}, "outputs": [], "source": [ - "model = TBXModel(backbone=backbone,\n", + "model = TBModel(backbone=backbone,\n", " backbone_wrapper=backbone_wrapper,\n", " readout=readout,\n", " loss=loss,\n", diff --git a/tutorials/tutorial_model.ipynb b/tutorials/tutorial_model.ipynb index 2c2aa86d..a628e497 100644 --- a/tutorials/tutorial_model.ipynb +++ b/tutorials/tutorial_model.ipynb @@ -57,13 +57,13 @@ "\n", "from topobenchmark.data.loaders.graph import *\n", "from topobenchmark.data.preprocessor import PreProcessor\n", - "from topobenchmark.dataloader import TBXDataloader\n", - "from topobenchmark.evaluator import TBXEvaluator\n", - "from topobenchmark.loss import TBXLoss\n", - "from topobenchmark.model import TBXModel\n", + "from topobenchmark.dataloader import TBDataloader\n", + "from topobenchmark.evaluator import TBEvaluator\n", + "from topobenchmark.loss import TBLoss\n", + "from topobenchmark.model import TBModel\n", "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", "from topobenchmark.nn.readouts import PropagateSignalDown\n", - "from topobenchmark.optimizer import TBXOptimizer" + "from topobenchmark.optimizer import TBOptimizer" ] }, { @@ -181,7 +181,7 @@ "\n", "preprocessor = PreProcessor(dataset, dataset_dir, transform_config)\n", "dataset_train, dataset_val, dataset_test = preprocessor.load_dataset_splits(split_config)\n", - "datamodule = TBXDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" + "datamodule = TBDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" ] }, { @@ -242,7 +242,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now that the model is defined we can create the TBXModel, which takes care of implementing everything else that is needed to train the model. \n", + "Now that the model is defined we can create the TBModel, which takes care of implementing everything else that is needed to train the model. \n", "\n", "First we need to implement a few classes to specify the behaviour of the model." ] @@ -256,18 +256,18 @@ "backbone = myModel(dim_hidden)\n", "\n", "readout = PropagateSignalDown(**readout_config)\n", - "loss = TBXLoss(**loss_config)\n", + "loss = TBLoss(**loss_config)\n", "feature_encoder = AllCellFeatureEncoder(in_channels=[in_channels], out_channels=dim_hidden)\n", "\n", - "evaluator = TBXEvaluator(**evaluator_config)\n", - "optimizer = TBXOptimizer(**optimizer_config)" + "evaluator = TBEvaluator(**evaluator_config)\n", + "optimizer = TBOptimizer(**optimizer_config)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now we can instantiate the TBXModel." + "Now we can instantiate the TBModel." ] }, { @@ -276,7 +276,7 @@ "metadata": {}, "outputs": [], "source": [ - "model = TBXModel(backbone=backbone,\n", + "model = TBModel(backbone=backbone,\n", " backbone_wrapper=None,\n", " readout=readout,\n", " loss=loss,\n", From 8a1617b7d0a4bd8ed1e5a140c8796d9341b4ef71 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 10:24:43 -0800 Subject: [PATCH 05/15] Add .gitattributes --- .gitattributes | 1 + 1 file changed, 1 insertion(+) create mode 100644 .gitattributes diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 00000000..9030923a --- /dev/null +++ b/.gitattributes @@ -0,0 +1 @@ +*.ipynb linguist-vendored \ No newline at end of file From 57b1415bd4d19754c2248d0d47db425a68266bfb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 10:26:46 -0800 Subject: [PATCH 06/15] Remove docker option --unused --- .dockerignore | 2 -- Dockerfile | 19 ------------------- 2 files changed, 21 deletions(-) delete mode 100644 .dockerignore delete mode 100644 Dockerfile diff --git a/.dockerignore b/.dockerignore deleted file mode 100644 index 78de5153..00000000 --- a/.dockerignore +++ /dev/null @@ -1,2 +0,0 @@ -/logs -.ruff_cache \ No newline at end of file diff --git a/Dockerfile b/Dockerfile deleted file mode 100644 index 1477c893..00000000 --- a/Dockerfile +++ /dev/null @@ -1,19 +0,0 @@ -FROM python:3.11.3 - -WORKDIR /TopoBenchmarkX - -COPY . . - -RUN pip install --upgrade pip - -RUN pip install -e '.[all]' - -# Note that not all combinations of torch and CUDA are available -# See https://github.com/pyg-team/pyg-lib to check the configuration that works for you -RUN TORCH="2.3.0" - # available options: 1.12.0, 1.13.0, 2.0.0, 2.1.0, 2.2.0, or 2.3.0 -RUN CUDA="cu121" - # if available, select the CUDA version suitable for your system - # available options: cpu, cu102, cu113, cu116, cu117, cu118, or cu121 -RUN pip install torch==${TORCH} --extra-index-url https://download.pytorch.org/whl/${CUDA} -RUN pip install pyg-lib torch-scatter torch-sparse torch-cluster -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html \ No newline at end of file From 74ad08eaf8ef12e877577ec88f46decf3910ec2e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 10:29:22 -0800 Subject: [PATCH 07/15] Update README --- README.md | 39 +++------------------------------------ 1 file changed, 3 insertions(+), 36 deletions(-) diff --git a/README.md b/README.md index 194b83b7..9336be3d 100755 --- a/README.md +++ b/README.md @@ -53,12 +53,12 @@ Additionally, the library offers the ability to transform, i.e. _lift_, each dat If you do not have conda on your machine, please follow [their guide](https://docs.anaconda.com/free/miniconda/miniconda-install/) to install it. -First, clone the `TopoBenchmark` repository and set up a conda environment `tbx` with python 3.11.3. +First, clone the `TopoBenchmark` repository and set up a conda environment `tb` with python 3.11.3. ``` git clone git@github.com:geometric-intelligence/topobenchmark.git cd TopoBenchmark -conda create -n tbx python=3.11.3 +conda create -n tb python=3.11.3 ``` Next, check the CUDA version of your machine: @@ -271,41 +271,8 @@ We list the liftings used in `TopoBenchmark` to transform datasets. Here, a _lif To join the development of `TopoBenchmark`, you should install the library in dev mode. -For this, you can create an environment using either conda or docker. Both options are detailed below. +For this, you can create an environment using conda or docker. Please, follow the steps in :jigsaw: Get Started. -### :snake: Using Conda Environment - -Follow the steps in :jigsaw: Get Started. - - -### :whale: Using Docker - -For ease of use, TopoBenchmark employs [Docker](https://www.docker.com/). To set it up on your system you can follow [their guide](https://docs.docker.com/get-docker/). once installed, please follow the next steps: - -First, clone the repository and navigate to the correct folder. -``` -git clone git@github.com:geometric-intelligence/topobenchmark.git -cd TopoBenchmark -``` - -Then, build the Docker image. -``` -docker build -t topobenchmark:new . -``` - -Depending if you want to use GPUs or not, these are the commands to run the Docker image and mount the current directory. - -With GPUs -``` -docker run -it -d --gpus all --volume $(pwd):/TopoBenchmark topobenchmark:new -``` - -With CPU -``` -docker run -it -d --volume $(pwd):/TopoBenchmark topobenchmark:new -``` - -Happy development! ## :mag: References ## From 1d9ec5a8105f5f42031f8ed9dba8f4d1523576b2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 10:35:13 -0800 Subject: [PATCH 08/15] Update workflow diagram --- resources/workflow.jpg | Bin 2070103 -> 133520 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/resources/workflow.jpg b/resources/workflow.jpg index 321008b5cd9dc4b8f71d952e80e115a6f8c660fc..ad589cd28723bce46949a94baf4a420f67d7ecf4 100644 GIT binary patch literal 133520 zcmeEu2UL^Gy6BHI0THD4AXPy`y3&HuMMO{tMTiOrNEeVGA)yFJ7f{$@0YL<%M5Gsq z(u;_IfYdS?z{Kh_3m5it#t<`nM|gA^MBubbwc|=n*um58krga zbaVh<0{#KCX+X~q;c*)P%*_Eg000gHbg>=)16Tr^0775}fI~Tl{#wJZoX{yy}fGv^I17#`vT0B@hbyH>^*#BJ^D#hJf>qq70rfC`{> z(>cKJ{FN)0evRPc>*MWt;k?jc5w}G2EjQ4 zmOX<5{lI#<=U|!Vmgn!~_rJ<_uUYAX^(|oesM{aq@4w2o{wUA>D&GZx0NZT+YVY=Y z`Ox8C( z{e17<40Lq?+y1e>U%h~1e>D8HV<(i(ojZH-_uBu9FTb9{AH!{0{=UC-d|&=n_qU0h zgYMq@%O|=+Dgf{weg4}R&jkR$A|C)4$bYL-O#*B7M80fu9YT*sBpGjUtqWR~#fQI1G`by)I3*=Js>K7y3Wt-FydtbF_efNRT{7`Q}d7uVZv?jCmn0)y@aBSP*+J&2BpeHa&? zmj3ujM&@r%vvTuZ=f5c^eEaT0c|~PabxmzuQ*%peTYE=mSO38G!J*+FBcs#!nc2Dd zg~g?1;>PCI_RcP8Z~qrubO8MyV1ciHK=u!C9RuMy#K1t$!2Am?x%1lNO@D3)<%q*P7gAr9eP)qVu_Ex^y4%OfC#5nnSQ0itcQP3tba*Ieose#C60efG;k0)a0~_p24?V| zlZ}Oq^Zz)}Ccxv#f;I{qp{E0piT)S>1t{d)_!Gc?YfhI)OtC-B#}|Jo#a>y*y=GN` z=c!nQ%l$sT_Z3#)Tk48oQ&XR5>WYzZ2|pW~p^R~fpjgHAQ~z$W^SSu<6_$no&;QE| z%SPH0jq;~bqMcNTZ<5PCQX_JgHKS{uni<`$tV+9fG$#^vH!=LYWDO<`B|=J}vhosD zJ~@ezqH~wAM@x#ejh%hb3^2a^-=0d=oR=tiF#alBd-`GTeSjjI+bBToq5+Y~G~k=> zbOD7lh;B+*#gI;{Q<$hiXj~GEe1iVxefjBsto)~5;kpa|GuZ#^8Hg|c4r-825@9=u z(25ugL3XC1QKarbHiqfrkx>SX6Sbig)z-Iby`HnrhQEBi&AY1uplRR!{R5)(^cbH1 zfueR;D4}VT2B70ARt{I5Tho4P)NMMe)GnI^>pB-C>3*yEtw3o%_EaErr2Vr7v9`|WLv;x+7J=}?7=vm8tObOl$an-yJc`|f|t;aGaV)WX}8$|q&^o~_hLeg8prlfTP<;Zi@6@`&)<>9w`PC}}?Dz`hhiYsduMsWrpTC7Xn-M?r z`P>bTZx-z23xwDNTs+BjN`BELEoG`6jByGMowm`QkzlgClJ!QC5M__~zQqvp)* zG(gx_n{E1|WV`NJqI&Ebd!4!1*zLJK)fZBiT@bFpAyXEWT?N5CH9Xha_4Ocms<1ZP z`;-)I#~B(B&R306|1LWiqyxG7JrG;zcrksvll^t;t<5)yPo4}OzA7$zPbKZL#fU0k zX~^@R%GUA}qh9ma-iAj;A7k%^0qb`AKWmwid~1?6JE79{lFjy_G$5r> z63(WhV*apKtLC=JEzyxH+z~IsVLkItXJ1`it})rXwi1>%PXi3GE4bJuS%`<_C^TV9 zGX!Z?yqtK|plV}gXD}1@bQc1DIaBe$)v83g-4zp z8JAZ)6N^qZ4p*Q|(VsPKP8wgdG$W!zdQuMCqIvq$w;|J)X}|-03mWk91J#oTv<$-x z6}LU{{cR39%{f2=7K*W1G=QjzZaQ8-1A6VyYBT`vS(KadN8?9fsOn9T z0JAcmN&vQcv4?SqW<`BFGP0Ctc%%j+ULifIgz)Q&OCuzXpm~0xL<4PW;0daZM zW9(4s{q8*s4d8ZkygPY@*dEmgS(0=lwpDt(^5~IkI<0uyRzmr#^woez8l0~qR^4fU z&3nk^67%p1`V8*hopvebrSNagwblMoR)vAC=Z+LBAJ%>9{rt)sJ*pmu#G74Y8idxMSXOlm zIbwdT8g-oV%3&|L#(i`!v**q7DSz@Q6G*1yR?!(!-qnHU`WXAPf(QxpbI7Oo#icZ3 zkwWJu`gwlm1(}}TjqBTeA9NjZdoOPn`c3Sl#lJ(Ik6} zYVClps%dh5uF~i^L|vrri}qzLm`9!`-)Ijeo1<%``PFg(nZw!XtM!YzC%PqZDGJuR zrojmm4dc_YhjTyXYapmjZ$9!^!VUbQc`Wr9|C_Uz#(^OX=xjuSR8a=Ervd$fMcI^e z=TMBaYAjHhDahax|-e%It_vG6InuB~_|UYPLb{!^c5{=0U$p1N&sh zk~wL>L%XX~G=|Jb1D;Y6`kZbOjPUsNsrGQ6pK~4s&zkqIc1o7H1$&xwt0>K;g-C6K zT=?*cwi!xl|1` z1I+a2(p9!H;z{c>vh5bh5cZ%jpUsPe)6xFZC44HX%6D`nlfTk{YjF}>CPP(Jvj=ix zkL0UtOZ8@9vc!WKcuIryfwVc%ck0c{_e=M8V|~_tVs3wT8Q2y*dE}yHNsChF{Fetc zXVcEGCMq$D)33A2FTh6*T5y8fIC_s^G#44P(Qx*Axqhgv9CX3fG~Rx|=h2cu4Do69 zkPY3qY$2#C`i?q;=G7Hl8D$}LPC4=$^{Mq-9J`dEpwXgqN2oMYddw^7r+16V2XQZE zrRwhQE>oNwjf=UBA(U4rB~sorZ+6ra!7cVUQN3(N=bk9*=p=r1#84!Yvq!FL^~upu zfp~$u;}2nvR2XIF763?2#ka1OXz{hFnKH~{ssyS}ldO9N?Cu*u6^Uxol_L5)9wmi# zm)~^tczx(yCRa_eu?+0S!*{jJ=|3R9H8LY_4U@U2Ek>heWIj%(yA>~LlB;3%s+q?l zuRGWqq#2yHKI}4H;1!|k`ng?|Za>r7X20_%d+v3kfyDVUGiXuN_4x++R;;KSp>?=P zKBzBahRPScrS5ZS4%H%Ep`jJqf&Aj^a};-d2g5>&A{>0yJw~b3WkIAgYbumJeM`!M z@b|tQKQCaaD4pEJg^}lIFxvU7`{tLlncEmjIw1DLqpGOFeMqewYsfXMe%&HhO4*)scT635zd+?ch7#fNy5b=BWNth~a)Pjtx(x>KgLntF-ZeI@ zHFdiqGVU&i6Z55o1qB1rl*R#$w0GO~0iJEd)0TG=m^F`Cp@5$zp+E`&b0SVWv{oGbJS^E*qpGE#;J zU$ZVIVOG%s4Q#JSq0KbFEwyp5VA(tf`jU0k;uH;F5$s%x-}a5apWX6N^7Ae~mPOS; z0o~#$bwS?jAj*^8$bpMne9=0DzBY%$Ft_n4$!&&Xbk~}gA068YjooL8oqo!IyVFoM zC^U~(E>lWyF<$q1B$uscy5>YA9zAH+bc+hoT92u7tt!Xcrn0}tpKY6*v^o7MszZ12 zux*MTBXI9Atiy?kSg@8|h^ROFK%@c9*+-Y0#IkNwSKHK;TWBlYm`hXHP4;gMQ^Ox% zxa|-QHuVI@$C?=**()&4-T|`dM~3N4lcdr~*3W>KP2rlF@-q;2#KI1~jwtrT6Q2^} zBv{t>ranTkRD4Lt^k$_8kYzGJdU{nFRx5zPs67obQ4L+%I?J_SnapB8deXt=?q#0e z`kwt|IMt#BbR4`K9YZ}%+8MxyrNlLypThEt*`jaj?8dH3R)r=UKmO$A3z-8c-6%6$0pUXE4taX3A6%@9VR81@S%0$IbTASw_i0+tF5>DVV>rQcDkVmj zbt$W|F(nLLvfOyQ!CT*Yu+sFw?(py_^_bK_%L}#EKXxF5zZn`S#!G_Xv7(6P=H2RDST<+SvA4MV z@zjPZU)Ww$O-o*Qd(hmh^78p`2DrQ01dBwn1wQP4Z>z2Zp*1Dh+W28$iNuapsHpi9 z?GGE0&60U0*{9y9!_Nc>p0dy>0#&-7vDX@6jY*Evp$QCGhSeG7uBnrpEt1MR(takZ zo~s-j7A4mgg9wFt~R1kujE!dYe zc{Hv{NB6Xq_L-}Fs6A#Xfo4;lO8r5ETaaYdTdS$u{TS`wn@pK_mK>YL%F4{Ik%B3c z*B(*k#46}!>@lkY)7{zeAcgZcXy7r&5EihZmtW0o#!NrP%Zr*8Uz37+M7m4&cBpej zAMFoeNDF8PIZ#;CJwr+=Bwzl9bjCv&mPfZ=tJ~Ln!$?${Ul0yDc`W@)jMWE;7w;CY zMK49A+tL6|ZMOrLrADRit0)n&7GbAsy5_YdsCT`qY}k0yD%Ifp^U;XFmLMjKk(9TN;Z;<3J^px zeP2K8e)ip=)5b&6GvkOe?AoQ=DaMJ6_Q~7Y!)35;C=b%{z`;XTsjiGQGa zVymZ^mlOn_I1-U3dZAfp*K-TG$pp-f?KM2Y4%;89L~fL?|BGb zd-h%q$Hm;nJEV{J?9miMqJerglQu^#BISao?WEZYV@vgPh0frkkxGLX9*FNs?Zbiy z!FHt15)x`-Va6>saGl+gCD3Y;U43=ZU}uao)=ft^%vjZRykd zz6>4uAu$(FOIG}1wW@S$k6|%L4?xd`7tZ5Cn&3bQ;QxqX+ zl*`0Y#r;8el$azXH)yQKQui!L--OUpq157)eF>|Pq>?sy!wMm7x+r;`uB-;o1_agVK!irkE z&*(N~$_J+pS=5J?7aenW30oTYM&^5V{X3cQKp9aqRsB##!541^=O8s3+@8`7wld_! zpGMb9gag!>>Hzp{>NiNGVxqRn44MhaNx&vfk$hk4=h}`h*R5uFhsiYzP2Ms{J$3ht z@C9dgE4$hoc`wIid{UXHhEFr zx$j+X_U7COk^MviM#u2Rab$WTrfI(*UYvLuGZjW}IapzF%we>o{_-P(X~(HFRrnKf z)fM7G8YGyhjO=@0PQKfZz6Fng@K(?O9&KGYB2#^kM_A~Nr`7GqbC@Sr+HNV8GMrE@ z=r0 zv?7B-513Jdbqmc3{L@AScpT`#K)@_BRxBzN?`nkQ)OSi=tZMxrnA{>x+3gg#qNn?e zQrD=Agp(}82yNZdN8eOwG)jK=QOJ)mxtXE$#-{q1(Y)cUclH-pjIKrvzY@hoXrBaO zI9pAGC+I4Xtp?P3&Q+Mb%~SNssM_~=C2%yI>wV&yn|7CMjKyKPF#rgL;0!pezU_1}Gf4doN`M9&sTm24~IP`5Ka+)@SvOr9}|6AZ(WXaM7xhU!7+ZAWHUgnG$*Z9!M9$XZ(eT)6C_XQvwaN6}6h z5&GE?GUb$4LNaP@rt*Ibtv}D^SX`af;UfK0+V=1sLrL|q$be0kaL=F6QP~|t18IRE zG&b#G|5)>0NkLeAsAsHAD7s?Q$oV)y!z;*5kX}-JYKDP+NtBtYXCF)n)u#bDtV5V* zP&W)asvpJop|)RFdnJpn(!;~so9UU%W0}oOzPU%^g2x|l!EUoA*Y;xj1L^k44=$3g zP;wNYcW3}TnVY18|80xSm&ZL9#y$GkpX;Ja1J`v?VtIxM{>VFlldggc+%G++EY{8w z&6?pHC~d{o?k%EG86k3}D{?wj;=rI+y0xxlUhPu*g5Ke?6O|7;KhZDtilTa{%0%c| z$dqEr5P!xoQfSlYwG53bW>UG^vq2w$mIQ7i80Gjm4<5p}pGq@Qhw`X$jNN!As+<&2 zXlI&BzS$5`ob({A)8AXzB1E~O`;=v2s&1b!P`qqsA}b(8zqzb9<~(ydHP-{ne^!Dl+0vlmx%0UpvHjIXtXWBmDei%P}WVl4NABB1PlT4@NawPathM!qsY3 z-+EWjdy0`tPb<8BblFF55+UXN_1sQrUK8%a!dmnc2Zv%aobApeb8VkOmOMtg+%|nD&1jex7gNxK&kfV!InT-i;%~nz7-&bE()KtGTkQndr%4hwM z)0HQGM)>?#J99pOoSvyc-|>yamUF}-LqmuLo})>xHPza(ZVo8iRKGXrn|b$vs@Df5 z(<^f^#+jdIhuT{d$1u&ZO_N##+yhjfGyVlf)3-ZAqY<`F-^byGo^!?L6ZjCLYnMgU z(@MSvZDHAw(v&=HV?sbXoV8KY69pNBRtDaDvzYFY8?-UE;i@k^f{dFVBuU3djsBBoB&5Lsk!Pod`TY2paGpS-Ov^Q^cy+n7Rprm; zWhbC6(4=f0ZSxu5hfsQ5$@|`db*kL+_--X<|O%M(d}cEl{C0 zwF$T8M)riY$nl5$%akE1ldIO1Q{Gy$kD}O~pZ2TVg{}r4KoQ+LNJ4eIs)gXBty6Ew z@;aK$W5Z11l(~@jQP+40VL1ela{nu-;6T+AcZ>$yNnu2~)Onv?X%ae`F7pEIe6L@v zWff0AriPevEAC$iTjC)grd$riuHx{%$&->Km16QeVnLh)@%F3I9}_tDEcWL%#F4SR zo1B3*o6JS(V^WiiP?0{r0A&>4n)-D%+L30>T3wyol^a9kIb~U zwuxohOfo4?6k|cGW!Zc$#yx`>G2VGan#Led90}Yc#mm+GzPD;?hXZY85^QS>rjq8R zJKK+6Ze@@9!3t39N_F?oY3mfW7u#`+o80S)D$qgePR7);VuHLyCn_@fDI;_c3w;vo zS=J55JE)n8nPT{DZ13&Bn?-lc9AD0pxeWtYuU{BT(-X8PR8#QRJyM_EQPW=l)yaE~ zuCtINK)=@C**}tf#eTq&@!C>hf98`skGU^}pNSjKHn&(*T)0q87C^ z3^Xd3+%84$T%rN#w@5IMyG&-%fY(co%>Ri-dVDBtY7a=HG{AjL@nXNOWXYJr;()0R zc0_hV82OI3TC^lJ09h88z`CRg^Wtj)<^>=r75JKh1Gf*pk0X}bAbM#pnZ8mPfAf7Xh2L^*F+CJ zZ>OTW*P)u&>EY}T>*S3gECEUbD*OIvAgrN#-T{o820$T`kd@2MU}0|ex0iwhYWB1u z`;sniKRuhMP(Pb|*jg>Q2+`tEThlq3C;QR6&(KdJ_#VP4-MhMWlVdHDu-OI$t+lr? zLP#iqDVy>Zv)ngQQd0elN9<<&4omiKx~5T$f%E2>uV>DE!pO#cLW`la$mXPAJS3jV zSw#w(=7_0AkCu&yUKX{Y0hZs>bTU@$M=n_!AKQC4Zu<4ySJ?WUlU%6Fr0yx%RzY2H zGThr?YVrk9(Vo~d(ehG^c)1|xru3U9uBsC92q(6Zej~5_l+()n$HM(LVSO)INuo1P zu{Uk0hdeWuUL#6pnl3GzIu8jJSCpg4fq*IcdhMJ+##$_Va}mO zf70HRA|GP71%7y)tm3@Wp{+E-=6Kc8SN$wG;q01^vxk!8Nu+kX`kVQMv!A5GL=6Fy zABlcSu{DX?f#e+gb`f<+SB!{DP1{}G@EbkF<8{#nJMr(^Hkx{plKC`lJp@r?gcLt{{zx#-B8ZZp{`X!@%qqSjT8f|8kWEhrfh<*z@c9B33RJ>Mt9a zrHj*Dd=;>ct+0sHJppaOMWcnNe2d3ORV$yY?hu^Z=Qo4}eY`6}10Qtq>vwe6MN->CW)!L8Fgw%+b|c^JA`BT?$P7RyD~Xy7IJ@GLd#*#rbImXR9ms* zvot1V5ef!;R98W(QWnUHdlM$vh?vO6!<__pONQpe$K8iPW8Sw1SA7CWou1Ebdb^$A zhkBfyZ7C?-jB$n+{e$ZT)NG*}sT0A}&Jry3g<)79{2wdyAhiBJjE|T^tQQU7LL@Zb zcWYuM{CpdfUzJCcY_5XI3q_k?9 zR~2Vj&uT{J)Wx~-?Plz46r}iRxtOG}F1ro+=)p33^PI4T61 z5~#!dWnp#W{H-yaa?uAgU|(>55JNJc0aJz9Th?UounXV8k>8bKRx$gbkdHJVb+M7( z3~3D|v(SJI*_ANfz2l%CGMmiHO^wIKf~EkmF&gmX8oEgq6hgsqaxoyDlbNe%z??N? z#Egn+Uq{bEmYYCn{v8^L-Q(VFj3++=-MAK1R`A$0go8>5iNl))biIR4gXd{vF1im! zpaE3+G4#f}lvU7)1$ExVZg6bhM1Qk}Hp0nq`#3|C$-kbE01o-t61rGK0$Bsy8g|dx zcn3Tcv&#-}d(8Xqv5RuqI7O-f#Wxo#^{=M;=bgwqIEn84L0Kn9QEcH`ycX*qN0UHR z_rcR3|6($-1e$QoVqcC5p#h&leW})#l*ibGRn#u^JhfPHpS57O8{AT;!y=}W<6q20 zJq9Jo$x?XHAa9z|sipyPh14$i<_GGV@tp^#(|(+!0CBriU6|VKgfR2Qp6$KHdD$AZpJmD%aH9RxPO*i(#i?`OtbF9 z>suGnv{+ZXI_B54jYTwM`oA*OrK;5X>KQwQFYv;tTsr#H2rCqb`7Qm3i)sf)%AFTH z4$C$I0@R>ESl1036<*U@I#@;Zw(_XR~07O__}K<_P7 z{a28~+uV9+IWc>S3nWbe5ZAJYK>WqFKCdQA-H)XldQAq&6^tGD)9k}n4Iv|>-hCD{ z=?J<*x6F(hMm;r$otFF#UF4OW$C1q;gw$oo7Hj&ZFIA>4>jbs84gJjwL~v*7`R#c4 z<~q?$;qO-gng}1HTmeb`TJ|$EQSE!5@eWFb8VRS;LpC^ye-R`);hZnYWSe83(R2^Q zb8h25FR%1X{GVZX6m~0(od`|`(q?!&IckLm zyMV+0NBfkrN_L|#V989-S%@uo%z*whzPq?TftvE?1v;AZpxtJmi_##vD}mIw->SH` zODfO!J4iw2_TN^x3`&SlL6BM$!J{Z;kNICch@vd?Ly7vD1L-dco=S@)U&HE-qFEW#PEQ+Nxpz<1(lE?&L8SHR zfox(GhAl|2m$I2XU%42xFmMEcweYp=poo2Bs;#lJyLG(p8am!$TkVV5EP4W7Xlcm1 zE&KfcBmDq!!SZ@$LXg9n+~maSb4imHk#Ge4WDS~R)^Hw-ifN}DzzLYto|*xcs8YhV zv&>-C#nF}VEy9TP#rIbeY;-c>iCB^u^55EmM1bQ&_xjTS)G%2d^u0e!38&goy2(8> z;C)dre7IxhqI??-m{uS%lXoGzYv`s&qhII025i>~ZWD=wDjf%atTz z)Sfi-i!`L>asSklDS=H6WIeu?d9^LA{JkYyf%+qxyCIB_IhEg=pev};fI1##eECC_ zhEm+Ep1G!`^ENXtCPITSk5R`_W4gK-?Nga#`I@zydg8?&*AaylhtVI{5*D|Hs`V_o z=9he~1s^)KKlqShmD}h=N;t4b9wWi=3G2+HXV!I@mVNl-nX7z4VG~>Ty;RsccGDbM zRt~!^90`a#dggrTKs#DYmk+5)(9I-rwAhd8CScU+JW@P_C%Oww@6}J6+2+7P%rKJf zOP!x`IN-UBvLwiXfhjR%=OJ+?F6Yjs#T13#a6l%qYx&DauN!jXVy2l~4^Kc5IZtjj z{0uBAeb@t1mA$%Fil`cHviE&B`v?cJkK3cmOkHzFce9-RC}M z+XW8n!&&9d<(o)^%$+s)UJkjT?1`@dDKv)$l=JM&&kx&wceAP1xWdr4z8P?ckE`?W znWUAYLz@n{YuW^N`n7oZCZz9yDN=&K5!;}I*MZxl{Zte(D0k1;4=diS&U#=j)YHg@ zuzW3d>`9zB-6Ix;2zx3!X_JuGj^@}_jN50z@{=X&PS!XYg+2&%D@*GOwh;YtRj!je zXSV3XS@Fb3WxACu*uu;51Ls9CZBiK_sww;M_Omfh_%Tne(|L?PGZhNPw%RJ6OlL4P zM4K77To#jI5MlZx33YMD@gk35;0WyHe$bCkX46P5dK+W7A+=#ZVkqQ7tuCBQ9V-Fu zOY?4Uw5QG;&WjhoOr%~xAM zg0&35omNI)a|AKH$p3MDS>yJIu=C}NxTR)WTo16eEo=EnI?#}o|wMXY~>1?>|ei0V)K zzD;pR>38P&jg>?;z5ew}vSMLRdb1bwD0fpTTtZ>Pm2HUL>Gdeo@z%WN83iRZ)o*I@ zVNNYtbs-u%&l;Y_v|WEZ?k6l4(4k5I{99Hx?-@f?Y#QQfcI@2&Z3CELzK z8!!vMG&;^1e2ekklRc0NF!Bv=r+~3goK${l7fP(g9Xc&tmty(dF7!gbDrecY?Vwxg z<88TuLf(<^=1}{096pT+0mB^|gYhkGk6+}~houctnbXKxB=k(m7_Pma97Mto*pjsd z-lU0g8^jyg&KYBq5f9!E ztM{LldY&?Pe52N*-K0GizAyoXxm}Na^am4xOCi>GqKS&pP*2DqBv3x!Ez?J~e)Dm4 z*D562Bk8;2^wlHWkj0fj)7gV7%tKpNDsm@-k6Rm=Y6FZR=vb5nQj{3{(4h&%Pb^I- z@?^CQOB>x0biEa&P-Yz$mLszERqGpbVV{%dOiE%ltFF*^tMkk{-%=L)_eH5>w)(=E zr+HH0c;(FH%EvS% z91q=qB|IBak+PQHHti_i6pTHDG|NRqSBm=RXjyK&Hp9uuUQd?vufBJ5NLxh2jj6GR zh;3PqMYDTP)sZ6b=Fn#11lREc?-sv`eE<4x8}TY-m2m&baIJUp+24?M(`a6I54`V@ z<(;h3RJn46iQ*+y2H8mpo(p^W+(Pp9{4lg4_>-`fu=m9oyi9mi^<7m<6E)#`u)wyd z!vVX&?Cm)nonS10NA6RevK}FGwm8X0Og2{^ecCuIS*W@XoXCy;J(K8nGASwE4Tk4P zp9v6MK2lO1c1)5_c6BLC0y*yeDR~Nvj!0yNo_hLqZeMsufl}DM#y#cv0@|unl9Eh5 zWrKrNjm?F8v_5U6lJu(U(F*zK;ZIhzyIJIFQh@;FH?$9w9trP*ek1D;W%Qkk+OVf? zn>rq^y+{9Ek-fdXNGt?%IeouX!wAgFw>6AYy6sic9r;w6$e84_!DjVExB#{dL!Vy~}?M^xZq^3E3XRZmDC8Fz5QP zv*(J@!#1D;7ZmOvVkiBu_)KbAuNfm*^JT)O<~vVH+rChc8g(X&J;=;i>h2_{wmt&S zmfySB)ZL%g26bU^P@^d=0cFyX!0lrd3c+eGqjZ{=-!`6cmeFv0$NSXaIq{oY{1V#N_Xr}r4f+9-*q}8nDzkol&?npc z%&6^W>7JICPOp5{Kb(lt^0q$ZcNR$hgrTRTdZR=ZbyWwvw9g%AlQ7e}4`usZD(ieza9>VYu7}xXW930Gf3t~ ziKZOoGi;w0^24-dFeGy@<_kOK)`AmLgT#*Fk{je_bofTQMi^eC0Oo#T#a@e8{;#;N8@2JN@d~ z$%z`?j&qnty4s&-21%&|#hrH_NWMkO_K?_;pD_i~V-CJrR|m4zgq@$cvIdt@+H+uu zOp@ZmJ@&h+2gCwA^C!h*F=!dVn;NH)tPS(Tcr=P+$e5omE^)2#;20s+hq65yJ0qBA zkURBePKeXPkp{q+Wx~P;yE|>MGsbIf)4hyj#bMM4fx6p#bz)-7?Dp{&YA5ouwO$%< zVSct4FnT}W49(h6(AZg^Jl*ycX`YgY@bcHy)*mov+#d2T=ni_(XywSW(J2)!taa2# zm;u(N%Q?_^9O*?VE}@E#AytNTMHla9N0e?Meg?7YIv~=fKA)0X7q^Ow@lGw`ToaP? zrVGbpA{7Z&TQeqED@mfDj}^-6U^P&wo+hegTp0;J8uG?wELgNTFS@CALLycq?I;Ty zs*S@xKxIcCpS>1JkewP%IF00(S-az@<1^VW|Jhsg`DVpi6$Zn^wrIN_pjjRPq=&O$ zTuH%1`erB(nLnQdT7U+0+ER**`t>&2zSSOH6J|1|dmLkRH0*50e4|DMf%zeLDIhYz z39)g|Jbc$(eUja_q|#17O5HPbK9|QVve7oP+f7*CXVgNVCv029zolN{O1!BTT|~w? z+2q;h+4tuPbJNP)!+0$1j{JUtJRurSl!N46IS7--r_{UA07uVeyv43uwqlQHEt;4| z3DjIZk=q!KKUWLdUc3jeN^E$ z10EA$=NJBeiX;Dkh|>4=5x8adK=&$lT77xyHZQ2Q(<_pxDF?gY5s5JcV^+^hUq32W zRN};+zUjH)79`RJI&aP|ZD@~CIR()RTWB1X`Vm41?*>hOc~lAw*k0*(FIC*;mj?|8 z@I6)Rm*E5FV`N<9|F%OO#SpxoxG+pLR|NemiN>3#!;wRf@-cm%%j+k30|vB=8fb;eqh>f-k<2bZri;^26TtAQcQ9Sjps6BsHc(Yl$S{714D$x%mds=9X3v_yT{EU z86o<$JRj#E=b-P^mG3&LZv=zND=`ar`DLjmlpr}tVF$-S)WxqA?>LDPE@d^`pD|;@ z?gXs(of&vttH)+^{1k5jU0KapFIGxq+T^5LvS}{NJ$d$2&J!JFmPOPP$y}2pk$6D? z&hvr{Vma{uxqtwF80ec!1H{lCp4g~?y%oG7qrI)i?(!RfpFevlhPt)Arh_Fq7;f&1 z#xf)d5fniaZ&L|T_7nOjl9!Z89J3?L?%e9?TKU|rUtzYQaCy|)S5D0gS}Af_<5YB~ z>$%k0`;0kl03k zq+V@xmN)-rC!M~aFeh7ykgQ>gIN4-}7?WnDYs#nnSmqn^2+S=OjL55m9x#3lvfSrs zuP|VeI^HB8sd~w>P2^<9jq@F){qex7cc3{^d6Qbx2{PF%vNH+l>4VfD=qp8KN553+ z75gBA-jduKUUTH3BkdA!twOR*P;S&$C_h!U%S&4@gz!~|mHo2q$XapGrS`L%j^{TL z-y`EMt8^?13pO4nP_e}9sopiW8C}#q)*Gi=rdw9ggU}&Qd<%l}pg*g7lhs~1R8HoU}Q0tfya@Mv8WS)W5Nx7!{=_#&K{Od7g-C zg+@5>5pgXqbOP5xuf^Luu~LtgNs#{LH3Fh~@yPxEaggMuD-WyBm z(s=%MYBz_&0MoI~n=^!-daI7}+yhNgTfmK8!q0M4_AUjhN%6;Yids;u(hI?xJ`LIX z#-jIYZMLCJy>F*|6F9+(KjT>aE&KQrrOsV{1&kFG<#&sh#6Z_XWFlE&aC>D@b&M^H z?n^bla`BlQ-!*CB7af*hq=AkJ?|!Ni3-RjCO_DIN+^LEPZCPhWdoAC~=yv15dNov! z9n$LH_HO8V+icP<#r;(!`~-am)(a9Rbh-9GfozaI9s97jGW3Unw{tDEr#^n(q~!GJ z-1xgqe7AUCoj&TP{&Ne{14$4QCYen`Mw+KAl29CK6;Ljp(T`Tx&@ppXU5`^ei?^q5;bQFpoxhhvT?3-Poo?1p%KzPl${gkAlLHkZ=!7D%6VqEB zk+67<7(URGlf$)NoELKh)*rbq)V+g~}%5w0nZbU2f}{9*5tJG^Lly z0!Y0(N~E9}c+5Q-AQ0%w>Ew>R@zG?R+q|!m@ngc}m)B~#ypF61xHr99zt!q|Jw0*w zDf+Vx`21-=6r5Z4h^LbRDSEmn3~gCI=vKyY_xheXp_z@2(?(dJBGIf=xImkgB298Q zfRd$2N_ltgb2OJ6@wiv_%`)`q!qbJ(;-cEQ;G5yAfECc=OI9SA6Aq?&Vxr;2L)yPih8DdbVSQoTsvik|3pelef=`w@rJ9o~J;hMi}x3DC>Fj4b}s zFFNq z-V*QHeL>hki;hLkG|a0lm@$RlxrO8Q;y1GojU{8b>snaJUWp%p{zDxrEl+c~Jk}uWO)s2FE1usJ; zUT4_3e29B7@gw7xn$2Y@EAuh3eCvh$rEh`tIvj?T@$D7^uaZYcCwW+S&NRJ}Oyc$9 zwblcU0s@VZ?g<*NH=Zm-vks;_x5qi-ZezFC=eilwNqXDLF z`H@sn3&Xt^){;jebv)cl%efyC)>ipgbYI-Z3vyjR1w?#1q>Oqpfc99zZf^5a$Z%rr zrs=@?xM|Q~H%JQ$GqFwO8g^Q!54#XS0~*K3p7UpZ(?$tpy)sL)bWk6?x7qh%`;O(? z(;v&P1`Baec5pMsWJ!AsG6A|f zhE58^DN}93KtHO4f`0u$YVd&tsC;G@V%Nct!6eA&eP1%g5d3uke)65nKlOqTlH75d zpFsDhH&qq>ml4D(kFNhT#I5OQP*J%w0Gj~bko+51@8Ey#gKkpGL-*3tfUs&(AF_Mz z=59AR^1BwcmLFZQh1=Utpi&h{eUySX;GO61@LeLh?d{)n`8#+FHx=h%af%ykSAJ4w z|0|oo{{@=?L1H`pXAAz-76fSaeAj%j_97{r#a7oABObWEH9OS%Cv1S1_phE}@wAOp z3DQpAdp@iy%b48K{$pq^(Ghcd>_c$>6945AA>Wr8URXmO*nkML29%ss7km)Ar*@w) zgbYSws4wAuLS_dSd3&23@aUBp@B;8H&y>;Zg5{?86PQBnssGlW$caBe4?4%(v3nZ5 zakw4%75KisS^y3B;6{GN--JEj+rm<0FD^p=g9gApSNybg@Jt}Vu%x7W9os&xXh~0jeXR2)*UIT04$xth^N=_L76cvIF`UQm21PuEhbTWyo0B&c+|)0rZn{_ z|A<7;)R~MDLEfj7P$d!ARus=b1OK#u3qiL)?Abf*tQS+l69&;aEzAg3bb_x=A^nzE z{3ec%Y)^tuX?21}v@im5>04<@aa*1gtlD31#od*YCBB~ieV4(F-Mc&it+#rKn^P~U zBi0(Fuajns6Pk8E{3iZgY(qNIF7sTRKy{D!=-sG!0c}5b`r#9$lAp4<8X@E>{cuMx zCQu%7?1usMdfJb#>BV=QwICkS!VDs3n0e>n98?usq$#PSWO4Ec5xmQzKdl436l0KL zUVmUz#7lgdaaA+#F{k$^&&<8m*>At@gJ+O>XV9NPUs5p4Mpu)V@#K}GT|3W*=8#|> zt9KSP2FNP!c2wI~#Mgo3n5qR*CShmnGd=z~RdQgU$(!qv+SLHakA_+SiRu?Gemi|( zd!^kTSX;yhk%VU^V0h?*b+Yl>JNtaK#|9N|me&%t*8J~y<)OFyCCfGT^)6_CJ4&~x zbY&9N4*|T?v>b(Y@nZjry!Vc3YF+n*gCHFuy%Pl#rHD$eL6IgRO7BqtX+lImijb%@ z=}kaEiP9Az(xrwDibyZg3DR3a34s*9x%OUbueHxP_ujL=vCkNHjQfWpj*wa2Ip;gy z=XrkRiD28`*!JX>MKV6hRAs#$?tN&G#Jx=WKzb|&M5vPv#~-uS8EGJY|7-&;F>~T@;;A3R%n%a7t@^cxD%g3|Cj88{=3pgia z@a!tH|vZxiIZJ%$j!@h@W{-4LM#%fq(j&qc{T8Ofz@SUQbyufNiQ?N~k-v$GCkGs*88%Ph z=$CElaGRKRW2Sv|)szW4pQ6i4Oxc$?-wHL|+hx4YI{%y@Tbgg7u+tM9RXvIj?hmn; zeYtxD)L4j+A}UW>-s0ZEb*C@T zFEjLg9VnfL$!u+0`SA3M#GF-DAj?8V%WRC=o0)jrdS|fJbM(f|9tB>jTfI`9jAmy> zRL}B1u|HOO(p3VGaf)`&wu`ko95TZ@9ESlsC!?m zs5H^o2{*IQiqHe}KEz4gemM;yxrG2!f0TQFbWZ@a^@*v4!KN&<6tM&s)&}91C13Qy zK8~&T$7MGofmKPsU1Iox2MYb$k&?pRK6pKS?eSgy8d6}P&=4tq_7qTS-6}JC>7fj5<{(B z#6Q0b+5sQAGA~&H{FC?SB!ps!JFyKPfSq|qx`61Z;c({*mT;Rnhriy_q$zt3BE!4z zW+<5$*4#PjvImZUeF|tsMrA;8NyO|{ljn}oFQd;ZA~}>N^HUr*$_(oimkV?*Q1S0E zcU7~-cPG)rbC6bw$KuDP6M>Q)vz({tic$>+olihQ2k$iRpFVyGHi02jk2J%X5j}Mu zuFm@Ji`WX?gPOa&Nc@h``MB|MkK|V|G?y^J*vYH%LhS4w^IIBAw~8%cbnPK9-P!m^ zK^>$on0qg?p<4xw@OlV(rx=R+fvn_Kdg7Z)_8 zWCL2&stT$KZ(PdY^_9RYg$gi1B6P7xdZK=3-Q!iQ3j_D}>(9|xMiOS!!%vb77|~%G z{v>9}Fhv2X7`40UR4oyXElSMv+e`a7upP6z*h9-ZAynuOnHF&y)?8dd#16nD5j_B} z;2pluXtY6gp;4O3G5Z|B^4exS7=Zwywl)n-U*VVCKNp6dv4uLBzcQQxO1kuagswb? z!1O$>{R@3GmKcwPfgKtn-{%J+&FZQ?KcAn^6ms?R*ZR=R;aCM^ z4qXv7l!qo1I!k19h-wb8t!)Aop<(DzGjXHLOE!Os)yC3V(lq6iln&@CplUo4#0%id zr{RAv3;ET*m6`?pN3sBoW}m$_-(bUtm%IJ0puB;4pf?(L$|& z8qQ@FAYTI{3}OGTjHd@qo@>BTkZl;=%y{sP|F98>XuBO(Vy`&=S zefNe+F9>jN>!S;_>%`!0$%3hzB}#0jntb!^8H53Qz4Fc)amx$EFK(Ns+1PpOGtfPx zDS=NQ+X+y1MQ|jFjm(u3=&D^nN#m|kAIp@r`t^? zz{uhV5#W{aJP<=VKSuJi&EhBu;-H{6BFM89hs0eCwEXgqdhactY)|!0M>?EUyRk6w zaaSEr;&Z=NtVzY}WS8%WoY&ijeu3^o;xc`S#n1|6ljDam;M#ND)$o|M}HU)(0{Lkg=xrPk&~n@!KmkzJ)y=x zDnhrKe5K~1#K7Cy&q)SXK8yR9PiEH}v4;b3Qkg=NKtI%V)5>7%OjSjHWgquC;pXXu z9J?+~n5w}qP~esQFSMggV^M9{qBUdQ8fNhPiH;J-E9pbCGK@8*EgUk*8qIKLQ$q_$ zQ0i0r>Fribq+mu=0WKkTjv~5#<#Vm)m;0xOHfIL5-o#dJvYd+R{$|7{{WI!+3FaA;d=kO}iP|PhLZTE#`uFuSjp}J!87pfa zM^4Kdu}>#Bd)t3HohYe5b4Yo=mMu_4`H0|H$MBcRI`w-u39Ag0D(dN039e=<*Glb> zpIKI&bl!Q$U@DzU2`|;)3&6q>t)T4R7}`<-2Om`^eI}{uaQH>| z(Jo-x(89zn{r)`@kee3EXk`zVel_YCvv-gO1)xEdZm$lJoJnGa!iQGJVe;tRR>=h z<%DHZ`J6QA!8_p4(ip6qAyxjonz~zZ?rJ#E9~y3e7t;F&(0s(XI>+&?qf; z-wY(Uk}m#ycwIN7chN}LNwdPyM>Wihk^^;9A|Au_aHH5Q)e8roU#N+;HX&&6BXpo? zT@WSTS;eDsLAZlv+r;qHWjMP} z&3}L4CkG-T+S=+Kt0uo4+RUwv&pUZ+qwK@hUC{9a6A?FBd~ru`-v-HtbQsLc=HMaXdD%rj z<&Hp^1ZkwQezsJ#VwdrAh zhrdL#l-|y9_Xpn%h3_`C0`wn~Fh|vqEEvA#$sYKGhj*-ygNL9)$UrRr4-)i!eztiBzYOsl8SnK%o z`q4w6{s1=q7=OvkmGaWd)~5g-^=*fYdU+Z1^}Ck+=61}wh9+*eS(KySJ4AZkgmpFZ ze01QT0zt|0=A`Y{!6JP*R=1*#;p2BNcY{QaI|WM5&9=fK4-Rb6ZQJy2RH4R3hg9Rj z@fJ_^v4YulmWo&fz7wAS#(+c`OfAtppYxMW* z?+wxo6KA{K(jymjpvIO~wH{dCDX1TH{&@F8@#D>!06kXxk9ppH9Y(?*dU)+d zE+7ioL9Pn>uPxdEZ#@>Ic5g-VKbeTk= zPMqg5g!2V9Q61DxKdYZgUz)*MPmCIxFh44Px#N?fZ+R2x_LPD?%*5Emf|cixM7k=m#BQ%_81 z+Ks*L1zW-bKPZ5-R00&Ek6$A4(Cjqmyd!2^eTCSuUo~|x!KB+3zvA2EI69|`c&tq3 zo+UU;l8SpB^{H#CRyGvV3Lq(dmO@q@{u0$pJ%&d{Z-J+cjAi0y4<>1kZhZ@z(62p` zx8IIwu$jlut|(`p#e3({r{!DgIcH<%+kJ8pO_7&pn&e=_4&k>sbqrJ?{GN@wUj!*YD&&n@} zIjK|0`pUPLo4WDP@q-2SEPOp-nOMBg$3D?m5F7fgJw0nU*IpN{aqHs-BLvAHIxgZ# zIEGPb;#{@87X@4acH-0AmC-Wm@gIRot!Gb0(D`%;et#nMVGg8u9Fa0`qVN--iO>b2 zy}vs*{ue+EBGGCYOy;4b8t?+Zf|DYen(R3CE)ChBGknC(3y^u@A!dN5AYio00zdkR zI$}hhCsMHSzAX^i2IK;S)t-`Q)xRfljqu$oS~ATC?!BW&l3S`?18e$WuEv22-8ZF1}?i|4#m+qZ=ctueG9TGvSbJ+%jX43 zw@xUB`7ut&%3Ut6`BbTQccYq6_VL!U-kuX5Xe3kZ_M-m*9shxk@4gYD>ST6N{NWU~ z;(_9SqE5cR${oCxBjy8vbH!i_lD#m8{QX1bFOW}D~##~b(x+%i$| zWV<`_vqS^gQ%#l6s4g*!Z(r$1zbvxG6h$myF*sr; z!HdDLI?||K=;df&byY`w$8WwEnT$@KpU{{#KuVj`$v5z6T^%U;Kws?sNK_kRKF&Dq zKrlR8uzE~R4xX*KJFa~u(nN-7x?eBCoJYN)R(sDiDmGaB^ch6wWjsrBh87zTc1Odp zLQEQRKeG}yF9QYB_G^za??mI!T~sxqKGs;S!-~o>fUY`I z6A8Z{lRmm*bRvzr`1y3IP^A2Kc29hb&OnF@7I5n-*3X@o_TW{6BnU2BRMkvLs5$%4 zo}6fiu*uVhzliAEeUdjeBaN3QSQDdgTnkdv@0pra5uK_yU|qc*YTpww zlN7dUftH0E;UHN3HW+`1xxv1dBz82i+7UA9%6cO{fcyKi7NatAo69$?X;RkX{dNy}z=atSqT~^kZwa*fwKLbw}GBU z`0NU7iPF&J(ZvKIp~LgJyknQHf9x(Zs`un&Y`?w7Fo-!7VyPjIi(OcLLcT@1?N;v5 z#FIMTgvy_6T+D(^b`@Wy^Yr1;ujqi5~g&p-iM$b{yCrq2BTqm#mqL z+g2-5^%q#oI2klM3ZP({7e6t}x& zqvh2O@(pXIejA;k$4hn~pJfEY+G9^)kzlne3dZWKDeeab*(OKk$~6OrKD`lEX7ZKc z=}w8SijK-F0;nH_yY^Us2`zBvwXc4*Y-o$rG*coC<$g z%b{ymAD3$*kk@a4#s-JH@ZB)^=Q45iwyb&+Kz$#;}=lZ z^X(Mxj9u}foLVIDx&nL~O2O-s&j>0Xps2*$A3dK!|Nht9Nb_uoOlZAWB;?8^scT{H zF64Zeh1sm8TM4G;s@YE1>h1I@eB@MFh~ss=r*ZrylLYQ~NbS7Iq|m%ce28v=8&!0u zK}Rd2WI9$z#J|!rZ@}AI;G0MCbotZW3(XQV*?TnmUVki_fBUpz`as;0mF_y?dm^Ma zTJ%dIn0N*Y<1M@nzTHP6!4|Gn0T-Isgrcw$fko>m$0d6M!R zUg8IihgL?lHQHYGLWB9IJbC~}1L-d=f!1A8v2kGzSL;oFEWV4gHl~ww+4WTYDq~=j_evHJK_35!byH3iNmf_aIb>XvC|+6PM^x<` zgd@EYe*|~6A_ z!1plY<6S#vt09|OQCD#AsJ<4HV>9s;>uMG6M+%7szZQlt1^g4oi4t{K+BCNUxehNG{Q7;v8v|5Q7) z&QML>mTmFHWacxy2HNrS-KKt8=7mm#uh;lyfnpE`ZoyNc*Laot}( z!SrQQn5ML8_F`rj!!t*6^0nO#L5Xq-0Yra4IJ@8z z^j{mwt=dps0D}4RX8+Unp`HNrqP-4y3j)xK&W~HvfCCYw#eHtz(Dr?Qxygw@cZKcW z`$<4-fo!H<4FHsWfk-zA=EygcE@R**54FTH)nl{N&su9V-IieYc}z7-kXK28Doru6#ga`$yUU} z&G9qQ`HmhKR=@EoB=@APygMN^u0!F6xF;LlCl1wwu_g9U`Ao>%UDRmNXg~qq_X{Lb zyr=dTRAhO+1P|TE1J(PB3SFBfL;J3aiRAMr;<-c$rzRJbf}+~o0tzODRA#4NpsR^j z0hqw`7bxB02(Z_=yo^eR;_8rd1<*Z%JrfcEdFZ15A2zmH^XH~H1h!={x7Sw~5YpPG^4W8(I z^Y*pRrX!N_rU=1hP- z3z-K{HeG8odhoaeZrHeK$xI`M+j&c5a3 zR7%^W7s>nqta)LZFj=BF!C(*pSv$H2=xo|e_`$4!h(+&@4eI9$5)0aI#Y#vXX!%aQ z>l~lZiDOOG?xP*l;3=jKW?ujnFC-6f64vj6yHOhetYYBF)!^3z-lN+?ndr$_b*@C@M%cE0c5oF{l`qP_j{V^q$((EciP z{+Yd#fCPv;8RivuK+wUV;u-*Y68B2B9A5Gn@E%l*7a!Z$GwOa@HT>*UVo02yiQfeq1z4{t~AMy`Lk>blLf~VCx4vZKeu#o&GMmGix17cZ*sz3pSZh( z_rHAX<0sm6IPwmLJT6+roM+HmLCD22S zF!Kpb0?1bN!a!G&i52Pmt9haAr~|mVpI^`wd-7|d#u06i-DQdwvD8j6D~0_tILeqv<#9UUu^+sWx_kG z2|wABXhMS81Om@w8z4t|xHb`4;!|*Aw5G;q^+9fzJ5TGK1*>~!92(NP#OhESL`h(R zY|P`#u=M#w#J2WPExz>LycElk(+y2SJ(4N(S&A*L2{sNdPTmv$b`swk0ObVqv$M=( zGhkLmR&Jm0n5e3*og*YT$h9j4NW+U;)ZQi-hAbxboOyt0G!yNlt~7VbKr3!UyeF&T zVQm28PHLi(j@#|BS1;-dpAu#Oo$86J2Aox!shp!Ba9r0yVG9WZ zUJ<>73y3277a12$PZD!su@(-d=T1(Q3(5N^jP72Yv~J=na{Q@W6kq^b>>b zXra+vkQkuMKRd-=RlhQG&b)nI*1?4h&TGG<67vpp?85QK*|8*nK*!0BrW5$SSd9QI zhR;)rzSd^%y`mA|6u>`n?PW-1%}q;_7u`VFkw1q#$5uE@l?yqB!*q(6wKYjJj_e~@ ziBYZb5BxT*bn5Kvx-B;?BopO?i@t~zu?m0%XhE-^SmU=_OIXZ_H=39;%tpO76{L|$ zGfT6U_0JA7CnTAcrn|&?&#Lw?0QJHf20TEqsiH42M86QxCMemSMS4|L;%SWQCFHo& zCoiW5l~}rS8*CXVJ)-&YU3wzK2IsxofnXT~5U^8$sB6@oxDKUvF1~IV6VG0ZBSv>@ zzX)*+Z^WyTi(eDvNJ=Xhy1mr-c)3o|Q+P-e@0Sg+LB;o*=Vk81=udTU0+w+;i->#T zo*W6`pb(}achU1iFOocwkI?W5e*pN}ip)&8)nylCsJ$4n_PF3N#__S5z8iJQNjHm; z!@P7TPS|ORY&GX)x4^ggY5@%LY?2-G>tl4Mat@VFnhaK*+psjMEl5##cvqacxS>3b z!7HNXct`M=2ojjAJ^)uR5+L8g8e6qA31S>fjBt&cJ4ShS_PLeGWomFu2|R4FGYu0_q>|7%zu21gM zbl9{Z4@W5LyhNosk{{6v1vLcsNycg%&x09C&Lr8%m_mv>$}qM#HX|xiE$Phcw;{X0 zdke;rRrvsD+Ksb?bVm>r2Db_R@f?4;sZ8t_$iM0w zGu6(sZ~!@%4Uo{4Bcq$LT9RiDPnJDif0f6~V2beP7u_dJBLWfQGs<{)BH3jgJ`ODJ z{_EE3qAK*uc8$;95Y!Z$52M7BTxg;`^RMX|8FDW0lqAZfVuOi^9S108=xumZrdm&d zYS=BjefoP*l=G~AxG7DY6=eINK233d3G_CGgV-H!vQX10$4N}RnX!~2qBS>edrs5h zmTwwB4vpF0em+W=1;YG|K7Yv;W4Y_qv90}`i;4oe4Zdej8i{wS2EF#%m!KK9`UaR2 zd&(sut0Cb4zJ{i8CqTett9K=N?~Cl=wKeDD$vulNj$0Q>JbKCX!`=SN$iBWe-dI zVQ|$8hZ*ZGcD^yxL9yd@8w_^~9a;7U(bpjgA*RuR8tOc?M^n3VQ^Z1xl!N_`tOg(z zW1AxLs0jxBVLvZ@<5X?DcZ_jU#oL+0S-TpYoll1g-d&=dZ;}S>WWkO^SG;-)k}u?x z%L0;S?c96!fSxoz=p|)8|Fw^ejEb{ki;2;d(a5`U6XMtK@JQv$I26`vymI*CQ>`0s zinU3jd^DTG8M$I_sj^ zkm1?##IU>;p5E=qy~mq+jD=HogJf?9S-{*aC$7!Sg(XDRQ~o4*)|x~+GF1`NaJ%go zFuc_9`)qri|L7YD{F6RThpPj8Hv>=WIMX_cYbn{KX>k(kNLYqe41M6PS)}^oK2Eo~ zNBIgjm%kdqWpiJRD04n~_LDWmXE<|D@TZn2@yg`2MnxsQ@-vcU;t%iW^sEevH zJ8#`2S{8QGa9?PV%V39N_aOr)8!EVpEC=LA`>|9a&o00HJt)_4+YE`j1Y@Pm<$K91 z=7oA$Khq{1BTR^f3h+aqUf(4|J`3dbsQ`%-l}Pr%w3hq=xd2kGbv_F2EVT!aV~xs@ z=B$h>Pe)7q%Xvu65*)LDoT>~tdn|FIQJETg7f_5H=lzDsg!o~; z$wh7a0v#(POJpjO$;gFxAnW?`T37<}==X7RBmZ&!)h^_IQa<%g2-KCx1D%%uL}&|u z?-U#duttrAs0b*&6JXZW{CTFiBspW?LRe$ApX&ZTVwQOlv>CYWe;Fj?FT=OM{CTF3 zAAs8Ir~^pxm}Orf6|`27FJa&x)Z_o+#lCgF=kVQu5xJF!=)+0uLGV04%hcK%0f4>P@Rt+Q^xW#~P^rb)`e`ZRPi`%3?6wZTeq0WBN|n@5LNK}7;b4@l}d1K8ctQjOX(I}6?R8_^Dv zDJm9cJ`#00njrY)h)T3zpy~SNgi;OQ5}!vBmAfQh^-$>xkHbT--c5ZUZ4r?_@D`pq zz+4jJ24$f3XTqNQ!x+YA$2;a5Exp9%V0i|88d4v7A!!m%-mzXVWSD5gK4F&rt|d*@ zGl_6ysl&g{79Anqly#1Qep-2ix!;6TZ1py%Ib-3Qt~%#D#z0b~4p70A0uAX8#EO=> zd-?fxD@S3g6>T4Mxy^zGx`az2Vr=w4N$duy3^AZ1_L#$8pampgXC88HL<3w%^lTo> zzLeMz{4v;ns=7ohUWw1y%vUahuDNLD2LIbb#6e*{(Bsy6Mr?Ewh|4G@?EytQcB_^Z z4qwZjIHb^Bx^UA#;G|Cq{o}FMWM<;PZ%fU5=^MO$D{n@++P(bK?LHkL$$4vDi*9xg zqJP?R=EYrHC_PI%wt~JujKycnV_F~gv5x~)LMv(ysw1Pg&^?wAw7k3Z`oo8N{8ML) zz^@2sP0yhfpi>=i=A9URvc)_+L5qoKQa}{kwFb<~Sa+t^2Na%78oQ-m;k2+8Ve)#y zHdr_#EIJ3#{$DicrCC5$!pK?6?b{@teKh4%W-ZY4PM&HUI}fA82E(YS`F@c9!w*2A zO#k2+n++?9Kn=@KW+UErD=MmWBr2}23;X2kyFNO3R^*FHvB9dCO!6m}+l(iFo(MkS zMgy#cAZ`oKo=Hu$QM=76fty}$O?Ql>>8{=yuDA%IS@X;qB8Scy+wRD!U&D)LJr1}i zrgEnt(op#6YpLRtK!LfN40eAz_=9XdVm_{~^QdGiVh+RWu13u*h##{g@bxG^WX;#O*0 z%2`^=m>oNGB9iWYh%9{JFC zi?y?>&&PXXoaQHQxh2;cHR>Q=>>Q@(KaXttT)HHD#{_PLe)S9Fjteia4iIqw9IqOh(TUvQGx^~SM;29Z0DLjXA`FaT4IRA6g<6{3k8W&006=`Xz zz&c@OAaa^(;ak8;qt>iTW7(FT^xnOgkRn7cVK>Hvmy zA3Qx{RC2kbxiFq^;PK5SRC||O(AXo|r{XH4vg0*M2;(UifvQM*Y!+4faA8#K|$Le(2H>SnTGW1mo5pExV z!4irw2}1(@r>Jur}y~erwohiS?U`z^!{dupog5ldq1ZwY*SOWnR$1}t5q(-f z$=VRhV`=_u_dM@tLDn+pWmpE#MyegnOdSkfZh=QaSm5-Zvc*SoMi)~qApM>00Rr+a zi=K1B1F}(OPHX5%vlaqEmGVl%(^D)m^K19)M3ZWQ=R*+@le?O_zmX9oW4#-EakS0Z zXB(4xd>-f9z2e`OiT#v%XeCW@3e4_nfmKK*>@$s@-&EYZ<_RA8R87U(qtjq;W>pa7eOQa zihB*cevr#9Rz~DA+S5-6dCP|->Nx!52)dvThRI%`>hQFZEph5Vy9Ot0UzBH{!UERo z{H`(I8K{B|;j^ure9u%?_15?4HqA@YZLS?P@0HuY{Dyciu&$GlvPES;hdo}wEW6^v zXIziHQ(v|v)j!+rd>|h;XXR_J-zLYP+}0OK<;KxEP#TD?hGj!+%_e8B-+ybM(VLa! zO?fr>c|qmNxqClp+pcjQh9JE;0ZASD?1Wr0s_Mc2=%aYxaW8!G29~XHo zy!mAzUmwr45D?WQLTqbBu+&$eZZ+Vkx#!<_jCNj10%DNu^GggKkpdG;1oRusT#lDg z8cxUaNbk=f0C?>=BBGv!pXbc*jw|rVg&SIs2Tf#tGffg|{0Q zY#J`-OqO+TIAvbI*dLUB@H2~2e$Q_C2pa6Iq4U=E*qH5`k0${a$Xzk48Ce+BxH+0} z6HgzO*T+*@{NB#S7nt$r$R%#-BFr-++)9YWZMmX!M?Pvj4({D`cV zn6g=m2qw!%-cU^DJgVXT*{L7Rw-OHVsEJ}*Tvt0d7N90>0)9Lpr*nGeNR0F80E%Iy zjG5%y(eW0G@cZoa<_;H`xq6a29K$PZ_v*S zwpDGvG+ImV8jtRZtVArfX zCP<74Iv<|-vix%zTi46JYRfun<*wG^6QD0A$sM@uwxgQp5TSy=T_e15ScCFHiMpNV zs$#sELqk;ipaYXNEz29PEPnj>c---oSLv7K9^#b1-@#CtFzDe4aycao z`V)x#f&G)%04RE&0zwr0F1!Atfcdvit1p-urP`7}IAB5aw1gON^Yh@oke#O)Tkl6S z-9T#4v6K`&opUFX9s~!8yL z3HMFhgPHXWqAD^rcyPOIqbOD_X=2@iV@A6mds^X){yPt4yN`a;rUslwkqPv1hC;HP z&N~P5&OhTo3|#ow`G9z&Cv>8%CCL-Y25(TD!$by*#TKmx$AlZ-oneUx%&jqt$9)|L z33uL1d$|BQ!R`yR!6aeTVdFx^V-2ATFfQe2^2HpZA{ZcYbvNjDobq_sCVd%^66J0= zeplhcwQ#qG^IUq7ueu4pUn9<)Gz zfSZxDP9uJsTr*fE1a3Y5s>G;ztkJ1$7H8b|RE;5e zZ`0D)s$H-!YR_}1$eQ?&KsL_1{J`$fRY&VbH+@<{KJh1gmVo3oc#<@Ua$P9?20nbf zb>r}2Q-QH!td(iksHRObHu^j`RxS7?Gv-> zwh?)jV-q9I^>sr{gO;k9=PrCuKCW(X(_&oIpf|X1qk|;x0RcEI^Snf~WQPe?VD`54 zV2am`zMB~3V6Ul~B z_Jv>P^;t`P_2MH{VnB%_F%`h-B13eGlE#7yGF<#G(t^HdFp1x0XOI~Cc7fUkVY)-q zUoZ({D)vN;XRD2j*)+cF^CA>&aT?^Yu!Lsa?RuFJsiz{jv>Gq#OGqIiaashq@RUGU zry!avHd>u-Trk#@ePgmHxoe^ zuj3s5Nl^0EWpeR4JOWaQiqMiHrXX3}5JCVK!{>PM^sB0PF;A9<&sQQWZB))1J>z>1 z${txdlG{+k)wg1JU5GVv7>>ZKwg6?@Oph8hOH@&wt;M%>xlB_xR+&w%i>fB_AWl9v zps~O!sFw+QVC;NNmq`TjM2Or%AJ=7|>NOUtKr)(^Cf&F?m=j4~ZTxAnlglmXm^14) z{?snTN$M2bl$$F!Xv*t}@X(h{UgLZC~3dunL8D--UDlO|? zAkPYv3p$5Fu~Vgqt?QkLbHp$pOE*HE&-H@ymN5LdFPR32THocRm)AdibTF%X9hb7OV7=Ug<8$tol=FPr7=~YG@4H5J5kT94 zWuof5+%vi2b=0^c+o+IT#Y=m;&{Csxck8@9f>)%*w<#HqDR5S)ww4^A`-vtCRKa2) ztRa>mc38Fw+9YdEi-NeWmv*jNXAij#m|>X8}0{BMmLr7Ddv==tOnStuX$ib%d8v0sSrBs)d0F#-jKFb8QD^Z#kH39@OBb*6v>A zw{9P_D-Y5sKMWGk=x6B0&}}w}kwq!BmC#7F!o(^xzx#|l?)k_*&4+1)RYIqsNTz~{ zIWsO8&ox>xL6RL3a-}0h(C@OgmO=RR&Im^+s(N-=_6`mSf{$H7wya$|udHA$@|*Q%f_AqjC?Wn> z^d!UFa%&~B>%ubeNyiacwumn?^kG0{ zm0jx;EHKP*L=hcn`S6Fe@#6s2%}1$Bw3_Su%H71Ixm?N1U1+%?L=Tmg2*)iis0TjQ z!{C2nI3~6&8wcRtcQ5-s3i)C>Ghy&9{vEykA%BL;DFao2(p8x$nW)7PVn}&0dxMC^ z%ANQTa_#ewqUMdS%VwDd8tbpT1RY|Sw`yJ(Rmx;VpKV9IjG^Gr&FC;>`EoqKik#q@ z&#szBM>I*`AdzG)L}ui>$JodCha2fTGI%>XbQ&W^@q2TQTu$eE4?znDqkkzs{oTb= z15N;9^wba{Ko-2)R0Zgft2$k6L!-1hT*v+O?K&}M4}!Nu1ji?#{mrP#ygLoN$5(qx8PXJ zCn!9P)N~Ff4t(tz0!_*#i4y>e=X!Jq6nRjx&q0m|%>~?3-N>Ppl604!9+c>Y@`_#(8cS;2hGoN zjJLga4~{ct>#b^K63dk2clHO|_Se`D{?zVS1_aM4@TfN_dpy$O8ai2zL&aFKiJ4c$ zX@;A4?w+pg+G?44$S2~tC)c6hAwA!#+i)V?1pOScAzf4%eb2S4ThdL(fJ^h*vruU) z<_U}m>4A;}JbeIy6-oedy!RaukRA_@L_~bgJ9u!Z)ybmL#%tk<^6|cx)AD`SK+B4# zxY;WGSim|r_cGBjM7>}Y#k_T*<@`H$AB8be31Wb7tK3Cb+|xTLaX}k&nAynE0Xv~} zCd7e~EUP6&)@mARQ1&k-dN1D^UZ}55U%5{bdX-b zANXk9z#SXJRyZLUV=xj{>3OEv-uW=76JZO&L&izEV^l6cR%O+m$fNZvM3FCiZbUrs z+F<68DMvnLB2U>$R{rCbx$v9ljOC{t4+jtfs7g#^lTe@;;T3*ZR1_K2BvD_c94z~h ztAzR{f9>J(l2Xgf#d9)mHSVuDS*SKoet~^z5+R?>(4}PiL7pKlrAtRu<9@2~z9q!< zasjRQV%_7euYEM%tt_WqQ@85=t(2p@c^V6jYT}_}k%K-4`cMUl_jbDbKG+JOHvtTH z$c1y#Hp|uIjHEh;LqjJBq_=URS#*q~PrgH}pOcG*F(X7m#D?}7uaK~;bsY_1=A4JO zfR0BG^)I@;vexG%r09YwK5UrgZIw!5B@>XIkVrxOFtX-*Pc5EdvhD(m*UqgvV_@~b z5YG0d_v2u_5qvppNmnAsv{Xlql|~i)keG$mIvQUPFGrvohWZB z6BbaumPar3xv%&2F`6C87P$#CLc|!^cTOD^jU2z^CMrFuxXs!l5>bh_KfM*rnn-xN zEq?w-_8H?WZQATYTG|EJrY~N4ZVQbSF@;A%!26!@%miK0|Bt=*jB0XQ+l4_;lwL(@ zRGLzyDLpnoM5GBwGb&OeARt9r6a}Og1q6g3C?GA;tAvh#^d4&HorGq9B%bNoYpuQZ zUi+N!e&@V@zA@e(8PSl;XFhYzXU@A^_jR$9g)XBWm1vc{PQ~49P_E~c%v8l4_E~iXo1DVIHKX2>?FgzgY%1*#5no{#XpP|^2R3k6|!>Noq4V- zHCDSgb19^j)}CJ!SC*TJ@zT@>JZhb`Znom(EgL=n97VmVlosKsS*cQVd#I5<-0uUH zL3UO(E708s#=CkTnK5(zI&yUQqSDj7p)YUv1-7xV3&w9ABV`?*w&Uv;YQ|=1>QX#G zsCd>97pyyYzi;=D&QU18VARaqx~6ZEO9T77<&s_KA{WJ?eG8L4Ha7|*MrL+2B|dn7 z)t?nq=+F34U90pc!(sc$*4Tb8aSV{g(YroNV>%5qBd*MR)trH}z?i&dhOaAayvVi3 zO*kmYhXGKAom?6GbgX-bj#%FQk+GVZ4-k*`wv5H zOHKV}>krEU9Y@T?M$dk0J~qww)@eFgG3NkPkHBbR7sF}=(RJ`mMhh>W8TYXjC-={i zAFBG~#ok>vk-dI8^m+=9ojd)VAPSb}+7woVti3OU5EM}wFx$aiaocW%)ROE&HW8~*LS=|H~DzHWQ*$h8%{ z(^q*N&$M;99;NU*3VRPJUkJfpyW2ofHo$aEbH^~Y)-mZ{lsaa_ukm;w{4=D^BHf> z(9F@$>Ke0Crua?!!LAZ0XY$!vd+j`b^w?wGw~=Bp{Q}x3%l!iHKND_z@&1dG-_a|F zLYDOp4$t|@qpKXF$Glv-G@aFNc(M^FVOLfURLftNNN6_x_!K{7Se7(&wdR6WbcWRw zP3V5|o(sU3ps@+BJ`mLL7iSwWtuLRds;C)1v@*{Y(iNh3{Y6O7Dmo)o zhr$=+*8yapBf8ZHhbK+u%Tb8By6)`Qfl!AuLBl_AUk;P8N=h7(KDCmd75sl*h zeInRXq_>Qf*iC}b%xVXDY{HFHNs8G+mHH*GO~PUpH})^>Cwuq|=lGhEVt8hpTLCDZ zuxFlow}uY>5n&7WHkS=S36_|@xZj?B@u~nkJhtojNCnLontWenU|})w`+5-KrgQZj zCfRW6wNdo4E#Wo*1*P|*;1g+MD^MUjtxnI?JLy2U)_@dUOXY={28_tMm+>39&IN=h zlR=@cm0!zj-M!+^<>wESgz#8D40OFXEv+E(`Jn9ie~AzM59wS*AWd)B0HsaC?Y4$3 z#Iu9!iR}l|XZl>8FqqSpQQ?m}Yl>ENKxHQm?SKxtCre1lB1*rk_Ym_X^WZ0g^QVr* zE7auDNhxh5Q6~vsFSE7EX=X~wA`}47gd3a0yYY>iYi{a?f@E9BXuEJcj&Zf^rMpzRVuoX zQ9J?Rs#gjo(Lz$<{^t<&3bm&vH1-nii4lZmlvD8SNVziCOB8Gktxqy2UcRc(J1$!H ziX=#YwiukYx0xp;^D#ZGh_wtLqD$cg5H z&$CR!H8kSNwgC`{huG9~Yl58KYy1(A&!cBzBbYa)%Jn+=D$aCXWH7l^ZCNxnemeFd zt*0b9WRr3MyZyweeZcARUj9U)|4zKpt6RwDXQEbN z8Fvikw>iZ&{N0danzL^rqW!!0&)WMje82DSBR1E~N4!P)P$P|>)h3~w$n-1xOubKi zq_YSS_g0kOcxF|C_0AcLOc zzSrqcUYLu*r2*jPa}Z!y=sFx{{WvpG9>L%hN}W2ia_q=m!4`uXV=1vM6PkKgj@91$ zQb{TYOyRGsaLuWKz;LV|x@Miy-nnOaPeGG5cEd66j>~)A!#hglb&yCzQP%5CBK+{& zx70H@rw?KlFv7)MTw$zh=cBoZEIv+w{+MR>Bq<_094r5t+)b!YTSYRKdXY`<4~T#C zDrc+~(%)wCD?yFx6jaGx(;m!M`+PR z&2>BP!Oho_Bfjw%zwo~H_0h}sGoTUA{6EiZV#@c>#<(8=a>`M!pp4FH<|zh5E90tH zr1?-udY|Ag2T5jh+EX6tc+VzQ{}D8Q3G#XE2}B8js_uu&iki^CS;bKJ>)TeP8i)A- zimR~flY2Ofc{AK8K;eVYb^Tr=4GPGWd%8HoY2*vAaR`sqs~s!dN{d=d_1w>@d`ALw z=6OxSD5H<|9KUGNZl$G%e#mjCx)+?)oeMXK9=VJ8{LHo@=3%HjpXtOmBmTLb=sw3$ z&eg5qPDttS`oxFjD(OSp7q!5l{y2UcEhjT>{*CX8|MIqzu|i#UC-1Gsvw1{&QcjIN zzR}!y^v9lN8PaS}-mzy2t``(}?mkpJh>P*!=`Mck7m68`cw$h|+&D|>JE=%J)wy=1LwsKCLS;)$8Ok88ZVW;n)^pYac(NuC6FrQyr&Y+3!iF3dh zB{@j1yy%Z+ib@9 zUL_!~NQk+){ChQ_e(_Sd7bD8o%cBMBxq>J~A=EFr#0m?ju$r%&)gVL(oagh>6SI|7 zxXFmDtgQNe0aPhx!H10V33wg)9LKtb0j(i@mEWYyv z*7$h|Et`}1r9E2p{D6tMhKK<6JlmQ~BQoWYU?kzR)xL?5#qMUXKs1B5%9f{gcB;89O5{X;``W9%QtQkx?YE1+Hy|4^2%fvNuKoMC7 z&^z|-0_k2VD3KPr05JiG1}OBHC7v^=Msb#bd$zGwqAy?mtLUa}ime~D=fy2ht$C?g zwCLinUZX$&C2!~l=V@JPGkDqL`BL0o3S+6QT^Tb>=%biBM-pl5={w2Y*B+OzM&0!M z-(J3-+zS+tL8V$<2KnK^SE>Ddf{Y_wJ((3(au7Eh^i-Sgtm8v$!Dea~M$DtC!c|*G zG2%{}0IQZqo8qbk`n5kj@hsl?H54m`Hwh@Qv@(_6*Vx+DEw4z)7%PXXyl#44Ll4v) zLYL5g8D0o35{NK!By2g8C8O4PLAJpdL10IGS3?1jb$|MOwyEju46y&Rn2t2sp+ZN^5k{pY>`WDr!6mKPTD@S#1S_c31lK-*}Kq->F6=Dgjo@oFH zz3}@~Ji;MfW#E+wqjK6Dcy^GUedKt<{JNCc)R~$$F6G~)=ctN3#-F=ba<~GG?7s}^ zUvJZp^dTG+>Dq!KT}@)+$_{#Qak?u#bRJ|G{<-4+WlB&$9QyZ;NdI51VRw!;LSo#< zqH@DT`ovb>C!)H4?UL~hsCZMiciHPmOj>!+Q%>Qtt3n3i(09KZL368AK4aF~l*OhV zjedey-?Sk9DA$(#@QV*4N?~E~Uu4Em(7ym7D+zF4U6L>2;FgZdq2UhcE`Vk1()=b1 z&9QHNcnr~2PwxFmvB&e1Vr=z*q=V{^8j&U6X4;Da8Sp9c6s(74b~aI_?){UH9uxn?}`#f z1$g8{W>F;VNih>%UdLqy`^~^u?=@%Hdq37y?fl+ZrjULm-b3{{A3PklS-%-LdCG^b zQ=oxcJ~QKfwm|jE+vP#l?v|eh2dU1h>?khgdtxG!v*0J$mc75`nGBf#(wh^#)}hy( zXsa%W*8QM<_*?~|PRc{rOtGw9pp1*U^|gGUWQy9(Bf%q9u&0wT z*^xI!i;F%ovM?a;!Ti$ok}{J*q2{j*a;}@@|4F( zN)Tz%n#FH%@ja~u@FPWP7XB+VA5hxX#s+yZOw|0Z^k_N(=HEfBW6jy12!Bb>p4*-<8{c%R@XDM2=yD137? zShqU0;m6Fq5QgUB5(ACln_PU1Lk6l>PRZ{uCVXB#7)rFyTfTI{-3meP$*jZGuEm}M zkVjA2uh8^WaMjZJ@>V8khec5?$#jTudiqHYCMHH|3AV;+t-yO7fyAfdgTlfQ<8t|Dhs1cq?yxjc9|uyqQtH?B zI4-YIG*fsXL!l0k(bal0(q>?dDW2*^U#XuWu{z8=EKuvAE7gOyI|`?Va|qX3_&M=E zf*%vjr@!82u+kfjy-2lhrMom^U|Tif-gz5FfL;%x)bbLKUl( z#w3VGt_$IKu*0vNR77TxeD-F-g$~($mQ=0Zwwv9|jj)y{9TlE5`FDoMoW8R7iy6X&GrGr@xl4)l*TyYJ%)4c&DeuUB z3vZ>Mkn!R*xt2z7Yn(jU-vX-EB!_Pl8rw3P*2UwGIoDj(;BfVM?{=9VKHH69n@(sT zIr?701M(u<;9bo?r<0fs7v3Nd@f?C`hymqZK^8b@fEX`u4xWbW0?$f`l=Zq~)gFT} zU7KUocq5woRuI8#Vi1Ntz;;@C~k(i6o&p)*{<( zhI;u5e7I}pG9KNRACYI=As|Ij5n|%Pr2qou^B^5)LomWck4QD4*+;w{uhiO?9zIT& zQvNo!@VMKudKjvIi|`DO!a|!rqw+z}H>a^F);^cVBL8iJA#3~HGmoE+-RAx79BFIue$;bJvq>rp!cfaLYUTiC_0_b+cEFdp&k5GNy(jQ!B4q?90F*HbFaIf8hdBTd!AJ*Pr< zc-@zgkX#T&PlV#j5>XDBBJa%2ZVM)KMDZlst;xvVdou%}BiJ^ViDi1BZWIsY^<5Ed z^l|3hlY!?KM@Qr z+ia(p*$}Fx`)nTud(Twmqdm+avRdCX>WloU*<$bx&^!zlx zroM$oBJK_Lc1ZS>T)RoS-p5k;cU5G^mWO(^c^JbZV}cAf7%1G6_Np@oF!fqIz{TmQWlga6W@`cI0sT3x zxP6!1;I3if22J&|v6pz_dK1pXy`W~P=dgKBE1J^s;eox2qrJNuyX>T_AWL;lO<-*whe=uehh_pyp#zpQ%%f= zedSbES!INE&>g3orRiL%C3SyCq6WY-Sc81v&{#8?szyJXC_h9g8RFFK@;LmNnz3M{ zSCOBPHKZYp-ekFyqd%y{=;P*XV^#5Lg(fVI*RxW;Va=7)aAHK*o+W4~Y{_;liK!(; zcw3nFwtHW115vmmQ81EY z!H+Cmz}z3Q4|36e`?4lcw)Gb&3xI3|BQ`UET#2QBslMhOfHucN3A9YRMdieUEKo=) zuw_E#n*EJ?MIF(I{?U)vDu^Q3M*X5^0jrG>P=o+SxxI?ykRG)Tj5BcrjvcaU?YzJH z>*AVosJ~wbg6oFh3?T<%WIj*=2Yl{0_k%%o2&SKW7x-7_phN9b+bc*iMN}K?KU@gs z9HO~LAeiFW>XGy{ns}32$wv6WCXXSe$DufZHkr%x-!a}Y5nZyS=HVon|l69(9WZ+!f~uuJ1{@O%R&V%1w6B;B9Ul zcY!@mFrn|x(V{tP6e!l{z#yW{mj39;k(obQ_^%H(@{g&4{PQ;cUuRlFceI;KYp%3! zK)jDT$aO!rb-uOGQXDe$u^%y=JjJYb8djf8?t^jeLRcEvoDMnO+*n~cWV2)~jM6Iu z_$bs+&N=c(UM-K*^;ZP+$%Ku!_YYg7bvFy=5huvBz845*(m>V&*Ky^gW|=S7M~kn` zjZzv(w!&J++gfG=yVxn4y+5&=Br3M+Cf#1!Zy(Guxb4p4xa$+>3Sm~U&-7KmNxfD( z4R_H|Lt?AxQZ#0ipXAFn!+CD5p7Kx^zxw`2o$Y6i;o$_p{NRy~r<bm0*Bp z3`1m%alQL^75 zpD~SjMEm_iLj^q*OX{mg_-B*?K^beQTZcSe!!+&pxCIjxT%sy_yYfPz*Y~0L!bahi z)2!8Rr=w+*X?MIS{@}^`<6Z1uIBYdg3cct##oVX^hhG|nZFtVZE>5BW*vn0q@1uha zd;M)q)H!%-t}l)ZTcpH&kLl=~p{v~BXE;07&4RO7q}giSUPvZo&A|3?uwkM-nVrHu z@ABL?w|&~>)p;4BngEA}LdbBe>rng9J#+pD@93;cN2%Ax=Mg1D083G$JNWraK+s(JFNsn4fn%ZH3 zHWFX1>VpR0U@MZ1BlqK_hyrLZL-)L=RwtV%lQ*|9y7{ zhLT8i)!GuqQ)`LD0^8KmYK;+tjo2^OELv>o%yR z2)o-Hk3Lrj`L_a;xXDne{l5~J`Y8ednd;m8uMuyC(}tn+n;;X60=tt|NCDKrADIhK zAHr3Q53UYQqf0g$9AUG_Iy5^`w8!~=|K{$}dhGcP&r^E!?(B;mb>=Z# zR8*hYDcAQnuO75a?wZ`Mh!CXMj+o~4FLlaZjz?K#VoYybldsWlxv_Nf9CcJX>OTmi zaB($10PratY&SuR<|U$30#P23H3pC<#JNM*NK>i_a&8e3x8R$MFZbl?q;UFYS>;2x zzc6kwC^A(=J;!W0*tj~hp?h6c5NcPGEUa*LQez)xj|q!cP~g=&Ho0;6b#WI#>rD66scANhux>#jY7=lHJU@~o~+46^oz=crocXN(^%nqQ+98H-yZ}uJhIl; zLFf$PZP!l#<&4vWB}w;=yEK8mCX(idH(R8OY*jbz?;BhExNm%I;@hb-I)DIdg}$f} z!7*WX{MiR~U*RKPW?shxe)P%D^Q~6!x4+FqrJNj7O6lZnl4tJwFlli%f3e;Wt8-f+ zUv6*!T9yRep^+&6@t}}AG%+7A z0ucF!LQ9ZsJ_u?OKN z_d?kplNBANC;|D-v9YGA7G!#TK3#RE_S(fZ_Q>9%w!Q8#dHK_wfE!or8EQ00&E_lNjh$?u0 zVeHV8LRnTdV^T&-<;~=*4(D`(l7Y@LC5B-Atw-7|y_s z6DB(jC4U$Xm#$_HXtR%&qANUtZZ&P7WiEQeo_czkn_?ObHWwaWcf4l<(=kgxEumdn z-Qy(J8YACU8iJD7uDt&7eCmn&r@oD!kS#pLU*qN-wVsUU)a&)t!kc4%G~O-k4y0r+8#0u@dl1*&o3%4 zKPv#rJm%n$aMJUIjl{_@>j$oZaX%?Sq_<*ke50B})BATA5(SC|R4DWPJF5`Q!DTg7 zjv`Ic4kwKpHu|2K-8CRsRJGB^h&_JDGVuJ!M#~MFF(fa-K1??d%Amr8hc=q=){1|@ zm*s!DJ9dR`-|%bgXSPn>nDd6US96ZE+zc>38fe}_K27e|N%soV16A=6Y8WyG!?hEp z4P#b6T@kN!@$1*7Zd!32)|3TxV`GZIMXm)kd0!DcEL4RPckL?9HuyoA?lG^%hJ%#d zz#6vdR)+jKURcOp6_D59hIU*IFGl0y)B3bC|_zsiUj2g>N zPvQ50DMSlwXB>6CL9-Fdo3or5{b7_(v zKvLv5&sjyxxbWX_y2kQcDJCnI+ymk81&%|r8a07x+8oMi?!|4lF7Ie)JP?U|Jp4UC zqonLkkcp?dg6Ct=a+-)wwNG(Ubw4TiEP&B_LQTlaZQ2QmL)K5SMwx`^F^}749+*0< z35Ez&9Ev%|UzoQF6W=)DVXdyHR{U`Z&5N*g4neRK`10TmbYD-h5MJh%zm~B6G9V$o zk%!u_x>FG_qg;O3%I30uPjrsr+%$zAsf2un=-Gp|k+{}0$=%D=uw`Ly?8#mF-K?YW zv)!~saBOy9E*;zpS<%%DV`jb7fceqUO zwNr0SL496WN;OXL`Q9I_;mMuyTEqsn2Fp*J?KK-}awy}px|3q%Y87zz(|KmeoU|@I zhUru)Zi+3Y(Z!~OgT+>`D|n<{z*%Mm*1+u@v5h(1);XP@%_lVlIU&}xfo3mxtGUFB4Mod^rXrc2KXy(#)9%DN9{L=QGs>Wjaoqr&~Z|pB$&V zZ^hO8cybBBr*@S1n2<0F4Ms3^H(656n2b2*Hl9;?49>KBd0B8HbP;we6nAj zXy{Pbdm;CFN{R_|(~wAhCfvt^VWM!=dgd#PcGv03@`|{uP`gHU(LTX1?0WUr9%JHu8H6^dh< z)cpWLq8l>FP2j?5*3&sM=Fc!O60i2v7|u{p_qHBP`L%D8zOE^`Csssj zh}2Yc$5B5!>{IJ6)fD0A8*V|CIR~kL!gyIMy+3!K)2>awzW~AGV9D%?PcHdtvyz1&A{FIcvj!Vi3+}#%z0B81;i<-g zS9>#yptY-&?Xg7O8eYpUr89Ovw?LOYbhqRDyp}N+U+xFM9wLPOYE_Rurb2~fVs4Pw zwPb2MFp3zzGT7vKaww)*H0Y|)mlcgGr*~;MmUsRd8T&`Y<$Fw25uu1YQL+8PW#cx_ zLDG)Hw2Bdr{lTaBvX^sRZPM%H)5!K(lhE0Yo2epXzqU(DJBY-k`GT!DwN?E1(uyK_ z5PF!kZ#Wn?p!7b7i)N%>_$S4kpA;L&dGpT0yiO;#d+b1e(+V-HLB3jLwor2(XyUf~ zq$r3W20ksF!TmUlkh<<}g^rNY0~z2^#b0yC6oi;g$B@5bk)xjGgEf~vTP&OOPT8*% zV{YMYe#p|RQ?b5#L_uX6CQkk~39W!(XiQ&X5ls*luURZ(47SlHf5Iz3Ye8Fii_YLteKl`$zQskYyQQ?OZEA%Fr!G$@U{jvw5{kf z(k#pHZI?aYyr7hBhA-eE@s@3B$XOl3dSeeHqr8Ofp`xTlv9oY7y-%Y5pyd0?Xw9uy z4T@8BZgCT9kP_#0_u1}%)C+?g_3W zzLg>z+o(Y3{qFG8V^L&gA3jjkAM%u=$~Me$=;`wOQ2gNBczau6y5zB|L6bB(BP~im zjG++PqUt=;+RVi6rAidawMVk9hoASEIaMG$AQ#cQW?e$Z8yXBbd*g)YhZ__HjPajb zd|I;!sJ-byXSt}rlgML4MxY98+pKLW<+wAt$vP_Wu>4!1*~1TagS05DN{(J_EkeGB z+UjDiG6nJV zJ8B0#s-lnUw&<}Uyu?*u4jSg2&E|JHl6^*P9%tlfpU1qZDtc>h&H9GuCG`*FdMJy$ z?n~rJ05-aTmrPcxo=tI8^=Q>AW|MokAZ#n)!qXC{()XQ9uePTtV5DAq^po@IlYu?N zD`aUxlsh`~0+Ej}fjcBKJF~#Kufe^cabD#ymgYId@22cX<1h5v+Pd^#7%6+Yc@OvS|B>iF4&sA4Fv6^f1_$gz;Y^JXp>67~e z_YXZ>ZTP{(IQWNofeq2Us;3>KgwhMi&n zkz1{kd2*c`@`W6!Ume*^c$^9h?Oe;!* zw8s?Y**<-3JS}s*sDSF#U#FQOkw@hnx%-<^PXuj^tzlNi z{UYr)dNTx*t!=wTd0ATZuDQTW3Fc&01VN(&MbN1Q$Mp%C(Ff!na`(1c>t6oLu0v?@ zVYisShx2}6`1ajF`{uiFH}BAMd9=S3qR$ace^T%d0b!;70~1pVWEgZ7GexdK+{9HR zlUh(&E0N=9La#FIx$K3w(;*AdSmu)=BPKmJwZw`e#FpHm5g!R%sx@JDU5L#$B(txK z6)>7BLQM%t1C7T#MA5hA$b2+d%R#G#C(aC_o8)^p4fa(zr^CJ@H`$?af`G)wPjL|d z052c)H}$VaZaqN&>CYf=z8;X#hVZS9J$g`(^^%kUN(2FjsC;;b@*w%IXW+dD_~aRM za4ii{Zm9M=AqTUvd9x>;GgVAbv*LkV+mSU>emMnuN=26z?^Ln=)kSAaBi1>jR*u|V zD@m}L-YeI!GLIZ|?CgJsJ;qaERhFmB%V3PLENP^gA07pilxdN*rc*r^&9TUt-Qy+KpV_I{(!4 z_`deJ)6q=&F-U!5P~Fv`8)(M4E(+X8SWC9Jia9oWH`}pB(p_t=cf)Mb3xlybGS(zT zbzT1wjre9o^kqG1Q2%aC$agvPwfA;z;7PfpJLv4stKxa7>b;CbqrF{KvGR@R7JQ*{K#sdiJIuPOfgON_${;M z3-|TAuAN)l&Vh3Hv-o;JOX3p`FBADId#uBBag{x`{iV+e9>R-$L_KNeKV_kjac*T_ z#M|+FX*mVsCV-+=f`~>4w`Um0-=7`o8*AaG9Lnl-=j{Ixrkx*Jbj^+Sn`y7L#$lco zHCxLQwKx>mmmshBMG01)2)Qsq2*N&_(At{x{a`2?*(khnU8P0UEUWomS{j7V~No`6`~!jBuzfkPn00N16D&A zI9P_w3O;1sL^3+pJaEfCZk-tZd4?u2U%ht8#O2EAZO=8Tluw6S_jpNf{Vx!eah&yj z=JiUMVNy*}uW&2IZ|a}^fQ*{OrDm^Lhjrb3_3hhn>GHUUQ6N3&!A-L+KZ`hGKg9(Q z$ z@9%ibkF9A^6*rl|%WYYMv#?K)EK<4HwWWRbdp>)l=@;6n`zH+;{CEK9HLOKVy5Il8 zDw4NU>^KorDYWxRV|$5hk9Ts#Zg7h|VCyQZDLUpXbM?-VcIoCPvP3FUUX8U#10Pc> zkQzVRQ_Bv=+|Ce;ce|IIZ>%c!?4b?Qv2XJ%kB+ytZ>(vj=LAq7*`aWzla{`=c-w}l zBVPUW2qtk~`gr^}%&W|Ka>b;-bz%Qv?}_v=`fGD>xbG);{KN)pXz&i*dr_p=Qs>u7 z3kml8X>t?yCO1y)jhkyev*j(6i{BWl)ud43jpZnOGcfCwJAJ8HmxgG8cWy$zQgRNg z(a$8Tjp=6FrwXz*3VqtGc?eM&^7@c0-JbC@dz!CN6uyKy>ZRGt3853hA)CI*g{hj~ z3EJWrA*%8;-VbrLymM8Evh8l-HCf8a7YbCN6f;n(seO5L;M5)kNEP)ytc^j%Lv5Uc z(R{V6ULGCT;3hFNlS3^VZX&Uy54E#Ut#i{l^2%J;Z}lT#r{BgzUX6SvzpMH$+r@8N z1|Hh_)!e9C9c=Yt-#xl-rn*Am_|b`%H|YC<<&h^aQL}60?1>+6fx#9#OPPqD;9A; z4^Ecp>xfxRqL4o)07W(<$<&%;`K_$K{YLX|pZrfNzsB-^#^rz3%l|w_|F*yIqJpK? z+#!T>wO?Jb#x>oT364iLLmCS-vTLkeWns^T1AIkE@BFEWEW?sD+PLzD7(1o7^}>=Q zyT!`4HT0`zZs~}Jsy#A{mTfirQAP1{@E@^}ysw59y-(%K{NQ@!{X=_COP`P5j5*;X z)b;JnGoF+$9@%XQ)5f2CH4mNbe;fqG;U3*J*LJ;6NXAxv+=@Xyvfqp78oSaEzNLHQ zx!U+2X|?oPRZ<$-aWeo>JUB-1F{?_xhnL9~(eA(6CT<>Nvd$`de5RYmUI=&PI4DB0 z1f0`acwIf+Qeeasr&jvd5L-np$D>zAh)Hm!Z^(RacGs%yC^@UFHh`3C7;I{F*}3v4+q^b*E>lSo?)KqS@>93Bxqwd1JtgM1W3nYN0e z)*fqak;RCOq}$)2F^K6WAhQ)UxFWU{Oy-xuCzB(x?ty$qE}Co%GRaJwgwCH78vQ85 zv=LBG6FWz4X+lWNpua=^a^dShd!Phya)~=Cka+EJd6G@OvrztbsUMF*jYL-oF9%$e zLdhnzYDBIf@-g4LLux!LR~EJHspHw=7FN0*-eRS97xc}e(WL*HyX*PyeK2`V)Ffs4 z>fk{hh>q}bCTbLMFToI}(=l#7v#|Jh<;r>9DZE&RI0(V3o?_`u`j26N(Hbk zg8nG||L$v_XCku0W-rWt1JJfYxlwue*+FpXF=%YQ~aTHz81KyPq-=ln1Ib{ z;e{cYaVB|U#iv`T3w#;57pUY9bgU3oIi}_-X4Xxf9trw+UpnbR1bzdf4Mexs%`rbw zcYXN8-LCphM3jhhyR?Ev#_N|6dut@_-uUeF&;^z0JSldsgzGrlpj}-~ucReYdv1x6 z;RLrhTb3(FIAhw=Y?SY?1yZLrl*3!0b_k|bHE{wRo~@CeuheJV#281;g2SEpFLkI4 zb;YF5y@-EE(FO=R0HMoM#7TmWHXasS0QC6sF!et63dUC?zP6t@`=o#)Xzu=#I+k%N zbNP7)P*yN+giryNALn~za0y*4+(L}KJJsw{!+KkGSAqL6an`4&_fRJPjDr3V4K3c) zQ3C|k=I0eA71Y8NX}0re#YA_k3>e=J_8VJYb&}9>ic;#4vJOG2qxU5x+UQcJJ&4La zCVF)jM1Amgh}Y8iu1l=PY;8W6*VU=>5E;Rtj6Bf|z zRgq;&KaM!@WEKszu0S94$L|fx<2HiDjTF`F8)1ggfDgR@vcLOg2au9i0J?SEzN!N; z*c#E3L=85AFk;&tz=TZAxI%DojR2NXFi{BXG~Ic~Pk*)?H{7ea=dVl-Ky0a#AFOAC zKck!GKy6eo+3ykQ+@C!ys11b{R;MOoW>ND~>dU-u$CwF%-bd{CUHTW4{nHh>&l8+$Z?&p92Y`wr0^w zBH#&yE%0Nah=;`6*Zvr{s6QKC1;8;VAArd~_s@c2q<+fUtbN^U>y6VI zz(y4w{eKANAn@8Vwt@bP1Ue%^%&fh2uzGL2aD|tZ%s1-3k7BRx>2|FW-0r=A$&yEq zjJ}q5_?{CU**JB?G@o3Z+iF+VBUjkK+x(2Wd%L~;N7=P-l23Hr?og*@;s~Ufy1VVA)7ejV^NDrY$2>PLx zH)$}!hA+8eQmTU|>gHcBrt$XBd|2_9!gWQRf2lw4A;@SYxm@8OXD;*`P^3$kc0QoZ zBH_W*vsny9;EEfSd_~=lM`pPCZ-2XC@uT5oxSy-vDuT?cdmPat%GCZ`_+Nj;qDd4- zQz3ecpqn93LTK=xUyLGLQ2~qhayC?yBAI*=_5!^miu}=pB&tJjMMMyVyaM9=wIDM! zBMSNFSD{#HTrlZK8ZrBbGr`pV7+B;vh$&VC9>@}O;4YDl8j=Zb0OBtj@#h!8^TXBv z*`a;8m39J+wI=Y813m+>04)%Q085-ss%~nBLl?l}$!932wdiiOvzpLuF>$5+z|W7cgu+fV)2v+*QjB# zB>1R3Z*5XLnxt)>eE)9UsV~;N(I2<`28)=M{G{s0;$h90v#@DRHmZNV{VRqF5YuB2h!aR+qJcc9K+k)T*Sm=(xBA*BYd$X++aT?`e6xGsJz_!Isc;{x zpuq~A&Z3p_)y9cjujE5VS(_`wpo|@f$SG zu&SkW6wB*4Q^n4NcUCJi4ppU=V?>pNXi#Dp()17B_kToM|NY<3Jev_O5lsGa1Se;D z!r{%x17Tz4af*`*gWX!E6OP8bSUk+iI3go9>pYUs0(1en@QqE-!l)*?g#mE^Q)gf0 zC;NvVeD`kDcd_2pdYi4F#ZuSy5WeGpR;(3O=R*?NJ*V?Y6{GSk@9^ImBifH{Z4;y+ zH+P=6xxHHIFtQnbV}{gxGw7Z@R6j7JQWU%O)~MgIT5WMPf?fX}3!c){d$Rnam$POq zo)PWI7nGRUDAd{6^quwGgAi@yYW^cR0a|Nf1~s~SZ~IDhJomf_3F%AmZVudmzz&qZ z3u@J7?QN1wB_7?0ROmTr^YAh)r6BGc)zFR~OdEeJ#tLPZpg(1gdCOukW^uhfBk9Cj z6;}a9+M?(y8w_^C(f-{@HlNao)C73O>dDv<*oc>{M!*aRH=qBIBz7)lHiq|@i7~ZI z^l<^2q}_wR;az{>Ud7lTltVvQn%e%=(7A&kTjBs2sG;~ghT8knfY8>7lM$d&oQk~v zn-q%#kYb@BZB1bAJp_f0=L?;MR1OQnv><&({5_dRb^6F_fpO;wsz*E(SQc6R!-@JUk{ov?oGva$j z6Ql=!Ptch~QxPBH);B|Z6+gDY9Upv#**lfHXcX9ddD|#(E@J$#xXj1*v)O$AekZ_v z`>)(d)S4;}*%$2TwMQX(-+xjhA%T((lVk9@R2>iq{&VcX!J!VceE^!K)|@Ezf!qit zr5$oOtxpODAHRkEsLNR4LT(%WQnXqBLi$AD{qeuK@u$$gOx>Ro;&)A!?0^7DI;v%m z5;PTHrFj*m0W7T-V1~0< zI6!NB=Tr+Kk#x=y+LW}(30peZIbcPv+5egNM6BmbS$R2+dnbLJ1M?=Y}XJhfusH{>r$cL%%Fx(F3P}09C zmacLTCnVA-;sN$Kr^|nw1^-vdG90Zy&ZL#hLa@a0U29EM8301r_E#@fR@%+I)ewq# zs2eNfspzTSkXjozGTZ?vLkH9t;W_v2<6B>S{{(Az z={CNO-)u@184}*lymU-nB-_|i(EsHY$^*qn0Lv8e%YH$1uk28+mi!;Icsb_ODD*Rl z*YUzJ&RcaW))=KDyv$Ih3!%F!ThQac%`n3=k$jLOT2YE0za8d(9PIldv(P4{Qv~>4 zB7t%`g~`xIhpD-U5a(`gbVux|c%D@}L-X4&BWpJ>8a@lPWd)o~PzGO)8Pq8PtQE7D zvX}2u@92fm=}wXHdpFf`rhtc=S**3<{SJ2iSpm{4*5C!kE1<1vpit> zbgKLtD;mo>-U~|_-YlyI!%b6VlUaa^5muks@3c^I3CgB&i8_;u8!97msIfF=&t+WK zp2|SsSNz+d{|1dS*xctw+io5*P9T<6X-N-JZBvBvp2R3v@efk46MDxz(7RIV@Vh_a zjT-VLdd^C>4|Z@XswYP*1#cUsqB`x&2qTm?d*)^>b3gKT>}<@HX-T9KJZ+;A)5DEN zANL=E6lX>5zEe@fM)BMK;Eouh4&u@tlPhSY4O#s7ASI+uPfH}Nz&zEmcSjy@zW~*w z|A7Dg{WDk!f)hP|7D|O)ZO~nO21}3IAIAHT4Fqt?_r9GAHS-%}c|HlQ8o z;9=dP=$VL5A9Yl=y=;xIN3a)H%YS@+RKHDd=g4!_qV~ORgW{L^{aKMKeJk<+?|mQN z#`C;=sr`oa{VUYGEZ=hFXQ9OrHG9b7?uJA2Yz)^2T-oc$NZKNqkp|i?DgjK?+*qEy|@f+d2(XFnmciywg z9Q7`hxzTqQbN-H!f@s~=aTR7es%hO3I;<`TslB*IMTmiCuWYTDMaG@ga=!T4{bK5e zh5NqMm!j*rcr<9!S`}8{^GqOuM7yyGwS|SlxJx#9R;#35*Ff?K>3~g2n?b|eNBLs^ zBcIp^hphIv0^SSJ-}2vD>pxc{oh7IqUL+u<{}*j<9th>z{tZtlWTzzSD2kFLdzP6b zA<0t6Iz>YEWM`%b*+VGBlqDi$&yuk(NwR0GW692pWel_Qo_+88d*9#XzMuDbp7;0u zWsJ*po!54r$MHEn$LABgi#X_4*5Z!)KIC1Ar_QaI@tNdi&~D2de|+_$OY)bNpf5V2 zKk8yJx6l#Mu7!?1z-QdGI2?4->A!Qfkhgez+CHyazTWxlBiF%R1J0_H&*t2kT+QB) zU?V)bRf(odGM}2{TS|E19;A`wgnhh_tfT@Z9IV@B_rw}hXoZhxBc-EawC zZLKFYI#CQM4C0rSck(E@cvQ2^X_5lGfqHR?ATJSnN?kBFc7_M-5U21&#wRxEOH+tJ zDp2`gzXu_yUc;wG!Px!CL~lX`CU$$(0m$W_SgaR~HXOKHQ})R@UG1x&uvh8vBM*1) zJ#^itZIz@;69BTIVlC3xYu2cC8s)_YGA#B=Y$*J^S8cuWYZmB;a~t1$JfO8kOh^$F zx@_*%#3i^4%VDJD^J@7ntB-tMvl~mY*|p+nT92?0YeGa|d79nX3_QKw`UQ-*y3W?# z@gF&o$P&wUBB{ro4qJ=;(}VoShx)hR@$YPo?Y)c}g94N4D&w(k7eqZ1uVWl~o zug`bZIcqX&d8yU<`X6?)mpeA*ddyx~)R1AlkefsRm)@ox)Eu?MXl(I-!Uhu3KYwA! zu%iAyy`9&D1n9L70v3B1Zc_U%fs&Q|FQaR7Ih#3r8Ec>8WxpH=Oh6>T@!QMmd!oju zsRe+SAM~qQ1xfiqNIhv2@700=skD_Y2(H|7YJ#iCSI2f?S}k7lpUI+@Wpk_K8Qvb{ zRtS=)b=IpTsi|@1DZQyc2xEuHva#9BT{PIu_4*GVDoX%VpesVn5RLaGcJh9I?Et-{ z{PoN{MLmE_i#&oRslX|ZEz*vHwRoRdFvN=V^Gp%Ti^LB zne~0YsF!u{EBa>_V>ERPWzHTEpi62+UO_bv7h@I@K>i;Jpt}xkp#0!THn&Fh>*K^w zhv1K2Hq(>dDZO3!;;t5_y{E>n=nr3Y@O8Prk9vAIB1j5!xdOalcz!#85=%|SxVy*J znAW}p4$yAN!35aX#k!ALHRaf`D>7d@DAXJyx)SpzZa?g`T9H+hGj{{goT|rTD!!ex zTq!!cD^-AI%-^M(X8^PsFFhX=y zwZfw_fP-QrzN;y9n8&mmpQ#+Ao)0}YtP+!&)E27d)?N6@3O&uDYPRCgx<0Des>0sJ zsyT&fD30KPa;a(K$cT!iHq``o?ixsp5ky<6LFe_W7}W#&Muj24E>3 zMncIYd;5*JIgvM}Q!)^`9qc>Al7&w)1GYjh?>$abYB$}^y8U$*haBP%#gtlFXPFap zYoMMX=pe}x-U6&T0>-SCzDf-ZG21tt(>lo?2w6IG_M=xh{dqbETu%&)9o48&&u(=S z#Es2|8){CyefQ3>-&&s^J9#m}?(EPia}Bo--En^wrddMf z@GW!2S}vc2jPUxLVtE3h33Z6n^_v9A`^c|lQ>QSl^6jU-KN@&*Q*84v1F9p-9VESw zt(xB>#Q&k6@Sp#*cz&ObxbUs+Lgl++r%G(%_c3i>H<0)~Ryyal&4QA9ZlM$xo|xb2{I^myZreTOB95B z;@1_yh@qx(CO6cPJ(EO1AgA9u#J$&w_*27% zo@6H{YBKwX>35C1F@ssbEIdx(d{ z$o^o#fyA7a$oW<&;Tw^IaUyX4q*q=xlY}yyO)3yVaeo3kwzR|Qz*fbSZ*^i_ru#^= zysT@-*wIVIW+EOP9bX;G27-!KC^jY3%6b_;Stu*zQZ1>>VJ0y4B95&XXRuP{O0@Jj z7**Jwz~^SD_(KWznQ&sQIKTc>kO?)b&XRn~Du{`sHKS7p&$_2_gXdhA!ZV&jj^QJ2 zqA!##Tc^i=e)Iehrg9&5kOWyCIU;nd_bgHndoP2Y?^FiYv2C*thwtqlWZNGv`z?g5 z+_hhOht%zX1`W6bIl#sVd9q|THSx|qi8K3p{`xZ%Wl|wB4a7NoR-JCrL-LoO(Rp&RUr9r4Uw~u`wqScQMi5!}X@2%EODVQd|md z*)6S)xD)RXA{y7(NIPbrod&x!p+Jg|>j^wr;^ofU@*X31f~#9}?dwH|EQEnq-F?L! zFV;E)5h)vgtoR+<+5sG$0oOt6h?CJ=GMVcQ2yAnE zD9*Qao7D7lsa}F4-=DqNQm}s_c{3|kK-h%k)T3vm`5`&i#v76bgKViUVdqAJ{N1r~ zM6clo-EhRf`>>Q;hk}A#xr4E`Y%x!EKWhu!2x}I;)qc|1a>`%@Nn<44CeSq_jwn1H zqG%HgzN!okK9}G+bo4?d*HX?48z<2TBaORsZaktxQ_qV0CL5mogt*4X+VJ<*tD>5| zl=jP0jkmMoF9tG()uqUc9hz?BL2KL3E|Qhn)s}7x30v=Xb6Yd*GJm z(>Lbii@$K&+W3@tU9QZT<0r4GhCIIPZEyT$!{8bSJ$?+ zUQ<9^0(WMYo9OY(idsfHe?fX9LkWkNxZD*)7zSY6PLd3bG!=BKMSJ+xB#(0np*>Sj zs8gh@e>U>YZVpInOrOe?CLYs$sJvC2vCTemofuClAZRyENRlciSbLA-i{5Z=?ZrpD zNt3)nYCWMtS9@7W@%r4^8^=$EB(?G_98C!Y6E!*>ak!3|P}_`Pn z-|D~ocH^4G1&yn2P248pk2z}t?{L!%tRR*BQgIP0$no9oIn z+Af9_Iwm<&9U>DZbXrvM#Nm%`VJ@%YCTE62QBK92q$n-YJ+Wi zYK(Dn)(N;!3GwFhbOO?1FeiLGQT!7gP^Cv_5Fu!eiaeX0b{_pe5hq+)A8@!z8*3>N zkuKFqK!>qFG#)DP6n-u*S_v9Q5o(E*B$2802t>JAi@`BVQdU#Fat57$7QeXdhU8k7 zT#HDe^0x>_?iW{{azA7dT%FMfoJ z$Gl(ony2*YnMllbv2qzT8siAq$2Uo0IEOaC^(dn#;?FLNp3aT5ATAxF-H5GfK6XI+ zdGpa-y2Fu-#kn*!WKX>;=?$S7CkBksC!C1CP0qc+++Py2H^k5^&mS3!nJULne`vh& zS`b~iVq7vDbO;Y!WuE$EW|1_b9luI(w+}ud>3E_-?{4KsmI)80ggo(vqRE$4kK?It=^`4DXM)e(y7}RFHK~j8y26`M7%Tk3*NA3-!+j+ zvfqX3HFxbK^Xz~UUv?Ra#_d2kLZ(H9NB+W~KQF;?rl>{(%tD?c`Wc*31f16-T4BnR zQV_a>Y4{+hd}qGNL;~n|qb6;V`B!DdF=ui*E<8U=6fFvYgi!Y1+8+YJ{9+M4#apK2#+Fwk%VKph;7zrMbAhEHsc9k6T))}SM~H2p4| z88s>mN_(nlGjai%g1{HRr*bE^Zpa&ahSJPH%EVMgV+#HW(bBv`0U61hH}HYG08Nl2 zfUJU=R)2=XtWABbrty|k)?BajiF~xn5jW1kr6rIk(eCcHv^XyU@s(hSV;9-R0$1xP zfEH{R) zJO@Wrb+4D~(ye?Jr|W>RQy59scnM8fGs!bk>(-qcmM^QQb91A@Uda$YG+GEutU z^VuYnaK02IDT#)G7Yu*=b4mr-#{P;}DO9k+C;G{?2?6WWw+j=D--;=kd16mo?m7np zSLf;!(I}6v#@u(Am?4(Oc!etV4gv=mE95w|EH23jzczWDBst|Ajp6Wn*@pFbSBSE= z9J4Wir?PG;wB%*nZ81wPy1cS#~<7)L50pF$3!IgpayDdz`i!X&fllW&}z9{Ab# zAFsX}XCP%9c|7J2cj^Jw&nBs!#uanj=SdUna_Q8RCp+cF09jM7-_3jo=La&eg$6V5m8|Lb!$CYC*O2C14sffT zR!Et&>~|H-XjA@SUnQq|rmc5ZgZqw{-x*n64FP1wKY?xTStKVQrc_Kr_jcfWM@*KJ z|NO;`eQSSwPq;S`tp?E(;&`+6$q)d0%0F>M=#s)t)uly$iR*veFDa4%J)S&hcD5Zk z=MwjP8F9rdfz&^>_Gl(P62neAy=0bZcn`t$@_L}St+?>>rKgg0^&a+Teey$U&Ha}X zE(lfsufW*;^O?^ux`FT3s6KU77xoa;L7C)}4 zmszU^C6KL1)Nw#Fx+$clG%r8aHI2u)&< zLNRU2{wo^-dU=T;#oZhqFVtzu?v8{$D9pwLBggl11<$?aE7> zB%CerXMM-~fNZDru$JZfgc*dzLBP!XKNqEc-9GNWEFycS5w8$jMQ?`SQ`wUY52EQe z9r_=1ioRm=L9Xq&KreF8?{Ql1qFSZ#T^s5&A=*i^pO9-{V$Ckw9s-`A9HfS~x&rsJ zw9Z6mAK(@d4jtfd+Qy;Ese|3|D>%Z%jn58MA48ih%GyO;jCzOqz{%VSVHb{q?1)~9 zJgPi!LKp&(fe1p5ED_KnpMOkmf?6}e*H@xPjdrwGNLMggwf1I{`HOhbq)xHIK!x9C za-=z`5#)%oZ-O8oQylN1#eewCPZUf!fQHx!EIPo&uSHX#w-N8k{~K{(U-MFi@PGp* zSo-1x8!6GJQ&Vvtdjw3Z{Ca38TT1FL21=dWmzu{B>+*HzuQfH4&4bs96rtt?7S1nf z#XDO?U+OyTX3UviP9l0n_19E)+qI!K$vm?diq3BocC+`s;rMwFK#%D1_0%!`_u0R8}Cn_9!e_HeW%+gkG1v*SaZ5& zRN!~zv?I|}oew-T-{Lv`3d#Nk%Yr-@yedf~(lW4|{e5K>`hQzlPbcaM=-f#T5ns}6 zfX2e=!F3M_M|HmXC7B2A*q%q_YxZ)L4e|H!?5GYpeNfMHL~ZS}_;=T{SwxWZG`Ph1 z0nzo^ltas7&hx_`;q1uc6ACo5E5o`^bw_SiuAq00J=MOY@tWN&Gc7JLvy-3UG9-iz zXb#h-|GS>}*D{+wG?eBZEp*&|mhl);6+|XXTkIUpd#LcO5d}ew1}3(ao^BDMiBRs= zl5-46KgXsnAU?W6VH8$;T%57JGqE+I>~Q;st=H^!|DtgNrKDms>?Fm0P>q#Pi-R^5 z=)?G58a(N9cJlNTkx3jSOASgL?xG8=tK?T_xU$Dqr`JA7FIneJ@WP>6{k_e~QgO9Q zJ%X7{f&j0qaP1olzu%CX!sF3Y=@kb^YL&hJXKbJU_JaNX{l1_7bXF;Xw!>K|JcLt{ zN7?xnvy2Vc@1=0bzuQGhnNEH1M_xA zuWnY>%fF-@QYEYCN~j@)374+4A3wU*5k};HA4%yfwlVooflzgm&aW8m*!%pkuIvc) z{oEPj!0hTQl;m}r7_u1|0l1dv@9=f->;l2HJu?ce@h1euLvfyVCp{QmSqGL7&?pRE z3QQ|c^8j&2ANdtjB+row03Uw^wab*7$_%C#D2)!3Dto@qp|%c7Q^4m+*a&U74>M0> zCzE~&qtydV82AU&WGfI|BfX>vDv(uwLcX<67gLzQ+%kIxj_XI1VW=!f&_>!&3#DDm z`on(JVYnxJqeg=@!t{u^;}TD&ZUaVlJWZm0crlzct?6mJ> zhyTxy%m2oR`vmQD=}r+L3{?4FHxp%a z-6L6=PU41l87F1MQVNbhHtfdQk0-}hQ^djgfJAnq4pk_7cj+HRaotP#BE%o-W>T~9 z{XXyQOL43X8^_voKrDlBxiQpc{8&(hXV{1AqtnCl5|{Ta1-k#`{XXLWRUf^~;EP~2 z6W*1{4+ux!F1Tss6i`@hR%zy0eqBTMY=RztjI4^xna>SVAu?K4#Yd>w+pcCB)C}55 z=K#T3EHdjhuG=&)@TET=;JvAu^NPlP3pX|1cYs3!6f!=1|32d6W4d?ug}Y!*dbSgb zOjC&Rbes$~C+7vGd7DTe>Y6!|~LRR6V#x`}2928;CGGEHH#2iOejIKvq#(2POq zq(GeA3|z?Xhf`L6`KCu@iKqv}#{7;OWd7lm7zW$VJZNC5v{MZ1=8H+g^Hr;X`RtFO z6%36CtZK{9Fqfa)rFg@B1^(wJoWiokn$LRH=7(HfSNqT|)+Nj`1$}~Z%zYdNd`Nf8 zhQ1)y5g;V(pF*#CXAC(bbK4*E8W96H{&Y1;!5V zTe33kSc)8>eQG^secM&KDMPNW!ub=ESO!tm`QxnP@%Z(Q2I$96yx|u!4lzW5*5wCg z6B5*y0QidgU~T}aQBRN(eK~!sO~Sz@g<=i;9{V2Uq}booJAT}ROZP|Jy|sqj$G)R!d*=-;%EENW@r}?b zhsOA0K{p9X&Hmo5s@FdB@%5=InFe20iZDxDV97pI;$almAK`+&GD)HmQg$v7B0}pJ z@H_4Gf}otUH~3^oo@zRMviha|M`3@D%S-d!Ng{V;uK6htd?VbE2PtgSkM&|s(4*zd zl2CmDJ5dJTk)$n$-Tk55NS2A>xfz*I?G2$f9czdR1sb@GcuttOAH&u1+RFGg7%Rc; zrT6q9GlLgyw@boI4KijrsT=vp$2rILSmL;{tCOF4IU-;CEzh_&Nr&^`oe)5(=&hg6 z#*dR3;_hz7yh5i?XH^O~uB;v4Qn{7XaOzDTO@+cgRL<(vYM~voRnQG>HfF4l_*j(X z=z8oG`?g<7btzG zlq%n1>s?X?w%XnGVk9kmbPJqMy8fiLbFSYhbvoR)n#h&3rSa^Vz9W<&g7$ISjq1Cq z>|cDL7B-FdC-ZiEt)2C9Wsg^AhlD%ry&TQ45M^hCe&faf77(VD|`>HLP z{Eh9}eGhE~j5FB;**#oU;xvTjD(5ZAO|XqqsDDzX(|#|HcQ&bkdv_PCs2d~#-a&h) z&KEx+c-z(6;3%og2-AButL)>Av=+@zyymtW)BBZ28RvB9jx9*EP`ClwWknh%>speQ zr$rVgnDOXvshQ9wnovcby?KR1mG_80>STJYb}UXO77f7}d=~gT&h9^cNKcb^y$vOV zWTvPL-@>=Y)j4M`SX4BaS~}N$oPH)j9r6~Ny*~01LR9GU%bhlB2Ax`?i>Vnh1n#(4 z_rj|m%=NrI60|)fV)EO*c(lY_X20f)*94}B^r7U7LHEDG6i78)4V}|nohM6c2J7Va zW+t3U%ipq>Se>XHeV%zP&#`0o8B2J~zI7BIMJ#6$RQ^iiL$*~HgS4^{e$m&;jzMn3ptL@*qfeotyQ=`ZJ%ROq(#uK3VjH8ytjC&Wkjc6043ACm)V=q3akg>DL3 z4%)q0aowuTP20BS!v+;mgZ3QZoa;A}HMv7Ad_zFgIcR5lyUef#PMe8=GOf%6wL$?f8fs=^T4xku-|7VdPi=%qsRlmZbNg5n+-=BV- zqG+%JqBJcYF#dYLqj-`<;};`>h$u7qEo#yLWFe+dicIm!o1c(NG|;HHe;q}lLh((Q z(g^BdGK#_skb#-4eboSeOd`vmdbRrD>$#xC0xW9boz&;>h0I0t4v_vLa7X-Y0NQ`s zF~seEaVAO`s)Sz_W$3- zk(grt?qCX#b+QXkeJ~AGuIsB%7%Flt;@|+PAO%{Y*JSrK=ZXmPk>hE{%!mLB&qTR{ z+}amILDoxAAD633G(#(P+Syqh6{q{J_Sp{-Zr&1~!AdlN!LY9=r>rKNUof$0RUrB$*~6#w z>17R((7uPT7RbIw4M$9`J^ZqF^wpZ~-O9&_{-V#g3;&&F+AdE(`zX4%us#JmFL>v4 za0#`t8SRt|iF;8Hdhb=+mh{Q#a6* zyYVXqF_^8RW#9q64g~pzD|#;oou)<-QfVPWsGZL!LK?v!0&xszcWAePC^i^pZEtCc z*XqJ9opAP!J16R;yKiH(OEsJ{`if1)dG#KplnNrn*=3XyoXk3oTKv5B5H|hikwX7G z$YSTrhicdVJW}~T5Ast{6og>#=aKdavd>7c=9-o9u2-PI>DwRKH^YZ$s(o2IJE-QK zSNZPD{S(F$h;L=LX1*V!C9mW~@}2d}GcklfZb4Karw9H_4YlDXFw9&e9iCwTA@}2X zZKd34y`=?dSnnJ)o_uCRN^Z{I^#|~DrEZPJP{t+33L20i6y8sS;kM$(!0qMrz)X24 zu6fx&vf#4$8m7Y4c-%)>SS-a%On6>-`l0&XA9*JK1E1M{{?p2!Sdo;B&uv0*PvKWF z(TNTQ%*&<$+o?&%<9RAoDTyS8`$6*(6Q54iI|08ADN-(=S2q`+nYCRdNX2b6N)bi0 zL4KX1Ad~Fgyc%eIPWZcGNr%9kJ|tN3zhJWT>`@9NAWYS5(2}aSIida5veV;MMdaI$ zsa?iR%2^l8)8m;KjGcE~NTWamb(*Kua`GtUB7QA5ce!4&raL{oHJi}Ul^~!4Ig-!FEzXnwKeB_0jh}ve4;wv8F(mhLXec6xn!aJgmSvH zb#}n@ZlzMn8&vNP(`2*2gZ!e6ViMK$q~g;5#;^H2EUzxof|UdcCmK$Iv={FhPgV@p zb=91IlYFH{dF_36h`NMnoi8z*z*dHnemKdgb{*ICwq)=@Jo^%8C1%{`m>WJap~U}) z*Ax;HB2G6T?+Vq!6XWf0RJI{iNu{eH5|++>;oor~+=m1lRnO!>*flIn=HUAk#w}Z+ zbTlEqmxyZTZUZy?T9UuF>Xdxhn0c#coCl;!j>`k`E8)80PT^dIZw6u$4T?!l-Y@Zoh+S%tDr zXYrN|YFc>3EIJ^sGR?KTU%SeJseqV}I9yvYkA@8h4hQAXL^hS9h_E^ zEiRGeJ7ph2=NeCkuG$o2IhpQBy>NazN@>C#%ane|OUY*BEt!Ov`eN1oeJoh-^yD6c z*!)k($gn#RTk#3ZQ}{!ugw#Rkrt~MlliYyF){5C;Gw1<*a#^cFl3?b#k3><^rB|PW z+!$b{Q(Wx%m>-A$l`9f2$=cDV1pzczi5;~6cocZ09cZWlGvY%XSpHAQi{OPt@gny> z><#KjaHrBGZGsy20&OIovWKSa6W%MJ+3#feI6FJ1qa7npZhW1acvFcs$_UT>-~He0 zB1;S5Web(KOnW$KZy*B|9Zz@dDpecU7MjTi(^J>miVG8d@e_Ynye{$9Y(!*~JGD#5zRfF=&PY+arrv~4_9m-1h zc;@>p#*U?Zg;#bZh>HZJClo>QY0_p(2G^iexwXY-36X>2&wAWFIRlp;*d|^!Nj=kg zja@hata)XZbb9S#FJ?Z3&_VWn+js5#CpO(vz4E&`wrfO!oSZ=7mHoP~w-x_ZiT~r6 zetrJs>W8LXt0E@-stF9!UKK5GD}r*cEoxU~5^F$f_C@U7uYJuv@LPTIzrFQ@b$-g7 zUJ5Hg4>#FVyL@O(8Yu$HOR3^a=Cn+g8g~=j)KHDXf46?UIrJ&K-h-5d4{Sjyfk@wd zIwjTHi7gesrtiHz{UV!(E7rJIa(ZKb)@kf#y>mZp%qf}R>t&D*osHWl9oR#yxbM+=59va zBURCY01ODntH3LQz`FwTM4?H7@Vm{+2{f~v|J61^-4Vkgl;SnjG>LH9AiFVMRQA6aC1GF~vK1^!4av%A@0^L2Sp5Og&fdjHn${RaRZ`n%L@F_hGf zPX(*=QF#zHL%Aod7Kt>LVV62R=23Y^z8QTsBYRm9+CqeCL$hZy6OrjoiME#7q*Ak3EZF4^mm1Et7Ln{1yBq@rVxRT8@qaUt=dHuEqmr-U&FqG2*<; zZK4g?*Fcv8@e?W_o6@>#gx>jQIzzc0sH#$7PLgZFDH{rjr!#HiVh-Vex026^PgR;j zTk%{AL$Kp`>TE#xi+7rWtrab2g}|}~{HocQJ_v^{S}CkI!b4S(XZOOhrX=?-EiGM6 zamwji719+2R)Hg#zgq=hv41>M?@08ZwQk3WPj*eTGx+(~a%T7ulD1K( zS)al|X?JgzX&rkL+w1~1Mi$1ssJU&R?#WoueR;-gh{FEn9?y=8jdOIY?2vhm*I@dD z?3duqqJHh(2Pn414~`Si52084S2b?B7TW6Ej^WZh#0SYgB#H<1jYLu{F@bbw3d%7~ z(re35?~}K_+uXIeDpiztK6BH^UjOs8%d_^kS2T(>@eXln#|eioM6|-_2Ujb)PvFu; zYRaGL9hP@7X}H~ZrXh6QoNvAf5oRMcC^oF7JJro&I#A@ZTcs4>UB1~_a#3ngH1e4q&oD#X^J@1U>ALIO$r=dYJqy8;4kP{Is>pzO7_vN@&=*3zlEL4B0n5%%3W=4gwO+UMS)PrX17C9)UUn6qKPOqoyRUX$fi0 zk&$KMQ+4D~F!*6l}|SIjGK`F#ll zy6K)~gD^#+FM>-=&kpy|oBlyn;9?4=#N~ara%!G3_6(KP?E_3R_EtS|x-_mmdTWw% zeB|<}Gzp2Y7c()H-@fp??rd{@Pf!X`j9$l<`&-{%g`DRgyq6@wFNmHh4 z^qxccBnRAZ^ZLQDZvUxu7N-F2)+Yb^oww}|7SzzCzwbSfDEF0}_cdcsAVInT%KRWt zVe&~06&>+_{Gzq|`o!lCZJV-Xk6Ff!o{8~XVD*9>BvJ8Z({AN7K~nIHwR8(#+Qng3 zSBLvaS592a|7zloWfm73GxG<22Yv=^K1Pf6GQBPpqdIrEvXzLv)|X2mH&n9o8)R56 zU-)`Ra9OMw4V1h|Flq(jke`80ue3SKVtDx)5Bz=(5 zw^5)SIaK&S@U*B-?BHyO_~S&6g6fZ*t5#y6D94^haE=O)UreC{7x{jaJSgh5u&@>_ zQ;yZEW@5WGcmRFdCViTnh2-8^n z>!Aa$haNx=ECjf{xi|XeV`abVn>0n?nC!@3{YZECAj?6T(}L_x0VmfZ)%1dozRX$d zl^<4;`=FB z&~ZXR-A}B zDYe$J1p*!bxxs45I>=5qr@ZqzWEsw}C1~8<^0Yo(J#%TF#k6Y9IeCpNdk-tcZ#P1F z4)E;-Y<%rEEYE179jLCXz8rNk#}KqY#=d`F2qc@PLL0e%d;rdur=8V&6(`v#>MY+r zJb2Jo$esLbRyN_N2E$V=h_4Vo$i#3^wngM&kOYs&7akpAmeA3Z+chQjKFQSoYX0(` zIIpelnr>nKKcwT?yQE3t7|Jv0hfpFv0N;9v+@N6$Fd2&Ef5w?IK?c*3@Fo}(Ly&r()aj6W>29*?t&}C(g5f(d1s(GvH_-P0H%faoJv-Nf`$twbc3kUBaQ&!p)VL&;VYFmNmUHN#d@i+6elh}Dj%tJM z54tv3?Dim*OPaka(}}3!lA5H!G9;<^<{bH~q}a2f-m<#)7iSN)c_Li=l-gjtq)=S2 zQdbgbkvy9Mk(G|D9bFFyp)qc}YwM4;w1^6N4m!W`+s@(1z?4->-?5Ff+ zk)=1~$uD1=dgLQucRy%J{TS%&QP}99mZ2QVri)2hD4g(1_fg);Ei#{6-SK_Qrkw_wsAG2)RMjrpL2#ep= zBI23DG&ICuMF4)M#7T@IIjKrMOyi6%(24 zBN#yod*x_@jWnhfyqt-9E%%Pr1Sf|LuC{(*6=_k+2~lDh&AM-Po+&2|(rw-UOZGG@ zpr`pHsrog-dRa(Fj+)#ZhxYaMNTCSfi;(I)+%wma&zQORgJ4|M~azYP(_m6)+0H+4LWbea#%bZFhp@n`l?QHbfW`LDRE5i1q7L7*w(u)6PBLVZ zd=Pt4@~pPAT9caf=hBPEnxa4Q#;?nMWSA2~M8V{p%%J7)5ZF;Cn=_xj74^*+>5ZQW z=9(H^4s?m>c)G;Za>Af&ru&qbYCUeN_!#vu?X(|%Gi_f##=(H&9%2N|`M_1%Qg_Sw zc}~<+XrPymppv+$!Re|yLT%OVSUO@XNzk2aMBz?z=e>ExkLNl;o)0JW{X_B!--xMu zYRKJ#$~}PRfdL!@Y#@%IVcd4|0x2}l+H#3U(I79|v{FeaVkH6AdD8BHTmHL{nW9Wp>D{os-f(aM| zekZnG(z#v?KQ|VTk?@YfPEaFOac&Bf=z0n9>b4)?gV8ywz#r2j{R|L8Mb{1b9$+3K z1#4^5Npa$?Yj+$HJ|*lE`)ohthY`d7KN^b1!o!L^kmDI zbbrF?J;_SE{ouMEgX(@lvzb2OFbGTC@wHaf-_*?5%EijV98xUx4;y}}ygA}~r^lVH zwShdT)HTUXm~33fT284VhoQ&3-^^I6eJ9mJnJk8TTFq+pqigSV;ruCwjVRE3Y zJ8Y_J`SFl^USD7=+^{U8Y1MUBS@*FSV@z+Q_Lpip5#^4ac0|Pk7%#!Mu_qLi1dv?! zq}iL@8T_L9HY~@vy4{Aam6V%HCK6T6MZEo10LSKBCH=Mjs8JFa40Dh-`I0$lMw>Jl zNHAzkGkxUc`oW1fL?kTsU3vVz%);{G%g05$oX;zL1#a;{h`_`biA9y|L{#V_F220^ zseWLKnOq1rtSIT1cKcD0*pc5OT5v?alKU*=X?l_7f$@rxZNb>pqFg)ocQ-LFU48lV z4o}4bR(3AKfjdIm1jLHn+waZqgHVGrVWu0)(>|XLBtBFsH$2PAmoyM2TTNGDw~TQA zGeG=%u8&9nX1ei|jNw&4u0deiY3W#umBin{7ej{Sus@`)2fZ>R@e$!_{W)n@ikY-QzRk4tMWx7oxH_PR$HINwg(kVuLvII1*Uuz2t9=R|fgW-hjj?Q3Lt2r{CYu8fk)WYY(%Z^t9L` z8t*;ASYz+S%%S^o4jk`2prZ6BZsFC1~GmEaf4V-y6NC}zk z%#QVRNiD4J%06>x@x{LK(3s0L>w5Q9h0T#}aqqu@J989-Tx(XcX1u~6dw&vDA}h+# z!5FVoDt`CkjS#xyXPV=1AV(JA?(*xWX`BWW#8gl#xmOdIg$6)`xAa9|OfOjYOr}j{ ze@JkrKw7O409x|mslAkZi?>&~6LkQGQR}ZD#BaafBE@0Pmv@TZ-fRxPPMR9pzO#(k zI0V9o2dHxnry-+V&!^rEV_<&9UB%K7BEe>BcW&)hR|!Kt@e^%)1=2Vw2m0d z|LZ=0Q-uGn7W>z0`^VplyMQ=t1SJ_UGWr_=cKz+}k~b1yeT|pkv-z~IlSF>dq}i9Q z_z-?Q?+@Jy|B0UY>$_iVBY!8^0#8T4aOMHz@i06cI1YRd)`Yq4_%BDtKaL1|-hcX5 zI8Lp4#{38efD1pr3Jo0-($WL0!y9mi&>pf`O1;l`EndlWIcB@PLSGBw_XWe?GEdq= zp6|}%6|9pAlEr#mWU*&mA645t?pD34=+YiUEVhS;Gi5gB zbu<%OPJ|tdH})JG*!s_J>aREU|MqS5#Bd;?ewx#{q1#XhX~%%?ZD;}G(2wt(qOe<0 zTFEd!bAj8v2A`YXvh#9}n03P|d0J3MDI(NYYW9S~4OM#fMGFM1LU|9@)ja#U@S~q~ zc&{0Kzt3K50ol7a!B}`JZs_31ku#i^y~2Rv#e9ywIaaHsDnLJZZ2m!#27gJL?3dRW zu!^jI*9iYOmHhe)TrEI0yWx!~M^nSsFk5rJ|1je`3@Fn>v_8~tPeOn4I0Q7`{4W@w zW@u8TA<2OJDS6OwT4 zv1&%-D?tYcKSJNWEM#shB_&iiC!E!h4BL+Jw44(Rt=}<*X}NeS10lnqf3z4_LBUwr zmg~=wf{XpUnqk68O*J{xf_D0M99`Hd>zRW(QyeF=2EdNsm@#|ju z5kB0Shj(-e>eZ-kDWE1D4&)`@3-a*mQ(MNtW6!{X5D?pjvGln(pEzo`8M@}oQ+o7H5|zOwrc*~{U` zR~Gt8i`_SqG z1jlk(c;=pBcJ1o8RFRNj*+qWN&vcM(e)^8KX$hj-6lzsFht^k5pK2J|JiK@G&D$=% zasLFh6sfsumw0YpJhx_4`H|rbRKXt;ftkt>Vi^Qg%G&9wR`TTP_w7$!h665JFYot` zikc}&pG7$(&G`ct%gj~7`-eOc9?LbbBpe7Q%ol37pQ-qu?=FI}BH_JZ%OgvsClAlW z-#W8M(fQGaV$#-fr)9!-v^U<}lR#~A{)E)Pll5*ix&%SVRupqmK`v+=EneBho85?R zo;X2@@Km+B*LNwYB0c@X!5GJ>cPD*IW|XgO8 zbM{|;nVWgQ@F^J!4chPBkbxnp|hnI ze1#_ks9r}wC$vxYyqH^e4xg;3t9yUzR-%%wL!}=BF{zKH>Rf-4#9rWt6eiitoPQ9x zCPLPJmU_rpW&_#pEGzd&{wnSn_f$-XM}vRyiqU(&AMj{|5Re-#YvaR2uhj9rTdeds zd~Zk6OZGVVme-Gz+N``dm?8 zmK%5PZd#ZoUaXBfe6Q%+wUyyqKkWuoIig__>pQI-6?Agyn40SpCWnG*rp8 z*u{%Fhdo`o;g5XqIJ5W*w?{*wIB#k`J2XfItV<95=o$$@7YOuaI1In#azI5}YOvp( zvPX5%?Qx8@hWRI+UlDpc~ zOg~FDGK(C#dgt(tXKjTKyu7NJJ=Tc!?U!n$V|=I$Uuc^b>Eh5{+vb(TJwf#e)n|z^ zUGlTSyLXZP!ugcjl0@xj+n= z`Y(9*T{yqNXEH+DJw@(iBJu(}dzlN5!3|Z<6$>n+jF0pq(uJS4FXi zwaahfrVT-TJ$L03fw>t~9_>do2-CwiH>B1J)bwk;4`@+&)~heWc(wRP`CD@t%i}(I z*hAxK`#bgwnxIwE;k4rcdoK4zFi-nl!T!02%B`P0vj z&)Hmn9h@r0&LNLd5Txx~%B4XCgCpHMkt+{+SV+i`?!mEGz@KP!p!>k|@W8}nhH;yl zdFnhXow#^x579lOXNsSqR5DDF6sr2cenk6SBa6{u)!}#5&#+1Jy2ARcM^dIZP2 zz{*|&6GslJ_%^fZH3_kP#JiOg`YpHl^mseJzR4(>aU{mgQ|+zBF=2XWt(0uxR~dtk zL9&ETJuL?GBYs7j&Dhj1Hz^Cp+5QU0$4XDtxXQHyLM{(UR3C%B&{1E;tz+#PGUQ3E zul;0qKynK?MKGZRcqZcB2WdLz-cymvoOO>nZ!#O_cQel(E+fE2=b=s}s^J~Lw)=vZ z`@m9Gv!;jU)Hu8HPQ9Zp13QS`kUh#P7g`o*;3 z53#42;1}m0t}TT+K+zI*HrSD{EusADV_C|)7BmF*NbAUrv_D3*(BIWve~;?&RZ?=_ zE({%Bs%aflR5Z=Iljc8rGc%UK)Yq2#!uF~9JJei^vvdRis+1yTQq6%y6DG3afS5t= zlt-D~fPZNvdorU4e~0L+$ELzFn=@BQ++=Oq2+t5r1?c5#c;eg-srnDuK+6y(n}jqt zV5UOsTvtV(Zwa&TZF!6YJ`2v#?h>L>Ik(Jx*=wHB%ATOha>th@NoEM^_#&hz2z7NZ zcMT#oyKcX|S7jsfDO&h#JS2r<9MgBoG4u91zq(%#3V+?5XW8HfKwPA%3P-BOlihL- zfC}gBlIN(I!L6NU)JWA-eAAN?2ztLOpPBO-enPIM!}@)6*5|vchs9o z0)#>-yNEy_-MvQyN4nq)>Z|BoG#Z5`NXMeLT=srKXa}r86j&Nh@=I;&*;5Qg0gj>6 zFLMUO>t{x*AAUkM=YrQM&C4Sw>b_zM8|nu#7?2xV>J?GFWq|Qb;`9Yg<)3#^z+9C~ zh@R<*fb8F$CrX86 z%Wf*9vX(tEN%ka!tdlJyBzwk;$i79P6tZWXWXn2sWz7;<$G$H!WDK+1->aVIex7@I zp5yp@f5+$h`=f(q%zLi=dM)R9zLF`&<#3VT;9cm^GRp`$gAo&Ls8p`WvhIJIBsziv z<#--8&3q;ou7O2V&xpK;>3Cq-o|dy8d0RQ2bpz%{xa#bP8v>CB8C*WJq3vm4xfX65%(BDbd$pDm%f&VFFW#sRCEAiNa3 z>824)p?shmX6R^Fw^L=ac<#&hZ%K$HO}(;``UJ71F~@Td+l_b>ghF_8t4R z9!Of>4%F;C>dRITrn0YbkLPxD})H$74dq)hcdI=+Fa$x z^CgB|zq`5rD^!J8)6Ay~FKXI@^KGa|J^GZ<0qD}fFKUwoSEL^6gOSUYwe;r3=fjyA zpcZz+=_CQ5T84w}jU!{=o*wI#-b*2Q{5s`t-{_9(j0$J0D)F6nGPp(2Tt!xT#_d!7 z$v>w5X0Jg)I88US3O@(&^xI02qH1MCkdu}XBqWl@-mAr#+q;s&}sZbP(> z5&*W;A@Db6`CFJseVZEk&?(11w~?qL z1$y%c99ubn${h9qG*OBeKZJa^0@)$|B76P0!;itHj{(ov0ZS9(0$5>xYA8A9HE8uG z3K-|CouM&{~G&@`$E{oYBy)LXnb!PYFR9$}f`wBD3V{EakUl6KBUOewgTri9-zY1j%nxNqyR&*z8)LjK$%7aaM6T7FLcFp5)dg zgW4E+RY&onv#~THp0GRw%v5>lCbdGxAOr z#KBa}exn+{0wa;~mdxbK(o%h8s`J$DgZ+!#*-lS|{PQjCZnX1>#Z>m!kaFP!OSwSNzwcJdcEKvlAs_AcQU)L7AdB98av>7!I1^Mu;2f$kD7*6gn8VG z>;^{;I4c*RSAPF&lqCMcrc=LZ`ai!F97O;8?0x=WzMd;zMv(KY?v!PUP5SQ-^9s&i z)wpXv;F)vz_0fs%jg6GF+=5F!mr-U)#lnS(d^EqJs>i<<410GuI58Hy4Sy*f@aW37 zl(za?tM26nKmyo6^pE@hcg5qM<}T_G&<4FqK;k_Jrtjg`hK*d^r0_1X-EVnnN2xD$ zq-9VYp1&G@>+&O}hLJgrwo}jwKo$K0Y3WLERieQr!ZzX^F6nu&qQ=<6Zhmq9c!X~* zBD|@`XW_f!Q0fx4!-N8pnwnX!;f(AxLWdphkx(1_R?mnY)x!sjko-{44I|=>Q^QIo zvveFO_Qjo~q*BPP;j2EXjgIH9##yYxy4Cvz3e=2@e#JqT4~scRw00I%r+@LbjM-7@ z^et!@cp{dtoO~k)+_E0MO2KokwYadB21an~Kc(fsvENINnc&lYMVFG8c~YVzvo5^F z`R#Nku`;vr#IOx@QFKMoKL%Xyt#65Y(^~2`M%+kJBQ($V|o5>!+1(l4$`(}e1Z^S$R^DOL0|ul zu?G)oyh@%P9%wn|y^pc}5MmyrpfAGy<01b$gC#qnF`~e+;W9QkyiPXl@>j1nisWN+ zejz`kvc~<~m;AX@#tz-v{IdVZBie*%CN2(5TjyMo7pf#YmkKfdmLn=qSydmg@bbOr zlvyZwkxFo*k18z)eFBJ`WEkYTb8j(tZnq zKUhOOD&LEPH?Zk3#pULAD>j_1g2wRswuk(~4Mr0UG*<7>0v0Yxk6cM&&xD^NC%|>G zNP_(?B*olS?vU3*wu7@L3)Mu!WBba8ZMN#Wy! zbS?l($~k)9*H7 zTN|s+S(hPrPy4*OPz_a{a4;+i&8DP)O>b-gI)!wN0xqDW%dv-M_e-D4wDr4{9U4(F z4fjq=Ju2|F#?ykygIo+}1O{CMtV*s4zwL4cq9#!e)G0ph2f3 z33M%$V{B$ikz?X5y47v=X&h?!yMLN3NALh8~K08zDU=It;Zb5hA9cbRpv zgkV!w9ecr2DyH+u+vRIU}2`PBm8g+hW<%WZ=CRNw8|N-#8*X=5Up#(vx^-_P)B7qLCcPUMri zlT#dJ=u@U#of&yChKZMe!9ts${BREFGbLMBxxhaACy`1-h0l!%QY(XxS;KhwTj5zm zE|L>2uc7gewOjTIgUz^D-z^wCWv zUF_=k98-v#838pjALY;2D*Uj$$3p3qb??1<=M2+dip(XUH0bno1FZ6z@!J8w4N-ex zBVZ;W(F%R+4_!!BN1sC!^jn=F%9AXr2n$$qfSqP}@xbzdag&6t6|K()R`%wnqwqE% z50a4H6Z`@0f#IVU(N!89vywYG26u9cX2%fk!5tcW5?q=z+g+675}+0j{WKj&JRyGs zgdlQ97LrM9Fp4%uBNLHv;y0>g;&HO>-%Hf}llR1=fbEz9fsYdOoTbs@22SD#s1ZLx zaxOqUo9Ww=hyO+;>(2>Dkm$8{Kx}{Gt+g7Q1|%efagcDh7*Vz|eRD2+^lRlHTQ9W1h(4Iy;0Lo9w0RKm|1;)MyJePbmMDl(0eRxHRWJYrL z)GNUY`$Hij31yQM5a~GySH;D(LFpSfe0g++#+weJR(6{5*FLO_rM>G{(BkhLGvaya zBFNjIV%X$TVby+pQDZrV9VfTJN4&fG8x>u{IbV+%rVwd9^H1e8s^P86?lhzCKuMf@d4E-Sb zM@5;dF__KzCd1vSs%0sN8wo7NWo z9pz!7_K(Nn$*KSTs*!YLlhP(!r5G`Q+i)2+wsCgd=OkLDFCil!bMG8A214!D4Em5xiM%4yp z=Q#TIZ&VpcJHJu!gU!E8GvSB=P@xdmd*s(HKS04o;yjVfs3GXGeI2McgC^8a?Qx5= zpl3{0AwMopA?Gkam;qb3%XGly2E}br!~+#E;SGm?z1hY@vt~twyQ%E`x_JC*-8dk^N#89|1Vv;+8&7o>YN8*WQMAA0$BYV|6z#5 zDBNpbC0^$dGFOCnW7-;_;RvXJPPQ+m6~X?^=BpB%_PK7WNpN1S7AHePc3?|>50!r^ zTVT*-g(FG-zzj7F!3_aP!gQccq42?Ql38WVeeQtl!4AH*nX216M+I!SVPcvN-%osf z{7B?UgBW2e!#O2x!pp+;XP+w7t&6xSQCa%ZYBWJ3LCCF6mg z9#{$eY+U$m+%fpo5t0_La87j1_FQlNHXo)PMz$aKycEd(Wjf)SvEU&p;X}1!GY#kD z;$AeG&B4WVOmKHA-PRZCW@+Rg{_lFFs-WWQu5;4V!YwgKW1L>#4+yh!4MPLRkPN+i z&KsRKWcxQCcUa*C>X_>V8rR>=pBVmx35%KY#wv$mSd2%NZoAl0`cJ_d#V_rwQ$Ecp zba0k*{tY;F-g4zh!2YDqq0cR7)&1B9VI%==2xPor4dS74=(7m9}IN8Pt#YQ_K zcUGZWxxZqDoL_+-JcPvPQe^7Yc(#Wy79Cy@%6 zM+f!L1(kev;4bQI=) zeT~MSI+>Na$5c2-G1~jt$>o1_a)8i;a^eDG4otoKBhIenpZ2 zNp$kv{V`NjMTF9qH%SSK_PtuWQaTr84(N%u72@!&gzPR%%au=H1d9bB!$5NE=|)yC z-Vkg1uI1L)%a~1Mxj4uEd6X^v=FI&OR#w-BORmy>y@8We+^~%VmCL3fAFIfW zFObufM8KanF>4%ou*$UQP{NS&%Fi}&0v%ObamJPIu^8u1=t9%eeN-ibupqC z;fb?IJ+#So!^{gHwiPi}<%QA@xlU{;+248kOu=fNH3k2MDL9?+2Rh;)uiczapc5Bc z_Mpa=*0Yx)de7d@h!?FP>1|4tt%@; z_Eqg2dxV#xz(F*G8ae-@4{V|P=|NT;1h*pi*?uMI5579Ew-Zy}E4~e7I%!6q+ObQ_ zu{sk+Z9!cnkl^u|q(F`Vm5V|UB2_q4aGluv+9|b|^1(@qiE#Qu*_k>5=O40$p8l|| z_Bb626za_>pyQU-zx?-)fPSmWcnk;y$mvTXyacr2{35lOE8vS%iUO)_tN-r>@Uq?U%$Wcb;7(i zNHZs<{rJbUqo{`;MI?c;#lH-h_Q|9%3GkY!qXKOK_JUELwal`sU z9r4D>e7n!QpVsLJ^e|NX+0ObUaD)GCM*g;5Qh%+Nh(AnG01r-J#_g%HxMR{3FCios z>FhL|><&}oNR{SsJ;T5ZG?GdiZJXp3<~>o+VWd6!sq$&Pljllj;>sl=z2v=ObjY$e zIB{92PaKxyUdHcC%C9)#XLUrWi^5M$6hVF+m7~zRp$Tn}zfKtCXVO*~Gr<&wL;u=D zK=ZYdkVQNLrzUjF`YAcg^_`HJs<_ggFwy4cK^<>%JDkfl-Y|s9?!5e#)fZr5%q#^X zP7%xon-GTv<_4sl#oFZsL@`pS-QAm}ldpE~+vpX;yZ$yS|7k;;{Myj>KKb*YKO|EQ zfusvjHj>bTbOQu=(^oXJD|h&pbQ>B;?@&2#YMgLmI$OCAPNHSQ6=(uSJ-mFa!_zH# zJwcXw?x9D;5bsI%$lj7uMeIwb8q_)8qFB|HzU6m{)avrpJFJdb##ZN8E!SjU_ZPd) zCAJh(qhye;VYq%L-i*!o*jugg&A2`kL1;7Qz3&suY+ut=?du!U8}4>D_nhj+odWp+ zoz>)b-8^8075geguJa$sWdKZL&iN_UGA4KS(x#7$ z#L#7%*HwHi5b>*PQI!Nkq6x_Wi-|(;Qu@b6p2daKsbyJ=sR@T=f%<0{MfH1$Nwf0( zSvN1)PbPTBz82WLBBG|BWBoY&6$}`(c5!3CA!&yk&mhdr>KrBNxncuDpmW!4-~bjSzkT?P@D^qxQ9DjAEaAz zeqsBohIBqZ>)ZVGJEWG~%aJHIkqL`%!V7!~fSw^|o$oqQxW6i~&q*+~<%!kCv1>f8 zdB!pR_G(WZzTi0B^*4d{d?fgshoSbUXUeAu>{w_EngOm~c&_yQ%5@LX4@r_|(j1aI z!#^3HfAfK!N>7P8P&qg=W5|1fui_K%&}oh@RG{}6mVp=l9l7jmsr%UEV{XQ**p;!N z{m{vlYTlgdhyZ}=ZeIyK2BDx!kUtu<{{l`2{P2Bj?BE=_S??rVxM3(=GZ?1H zT#^;7joas7?v)IA$@>a7&!=n_SO;jTSy}wW@wPfAPTO{GDyajbn!LP8azpbN(Y3GqMuJPPd%a4# zZ?BZeFI@wgX3FVy${E~Z$c&a2@wA?@8l)|u4QvwXn@ssAs~ei}Kq28Q)jt#xtc;2P zaMykSz1D;N!R7pInJN<)GR#0Yg(-N`<|EE6!n22E)^kT7_F$XG!Sf4GqP>@(9dms9 zgAxE1n@Nw@<@|wU^sUnThFW0w;^u^OQ|e~357(T06{w)}=sZo$Pis3f5{Ehk_apdB zqaqPp1O=2uA0z^9$(7VB{d7wBwgr5EDbY`T?HYgAF9*u)L^4z^58jw;X_x94vO~yJ11~}&qTCt6?2Fh` zBug2FDn>bnzwz`?y%?&YI(he`O1@0oJ}nG6atw%^UgO0CDyf0v@i+xzJiM7z8LX#u z%4yM^*NInfCiQzD)lIt>FrhVA)m}@C#_V1QC_f|`NJz1CGcF(8tho7VJwq$!jt3o2 z-o0ZjjQL+f-P`O)2IN;VdSj|HS1V%U=IDElY&JVZ8{b?gFHELA>3Zg-EY{bQ+9eBm z2GuPQ20KJK4?jUJKyW*zGnZ?5Zb`M8`39{Z{hS`tu60XEbWS`rIg?Cy$$y^a;C5!6 zUK5&55Y&rF=Y$)$u|If{LMT0>l56p$W?-KX3JuIq?VNHQ_>OABghvfcdcaeye#*UNVruJRt{kkeQ7@I!x&m^9Xc zmnMJDUZ{+{McudtlUaq7*^OYzdeR&9=j!hZmw!iAK1*LoaCzHTN_qII-TR{J%=PHE z9zO#Lc~3WGU}HRZ6RhWx9Fk3Ez@vujxHo0wbY}-;D+^ms%B_*Bdvbj5X@1;~#9eis zp07c7@X^g(!x`s2Na1@{DXboQ^R9(okjkQF^%}7|J~&CUSABvNoO5(SpzdNH2kFkw zjwcXGrCuQM2>cIQzwa_fFgDbWsLb?@QZ zE98v{`|8G`{oknU(Z|=&R6sNWMDIGd@r5X-;hP_2-wi&i_t8qR-+!f9%i-N-%y5Y6 zO5ioRN^lQQ&@(WaWdtwoRu!mV?s8>V-qnlC#CcLX_=q}}u<%fVo`KevlFqUpG2(+a z28znfsk)r4X}xhrY}N%Lu8W&~)N14soF5MPQ)2fYi1`1m=>Ff{NB*vN|I=jxgZV&j zUltPy#fv?_9OwwaJBW11FYkRhR`QW6?TZa>$@$RvaRjhMzgH9@S40zcAnU;LJC`vH z%LN(UJf0Lhc&`SEllYQu`V82kH_>ae;Dj~ZU4XNK8|fqth}n@K*y|(Lu&o;|?z3d= ztC#&wZg@PfP0(V#doND1pzuk?y(c46-}Zq^a###Jf};_Fza&hFcv4q#VfOUvDh9*o z(jPAqzx^!S-mlC-`SKgp5oLaYS)T?P+nzehsA~(Wz&tqBKUp_uyLA4XF>@|r^*twN z?=7t#aRlI#9!4%-1GW|AcrlbP`6Px-kJaGT=1n6H(Hrwi7h|`2(k#KIhfbr&NBJQD z7ig3RB6?XAHe?g*;G_~1I0uD#6gjIbHNDDoZ-?D6OfLoR=krT17X9P2FNhW%HcltG z{>QKKciOZ5ub-$JZ^i#KoP)fwu}jg?eMcN?USxhgU03$uDPG~s-7S^CM}A7~FkO=+ zxo8sW^j0{e%4jJJ?v*pXI(8?GVXA-Py}df?Ji5XRq_itDZe7;3)p`Et- zV7Lw|>uYt3MkwKuTVX*@wj#V@WEZ<`Rn-onDpHlF#LV@4E^Y3dxvpPzjQV!BZwq7f z*&LgNT-26Sth3Rm$5nXWhw`{kXjw_ah;xRoUUN!nGq{}#TgqMf}<7z0oucxybcH<)u5OWi1QB(?}qwe;lBtnhSVt1d%26A4<;enPs|Na=u?^E5G%5Y*A~h|-x}2@5V#hI9#4J);OdEdMkZ zRi+*%8hSFzT`+v!F8-KMsHsQ!TT05vQu2lzKnKByU{`!M!2Cv~V_mX-*i`!#i;ph! z^WJ4qUF}3+_3Ss%St5BQUn+KPl1+hq-l}|_bnwdr+e11s?fgb1aR_bVyd8xHPkAv( zeh2L%)g32Wmb{%KboC=N^4ic_I;4}}5V;ME!Uc%r&y(yw3laZk-r0XI?hsb!i@f#i zbHa?acAcAQXh+6$@Le=E_&W%g4Pjn^v0vV;HygRukJ=qyNZcqN_j9$sd)9B^!f_63 zUj0y?hfIlgPT4lnrVx-b4jWY&zJs%{7^O4CD>cz(0ipT!_L)~3f(!h5_*ySoU>4<0 zN+y1qDrHQ+L<|2mJNwCp#>zFvOzR5>PlaAtnJZLz+-?SeA)A?j845L|*#10Go}KNW zAo55Z1e4DVqU87Q2$n>BLSAEo;?R~b_6Gto=;~Q7-g3)-EvYtsL5}6(_>CQQ=69l& zmFM{)xDK{vwpyV_NJiMu^f@%us#Bq3N=j0YCqwncHd9kxIt}B)AQW@7iM@}KZ;#no zKtLB^_(bF)E9GPqWd9(22Qs5UI&%uTvkP5>HrJW~k-w>8oLn;~2hdvz)N>oIG~m1g zDJOIhoLj}~Gmhf-hhi$fIXl`28A~@#=ozLBAqz}>0Ma;aKkVmol{5a(A#e^KRf{8$ z_4ebiB_^}z4!tnQ;X&=V_Ps%RvbWaR!6MP(`}Os;zAvTIjOuG@p9co@1ZD{c3mU~y zlUzYTI)TPL3^QD$IJ<^F0T^te%lJNfq0FsRahuorvyLN+_d4a9xM;bd-$ZKxRJw!I zLexg@@NxXRLve)bqR6FHWH&OzPogDmtZ+uS4a$7i*R46OV85nW=Ul3XPqx*VDMs+T zo$cY)uSE}KFIXpBrsKsKz^{|@8(83SIIq5^UVar~I_85jv5N;7?LqNfR(pmPPq)Xz zxSEb?#Jyva(Y*Jf(^r$gouX_qN3ka7!1m)n$m?G-`=^0$Zb$PraKM!a0oFLxwwkf; z1b-uQ?~gCrM07kyoEEP=Z+w5>kI(NY>m#ZJDmpd_3kgne!W9w?FijkTNJqzq5lHI* zXPKCds+41@f~*C~!&EbY0zp#ok$)M7Fw$wfaIlvgnAocF;u9?z#>9&W8%^E{Hdhtz z1&A!AGf_YYkhacn_Kh2ZBS%W&suc!#-+Wbn#iTe#*Vk_Qnbwmt+qYl~jJ4L#wpizt z)s-eJ{`j+R+IJF?kpzz`pT^28J|+QLfXTYD zlwLEm%^UlkH03g@xo7*UL~)2^L8Y8dfW6z3NF!GPEvl>69-V-iRs6yn@?ZF~SGCqD zlfExnV?y?;q6CXQsi%VL5g!1BWYr|#eJH+ ziyYxZhb<47H{1t1Tr~#`vVsEscX7jLq4Sd?dG-!Re#G^B`c#=9KL`)e_mQGbx<_Yl z4JAR2r11Lo%}A_&n}LAK{iNsCdNESx%G2t~oy>HHbfmj9vhL}8^rD<$3$Ftm-Pu58 zwK#k}8AUlu@&rntI@5ijb&8&F;rDtBW+B@>EM{XWQmqV_hO=6BiryQyk8rLFB;w;D z(>XvbLsS@=4$hwM40PI?(M`7=>)-WLd`zm z>Nh5fD);iw_;GWTYi5NE++Z$y{r%Lv#z*c=y|DErq87;o7uJF1rSw7he-vNrYvt$q z$Q}LIN#|_qdowEAuG%eQomZngK}S^We#}wiNn+$IWra0#88WT{Mx&9v+Q2eWA_3R1 zKau5h*6AxfQ8uDAMslaBiTZhX)pLY_)Kkm8rxbe99qir)4yQVoI296i)VYB#w(nLQ zQMa0?HlUUpC(+5m^eKrSbacGDBovOW8Cm7i$`qG&gs|gqyhR=Kwp92FcR)hW@b!!#7eU=C z)X4k&^6|O+-h|VanNMvqb*h8F2NLf?&ZkJOBDsKGFB>^ax<|al2zx8(U{E)^C`hm> z>WhP3n#NSFV)!Hz9T#JQ?|!A;cp1LtTLT9n3m=8WJgd73X{lwr=2VHBh)CO(`zTiA&-6EuInF5uZW{~Sq{=3yxw$ceId1_~m z-iWyzKi}2W&atr8xwIoNdm@)po1j|fJJs@=a& z|DsV;ul`9JoJbTNn=qwxW9X-=Re95~u`8(H5vD^QDfc4rKqAd2WhvAvfa6xJi}Kd( zvQJf^3&$8~6WTw2yuiC~jN#JCHAoyl34sE!s4=~nh4%be9?VI&Y?9c;_4X<5%DRL# zBgY#JR-7#&9g7!9y|klNh+DEFJC~+M0p%A;_ylRloP&X(?u{^Y5$EU2Lwyus9f|1=PVbV8)_99 zFSqn0+Yv6fz@nz1OFaP^vzXBrbD?=NeWT}^J6aHcY{cN2`Jz<^-=#)8F4h+PY`&ZJ z(_K4gHD)hB^D|v8qA$Gy)=s|_4P`+vQ2J}`C)*bI@@T&>cPbBguAYS5mpBXGR>s|~SDW0u|<`JY4$ zWZSwb@0_PKnK+PJU&FBw@nb-_iKF$3Rt1(LR_XkhOl79H*u)pn;R8?c%)`&Sv;8h_ z;|fUieikGfsDs3KvL-nlu1~zMLOJ@O0eHLk6ii0}qxLBGrcjy!?Wr}vPAaF9y05RZ zQ@vjGqvYHUOGbo$dNYAiBhqoJd4 zxrRU8!RN@27oBNGnFV!mWdbhu)Q!TgMzF7>bdZ81&}+}o2glx>P@P^PMMMCs&;liK zMJ^>EG&5e~y}8=s51lX6h14D;w2sFQNy^*bJ0Aa8DRRdxIDPw^Fxe;hz@*@x+6(Mh z3{ca{C&DP*%mN>?U-;HO4!ZWx>BF2r!+Dxb?f)j?@&EC4=x_h5LiPVT7=my{Ht8Ve z)v$ErXe}TlZ-v%&-Z7^fHwQEwi9qPOjUJh0x5S8oV_M4?Y({TO<^XKhxqw<=PhDC% z%#H)-6WBOUGvrvEM}e=fF}AlfpO0UF384qT%Ctx9LEItW>(nIFI$nedk&9 z`U~vd99^t=$JE(jnOgdlhY8Jh%Zcxcr;{e>`AQhX=ViBExivM;)-APLDSnmd8*6D) z<{v3XvMi_MCMstfc_SivX~isZ|E85;($q55zIJT({d%6+stvt&BymD0nt?8)BAvx~ zaAobic}q@n*=tp)pr@*ChmB>u6*Z45rd_mnG4WbkOxXq$IR+6ui4cSUs8O>OW@cka z@E&YVKD%?XW-xcu$IU&VNBH&WfbMmlO9Bd1L6R4@no*;uX6UgxmqL>2piI59`H0N8 zzKfr1p%>qmWQJHf!5eXPFZu4i=cPJwsZ)(;4OgroxXmCVj8AcloI;!%w*A`BOKanA z-oc>xietQ->cpJ{Rhrm$UW4%K0}bN7C}1U1|A;C!X?cPQ%`D&9HCGUbR3lz9y))i$ zH#jb_O5(cXp3ilQw%2&#^Qmhcs}mF`~Zbg_AV$9IejO%I!FvO772zw3Kq_zB|V8g|j(qGOp=S zdMPX%ZeHvN499ZJDd)YZvjKFiBW3~h?HN*f=YtL#>Ax7fs>#W9t_pD)F?<^?KeQ`5 z0@(lYaD}YNH##x4pCiP+N6@NkCcfo5EBXi(pGIdGX|+-EWsldjf0rptT2YU|*Ix(w zEx0bJMz`oxymU4fxBN-q`n*XAP|&(7%+lj>zL=_4mt53`noGSAR~6G zwaYUpUgt!W^W#!2yz{viVvElgkOC5UK$%?6|TU=c@8yoS=Y-d7)zJ70#0n zyd^moO={vzD>EDJ&V+YfH z1#AgFGA+9~p^1t2B@(aItLP6Gk|f9|xB!l)o!cbXjU-n@FrI6DE;Ae>n}4Y7M8@%; z(THH?q}$qa7yV^559b#jDJYg0Iv9&2=-ejP*U{uo!RXVEtzkw}ZWWE`QZhfN4<~JM z7L-1kXBofyZ01AuZX?wD(9zHH+-xttKYE|@p<;i52+#>%Mt&Nbc(y7K6Z!7^Ll&)s zc0%u8`4xbsG$#SttU2Qo1vi|s-nPS6>=F@Vh#Am7k`P7xYV7lnvxor1PtVIAT}}t0 z*U3+RW?I#V5b)ehAYHITu{w+>8M)<7vR_6E49;Tq0Nxq7avr2qx8q*@Or-s<@GV7l z&@;aj3HiwR2x(uvS#JAbVE*GyY#^Yp%j&Hq2v0IU!GaVf9bG|>jzpP zJJ43hDGCpqpWFbqEP>x_&^^^jY^w1p2O0ylDr^n@n$`|#E}=%(P2?GDJ1l6{U>_<{ z$4PRyuaxV)eZl*>aG8TuH7;RE^Empv|3euor|0yi0)=8_I>8;g(kB)e z8&e?y;5Im9D1`$tf@Gpdldh+)BMuLdF8F7et$tMRb9TtrdQ^4M-ixkN>YDe3hYo2? zrClW6YOGw$L$uRYl-asr2R5pGzUL(jOAuGE*- z=!6S@xKW4QNR5UpNAH!2Uca_cDfY2sCi?KN{|$BeI>o!bSUbZyqK7n&YQaitY;?1*~I5oA05$U zF*DPZ_F=uApu;iYecKfAEE?!Y)sgdra3kTKkkP)mxLBcjtXNv)wxw_EYV#Kf*p2$3 zhnbQSGUY4s%xae}mtDCOEl;^xF-7T}n=uKe$oodk-ipG7?#xz&+W_6Ofc+~0b*D;4 z12WFVc_t-cTem|Q4lSfR^I}h-Rl{lT4V}VQ4!iHmKF?;JPko=Eu4niZ7^|=ol=I8T z<0Mlou@T5f#p3YoFTE_P3(N3)pH_N-|tF6py!#7Ev?uWR1vHfWM^lj>Q1#)x& zZp=(gaiZD9K;`p}X{RTP{$( zf*d#*+^;#?x9L`0{uoa2W!lidrdtx`u#h&`agvOei+#Rx>A0YjW%AvVOt4QA%Rb3Q8emum<2txa z=a(~9AN$(L{sIFY+rh*9_2umo(2Mm(>zi5i8%7%G@@ziXS{li*a>3GYB`$ z6D=DXw_v_7DOed;Kyy~@(c>@ehP>3*ARnbo7JZs9d;oD2wo!%iY4_n5stcaMv?!|N z=H!hF>B?Ic>>Fs~Tu)XGGIk}2wBKF|bl!>UNN1I(5Tk2Fvms9TcFeZdBeP%*6qXBu zvK0QODfX>y+;u3HmtJ>_U-Fw=n%;QFG@3pJ#TNzR-K(GOx>2oB&JJ+*yOzl4UYU@I zDcQd%!n;$+%v&jWjBBEyVk@0d$-@>WH?tRpIJ1(pZD!^h+fGl&coi(@^yq1G<$(G% zrRmv*qXhDtC2UrX#Cmb5gPR!PrR$*5?@;q7L$%jU>_%MqBRNU2r;WgoAzr8=*(|ll zst&ez^Tz2P`byXT(qvkr1z@D1Y~sl2H&9k3Tc0^G8`#M)-;YyM82uOepPavEKu4=% z6}r=GGN$%#H^O^5&NVzGzoVRYOhQv5s2$TT;?PkWGHB-I6tC7Kezq6h#f5dl-mBbB z^NEibirlO1op|4htDL6U9YZS^;t}MhGRQF=eZoTuiw-K>7?`ZilV&>SvWIi*MlU@t z)OImfwn=y;@YZDwCQWH?xJn3zI`(l;`VP|aXNgRV51uf#Rt{TraIK#n)Q}Ss{p37I zC-2F%?(HdaV!ey=m#-kl#iidITdepPp|@pq^mSGUJ2mvu?RV$baQyvjOjk4maTPOYw2qJJ2zj>Gsn1B$|pr>AvtZ!F~y4 zh!d*?Bli!S*%1_-w|;cwmf~%?<*V!@;tB-YKoO$!A}*6F#3|xyDLxV9y1FrGZ=AjR zoxZrRJs0Vi4?X&N=frpX#=Uovwr2!}!PrG(PBjP+6!H2aN*89MwvIZ(PTHr?k4o>) zS4C{5I3HE|a#r0ao;JGo{d5Uu?6Y|qd~+lzgPh>na0V_5LR}XSy(xP!UNFw(Csxl> zUK*@cF}X{mwRft)Yh{Nocy|&XaR%zC#C=<(0<3bt0a4o{KS~B71TtBsWB<+PTTNU* z(n05M>K$xJ{6O9L2c{#xFVAVu#Cv2K_lp|ApTn zzZXIJf9?gkgZ#42j~*4uNrFRb(j#fCW6BSf2^Ze8T5OR;9Uqg&s(0@xjw~-&6OvoZ zn4&%D0qU2K)_GM!duZ0tRcwJvOThKr9^I$YK_`x$4tyY)NKVuoTDN{_o5aI`(}-nvq{rVoOwv~U<8?1Ya%vHWYlQ6UiIsim=ik#CLI|vykq&P7V9gr}vn?KOztaAA^7UAY z?epp97^P@UXp)kQwuh>C4lmGt8+Sm$?G?& zE}-r4*H=#c-YQkoTUO{rG0>aZ(4D!KZXSLe%U6dL!f=0o9zw7`g*gd&MtomR~?+k}Vj7z^f)v>&5NID!Z!rz+9mLR;n>T2YZuHnn}ODA1&G zu^_wrZ5aFi_R3f6EAQeBG#%x7l3{X%Lllg_fd2eq4%)O83531-f&p51zjp^Szb>-BFFT|$NWelt!_)v|eOjjS=eh&)`3y_f z42?|zfbE_FM0bNUR@>K1F+leI$6>*5F0KiSSXk8OcmDo1TP$y%_f-ed4+M$Eq|#C%sriR$-u;i3!1jsAy&};p^K~ur?O- zu;!aMe!u%Q<3f93tNSL`X}cFO-QO)-j=yxwlka;ynv-RIkm~6?jeTI`G`#diS1@zn zo7qOgWLz%rzj1LfP~~4J)vK5>8WK2M8d2ZINSS}bQsl`~F8_eVui)H>10ahF{qYiD zCj2zIe^F%qQ#k?vex1$)F@f6+RLJkHOJM(fH(7Q0@Axtkg(BaiKJDk`hvhiv2ppA9 z?1;lqlF%N|+oDSbd?L!(I$jgjdyYe%d4^NwqjGN5QXkV`X8MaddI^d(A|W9E4TvU` zz-^%B0|FYY;95Br01k8N1;DZayp-@F=r9SrkD<^&DL2sTos(#Gii4NhBQ!P{1LV&5 zVSpL+v%abXI4a&Lp#eDw$A&E4NA93WN06j&ISKNqq~6KlLY$ptA)C$V?J|Aw^PytRY||@PF!b5U+)dCe|WENWH6(Gsr); zs2PR?@@js_pM0&KwO7qSf0vL127og@N$D;g$H5kT?wA~fTf-Hu+z6)7f+xE=QqFuF zrdQ*?gg5bQUFHY*gbxUMq}uqCPDwtH{Me)Lp4N)6{^y z`LyWc&8(+e*Z8bnxQL}C+B?W9eLfQ_+ad7y{gLvE^v>ZW8=19%iwg0Uw=N}G#~CngQ zn>4$Hlt9zuwzkjlQxGGmuyU$Yx)mdsejFk`;w-F4sB zb$_q#b^Xryo%=q&bMEuUJRWA6KA+F~J)hdIV zD4{m}<-IJJLT3I-Ezc`s?I-k=pLq9i+H|M|TZ+2<9olyiuuOzSc%D@eRabuApN$PW zkB|@`bX?RiyPRLh8=Pzv9};f~%9a3dnsb8y!vh^*QC)e=^%=A}-wp?SANTEFRd&1t}_E9qw8;6H6+T-{)JaC5`M>;>6{k#U-vX1q9 z#8t>LcKha?6UAI*QcjrKatfvuJsPmuHm2JY1sVZlJnSeS9cX3P=9;d&@34zpczWl& zaQRWGuZ_Lc!Wqw6ADnB1p!+UESWtoo(Wq;Lk-44e^&{Z4i@1v%uo#lHt*kfQZmCf0 zl5WF3u5(Yiem`1TN1{Q1ZstBF22%2&h{!m15rrh%5~V4#BaxY1vcFCRcOkg%#dtB$ zr-|4ySgfGXl_wQp(MrhhhGEQ8RWT7~QMrO&1`~$i9v@bW z1-!Yf9l9r6-^AfQzUBM|=9zrDvgjzb2=v{W;QXF){Iizz0ad$}VifVDDhUaugp$P`6#E(t@{_xQNovxX^Iqd=3B9Txp_yPfwa z!16_Zcb|$=9oz;M-*!%r&BNgKTL{jE<|`Zt9AyC!rznI858dKIq<9eOBofmX3^8UjL%{MtzX9DfqdGmm;T~gfk&O2FOlt{XBZil=GvQtpW!n9=z6&P|2uElbIkVz)CgFm!HU&6;Bxb{POCaA-zF$BO^%N zEXV$y(Ocw@T$D6!L_EATt)g~v?B{xIS27Q~K4VPQb2obNm)U`rmF>|ySO~BTO`C46 zXL}gD)e<0j&yONGxp=uKn)?Rps3h~4VgKc)$0Pe{!F(3gS=kbqx2~6`x72tXb$0$( zC++e$bl2s2qHy4)*ZzXxM3FRjU>)y!B<4QxL)?2a)72XM`)SKo*8E*I2&?2XMb{uO z@qmqyN?2-}4i%Fl4A;*=IFM=m6m3FtcUn?EAJ@3B?eq!f2JUx0>|cx_9%&wMAsVj% z0k061)iNA0vln*vPJHyU#6U9HmK6LgSQ&@oy)p`69W<$9BP4ZFjcOQ*3x}8gG6uCQX<97$_^z$x#?YDmt5z;Q{M)!54IXM5YcQD%_0U-L z@Xm;vWSMLvT&LQ}lc-a6D5rx(%;tzlf{)FvwtFpW<_Pf~I_=ihWO_mwh0UK8G z_evN_(=U2Q1GG?rY7?Bzlx){jW5eac^|{B*8m_f+Tg$-~Wt$qO)=f7-K>MZwNt(7COxhmb9Q?JT)=~ z`5)WS>U07Yn|En@JoO)hf!3MIMx)o723+vB;Mp4l+I+cS;Y8Sm1VOju$%&xmSp(Ih zd>q-AvjMZuj{@X@KoXjo0yiQrwFdB#-Dfp*+pyBD*uq%Hz|3pzm7PVZ2hn8CyJ9vsdUSYdrD+SPyZ*5!`?r6goeyL*gQj#E20u%l==I9w^V^lnaodRIKToP>}60m zGXlpu74IS*G{9hOB4 z$|>k_iyLf*T3p%rB-AA|>6QO6jdU71=6~8-67K(cXZ5u+(`_&&lxx4Irgf9A|74m2 ze~h&&-#eF=H_JYUS(TXXyEJwmRu?FG{P&}}{n-jbt^GYZdRarWpC^x%ZOwS-@{{ezh;eD;g&!p-GG~6sp`Zn|1TflKYmU+(w_GLBaX@m7~xvy zAcT96Ai=#lP5fo(>R1nmd0AZp`g^eeL6ldY?XZ@ZBgWC`&iln-+w&IYd=#vWZb@VF zSsOL+^WylyF)xh!@kUoCo{}5qzAfixi?witz|*l(gsF6j7Hu5P;fV=%l~4LWCJuM+ zx6zj}xSZOQ91972UhZ~?k$yyiF~}%O=d)Z&Dz@M>YvEJ6<*JadQgVdtw;AKj`We2%smY zcLh*yUZEO5I|HlU|LFe9l8*G}13<%V+-sMVF7e}|-0qR9PD%eTu(C8I z;z+4vZHk6gG=`@_y?m=ED#T&ItkWI0hJ~kM&YHVu46Tl6cmQv!kMJXW$puy9ve9QiAX?wBphgk zr^W8$gHo&*xfx%yHZ%u}{#anN!I294{Nds8u1LtaRv)G!N=Jr-z;)}bb3cQ+5BXnu zh>1nH&qBknyf|W2tO`%Rhvqqnhm$u16V6NIJG~4_Pq7u@*ru<@x*}H?Z|(G~);8>L zeA|^~=|CM_QKy^lgY65gV)4w=BA-QX{K{A4T)6YMbA(yyg$Ela_s=^&FGen^s~ban zL_BPFAqOr=b9{4n{^kJ^XNjo$&0BlU0*}98G4h~4e(aLaK5HZ$@ar)%u?{CJjB2(+ z0Wv`-F9bK#x&t&hZCB_FBQP>@0FZBQt zP`Rt?ORE5h0eB|c%_Umscn<(yBZ^$#2WniR@g?;fuvKA-0KGw%DklS;I|wM8cDlap zzwaJAnx+D9R0DBx?lU)*@IvzH@Bdr~b^(c{LJ94SLOpSHcU9v**eCb6o)wrFM?M(P zwA49q%=_`7fC~Zbm`cP8708&9ML9Xir%IokffPDrcUnexhRN$i>T-;Lc|fY9j^0c! z%SzFob{_`@{`Wom#qiM2PXB4_&_54b<(KkpmhgWXJAjq{JnWHb5T66?jDH$?)}M!M zIR^r!9%7DrMx=BO)G2vNwttvu3AmXG%@KkHqjd3;#&Uk`ExHKK^QN(x)#7%J`}4_~ z95Rz<-ZIhA2Q~1NgLT*M&Xn85k-)kWc!lF+ber!~D(_U)>|M7pi-BL$jtB`Z!@EqJ zQzt{!Sz?n$Ogg3owIq-OO+Y$Z)Bt0!H;b?6t+Q5$;5V-1YQfJx7;TrsS`5}a^^%&m z{VgA$^SAz8?3t!bw&glx!6)r2^ZY+vL&%Jqm%SKvNIDX$xD?7hdMNJJV)?3)S=4=u z4ld+shMebFxdn6691CK*`c(;UIR5@q?n{w$TfovplAM9>2~WN_-MYb{J&WM(l5BE1 z1NW7di5H%8Pm-;^qA#}pOpFkN!I3{GtK@>C9D5yEY07)H|i`!9^KIt(1#%j4gi>O z!GGkTR47&mDb*Nof(VJMQ~GcacaQkAZ^F^tXF!h>@p!tV^6T2CxbxMQvoduVxraY? z->!v~?42kghqP(Q0nt2SjO8vl0wnRs6YO4uCa2~!A|F?T9ZFMv5QF8IX-vH=a$J~y zg3TlsSxK=Z0}4J_p=s(2G5OQXq*4owrF2l?-N1&~cj53@y-A)6^LMLlBLt;$+`Ie> z@US2HGb~Yc;MzE*ab;FOz9J&$`1h%&9qgMS8Ji7-C*5FjUkqv9PwMR2rptQ5v1+tF zcVv4DmjmqtL8bD!a{BY&tzClSx$pglTG)jy+(y@N9ASF&()F30OqL`nG#mApoSsMP zrg0ErmZB77*LD!XxNsNGoz&!chsfe;EuT|?2U{YE871r86CpeBwOPLcqy#CJ98Ngh z-ckjYLz!__&i+pFS+1ln1@a=-un<)`_r=P4bXr#$oPX?l!2_WzOJryMrn7ZQE;OE? zs+?2@#ZsH9w9}J|5sI)LoYxV-##RfmIRQ4C(&)!l0G(}nk#=Xgw7wjVU*xd2~^Nr4=-221(X-#wFfN~2SxEc-Jjd-B|RIZb!VLB zEzm7u=ZT15tV}@fMNEr<`8A?!lPM+MB zgKN!vX*ma5a($U+7cNxYdUm~t$L+A~~bOxo$f){nf=e0&so6qchdrLPX)YS`YCxx0xFtQ)N3U zldAq3FUO-sWX&e8COg0T7A6y4e(vF$Bd*?00=i9}6s_eHuHyJKoQYC%Ig9VSrNVbC zu2Gb(RwSD;9dWSd_sC-u{oGG4cH{On7N!IP|5{4~A$+zigOE5|8ARB+>ZzOLW8a!)W_G^o{A+nLw)(+@*A-P^!pHHwuAbVdOC2ai9yKje?8e)Brtc;Cg6xk8mN!E^Bph%akHI^|rRaDuoZ}pu=GzxDLSD=|hQm7?35)TYb&xFQ8aI{JmsD8Td)mER_Q?C& zjs))#jtQ%}0)?RMuMll_qN-7Xgr0_EZ?lYw@>2h#ov39Y2kO_`Yw=mesXk0$&mY;C zO#aqG+W~eWlX5-$I@x-5piKao(49>vz6g9&0&vj>G3u08c;Zo4uwj~-00y@Ic^5ng`f*qD@_ zpo@f^(q*CJ3Zx_9qR#E?;zLzX49R)sy--KY4;-v~=$FU3!hP(Jb#2(C@JO}UZXCYB zsz*nQL*|n7fR4m&26~jLOymsZTWX%-lJ}@SG}PbmR8l?uI^IZ020Sh7#An1lA5Jtp zNQBxINHhe1khol=mOz~n-Y?z|XQNVoDW~^v{Xyr_0ZHX4)%GZ3GGh9Ju6D+GqVCQ5 zBj%I_+>g0t6G){=YY{VSj`R3c4T*zzPiN_s?9VclJLhJ0bx~cj?Qj3&|HuD+KgkTI$r@vINH4(`Q9HT0G+8Q1IAnbvMwyk1C6jnx;S)5`cugzX-TGzsKcRDX&* za;Zs+ec;KkO2$>069@;F+J#r`{!Gz4-c6sRMoos2Lh&GSz`e2N)Cllt`fP4rWAO5> z=Hz?_6Bo;)NK4%lCbEq>Fv+0HeC0Q?tNQZAQ*Y{t*4_N(8+?r6sKda?1obSvcaN55 z6pPiF#ICUP4gg!JzxhD@&7kVfe={zk#}Fjn`h#o@xm=_ojL%@U;Pmj!azTVWHe97m~3(b2bb8!uEqdkV?3StP}t~o-()HS=Px&Es84HtZcsn}dcO&Z+- zs&y3YAsqY+R_U~Vx~NlO6hkwtA^~8ucyfgHrf`{YySZ7&B`*u&7aOaS)p| zS9MN0rNmrKHKl))Pwu31O>hlrb?N($-Ew#vkcqQ#AsXht^J}k;JRS3QZ#?QdcCX2l z%j)9utHROmi*+X=>83a?Mhk7ME&ygNnipj;^Sl2wgKqZcdyuG2oX8ZnFt8NgJU5U( zm&qyDb2i-iji<69mMG= zrLdHDT6^p3u@1P={Skj-fH%|u8_~ODD_)P{2De`=z)5!5$!q<+#+b*K{x?(kV7^K! zF#D{au=R(M`wn9A0YYI6NFBg%rY7>NyCN-*6Iu^aoWK{XouJ#ifK!4dW>JJq0W6*m z=pMjW#goVAd-F>17G-+x4UTjHlqpwC(HptHjdB09?GYnwk?&gn`)n zY*XUCn%J3knU1bD54r~@g2i+8=%1+{e+pgve}7@zPGi-dt#`Uhmdhe%=~g*~657fR zO@3w6ddMjfzZZTGFL4sHTQ;Eb!MMNW>LOK6vW(SaWAB51sJ2fLKsh35Y~-q0AWJ~% z-;SJhkuXl1xR|=0EwLDRulxQh;@8F%#luqls=2$N)@RgeRX%kXN6$(f$y2@<>9S2D zWci|zcS`s~;TR0zHiDk)yEH2|(z0keM`Vs2PEOv^b(KEZtkN*W?${`h(Vn2R0e^dG zfYMY4BfTKsm1^sGo;K3lDYLvy>D)N2@3U|y%hY+n^q$(ojDji$ac-qIB9B_|WA@+5 zg`;$>KRSv@4Fre+)2nrPO@vwGH|EN+WY?#O>i3zH3traQ%FH{$h1NIC2inYEgx)8( z+(VW4_}^30L>6UHWWJM>n{c|5m#wNZnte%4;KRW3y}iQq(QSA*yh5iwk38P0#X-)Q*_u6~EPA9) zPf$On_Q^n>(QB<0VM(a57mxcQ z>QdR-N|HG^WnR83c73U2+2>8sTor0>SKvbKn%9+S2@+XCFwJ*bc@q4K^%RmzFAP9Z zfYC9>rh8m6PSGQ3QrB{b1}rNHxHvft*X(8Ni7;oa?oQa3s_LpLzaZI!DP`hY=5yw( zIZcIlbNh$i7bI=(xW~p|usnCY!R00lu9F&B?@>>l$)5+aI^be^-)J@TZ>5N0PU(Kg zOuvXbXXXT-JYoIJ;-=TYyH|wAaXa83IA>hAkW_O=%KZWA;Z+}hfBI><3!4%1V{^fQ z`L1CshsGHPcNh9lzbv@X@f(CSp}dPRekIX`6u$yU(LEz=Ho5BHCps9ie-qp$>#`OZ0PxS*sX#u1qrOrIgph;*5Z*`P z{hR3w!3e!~22KZEQ*{T__BCJ!`tN~CX?5Gk!($GU)-lZb=K+z`z(=bO$|?zoox4F_!&tpaWli>+;lc`9SLuCfsbC}15yQ$KaYfE*d8rG0Y$r5*PnI=IG)Nl zJ?KU}O=aR-sUEi!S6)X(<@=>RVv<~C?J?iZ-CT-~A6G_OFG99xP%>zZ zKZTgSqsDFgo@p>W|8}Y^GPB+~@*g*I*fkze8W+(QF^nZ*bnZ*WwbhNcK?F38&cwYC zV<#i>vaq>x5r}sc2`7#OPyTLie|6Enksp-ue5@dOX2xBYq-6!#lyhKTXj0=&8ssYt z@XeSvsHf84yEcED!a-jTZ_5+I;)7-qyczGlB~q`8MEflX7Oq2Je&~v}$M)yUzYE`d z-8xOpenqR{P9P#9{I1V^`UOWsKuZEv~&|&sRJ= zf6T%D&#RJu`uktk5UYQ41AdI&yEr`tqcwZO_uXniq|4azISP7qGQi6wE~L(zkfKlI45Xf>vG&;}%$^t!8oOj9 zsQ2K~$?FWfUL6xGQtC@8zba-i90~ziU3eHIx25Znez;CBA&xCwk26)XXyZI7Bt>TP zMd{7333yB`Xi*nMq8(*$L20CVJnpcAG5UDH)VxF5!@D647v-lVzczW(y}^k+I~v+y z&`t+2?1L*Jn_Hn3M^hT19IKfegs>!kqV%HvmCrvD4G-nixd`{1FUg=k5zOvWP_A?g zZr@`bWbHf`jscD1A>?tshU{?P=N5Cn!$vi$70vr91YegKn2q zre(x}JPWF^=m!^Xp7KB z6bh1Kin>*quyD<|RA(!{SNzoY55p<*hu35} zg!W`dO@%!SUfp>>|He9Ptpc%k$P$3Ng3#^b@L<5VIO}3U3MQ=e2OVu7v?g9?lax6q zC1eyd&TOmkZX?!Ii3+4@qGj~3mh?buErBREe{X2V+g?8Fb~wY>o&4QvKVAh5blrNK zHW7(ogBt$Ms1ncqgU$z+ff!~9!_D(xHdMC?_J{r6yhhBn_kx8+;^TtJoupvdlo77+ ztYU3NwaX8-Z|ez4iAoOzxT70yq32&BIce=NQh+e=Yjrg)4rt0}$)W`BRtWFua*Ch* zg+_c}s=r$wXPmP zc>GX)o^~llbNE#1!-qe5Cy?5w(*3O*nF<|bT9Ad(EB;An`NZ2NNP8^f}&6B^F|AS4y)9RMRHh;LX)Pb zr`)}j4jFw^8~vsBBhfMWJTC*+54}u&dQ9f~&c^r_{&YHlZI%za@&0G#IdaN{TvCA{ zNf7jAlvgdZ_Vp3Uja)vasaLlrcOR^))A4f{2Vnc)X}B`ndOUt30?S6OwJn5Yuh7KF zuDLL@?dPAaFww9q&UmG^MM2Wn9LsY8R&K&{3`Z_O%2--9#vyZIG2rPOB}60?#06Cd zK8al!R{OY|lhsrJn|A_{{`KR#G|I%gSJzR0g&{G%XF2kuywU?^L z&b~{!)-LICq4Z+$iKL)Lrbm%gfL~GPI*SRT9UrW7o)aD_?pOX;_anyz_E7qBtm)*7 z`$ip)=?Wiwm`q+uGUR^s>QRLsyjVQFFF+LADJM+H4Q zf@8!j+Ylk3Mgn-myczUgKKb^SO`ZA6`?J&Fgo5%=MVCW$d0h_yR;Y4@K>Pbc8mMxw^4J@B|N3qeF?gK3`bB)``5{Z z{L6IPqMPpojA6E~Kc)hpX71Hr-opRe*h4Vt0Okn=+@F>q00LW50Y&9qVheirw?#!f zs9*p3k&_HfD3LS>fLICs1?V4iB3XZV|DN2lN5*c8?DZTlDNs317f~rw&8$Z|+D5)RYKvn^FxVQ#?Aq%P5U#TP?c~W{_$9Pxm7nxmD$6*nUZ|`n% z-*}h+Ygwn<5BM?s&90g(RwU%sDFhzKzI1DP`;73b0idL==n2JYPFa#+w+BuUilWO~ zpJ4RA_*42gM(p2wK7S@)Ur|QhFYv}o=swG_^^AjxU z9Ek4s&@4ag?i0{0nmVG=cU>|)L+iN4>uZ{P-^;k1ja7PM^3ww8ytFn>u-wJpAlINY zoa;=Nn%#Djt5TBllzSg#^)MZmRN@N4C|;PHR;DLbMi3CQ3ZRQK?l-rS+bSwOZ9(e+ z@p&ZkOCL_3EBiTX_eR`mtG$BPhSE{DE?(hhw3@)ZamH^RP%(BC)9jb30GqBe1Hr_H|Ek0a&{d?|`MK)vOTtUETloA<2 zgw9Dd$RJ*5i4x=!(Q^g9cmq=ne`rK@lyTU;@CWBbuBX?pif8IYeIF0P)CWTyv4Yfd z1l7h3mLFu6+3xg%__w3VMMtYLRNC57zsI6Frt~;0A{JsVa>%r*Y>bwXT#0;TAD#GV z0?Ax?-6N{QUNtd0IiZ8=(H(Nx$FrH0MJAo3U21m9#Af1)iH$r66Oo1H!!(57{cJWh;jMgWh8Xy20ILghHk zg08QFg$bI9y%X~6&t&z5Z3w)tA1$$LtK!j3kZ`DAoj8hxD5GOxcU7_VT$N%Mz3B-` zbm?W{*KC_u0UK^krpPKhCX_}`EDAhDHplz(32(3&IP<UFe3(6aEX8B$zDJMb9cyHoN2X znBw@0riPiz9*Ma~rm)IVT zx}-pr^gZ(W$BL?1==$XM$4Ilum*rd7<(6CDJ~q6!DGh8%TgOVH*vR*Zg>o055x%S| zJy|z4f7~kTad36%r-O86j@`()J+3n&%)%%UbXkmzh<{LkbAtUyTbzCF3IfIAT{Mnv z{=8xokdGAGSxAG&phRakVnByCl6o`logu)@x0@&CJvAJ zd~I`D<9q=r+h{^Z&^Y=~Y;&5T8_GBi0bv6fPgmZqJoDTX;ZxskNKNoON_I2Pv)Q_@ z!Anu0a*=&(@&2k!0eoS@BW=lqvDNeXDy`q(+DvXb?~Pm~14~Tde(cJjQR+_?1EJCt zz?Ed0lM16~q6~Wj#K`bj8?iG)%Lu0@X{U2MUGsr0eyqkaLW%W?tn=}Y@zK$ZkWOA#c;%HGaJo_=rPU8 zP@>HBIMa&KHxI`XC5sK18mv)wFB3Zj+gY5Vci(a*K%HPm$kw2NPgW`h)ATJwFQO%Tv13*J6reN_rIJf)#bm;u@wn2t|!ON-s zoKN?zm&g7Z+p(&u;j($|b=7)~F8Ym4Lcr%iEEDSNFjhdSvEJz#t)KAf+7TyjcX!v5 zm~-DmK`~y)n0HpcTMR;h~)rAg5QmJLS&6p*!Z?Ge~B%MSRvoGq|p56s3V>%!RXAAC>fV0Zk+ zZR-8efu-w3FT;6wt{0#2m~9L;-6qqbKHGuEDPjE1IbIz-$r+C9#V-hEswM&5JXfUp zTp2VEA;%r7E>69p{IK2HVJi-H!1->JJ=5Mh?#TWuD{cK>`kMcQApE`eS@atH6c;|F zK+dHolSdk~7zVmO6*>0(D5xk-P`ec-GkOZ0`Q$nv6L)gFUJZi7j4lh-Xx3HMXvY*Z zttShd)D>i5|4c6^;#m}BOFp1jOBTk{I)5!^2Tl`S|I8BiP}}qynRs>kkmg0d+6=9+ zMcVk9w_;12tZ+-_z38{42$2f|ZMrN4DAz)i=Rv{t0pfOXAMQ!jkTS(7;&ByN59- z3fDsEkXtDRNb5G=W9sAkoCvdWB2i~+JcudT;`RYdGG)GT!I>j$ep6%M_ z@f9rU68#pc(^DJvI%&*jPIHxUPPGLQGsS`%kfR-^o<>CQjTqh7y?fMUM2{kqNB606 zR-~hv+wC0ld4LZ9rm}Y<8bW)srF zy`t@_(2C)uUL$yiLMs9BMUwmnohjwIE3mwX(GfkjcZ*{WwKtSF->~PJn0e9U0}vm} zqvQY{po^?+@<7C!aKWp)VNpdjlxYJJ64!oYJ-irw_p_q zl%b+1I`mdP|A7?D-6Q@t9eK09e~^ui)l z@^0vl{S01^?V1RT)?NC>s+(E+n#;n1hn_g{TKhb?HI4PphnK`yC7WK4;W#gmcvj$LDIGJv#z^JLd0plh zPxdnsv6sB>-xpwII7Y|#mN)mF%5B3GB+FfP%>I!NRVQx$mjTbzpeGIL824jwj`WJaku*~a6FAg+h8B)1-Xf_U>3nn*S7Xogmcz zsNtM^3!@-88T#shES-~yo5LKhqI{aI0Fbu$@%Sj(~eaYI$6V2ii= zf#zzO4Vrn|u{agnOb%}IB$<)c23l)<3TC$Ojbj(pOlUeh^=KXcn78(3u+VLN2*U?lYVa3U6yE7C_OkC(WAYL4u_x?z#U2;B7jGAOU#hpv&5-`oX##R2 zjkFnAWgtp@oba|Bft0R)%mp{+P^6W5~)c%;%^>aA1 zrp`5S^0z@{8!)KUOUOzK3C5M2ER4kOJOXEFMA65Xg#8Q>|?{ZC5TKLdTqei)jZtJ%T^S{%xa%#-q zSu_v7Skd$DOrgwOa@0(ha9a(uxd3+OfrfTbyYldbFm*Nq5!Rj)96WEwKDIAfy>T@l z$Ir19(UBp>#L(n;*CK-t*Cow`Z{ONVSgF0s+Ag6^$pt2ti@FHyN65S8DJ@w3KB}(f ztF)&z1sV0@W?h&IlesZA=d~_hdYO?M^mSP#;B^yD9jiV%j)am%$x8SG`a>Vy6-_ic zAc-+pxALYRsU<_vim#+7Z#jncmHq=>yUIK;gPNXgr|juwMHhkg;@_$5|9dDV|05;k z|D&J(Yi%EdVU`#Fb+X!hYel7rZY+K9vIwAJ6~HEBalKu^>zESs=YrPaeNb z==vVRq=Rp}mI)1CUDhqS1{0Gj+hE7!l1JY41)2G24~f9NbZhu+A5t4s^XevP{ zjF?5^9*6GDN&Td$EI;6Rba%-jWMv19A!zLW;~#+5&m16`8a4;ewt6;(Xjb)+NBi~g zB`W7{5=&(d4cW2(JJbCi+bp`;ki`(|IjU7;0xmbk9`vjnK(R9w12A*C)Kit{tv1*I z)v34mOhZ@2J6(YcGJ0R{xR*O>$W2mkQRfTkjb881RfW< zU%cswIK0a3^Rnuwh__5kwr|Ay6qPkA|25hE!n}!8Tam2b|Ksxjn;k zRQ@&ca76kKI%N1x@A52sPvFiDI#I1>+;F^=AI%@YFpiX7VH5Q-(7(&)K6wHuk$%AG zbmJ|z$>8IBlpoP#ou80MawLl7&2b(Zog_zY(#D3TfU{Rb0j<;S0^^&ctCF&;VT=-9 zSC|;Ix`?o57!!G*MN5Qe5>Y-~>6po#rXQn-xM)x7k*!s&9Gx`US}5WWV1K5rQjdqT zFN-Pm7NO4L(+^i@%G`#@`}w4}U0jmTdVcJ%#LLU#!SsbvET85s%5OUS3b3Ufh6)6T zP!0Q4)^B!N6qEfv{WQ6=f*v=UtSng4LpYymA6qxRVBE>`@VT*?Tw?I~t(e_7Dk6In z37Bx$2*_6_er_3?vE#xH+z0C+FPQg zelQl%a2a-AM2z_y-Lapw4?1R-oY3(2&E54=ghZWmQa0I2bmWC+9B1HlS)U0 z!_mI`MR-IbCJZjHmcOPYxoot0-eGOS#Z1pCK|-9K)WMb&IIg3!Cc++j$XyFyL0DFD zd*c{OVBMA3)-Qb;3T+wuWAeP~gENW|$ya1#=v0}l-!Kj`oNZjS*418h$^8mpLpk7& z!e?;n3I#{qei8E(>MnawLfj?FxeCf-_+KuRMykn_M|<-2(Rv{4p0Bm|K+H_|P@Mx_ z&buXf?EWPF!9%!m8tS8Xnp(ja1KT->j9q|!%+O9;SO5d+6af*cacu_8zRYIzj{NbK zitxSaYMFDHQ0dETH_Xo6o;mz2Xq1ml}ScR5*1N_;VnA-#)yma)Xnx(_MKlK!jeTb7hJg<^B`t_@| zWgxS2wUpz`CrHhsc?KQLyhUNm=m-f>Lp)0~M{22U2w6S5Ba{BRfI8#Nd`$BF`4H-f zs}z%g?Ykl7p{$0gUx?xB`_a>7^4NPea>JRhV#-aiIrGx_R86X3G;6p?YFOS zJU@1YE*SW)USTqcFawxr*?P+J3QmSGvdNS1&lAl)?g-NA0M_qWr!Yb(#o}EYYlFxp zC(oF-T;tY-IH`lsjSBQJ>ItGnCN6Jk#qAniQ>RPnOSMlSA8+vFJ=s`2fer}~2EA5f zcq1lgOqHrq)Z))V<2FEd65>b(gGy-oDvVdFM2hX)`uD!2g)!GnBHWJ5M!H8nLTGR0 z%Ty*n!P2SBGo9;XGjtsBWbBkq3{5ZBL)};+Nv&H~<)^Re?`z+$Ep4Mk6Jkh#zRx1vMffga^EC}D-xUu#IM(qO(#I%oUP&hh8W`P~ClNAbS z*)<r!ERgKcE z#{9v&!_nH`EsO%3)2mm9V|D$)OA{S1F=>{c@<++=nT@!7n$)Tg=7okcUYqt~0CU$X z`fwq&7?pG)h4u2I`LL;T3^OL9(|^?~*6m(Chz&U9IDM>6DUTf29Kc10O@HtBa>aY( zqVS}~NSDiOi);IN+X#WUnqU>d$&gT^<$oi3d_JVR4B}_}CZzaEKr^;e;ouY|Pua+H zADd_O&cUQ+>eHFvPFS#h#Jo!c&rOR_$|0taH}P8z7uMo}q1LDQah2ZdY-s-T&F2H- z2iztVF+)cKibfXrsoYz)1~slZ6Rqc-H1fm z=YLb+|5j!Hr(edZFLr7XN0EN_h@$x9s{R7I+Ls(T;@2eTH$p!oZHqh}FFjXhM^pg* z@vl#OAp#lO_B4mC+l}Wd{H|tuIlj-iOOqwAN|sLG$zV=VM)%z&Y|z->0%L^L&Html z?+j{kUDpl^1r-obI$}_oN>_@sL_q{ZWTA^92vGqM0a2QOAwiH{BB-FaASzWUk*!|I1jPk zP9%Zo3jDAf!hmT z`OVnq2Q2yk5~@Q|im_L4n}>e#9W+0Hvt7|(?m|$T1wxIF2>=^_0>Liek!Xci014zY z>}2rI`B%l?ZtqbEi|Ap4X$k-b(6y~YPDe=o-QNPYNo*-#rTbPCdJ9aR{fcDvL6_CXB1!y(k#kbZe@-W|MlDd^_plGVg~V*1;w}I zV&dBRcJ|ynvh@UasAlUU#xGMHR`Z5g>+)u>cLBokiR>XJlD!)Y3VMtN`D7cNVtmaK z`kHvc5ww|Y6>U;?cIT(-NzY2#mdp9*bGHxEaC^RwVnvZ&!g6H2BCxBP60!oZO7XRa ztp(ch-z+`oC>1d{w1)sYAnLN!YVhHy!{OKQ>|eCQ5E7wbRIR}KU#o}G&-9XJdsoLf z2++8Hhj9AiT*`m-`X^N>C?(%7UM$yx0qQ?VOHA&LA)15afLXgWJ9C%f9Sw?RBKzeZt zP(_qxRN6tOZ$F|hdx6W?2kn2y?x?zEFO-L~yVFjzOqiKsb*4zb6 zyky9&SyP$0bF(>xCriqneT@1Ggw=-%ADg2%CUBL}VyVl`uS~uaQ(U0c<6F#vDw@(7 z0^)}PT+QNO0jBqO6n88mKc54m*j)JBBI^*QU;Z2S5QCLuqA@$wXkA2{dcbGaY;^N0 zBBbjPs(}xTVb;w(@QN+Te_QREWnwT;nn9(R&|gL<))SO*A8cdcHNaC~B|_ak%yc-v z3-xhJ)phA{dGvMr^qttNdG?+j?&*AHJk5I>)4;9c&N9S)Tm=~AG%S?3rYXklMe-PX zzvw9qz28*lI?QR6%m|J&Q!ELuta1_1UT{(Q@`eDp6Fz5h6V?E734E(=Vz{ODwpB!@ zFZ28byuRA-riMf2vu13o6ZZpt#l#8w6~*0;gM5Hs12?W%m<{}4o8xWZ!-83dL7@vV z2ppIuC>C3=wMXZBe!xz!YyqN&$ad90tE>}$iDL?Tv0?JfODa^fOhR~4K-lkzp#17rcf)O=Bjj5^KWgk z`}1lnVkxP_E2vEs680wvH}$8tG~_(Se#3hMcMdL@l#AcaS!^=-mxcenumAhj(0I+C zL|(fYrSg~^=wZ)iY5#Z(XYSOEJf=E@+d8LDu3n`3Q~G2fhn7(EcE+f0$CAgv>0Vjs zbJ6|znOBBBoVe;V$wUQrvi5S{_rFfVz`ffDNUgLus=z&;3AOsg9j$A*ko#Xu77ArkA^VEAIrlV_zV9pT)Jc*#iWLdku?XLDaBX z$>I8fP3AVW*Cg4u#l64T`b!#^1#K4wt_MK@(GxprQjFY-z~w|iI2 zyB8jzztYw84<0pWLRf>R6P!C+x9-tznlrVya6AylIS63>v#Lv-T$yv+9ovED&>Q8l zF93G}0D=Qxu+VmMUk!1cIs?e<0Mo2tBD)+s!5|!pio*5_RRb`gB$9pKf~`}?7Te8@ z_alJ40FDDFte$yJRKrs8k&{pHD`tM!#r8fBQuPB14gw3d01qSU^8<#_z-}l62L{1!_BfXyU4*Xm!U{&QBfe-0nNSD=!a2j96E z{KN;l%hkDbUgB_LcR{UJ5Lv{RzxCv2K#t)NxlQ*zGl^>jPXS>I{|oGQwTJA*pQ`C1 zje5`^^-LUr?ZK#nRNN{C-BSmowxmhi(NGF{B$@U}|B=%#+gR1Bne!7&)>Gu#tqd|NSRebEqr_2OLiYPUZZZ2 zKY_r#QvJc`y6D(RQt49c!~Mu<*6bClpQtvXY;!&s3%Ox6&=oLpq_RD3Rmd zFE3arrNpf4(=#q}3GYlF>oQ8Lh_bRL*dEDbo#5E!QqPZRl@S~IhO<t$!-Tj9p&fGydD=JLj80+BL=HVr$O0@;719zEyEri`bfp5?_kV4q$dciww{DN6<;jGNV z`E}21m!8A{0|}$R+E}#qjCAMTuot1M)0`K?OE@vKEfhzgBm707fIj=ggAQ`tTZazh z+4@gQTus_{nmu7r0K0x{HVA1`MYldPq9#AA^Q4I2TXxS%kYU&@7C#TP&iYDQJJ8KFOKId(Fpo-css=u!ToCaP@>yeu0`zoAMJ zLX3>QTK;jGk=b#%xFAJaId!&qM)b)|l}D%UQJp>42x&Y1+z!qjm+t1CM8W4U$5jzZ}uc@lShAYUL{L$2Z(!& z0a(=ry2;=@Jz(!=tnE)tv0$Nk-F0ql-xEdBOIk>;=y)0OwQ`rG{Z!zy+rLGuKLz!J zF9%=A5Mp($UER7W<#Rp+y^gQoOp&EMyB3bL`;Jmon*B*fe&ghTseQO$FXeUV&No#5 zU8wUeeMSCyA!#qn)Z2;3fgUbu=y^3!JbeJzb z%^9kl8ymY|S}J2L+kQj5HTP8RzTa+4oRmtuB=h1k{F(R$hb4vWrg8h>t4qk0f>Tq( zE97KUjS8LT**CJtMbO}Iv1PoiDXOXcuIMNb7WT_2qW9Hf8VME3`wll{@*7`tOhY4? zj*?g7E|%#>6F>DBNyAdXNY#$FH~UVlXqBz_glqQhU2`;= z1fm+npeJmxz!Cq+3G(+I9QSA6txE%Dx1Bd<*i!LPtHgM` zBv;$1GuMYKLTDW3;AIbL^JVxXxJFgR>|DMiQtm0R9B`F)MdF{7sQ#k_SojZ8WY%>orr(0ao??&xBbvQk6W3GT5z{$h9 zyL>VhW?6?~Xzdu0l!hnjnBIn&rOq8&7GpB+v;}Siq}C@+I?_|l4h2mZIlaPL57RF< zR@9m8d37d9?d-nUvg94FOq#{NU#jGnVi_i7nbe0L`Bw2oKIl6KB`WM~TiH)wG~&~i zgj=yB$4P8^=zf3x(3*EHFF@JJ>@~JxBIv486PB|ExI;VMDE7E;zv402p*5M`2``_)Dl+SEN1u}#n3 z-o?_Y`+H(C%8O{T1St38+If51aPe{Dd>$LAUoH*<3b!gMX+3h%*VI zAP|XmarmAS5!gRl3TG?;#f_B!(mI#d6$Hc|aPDzn{DmA1W(GGiK*{iU5*XyhZ@`}p zInMO`+13IT_U>AmT67S$s-v!T$Ylb~>Hd$UgP-jIbz5!hb)VAP2v48z1j> zr~zSL9=jdWrHGvPb<1EHXUP7n!7fKD3Jy~8YB{QTvXHsEy^fru5vr!2pBE6mNIh@4 zc?wazj&IeBLT+yq`cxg)iWK;KRds(%y3@JfwwH$6uPdsnMTU$|<9uQY%PO$}KVVv$ z9gcCs1`e5pYM9%^F7^_n%Gw37sQ$?mh{p0HV|`{X-OX^5QzQ8Ah<+n6xlg;~T9^d$ z>+bi-Rzb+(^3FZlC0a!%j)~i!gz-kg5GRpPhw@q}2-lk8@*vW%B zm0|a{wpzV^w9WDi;^OC~6=b4wMC^T#Xv$o9=qLU#yX;O;rJQao1+Y_ikAHz*_7<6s=n{wi-6#I?Cxd>)# zF7@Xu_pw*p5A`Dpb_(g+#B!gvN}yoIH`4{~nI4LKx@QB_R(q&%u?@({w=R>Yqy_hn z4X#gTYc1w)CGShO4|q1LpY~WG&DE7({^H6974iMO-Aj!IqkNv2>S4du`A%sztThTY?0GwF_AI4+Sn_rAhn*yYUun_ zpXWDor&<2~999y01-}a#qmDdb5-5Z==>}eElAJ#4kk!fTo%v!ltci_8FLVAG`I#FO zOIR}gW#b>LxXKE~vDp@Ye+kDd+iBLkh5)Jo2+l*adl}oc2I`x%jqjsiMaI1k=3NVv zJ1pC3xOLm|F}dN3Av+9ttCFLWqd&6YoChoTSS*jRIb*luXx?bm511&(fuDqAPzO$= zZi>gpm?^df_>D{bzMHMPYCBefodFY!^8j;l9i+|p_#d#va;{DQf5n{pS7a=)Vl)x0 z&RBPbOlY9?wjA2iR2Q46{Mfq?TwdDutXbOr3nl4Y^U({j8^@bF_*9c2f0o!BMwXcw ztxJr@?$T)Re8$!Tu5R1(qmhGGYw}srHy|9B1*ci;mn>gGY^&fz2i5!EF+{dl8M|wZp!G|vO1;Cs>X|CnzDA=< zeFu*QP3|&oSBwnMI=1j@eV+-Fx7bJeTDKu&f57~H!2CBP9VL<1So)uj%)Bx} z6ZPC4&DG>X8{_sbR2XIAg2(ACBf$;zOvp>kE{B# zKrKSRLpv#{4|ftvLV4S2NQ2(#s_r1Zla7dlEl_-PJ#`Gh$LWN9tQz2z7 zfzi=w@3bHPYfU4_4$lr#UA#|VuUz?M8|^||M1HDPL-td6pkp(t7MsG=g^Zd+Y#9q9 zswQ%Ts+)SnJBxK6ZeHldyjb&0Jdk?nfv+Q0=f?XTA_)Jy;B0@|X}ByJ`Se@P-ip_d zS74#7#*3E?iJIz*qwklVrwGor%WhAXzuCPJcim#G67r;ylaO1gQ9B@^OPOsV6W*IK zzv~N6nd@Ze+l@YGxcjwF#s0#x5qE8G_rT zT82cw&7O=bzTP!f#W<2PyyV!tNW#%(I&F7)1BNZl79)Gcoa@`tmG$reGlh*?LShBo zf(q}Qa(BER5EEqO+AS?09ogDUFIN{>(?5`EP z`THIbb66l;8ezb`3HcSzIcC}32~x!gUG2IOYh%%N^D}uiP0`d!W`x{*BgQ3QYe5wx;@>(!~BxhwQ`yJ7b5-HbZ>2Or~0DWMv*R??NT#;nj4M+0MRsX8Fa!$eL#!lh;hS$d{9%fDlOU1vLDRhRd6QhW7 zXfGOaZ|ES!w%vAz8O2`=La18z);M0_jx4-e(N49*_oP(hhrCklHiiZ83ouY?$Yt??bbA63Fi~$;3KCN87fgsg` zY&g|lj5S)CG}paDj!WY|{^P z^>~(fy+oq2)$_Ab4Exv{7CrU9Gll6&Og9$oRtk43`T!KnAFpe>t-WAe&UE=4OD?@N z!dKZ{e<3?M*3*(^)84VJWP0%yavsIXJRFx=M%0e__-FnDxo?b>MC0t+h zUp03sxU}XFDu^Q?=F zpy0j3?^`c=_@*97yT`ML*^3#LSt~3+pQ?xOlT6AOF^;5L7$5WYA$g26W7AljF}n}1 zu6=mhsn@J}96zsa7v>|Fp;ZYbcMv72u>#-7epO8U)<;2d2HbvsIR1tDR9k_d)&2)9 zhS>|^1|9QJs)Y=ED_PAGw?(D9w(R2^Rp=Z7$@XR5Lmz8qZ@m_TeFx$StlZ>r4o zxB7zCdW9Q&k%p){pgUuPK8F$xt#o5(q!dCbZEFP!vOPk9^h}4V%&=EU@u#YEM3P%eKPUgfLHvs zJf*fLb`cdXg}=A|&mhl#1Cu_V^`+G3DHuzqFTGnM`8CuYE)g|edJrSWcEncZm%=b)TrPwABryMbh)f{)LiITA;OjI8lFFl^6rRiU z@?-OsUHmT0(KT5}hzZnL5r>$%55J@kPKnuK^WJ4Fjc=7g8F-{R{eGuo=?OE^1;(?y z&NlQ~3j=%S{qHrB@t`7S)XTvC$Cn_K)# zNeK_&HleFFW_ZQl4RhCbpJ=_Qhe#GT49>E4Us~qM9bp-R1ipugXYT-^@z+C0${@0` zk0aQ45ajg5aIPugI42M3hl^{JVDRHsuyKg}ujATDVu9yfW<|XRZ4299wnzCj4l8P2 zy8?r!B}i{z*2NcdR5;HX!~ysDmtCMBO0_X%IWv`WGJhTO&hqQ!w6z?i9qFzZQU1-| zThc&v6z7Mm(MByZpZtK8Zs6H~X`~Cq_>TWP!;M9OXJyhJ_XD=i4ipw1b8@iXJejuK ztxlj2ARbZpl-rNm(O}OQ`xPptq?pb)^y@t4_JqlmrVNdatn&=$#ab&RkMp0MJ&$e_ zTVyqi#&dhgH4@p(RG+uI+rlHJ$|^P9ym0!&$vipaUdfWH#LJIgu*8X-6N5Jh@4xh# zRG9dGOpDtjKL!B!wb0SO+lJq;tp!*w{H8Se8~_zLAlWe}`_SdJ*N`@2rY);5*4X0a zOC6HH{@Gi4btatQ?1az}`{jlGF}ZMsV!8ZR!bc5WVymu~QcccHB1)P56hPb=B(F?xOetl^*_A$9j@tial_p|26)PzedvwPcbNHAPVFPOA_`e5rA=XcpxVY2Y zKIF<_s1Rtmm0&k^;Gm$s`DIX5(@exN4t4&3-7B6)CE%+Ft->(~g}u9&`-U}EJ!`B# zKN}1x?lqfVt2lC~M|G_2TjD8w*~(^GLC7@cDMHwcai1%h8=5r^$+u6Z95=fcz;(>n zFEG8)=+!;tMZ)%>5;*N+%m7n$$o^9duU zI~c&Y657tWpoN!@+{-<%`BC~WN$a)OMS4LuAIDFua@TdM@_9{)Yvs{6`it1Fk! zCn%;{=`uU-{(xOOia5X>!bmby?&unI8Jhrk2-WO!*2KY_j;ZUk^xggn>hGBt2fa}4GlFMdW?HG4TPW7!f3tJ*WUA66TM2g!_hwT4;|*K9!yU@8{)H|R z;@Y={K-HhW|R?_SZ}Y6qWyPz2;peQpoL^yl6Sj z3ye;vEj1(`Wc&2>6x|4!nG^bUr^>G#RLVLYue8H1vHR|&wC+y#RBRhu0t~3_*&nAtGv|3PtG6cTv@26L)A+?Hi70ZJy*AuAlU!N$=fkqzV?zV%-+TQaB{#lg(#uh znN5qS2vG>kU&rLmedSvX@J%x0;R|`@`m9txKD~a(y)-Tbv z4B<%RMUXS~y6IiPQ8AgfUO2mXA9m@we&w~F6=4@^fv#1u)nmD`cAFMv0aFBxGQG|- zI+HOHYy?vi2c&M$CPQouO|Q|CXUV-`MV;jmZ5M0=d-%GDVfTo7^Kc4bU{M)vM3`ADC3$w5ZCpC-u^u^!}vxaC= z_BdFqygS%GP&@13)64aH^^bvci!WTn_FD}2*G#4tO?@Wb*oBF2g^O{O=5mDIe$>#Y zS`>ox&1+)~f|DF-+pF@wR=vJ`C;aQeugA;{x-PhX6Ta)LOrZ8b%2kLx{TFZd+Wy8s zyzutfA=pr9wT0O(gL6pOjVzfIYTFr^ z^BO1zpznNi;9|=4;BGGmpT`nZYo91*l{Qnw zbFWkR0#RC!1ovAPHV_#p zsNDpktsk}yRSNx@p?fQSN&t51e#dbW4NxGW{=o)Ug261K^6I%8zS+db#% zS*v}Dxrd|P*}CQ}A$P#o3!FS-&1dEe|21ERbGLGNt_2OdS IJU>4F8?T&r8vp+kfr_xt_c`}utC_xrv7$G!J|@BPlHQ|8QZ&UwGj>-~DaUeDL_^?EbE zGlv2G3+Hst0c>mla31;tFh_uk+Mf2e0YG0LI0OIyH^Am+4{$&~L8kz_p&bC&6WIWE z=zq4K#}YUF$F~O>650RbXTftnPh@@pwsQ-fJJ7(+CJt=c&c?o-jad!Aq2J_W`(^ui z($9@;6FUdzW-e|X-Yw7x`TW2pHg@(+9PFH&9MG-VyrJ&_j_sTR`;TgF7BsxUCGIMu z_$2%-x5Sz33Spx*qU5og_k4JGcZlrVwOi_dw9LUnO3KGoPMlQLI;(w7=e+I(<0~en z$g5`N*0*eK+uGSX+;?+-;Nkhu>*+J!=YIYHff11}qoQM8y^c*vewXq-^+Q^EPHtX) zL19sGNo7@aO>N!R`iAz7&aUpB@4bB^qhsR}KPIQ9XGlxSE30ek>Ctd^-o{{-c`(G!40KxC)9ZKH(NR6aF^4f=A+*5mET& zy*Az*l1d{|q@PXurDgxShWY$|YT17_?7!O84`>0Ke%aVJZDQwSXJ_Z!%n5Cqxi|mZ zxOusM*?9lBZT)52_H%>%=f;FC!UkP~gM)($`pdtCXAA#dy)g#?j!jO?K42?58zfBZ z+W`bXpJ;E}y;&}iHdyy56LCmkL1Ds-VnFd@0*@%Xor&DE5BMT{l-L#20IK0#(qoCG zB*rM?%0olY6+9FX2!u5RQG+%NC$#A`wDb!yoBnVGohXrYk)<>l)~~a=jwLp%A;VG^ zELF*xCRkG>%RHE1nMN$LkY!P`ya|>k#quIq9yAL*U?C?g)Cj`dSY{#1EM%F5EVGbh z7P8DjmRZO$3t46%%PeG>g{&YlEB?;n99EY1mwZ^Pmm{nPTSV9ZwfR6E#-pb}b5 zQ*5RYGjRIil&sNXUYR7;&guh}46tN?B?BxOV95YW23RuiPb>onW*f_pV;QY1qn#xK zEE!x5Jm|yYtj8H~IVCV8aXC-WN`(pVHBu#+K$}53xR{0@2a<7&Eh0=n zGUyAqCK|~Ebgl3SeE_2vKT-_d!cq=W4Ct%UOkleXO+{f2`d%BM%LK~bF@aIpja^BP z5m_!|XH>5=BM<|9=?#5XZTOpeFwWT}!e-+bdt%n06OypdZxf6_k`P#Rk5P|UF0H0$(7otluD9}CpapSiGSr5qSL6!`% z2FahPGM1WQDQebC!kUX&#sbUSVi~L~i<;$=u$(5A+sSg=S;ztln_+=R|F-bk13Zig z*fW902w^oH_%n={=TMbpw^Yc4h2y;+T6?wR35ri1tM-uUQOPKx9&F>3w*sTWJcbb{ z#70*))D{AMwX-q1SdmUvwBX-6TEKe0toO^30hSE>E6M-@4i0C7OXo|un81x*#7flc z#yoCH@Au-E^QAn*{yHWgq->U_;AbUPPCAh6#8wbtrS8x0Ls?PGLeS1y$5Fae)lCP0ow{N^^`^_9z9 zBoY(Y`jlz}wjCnD8Cz_j0IMAo3Du;hA*P}{!SbCK;Td^iqmbt>R ztXTFc%d}=WEG*xO<*~AyYZhd|LRVOr6$@VbcLFWPN?nP9W2h?iU257St}hh4UtZm7 zrGh zG?(FXg9$tl$LG4jm*?qC(^Fa23_(5^!>f=^gv|bDRa#6SA(IK9cO$x+{&@C&CUAQc zG1*TIO$hvf7&+3)1ST^;!sh?FbTa);BVr1A3<22OfDVlcx^}c(tD_y*4X3TTP>0)? z0MBzjCZKM?AS;2HuWjiZRZL)$COr;{2w`0oRJ~+h{rSEB2JdEWz-`7yYkVw~z6y8f+CpWK4d8x6KzL=Yw6y+vUgYmBkfq~bqm{GWE9g<=bZ$B)7Bl&S*ZNg9L! zw-w~kKWqM<-eUH)857Vv!UVp&09jqk>f)bcg(bx-Me&QCWGM=kE{5i4)^x|RC|DN7 zuT0W^5~J;pX7tY?Dp5lbp{*mL`iC1o7z3YFTcl}rJE9sD{?W4g2>Z{2aj2a6p zT|Ngl)r^1BLY7#hy)g*H&zTf6f%e%$jNmCCDNu&B{~zxIToZyUi=@R4V(GyT;FJSD z@CLHWFa|F~zdcY0kzTDu{TKnoiLf6D_;dK-X!z0t3X1NNuRs@)U5@_sA*foA*Y5}w zJF|xc!Lk(UKaWEF$GnS=L4zK;pS~6qSyqveKU}`L(H!H1Lz2(zUHy^txzMGlJ^rA6 zAMadGQYmG*&Q7slM-9I3#n=jb>{?AvpmIj()4Ml~`;Hc_&Qf|RZ(B)Eyp&HXR2k2s z4&t{YeA^~gZ7^!OsvhVV^vIpyDqdaw@l06vrz|uw$zq&`)-4*YOZUR$kKrU5YQ}Fi zJ&KIHi1V!@mjy(>ayS~6*-u9p_as*d^^hb9@BQ9g^IX~`e3tznpOf#9}`*E`tlNA+0%Cc+Gp6VJ=Lj=}A>-*?Cjqj(G-IU>Ao@FaftYCeZ3? zmNR&*rK!CXyLc4QoS0O8U-0!!M{xJMl$m~7GsV-(m3%Yit4vbhsPaGNCH!j%ov_)< z30J~l+OF*u!h{J%&AcaV~^AWWupG^CmKhQs^`&WSz6t$`&Qh!R)O6; zPwPA!nE?FwS0=C^fNycX`x1$NHm24dR^cD>Z5iWnB7Nej{UYZEMkm99OwfzjqVZ(Pm8tr_GPXuH@2`Xt3jje3xUs^wA8G zWN@7Mo%vhDH5%`do_rTW$VavJdG;IoZJHJsdGyA~rOB0o?6(<`8+Newf0hUZF{Q|k zWHD{b?o9ZTR5FNqIFpBzvK>2oU~G%V>;ooXX9FIkJEr=K4o#>vKHOolYQ#;KU0j-5 z<_bbqnHa5j(fbn)qeab8)j?-F4Yj>ekNhe%^w+7Ptk1tqpJnw4t55z~8DJw*p#-NO zCJ>=LjG%6-X9DkVs1_&i42pOazaeSG&ICTqVJR0@X=|-qvoPBBb;c#>8r0gM0VXi* z9tECrr~Lpc;NbWu+Jp(*%xq!Am?2kee-oVlb+DfG`L_gyf4e@xKt5`PIexqwG8pEp zA!3)=J^)&FB5OdRK?~foanyDWKSB^8uOqS7x}CG~ zg`#IB3eV39cltk0(3pA5>7B+>JilT^{ZlIy;h;3nrx!aEa~sPIX*|m+W8X2#UuHBE zJDqbyU+u_F7>hxKxm1?xsEwiVY@VH1B_oz6Arr{Nx5Bi zM_wxgM?0hl9@e0TI=pJQOnw)7GjJh^c+Wjy9BXq8^FGg-`2HmpL}MX#2p~(SB7?6D zMgzk#P$|s^Cq3PB@n4rO$aV{!ZkM1IG+^EpE-O1J&1)cvo%o^ZD=;F?D(3l#7*bc@ z%4a4Z5q(X|;GNmn%S6G}+hv(Id^P4AG#+1x>W6Q^_Em%9czSl^s8l;VjK*F~OEWl& zh!VSkA8=_X%L(jY>~{mFpe$@DCNLks1g>J2FbE<{a4Cf`hPm?4hzYpj53M!GK((MP z;S_ENeFUl3S*Ni&ge4)YvA|LeEN#h}7g!S|%Ov<0wUGp5#?r&d#Z94X5;9G9BvX`f<}wq=siQ<*ks|sAf$6blHOMz;z7O4Ls!cbDON|hJJ67l7 zu|C+NT>bCHT-)+l1cgf+eL(r_%N@ zqJ)Jn#|0S$lOfOSas5+B4zO1R7eV_yw-S%}L;U$JO5rWBA%j?*&rd zV5_gS@Ypq=N%Mz6Q6_NgYt5~zUa={*6ZET;z5HJk-#i_PEM3jN*d2AFYx#YK%$-t9Xq7Gr>1XdXQ zo^hWEq;#9mceS!<3teXI|Hu2_H*hy50r>+?6V71hJGU@uPr>Md_fNyWsbfOG3OU61 z{0g4R>42ihASVz1`p{*rmDS%7DK2K)zbW=jUR+xyhmE10F@ao>0GbPN{fhUVYq@a- z=be+!dT7Tk$qcZG=g=Ce-4;)5ej={MYrRGtgW^YhcSPOxF^iBq2v^ZegHkNT~ zma-RO+MR;@dtp)`Js1MVboVF1dIJB1(us)2ljT%sF{sT<;Clg0(x$ON(J}_~l<&fOJ|JUg5RMn2Fbt!Ltl;R9p=DkJ+!x$eNj5f=)r3$c=8PT!QcDNyDw?y#>Q`4DU#Mv5DD z&LA%IjOYaXAg*|os>Tia-}I$*`({?(dTmI`J7v9d78M025|}`N2wf>&LkrIf&h|s5W$U~nN&Yb+2i6-|qsjzAn1F4IU%3LwWXxfAEiS2dU~u4siT&+} zBWC`Wg#^3-;f1JW+c`)BAIK)+7&Wsnh`u(h3P3y**8cxzAEc{LqN3wO;vdRres{NC z5&qFv7_8u;qGcUtXW+WtGS*L|%}x~g1s^eU$hWrw8}dP-hHdhbhM6ABXa`=av`bC% z{q*UNOD-{thpC6j6pZquIW|aHmR83@RgxxOrq#_1f^x_sx{?w1^rbL@)nfa{NIlQs zxqdeIZwt^!9QTgiB9W|PT8zbRKrs;%$D{q)!jgu1$NWdm%z1I{QZ@{7u6H;vpCOS{ z5`^GIwLCAr;au(qvAMtychiJD?elld5hv?B#xa(N3lv)J6IXK31;cU6iPVweiP2+$ zN-LKZzb-pII`uiXpzlEB)Crowg{jO^DNvrT@gsZ3qRMpLtkv`M4{tAXvM284b@yIC zjT8tZ6a}2b7h`raq(e}M4235aq?2(jywfj+zm-@o+(qmU9Pnvq@4PuA6gI$yZO$}A z+4|Jqh0;~q^_u(W)CB!&mS(hjcOdCrX}bcY`aWqdw{3kyY*{*Q?8Ad zm87j2#B8{luOQ{6+0W%nWO7RVh*U~7zv~f{U2~1BaV*mQF0!{4G-L?3SbBmc`SnLO z0#BuWqqx&$yFTE;>&ReCcX#YvjDbNhftWpG*gRV`+DY2P8}adoj4Pmi8;4o($M!EOH3xtLe4)_?MX?T4Av8QFHFFp=J&`RC9?CbqEw z8|x?0X4f_Lkfgan@((eA&)9^PHbxjp0|9^0m9nTcgbMiHc6wiMpzO;1ioeB7#=6G8 z7QK=6zW)C2i-ZT|us$lv(CsMM$p$jjh#fU5sk662ot{}g+KxR8 zJ={}p&H{2Di*R2l0HaNV8>|;0a?yh*NJfN?Mfq`Z&@lXY-}P?HK5~!&aUwE4L;mf3 z(VWkq`^8`t_>D+Z1S$_c&mgd2_{n=lq$}N@FV+c=tS*J+89u)7Uf zzAjO0rq_G>QP0KXNHIa^hnf1Lh~2X)u?uN;F^}SUhenN?U5o4YZToWf6feNY$cOhY zt|8hNqT44&ErUMqW#>>q@{mi9l)%!IrxLc%p*06=5&j+|dn*_@Ac;U|VPt(De0S`t zx4^*%r{LFlaAQB4J|TmfP+7Z0FVi@NX)bKFj~LP&ZQ+VGJRS}nQ+fF`xbI?r>}GcI z>7xnL2|6n+#Gp~a6NU!3X2vjJJHTm4C?>!{=9Dat!hzD3Hf$#+W z7piZJe!dGLyw7?KL#&%WNK7^&-yhv;F;Gak6!)m`z8T@%J8c=!o`@`bb?}$#!(ro( zM&XauOo)ZGC3VoC+1;!BJU{7D_xg6Rb2^8nzyQ(nw{BD&j|loR_IYOL5s}a2P)6PEanB0!3xm-ul78$7PjpPJ zA14Z&2Vxlo2pf2B)oJ=GhTv7QpuWxLuB`K)yB1F)rd6^Mk6v4n2nNDKH4GzEjtQ`> zl>J4f9I}c~U^|~Ng6c(85vRM4XlIcpP0w_zTA#e~TwbToIgr-KFTtD4x1Zx6a7>1) z&paXRy7()V^@DG_UwFNq@`7 z@UN-KvT6IC&hUZTx)vb>3|g=Y2hqKAasG+jTcmm#`NNc^i`(~h6E~#dUDG5YLeVPlHE()hKzF}! zhh7>5HFTz5=08^^PmN z5bA}KBae&?YK_=dEbc<yL#APGiK*?Rn~;^2vOYy3U)~ScZA|AqD}TuTtX|Evi*}%=3{!Wt|Nsg6M&6K#>pvK&a5YtogTJq_8>8rxXN9;*_l7S$uYsax3DiOqyC@BCR|+VSL4=bUpjX6N@k_2Hh<#1-Lfv1A!o z9sY4)xS2t^?wG>X1+m*P85fu44WVjJJ$xnSx2dv~XiV_@c#O#4m96}Vh4l%JK=`J_ z@D@;%ylrx4HL_bVd@XLzn_D%9!oKZAXO)HyKT3h(hA0H48@_Z0B@8_@vWp3C^O)b1MuYZloX(phNSnPZPg8!T0J(CUCABv2x0scJZgi!$auddlcCw%=b;$h6q%z z?=tS)dg{6_$d`ASYhCK+IMq5h% z0H(G@ZO5mwnx>$whMSrf&ZK{s(NzOvD@qNiCYW#KTMxti%cZ9HFT7DQoZ%n1h`;*Q z))gu;*0W?gwit}xp>c3Py`>r@;*hXkuHVPXvR+Qcixw_8k+^2EskHks;-fu&_$?~C zrnHia9C^nqR59A486R}Gn0-0xvkpBUVRP8EO|D#KD*QD!`@9OmW}Nc6+LPwEu_fs- zqUf-MS=%a=JKu6Mh3`Ux>#NCvsM`T`=_LZGMCBAz4g8750rVO2jSQVEv^oij9{b^} zZM@fzFz$P09D%8hxb&iZq1@v5`v_|S`QSLnuUvL&By65txF9BDDC&8Kr5}IaK+|1; zQ?JVBEWPkyB5q1{>!m~S zyPY%5WNMsy-KHDv83ukXwk9Y37{;+^wZdYef~b8{D`r{*Y0c6t`?)8?TYB zWlp9=UiRm5P`+DY|ALO@s=91m2TgjbXXIs!VQ^a;Cs6TUim&F9wL$is2^6<-%u8h&U2tkH$cYmLSxpa(^Ky7&y zu5&#@2s!i6O7mF-Za`C-;IWQ9>0jHGLHY!7qQ9R!^WTIAHnG0@i=mTW`sUMODdPRm zM8QKv_~<3X(e^@_tc$ldg^KTu8h%&$&E7O##q*SyH8_$%RV&q+-yS-@F-|WGrAsD`L(Z7LAvyZI_&D=pnZukvpRVj3WhE^g*RZ87UA6rj`^t`w-97tUd zA+d|Z^hFt9u(l;D;QJxJpjYEBXQ^%NsP4&DHzZGzXXVMYeutvaOFowZG3D6CY0K7q z!J(SCsXH+ml|O{a3U(tcktQ>EoWuypQ}v}(qu~~9A>^lfzJJk-`#+Fj#cDe%;pcBG z1Mo2XZ&E*dR-lBC-)4yd7$~Rjx5=NVX4~K9iMss{)9v4TI{)44vyoipm8q^YMS3*a z@EzHpmLiW!x13qKy>`4KxzMxwsD$?OV+Pv?qtw}UE~1pdDhQLaU8D$=LIyeJ4t_(v zTo1BltHF8)q5(aqjtN}&f&1zJFoM7lBAB~Q=e2@TW$?#Qv>1!sE;Ql(HM`IIUEC0Y z-xDV0=0(913*RBoE}u4NcpBb`e~uV_kIjJx$hS9uf`fKp(t}QCDn}$*-g}yhAtVVpkK9s75ntWPgD=F1iV?Wv2fQ0pNKd&4jawS;L#of6-ypyPtp7Z9p zDceh*otwB5wUQpONi}uSwWO-am4Rz&(pB5v^v3hn|$mE{^CO)TqDrAopy; zg>m+$wb~dCCQ!LV?t%Cl?9~XeGL+slmd8eaYlz|oD^%1papdGR1LBYDQOgUHrugV( zBV^I%*ORY(2G0wLyvXI}Vo%`oCj3KH1iTqV6GqiA3q9!3@!r*5$Tyi(u8r0OQCg)n$Ivg{66ZH5*xkL z^TunM%Dc}IP2Dd93?w6WcTe1a2pZZU5{%M$$d5Dcp8s81s4x+v34LZQ^c|>b7QXiF7%1>6Kf>PB$aho)iGwaRs@$ zg$ZmcroVt-Y4#5g-q$<^Ib_KU(fic>5HEuZ8UhvZkjM+4hBtNzuX)T*5K&)1HjIYB zFwAd9PM_WM``&?Pv9|HF`ll|Z1|pw6sX<$xh7UYL%veJ;M8HE4$$s>U;6m7h(LX;) z?jJ$o>i9QAt7&T_7n-2#nl%X*n2+5#Yv{;j*n@LcSU`WKr%hU(Z?Dfs=RPS8<+_1- zt8|&`MOG$XV$A{cFd_N2wQRDkOzK4XO8u zJ$1hu$ChK5ctPe~Fk3g_KQ}6Hxqt?nbYq=3bG2UcPF~ggX|$5Ta54q z{PZ4G@8@Ns^Ikm{I&NT1yH?GTeYhjta$A(1iHnEo9TNbAsl`+^XiQ4c_FKO*_k6k* zgvVa#n%H!%EpLMscOC-%qVHeZw`}7|J9j{v>+v;oT@!vd9LshmKi;+)p0@+M<3IVc$kwU>2DLPsgUPM$ct>9JD=ycPuHh2aCumh^jSh18~jIObns* zuRv>5kRaNQ9;YTaW-+}rHs(8{3f*+?oBPe$Asv^84|ov6CM&Ce@J1wLC_=O z;ei@#IfOC%meVy!0T}N~6^h?Ba~+numZ#p*^hzqmWjY^{uH*byUYz5eN97QRkR8y+ z1Q^>b&0)RxQK^MNxXDW_Y@lJl!m{CB_pOBR=DMSl3m2Au@D;&{#;EVh4B<)t1N20U z=+!x5a~Xnm>2MM%x|U&GJq-KIS0(mHE_GMc2Y9%vo}9ot;>pnSUu|qo*xdNKFI02$ zV?;5p>~bT6XO(KHP1Qz2+{9;kwIZj<&|LW<$!g(*Bh~O(C`so*^Nu@iXce|j)53WY z)x00`4a>JJY$VQCL!ET-p4R()ReR23=3=tS1KRgtR^kIQ0s)8;$QwXKfp-W7R3+M} zvTq^5fkP6-0Y$NH`y;Bi(~k1*c0pFUWgD0CR238J}9ME=TUmJV{W>*p1+Q(!=`S2Mrc5TsFtH4CIcDx-3#kzJJD9j}qRP5p5&2002KxPkV z@SUI6DLOnU0NZ7vUPO~ggq%oS#(7GK;P`x)^!b)?x7>L0n*WpmqJ=3&wkoD=~Sko_R9IQNQw%B zN0%tpSb^Y@*Elv)Fw-{~`p&)J0V;t{vHM)eWx=n@DW>7sRWiYA!j$~e@NJHG;wAX^ zMT<|5l!-e#ZpoO)A68hjjy^^odHs54*jkt02i#YeemH~Y+o(bBx^6K!oH#^r5%d%% z*p~?UQZWfT=lK+((<5pkj)|v7wKP5E>!Qn>=ux+bnpRHgb*bq z{_5~T=o1Bv_IEGJ=k=VF`snNz$1S;Z@%pRp>$eV+-~FrN1shdsU!b6|IXMjqL@p#l z%W#{Qhkcw!oo{!iE6$$n`Iy+5H~YO$HpuZ+x83cK=es0BDol-3eYlm_X#VJJ^au?# zMr#BQLzL`ruHD1Q+lWYyt~h_<#Ou06ZgtarbEg97m&uUo<8UXg>}VTA-z0T?8?3K* zWVub!M^e46Pu}ReHT4XD(Ihdd*Yb((2Z%`i~T^W`aqe-5Bi!QWH{+6>50v_)D98P=3dW0~ zb4u@}-(N)8L2Hi(qxK?(!>#!6?F;VUV=sDhRQg%p$ctUq4D64>zr?Ve4Hr-q5!mE; zN=Jg2T!RrNi9Dg{rg>`BL<>yE)`p+zAGEl5gw){2Ay)0dA;4Y1;ll?yN0E0yO7AJz zBz4+KmWZl7tjM;vZ^d}pD@cKDB9C{i+1o7H!wCGmJG7H+V~l!`(b~5@*GmF*NnOv{ z%R}UXTt1p5ix!&7-yO!CAx$>3WV`s{Y&M3D#R|(aoF5&*2R*wFqEJXKlZ%^E}Kspqp^l4%OUp+<)=#QX+ zB%+xZsaCEP*e{c;3gUK40LWengKT0!?TmP2^=|#liMHp|#;|X%*^hTEHE;IX+LQC^ z=jv%EWVg^_>nib7k&nN`QKs0JEf}J@R2i^E)P)IbM$of9yZFJ0mk_;GBetP#D1VG_ zkm>I7r*{iYYaJIA5l8QbG)@GEdfhHx{v*YR;Q|h)Vc?vgUKyE`Q<3uRo3OVwF8F|a4mz$63GU7fsL1xB>fM<^3y+5|XOlD+P z6e{3E-Im_SswYyUi?z};E za%ebrOlo2UvYfni@7As2G)Op_0CnvGN&jQ`RG;voue0TOvz6Hm0^j!y4<}Xc(}vh? zyw-!x}>Z?@3&tk)8!MJObnBfG1=Vn@{!WT#k7nU}5krAfzl zq#7J9ZKU_^zZr_y#0P-q!Cz*0Jri;T5rW4@3WJ>!maDDUm#jlaZxf`N<26RuZa%bq z_BJGJ9bGye;kdd9|H^F=pQ4)En@buA`_=4rPQGzya>C`1pl7jIVn1nhU74=V z$`bmWl$O6u)|7-|dbIW9laec&N(m^Eqi#vd1*f#O6j1|e`4AI`@>J8T_PkRNmS3&z zC6DW%t?4*#VKXW%zFzJfGU!oroZ>v|cv1g8}JdhqDxym)2&vo~tAts-g zP?qd)KN6%y2TW~^RxJ|?0(-%@W$H)oHB_{5Rc#xg$WU8&X);M@TqoS;T*~VrU~8m# z$?c$rX$97M#1|%0M`j$`^5(@`^e>(+zTed%2UeEj{fblsL-TbOIuXV5nab?AgTCh5$}mu=P1uK zg=6N*srt*By$L!Wrq)XwF?5e}UaCu}G+Ftw;FF|0B=@RKv%8eD3@Wqo}b^lbux=xp7sAwubfJwDtOLJhQb zL;KzYibtpHhgO<_dy23R`kNztXqGX}z%~?n$>Qa{x$abLDBpc82i1jjv-Yn#^YP&! z*<`}UMJL>_MUXCs|6rZ?0<3>mLqeH6Gl54Xtc-cR7^Jwzwh zkAwc}xTyvHv65X8SJEHlKXSu3(h64x$QL^f#B+TUwchZGg91a|q)}ENh81x7r>-{k zHx88iJ=^*Z3&J29;01oQuw7_AGTdWqag!QPdetNQO>zFEQ)?H;RT{&aRgqn*8+6EW zhJ4mY^G?u z*ASgF9OKE`b%_;OhL|fALJM1(!=W;0?2zZ5{F@`V7IPWKx3{#Q1=uP=7Fz7j&igB! z7b4=k!E_>)m*0WI0JJLo)UOZBE_Vkaa_vBI>QlNw1JvN%@Oy|e|6|j_=KA1Y%ZFL* zl4rfIKbK6F9RAsW`@4-VyglNUOQ6_6@;54iY&(hwF&F7pHZ2#7^Q1u#OWWdsCr4hN z*x$)XEarc$}zEmDpxV+C{e?hsM%y{Ilz zvz+3Vnexs%6Jnjz!=L?cv_HH>nzloNp@;MV=d2JEq%uYeIotBKA#xaFW5c|gxItDdrJp{nq^Q1C(9I1!MU-aakrp{=< ziqS9nY{t|cm0d*Mbg#>CTC2gFWprSPmk7b|+~)X4V}}*5(yWL3wMz76&mJAzKs?rqNxkS7ARiCn+{oL4O_d~(@Yhd1Jd2K6NXJk>> zK6_SdXV+o(M?B>dHE*U}w}2(2Xk+qjpce|XLzzmBCABF7z9zdQiGb)gKsAtvCp*A< zlNo_6&+x=YHz2GP68h(F>9L5Zk7OuD!BqgKc|F#E>J<1u^x^u=L=Sp!HdGiu_#1di zm|6kN@>j@J#K=+U3MdO11*177dB(00s(I8t*~fsd$QW;LEMxTTh1Y zTvP0nQ0Qvc!TJQUEd%dvK$nfcYi2CPF?iZYEyLI+kc_&(JUwdh{A!3qhfh`xho#=X zP46=w5U+QeOG%2>zP^)RQzHB;t{5Eo0NxIx$Z7~cSm?YT6A(*;xh0h^n%B$+e|kU^K^ujPJ%^NqUuqDo7(aL+u@fHiL4icECZh)##b>x`~8u1_UQvU z;SX8B!!E|7+) zH-ApZpV?jh8oNR6u*_av+HDTdMUzTZMhfST5@Dmn01YwES-mdj+qL~DHBC<_@^LA5 z<32bRwQ%LXC&*Z-XJT3j09qx(atdN%M2%!B7=H>+D#|bEmK#afCGuQX;-Qx8w&BOx z_MQe~9u;9?4r8Z@h%h%8|ID3`efb^vdKSeE(nB})8Xa@Gw&eQcv=~+!Jxju^Ws&)) zh@1VR$iRJhor5NkmkRmZ(G7z;EBJ3~OT1`zGX5TklI?|Beid(Hk?|uhUYUCS) zdgV^V2^!qFJE@be!XLe&J8m}$rk_N4H4-68jmX+1k_}DOdo3-^(?0ctfJ3y@&8=RW zA9=(hXYM8!3$an8v~BFX7J^2-#XG9S_Tryj=};IGfUxlMxmrq2ZQ-p^*S$3}&Hq>( zqS$2zggRr`I=1DH#d}p%t+6BU_~Ot$MV;&IIX>QgN^G5Ns7;=!3|<>(_}*T!*oij0 zpIHyv>PF=m55{UoXou{X`KVKNmmjP!N7$q}s|6fJYxCNQIetH5JnLJ08yb;z>?<>Y z7r`WR1 zz(u@KC}<|@S(?~zD<|bo3Xt&1PPPO>v1sHRm3X<4tJ+}C)vKtQs;iYh7FOU|PR^21 z_h%Zo%Fu72D9O*)=*aWTGz~X%;gU-K^i(<*ZZS0=n|%8*;^GI~Q?;J~fkX6gnl-pN zcIZ%?X2S41YF_W8(eiiwn70;tA8@ z0w2{YpjD(68N3i{M_R`kipvc8F~W**O}pt(nI)fmNbj^kyr=Jlka|j9a9oDsnT6mM z@N4!vuqPhR2r?i1sPJbWA;PR|vzjg`Y((U#JF>MDH5LNX>P#~6$S?1lcS<#JjXH4h zmMIXbSttHjT`Z792JKuPs~ppDav>>HDK^S-oYlWw|N3<(0O&>NPRV}%kF?RHGSnEZ zLX_ROxXqp5ZzbB{zD4?|fz$mAb1fw!1ryJq%MDdU`*s7X7i1e&u%UPkclxD%?bh=B zo*sss3fHtb^9wTVmD;}!aGY;9YO4DL#I9cW&nhE~TZrKdXb~+H)EZ|8KCjgk5_H^8zTx18E&y_~8tEPIRoncfz$US14_y&l5@vC2ZWx zFjt@nBiAl=?b<a=~gJbfz8p#mVxFOWS5dQqVD1Qrbeh<&d@`;?2LgQ zA+PQWEHFe!V-smDJl*o*X+6Vxp9Ztlk2)Q%$CDa>^+SI;QvOjt)2e>TI#{0xY0mF; zkfjW5!KXDf&f1c0VICgiV7@LT;pN(eO?TH`U*B-ignM1d#s=@%hg zp+C>rGUqzR4rxGKR z6K2@1>?v7LQuxwFD$t~_0h748_vzP@xbcp)FZ5ULi@lFVQ|g`{Se7qUPIoD8Q+Na7 z3R;d9vx~V&`o3_*MiJQq8O5_dAQB92Sj7jlLp&|1dxo}FQ?)ibx8AM#u893ou`iEc z?%tb+iv@xoUrx}3%GOVajKFGKM9_ldfMm2DQM;vgRbTA-$R%{~sG2TEqV>_Q?=rTP zj`N=uU#}$uV-(1%B-yLvxG}RrfJ1f#9DBg-DZ`%INVymXw zu3OY_g$E}QhqB?_Ek0!>!ByaYCU#q- zjZGft#ci?^d+$rcqsZ8m-G3$=F!KaU(;tz?Oq$z)hR$GbkP`$PAt(77X%A@&8IG6>uWje0U89Og^AGCSjR2f0GE$4wqK ziTBwj*K`+vLcS>lM1$Z(5$}X2A1;+=_cc_l7@vl>B54|1);yWOTjLr883t*I`Y0kq zBP3Ao(PZdpnB7wv{6vj_kJBZgkr|oGdLL@;gzwa7QM#CZBf)gQtaS-0y1Rn=wn#>n zBcO}eLVfz>Af6o9)TO2{YPn6QsCy--Oyl65n`PAkXFq;#W^)JLY&6RAu~XUTq2PG829$yHz3k^4=j$zv zI*zGBEIGn?p-fY&Pe13f^2k3)d6HeWT^pq1-N4>2g;gzn#ELAmW~}l<(>wWDuZ4nM zKCFCUWy&GszrA8;obT-y#2K3QsLM7_oeOc6B&!Vjr0D`${ryL(7GJQ7y8BJw0k{w~ z=)Rm{^cSW3Zuv0;wK50lu!Hu|9wH~}-hJL7$OJ&yjTrK4(*03`S_FUNXjlMd|L2~3 zo~tjM;p?vKv?J9;p^}hGC#;kI@Ea89UndZeF1@im;{9hy+9PvD4Q)CMglFo?M=TjF zGDl(pXHo+}qF5aShRbdcKDDhnT?v10X5gt=v1Dz31RUPiO(s7Y8&yrG@@6;0=)OB~^RC3|P;k^fta%qFcuncQ_c{Ls zN{Re4=D}VuZsE(*S6dKJ+9kOn)R^)4k&M`niOO^Fx(t*#iSB_a>bB`SCYl2eM`UW`DY!Djd3e_v3TvQXEY~pUA7hu<>ryQy6?etj$>HLIuj$oT=1&=27P?|-eh4;_XMVt&Ilp36Mu;9tZM?m!Bc@nKd%z(*>Dg&v9bg-fdgWf@-tB73N6wEy4p1U+D|W+< z(T~kZJi!EfgP?(lHedp^87rNcNgAG%_kkN0j6EJ}S0F|4%a_+cQaWO!5VSF%$P~cW zYoI~3`#o2elBrcdroEM9+eft4+iNKcacLEz-||Rr-hFC%+tx`@e4*{|)0C>W3Eeql ze^vb4mScjCAqDLHfo%oZP`5TfkJ8*n)BZF@4`^YuC;#S-0Q4YBsOMNwi~#y(0;7Kf z8{o9Mp_Cu8V9FVePI>w1j7R$FAulgv=HEFlL3ji55jgjg^GWa#>Bnjk>1dUnETt_O z^OvsLMi88Dh1`%6THp#^J`GRqL@w1siadpC47TZXGJzA&6o44X!#lW8WGL845hk!5 zN+B8)ra_c5drT)`#c&nTtiTWtBReVd#W4akQa5UtK=oy=RTXVe4omDq<*U$zybYFv zprw3pL$L3*b&!1(PCa2Kc9_(hCZGM$@*3)0;W6t+ACZdU?0IaJkGX`{RtNuuLa4t0 z^uj-L0#Ku1Sh*lgu$87woV37dc4ncqoE#4@V&=y0&X>#usmMAQ*;! zBOw1{lPP9JlTH`qQ1j~Y+l@EFfLPHt zZjo$?VFNsp5V~sX-Qqp!E7NEt{;QNe#lZ_j2Y%SbaGl|0<*m7to+@#qROxP~(|3w6 zbL~B+M$x2wBS(JvssQ(jAdii;PPN(v@w=ukr}kB`n17-^sBOv&`ci(#HAK4|fD_En zDt?x0Cz4z7<}#(_*{+? znzFwOR36^Mw+sHk(cHx%#)L@bw&uQHh?oyTba#5&%#N@l_>Sm>_W$Nh{w6H`@DF}2 z3*JQpa5`iR+T1W=s9x_|lg4zJ(|HK+MP%hK#L7Hw`+hN=`5C~?<&ZAcVq%3Jeh5|u zzT1s7;9Z3eL%#|9PfJ!oZO05SLjpG>kyVAJ$fFq2iG)L08#DiOER%Wr-S6lCHNE!c zgG=U#zt3LgJhnoW457bHcnmG%0=;vFbRw<(PmfrW6?{65uJUApZSmcN+WJ!iXk5T$ zBgr=E>RI?IecOjy-+lNo6_P1rWcb}A&3hBZ^{epjGP!B{DD~B%f(jQ`*H4ne2#uX51 zIGs)o^3oo%CP7TZ~#O{U1aFTdyq z!h@Y36XPkt0X4{e=F@DV3SA5qO4_6BZ{=BDn!2*XMWHphZvO{wIq41jxILX)Z_F+D zP}Iysa9*Z&FOAvHIIrt&d8PifAO4Cndq8M~?`Pr{g=*0GY=GhrvMcO>`Mmw(PK1=^ zg>4&0Z##QPfD07K?VTBusw{2PZ1Ey3)Vw&m^Q30XotEee{CQfadWlE)YNJTPe(X-~ zNIzo|p_WfjVqj46oLbKEJ}A)J>O^D3u2UJ!lI`_fXjXC&9OTB$_>^>%1JlW_OCow`CSawj2gCGZ!5 zd;J$80^(4YCZjK$*>5BEIe0G3Z1~XYV99VVNbYhI&Iz$T|LzmisIUTm1IRKZvHU`; zQvAuVGsOq@>Sbzx48Cg`A!mhp6FI;KhsM9&Y6F?8BLE=nWyC&3k5C8BE9dd(?Jb^d@8-*bp|7!U~x zU1(LnP5eYa;>rVbu*HZC8HZ>b7SQZEejX3=Yg2T<&cf~k_5r9RY%a8=A+b%{E=v{f zY)L~GgQt7X#Y^qH`!01)wxZN!T?gj*=HCo6Jp|0aci0YsfaY$4F&w9#EO~#j@K>^M zIXxlYssRP`Tn?r?E;P4^s3hAS^IzDQAnYTIWrJh`zBc+9ZdaN7m@M}SrYBcc**czb zub?ejq5ptON|5nL636LSRs_%VHGgMY6U53r5!&TDVH zk9!9$i!$NNzr`Ni6O*aWF0-w^)q(DmK#N->p7Yj;_BC#tmV0dXIZzz8mY$iP zn7|DvQtpu7ez9C2?kU*G#jar0uVa4_nciEi$~M-`ME8+a_-uDd?77}$=k-krnCpQr z=@+Sn9~~?9QcHbQ!prs*-}K4&UK01zpSkXY+J|%VwlCZ(s}&~MdZD{Gs-zCCrfv5; znpYFi>gn@-&b_ccHSKy4PU*P3ymI!p;W@$8j*4qXWP~f0u%IA^vNDe2@rLTLs4lws zxE0m&qS)0S`@)jPMGZ2p3IaxJY|p(<9WHVvq2XO9@}_Yf`BEND-8n(z&g+lba#`si zcVD@t4pE+6Mvcd#M{QG1#s6J3xLi3|3?u+I&??KVC(;-o@}xjt&$6#aH8 zR_7M;!RKLTkDS^;&_Iv9hw?INti{It`x>HywuOsAlx251=zesu-5WeO-#cv@(z<$? z#lkkGJN~lD(OUzedzq*$B>PEJ6qW_Bke8^TW4osd2zfUoqNSQjio^wEr)?sI9yiW& z3FzNor+HD98KrW-hRsoFWd~icw784DOE{;nZvDa@6C0v_nqHJElf%-hr@J>Tb?mo7 z;%nAUSL8Fo(e_DhgXWVT-i}${GC15WbK`|cj}1>K=lf#Q)gHpr7O^z@%su*3m)V*M z%qdnW@DB(iKT@TFJ={VP_ndahh`;53dK7cqgE83{(aAGhEWW8sG?jl02cP+U+=Sp(DWuc4SnZlJECS65vgrWrP z7s(`BP;BZpVU-om-YYG1=M*2`m$%P#9|@O6%`_b1eFkp4h4>Y)zCTm3trYn&3=;!q zK@ETSxGZC9X}$5yZNvNfBN}U7O*EdWso-;fW`rip>)f8<`27s!!z&~f`Yhp(a$2$D zt9c()2lhKZ4OQ&eXX>AoOvV7Mg%CC2Dmf%fUIb)EdtD_;N|LqL3}mt`qEiIanJN!* zu|6cSR&aU~C;MtOfD9$T1>2E1&sk!CIlSA-v*ES78scGn!0J5%@neDCnGmaq(%Vr~ zA)rSaV7!6%JDR=l{-PV+FnZWj#D6+F+3w?mZk^kPXL-83V+eywn9IZP58RifpBeqG z6$0M3tnM8bJFOhwt`QQ~Fb*PYkUuAhkMa&^@lMT8fU>FjZ{)evZ@zEkW)vMaHA~0E zU2g4EsW&CpFS=t203M-pw~XT=Jgf-&{Ft738`gf7ZZ7dXzmj3|Rqe5G7 z8_os@x6s!Y9!cWIb8c zo>~4GU2dYmGLJnm_k~z+@{c>hdKXE>Y%S0C93Kn1(X5$-pTtw_s9O`i>$fQ}WGP*u zM*2mH|M`wftRqj;eL5c0j|Y%nRC=0tvzTwt#u;9QWZfqps7cyytQ||r3sfF<;tfRK zvc!C**xhho{>`TEEKPUl)UPripc#1B1zIdmpCF;?B0`{5rYMg2;K*1enC z8+mng!ztsPKaAmA-nr>qfwm)6$1w{?>M_)klsoC&_;u8-GFjD-S{u!%Ycp|Nfrrjt2ZR<7=GG6ia0B#&eqEG9z zGz7YO3f=B@eO+4g)XAU&fAQPONGF7)GCk1^4aiY zE`Qv{P6CcNgrSI#*%pgFSy5kTl_Xe`L~;~$T)Yl5X}oEW`MPPPWpe&Wz81m{6{lZ? zaHH?np1?h=P@>-;HPqr+h8ge9_xed^G^R{`4?g4Wk*|G3pf={)v6>IMXGEW1SU?Ls z$Q1_3sTf;*kfBn87zYYVui5;=0WDTY9!jRnj}S{w)fa2~FY`%?MHW0YmuG zgK<4ZQb3VRqqo$A@U$Is#HNKcCxQX=53&;kbbs$J#K&kx2mRCe zDAdM@Ux*TPoWZ~4B7OSmjKW|Rs_a2-+s9L;4N$0K(f98$ ziItU=6?A3Kbjwd$`8qocTHLAy!DVGI%b1Z-akR)D%`?RV9%2e+z^j{-Z%E4eg+O}WSq6enNweFALMlf+ zA0W?AN`usr?$J6@uaWL)PrB1-StlQQJ&GI#dOzmjk?SRO`;CwKh{ycsF*T002t_b8 zDbsK?IjHJrL2zewnLW+0NvX&Sp`R>V__8+U=&aoGVYLB(s;kgW zV1FcYe~D^2Lv^ zB(@eqGRYcozFI)NLerl=(lw%>{ec>+mA7N&=QX#l`r){3c6j zDpt5>Hq52CS`nsL9fR~&@`LLG;x3tA7MW~R#98A^v9^UTxxr{T36gLx(+J9hu|#x1 z55VZir+p%p!UtY0oHy_Q=PXR&G?`1$rE|CIU+$9FGPd}kuiDSg>+F=^56 z#4G2VKg0O}wF=iI04SziSq&}+_Qp^1=MWO%X!u8zp9Je1>W`c3?`E9wvv%>MkQ*qMQS zrg}HcD&**feVWJV7syhzZTn8BREU_f=5MOK{1IKV|E973OS8U8x4>j+MoNX$ z917Tve^o0tcs>2?IS+46fwsq&rl?fDl=<&xqx4gdB58zAZBIe1G-2S$xY=vh1eiah z{!z)1HGE+m-!0t+H5V&}Fdy3Et_&M%QjWj28_8>&_dQ`i)(@Flv-9MZ;|I%6wp|X< z{3*zZ<}kR1Zb6g8euqyMorDij?Ncfirwx7iv!`d^BrA3xs&2>{!$)99`h=k5!%>qa zR7Ly<^*lAOW5DKx{|zHMuKsTkB8xWHp@#wLlkhGfGI~NPY@~#&f#aG2&oWNEISj+={=3Wdi3=?qc~p+ zfOP}VnBT7af0Z@;Kaeyv6YdO6fqarZ6tp>8MF*B-v)}b+rcWBXqAuU(^fmqMEyFTR zE-#8C+;(GqHnk?_!So<~II2{n_s$7CgX#d9^SS?7*E9p1d6u_i(Y6HMp)af|MUSqF zLf+y1?;ECG)1|lW;%9x~-K>+&E{bDqPv|VMOJ#k9?|cd%-U=LZ)(kv&{T##rdpj_1 zUV+)0Y`?Zl{P>`^-K3;{<`?3g4TxFoLD(_#pHg&gsj3-W2CncIg6~4o9rA(FBif7w z-&3}cMhv>64mRg60XK+9x{4g)`QeKnz>ODfHa>-_4ZL=H-fZrdMqU#1^QyH^568G* zM~Q{4_{AR53{9wpj~&(|s~d?Vq4wMzr{&u;W<*HoKORqCG(Bj(+T-QrnQ7e$`6~`z zA1*bJ$v@#0GrWA~j;chcs`%*Up zuJaTNg|eMGDO{ilUl8pURIU8c3foHLmd{I{H^EW$azD7rE~l$HOG>3(sC`u~F5xqJ z5~lT$M)v1xAHKNz)l@_<5C){*XBSK5WvB!AqCvO|gmDgTOi(p)(&{r-)Z3ERDt3l5 zb0Bx0TwhOB^>;S%-eEQb0vqwaNvt!`qu>!U^Z>E2p?1N~7W;7qB2wQ0d~*k%R3_n< zXdkw2eO|Z!Yr@yA1L_E|m}|Js3JSR6_f&PNEv2AG+4EuyHRD3phQzvr*h!aYDsP_D zaNi7wruSb08TlS^VNosg#AX+{wV=YGx4>6AL__~|Dn{9;q*1`=oAP|YZ`A@5bq;J0 zqX_!&0Xn*CH=<9lwYJJPhO^iNLLSF@(rM<4pp&3huCT76#hL{x7EgBg6AVd2?om9lYI)S#1 zve?I$nJ{e)bl%d*iqsr$nm(2J-Ei3>OvugX%iSGTJDeBZkL>uieCTN~#>eO&Gp1bw z5+!_fEmnDkb|QqCuQl2^6fU%A8T>fV1b=@wn|7S7GeFZ0KZNgZfOo~EdE;sAiD>dBZuEC#WH$NJ%I|icW5nyw7F}cB6%5_ppz*y)v=DJam-`3PZD08 zhH>bzc=W2nwmBonQ=TCNQrds*V~jO-mNSYX*+(d)-Q5rehMvXkcVD} z6$hLVGwmSALS*|%1CO>x;PvQmY+tIdXGBUE5bQ8P(E^Qvtg-O1B%^uhxqn*{SKXqB z`?D)J{7_{3I_cTkmhlAvsW8b?+`}jK4b>anSW`Hv@deX>45b_9Qd?>*6T;Pvd?Zt| zoHn_wt*@WIzuGE&;11g45f|H;ItXkXNM^$KU8E>i5A16+_I&GWRB#VTylRkp&;JWM zItWtqU|L5l_Rv(l`zT4&Xtsc|!)BfAFP2UR(LY%VNt@otUSu1+f2qHHuSIFlo)*So zIv*pDaEA~`IZ3=tDie|Hy;0FE=<)$kM{>W?g^c)xCf?@j<@2a4zOf1 zeCtE`;db(YBANRJ!$Si)g0(mjUo1e{JMcXvh#Y%6`;4LY@1O1)I>TSx!2MK51n{Y5 z4uJE7k87SL=4O#gCk|v19grafPV)eOXn%)C@@`8TPiAU_dqx^1aN2cs#x zsO@9G=qGDSm=Q#nTGr$Tl-pHk_M`On#NVmG{^LHPJN^q`d%M@6qzyi`m!hUlwVvN^O8tUvq_8#Ho^abG>o{Kj{rD zCV4dZgL%B+KFtoRypri+_v~T23jMwG(79#*1+FmZEl4;zD>Uoa#!nxOfo);I6B)eh z(&GD#tx8UYp3I~T9d*r!-=OR#@pF7j{1nMQdO_MO@>Fr_0B=FL#XhTDLeAj0TK}vHvG%UoqP43p{JNXLVX3q zZKf3Dq!Spg$bL7fI7E*?asNUr^cjMST$ZK`61btU7$8hP?gx(Gt>pnR@C`rY^f$Qn zSJ?JH`LFb<7t8@tHsTGHL<)ZrNDB`Vu4PRV2F)qjp_TNzWKjD9$QAnyL1a+L-v#Z0W#Be?`ybhc314`Z1CVy_m;<9~xb{@ap8^EzUYd4rKK+(u+C zzzfjTeH}KWTU|%1wLOtZLa#y)H%s$ixLIj92j5U3X179hpOzDdChU|Za# zY?mOXHI@4h;P>uxZ8_LT^GPI~TMSLn{CfRG=EHZ4^11qw@^SYldTp~ z0gJtXz_xb$7qy}0!Z}ozJ0o5hk@=nuG?gymV5y*VOKbik{=rLeo}L{WHV(5jw=#6E zx7$D4do}K6;3?5g^AFCCSS$mR!u=!~>9~FxtuM*o;Pb|g^Y5)Mv1^>c&%mPN&0GF9 zmWg$X+vruS-p~zq5?-hQn`w9Ki}cPbfvPN?J7dF0JZjOVq`pucs+G|6jwxgup#t5o z)n|`UmsU7#C%*SS`#k5PhG4&QC9%8JzSebeAvY^mHa0+GQzDYOws7#Cmvs*?iik|jpeOE@?HxY#h^ zsoh_<1ui`>(jOjo$X$SWz+Nha3qXMYXIKfU_5d0xrcN}86RHodsHL69wNT&4@{atw zA4LD%mvwmcYrHr5NxyU;Y?&~A8rntxhn<~-NjR~n$CqYl z7N+`xvO|{v0n2Z`4)|M^6)<K>9AiPl)_l{`I5X5zQbeUAA@nQWPN+ z#aivEZkuX_w{Tm!3RS*0#teD>c{RCW-Kpd#e&bm{tU)EhQ@pPM#fx^s4Y-ZVtU7KJ zB5w5-9%T~s;so78Li>b-vH+PVMsWDW3Mza@4Ig_CgYug9G<5G&=vTNuKJnGR_V_-A#)E; zNeEKDHlZ*%O%vXJHDy$9`ZW3i%90dK_51k?!Qj>>ki3cXARA7aAyjpK8SOxLQqop! z0Sh;za#|W%u+H{yHa#1oig6}wPo6&<_ z&pprBiEjg1A~yQ#m0)OL6A)UR#nS77|E5XRm<1$;bX&zCziU)S63!6rr@okQMsitx zmf)P4<7tUXJJLiH^F91x34?=`z%6}&TSbIpo!$0WEMSku?Aj$!{>jR!LT$M?RuzHX zXl!Sj=j5eEf)K)**m*hTgP&Bgdw*+oHYRNly_Svs_fJ&|Rbo-G**?#%uHYp zl4b9sCz$#b(5!X4YaG+iCPHPt6rpo7-D&fv!xO6PZRq3(#QydSz6bg5zX|j57otE4 zC<`%Y{xUtX!`$vv)ZQkR;HEn?t!FiE2iZ2?i;aA1C|!=Q7yhCpY`^F=;YgRDnb75W z#vTaxW1Cz158hJSV$FU{893Tj2;ESoTlw*Sb2f_5WG&SW4zcMv=x;W!h#9>2PqFZ? zF%c4lzGCQa&Fj!Km%SY8yL)uO6n~iO8cAt(@THk~-K)c6i{9DL5M^M9yVnh9S^YHSn z@z(QWNJ`EP$G%?(kuw+_^A~=;Pp|v!riQx?hx(~zeFVIvMe`A6YAt@SjVg92WIrrL zeK%o-8SNjKdl&`{l*CTxqTcKVnim?_oUu4Ol@9@}9c>dzJI&F{4fi366M})qH?>h^ zc1H8IEpCmwxVhf>OqMypJSSZDw!@A7ND1G2n*LkwoOe!~5f=k47(chDLGU{L3t@?X z?X$LFM&yQBFJuP=B}5H{IUF$Cq7+7Gp=IOf0eu_qXiOKn;07Y6aFl-DTZpCfwcct9 z^78@-f_L+fb(gIl0KxH2S@9ufH`ncr!6!8>(&dF;^=^f|fQX*7Dok@5egC`KO%ZX% zXFvNrA;)L)`W;CTGrNS-@2kM)V%jFPQ0#r{Ag9ZcOBJ>oLq3+8cuz-@HOTawBM(tZ zmi}2~mvuFmKl>PbG(!+QJ_-Iyjy&7V3a@vU9zb9ZWE(-q-n9WmquZ5dn;0+LZ?oQA4o;Ugn- z&~$f+uJ*}b+Q$1Z>~hpV^-kfjq61U3BQI+!I>O*v3zSlrePF`(S(zbOx+=o!jHlzx z%p+3EZ$-_L@**_iu)UORRmPuIk0-%cVWW9|c zX$hxhZ2|d7U>ca%qYJ+f6l52A{j~%0*hM~A`v7`lRGzWNe3KbdLjia7cUqS}v$%xk zM*k*@M6aKQD;Bm`{$6DX0=#z09?U;!SRi3ceggf?Om#F(&;w#fM-lS=YQh5&p#Kx* zDQH!~SOz302khQ|sE7!3Or3D5(8SRsEG`MiP!dXSE)*l4(F{P*c(wV$Cg{Ra?c(fQC)jDn!LV%xb@j*I>>? zAb?&{f%#@C@!Lm6g#b<}$NfSGr*N&*+3>ZOxs2yrsTPqcFl0zse2wp&-?h_B|AR@k z#y545lvP#yr1r#SO)0?Bpaa7dQlANQ(v8cB@4&4KwyjYrhgDDX>nC0Fcm55^f*2%G zs8x?dgtC~#vL0tKpl2cXm(F@QCW~8DJ!9*>o_)^$#3&)_7%ZXAnbS6o z7xIQ`ALjFa=q%iASm54cxhq}^+EI*O$_?Nk0Z$1h=WuACW+I#NL{TcpGymH>dtMT* zCdW7ELB(;>NJ2!JL=F{gB5vs%uX2)SUtdc}Xxd%u9-v{5#P<@ZVpD_X{T`D2R3voY zNrhk*x9TrAd$A?*k^A-6MS8YeCXu@ql3B<$d1D0bp(JZ_?b5{Nc`>>|{SQNFOotg8X~albnQ+}2`cwbmkpQ0XPd=^(h^lzZwH$;jvRb;{&S<)r{|S>nHT^t zCZO4X4hw_ub8&RDC!ZF=GcB-c#iU2B$Ovp>mmPT1FB_rDLeKs}cyHj_Q7m*DsySIw zJgHJdzSB>;%-$t(QLzy{dhXV|zcxY#@ksXnt-4F>O)$bN2~)jb+%4LE1|obFV}1Yls2}(c98{q;zdy>_$=>7Xf_q|rtlArYN5J%{@{L4zk2_FD*o6)QZ`5l;!| z(Z5p1Nzt`9X3eACPsS5M$34DvEL$InOW6Iu$>8{PsayFU_-#|0-|W>IqpM6@gsQeT zqQlf>GcUe(8oZsQT-a0k>SvhFY;#S_%KRyHkaS(sfz;7lAX|bb@|B@8v~QC6s!zLx z-wt}1lqu=2-~$c5aJqP4WmD|Tl1&+bWYKc?9aOE#?8SVY1q-`#K%9=662W3Dj|$WIoP`d)P zOvH$sQp58logP~z_3ZVX)5rJQXVr(PI>FDJslh!Sk-pWI4gJc_J_W7k`*n_+HS4FH zv$z$bzu4G3TNB7GIyOzPM%zbIrBy=x4uQ5>=98o0=&;m6CcbNV9@bj*r*=5p9y+*; zCQR$<(}t2{w9qM*&Lz5$;t{-8xeZQ%reKNmdfcDvAa!oZy(=K^@5F80__{Zgt-G+% zi2jJ6N^rtZk7h)}Dh^&)CaT*9LSUJ^AD(k6_@-Q{@9qfxk#5%DlLt>rPSga_3{04Q zyL(=S2Dw`%HyehU%2Ygxum?!#n1M%k^WHRQ*2}uz%lH;+ayF(a^71A=cp}W=r@pAR zc;(IbRc?%x&Wy?#jyNXmEh*VY0B8^AWd98lmLji9$T(orV{=wBEG2L2YT^c`q4DRAby|*<>9?pK z&COEDK0j~7)a`e&80jB7_9@Unoe7}jr8b%c5%`gE56W^|93shwi0FHSKZsjvIu*ML zOu*zcFJmWe+&FPxOVgFwM1D|@I#?m*jN+!dxz9LR7L-19GKzEKAn)JD+I%KWI5K-YD+c0Bey>>sFiDfUR$2wRP zwrE%2A6Rk5YpgVpiZmxac;A}zR+653V7cklQ`;z(&`oih?+ThG>055qE1}79RE^0I z)P&08+}7m0wC@t3#YYx8CSuMAy^Ar>yS|#fzJTe$Ecw$EW-(w+Rfpp_jD8MMqc0LY z(}<^jA&fov7*@{}r@kW$*femgG0s~j$ST1bL^kgbV^T)wVtQAhi=>aNYtB!8?+>A2 z`M6YJJ+@2$oj zZyY26WF1~h#@W~w;{IDbu9k*4wuN9df7e!p2Yb;Hwa#6wPsH(?FZ10?#kNb^3tLgO zgR;@j%FsR{sUMu~={<09-|ZT8&F*sJyx!$XKuMVWm5~7ZKI$0}aj; z8oZks&=o(&-DrYK(0U++@Fo#KQyep2lBel7;e@a#$Ha_U@Jek4Y`jCx2YSmXhd14f zKk7QE2P`@{^7CWaMFXX`8}XA;6!49)o1{Lt-UT2z!&~^p!M~9lXd(0%p1>ZJH)h1) z=h&4xf(~)DGOReJN|T*w+non5J~(Q;A`78=z;05P#1;%6r3zV5eI{s7p`#!pJHBXF z{n$aj+@~{K5zOx%-atCRXzXb}J~C7Zf)JqwBVd((-Es9q(YHY}wH965so`4R^e_#q zSu^gnJ_1#UCK=!dMQW@`vMY;g6GFAoW~9Z~QHR+XPIp^10jWsE%|ro@J>N>2Cil+o91=H?ckd5WU{?h_r$l2gUx_=xjSZf6 zJUM98fa9=Mrtf>|Z**>T#FgK@c*)MYEdNoS0Y6X2{(A_tn=^Br<`IAZ1N~G#dY9Ij zcg&UO#{5=*f4>)_!{5R)Ok)C;p)Aj(*D$}Ct0HWxpyv~#caF)TJ-N-?&vVj`=fce^ z;*$;=$8y${w`6JN*b(q%KxbBx`YDop5S@=FJ3M{pyq#iW$g#~UaoR_(G-sM>-Fp}> zl*wF;c4&*R3~3-lz(=U>{c`p{DsMXQyy)89@g33*KTZwj9a|R5y1j|#&bi(0`C92{ z*`@gV!pBCZrB#ZDXsPZB>Y*abizX^}xdI+^+XI8CkMdMW6#ex~5Mg2MDu`K4&g&cm zH1r3CSqSN^-Hbv%wEH-2uyi8ot>?a=>E2~GEsaikc)A;vyBRr&>3fgmf~u?t_9JJB z*E<2lha4*FRdLsQzhK38Sm516??bV)#*Aih5=Y8Bn1hn=Zf}yG9JP3i_$>BltUT9z zuUCFrL_)BD>3ielMt)=tC>zwofAD^ypWjzt__C~P;C8fLannNKJ`)3& zCBNPV){_v$ta~wj#uy&%lxk?@tP6O^@{p4y|0qROgo;OOE zDp!}!Pe)26MWW{7p^b)k%>t%v3$pzL{)r|BmCckIKH1Wf-?^R{ej{euNDi66a!j8n z^VG$ZehDECiDCpbrM;g_LUpKpekSDOyZrIPugl&`#Ij#y9}hB^$~OL#qCtMql)FF) zW_;9?g}VglmPNJJIy#XrRP(xIuh!W)pmJ-QWTx&}54>4#*eOS-p#ekFAE*}R`f7Rf662`Dr8S~#`81$qN|(;$cRX~U=$|k z7LB$mN7Wp?htKks^o=~Ze7MFt@~6)d&h2ur6njRh!;ml+T6=-oM3pD^O?UzLKT$P_ z3Kpz!Oo*zuPCm|UWv%mO>p?A18lOsQ_Ax;!Z@(DFQDrj1UG8?u^V1dbyO#r)-hb{+ z&p+!MbMW&puErmMrF3APp-Ee(>T*wSQtgLRSLHT*M~H*$Yt!d49R7%^m789$(Ft;-$}n(F+>fAJ}_ z<5YZ~JKzy7u}xyW=Rl4)K3K>R!>`HjoirX_FfEPQ*Wcn`$Lt>3e@9hI zK^sky%5TflwreE52wA~~YwgQ6gAW95DL zYQCO~7U-8O0F9;~2hK~cnVWzKm;*PTJPCVdmyD)S+Y)x-3ct*~PLBkv!HzmVAuZSL||Vs4{yIY@nLn~`R5eYAyAZ<9Khk}1BKDgP%?n|0^xqhW&}Di#4Uw!(QlK-o%i6EJqz7E zOS~XpCOq`AqYB(Qc3;mm`v+O1V!Hsoz>P4eAhLr?YOMSr#p<+&K0gZr|LkDNObz;?!Pzj2LV9e2<br+0lEUMm8{s@s5Obz$(`NCPPr4i6oG6-{RKOZsNj%I2?h>v$9(PnvjpzCe64(F1rybHd`sP!%ya!~`+EN>O9C=D zCg4ZoI{_b*Fz^1NLaaXhH#Ew@gfB!YjwJ*GD+RkN#=TyOjgJl(I=p@uHE(m)$W!7b%#D2)&&D@3VaWGEfAO>CJkE0jKWX2<;0=+TBx!#0Y9#4hF(ns|gwkrvs2gOX(TtF`-bZiZIC01s~D4 zA(wLydwbBde=p|TyN|0)hq`auP1+kj-^CWTefZCq`IvObi8JEiJ^N#*9I!7aHl8CE zKn!MeRiL*pN7Lhg7iSJHeFLiLA~*mNV&`v;6_E>V9V?d_BhvSWOwL5Zvfhf7gQIU# z8bFciwY<;Y9AxDV81sIg6MA{4_=eD)d-`G;ppnM(pXR-d1WnKHTpyOlZy(vd7PF^; zrQ}11(-*CxBW=5Ek4gRb)Tm!05+O~-z#?yHAoJUB#;D~qEx%iC2=D0z{g6wiU0VBng?!Rp8tm5PoA#L!y4N7) zmZ8M7UH7M~JMaEw+h7B}Panld`y7_SNTe15QeKO20wt;5^7M(W$3}~oF zg%DWEj><=1#hgBV=ubV$&DdI&s6TgESJVE%>?!8>LuW*pyBzS9#0XGD3x#1NN^nNh zGarVidWJtu=6`apU3O=z;EwCX(A5q`uOw2xSOI5Ohqk>x`UG*c_`P=9>4FiI4v6?o z03dbY6y(BzFxapFKWIpK+F@rhRZju|>3En&`>|0Q()}J$G3oS69Wqi~vW1EYLcW37 zMD#y8?-B3E9Bs^1u}xD9nVzHG#1?PB|KnQhLRm%dIV!W`kWGt{7D zdG>)hoBaWd`mo`VVdQ4=Sb;t1nfZ@Ln@e#tWADiDc@($uHG>%jmrfok?o%z8R%vO3 zSRvft?#Z6HR$?uVyA_7>yoo<7^XzH5*!I)D+3`4Tx}kv06PgVPKk>l?IRSpDH;wSh zjRQMMC^QO^Fbl8moc|p4dH(nrkDO?8k2SWjiHd3J8GySii;9cCc4Ae$tzGstns=`U zeh(dbFnHb~ZzN2=p#ymy!FZ8YY{cq4Q;ptNrs6p93&HI4+4-~vNm4re;c$lV)hD3B zs74ym>@6xdKl|6BL}t zg zrE&0i&^qi7=V=ToAGtI_j-JHVFR6{UMan2Sc(e>z6Cpt;v<4 zca&u6V^5hc)Xtf+U!hW$cTkGBZO85K&4&5T6PtL+B1S4!({fm-6bjXpFo-r2ET1;& z+bn~Xm>90cm{yeJ- zY5sl!RB=}iSxJa`!S4#!<^F#CiVF%{C)^(dpA#jSYJXGb6?R}=c9Py|p@x7_CC7M2 zx1ApHcAaRb>UDe08uTsRpRjcC!SsXWu(-A0k2GVrW4m5wrM7Kvz{t7N5u~H^!=C$@ z7&kjGO|EZg`fz)q0qO>bFsHhqT|KUE(JS%K@pColXrzv=A{VtG&e<7a0 zLR5TRiAnutiR24^{~gV{b?v@B{;4&#_x!Rk7+1^Eq>w)xLVeR1I^DHh)I5GlJEl4(}Cp_U9oi4bp`kHV^Rs zaBs_GYwQL&eQX<4b@(*h{1@UIA5839+<=Y|zqBnGk;NzuFsL#N@^}6K=*4P1U``1N z|Fp%2unp5&zUsxd>iwoi-poYU5;}4JI1^Hkvu0uNBf>vMP`!T&SeeY*ylG`cW6_a? zMxiKnKjF!d`$tl{l^JrN&RKL%p3E0rfxw+IXQxQJ#2+P+R)*{+LuxSto8zV-(Xg=9 zwUJAn`gfP(VF5{~fEY!^c}!-cckA2xV?8V)Y}+p2^}`{?v2=?Xg064Jf3b2O`wph{>a-fKC=ifT_ z;5@;#oH=hq@(|m>n4c$+542E(tLCc-S#U40p#JNRO#=5uV@s^j0A8g1!K~<8m&Kh@yoR zIULqvwmqaTNa~(If-aU7T+C(qzKMlz1;|KCORDaw39qt{$(rM0L-gp;@1NJ&r*)RU zr`!oZn;pq!NSk#Qj+`8_=#W3uEhE3zfVHkHT*l;`$88UZYpBc4XaB-+;!jcQCPs`Z zF}wWiCnI?ezqm|-BcV*I>}E?b4ZQIom#-2Rw%TQA`ptPcFY_CWR! zS8mbd!Wt#(Iq_CkPNi?lSDQ2?am2gGAGM-$Z=SQWl>*o%Uk6c-5*pkDtc{#W6g3Qs zRFgQgAulBe+W!VVr^N>&Hcvpr;@9o4>BeR?0T{s46FAyfGitMh&;oOn zkHwP?)KihBvHPapJW{eikAh`)n?3E@N=UMD7gpSxPm2sk@A*oxIg}r`&7Z*`aqca1 z(7pEw_kM8g;_Yw$KUN5Wd5in%w$x%zL$@LyYYI0wW>ZJc#t!FHI?85?qL1^)+>PjL z)STZbbalm*BlveefRGGq2hcz70h$J;>!3Kw6ak$rFkkEWgXz8C#|dHzFC!N`#w;U} zd7z(4ic@0!N6{#DvHaquWsA^~>a>XXJEBKeUH}QvY+5mHXT!v7nd}Ft=!`GLWMu4z zt##_Cw9%>6YKfS)6uj28pLuWO9!4dCfryu&mXjOCqbu8xfGX7QP3y9~N3<_Om6ep( z!Tg6XuiLbYMy?0eayc;fX5y>yVK|a0Bs{-rX#2m|dk?6lw(VU!2uKl#bPy#fASfa# zO=?i2OR*qQqat0vMiad@{KA{KbH7n zkdr(lMf6OYxu_i@N4%W-yih75P9us&;4=`AnXKvhnTcq!gwe9uM2>OGx;w$4@)eslhBsO$OQ3wmQCU1U zt*|hOd~)?T=`865%uhZ5Vl_72>pxQ{|Cz%1&l>pOUjzT=P4)cmU+cfElRwcQp1F?C z#F51zY7z=GyT$<1{ntZlCeGgoy2o$?wXkt)n@@x43?_ABNX1~*hzC;qL&5$}m{R}z z`v0uO>?S~<7`gyE>nuT<=H8D7Z;tUAtR4F^r`TPx@WY={10sagXL7jxdLEgHwhtdQ zcWDSIqB9`Qmo#^HB=ubQ1fY545JfD!Rmxq9avpuZzZFpt!{=Q3!#kteU%VJP`hso| zO($zdD>4M1UZ@X znO0pRf$e^r0TPlT$sDQ-f%-}3Q5oh=>E)i_A#dGuKezeFB1QaS!UJ`wmUd4C_5F9&wGNz%ZuuBMDRnVMHW}?Bb2kes zq~rrfsby_UA~T~bMYrG;cNZtur&Ulr zH3xg&c2iZeM&>>ErtV%ReG=XOX5*SV5AsdE9s<_DPlTbJ0FWs*JOc#H65x1QyUwJeNzHD$To1S|3@$!l$WK+Do2=0`}ToBbfMZY(%EL9yKO2*T>?H7prU5@0@kA{p_7IM zD&3}H*g(_SPAWG&d}*s5y-CT1<}F|Du>V7+4(o*di7Iu$FHJeA9i%F8Vtg<3-Qp^W zr4v11$>ldBW*99KWfMVQ`t}=fsvp8ry(ekPV2wVZo}a45BujJ5Z<#->KX**|M$&b} z&hs+iO{xu5o!EpYN;mDyMpLgUmi4<+%5kTJ#OZ$B9x+wr+{>%2{)X<$o4sCB%{4Lr zj!?$&du{CsDTdc4o^pMER`Jlwhjs5Zt{DR}6gtaXk=8{XJ*yx7xqEfR-|VR#B)O3p zCjo3ZnVCWutXq+~ZtEPrIBmn0U$8>-R!MLpy4WZC7NOFjcC)0G8j4%|1}N44zF@vo*^H0zP}PWHtASMKOrvyX z^ZV!TJKn1l3;7y;bVV5O|GtO8BYE4Bv>JD@{#^oksHa|S0H%Jgc7E}P(=p_`jR-HM zIy+l(&Un++0J;2g(YRq7+_E7)4EGGRcC89L``qiNz!gy?^;%z^msRy0|xnVK^5>^I`(veB-(0U+q> zt*u6()-G?fzvUmOd?Zvu&SAXSo0Pm0=A*2{y|oVcOyZiax0{Bq|iCTWadg5Q>7 z!7nLfLCat-+Dh(#;kE!@s3pZ$9yE3=@HDA1-1IOWm_~^=Qxga4-F7xB0lYa9hM=6n zKL^t_cAL202xnxNOwEIeKH|f9<{Qm(#WXL|H4TdA4ag22#BjS1BX?dU!+@N#aYYx3o*T)7c33Rtsh1 zFDu#utm;R&k02eg(Qd!|*k$_M=K2v^xQGsD1 zuwH{>fX3jbCkZ6J>WuX$*fHl^_41Xm+wtmX;P?q=WdBtT4YmU`Y*HT6@(tTV0Kin! z*knHoEfsI4W6~jl3A>>rc%&m&izBz>Q{K;)te`781d~xO{9(E67IoAJ9w^t`=s_=j z14x=?zUu)0fBkzG9j2`lSP;X8TNp48g-rx&t_{;C_iyT<2wxTe!hF5m3|BUS&R!Ti z?o7sZL(^w$z<49T)Vms?d$NBt^-R}T{&~V`77oS?jzXxk65cv1VC%yx7X6MKZfw+~ zn221EpjRLP%slQj`7#i2FpLJ{(Dw&Pl9*=GKammr2d^v<$jXAf6FEqG@@RE>bGsPx z9{(>QqW2`;Mo8cmq$iq}I4Ot7X%n;0sQT`N z6+yfHqDsk9sC0q;q0t^4L&k54Qp1&KvL|NA@i*e)B#J8Fgr>#;RT6ey8V0HdlPfkx zJL3C6h^Pk_KAnV~7zLWxH0}_Ha0|42ffySkA#1wn2LwzOX_4r;*BSu4We53BEa>|M zyTeUs8-_=~`=^YL-5o+{6q+WmBm4Se1H{kxr)C2mLkGtN9r=_vWEq0 zOpV`$Ew{klRkq`hfUnA6fy$Ywlmn|5`dxInEUYhdeN}8yzo~G1ss3=(`J?!fib?8y z!qgWO*9LwG6JmX^m#Tf|>~%?s!^$4+{x~l&AzDW57SOH4rX7sExCl((x&l6M0G&4m z(~bG5G_qL2Qr6@^tRGkNRlb@>#ey0> zs(Nvs4nsx(&WV)Y?50M4`Zlx}8$GLzN)l$KMLqe?O2piN} zHKPOkb!oh0evnPvC;p7|aZacDcHbg$ylUq&FfxdA!KE|hRUtyen%^;(tr#(_CrqK2 zdWnVOjFTf&V?tw7qO;^u(DoVCh>kvnvXCO5kl9;DzAU_}0&KbBv0w}*m6vE!$0w{z z_RDSjFqahT8s-%`9$gic#TJznq(%3Fpy{zm1q-595$`B@vAzX)2<0Cr~DnzxQzd)U>~@cN}Cbou{(Mv3VRiprY@8@P7DP0C0b_d`t9%WZIu zGlC2*&Y}=B2BPZ0V*k;_v~Gk+#}M?9+sb~@a4pco3FF;v``4F1uSE4v$R~8a2mdb} zp^$jzuVzfk#)E(vgesN~Ww1WM0!%A{>ni!w-!I{YC(14O5Z^nB5Z^`}cp?>?MF^ zYyCv&(UDLy9fc|WHX=A4*(cw_!San+b#ZMA77Qf41U47?z{zGmIG2b( z%-G=#vJDpnebkDkXi@nHr;2ax66v^#q}k_70`x#vMV-UYwf&T65D1R zpq%WjC9HT&>GZ~lp}qd-V7>01M}8Pg->n{5Nx@B_#rP54>LLT#9))-B_O$!?xxVs*{$H)HL+!ekrtkTA%3g$vN61humV@w0a>8YAy%t-g&gbH=G08dK zVr$iG`t3>DEBrWkhTO2&*!f9xWVfZ4P(A18Pem~o7D{aj`a=sz?n~yE%RC}x@4>-T z)C7{dyATcFCJti}w7ii?tN&MwS#+6Uk}u@B5b#X?16b>(_MLvNRE^L&hOrSlNB zOYLN#kw3Jzihk0?=wg}9?7*f0TDPh!U`}3G`CMk$vFqpSFP&GsD{jvOcpQIz=bPNf z#}bxI^1Ke1sj2$j?zZn$IiD!CVIU9l1xbhoxsUH%>UOD|`e{wR@;}{BP<^AQX zpH`sq6p~K&sfphZZ$>{IzE}!NeY`Q=fA{31qj;Z75SLoY0F3g=~oTCuO-=MG7?=kDD2V{lRf6h|FJf! zoi5hG+csY8T975*1)Y7zwAJj}C~}}BwcD23?IYTOAbQQ0aVjkYSTiW5lj-X#qC;`Z zR0Eg$Vl|15a?>rWL)J%P(w|uc?6qYKY0^2=h-HTAPh){8x2~@hI7$GQ1U`cqVh5?> zD_?fnYskSxWC~MHGc_SwO(si9O7EYSF;dwP+qkdE<9T1Evho72$u+Ka9RynvT(~F!hnaw9$gQg9L;jtxo_X=?!ak2+5O$O^?Y+8_qba`%Idqlb3g9***R2&l^vmcq}1Sho4_<$CLp zKI5x(Xr9WJNr=JWab>ISL+{KHOFr?OV>%;1#Bj2;<|i!$e-nxVlj_CJlHn=BQ+3wd zFM^YA^u2X>0a7@_u9_inJJh3Wmb9u#d=?5x1vKc1W7-5ETxF0m4?KtaAswNzmdI?~|*`)5T?)KIMY? znkVuKCIZgxJec&Hq$Yg?ilxL&o-D8AXIgc)@dUDcP;H)6 zigI=ZvG5_<2}Ks01)`}=o>&R;K8ByC356>OOLT!w@isZ?ul+KZ2(Q+~ZwCuS{|d@a zcRs*KO}bubqn7N$((v4}p{q5R_Wqs#_9(vW#H@#G6Z!1A zaZ#7tqMM{a_lKEEFR9pX%bu?$Onu#Mm5(UewQ+THE;NEg?)E3EzuTV5?N$q)B1kV) zX98oJVX>{?Vx3K?3tB~eE*V8-*SsHmut_xWzxDOpY_Z?sKlUH*b{Yj7G_~?nCgS>y zDstesKNr1!m78xFYCc|pxdcaKS0X}I1hkMzEAs$Xl; zKdyLi=2EJFZ`KN^UdS`#M#>rA2V_o2EUN)xwHh*it1LaCasSqds6}u9Z7&vw+#1#N z5`!Mx&0R3@KOC|DF{ky_JSr3U&?Jkni_gSZu={aQ(L&34`G+#xeX&F?kopUltm2t~ zpYv}-6#kI(ty1#C3CXq*U7gYFOF=*DEcbYLfX0`t=X<2ZOP~ zWFP%RwZ-9i`RAv1ctQ?r%9&^~`=7}ELhp}wgM0$nxP8~C#TPP`QpL=tiR9?!t@{Gg zc;<_I_sg~?imp%Fr|W%DjzVaP8BJt?hxqJxAbYCcsHk9|_DZmbFS zIVqzdHC+&^ee{A!_ltlJ?*lkAp&Na`ylI^x2zP>@qasZ)rYaMeLTiA#i%!o{@e#4c z(V1v(H#b&qLj_&Ym=oD8O}e}^jlYKPzlHJteEr9k`d_~nH+FvJ^TpihEn&-Va9$W2 zR~|g2AY_EpGg(yDI@K>m!$A)m=kHOqphU?uY_ZRe?_h;0w zwP%0!*+TtvUf-5@xtuHht(R%gt%UAD^Vm^1ylq_#b+-MGw<94x01&ftRsQC>NH1;; zyh->#)oa}g&F#fUCc!PmtJ`!==uMy~;O|Txdb6kI1Njgk4(7|M#YB|y8E;pVKFu$x zwi~3Mk#rqA`isd|K=2#Wbral+MSzjPEK&>#=3@IiU9SB(sCLR_pXNlK|rg=l(*i83D&9>S}!d*$^Vuv3>U~ewe`n$NdJm^z*0JsW(vz!}62{T)hOkod|kL({ZOJ|H;(pDx=i7JXYuo|%kR_(; zNQw)#>v3>%bVO40_Z4adRuERgPI*n2~9%Xwds`|Kl&SZ#vUQuCP#Q24NO6igKgFk@A5mU6ls5Hd3XD z;%c#G0fM9m$m;8}n%HKl8OY`?kD56GI&Lk{=YM;j`DBGhL3XqRz4DcX!#PzObm=DI zc@jV`oYTwGiV#%}q?@>J7-TwC+|6fiESkHb^WOUH6Kd_8wn!KP!{HTYO$aKtopjqb z){(JL@hHH;C)xA3sB3jS@@v%7dtP!h0c=BBF%?r}AMC0kH-$Xb+icF`G{}PbnlSJ~ zdN|!^;z-nx@xAvs0&Kicvfc_T=zEbUUIz&~jP3Uozvr?kbzs8o(!rCVJvwRqq8Ba) z-vj5sO$wD;?RVnaXru$PYAYSuWrD9w3?bhIK2AIFF`8 zQuD}dxTT(TSXKNt;y(T*B=`tnT8?c`Tf2{ELoeC(KpO>0gyAjep*Yx3VIr6oQDFqX zY*t4NnCuo5lGqXano}Alv{;MYcy|J}klcx*l|s|~YDWQ~KLDD)XhJOk;Ojexa0$7s z2sYtO{Z$(43F;EA8@;P_^|~8Ch+xJhZQbUWdG$+{H*=yStor5+e|(eKyc51{%=C+$ zcgK4YB8y>~4NmnJ_$uJ$lBUF|pVp6+yu^>Li=2U7B`2UT6a!Y$SFlejktkhn`dFlV z!YaLaj=0*-Pq_+>7=Vwv1Qhvw z7a$-Y?AN9)>_dDA>uN`$mskM&H!u5=8ZfxI`LC}%_wuQ?K0@@sxxMkSxK!T1shnOS z>8z9L4Yttd5EeD6@m?|B9aRDzW{D;)Hl-S@Mjb08Xaw+f?1*BVnE4%4ZGR43vnskpG?2^s$ zE3NMF>m0sMH(Bm@=^{E0JmS8nc(vbO!Vrn-lTXS1zOdt0ke_K-D)0G8l+YS{T=a^> z9b47|L(B!G}B^?$*SZ1C!6@w5@z|Gl)QrhawI(j<>z17 z*vMKVvLrt>9>WZMM?mw}`nRnxxoE<5>Ftv>0HFN{^2wf@ytN9TJM3Vt>68BDy&|3%-g5FY*SDqSSY5?qg^NqLp=6Q-Igz4M2OlX)mFDoe za-7W|XH-PT&i$Nw$uqq~z26AVli3_v%U{9}8Ul%Sj*EB{L@v>7QBbsnV=z>GM^ z_}H`#8D=d?K11Z!Bu7q|vHotIa^&aBpF?~*Hv5)$!HR0{_0% z1N(EKXQN0b1bKwCOsgo?kyEu8cdN~-cZ$!*FOIy;Pn*&?7dtQ%{DbwuXC1ZMLndDs zN~bgx6H~&=PqshMosM-ZLR_{^Cj^g=H6WwZqyuX)92>oUK8MFnMtE3^XuKA*k7GEB zY>2B1XkexJ5s*|a&o3SozE`M*#HjS_vCjd-c}d<6%%goO#P$`Yg8gad)losRrmLMH zU^)v=k8`o~a%-p{C3s*LJH(3nL>5tT+$aiJa-E6vf)=SJf$bJlUK6uxU1GOaGJZ5 z!FkP4NM3e_oIg+*iM$gDOA_u<0y;w@oOi9%-;>zdj%LFf!EbQihY@Qy07k57z@TyQ zy)qA)KUho!C?qeDzur_$hU_;9F%7lGZyi`k@VRv`*8a9?ACjxk=JlSTbF;i;aM*Ap zk@G>Dt|0t3!WYmji4_QH`a8TSP;|%e;^*AEq1Es-SOJ5^_MkrkdK~bgpf~ecZAd-R zTkPySswJg(yU6Tm05Dg)+1zd-r2aJ8GDaQ6^#=rvF~zo{Kf8tfMmR~6fqk{Wz)}%J z)&e|p+9z8#ndKUf(Ny!&(KW+|3uiE{NB-FJC`e9@IXsW9}T4D~@-${Nn*yy%% z=n;l8ISbw&oQ41XiD}lf7wG9>tRT1rd+K+MKc>*G5Gzz?MUfNNFPS+OGD~nmz)BK1D=vUX8sGDa?VTkYC%8!lLHsP;^iF0GVurv80G3xS05vtxSK z@_7l%@C`Djv4hR^m!TFUJuRmS#6;%krC&rL3)8h}E3P%>5z6OLEte^gA1Z;o)U?43 z(9mK$MU*D-FO_D`KOv>?ZH@g?a*c9j{2HcP1loMX36uIy0RD5{2dLY9MkoV7vc$xp{!@=`xEv!<6HHeItPnohcfshuWMOv#~BEYxLf z(^uujMhR>-Arle8p$GhPRrea|iuymq9w!=wRJlyGI<2jk_UL8D5#DpEv|cD%{9NL8=Lh2^F&2$D1VL0)pa0xuR&NSpR3Pn-ogxhtl!b=mdh7!NK#D*kre_FVN`E7B803&-N*o9 zB|ZVna#ZKRWf0qDNl)#$N~CisL(bpqm&+hT?AX4I*X=XA^}fgre$Cy>i5273Qnj`vTY64 zueLM#yeI$b(fz{X0g6nmwVSw%CH#0Ciu=yfl8mX8qb#558rd82(zae{LBwGM_4PZv z-tMp}Low}5k@CZb6ZzU&#A9@{b_Jx1qFUVq7y8?I%w95OA}t!`TQrzh4SCG?GY~6N zeCnOVXS!O4u@^DWu$C=oi!Sh!OhB4=mkeN_+i(hKm+)2ZR5AU@i~i`d=v{(`o7y38 z4>NngbdFoz_6}~2A7(8DDaHE480CNqdLw8DpO%Y|Bn87P+%RskbWj73I2NeZxM37o z)My7EHf9A-csD>9ajjva731$($&els7QOWA&Nh2b(X6>#rp`U;oxrN~o?Y7qb&8_B zsO|C*3b!cM@PL{yEs2Vn9(q-bIE|r$eCSZ^XlRxejU4Nu>!S1D-4r}@8Ycbjs-9OX2a1z(q;abm-m|H8 z(!g-qQ>Ic_pX-6{haJgcFe10r2vjJkR#{}BFT)QP9@o65h=eLhpuDGT>W*@lMI($E ztmz2IaICmjp%FnlKz3fvz~*Y)ozqQdK2Pw!M43hHc@pcqV*(=bomCcWhZ--C<50Pk z(}W*3PaS(pQLWLs!i&Bz?dmpR@`-W++lt*!OHvV^t}VPuw97aE1XvcHdD{$r4ODs0 z`k13YYi5amVdoD=lr>b;m_QYpfSL&U1Z*Nt*hL$u$CDN=RCn}c-94SNTwZPySgaw> zA-Qc&&Ldhh{YD5@Ir>cDQBLeoj`cx_c^=L^dK#>cbb3|jR&-D5qO->c*P%nBHJ`>Y zLB`5rMW-#D)-$nY!lo1zhUjZ7r_f_^&&eft5bRr!s$Q*C~nPkL`nnq&lvi~GKQ+b!006(|X)cG@}MMt}}=8bP;n z-;WW4hlH#q&+7^rVp7E+J(GOs(e*bshM4g2v)?yy?QW5%&z((U{RR_>E=6eSFr?^&t&hKqp4Q^(dEgz3PXSQeae zYH?}dzu3=6CKC6CNKa8rz~QfR{wqx0*x4~P(7b2o?Q+se(D*|^+Qdv%$47GLm891S zD(V3&3^&8{R;c>#+(vWEr9~2XJi&|+WIh1~099I?#+@tV)Ql=t{AQ5+2fAiMt`|h- zcD%QiYPWnlF-U2H)n2~Tym#x2yM#%klVMMIh25rO)BXFg74}{7rKf*dWOP)zMV)`{ z^mxsU)j4fw3w68vu0^|-I9X_L&S&t$;HEtbQB0+iHBU;kC>98lw1AOif2>R5O|jsd zR?-~6{rnVXpMfg*pLw$X`SXA7$A8wq|J)itMdJxK@Y|x+^q_=aO54%fq>=_V#6bE9 z%7<9ZaWsXa1yJ2^m`)c27DS9%6f`~Q3l7}d`JHfrndyc-=9@j0a|<>UZ^V#JfMk5$ z{UxOJ=#Q@VKhsuBcRfR!VFPEt_ZK~F@vHkcwYvfG5_x)TDtZPw z2X;9&0RNFt7QOnbQRvZn84>NNOte{Ze-cYlUd(g-)Ax23FEK;q#A?vZ8xHaiA~ z{`VKvQT+f6`&a7&448BNSC0f)#AOpV+=rqzUAIlikY%YiRz3QXAyb-%hFDmOR$AnH`Y-tL0wBP! z1S+zpo}|ZJ1sCHizE(7SE`HAE^vKgVXF-^eNFWvVX!QgFWe{s%$KoiH;!4I)t zwLF>+>{;=Vkfo!@fP>hFtSMC-9RZ(ny8erCrUPl{AuxJ?H+3mu^GY2r!~K`HzE6=> zsyfGK>pGFXJY<`R)n_n2!*>V1JmwgGcG>p{N%r)SJzv|GzjHrnd~6H!&r6_M!%Z_e zKpJiIh|)b^o0;HRzI34VIGNO*iO*5mRh`bQ;j8L`oEAG=y-2l_2I59lq0L%r#>1yO zvrj)zW!`*)?8LA;#w=Qk^b~m~-|^hKr{3}UrvBjz5ZfSWBx{~zZt$!mA+v5*FGBQm zQy|cbcx$4*0WO{FS6Y_TGpU?sf2M7pWI9J~>jUPU18@sukB>+~HshXJA0j8bHH?){ zcMbR9dTu_vBe!RgiTtDT6Z_eGT?D* zI0P3u24t{PPzc_^E!=#p5y^=Z9V?6K8Bw&*m#DdMn5m}!SG3UULYpK6@dO+IjYnbD z^s$Gb?{!&e*0B{gL9ZyvUo45lH$FU-4;XtloR}6xF%?94b!VpP8d+ALh zW6|7o!3!kQJJ8%Qe98$p1wWo^&6CyueRd(`AVj^KO?!*^>C;{&E_F`3p2y7q7GO32 zll$uoC`TMPvn>2Hu4?Th$3xR~cnxQwKFq>MOxBL8S36GT&b556^qxQ1tT$$aU4>gK z#!}QT`bBqMOkXI=!Q;)#E`Q&RzAhk)G4|g92!jni)bxHVTYP*8^|6(8EgkhVb#ToQ zGYBmgPdIl9Vq4MNvii)_`9WQuM#E(ilm2JK%6-l+E6&^dffQI8Sp*aOXd=_sfat81 zkL`6Fkob*gc>XNuI(?TiZ)ZXGJf_s0IuF$zQ==XuNm-k!f zyYf{~n0nxt{#g}%3xH8L5cC2pp_ZQx7!n6)qHd&sar>t@X)+*ph*~rQC3@)v{En{J z<7eJbGjjXrPc#UW5IAOfbOCvw5;ukdkANDA=Y|#mBL_%RUo{!}qMkoaIrL76I7uRZQ`!|S9+#706%$v^?N|Be3f250ZX4Fk#1 zM#`*24m!W7Riywr%IqJs|5t#QjS7+fDL_kl3lxMm@PbYyT@2q?N9b9Ojp6cKxu8NQE-i@uSTK_sV(o&DgI`oLXpnX zD2&oc8Y7m&bhDPS-}fMz0kXrhcv-I@MNIqN!UKIz1a5iyGCVs7J(eI{gnqn1<{xKf zxVgqI1(-Kx)Y}AavLDg83ClS2=@I*FxRHq_Q<~DvOgcd)+&>7n3#*opZ73JOXiMYz z_VvfEpPWev-{dVW{k*hH)>?7~MFaW7Y%Pg^ZXUseD*2TgNH>=_%ajS6&o+A&Hvwn&jiQc29l`H+D3w=w|{&$@f4XzhN~exwoOK&Gubg@K*Mce47VU@ln#1sVbSj z{4o7?9}QOpxe%2}i2xQ85?^;YC1>W6Kc z#01{?Oimt`Mu}e3%yX2PZy)!qT(UpwZ-s_I8&AB^Ao@|K3V1De4 z&NW|rtQl2&dt@0m9yTem5S#4|PLGK-d~PRMJgr$uW=eW#YJ$R4!Q~ZLd#^Fw>2$2h z7pXy)qOyhSH!e_{^YWr{|JvR;TwY#USQ5Xsq8Y@@`99{y#AP1aS8-i*EppWBzQ)8` z#MuTspVw{=txh8k<8+V+tS_!sRinpEXaZn=>*Af*#mB)v3ITy(Y{!8zbckFfCKVzWfB_UC zO>!-PUx#2YIti}HbX?hMW2Dml)=Y~%^N{ns^c)T0@88#hufBG*goFNWjL0-$Pvz72 zq6~m5pi>u3yW{y-u5Bu_?vzx58YK(;42v?|+@xT9Il@VSWTr_BqMobfV~k&=u1!S2 zTc>>&=~Pv^D~_qY?0}AV@@?^Xat&KGbam37)fLJy)xHW;oxUC>oCkntKaR@XJL#9! zFgA3xw$YVgI5_Bt(xFLvDemvo=Yg9gXB4KQ`biy-B<7?2@?D^8f@%o8OEp{-f8uL= zJJ`hJ%CfVlH>Xuoy6CGd&ZD@KPsjPL@zS)sd>YL8!yoBObCGYu>{s>r-kIeW|$6O(AG>#msPRNXTh$E+6Dd~}IlN*!k|Ixz0iOc&seIh#N4SSg6 zbmuduB)AqGnZ}R9?)N=YSuwEkL3VqS#hoX(?V}{ar;FW9J-jg^X9LT$KR&5HI5@Cd zjNHd?R{6a3Jw=c&B_bPOH5?^@4sxZt>b~fkPKOiD3uSKPBF+AQh9W^LdU+ zFAUf_@>^Ms#>+1VT8Pa55Z0EXCSZrs_MAl9yG0Lg)zjFAHWc|JX)^7%zm+6tJZNfI zyJRSQx;dUzV9fxsx}p;!qA$sCk)e>=AF-gjft&6m5y_43s4lb&s{Uj&n_;QB@arQz zOZL{+9X<>?w`NsTWolhedV5tJb;R7t^2Vr!kNuG#A5Sw8_j9(76t6S&aVEi|Dylh$ z?A3eSAJ*2C1VKid*+M&mMCFNmdSjw#$OdlT{P7u#Gygra5!_Zr*>kNxq8%@-)N$al zV})Ny3e!&IjaX0;y7NfT7!j6#&G-H$0QUd+S6n-qENMzj8cm}`c%XKU&ESnB*O4%5 zKLEZ;?LlsLC>Rbc2M2m8UJE}Sk6QEC!O#MVrD;5p>+%2kk_7$E<3G6o`rlpu_fAv% zoo)T!HQE33`ac-y|A*fTktB!ZN$;7P+5WLcHzga2tFIeaZx;w1mD{$#Xo3NYpA~6> z&dMW{W1}@DwJ)M(Kf{L%ylIe{S8^lfM*b!%@<-rS)vu9mEH;FKMYVa0EN2$`Jceq) z8p0n_d*OS(s^{e81xp1ow z&1kKl27h;4O@PERaJFLW*XJdC2WEiuR^5}EC4I$B z=dSe3)U7xReNWmKZtpN1*(7*~Lr`bwyZ{jAR0aS>Gr1V_bhVo(X~Dx!M`XtijtCfY zKjR;GlHm`IjOVR^{fU~8y6|DZ%H+uS8!Iy!V)FvF)xn{%INrG{+Xtc|-PwN?rHv*r zae>}{jX!SDs9yM7PmLH=^b-*dfx0$nqSi-e#ZuB|^=`t2j1#!#%hC(|c$*eq`gXhye8>L*JF zVOa>T4N4A~nxw9%E0unK^F4h&IfAB+tJ6bBt{}f7$E{O{xTzOhUhzY&Rmv0RprX~I z?xP3S_OiIqb3BzvSwga9w>}=M-`wI~dP2GB2z~yRHtFL?6^4(N6AzXY*y(pW|H{by z$}9iMw)5zl{2)aJ znzmYaApkOrG0FD#swfiMbW3mGuwAl|1~K>Sw6$V~wVNNU{XE+oE6AkD1FBrcN1v7n zB}UYP(Xa-NftG7GxK#>@T?$B$N7h zKeFQh2omTwII+D_fPjX0+9bOO;!lr z6-=Qx^|f0)k|Ovh4cMkt$yc|L?tm&bl6(uCd#B=d$AG(-HeZ75iK%t0WR(isC@?z& zBbr1QKE4%x{~O^lwk>BAg5MlZ+qujONxeXr&ZX_@E*LrhW(61JH{wDVURiR(=nr2` zaam}I#Scs^YpSEV|3IM5y90)LAyhWjnw5PDKQ-XCB?P#C#N9Wf!+b^)jG*t$nuA5j zZqX>dM{~tO79UcO24z5KLaVkiNq*wV&f^w@T`<=fGaI$E|bgvdk zU6GNB&tNF&eIur?dG-a6{5<=9O_8_O_cZwo0Y5$vLklMi)|XU>oK>J4*R>waV)U&g=Loz|iG!oO8d11?rb-o?A}LTDR@2_#Ax;bJqDc;viOr zoN1#FQsrLY#P*n_SSZM(bL(17zwj4U1YD7gn{r)jus&R)Slzc$fTYPLj%~+Xs~LlS zBhXyXm>t+tMr4WjP@6osCG}KAWrWJ`r3&}aO3p1Y${pia)%FJ!upG6^B)F>brJk-# zMe3VRB5S!D2-78q%B9_K3M?>)RoV7fuwiwC$5n0vp_t8|i94oK&#+*z)k>Ta#43;r zx=`^(9ABp&zo;q!$ohph$T6kA9;;|Z^!NwNnwc-SRX6Ft^1W*M%N?5yzV!xv`ZHMr z{sO*1FB8|gfRNk)*n7Zzs3ntZ1J{6b?qobZsp3z#g>R66{TKFMPLY58yJRh3ETOl7 zUPI^@>68<+W4O7>3yR8O6g3%YSf%jG0pW?q2-t8A{GjC;A+KYAOKa4C=U!E8=7L#A90J}wLiJKs+cCMBx_RzN-PW{HA|ufeu^z0)Z^ju`LxiS zBO2F&n^}ih7T?$B!UI?~g?-g06O7B7DVK*X?T6XU?}WjLa|m2>8nB!4|L`6x&nK{W z{eJyQpPVA^Y5GKwMD~Ug&E0Gdo})+PDC`&z_z2ftUB?W4ZW;NYcKGxC&C{0BYk;%l zwfmWAIB>7D#$=O>8fd3KjWFz7s`a5iF?t-m&1Smff|Ud}_~>_9;bbgnZNp~gr|I&p zMd%n*tAiCCC6AF}`h4XJx0BogUB-KtyHGFm<_dqvqpN4s>iqUUHr)usd}V4xb6Jv` zC+)*k%)CZs2IMS8N>uTF%4PK5>7OjCALQjR8I_+L?lms1s0v)ZPH2r5RW9)k`LOTU z(m~gQ_DsS-{^%^!_k{85$pr0jkBHcj6JFsB9~*O=3V9oXbQ64yxx5>gYtQt0kWgNO zgZ<>6=%$ED|J+kSYG^cFg+?=RnSn-BKIT11IaaGa0jeTD*H+$fCB{Fj<1i#$UYefZqH(& z@o8x75CW?StaWU+>TxKq@Gs`!-U-6M$l$IO@rn4*^c@bSbbkS#15=U%HA+;2QgRzm z0f)F)Ko{J2&+D)3El(OO?!c!;7vUNZ_xJ49ull6zIl z9+h{u^dtwm+urTixF4HgKh43E7>xODRG(sQ1%Z~v=FpF}W9b<~mW8SMvRxvv*!Nvb z_J4%hM4(^+h(3Pwa8tMu?PxWwSC85T9{C5TrE(5Mk~N3sd6yB8+6HJw{hLlK_Vn)K z|7YdczeD7ZIHs8C8G3@1_7*-ucE8#dcF1YvMgryIkMh(bWYKVIPRv_8;c7H1bQ9Zq z)mi725!bxDLPqcf;@%>W1%`cT*|^RVe_4GxERs9SWvN0pL@UbfA2iPKv>OLA zPvYM}Jj0@0@WX+Va12GqE4?0rta8kCNRkgGIg19gF6i7o`(C2=%(cU=>t-*~NSeN& ztH^Ff(Sy1Th)gis?jFu-#~vjYxE%uGKhlu}EbDU1dMo7FY|5pM!>FL8+hxND+7Vg= z2o6RO=F!VX#%WB=Kjr(~tGUhNodsQRr>2ucLlL*(T};#3RNlgd z8tou8VJ}q_+NG)n@4i8iz2ESZ=1Xes8k{_Y1qfK}HL5->i#TZ1u3QNP0>2t_8S=Um}-4TqMy8L|Q>FK#PuAG=)gAqCgF3EKdd@40g<$NSyF$KvAUr#%*(+n*{si%Tp2`-mT@k2bcDX2a%PZw2 zy;MFanZ^r$!*dk34X&RO>pnRZLn*8kc=n1Co2a(AdJSP3g6&1Exu)@;m&^vx8&T$@ z9U>B#jv4e$2Ghcon&Fr>byUmCKbn6OxHj!mQ1CdK&2daXP23So$l^?+B&(HvPS6)5 zx=uZEDK6vZV7}d8cjlRZ%MkS*Ek%XXjfk4UJ*nb<9AIIff4ziXLQ7+$3BKDF?bZJb zGQWvH&?AiZbb}PZVLQ?YvyC_@rayK+ei zX&fNC>~#dh0fl}l&2(emU%M~fgjHIkeA7X?f%f1&4X?AAnhqB+zKdNl(dS6SebL*_Q})4$$_aXL!K4qVk0d8E_z zpxujp3~18hhwMqF1ka`J3Dl?WOMO+BbB?AMU6Txo30AwL`0KDn_v267$*<|w&{VF{ zYh;uA;HL75CN6)V6zje}l38BpacuOR_{&hWsl#(q5B)Zq7a9K%U)8{|ZQ`}U zPYUX~^I}Gv(1A;sJLBygv%O9poUy_J3-%jofM;Xii?eR#@AZ0qdj6F2CQj# z?q}>TzqK#ly=Sy8d40)kwW#u|`=PUw`udd~NS?0pD4idVY;6w*DDQWmr<{3*Pf82I z6E35MF%wId&8!zsdzCaDMueM%cg6vVWRHl$tj)^Gm>$LF3n1405BAyBL8x4XY zphQ5r7!(8r6{U#Mf`uj`DkT&lDk4ol5ELOKAksSsC@4Wd5h;!E*~nm>OUPTbSFo4*ItQ_68!7IwT8o7 zwWeP&Hu(Vez**_GcGIh_;u~Z0eD&%4+2yX9DB!*;a?#tf7neG9?YVG}SdX`!lOS-AiC=tr=WPCq?Zi<-{`6ucbq%X?D|s_B zo~Fz-vJw{g!z@B=!8k!CtlL82*Fx{Du$NEnTIWrka$P9}VQ=fy>j~HicpY{M-r>EL zT;SlTl+gCnbnap7n`k0cgv!k~b>Zi$FZ~wv3&%z=$)ktN6L;S`abBGY)4XZyF--AP zJ->QnemZtkcM;l+Lu>}YcsM^tTDXuL7q%7F&8zFbw0Zzu$wS?LWYhfh^T9tcjQ+YO zf8CRRF$P#Dpvv)QHXG&=@=wIKPWC0}pSf(F^jXZGX>Wgr4*$+HbhlO_!U8HK<_#yY zVh#e-u>^_CJZJZmX*uDRQuT`qR?Y{frQUXVEMDck6;Nb#bNwm(EU;Cr1^zAsZBQh1 zV=7{5Vazu8hJlAGogFrf)a|llIO5jv6&sjR5`LYDr11R)QJ7t&*nqeLK#%-Lz=oZs zgHlcqobd`XpFBTK;f6O<#->N-nJ}Mj1(U~=nHaE7*oB!zjRG4#3=M1rx|F)`#6y@! z7_kvRc)*~_N)#B=Hc|-PiZ?eu;eRlR%;ARLARXJ72}62E3Vsq`$qxYTQm)KojV5I< z0V+$r3uyLE8JLOlz!#jV9i~x&*d8B)4SS7m1A#mpu-sn%SFTQ{|I=>}Ra!006`TS5 zC)fhR*EL-Ja5d3?xLT(Lk>k`p+~(eXrSrd|8^A14*Z|57nfRwX9xf5(fw_p{`Kho$IQC#MKy=_6U+S6)SV{byBA{Ssp?6u?v|8U#p=v{)1~P+ z|EQ1tnx7aJN_dm-Ug`%*+a@IMutmwSW3$6_0PEyNo%t6i>mQ+F*6kTk!>GeFJA#sR zIEY49XK_uAj2&y5=ke$kBn%Bl-5{2QRPuTuX-^G%iZO*F`s86*t9ajZ^K&a-Q>Eat ztTB7H+R^SnBvFcYhEt`H+lX$=w!EKO?d04_AWaW-oS2a0uL1KKn%3#`m_G5m@6^hD zV+Gyr=Ac9Yo3EqMlAF_EgS{9R*P&tKjv=)4Vl#GoqH7p*oq2h61wT2AEX6YTaP*u7 zIQ_Myh%22BMsBDSxAM9~Fzldj^*ywNZOu9yXPu4~qF<$ilDL;vQq@TsSyLzco18DL zIi+VYuu3VepM~n(l&DzH(LoaQXZtkTP$|*3v7fVtGBVQs_&992@sO$>wLIFJW;B^a z=M|h-4R&!}Wgeqs+#-3z#I!rRgnt;)Tg*S$dKT%K09{Li*5F@^?_o-!TuD~=fJzbj z_{FUr`B1TgA*W)asl%aeg~uDWUPWvOOR_R9Fq>cn!TzB55)D-vQdzP-*LQ^D<6`a? z7QKDWD=*h#f*^5dhrRm-SWM8FL>)gAA8}YSpk|Dvb478#%=oY2!J5w>yak*yPBwl! zXSOLxu==;f?{_0H1N?)x`qPFrK87&Lx#m@r(S*^-u`8E7k}N#ZL__*?fC;Sm4fjW4 z#sYU_H(J6VOp&E|*THpi8s#fZ(P?c7w!h?J_YWy!lQgT&qn-{w}n z69b51PDqN>o^#6E_q%5%Sf_sZ|+m!qxbhY&)B@l?-AwY=8MA! zY8+vY(0` z1&#B}u5m%UeWaHYmT$9JE+g>O&_F#cM^tn4ou63R^z)Uk1HQA0mHZTrX($h!kA!P{ zo$e&J&r5g6vQYsiSeAr%RCPBzi%0VPXwai4`5O0h=J7kEZML_h#t^v`losvsC@$E; zL-t7b$)D!9xklAv3CdcWsWkI(VWG=S3`IsBdY7Yy6eFf&+<$x*>H_2~;(GM;o>OC@ zW_3@tI@`se3Ym9SOx>;48YSZzW1v5G;nM*BHHjYA5dtF%15RM~U1SP|xPlutWQG!$ zCL37hHQWG(B897hg<~LUtke7Xre*^e0Y0A`AB|Y*kaL`H^2c5raqcf{$=Kf@6tJQR zd;d40{G)L`HP&>x5pc1S3${LTdx3ehAhpFP;^n$=VC-Z1%~CO6Ax`E6^a=V|($ne= zm=la!&CT9f$ydPUU_e~lk=YA2_x8-s+!BU9(zzT1FHzY}B1bUdDxv5eZ(~!YM$gzd zqUchhcS)=n?hgCgln~oEwKvPLX8Yp4>9s>J5*7mA^1N)!ib?Fja&tXk=ckoCwm766 zW`Ey0A}Uipc5y#C&`XZV`Hp7lb-hM)|J5a3l5XgwP$f&g*%%cUCq3sa*pp^;J?Z34 zEa-Nu3yo0GYAZsWBRz^kvL z?$U<6rO!W`B3eL${XPMy@A%RcsTxd;v8k6a?*E-$&nZ;0Y_=asA=G$R49}m0>}V0JGJGQZ{i)YPc4Ea6=d63HKW*#Hh50&P#yPA{%BM8>rOu^K~7pN54Xnz5{j(7q?%9{JD(~iol8FJ9Xg=@ zpbwUAjH%)~z`vmjsdI z956_~&}aMQSDdwG=x-3;K#+b%5gM@oZq5dpiAt#jg7smd*n52K%IP_o?m^x4MJ?!V ztzk9}?5Ym$`Q^Utk`MM4V`VDC_Cvn)^dFD1UHMw-Xl!iB)Y?g%WkK3al*Knchq3)% ziA?N?ZQN#wvj!V-^`yfVfaKHx)s zM=1ivBRx}swX1tDPF@&?R|I-BX4OTR(BrOsXuiYJxW^BE3Jvxu z%|=Am|C?vN?MLweWAPWGzyl8RaD#EzEc4cY{P(P(%V z*~9pI8SQW3;&1O5aZD+a{uWUWr$NWSX!l%&5%r_DRol6k)kDB0q{JJ(a+bCm-48o} zhEr$_V+V-J!y8tvh_B_vUzj~T_tx*m7UmUNW_mU)w?Iq03CsL6A!avzH{O0!x)Jo) zgfXJuS(+oYjsau0zy?AxZ;0AApHRsQ(!yN+z;DEBsg-#i(<}hEs*G?djv1$C{q8ob z-aycZBwY&?1W#a+j%0TKE? zju!lxoPM!V`ozdWU3y}Wzon7Yb};qG?P5StC+^4U)ysF1FP?DeKvH2FjR5v zt`wPZdh&~LvS<&U{2u+1PzNL4Fnj^yK`S#m;=Ev!=y*m+UTLD!%WqKI8 z{M|>V?2CSm>$wy3(zr#3gU@2VH4K`v|Fj{9xgTd;2&*CK1bN5_Qyv=;lR}rffvlwe z)X$RgvKZU@LAElBJ`n-chXR^r%Ye!4j3_yW@w&o_CXX_xAm$ga70nCA>75SGKEoLO z`N3;<@GkpmE}2IcXZGi2(z^~8R?8T&zM6>uWY!?lL(lil9B=|XSich=Pp&o^?zZw` zpE6A>Pfc>aoc*IY?e*hQdr6q0`|0a@7dcFK>#-A^rtx&%;A!>%PvH{Sa|FkC>_nx*E`O+O|3Y;*w>jj}9&Z&l$MTo2L@Qfens znjflJO}w?!ONLdPJ}Ir$`0-wf+2J}~sLgFQ5$h~Z_lJ3TQpppKY;*_Tz_v8oA-;Ju z9Za<*`U0~{#bZpMA`!;rWqJ?Qu6*q@-r;(yr^4B1n#}n@;l&#Ey)-j&i8it@}cO077c$-BN8g(rl7p&Ztu8iwuizVr{tYG zq*QN@;y6|LgC(P`gn6Yw0m=sKeG0iVNa2lSi~!y9!x^Gr(1Z1N>q%SQZ|Nu1zPyCt z4;rjreRj)O=ZB^12F_e$kAJ$CrB)$vE@=5~kH`0OlFx^RM%mmh^X`*L$3a*uHh!nm zuDh-vX&MX2;;ibo$jOzCB<|dR6>qKHfN&qm#kFQ}UY_c+&3xLS5*W?ovvTSZn8) z?2NIvaNy_t$j{0W&$GVZ2!;?$wT&muKtU_CIff9T*FvOB^P?YleBCY+9O-F=H-2F(M@2J<=6dz=ll)%uB z*PeGzoab=ks;i^ktpX0UgIE~&LnXuCRV)pIkWld+SIZ+Vo0bjbTCmMk&dc%h*S>7- z!Aocyqu(H{Hb4bNDbrIL1sY|!*05yr=#~%;*+aT#3L3tu-h|v-=r64hBuY%f>+~s# zy-P~ODvQ;5CT}dvZ})0VfoFKUH}`JyM1{Q=tF}eYM}=s@U^ph zTR;AKZ|FUpv!&1E6r+hTJI6&URm~{1lX5Q*=A9Fr%gYftzBZ1$_O@?|(N=XNIOn3f zpzC>daerbGUDb&UZeKd!Atm@qgO~)elsIA;JzPYG@oZ<4R+2Xan%O-l=u)JK`iDBN zOhr~*V2OpOF|-^(&jw(hdl9`0N%v-?ddkAMtI5$kUe-5r9Y`Nr+wN$ar`>-1`sjlp zeBENe2yo7YVD@`1V%V9AbX^M16s5wI*l6Y}eM@WYCxqk3mlrV>C(iWW*g_pLrP@Oh_u<$%?7cMD7N>%1opt#wr%D7AE7gHAO@ zp;=K56esWg!z#qn9SrUv?NGxkd-IBg0CkTQXD22@EYE0xgQp1pY)xU=+F)kng{_k zK9>vZpd0+KLwV#%xb+O)P^$A?aic3*vB3R#@-0exnyTEKteTf3}bf}itc zL}W4TiV^+UOZFHj^?sD^N7g!E4r$ov8hW5wl8}0m6dmRgcg*2-tDBp`q_Kca&Bx7} zbnce(hT%wPKKdX^j|8ptSxTt*O8hxIXdu6f=Vv%eOTdrO!G>pzKvWCAFE?OQ1uI;6 zP1@boIt4#8ruB2gF-}`R)#L8^%x7 z?DG6>F}v73;pqL)`o8=*lTv;6D7^L!d)6uBpg!~Z<4GMxqzW9E^dSfGFiN1Vxw^cY zX6XgM(AsffuZ$|}y{-*)jKTK`EY0Xzd`nr`S3ODJ*inVjKDJ5Y_yIm-ci`W%4KKNs zvqS|wMtbG`rE#v!6IyxoizoY)uh=aUI>m@h-fzEdBM-fNz#5;-yi9kUz#gQZCq2lT zh!$~JTk!6WRk--rRc10F>7CeX5Qc&-pV-I2Cc+%b`3WDgB&$*`({4DB;1PNEdnzv5 z@`QDm6&^XAetSkoTs*gH&zwy}#M_9#P;prERzQWr)OhficnJyVzv+_)H7mRjw%BbN zX3}vpK`r}`{F~?J#lvX9Aj^NAh9;ETrdy17g*DzfzH7To#kuU2+u}X5Y7Gib4{9))3XmY>cd9kq*{tr=mVJontUt|O+070n2bQLay34?#l&8PRg_rN`bWzIrCVYx-#k5TOO3;PN zZ-!cr-xg$@6;FmR)OM;!xY}r7+q|rlv*?{Sx57nqx~lB_C{He=c-Xcrg%Iz%&n9sM zPWZGQJA3D66QdCz^g-p+%M*qxHl$XvXF2O+M~Ilm2lurFgx|=*T72&-v&aaaifd6m zrLtRwL0{VRwv&mBQA?( z^>_-DMNp@N(_co@s7|<2&z=*oz+ZPxJW_|c7L#7zFaIR8{k%Yes4}=%~%8?6KQ}_Mo zlqy|b>~jK_KVuwmSt6sn-c^V*t=JLmzI?X!4q;dkf@p)6Cef3V>g8xGqnIN|Lqsaw zjPf)KWl3?Kf(Ipk?=3Y&OB5ykFrOH*jl3^3^3IH6n%H|g*%wxW!80zmu}t?Wn|#srht zyUCrwf2&cqujJhDhe5+9zDFW6;goqrmMxtX9xyfeDJ!I{tL4N91NH#=DKBBEf*$?t zva`y>+qb`tEk$vrMG8G?ahhq&(B3Dk34x1rru-u-n-@Wlm5){DMJ$yXg@pWyg z5!a5)#ut^*c?}-AuF&;qI*XlS^#TMdsD3Q@!cyt%(%u0v&Px|oq|S>U230h+az>&j zQWSNujFE=2e9%d;t0_F&UH4J5ve!@Mu-azSuxdDT+o^b80t$0wGb!CZ86H#|4u?|E zEn=$IdeU`I<>hti96YOi=3~eg2umkt?|&#g-u3SmYX95c@nFTA$V09%O@A#?WPH*Vm5Sp4a;H0Z+Ozc^FqZ(V;$jQ)}${X_GM z|A|tg27;$a_rt@}0kWuqXj6EnXI?TXns;%0s60UE$DLqV7(NFLZ{;VU9@k+92c(a~ z#|(9uxS!htn}sO$vK%{NUK{(<*daZR2lw%M}E zU<#*dyGD_3{EV(^^|SHUI*3>euKznazeA}5FJYA}x?c(G-yOv14+&%g9HxouCJ^F#nU>%OS*#qCOt%smT5bFpK zd-qX562{p`4(s!@6heKMZm?GhcV};rdYMpujk;Zp6${A2Tus>S17AJ8^Hq+ms=L#^ z8ZZT8;;E{NCSe;}w~%~eALwY4VJ2YczYSw_fH-51vH)f*!4vrKN*+femv6+hbNdV#9v1X7xJ>;0)o=_kOG9zNf-y37J>iqqxrC2#kMIw^Tcr&A26=Mf z(pBF$KMiM)O0kkf|Lr2!>+sY~P=DD_4P%tz>af2Hs&@FfO9Xw;qwbe18FX3X2c9rb z^9jE}xHf)W(h5lW$J2OE__(i&@rz6*J%ma<_t( zPjemM?o>Yqrlo)i0S17h-1d4mhIj{0H-MmhZz9w1#AW6jb_a1PVx=!}FzW>?*pTLP%pUoH!3DzB8UDKaTN!KYKGoN67z^6IVUoiqPU~@hW z(U4n2D^h}8Z3I$0({G!-D=p{4zdcr85yt6vewgp^2Cm;5f_nx;GN5J#R5JL8a%Q_6 ze7YM0gfa+HlICuoq~&H{jv-2{Wj0uWle{{O+mCZ&yoS$AYY1TmS~EfGQx6t~Z5NOe zua&KQ110}#k|48!4}A3~?q?zXQAUwoNVH>C0zcn6GWVY~5p$xH+I1Hz`~&go!IDZ| zeqhG9Q&L^HvkHgHF^T*p<8L;^gDl&-!C;3mayOj?){uj%lYQ%hZTAp_Uz5(b!uunM zy0r=WUZ`cdUo`%~6+n3pTv<_wPhP7HB7{h#EP13;Qv6t(p7h+?))41QQD|_v=VWxwBFpMvbdK-)%tKU`=!@2|?8^+I$bfSx#d-2$Fik`~ z?l;JB(3MI&9iNUJuAL07iQda>)sXK;sZX@?>GviS&rf_U>B&n=mfs>zmg>d^2^&;R zY)E?G<}Ca;89P}yh$qcxk{lyk5Jt7ML%vd?0$CMX2C&p(Od)9kr{No=Km6dBkN>V) zp&tbQrvTGzOAKcCu`?44kO_U%EN}C zyvQ*@eTFBVX0vY6ZU=9RKxp~@A|3gsB&q^N2Im&8RpLV3d2Tj{ZqMBV5Mc@Rw(`A2QMf6L2|prqNuJ~!$9i8UlIoG11@*thy2dY<2sR)C&(48-yj-5tG5rF zU}y$YEQxj#(~%0MeE=BhQ}(Rui(w4#Q?Mm_^e00S|p#6Fltn9$*cL zvuEAj`u(B!FgbV#Q+P%dp3KDC<&c0c>OcJc@o%gSR#FO+b9nMvHF34^K-Q=eLj?#I zymS;LHWKlIvQ$trc>c=Eh{+2ZMAJ--N0=hL%dTteN37c4(c#_l=+r*?^bK~fMtq8SkeDR_lhF5WNI=Y9(+jgpLU|X&GeT^N#Ug{%Z!Jw=froiOL za+_W)nx#-;oIVX~Gh3n=31tNPW0?%^8|v#-iA|X{?1YgC#)bKTzBe|Wp7ZtXgSMMPV=^=5+5c*d}`HoFA zht3LOda1;>%iQYnoq$3{)Y$n$m~s2YMW>mt74$K$7)tAuTo~%MC5Akf(kF74p6R8dt zci;UUj@8Bel7OWX2%Bpi%LX92JwUgNb2}GAQhf}7#oufkl95{ZA#GR1W%4T!z&t4L zKotB@0HUBfp^WfH#Ri0VZ6|EgABuay3zHocd7o!o=A)WhIoB- zTNSq(Lr@2C(}2LwkpH`x3(JnMWfsVRT$u)QwRp1P5N2WjCI)W8*adPQQ-Ilzp;SSE z!61tnGmco_+)1WB(M2f=)3~TgfbO6^4X+e^MvW?)6z^Ut`sz&RUz=`wYtw92|7~BOb*#WivwXuD zF^CU)RdfXU2n9-l>rkR6r|tt*yr=6o$59JCf5rX7v)0BjPrjHoXyO)Is}Cy>x9SY{ z0wxRbeN#oZXO73$vKY_f)4x71x47qKCEU3`2^p?g|WG^Siw4rk)0Py0TCjI<4oaZF@MT z)eapt=>%D52Bc~973&cGwcHSbY(fbI>bgWrXUEY^*#6tPT0sT8u%ot;D|)(3VRuwA z4nMk@XzfIOo7--u)kW8OKQf=ph!9D9>lJiiCEv#UT>{j^^l0YE&Rz{rZO$5NzV z)rO*m8reiDb*XBrduID4wA9Q+ZLTRcQLA~mFi8bVw>JDn1*9zyG?hGe$-3Z0b^~PQAws_RUpd&Q#WO zrh=DLZ6lNQJMBRddT;Ii!de*y<-zqQO~KDqJj4^kv0Avf08q#!mC~wUB1V%RGTg@p z4xcxIguKbLh;S?JCb2o|k2S439+Loq}@HbbYijfVBbZ-Hh&;lN&1JM;AHH~lSoo%64?jb9 zc|3X@H-eIxvdl{C_i=*tp>t+Y!8{YEm|ZaJ_S;k7fF)STzmWj`djDS=kN$O!{<=qh z8v{FVLG?YbzQlS#nYD$O1zE!SFtRg=E+EI$6Z8X81XXEf+;@z6F$=X8B=ca$5+6!J zFv7~1=*9B};g6VH7LFwquPOm5}PWsP(@gann`nS#U zKc4$<-G9~8|Ej6~Pp+wFJ}|k}_K00FwI-zc6e(Z!lDSwr2P z;alHz;eMzez6U+&R7Bg|M@4zJ6ti<$t~YJS7~cqgS*l|>X{FE{vZw$}z4(HRL^f_C z?i!dF-v~ML=?r_?!A0h)=E9G6K6lmDeqg%hz~S{%Ru)kY!R*`QzVnB0_+M!^3ZUSL zSm3LE76oc}I4gzUAlkPP)1&AbOtl19l0O zwSs1l@G_CDqW4|u?<_bSr|KBzs%W`yH zI8z%MirHLx4+>LH`Dw1mPylTMmv|xcG0@#HAH=D5BZ!sn5VR|%`bNb8lnzbJl9JEX zHg>Sj`Ip%DQ@{L6-6%~YSPee)DzlO)i&F2=kfke=V6|`WR(x|tw^-VU3!hcp*C;O5 z=E7gK$xn}^G^BRiMjP{S;yyx&O!~%AR!>{tjrTGtT=k zS7}ukb)r|=Y_`uPz^Fib;@j}As7amdfv(SDk8-_PqZ@}7f!&BJAL=~GC22aE-MSQ; zYroF1GHd;)>cC~zTGghxbD;_Y@J;u%dDLLFmMI{ir;_fb`)V`|}FpU74kX z?!7D0@j|CuAAy2&zdG-we2%Kot?03HTLN2;j$ZQo~UC{k_HS z_lzhzZ{2c^cG!$=)9Bk)BF&MhlyTC>+x9@eO+Qj8k|IkMJEzUt5?s86JQ;WYk;#)I zVmCV3Hwq5LwmsKum3rVcw zre*BMgi}xK>DQLgdB@I%AiE*K7>efBpZEXEvK`-+Ll;_dT_`B+<&-FQuKHNH59>dJ$?gSh^mNV3D5T zR(u9!Y!zGXxq4MU_Dm_CUCxk9g-H2n906-)66MEuEwbns*{|FAE6Mbot*uCOg{iPc z|J*#AI3Kf9Y-zg*R}6Q?4*6mnpdp>g!KkK+BaNC)b^8rA*PjQMbXwAGe^B{ojMWM2Dsx#@6Ha(-D*UCeU*wnd9c-YP$$$)b7CQ zKeAG&>2KyqsyatsdPpA728IGhQ#8e30mWu?ov9UQZO>V=P5mV&Q}GFZwNEbsCk8VaJG;{<}mFtjPZ8+ELOCRh5Y*+G)p(-4zL6L>(4MMiMlB~V<>0f_?@O$Od zR_-Nkf+0jV|ETqTLFK-IQhi-}36J2W$V`!E9kkpSAc$bN~)O~87AK#t~_hjFi_`YjTrOruusJg3j@Q-6^h!k1iE)S~i zfZgNd0DN+egXe-f4M^#eLFLTYm$-;H@{_n zpR@k@;DLnmcP>^h?oHeOH>0vYB~|~8Mx+{RV0Hn{TywuYd~-S*v!H<3NI z4jCvdqG{+f4%#BsvpKBmG9~laU*@?nRsK*8ciMBP5&^M}qX`1c90}oL@~_qjW%bgb zZYSadg7<5roQzDe@0~_nzdm>EIk&mHo+)F3;zPnr2G{$ldje^gQ~}|hxPbmM|75lG z&?67^gvp+J{M3(zo#5c)I$I@X06E1!X|2KdP|1Q)cG#32$r(=ZiIkXd4I2OP@Y7;)CB%9-qa@-DHT&5fcqkP3iY3Zx=NA+~ zR^vVyN{c;G&)%f4)7Vjl6n_$uTvbYvt221AWYr71+N(ga%OY2(p2p8142*+4^}qLC56)m5DT6telP{4h>V6Z+DRwn(xq=S-rpdG z-`#qbF^*g2PB9MAyPgzEXCDt+5u5=xOnq2ng0HZt*-HlkAq#Xug zLSj3XpFOlh)jbp(0fr{sT?oW+)wP7kVhOqm(abvXtnZQa*fs!M31Ua#Zy;*)fW-Y z^(cavb}^0nDqa(?n^ytKNh~;7xo?5gKF4LqZtiHb{TC` z?3XNyzxk@I|Ff2}0Oq;S!K25?kQ;j*vBf}|l^8|?D1k`KeM;r-<^$&AHRFR3P@xK+ z+lpAES`wA89!pcCNH7KD8pl~E7pK?nRP^PgPM&=;Y*~gq584IYECEnB3;kZX+V!rc z_hKAuJUcDwah=cs)hRq(Hjq;5AUSq*)JuhSGx&|mw;uk8tLja!NgFsU#u3Ygsrkl8 zM`0$7qg$SfnL35=330jlgul`x^R%Q_=v?dD6caI@?Rjvfq>ax~FM2A-yVF+| z?ToL9N9WnM!T^|8af1a}0V7_;hdmkUsEs~=lKlP!Hgs6*n=-i|KIk0c6}0#%$C-PL zWv?nrC~#{W(P)}Ita3L>yPGNDrBz-2`CgGGXcKPQQTJIddeUwD)8~B`z)G5LAv=fl z$AY0*BNt6o`o0?A8S<|0?PHBt&!ajRR+e>E0ry2!6&IsLZp|%ULzC_eeU1{V2Wz5S zvbN(Vw|Gy2MBtlhOqx%;CZF}#kVEO?MZxuB-}7>vPZoaV3>Dem)@BHS$QxjeAz>O4 zW%V5qV{()*p<VK3d9lc+Xc1UDeu1R9oQPmN?t^cPx*>bSFbdc|!B=Ph zsm%A^gRjt?0KeB9B$-XWna9w4k>Q&(uwt`;MGrx;Tml1XWfOvK9<#7m6o?-{UP=-m z9PiRU6ecWo$l3Oemw3Q)=uKoRa>bLlXO;YnQvZ=+J*KR2xVOkRqiyg=o}>*ey)ma| zF!Ear>mwn=<^|+o<}j?N1>Ff}cUe(PdBl_<{-QCC_-)U4BFBd9x;=zgKM-FKkF#zE z<_IJ`H5I%uZhn=#CGe|IOY)&fSLaW2Gxxm`;!#2AaTkuprYBrg;myrGa}ij|&TGko zE=8^b1YlIfNJsMyJ0`#QsAlr+VNw54A+|QbnJ=6wl8egT?A#f@2>pHZY-S7KGL#q& z4o~&JojxAknm&532T^K`TDlQHs=y{KYrr|edaf?pc{fhVl3j!A8Q1_(rCmH*m z3amFgmHgcDF1B}TUnY;Hi1ALBF~r={m35jn>KfxMeA0Re!~N@yaj%POKe>N#cd}?^ z;N9c-Ua^{|M;aD=mt-e8=m$F{@KM0hlPRSm=U);Z_#j5<2Ufy6w<~|9J9lj44l?aH6^Zx-CRd=JaFQu|jRN?rGFMX~PKc!>uL5E_B! z3*d6B`eB40o_?>gPeYjS)AX#Px3QDU)a9-Zp=S?Py>S`&7BZod>a;A=(O2Rucd^IC z^Q{Y*gIvdl%zsIHh8@qinP~S!{5WeiphUz(hm5fjDg`NXmOxNwtJS+9n^gL$;i&{a zEkC%tJf<~`%hh!SPJ7x|0cIXb_0JUhZi`>=ig@Fz@dp3P0`b6mnkPz(MA)vKrHm-4PEguf`Y z>s+jUDgP#*>1g5?U}Wluefas@tv9XCRa=*P))qhk2T2$_?PMq#m=%^)oHRnk#dp&2 zf?- zm|^_et$+OJAPYnNU)%Z@two=lo*Y{7c51&?0J)^cM+dof z7T{ORd+{;l#_tvI>7G5+AVib9%Ww+mItedUVv7v2F?`JoD4Xv7{s3=E96wg^ zJ}P+_h*&mg9Vs0JPp*b--UXS|Qe*4CN~Qic>r22)W?A3a`@}N^b*i8TDcVCYRpaN- zmHp>g5^1)n_qCAEH0>*+oVF3TahN#H2uW*5Uh^6KU3p+{HJC{UKZpG5Q7|R zInG>m50yCFtO=9ZIWCP0?83mFKNfT`12Pv371YOu2~#@1LtwCfgup;2TEIxG)`j11 z_O$$>m2gKozsS$l+uXb zU*SW-cpHp2Aj7FI?umkq8B1kn{rw6ZpI$$^;jsS^f*SSi(`}{MEYDLT zE7fs!4u_`uUd0>F?;9w;OF>of4*M_08fNr*nnlU(6k9x}S^*aDY z#2Jy883Gy{dO!-!;K*4>Car?aew9c^O-I0CfEP^(-$}XEnaevix$-)dPh9eCM9YgP z?*#s3AaPv>mB`)F6eBr5y!{2bl>>``Yy)`#BkK2r>x*C5PZlQmQp@;eCt||^sfO;s z7R?6IfV*TlQ9DCsVDZNJ@*cUcU*`zAd)cBsD6?hw56qydZm_QxJ~|e3%{lJea%-baK&-W|CMO5G#B&*^@SL1d)AHA|wnDoH z3LsB}S8kZ*2fuT&mg-yafN~GCXFDRg_okJWMZQl&xP*O7iv#UyqEdXb6Z=Hzc=hXvM>=_D2Xj1EZdM&>zT?|;u|%@yQiY=-^wrd#SPuN>yj@o zJmA;;S=F5%apbA;H0W?cl?G$53M_QVa57sZC|;-Iezg1%ow~ukVYEY5ykUiD%pL!w zyq3Mlg`;eyFd6`dpKiM|mVd$j1UvmNq$_~;S&JUQu$`{tq(AGoDGdz@n0hAJS3G!j z?Zp@Oo=ebcwI^hwzMbRS%9(Cq7Q*e3e%9Q;5&(9aB2j;N8MvL~%5||C*t+jw3*%Nk zF~1Na?A3I{408_DnE}H%It*Vl_WkthY3EZjJ?12*Ps2Itku9ky_Z#>bHmEZj5^R0| z__3}f2279FWBe_O%gbujy{+U{RMA~7ms*`331+42^N$T-^BdSF|47Sg^B@b=c${bg z9a72-{M?N?SLh#bzUb?iFVUsc4*0S{vty@Ca&%JSDm)OtinFvk4;ba=njV2=> zS6fT=(vM9!nHKbUgomDTxr@#|X;2dU?$CXnY9WaLGq4=0mmUHKXL6A)x9HV&%XXx%O|)VI*6Zktsedsf_gS7yQFIA zt}~n-npFVs$=NeqYZt1I1V4iEPj394jw3d1#TL)Rl`~Ra&mKS^l)U&0=Nvh2Hc0&LLjeVc`7a|#5pA)j>GBRDl~xrUMT8b1i@}Y}LzA z=Q1$!hyy;dzMyfNWJfXM)**hDdA6q_5uXQ*!hkfl zHhKtJ<2;FhnYqS^H~gR;IyL$xLW6$mfY*7^n4gxc;uAcS-6R6}0A+z_YWe;8ex(Y; zR;Ll4qUJay2x19gb5hOv@2EQsBw2S10IaSguW$7d!JXMZ^a_+Bn(cYg`E zA^hJa$GJd{JnBnt}7Mui>{qe0&lG8$8{Ea@+J*@ZW4cdcj-?~ zOmI7u*LM0$^U0Gpdl`Fk9hm?SdH2cFt@ti{D3WK#;yD__DeXbZdcMi!<0;9NczunY>gQa!{DW|aVpdK}SdvcCGqkBq^hx1071Xn%O%LphBC z^C@?FKLp$av<#n>7|B8yjd~l+&(I)DG}8GoHCV8c3RE1K7V2?yvQQl=Snf9a(Pl_^ zIIrOc8kd;tOotC}qP`&;#ueq=r*>D(CyiJdFDqg5Yh+Bm2K&a^6LZmX+YYQNSwtN& zyc(!Py%z1s22<+Bn!zydv6?dn=a}XC$LX@0pq$GBpZJuzmsv+4qW4JgI@;tUdzCO;!V-%j6r63IwKC zIAXpj&2)Xj(#Ua~5C(OJbAg+C%H(9H$>6IyM3w9CyUqED$k16kk4UtE#x~RL#dKhl zwe{)RSxtyZ$A*?!r37&{aB78nt5!q$bFfi&$?;^-aEDGc_lD8StlI&-hj@V1rD!o? zVQvL5WZ0%iTYe=V_Y*+zm&MmH1@74j?A2d1b?QyKUbYusVw`O(oI6Ux`Ov@HYK8=;I>I zkKN&1TbB^yCtT}cQ7Us}!CGfd=bN4W>J4h&EbsWVtKQ{{()=;YJYaZ`WlrRDc#c;z zqNvkDR8MYG?2_^Gu`zx*$-<^5pFTzDNfI_dL+7LD_946Fabo3uZrdmf-y-dFNlNCN z2W9)N_Ub`M0`itQWz@eG-2^tvh(NfVEX$Povq?h5Q;$H~O3rKNLTdNOYEB&3JDDl2 z;8BxrS~>l19uxmP!H*r210O_stcQr_6>FL&lLx+}t8qKEZ5y z4uW?MC2tc*UdU9uU=A7R?f96usWJk9O@TIi=pWtN?O_K4F!oP%xcwI&k*~67wcYCD|3_1Q^?0tDajQ!gGgoKbNEvlhKs6>lM zHA0&(LPe=TQlvtqeQt_Mw5t>vB1y|=-y7{J?aQ<;)4tENPP5$ozTW3O=h)6U&-**i z^PK0rZ-1n5ch5cdeDCXft)J_2Wl4PwN#~5X*So(wVx&XYlT}m1{g6N?ed)e`w1)`ZXVgZ>~`Ug|WCUPoxXF3%DB}uHIiXdfWa*whznu7AQiYPr(7wtRH z>QKdh;PS;!g+m%O^DjBZe7(tl<*YZ&hknFGypG{`DM|1sNAmTM_fT&uZI4p%@`RF4 zwxHtR;aKU+L|~Pm{0mSYD^NLkb{OWeR>HC>U=gF-PX>o)ed+)v|b*v%y6nb+_sVe4fCmGjH$FZQ#bvE$P~Z9A5f1CAjGY z*3?m4YRFfPwQ`}<^`D8uyw#r5+#rf2s>dA@#$DfupmYa5i8 zTQeu?WXCbJOh=A<4!4LkRJQIdXoQ3C=FQ|Fsp6sx*^c%MmVqaa*Oej=`*m3~mgPGA z-DJQr7GC+j*3Jmq(Rm+@3ETks)i_l@j))>DqsFtGHQiGCNj)KYTQCE^%it-XyLn2LC3uWfft53u=L z40_K_t{OpE))lR{5yO9iI^a!A)EZ`J!HxNlH&Y9_Vv`z;R(TefAQkvdpXA zgK@GQ)jmsEp8sS#^wPcmJLDIIgt`-s)F<%><7wjN^v@j~UM*LiEu`XihK) z1S!UZ2rw}36413E@F^>z#=^yhIOgso{7@C)c{NpJlJOkvO&HS!xX8NEUGU?fAG%(? z!;LTf{U@D4|J&B+2PQ27`X?xNmmK37 z-yKE$@IE{#3(QMs_^mJ4E46#vdi+veV%Tn}1kNko=b9BYeP!a}WY+lKUe)cLXe>ns z$%e8lhU6D_8u*-bycVtIUvJgrK8<<843!$`zPi+|O~X!>V+ZZ?ZJbxgBy{uHi)38# zSLG9M53d3!+-x!q_B7fAoD;n+#%)3vKo#z^XGB>05=KLSMtR$IovL^jm5QVq5&*7o z$gUPeHnsc$o02m;D{Usf0a!&LRxD3nedtMmS>$`1k zo;qJGSRm1RP+R>oOMcZlD}6A$ld}uf#Q6}$fbwh8w3zMu#y#3&H_1gcDX3LLJxq00 z7Cz7%XX$uLFe{rSkn2g692EWUfz4B+~^eS*pqsdhl$8dftmq*7T9AzS?zQeF2! z>w@ACjw+M(3;MEy3i3lo5&&GvUBVhZfGM^ECBAn6{`TD;G`@dtFhd{2%D?`aN#=`) z4LQq6Tl(weI5rN4zvy+VV2$sSJ$CqUAg4eg!j6=^1~!JeLs3)qS!_)ASrl{ob@b$a`MC&z=nK4cLE(qH9E4H{jPUtlYx-t8 zG;_NXtn}`8dCvcW=t$IzQZ4Wkr);0&LzpiVQv)9xDrG&ao@Aa2wK1KWYk{)I2U zW;7D&E^qq+SEm>OI^yf7?~j9T@$EYy?uJurU)X!TJ^ZULsE>I)8ZPa1L;p;TJiF`3 z$}-)ErnBL~XS?qX9Sh_zwxB}z5kMMd1F}31K&G)-;|x#;9xpj+M!qhX4%kidI~**i zD+W;H(RIRF4Jj6mcHG&D?rvu_%Qe|D62b`xK!}N)(!mOVi|m?SL}&o)8HlHUb20u` zwnlLJD~GOp?2e4U`a(q*7hAn?(qU{OGQ;k8@2zt!UVK}x5GmpqJd&&dEl5QGEt%*H z(8xV6IflOA^OybQC)v)@M6*Uxw9&3@NN#k;oymv+T@TUr!wG}8xvu!HM2nJAV!MA) zg<+vU6}}BxL_|wmN6^y0(-VJ~P56nCi5XV`Q&$LC9wnv4H09#T!nj*%La(eQMKTNC zzw-|)dX6}-o#5>>higfPPm1?gGkpxi;m{+8kS#{vWxa(!rDJm*xB9q1glw&DgTHEn z<-HYlD;%G6{iwSuDf$c_{!%9P0yI<-2PQ!O#;AE z+nuBiO3E=?{cc|GcS)shgvz2_qyb@(9I7&Q#Ne-ePG1_7`%>{p>ZU?_LQ9@7W&5+J zj&Y8@4&x&$o*BNj3~1=?b@wj&!ITkR5U9H*880lr4q->bw}}J6e~1eBJ33|fB{jJq zZ`XNTA%A7ahqU6OZ>vZL@A2Ij@90l9*}uQ~0{@T%MHXIFxro>*?M;}S21;m%N0)B) z4X%o}bMl?eWEF%+Th56CIY z2tKgO(y9R=mGtOB(ZADgYL+8BM6RE$pr*w06f5ezay}ruUuyDYi2l~i2XzDzKdyMb z-YxqWjE1@+kW-GRb%5lALxgnRA^USoV3)Z zjjGBsoX74zzWZr{_omIKgeF2DaJc9&nhjtSuppQJ#vhnZP^tR=w03_-)PML^zutW6 zzoI@WgtsSK9w~Hskr02~*F>iEcuDm??R~TSsZffWxN-l_id%=H$Ad zVKLB@7xm3rDB~Tn3nI8TAh|5`4EASr^t&bvNId!P*;}^D`i2Rm))0Fp8Jq24 zWh^H|0CYPN{0JuW!_N7aJ>q}GQ^FjjOx|a|>g~lJrP35k z?ga$-&N8%#!-I^ChVaRdNw~NIjL;FZJcO+K((v?GVDjk(JE?;jiOQEzz!Q zbgUifZly!+9b-8HT|F|*{B}r1HNCQox%Yx4w1?{VoM|odM3~u%9hn`a4o{&Df4Uh_ z{3WQT#lvnG<@SieBH=R~~SgF1neZ@YH_XAz*?u!!9 zj0HkBst`u`*go-obx4kG($bt7}um#+NYlvrhxj*w1c@ zq$EPF?jaN|?7m7yK9Iw$D|6yDv)ot0F1zD+@cK(f+j+$Ks$^~%{ke0s$I@QC8BrX@EHE3yE-?lQAQ>C!bJvD`n02k$)U!Fx#A zhV`8YG`jRQJJ`v8eq)G#jM8{Vx-tTPCGxIJY9;#-%D!Nmm(-w>>5VBB#VyM5?K_n= zzT4W<>o4=+6WamV~I4 zw#GbE6gf1XA2-+K#@O^~h~Ky5(YPY^nWcq72(>-$icYNMem=hZVkfCz(9owh@N!@B zci39@)5{@$`myLJ7gj3YtLu7MRS(Idh2hv&roxrhHr8*>7t6`KD$ltssv7)cYSmVE zW$1}ICGMte~%TNNuVetM1 zN)MQ;gBdG)b)oRqJHwGys+XHdUS6x8-z58$yS>evnClJ_J;b}Pz%@cMyo}8By?3po zFDYHqKA@xgu2F7t(3e&?mH@m1q)O2Xxb@NjcOtDxF8jlZrcnQ=;+$9K_HYQ?3;ytt zGoWF)G3JK{;H=EW();7G>GYr;AlY45U3bTHTeF#W3g$$}t_7sBuBp%QoZGx*3;7d` z%Ga+hIiws*__m6%;jZe6EBw>rW<~U&R(+90cS`{~*b4l>@qjW;Q48Bd0A0 zo$O3vK0B4>J%ZdTo0^lU8+x-WzeL?4GV-pH3CveG=K$K`je4vZ8_xl*a6q#A9A)N5 z6YJazQm$ftiwHivS>)aQ_*E|QR68;=0r%0EyDn!RF`qTRUh-nH?5gSH&r>=ImhEje z&#&~xBsBdk3%|Tb$sWMOSg9d(6}{+X!}dhkzTEOdQWH-jGBeyO0CrOdA3BSnZU-ZK z-+h|A8r~F=pv7*9<(2+0O?pC^IDz%7J%kKRg7SA@SMbfNk^DAFqB>+-LKYEudF5=w zhOPFDjn#A3Nx@gL8eG({Jnv69TfOhX>}r)=;Ae`0((zGp>6i$8Csj{#FqJHr%cz|u zoQfdL>_v9^UgMW8yecsw$X19IB&T{0V|nZ1Kza3#2 zRlKOqu~URR_W}TdN3%7}P|v+B9%V9d*kzr9L}*=({DE0l{xZUI^;}>PeiX64V~ncn zY<(nD>!oas)|9V1h)(jk4CcDYd+?g5KG5tv#C>)>0?c;%;@92E+fB70&y$w5M*F$! zjiLtJ(0+C+rbX3Zn~Vt*Iw&&Uk!o+k_pw^lDEMc4ulA>V)U&60t%G$w?WhWp91?Ub z^4gvL$9f@qG%T$iG$(WWis^278hG=7Xi%jUXr8=G^(>4KqF4po>Y3yozLV7yYM)+} zl6!BrWnXhX(dG0?_11FUD>n}*t2u@;WIe|ypywjHpo=P+2-2|fV>7^5L52IV)yNs` z94TP#w2`o^QRsb@EiQ^w7prF`^_0Q{-Iu;7ay1mtaXP&nB*=zp<2MOXs#o);%wqAEMD11hjS7KpMm;i{|Fi?}yL zxtB%$QuqKjI)@4$dfLz`j&7gI<4)GAtxiKR%Pq>)_kjBtE5@!NTl>ik%|HU?`-Fr)ct^l;hnxL0n;h~}!*f|ZW* zzxqky?_&iRDpYK`R=4!pYuGJ@B#-WEA*aqieC*gV;JD*i+Jt2$aH|@KroZ?j+yht< zsubC#gg>Ws5%I`n^~+JGsE;~g9dn@;HaB~?c6kJzYw>MFtc^e{%a!>bY^grr-_3ti zL3j*weZ=zDD=BdIN}LS0e7?^@V(T_-FP-HZR_7lmvA}~Ilf)(?GSO4%%vIaTP1p3o zb7QJ5<+vU6S{R-B#ET71S3|hGBH^0t=kzGHJ}R%saCwzp)fRN1rP4Cjjjfu!3?etl z0L=LroV(r-C3C)gly(}|otF3T3DiXuL&al#LG>Wi5_n0ks9dJ3N@qx_$ob<d zJ(|860G#GaL08*W2O4GrXKdtH?rG;{Zo|>OHubImeBG`c%Ln|HVN0Q8bm60Sc!qrU z!Oc0IPa@_&69NqBtW(yqEL$%QE z`@bu)oEE1?GZghsIHA19T@j8xh!9I-uuat$E)7skLmzW4sN z{mCj`kx4U#ljDLi?2)&}GNAcTcY|Q2&;8=VxjXdUGFwE6uThe*Ckjq(>;TcL(Tcx@ zuwRF>ORxW?{+8BaX)V5zfu-Ks@8YYkvw};n|FwSKKdQI3@wWq?96)*@r?xo+!TF&$ zn%F2c3_t#i#K!P42Cmr$(?R&56TICVk?;uSL~e#^HqV3MyTBBaEF?}WBK&>uOi)8# zr9aPc2w7y!5LN*Yj+auC@N#W183{PitNb3JhS;4K5qIlA+$7J;1SbABK2J!Nen3qU znM^F8imUr-GNd9UB$n}=J6G@vdfZw5zw=W6%|6dI1u6rqBIHRgkjcGaEnswRI8=X+ zl9OJG$b*jca-$b-p51WM0q=q8;iQ-`S*#&4KNzDzNC*A}6=WIiYZT*VSaX5JzV=_k zR({8mru5;}>~F6dVDce;wU}0I^GVXW@?`beK$WsppVqQ*(;C0s$ShP)9JyieJcdzWU*2c*0F8JQS(waRtgrQkzzG$WA4#_cB?kA`;7QQnxMgSwxlDP-A?1-$}vNmGW$vpn7$JNAHg`OW5@yYe*l@4gom0MS_8 zYVCZ^ka!BqDpfT?#i zd!&T{ro@k5J7#!(vlonPjh937ijUuXzU-q7rsl-A#z4OiNj`n>Ac#Ji2TM1n?NR>6_N# zH5Ecva9WF_a;)bp*uQ&N7WCTy?&j6?-Pd~k`=6$Ak@-k!LJDPy_Ru5h$jNHFF5nY9 zmh?P*g^-#n>N{n~AVT?PZP(eKX2wJeo~*aBii8X6OQ^5xFSzekKg$`;==^sG-OnYx zm_QXt2zozkfGpk?({keKmCU+*4_}+lU)r7Q^U;hC-+JuZj08u8G*u$x*}Lmda;V44 zdP~#nU>AM!;%({yZjab|0=YIl4yc3QZ;QE z`1;*)V9X)%_de@OUP&cKfh2)!WAABfoCvkEUTf23<+wF~+vd{Em0F1P7PK$qzF$Br zfBBh)9tV_37a#?SH-_5Rq{{2+1Zt)FBM<=G*7)anY(FR{3;KTQ1wUjVYE`Lluw9)b z%ZiI`QuSNCC*FO#-w01|ZNx%j;ap}yo~Y6JVSSrIu`yQT{i3Fq<}@`{tmTK}e}Db= zb5Z>9JJIBT!9ISi)gz29XR(I#x8#f)KwIEKyx5B6KodZdn>;Ik4!T?v6d`y|m zs2;jT&-T$cnVITEby~2mV2|vpw7wUDxJr2QU(Hc}%TD5-5UdVbJgaU|AQ`2;K`Yf= zdwNz)^0Uhj6>-~Qr1ei=v_}|hJt(edUl+y6*T(M?UYl#}n?fMMpceeN(BJmhU-sI6 z!tY(|VRcQNhG8mW$IdYkmFNqQk2JRWt~S`Q7$YjW0W-FJ1z2$kemO>~U!Hci7OCL%FMsKgX~oI_T9 zMW!!BW1~+zJhh0JB?M#bNGj*YZzdKMTd?5)1i{_9X#Tc%MP>V!65?d+1a6`g%MKIMdO zbn$a1DJh6y?NSJPBE2PM3I_{-)AhyiTKZX9gC!aG=Q6-i+C`PbFao7nK=^eB%@lKj zoh@j9$lR?M^bQG=kxb7kpiw{{KbUqGbq?zGBTU^=*#)4ydV`Ay?YLN)EPfDRhv}f9 zeiI2#=eB}ovdRgs760mU{wLVMrF;B+{Fk4!2mXE&#G3x#-0iXn;EiwFf}xGzXdCbo zLIh7A1^Dnj!Ytt5-iB#c{w6c^?=sd)pZn)YA#aIk9T_kTrPn2zP@fa~@}vfgt5>7fL?qi|zhsSx?XC)IdnWaC zk!lP6I%?bunrmWqPX#*ldO)De2bc^CqAuvi5RpCXMj^>Y0iS(RTzLRXip2-~(E4Q+ zOb-lS?!Y8Xx)2jaInao88oyHm^eO#F**Cbfuba%4UVqbd`iHJlF@-g{btdyJpE<#S zKo%mrwYcto_hU>Se_v^jh}UbyjjdYvoF*Ur)iDX4UOIaCc%P`grc(HP;_~6PnfIxT zRD&lml?8^;))~yrGAFjXJ9_lxHS*ym)6m{9KR3ZH~DZaEGOY89uWPpVV zJZ{!UpeswQ8%1AV1{$jHm}*PtFot}Nupnx@92A+yaI|ByjJX=NQ4R*@Jm~E##?0+% zUqlSs1w-m~i~%Sg3H6a&bQckqgtzkXe?fE*#;fY8?j zW&@3xd;mO?3i32Z%u|T0hhLD-M$vi4P%|e07oFTJO&;J1!5Km60EjTg9Rm%$!aPs? z$4TQM_ji5GS-Js#X4;H~R%)=h@vlnrJRRG0=` zuBM4Y3;K({n{cVy9bKfI}0sJX%fX3b~H8cQ4d^=3cUurNn?CF2V3F)AI4A$f-=zq!oU zZ_?bf2WBB$x9j}++Wx|6dx*Tud)Hi;^<4bn&gGxX_-O0V!x-G9p=0ry^}gd#^AUXm zuX)64W|eohjfJ~xrsnJN(IU{J`a_X~_kiH|*z;?pR|4sNRl81C%&d8b$zZ6xz)sj47$aj08DkY(k-_+zF=)j zY3Iox^U0u9|DG-LP{QpfH@)Y`JN2|ME57X z5nH&mH{^W|qKCCSd_BIiT(EXVkn2;2sn3;@x*tV`uFWz-`L-wcmA8VR=Be9K9)76~ zu_Ob(N(Pql@L%Cnmh$nxZ9e`F&BNFHb`Jd?ni*TlO8%xxEWzk;VBpdkTZHNh5#SXwupe0F-<(< ztbnwXhlFN6GAM-uv@s=W2-h>@wz*K|Yin58!Jvdr!g(i1CCD4{_IsbOTBxlZJXBtO zb*tO@RZ5%~q7lRe*hEl$(GEx8LVgH-A_iIfMjriYAl<&mq-rr$OqSv-(IJsW&GmXr#7$EkU2C6Q?&9?xWB^>qP3^Z6l z2gK`*Ezp6n6n!7pEINz@ofmo4)Y`exzg$v-ag>Id?q?36md;yRmnAt^+8;~$U`bD+ zdYA0NlD+)maxBTgk{m3_!T(bKxz6XvDNMG_4%$J;hrNiVY);5!XBvf0N0g~K${Ebz z*Y9gjhH^b%yL1cELc=}BH5s!fIrQBF@$oHw}z-x~|XqCqefP^~W(h*76@T6h1x_8uT99QXAnnRQ5kU{))V^s3hM`Bc<0S28*R!!^C7i}c}}8H=>Sjg8`Y5o6KVwN*i_b>1#iwX2?s(Z zzuzbQVJzRJN$*(w6w7%6mF-^9rqunV*;2q8q-#y7{x^@#--nNISC3}Z4F@=$^0yMW ziONz&&m>3|?umNvde`iWNJ6Z%tO1wU>0=uVg08oAq=jU2Op1%#M}DTQnSL~WY+5JC zwW4pm_kNuj?vq+V`qxY^SCxuJXvvi`*u656IsJls7Ou_sEzCpr<}w7*xOC@3Z-TGX zkJkKkWq{wdT=~E4Gf!!5b$6492Qy0LR;a!Ul5_>=+zm89-Kp4Tjz>#W?d4UBsOOMy zw8g#~Eb6(WrY`y>j6eEsN^K8HAU5nt==YORXTt{-+~?Sr+klw%ZF@V z>npQrVjY%V=%S^)H>y%_dphR*l!^rMZt&{!{h#KqR z_X-L~a1`0lh%rQ*LxEJf{|V+yDRT;<&5|R8dlsf9p#DH8dc^qv*SK*m9UY)-=gLi(4Dw@!=gQ&YFjjo0LIBuvp)@BhA)uhYhBTk0_$hIqhY(J#v zGriMMG$T_??TaNa^AeaD!M)%Kx=OAC*)U87E#AI`fIGV#Q2GC)AwZ6WQBNEqGBy^% zC%XVE;RiiH`4ag6d;2E`5fJ+9PgWONtXqmVmf|5mH~xP&-pEArX(b;uT|`9qK4L;q zc6No-VM=scDRbCnVJCpHEMVp1$EM%245Xh8@nNx& z5;Ak0GDd%@ZF0gjLfd`LcA;}}YR!%)MBfMEI?u}knC-F*bP3iy z-j*iq*_)!9nR9A7;&8-aXm<1+zR|(Cu*zXq^FSk9-Zij@P@Bgc^r;$KFlP>m@Z6U= z#AHmAGW~fL2I8Os@wX5bLmz@3*f!{Qp6L-t+g0w(zzjG{eU2rh*`UY|hjE=jFb&xQ z7_gko=HCE(gC|x0gxWRueSg<933Zc@VzG!gcmPK|I#WHV1$;5KaGZ2^x;kMx8JN!d=;QDVZXRHZ)}VSe)uVF7nKP(@tm``#5xTc07bwUK z)Y3(l)^tgvmUh&VLRr$MOXg(Bnl3pLOTN^SE4k!J|FMCDg@g7 zfn#KNLFPpG&dpF2&R|swE%!x4QZL&yUxL9v-9Qz3*MRI6=XsitM{Zzjhk;?|(MuVJ zMxebD9M>1(x(egu&t+ahie_68Dj@?w>WzsvM(?i^HkAy;`iGDkpHS(C^VBYw)N2KlDdw$cQ2Fc5rNJkG|r#;<`G&sDFB%=5HdVYtz z-84!ihK+B3Zp}aKNWWnA*yQtO&|hTt6bs6k@kTFfgd|V28l=yQo}qCvEe5E0p(=*w z9WfKvU{9>R#O1Bk`#`L`kVCIGDV%aNXnf}Mi3g_j(uf)Q_s*e$T`k4uMUO1(!MozS zl#uZ*@*rHsbrQOfJjENBePVrIY8oG1GJXZZYY83k8=xbW*7-lGtLlK37(T^eev>Tm*fh#i88%}dQiT`9G;Jq#6)Y&JO z%GgArkI~-#0^pIT#O`r9OD5){JhCQ>kvt3WQRW*Snrbc!dt+wjyT5mRc~nP>?(L6P zrYxo({q%FO$DzV*K*~Hx90W1v2ru|0r!wD14F9hmO77;bI@4>_c+eHM!2m#&T(nEUi;R>C!GbJmpv4~D-?Txqk z`7lBqw9>wsG8-G=Vy z9#2$FuZP}jDXL6Ss*}8K$oCOQJPRoa>X9KsOtu>+@-At3 z7hw<7{Q)y&Ed;uD6W?|L*paowLgh=2@j`f$G#hx*cR)F6StOW|^$uiVEAj!hNDwej zeSAltzK2DIz==&=#aN!~7gF(dj}E+j^5CepSIg6gyNH(U>7&#ZW*DKbPX%1Nx#bl! z>>|$$`nh2IQyk9kRN?)BUJD!X1MKe*vQioA1LaGi`o?Dnbk^$_+7A6esqYV+Vw;)$ z$=6_8tp5$`Z2&4ld($fJk!pFpMYsP$N<C&>ET5L#{=r@BH}RQ zL742A1eh>zUuZSx;2e&u4@ScC@SOVCxq)1>Q87mNV0-s-sJan4`mb0rne!$d`@+pQ zOYSDi3Lw}{YYnj?RJ<3WOQAI6SUq{T&%MZ4rM@ro(YBW#t~Q9RMLh^aaJ~rOJh}d80vVg~SL8-okOfgDB zh>pV1{@ z$a+J&$4LBpqZNz|nq1grInz26jJLeo$@n;9;~-*nMj)EG+Q&}ABdQ6yH-4IYJDEyZ z?W9I%L^k&&7q0qTCu!2?g{*q_!a|*GCESjrjSzY@$CPyG2i2tk(9EV?6phEc^RCi#gUg8)*i-zP63K; zLYMmLyxOmy9=`XOH>xohEGvqG3Jm7b6I*&>OM7f-k1c7%C9U|ieOl6rOImSBD=ulp zC9Sxm75@_K{fES3;ey&HGxocU>_m0gp*|5QVSkH~I8px<$YFj7{UAB`C6?3wkT$3)jE-+(Et9y+Hd;F+7)5ld`DZVhCJVxR7 zjhxFj5vQbBU@anC4xD$9lKoUf)p%NJU~@mu5>?*ykh!H6^9cK8;#T_cwKu7wJ*^-1 zcd0ycQCGgTqV_o~<4pr8Te8k%i+wSC!N4QcvFFjlJu94|p1rHiNrP<6qj0IY<{ zOU9_#ECgUUNJ`^Ddeb1aT^BIgw~PADWf8I6kqJl^D$Iu7R(lffB;HUiV>}6;b()%7 z`*?H%?$F>OLQsB0p6==4pSIFEr>oD;pTtJ*%OU7}sV;i`J$?ejE&vvyZSRBSF^$Lwml|?xYIQI3wxm-GOeb)|r z|HI0%Oyw4ujGmsVQRst|nz7c$h1=FQmlABKcM|sHx}(!Jhn#A==jJUtI|3Qd2^>jJ zNqc?c8XLG_YwJdapNL{n#_4{;q<-)nvvES;o|hU-{>3%W%SrK`YZ-rwl<>{-Ohg`= zl6Web8lml|&M%{izlv9(n11k`lJG|ncXKpCv?Be1PLck-5rUUVxkE!t!Bd8-xi46R1azmame#7`yQ&b4_6t9Eta#1N!%)I@G zE`=w~sz@A+sxZo5qmR&>AV`sG851H}5zI@#7f}IuO-KFoX>$mxIc2@k`}99{F7?p{;$YII}{s47b7 z(*vL`afbP~Zz63sebGP9Hn(1+Vp3Vfdz#~`n|uAuyMDP%}FVel<)~#Gn z0?tINHZPy_ij75qz4ezhuZY*4K)9xY651zfGU%;po5R)3Y-!2Kl`Y*oWj^JG)wxLx zX-s7H?pjsKw3TNbAyQagSr~+R%;uts4CG3>PSs5aXQc-_mCCIb_3_NOxDGN$u3@;o zWt^p2_Tao)PqN~@X6Vi}F9$2G`OB8L_TG3kzw+)u8nD?YetB+0(+UlT7btMdHQn9c3P(WQ zpe#3aP0@_`AXS>lE3x2#A0C8PV?b~a^cHG1JPjsqx!pyn5B-YK2=H~NJ06;{y@Q&Q zYKDgB;f#EI{UlWa!+0U+$9!}LNmCgh>@i$JukqYpc$41 zh-`Li5m5{(u8Jps%@5wIzX%h0Zc<(nFakI zzIRh^7b6ty)ioz`9YBW8OCg*g#-?c)&C!ErVlRLJd;+t~tNK%BK-fV6I;fBenh-Ie zD4K>cbpFZD;BjA$v5>k1@(_%D%*Y(+FHj`!%{IovAv}+ujj9LRKD-bK+^W58g-?=# zphQ28YF9nxxrjIr;`r=F*) zI&}3+y7xG{ZaI=SC1nz*9^9yua)ZYTEjndE-;D2bo*Myonn8U5yazNhN)X{l90Os! z_%?DhTv7?*O6?x}SUAB4*YXTLd87x;^a7MbY})6w3GUL~$lkl^OB)EFXW4oNBRi{4@?>!9lYDar&oLy( zOxy#@XWOh2{Msg!!;Y+Yz(JP`bhVhCEL}uw!R~fB6O1EqJW7?iz3*U7*aUKH1Zuvg z`4H;fAyM%Tf5&5`kF?u9)Twf+1&cdotl_llJmlN}Oy;Qa$G=CovvhpNPXdP>%Qdu` zm9kQW=kFCx}rX$%QqZ=xCE6p6xU z#_8JK45Te}o!x4Mx$_f-m*dJJKB`kE8fgc*30^{MRG&AybGw!AR2YA_an~nGVr}wS?D#?(&C7fjU*z2FV1Ml=?Ur%smk8%kg~$I74Gdq9Jh?Oi+f(H zFtFk zX?0uQ|C+SgSCOS(sNV;h%MfC|!g9LYsYj)#Y@xbsS?E1g-=al-)&^l@*b47*Z27nY ztu8<9kdu}wcr|6RhT*QAv?7o*z${YO^9?s8h?%#1t z;xpq8R5z|cU&k1&m-w7xzlcDFbj^MSbY4{CCRCr!nI=@YasqM@;pA66wg1>J`7Pf^ z1%>eTvaxtZY<=wK9H~XbHq%AKt=M{tdF%D4KI2715eURxtXvt8KWJ!~FZKRMIaBT` z>YHAzOCzI<(Z~dwV$9TP)MUJa%kf1-j|zc`>AM52UFsP#a8^eRlEuB;_;ER!KSK2q zW3*+oB%aVaAU#i9ASMw7~iO>3}jU^pa-r3#>-q zRW)$cI(980JTO5D1t2(6c{im9#4@D1_HZt(XrR1(5m7G(AI@2sJ68xRSrSIWp>3FC z2c<=Xv)7E@Ky@$)=Yf>z_>#*<^8X{bT>9HmonuJ`{w4!hkVgH1mkm=B`U8Pm3Ja|e zSjr!0*`NcsA1T~^Yz(4fl1+~!5ZCq95{#ta&>aYLWdIbog!!AyHf z&xqg7FO7}om}_^uozy8Y?~F)Qs>oP4H?lLkzR72JR6}t>MNiS&YG(GelT&R~wx@)k zngV#0t86}KR2b|V`3$`3j7YIb=qWGNIRRc-qYVxaZ}ywKdpn6XP>7Bf7|pny*l@-^ zI(|!ildoO-fv>ME5NF5LF+8dcF8{)Q{lD#lMbs)NO%qV`(lI|5?kSK8jSmz-@=4O=W;gg{2Xz4J-*J z1?Zm#bJryNn423|7;3~J0%H^Vp*n^>UF~`VPZNoU|4w3$t8vwUY;8{lr-m@Rt4M!P z4f_qWXfRi73xkhPYG`0W>vw?(CANT=O>+Sc}b}s^gGai zyLiGm7Yl&>`Il5AnSO`Jn0#fG8(QzmX&toX?tS@L?5A9HJEHc_KITU-1neD+qJke~ z2cCaeCORuh96^t>kZ~}#0%Oy&o^??TDkq~!m<>L6rbSldGM|jE5_upyitJ_KpiqsFAbeEWRNXL$&XA|G2sEXci(g$r6k z;m2GoG=(o6H|J>cUOA{9OBo}JBHD|DfarWUX<+I~`U6yF;NkbEO&Bq_8Iy)`N16Jq zeju!jDQS&6ZksD%Z>2xZbMWM8R*{xBTi@GWMGx5bqQ;j~EP7$!O0Q-s7Q|ZWyuP|` z?&ZRrJ1;>jvtc*q{_ZsPeJWSQ!x3giJKxUB{bUT>i$rkfz{f@`!rd=OJ94_epGf^N1o8gyZ5-kkD5coSQ# zc<96;;#w=(Qpj~}n}HZD`5wlMYF{kGPr-%?rT0h~)Em^lrHAf2Q)r=(=B@4JGD6GZnZk;}aY^mfXPmY<< zuRCbZy&-qaU46N&*2OidXv?YkBO8LYepJ}^?4cB=sMTq0^^?5*x@{A?e#uO}&3q&%hUAhW`OD3PPsibK$59Malp3LlAwwgA>hhi6KN%tl(JFY`yJ?R#M zf=k@*Eogy3K65muUH3-m!=xKnKKy{kdD95}2zwc=ZIYi$B|kfg29=36*s?HBQDxyZ zx^xk03A|1|M|YpQa(*kJHRN_%(dw~j1Vy~@IfoP7Q=`ci+A#dVLXmZbKLTf)-II|P zeAPoux$dagIcIlF;kc^;T@G&S;v!r{ZUQ}?RGHE7aIv?{I(}+Nt*54m+D2f`m5sIcKoW;u-hR%C6+_1H#_%JUyw(8UU<&oiljGP z>l8@a8f-y-7eC*d#CGuleTOKquX;QTNTq@bN5cfn2UqcICT0aEn&W5ZbR$-Y3h<6K z^o!Y{ob=Z54!!Skz;31{7sER#ow;@-KfV#7L1(;E+uN+1;J3lm7tcT3FNhFe`G^1w zWJD5@x^r^O^VJ1yOAC@jhiRnf=A`cbkykUs%TBBo{sEcF zZnFHe)}1Eda^XB1HMXvei{5sxZ-d4u3#t`94UDktYKtb#kM+cy8{SUCa8d;Y*nRki z=eI`*DYrrRVm z<3#LLMnEQnq%OuYRDm^}YX-&K=8@a^KW`>wH5?t4k}2;!-H;%Xnv&wvAAaqe=&e#- z$*QsDHSbx#PCFn^B9I$U$r?;<+-j(M4mc}*`e+Is)+G9&##r7%!;-;_3#ZuTio2`5 z2poAL1{W|46^cq2$=O1KvvPN+^SY6veODw>cK4j~J)}g+GoZ$Uhs4GVRoQsGZipZM zuqyMtVaWOT8FQb>C*?PF`%i!HVB3lh%ix@5!Bk1#C72VoF!oXpknj(L*fN5SS@Rj^ z?|$XV{^Z%1|Is1KUXkF9p$p9$?j&?RZk+B1jH5!p337{u%Q{7JJgQ*29(n$Gk5c8~ zj|&z-chAR1xNu-QC>Si&q}Z5`lJL-ygjsbxEvqTWA^TNUa+tV>YR$Ny9o^;K%O$4HXH+$wQZawY0aEon7zWptIYVml`@)ykRCX%vj=4Q5u&=d9>WZoT zeqF6|DPj-1rNc5J?h;#58S=y#d0^!dneS!^Ua(L@9;?H|>|`p$Zuls7_lTLaTM97IJyh)7k0 z&=eFA1reo1R6s<;hBP4}QUoC)QWVIdNS7`kC`C{~5hA@xq)QX&(z|p>C}Ba8%^tkJ@J&PZ)sB0|JfW6jmOCbU)Kohu z{va$#hjI=FDi=^6ExgR+4-|NxH%-mP49ErCSJ`;vfNNR|E;An`3C*sV9-w4pI%UqR zWtP}x6dT>aeYL-JkL6UV=Lr<+_jKkB6EKS2xr9bO$A?!dMg{gE^e#>w5FhJvKhZgu zDk|=5Xs8nQJ|P_X_*y>wDbfrT6xN3I-Qne6vD>Z36Udi3Y5Q@j z9Z3h2OUjSp+6zA|hT_nG4~b%6`Ls6kCPjCg+mL{v%Zf4yp+Y zRs2@N%Tou_>IQegX2T5Ky2O(m=52X8qGIyZOG2o$)ecv-rrv09Z^>2a( zB@#!vPNZJ>GI#o2`fl;4PbepO3dk*m^$k(4!Df$oO>@Vddt78}XWtqbmL4sZen*&n zSGeoJ8+)mHP(F-T_VZkJxqcp+}5hlz{Y|}n0`2Hge1_{V{>Ka zuD)xU?SrQu9kRQ}t6HWir|kOa}r~KSBpnp4gbg5KAPzZ$K^pU@|Fb$rWOU zW|t;G?fE2eR`xgUsWJiID=^HS*Jj-Bet}$lrMgB?z%b|f^{d|7WXE?t3hE&b)nXr; z%648oP4*8xrs8-d!mzEY?rMH6}2lpQAGh5bA;CP{Lnc#=M?gHTq|6jH_ z`b#P_C#b&P{UX4c(vY@LQq~?slVnd^R|*RpqJpCO-pgNE5(rI0OZPFX(A?dxq?PhL zNPWgXFT2;n6W`}GYT;L<0_LS}UTM>o3K&xt)Rw!+v|u}d?=7U3!frHaSKaxN_QM&Y z38#-MT843X9U6D|-tcfK`D*9q`igDazhL7@VNkwREvZ-OiUNkysaElpD$Qem`;j~3 zM|O|7KKfgQmr@5pC7Cx)fz>d-PTNmcEV090qs(WeIluDZjf}Jr=Ioa3%c$Nq?LAC$ zBC-R7**h0$Jf0hHvw*@g$`vLnwe57+eeog9cT*b;A(OvHt23|9^^UyZe*$UjwV=uE@`AoAZ9EtaoX>89H%r`H4x8|Ze z!sO}ayHng{;arNq@KE3_3cgB(FnOwD?30yOxz?q+aj%T`8WqhFA&Y51VH079*tTIn!Zzm;FHqrZhW({TEBwRK=mY(^*GK;S!hC(a| z`c#y=4uy~~@;%)CoW0d$2jSIoe6mGrdh!%1*qLm(z=%9%8|z(ly;DA4cm0mln}+lu z-MnYI)3_$T*KcQxn&}%^*)Gzn^X+l_6Cds|yzSVT@Ga(+Tck}03OWzSS{241n3}dY zTK;_0;3*_v&}WBTYwiI(_H_NA;WxM(mVh|XVv0#^pwx>kr1q?*Rs$oU26Y`Dc<4F6 zX!NFel}mxBAP!F@`j<{fPca%gfEzgvZx!Wi@|*A4OZfZ418dwy${htf#E& zCXx!)It-SKt%M$9ZODsWtgb^foD;0ZTET2qdkGsO_xJjAiuSvT#IX}h2|zKdkW_;X zt(~n>-D^b-^SRw1p!5*kYu}!>ac$OHP4LzQi4%4(JB~%aWB3F#uTLX2F>?Ks4_?>H zRrrCjm+3@;7gf5!R(>DFe{3+t9ub*s>o=5I^uOqH6bcV8zd#YKM z7bjlHj#PRVIp|F~jR=4Rb!49d&tgpy@8&OThEvl~Git>z%vC}~RcnhV{2Ry0PujTd zPUF6L#6@o=0{{!fgaWKsMj6?^axqW{doOW2x%PFYw?lbbm!Uas?UmlQ)cy!uE7}vf z9oDlr@;OL{tD-B`#lex9c~)RL7(Kexqrsn1W3+KtGR0foj~i%j9DMf##c~QYB~_PM zErpoWEvhnOMnB5G;SDC-ccz2LOKyFYOr&%5QKKlrTJr3N8>?DLBKd69UsTQ;Km4Nl zm>G8(c0;z?zHi{6>yOR4-BMj~zAmHc@i?-PSGAO#P~B?kabc;f;0|PJRX z*X0%5q~o%!CRi7@=)3b-dxrv68`lKS-ZwUWNmq`=(;t20twOd>(Bup~4Q<}$ZoC}$T{iRm*e;9)v!=y}oD z2@S)M%4`@3EQJBB03n8;jfS9>*?dw0V{Y7C{TcN2EU>c&ptvQ7eq?ek8>pWgf?z=i zxOr}|b$SHO;Id}7Eu=*I2EFG8M4@d-$QGGpRbAl9_cCIzQ|e*B zZ4*J7Ni+;LYw0mZ9vgs*EB-)%_(*D&RdQn^SA8%*ssbbmKD|b)0PB@pm6TJ* z*ap6P*y-oF;+H|f=p^kB^fefRuz=uTN!`Ot9b=M7UtBapK7gdblqdvqlbY7C2)`p0 ze8)>(ES&?G_wgX?h(AbGZE%8A?JwiB~$iXFCrSK3{r>JW ze?I^`tG?VG&V|dQkNz7K;MS4>&vzJ5+~mf8p#E@wAe8+5Ae4Vd3Crq2T-HAPKp7kb zR4+~}ofY@pJ?Rg(hxx-0=y!2nUhN(Ff>1HDTd{~Y_`P1*^p+^FQTp8trv70JHY$Tu zOO4lu2CEo1!L$4Ig#R*se?8$}Yxvh1{$-{A&Q<-g(!c!hU&4%Ee)w0U^()f)6-)nZ zKk+M;{21r#*)h8B(Tt&8L(^POiRHX#Gjzn72LoOy*XGhW((y8=} zP%{&c!nNn^qwgD(ZtYvPL#!r_mjYO@fZS9O=I8GA&=T^+A4)B5$+jN%U#=T5Aq z`>kpdjvOoB)3xGZFF)m{WoL;`DUl`I*I)49Y2Puqv%Iqf$3DtytNZB1;9EiZ? zH={`sT2)zgX@Q*hC0FzD#@oRj{J2HleA!_ShftW9v>?48E#YQc6u&!F$wcscPQ*8# z&+-gMefBYo9}cZ5V*DJx*A=hZ&HZF+X+fy|Wuz+Nqi#vKZF%fYQX!^j;|V%wmG@cv zf%Td`vJ1UsLNa5FpX1Bs!g?6X~sKm#lzNsOijaQ zTJyC}m-wdo`+e`#@UwpL;PwNNr!*hKrQ8+Ll39taq{?}_5n|YJ;;6|X zGd{fnJ)P5>?Xq=Cbti;U%~!>XM@iO*pt~-arH05+GfMO~nkX-RQ}1cIbv^Z#T#i8> zT3`$|QKJ&a7Cv%~gw=!v;8>Kk`GQsV&R(7B^}c!X$@c@{d)FP$_Goc2Vm4bv`1qJ| zD2b+B9ZXB5qnl2|R_#4}aP=NknuO0mOjL0W48mpHbI>;eB(S*8d`jXM&m-fjJNzq6 z569kh_>9}*wBqk6>T)tjLq#k+{Nkq4qkXtnJWKpfj!kRFq~u~ZHRs&DxHTg+$X|+% ziT5}iB>5hFrFXb%NE$iIZR>QuB;r)N022+>m zp}PPH|2x+TS1KsW^o?cI5_O2Oe|tGVKLKcjZa+|5^ax7v8U;~P=hh!gl>7@&_h9N^UX873hrc7VByZ78>T zLK-(TZY5Z+$dc9qUa*5F^hKh7&m#r8uN^d-Of(^iwvxuBY=59kwmh0AbdJQ*GI10_ zz`CjkBJQyX%%irjq<>gk(bPp6=W#+tG8O;wiikZ9RD&{*-GmE6Y;=Q-)X(WDL5ML{ zopr4b4O763$hrgkOc43t-@j+XRxFO)QW0Cvop4PX_Ro+8Wev1q%F91dA^(TUF~83L zuO&+V>v{akp2xqatvgQ>T!@@%K{i0S+H^)71yA=%Vyq%g!w&lNU$b1kgv`9*vgA+LAYqWGJ4kmTDxtKIxRJ;qeO=4|)s z4Y0B}h7cA2K*cX9{{4G~Ze`0lzb+m919d)dx$F#m%j||+GN@%(Yaauq?jM8lfTi?z zdK6QCFIbU`9z9IDfE@;C(2|oC@=4Jj@nojNatQ!GBgyDa5_}-7 z5`qnJIY?$^&zbKw1eQb<%UvwZs^UQr5f0^a#^ zn&<%&mgjt3Cz(aoc<9-LKEUW1xsS999i!;v4LZkJJ$Ud@+2<)u+J8YWiV$pr-JBf7_)JmR(khAB9;w~(p^En4+3+{Tr2SL%Qe(;X1Gbd(7faU6)T_ug z05m4ijOz%8;l}hc&yKNOYnzMn-#SBHjC%?yA5VlIpvIH~l+U{gs%InP8Bc;iQxg}S zRqPzwPXa&RT=59|;Tep?)$SC<0jh>Ta|g<`ilZrfTe#1F?F5i|P@spCwt}JmOxnN%EDEsvQn_sc-}h%7P7_T_&53Q zzZ6irDCoF>(nwdm%Q2SXTP_)dGs!pVFS5{g2@E?uRa6MXS_|G1Tr1>K4Sv0VnHhN^ z9(yIr?Q@OT=9?j*ibs>t&WuFtaO}_)g1|Iyd|FMPHQjAADsUecpNZ^NWc>OtF`ngg z`&RZ2(FeqWy1988mQD8q+Rv1qx2P_f5p0o*tS@Do)~TZiHiWMj@&%k1hHK?H*xC6x zUxt}$SY&p@c!efOg$7Dzofl1f{&JgsmVkin@^gy7$WU-Ow`=!x*kdeXYkPj?9`hX( z1>rS)jj7g>@Xu9#SHM(uChdiWvvADs^NCE>kkCrH^9(^SUPbP*1!nfp;b-fICXu*{ z&O~Co#}*V}FZ~bZG}X+PHx5y(l*DnR;#ZiS)QR$H3UmrBP5ci?Hdwc>389246m4X>$&$&GAtNMx#Uh&LKa;2u%wuQS|E5uPk#Q!aaqF#gMOIdoPZSXjT@fa=98gq65l2 z_GY&n+$&!Y^USa%_oD7o(%gE&HXeG9e$P-LP%jZ620{6{A&292x=aO%6xrh^MMT@< zQlnT}Czo-^7M#ePJ$lH;3`6Tj*EHM)G+gJCpEy0Vycv+%pS{Ubb(j%Ex`o||bo4fV zDSbbn{SxNVj5aU*c($qg>b=_D?t6V@2e$Nki)|rX7iUGh-I-_tgeENe%2Xa;R?<(l z9X3_wa!l{rpZcJApltS~*pt=D@N!T6RQfJhFU1}F86o=iqPF&_<()IVbi}F%pZG9f zHRigNYFwR~Y1%1_oa-7@f$@wWHr+Oj2*Zx4eR*-%JMEcQFP2=NJKL3_aAMYPpNAT8 za*f)}@Gn!NNzcR};$IKH?sjL%xX@~B^4U|@>S&|%$F8s3k;!x6C=AQQl_SvGl4S@i z=pA|JC!`&8b#h&G<8$;*Bb8!zd+Xb@)(fCUh5O1Dr!_F-H3>Y0qd4@8DHla3W5mu9 zD{-kcYci);ccB?C5~>EvMi@M0VwA$hhj=1#mikUeln7Itml6D`G_{{Cp+EVKOCF9f;GrbFs(Y(x|lz3MR$Lr zj<<0fV8HFT^wtGmp(anaa<_p~-@D&|Ge+@2dls%wR`W$(%#JFp_jC_Gjed3cU^3MR zwKPMkqN*@_l^to91~9v9?RP{%?X<#`3$I8F`nAbV{$Y%Z`$X+Ky=Iz-K-#rXV`@`d9+hX%z}IgKq#DeS*xeNzwwpY&+uwc=+hfLm(1SHx(}rp!$-Klu z1qB)2*WFbqhl3xE;(G>+s|X^6XGEuWHMQMYdwl=0kfoKk2EtWT_hM7}b~8F-R#Els z$h_&ATDSD=?2ZT1uL_F`#_*i5kN37IHR7Bt^(GwQNO7ThkTKO# z>u1+`vtrSG;+VRJ_-BWW`{Xnx1=E=a|FUDGGlM(+4A?iPVF%F4s&t4Uln=Myaxs6X zu9#w`3I6Q8GTwu5LEq9|0+pT}@(ZAv?f2Cc|4@)txp53fk01&`-pI`knz?AZ#D;8ZO;JDok)m5|Px_c! z&}O&u2P*gen(PVsh!Fz>FW;4ZmUtb4jj0dez!W%aWFR}6OnNd_aczeOptDV6NeL$o_UVWsk8>zjSj#6{d@aIBDaFHHL=c zpd7R};aGhp-2{G{mPLGNtuJL}mezpoS&-RuD5tC{WO|pP8M>h+bk4VeQAUxN8zQsS zlncgImJC%5aOfPrb~IqLeb_5?v-wf2U8&VoxgwjL<(ILbJn~HNIYyYfjK`jN56k6i zrI536y)-C)DmUZVU^#`Uvzpf;hf8 zb{#oBm-~is&&G4P>OsRgV*3ybD)nmwNPI}^J-TwJE*$H+tCIgTa|E??MLRBO#@zZ+ z7*%SC>ZuySh{IY!f`kstPW_6+T{Y1m?*j9sFJ6<`@^tesFSEe-{cWK~)XWo4XUP6Q zssBK2BMm3vK<2J8lH`bGiNYO|Q-{qg>i%I!6vH zLOTK9?;PpLa!ui1&Aj{#=tmTFrUtBS;xE`Q7gF)eV+?2Yl_hXyC>J+J$?C}u%^){c zIaW95BWlNk8n)Gap5?bVF?G#bYN?$HQU~6~uFf*(A=e)$s!fos_JFEFJcL#byB8}- zlJf}FVmp`P_2O)e&&riFCXyZK=QfhxI_ey%E;)7XrUt0&6fN&z_>k^AZ|P|qQ-5yb zm;|3yzCtmu<>Y!CVwlbTZN6mSS=8+Adnbj%fF753;?Fy{OjAqZwLY@G2V1=jcXiuV zPMJ>XAQ;}Vn*FLv5noy9gURTHD?#hpR8ct9h2loNNmdA!*HRw1$fnUw@{95#lsbB7xiF}4@Et-zY-m_ydo1{lsA1B^ z$UEQ=${(SSw4bg;stJ*Y>IEp13{QDo#=gjpvSlq}`t%6WUkyLF_d;TqE-W@le<2f$ zox5K2Q!!PM{`^l4qL3$l@mEsoLW~m9_=2hg^zACJLYla4c1UcfP@kSqSG`DMh2|xv zn7@!L@#`nizF6vUYupBo9lG5~zl;37_9FeSJ8~ihrcjcqFep`CTZr3TKTbL?{gdAS zhj>YG_`KidS?`5Y5-c_oVW{p8`om~C&*YeTSLPVRPG@buEoGMcsU#m}36wePBhFfd z#GQ%3tafZ%Vwte2!3POR!_5?CLpW;8jhJuK+fl1u>s}P@u=nVui{Hjh@vtP1M@8z7 z;3|oN?$(s@BrqgR5yuUy4XY5ludobZQmmi&S%4^c076%8-mJ??xMbu!Fzh^&qCNq&RdN5PsMGHp)+o}}zwrii6#vau8IDJcyny2aZEDrArd7GUJ<(Ks=n#Ya6DCw)}IkcNIQ}pyJfxlYv39JLF9*0jCKPb+iQE7x4Aox zu+_G&ChQtj$}o(2SHJtqwyB1ygAJ}0;zHYrv%rix!7Z5H_ z`q=F&%Yxm{Es`XmFNqId&Pr$&IzsUaQHXed<8-`z;_&?KqH+iHGk;pEm~zHKG(9BJ zAjUlMQ9Kex8YVj4(4@(`K04vQFhS9K7EWW6YGWDIoW_0Gg7RpmaT01Dh0W`a2Gg2t zs3w>SQ;c;DqeFzys+@B>GrydC?d0X+7k=B0E=7LQU*Q=>e=DV$z<4X3EHCn`R!NL7 zw#`Y(sl#5IBlEk-Ltm{KXFDNJ4ylPnSo}q=HqxX(G2o$HGZp~dws&1+l>Lm|Ma)*Rh@pWSMtHqPRhCqmQK zXcsi54Ndv&lOQ#1Q>h?k054Ptg@9DYIqgzy+YsAfmcZWi_CqBXbF;O# zUt|BjX>|F|Kl_Kyp}4f@bpSDKu>nd3#<@VQGPLRk>TLg4mStUBDvqp;URUyvK`M-5 zkszM+#@`>}W@4!P3ADuYqwBwAEy)$Rg9lth^fa`TQCkS|gq|ewrB)k!IWM85#Pg2d z6rQfed|SdYsK)>5w=X9!OD!)>%v20dn!10`EDR?j5=XPrN5*D0_6__%>07m9@{{HV zhKD>IZooV#z0q zyeSzM{eC2VBy?xx#DjSqQ~X1fp)`w$wSM40R?r!&QvC=U;R}hIplp-UQnAO3m-B>i z!uheIJ$;k3wwp0{>P|VA+LOdyT~FZThAQzsjrdI4aGBsT9U*~vmu#QS=&*H{LZ#?? z4|mXB2&tJyPmakcUVHGUysp84g@1TyWlW(NJ7G+x5eS-qwqJq!Ryd|vdwJ_y9)G%6 z{N^J3JiC_Bktw$-^hUi$=qAi!5aTASPGfOrhi?gYI0cK13ECXua(tU^&ExMnuVK#Y z6@r*^G~;YqaWX;8vwE#cGGdgwi=h;_u|_*mFm>bO&~RD6h@X^eU zfe8w))V1mG1ptjmy$dAa08)FWn^jIBuuAlI^>Kfw%YSb7n+9 zQejdjM<$E;Ca8{+Q3YFviepaACv@M_xjJhzP>t*|mo0*ZpP;XG6_$jg z+*3NT@+#U9QdR4W9Ga7E= z4!E!(Q0_9EFepd9R78=f=&_(&d{Ub5elL2SpHF4yVcuaT##iDuF(+bL#pJaax7=2Q zW$p!b^e`WfjceFIOUnqPnuPtB6u)vUw?gIplJSk&ugz@S5ANwjKOOc)3;R@TO(EW9 z?37w5q=KZsx36pIh;oeSR=7|c5hvfD50Z+!5W8{zfq=n_W>(N5_qftik1Efd$eqgu zx9)w-5Hie2G{r}mWp|kDxNw-n^F2ueGB4jnf&7#oj`Yd!x+-1q(QlLI-lgVf-`Cnr zD!S=vAmsb^7aRgZ# zsv>rRI4w0?2x@-)hlJ|j;2xFZhzY{D^l zu?%nq;^^%){agVJlV3j0=-zQ&@<uj&&(WbS{?>xZ$SAUyzj z@)Rdcnm#wR7$d>-pE$PFdiN(7B*a9660_;8^W+~WS_c7&s08AR^h$#F0|M_4R5;iy z7j;hOe>eRPZ)hZc%#sW=3Pq|as3O?UV1d!vYyKh7{x{x*=8ef9()ccD$cPL-N7Prr zW*lrw3J)X7D!Q^irMX_vmfZ00dhkz7ZZ3c9`VeKAj|OBOdu*v_kVW&ybz$EwE31{M zngQm=jQ^Ma+~=m>ta^~~;RnhxY_n_dC30*~nVUtL&BnFNEuCe7CtY8gzB^y5p_%>e ziE+>Nyh7EOl=AZcSD0r+Vy9jMqQKh1*bh_)s6S)xqlrVU=Rsm+ai9(~W_U-vI#=_h zG|8wHw-2gvM(QyuS3t&_wgxt7wSboOhfB<*_4q3;c-X4DNB{9^sfa)!_1q6sN^}~a zPLzfr@|rnGmV0N5S2KA=u*>RYy1O6kzdiDi=(*_ zS^sxfa1D2ZJ+QIdyi2GW;)XTMvJb6?oG!>Ta`surn4k)(ILr z{txHnzp7u&xH~926auSmF=@iY>AtEAU=|reYb{H}xG|Y^-s>y4c$FPQ#;61{nAFRG zYg-dR%q?P!+nAE-w*8!kUuW$Fy#&-uOL6(G7RanV9hai28vq4jPJtz}k~;YhA6c&a zzpG$g{OhZhX3_wNg#Uva=E1+nVg6MBb4s*~^>1>RQ=%jbvK#y@>>P4;-Shw~GSm0~ zNWm?*TmMO1{14?hf1Ur&w=ciO=zruGF~K0ivn3dmFRKq@X&m){5kSPX*g>apWCPN= zxG4Z@KFlR;oL{9=zp~7t>6~lGMTr_5^&o)mrk$c84JZ0{r~(6xkGcaM#=thp_IIA6o$-`rqp#Nfy+{zUI!J?JbLLFzLwF^<>T5x7D=ku z^)=mQP`&(48UBHq9Kb64K#ji3=fN4o#`cpwpX9V^2}3;Emm%a}*x%00RLA`K|Njx= zvvbYDG5Sja8dqP!SFrKKsB!_VEV#55yGMSTBS)Bhyh`wq&kB5JweK~! z9dk&LX}fv~^O2&?%_+W9IP}CPJw1NbR8N#3pbP8+rp6DL8ouEn+HSxdIJY3RT1yfm z4SyI~I!zb&fif2bRzJ z{0b=#=Y2iHoNWH-xOUsnskT)97436%E6HfxlpskI5ePlmVz$?fK|N`sR{ncLrbGVU_o|o%G@Tn;83Aik zNfgG%veQx?=WXrOj~wA2G*&;92{++X-;^I9wk^U38Sg4+*LQ0gC$Q;;GtOK{qDd31 zzp_vlNAT;s$HF$23xQ;>t#Q8Z-@ngeT0+myjwyw00=pH?d|TPGYXt}19OmGVKaiRi zwG?_C>kI9ZX8?JQiffC5EmUn%;f+z6e!JO;6^^!LxK?UC2=E7oVDUM?>?u>CoT(+K zP`XOrOhw*_zj6G!UHU+kZSkUow3zz$oP~oQZbrP=T0!fifix}K*su$OTbBbG9&Gu6 z3hk!&sG}gOByxHARt^%U`$+(oxM2|`EpX=Y@TFObKotZlfE+K7y1WGv`aRurnISJR zVl~7L5+|d-U1Cy#&cjwm+O8^$G>01l5yXxCh3}?~CZano8QL80=9)in?C@!Iv7`J^ ziAVcah?Cv`^V+Zk3;&X>;|wY1*@yVk)2X&4zOQZq{g0BW`=@{=#0A|kTvIcoK19~6 zzm4x%t_kN_k_eKxsnT2f6*Df$yb8K@{>IZpf5QHulhZ2gC|FhzV7>a1$B+sa(uRsH zCD9X`J@orlPNtkR;N0tT>H9$zTlWlr)%a}({;Ut-Ut5eYHbZN-K<&T};&y1|jm-w)iA{vyLl;iDTauOGiIuH4exOQS z4j}pK+9TWJhic;YRleXSWMe7i9pbB&B_TU(!KkZl&vqh-6wbUefe6A-PWpp56kKf#&&y44SJjF zp|of6j9ZnTi0LIo=fb8sbw{OVZ9t|_H@)1nZ9#cJc1d4_Ed*4$RFl<|(hdv<^i zmlH(^IyDC5Xp+&h6i!j~pncl{PajR>qQmaVO?K$++MYXW6}?A z%7k8F>wD<3Jas!rWL&coYjkG(BTxZ2fssa+g%_5NGHXVG5*+QF?Xbk1d9 z!2Bz8`QeM^#m7AE-O$jYy?u!1Kd9n!TDLQVP@+Ey0?0^8k}jN|mQ=cq+POKs&gv$I!;*9&|4Vnqh2iW zbqvn5x)@mQS@r^vlv)o-xz-S~3tRmZUvW#@AiVo5M3v3JjJ>Dp?_VPA{UFb1gh;E(8D+-SqWAWs z4fvRJjA7JE!lCo1HSo(MCh3WoD%=LW7_5(zvl~ss@s>XV=D)2FX87qpg}vdbI?R$H z?1NPDK^yWJz=Fa1ar8u8fY{IaW&A+BS)XFwc=4NO`n@vYO2aZX1h=F?e+c+j>{mgL z(c6G;JxDUd4u>Tz-77x?R!fFs zS+|Rvv0pq7!pvtsP!vMx3L_t{j4EkM>tD&uOT2SKeeY#mS&fB->MeTL#j}N(>WOor z-DCJqwgLus-_xOyBD?uk^HBND_mwHamFYrw6q6UORtJD>z`a+l!+R9zXUUTY`_JK? zS3vlNK4o{0D)?i`c(9kLvxTdH3Sll0#*sEbQ>ic>s6O&Sbm!FAvF=Y==GK;Q@JOuY z7DHqG9FWxBy!(+pB}yHIhqG#1v?&_dZ|<~-cg4iU?yRJIcwjvi5p8I&i+?B6W+8Qt zp`XsSYqIU9x2@dGx<5B<#yOISZWA+qAIxm8)94XgqC6Ggo$m}q7`du@m8~{6r^^iY zIyEGH{mQcH28u>lsvz=Zyf2uF+>iy1tIwJ&|0Q*#(8t(Yex|Z13Cmo}yLbR~{~XGR zIH5`^-YuqeIVJi`s`u`5pM_U9Khj?wp;4ztObV06gPc6I1_d>;>>#ex?UvU+%1XQ zAL{*kiGR7 zszkNPdFtj*OY)j~UZ`u5y`1+Q#P%Q5yamFo?_j3H^3BTheg(HB=~m`~aH%(74e(l9UYeRZBbBkk?+TEsRTH${ zWb>by^rKe+G5L$nex&nf()1;HO ze{$3loA&Ncel+$+_kSw-yjcCncs5a}^Vqp@&f_m_Rf_J*ayR%giIvO6)5Sq1{7haf`7;({Vi+jH#$1lHfUU0e0`h9^@rlltN}r?O--&S4lR{~nh!$uXz_~*i$~r= z32Mp1Vl)?|uZ6OIba{BFQhT(VtI$#Cb^7UVNPC3tQH?6ZMoLDx|nCbb&uu^Gr z#$Au09S&V$sLq4s4AlYsv~{~FNb;I~KPF#h&TN$ERj4l{MUHRIauw_o9TUhpsFh{l=KU%7$y$exAyd*dji*?`3;HReL7O`S*Cf)C%7%X%3Jm_C8Xiu(IS-M#?A&3d;G*jpYQ%v>zL-fjul*uR`XM~>R@|8%w=F2 zJs7rJ=U>tp>`9vsYhF-knM%kI(oWdC7DLCP}b?OWSZPPGlym1+vV3-n? zQLXYn?W0>Xc5LTS;l3X39U2gLe#EqR1X^e610g0zh0B?0{{4GgnyVpTwQUEn zR^|{vHmx#te+AS!+BC)MpG``T=?=z@>vci14InY7p8tTS1hc^yMUDk-$lRh?!q8qZF%;X=Kt1i9$y`r{(dUOiuNFFB7yeG;U}FpyF+?`NuZs`>;*uQ! zs*^@Nu?Y=GA~YNgG$!sSS}}a{Wf=TY>wd)PNn|??00mKRpl`-MlOW!nSdH2BC~(zG z1CKB&F>#Ea<{X%&vsxF&ht%WREeK2?+h4YuiVeV`%Y`*w*z{U-Jr`r5U+3B$t2%D7 z*FzidOp*uqna@J$hjzQH9}~RX|VFn5E9}an!-rrCjbq zD5)}H2zEFbv(v6zh)_SMToOU;w=GCjFT62aIwMgZj()XYQ?tf(7z9R zSC_Tl9BY=_xqrj*ivfxHh|VB(V_-1=VqxuxH&l4mX9ilolYoQ2++*Fw2hiYqTZy; z7gk|<`9{`4Ws(|l+ns`OdF2i{y_QQ>_(}!yQDGnRjLjjAPE4V@N6ia&YV%`dxgxi(5!;Ed3vTWXs1g~)(D`k!^eEiZ zB=WhTKq~0f*Efpx-xK}GTV~IlcU=v-yG*B>+CamS^flXB-xOLbGo)-dE8|>Xg3UP z!U3H$P8vKI8~xGDKWnvDj%S4BTgwxBY)4EcO8pJ!N@;z&upez%KUI-$i$gx0a$C5})XI`g(iBk*J8+V$E$4n#vEhbwJPZ_ zJ<wb@HWzN+Ez$S=JD5g&Nfk+CZ=?&i>w&LM zgvpHETTQPD6CGai*tcV^+&F{QqfT|%mz^ZuDHr)LI;makH*^>i*up?hShU7EeUG1+Ox z$;h(Qv2XMg2{Q4!ED3B9vxj!trH~h^fX}#BJ{z2o5n|)SvLL?AE?FEZu!zMh#M1?m z(Sr~yrtTj*k`!c=h#ebUKJSlRtyKb;Y;QEp7zaROt)#6`r3y{9A5OehU4Eb|YvD4b zi_Jn?52Gf2gHv^q-H{Rnel2%i2&j7Yp4Cdi(_~*a zOfH9#?%J+{6TH=7Y9BZOBfrQzP+mi^3ZH`6JMFc!=spM*GkmZDa((xFePN*dR=_!+NrLMRYv;3WlHxB zuY9!W5@xryVD&JHoDSOwOB62#BhCc$ai7VMiJQ>Ii2%K)2~xx;B_hXXw`CaoIt- zJmv87G5*wg-esvfvG^$-lUI+E*4`M=KU3DK!i3zVDVxiA;K1Yo7}5){KVnjCeyI4< z1BrWqRdC<`=z`@s>~KLc91Xn2J7>NIj07yGa{c%N*SbsZ#}?js z!Iwt`Ie?4bgQSgQUOqiIt#H-oBKP?An~nmW9tsDDL})l+W8#Z1&CFdTay#q3xo+o3 zuhurVld&v)&h4w4Jh2%Ye}d`#hI{@0as2;d?>nHH{Pt{vsDL!3_b4DJRS^VfK@kBJ z5tS}PM5GB3m0qGCMXI2Hpn}q+MS3T66p%;_J@j4@N(iL*j`z;onfc%Q?wd7lX5M@2 z-L-T9-%9!N<$UM-&ffdC_kS-D`SU-Ii2V0m0aW+K=qRzm@Wlitj9s18gCV+Bhp8nj zz~%gp&8*3p3{*#xnot$_(|OV(_1qtq1WS556q1KlFF)?*25p;cYkOkzIMONmwfD8l z(2|X&nvJ)vK`jC=S+ON%EzO%BV)hrP1bF0~1<&{qeZHD1@wg}Y8v2SORCb1-V8&CI zX~k2kfgx5QWJAky`p!0*^s~4>~Dz;FC+y=ySshHC7Z)!zQce?IxjZHBoC!^7g$Uqu1 ziGQ*Nd6;w_cjU~j=?#WdPt7yE9nI+7JCD;}SXaP#lOD$9@7ZP`&+XwNNZnaB%2yNK zCf=YSw&6KogF2gfgv&?=@{j-jdDr0LQx_Ls7uk=q`Wm&1J>P}G`2hhJ|91B1#YToe zX~Jz{12xpu?)%r?eI0#GOErE4YJGd1Hhk+S+}H+;zATLlzIV=dDnY&(eOiG-xAeuF@uR1KrVK*UXeQVc0m+M8y!;crF$cCU zLa0&05oVg6d`l{sr!0mlnt+ZBhfp)|ND6oRH2RggWtx}AOvApokyGN}VBylq?m6?h zJK}bP*K9fgyI6uDzJzww^CfKcEZD3pT{0yW{dGIX|E=w)|7b1!kAGK4ad=1 zbbYdp{eql@53c>yG3#h6!nst=qOFqwB>)FF0h_J#YNxdhf=y_r59J+d5J?i3q$INQ zfz56;Zr>bXMM6!Lq$IY)EM5V$bgITbd*B>k&U^1G?TC^a(>ci4tGAGr78&RNoSX0& z)LWqe?P4(`vm)eV&2NyxX&=>w+mryT8<8FCJbMh_t?nLEXL`Q)zB9?0DWcv+HaDYf zQ}<8(%M&E0>{~ZN;Q|x|+8L5fzFb9m`(t8(YO^B5Kp;{u7z>)B^hPRu zz+m-8BXamKEEvj)qBT#aa<2Hi#U{F?;)a&y1-<%PbjK1rSh)9d(~pHnHK!HQom^kP ze3tzS*@aL-Bv3!l4m)u!3J@zKstQNqikC*z@2@+&du(FPEPm{(hEWC^tOhRj9e^8w zq=$0l+LNqS1tq&9)8laHI!g@22Yuk<$Q8NSlCytW(|?>Vk3PWU{Du9P*uE>t5?1uXGbYKDzYfQI`)gqiOR>5cSJdb|31Yips!c#`S^+=AVYu7k^JvZ+9!Mmwa4dq8^q#E49rr z;~+SM)f77rH~%72b=SjwV~5Mg+NPJw$XtMiPWQ6ZMib=2P-1=Cb#hE{u7wgVMXfAX z&BtRt(JRuS;Abet)M6yq83mbo3K&MI+q+N;oUVSid4TeLRtS61d&o`DSI-2^i*!bl zPE|x}$~&1_vy#+&-KP)-n=B+!B+kH>wLg0c>p6TDTW`tWU{c`x7_s+S|GxeO$vU4q zPsn*)^C@CQR0d}_-ZV9^y!g9F(BzsA_0DS)Y}h5p7R}M2r8%QH&^3Z=w5dI^dCVU_ zb1V2D@qd-9Uhh>rP*Iwl&FOO)G8UyN)urj}KKEZG@BF0N_5b z+K-_mLGKxq*(>xGqaKI8a6v61dS-WhNOPIJ45{Ji>1n!q+ZuO$mzS5VS6?R5YJ6x8 znBT=2il-QuqHgi~@$7#<9o>ii;wzCIl}N^zlC^Ep#r0mmh^mM%#Ce0#ZC{fKt?BEOSWttIXw?wO;Nv+9Bihn9qt*k@rpVPSqOmM+~<>hE9bwI`O?W8zl6kDQ75 zW)sJc%tC~~IMoFSL5%|TE%J2mDD5i)xBU=Ng^}6L?V=(km+u+B-4?5C)O;w$Duu9$ zPIl*tCWfCXe5!>~CB+jEQ>eyq7O$9TL|B2k#=TXO^HsX#!X9?Nx%Iy7?^p9@)kqOUX@(sW^&cs9>8QF}MB6^S=N4e#pK zCS#f{cxt8(g-yBg@VVT3GwwI+_Y*b|33d90$5FUPC*vtg?5`*%3zz7IDI^utBFir8_ZLi)C0msKN*zI3uWz9~N6v20gpk+)EG^d1D!!h{hp%~BcgGP3JAR~u z89R@TYMk$N(Y~3YW@-7%@nnJtlaNEYOxKU+5TQ6P?m46&P1%c`h{Urlw8)3?K4d<{ z7|v)*mt9kN@9M=PaSCgJ-p5ZJdKY{UyLFPRPaA^s0DM!{b%l()`Q|FVBI&&W+sLKz zBGJ^>ol*6E>0dmBgjN|fjru~HI(A+cPYddSnqe zSeeGWz{;P4(NncB=}l62-%I)E2E8Y zK7?zn;pD6EwhE3CL;oxfR>8BfGROTFU!BzIdTb**nWVI^A~nWh$zWF6&MimfaTywUY@H@0h7ohPvHeb zMwImi{>==kDK&b;g@(dsTU+_`T~E4K8GElXs52J(`0ia@{tH602c${Us6NE-IbvoJ z6--7C;ZW!EOspFbN_DQxE~4G{uku>nvr93)#n*Zy_BG>JS43=_uFj(aM!TNpf;}d( zH(;$XfE;9`F)TUeQj7>1g)id*Z9*d#%6-N^* z@a@4n@)!p`q^lVH3XRqLDkBY#CTVm*1<<9qu9 zW4=2&LQ?$*_wE3~yoq1!Nxz z`{@4}k0kz}e$-UHtDQ+Y*ZR6S-|%_0$EU20wRgWDM`S9^Ek`7LXjfN?NT7K`4EQA= zS0(L0A7pQ?7o$>EV6>=};hG4jv$)p&eW(SXOaCL-&Oh8E{(?6C!&yS-AJ^i4S9JLQ z==1*%xksSfoe|#00+$Yk>8WVqu5O+Cz*VGjwbD!Nf<)Pt>X|ZQ)!6ro80NIP2->l6 zUYft@7HmeBB33O=*+^4osuPI$~Fx|xCz{+~S|h7@eJvA4(G zP6?vkPp6;&k$bM)0d@Zub&qhOJW2N% zd~XNd1x%Zu_~=FS)-pN?xHZA1xoy!4voPo;`#(0K<@q~4@RWxhi$7kZ)yHjq7ejn{p~+7 z8{B)qP~pGC9b*A#^SQDor$_~4h2{P7REGEYULqF@EZ3lC1G%L=lD0SbGuodDU>6VR zDxMj;MBHU8Zk39Ec8}lO>|P-I!DE2L#pB?aV83D@KN5PKBuG%*Y6!RhyjhPCD&qN* zwZrmvxYX_?eV-DG)sMcisCnf+HH)D?7=v_)=RMvHr zN%AZPLLR2bg^uyvnKmXnKR<3Q=-8*@k-%=x^LMsRMye3)(9-#Oj)6F+ke3sNnYBJ$ ztYGXI+rh_Hh0{3-0X%iynHSE ze`BvwYoF6N=Y%^d$ClO_!e_4Yu7HbttlpTIfaXWvhYzb+Q?oQBEY7Ff%LLH>oY!}M zKVc+nI?ofU%%9*&H`;MR4*61f$Jy4_KFi#4srng{v!kPcHj7ct<=;*!Iz|n~5D3FX zEuI|Exlen9oXksQ7zKJys7rwO5^+uuEi#0AGGG9(;pP!OS-uE{W!<5#(_}8A%bGMuyg( z?x%3iXsB9ATl7je$Q5MqJ#eS;o7u#_km}GraPjbSSPpnyVp1Q{0Twvo9`eOcoPc^c z8QyLhjM=bbJg@Bmt1S@?Y%hJ$cD6LNTAGwiLJ*YOk&LzGjx#Z#sxA8xB@Y73KdY;9 zFzbp6<;RvEo_&00mwSI{lAR>uigwJ_aU>{D%?f;+zNa)1?=_g);CX&ad~84Vl*sd& z3>zo?49FeGgFeYgsy)#8^Rcb~Mqou*;Dx%jo^uKE?Nf!~2&uec_>ioon=O;HA9$osnJQ#~+ zd$cZcIs6KIYU`j~zvr#&I=B9RPo54Xkv0yaOPyq2V@5gnxEBRASFZ@0>YZ@oE3dk5 z&Amo`<=Mty^;w_Xgf2L;2Pf80-%()Xn-u9Pd?q&0aavZ{zdIsehNiJz)NuilDsk_? zx5K_?4#fhsrwSesQT7W0A))jL6~V4i38>HGI^ND__=ja=_@A(|F!4!wi5W6Or@?ES1Wu7R5=bt^yn$ng5^{qg&Q{m3n_5f{snnuEzsv@$0fyGc>iG^LLA^V z!#rmCzaSpm+}q+vytyHR;QctG-ATviiAt$LE5wj7Pi*6%$(em9*h?crF_C0+N}fue7>;qcM! zL=(c@_SbQ_m6*F{zWqS5DN!2%(zD4_44RMu9I`0-T+!j5T{l1-7g+13SxI1M*kGk- zl|1jFaSYT}4YBW-B!_!Hn%(D54-Uwe-s?fFA*K<{YxL6<%~a%6d-&1%q-ntmE)vpF zOY`grm%FvRM%gl=`RL)_7}}wMGzHQjf|v;~*0l79UNLuxO~NSy(Ja+L-h}Uq&T2e=|?&v_L&@EB-t2>^ENMyX^L#? z=S2WX-=r5Owv z;*`37?IeW zJtZ&X>b*XouD`oO`Dwb12J1C|Uf!67(%M*I0L#L_e;k4!EpUI-Yv#>DhoCeA`l(c^ z7Z_cc=S;EvbQBU8oqx|EMtY}&#te2UC+!>H#DnjF^wR<@PEiJ^&uXPhGMJKjH%%SN#?4C2puU9F`vUxwVu;SCik8G#&3NnMc=QkB^>xc^F{id$i zFR?lA1WoZ$xG~e{m!;nn5#cHPrG#9|Pf-Y)cT3oUXyxmdu5pC|L>+TWAISKkzp5Kg zr?PvAH7CbJ)S4oBlG2xsYP1e?wKH)UMaKE2Y8}>BfpBP{+CJLSm}Ng_Cea#5a5ve} z)9oYfm!p*eT2^0l(k*Q+jGz^f4!BXZ8T&PbCEJ;6q-`8~!{~I+_9T9IgF$LD#NPXZ zhg{3)IpZe|^dG2s_39I}9-LqqE^N~~cIiRpJUq^+ ztc|LZm~(*wWSfNt&Mo3GNzsH|uGj3t@_{gxQb4l7nbc3?n+-;KNIp%{-ojoSW43;q zK$fd-j-ws2&IHj%hXxADcJc>JW5M-h?D;MjnU@}^@Y*MkjS)42Acm1{d*ZLnz$0k< zcg6Bml_+@*m=E9WBZIsQ%QewxbMuDIM-~toGJwlZ7h8XnqKDsT!LXDoLD{W!pM~GxF~0pu z^!|lm8M|2Yuq}KD*%T9Q%}&BhvWiW^ULX$5zsbKWetlA(E9ljU_$waY1?|jyqM7(4 zNhmQPfqfX!o0?mHhSs&;RUO(~pbx)Mt5&#O^Rv(F?&~xB=`5LdA!imlh9=``Z!!>> zbpk{kV0d#YnITb9>eS0lpD$ZVDOm-a=p6IoEYJ5{?`s%%dA1=)((qQ4prfe(dlQCz z)Qg8XrwifJ_kLxEA<*VYtnM+f$UWEQ+^;H%bZbC{yfO0hx{KT>(FyO4PhQtgt0gdn z&DrV^PL`z~8%QcT7c(^q-3@~VEB!PZ_DXEGmJBj1z7~amV+#{hu(C?60|U*I58})} zj#s~lGgN}UqG;p*;J>;eSm}8lGHo1V_xM=F@#K*!QN#+jsvGP+ko}Uswg>vVc{-PW zL0mA0zfU4YDyFTY34C!2CW%IowveohLqi~KWz4OQZ_WA`eyc4x6{r=xJlpq`DFGzU zo8{;*d%ENi9gq+D=pI>s`rALFnsN|b<-4LKa{?V^6no9*)yxr(Ji;L4{0+4OH(hcAzG5cHp4xI*_;Ii!JmUm2`Phu+&2 z9ry*AI_296;S{MTmvCJ;{3A)X+;T+=TIK$y8T1Zl1YnhHPo|~f85(xK_-1)MoE=}` zY#EK+IcX9l+swxPI)9W9TUU7Q~t%L!$Qs1*(}-c-LAK}$MJ6c z3*_7uh*#Nfw=XDccFNBjc%YWG0}oW}?D$_F1kF!2|GaL&e`Hg*)2DXYL(mSR>_Y8y zmhyZ{XY?0rLu-nD)P7kvIYFn{CB1(Q74Zw=nmU|`c0>eX1vJBQ)lH|cF1ot5FXlUP zE+=#u>U>mTIL^SR-vHWeQvMvxC(QUy(R?eTL_O-KZJ;)tY>Sv-R?F~z(#yA|l;_gi zRe_H3sIps)o9T+&mU8Pq1N~N*ndPKprIi9r?&jsUHSQ z+%2SYjROyVS>5@ycJq^c$5{f>&P41T0ktT*5w!rlcrpX**~?*sPwY$6;iNnw6KQS+ zH^M%7H${^aqsY13nP)W|QvOma<<4o&QzKRUohi<177*!8LD~@vp1alxKch#Q`!tfI z1Y=MhR^o_A@K>0lnLc`QnG@P*=b?Ut>Yb~al9cUi;W8MLH>&Gx>(AM!&XMCa7j7)I zxa=j>p?7=-=zP_&Yd8w0HWAyS$O>-qXQZ+(x;6-|mtMX%D_x3WE_5orEf(Qjxc{@n z?R$*a?mdb-*_GB>F9~u1Y&@r7Z04Q5c%1Qvvf$}?!=lm;5!c=fm>V9eaTA^SNPbQN zy;4sxvnc6=WS zoW}LM#NZr$aw(^uH`it56ra}2Ew=njKUB2;lVPoun}jSxHrlPeRFDj*=h54Y-PHHY zJ7lbxA3Mqs@S=UN{t77`yqzvJr`8*BKJ~M;BaOK( z&=om^ecZG?2qV^KK1*5IX9qKl252OL5Im`oTgWBuOh`Z}z{2UK;Q~kp!w_i6PI+*S zALyyN)IC^hsX&?=dtnsA}OJUBp{A~gUj*AyhZzlon4 zJ!+L-C~`6paZ!rCSOB z1LT*XWu0Qz5^|-@*DlJx2-LuR_>Z_(z`GRS*W+663$_^%JAy%x zYf-Wp!R%CO!dViw@e{}63liu|C`rO}wJevyL-O|}z}ih*?59xz?MK5$?no;oB!~Kl z1$ES}y%ILmDhdi=fiNs{|5u6x0|36(Xn~#`1akUSTcAwtQC8abhQIr*rr1-efsy%E zVcP~jAV|fXeI@WQ!6V*O^n%B7e?cyOhJPsg8%MREeZTAJKW1$}fA#!#ipjIC$vke` zx<0Kkb13QEduSsTdDq3g#M2Lz6n z*@LNi3Kw24MQXo+R}PY8oyg9q9}wmc7pg5*R3H=>8w;hY;oJ0g`(vjFkK_qXa zfxE=8JM(m9!sdcdje8U7^7Sdx{shTRkd8i_+zF%}hNDVv^(nT6X_}wUGqgaXj9Pt<_@JK?QXB_?gOOPt9{|~KQGGv z`1zmePe5LAX6NfTG+Ic!^%}D2mxTj5#sm zu!ay5l7C=Z@!SOcEbp8}Pbun{BX2TWjiWH}W6ov#-HTG|(PkNf=4K+Ff~+cq9_1J& zx%BUg2u=%Bd7Ll~DME6rqcJ5^_Sxj{{cK_p^@Ec9@K*bV%l$aRDUExzBgTD{A)`*q zZ@8^qnHQ-rmy`Kz@1ulbUw14w zzwXdF9vxEDHYH~9{$-3>Sh19OG>@56oriy_F7+9##7TNierT5%UP4Wyaf~=uJOP^( z-C_IuhDyFl=FRS0RqW}HZ#Ni`L$-!s&3uVkyZ;}Pi~L6fw{6NzpYJmOYe@M6U z@4curJ@g~oo@xvz42XhNwEO6Skv|@)6RMfE*OauKzq)Tr1hfW4pDasize9)#DUC3A z=wi|^q;BdWn)@Z;g6HYTpbuGR{GI1PZ_?Y_CibEp15gwaPhteJ@ot0!_bC}Fi#{;z)_O!v;j5Q z>@F$dM&PEI=zT)lrhFGyg$m~S*3OD`9{e2WXy0^(vcOguoGE!r;rLu>{q$-zq4p^B z>~$0c0DufFR)%P!o64W$KM z>){tu6Mv`ZT=~r91y+MUR0*HB#!Wu!XGl%*GeCUu)2aw}w$d?Qb!WcfC@UAw$i|&y z9N#DAqY$XTE_D%x4GsVtS)&1k({>s)tb2EGE=*$~7$M`%?9nh*vtVfs(G0mT6pN$( zY5HDUP+2jvL{;*lrS@J_ffchwf2~rX@FyU8`?R^q#(&IvpfJu|Vz^C#ooNJ`Jjwvem-e(vnUPp6)(J}uEIil9;2 zfS7IAdFjYrQr`I(1C0adBgn~IbZJ(m8!!<2LF2C7EM3w2T!)RcXO-Cu*qj&$qa8FT z{<>)XrrLD1O}2h;j+wk8d;aWu6*7$038C3y#ZjpY`hN08DZTihNcz65ZcjdvT|7Mvl1Pd zZ*H>X@A;V3%E$|UkTip8~rNq#O20R1$-(Jb^ zKIqV_IBc?C=4WF~<4BY_wlEMs%e~vaN(P1e8fk`r(=I1Ow*4*;Ypsa87O#<-^9l;Z z7hQwgwENZGvRt^;RD~Q;o;(@Tz7aFx5i@=2P_h$J$NNsREOd0)Lc@kOm+ zmRIilA(=nlspX-pYGB#hXLl?o_zP_IfFQM3DLYkI%&GbKErxg_-RYxi0Mn~Ir?^c zU-9Dc95JyUdScIFG#Z~Yr=Lq|Xl6GLJ{xrd)ihynL$a~5VJpM>A)2&K}k|W|+ zr>xC+%DPg)buu>@tk*0iXWQ-;sh&16uuA=Iy2ea~QXHwt6M|^rC4$vrqT!r&?$UbS zaOuZO7wmLjeOnaQ84oHgXVbikT9a&_IE2Tv;0`a-4iMs#aSkKnHI`$SapSI$*(58z z!&ijzAiARH7-TpA!Q2gB{(^ASUc=+e5eh5K6@BJOkcN0$MBGg^CQdeuD3_NlTX`Da z3a%yEV)9lEhZtx#03zB>^|wMUaqSSs{a=wG0NB7$R6tHa9*QcOQY{U921TJ9u)M3M zP>E>3afM-F%&>=sB3^lhmFGu-%%~wf{ZoU!yOwqjz&(2~xIJqO+ufw>DE8B}V__1y zHcr-GhL!TRIg?#9S3H9#rxgbUF6#|PYekh?mMr%b&lx&2v3+_&ILT$&d+Eq&aqr^z zaf}H`4R1Ov-yXx)Jc$gcwscZnSO0Dm-RbLau`$8hkTD2$>v1mgQT7$&OXOtCdE{_U z=L{xn)4#5tH^QJu-7C>QNqwG{{#Lb?N>m zy<1bB7Og3tZG#i%G=x78DzRfbbN9~{&pQbUKU0N9nNvrualL9Z zxlPjp$)+Pa0igD3w5sQD^a)6x1R^{OtLkR=T*c%o8Ox9@Yw;}?tD*rS)6F-)_q<2P znv+*j&YaUE{OTgb6gAFHI?2Aqj?A@O#+6{g5!ahLFL~Hs!Nhcf)t5v~ zo!T(HjZm>M>^3{dn#To##K&9hjhb}5_jAj#$+2pIu*4~w#ug=boP4*bUpQEs zob>Yj?v2VR?Crf=0)oO(L(Ig_(-p8pdbiN}o(3v9l(fq{B*tftcrh&iI*W zTxhM*%sAVYR{vE0>K4MA`O>WSva;MH{pr=tc#T)6Ri|3qv|$r06wdo>RO8$<&nvb9 zk&kY|_fG(haE4*9Hk z^F;kiFe4Gg@~0TZh;7~P1a^YhBG{Y+y!9jfJ$g&ou|cLn>D zaZJ>I=|1J(yPx^Ta`S%wQ1`k7z&= zh2Ma*7Hf3M2!smo??6qk^0xrSpw%*!Dp!nJ>_&gUki<499}L6MtHxCTvssa%MgH9+ zrhjh7{%`%6A9K{g5cz4@&-dZK>a=_FK)gG%QQ#=1v zTN4Ek1c7mWjHEAw-6`deT4j8qj=*|$wzIRRI?S=6OqyXhE3$qiNmM(;j*m6vX{0?g z?b%I+&CdXH8KDBD#o|Zg99$o?p?6S6sn2N~eiuoSWHmDq@3coeHL6fM$GV$H^W)`< zwm&53UmGVWR=yg&L;SO^9bE?r*FfVW#ZFo2HfpN$ofz0Qun^<^QQ9oE?0xW9V171B zeul!=Lwd&rDALr=$jP_~g&ve07HMw*#vLs6yC9BBWVASqcy1eeF3)vE6yYTc4 z91TRdgpV_@;f0y(=27fdLgMqX0)@+%ZsM(48HQVLL`z*Y2EtHMst+?N;5N?sIvC34 z<|vZ76^Y$t)vbdd`9;`CfKX`PEn1?n;U&s)uSpVgY|p&9xV~8&_S3h74xRzDyFfe3 zVLQzphDsYmI!N!}%ir*`JR9Y=t?HNDF^N}hJVFit*K0G(u%NO93_I!6k<8XRUx zPNSR&rB{s{gCD(~9k#|7LU>Td#4|FQ#m?Ht_({3}3!DIE1y&^r|b%$lO?dQ^!_ z!h}f0TZ3b6-3U9w_y*W!he8LgW$sBRaXB190W{`s+X7^%a@$7qpynCUwJGkwXDW(n zYGP72vyqp{{PwcYL^pNArs@yDquq4hj{BYb>k&rFTl~aQaAeR~nA5PRk}qLm;?x-Z zYyPA3n0}LjKVLWoOlm2^YBN5982|HrPyNZIhu8AX;B5O{%(VR-;HX3iMk$}S?hhmn z7HWy%w`Sxi91%0HRCf3@{SL zMPVdiC*OaU@iU(^KwL|ZtM^D%xujuCEVhQQ_;-;5@-&uzR zsKa0($4~h|?kzdkCO6Vp@g~EJeG`-<&ig{~DO)BXuhmpUwDRsbGe>8lnwD=~7db1| zzyA_w!{qSr4KT?x78{^idJb_af2xz!5JY^;vrvx#x|mH+`#VpdYh&k}RE zWktO2!}T*iSSrOBqP|VVer39)B{t#kiG2YvZBOA4n~@84S8D&=D7}<&x^FjCPC9Ln z_l5rCQSGK7VZ(P-%e-Irh$}RvY_k1mhiycI{*!dl%s^>FHjP|;d*5`&0EGWZLGf$A zcZK!}OEcb1rCmq$;7AhftC@t2N!}J5H|R3Qg&YpD$yqwkJ7HKpJkBpczWl^x)LA`W z(^yglf*O|kOE}&ir(*hG(&uz1Yf+NpG>(1oCpGhpj<2pru#EB<-ZzbjVqP^e(> z(}opz=pV1Za(y^tubHTW=Z(iasSjO_I5bwwBag>urLFVb{OMIDkJ4Awazwk>51jt@5E7QtGLqDDUUG>C-m*Y z@nakCk0X*4&Isa<(!ob^>zX2u!Ue-Vj*=~}su(}kZ>YgsrDZMt*?6y(oft@cugOE} zt>-jkrsx(ujQd$K3?DrvJoh2;jKyh2n~<3&XC6E{a79ZD2To+(dB%{!fg=W!d~?Re zD5`<-&_(IQXiL*;z5|B(vUZQJvF|_VwJ&5i?k70S9*pFyJ*{3|e+nOs%D6^%VsO35 z>qzWM-65pYHt3%q+oU_~XSCt27p1J%vT78)4Hpl$vPCtI%h)xFXlUeXY?%J zJFu?h+4lM(6f|{JWY}}Ksi8oP+PpzLUqr;M;=W>tU`mrBwMV9m*zf{%Hp;nnEz-&54jY3YQ1{|e+FsO)8cTuz! zCj}P;jvYr7Ej9M%$>x5&)qU|q)?+3isZX*sn>EwB6izI$o}k>CDnNR35r4F%Pss&w ztETLoQ}unOdnxn!V*bTe(uH&P9(OP~h1QQ|MmoX{dXd}fnQ0wA zpZP|-k}JHCnQb_iH_|CUTW3xZe^f%Z`DNwJi#PC}t$&_`4@lsNF7e<4gzW$k=b3eG11IuAK$nS{do%q`%2V3zBXI!RO`V&5t!4%ll$} z;sR6X@w=kiETLT*eSz)!XTc2o3e5pz^1DHWnZ*P|$c`+}H2o{Fx{~Da*D*$-U$~Rf zyx=VpC#x)BY>vD>`5R5`jtKGffCzy&XR_xfmd9X`^dx~=@!$Y8tzHIaX+1_+5V@&RUqVG`PA zc$9>i#snk3mgcP;a6a{r>>fY35>j3MT4L03&h2efv>tt=y}0Sx$$!%{Oowk@(O9$7{Ki!gQU zmbLBX87co2|tLt!#U? z^J?aw1|PjBp7CapO9=bZnwc7jbV5K4xO^Cz4epC4u6H6`pDnskHx%$K8U9Q})C#!! zXaNB{K+i}MUGCHNB?Pq&svb&Z8LYM_Tk8=X$Z!)fN_F4TEerS_fWeiZn^D7gjkmo7 zr>d<4)$-nWyD801_-&0Th}#W4&p}I_Y7#{WpG)4o`lqRf9#rxpGeqNF80ZW;xRk=# z@4iP-(~R-JCSZ?Us$hKJ(DguHP=V*J5T!7C0?n-{iflZEbVM+Hm#JrYbB&OhHk&={ zs+0Mhp4?;Q?Z95#F+i0Cw{qJ8fKneKMg$w#e=C05&~`%Rtjfe^n-|+Ndh)Iy52FNY z`;=rg%Hbo|9*v)sc?6_iA_vfwK8y@OTF@5j#3^}h=Qwc-xhUTp^_Pb%eZ5c07-}6j z{li}$KT2c*(qoAUZPw5i2t{fAGZq_`x3iiBQm3WQaGv=Ed2(KZ5Kb!vD@GT57*1pQ zj9;1jxRV&IDRH-b#*oiKwbS)Hci*E7YvZ(6^^O_0zr|gA{@9rNxf50OpBh2_7H|Kb zaZGxPopuD&*b)`?z^GO@l=i9$)z|SiY&ae0_p(tvDALJL%E$Udz;6~@1MLh)D06?~ zAcU5Z^Eb}>SMPtLM2gY{maew}J(5%C<}lhZ(!-Tb0(+FG&9iSqzWy>C#UiSLA%{;a z2i^$f-j|(5ayU$|;pelbF~{yQ8=TWEPgtKfS&Y4uIY$1##_+TOJQk9}L(_FzSD+C^Jl8)J4Rdp%crqtA1lWq5FbZ<~>)6Jhz?7s)AT~hsig#p40HR z>j^;3jctaXN~@oxB_5%AfRpp0{kVF`FMyC)7(nsiuFYH8teavW=%FVKsLgOD8d%He zNbk|2FI>$dXoJ|8|PA^82HsS?EkFWrMFh+bdRL*Ivjz%D=C7 zJml=l=u>Z{M57z;K%^VG36xl((fGzd}uT9IudcRrXz^1S;o#=jL{{QRcrZuc|+}e+)R2~ zysbp(B5gI$L_rrAt7!vGrkpJICF8nHlIoZB!q95f*B!oJ4x{syDPv%;z6`+7w_CG8 z`P5~dYpn4tm*L`0%6FGKx6VOLD(28*@{4J8UGIfg7gpy=D41S#^=U*dc0bd8-C$`> zo}>ngCAk1}cnJEFp&wby+fGISR6^wav~v<1*e_h;QEj;vC(wHZTE{#-^+>Po8%w%i z6!O+!g$Z`>>%{QYlF>2I??PdXu{~|ZZ=)HH&mJ2@M>^30k&{U{sO2Eoj` zL{$bv$*f`HrN8q%vWrqbp=Sdr0O2WeHUp5^X=lQsF36iwd0^45@y-d`M z=yNqpaO&pmTJYXBQJ~}NDhIkOoOYVVgZzF2A4&~T1YKmOuF?koQfB{gC-;Bd-zWtF zjuK#r#Ga$9{FXa;f?nbT+zyyuRY_1z*sRg*L0GazJrpRmV=$X4SAjO-o#D?LF-^El z9{8@nZ(Y@2enoqNs56}nis7bi+XAkA56EcYK3;!UTX}aO96if{#91t^d?1)o0u9M4 z)=*C5w|X=QKI<`uYY+W0f5%7%c`h};5QuM}XOZ>j?z)6pr%{^b{a+A&%IikEZA=XIdKjN$jWVMQs<@j$N&0RPiMWv(`gUQ z2dFHx9cK7V3#?2sQVGuB_0+tq$G$h8mE7qOy|{Q%ulxn{LT3=kw5x0%fGP)Hf?+o` z110lXf&x)?r3abmO{jzX0wFW@~`3dj9kHRN!r$w#g6r_+{LTijfE>BV1=PuQ&pcrQSvkTiq9En1uO z2KAVWCAiB%>_bU0eX4tcM1nDLSa4d;CYHz;Gc9K$T3>~VgMm)_Jw@azIFUUD+ys0+q8e zzf8Hl{kd4vpPH{^+Jk(E27b$$hr6tp@I`?(f^E{dMya?~bQ8@aVOlVMQf~@;czxRaX0AjjuJBa9GfLh;yPEf#DY|3Z zK#-j6@MpU21pmQjK)}u;qB8IRTkAZ{`ovU0Gd;&@tb{YJ&C&e3Bu=SwpzhM(HEHtu z)0J@(rcw1dEzmh*>7}0ebGrx{BVnr229Iuu;VlkQ8lMXe|L`OaAr$wOp(nB#b`f4u zwkHV2+l%T~G1kx{cZl@H`@DLkpHjY>eHKsmZL_|BO*u={C>ZYfd~Dd9NjpqBb_ADWOWrMKKoog%N-h6Nk3BOORPh?s1dD6>5mIa zD?&G>z5(M%0$&knz154C!g-+E5-}{TlYHsw|6uRU{u-F-td&k@Vcb`GNZ%$MRJ4d0YUNC80>xK3-%RH^gc zV_MicnZ7zp-YR8Mjoo7RNav+VwPFMAlpt#y{EC&*ZagiajT|GE!&1B&6SE-J+%rMB zWV3^dS*M_18(`DZi_e3zo`DNHhQRUS z@3xBuA_qKb#M!wD#Cw3L6 zd9-|-z*$(^LcNG>=Av49@IDhY@X zTqr?M$H48u8uVw53XYin?KV?6nABMBtG{Ibk!n%{x3B_r*{bK*@6~000rY>TZu|K> zXn6b_pMRM#fH#ro3K&+LGPpVP-ZWv$_(Fcp43IST7h&V>AHv3~;0}T&Oq2wo&I5`a zanS=Q2NpFJ6QGdH&SD%SOdNzZF+mt3KbgQ3bi*xId?co8!v5FR_rC!n{roQfy?F2c z>A3x=P+{jE2o=gjzkW5~C~7yH<7-e_5Muas=heGWMu)gO?_g5!l;wp!DJZCd0ByEQ zg|{cmFTFv~8#@0jHf25 z9p$x6;!YQmVlKj@+f)f@C|STZeT@^x*FoDmkQ*J)VoEIiNcLIBwS-3DdOp14wKGlq z3SLeuIl@(TDpG;Oa;Fo?m~i!b35sXN@4YbY7CTJ5%b2*UqLw(aug!UQ*p`5+bboN>O<~^g4N1|!@Y-0$zk#`d#g7m~?r$I)UnaG* zX^V`LOv>zJDx}#7QnA5H`yK>$?c&Pux-2hu-7`_Qr{&^augKgz)4?o7xQW9 zt(;*59~6&s%aDHf9k%WTaOmu8L@i4YfkD-49R1BVhgA4;qCH-So;xwNTBqd~sx zNh_m^$i5>)miFu1)x+v!Ut^whOFb$j(KgX7{P9ZePj@dYd7;Z?zsfux4hPupxv|k)x6TnJPFByzHTpTB{c>8TqPbhEi9x5`Nzrj^L`#4= z59qh`wT=m;Q)I`uLaTT86^dDD+(lCetkV1^U!NTqoLhUSBXN#K*p^l~eH6q9_2JJ( z)Ez6{XZDI9vIn1zDm2zIE%;KzbVZ+f=H{}n+wgfj?-_%yrtd%cg{9fp7^y5O zzqw>zW%CxTzhrq&z|49g;kQniANy_#&usuiKw+{8aAazNVvR73dOrd;iiBAYFySbg zqBDY_r-%~~;26e&lPd1nD4e;)5j3MsCg92pmf zR7XOn_h2exb~gO(TsEO?4v5kZAx4k>Ux7;s{RyPE0#=ehLRzW>Y3rD%{1B2pWiI-; z)7K)|E0FhW@tDPb3Oi}=&0zhC=|;U?(mq;+1b#5+>Cn&Mxc|y_04&h{n0>#>@cHlL z`jp@<;rp-D5W(=(8~ZgtYMt&YS~lpDhYq|<$ybfsm9p>F{se=@!Cm6pJ)`B@>-EZ1 zqn+G3jPYG;!8JV~bn&5ce}^4Q3@0wMBm$+e*{^q@BUdb+MU$K*C#L8AtFJKwFA45% zDrZ#cVKtZ<&@dhhucJG{gtA)GFO>h1RC7gfEdkQ5))0C*5=_zn9eH>Wzzg{ipv*pQWzh>z#n^v?G^J<@;7R=-mMjat{BTeE+78L!dXXsh-iWFQl<11)L?P^lG( zXiKh6Cp^ib9_$EtzvO;DW!n=nS1n4EE;_&tAf`21T>VjhGdsk0~Z}FS~zu2@D@E)e<$6nsi^y$&OVyHOo=O&2*&b?1?&;2Om?T+TXv(+7djt?T8eS&nSggR!3tI=yu}; zDTH?@`d;OCi2MDZBzGmHky5Eu>FqwXE*G$b!bOr?F3QKV^U z+?yK^zpnkne_q{dLr}~aE;af96NEF=oYMB7UV}(A#Es+%3MS-5S=6;kl?`8%`F%#J zu10$4bRW8=LvjR`sCB3PcFUMaF(knS|FjL#BsyTYOh(|*DLNGFNX+bz)0&iQP+QR_ z5FXBR$b#kEB){SZ@w}zjy7OSIJCQ1m?fft4{TqU&0!P(03!Gn@UH@Ry$LMkKp7E{z z65LBi4}N~?(vP|b>dOa2K1DBlnC&6@6~CSORKcj~=T19DM7&nLV+C$qGhFqTLdG*^ zFbx1l#DoRN&`ri#_{qw5Ww$vowtgHua(;VMw4^#L=*)2$@vC-*B7|uZnh!f4xfN=w zmMko9FOKw=s&@&rnJj%MjrKSRBaLsAYK=tQJl?uvP_Q7qrKt@&I63uPN5S6;1IN`I zhjv@CQ0#bZ^yc?MtM!mYlv8=l%?g*6wIgxKjL4=Rt~z2Yh4%5D>Rt4>rXvO6Ms5|) z%t)MCS7NljUe=V`ccoVpasakg@cs^5e{d76?r5|XY6IQHP$+Rrx=W$<<0ZG3rUqM> zN6aAsPI{!p;gh^)OwyFHJM`<%nb{Unlt*n}Qwss161l_CDt@K8KH5>>YMoP392vv3 z-(Kh!8@)2GZg=zg3!E_^p#@J+P_uZ-n1022W6#WIdWAKO8LEj9@b+t*6vAotbC!mB zWc51Mamtsxmd5l^_UXN$)*oH*&A>e%-}ZHeV}j!t@~!*>SPY^-)WTU8#Tr*DL)Hy4~HiC2pavUY)De<7rFSAMF~!J5tL z=n}>1VO@x&5Jm5K)YBpB?RC2a(cZ+`9@<13mSU$Uv$l1>OX#}h&$itDAk;&e;zMd} zeDDc1qQ(HWyad2kGa^BsFhaYi*7=5hqeB)4?6WQPqZVAwt2A$uR(`S>+Z?B&zUKs4 ze|eR{95bmUL?mxPN>ktwE^2=JOf?oKjw)Obkykx+Ja)f?c^BW5t+}0~=(eD0#l<@pLOxI3)~qID=XgLVK2`1Gl1FH-SZa;Lz+I5?EEOuM z&fk#rSX(c%)&AQU^6dM&`a2~)xra!Ss{jXd9}0b%&Z_e%ICrnBEM7hHmYEG z@fTIA*V*%Fs2WvXv!=55hjp6N?qCd(zTtZoYK%}J-(lOTx6uza_6OW~`9UcEMc*J| z*}(9EsLax~XT;lx8>MAxQ$X<>NEe3gwSX!fHVOpg@@q79FwtGiBrqX#)TF^Y8MnUm zpt1dJo+P_YnfSt;4o%9Oan^S?#FuW%DZ9g*8v$aDtpT!A)M-2%Ym!M18b128Z%{h7 z`g7pIF|80-G`VVvp2#s<{pY70(@mglh;`tuP!8m-BjPBQ9^&smJv*1P5hqx^gQXeP zJVp|7w3UR}3-{y=0JVs>P4EGo!1c*BHnX-Nc-BrNs5YN_8iTddVH`aIHOfIzW^Yb* zhdAm$5rCe6H=^irr8UYM^*vv*6bmY-pI-&OIVG6AJRXpwa#FjeW;WLKQhSr-+A3`y zI~%DU(2ghuG}k<}ZkwHsn!yb(`o57&!lLfsytq|VXtys6-aJgM5E9Llf7sUAe}bkz ze`fdbNO32=ZLm~eCv{|lW`z8suK&8`@e32&ao78UI@q4d3Dwd_3=_;9!C&vRIlM4h zD2L!tF4Q<73BzFFxTV|nGfMsbmdbGLzW7pB>M^11DgrjO(y(n-e{4WR#DrYG{V|MfdPKq4R~kK|w$op0i32YPXnPm0h3Q}ZQ0`BAmmOQ3!eyPqE3)$w3CE*Ilu+e+D>O;he$5cLm zBc@d|K>z{7<4Dzo_}%;0`>1?$W#EDoI$B}l0X;X?uWr$yT#0%+MmW2t&hO+jQ_-Y^ z!raUF=4fo_m$!;GRKyp+3sRo-pafzi>0;@QJ$bh+yGu4^zWREpzLbaO zxF0mVGwg&%*#QY>susieV?t4Onh#5bM|9C-NN@K+K3( z%Lc^OVwvgIChfDIQK5H&p(R!vi!=y;L2M1Z?T;cH{8!$`+*lXVR>I8yh<$QT&X-?q z1)`$lfPh=)3GD`eJMPj!{cz=UI553$>siUbd~lx~2mMEGN*&brj32ZmpA%+I{zmIX z8fbw9sfdOJ`d+TtB}y_hrfYN3UC@cvhc0bzw~tnbW(E(w*cn{6;hNnfTHBOs;1O^| z4#$mTLux7W7`krNhRnVJUMZ&krydo=&BePg`!;*YmsPW1eSZ$fIbw=$lX_D`7l{*z zeM&S4=RAaOq5vcLJrS(KKeATwP5W&CX2p#QT%H+li}Mfp=8SH7vsUdh*0!=D;XIGI zi=&w0`o_pPE7jr1=cv0Y&QIlZvv=$A6IaiSijcpuhi30CbAm56c zIs7~QvyLhp&Qc%Us$}fm;G2^hm07nsuPkfigPvX##B>L$?mT$|yidOjin7!_24Ij9}5o$eui(f(>_fA|gmg94_x zsD;r~c)zbaW#a(c%h7J~K8}#U6E*lny-?ZHdcuKdlUNgv}QE^#d&L|%NTDe}PDP0085rA7;jtx|#hyLsx;FMg{&@&!zR zSt#*&LmS~bBqC3D*dRC4gU)^q3T}y1I0+1oXDyLp{v8%+fd)W1H~y}wt3?}M*#)u4 zePIhrRf(JN^bG+|p;mkeq6TPJcAa=KTG`Z5bt25xcsJ9@dK>Zf^NS}>r4!!Y;%Js@ z;|c^P*gvPQgQZgOv`o4TMNDWI+0*W=FZR&52vaot;KWgfhwSq@$;Sd|dx+ZFp5VCH zml_3g)nPb_^458HWLe+6CPDOoT|_NV8Kzvb#eyv0nU0~DV`5enqqL4t#*^*ezU?9` zf2iODqmr{#9pb5^R)}x4s;!o+;3UK)UI$mIzqJACB#cc>Bg$eqz(?57Z@pf-N!qTx z3-|ow^)0mR8OtKjlKh&=UK&ShH&Guc%Ce$+P=j?bd|36Kx#DJ|`kG?+CB^n@_wuEU zXQ$z#MEx=ImT?3t5c0!cmXG7hdkW-NcEt2L~lJ(#Jp%N2ihv2nDG^95k*D5f7(BW$Zhxp!~=nVmCE zDW#pH;JhzxFZod(pLS$X_!04moz$}|d!U-*W3BHLVv><%35f@v`}ytAf97|c3sHIR zcB9YmfT`qW9vF=wPqk_Si6E|exiZ0{_&d9!H?$^tWDOpy^c4ysIbc$gs*A@=z#y5j z(?u`IO-YKHBNjhh7;bqormh>p;R9SNSBj3AE z=3uc?W%ga@$;5Z9112N(O_jZ>2wtZ%Q^?&RXKJwJz_|O%?gv_F{!F zB}&vmjih6En(ha{t-#SR2?b6{&3EJXc=@_}|YGW*NN7`r5KxYL@FRGp>Sn~KQ*IGJYFd?rCt9_P)-L673fRu}-9 zzsR!wN9!eWwTzGDL=%Fy%6ueCBd#B}%@N&?z44ygV0fM@{6gT@dx{SuSl~;CYGA=s zk#^??nHx_bfSV7DwSyAM+J2CHD}-g0<`Xg2l&szEc&oeTbmWG2*Urma;JJVQ>YY27 zs^veZGxU29#UJ(D?Zjx{ZnQW6mE$LDpV-=s5$UWFP;1$*^}M4e0e_>2lzdkE90gFw zy8>{rwLb`jwE;n10l#S0ef!zDV{RS%4mk-?*$UL?Ag;un z&ELw(a>TF_^-DvScK-kUWnUl+@Ptl#f)-%D8xt`36`dJJ2n}$$Z02kfFhJv_&-jfg zN7xEL_3h*BN;yKf(({AgZeP0-f5^&2e(_b4j7O7oEWV#Xr52pNb!sLxIXd&e-^&n) z#YBO=!D*z(mu05vl9E#P{O+h58z+4F&RreZ@^Fw$e60MdKfZg--=IOO-~gXnH*yzY z3dB*NfO@h9)M8fzSD~;H!iV1&usJ-7pELs0-FHaql&~UHeFLbWTe>@Uz8hY2)bp`S z#0CqJyL9-66FY`dG$iC*T+f$XP}!^Z+9{@d=4;FV5i&-Q(d^(cz}*YWn(MgHbE`sWZ)KU{GegPr)apnQqux)7L5I#3`#Tfj*6Q! z#+da42Q))GROLE+AM;%`7d0xgS1m`(IC^v0`f%m=z0&a{ew9N9znqWpT}@tN#0=YG zZyp5(E(5575{UGaQ_x4Qc#25(BmHe5!pgfoo-8j0K} z$IA2bEVC`i`r(RF2L_ylj_SR$%@Y4u=h7bh-l9f)*6u?qS-$~8-(x?gOo0}^nQV5< zqmLPcJ(T$TL{55K%e^=$;mB|n;;~MPpO?pjxSkUprz5QpDd*5>Gbk=dfquhq7nLih z_^ldQdVhIm?&TT@&*}r#bHrel)h*>%=QND5EJDueWXt>aBg!5v-hd}`@M#WkDb^K2 ztqd!(x1g(hz_T}Rewz0!rHMU;44rqEH$P2^fa{w z1qiZJt9Lk&wrZb$vimJYrTgn%M}-9`t`B7~LxwdXVh;))hN!WUSr_O=WB8ze!(B)O z>uBe2-P!yrMGsD)x5XVZ*}UvCxFrjI{m8{5Q1cA1C~$!H6^`DTlNt4*Ow?Nm9kdj3 zRy@`lwxBQ+!X0sJhoGCf)W#FeZ9R(O37->I-=xG@og7m@O+7^Vj@;m?OP&Blb0ktE!2qi_^49s3PdKlV*GyQR ze&tTWWx;gCq{fl%$)#lZ+|DYFvA4D+vWAr53_sb`i-pO$tp(2s8ITB6gDO_8Uk$NB zY-oLc{^SX_m2`GW1e|*N2E-1JO|-_=zNG@1DLI6#vr5OCy7 zVCZEW=mN~JA1EQYe9mCPNqjEaG2--S#n^$5TuCo`w{HrI8BIRJX*hJ`+(;R1#C+n$pzRBy15xcmMmvnO)OF@kHME+J%Et|L?J*#<<1s3pT& zM{_jUP*pxDPCoMT?S`U`ctfdKp%c7STU%3ftR)p?K1d}L%lf5LlOvW}1+c>O%8{(s z*{lmAZ?Bw;8+-tcdj2!v=+Td^Qf)y;XPt;4)qGeB>ZAO+Q52W6Xx+(Uggyn?q#Hit zv70ytpYkl@2XvFcdOh)9Dx7gB?NwY*sf}>$}Ut=GfreUAF>De9e+bM?L zD<{ql6D>h(iZWehAxzA=klHl2Z~dWu*OIw?x%x8nv?bOzC%{-Vf9+j-8ibk7^E8OC*?>!g0-~8rM;Ehe< z3&N5C=UV(Di(6}xf322r{rkII^&@r+$Yp}}<3@2HzlI=5U#P+N`SQl<)F+~4%{sp= zewn)#g}b$(KJJiB;M%#B4`X|tS+-sGeSU0vMH_VIRayjvcZr$>@fb08V0`jgm>@`_ z({=_O4(rKQY^zG-J5gz|C~a$$7Fh6#>qa2`W4?RMM`&1n2}g?ur-Lh2jy~|(mfl)( z3z&e(RegG>%BPU*-<27+I1rT~(K_tYdv!cXB3!nkcI-A<;j>eb`x^kuC5XH%jkhn2 zO^f9;$Zi7%fR-i1+~#`8e3 zllKxYP(t!Ao(&Ne^{+qQl)EfA)%e2p(>D)iPf>RfpK9`;<)Cw7$2-jvJt~h_k(bLG zuiaGmS}19#W9&BIV^!Z1RnTcr_3TcgRB3E9ZiCunwKzKkspC^dU`gS4SC~L#;wYKq zIS$Xhw+>$4S#hjT`vy@THIjf?^iCksHg@6S%u%7B_jyXW|6${`eZ@nXbv3lOi-}$H zUor*;!(5Ml5@RR!Ekv*{vmX&h@YTHRWbISZ^er6B~L;4=Z&>Z0uPeviMdZLwr4) zxp@FLr31)(e^)9IZHXgKNH9nN%Sn-qT#kv7kWxdwbDZ)9GR48xPEh?FDv@=`s z2s%n@@VX+`(CK(kZoiXd`f?EXraR_-ms<8mc^-bn0?LvkD6bdr<2K&E=rR(L#+28D zES53JI$H>Avh0su=Ti9U#+0c4G!K1W^q8Um)(6?Y5-#S+(~Z2{1iH;ZSSTw&4LxMtu#=DyRi4H%jnSYu9k z$Ky_Tv%UcbAlz3n7GR^7b6P>7A$r;VkD;UfQNY5__xayB9)D``+L!+e-Nh?Dkv5$y zS%o747wf?}@53h-%a5RHkdvdZykKJU8PKR(y6JfXoJuaA#LB-FVge)vfXunN4fZ^PYI@R?2ql0lMy}^14~>L-ColiLmQiKLvj(L*37w zpc2dpt@&Tr85d4LXUM0TXMCoM7t(!w6@^DY*YSqr&OdWn{bx2E>!`}%UI;D+VQ3#! zZ`s%FVMcA|;NYq2v5mpfDHClRU>&*L!z!L`2xe6|_DeUG8TmEJ{yU84^p$om?(N35 z$F*%RFo{ctXT(KBxU$RNuL-nq#X;RboTDEJ9iG00+)l@NdX9dFanxF(6n8Xuyym?( zfAVQqE2Zw~mBbJ4Fs&bdbn<7l`2Y^u2m&FzUr-hTi?rVQnR!%xC<@PzD{oxgd1)Je z^8p^MWJVFLMhoS9){aJ`AKwMPzlQ3+iL{5J2LPwcl&k(6+Hs5!YO6)J%TW)l-syl& z-k8d9NpR3ua)nE5?8;)r1pQI$g0&6Ie~u{w4cZ>0!`}?}Txm=cM((1BXIyc%_mpP% zeuuRh9c#LWXy84DAMGE+Plnc}$Ws=gu^O55%33sa+V@1(_EuL9zK;e`D>duIL(XuV z*|c+;9!^4#kqDOD1MHVdEWxqE)$4s;ddh~fOb%#Xsq}Dsl}A2+A1P}b*d-{z17$fJxku;5XgYm z@|zyiOxmSki*WTSu+mK}z9znw_2D?hiZd65UR7@?&I8xk^}DfGAKZptV{d zrXE^Pl;3hsZ~X3y;*75s*&nX7V&=>0l&^FlrUpg`4GWuDo^;O)tUl$5U~$*E>^zN) zR?cDc1nvVYgCWoYF}PGC$cjc!6Ik1u$SsZcsLGafT^x#K#4>Z~DG4(fsxB0{m|mK+ zk=z6&<-h`{?I34W|7_PXTiCd=Tg~}yQGR}e;Y6}-u~dYN!hHQQPimaM{8|aS0OcZq zqlHqBSHMGZWjk3MFEy-;P8D5Sc?ACGmXE8lB2i-VyaSPc;Mn_&3wO zLYdAv4y9*$NxdH*9@SO?3B=pRZA7l?u2b1WNMorpMWN1Ng^sgU?bVXgh^z6p(ybq7 z4<+WGpT8RQUgv~x?0a&ReG`UP+mF(00oBs)q}nA3&@6H}(SxCZv;PRf zmvx<;b(R*+j!~WCZ%~mAI82!cbJ;*K-DZ2lHTR3sm|37oz=d;LRnfCIE+iEg%ElSK=|bC& zfbQC1I-b0#N)gN?$IE-X4MRq^76|p1!>Xcc8v|n#ZwTB{GnXo`rg1Ih)ora;=(xV-2PsQ$tgk7PTvRLViU)Gn;JFDUzp2)_Odm zfa^1^r+pv?qEIt$DE86X7?AibG%QC!5QTM#*(|w-2ksx{g za~;LTaI^CEl`M@SCR5!Zv$QNKEqR}CP;NA*JnzW;FFY{l0kFs!usY68Q|PHlQHa)& zZ7SI>A`Rd(VzjnfGD%jhF01~=k+nzhL!}E&kY<$>nY7J^zn)=#AG^M5C-F^akO*j7P?`^E%$=5+56qxQ%|!t4n5z* zV2F!#g?`7OA~dLqKik>D<+_q$_RF|+{@QJoDC+dGRZQ;~Ewwn%+K@uBu)FkB+DIxu z?*93Ja~w;0{vJ#KLVxJP>VTx6CqI&cs@&f_1iK9u2{{=ho-umy z=aL!vG(d`aSU~p!*oyiOBN`aa^oI`d&-@V#CF9_Z)rypFuSZ?4p$^rdi<3LNS0cRj z4*88xtsb2{-JkYcUFb!r{-Vd2^5$veCaPQE$ei`%)#FtupWXIvemBl7*(4&_SpJ4N z2JtA4Y@pzq(#d}3X_oYgk75P-n`vPvkG+!gmw4dxhpDm+s zjA@9%W9sEsogwa{RDo$CT-%D$IB(N2DcnvPke3W-#a7y!!+A@G<*z;*CUQG3DAQ%( zF_;>B5iKUeP&Uz#Txpb}WSycez&x()n{>$>v4F7r+VaZply;(Pz*z0rVCjs8xkC=Q zJds^V827>%b^*M@7bp8q)dc>Ti>IF*;QyV4+Mjuh|EHhz3#js^AmYy_qW>c@%g_Bk zkHw#P4*V2E{0^c2Kl&^`|Nrj^T>d0MMECy%$T9#>XltyrU6*_~M?Y=%680^w^}h*1 zh?l(s_VSfBeXO}W_HMh32b3#XY)+2m@XOQkk#~YVMstBw2 zZtUhDnuzhHRcjJmi1-R!74XTH2eB;xNtdcqY5F$s;Z>8T=Gd;(!j?~|OqCP*W43V2 z3l!xPk!LGt2Jv!^di8G5jN-~XX42NaGklw(T zNup4|IN-#rO|f45nJbVVpCx$K6kuzc@eCk4W^iYD|IKD9eC*_prQkL8Q{vZA?=V(~foQX|E zboVyTVk3OgfCQhgQd2>Yb2Lbnr_1QqG5tNsgb3uWp;V7iSEQDY3UaP7?UQ=&^zINn zh7Qo9fSf4)k(fRp4NgeeOz|$b{U)NP=hGcG~#et?^3kdowz`htla#QS0o2UR4yUob9YaI$_vWL(5>S6`>)#RMC7eEm)pz97^6#2 zcPmE{H?j6nckx|$Xq_MJ7#lEct#sv?aG#w8XD|BA4}xg5SCZs*OO|0)-A!-4ZLMYv8G5GXbm zd9@)WCxv{s#s%_N)(gInqQ7{U7)$KGDLY)5%o_gTLA^nP&NtGN()5njQ+=p9EPksS z@oIs>;hnAfhfnwlgg;v0%D_63-RW|qMtL@sezrDQDMrl8IR?3C&e$I((E0`55s32J zOZYYqv?9h#b8Gt#-PwwsAmM9yk{7iw;@g0tm?8Q{;`Hy6B}skBfKesY#VE@%ss9`BEBpv)B7q4 zEI(7_5wA?0r&{Sgp>rM}yW|CquFwhGoh7S}Q%%B)@gnp@bLy?I2@nxo?5#FF_+03K z^iuh4F{cgY&D*c1a`c*R-0Igf`<9%fEy6s`((36j*>|NodnEqt&WZ9QI9b4Te|1f5)g7x#(42-AD&B^91N+*AC@hIGhxzC1nym4#M3vLRpy2Xb%hT!rAg z15jIvcD_-|3HAV!hx_4;0bPDUbw4Y}QY%R6@Y*@IvxysU!dRWOA$lUFQ(NOwOwn|y zX}?}d%GG%(Oji$W!>Bv&RP{E>=ZB*@655qpMLRYh7T!^BF)4MlsUQM2Oi-lPQTzaD zPh6YNZ^T{Vd`?SFZGO;2F1#ahli`Rbh{>BgVSeY#(G_q?uWg|hQ#x(wI#e-Rx-0pV z*c|Wpa}}8RwXneUQ>jZOz#Z9_vsG=voG}j0olBH0LXs*JbbZ!2p8kesjZbbIX|(;& zZIJZVNa0iY@)0c_RusVJ{|@J5T_yAp>C)(7I$^nuNMi(|>>aszxMg9tG6;O^7pyC? zfyi|}s|^XWXUNS473X*0wk+)m5n@Sut8%cqpborHZuKFS6BSj@ZT&v$JJBn; zOm(O=Wjp&>wL~A?=vatG@r79FFKSy;jc$9#JWgoD7Dp6z;Q)CMFp)@ucN3eB`ToY|Z%d*@=MHgfIw*fURJsS{@(puVN*0_!ey5QG?W z1aZ*}gTU2cp%0vp(|Qb@;}vdEM-?LB3J!mVCEr0nn^)k_iBz}%n46-Y7KU;RQe>EA zM`6d+kqO+#_f*8GaS&9;-#s#lscKVR5DXvHRo2)6`8zXAsflwn%$+{?TFr@&TpL(!ooUHhB0jYYWFVr4GqB@8&_sz4x4^&VSGI-!BMDfe4T6#G@TqFD^L2j>fZ z*VR}FZd%L?=E2GeaaNvegx>;vL2{Ory2!9Um8cM|8I?&#a!odz_q%fh(Y5u*l085P zS7QxWLjOFTCZ;_^)gFVKNLsfW?p!}8;QI#3^(>`)?RH#rZ#<5 zx9^)l#nm1Uf~R7%(gXO7c9{HHEFu5B(~_CTZ0jU^%Yo`nWiNd1LuLx`S#2dM6scH7 zf!BkBM(#nn-Fa<^3Dhj@%ecS;?Yi!KKke;nJ+*5Akrq$wg}GgpQH5E~Vakf+$`TLh zgJ~7}CqLHhjJYi5M2YFcHDG`avlRi?K92d6;41WapH=QuPWrZ!I1wqQRbN(hw#HR5 z1JQ8)lUBNgS4Nc;#xoB{Ik*o0nLXlv)@PxUd=?;-B5@`O@}4UGW~&8?!De^HH{3HU zJRHBc_w@{-MUn*n4tuLVu_i79luDmuCuQ|V-PblNGoyZ}UjF(JQ~AT!efKIPyCyZ} zxiH2G0_?!I+NM9c4*%#U*Ruh$$cWv>w6;l!^P3`==Y>&C)ZUDwhN zUR_cvQ5JCjVjdGom?;iX!FsW}Z=k3Rc!iz(XARiD()<3j zXkYgek@%Z6-Ous(*F>>?TD1SPbpNN>>Hnz~?LGfg470ScyHt31OV4cfm}6#H=X`pU zfZem*l`7SXL z0bQ{qD+7R$Xdio1uuHnv=-qlh^vc3-bX(7P8cS5EnC$D1eSHlXxFs0|83PNAAuRm~ zEsP$U?Y^|#*v~Zj(9Gl1q%@!v5eiWMOBzD>7Zz9J_BwxTm30!DZ>LJikTq1A5Z~f3gh~HmAkS#PfBsz` zx4*h4{97b3#~-n6t_G)5z~V0#*cYTGm;UW03{nMBC>YKCSH|c#8De1~>#1xVoGI#M z!d40)=E(icg}{mh15`wM%;Fl^s;q78g!aUd9-HH683Cd_^Jtdf%Xc3}P%x**WYU?+ zPzW639I*PEp>zYz6~GvSjHjp#l)5I-S4X7FyLShc-q=-Y!AV&%nZVrr!Yl-2!zW!* ziKC&>s;MI%T(k8wY)6dU-oVGk5g!9l=t=OMNg*@{i^Gz`H+4)eJK@QqX{HBC{Rz2#A${m zjkbnsTHwZp7fwAvtn_PuMVw>L?A8Dju14DHI}E63w|iUTni__acyTlLJxif3La!)n z6q3dsraqN}?DJ1uS-mk;0)vp~mrD!iAlREzSFM?k^TO$CCK+T94_=lCp6l zfB^`S5CceLQqTuZT@9S}-a~yOIJ=`%OWyYkB2nGGHsd+bmgY*csq{!+W z9oqa4w9f8`5nZ?pJ$Mjcw*180B z2rO&^!~n5`FzAyrq8^R!gAiQ{OEHC(ElRk-W2BA}c|^Shu3r+-HG2SG)ZZe6A{`?F zvyCWV*AS?)L_6O}?gEDi5t2~2*Gm+_@8f#Dc5X$0pFHAfvBVi@Tc;~o1AR-e&+kN z&*7%9XwMLn?U^xS?3GP5@s|G*EWD69Lro2pHKRcK{M3)VnhT zy)i5ffGCHh|J`;f@1BS`;;&wc`qds7*%{D~ulaR@;dH=yH6=ym!Wo@ zM9B$|!nI|A33Fr%K-Khod)^^JtC5BDISP4xq0aK@wxeWYiLbG<-_9MkdLMc4z$qA) zbjl+RHo%|+U}*9LORyC}27qxX&%tTQvC|2EN7VzT-WMYv3!T|T=sL*)-!8}kfR@HrqoF-jpfO{l$yWGZE#i4fX%>w5sK#eED@Q7# z$g%!rH5Q04HCB>y#W{vh=_`j@n3g2J|?UZHqR6X0X7OVHBCu2x<^$_uFokLm#;~}k%0jR1$4l@%M*a@m{ zwM!Oeb&O047;cGk=fA_=udJ>FfSY5D%t|JHG$tCWZSuh`Ti1*0c}3|t6k{iPMkc^J zSvQeSZDI}oLEJTzcA;c9YM4kOOan~eIzj>b`==5F{~4br_)Cb#*Y%eKHVh}(o)sbI z+q9%#S_gENW^0f>_YW~8H-o#KZUr4{hQ`n@dy;(q`fwf+$Grzm8sU%ueUM295duI< zxnLsjd%Ozy|A<4ik?>5}C(?1A0pL*0Uxp17D*tEL02`L_i$GMLmhyEzA0~I;G-*z3 zTNb4!PaeEA3{v@; zM2PfLIg>y~x9W&N$4ZDRZRp&d*vVkc;#a_k1)YnYvlYQreEAL& zo{WhjBgpz~;H+TprTi{}@K<&1Po3?*63+PZZ~cEx$NW=g`+vxY?0-s8{3mXd$>`JcySn76-HhTj{ChTNtGz<>*I+t&X76N19i%zZaV{Ixr=VMGkktdI41F_e z8H8zm+Vw!IfL7pKCdDa2p*{W%TOBG;Um@Vh!pt(l!Npd=Oz6W&)G!;dmeLLiw-5Mx ze~RV*FHfIeB-c3&{bB>e*mZy=AZH)ZUU}`XNeF_bI*Di4Y{glcv!bwDx>W%y%7yMv z-s(24usnCLUeox?r$upTQ{7wqfb=AIRJIqr3|4PjqnOGdm&l+4w=e|)CmcAZoaDdZ z=`QYlI4I)8!|yO0fOq)yS%=hTiQi#*Qb5*91cKr4RCvZKLNabNpJ)eYZu>+{*lZNb z7(wYJfz&6qK$I*5;h{Z&$b__N-wu>Bysysoi_5Z(6qz^P6Zgtk;%$}DfvwU7dFPHk z*mxm~bGZ6mD*Q8vzON^EoGLuq$9@ZwsZ!3mFkFsU`goCc7e_k#oF%{3N0_M_vb`CDg7EduIe9Dy8IxTDa}K=_k#l$^V-Mne07`JW6>VdPWyy@a6sEz zHVb$mr{4u15s7C29rgNG^gAF{&77)V*Ic?u+bmPxW24D%S!Yu8JDpQ!4M@icAE##n zB-i1Z&LKnV-TK zbDUC2oqly+$9(4&ofM)?fI8NVf_i7NZrF#^*y9wrJ+G*UH;qgifhX)Zw`h2H(BmHB z;6)zje83*o(H=|7roWx`jVG;!5IP?#Mrz){<-XVd95Gk3+T zxI?u}^xGoiT+pTmb}tevcp}ovuk8d%x;w;?L|b^`QFaOeYkYl^JHNB=!Q*~A6yp_} zpyP(}%L!FkBe&{&AU^DFN@ksxcbqYA<6(PmCgFNt+%3$t_{T9=b|66wGggJ;dW-kW)AxgHwl-mzuFQ`0!qh#B8X z3swyfO_p&r@{p*brG9OWC;3sEloPa*823@bpjjq9)#L$xCpIJUN^V!{(U=-vCnNa;t31(Jn#eJg>Im?7J|Wp$Mzz^OY%m;~ZXG3HT65)TBo z#iBZL&8y7Dd~81-j<5Dnklx^Ce^G-Y@qp~9!tDq1@8L8a!Oqc$)Fol&3~QPvr3XS@ z29CJ6XE59~Rj}H{NlI!^W-`%Pv$z)XXBQeBz%ojFD`CREeiremp+*2S@)}b^~6=sjnsfyga zv|5^Cr&`SFu<}dG!RcE&#g}f* z2<&8R+vT}@3G<+MiX;-S&lx9*+%p5@>&4XZ!5Q?%<982@2d(GWb*1HxM>X6iX^ZY4kkJxgM3mtVl584ehx{}DuC@d&;caW_}nlc|k8O8Jti z=z)y&RFKzQ*` zZL1&QmX2w;k62BSF`L)Jom6AFOfsr7M%jQ)(e5VMY1)|?{cYIcv*f<#7bmCv%>#E6 zU*h|$Xyp{tobYI*)di*04wk#Ckn-|N|J>Q&Zz;X%D#wSet6X8`^gZUB>HmSy?aj_{ zw`tc_d)bmrk2EdqC}MgfxhZ8B>^eIA`RiVmG0dqQ^8_P~8p*(Ou{hTEqidIun%(c@ zq{E6dy^K2*wYGMQz2e(vA@2VFvG?uqP_BFXBS}#trx2r%A}JC%O)BRkm2*s`LX)H@ zp?RcG!i1z0BPt3_PLb0%OC@s7X$;Dl8HX{>9h8J_x`>9=wm#M z=Wsvw;d@`->$<*29n?qH(5HG0$2h4I5~{9>{2a z`}(-sUl+JTE=rSsgO~l!(pE4?RyhEl$bmFaar)ymU?TItYu*|gOQe}h%&F@*BUScw zY}qVQL;kO@{=bB4{4@Sfaqcs_U>7|ZX)0E2+Yy5~@dPRvO#tJAaF(1Tj$8*wW8&JC zkgJ=C-U3Q#n#GN|We+jzW>vUZ14D@6kd)}5uc0yCn9uU%o)-GoZ?I8#Fr}4lno-In z3Qh-MMr0b~Ef8wH6)3CpfP4-|%SBdg-A%cztDB1;G3O|=pZcNEX4Z2oSG?k>Gm|jk z8+je|{P)yxupT{209em^-POPM+?90Y+q=lCyf0hQt=?@6KJ+DBzUZCTk#8q*Lu+KX zjz{i$sj(rx8B~wco@HnQz&3FTOte>t@P*;!Uu01TGx3><*$8n)t??-Tfk?-~MF z?>@dpb3FY_qHFQyg2;)(@mk);hGNc%8{2GJcFPC{7P3GoJuF#zYHZ`Yn#OU}ANO(F-Ua zLfxc>37|ziG_OBID5Fe@U}wdPb{Bs9`6Kx%tq;+kfXycjs|G05b07}H`gs3Ec+94F z{(Jvpoc*UcW^tZb`uA7cphw&O zqSUa&38;Ci{4j-m(xI}p!s?z*MfJ*?n+wCozfEjE{Vr<4=<@V5+Mo2<&!E=HoafC; zR-@0nGIKXlCfBrNzPIX}GV_*?w#8?y*02$Si zMFMa(YLAyr!ZY{AQ5JFbHdgG#qy z`p2fpEUt6d`7PE1O20jHn0tEWce(-h!k2#m(g&=E+Rua_pCO@@AaHfILB~BwEGjG1 zVmtOfmjBekEZ3+f72vF=^f=UL( z?lDM&KKA2v=m*TMobm@RZHyPLoy_WOJTr`Uqu@UNb` z{uYVovR@FT`7M|rNR>-1K{Ix^V&|(TiLE?>ua^??uSp!4l=Ufe(a0&5-t@_%VGm8k-1u_TR0^ppA6VH1Wuw;*iXtL( z{ZO9=QLpyZAMg025^2!4T&k~0Ab?*wU<)U+FOj@=0fmFw7OO^c=4cT`n9JG+Dx^3c zX2+k}_@K{B(&Tuc*iHiV@%n21n_(2#99JBsgH4JsJDrQr2AC#F{xu6Iods0Zc|QtU5WG4`((Nq?e2vwhD$rHB zx}EMu=8f0gxcM7g2XZfEKNfm28fO0CE|GeeJIBLwQJ(Z1%(c4#odgHUTzpmz@80TP zO?pPO zYj)R_cGEh(E|c_p(vF ztKtun0}eZO53i8UR+W}fFyfZ}ll@-pH8mj)Rt^=-ROByX#qCz@BLi3WD+xmG;vTt$ zfe-nNT%YHjST(rAW7wxvkS>q#l%AgVd<(6F#ZA*ZBnSHekwv!otXJU`lXN3 zu3ojnrC2IAvTWf0iGsT3%tv4N4mzw6}~)c0NaM-G?^AoanyV82WB<13&O%ZpU| zR@@YbWR*VdE!G!vZX6fGLr43KZ-##uuO4shxelGNd+{iF#LlfdEY<#bR~W3Kr>(N4 zX4{dM)&|@uXJiG2u(gCS0&64C_>%8#ZYk7p2mRLH%b3^JVN98^+X>ie=kkAzL2R?2 zG%VvLii0j`>h7WQjNWDUzP^^1+i;&{^!d8Z^S! zbZQGtGsGF~EsQg>s>csZ?gRj0Y@sTsTrqKnD4L_+qASY`pK#10=-R}AioSf~iCYeD z^SBwlZ%gg9N^HY)k?HZKbkFPJE%qa9w&e4VA#7q48NmD0<$R zUd^yWXOTwFB%hPo9EPqcmZM7%Hz$7Bf7d3mWwi2KsD_q`-98OxjT+0N*hlwKzee7$ zq0uaL5VC}@D8fjrC_(|{!p1<}0v&^;9Z~)oWxGCbC+S2m`PsE`9(FFbsZ9$d~zA2tNH>iqIrJQEB4<&H!p1yYlziph~6tl(= ztTX%v*w3{I@}v1HfW&x+A$Apyb?KP59*`5_U`*V>ES4b1vA&(&-k>bB{~6%M`HqTM z(ceimXljv~ZO}e*)>RmRLWs^YGXh(2!glKKg$*vc&phX%_b&>a*>t z6qAhV{uvev>rbRvkmmNR0->@n7*|=XIrjjF(~rMHCBUIXCiXkwW=diROJ;s8+W|b! z!Hfk|AgRxC)bju)`jZ!{8haC>858Feb=824^(JWOpcktK%T0s|$q{gAF9e4T458lx z#Eo882e#Hfkox#H{SJIa8l^A-z|zYLCdJBha92jpNqw9Awdw+ilSd0TE&!S<22?6q zN6raZg3taNN&5%jGZ2w-KlXl6(LuTX(y+#(?n^MXF8#9bsQB}Mb5`!>J9mCFPvQ$I z40kylU=?(xeej~*45@@UA>)1AKAmga9BbH&C)29iPq$SbiIM3NXzYvV^@`lB@Zr+R z;gv5eumWPc#tA2r8h5!}kL(iRLJ*JbgS6D*&BVjeKOOjXxd^yr6~~9 zP?QkiSx@F;<;Z*zx=8sGy?a?EYjtGuE>k5b3h}$ zXcm=RM)=j$esMp#&+X^Xofp2?VE_D#YY?GdUku4Off;}?G&$tti~{97(sw1K>{pMN z^vg@l+~rt6VL+sILwSn-r4?d0E0Jv_3d`nWUD=4~N+;QKc(giVh?kH{RlhbEw#MD=x{0~Mw)A`{?kl><^Hytwtb4x( zowOFVvK-N>AzB)Qx>oMv-TNFBb)#libTiY*L|q+y;SuDuYVI;@zJO{$yj~xDaIET- zOmK1mENVR|FL*m_%bt%U%2 zN%*BpzHb2E;?gg(DL;H(5=ku;M+Ac5CDGLXdK)Z>q?SZdT)$Mm{E?skr6Q?@e+6}7 zqTL-a``8=IzN<+_B8?sU93@#mk6-i7?=ax|I$Hz2ud(8J3|(fJuphV}`#eXsATG#3 zkndn?AoV=Rv&F)6bJ9Qs1oA6(0Fj;!S3vAX=I^nIfV6ZI1_{0l96+WUG*Sohf_n%r z=L|zYnY3xB0=W9Ng44|Hr}ZTMi&?)Z-|sjFQvCuWOrCg^u73$K?w?3ZFU%+%xJU4Z zK(y`Ez|t4+J%Wz{3(Dyo%w&M(jzV)Q$Yw7824DS5-~l`Z6A!X zVjj%aKWnuzlQ4GM^x;O?*Ov+=q5gW+`!rhzi~fu2wQTLm(tdGfRPQV-2na3Lm|2j= z>+O%#1HF8oWOcfXzcG}V>12!&R>@9QTG|%8y++CfEmKYcNrBSM+HPw)$+TeaDf7a& zBj}E?7jN(Rs^53!mP!(v79JqehRN;dx}DGkChn{OdhDvN$24p6<%+_fjvTyZ`@-SC@-bw1!sm)3Xp+a805;j2faMbhI{ddmojh`9SeGRkmz&je{ zuIEQLCzC>lEPICoSqFM9siduZuYI#g%22IHABA^Vj0yv6VL7_~XnRcg^(#}Qr0wQk z9WdES!sIr-A(fjGicW9Fuv^Z7oF^uHtq~9;bZ@22^qU-N+!b?Ci;uD;_a5h10i8tA z1P><&nDGHe;j8&4ya)nJpEAInU*39@{Egv>g?)-&GC@{x`D>ByN)f&TfiPL)y{PyIa1bS!`k{_^X)9 z&d5haVOKGykX0m_Vy|eJ7e#VJbKv&a1iatZ1M-k8YK|?-?0kRPW4*8XiGqhcBJz?W z)0+Wt;lqzT`Pp4$l_g8NQo%%9uQ#Zz^v#9QHy1D8yeo~HuKF);T7{t0=dQ8e<1QzS zSly$vIU0O1ch}sOVJfj&C4YxPNq9o2<@^@T$$?&AR^CU&hP-&!j2FeJ>+%;yKdMYi zWpu2Lzmgc4S%n!(y73j)Uu2G~GNZS5n=_-mqsm(&E`O}`;$``folgS#u=PZ<5C>DA zYR;6Mt<)-b22wp8Rd%{DxQM(qxysQ3UpP}Pa{yV6n{H&_*#uoad>!f>UM%za(TanC zXe+X!+BPyO5Wc_FyEsD7H5C-Ie%E*GYY$ z?(@d7Cj_@0dEFp;KJ494t)B-Fa3-_kF@q=R<_H(ayG^da$9~z1euSkBLtp!lAhZw= zb~u0pm~?9+Hj6m=oHoI5(v{X-*5qXmTy2bXYZ!#FJqa<+ZE#mSHfp&>-II>20*&?6 zd*(0v+3c5&xl7KK1~oyK*!TtNi6ROo-{%+bZq?5q z6xcnlZG@2RhQjKETRztMk`?(#cST;45|&ZPNx(C_tdJBGwt=?JX7pW{1+%QxSZVXHoZ#Q zH)Z%OcX_}dXu7jz%k7cYZ|+mtgPT8VKko=DI&`^8H!jg1qe7+vfVIdg<$O19#7d~m3EXMJEz;O2atQPzY2klWp#_49zxn!#zmoJ!w@)cc z0`seHx$MiB&&Avob#p?;W(eO2?!gPF?xZO=d>xQId>5P+Oaelwz!-KF$&94(=Z{^m z2GEB40<|+7L4P+(NA$oe>yF>@*S3Y$s=aFj$A%cGCy{$MBiJ;p>(>=uB<87VXFk{- znqp;bPMdN(%k(?&((I5#y!3|;l{P2BSL*1?`QS4W^isZidk9yP&H}r#uxrg-akckf zNThsFC-0xu8JT0<)^HMtsiRm28!HuGCr%UImY!YvI-8PV1s>$FR@pzZqyL{dx8m~# zzde_ItZ)e@Z;~+Aif`t&6ikk07H>~{zE2&BAvuXNZyzD->I%^`h}!*9_e*pjp0$9| zn{a%&T)=+cy?q51D^SmJbAwuh1G<)NnqKyTMDcbCa{bm+Pz$Ws^uNs^SmB4?*O9i@ zoCh@H>v{u!b$@dfhn-xkUUIP|?&puK#K(W~{#i}l>>h}0yKd2c%t9YhA|?jtd<-mzT}P%tQDN{6d3T_5Xj41_JX`jW_uzi# zs6Qt8)$cSeW})#9grv5vLY<~@S+TqbFl-3;=>&QL?=eekt_|QERzS0Dz*QpWM{i~C zt7Bjrz4;q`KT;Wo1!GB;0Dguuw1nq)0 zgOwBi1ajf}Jy8#&G{ZJpH1V0#LnJ`kmb&otOghLMPgIHXkcZ|-kX8#^m_i->n4uaX!mQG^d0J|;|CsMZw z4BqpPN0|p%>~ApPI~shg-yLK0rvN?_?*lr|4=$tEM8~+mq%PWP4isb6NQ5c2N*_84 zjHE^3d)PY|h7t}vudf7&32}7$fz5Da9F?E7+7(ds4@a}ptm)>oEX3sMEzIc7WYF36 zSu-+z?CgIebp1!3>z59ti{)ne$V~Vxu<-^--4f;_P;VwAJ_G(T22$9pCOi~T28=-A zGJJq1UIgH(nG2}A=Ebr$zxahk4n|KZL%mR>uDULQS)|jm8Y};*oPKeR3g~U;P5ERk za7T!-DLFCmxyFa>D%J-*q7DuADf`I?Mlw|9oLQvzFxVbx4s6%Pq}tE;zt=hXoz0DT z?vo=-zZQ%-Geg-WcyqF2{3^W7r%5%R_GM()JFC63%0qU0a+guc+uWz53yFoRyd5N1 zIbf2&GUYGz%D12iFlWV;+^0!6A92R80@N$2Jiik3Gl&Hy*)*sVhI*uAa*EbS*w?q_ zS{TCnzJZ`0J*Nz;IME~MSqz%VeS6G(zd_5i+E|mt0&49$sNN7UT|jkk&sVeSfag)K zmVNyfa0Xv5A*fAW%QOjyE{>|R@5q{u+jwU>DfjwjNQQ|;2hl-o8d@z;F+JopkYN04$P(Tv zv#xw^g;`I{ovPc7tr zVK0Q5uKCj^5@t70VW%Qu_=6N)*k(TIeM({oVvo`1neE_b(icN(uyIHTp(*_OcXmwa zMBgbLnYpZQ-pM_|sY+k;g<0?DPk+aW<3G}%Wa&BnGmT~bgWel=-^34AN;&LR&<~zV zd(ml_AB~h+r@(giN7JPrz=Gcc5dM|Ng!>_};yth`n+Pl8`jkWRlU&8k#(Hh^73^y- z+4UOrM_Zp>IjRz|r)GVhSdH*V^c=|VasiER6pmKM4topD>p^>^YJh51g&l?&yz&_Q zuN?tomcRUXsCAMITxyS@X;aE=jYzO7nP!;+cFj6J9Do$34|C7x{dk6d%1K*O;En7o zj58G8tpo@r5>&z+*=8?dR*hGGPFPpo2DhX%YNX*&o@x z`K*rdmQ`xWwo+&Suke9a<5<6d8eEn$_*XMtY1nng&0MKnM~1(Cx>SzSO5%I;^Y86CbvnMwl7{MEaY8qTnT$;VoEGIdO(lTb0+5!yB`1M@=+GaP zBrcW(cwPuDmIBo6r!f*ZDaoeoy9$`H4HZ{KG7AMavkkiJaaH?Qzm)EoTqVrt@@}nO zK;0BqALF7W+cM2a!=mC2;h8P9a+N9j6|TqjY6Z4$5dM~g>h}Z{Mb`^lqEYYmHfI{TS1ig8GH#mSFgP2`t+JN~jG|0n~XUAJX zdcK~U+WOl+yq`)h=+nISv2SASvOUYs<@!PWCNty?bPwN6mKuCEhDr>Y(TcPCti@}e zq0^=x<4MiT3+1>Gu0e`+;bh&r9koudMgbFTY*CK9z|0y>zWm1xR7q76Oa}%(U^D5o` z7?7pYYQUV_i>JU3Kcr*rNttux5y| zHUa$XH4KQR88`shHh3oRC%XI{bPf=N{ms;mpT7Gqt#sM+$0bnqpl_omH+n}Qr7^^L zxe?|g(%9o(Zuqt%7zuCA3?O%Wkj*a3#=&&3Q35+ZOq^d!8kZsmhp8j`c9UnCG1D8d zojN}(RKiqBHU)khQ_0T~@q*a0kwsPiqmi0akR>u>3R}Qm;6K%R@?a+j|6U#i&TXC9 z$ijeE%guBLW^65B;dtg@UFX4Hiat6?0L9h11{Vuf8NLQU@nkTy^gk$m`2QlV{xO>} z(S=_Il^T%y`{hAzvLqmNjxGCPC}Lhd2s5byQK48}J|K!3B@FJLxs0q*1=e!TRb<9; zbN1G7@-;=8`;W({suQy@lbDBoAhL)kWXml2A3N@x`@N#@9N#D#c8%?~VJh~qWsKiO zPR_H+=hN2e@rcPiuyvC?c0j-8>{)5l3S$jn_z6_5fHY#KjbTf$0@&9fYS^|)Ar3eU zR%buNxbpJfju#;pGwpkQeQ|D9RmNwc3=5APFs{#1T~9-C%EkwfUz_|dGXnpfHL&nw zHAJ6tTRj z^G7zNoG>R!rekW*5=02y58~15L%o52WTI&4Tz_m*?`JaC60d8C%k)>H`+s1&vUJYB zy8UhjzgV;%0AK5*<7Ls z`{M$t0&JmqRZA$-LRi+UG9V;lC4sTxDZnIO`qEMp{9oz?t+p@DJrJ+G?-Tx5ndr9t zO5Sp3R|Rirsf5gsYZIH7*BCL?*@E209GvL>b*mxo1?CAAo&vp~e6jiI(;GSO_57aA7pgy_eh^4HL5%sgrs z!&J=!<HTx?Opy=7pih3uZ%12MOf;77Tk3#gGklLb`cEf51|v<|w%f~gEo zrW4BmHlP~@BU{>!JK79snsn)H5aoBjW9MmB8MT~hjB?(<-Z}RT`vzc~=5yPmv_RA^ z1kGDYqVNH~y<-68{q|l5uM2U^Q2_w*j(rb6Pn_T@J)ip)P$47-rXouaMlm`1MCp|B z>zjvLZE&_q+BFkr;|?5&b}rL$t7+d;dHu{!{3;_`!{s;j^6IN!g1nEWpb}qEu(qxb zqRxp&S6q4UcG%JQjK>C-q*T?ND2`#=cg#AZ1DhFqYuv8UiW!$wqcE`PvlST?UYRap zK|KH6U-v~~u}%Zoy$-MmZ68TzF=L!0_LQivb+CJVz1`bl@2tG=blol3qlYXtMCp)P z(K@QV{}kWq`Rh&A7R#=cdOz~l{aTCi+VvCt%R1hh+&fW50?xzCkt#b(@H30Zm{|s+ z?q(yeOzH+k$@fCRBkW?#Y00haTBJJ<_zw5X2^{a_FDd7}$vn*6+GPFS4m&o+k{(&l zlCP-M1yaGfimSUR^SZL6Yc%yrN+40t$yHa%yTF7l_1WRP^2R*R>e(;rGZE>-+=+kY z6-sIXpH+1q$lIa_Q@Dk*em{+`1g7@G*=|-9re-*Mc1TGtNwHrj(d8-X#yR43uNx>+cFYp;lGFR(&ZO5 zUA7j)yc1e+v_!g|GbJ$(v%$}T=|=nT#l3hVGwC3$Q-%NDu&9T2tTXj3jXBuK2e7b&La4%Z#&(FP4+DjvW>s9O9d*?(hw;c~S`7SK+BHt=&E_2NO zqZ8&6JnG4_fhhd7-*(y5HvCGYl8gdst2$BhK0;8eS@R2$&a($*va?agw**-mo)Bnz zZ5(#33eud<0xfbR=xF^-&<%gCl5p!rQ?I{B$c1Ty_I$aN;VxA6u}dF?1hgCT!Zk|I zp4G7Aj5O9kkz!$c)@kG;o;%-Hc`a=E9^OkAAyPkXx|m7ntUjN1UG&q*Jl5*iIkE+tjB#Rb zr@CFh%e56`l$KE$-7ghV-TJUKs|Qy0s=P&tvMaM z+hOk6jr{Wu0r-Rd@GJ#P9!Jrvq`71Fe`BI?jXxa0_z5tbJQ&Jo=73>6ki-nMf1i}g zo1fDPeK^~(SE@+g&*L(<=rT4z>4I*paz*NH$YzWrYt9;zR-A9WOeMC@GEUL2cUp<_ zSJd*EKKd*Zj>~>~RX)K&x6C}(4mGbC62A3RylgzTt<1d@R!4Z=Xa}t9xq0Ll**D=j z=HtqE5t?Jv_M*Nur|R}Mo?y+YH&(mxupJF7*)E(3iNyz6Fz)7GdG|xxXM4}aZTyV+ z;*?i_jw?LEUzP8^8V~AP4%{6-nN^Q$9!%FM=L*-l8{slqop|G-%pRTKqkGXNUk-*F zeG5Bt=Vp@s2VgP_ZerAR`WNl7IN}d;rhcCwpfd@jq;`WTLo)Maa%Xq#Q^Q?WFL+-n zm8E^Nos^N;vqf{7lr#$lgG3{%46H)rU#~)zv*rQt#;4w#Wt!?YU}cWC4Z9?a&Zo;b zyNYeRu}pefb7 z`T=zD+d_Z*rII8%>8YPE-JR-Q5x54dik0o=x5K+C&nusN=OsBSd*0TAB7MqV2h=(L z!D)HfKXU9xraW7l^a;aMw1#85i0sfS==sgx{V}mVY;kbQHc(B+5X9hVB7@3DpY47) z1~MAMzjGJ-3(ZTo?-K6&Z-*8CyWzgSnCieB^B>@+Wc|o{0>LPeM;;+wiBJIOVAkIIY(EMk&-OttWmg?mFE6FTN*ZOIj(HE5u%6Y0gooh@$Zb_i@8DY9SaBqkG<=VVo^Y+j$-Fj z-NgU~UKPE7N?y5zbIys>21L}!@B@Be<WaSXZQs1nG7|Q_vz$7Vw zfAClABXTsBxz!wwCsgpydJ@@c?X5GG*bgLFC>b#~?B!#v9RH!4k6_X4Bu>6FbNJ))p{>$}4@tJqFC4tMvFGh7`EQ3086k)L zBBBxnRQZGVBEWHXK>7&}fwJ=~h$IOPAh0 zu!xkt;p=yI_BQLYZGJ|=8s%_wc6AlDUBdSI(O&D@oAYz{?ABF1SC>Ue3Fb3!8CnR}fN(2x#6ZWbB?j#v;o-b=!kI|$z2D=9U~ zuDUih{uDi7P%lF))5FGLv$w}Oc*xO%=#Mn4bTu@ zm~X5yMy;;r9_Jr5r8`$)C7`nuUcdcxnC^hfO~1CL;>&?Ickmy*w()!u{I=SX!!2R; z0Lqh;Is$;v%_kID5==Fl6L-U`WsqLMR*DeE6ng9iJ+}gz)mq|kwKwM0XuA81nXakP z$&hI+y~mFl)_u;%+}SQ6y+RDQsJvk&v2aKuBq|r}XV#ZGq9vxHTlt*K@JcxfZ+pO6 zeG|!7CHk<3L0iW|HE}?tUp!4_D}|7Gbywia(b?A3Z5x|m)r2)@JtCKvnL}(tGjKK% z+K)3;0kxnuoG-c~#4#xpX}l|J+b4(42WOokjfahO%v8t;*kCNpkQ6L_y-*!31mj-f zto>BWpH~Zq7|>nih-On%<4f;HmF;=({`LU0!pj%^Co3W}Sag%PBL}oq;^Q(`$}@BFbMoKh$5zdY=Dy3l5^nSC zNO*Yg>a^tLYYkRv-^BWWo709|m8^T*tJkQO+l4g}S9-ViDrq9iDEUFXXIHsj;po|Q zVP64MxBGm5U0^v$ZA3mdbNkKbGschjD>`Os1Fn>`q&iac6gaYQ;eN*5xF^@JoS~X#_y|DOW++IYEtI*x5X#{% zdk_{9)$6eB^oEPATUNq`D{?UBC+0NCAy|e~0XRo$iJxk(8LqT@V`HHu_2YxgX3s|r z-&?$@24CDBH#|;{mKK=Ui!Q|ETEjx;W~oR+e57N{71c4BlcF7S@$otFcQAm zof(o1UAaFRl_!T;0fsYXt#_`?J34=emsXt9u|l^g2Zv8nbuvEL;il+{)-;%l$w60S zMAL_v$|WLYxPaBOxvg@6InQLLwoRg{qsshwcMkH);z#|!I0!I9>ZC*)PhkWu)1TWw_*Tm3E5EP&$tZm*H;?to)Ab4p}S z1X-dc7En$^<`!;3@iLsx)myrN7{|Oz{TRX9@xgB-OpSk;y_NgpQ&)qvj6T<=*C4Ue zVfJRN*{MpG4c?j7Vl0BR?q2KFN_rr6UsE%F_=6sI135S!2?r^VC`jx=p$E<0iiu5k zczhSQNIE3E?Y>lQRQ?8kR@tv9p;DE znIebo9tOP2bBlFQO_Xqx^W?)&Pb7BI(+-$}g2jB^0=F045cdTs9=iU+vBTU`YS<#m8%(wPa-U~dQ+#lyu&WjzT}y| zZMgAhf~pjU8dJuBt2IPzq;8EX!k<@o<;!%z-Ma<8?mfoiEo!j`ub#DW64SZwRJ>O= zlAQ#!)MW6Uv*S}Q7RxnJjA=E{^mV=u2By3AUV3rG zewdR-J3c$F7?vHsOK8B$EjOdgy(z*_2Ikn~8<%Dw#@)cj_ zcH7I5;mL}dHu$~oc{#oY-{*%1ecZ%b3J`<~TQSbHhenKB(wmtUAk7Uv|43}CQ+LAU-@=d@!$g~;OJU?lFyyL_3(?KpaNl7mUKa>RM08V-c zI}o(N2!DHUS=6AToYAQEb?Tr6i5lt_GQR8zZ=UEIr5l?dP60yneg0xaCY2qF-*FDT ztXQ3C-mCv?VoiErzsE2SakAC?QGkPip*yvo+G1Q<8h!)(V)zQTaZ`x(|AhX15&8@E0y9X~t9wJuN z-VcQfY;(`g3nDydmKk}JMRS{WU){A{`%Isn(t{`OJ>=3*9G9=G>=&})6&sfIIvMwZ z{Gj@3M7#0&tevuvmyC6c69COz$UCc2YIln>T{Kh;m+pQnU+&qv!bbzqclLbij0*Rb z9U?N2*O51B_pui$Oj1HR_}qaI2UwwPcoyl*+yeD4!)z zfn{DF!-{q#ZiAzI!-St}%0~ZyR7$ z4=S#emFsh6rfOP;>~(Q!pCM^{YFv?)#dymO_w!{bc!zMj{G>+WIoF^$l%H*MSXEi~ z;80!k4o8p3G!BJB>$h;{fThM1k+Wlx`$)ls_C1nUOyjuiXs_eEaBA6~Bi=`vUH)8e zu-@~;-ZRnx9Luc-f?+vbFq0${0oP0rf>l}_Y`to|vvf^G-L@+!PJy;}SJoHoImSKy zdiHEd-!}6j=Za9!1w>S?Q0-aPhA3AKz#(o`OK&d&-gbAz4cXT^zzEMtZ~u$rYUDJg zClx(;MIFoFY9vRses9J{g8R0@^p9R3kMbr%@}$~VD5QVmPpO{h4VYo41(YYG5cy{_ zqsawSC}w>j7frDwhO)MJ)9|wDgP9T*2I9Vt9Fl<33Q~`C z7N}mo?Nc?!-u_7Qy^3>s?01kWi`;JC$5lHXr3Dx-64VBU&o=pujys@ho*$s_D`H}( zTPu_AUE*lMH(+RB(hEmR$>)8^Hm#-Pk^;bhz3WJ+PPvc)1)%vX- zZ`gTN?oqh0cBJ`bBaTzT2F5)cSfG!{oQ2mVj#Rcw62mbrcUkG{c$s%CO8~ z9Gj@-or4aR+7!#XLodcG?<~oKUS z-gwk&Jo0p>Z0LsTiOr9>dS%1PCkzfrNT;e#vgwM{+|Xj+4tkV%y>D#KbS=&}>hu?N zg_6)`5pSq{UK^u>my5sbK}&i+rpAO$Lul{a^fa$HKI(S2=Z=r>O{QsdhO4|z4mzUO zQ_s!#sP9c4ouj9MNh4dd%z?X?5FAruc1S6Acg44K_f1;zx8hmHC6mKGSZ37vE}|MB zK5K=tw-bQ|Lb$om+r&7%6LjZ6#>D#v$Qif5V9(ntBG{H!24oL&f5zl;kFlO3pU>kZ zVa*VVJ$OF@s0eT;ESz0!itUlz>+YsLwGKm^;901Ha8X2oiz~TE}PD zhpwDeaWJykJVCvqVN`$RfTcy7wNl!MCh2yLZoC2}W_5pfVLR~f{@d)_Bb;Vh{#O!YIs8r63G2!7py(iU zv|g;DxcmkC2`u?yA4Q;YB7Eko{!}dP&iQnaL*LiC*{O44rW&m4a(rUIE%rQyGG=d2 z&uyd9j=E&!kC~?OvhuzW*w1a{A~!*luoO<34C4Yj6TcIw&Ht7T{0kXQ~3kF2uw>8>8(g#y z7`fiTFkc}cH+=2?W>y;fB~1`#0Z(at{FD9p5=dOV}CB+t0l&p*S`Az?L9~7)=kmp zr8>poz8|9X1peO+!t@=_D;47&lvXUNf{wWZYxNW@V^unCYdX>38KxqmR@?mX zc5jHB5n?j{lg>Jp3U=Ch|)UD;`cL}Lo+wyv??$b+20ko>VGx@n1 zo#~r*d=1M?Du;R!$Zv(~#(4W$Y32d$$Nh9@pVA(%*57J+eSge1m-7{W0ZKp)DzBeGoysR8=xgsjS?tM+|bg7}!2-k>|%2@pH!EG_F~Pu|@+z3+M|>mrq3 z^XXCj_Xx9Z|AHX!GgIX6KZbn>(X2>wY6Te9`ccfZSuH-^`a2pHPDRWv)FD+`{A|I? zd(pKz_%Nt+8>WA3n#|%lhn?SIJ)rd4Lx;JiXZ}oD`T1737h0AQ&`SyEr3Ca}5gz?V zB%Obm7+*?2|DRSYEG3|S5U~D~5M27XlpOw7_JMz!1oVpI zm~ziI1IwbD>~k$~DB)j9Cr0|k=UG%Nd^`VYi#uC=EY?Hj%ESc=lP2Z3&UXFUupvN zPvfPb#o{tUuUp8kULlrH&vVSA4`wZxd{Uh-MfyAWF>0i9YKJ`;`-g ziquC)os+BPc*xX|!>{f1wRas>+^S$8_Eqn_)zLXEY@79HG_AXiYB<{0!_RGB-fu1y z?e68haxU!KFgvkN{$)kv4za-mz9x?8!>HAKKP_0xoEFYVzFT_E3?d`jlu6Dao+xSJtxt3E#-zT?IjeDmyo}d@ka7aY> zpV4?PEl`W|N1;}8n1Ug1{RyBO01|fp8bv+RnSV93c%$nZie7|VPO1((Sk83R(vOZP zddP|0d5%J}GXIJ_^r$!MZiRT_Q|eeYv)O)VpiU5f;xPA6y6_xubD-Ivzc%d@U|Lrm zEV}bHgL{(Y`T{ENAv+W1g|&|Y3sMFKezX@&1ST)&Ks(4ER}=?dL)l3Is?zUV>@dnTvFFFySXtpoVgu;-`yA|-ezNpq#e0~RJ$2%rJD#^r zJ7^ugJltwkqv$z%Zdze3nXx+`SNGMPdb+OJlXuGkYGu+&j6Uf(P?Y?az>jk-2>>El zP)#G)R<{+M1f+xuic?bLLztd4%A_X)pDoS& z=4*qKtvN-zOG^h7y)JJsoIZy_5-}&S{;^OA_Uo)(WB=R9!u`EQr&>^g_h-V=Ia+&L&{P4qlKD3%lGrh@>J3s0q1JM}Yf?tK@k%-;PrR_s2q zQWhPCKjR%x>pA9oq_O^_+l8~YIqH{RA~zI+zX&+hnT>v{d@Ip0W_Ny?^We4@(D!T( zw#iRuhc%|RZcf;XI6s*Oe8$}zxGp2x0RO|?%jLHF>GV7_NWUzxx>~I)&)x`|v1apW1@ALq_i4B(203AZDMJi8k;63Wqlj%` zGhU{bpQvU(<~l~t5MjRU>=$qHi{{?*humR!AIQ zOIf3Bs45cMxA#r>Sxn`wwP`BE%KBJD6E|N28rtu84rSDf)^6ROp5BQsH1xfAb6SXl z;UHv*`*FfXK`W%mQuE(-wz+ehIjl$R_`@p5JNrUH8KT{V)(Fq%G- z-rY$tjUsj*|Im<&u~M5>9yRV6^t;Nkg4OD`pAsyKeMQj}h*nIN>0Vo&$F7qho1l!pGaAlo`m?d!KK8UfeI}}n_E`%flcC(Cr+qhJE}bt@hSxa z6g7I>VzxsB^hYNn&>yuRwn$Ea&7vXoFAw}h=|1{XFf8nZ9I6^YO7gEx`oQg^1}syd z8jcHVW#90e=%1O(*^BPH^>c_W=He2P5T4$=vE|O&jzOl;hpJ;+ph~J`uRp-UmRQ94|B``(2wf~lf$WR z;-)J-$|%>8&V7UDQJ3{VUZecQNEv~eNrzjhQGr<14LOi{G&_sQDtq9lMN_}+Czz5D z*@|r(Pm^2Ic;=Itz#R6mDZ0rNwW;8)f`A?B&KeCKk=4Bq;tBn8-UUJ z&9E=N)ln&?3QU3n6_m9mrYlt0WXk6Qy~0c{T`HF5`F79^B}o@CFV=AZBINcZ*K98@9*7_h-hks>mozPe#1P zgQ;G5f4oFhh5oal%fqj^4SeT96^ULV$x@Gt207`k$cBpv6>?@5p_&|GEu~72d)4Kw zRk~(%W5oN(nR4Pclrc15i?G?GZ zA_M2DebwswUMqXw+YeQYSBLDcDhW4Rp5})S(`2X1Z@^~ow ze*Y0AOQy1vbqYmET1aIXDoHA(BE(e68t!Dxa!DcUl!{UrAv=?ONhUiXyFnOhWSy~& znQN|oU(b1-``q_k&-0vfe$P4QIp_3;*IaYCT(0Z8em?Kd`}6+5R)USkVvE~gW9s3B z5*8=D?KJJ)2ip$Vn=qtdDnZb4H=;N6vysnY66vi0ReGrCC?7b0-n2aoX4#E)nhI9Sx-Hx6Txu~8%b{;gS`d>U@tqfXlw7A>T8v86PYh7JUV$(kzg#CkP%U^xQpZQk5#zOyN`CUKZ?!Wl2|0h3x z!rlKcH1EF>8vXgd{`W!g|8#J7Nyo?fOOG35y3V&Xtrpq21U{P=FDxjs9S?fH^6B+d z?KJ9KEOF%%b3^aEhJaNn1$=7%Px}LdKOyjjy3WUWxdzifCd2PDt4cJ9#1i10)dVMc z0qN*wqK1Uuzsp8p2VnVWXt<#muoQ73hRDk;#1gr`A}=(FhBve#x}1RQKDio$Jk`eG z+nL}798RE8Rp}6k$p-wcH|Lr-=VgBT4Bw?y*)mdyBZde!0F-6oXzZ+BnQy4mE;($p zsOd}Wt(KLL6l)TDrOR(*$n2Oa)n&>YQN+S<-AuEmkjy1!q%RBR7l}WMxl%zoIQb9 zkgTzvvxgj}Ho4zQG{xondrBMKH$Fg+lD-*`*!^a+hky0i&Qr5VxnD8V^Lk;7fJ(h? zKEP`0FjN32^Gx|{_su>2%Mx^`dbkpLPg=rFR~^1i9yQI)tsJR0aJi*8_h~}xR&0c; z%fX8m#lrPad^v2Zb$It*KKb@@oUYW%ok_bYm~6NvhsjjXj`>uD07VtFuy?b;XoZAi zp{8u}eZQN#?(wFaI=@ae6~-w?@EO|n?`0WK6Ma0__3J9O!u$hMSdF|;moyilOcPm& zXQ2i@*brG&o*|DXbMnP%Ngtz=t@oqry1geq8!ehYZ!kCVLM4qhHa2_ElT5jD7+i(wryHJlB= zwU5I5amcB3R%`Bh8EIYR@9O4|h*}PI45{Q_AM2pgW zN(Xa5B|ZMKvnQGA6uT6Y43GTIHxJR(H&BrN{GX$P5J)?sUi^IH-eS7DVR}_SVvTpq zM?$Ub+!>NK)SqJf#E_Dk5oaqpZKtBsdgT_Y!>aqHw>~?aJSzB40U*!K0h}|8G^Z}( zsn!ZmGzo@UeJ3auLl%V=UwI!SPbR`bN6PEyq11^B)v%|v@-L%E!KZYPb0|jxX=-UR zbQ#vOOcvf-%S1zVdG9d_RT-p&=1>m=+uha=mUyxII_@j3+ZhtX2`RK*q`w&wKXZUDKk8H5 zo~t#Ix{+5Pu_n$~q&D&!s*94dRQBTKkZWMhGZI%u97y9CyU2O~&_SluCCJ*l4a=QQ zdlkK{<;yn|X%m+MQitm_MG3-ZVcilty+P%m-0c&tskoE3C#0t-9i-fGL=FKVyBnTH zw2a6QFT6?H>*~bF+dxtNBx(WbtZFht+995+4g=(LX>iBWU!cicmM57u!IT`oWsLzz zbah>nx}$??2PCUw=0-0SE-t4sx&LLQBCUe@vs^xcfTOLO`h1ZyY&rJ$xHjU4D`|&W zV6>Sp$iAUJr_O1kpUdY2CwF-Xd4#4w{2SmTc3KJPtzIV+Ic+K&p-@l+(zPIf-Iy|BEmY={c6Zv*XR;Om~UL z8u5UP?<@`Y6j@%D-sHdj9BMVi}%CZbyyO@$4EYq|5Mq^Y^~RPYr)< z>0ps*rO}e@^xy=y>wAkn&oZJoy2je7oHQd23esGIus6XdcQc2&??W=F(89zhBmkA_ zmWUl8+G4^pu%EF*C&wc7<&qiCcc&(lBY7kIV#LeUeRgc*y!K|DZfi`)QyT2siCPh*c?p#ei6enXU#kl#N?$^(}v?PA56GXsHuXfja z;H~avd9rtS++`-e`7Ut;Z^DW}q$nq<#9gi=HU$k@(%;iI4zXNv_gnT{n0sD)j-}vs zZ?U>{KDJCW>4n5IrJ?R>SU{lDezwa*B1mp|f-uM#JdGvW=pXPpZJ|5p<>IgqY2Q{@ zL3JG#-P`uJykF}Lr5NbrYcVrk3E!p2f8k`q_ zrJn9mgYP+1&0Iy2OiHY;o{IPG`HH1pw6o6S`7GgOZoIG#gK(R8K>76=g$tUv#+H*~ zj){VI(c|%c!`Sj6;@VR&3B;Qf zj1zM7_B?t6ZF^V1(~MIwcQ%+k8ffgs4z9kJ{Eoc+3i|fNPga@Q3!|F?ow!KtxH8Id z!PgS6Zzwa8+Yx`#bM#v8uBC1xy{UCN1aZgq1-*M9))m_)*s{3ph?A%JAqaV|ByE+N z;63JxJ{n~VS5e8Z0Dhn(Jxg(Y_%9&x2WtG3JfP-JnG7fh2nfYu3F0EJ8U&9q2$z~K zXZQ`KsyVW$6>dH_W}D2hA?ikt@efMF{~8$lXZjt?0j6juR9mA5l7&(+tZ0(=1QleW zf{j3CE0*P(1})xM%)$)8_-56;AodR|A0D`w>I|~au0uyKsRXJHVOdTcT>e%P`g+Ql zS&O>|eSeON02PxS!R3Px96I_Hvr@d8hHpIbm+kgF3_**HoJ9fXV z7mi~ew1k6p-l?9`&IfDe%(-Pmn@dZ;aE^;!&H8;<(O7CT3UW}X7y znR;W;j7@E;@+=O1)Lr16Z$QG#su={$66q&$3Cncs(nsJ)Vt)G<1bW~z%rK#cv@A(# zXY`VX5bcy^vx^|FODG$3F(cTr>HH^O) zTb%m4E2NDZVHm?4fy(f|-hInAl;MOc4!++*mi>l$@cb^Kvm#+1j$ZK2cLv@4XgtU8DfEZS z?gsFrM43h@j8@aNX}3TGE1ZS!PKAIf4Dz z8Gr7vKeY1C&iFYqelAmgTFZXUj6ZE>KlhBEd&bWV{4WOAPiyL5&DNjR)KAm)UtN)( zGvnvX`0GwzTt!sPHxvl#U4+W~2LIxQ;eK`9WQhlYE2E;IG_Ea6moZI2-MKX9wEOZs zr#BVB<*;pADXq`MsH+ip;qE51&$L4+!|g-q#4+djiypS`Y%AvELedg)My3+CxDyD5eRX~c9e0MmK&2RHc+e9dZP(Hpkw_!MdCTv!yW9gRXO{T^ zwIZV#Iy}#qBL*2L7X{oO$$Oh0{>6OPb?FnPZ_zT`TrucJvKax$1_eQ=No468iftH_ zakBzYlWrw$ehmOBKe%J*QK-?RpBMdXg8${CAa!EK51N(yN-+YYC~`fH8t9ga_>f6- zG+^-Y&>Ec9jk~=YQkcK0fr8FFq0WHaH2+N?i zkmd(gd(m)U>i>bN7=s=OBVB>|!w9pNR9!*X2O!GxDTiV2??vH#u&)pQ_6fez1HiRk zgm#js`h;aQ%md8yS1iLeHwOI>!2k~0@&Jj+1rX@5Vd7L2DUcBGJ56||#jganRlwLl z59(HR5BF`SMUw_~19@A~B!1BIS~OW7^I6O{~{U zT)33(~*~tqPdld8-&l#%LOsm7bWS5 zZ(s>lq9^~*x;r=WTg(P^d1`TfVWRXXO1*iPxvQc1Sb`5W!)6B?$92bb@*tRmQ$<<{ zIaoie1<5Ze60fv;E%MxTE2q>oo;qH4v};A~eyWsKOj93Ub*Fzly3~QbGoV7nLBzXl z|CkVeV0y85g7Mchff23p$if#0hw8}jdAYC{Ap2=g2licch^I~pJ-NMg;SveL=}Ho4FCHP4rX%>$xJfA$8p5SG7?D ztghdsn7$of-V`q9%0TQ_Ls~F_T@FKY|`*JvIFY8GxH5~B#qFefSiE_^jIO?hRBmQw%%QoS!W0+gsXv( z^x8mgG7C zZUG)hcM9Xt#LMs+E38YW=XAx$%!+=#sWa)zB+M~Ffr}TWVdp`kD9OZ#X z7Br4y>=Z%4XyW)B!qp7s^9||{QfPx^I2I8{_(-XZbQx{Yedh z_UtU*vLKLimXikZk4qB=D3wHEI=@9_lTt8KS|YPlCH}gHAPR48Dl^$jTSFPZRTJ6h z$O8OM4P%(=k?`q2_q*lWgtF~6%s7O*l4_&38vf-iJvHI8Knv__Q{s^V2PbvO25H>- zpn!f-{!V-}Q)&4k2*p0z;-gukn7jNLFoz~t$vLDji0fuC50PR|Bj1w`@18!SH?w+ni{q?>c~Vzne@Dzs1rG21G{t>gR&QUk22a%G z>1L_O7v=T4*G*n_{Dlpk@b2_h&!@j&p7GS8`8{6F%eKif{?I?HD#V@l=-}e@`+F9Z z=1k@GUIQ}O!;kyI0T&kHfod}2A@VB{5^UU?rtrJ3zgvG+)}Y`1puf0+X0TW!@0HHccvz!-`80Q`e-)2C`%|UGH^0WTz4t(+*Hy*HW^3urL-e+xQ*8>0wVPd; zPP+Rnzb;x-caT=4GJ08s>g#oAiHnvrSO1%m`^LL(N*T1ayIT~#t$!ilYHdzgzjOyV z0oE5V{(Mi;zkII1WQV=(Z{6*nx+CrKR(#RtzLZ8$FOj3NjAUY46k>wye+g2*odZ5# z!`M&LE_Qd(^{O%x2#{jHhR>hw=e{YA{uovtqEi+hQaw#xkWR~Z-Q=6LZ|(4UD>f^@ z*P8=HZV}~dx-GS?(hOU2OH5s&b@z;;N6v=*l6d|4Rd;(H%F)wZtvA05udkMl){%J+ zX#(EKO!rYeuu|Q%0~JZ3b!O5fr;yN4KOR~u?T;4rbZWb{Q|5Eb z*J0XI{m4yrjpquE#Doo0r+W_o7H_Tc)KGsTU6W*sd%!T(&JvwE%GBQpL7YV(S>8O>>&O8&IrX{ zRqG8sq8w3odXcnya1>MQt0_6RV2pHlZX2{ysEQVBF1{LzeUWGz;j+}xz#6kRH#!UA zjl1ONA;htx2-gkfd24SO>IEn}F+`!5w0=zDX4H-+LsNGkiq-n)ER*mG1)OYX+=e_9 z_UcNoUv3#Ji@vYi7?f&EZdks#1#(?NAS=819{WSHZMK0L-%u__z38GSlFsJ?TQK{(|^G&$HK zyssy_p2zk@xcAgb5gaR`P*wkYdGe(=`YuH7Hj81(Q* zQWAl_UAf{j7UNwfa=^!el1$${ICQc|-`g(wYILs;GV@e2M(v~W8)$d?(xypKrv5in z`F_}Bqnp2h1P@Ikto71a9(NV4+1>3IHlEtmP=L}2C7|-UQAk=++LV-GOD=17>*c2D zK~gJmP-kj-%PndB$}K$^VTHVDe42uB|KgSj4q-MUSXhD1e>Kt6Q?p&`{ip2P;^}@* zw&=JzONS*h3$oOY_3#vKHGF+&Cp!BdlNJ0OYxF-shPC-0M2?w*zvzZV;4h zI7~vqbOtYo|QX9@nh(x&Kh%l^0K&@>_-ya>ZLIy_CK zR2wCy4>2jMJF{Ff8Ho?yeH>L!v$_1q{hASjK;vBeN-HZ4j-%Xgul{5^V&}0~N>5ME z=1F~d5BY5PadmG|CN}hv|EKZc!L`AoEw5{z6@^>I+u}BW`&56iOq1PgHW|AETyz+G; z)F^#|3+VgM6o9VXtVlE@B^!4=UZGD&-ic zI9n0VmN3WAyE~4HWx}kdI#Dbba{~EspKkiI%65wtxB+m-Ht)88-W6FA(7F9n@ zv{Y|E1Usw=nUPgGC-zyt^b&>T7%{Et64rNq5tR%XVm(3xyGq|&`mpCM7>S!_+=tG-57GOeLh1A#V;`{wMmq3aj0;{JU6i7s8XqS@EAP$NHw&ik z%GG+=CV*Wf4cJv$Vo7IwvCqAZE^en4G(P%s3;DE@t`UP!m~3kja3r{q@Ol<9^G-%zfv zJ59G9_f?0w1j}q79;Z-kmDmtV&{G1A>#0e|@eBmzc{IB=x^eR&cHr`xnR1Lkr{&ao zbBr;PmFv(&(r9PnlN1IP(Kl4OnO-_lAtBVE?BM1w_NviO?g`8m+~O;Ox0f4 zOC4QoqPx31+D%M?tA)X$!% zh1B0F?DG*Z!v?pG+dOF)3iQ&O7(LaI=4=IjR_-ZiuqDsEqLLBrLxZoB1~MN>uchms zq0ope4t|(Ci5G(dn-P{{;gs8+O2+ zKr{h`HN^YQk5b*;H%+Yu#KcX5daPjMYUGhFu1X8CSSf@7Kg0!M7v*g+3@v#`Sb(k1 za~FWQUk#v{ykKH8&OT+O8PfEq*~m%P``F37iNGU1Vz`+3J#_tpbd}Zr4Cj7J{9UPb zJVc_yc>wXSTqb{@KL?OTP;@5TJVgbGp>5vKqq1{af^eC)uah^x5*}uKLlv~IR8{`X z7bYnHGphg%LgDJl>Iim)Yt3w}{HvzWulQbCD9#{QH^0Z*8aJ&#EL;?92&p<>-tyEY zquC@%|ILot<8lUiNj5G;H_dL8dsa^;F&pNIhud-|dXGJoA34gZ#MUpR)xAib*=`%` zzk7zlPCbMU${{OLd&k| zia*E9e{9VBY`6b=?FIwW&KDqLwUSf}E8sftPYsEqd8F40^j$bOT!9VPuP%D5ZFdk4 zD|VnXu$Bq%dHz8nQ_vooFZxJ|JB-}M_Tx#jx72}CoM|xn4W*lw%Gm!q==8TR>VNz3 z4^*;2Rpbf^_3R9{TVfR{3kp^})ZZ&HXV#u!*?P*rMQGOa@(HODzn-*na)-KOGC%aM z(gT7Iv4-F4ctm5V^_UzYYa?zG)bGENBNk#fj)yl!4s5D~0w956>ttAiYL+_?tousj z;MK?rtr<7Nb<|rzGez8*_Fv(@8!gMebmX_dGwDb5l^a08QT~3tD&RFE9mqkN%)Jr` zw_wwj-DKTahh2&<>Qb#e-yi5!?%H*3-vP3IBBw8?`Kp0=wIT#D>`A4t?xz8G!qITC z0at^)3t2$j>YuCnFa?G5i-QGQgU{u-hM(qJ-XLh9Z}j{%3Ux^OB^!=h`77qUVy;0- zIO+w5uBEedJ6eWb@ZpQ^^8H~?&!vY7wQCZBIB0vt*kxDUXxybcbYE%tF0PwciS}3L zp;z{MogWy*Pi{KboNKjsA|T+nSbQe-!Xr`Mw8I;Eu46_;7sJ7LyyDG-O3OOJ8lr%G)jNdx^ggZwHQoUTle@m+dW)shNnWYQs;rEX-Ex_IlO zt2yudHKLxTt=*IP3e>MIlSOT@IDW2b7R5eq3@TP-Gi6PUc#=mu(njP6lBO#A*uOp- zc4~xqBo^QX({9tw%e9tXJfC}xxD-3?&^8c%er7G!n5cniLRZYtcVWt>)IXXy+*ju# zbvSgb)eSWY|J1FlCR!KxCj6{Q#x)scdAhf}rzL$9RDfCvCR7pl7hKwAjy&rRy`b%2 z%jYQRyKVWL*PU#MOPOB^@Z5Ce%DzMG{70!~fgVJgjq8Q_s`_-FpE<)>Cz4tH-kXGc z#8P!J8*C200>$#It;nZa`mgTt#sr;RQkHg9Z{Kw+?HnU^uglmew_*0#dle)ePtySm zo15Ms=7Id_=odpe3RO{AtFm<01%yj@Za~tz?UFpE%tNja4ihP8`c85w$RAQy#BfcP z2)fCgC#U6HQnHee-*hHwT;&+ne0`jJ&P^%(q$8_PWe*P<4sU|@b56;D(qfU76#7<> zf;S|<#!^En2(#7{9^gK#L(kbTqDt&p4;AGd%CXrp<*(Q)qP(h}CU<__Q+>?yO(uC8e?2ThH?x==C%=<$-_-JU@J>n7Wz;Bf@R=Iim$(i_$vA-N!?U zl8ZaA*3`HxzFv z^CZaJ-$rvq);a({1Lz|EaqT(FIVl6H>wO^2pLSM&(E;C3q2%#R9|*w*aAF9*o5x_@ ztHjzjCUoB&H*}3IpP)VX;`WP?2Isc@t?wZavi;-j4ChCfd~OaEX6so`)iG|jEANc!ua~qCgsEOlY5Q|xUOxK4p-fJ?gDRwH0qEd8_S^iUwDImUyWwiY!B->WX%Pe zq>H6Du7nw=L93B?NemeY|mv`|W+-wZj`qiD^)OGzAocbyHZ(raC-;Z%~&ijQJkh zN+fJACbig4*~RU%URwKNBx0LZPrbnP*%R!KK@DJ#AgdvvNt+p*iu{1TAH9X1o%FTE zrlSvYLVW7lEz#OhJu%dpD;lMb)l>|>p#RuyJ*0eBe^_e}D1czA5ix4?Q`huy^24sR zyC$!Me;L$|?3gZu;7)Adqnzf7=Wqz-Pl99-SE1~6h)egaFg$87Ndje z#Mp+6QuWANiNS8$E?rh^(c0owzxj&$b#w6v-yb|0{=137zR3TF2|5PK64uf;A%Pih zKoAhPzqBIQEu z<-s*1L)&E&)>D!t9?#&M+Dau~CYK1)Uz}>asWibgy*nevwsVWW>cz(Y_0F)w*A@TLQ?dqDBsju|t- za9Q8TOB+7=YNDbK#-K+nen2}Qy>R$rH_9=tvwY$GgCI?}Hkyq(8l02*p5Gul4A!&s z;)o#c-PE>Q+_h5H@N()JVfHQenwmJtIl#Pd!%Xd^VvexlywMXl-UZ)>mwOZliKYdO zT?zvnyo;z4c^HxJNCxrxhP}TOZa-&@KsXeQ7Ih?V(n(YtC_U?1pxA8Oz zk}=yr!v}e?56USB(G@NhG&_eLf@^lCU*B63N_o__p?pWp)rXoKK`b-+ZP3TQ^tjj7 z&7H6=)r>G$7{{j7{-)g8u|V8dYj!jQAoo|LB--by!G^iLaY~a~Vm+<+ip$d>K2ALH z@Yekw4Y9i?jtKSd6+a@Cq-w9GSKCb}#fKc;HTcEG>vB}n{EB-_*jOS%p93pKuswW> zCVJ_GafgCl!>;Q48jhJ2_jtr?2~XFr77s9Z+U_px*6%85nn;xVv6U-?Q|w-Ag8#9(&I=QcRjM%b!JP?quzw1i!p7JuSCyLHUR z-RAghnawCzot{X=S3+xdd#WV3ed4!Hwq>Z5WZ9XXthEzt%SzMPq9zu9wWdE~D*n32 zY&YuwxO-MlJP6bu+pAy#p}&q%&P&h0&kVm9r>byhMwt6>I$E(ao&Qi-`SlyX@Ui?F z;Ue7F^*Ri|fCaCiH@Ls)d!QqroA@p|sA0S+m%w&u**fF%J{yr^;a7H2Oz!1!VVzEf z(1Z|iW?_}w@|Jd|blszE)AObl-MVs2E;F77+w{Y=cAdJ|+%_wGX}#u{Ez^(KNa`L% zxLDMs#fSn(cr5a0S@fYxi!V9{(RLm=S6BBO<#@|(_4G`C@t$8&V%V3f=_)kRpu-28 zATh*y(}cdYa^0N z93k&nBbD5F{jo4$wqWpJsdxqDCi>V%DbSB%Dhvv@+B;c?(=ZZ`e6#U%fosKP4qXn5 z&wP&ug6;lo)`Hw?%0ZaBOcMsmNGUd%nVW zUBdl7@q!$GrJQgb4&MRkYbNzyLtmPAkX};0o8*AW&!s|b9aJvI^LQQ$7~JHSi{q*F z@<_}rvWYm~rC29+n^QJBR*3u3^{_)RXtKx(#E6)Y`d^c>{2D)?gZ8_Xm$~ppucF;d zSBpCyP@DPAGbit+HuwI>`(iivn!`hE8Gadh)#|IMgbGmd+iWeZ>bVdx)~0!LhJ1ps z!TFjkA%Zs!-ng;#sShaS4Y-45q%+@8H-K5RgIEFi8gEOy>n&+rT`jRW>w%zFpbB7vb0qUh0pK8v3*p_tU#?PKX*G+@cHGY$eA);9;Ki!`wK z@};%Hz|jZ&cw5M>VaBRRUcw9RWcjQysbY@Old9l-qHJ&g4)FNrn{OX) zd(+K6Y}TDAd1yc;C2x=R#VZ$PY;=O(%(09CpusG~BGf`%LQPx|-5QZ1?rkv*!)f#Nw@OCf^a$y^)*>gTT zO-eJ9)@D$X6uI4?b>@YGaKr_jYq!IY6W83OqZS~3sPu;OyU@cYJjJOceL#D07}Q(7 z;F0u*H4wB`*arjvf(bV8%MNu;PaEpo@*Pk{N>wuV{H!RF6;{mj zO`;znZcBbsgWJzkcZ<=#;}E5Fsdc2E8!|5iLjUNlOwYYljm)r2ZoY1%C zPfg2rezaYvTQmW$dEUmQJ2x^EvbMe|v{;{2Jusnjtjh5GLj{>r37-yyZMW;~;Y}U| zg(rMJwN^mfIUbw!`$W~S=eWddHf-E4y*4Oi4~lIMs-GJLoBcJ`P$l+;s8B1(LeK9& z;}YIqF%X>@(Q#-m-982#vw~j2&8%3kD8}~*vZB@H$ALyjt{z9ALtOh*As+`RR;+$*Sa+vb%DjpQ_0jMJIgkH=T=byz;WSC1gzf-W>jco$I5zk7R@Jf<^0Mu{bq5D9 zn3>xu1c7+JxqH}Ir`i-2I70ntc$mNgeIZwBUUFj!}z4{X%1s%px_0gSqa|48+ z-N-@DJuO|ZXnIY{c*Nq@r!6yLaAU6bRB^>HrU?IZSyL1DScz3-+HGtj^!O64Eb;(Z zwz*CqMdHwgDq$m&Ey~W#E?6bkgnx-G)sLvc5;%qo_b`+0<7T+7a8z>FOzm|?T z;!bQQtpR<7LpaA>fDcu6Ye4O`Ch1^bUTh!IrKj%ZjMWKbs@~(ZLurFsFACB<90?01E}CTGo!=xr$Q7z`DZR@5lHtu5+>4W3 zVLkhPpywN87q%el+z!jL#jiGR%hl298AsE$W$moUP_cL4)PCA~5759Rf|Y!|y41K_ zJe|EfD&T>A=TKc{UU)y=MK)emyzUBHts+~877bmE5m4VVW~M;*OYgO1RCc_%E-^TM zWK!Tvyd>X);K#WFtHphYlb=WgbXPvYWkNGNPgW!ed)l-~QJww#DwKC5erWC;=imJ7 zpuu%{-YxyN3qL2x9wyIY{xM zd92qYyX5Uguc=;0hcLzi`;nxeYE7G{Hj|6iBE6%CG6}S#+lR)l$!9XsX^{vwf82Pg zT0&GEkIusbKt*qsIk>61ag$s0pmuiqsFuYic9#ZEK+kbkn^=DQGAb>_)Hf`C@OACW z@RY86_dze{Y~yE#_!nxfB9#{5MdS(G@OmTlO#cJ4)WrA*P_`>2~|q zh0(1};>gjH6-jxX+at&T)(pMLoLVbYz)BXMnDsq`Fk= z?D74x0I~CG9>8~L518RO^dty*XAccPWyug#3AoJoCOUIoINqrPlx*J92P{5apASF zL&j9P>oKsMowF1%Z!%~Q5WKc|YT&^&MQ*heo8L3%SN%4i@q=Sj2-PMn&mfz&OS2@` zCJ6Q6MOmLjK_lTR|7e?mQX?>0dw1|#bxiA}5NH{LL9418`u4F1o}wAY>u$tp3QJ{? ztJPIl_dnz2u-Q}hO|nB{49DLKq#aFo4pZGeBU~>AJL@BK5cMO}$z@bcr$g+s5am-GM~t>hUkaq=!rrTo*3 zT3-7Ro#nN}7sW^WUs;x)s!K{}N#qQAvAH0}>kyT=_?m{k?;sg@zHQ_=zc8Hk?gz9K(8Q`UODqqWQFJVl-coLcUShBPN=Wx6d9t(e6uAcS?o~v- z1H8~r*mSFS=dvQp$<=~i)X{X}0A9pI{?nuF^Eb^O-XSL>^S%!7wh3)rNpbnRWPl$L z1pYJ6eNS$h>GfU(l^!Pz56b|G{zW{}Xx4EQh8{6w{IRq9paCdKoewZmCh=oO7j7e5 z`$0s>vWm3Gp~u=0Msk;fn50dSx)!wNKLp(Y+2*-j=uHaxvK!`_y!0b{ytFmBW~3{ z%ej9F!9$|+ZNXQ?k^9A@&1EP}-b%x+A%a6= z6E(B2<=#kq26O)4!Q!os<@?V(fVx(b%7A}z{~**zL5_l0TWVfx$uxm&Iv9oMN&Pkn~whiZ>WUI#IU0? z-%wkD?S0|5UoLhxYcoQhLX8AC3ik!`^YUMt>1WIQ95ahQ2f@!l@N*FScEk9&d;Hue zf0__Kt)-uK<4b-D8@ZJ%(={j_&_3Xl^FzY)Zz_B`h}g z>`Xsh8r`LJA@iN?#EFc@@%NyBR!-Iw#3={RcLtOXr6Sluq61@hcxyBM;DC7n=pXg=$<9*e{9 z?(e=$mY^Zg4PP-01i4BqhnkT+KoNQyL;rq~7GP5Rny~fr_-9-E-yH*h!O@=y&7LR* zL6ECm*!iau%TvTLU4&;7NF)vZ04<6GMwN~kDY_fQx(ebXpomXx1w9q1G$F8dXA#Ff zkzO{^rDouldO@Vgi-jN+W@0B2GWL&&aQ&kqW&g4Jus@_Jl+UoaH9Rf8I`DqKsqBGd zQnvrt-7(d+o7@9iSue1bChnn?q%sP3^^QY*McW?SWF0$1w2AfEm*d5Al)4b}wn=fq zYhR~RP`7~pULfD7vD)SbMb!TB$TDsN3^G}LeUS!&@EiQeU^9S!p1v-uSpDp(uYL00po@LV#oYkK4U>dk-FJ7fPyCz>Y zJ$h?s-AQ47tyZpH>Fh^2rzQE0ZQw8L>_2c|M-Rws!D2xwkf;fLXt9Xa+wi2!)>P8O zYv;biElMF=0(JB=(t>lOQY`0b8qW~g*Au-~dLpX9FKz?8x9;$+(D@5>n5$+U$u`Q} zRdLR#n^$`BHvz+sPsv!FBjfEJAGzQFLHkbtKt+&qWe#z}9Rphr_Lr<8yKZqRb zqiR2~=*%KG*lUf9mScDt55EkQZoc`v^c%{pJZj1b6VSJcnij0=2P-95&B|_3diCRqSA#r2M)6>?zCX$V>UNunqRbagJhn^J+z z@qaO(t8+haz;0u=@Ds5og+<}I{+tv1WwuMMLrc{&0pC#Bi9QOdu0wT|c$+LEBRO;q z?y}#S z>4!SYDP?JW8**Lk_tL^7IP%hv*7&DUZq7m(K^BqDQ@*30xQc$eG_z#B$?3BSs=OfA z?;0oVGp>#R^N;qY5rhG~#euKVmCI{W*-fRo#p=4ehPG1SNzdB)D`8&?7L{0+!6*c! zVE@L?s(q=+1}NV>nqyk-RjJh5148c#CZai;a>aXrEQfIeA%oswqHz(8PC#)uO=u)})53WiD9+AXrq@XZ^!{?j zxR4<3wxmamc<$_~+I){&sPt+#X&q#P`;0?2@;k?Tb$n(<**lGwQe(8(SKUsE^$KJj zL%KH5&vcJdG)Nnt^!kJb!8&vz^OW0*!5gg&Ni)lV<6XpcH0_XF{CbL7W#w>|oQs80 zwO{yAztw^B!f7wVxY}=e&MD5RHne}TG0_!$_f<9ZQayf5uGw=nm3)!*s{3=LgKQn! zs{mMTL8jjo=AY1iZ|mhUoT;;SHXBVms&njFtAqKRaw%ms>@cX(X`m))=+`JCX82XR z6zWtsL&H8+c(AKN=H6V!9Yc`jP)6!n(x9rp%*(&yxv|J+-v$0kuXUEOUk!E&b#xre zWVKgX#WX zn6KT+LzX1vm>w--2*vu@r%6U)`_9@9IfUY}Tq1{t3%m}u$SRMDYMABj=2WDz@FPMe z;sb+D?9pD6*?#{7$P$_NKEZL-^Du*o_lhk66E$ zKc}^?><9dlzsFDcPy0QI4ci}wn|0&|>*LO9kjX%#6u}%|f&Fdy#rJ6ebf6G6ug41w zUk4-k8%ohr9Qc!6n5Ka7QFx;zaiGNUjI?V$sLfRsB! zdlooJ#pZKOvEQ#P>@_4Sh2<@zjnJfV2X;Ql7}+PsRA$AHhJ9h36#=tLz$)HhORtIH zn;Wo%pUkXKZ8s@*~WiFWw5w?@%mIg4syQ{hyOiFIQje3N&saC<`FY ze|WxoPC*=KS&aZ^9s8+-v!ZcX;KBm_3*G@39({3haM(uRpnu_?=Z^z9DSnZxD&lG4 zzJERJg%1Ma2gpw2hab@jmuP>Iy6KCS{aaANdD9L>OLL!?$MXW?wd5PKPA?)kg-uCI z&D9GTmtD46;C9XHx$oZEg!;P1*eUE~@omT^Zq4H$-%a`#BmSeP_ zlQnWF)K3w+6O^+v%VW$oL=k*YrQ4 zDKYpyws@k_AXaqY)p3rA$H*)dI%W7pUHUrh>E@wp@5jbi5|rC;BP3a=B%?F==^E&i zD!pWtM$TTLAddssUjlHi0qg7Jlw7^)UWKQrRfQiO89}GOnRy0ae)#MS%QM|f%Ianr z_BRH8`szrwb8Z71dFJ`rzxfXJ9i(AFXJjD#@L!IISin|sPDO;hPf>W_ON_Xhq}U*! z0jtHm^chX3<$=ru!0(O;qVD|tcUENS%+NJ8spaeux5WN{RCyo{!z`q|{u_4i-?EW^ z{_b!45I@`Je_#7>4$Z(q3W&}okp45NB7=m#ht&Qbdv6{{)xP(S?^2N=63LLAkdPFS zGVDr*IFiH;u`3~j$}ILOlFU<5ik)OA!_GW}ZKljAJ45Dq+}pVAVflT!_xGH8?m0d8 zd!FZe?!D)EzWvo+%WB!y`mFW&yk76u>-ElOY=tVX0pBoS&C| z%p9t3BFq;q;^!0z`^&|lN>O;T$4e6@EYiL^)z48}?BSEF!r^iaD?_p%|H^2G*U%rlSD?MhpCTJuIE4I4`dX-;w>St+q@G ze@NFGlHFy0R85p@o$8!nSD0CTC%rhq^OcjayLk9G<^>f^=T2S8`DCIoni87)Ky=@@ z0XyIHh!`Qoe%i?&SVpz%+3eFD)Q9=PnrF06KCafhTZa$px5vrkEh*gK0{*Wo={bjES5m6zSg>arkvMhd?U*vkPHND~tFfb12*i&~?`oY6j1-xWXjaPl>QnT&_QsG0_#@F+X z$-YJ<`H#m&o1z-p&a!c|)C`Ji@K@}rK(bH>Fv~32u?nrWh1?RHQ6;Cv^cge{#J5%FQL)a8!+mKb=Ka+`I$e$%k(0SEYa*3H@`5ns~ z5+`hx7H=FGwdH|w9OG`P6}2Y5DG8u+_pH3janp6!p+{hAPy95np*+Dh1iow(3OX=c zp_%oA7;%f3lyMlVu>Toybwu|Bl8rJyBoT&{uwS4g4efmAImBV?$Wc3zDZP0njg!SM zCyiB^)xEku0DFXzKGeg>gitx3zg`Or(C8Wjs?) zj1S^d@!6bl*-s`V(6K{V_GaPHjfYbE8?In7zYSpl@(m|WF|A%W#~hEXN9N3h(hhn{2UlOK^&ASlnAuY3vrF8n2;mY^_{JJa%QM6G`M0&;~@42$!V7_oZn8zkPH|l~NO=|l<=z9$Xq2f@{V5Lhq zi^|(bc+Ck2OIRCK4bgVyK@8C#!ei=pBfHn;L@1(DSc4$~tqe&Dceys}I6(%w4^nlU1FN>wWt2?^gvj~S_<9y0-=3PhP_MQ6)RxLjOxAYw(ZC;9;+CIB|93`?_ zdd$W+NK^guR%8r>K?)LVFdTri(R)``a-!p{lAv=Z0RgH6sIEIkB!!Wj3AfGBZbK*P zH;v^!IxCQ8`i0V1Rjx=Z6?b1L6BvFU!R5R}w_mAV(P3omNl;d0GA~_peAPq0I9WMF z*gAh>{B6-4vzV^ELfg$zzTQTjgEDR$R~rLGCR?Nov!Cx9YMsTLAkHfETpZ6o#(sCX z)xdl+_9V6zm%o90@cH9%v3Coj()lNEEDaINmUnj zeY)(TR^=xH4WCE`3pNX?+y{+hP>65^n3Iza6X(UTAj9i7JH7Y$zzeX}A}2U%;VAAE zvQJiR8-gmqE50CZn2js}*JfI-Beaw8!+Qxu=4joH{ARgDjZT@Uh3az;bniSA zKiA&K{>GsF5y|LLgw`#L8dSX-ZbUBW&{Y9C-wyeMlo=EoY9!S|9j+FD;78(+J?~`XZA@MK{DH8h}l_r|`d&eM-2x$E}4-^=yk!>!6q8>J`W{;4mb-+OC*&vE~LP7SR* z4Oo&vH39`Q;${U%zJS+bU@nE^aWA+}B_?aAvTdLe z^U$GYVA+qE$1mco@I<<-#i;u@^3z(vo<8IuFg%tG#{o@aDVpa?J7jkB zW)lji3OcjuijhFAQJ+bmjjy2_$#LZ-X6@MPOLF+thwBLQZCd~bHZDKMVZOa!sxy^Q ziglfK9Wgyh_jiD%U*OI0-KBESObmLJaN0W-c;dL#?g6HJQtR%omr1|e=6#w8HAqb} zs!d)0*h#`6$`TT9Mx(whOR9yz>P}^031?;!?*t;w0~Y(cf>=Wc~W< zYP_@-Z9b6oD>;qLz&KfT9{w>-emp1t6~Oub^0A!tAPMtV!Nc}cZh#+Zf1Oc$7j+Rd z@A^&hFnB+FC#Cp*%#`_irqv(E{P(b!^dcwB3XtNyLI74RcL%_M#rTd7-;uOjXIe|e zx8o_|0rdFtSPh7idW9v+x5Wcv+WjKyRl%0dpbs7UKmkLmS%)*2^bh z!EYw@B+zC<$cSD@To$2$+V6X2iW7k9o#6ng-$J+E;;cj(E`;;0Bfd_oBLZQqEO3^E zfWgXtW-aJkug)IdGvTKrJ%(IuMzppddy$}PQW#7(a2^WP%isFSS_0*fu)NGUt4r2dN7Psx{=5`;P`4)R#3d@RP9fy! zm{ELJ>Z{2PySV#1ZzVb%^ChX;uQ0D1V?-x_V9kK@<@aZw#t=L^Qp>#G(Zs!3KdFh@ zDSBmW=L_1(RLDOd06)dq4F))q7uL*lQS0=r#o_s4F^_hq+7RAqV+DOy67Ks_PvGq zG^W8Sqt(G#XyRu3b3e>m4C!om(5hc;zvZVn?}nt9 z3zDjD_xlM8ySbqfr=*YSe!BW;R-*~!(ivmt^`|M7{n@f8ezrCIBb~yZ>1XJt9`i6t zhA{mUcKz1%MtL0(-snUfgW|n8191!cUr!^Og}>$AmuZc!35kQIB25w#5?X^!YizQ# z&~M#!e*TDgN4W*K%T-unO?23Ke)umz4rMCmUj9}l^Rv9}XGrPd+5&obpOj!M<2eHf zBNz-_c0u{}{BZTBMJd2RK5ZpPfI4~j6GA^`+@jG!0bmH^VW^zYQudf|nM9ztGAyY$ z`5M9MF#t`lY2M!p3i%&*bN<}}1uZ%R5=0{-8qsYgEXO>-A5&UO!;vcOc5YaxwY8`FH(GVP)qJSov>; zm7r~SCwvUJn`4}v*k-xa!-{B)n483rc{-2!MTcV>CF@2`uBE+dNLxbToB|6o(bUQTD|! zFM;!>{Klc}^!%205|OBq8mwmdD@Lrh*{wkg_p^tBwsMlwVO8Zu?*s`yROb&L)EV#UwVL=qNoJS zx0W<81(XL3@O=~-H4u$jF!r_wMAT`ZwSO|b8ucwo__uq@cK}bTCnUNSPy>3A3$}hl zMF5^<7@6SzXXtDCfBPN&41H0@Rg8e$KN_YIwJwbZ5k|P7eh`HE4Axlwi#0>E@F1+B zsxJo$KWoov3wN9-Yr%|V*mWj<*tnm($VZ!|Pj}g`aI%4La7-ua^`gqjQnf3fMl}`C z^2gt!3%472wyP`_g(+29TPqnEycbJAY`iP>vJ?;V;VY5U{T91HH9Q~KLUt$pX3v`u zAAc9GWZqGTREA~wX5J&s!yFj^P|Y$8<12SmQ2Yn`>4K&Zx%(LMa*68spdlAP?cug5 zceFA0Mj~7SEUWjGg!L$7^|+J zln64;0|?$g6PYM@3P8U(0%g?IM>EwD<+Ov!^s;nyP$I-hZLhZ!$tir9MKr&Jd@wY1 z>UQK0c3Jew9Z=(l^VX%*l9Q?+_WW>`$(=hb_PnF1OmIfL7a7|4F7V`ncG5p7H-1npzKkxewbuEwgv!QT|Ytd;<`k7wyGmAG12s>QXa4*&o+buLQpaxB+Oh?L& zi^q`koD=CifbvZ1ds3 zJ`!amvRhSsvElRkd78>KR-|tftWc9dZ8~ zoW0N3G(ndE5)+`9y_Mc!-&FdGja6tHY6L_x0op;#+tG&(ed8TgQ-l7|ti$^s71OM+ z;#OX$0f<@3^9RXC>A}agCTmoDl|c z(QSkb$Z*WV&%?V4po7nx@qhRY8T&@Q>~$<#M_BM-sFLX^S)c*L!oKPLWs(-1ryAB{s)d%9fhTJ6hEV}>IQ+Fd#e_}(BW+154!R5iq4?;}oT_j%-Xkc6 z$b-MgnXUrT&4FSFq(~{ihV|+Yv545LKV*|q0EWn4Ta#c~!8MwPb)Ed684Dy8tqPr7 zrcG8N~ zeH!5TW+kP+WRm2=1e2&Az;iR!`pwPq1ET*bgX#xF|2M<3AMo^lUs}L__n!WM=szI( zcf7>^Xz})YfA+72=xu)-M3-A`KB(%f@#%=k^IG9VCz*H07cS`dZ{?qp$3&t?~68rcEnrSWPYu&QRDm?EsUv!_*PdYEzT$(KXI8U&?dOZYFQ-|@eEM{51Q$k8lK z#>1>Ot3y;Rx<8Z^7+X`QcK3SVPA|D~m{sðl;NMNWW>*Ccj8iuX_4@Yig(Y zWzP_XAR|;w?W?y^Nq&3hsn<6LIaLGklUfzR2Rcgi2Fuh|*kT@=B(a}R8CRgAuOF{% z34h&VQ7w6r?ZI$2!2z;_x<70^IJ*=)S^bbTMTlk`5!rDnGtXwOmbZz5sd=0r-eG7^ z=qd$2D6wms`@?a^>kk`8OvhSQmW ziw&POJ@TvVMBzL|aA|yjq~M>X$O3ho-*@gmUq~L}Whrfl_%I*E;w?qS1-lqu_;f^% z&!D`(#(ZjDK|$2TM#+KD4|2-H#Zb`Y?JOe`$QUG(p@9Nf@(a$%sUXf~`08`NL|_1b+)+xz(=qrW@F>513~+B!Gu9tHj{nZimLXK2tYLd9 zDG6o#@kr(!z2f%#MkQA^wwlBGPPYUa+0%M?U2YoPn`5bkWN?Lr6*44~i4+}C zr@>}yrz%?CPu#ymXI>~`i%LY4X03C>sTU&)(3|5hU^oUcu~HwG!^5eZ4`#$n992+> zHL+&e`;KKeEc=D)|L^jaHsA^nje?=iGYH%TkEdy=8X&OiRZ^N>J%R zKm&7Q$+vX89?1vu(vO6^Co|P{qXQcFx8CvOkt?KS=Q3N)yojS)|0QAsyg~)M`N_VV z{_r-k!<^sXdl!4N*L&XHauADZ7W*(d9&(^o=Y`v; zc^WPjAbQl=fh3}dS>XLN=ux9c1QRoqyt~ypOqY2-PAbEjY?%8VOC3;$W#=|T&aP3^7viH zyv7`ql4UG1)aN9LHe6qc3u@X+aUa%`HZPKXH?y*;?P%mk>gqgYKOw|hW=K_j5LcgRw2Wu( zZ+P5Et?e0`KI^u2u2pjE`qm2Th`AH)j#7%mCH9Q0#797sA)3fL)|t3pSw3aQc~dqG z9%FHT9`p#`EFfMsix-kM&-Pc#cCC0QaB`W+Ye1QD87rNRrMog?a-wxO``orDOa|PT z`4}Uq*DdzJRyucCxem#t!bYN2(+umeA{}(q>&}5rb1w^w>(8ZVn%951Mr^=}fIAfl zH^gmjDhM1}b2SlBa>~AFu6-ZyH=>$p{YF6Ul|7!eRGX$hV}ZvwRmNZt>L9Cr2V{XqjX6 zCy#6skYuJ!-RdS}Vf=+fKb2k~6;}4ibm}N3W=?dwE>~)FKd^sx?Xh0^7e~u`-KF%i zyd6_6hUrc2-=Viw%e=RPKj;vkuTGFL3?EyFYQ}35KpCF81n-1oKY{nd_A%TS)J!d~ zGxm^D;aWXla?!qmzlGn%ctRNI!SVoC-fIw-Gs&(nC7+VtM)RlD;^T0`N*ElHDB!gsuOXNdt5L9i$$vCfM#{=v{jtOwfXK>5^yjY_t_1ay@^YDeX+GI-{}gg7wOxQ+s3K?i@3YnYnV12Vy;$vA5flX(rwf*0D>KI!?V}Ms>*f8rC!=my`uBv zZx(W0i@FlwclXTxE@O#NYudKb*Oj$h@n^o8Z{{&}!>3PLAU|d;H{YI<<~Uv@kuWsm zzP*;mAhcy}_U@Y(*P_qMYnD0>Y0WZ|bO*Un^aD-;ws8l@AG-MkYwu%g>thFM7S5$_59x2Ub3d+@ zeywMqBrhg04&=95wfV}og$?^*ic#4CbenhAkNhUScyGPshv5?)uhXmhw(7QxB@UwFx+6#Pl z4jimGsLe0RzXwhB$6&FQD1jwp*CLwol#H?npH)9gBF5U=6D-Zmo9{Tjt;+NZDLimO z`JDXap^`V3xkEeT!uHM^QnktbHBKA654W4uV7T&WvYfURvpX!B-Ui&Txw_?;d%ecF ziz~cjw|sDajx(ZM(o+iZh^`za7lxbiJ8W362_6q|jgy#GWE}`j=TcLl^exuoxR$q+ zmKBMqvqlxHM2wF<=#$evjcE>Vs>v2x)3DW-4J{k{>Dw%2;2{gM^3(QtbS@wHqGA`P z+VrGb!OSxwX}r^u?>&aHBZ#KhveIgh2cBg81m$$IM<#n8@8cADSS|ITG2*0}zR=8z#;rd(OYN`D^62Gxm>Jt; z!G5#G{xt(-U~p39=%IRNhrNwFZ+7oyv9h`X&I%S3L61vw)4r{>7+{%chYY~wBK`Cq zs+h?3DBSt%+HvH`CAQ%A=*5Mh^O|ccRZAP5yovj(<}!Dp@!2zbY0rc6;@W!xbycDc zT`<~x# zAa{m&d5Mgw*5@*x5bzy#HY2>3@{7nl-4%ABl~nR}1wWy_BF!jYLUtp}ypL0Y_O_Sr zd5M(1+-3jffSpO4(D=2=ld{{D_Uu#-d2@?cslz&b!Rc&{m;BP>p#52*-^%Jg+e!bZ z&skbvSwNn4g4bXp;@`U<*AnCa9J6xLSOYnEfF0O-^9YDOQo`M|o#OgzJdcRHVjet?31kbfNa`xVF?#F$*TZAYI?MDG;*vO+ z+=4-joyGu)w(UJAjN>t_4hZa9umD0rBSYRsU}c-x3dfqDmuxUCHuUYQ@L7pk%!*Vm zn8jUVAWfGaW^|2T^~3sqa2q{_r1Pf3dXBAdoiZn5hchNM=6i9sZOn`Mm?R8Imvc?o zM;5L$jfI1F*BXDli)RBv^*b7o4eRZHTvg{krTj_r-A=Gx<4^!2_&5QMI%6?xv6}`M z#P`MC=Rj_+4H^KwGtxIuWYMW`bwD?ICBysS>+nxt9%LxNZLHr-lZDNusSylduo>~A zAN|%pMGKroDSf;sU?BYUnpV&{Vr~fnqA5`#IL(?mY2c4q0etT~_&Neb64xI*`As@0 z`90~RC45TW$NpfxLiid>^Kw@1Anw6cvQyA(p6!FtSh~h#&v<=QR(e&RY^RF2+rhj* z@6_I{3d_hk{jPV0q$gnxtd*}GzRBg?H4s9qUoGHMlrQCDF=!j`>yCfWp*34SlTX9c z+7)}&)I#2bg&$cxu2Y7*so*17Y(`+fJ zmCmLUuw}iIBul;97S!>grpaWBZh5LRv*?lhh43otJe|ScV3$+J=9vy$wuMREeTpNkA9)Fc6Sov+n+Bx zd*zMC%P})2j(%&o9__CQ%*@Fiv32v^&uaR&%O=xI+_=ZZ3cQGQQN@qZ5zB58iwcik z-TaLA364uhc7D@$=8jv>tB8@f*37Sb)g=XGsIH|(w|K^8pLb3)*=LZyA*Jwq-a^*i zp3k16XW$sgU1^nZJ33VSfGFWlAi%h^5oO6on!VS<-$7d_fa#4Q^Ayb3cZqzsYO+_u1WTBfr-2h zyi$_4V!CVp#|RgAf0@nW8GeGMetIPn$O1{flx@^^nsV zA8{SQMi1+KMpIj*A7ShM zEZZxRg>IonwlbVwoE{=cXadr%`$i{VUa&?w>j4}}#iSGHb;qDd$0wKL6!&FeCI1nE> zQpm1S8|r(^f_Cu%f^jlavOPqN=ckmu5yVcwDJLL!8O%_n9Aw1-4Z20AdD~M$Q_JJ= z9uIm=Ckvbt&&+19F?(J!9u;;os*2z@@T84!K8Gwpx8F)-Z`rI#v{zqj+5~*$fyN;_ zwf&I?GlrimU4L~~y!4_OH>4 zHo0c8JBsu~N(;876iR^0+IT#CY#3$*!%O0%Jy-`X2f$%P_;7e9wi(*3cBIs1kl^RE zY-X}e?Th8Yfd|{RIa*6@(@L44p_exdqq-~y!fTv@ZhB+Ls{tJ~0$($qE8eX2s52AO z-u?Ar4>Gbxj?25E@$R7wBMc@dCnsB{-N~$@)Ev>?cKCA3%zIh;cVMFf+vg%do5_}pxR!#S{`(8x`uj5W@7cNBt1Cj z{jgoxQ;Rx@#a1#7-s(#37|e=9JuKz(v>$F(`=}UoeWpEg{_{Djpq^t__SByg3K=1B z5yt{I2??{{XK0`zQLRrEbP1<(7Oo?Prq}ctc$azhNhq(rM%RhC(Md6KU%GgWjNKH; zdeqoti;$R>lR6o~R<1^LKLcp@T*=8=ymWC#zJ=4`KYo#A+r}F*VB4l5vu#`4@%@Z|YAi z&40PD`xSNwXtD?6>&N=(Jbo)LKVi4fmGVh^zFFATp;ke$_Q3XR@fhDL)=zJJcrW5~ zP;nTk%v7uaDYz~ZW}C^!7l&}Os>2TF&BE0hHQxCM)G$5L^-&GcvdR4*7TsH{u%K~= zVtOe;3uo+p#R5mF9w5}}hfs4T2yAqD&mp!aH?0os;i?i$d~74l<2hUQ!2T`csoEyH zbwr*`9S3r-AYRnWRQFlD=A@=x{(Ujej|k^Qq5D6P%VJfo5tr|gh6f40FgHc5x*`Gb zapEX?V)WMX1mY+=Ri{7DA#mN+5sY-Ka8Lg7xNmZ2CKtEWNAWOvh%2M%bTehm zV--J@6*OpazqwCXf-HE;N%hr&=~vCRW;PyBKaP1ckj~VwhjbD@W3~d$6~zI1dDLbi zLFwrwem~uPcjm{py9|^DE@@4L-QMCRwIS_m{G8Oz!En9&8hM#UDHKjV5hO8ewjt_u)|- z{<-6k?Z#P;Pnu(VRkjZi0)?eIN_PyzE1H{`ezw|f)>9?dR3CLlMJlaP{xB#7i6QjP z44^hp3WuD6UFMl6f_kyWo%tr4&Yk2MNl1Q@z{_Lx^ohUGrYHn{a(YFT5k?oM$x_g> zJJw7K!xSz)vNL^R!6k&uHFM;@cwt%PNXSt|gwfd$O%X#2YnRDlxxyJ|nxKc_$`ul! zXTCHOQ}2~=!tQv)r3{^$dihy{F@gGhH?~BCHs9q%&w|Nti}P)F8}F-8Ijp~}dreb0 ze_J6dd5fx%!;^4Pph$TqU@MU#SRs6b@^nZV+UmiiQ9{hW6QN^fT6fJSeKkJ2>gD*D zwTPB8#%u~S5jiW{y{OfWF^#SablH1;-oXK~RrqjkQb5NYckO`w6-*K4?f6X3E4UT6 z#ig~t;pg)XI)(mMw5*Wqk2M0Pi z%(S8e^{&@#3=Tf_M2mfn*<^1-hUb()-P!H8D3az&(vtO0cU=gO&R#;#q?7BZE8lrcjNntNo8pCeO7JH09K!087sIx#v-P0q5R!dD02ipB z*=6&pyV+gYOJgIy5X_oF2*K~BG@4QZhgF^Hv7)gppO$Iw=N$zL)_RMLmW*0>+z_md z8*~=Nd{}GFeyEo`vFSOh^l~n|)q$p9i{bJ%dhLCS93R(bYr!2alUH<2Fe%!wTg=u( zpLu4Y;R15l^~wiyy79~Vm!3AVeEqW4KM1rdxhqMOr!Uoqq@6e`UtBcb6SbxD;O2~| zB=!efcNfw`Q1nap=->aT-J=|y5;JbntK-O`${*O+@F8bHbpJT zrfVButl_Vy+OHYKW2s`jvp-scb{z8ZzUtfc#u>iK<6&bzk_nksomN_}+mNHW8{Kzo>z(@4QbwmzlO7waIt? zvb3Z|bK;|r`!>6-e;JtNmYS>Vc`g7K9GICsLeoBQKt$Kx{@TTtK?*F9b$)hl(kfVA zT;5Q@Tj7nNcqY>?QZPeM!0{SgnewtLsyXxgUGfL7L_qmM_ssRLZuZnY6swr7o;mnA zeE4{fb5h-`(A{*&J${v&TzR^eTjZ$#5cy)gwMr<_G-(gDMT6+(^0p{*0qd4CJ2`TM zXlue2&Yu=B*NG#obZ$O_C?{Xx!yli%H^Xq{y(v#{eT5jF9wkmIc+c%qe5RG8*SCMP z^w#ih&cS)VeEe>Y$4;WUZ4Ud&im!yM-4waaBV_e#mqBlY^cp|og_@E_`ieg#@eTb9 z*^tM+U?F2xeP>upi=6k99bG5I!?uhcsJRx$$OYdomwv94M5x4b(iJ;w7BF?ObE_wW zEn3fR6%|>LKLcz+cZWL(3CEXiQ;oxqH9t%!U|k{j;&O?#_-;1yXm!e!#PXyShm@%) zO|EX!bQk%bDCf>@WtE%t%RkHE2|e&ueN8E>@k0B%Xwzr4Oy2o^=t7k#)c7jZ4>d{C zHc|vh&Q*jBF#kk9N2xgLD*+cBM+vrocO{oqrUN<8e>|#+HL41cx_h+ts!v?UZArs1 zo1yq{Iyc)edx7-9q+tivKGNNv43e9&{U*nDfu-Yc%mThX{EPm|JqB*6xKwvYPmaUB zx^o>d?JBcRv*-cW*$q#3i#|TwF(&zTM`%|qWUOE@)!9kyv=^K>Kh!rUaLh7NJt-+f zE+>Iy&wyVgFVJ%xSw6m-WeN3=+R^SBkFG8ONvMhD?=90NJG5>&++yR6k_3XMsp>>y zgdav5+XZd8f!%~{>ysd<1@Z@psVaPdlxgqEK*oP8AGfeIeG=K7#M<=a<3$y3^i{mkCulNn$VDI18VnJM!r;c=PWq z7imqV8m4kf?yx=E=q&oe^m2`gIv+Z4Rl24wyvdFigmo{5$+ZQX=t>q(WaTJh= z#myW4XkFzmTVR-93I{y>aA!Ybk)A&0(FkkAl<|#)t4jkuCa?mmZs|ilm8pLVDqWBf zgijR^mfO%-#90e|sO0lHf^Q-`dI&kB)%K05+`mTp9yj_{_-P#gY6B?v4EMst_W;eFl$g|Q$A+r?2?@EiYrv&&l;Ruuh+dZvaB!m@bf zd<97P9ZuknM#?|V_s231Kd$GW=Xzp6mfLUoykgp7f71{)Zvz$3X1{Io3LV4!wk2%a zf7c}Th3sWf+WWIa9BO4{F8?L#(CTrl(tFa_;Jcj9^P{Irzz&SEi3} zBW(KSPxlPR>K%OvklN0>F4s5AvqB=~oI$0V2U~ac2>MtPTQ6-7Lsb>njeEbA6s2Tz zE(y*G%x0$eYVTSt-#idPqWqekGeKJpeFucyey<#=^NbI7VG*f5|8I#%11Pvq_I~Gtkw>9pQ zYe^;S*28k?3TlXIe!Vb+pDd|`qm_!Xqb)W9FGLf%)~OPy1LD_vQ+H&nXr z#-@~o3BEJ=w98tnb@d{06jM*Q3tgXoh!rTk$7d+%_{vdei9Wq7I}khD^U^k*-9n;t zaaYJ~$_Tk%!OrH=;jMGnVH?%`_?S`-+652JTC&FOVBgm8VdhL9(O340-L-^nhhj{o zN!zQ0x>_JVs`{fBgb@+PpQA;FWCd)o0-+=2N-T1owcbf&=9LzT>)`bf-N21GzNpR( zt)m+6Z|geG&_Z>px||i7&cKUluywgPrHrOC(Z4O}`PRfo^|%ss7pgU3FRTdnI8W6L zcwo*gEXEhz05xdLbF2*I>u^7hc7ONrdymwdiF7-m7SAC*^(C8O+$=@KWcteSk>)xi@cJ|VePRR?2(*OUY*+jWQ0y=bw;XsQ~YB$^`*I5%1dVd+;tKZeX zqSaO^>%dbk)={XU`0C?WK6zgf@=5fpLk^eM9RV6@C5q(s zY%u&@cjoh*?J0*>Pt0Uu9IjKhJbT$)?{J0hab(B_j12Y*YC&rmTBOUE_NZqY8U)g# zrl1AxcR>1<15IdVP7uheNLuyUXFYxR6dGFY)@QJMF8jF#TCu1fCRAb@n1Ks)4bi8o9=gA`zOA%)lbd-d*rs_ghjrp$lG&wixu{3;CO|8x`n3+X%9 zL~J9HbT$~-tvtw!s};lxpLtO>`nj3VwL_0@gT}j=)+dglEi*QAAug-E=n^$qOkd#U{=C zN9Mw3`+~@vUHJM{BoB52g|ps0S1|aip?1O1+roHv?lm+Ay1#2~ zWx4|9$rqL(=Sc_3d^}NLe9(*SHTu9M*M$fhA^Clp5Ks9&_$!ppSu1(X+^~*lDibXf ztj807T%4Jrd+KzH>Z{1~k;cY%WvAxu(AE;h#zwnMtRjO;qmK19HQmJ!OGSt9LiXD|?o`I9j=g)M zAN9E4kZMg6^Lg$=&G&kTnaX_b49-&|v}W%N?c$#B5Tz;dZ@JLdZ&J~(&i|w#l`+bj z_eN9s9oNgg`WhbeL=;qckYK;_+}Wqel1s-Qc``QO1Ixwf%4CTuNC?z7w$UvjwKA?p zWuT?meJ@t$NZ-v;QaO~&n*BJ?&(G|+0v5Cgs@ya8R85}J*@S#-j?mUBb-xLQVcUqeedow-2c%@LzJq_uR|gjzM`;0b)U6g?9hsL{xV zZRy+RuPLt2^Hu)NgY29hdMNfa`d+YmTI;ExRS^Be+jRXKyTJR~D5vjw-5kDo-G2I; z*Ug`|(?hl*;V>mMOZGu2TT<_IT$09tp}tOe(Y150-ET9WKup~k*rv_xZ9T$5}zV`UIf3U+<%V7KfDXOlinD!cFR42bzD!wMGe6>1`4AjErOKuQsww*i&;D!H}&ks@rg2Ii=V~N;W7@@3Cnw z+dVjfZ=}d*H}{|>xsJ){IV_Yh2H09z9w^_Ydgl|Xv)L@jdAYY3BJa#6w_v4V z;3KmGc8=>y;Yh{{x+HU$+GZe=sfw->huhnhS%#VOs+g}oo66aIWlowhj-NHF;}pVj zcaFpg?yMUr@Vb1u3qO=nb}4_N{e9pBF9Xcyl~M}FoPdugB|oz9U_2gEad#cTnxn4B zJS>6=g%o)ieBc<-;TV*4KbK0tXml;wpZRT04)gMsg8Fp?`*T!{&q=A)B2E+Y*m)#GjGBiQcrVuaPE2&rpS+@cqx>}z~a~!EJy{f#FUC}9Gsm8hc za0JSI_s&^Kq+Vwg0bx%?fia$Qh8x@DW!E70(IcwXkTIWYjvV2Dlz8VZBj;LxqkFrv zKH=TR`PqEst?Wk?Z@+3+n#$3vj0tE9A+8WoE%qg)c28~hX-tbUq8@*MY#{{dz#p+l zbydRMQUxa$=Od<8amCA4{u>zf?C-tzJ#kFMe5dTgxJ+E|p}7NDYOl8r5Q5!@sQSEC zvEDZ_&ep%@rKW>LSx84>5#vRvURpz9Tt~IxeF=)GS))NDWg|*}{s!L(QN$$Zv7EcW z{8rLWHF2_dAWgY3o=g^{ZU^F*@zxWtRH>yv_0a5Xp273fQLQ$es^SlmbO!(s5(w*v zD{Od%z~?4(M`rk8Tsf%OYW1(}vjErUZ7l(gCeCnRQP4LH`BRT|1YEsy9YNK{yj2(& zT1Px=p`ut(39=OFtarEE$@5ix$VE0Y+j5~GtFw(V&0i~=DH#T^(b^eIGKysMaBj!S zE6pdPVr@4BP}lkop(rFfdMDnJmEab3oUlU~6CkYo8Q$eFe~RM&Lfz@sYY(qE<;H6z zno&##w4}?7A|g0d4pE5{-)6^LxC67qN&=Hmp&%aC#WzVwjqAu!BBdN|VB>+~zYDS@ zP`7vhu@Ax#T9b-{1~PDY;|!)!MbvB^n82gb7X^aC(+y|Pd9lvDSQOkQe3bD@#ol4K zAKCMzXUe$Xu5G`=jYu-e2UhmrRX#V}O4h%t7YX5j$9LPxy#F|?Yqe`&nEV~#`hZ{>x^ z>why05$s5f-^@Lr?=}wT6aS;{b}JCb{pVT#*7leM){=F^&Cd9rKN4}z{!+7GC+u_b zhY$D|j9dWrBpKXG|2wk*bdMg0cmyCW4G-SG+r%~wtdg^ZBk5fWrG_N+&yOcSrK6Y9 z_V2`8KYsTg?`!*UP5)`vl!?3wvwliIp!XS-h{Iq{FplIL5&o{6x$D98~^) z0--;C{@=fs-)XUJzqCL&1oVoTm<4+`Xyx!1XyREM0=AuAvWK^V^`L|kFd~1E{)WI$ z5suk^XYXB9>YMM}6x4dhkHW*hu<+1}vX)(wK5nxHi&!B48nS*T;9D%o|Hs~&$3xln z{o_+AC6cm5Oht$!d)7&XkW@qwQ^}qrlx55*lB^R#5+llzn6hS_>{}YU>}%PXv5aA6 z&VEPt_qp%ib>G)@-@ohoysqbdzQ5;t{n4w_%sJIA47Kz(f+ zfb+1tP=oL=Tr9rCGqd^)xf3(d%rh-UF*5A1+bb)xMsSb5~p<)#7_yD)GCM zKbCd!nBU&B>7*Coox}Dm*TX_K)yl6EnaRYP%`MwolmitO6(*ASc-Gs-phrUr9S$WG_VYQanXF5M9-}ZM*(g~3cn8VR+(<_J+r8m#qDq+yIiW_FH|cDL z(Z}oIVRP0@DW!<3#!hZVl|-Skiz9V99l=fR)i*0hG#5ISaV9rOP%1wD;EBd%4y>(F znj`Nph2kvg2`@!nKHbdK^x=}mE{Sv8eW)~aAiD5=Xx3|}f8%-BQ~6lZDj_c)*~c=P zMA(8opOZ7EvL6bE1n)YjW|y+?Of=#a8mc#Xa%eK+$4W=Nx=qVJ-rYV@ikvk~bJ=g? zM&I30WO5>Oio6)NGBaW3w$2srtN5q*0u8J@TiDGR`99@*+vhUuTF%KJ_&3O~e zoU~@NoQ@}{pY}mwKy*Z%q2UN+PfPPeCXhn{>pQ_Kv!?*hFJG9fH+0Xd#p~;yvv=j{ zm$Leoy-C#1Ala*~9kNdhzDCA^BGSL8-+N1I1D$FAB|6iiGVy0I znhU%`{^vqlN2G2sVjhVgdP$ASFRsNcp`K#^E)rSB6j}cnIm)j8RzLASi_!klDE`l4 zw0~K=_WO&`-~{5xbL5hPxeW7BfecgFX+@GK3ymb8b~84O4))bWg;{NW@FCp`dZjD#fh{bsPLF#huxpNgsxKNG1vJbLkl?j-VWljWw%x z3Xq(UHAiIlISVZM`gJ%>qntioJSm*2va#8z9dns(3b!Qf%#T_|(_&s72shxLUrZ@` z`EZ)!LzFS?2%*}jzlZv>M#g^lJwuJ=!cHC9*`A}>C0$#!ZtTb>xsR)??AyVUHE)YP z*DTmvLhwC)C9W|4N>MBdr2z5?YY{9P$sok>(5Qw%a+1@qp?Yg)6+O8##~+TNAOS1u zT8y+NpQob=XPneb&%HEHY5u|pF_BKzr<`>}edv}8t0iqG)t=@$ny|XG@TzToGJbod zo{apxDc!g6YyD~8VT!VeIxOD#@F4QEmGrhmpY^=L zbTX+%QX-{1^$DE&17VH#v)V`7Nj5s!;ZB$6KzHAsU-SqqPj1oZY!H==o3RdZJ=>Ga za$?}KQCGp(a2~NHn{RBm620AX@=S@v>++5fgYfd3rGZ->a2=m(JoJ8zU&Mb0^~L(z z@M5(EZ`Xo+Hux0exVYDXMx;KY#SqMo`*?Zue@(f5Pgu>1efy^kxnz-9bi49=DE+KG zJ};f0MHT5_Z4OMg$ZpVFE*i(fo@Gk#)5PuR@C=H|jg?9F?6 z8hV-q(>9$$xhfyzrsRlMP$N%=m#ow+LFrv5apS5JI(l`Z667_3BvKS*Y?00j0)zHu z^VwR6<9RzRlF5GAr__GY**5RFtx8+!jk)S=?=GS>y;&)GV>r%Xno&(jQJ{x*zfYv0ztaMqpAdWt5c*ATMB40uV^x$`bHVzur=ny#tNQmW~c>}Akdyw>Yi9#llQdc&DyMAr*P(qIaPYIrofoi*BGu{yKe0_1MWh(iwQ-h3duslU3)p`sG1X)W;yWrq_OC7 zU%hC=DZg#sMMn@CTb)$pLe8JbOq;`tmFt|x5pB=%`js!7Y zu!aD7_^bhVSYI-?wnoc^S^R8^BkpZRmx_l(su_B2yp(S4uc^X$Tp zExX$1UZZ(m6^wgiGnv=8@Uod7UZ8xs%tJRqYnVqrD!w{ZWoGt!YqW|!0eIyLu?lNo zmclqd3BhR42qVKnO=m-^H);bJ3Et1=C-wGYCASk)Q_2eouc~nK?fX(b1|B=$Dtam7 zmW_(3>Ao#oom`j9zL9=b^n4;u*5HCRj4Gl1ju(4rJ=IUM-#q{5OYFOUk^PjlExqH6 zpGca)@eAWB&cuv}X#oWw6LvulOefVSr%B0eJrR3%{`#^ zO+i($tBm6%^m<6V7vPLbM>Ek4+SoD>%AA9oKyiiMi;fYqYH2M+AwIogKJ)Sw&Jw}U zk4qo=>#Bp!=3afi=N;X3O%6Jk)$^&{HE`HCqAX{H4So*t4sin98@h9^(uY5PG;}fT zbP-uI@hBuQS2q#9yKk;R$Qe1pl|);7&;ul!=4Ma6Pkfo*hNjK0ZJu@wFEZv-9ffvS z29@hr%eWqTKWp(EU9cFKQ)Wk(W$3rwj`OXaDpKakk-M7B+II?fUv|Xj1+48vcP%L_ zDldHTWkL4n-c;Q~$_FDK^CNHWlA_JhmdWXtXd)D!S|q!o#%Fhf`m>@p0uaq{pq>1d{wOmW$DK2Zz(Ng!%O?dKgWy$uW z=40Y>0eT0Om6_#Cv?T@esXhpufM};MCWnG9*sy>9V&AxQrwU=Pb)fmc#i*bIvf9QS zVXr4S*fYMgcfzkE-i5QGTN%cweV#$p56F%$Y#28!d=eaZuh{5JHO!n9nR1GxrBbXv zA-7=;dyKn0=_^y!iFe$!^JSy__#p{vq(YRk%>^Sjza4}fVuKNM{4*5!ii}Xd_UK{| zfC67dd(^gcefgk%omulxleCiyZi~Hu8dRiRwpym^Gd#M9_QcS>`kEF~rGlbjDVH1e zEv0jX7bdiMz3rkFbhq|C8R-cyYrQeOq$TFnb=d3Ll)Ct6|02IZhVKpGWvsGF|cXWBJhb1-;7_N?)^NaEVB{50yJk)AcaQV&|pYW=T8Y zW>g;0AIMK~(~Lg}n8syI6TbIbYHjO1gyAYa?|DM3oJ!O{jo?xFMm3~9RJEoG1znSn zAsS1%93p7obA^{*`i3V9f5*Q2`zGbol*_S!otH0N$`9gwQNkvXlJ|#q>ie^w^KX#c z|E!7lA5;_Z=kxttH7NhrHH)%xqDYPNRSgI9UFgP&dnVOa7k=ImW_gbH>iyN-Rq~>* zy$^k$CUfei5T(=sq_OobGf82`P*3HCX2DqOwXs`|)zoZPs?U$1zZ|p@aRWQN%)2UU zM~=|jt8uGm^M2p0(U2;FS(!rQUqR81#yvcCj0?Ft58>V z6>G?q=jwODjjjpTKqFgHqn+mj{Lnv}T1W4>W9Co0Pm=hKwY7s|X;Pat+6o`TIr57J-iqJYP zP`1Sg2YB5pT)VU_>|AvJ+X}>fzt61QekkwX;>Z7YeI~Wc3A2H!VX-1RkX#Z9f`f|* z9ZkQ1;M%jSrxV%;w8KG+#0ucpUC#!wzBU`<+i!e`fRi$QqYLJb&OZ*Sm0K;pB+aQ! z>`p%|>g`)r#GbVlfAiD?J0)r>_ADTIjlqDJ)Eb-vW>hm8RzbhT??z3WqKGpCWKb&x zJrwzq$ktjSgO_iVr-t&WVoT4aNPquZ1>@q#<#r-kissn?O^7)CKv)_Be1eBr{p&)? z-_na5aH=Lc5Z9GuLXgy>Gk^`Jci1@y7WKV2WrJQcA=V;Wkd1&Og-%EIZ9;bj&HX?C z3I=kN$P6_{!I8D-W?$$MGVce1@e~62FRHXXID{?_W^FfvYZWB{IztTMX!r^5Z{QFT z*!_PrKkS#schUb^&U3Ed8L%t0;V`+^Q@URCGK9@x^QubkK@mk@WgL@M9ka3fZUl9rr-7 zPnCR<%CHDN?a|`t5`nVAA!f;q-yF7EK3k4hT?ypg@tRaC6AHaI&Cbc6tftx?=&kE) z!TQh^se-hJqjpgSext@JO*e^Ir#8)A<9q@O*;|R5S!&%w5)hpqQ+M3xK!xME8R}i? z(jvNEF9RZUq)3VSvc`SH>_r}I9crigsVF@U-fRB43!TgBJvGo?=mv_TKiJ|_?vPh~ z1M5=8U6pS^_As=mUcW8BYjx)yj(2Zlr_ny1bgD9C^<}P*xIt6cxIgL*ruQxU1<&p7 zKkVFb-x|p21{#LF6gZI}6Fj8Y@qucn-60$^CBQk)MNvMV_+a*)mvwtKbham(*)uuF59R~MIMnQ@v2RIXc48G-WN4oL%Ap^XpHn@)ueoPz zEBAW5W0vj;VRV>w1Xax`eIS1Ps4Bcv{y>jeULi2^b?F?WO!r`9RH}WVcVv6?J&5oK zmq*&&Nm^O&O{vM-_|gtJLfgQ8N^WqMw`Kw*;8dso^AF2DJxfOE7z`yX9+y`k3%BL; zHB&#*60Rd2Tj5t)!F_4o>lTFz=hThtpa5Q#wVd$%CmIM7h0WASTBXfH?yvPsMHh0; zB6v6b{TSCpcLtMDvsqA}rn`Af4V;z%!XZOu1@=HL0q+q2UOSEl=Ft4;SXw>a3rE|R z{v~9i#%M}2gmI+f2jWh+;fKj#XneJ|4<3*_xva>^@Wvl!=A!JU2=!+n=YILM0wlu+ zBq_~ZvHjjR=zTa?1I)bC=h!YJ0W`d+fePzFbXzi^@nNR-En;C^nC1dVGvlDusgKOJ zDDwEcwf=IJS*KMtnA=Efe{av{>8CVN9c;(Mof3qsIDqs_aR6> zdf@1G%M!MU0!{&k4J>BBbrJnpDV+{6Y$BU7mIlaRjD<3;E5L zV9#gJd4afk&Rx^V>!qHc;-akIl$le;`TEW>6+@iwS-$K`zl_oCloN|4(Crvfk2|qS zo<+u_KBNi&McOA1ju}nS&A{UbV92&t?>L8nI`kBR-T{pb<_uf!h>!CO`dCz!cZjvmsbWRZ|PgkOexrJ$9(#JXbI%+q9p}Bd>4vphZ zqvl6cU#@h-B0h~zkzP#hpmLD+r-*fDD+$Zf z-#g6$AR2B$aWG^*yc4NBk3WFy&U!j@!mg8XmC-N^A(PeAb?Zh>w#%~>V$ zHCBkFN%LSw+2F@7-)gZhr?C7TE88&%2LtO=ZW;O1c~fzPCsq66TP+ZJ9RKM?5pX{cw~^~28^m>(m+)TdCmn$mJ_{3I zC@|v|$$I^8Cy)|8`~b{=*T9&CTeLyr3#hfA<+m^Jj7Pw<&F14bxU#(eD&zXaOMEqx z&I2{_18)i>LZ%c~2Qk6_@PWHX_v1=%1;493_ixBE|Dj6YW+UPZZYTKsDTu!H3P^#i z(${{i;ac$Y2Ld^P4IafY!tgZocU%B)F6bf~yP4O(>^%oKh*v2D=EJ=|5c<}HA$^A6 zZ+%KTM`wOx;JzclZWAu3voLrHW?@+GU)sFCZhP^~Zv}RlZ_EhT<$5^M09~gIIa{fb z^EFk-x=%2BUGH{BdIp>??HIDT(6VQ+sx^-7?3Rq%50jjh#NqwDBlwLY-Z*$CaAn8y zH_>pv)^^2N?E@Ei+Ec#TO0>O9o3F-ceOSNLf8N?@yPw+@|C6tSPq6a0V5@%Zb^M#r2U$}LYDh_c2PybqQ1B`eKXLaNAbB6hCnq8U zi4#YO3yME6`M+&q7f0(Ep~Jw>!G)8ExFz5hRIE@={i`bLViFJ300ea_3fg*9#t7?M z@N3;=nqq(w;R}(84fD-J9H;STFl%5tO-52bta%eO(t#3vq&>TS(HoE%PzCapJ*&7G z3~9Fu=W|fXv+-*A)gL|L{~+(`-bL~(+_6x0B-^}Sr@cinrs1j0jf&h z6O?rLyTCn~;`V*$?Yb#iVkn=CVT&`{e4e-K9p?Xmxc8>pf6zZ*4kL}e3s<9ZEAr@P z7#DLp3!IdVHq-8TE+|^Wo&I)B;g)LeL3R1&I#?uS&emLY z#VX<~S+d`rPkd+;O>zq5iZIRRm~MSgs(N9w-`nG?2sRptx=a)Fp$t~+-?a}o%uHF_w`fqSwz&;q?a*UXVUk-hfD|8!u8t$ImO!$j;rkQ$Mb0g>@z z=&BZdL-8^3$1V(%tKe;r`G451toflaJc^|^@`*;c@7DciZ1dIEJ6s1=jKE4=AYSLv z+XOqnf=-&2fxXhMX@i+bb#`^i`Deljewyx*HHaM|AsassCg5=tVB7inZpE6K%RFA0 zjo+r(#qp-O~x0;X~&oFdpe-dBm;+auArC4Ad?E*_Kn zJe57OadQR0Fji91Lp^rN?8CNRBnByLzjc*QhqU24Vw{-AgPNigohH4|(b@Z$u$TG% z2f_{+x;C7T3%8^BlB=ys$bBu&Jda-3hCeurkK}nR`?jjJ##*BEet0?y|NKP(^7n72 z-M=~IEr0(FRsbvXt2Y3hh9?`KAE9|*B*uZFlQq7$brvg-`;p9eTCbU&HqcwMlu&wq zJ3+zzO<|^*)|X8hZ(WV8T4q!)Vj7rTp!%s&jT8ml#`i`WGSfA=n@4GE7M`ivG7nM) zimS3KuPMkO*T0?E1nkldHpYAM0kbl$DX``g;%G6QR+gtybV`Fu(puk>!l?AmwL z=oD&WmHFPR4k|F4yGZV*;&Tnp1KQoF5G63>c2T$V*sd>rt~{T;(5kWw)Nvb_7ZIcJ z^&DEfR60zuy&?lPnbtbsziT_;L&b5payTDfNv8)ElMCvD^Pev@W=utv&m9e*B`Kg) zkM1gM-SjoG1>*~Z)9ln^i(J+Bp3yH+jj_4Wx!Y@7`I8m{lP}7=MH*5@v|&oRUOumY z8IGZ4=g2J)B4oO7f*KLv*sx9G!!@hYF_%4_Dc@W$hFO*~Yi!3w%aRO&5L6Bk*>|cv zZR#k3XY8s1X_rHhYWBpVt&iLJl61r$J_?gX#i$+5u#D$nMqmNNwWL)6Ozzi$RG?hW zeVMVw-~*G?0jLe`T}UpWIQ!FBPh;c<90QcKeV)uc3x2?1xFC4}^N}#?z1QY)*VpHZqZvPJ_;@GH6hx6>#4QY07XdaIW6C z^{gP#k5Ob3(jz=i#X$_3oRmI-+&XJ@IIpnvkz7lfLyvN#u1sH=a~Qd9L}~j8@e>Dn zw(WRhZ0tQdh~ja2P>mJnQAfY499`tNS`NQ)7nRjQ%ISU6X+M5(urRYKLT}{OQ>jkk zXguVA+&Cmumv^H^kIZe4yY(YrhPMM&wb zjG`1}fKh_Zt+n;_E)nT6HsL5O!-(uagtKIW&lcR91Xlz47~vu71R(Hj}OV7qkeo z#sId%{~5N?48@C)#P5TVy&9xYj4W%MmlIoT6p%Z=Wby4{v%#jr&vsqiDIoQf=~mO` z>oI^A?VtN$BID*42xM~MFGN9@(?|}ZO}0&a-CtE}*!%EJ?#*4A7SGpC4F~j;>h9f_ zy=z~)>xsqf3`1J<$ks^AjQLFi1062udAnT0ilSztapsK_m;J8j(3ojjaEg=g;qIdh)F}OkhmgUAm;*(H z580!drCv%N%Fz?;X-92`z?&^IuCe+KD@YC>N=&=9`+WLa9jfWsAX;@p>1*LODZC@# zL4m=!K>)0ay#3N+g2DB{WlnCwjfyHax5qYAbMU;r_2Hzqe3T`ia?j^@(=sZ(UYv@y zyGZAUKNlkNWUB1l)!s*YW?fraR4fft+2;H4?C!M)gnlM0c9e1F)5b!GRMpFY#NL6J zn5X}QAJL5MLv6yU(9)@|Xb;CY*@3*VFyYP6unyU>cbYGbcPYdFfW86XxX5j95RbGh z_R&B8{Y2oa^-=UYK!-eQw0=xj7BtTBAg<&NRj~fXT1-4o9Ertmhou0AsdlW~sD5Z? zcbTG{TXMdvQRZ}ylB=FfU$S$^vW{P2>-kN<=4TOk6z7K0H6$u-VJF+Pc}5Z^DVF0d z>-$%KAn4mc3-0cmn-x(M+*}u3n*_?BeW1W3$rndta;^#~7)@7+<9>ZdrqRy1_uP#4-V)tqB`PY^0hFCk#j?o7-_#kDZ4P`B` z0L7`7m^x3r*Pn%?nrm+gdbK6Ms!O#kuIkG^t?V!9Rm6PVdi)j(Y1||Dpi_y>>+6!0 zys0N1o}7LX`i!3n8YCkNhUc|1bDHrXRtL4hu#*>Fu&mcKI8EwHmcR7b8J}Rj7_6>6 zmhiokVffb4aV@;tsd3`tv&pWBqmX%R_8@E3kQl|V^#i#s(kpA=1KXjzqNveE4aAkM z2&XwDNU4+0gFd}kV@F%_XcuT!b=PcXLC?)c!emSj>Y0iDYwJ>hP#%RKMaHN z#`m9*8|S4~H!4(_VL%N5KvFhnmYJdbL<$?tpKe)V&^RRJw&g;uj>y-9#Q6Gs1NSHC zDHXK@7B0mjg%KN$ZF(TxenT0><|353a|H~?4|9b$_KcIr|cLB41p67qs^ZoZ# za=*)VGKL#II1Nj+RBtM}KU6_eXfMq@^hTS%*x;69o0S^~lmYwh1T=w$t8g?U5Dr%V zKpX-%CJ&)&@+)xZ3y%+zXs9I(fskeVFTdx8szB^@9=Q%8$M>l-%X7$newRrGa$PuF z+l#~y2Rd-T-H(LmY^YJx4@5dABNPOj7gxQgobzGI%P=Pcr;}1P3GW4P>0O{jM`Q*f z$-qzT2!cUj*_^~i8J(3{C%6uJ`@*`Z7yreTa{F5O2GFfJK%H6ukU(k6AONrgP&nb2 zs3jTTTj~DtVl)YwmCO&1VW<*Z+*GI8OF(e{#eMwU<(T2G!(Xc*)Cjn|6-TKr&@XS~ z?*=Z5^d7o>gNP?X6W)qElc-16X0%JQCS=2h-Z6W~<`J(#?kM}_9ss_+jNx22D7S3V78e%#YH z9kq+yHFMqOBYN!1CHZPr=O!X)GL&IAMncZ6X&#{ze(=a~TnmyLw9@a;9|~~W8z{6n z0x^P+dKslB7WpP7v@{CnzUiq)>CG7W)Xy!`RWQ2DH)VI!_mMYxH}|Ks`1;<}@9RBz zesJmimZ77FHh)ZNDTFP|$aDOrENPc>R7 zUTo_%X6wuxs={gBS*B8$z3rgV#<7R#U(e{US@hNJiJX3PLG~oFCWeO@@7Y21q3xsW zYMCpu8`0o1(ItJMUOd`lbSe7KyC=R~4+$+e9FnYuM9>}|S;hOASJNymAYwWcS)*pE zPWN7NEAh-5D0-n0h`>aGJku-6TKFqwGHMiEpJN48$-BK7zNY!Y_J00y>Q_@OuEUqt zQF4ApZs_){kSdXE?fsA5+8V;89QxAZ*1N$K=0y^2r5#h*wvsn*M z!l&V0kYB~m&5kAv@4y`U@S@(R^H?9%Rih?uSBIRa*Wkeuf){mIdFD<2v!LZBMj6AF zSq#ASpK^ZJDLp|eMo%8xe{nxPXXbuk>pR{zHy;aT?ortH=%u9JHa*1|H2oZy zl4Lg)|vE^P@@+OJb&wBA3!=Q zw)tNn0h$WaZ0ja{OcA-`dq6aj7Rlv(LI-EbuNQkTDr1N?}Owp+Fx-vB?I7sw8 z+AC04`31mzucJ)ALSwpJ!jCV*s|JjVj5fw!5KdQSG7t0Y|H|XTf6L?VzsxA=Sv^Px z-c}^8z8wZZzYDRJev&DD`2hyN}Q$JgB>gE8PbSY@`C#PW3f7QQVbT5{oULpzr zVr&|Om3a*{T#BvpsNjWA8}*Dwwi`Vkv7gaPrtYL=#;GzCKyIFf4V$lV_J+dxU*cit ziK)bLYBAH60TQ`SHHgf6MiWw9vrU@66e}s7(Y+2rDgIwhbdTAK3cFFm;TAKSGVPPu zo3lmE7l)?LJ3XU3%-pONso;;koAkAO3om@4?LEehg}x~V8t;_5oRn#D#L{? z7P-eRZR@eq%8yac^wbpz+Hh{&<&A7(U#W|@#r_heHl$Z^kom;;f;81)ckzlj#n%nq zF`hGYhpup}c;zC@UA&KT7pao9=mo0ck;%!()-j@u2Z1K09FY^MSR9WHK~s@>=Z0s}Zc-)^bOp`^a7l)(jg5TVvUee^_QxiM zkyH-~8$|kFe`yCck&>{3K0w-L4>W8Ce&(^rVCaE!<0%ARm)^CSod7OJExx!1lduO| z)~CU(wO#*aNBV(qF8hHFpUjw_C=hV{WJ)?~M z{(6-v`<8Y47KoF1;2L!jsG$MfrhmCP8yC8`XWF>nIdIHeR8^5P(Hg}!;O+n|M#9`z zuq{;0WAf*`OR=_38z!^%(t3uv(eH8LgyTHlCz+8jPY=i!R;s8&KH*V@BrvK+mOi|_ zgi=zmo^f=~FOFW&F={88tPIl*uhlqQIeQC_T)>eDmp~G6Bpz1C?WaDJ@-=}1_rG%t z!_}Fz73gVx%PMNU+`y0?I|6l0FDth>trY=-?e9C&ZGmmO(}KH<9JLx8C4DU+8A;w* zS;cr~Yo6*B!neG%Vxff9czJ7A+qFsMwrcL8k&K@n?Ne;>_jvI-N|y;hbIfy{vR9fpxq=!udRh>OikD%78@(&?^5&J~(iSgh`$~_ZXyP%2`Ns45 z)`JnRdlt)(oS1!1I1&9o*(pw1cNZ~e#R*MYD>zf1{B}YoYZtDO6NIUivKX}+xu!|# zWG`#a4l*yUM2gq%d*7qt)AE^Cx-t*tMyw8)N;Yh!3^u8D0e9Du;XW?M1o zn6pM4E_1@2VcEFcbR_m^ZHNN>3Ez~gQA)_Rf6VdmP<|lh1Ay}afs8P!s*Ac61JSR8 zbrlJa9TK^KJ$?=nE%{ACm$C6b5lJZ~iNXb_n}l@{UKAP0+*VOai2S=ha~^rOeg&Lz zHo%_w&kK3|QNLwu0h1#fYHR>+{`D**Gl__uCGUmV6oK&9K@`*f9Ypn}<|4-#xHffJ z5KBk@?9kjs_5d{JThJ+F7M`q!UzgGZyT3mKO`r3iH=+ZeUw^g(50w!k8P#JDBYbii z*#PdJf+PLPf%;cWqW@FBD{HQYDC(!gb_8<{jF`6371*9i zgP1cYRKqB^arg#GOBJ;fYPbpwIIi?9%lvJVIb4lf=Oa>3jYvT}gq#5L)pvRfq^bY8 zbmuQRXs715)uNYnpcb<|F@_+!12`$8P-K4`BrKdB4?F?J7vFV_Uy!OOSuV8oQ06M^ zF;_rm4Fn)LVHVlBo^)Uc2{@2atEVUbZOB|q z=XYM$z`R_IHjb7KKy=!Y%ucq zQt&vL*Dq=p3x{Ou@rk4gEAJ?$vi22ck<$gds)xe_eBV!KyX>h6fH(Vbw&!Q0_0RBv zxA^JSfAxf}&tiGW^}#7i>bkG5&U_dbyfZ(Z=sF$D9Ws>Scfwg@G^iTQNunmQR+;N0 zD9!iJzmpzy9x6V=s<}GQrmge|%$SpZxs4v}Nc|J+@3tQZ^XIfa4}L3TFltmaZ)>D% zM!p}88JTq7@GVQ%EWV}aqeJr=;oOyr3S!8oIfU=qYMA|OcZ^7y(t+Ch+{WL3Jv6@@ zrk~q99JS@;12WDYds?^y*dt!W1ifMnFa`=QUYVFfG^2NubabWpVd_E!Ho^HAw3yLy z+K%irx-BsvohEpyu)m|JL)sX*_W5SHSV)fDfT>hppZV8Mv4t1jl*xuk>b&CSynce` zW{9NDKc4rG`uk51=1&j?L<;}Y0EIvA=YRj1{@Xy9Z|Wf0IiL*U4^*OuN0TQBKIsB) zK&tI=H4*2kX?s`faKH%9Ao2gwTKp?Z^3T5W(R~Dfoq`{ThoG>)*-FN$Z4}@&^Uw&i zA!w!~HL5X$gymP57u&)4Klyt8GJO6g+ne@xoOa$ha80$ITmR}{1kYt1Jy9}3$caW~ zX29~p7$4f?82(A#fO2t5f z6V1*gG;}In5ove+x_|%7o}+u_HBN6A(AnaCh#0MpC{J^E@wgz<+U4gOr`r%r*~;kC=YWZT;7r_N@-*Po3 zQB`$L4IcZPQ+-Np+(T?n-U=73TQwCqpwu<6X_7@_tHoa{CJ9N9gG`^<=;B=Ch>H4+ zalJBne|Xz;$*pr+TNpF)ALJ7=inr-)uVNVt$%2$n`7-lFKyiLj9y@%k8>vP9ZWNO` z9YMBmR_9cCIIL!!`84K>{@Y3JP0Zt-Bx(XP2^Jozh#yBj@fJ()<$chvIOn2jO>fh= z+C$k~mH{FoEtK^KH|lAMWCzw2pF1=MB2Y#+F&h$lc7c_u2mq`;90-wD=e+G6RUDd% zTg!v8is-jp&rP;jKg*J(ZZ4l8J}%j)r(&7;ST*dI9*THiK~a}GLN_7R@!T5kxm4K8 zzd!l5yL||CfS>&W>uS9=hD1LOcj7sTjxsESV2lJn+Pdca(=uN-jpiJEbLZuVSEMFq zoCMNf?XmK<0yTX`?>3`n{gfwMEh{uPxMa;@{}h&vjpjuH#E>s%G8_idAQq zxO{fVjf+5T$I6@*C32{v(`bPy z`=X>Q0v*PM2|H>+GHs!O? z_5F5(j(3+_j277#AXDPs1T`d*n_=Rr3@EY2vbM6W33_-qSvyP5&o#QZY>tc4<3Dsr zqS4mc4l5?9lrq!;tqZZ1?~?#9DP=C}NNVj64KL&PLfpA)r; zLaaBGIZg9Q8!`euWOb~P>4#qb%Y-}5$!DUzPXxpru9VFjHDeWQ7N9lxq4HcF4kjf#!e?APn_KDX zBBFit(vhZI)u$!_tpVtgAr^37sc#5#nVGXg(ox;ZW8L8j-Zt4;9HAKsP3O!O1tOOY zWv!1MSAP32ujM2HWq~~a`ldUOQ_tfr)1t?GQPr^>LLUVC9|gY=$q3&uF!6wGm(*kf zX(?l`QMf0TBq4t(thQ?il9rI>YyI+6T%MrgF zofML~kRqe4y~*S*f~UTfmD)clBS1sd_o-tKkadb|2-CUD{sh4%3x~uz+;92m-t`ii zO(%@ojfmHSz8+8>A!1(LWkhi8kyM?`?NDSMxCF2F{W@~^H_MX_ zATyFVXUuODLqU-4;1ro6fx8s0Z&x2zG{(%P7uj@8g7Q<$vTwq ztoOIM`vO+@QG?Kg%rxIfZEofJpW9W`5n0jEt+u(46Ond=uLc?FoxK*I$v!+lGy6o5 zKXdH5^tM--5+h|%M>yFH8L~&V;8q_^I{IOkY2eilr*V;U#|&hUwB@sHgqz>8ZAx`Y zkQVOJGO(JJ3Lk@8gsSplaxRl1)``lxIxGndJKy13B}{yaPYf+S3NX=$D4!S32*@7A zS#bg*Ov_1!dFsRRiM!7hOLM&GbWwdc_^KgNxA>w}I=VVLoJo!I*_N7iP0!)M?O9Rd zQ{PoYJXB0|F0s8=_ur+B1loo4DSIAckkfxBV$n1{?1k^^RR5=Mxv0T> zrFXb8Kdr;pQS23BjN3E zAM>;wvoN$6!#)ywG}^wirbJTr0w$ahG4}BcIOij{UgoZ|*_dI5>p<@?NOM)RQ~>Sp z=n$~zivdw>DLRUACQ1$3hB?)yC>4Kp$DN|K!_9j?)$EaL{DFw*DKaDXpv^FQnFWwN z{vn^z^r#EBQKmh4L`eLyUD*c-R3KMBMr4TZG$Vs$<9kY(4;7-Nx>C|ddIB|%SWZvB zA&p7Nx*pCwYjbu$?I7F4kpnRe4dW*!GpPbViJK^k8cBf)S!+3apL-f<(QLN*U!$c6 z_8u-P4NQ;X%u~>>(094AgsG028IO3jX~X^O1-%n2<(>qfW8okJz|~LlqE=G0&}4_@ z+NZ6WsVwJZd)6f8#bGsc<75rgCo+z!ZM21+R48{TK2K9|vioR1zYQvN=564EH~W{_ z`k~$>5NQ&qIgeX(FCXMSajD(wSQ5 zP$zIRrbh|9G_yKyM<-3r?%M?|nntCr)~-UI#iuCpGP9OjA+Dr-lm{UUp3Jm@k$KzY z)14x9{h@-v(r@@D7weiJb0&`Y3>tYWFkkT|jmAoi;u^YgzIh8)B>0S*RucEnnSfit zFYiQd&W*T=jy{PjduGC0WLnhyeyI0c9PirpT(UrEK20@&h0Dqi?Hh2;d*x8?^OF4Zl5aP(cz?y??MJ`!sib7wT-$B#23g(gT zcd$?^Y4%3Q=_2HYo+9SK&uMSbL9Ys*W{#q(oq=oC`124Kw5EXPVuSrzVNfYJNUFv^ z`4D@U?{eM&JHK-r(Krkzuu3-ez)$>-i`fcQ0_0%AljZ>Os`DTNud96$S>f{=M{e@o z?L@mx=tR;);~0s&KS9AR0LVNuZ)IIc|0QZ?_~2~h>q!4Yo3BLsA!hUl5kC-4gnr~F zVlMHqh_d~Q;V?x7@$>C_48xjV?pxsBY#n&^zxAwg*f_7uH zWT>vYg&x${{1%d1TNHKp`Xkwx-k)q*>f5n^)Zc)A~)v% zvrxW=XImA@I&YoR8JTR~Qw0VC)AON+{B_5redj?pw*`D}Gf)+#bO2VgfMpk*R$uk- zF;m7kW-t}tO*S9ZUO(E9X+aw2sRQwu%i3P7m7EbMPNF?>(^bIWetXK9Tax}Dtl5mPMfyQJup;IHZE$R#x*-Ksqip`I*H%`P z@I<;RLSKt*>_l8Iw_RrAcRy4{q8oLI`IMn?m)ZmRO}Y14swSNISZ-7~pAu;_0th$I z9b~V3EuXBp1GLxu`NYdWbU}Wshf0|`h;ea#yCf|kh8E{2>IT3ioN@R>v)U*IoFtm11mO?)d44kNxz(* zfAsdhqcwW>pZtOUyZHnEBmshWbnAN8krmpp6Hjdk7f+MAki>@K~_pEw(fm|IT{=Mk#A zXPr0L*4|3IznA)nb8eVCwF+FLdTmMg3vyS_n<7|MYB(dMvI(~hnO9WZHSMy&mWZ-j zMAWYVY)Q-Nn>Oz*6VC}W3u7@MzYGqN-gqiH9+!b#_Kc! zo%?Ba=L+j%pVzvZT;P?`cG@qpU9#mrv@L#5V)Re_i~lqAFa9Wi>&UIc zIt5t+XeG6rMAo=~`GjO_vf1(^kjWum4gG>!%j(s)!>-cIl0{S#HIegB;2g ztn@Wckr7@zdHMX)`Um5)i(;2{aelq6L^{q&XgL^Ybo0%_*^|h}=zL;5kqg@fnDwi; zV1ZFjXImE$!#vxj-mi5=(YxnMkqVFQe);UZTdF2MQOdZ-!@zK_c0m;V0ufZ|7X=zL zAI*Jla^@l^OgV}0P{gAP(B!i~fsI$SJ39w%tvFP470_z(vxO|(a;GD$zK__Yir$HQ zg&f9?TwwK}t3#Fl4}0$(59PZ5jgM49nvjH;ax9X{sf6i-q?%Mr5mQM{Ns>bja~DN9 zO_YQfg(x(YQ%S~Iq@2&^amd+>!x%I7+&!1IpS`|oueHAWx1Zm$_kQ;Cy!vA;;~w4D zbzk@A`dpvG`}6)N=wjDLIMA>i+NTn}pNbQa7C-vLXu0yucGv4XH>EfwvbSWyOJg}# zpyIt)8&e0S8VkR6(W_!QZ%p5g3v)mOqouI<`7P`Qsy&(|PY#$DQk=HpCTQ-N%e2tV zcaVJ4&wAi?RH3wJz??yCx&I z+Uz~ML8dPl=~bamBLYM8W#y_G*bbFa=D1jKlt!4nY+tp++05-y(nlukV@UEFf(#PT zRS<|64!8tk?P`N#)yk#?-+DFNLtYr^s5HzEDP4 zF;b{ckFV^w5k_oL`C=z0G*tbe6y0x&RZ+XV+=D{9OnvUclD8{QC#?gGOVA~Lh6iT7 z6z7$4yI38W8F#Vd2hFhNZ6rqcZpa&B};ixyvUiD<{~1dsPVKcMR10EvIuy)7helYNae^ z{N?fwfn%dr9}NV}hNgt9p=$N{`0u8Cw`1mT6V$Mm385XN(!hKl?ykd0g^k;jQO25& zhN5(fP*U~v0~b-tU++WpL4+ul0@!p>bxC;)&r*!&3hod$JmvD&F;#^?158i{8WdxM zh_M&J(DMLjF2Tqvnf0}0Rc&m|=RH^D{K6sP2wk=Q7VYed$X%47plao$t=lrr44{zx zt@D$BIni5fHL;o?c%u#P`1M&w&(qbutpk%+AknRfXjxVqxN8SDTGy@LBokAbAc0#o zhFA(7Gb}lqXP~HmO8)pn*ZZ2%w&3(}ixLFi{EG5JgF(X? zO>DkN{tT9)@!@QSdDwQ*-9l~`$G16$b1tfbzFJ9a1b`0v$daY@5q%6@&Q;OJJ5Lf$SVsQd6dsPBnNVN(qAGLxK z%A9eu&{z=Z9JRPuO*hz`=N#E}lo91&x@k*V#!9o0OXu+;eC4$)Me;=Lz_ftXXwMot zo271jCT_x$xvR!Zfpq|8kNYR`LB|3A~hN;i3YHi$Q+}`;(NNyF^qgNZ8Z*3#w4d2BC zL08cCJ%qQH$Fikr(3YKNuAV^@4>%PA2(`DGxUUr*dsoS--pOJ(=2B6pf1b8!h0$OW z52ux*0u`$xYeukW4bnQ_YYpgNU3_|HrMqVK%opjDTQLVS1lJvn>*gs79SWSdi&~v< ziV1eHzlX1E7VFq+_ykKS86)JBAf6kE(7s97Mz+i}@D#cZeg0+>A-AIG1yAwG@)C;BGe=b*u&weAn<6%bt}eSkA?)scimLR zb>$X@T{h#*o4!-YpnR9EPx1(>kT72EExd#?p&N!>c+NnVOQZ6>xH+X*@l5k}ZI(lj zP-GnsrxL^g`DTPTc2HF_d=lV-=X;U6XR+@HOHx)s=162yxLc33aI>g`W5`yh%^RFx z2QtX*YRGY@AIA;tz$1@RP|$@rfJ0nzVIYwubaBKNKrck$P`HxKOgmWgAcE5_>Ye`r zF!+tmUw!Qc2#XtYrUBwLACTi^5-vl<8rZ>EUm<|X&2iysb%DsS!P2~9VF1#J)El61 zP-76=L;+f#!%gx1{k3eKItQ68t=ZDrXB#v^DsyreEAlM}%C6sw9?H|Su-&tAhH{1V z9fcL#2Z}s)7V#aE;T5GU;$VNv< zyl@MP(4X+&$T_cYMDXAyse-h4s?S#GGS@)2i5Jv&YP?=5rPMXPm?V~HiTU#{Ms=A< z*}3;T!gq$gMHFpj)n(4!R{~iPL6#B1@5+&5d6cL)yBuoLHN6%v{GQr$RrWG=sy!#4 zXJqHR;s@M)z!jp_o>y*hx{A&klUdcg3?qB^^`*kx-p;SVqX~wDOHt@g#Dw~Nm#A{27DVhY8S^|0?^%@8y|f&q35qzbi+@v0FHa)uGkc zd?Uw&>Lmg4Kj4)zkGo~9NYAJ_JEuo97Ogwz=_1MlU{}dO3`&d6FI{d~r)WV--LTwP z9|tCFXhtE=nxS0H_Cu{$yH7K;?P)Kg4uplT^8^Icu+Br~2~Z89(~GQzI99|*U@h*D zb89Dr=;%J92~Gxlgf1|4Kf_@`%e0aiSFB-hRq4#rT{msAT>baJ=?qCKz~!*EF2FI< z_W|qcf(hud_I`ZvS|WNR?vI6$OZ?}>GSJ{1uS%o>)EqSIb>v=6T=rLJJ5>VeOC{%S zLqy-jFfVh%g38kG?I#_VKQGSn))aiGd5s7H=< z|FwUM{>C@&3!~QcC$HV?Dhc@R2UifTtFXQ?dc!n(?-gpaz&B|Q1zbF#AePzx@#e!1 z*VoAee<%qrLg}2~QzD#3YI=cPSWf8(F^ln)aFK~mJahPM&$xKpXFX=$ z@<~Xw^Dgs3w}0=;&ExEYt%3S3`6`0TiZ{R5s=fPjZuZ@y537w1nDKP1(cWYB`71=g zpbL2Vv3Glf8VXkQg{+$EmNL3~-hV^U#x<`8{l2?B_R!4|!71Lt>J@H;inm}dQv@vK zyoTnnQaw@24!T}vYIS~mLd)LyIjQ{xl<9K`6xm|idYnu_u1_fQj!k|~Z#t;Sak_>9 zy_!c7(O=N_v2du##R`O5k_sSxL7g zGl}<;lZ>2PJ`D=X?eTk-ysd0mrG!%OxIKzef?;j5itl+gfWE`jTC4Z7Jfejcc z8Y}F}{}LMlDuDuSSnr5t3RLn8onE{Y5)mVMm4ETUmTp2UVD)$Ob`H#X(LKV>;CHw6 zTlWCBI^eqTx>shu5G~0yP{YvSR5V|SOK5^R%SC2@FKFH}-O|JDv6JnCClaLeL#N4^ zC}KGnRgvnTinjupM$&qwpX*_?z%UfaeK*|uEaz=+0oHHWT=C0`m>QPc?BT+1dd9Zy=2sUhIhv? z7iW!oP&QAgtjL0VejR0_XD{%hN|ivF-%ngK&u#J z5()S*G%R9*91j7S{w=5%2Ofy3JumyzU!zKtZLD^NQz@Ajbd3$5MF$%@Nw4Xx5#Czb zb$n2MM=Iy!;p)UWiK;%yc^w$|D*mOu7VmT4(ecGn`~nL7ejYGySe1m6kJ&(4_jeJr zgqfZZ3KL3Qr!UV+r!A0jDEAPJ584*FAFef4U-vLfy%W5{xO1c9vP~0-=FlyepGLi3 zsMY}U_xb4@J7w8&d99^oWoVX+@x^OmV*BkbZ#LU6e@p1PCU*^xASHd&8DK%gPgiC- zb`#Dr+^U>X)z!Ybq*{Eoxt=_;dRFD?{F%Cds>GErFn;`xz}x7|D2JD@N7GeZvrL`9 z*otb;?8b{qEZzzc+DUAo%ns;7PvP?q;BVcLiac|&jZ4suip298o^1cadJ7>>AI>Wl zwgUfk71aS^$ae0k=$=G`%X_*?Jx>h-X6(gTt1r@8A8#bc{; zX9_@T#cfy2B5tqFShH%=%ql$t=(-p@2%f>5h&lu7vR=M`3H0Xt&QYSSh~Vb|t8|&v zE8;c2t9h7r&Lb%;hI;nALjbA4jBcU=$4tvwApwApb2D>mEpv~)@iD)uczRl%@B8t= zt4D7QQ!`DZI*%Qx?lo;3whXaMYdDj9@PmvtPt>FEME_NquukjzPT<6}uyR~MD&MO9 z%KX;Vu_XWR5BEnsnW?u_HooFIvMEBY_Bw#7!ayu|7stVhltWb)=xW?sK#qeoFTsP1V3zqjQU#Rl_dJLrZj%8&`zOo3?>YmZu0HE&a| zeKz0e%)UF(;GnbLwakODLR($Y=kxdK)q8k0-mn3H03Nz+B`k_%Y9y3(81>yxe7Kyy z(X8ocVgk!4@F*8A)4UkPxd0pvHQ<(9{DGnc6^9v)6X?TF0-X=y3IrB%uWeEIZY+2D z?DONVwNzx`viGa;>@8{AoinGMQ?d%~+xg$H9}H{SrL&_{Wow`R?oIQF=>BS|8MW^r zRpM%aG^1ppU;mj0-iT429Jt{L9P;w)%g5Rhed2eH1Yx`;Hum95$k|Y-7g5;PgHc%; zw?DVmpjj!rY2%>9XWvfW@6<=5WN#AFjbXx48kjDnim8Yl+e>Inj+Q>E*uUPC_3Q!* zz#%RF*&u`8-tXT5IB5L|IQY*397uu2$@`*1Mlmz%QrFIt-fjW|)3Aa$|pGods1NJ`j75{28C#`VdyxQx8tmUwY@fwM@wP zOYfY&B4PhsKmWFj+3z+%25B?G@XbTBu?>P2=*f0j1pat0Y z(|_C6;#~d8s{=n!UXadr-G}T(ZZLH)6vXt3pgBqQRN*0RaE1QrUw_XR9zS><=+1w7 z$4gKF`HNTgzw%S%_eIQH4h58kY-xp`-T{DKfww<76!;L#WFaF>t3 zszA1Ef1q5`8=Yzje)G!$v<5o}!Z>B1;@|#9sOrSHHAWQrTu5aR20g$il|e6uPn#M*>f}VxPN=emFin}I*it0&b|>ue*#T;s zn?Y3QE{NAcXOPqy#!C9)T~NFJimdbZM*aESKL%I$UHV?v8miB%J<2vP;8W;jU9TO|0+DLY}OQ zOM{K*^EutAQ!j##9dEbZBe!@~;%Ln3yTzV`SPJY#?Iu-3MHuRC(zS%tjUH|BT;}9g%v!0O`>We1krv_+# z>0UE=Sl>CS?D2Hv%dkMBw=}9DaRtx`$A}7EhQpnPtglyf2}ze!tPj0hlOn)|KVFRE z&01m8^a({|nVwTBh3+Ttv-0});v`wTr%7fFuPb;{(Nd&O8`FsPgXd;4ct*U};ynL* z@{oU*Ir?*)pYPzGAOjc@m41f0C~wURvWgRA_K|s***d4N1b_iaJ%c_hXH6Ag!lMvs zol(R$U>{+iL7J}_D5%M-MWWB*=j;gI>|o&qHkm28=Se5|c_^kuj zMII_=6dq51eX0VQ;e{3&7h4_`%3r^XDIzE7dIJOH1kCzhaY+7=zg6kbl>@{*Tndc- zfja2O@Me-$Epa9TBLh5gUB`#F1pXB*qtf|5p@rxR-wT zX3|5ZZL8e=z>sqMtDeF3cI_EWc0Az$AmVqv$X~eHYha&wO^Y|X>m6J5Yx3b##t!Wv z0_AVl6hHeByd;0dm3&e~FCS~C@ecb~@s3Y-S{FoA050W$5usiT+5yZdGeJ-cN^I$f zDs*E?D;*0OeNsc^=%I+Nt)P42a+Vf)IZ{PflVNkmV0+4WcjM!GJeuU4?%Isc=-i%I z0V%k16XDfalAgubpboDM>w9DxE>^zyayXiOg70Ph(tE9;<`M$VGkPa-80rUNh1Ct7 zcl93n1W)Svz24?CeeYsn>}!+C78_H#(!IGEZNYf0nQh+Fcca;Le2krhmt?vzdi|H@ zNP{FLaKl3vnySE%7IQY!Hu#dw-2P3l)6BO*CI}E-?&Xr0)%0@`MV|u9?jVxBGtk5% z9xm=52EjDc!Xg&k7r2jK51IyG?@_uq5kl`E1(x5>${My5 z$9^$!n=(jtf*(`UIuHW2@8u?_)XK@4eKiJ{xGPXzm()e_JFUsW?8CG#6#0N@OVg*Cm!_S6;FoDzXIi_^ukg?Vii)5*LBO}waAv##gl|Dg z-#@N11DlHtmFHdQ6_*5=o)vBGWMwl@zoh%4f+R#abS2Vt8@b@b76Ou5;b@I7A)!WrrAdmv>c9Z771bDs znF;Bi=HUc^rFCU_Iw@3^sRb`wTlxN$#YoHbhy}A**Bg8vI{6kgIZ1>kAm@Ed?+U1w z{L-122pmh{-WuHNHr3}K&ZRQP{`Il{5}Bghhpv!1jY_cZ@`5hD3tZO%yQY^BaE*d% z@5>zFz8H#*y0`Yg?b*XculiQnqBz>7O>>hn70x((esIONc9So*9VH(Hs_L{@rb?U3+hHREtVCceV?6B=z2`;I zob0!Y*f{|d0(N9Sosd<@6-WT;rN{?^9Ho@?c08n|1|nLpH^Ze|ZB>WWnNb}$ccxT` z_PlFrc*hp9SJ>eGXhXTxUUF2iVGNz(3m}CDzJc)Rty2&~>?`36!6EwOnKAPji*sfB zyj~oXdMPKTTqImvD|<^%v@fdh3~Wai8oSoQMxr*cQ@ZTfcxDKp+^)o2g>kAlbdQ`x zBMCb{D-AjRdSvpzmwu^JCjQSl}h0k^1kwp!taYy-F|{8=FXDkSdu zCLY+J^-mI|PBU!k38*iUFmuBqh#LY>D{NDzeVB&$zgl#VDnvg8t^Y!UI%dmSwiySN z=Ef4^)NpHEjI+`NOBY5SfpIW=IY< z{}<)KLr8$=r!gywY2s~WV;LI#1gDF6p%{bt-F2BOKk`6J{iXtOzBK5E*?|7ISK9+!{6YCK()@?#2 zmTm;>7_|YQQL<|ouKh77@WoF#1n$dyn0hO)8kkxFyj}${LEnZZmVsq5Qy^knC;0ww z4S>mxWL{vgcGgd#BcS<1kjyrOVWnZ^on5A z+_LIz__u#il{2+qziGcS!F5WN&&u9resSJ@Dtz!vsSL!ZW_gx+s@l?2w=;IzZ%=&S zF?0?yO7H^5EJ%G1PQwO2P}Y)m$U_BR-c;!GfmS3x6}bZl5rRP6{$Iu}MybKFRPbeKL%rZC8sF`a?1Tz;Ga9r#K`x}K<*FPq zj?W-|%R5j@^C0ipEr`gz$J~2-xw4#n_vMB*Rtn266M)UIG)q5|-7_GMV6GG!AH%%~ z3$}=w)yvvCx7~*xP>7UoRj2 z;1{D~C!=V)X)NbgZP9~FSjcbU+r3?bTNZXxN?kf1(k9IFq7kXHJiXM^ymfKv=_+z` zs_CAl?W7C}5Hra!SU6Sspy?sOr@LS44CQrI|3LM4U}GrHAv@e^>V4gVgRbigT zQvBI?Vk~~3(jtX{i92a#$)k_%tFXR{o^_Q?5)3X84%jNGJMKq-*qLuatF*a`wsgPcJ-pVD$b4 zex~MmV;0u%s7l+!)QaY0ZC=D;3zh`66kPvE5*Sl9&2GoZsbbzwVJY7UiC&(uhJo8p zE6&Bj=Dm~}hFihjcumc^Nf687)-105dlUWn-9Kheyyh!!<(ayW%g42Nj0I@^dAzHu zuKAl!WtIFJswlDr`97U5wH7%Rwj@3XYDAPOs8WEkVXgu|~f8Rd8TBSvSX_W;kdPjJ|xfe*I z%N!RSQmgES&$|Sal3&%ppDKaBDu&BWgc*VSAE;|B@xOj-CC5Sez>HZ>=W}GqX24I8QW-H z|5Pwh62jK?jR4WAWA*)u#fNvKw>^m&&TyF+7#PttPWsqA5`E?ESpL-sBlndzH_5C& zUA2>HQ(XO+k9~_C6rzEVW)Vyn(RZgF&mL)U9{7+O1qJU}X=rp=S^~GpA1zBIDRZ;I zac>TvC!5y$8q-b8$u}Dyn$rsv8FT(~3Qack=H^B+Gny!3;eV1g`#G0&|JR&6|6%Wn zhs6OVOUUmN56}U^A956ReByDgn(E0cfEJM31#7;uL#22@YXW=~%8%dYl+N zVH%wD5^Q4HC^!=P^b5fM|1N4{>3cW}D2hBUb&e;~wE@Pjz8P04IaCnd#>ri9t>PtB z7>3MHhI^>*TsjW+TlijKNeo~EvT*zD z%4_N!RA`)qa3l29I^osaXRtIw@Z_WN6iX{9=Y8S(vI-3S&E?*QVq-{VVq9YRwo_#f zi)e=j0i@VJBl*%=&?J7J$Zus5KMUT`3bQvH%%q)_8DcM)2Rw<9PaT?u<~SrBKduTisI^p}Sx8U`Dl@lI>x zC#a$b*W|bPp_Fn^kevHMFDxosI!VsO22AZFzv*<$@>9Q{LEz~5@)JPYkHg?;vN-!# z0p&9}f!(zod5Y%@4Jp*tdmGS`VLSEDWR^og=8i_i%4^w3Zfq*^z z2xd_eRQSD_dIo%zazah{pIqICNy%XWS7=2P2wCC!gSe0*#8wvIrcufv);0?*M#P}KmjMLs) z?#6j`5D0wT1Y?d4U^(Joa1+(>nOV^Ij8rHO{%QPoB;1<|qUZj);C43{WNt_pKtw*C zu5Ni0!>I?$A2wgq|mui8*cp%uoqSPem%6RX|kzWWGyhU`-p+LKf}Uz1ln& zjR2d!>IW(dzk;JaW(rbH*>)w9$32BhU1(tv$u@OH%+Gmb&UXzS?!&)quj@oT#<9HH zun@2QqkF{x`)`&S^0=dQ&g>VRj`gi%E1?k4 z4=Tn{2Wx$CAd8kyK%y!MU+zMtU~8S4UR3WD1!6M=UJCI0XZk^?QX3ZjjvO`$g(hr4 za4473GWJWTX6gN|Vvx9@V4Ed-G_$*ZJ&G_SaH}()w7&w{$741a#`x>1mC*R73?K;E z>5Jo(F)SkB)~CgwOvJqIElIGgysNe?$E(S`WKZ5BaCBUVZ{r9c=Rn}@7!V_)v4|d| z#yjQKwM&f!#y%3~X2d2Zllf%syoJMvNv(YlEIdGSPKc*bH^TDNxJ&uXp9<42CijVF zsfv}5%r8CG;;rAnr1T2>%|TPf(7t!0mfy?849I~}RH}XM!=A49$Oh-6U5B9+C!JWW zta^rJ86-tiVg=A#f)(sOwoE0Q4tw&hvoqk{c^p$VR2hBl(#$dF1U0YlgEm;>OPKr7 z^ure&Zm=@>`6MhmpJYDq+i-Y4yLILi&>eKBUo8}H`5tH>N_wqnJLj06^+57~`3Bkj z`Nl8KuW1_qbgfEnR@~!bA7%-G9Y*6O=%Ys;=jkid(-`0Hqs(I$%)@N+M0h^?*Jp_+ z-jph(a{STQC@kXn+U?q)4EjP?>L{UcuhS3)ZWtK7-F^`O7T@f#&buyy=wM zfrI>%i=D58ZF{$;Bki8H`c6F*uY4=xCWBNl$xxxyh7vce-p{X#MI4}2Iyz~7g*&O{4%BJbK@IszXjO&O zK%xQ1r+pU`^7%QP7BE*^=fEbuNO)?%G^}i%Y$Lnv!z^cAUA$2%?BM-StKPwVc^P|E zmlkvc>Dj-Uhi}sYrT-l@3*A0Ysnsh|xPm2GxxQhM+L5mpSM5#fmlgh&+HH$JHMNDe zeaTi*86tOHeY20PQ8&n_8M?^JPz`3sQnj&tuk`oi(y0^aKK;4T&aENy zDpDKj{Adr1nN?EU`au+qv(FR6)pe+rAo*%8V^>MqFb0wVBuL134K$uJlm$)dz!4OH zgkj0q1w1(j1Ymi!$43YDC817bg#=f2`9941?4_)?9z;JwS=^?-0w_j75U4&K#RAIa z4dzd-f>eF##5}-wFQubGbhMEO1M6aI5YvOImMxVaUi=0WN3tpY%`Y{Ad^3~aSO*8p zLn=d@>je(IqfzuV@c=?D_&>XBQmK7ufT6i8Qtzu$JZkwOsYV7bJ+@ z+ToY7iz-*J47oAVK>*h9PC>RH_Q+8njNIKwodA-IwF7}u5PAbjZNj1+?459B#B!Yd zfJ+A9jsRF2+{MWV++}zA_xC}4q?e0E!9P$_a}bEP%C&;qEFPr)OQRbUZPvs7bUn|~ z*ar!ElT6RbR%dSmvro6LW-8`EA7!JkVax21eN+cb&_V~A^;4?f|6vp7_Bb%@OBS%S(NY%uxjawZHMue@xv~>p0i`YC^&1x%f!~~1ujs>B`eEr7y$7z<9o|3`j1EBLqvoWW|+v-!Ol3GeWm| z0|!4h&DjczH2MlXAC0Xsy^?TgP4D(Sqer%!-t6f%K}9>5+OxgeOFo+Um`|=VuY3-o zdcPV;|0h5HXQnq~3^@Ctsuiq=RMkj9>KmzpT;lKU4CpZ3n0XfFp^UdgAKN6?= zE8&n{7I}~qR!b$#0L@!C$2jo+5o|$gG7RqLQaMLR-Cb^T7g}Mb7z&~J##~cIPxt$) zX?`1SP~;zP-5l{O$|HZ{S|4G;ZPyk<`ujW!m9B(B(km|1Ps*uc1gC7r=gXy5%9YA~ z5f!_!XSs()wF=EfF}{90+uI}T^})2n;FBVK?$U8x&|MdN@Uqi^r~LOU#~-tyg>+t% z`>?Fv==!x@vNzW=2tE`fn?maLOKEL}B4*EYMfAp!y1Z4zz8cUncUDeoSNOGJzi8SZ zBF8X@51G?XEh(HLiww=+%?1`y787*eh&_Hvn$ot{Xg&h zb4`BA$Q=k0Qu|Lm-pXcRI8{(&3_0!h;X(Rvi8~zXZQpa3GMp2iJSdOH!gK_uX z2qJ{P_-T?$_KC~s>t8ksXJ_p=WNoac68V8~W0SB0zs=Zp-Wdrbs;bu!9~*G>!^2HC zOiM_Kl(?_(zT&!&GoH0-rNf{!a;o%F&gE%6;iSxQ+)LxZ(x|+HMN^ecpkdBAF2I9* z2)uw7voIUq3lfgz)<(^B&m>(>_}6VgJ-lt;ZY|O9wYjqMGNJo`S1kkk17(@%5M`UQ z)9YUU=oE-aH^cYKXmUr^Tp#i9)*~^A>eD^&j{{6l0oYN4|xbI|}av**qsTMAHaXuPs8e6^R=_Rz(ve8YL+gp5M~-K_tHS z@o`15tD(NwFF#OWrT`~5OXo%IlLN8zW41p~73pn&#X$zJXWV3gRMDZ@QVdHGKZfH-u_aN+Tl;?i^R<-A{Q2L{HTX}K0oV_mXXPLjDoe+3gD!y- zCZ6&=m-&0(@J4*>dFO+WRU80w5~Wc%VppNL{Ay~F4&sLGBT;8u z^+BZjt@(F=q{>KVtN$0f_g`}YA8-Jf^%>+(dvV{btac8Bn{~&R9cbZm(u6rQTY}{bn$D-RVVm0_ zY@hF>AB30Yj{=iq^!_aM}=F#7-9WH1(10Y9hm`&aaHRsKwH zf3qr4lQKYHBZ#dCA3zM|IRBTR#|z7yh)6S&zEza*s&&|W@65!@y12Ngxi_HF>qG6O ze?)z#Ec%0e{E+xfo4T@4yT@zV_!e0J-WTh9pu3rPM(xS;$Gj`o^gU)p6P4Q}+M2og ztwBgVcA2j#$Iw@~nJD3vxVUWkN{grCv%#!_5XG%^8|@^NOXaSsZ#TS-!iMD|_ds1) z946Nz2J{&j{eeR1%UM@C(c+ga4>#o_?D>V?%v@so3bbELQPBWvvtMhREF;PCi zq965WaIMj%fX}kGuw*)?gJGohXR^Bb=uH{ZUUHdTCHB;s~9gN}Id$MwD4>@Y zfQ=c^@OmRd6YY@x>C%wphzb{Ts%HXHVwZ zYOVd0+uN1=bg{;B<2&DwqScj~iEk*wCI~-(p(tH&0VRA^MvF#-MrV}RVmf%(Bdq;O zWrX%B*!D%)r6!p7M*cm)DyOY)g&J;;Bqk>_g=4wO8Iv}L8+G?5_l)Q?zq20gcqC$Z zu6RrL#y2%7@`lpQj~*C-ZYTXS)N|B6fJn>^B+~(HpANZbTHIRU#lwNEA_GSwPvwZ3 zosgS(=Y??yRSuo^sy9+4NE6!#S^6J1yI@Ny{mVg(Lh+{fsT(G(%QIRs+=kTWb`{4* zu1O6l!donw?~xBQh+V&B-CH;ZsbwcmwSJqJ*1*CeZ6jLXA&Y%%h?vEmLugN%nyCP{U)deM(Tl%$0VW~ zV_{w(+iw8@4HWD?slxQ3N72r8czL_zjpKy7s4gA#rB}{)-j#^m|G8^yjl`<8fJcCC zPFd$gG5$!eEwU0I2$Z`$(kbU8N7K|>t8Qx>04P_k^#SZ1l?y=wna$13^G&UJS$gH= zrP-0ja^jwzdoEwzBOiI)crX^_PfaGUk8AAPO@Us%4`Z5^L<`f#hjH1)*HO^ zw2w4u=SOL>VmKWr)9TH7fIukUM31vFY+=M0YYpaD+XZu z)-J)%H0Qa#w>iGxxK8v1AacqoXzmrTMvtVk!BOcCuuN4iDcm4;GEkRD@d*#N+|nYVNTPqWUKnQFGM@ z0qnY$gc(nZR&IbsEqAR7`xa#g)ME<(=(>`7Ce)@5=3Bq)mcAGF0d;UxUkqxi1V!K@ z^OOl0Dv8uCh#Y^|kLQMZyC5VBqU^&2G$XJs1y;n z*{?{io%E!s(Boto(vQh64R;pT2woZVyL9{h!dG9x)LttGPi9AaXrM}*@k#rq?)b2P zt?(+!h#(>`KtI4Km*J&PS9Gsz{T5epoM{oWKYG3Pl@}6d&dy^|`UzLPml@3t?Zb3n zigCd@N)@ELL`ha$;%Ab}>-I{GdqMigilpp-Bb2l5*#i#g$h;&1UY0Gk(~{;g@zzf- zoU{(;y}O$Hhw{AjnnLdn+pM&_X$V@^p_WhDo?kg6zZH{dp$3Zq-RPU&*kA>fAPSAs z2Zm^YQYKIGyyXLjWqVJC?89W3E#iPuz;T~v*Yd#f*yT4&QXmnpE~So$jV?Kjve&+S zB}f6nNx(Dzi*P% zTAH6rR*ZPnGkWrk=eyX$64B3gzCCH^vk~7#pdSMj2)(>etE%M>)UiB(&Np3x{|{5a zTOK5Nje|l9G7?!uD9?l(2!FVSBIZEFAkZ^d$f6?UG0Y*U@@QPU5@Gjs#eY!;|TNEFp%}mda$%zfZiRFIdvev-Df? zA~+BqSy2-fey!_#U+a87-DrSto2U=#Hx|lzt(?E=yuE1~T|{?$?}NlD7oBLU+ujA#vY%Npjws(KTEmpTuOt3H49rhq2=J6{oQVxbCBYpviS>bt##d_2PXmx6);3(g_ROR_R$iawq|WH+mGA3q!>6`N zeVDl_xjxkAW+cYVx>E@jBQecQOs~CV`5U9*cUJm(0}OSbU@Fsi=NdlXq`U@7utM-o zzX7bY;~V?@?Xd}$7PN(O)_L%LRF@Guz24?lV&n?&Xa+!@D!eYQO3q^)>y!G}er9d7 zPS@y_dp$3D+G@_(?a_nEPxvI=60*kF&n;V4J0A?Ele)4wvu4+LW1!G=4omL-$JOU~J z?WwD&6C0p8->CTwTwI)~(edr(XUdv){C;^MWq^crRV-9=U`Xsf_fw zXUgFiD@jn|SUvxQ`xb@V1oe7ajDQaLRip}QjQb1`@CslOSsy6yuGYu{vA*RKucbXg zK1%TKIG*~ft3Ycve)Xr*b$p{(82Adb7g5hx;}ryccjFc*l4xgV?`VIxZdHbEv4+#w z*NwM}=EB0DeVXtAFP}1<-aGT1Xi+amrj@o?!>~z+<&zD`5hfB{8Ob*`1#|O%v7mh# zpEo#XL!_P!A08uOr=9Tz!tcHrNeyL346O2b8}?aguc;wuT-jGoi1WnK&7gK2LGXMQ zUrWi0wlYr-lFGXQQd)*W($|KHt#kY=kLTCxFJoEF87o%5rlevdpxAbZfCI;Dl)RcK*$s=(<7vle(;JHFtTUV+ziCw15JkqgPpwcJ-OJNB*d#T14-$JKIZM7>h{fF{OX!L**85fT zmUeuK?=CuiHgh2AXtiF4UXh>EJUEhj=~5>eVCN*HPEtCq>V?xaqg2O+O`ij2x}5VO zar-rP@AKwekKU%v0+G!w{rI#tCrQ88nJMRtJZ*hMaLem=cnt*`tPT&|tz5l-xx1JL zHOi&E6%i0-bTYl`&(r<@jalFu;`Diw`=Z5VK!Xf98JsnB%t({B){cO!4 z@e?fL7?gy4PR&+5#QdE+@$xO~^)yNuhUGg<2Ffv#0L!R>f&+Xn;qCOKvlGX{%cV?* zOAW-73ME>VU#Zt@D-gMFvwg#k;EguRg|nG^CQ$lizm%gC1Pt_+cdFgS@ayhp*qJsa zH)j^;KiJz*M$>-yEnzomb&A1J9rbbH6|>Q&Nb1b=tp zjBB4+I`_RWryJC=n^>-C6|L7yR@p%O0+&vH0P&qp4IY*zAq`N!sV(ZL9z@F1f1tQq zawuQM*riNuZqf~EyASPaZJ8gzAkNC)Z~FjlJ^jd=_YTRy`#4W_6wQ3D*bBI*s{ZVp zz|a@5%YdD#*+ix5V-W3qn5=C4ka!81rJNd2sO)=$UR&yeMfJAfXjTV$inq&uy5FGq z{@U&K1IzY(yCy_@UB^QRh3H_H+!1l?LDR_<-CD8@_Uc*>(}Zi;n)S1)U2Nqe5`Hz$ zsdg%XtZ4ddDQ3Oyir2n-7*W)YY(MYz$yC#YXx-#{$FDKo;}5n!k^ux|C-Kv2u!tS= zLF1GLIM&*!<=Xd!<{!Q59g#gq(vdKZ9P3suw(nKvX$o?yS7FQ!R2E}55Np9U(S!nf zcHVyMB(b5RYeGeAGD&pk+##IVwLPf#3;}Y?Val$$`L8ymI$xvj`Re&>kAFFurBI$z zv&IHAdD|ONAGFDTmk8fx1?vX8s*#o5MS|&Dz|u&3;fR zGXNir+%mVHVA>58TVQR|ww2dt70P~iM4IQnuGg#R{K0u52Dr@z*i9sssNa}I2% ziZ9=rGhVJM=G073IIQcRJG%C~x7HY}!3ALxTa(@nEbY^$AE0%I&sHijn8-kQXMM0^80s;ck1Sv+Osgy{s5_%{K zgwR7tC?TYb-;dqB=R13jd$-)P=kD(1FJ^|xWHR$>@AE#-^EL+F%4n=VhEz;BaOdQ= z9y4D_E(HnF)03l&)PSAD;O&oA->6=dk^b3O4aU*T4f9#nm;TKjXf%gkD}s=r5FRyq zq*N5xVI^b61+eAb_$0p?XdTSS}v>N*EtTgCMfZ5;xR22|^v)cc4G1 z0=;S*VT{1qQUMwEp8`YgS+JT+dW63DgM%=P(U~9IHRgNkid5(aZfd_22>uQGoL@?% z>1%syVoL${<@_co5tan9zz>q`sS z$so07fFbs!DHw@KMaf0faK+FaN7m+l@PN;3FUvC0d>zefWA1`_s_nB_vObdLOE;Ui z+TLKha6I(FlZ5QbPQnfSr@Zx_f$tF{f16jpk+G)do5SL!4cMa!^CX%hJJ+h*!S&*x z*LT?AVzDY!v1i@w)>PU6F&A}0S2BV##4k^s z-{{iGok{oqTL+x~a>Dta{M|QnqIz6-=VAsS>WSTkMmFCm_~)yoV)SoJ8xNzht+|$s zW8u0lh)cGwo&B<--ZqZ^N@{IpDw-Q5qO6mM)@N0ji$oxlDwj`rp||%6yu%^ z6FsJEgs4o~>rQX?%#%GkQW_k#U&|=aQ=tmdQr*)}ww^y>ogxNux=fNtjl=pQ@YeaPZS@N7(&?6a~(* z_>C*Z8Ef;G2Rf1HSN|-<;@^8+vhVW)&A%n?h5@{iG;Zd;9DWqQ`8d#ZI2V2p}Pko zBEZqN>~iquS|lXZh>{DPbbpAL+?NIb!=p%A&QIFpHUEf_zPp;U+fRFbQ0Mg4TjSJCZSym(c$e#6WzN@ug{$lIetb# zA&ss@ZtUlM9I@+7#jVP9@+aSwiEnmLXmd;8tw|AY7XHdLQ7 z^<`&Zhu9+wUh?^Fv=vIw#57S1M@CnxP&cPZI21{RJWDmmFv_`^qtuVl9@8Xu zI8P1cKiV^JKHV2)YGtMEz+L8YpU;!Sj4<<3sX}0O!jfzP_;I?!OAt!v#mE+{V%;^+ ze|=0w{_5=UlX2SLx+m=sE`(On8rO!p&YsZNyC4w*U}S9tP!tp14AdS$PKk_HE#I zqtE;ojpl#(FYiYB9P==1H#@m_*LT=DY-RRtYhiaW^|2Enw0b@9;w=LtHL);X=?gAq z_fhu|+i(L>{cyDK*RK;O9wK~mu~zgIFIm0`K5Rl3(0{{oB+)+ft zZ>C!r`$$*zobL?t5$Z22zCSgL$~YnDKWqWgAY=)6v$w7@O=+`3K~EeGQS|B24nt4Y z+jZF8AK9@OJF7a4UfiQn!RWa-e3C^DzP;iIygJ*!cHX9vtPV&oVO|CX@N7tl$$PRv^bZ&{*|fPC7MJgYtDjW;LF_Nd?EnBaPmec$E|#tzXv^%m;u z->9MJf*Hlq_JEZalUxUIez6{xs5efkEeJ!q{;yZHntdjXgyWUocP2 ziLVC}a(Z=L!^XVxZ4^>o@ruv|DRAQGBy~XD6~wn@h#S6U4?=AJ=J}a zFz#gTR~!K}$DM$!iDVZPYhvkGng#t4ab|-O!ErRnLtdRf06N6%1>dtk@P!B0MmxRTI4N&>$LXAkb+ z(+G}&uVh?}y@(y3vp#Pl~Iq?gL$Pmfb+N%y3SBmoo4dVEJ^kgUf0$>AL0_XZ1`ZsuQ zOPkoN@8sr`>_9cxm|=Qi=+x!2dS}bdny!-!@-2G{EteXv1Pv+3n}<#yVS3UkwYF21 z^%0xNj5D2{H*4I}#*yx4r|Yf-lwAn`Kk>mjF5fb&1p67n4i_3P&Q3*(kxRGJ9R{71 zPUmz^$$t3ssReuCfpEvHjlP7exyjdXU=x4yk82D_yZ8q40J?>MR-vxxNGrz*ep%h~ zsJBMS-hDD8Sb1~(F*V5$?QKr;uF!fjitix40vA-eyF*LTL(YowC8FtGbCp)w>#yCq zGC0Tk1qyi4UCyswa=u*Ug`8gaBT)AYJ9bz#;I=yOhw%t#($qQCAsOB?(P#4MP-67S z!+Yni$cRF&2qz`_j{Zvg!CQzpev}hzF`#*6-5$<(0JM*Qy`4 zRx)GnUhd-&U-G}iRYpdIY4Dd<*&Gtc%;ZUYKD%ySWevuuPnPaL8Lhr07Aow4)F)h# z7xG~T2^r+w7Ksoh^?W?9O!K6#N&32{FOwE3wbH@f4eirv%@eYj=xh99H zX{3VGtqBx-d7)>DVz147qF=SR#ObL0mt<=e-CYpn>j!bkN}w3MC?#RCC=Ky=A$pL? z6`H@UxF~SJbbJ1jca|HDe0?P2-MU$X+M?HhaxYtbusO9P&q=`KUdH298TXrEYO7Mg z*Kt{d$#=ScXaUD&V~eixWiGdX48!JI_lz9b z!+%=DE!ok!D5H-xteCr5M=3Lp@_OTJ%}a8EFXZJu8vPI*xja6RHa3FsX*Cs?ga3tF z2n9(Ej2~(XTHJzVWb_!#-%+gC^DyR6foS%ls<4;G6c?A!o;%n@QFp$Qq&0QX6#yp{ zq_Y7EYe%=EN)Kv9P?`|_@d6#i#x#D%>LG_a%6%`61v$zM z5)i8R(m)11>D1s1YjZ!y>jxlyFkmis>mLrK$-n+QRQp?87~77b%Nmt|aw8~St$iLv zXX*C`vRx|VI2P|D8iuyf>nSSQhLj7zd0mp>Usve;G0+ zKEcIMW!nx_T<&dnO{wf2Q2?cz>r5yxMw0F!{Klm{;*ugx9^N8yqHML>YBL4qWrCK3 z2WRDMF(gB2iq6!R>vJmFDR-3-&G+Q(HUxlex(C&L@50MxHtZhF@;#QryR>u&Jp3sA zmi%BeLsR)^PJ&7CbE0Iylh+ZU?|{v(yj7nE)<6Q*oKm6Ll(FwN z@ti5gM zjoyls(ef#&+4D!+DhiUi73H|!pPCc8y8Zgvb0M%XwK}p*?6P}meSf~uWb6QMPjWe* zJtTd#bzy3+x)T^+csEUVvD2=}B12%h2j%maJH z+ko%FLF*e5S=_ihdMx#-y@oc)@I`fz%OPQ&(9C_xoBmP2hPOHmwcIx`HUg>L*JEO&%cA5DC?_FKY=`+S$vkH_3 zniD%|QcH$z$Y2st0aMx8`A+L)BMo?#wj4P1aCc+%=2iFh>kn{4pVI$7~!Z6g(-4wMC&SQg!h#{_{5U zCNsmE=MR*eV+E$aM-RDkzut9Z@-pAk!;u;Z{qkUf6`{f>RY6wQ($3d}ZkuT>p!Ov| zmXVN{e^>i0;3{32>9IK|-@m@t^2B^Iww6_?hMh$Jh0c!c#nWZEDncJ)c#1cW$VQKC zggP|#X^y1YQ}i;<8C{-DDld!Pdi&^SiS;5?==Uvu^!}8FzV(Swg}@sHTqQXDR=KBn zUty+=&SlBmoCl|3pPWQl6|D}CZ0a)KeVqp;_X;~=_0Jkqev{GaEO=+WwTqhGIp8;O8ByvIjkN$idbA?mVfK98$PSXGj z&UI-a7o5Brjqv;ewN`j;J1Nd}}) z-rz4=lar6mm4ZH`IfcBPvsXM`gv(A%4SJIfD8BU*ofFlAr_{S_`aCQ$YowmvzSzG1 zrj5Niv zox|$uyJ}89{w#jB19ts8j7Lk1u0&Mwy*!Ff7VzvXsbx4^y-eT1jJ@a*iN;kYNe z@9rr2Q}D}M4icaEas;s0TWJ_i>^uSEiX$yc7j>PeXfflf2iqL$*b2 zd6`8;cPD ztJTydckP!ySwC8b*@AJwiH}24B?YZ6bKD1o79S!zalqR2u2Qf|_JQo1i>muc!{1^c zFBN9AU58!R%kY|ySPyoj+lD|)pr=i@m_)Q1vpm<-UCq|~E0m|J#RWvjw zXYa05&ntr*aG%=7l%xAs6uL)w?(v^)*pjyT#u9S=24$AsZ%-RuVz;_6xHaxln1pNjiZ2fWC(5*xjFbXPph`F&~Y^r5RDNNI#F!Bh;6EB7&@N?;Y$+w;6w%(_gQp6V1EB-PU}> zTILhxoxX~lsvX8J8af8I9WN2M@4L}A#&YeCGJXH}F_XI8HxxlWdEo$utYA~W2e#sq zXU?Z~smGx+2Ngy!0f;WaChyZ^2semu4iDd|LKD4|vJt-vyeLZ= z?;|*@SexW*)7eQjjJWt5=yy;bFuC|i-DHpb!b&phEYiJIHR8S6OyuKs;3F_sjJl>z zeL3DYQ*}pO@@AU)tr}7Q`(;b9GBM$imdHhp+3btehOjY(lIGhA2K+{T)$78J>4}7qCu?qBND7UI6d^*XNV99Ds7>O%Y~R{#2+@4XEm|Rk z@OVMTHQiC<{AV{V24U_T$yI1Vl$Lq3^^07CGMJSnYx?p_#XRuFl+N_rsssLtX)|zY z`sg9_yJ?J_r$oLj)*_o04_!8B?)>6i!QA1rpPazGdnQ#T*O`o`5ZXEtzX{z2?Su1Q zA}7dN4I-*wOkJ%JkSS%t+3`3unF59-6(E$@j$l8?!q7Zv@8Kj?Xp6=^AaQ&49kzkh zLU99Sur6bc!a>;t{e&e2EpYlfDa`n3H)b8m7xU|5>k}}=xG+}5Achq@Iu2jX)>1?9 zM}L5L^GdN_;f5Zt^p|aS0a>thmlM4fJK0YIY_9MPR5?%<&=%xwQ?Vqed+PW{3A1L! z+kwC%7y+{MTX6XS&@N~zrp}P!&-MdZHulbwQ0G5)9{xLXZvXw9zMtC9LR(=7$}Do5 zQ)96^SX)Q-FEj%B3mwjn7&0;IM8s&8!hwx(D1KJ$m1?A`d-BFh>#J{H zkbo0sl?`26IO<)LD^sbKRin~`f92RY8hew}q2)S^AGg8kdY`>WgjVH_Jh+aw^1;vN zkei#xI(pbQgIMPqB9&qL6WpYddVCam$FQqxgpNbg(!f(4G{QS?rF<@evFo#j4p(as z{3MMbj~NtFVypu^3=H$)cUTr?eufIF)Oz^wrV49COwF4BOz|V8Sr0n(9oEamsQC^v zT#iM!9$#RX_>SB3>%yrUqS&i3Lpb(3%*v-%p4v)lS?MJ!qr=LmxH228%%Ll5hhMIl zKy`R#hEX%J(8R#Q`qLm{76o-7IuX-o1cg^T(4ZZpF3g>!Ir|-IMq3M}ymzHHYJX5z z#f+<&6-Vcf3n0^cDZN}=o^3Z-LPYG~Epz-tiB$OBEDg=HE@J&sEAJrs#{4#gI{^yQ z*Dbi!?7a?eHnBltm4P$_V^rE8$x`p=EzKL0niauQjEfVew7TK!ikfByrzEIb+xq<2e_5`apa z6WqpaK(|OvuHuUJ6yfnW6_kHLieSmmhHO zjJXz~f6GDwE7$t>Df;jq_O7@{GpwyjkiO78z&ur#gThNNn)&SYn6gWNS|0{VA6C4_ zj4Kf4dV$>lf}+>Iq?Q1zCNggUDr%=WTZAwNc;u^n07vx+70C`LL@>@@LAAvFr2qWK zF}Z(@nky^!|Bt_i-&@Ys{@bNZwtx6gm{%A%J#Fr{&OBaU{LwL8k=>OPn0UA+5`g9v z#^^7I`Lo^tLhKvZCuTk}A9#sFL- z>F~hynI9B-atAqn`It;8Wd#Avn!#IP>t(CRM~8e95q?1EfzlDEL<~; ziYt|)JX-Y2U%y+CuR*Up4ArCe#G5~f{+gdBQ({4Sn*s?D2+tu@OkJ(F%GRoJYa6BO zULCk;w5ba+zdqr)*~zfRx+Aaio9#_X7`unPi(bPNptm;7>d%X9Jn|6K85yS|D@u3L zl}Ydo>cNJa?i(ehJG^Y#B&M~VP9(YV+U$Pjr2HaEe9Jyo=DY$?Z))6*n6uHds`lku z<&x0(DzuKZwrt*Ok>ets?T%Gq*C%$KmNrRd1X6gX*aNt&yG?Y&C7*KjX<`mDK#m!3 zvhqT=K0MeMh}$McpkhhSj#8^X5=SV1)de$SDcaA)Sm8K=fj^Q8BaZe9l3s=Y4* z+PO5E_x?iwZ`g~Sb#J{)sanyg4_p#lc5)^q63Rhptgb%ZAT(rZ3)yVT1^jR zIf{DP0{)wBX0QYc~8aR99Xw!vw?^M|&` zKDB#V!*ZfvQGkIYMV=gFkgvPmvQf{V`x|%4D%)s{s3_WLr`W;X z&1;(us?rG+T9R}u$=PubnP3rr?B@0L+Ys_|+%0YM4cYpvqKn~%@?v|R_ey=l6&K%< zZOoRI7|Bd=8CqkCeo(?JhvycCvdpD0cD=61YPB6W-O{yC<>8M^bq}o3{I^-)rOYiI zd=TG=@bBkVah0%6*?O@(lJgO^9S7C|?|2_yirM69su#0KGa6RB&KSL6^}4>prS2d}Qrj`6@xXlV`b?Q)XpykN^z}VIE~p{&64V8xWb_VF^S>;j|o9_ylHl zOA+YWt(dXnZ|ze8KTz4kGYg2N_2)qccRiz8*!&gnB@qM#_XW-cbb2(s`R$C4VCe;xU*WkV6myjv^t=XD z96<-+%&!hoq8FJBOYlZ55Kh+ip~G0<31Ed;^FJEFL80~y&`+^UzX>NYt&9rFEs=To3*q0e^M=tEIszlJK z(M6X!HP}m-{uHWR@ZV-lDL7)I4yvOzxH3jCam!`ifEM6SDohmTpdBkf-m_*-uMqs+ z8IvVQZ#@Ws=hidUx6rMiqYV%Vxm-!^r_E_d98(Lj$WNdX^sh|NXCy(8J!2&BqgS_b z?5_hEzsECL0ZV=^SX=>1R=|z_5YS`=Ecv&Yg#X=uo8KEO>G?Q8z&A-(-J_c5#k-s&#_9!FZtQ?!}%i zmioquM5$E$;o}>{sWT`qj|Q3)mG{vp|NW(nOkixZWLJgS;1;^6-q!1GEEoKG!nm2O z(AuE>O)Q;umbzs4+M9YMK0?HVUa_iDu`?E1%?exm>4cir@j~i8WWjUW4p3;g$f^nF zc@S=F|6$hwbh3vl#C@L1dHQmp#Ym3_VlRM<7*^$gxSqf_QM6`0RKmvs6O85!9=lbm za&wO%#JiyU-e;56Rr|~nP^|YprhSj&NxwPcGkEKKFAyLBA?;d6buB{n(ddO8xNr-W z`Jfu6!;xR9C4*(7MSUr^=vh@xY8ju4*?kJ}KF}x#!=q?^lH55IHi0QGkfKKnoWpgH zHy`u?&N|$X`TM5x2}p*rF%RK#2B|y5^qA!Bl12j$mZoo=c$<41^fn6t&>_ z+<=}y$!wuV=|r*552}(-jfSC2JDaYlIhUbpo+Blv^w_w;oSN9}*F1fV;Wa)}0cn8gaDJ{L=nvwRMAjBgHVFdNaKwM?T6TTssdrL63<#y&aLJ5Vq} zWFJq$ zDO?7K%QN~F#BdNMEMp6%%s^vr!t8Q^ia(xm@pY8>#0^xKJBo6~b%Rw9J6;)J1dhX4 z%s{4ukYrNtE5LD65wErB(ZqLOEiN!BkrX_)5PWc7)CUvPW7U4jnQd!H>QW{Nx{iZx z;0AeOJyMPz9Bmf0u1#>|UyLylpre%*qH?gLGnc8O4?*ta+?z_ADW)737iUYG6Y4E~ z6MbtuX7-CMt-Kvuco+Fz(Pw>XliXvy`3|{Ca4R}cq2+xv2$mn+`jl3U_dj?&^1NsN z^{Ho&APei1kmvp+e{=aZQ#X9F=~58!xU>R>^^k@MTi@duEs63r4mTN7 zX%wo1((=fp5k)O9IX3<^$;i1xxe#xZD&vbKu@rkoma15y%IF=pnrQ#n*e9Ei+XwXA z51!L;28sp8^=eKpH|?c{N(^Y)66Dy2IgP5AJm9sfDqB(%%f6QN9cE@;UUYkP>&R7? zyyyjF0K(CgpZ-Ga!+c7*51bV zDr~N>Vx}8kQOYq}S~FZ26?D-D!OhqqW}hf*&PjRGuyg3C{ML^Js1kYJOzz~%Sw_01 z&U!}LbLWp~y~UBNp|nA^oYB!KxAiqlC+NUNvORW9hnAXs%q>CXV>h5?@HR-(7>79S zRmbTc7U3k_x)Hq&bHK@*@&zU`802>tqP)Eh<2bcSI=BUmVS6s6(W2N%2Qd8Jd)xEq zqMEIqaN8OE_g7SGmrC0~Qcu?XJM27YY0be_Ef~@?V$pvtAa9H>O7$ap5x30MJTdNrfttIc__YO_hp2F6_f`_T{TS1x2T-_WZtWyf(tLjVzbXAb-#Z8~*W zm@tN%A7XYthKPyL;sH3zWayaA!Yyb$7%XJ%s&TZ{M(kZ7xVs7zpltu;F{1L!V$>|+ zg|`u4Y!|bom$|<-`19*0OzqqNN!1*bZdt62Pm>c!}#a0 z=*srL7JEMHixZ@cL`{pf{j@bV=elT#BSsBS#(s8W zFM$aUWEtvUlzw&)t)HQL7j>^4hWw?k7WEU&2-rj$ZXkxTgGH5~$f_go&MW@|DiRnH z{(am7SMK#c`dz_8aTE*Ol8g-}m;omf7$+B4G{QV!G^_#o@^IY&1e2!@M8{YZ-Wi4l zow^K;85;Bked$s*9*R1LoVPdQBLtLsrx8FWtLG;fZ$TYFAsqlSeid* zRvh0uS5U0~dnne=TY|Y)p#59qc!npgDZC{G~L5WbR{~h?2PTM3SZOsSR;?M#NArA^8I%U^h})OCkw( zdLGr)VE(a}7PmKuk?lDW$XtK!>lD-Au{9%AWvgilzJ@z~odl64XUQIJK@7xeZTZxr znElkQL!tLJC@YSuSYsYz{#ccLE3LNP;x4?YFK)oV&a9@JfX#RBas3Pzop`}K>@!0H z)fnb|Q_y9YP4mH}dQpIElVg*df^LZCZJ{lRX`yHiv!c6|Col(Nj3(`VNH@J4^%rcP}fupiLyJn?z{qzQf9$+pO zz1WE9=@iQeV!gn=XKiANd#mN~#hIO~6UG}+uq9&|ITYADA?cjI?hgEk~c#e^VStkgr5nNr_juGZd5*vb;Kvk7NDIz^Yxoi#WW9h9>v zA<;&eovXFo5YLXt7~rpw`3|$BOzF_x(QDkK*LJ+e0ZP_j=7?jY+U4g{L6_UV*0tLe zenq#S1YAO{w%{-3$3aB;aeljnP_wf>Gz}7~sAjiw9Bt`BRqGeCUKk76$uyn|lt>v# z5XbVb)p?-s3bT$(ouvgS9Q2Vk2GqIpe3r+$7*52|DNU+a`PLkVJDyQdjxWmRAe9Az zFUC3e4nLgsI<-g`->A2Mtt&81+hp)M<%{6)(6LP7%+&Bem&n@uyG4Y>dq{$fF#A2U zm7E^d`z6YiVUH-sg?+xRJ&)C)5Gv1`RhaIMjIL*ho9~LL*@B<+s=)CVYYv`4w)JlR z;je-@$RJuUA3ESlNrb{qjE$q=^Q~+IGKU(QMYMbu&?aoe`35SczpaTVL9pW^WpmU-2T_J zqyJ|HyZ?-9uaKGk26fc$K`Q#+`i>Pc(+ZjCe;>mCS4boLhuy;pndw)YlYhnp`hW47 zzc-nQumS`9--dyH5La-B>58!zxX8vTkDjr|HnWdp-ZozAWZz@PCZ7oH&^^+(tvPna z;s|D7Re}Ah-51~+Je*5u(Jq*&7(l`}?!BFOm7Hn?XI{>4X*ps+dh5NOsDB@D!wj%& z28#0bCW(l8G%ORW*kuPrXM3g!aMuJjP;ONiwHXwChm~$k*QcDS2yHX`!%j(Gz?%Bd zc=!Oq{{=Oz_dBeAgJ}&#p#tFRdzly}(P>P6C(juVYt$MIwS+mIKYS)nijE*YC%*;& zPyYs+I$e(XQ0093MWP3fVZ=3XlLTGf2j083keE^gh^<6Nn(K1rG=;9CTi~bLD-WQ4x3O zt2Z5d=&@CCKT~`@da$6DJ{oc1$%xD2^@vB_aa4C&JjK6)tiOr*XrJ%P(!<7b3UGZV zP@nvO`g+BYPfxh-*coG_oaV?R*QvVKEG_$sa?|9 z@#?4DZ=;e?&%u_x)GuV z3BfUTj~23z-`HYdz1iz=0!v{`X)V+QO6eB36vS&n84WBlL!Ryfyc{>^7X&hmPMi(% zq;Sn+UrlOpv((#e&@}g%!Hp;xL#iRd5Jp29h;pXei;r*4{p7OXjcgX>Wo>yoe(;TKX~I0EZcfCBJ@!bi3wRo5moxJ1|%G zT9Fh)YM7@`X$Q=PmAa3yM*L}#IYBVnAQC$@BMSAd>g7`Tab>8LFfJ=#f&K!IbO*&Y zY87?XbSXnUK=yU_H4v1nuJJKH5n^u5IGM~KOqK}TOgwCYNWgB!l3!MG3{a^rr&xaolHZj}PWixK@xi2cvCNP>==jEoBo6@CauELsGx57VQW z9Ns#94obVXUw*RRX!?t{E(!NQVh2TRZwJSc;UViY2QCb>@ZLi!(tXPhKQ4M^9M^0c zJgFzq!SJG>Aa02R7-`+2H4PVBF3Y8rDo_LLV?;JOx1T8}jM{oLt8*%!keGO~BKUYH znMvfD;!E+?E6|r16n z74gyFnJP^#GH;A+-jiMUSn=W87n`E0>{Hy@-o}qknG24f*U;mVJZ20H^iD}u(`ycq zZ6bM&J2pM6`rm*|R-lsKVwJW6m8?J|D<(NV6{=g&eXYPI{~?gc3RJQJmHeq#!Edop z`1v({Z>XgCp9z&rpT74wbE9wB+FVS|ZPz6Vh-7j4kN^iucN{m%mk*2_-h788azjM2 zGE)d-WE0jQW?C_i9GW?PIZ)VaV;TU0=0|U1kU6(Q0!wOrg|AK(I0xL4s!{-)wj0nU z82Yl#{*a81$=DUt%o$u2{0qG95ulW&!FxDR?f#R?RVifPL>xQN5&?x(p&EQJrtn-) zuIeeq4;U`&u?LsX6ZBr(%;H->?4+XDeWCP(A7O>aZFK|Oy z;|ZhmN0&kmswZ^1{+a1baRTui*YQGN^Afr2iBsj`nbQT*N58RYzP8#>Glw<)v4%+s z9o=*)`>5+K+X*NB8VU6_4cXWElZE>dMFzrpaDoWOgx*WH%(@I{og$;FPt!c%4?hLo71H`qAbom zpWu&LpN|)H+HAr0bCtKr&LhoXyLr18X>0R>CEFD#+!ra6=#nv$4~Yi3b2>!1$ud$X zzfH2E=($<(APFOQ1RBQ@Wk1y5+xGmhAJ#?sqj2qP75Xt9P7Dbniivrh$$$9bh)7o& z1DP(fw|bwrV{#XV<<7XLufj;^4RmRu>*~s!aa)cf&}M~hso;yjmuv#|nVOt&c?uw_ zjejYpSKmG#=xq9JYFdlDFj#t-?#tZi!BxX|k`ex(l7Eq7r1V`fY~hvRu7rD-ZMchM zpZ)4jiuc%#;MB@VOUU8HV2InJzr2u__D!Sm$;*Xhg;?Y3cke$4$MmUwhu!6XE&<73 z15+7v06yopCo2SwThDWNvgO5j9ADg~A;R8V4Bxs-vdqlaQuJ*0jg&8=RtwlR-q8Mc z^AJa*Q?Qn5f()+ql-meSm8DILGdo%u(=*X|B2qc%{Zoa5SvODafxDye{h+%C7Vmju zIYv+xp7h)A9^co&ETP!af+z_=SxG{N?>R&t=i*9e!iC9%pNQR;b5z~e7p3DZLGR6= zbDHE=Rc57==uhBH8T${Uoy*2gTJ}tceJ~wd`!#%{?^%VpP}(JScD9yenM1Opa*C8B zztW>cGAgm)aBwzD%E{rZt|s@(fDYx-{YIDA0w%w&5anM_aANN2dTqW}Jy_4=Lr7<9 z=fOya)C*xXqN^IG8;_V9ua|krQHNCkB`zP(fuK-Vp#nia1PZ{D@;J!t$Y;IYo^+AB zHw07DDp5Q}8k29t9WuLfi*m{{(xYUaedf&etopZEAN*?t=^3h?alwzj!}O!i07_dX zS|?`IMdRW%|E@m_;omD@p_js~&u5~9C^!tZ}X3!975rEF32;v@~ z1p6q&p2bwBK~g);_o1!>7I@~8M40Yf98307!Xltrl^W4ofHRp(8oL%Z^9(wGsXW$D z)G*CEDG%wTnAo`f+5dk2{ctMZ{^?n!FOwS=20UtG|NQRYl*kFp*Fb0qLDFL#J6%*< zIslbphdgx!M?h7npZ)L8ZiA0saYpF_V&xuxddn-%aiu-3^qJ*xX=UsI3%Ql?ab=!a znXgyY6f0}9|5{tFtRMe1*Wtv$sS|D?(#uYzf(9P`QSMP+l|W2^x;xg6c?mDzJYfd=Tbu-b(zLIr+gH@>D+>Mp42Oahb^HHe_4yCjpuedb z!SAJRZ~5(Vb$_w$EoG+16*6cT^k)Yi#zEowHl!b=-mW32(i5RNz+K%l71{~eL#ILN zf~^KMbN{fa1Y|{KJY^>U-xXgLnB{Yv^gsenEpzmP|3K)QCB1;}u<3bB<#(7g0bFKD zhcfWD%+vqqIoMiW`mP<(d&c#Qh!%M0u)+d_)51CPt}A?eU@2{VQNv?+orCh>%x{P& z15at5Obxq?7?3mRt{<>u8MnQ5@nz}WovBnedPgrZ&X*R03%`NH$ecP%-h_ojeJ{XEWbU!~mGszCFz$ zWkG8}0-N!bjGT28vfE$RnbI=v_05r?E+*5zJ8sRTZ+Ij^lRO}}R zhOW1fp^hX9rhWe<+HtD6uq9HThPe+-{rd z(X~fx*hAilk-<*FT?yUbQK(bgv3shxVeX}O@&`@w5|!RUfmimeZojNQrIEtpC6N$u zWoOsG8~w^Ttbad0OM8Ia5#O|w$Z>ywFoT&)Wm=Cxk~z7Qs(G>s$+>P1J{6;CT1h$C zg4pQ4w&WBMTj`7{J3M3=>^o&o4Y|?!xV}8iq$;6DC1TL#xQyY$t8bCRp_Bg1GvknK zOL9KdV1{9xk$C(TULv32d(mqXI}2&Ntxn#LtE=-(e9+Yx#TH$G`oB0t>`c1%oBnU5 z{PjONl>IY4hy52Qe=VqE(te@Mxp7WBKA@zFaaJwp*e>n%^eMq2#mzSz_gTJo$}IBQ zd3sTiPjAHN)i(0I_F^OV+o$i`eV~LQAwpd%=CZ8VM@LOw;;;8lr;jB!n~Sn^9@8gE zWj|S*CGr9WMO0d!51MnwBb6^^NIJLvrE?+r69%#Z$j=9t1H~1h-v96!tm)M}I$O5b zQ)|}lX11_Rp|rJF-_`q=kfhGOadxLxO<`+sYXCzdG+>{Fh?1Q`#ga|GV!u-5K=qY& zveI3ruZ!FYkD4`(YFmlXYBgm13v)n{ayoM{D@r{%G%3>rota@*eTnicS?e4a=50RK z|20C6V01R7R-VkRuyp&cEgQ5mL`Jgqv!Y9d=s62|VZh>3@t(B;wvdarNJoD;tNe!hyp5rBc^vC0?l#C!yKY3dbkC!8)l!+L2H zfSWY`2>Jn89tt8aH3H8hEzm(K>6uWKRRUY_J$9_=w_W1=)=Q?9>-|3OhgAXEMn0x4 zyBiF>H5b3bl3bkTXK{Oh;dwS{*69w0wyz5_78?VD9LV!d(0Xu&oGXwQb}5*ChqWBV z9di1?(R+xrj32x}#P`;f`2II2sD_oNrw!0G^oieeQ(*7zQxmRW%`>8a8@SW^_^zO( zbmW}C`eZtjovg9m?Ul!z#YcM)+c_Q{HEfJY{lQ^1Y~OcSZ{Yxcuf5RWZ^dGkSMJn@ zI8g$Tt;4M@!FiwkB=UnILicA~!?)qOTuDRmu-OCdvGyOFUnZELTI>KgU^lpFZ9TLr zQZIgQB{w8rtS~6{jq_Y?$%8w=l27+>HX~;WC*7Dx2Wb1jm^GCdUt9~6KR_zRQ98-I z$YjK&v8-S*q_0J;)rS-EeSZ05op*nU75eucSBRk^9`DgWq^T@4Hf(u&*Y^Cz_q$DU zb2#ng5*%5t+3zt9f!kCo7UM;7p6lL{n29#h+^7FuPCtQj! z%e(!9kb?y|Z}1t8LPF1!`IRGwMzgQcu~n9#Pu@ZuKG)j{ZbhmzT76zruHjyFI!Gw= zRzOuz{I!vxhMu#}yfUqQV(Pa>D5tqjE_7Mh?M;DT43 znBi2=110hsI3L7E_>03+G1?NGl&ulOZEELwEoCe?U(II*8H}}*X1U+@UVo7&wobAz zcx`Qm2WM-^Mwpto={?xzq&)R-?wu*M+w3{)U(cXsxbOT-&TMx6!7ke_ej7OwKKQWe z{i!~$T#@eh_46!y{yUnVo<2QH7}WyO*fr}YXCGTN2JjaGSJU9TR};aZQYFLdz#ECR!PWFc>4|=l z-hQEiCrsJS09INn7)a9kING^0%GTkxS+Sf5#hOevI>JU?Dul0S`P;;69aD@-)3H31 zgz7K+RkEu$iOztg4C+eSeAxsbg@`bt=71}&t&*PZkAEm?`DdJNJsExZDYuQh>A>I6 z9@AZ@vfd--f>)3&1Jx(wx#21m#0(UnVY9j* zxkkNiU1K*{$58Ew_3bYtLIAL)( zelQgqi{@aN=Tfo0SuTPd@rFyIudpeZwk?K45WM_j1w;SN(dXZ#T;mr2+9@qb;-XP*7R zboh5eOmj-xzQaJl1@Nh8hfYX*rC;&tdOVl_6b0P1~j9UgCGyVmb>z%@0A~ zw)Bv_dW^LP6e7Cv9d;wL&8e~YXFH1+9>kE%cNhSsWxQQ{SQx<37hFsW_-nzY-hr0h z%DIzwl2+-{1cyGoPF762-G*DIrVEXIhrun!Syt(MxrRXtOGA(^12V5b4#rE4PG`Hm zF+=}9_P#r=sdQa8ii%>14UifX6a{idAe zAu1YuYVv{V_5ii?0#_H1-(p{iGA?~FzIKfgVJD>Z)lc3;G;pA;Wc9?-{te$Sv36A6 zucdaIbIoKNw!NNOCo{`{+|vdJ(=fPau1?Umc@{xP=+()W-@Hjw)fu^s6WN=x6R@+2 zjN8dT1FWOJf{4iisW9)D1E$x2I(hJHLnL@SHFKhmOz5gh@HW{~uuJ7~0RtSkJ{(v+ zH8XZMTjonj26|BR8|5QRgKXO8{^-DXc=wDkn>34@E`l{IPYv%hHr}L1@ll&un1DfnTSAE!v{_}QJ(#bdi!{?pd z9Hj)EKe;UG`s<65`uTo<^!eZJ=MuQ$txK{nX32-%3yC*C|M)Q!^{EwVzD=&4Qudz5 z@852O3U`x+AI<*b$KwBS^O#tDP4=mtf@SPiRJS9Wp!VyZ+6n#YmKLPJW%#;=uOMVt z7;@ud18kpd|^qpOrul+TeZ#={rC7?-#*Ujp?mJL?eRtI z@`dy_^p6!S3o>dabRK`x?ffv|R_(G}(pPSJVQYs6=2WXZMSjYut~)8Rw&KMFK_ha-Vrw8T zJ#3T1gvR}g{zVoaKFX>9a6!7_kFvnO=*GY3#(!Drt&rqP*;*n=O)hmwu0RQY723Q} zBk)#Hv{{Im-{-8%?Rzcm=B)al<|Z>lVLT#DfwJCHVbw4XX$8TkM7YhL!EIhaAQd=) zD~PcNglboJtrvtTO?8hO1_hLYw5Hs>Kh9v6*TbdK= zU~>w~(0@bDxRuzm(by-X%i1hEo15$I*b{bw@MAv&J?hVZwEjiTfkr{!k*TCHogdJy z2+oZkk*Snd4c`;5WB*h&#=q<|`rpKg|GJMKD{_!Gq>nY5t2@ z{d2}ER~;F&xIIVv8qA4KJu{NDzDmB0@)F(EO?Pf%D-KRZYwF~8-Vg;QRlNkWsDk~8 z{gAOg$$7Ti$x=E^H99NibyLW@z^k|#SpBAkpT?Gw>x>aHF+(CKT4Hs5Wa?( z=qA9@1l@I$%QLQ?NVppB09{_ugkv22jXvDG@*|+&&j#^(WxAF;$Doo$IR_eGb zoO?@hEN^UEbnV!GwS!W?$$*%aygEklwSq4T8z+~ZiJuU-aU7)zHxc>MVc|Qs2aQVN zXfcdMUUm)Jm64e0TwSGTpU^!${Q20D0^MTz9qV|Hb5GBhhuL7yb1wB|(#P6F%U8vY z3eP)7+f$vcd+&=n^HjOuEUSQik+Ig5#(g<3Ie-4LM8i31vcf#E4C&KF2v9Xh>aM=q zWc;yT-aG)a(8oH6TiXN+SU!yM%1#M!_WX&9`+!t{t@M$Z8CO&(=!MPH^i(}$vF6^g zeRVq_(bY?A*RGv;sbhPugPA9=X+E(;!$?UVym(_yJe!v~9@TgG-Q2J$^2HYGE_Dg3 z9pm^NMJ4%biX6Dcte1(L0#%DN>#i}DRgq1oF!5}p%C6SbkA#*EF>_WBHb+}FJSHFT99);0(rJ0IR!DRg@}%XtfHTvv zG!7tx9pCGqEkloGni>ti`1aY}qy^fDbK76xa^#cVTcD6^&j-t>9e!|hjDHOZTw`>Q zjQmHbanofaXnjT#`NH?bVhsyPd()0xr7ltNB+2tw_1n1eZx(^ZR{VTVb_E?W@s6g6 zR}`6UPVcCGm)49EVT7*3_3}7!wIFHfIz%7%r<~e%&3g%=uP?~Rw;j>zvL3Yc`*?Tu z;q;QiBBhMfZCBN(ji9ZIpYu?}RWsX1Y(7W3-l??RBc+*fu~ua4;w|YwREuPpUAMsp zr}0f!^XS*yk)VloH=d6XKS1Qy2(i34yWL?}5SDW=aT(Q!zWwA?Dz_*00ZxRITVm8- zJCIBGw5>Woq?~Ql^4Zr+h1jZiRc5}sUvb(o*?Fc+vOSO2+k)%c!`fO>ac&@Vwk=ls z2rGy6Ln_2O7>?@wbB z!U!2-)Ja3#Tk1y(GB!nOjKQ+_JI%9BR;?v|+;YV%}$3kWUjOuCK#-DBNoypgE?hb~x8b$+rC}xR`P8&OPc`yKDiay%4wy#)Xr6YX zIUeZ{-G#&Yo)hn?fe3Tx)6{BMLys*tuUXonf5t7CvmT!bmF|Ov(;4mXho>uu#6#_~ zd+{K*_--R^pBp>}YtAFVQFDsK1V{`}w^eAhA2GzL{&WwpT?`gfe;~RAU77SS@tT%l-0^(^pPd z=BLomwJ0GXgc=4|huip|*B`9_y?gfw^AEyJZKipLJkP#+CM@Cw&1RxA?1v8V1nzHj zJ)^iJ6Lrz&$aB{i6SoKL5h1;b>|8U=w^L~8RG_;iT}^+Z+w!utm=ei6Vip&2!UXA) z8=G=1GD*NgG@e!80R`H(P6{f#&S}0u*mYZ|d!h%9mYFO>?G2I_aPgyglNz$&Vo_Tg zKZjJ;;+zYJbwBgwUox&3RYOg`Ysy52ZV< zAVPn=BpD{K{r3ykBjB7rGUNYG?jwc3Kf&ElPWuOCGqK~#-#E%5m4MBT52zHO@H;N3ll!JaN==DBXjTLEZ{~T8fe-R4kLsBCtV^Wbw6kZC4pTc)YZ= zT)42(O%dyfq8dTV0%SfgYhuzsEGaw2HHBulP^O|mN7$m}|*)8@PtW~Y1J2ek=^q*;{|^xLt6 z^?X1>TsccDQ=8W%>_6@0hzq4n(%TrjSxU}j4Ifqz+ml^wy&dNEhF`%P z*ma}eWRHt^TZtwtN@7Vu4Q)B#`2u9EvV9cI=3PO+=P~72x)cyvkC(xe{bO9rdn*W^ zG`O~JelZ=$BmvY&bAZah48A$L%xr_G*C0j_Y(DlHIbQzVDGS+aIJx8v_$E;qGS#A7 zn>5^#%aUx_%m2`O&D{1YgGy%Ak`8IrN!H7vq&B&~VN;sF6a^?F;DD6hEnUDEg?ZKj zNa7Jq1}>SVEM)V*=d78Z!7V(7YGZI`fgV%Ej&s0+5-Nz0VQvH4m7!X3+9<~dG)`=~ zL>euk#De03WOfKz6zX^&$Ju)p!SVbfD?*Ay-;wL;9zaetJc{dJ>qXJ`J2FN?+NZ*+ z`gseaQ1>?-stdq0J2DP|R~!NS`^y14&Z7wm^YB-9bs$^+rykw(WVs7W9HeX+$4fQo z2#J`rZLHat*>>ofhJ;BAHkk@?S z9+Tyzq20mvSX4Gp+>rzIgDkV4P!517R14_I1V73)EsJHZ8-yOJ@q*1t;2s)=WpQG{?nQEXCH%C2am`M z)a3^|BjNIFXk4a!z8m``g3TufYx9HmF{L62hrEZ>a#u0Im|Eioe9coDhT~U&W}4i> zHbz6oh*ZtKWhEjn)RATn9%tKSj==ZryZ?*jgx|FT|Lc4|n1TOdWvkd15Y>>htWb<* z?V3U_=+@(7zH5|m996G|4}?k&pogayD6F+sSf&(aRQC6qE^sd_{@|5!ueAJ$xUS3# zT3%~C!Bb&!@|d8Izw5?SaYvv^ z3H&9jg)WC!e7O)u+>h+)i(k(qK6fU;vzlzZIklfd?&s(&KgyN=v~5Fd%wQdMQ)j*7 zy$SL~zU3fgo++8RAv&A!IGv#(C#g&PxP1>7BV%*uF{5k6LnwxnlMh=q?ba6jDey?VMoC1AGz#LEP)>*fIf%DvC3RUT=AS3o$ZKGdn*BIQoOp^^#-*NKD^bCmx&GyRb|id-RBI=UlcOQs zXX=yQ7UF`Jw9=!pN|lbd>Xq7cp|3JrU9$W7>ZI4LStk*InSx4D-IE%$H4mA>rChY| z>zY`5Z2j_DW06V+7dd}N3i9*8Bef+3BJlH;^h?r(#4bfowo{_>n;MhK`&(;-xkY}i ziN1IxVFh70(RV5e*2DAS+eB5UocaQ4hiTM?gS6l`C^Vu!- z;JnOyF}$qcl=JS&ZQ=w~6u4=AwC?0c8MN?=;;^dtk@Mh(7;P z-F*K1qlR4yhh28HMF&$Of*iZw+f{T04(G@xG=(E#WHxFw?`_SjOh2B3IuZ5R$ui+! zPmUl9Mb~9u90!TMN6Tj94)@aU6AX;R8~lpV+AE0beVxm8I2F6}uf`tKxTDvu(-%oy zHixTZHcH9HUm#yxJJeOuJ)r5Hj@ys`S#+Kn&iry{fn<~sq9%PW8_bT#*PtcKss;v8 z3+`zgY4%~~k}B-FQFOhQyy(+kuX>l|&qj=6ixoaH{L7epc^m7}%17P=#1IFx(}I=k z#Tg8mVyUiq`CP5=vyTr^Gf}h*O}&sZ`%UhtqIn!ye3MVV-IF7!lJB#-_qEl2jVH23 zC_o?Y&rI@sS(p24$wQhVJ z&s1KMbmJaN#RsC0xUI@}^81!PBxzG8OScp%%NB5`GI?CX9}r+;Zz$l>z%?pX0` zp5@{yC<~4xrTOb9#rMXz^ROoT4(NDT3^-L_8T&q`I%M~CA3APd_LkH@c?!D06!))t zez(@UyuOvAhf*BvfT&SKxNQdWbB z_7XdcYsf}bM(fjCAML)ID%BSTX{{h~xu;Cxt?1d>1F|Z0&pfodV<3bK&3|xos%{9& zWzu8XTb-Z- z$SckHQ3@~P(Get<4L&a|-nuKu|6b^o+P7(3%Yxb+7g8EIDbA=Wy68`hHj6rs%+;Mg zb8Uhze;rj|_rM=fdEtq%*7uB@!ZsD&DO|~nrXw;!Wb^oDhF)J4X+khdmOIvNv zY_h)A!i1D?K;yZVe^1cok$&o1vuKK53Mxi6ZQ8ed-L=43%kiyPE?Zc1qM#^Vqg(QM z;lgnH;?o1#sx~`4rF#U~eVlxFL+Q}wP2>o>h%0l>4d<t%(t&o%tLpJ$o)S}15RQ}?I&pZ`cE@mFJ+KT0tFPw)FRBK>ov6@Xe$;eCsrRuIYz)DHBp zzCjy0N{tL+8y7;uoYGmTILZsXFXstmeRF)+CBdIdx_%>%qt#RnjK@=pR))%PUSI|ylB_L`d&c>BZZGAk;F0J7xC%1 z{y(#Q*Z;5Q!UzqmStnyLBj7W_&A{BcM(_u6thPSRJUi_hqiO%QFj6P}&cfkjxDhoO z`=Jpq2P1B!8L|1jS6fyP1%yv#@2yJwHNc{a86=Ja?_?ee>#fHLiG!EM2qA;0LCr6~ zl5!-dtN)18$x$FJuQh=Rt=nQXYJo%np4y)Qw zCZnLSJtaK9{zkb)b!BuAwBWnTru!MYC+Zx)Fqy&K`EPu+tCoZRu2c(IH9%nr0GP^e zj0=Q%m%Mq|Uj`F(%-WYTT z%LNVl;n1Mxk1K#Do3zqe{#hvRw?G2-Ado)pG^VRDSgaGcyN#+ARMH9mOHFr6)NGRL z4n*X)Rb10_a*{b%o1h^kk@8^Ov8o4~e-?>uso`X!$MgVMQJMkpWE5%QHo%~-9EAF# zQ2D%xB?ShIlbz;X0v#&|t1GXh17g;E4FfHW?8v*p1YVa2ZnGI0TSxJgM#wDs!|Pdq zXWlkQV)5ES3q_wPlGfjEbVtX7iTN8;Ui}6q2geKY1JF1yh|S-hp{|QDZk4^RV|~TX zCoFtKQjAaR-Wxs1JV=R1Ers$%IXl!eVHiAQS{Dpff=3R&gm=l&OF-)nixjZ-dL0C- zU~?(db9$bro$4ELM`_-HG|lpPhRf20*7!n?{hhmNw-#JFa8!Pi?HYS*((^wCYJLFd zPcFq!)}i|W3_2%|lLf%C8ql6<7=Pg&3s*C?a-|`+J5@2(tO_YTY=|$fg zGwQ%|cDzr7#w9LKT>5=~(^YJLxCcA;khlZf#&4t=68EKLOoYGP zo0op()WkZwU6ONO$9Zq$VrINY9tMe&ACsYo+4~`wd6a(e zZt~ulX{07fsd>NT;~ud@4~+NaRdd!lkl1{cu!0vqdxto^I+zRnL^fWMVSG8O1}rpo zTYNDUJjZZLg#1FZ58KWBX&Q&k|d$8936P~N@wJ7Fo{Cz3y3 zV(E4J!IoBm(F`}^@9Z+lpIA^m{f;(DcVmq6yOV|bu5^#fC0sS-EzHsG`yBbrQ03*T z8{B|pq0mb?{6EJ)p9h9m9z{REa%{kD2CW5a(W8Hr2>etAb9omKA^JjC4UwBGT ztEPk2ja<;ZW2gzd`!E-Px7%~kOhkqY;@|O#KjW|T#gVCjiMSNyX*`LT5O=(r1d7td`as`c}q{<&IxRpbUj*qhG)%Zw7-Mf z<278}>dH{*74lAJ0wNn%PgC> zfF9M7Dd8r5o=OkqLIsQGL>cPOG=2U+bbIZJ`PS;jPbJZHIC1ci@$q!_F{%PRKIyDh z5Zyo|I{iiei;*JdV5-KJvU|>x$5EP4c{9ZtV)Be*8M6NDJAedD#5vQSRQpP+fNPjh^|Nj$ypPHbCL~n86*Ch5cPne;bJNg1&GsV(p;2KdYt$!Z*bqwW;n%nIh3YSI@nR_Q0k)-LDgWPOiQwb0o-Wr9Uy1@JH zte$xZI^_sqnG;0jR?>_p#V1e^K6#X~*ot1*jqOqUj=kpnJ-_w7szikjP7?Zn5ew7= zpTR&$2r=w{1~pqny)VOyI&6J*Bl`ttv%|d4dCkkw!Z&~@_yjBjBHKI=8;%QKW*4+C z?q;EZapY#$fpfGGz&Y+?8tx-YQ3i7a-W5de*b3q)teFYUGUqc;`bU`1e{~-=5TY8O zDf~_7VHx^GiXgC=Nf2Hx0jjweUgb#UgV4-s_LJMp_CoxpYq+b;=mr`Om17Q{ly|f4 zLEn~JmQl7?hIe0y{~R>B_>!6f9|z`ku@?P|gds`&tVI=bg_y&{8cbT-XsSp+w1u{( zQI53=p|F)osUmeWl;V$hj~Ya8OFnLN;@qn!7V`xyJ}@)(@nT%rbAuk(2tJ0d0pX7K zUf|3VbNv#AtcLs;KE_n^(<1@`3NlB1?5?%b!!j8vXWDK!k7Rk(?H9Od&`u>aU;`*` z^OA$2T>UQxp%l@M9&NVVd(WZGmxINE@?w)G4v){JXE|O(e#6H00V&drdYupZ%z0`R z!-z#X3rtLz;Hal#hUlQy&8$~z%nqB|_IaJsJo372l)~6SC(#NXpEf@)$0{*L28Atw zNQNPW@+X<@a`X=mG#039A6gUMz75KF8Y=qQ&jI6fLAYFIpW23CgHDNcp*Vl!j48tVso+d ztwp!r`P6QplOv*|cs5Z!PAO(|G1VgN3ifqK+l2`?nX?ok5doE++wxpID{4>gu|uI8 znJLm*xQ_`vEqOa2-W&9Wdm(K^gO@{z z&y2OTAD0HQ7WvaNcKVkL44MH)hjHBDCM=j6dJ;66Y9)I=4*BPBpu?J{FPgXyy+`1V zv99B^avNdc3BG4NW;citstXG2d=)spSC`uf(+}*vuJCtxv zknP9`hlL9WxZ`3Qif_g*l#(XU{dV4F)P~2hNBR!PNEWEARoX+PPPi)U)W0h7?{kdH zC~VzGKjsr!6fbXSx~j=;PYCtQ{(xzLs`D~!fWIy4E+y|QYKu9uPP8ImK`m`LpOZzo z<4^L9D&PBRRxshE*2zn_l81?s=7O!q^oO8abalP`;J%y`OQ(aTo!8z(cdo(Io*r%~ z*r8TYFB4K3^uU_JuTG*yW3l?S+)fpk*O7L z%5;t>D-aYZ%BwInHjm;oGlW=DCkBw-QHh)d>FLe+Q{)X3YSwcQ-G`D7x4&<`aT&Yk zBvDEvHP7tZ`Hxe}XDNCVvxd!XMf1AvJEIfz&az8M-5^tyZ15)c4on*NMs}sxpLXJr zp5io8=N`F;1VFuB+~dZ)I=XrX%f6y#UZWCCG6=fA06PC>($|+i2ve()8MOm1Viit> zwnI0(`vTAD$j=xx>#;W{x$bG)*?~bvlDb^!r`}Nw)8rXeA8M@y?q+AMlbJU#Y$WBr zjND!9Tcz(iLdk6qWgySd@IFq-y4E{XC*3PGG>5Q2#gorH6?(t_-R+jUaTePF9@ES2 z=&|q0eturM#pVrqzeDd?o5ObMsQ1_mbT8r?a;ufTR^2z39Ty{?>}y8nVR@WM+B8|O5~kya7r9o|q6zjU zHh6h_8I=2A($J#~9(pFg{o;Oe&?0L`5_VtwE#98HyR;6k&j?kMIzI*!wfn<=hVyvq z7|F*A+7`NflMy45TyqL71}0ANl1q==p3~kh$=+!V zpFat))?NW2#NzZ#boDYS&ep?_|AH-w7u`auY?t$q_`o7(%b16gMiO?Is_ z1WhD8OV>E^)T~{iyUb?JJ?1aer-7f9A z|AW>g!bCdH!f08_WF+i3o;PBuvVtJg*)d0;XdLn>aZW0A5>+qShg?Ct*Bo6I-U~RX zPm*Jjnge#r8|7GmrY}uz{qhl8%(xG*izQfcS$xQTc8Ki(bUN=b*2h70DL_Jktv_whf}Uo zDGW!BIg=<~AyhsB#uz>YH}=o@qMg47761DFtHFyA2RJ!n5#-Id6@>I;S}+Y_y8sVC zhQe?S0#HqMK^(hr>=rb;O-T^Eq*r={M;7dsc|ds9e!{fa^h`WdW7rNC@ho<6(#qwQ zu2Kd$+vaem*jh~BGO&p#^{dt*G2*!1zAR7F1G@P zYU5S5=xbyTfq|O`X(y>&pC)^F;RlA(v zsGh}S>i}`_S~bqwnVI@Zir;~$_+H{Zk%OPA2{R*CdTA?&)eZ0QZjHxLsW3NysPf@P zc=BoP6N8(Sr37 z_UQ3-I>uT*<)jGIAe2fExL+p@&yXx#lH%j642wP!9QTHC0#emVsPBTVBnEnl#~e#{=|UmS>&E9f|3#7*Q&*8L*SytZTq?F#aAct>Q%4^2;mALA<3^ zyw5ScEvx1+)5f$VBTf`~C#6zNz6_#97+*Ct?*4j$-k0STBNPzVK&c_#n}4{kH-6SL z<`6a#MO_{Rn29=?`WgT!Zun~UMFy0BGi2Bg>iGzQ#P%eOH-K*2Q5*0vLBbFHUTC1b zhX+2y#tcMbOYxGe?A?Rw@eQeC5%!%X8jy#z)1gAPfGz?L*zw;Ek0r{KHS6X$Hjf-S zsNG!NNA~sE=#iz_3}<$#@6awieK1 zzvQwyOEToDe3>FudUYc`TicRFmYw@ zEqBa%5{5BKL&G~MWqLc<7X|I;)ok&H-jh=?PMz$j!>z8-j$v>3QEvGGa>r=sbWc;}q&HS~G+NbLQ{uByMS1Jo?cecBul_&%A0OL4~ zg9c8lAigruzx~QqjB{5H;=DoM*}*!;zFNpga6mCMRarXL*lf47=@%^J;NtqZSXSqF z4#5Dc)OZGAeMc~vE?S&yZHkHJ5bZZtM-&51>;CfT&s*dJEVxC(Sb#-F#z0K*A@C-V z@KXE0`<<&;!N1+u_}j04JBITFUxz{wre&#q4TG^?Ca4~ORNbZK(D6y!J}*tixDEa1FYH{iAyAx;>Mi!bBAhBu7lt8!a{ zlli(tzToCRX?_y(7k_xn>}0^rYKd*Xez>oxBftf)MAZXW0%`|Y%6W8% zKVX*aN<&@>HEdH@S64H-Q4m?YQ%n8I(224*ckcFmg**rjAF!4Esl>d`iN#YcRS}66 z$(^|!#wfkqN0bbCt-rA^?Jl-``PNr$(}F0L&0^O$xX1kC*y!gMxTpKdQH%qIiQBvz zhWOnF3r*KV6bV-y<$A|gu-8*`1u@y;>Vhv~3j!lejTo8%c6tMM+3eO6X%bdRgWc*T zy{YJORiw{(XKo>5l+3nzNMNy(jb?Za$$7=dHnZ*fMK0Q)t~R4^@@0>fG!4QWZj_6! zPFE5G^i;qTQ9;qHrCr#_+kJg4ru_Z->-voot6hjtwn` zkw_GCIf4sjs&}Z57pF^cH#I#qkXC1++!C_3a$$+DOu|fAtkh{X%UHM{X#HQZj>9b! zZs_)VK{d@mjr22|rtsXRX+#t}yk(s4lJrgUPY*9O2<1G+2BEe?{iHs=JpXss872d| z^5x+IyKhkrTk+p~csK3T_RyA8&1&81Q~;EC(zvToJK5M&=h^D0S4H^+Z)$GFJksk= z@l!f|!t3+}-s1>_Ou%a-c^JIpmvG0dQY7w%jUaOQcF|?;zP9as87`E^U~FUnQK^RK z{q4>TT8%h^+sIk@jh)xtE*R~$7lePx!y5t*)y6%Q%({;|!g*tRkd2PDTq;8P9qBfB zWS`vg_yGQ7kw(MjkGRa(1by#Iw$9g9TTh>b?ZKG|#JPK4ftSy^3Z|w``XuuwP+%_O z&WNYUm!Y{!)~4e$X!RXAjSE-KWf!a+wtc$ON~>2Q;N+gsaPik8?#dbVCXK4{2|bfv z#am<-GLF`63hgyH`>b^Pmh`z}Jn=nI;3)uGv-URQSijpzw;cnw1MP>pUmQ-Ft!Hf^ zQj%-MEX^U0KiZ1SBi?+%@5*=6 zbhKl4~=B^D;Wef}G8YvAdJWDU)-R-XbD zOfuLnHVEDyl+{rlO;XL_jdCEpRxImd&bLAfx85W0`$6`!it~hl8PxM2Z^wT!Mbc&~ zHlJ6MJkzYIn5degT`SS0!Kc)MYY>m&-ML*4ff-J&1gV0|QowB929P6ri0;g7T4*s# zbxWUlR}|)|6GSyYG zTjpdSKU1M*oL(}&=*|2a>2kcS<@fn!Cc}M=s83SWwOhTgJ`F%#dgp7Lc^<4q4wN9<|@)4k2?>?3_Mi;WYkuG zVfnWuopMOET|e0R8aejyS6V=19bgh+o@;$M#3~bu0Wrn{)f1dxkp!X*+|H7Wq^CKL zR)^8GA5Qlb%)S~@bs((<1YHA~vkio&ULY!Uog4yd%aYhJdI7-N_nloqG~;-w3JCo0 zZzGiN1C}%29ka+3Uzx~Y zg&fZOqw>`fS+wQ|coTLR^YO`WC}`8q&@{t6gA#HEH&g}RDrR3 z6Y(5aQqN$l@B|=H?7Bta`wFB0+1z1nbrW)!*(KJFBZrTo1sU7@5F9NkKbx0G52Vr) zxfoxowQ07ml%n=|PAP6uyLdp)&;iBQ4$4UnZWvUjhWkMm!W2!QPq^%6`3Ku8;5=rP_WV)sN-pY(mvUx+nTTY0^ zXK{NRUN07W9QB1V4d%{TWxGy5g=+f3TM6FffOCD~mVue3bfa#~lbfx18jN0*QCrEJITr!JFuR}dD+9TRQJ*e;EN(MKqoXt8-!O4dHk%lU!_qq}M* zvDuF7yYQ#Jxd$j7XzK14$^uysu1!IZN(qbu6m~%0Mrg9(GD!Qv7g-HIkerQi(awTt zfSi&n13$@24W*k=Ap%~^>i)R$!N`I4`@cn<*WTCkQ&v^{$RlBD%Igs4)s(&Jz!H{X zODx<{^pe?IsfkGuN%6co(-w~PEoq$<+mto8(PiZpQ0wr`lw5ocEq|!&D}Po=ByM+q z2I_osx{bDsP)~PPf|KI8SGT?%|Clf*zA<2X=ki5&br?-GAa?KS-B9hHaT2+F^GKSA z5ACN}5Y46a;su~mQ}si4oPv$n7pY%g4!S87&hO3He8c&Tp2XIhUT=?W{Fdp$C!#rg z3z+3l_6AO@`YwE9%vSKy$_HW+Y~#GbRf>%wJ{ISMd7rkg4E4~|xLDJna;1N$+nPb; zynyZ?x8dvi_>T~Ll~qG(lMnc>OS>89Rgz`@)LdMQPk+8julHVZ(g~R2;D$ZlzThw7 zsugK_S3zpeyMi$M)U!{qjXpX1*IZZ^hU;ZrhQCe3ZZ@|0NW609PVP5V^yNx(KK__|vTO8A9$_cHX zQ=OG#sMd$vZOCk1Ahi>J3lMA``wlet9fa`n5z`y{BPvLYYuF8JIok2@zD^W1#7OfI zxRQoBr_tg0hnmH^CUf0nTGGBXbP!=(^nerR@pbq%IsWx(3V#U*F4sEQtzisRm~IA^ z^nx7vt)oye63ud|o5$D5pP^WE7~4+2s~QRzlFYz=X{UM8`d}TO3Q$>^2deJF-O<;6 zmq#&?bU^TXJXf6FP4hX&IFA=WA|cBYj*8vrJh(k)>Pv3n9J!Xy$)?IFz;QGYIvTcM zHh4EY9%aNz;N99H6Rqxdo<4Cagg)3gSg@JUzx^jUxJHe39M#x2t9pHpd z4>c`539S&7E%B|hiSJU5e*y~}ymf4=MzxoU(M!e!cP;h~n!;;qSO1&&2#vSn|7~LbEv?aYqT* zeGB3P0FXrhX-HI22N+lsnx3e=7Ec#uVV|PzQur~BsTgLX#0cXXd z{-M!@>UXc-J0zLH%L@IQ3JDbs7K>u7^L>)~ z6*!FFA2qokPd~;9~KXi7#c_~;%SPpICnR`OJei(8Wa?|PMs$7Feb7=2~}(I zT{nQ|t61FsCKlkXA?8a?Ux04Ta*dG>i|ztuC7ETe&nK$cjW7QOk7zs1&RO&>9SV%k zwC|#*{BB$>0)vcZKLalaNE#~83qdZh(-_y1IE(^~2NpD|;hiYXEU6Xs1SOh__FX|B zatQ>oq&I5)IEHR-+LN$!@=C@Y4@{u{`HN!Z!=E2+DJ-33+hbZGUg!?Tq7qsS3*xw_ zoZ&WDgqjpHn|eAS&eTf&TAlQ)u$`9p%?_kco#?#;1pXQB9+)2Q>+Di`?oe`oL}2&3 z{HK1I85!Iah5fmP!G{l%94#ekVX5k~jJA20$BAWjt@ja?k=fL!Xz|fsCwo8PT1(NWAzRsM1eW^5=YXK%brwzOHvU{^g za<>{HwyHfxm^4W2$wItZjle;iB>WD1Jy{6uWf0!@&LkTib+I8!kV|fKNoD`^uD|A+ zz6)P10+z$+foEERyU}hZi1fk>HJ8XFrz(ZaKa71i^jd;=aBqVN+1Q*_O&PJPl=Blk z!l)gJHW-v7kh(9lDOf5NJ7|5m7kv7iig+OYvi=vBS5fm52v#T5pM=f7Kw;gWrElhE zv!Z46<|u~%+{?z3pEI<L z1oJthCs-k}Fx#Gb#1zf2e6ue(xhVL6#c*N%i%q$T+vd!lxrnYW-+xPtSkw1g4XJQx0k*(|h4_)KlMX=_|51$p02!@*r`WYU+(mtPMw(*cPa6GzSFYgeWmKKngpidTu?k+r$1tvpPD=b z2Xd0BER2!u;PG~42ZkTB8$I82;8mvcSFdL=TowxKSi^Q7oc17c{p3;d9x6Hhe!@h! z9$Dz6k>GxFyUVx4SSbC{L3ebPl?*M1{x)H4B=qQ2u?5;5OyM{mijC3^>x)VWH z)n(nMbN*-oiYrf`K9fk>Q66Eih38CK zXEE1;kv8dkZb@#7Z2bGT(FbitghI4lC@aTI)IHN|azD`cYqoVR4Vb-8`AI&`llEjLRZ@0tB_a0BvZ+LLN4CJUDbGC^ogx1 z1Yow!&f6P5*)s?RInBWzKDQM|-q=hq>m*GrmEyNh`^sl|EKN61y+SOz)ctM4+rDW0 z#HUnsY|*^+#oQ-ti4a{#oR}?rfSAW$mU#b}s&*2p(snDMjq>)*?BUq$SemrS{k7*OXZ2;bOD1#UYqatK;z7HCrF7S6hE%0wI;DR}rH|mGjiVVF%R| zPpx%=l1)$9%rW7`2!c!60O={TMb%Quv-GQUlVj)l1AJx7jY(pTN>95V9~a5{MT~Mm zi%ZfS)cKSw88Ql}$;ZQ{7yAV76ggy3Ywc6IPu49W#rEVZ^aY{UI{M5l5PU^N$#;jg zTIGkl;_w+97fn2K@oh`)v>`IjGD6?<}Ph|P)8jK4!+htp9QEdC-x35_}o%CdXe=88ow6C+>9lnsppW( z@_m~?Bs&8NA`%~9#uR=vSN=Y4a9lr6>r(ZSRV-bchTc=ry)^aY1k=3%N7Z%XPBu1SO7}U0g)pT}XtDBMU>Jp${81gB#k;aN&0%(@c)Hl_; zFE8f?QuaL)L@Wx*1UKTvoHtfv1~cp{qHe#Lb8EDGwCNk!L-B6A$!{Lk-vn;F!5Pk; zC;k_E?;Y0E`mKuwK~X6IqzDL60Z|Z9X-W&IfPjk9LQ$e3T|`AXBnZ+=C<{=KCMZ%P zT@Z+L6p#)A(gM;;LJ5H+bKTFi_xYXQS!?ZmpMCB=_c`a@{RhtzCV@=8Ip_Gsc*py` zgEW@eud0=6>ENDKP-!I2jiVllL0W9I)v5a)Oq*MN?5j=sk%ZXjbn`h6Slw+&@=Qy{ zrkJFB2aB=fMInV{B?>;K)UvIl<;f8Hi@=@1pua5Ie-AkSvWR^2CzyUw+4R=*GE@_m z_nWSO_sY6f+SPyq7Kb%=wZo-pB6y-sOX(NaX&LWXqohP=;rni4LRbd;F5@?K{_no_ zj5od%h;Q=GYb=tWgAi{^g zdJZe*I|yU0AC+fXlt+oZp=*!?!tRKX=ECGVO=f6sde;Tp{a79i7ghfcO3Q z-~YcmRDJNjSn~e|vE##TEO#?xJ7_@qS2;MU#WS7 zTc>X>*@$9DvLdjhB6LmMMKoB`zt&B>3Ak;9Ov8l}KCng>rFoV4*hUGfJQ4Agot7Qe zZ&hbMkF^gLmV5n9dY4jFuAe+RhY`<8d{eAYCL(qFS`qCsiY~sWAch!ky4kShn7teQweJ)`i zuI1xf&)ceYEGYeZ(@1WIk2H}U9N(s71i=OyZs9zd;(T;ROmzd|oAJigcZn{T(`=q! z^GPS=7RN_ujUlJgn+oM|C63=-?gHkyPh}t=s=yHoKlf!8$T1CxgJZrS*o;MQhvTa< zFADzV}iVt-!q4J~zB z`}{A6fk!wR#`kppfa!^A>AUvQeb4YCU7wRHR0DuIx)S}xHicNLbFIEoO>L?BSy!~W zbT66Wz5w;)&B>c3^+Oe#_(@SgC)T!|mE* z8$RVDMu&)7{(A&ev3*7m?@lMb1Y+>ug(tB$@ISY8K*S8DTS{m(H8KAVyKX>571^g( zZbwUuQa%-6M=u+^;xFb#zHyW$RbFR&atq_Tw*65J@?Hfk!_m+>RmNomN!hmz{}4Bv zEWM63V3cnrwWjAd0uZRUZj&o@v58&&IT@M{GhBpP-)&k}X7|P7Z@q;9tCpq%MkcM<&PBVHg?e$7KCg z&$`JfecdseyRe{@k0tMlhPf90*e_E(bC5B? zh(_8XHicymp)Fi)Rf^-M(R`RD^d1Q^F8uS5bMd3zGn{fQd$Csua8(Jr$(227$J_49 zw?2H9_rg2n=G%eSLrwW2NKLABQM1kAP?^jlKHTWGkY@AD7sPYfm9*JQgd`3=>mc7RxDc3(zVnDqDulH++?W-XWl^Q$YE#5XA776cD zYjW7q@8s|;%137Ymb-dRLms$amxnAb#V%gW=pcO+M2`tyY?foe z#=3>l^Otbn*P1$~@S*yi!Y&=J860*3xnFcgbha9uA19rvRW=DbPK<85$FV#`K-YL46Th}_F(I^2{SX2Ad57? zL0wjZm+9EpUCChN`g!aWHd&n$3{qIe&0pSfg$@Ang@j!Tfx=?II2BFsk|w$Q_1Ki$ z+IG@9^5rj}Gq#2y_RDw4>fFx%C-~$4MehG6c;&wY0so`e;lIfJd;W{adH!;$8oCBaGEd)u(E-s7 zp9=cd8s+%QuUwM>46QWEY)H%^LOYd3g5#_n|D*HkG+#xkV>t|6{msgd;Vc)3N!M^KHw*8c8 zxr7j?u|Wi{J>o{w6dQh6>F>XnTJr5%Y>3EyEw@cqD;L^j07pneCx8*?&xuG#a7ll< z^L#yfrDDWG=kmkTR_4>8@)76X3py9z=R=aA7|>ImDhg+S^gJMzz7OoWnC>JYT<}U_ zU*ot!AkB2}VXcCxvLd-wez1Q z-^e@APt@Ar)@$G4;zA zCHNk%VYRmS#{f|(rw@bEH-!ND*1$?8_7QDgu_nExLPOtT-ZvCw+VY=jJ;FhLnLhTa zs}QT3KKHSKGFtC*9b71~d;7t@Ycj&NDWSC3^kL>CEk19zeEx2 zZQXvE@;i#Qm4HriBG~xCgE&R@Ncj7s+{S4Ck=Xsd5@h98d(oqPQy&u! zWqTYRegZnjMXu60Q&#!tXe{X}G9rBx4OcZH+1*NU>k2MPGAuS#P0?RVG`Yq2K6|}& z+=3CA!RgTqo$RgQo>H@G@m@|dP02LBjlNCDR_rN@)~Oq~fG1A3V$Kd=j#7uL$b%n8 zx8Pjp+Y?>iG~#BpWBn<6Kd|0w#_AAA#=vG4LGp(>@ssU>HMRP!NwMEyoQKUnU)esb z7Tq6Jn~k5f0$!~{&;bI;1LAL8QOO*isGnUBWiu+e^T79=zWbg5xxN!qvBhJz@+b44 zc;w`7SXS)RUg`l4vh=OM_I|pbyKQ7_u#jJ@{aw+lXTf&crba-#!8e0IU<7Z|0ST2z z2paTQcxOOVk#kHse=PR6L_#Gm%b~t^THXv^CMp8hML3a@7`&r!I)6JTgh2TfqCjnj z!kt4PHX8s}4$!86(U}M^(f%xQnc_&zK{hb-%_43mvswD!%Nh?|%D#Q-n7iD$X%Sbn zI%YaX}6Th-NXYm)Ts_9~9YF_ULjT;v~OC~eo z{_=r4+>?kM(VB|@tdmAEj+8S>yICi(^o#fw^rq26B*{|tcbI4vbYy5+cK1{Tf+~{) zba<$>AYP^o^l}Ob6nPJ+3in7roo9x-^Rc|Ty2|He=GkMkD?tH4w$`6pFD{|=K&R7g zail0U(*adITl}~pQRvzE+qbXH9XN6}*TY>sJR=_6TDc-a9&JLFp_&;kMDLF#K>InFgXS($-Ag;QB;*!UU-^mb_p>OnAcy1URSU0H z8lL@3)bjT=bo*NvUw)>&MOWBXiYzD9{j0OSQU5!AA18aRFQ58ZAwLz`o z={%PyK7E!q29fpz?vd;vTL<~tLmjtYn(+GNP06*)ojz`Q#J_|yO5=z@g8@~XHQcS1 zp94LOh&9HTrNCEQRr_G;IOMb`|+-tqWeaE$@^EUM@h(|s{o1Og522=2;c+0xy zg2CyzqYsbOg?xEHu=zRI$eBBK8EliYYKX;5-Og>%gu-kZivdck*r81#y zvHRoDOc%6(%vM9RnItf+6Rr-U8}+E4pqiQs&jVdBBgxt~;68u>##^SYbC=7yN#ea9GZybn-TmwnAT`Mc}7; zHz4)7-(h})RG8_T@b4tb^L#2E-RFBQ!%|^3C;vyYgVP?r1-sM+?ZB~@&ou;Uj!jPR z0ct~&BIXe3M!aj`lE6xdu%+3E`R(lsR^hCtTbXpk!6N=fR|DZ$57S*ISz-yAl#a;; zfq~B>ylk9CGt<{(KAwX&82aT?JSYZ?L{&kWEM2v-TmEBa9a&-VbaGwc&*w57tt>5( z+CKy2njHG5p+7pD7QVJhcj94n||a|+}o?6@Y0B2Bz48NmW+lD#L^7t z@+Il0-px@1p#_r7%lWvP%42HR%W{ttV24AmVmY05LjheO)rBgq_I4m-<=C{a@VwQ? z>_nr|xpv<0TRnqN$N7@iT$+=CZTR_jHM?C?sKzlBqS{1rt;*$qzUE4bbcC)*Ho&cte^Nd4Yx?&;igeC&*uyY;5A!%dh`4TG zNEmdJuC+EvUB$b+jq{p~`8ktldV00B%2qsnNrTt^P2EdIEZ}g`@FND(?l{s)wvV3# zGup8!@bUPE4w&6SRMLYJQpMa@beDI&D6(Es_5KucIH|+qg>;hFR(Xga`C< zQ#iP%Y$HXKmz0*ynUL-9J4k%Z7vBesH}rf4xWJ3rq@dpKm&C zeQk&K_hpIjp2;F#nsn@VU1MP(Y~%ZEe_zO5xZhWU3_NJgOujwtrgy7qN2eUEe2Htk9%E-%QoY*xqFVF2G^rk;FnbXI=aaohM(7g_AdZe zTwH59MR*aa7yR1JP=t?Cmh_a z7btn`%FWXy?>C#)zo7TtWI`KbI?yGO&9Wm&w?9^pe4i{-^S`clDfjs>Vf#F^Eox6x z?^m5;0vYx9GXgM=NKjC&XBG(ma&MaF7KLg%6y1BG@d}Nh)9B`x2cb61Uiwke+-F>n zH)|t;Lpwm^_?W3z!lm+oKK8E1P@&k&M)y4(*g+V*1jOkfV2|g@SJ^b$lNWR$VRJsJ z%J&H^Q;`J9lIw839WB~bFk6`yAgH{}8J@etk{<{^Mld;!=7q9+=RTggd$8@5@bulo zZi0p&k-a-Gi71=<+$lf_p(^0%7y5~~mC}a3g(OZU#p)MFUy8H7XQAVw-*>2Vvyun2 z%s!P>eW*@uSw9g>92>bPb}v}xaiWp+V{1tuUx_F+1QQmO2ezuk^a-{=i}a?eC;l@9W9A5=;UL7{kh)I zm&1mLAHHltW{+k4M2ccWXEHzEV3KdQJIY$rTe>R7i19fH-8%`!!vJry`ssY!5vUD< z)1I~X5a20=$F(KJC9(@=Wa<0H-rNGQ!x%r`3XF99W&su`-S_27CHcxa{GLog24ru~ zycJz{pHYOhV_c>rQPq%*9CBt6my(@Eod{)}Y&SA2sF@H9vg?S?z5Ftuf0gR-l-BfB25o8&0yV4RL6ZEsK?$tld z+WSG}fnC2FeqiEH5h5L3Y)4P^XqcdJT4LqULxnI5D`3AQ(?Q9grPv4pEx5AeMdY8) zA49#RA!;Kg979Z+aVO5(tnYCOD=%-SsUp5*c3Q5a3UkTu=IH}9%l z@bNZ&)c}_0A896Lu4qI0Rj}?V!f1GxA1S9b&T5f#>_O>(bKHfZ!|>`e$6dzaN1r`B z(4rTa%pmm2rz&ao7Hp~s4WC|?pSP~83^-SQJXm6XXx0Z47}J6UFB4s3X_vEj%GvcM zX(-fLyl?Bel$Xq-!k@wqg6+++vfw6nH4Bm%C%|Xsc^>a-z?NSb>5RN2PPUD;$^BAx z@7mV~WvahwW2x9_vlEI7IZmb+ALhuB&ZEIUUFW+$ z%YwU4g0xYX)A-R9~49w{a+Gx(sdjU zrUxPHMu<@Mh?bEzQ?Os*cD5;rvok2QY-N%d)M9;dZF5>-qxDY}8Ghm**p$nt;G9?* z$jHwVFUF5k3;m`?)hyuf%SQ^GL?UBV-{=~iW-iti}63D-q3Wx4;`*$hhGiW+L0=kL?)yndH#IBASR%MI9g{=pV&P)hZ7HT;L za52}R4T8pAZ-Iu1pgKir=X8|P)Li3=TDgp!@qO;|d}3OHUN)``+7a#NcG=^YHb$Tq zU>l7^>@Scv2o^m??ec*s6vh z@9hgEu0*WN@MYd(!)B*uxHO=m{GWtTbUi-?$w+|2=ZBsgu)1^y}2p zChw3)RigrGrKzjLYNgi`Kb1pqHdV3NPYp0;-Kbs-`8C9iV(p;P!Kt`?5~2oVg=r z**o!ovOYO2CiS&ZYX0kG=~Ggl12~?zF^*vCP1Ruw4JzfzH4da^yzLUblxvCYUd)33+%u-KEG!ADeRd4%~5$K#?gP~Wd3i~ zG+?6Az!MBIyEv^$B#rY6c*OANE@$i|K;|Rth+Baz?89>UuHF`%(#^UAr*m&ZHzb?U z6saG-NaqPyZ8!QXn9+ruA^MsClf1$%D9IePY4=yM+aH}*6yNVKHtDHvL;@+n!JL)F zubO=hqGfOnhR+BP1^m&go=MkS-p(NDcW%^OAXzdxu?8-0e*iXvZ3gJV%_TLD^J1$C z&6Rp*k&sjln#a=(n$2~b(Cz*mW&s;{Q;M?anOH?@Oz7SO2U6YGSZPV;lzKo=w18D= zX_sF4!&dNxP~3lvk~IxR+9R~7Nt4bVpVg0E9~9ck2Gqz0IWIq&3m}`Kf{niWJC%U# z9)}h7ylhTljo3d-jhBuKu!s0f;_uNfn~99v0cHI=rO4zB8ZhBb1Zc{unm>Oa8Oq<>3tlb1 zIGq-*(dk!?Zt<76YI8v>Mhg=KeM6FN8H56hi@NqHTv!8IkZPrRylpL2Z-5o?DS`S* z13GZS8@9ObB=auso0`TcR0|s9aY8l9brRGkg_rY2*$-qHl@Q0eNCs^8rd_T@isoIN ztyTYzE$^=qiw;V=0HFQ*l1`0>2xSC@lpbUMzd`3FJOJefV%-n|`@#3)L%+lHI50}6 zWgMNm5z<2gxf_cGxHmO{YWcqvC41^D7!|6Tcuy1ss6U8sc1M)5dajMNaJ`3}+~|)h zEySaG`hqB<0By}9Lc57|ml?H$neMt1*zbTBaw^;(`3gsM=o&GA!doM-Bp<*+Y|W=A zK?k0YE1O5w0w5XBq-oixEe^|Tq~X3t9E0UpguQIWs;kYsFAOzQCq3|=h1SZ_ z!_=j^AyKCZ_Okpe=Qq^k)o*Jzjm70>KkFTf3SBzvpr4>-4q)f~8Svipku2z75Sgtt zId$y?hUvEc6q2o}OMsFbRh_!NIUcF)9J6)vWm1*f7tI}1{*py&sGDH99|rQ%+nroZ zB+jCe?bHia^$%?+Yz-|FXmH;X<;8Bu*X2Rm*Tljy5w4#V%y0h8u$4DX=^LNq}@{h%Xh z3BgXkMYVhWuvQ|qzNvVZrQ7PukOrJt_ zl+eScm+mxhGmC}`9nIcyJ2FIUsm)lj;vdANS?)Xid5=cid0j(ImfY#JuaFD| zPQOJ))MLXi2x`id`9Vh^j@}M|3+8W-r@IL>o)&ZA@8nLbt*9`0UlOqk4EL4l{<*Qa zVmrt->cC2Fd>n9flx(`sU-1`4LI=oHK(Vh5HH5U(fP|mHAUv~-NlinQLklVk9;L(b zd9hcFFFx=7z!JywO%5G~CiSJ4r8D?&{2=|H{0{pCaBp_eETAt!h!yKBs>jtq`sF86 zTcpj6Z#b8O*KFkSa#>W^tz8_cfzXlBNdSy1r$aE1hc|cs%Aw`wRscUi%et9BRU`ZY z^=E`yN(($AOsa=`HT~3ca?w}&Zr{11*JmIf{j^IwT3_x^f1ECU97}a|@h8k@gDQ*} z4tP;$z_%5~AS~!7sa3?a;6W7bz2;P*9_QJfN*aF9K#DI)j z=RS&`(yb4%wv|;Cv6*RtH-B1P0iTq*IOfGQ?V&_ySHl_U%huR;{5Y*6@(oZn&oXTdQr@jAtKFIXQ*qu*hl4}+1{ zFj^%=lq?XcYEF~#RVTy4-Bb$gOlr$MI;^hQ`b318-MN-gQ^N0lOam6@2}2DG%uFz= z^P2l|Qg2PI1zEUfp2&5cntu>>#zs@PO+4Y}7ZY)IfmYUX?@qw3MyCK4$=XN-SXmBh z5+cAQsxsQwT3Gyi)Az)N&mtv10xqIlUlLW1tlo7Mfw@kU105P~Qp3caEz1cIKG_N~ z$p(>yn)uRiG?3jQMYb>(!yogZ->H*_U)#kcW(j5M%S;=-|ImEkFk0Lo*w z9N|^kjjBI4Jghyl;&6M9z9MJ;%{w0+pFIFWAbZf=UC#-?QHAx{n6eo8P>ayFs`p#i z4_^HI6B;;?rV!D(yImQ%bO(@&`BA0cFZ5y?_7YcIFZVxLS6HYdR7?-bhmYUz^Bq?M z+8yaB+=>XfYjUQW(1;USw9u+Kec0mkicCD0>xM;p9Y5WW0J7T$Na`tEi28ZQU2LOE zr0HW%>t>Ia;e)#;Msv`e-8vx>8K8~`(m#K3@_ex|GJK-UW4V}&qF9r~y^*+rL1)FS z*Jh3tRX!@^H?Eo<<&9z9(4IWIc>bgHhNn1}W<3zIf9XLdVM*5!BQ0~&NdH-?!E~o) zQH|Zy;Xp0bwQ47Z(lJAA>vmmc?jtYOHMPZyt zgw5bxeueUOO-V!=cKE1|6#ZxR@_~|-ik?~?zm%K%FH>l7{qA83;Dr%!s<=p;2 z$#{P`bbGU3AadnYu067ZKc05c^Tt%+g!zDMImc78FQ$rbWAB!?t%!-K27cVHzI65| z;u$mmo+RTHciOF5lI(Kt(!F;L7N=@1pT1WlDHiZ>I)*PAsVkzNmUjr2-Up#DrVUH->vpK)MS0EL-(l6OYQQ#u zQZ36yB{X9W47?fg6)qUJxA;x+l&kd!kjvEiAK@ndkbqBk>%WPL}IgaSaFRw5O?trq@XI$Q%1ZGQRf();rciJFw)4H^V!<2ft{?im7~^`FE)&m;;s8ed{_r&A2H`b= zDxn^gPxYac4Lwuy{tAL!F=;iEmojv&Oit_gn8lu=Xl7~7NnoY#r-5jPuh@Y3PGF+d ziZogB5^1|BooB(@Il9t=uePwL)Q5$u1s`;ETK7_3^k>*!OGYBn*(G#>qfWAO8WCZo zLWYNJ3Uf%&qt0&|SAU9LU2cxBZ@9KDRjOY(H@ePVsiEarxsvodOwxpG05xtCc13*W za=u$FR#HZ+QrK>fjqAlU^01f1U9G=m>>(br7v=*l<_MZNv?54!it-_H7E2EcvW+Y} z{`4;0wwCXHh=d1IeQe3fk7Uw8C`cWStru74`|hdzZEjk-@cm+)L{*s8tnh)}@oxj) zAG8Xt56?)y7C6n!9g~4-Mpr7)4^iO5giC=$k49%;T10wL$>!|AvD#8y9B1hJ?!5N< zk}GpFUo^gsYL0z6%KU}!06iK=R9c=UMgUl>|BTxj>{>g=c!Fx-(TXsfocXHc*Jn$` zkK@>bVJkKa2?hZ>nV}@gR8c`SAqf~oZAIO0VH@pyG}f4+Vp+y>DRJyYZ&Uk;jcxAV z@E!H>JDd1BR6de*Ga3O&&QGw_94k@jH2MBTwQ9YvkSP2!`I_sCn~#-?8=|jfz!e7F zYVDf5Q(G#D!n7!ZTc7T4+#b{0xGs$#dL2o$UcGKoT3gdsL?rah#SPBxgC8kAr^_9p zZF-vv04%%6ZtP?nqSP(=MWPTTAMco)azeaT|79VBSvhiv-$e9z1T7vNonB$E{5B8z zisg2$QI}0YkyfkNek`DhGQ}T61+=s0UD&uU;la0KcK!pigfa7GK6Idw_RKTArJ6zb z43FGRarD^cMl8!1P9}a#$TaM7as~OUSu>M;w#&;Esg9<%n86{k^rQ>_B8G|lE^s=E zFC0z9?2bTtIFVk?$J;V!JRj8u7=;c(Z__HXhn*~ZT*?UnDxoQZ7mbzEo47TE_~s_~ zRk1Fl{HgRXNPNt^A`>25MvI_S>Ts7ejIk}VYqGtzzHng^uZe$+d>2d4p4)<^RoPIdU>vM8XCe?)$Pqb@hJeUW0qLL3$dZ0em8L0I3P0E)X(Gf~t zQ#rYf?_CQ9#WXrn{dh$*jpz|Bzs8zBnd0ilTZm5Lzxe$-J%@4n@ktL9ZMT zMr>RVbaAUwWYHYZ!oMu@wm@dnptP+Kf`sPX5L9v8a-$csj$N*2T+6k)svZ?4U*aYfOE0R`Dy znlnN$s23yPYe+)2pjj3sxGoJ;yL~!_1%Jmm5zl48>@w2co}hFJGn^ zEul-%%}$5jTYlQw-1H*!H8Repv4kbac5NLXx~2$mF1($I1)Y5NMfD1z8ti@Ad`zN41; zu_BsJ%U&YM^JG)}%g?Q~82g*7?>()ju`TH=^JGt-`ZOeY-}ASZI(kMNb_>S}tL0KV zOiyMT?+yEM^r@Eu016s!V0y8erm6sY4jct@;nmPS5Li9Z4fsJ!Px@YYe0ViJO7@vk zs5Pt=PZRhIpzEO&`;fB&ts87eMmTO;pc2 zx;v8F3nz4ib6+u;YX6ph>Ij!6%VVc4yFabfU?o_=$(Xc#-3lv8cOr;q-pVahp8b(0 zd{V=jE#%-0h^Ym1+xUNV+v?mHMGCccjo4D1rYMib%55R59P6yx?JjOk()Ft6Pfkt8 z?zg%3J%GcH&&rMLIyI2qObE7;pxV8+(#;vA#(lMv{1|q*=F+XGuZ8tuzc9$l|9MyZ zZ)%o)>|d7tPS;8pO~rvw3UBVGI%h8#IaRDX3=R>Ao~8o(+++2eP47M_y*Q1(A%~Xg zX5D7W{32d`CLQFwbhxbj7z$luL_&I%%D$54$viV8Bdk{~>@h>@Sx=YWJ`B|Bj3(6~CGgIxjDkls2E-6Xs_NeN=k2S71My$jVk%LMd!5a2 zwIT$R2zw5T?O7*si@!?O5&A7^ELoXG(ZxUS-t(kWJe z!IKI8Csv?X9x-i`ed(8CTxOJBf^K3>L0nY1ak<4nLeTY_25eUdJT7o`YPpYBj;|Cs zEi0}{ADcH8FOpicdTC})?^T`S@+_M&{gwUW zumrJltrbqM@$<+ABuNMTq9TzSE<&BN9FTpIR@!6E=um4QI5QN&3$C%NhfdT@b%`BEB8eqBL=7ojXq-!)g7bD4#eN4dJt8Bc-AUQ z+NC6w2(QeDHC~DJGpRQO?yL}K``klQPs(FOUBsv+WRK-tY_xm4wcEiR)7>{MRc^y^ zVjp4rQXf%*QUbzGJ7j7UX|4r*fNqoP$=W*dFxj;7t?tiG_SXS$srkkbox?V6;%6`J z`{1iW6tQdYhEj<*&av9)-0a(09!{!uaNh0@&z`IvX4XKAj`7W4nJ_0U==Ri$Q;2Z> zOuib;oM!n2#E<9&tcR=6oFsQgQPzT0)xUvi-_k$?rISqX5m-KqD40109GT&QOICvA z)jd|`nSBbvDJN%QZnu3JyBo`_2on^$KqN^29oT`N@1qnmf@&_(OsRM+vS~Rnzjn`c z{x1cI(mtNEDAR=OANn7T{wxmPG5FK2@%I=J(dfEN6JB+-S6__Z?mmEo;&fHx42;lq zgg=2VgnbGre7#!{E9Z{1Rm8XNzkk+DyV(`zdvosuI~CuoesJ&@Ss>6YqLbC6lCya1 z`)ysP#{pVW^)_J%pKZjCh-%j34S_q-YX)dk%@=r9f{}~hi|!2=oHnx0cRg14$d%gE zTX~Cd^MfPVN>9r>&J`2|kFdUk6=+!17^AXe;8i_rrpvCbp` z25+hXpg!OG9Y&mI-qN4!+*-{gVLy+gvuaf6B;9$;$*s8b-dc*5911H@({!(49GEf zQ2H~10T|V5jV?B!E`d!V3N%zuB#>P+0z_)zTn2n@@E0HHL?!)|2iUB(%drgQJ45Ta z=m9kSkR^2O6ZjLf5dxHYW}bO9`JYHfryMO3)3Y45l`HVBdW5~6+AQ;@0xAl0#-k_lql1kCm{dn$Ih}5-1KEV(ou`=tYN5kaW^H>rxcf>J5a(>iu}+B+{yjJCAe?Yc&JAE0L1> zSZ}&9h#(U!KvGw8$8XXg)Z$vTVr9-*p87MKCRHeHLzA8msYShCz1b}>+6ibRofGRA zCFOHnSqxk&0f#ox4V^R-k8>pU!CqM1GxH0QjwP@6-8`5`J3|PQ-RIfW1R|ZU(K~8i zeR5>AX=(Pg($U)uqjyAny!q}W*j!}K4%jb_+Ulao`eM5Y4zhu}I!(^f4+J{YJM%0~ zbq&iBnLBZ>Q*(|@OU6Z3%^ijLaiH6gD^JL1N(9x2rc2i(Y2m>%_`dIu!a0kxiNG`8ua;2J*`pQGd((Z^zow^yGn9K6`Y zc$&yfy~*kiwSyU?b}eH{lwhi#WMtiOY6z-()h)tOzuk#pu{t|ERpU}xs>@qaa#r&M zIp(o3cN-tWWQa8F?5dX9gmN#spUjHVu{v1tIzX)+zk;61i9AXT1YkL&Qqh`3lsVIN zlgS%ieyL=dG#2Te!8!g9rHnLdv(>Q@Qc|!2j&IS9-&-cNdAapMlY37YuB+!d40|41 zp|he-PIDP?C356EhmLs$Uha`E)Gb@`xvpaJsk|cc`|(jd!wcEQz|-hQ%ti6!8G`LZ zB%&<6X#$r9BgxSX$#(h8HQ6->S(k$g6?%yIP$M>T(scq{2LSi{wiP zK#r&Wtp+b@76FLW(Dg@MP>TwjamW>&lduC4{JoBVGGSQ?cv{gQ8eI7SGByKr7Mi3F z-%;_Ch3YMmpm4sO_CFs2AEov;{bQ!zhyKgH;s1a34gY*61ew&4SeH!FTD}@=C6X%# znDUKpvWgUX%4rW2Chsc=oL&2gr=mL3&M^|685~+;^q(ShGtu*x^-fAO%dKB-0o;r` z!dBx%W5XY$8C3hP4otwK(fPL>>}Z#)cyxE}%`vAlb65Ig!XpY+kf)8KDPr!jQIb7W67jG=gWY z8|6>MQBIcDW=!aB@eu?_8 zKvnS$%W$0BLVOn>@~5VsZEvL^7>>6KlJxH2o;QzmFUaAj+&OGZJ-tLt;3%L#;hR`? znbyB_`PBu$fT;R}A9iVWuNp_=DE1$!5Z1Hj-Y+u0?azYtO-$c_`ukh;s|ah;*eIXc zp=BCT`r+zCD@~!Ri{xtIA2a%q^7h`-(y!QZH-jB|3Ir)pLHKrZBy7->7<4eAQ5zfN zUE(&jW1>WL&ds?E86WJJB9w2r>@d=Qy}5^h&&PHFd~6#4bJcSs&Nr#9J4UF_-hoG4 zcWw&3PNLN1{|-Zf!1HV46Eax2b91ZakB=F0K{OWX-FQXM*OLuWuBlbR81H>GOBnHv zUGn(jqu-_K+*EsHgCr?}U!>?`1C&=<6j$d)Dp#;}NS-n4dl>9+&b{^0xhx-V?;lsO zlR9)q#gC~}FTuL(4Fy3Hin#Xym?`CqgUo zWkF&hsEZJK?&cKVzw{w9T9Tl^_ZrXDq)~ zYoKKB-4qU?Hg%&;Or>YqjK#cAWUZp+G5T*q>s>TUU%hy9vU}m1SC#v}N7@a(bGgiZ zr2rSah8M3*`4$_2z&I6=_60sE^h~)PaG|{*{^W%tr~~M1La|Zg0<@%a|U_*NJ`3zKE$6X-n?+URj);vvrd&&etf($tW55ban^IG543&%zT4j zgel(xg?{DV?#1{Bt>cgQ%J%xAxuW$wpKpyI8)~h>_w`I-_^D!9)Tay=p8dMFvHS5J z;rla$?`vt!XBRQ(GJH{vQ)0$^-7VWF@uRF_tRvk zE}WUCU%3zWZ?xgxJCTI%3 z@de}z!?4~jKn6oLI{X~KHPaY&nRb6O?VvY**9tN-0<2-x`B|4j?0 ze@f&3r{6E?F%{(``2R!(y=v!Sb8H7OOKjcK(v8H zC*!&<{Tp}D-`!dN+a9ZFZ^e>#oPi*=YXg5Bf1W%+$5>*AV z+y2E=ilG<)qWd`ktK)wiP3Y-+9gH;u7DQ9n*wG}csA$eBFh7$1&2LAo zlJ46KfuAT-EXesT)SU>%7UZ^EPGb!MB{F^q(Z7>+bR2OOSW;|Vp8H>ReQE+J0lh`# zgy%@E&3r*o=}$QLq7!pV^Br6M-otHTF_-;4@#wtD!N-n@C?UVz)!;>?u-3efQaUpZ z&BH$g>36UVPo~kkhZW#-Hc)Ve=iVi6N6X|y69KQAiFmgiN;viNh7Q?OwD_IDo5k%B zg`q=c1~N6Nb@nea8CteOedeMzT`O6-{l^D3^VLk@Tc{7M%GgiGgAtj92g!hbyJik@ z@{mc{#;C^?vvs7|cQ2hd`psJ#C;R6dnCW-5?YjhR^`d!e-W7 z!@n1+N)_-sd+%UBI^FoktFBJM7^uR6(eX+Rzr*;|->*x7fs=_{J(p@JjgYD{VJR6q zf4t`4KYvHCA^A|h}<3Hqg7v{n;!6NQF`9q#J8&%~LMJ%%9Im z?M*QXU%L6qpSI%WCY`BHREwaZ)DJTv(S=1>6b$B23wW%?BAfQgL zu2sdrhBjQl8JJFxZd}*9Za|TzdWnCtx_aoA|J;X=TUA#O0ekU3PY`mE)Dy=$2*ndY z>;$)>txM^vjEY+z&;V>YL*YoVmZ||un|QQ_NkXv6ZzLcUJ)RB7#?in=K4)^1um__? zB}{$QHZmyv0oOxN)`TQaQN^jSvSK3?gQrF&UzA9@~KJ)JD z#q|?1GWnHnveWJ#S~?z1KMeFWguD2NbW#r10W_1B1dP0tt*TD-xO};QK2Cq3Z9Q!L zTI(3a0xHd?I{ynaR}%BD(AYx$D~cbt?RE zC!|z@(H1cJFXS)J*9=7OHA*y^`FrQA!}y+(=yupo%sKaOJeK8@*EpUHg&n@llKADCT z7urly8(dr{H+edIVArvBzg^V?Y@t0AXQAz3jya_t3ouBJv@smK*ZWW;{nO{Sm3 zkGN1z=iP=M_B|JiTNP?F+>adPY5cS)jgA1?o2@mP0M!tTl=(_vm-oD>GiRSTv|4mF-O!0yYEQj(MF6uJAR}dY^xeXe^oI`CMjE837Bq+ zQ*DiT6b7HaSJkW%_2nw-PH(tkL`9LC(W9(Q{}**{8rDSCtqliJQBdQ+ARt5;M2(1w zh$0Y_Mnpsul*k}a5t%^+lre>%qD&DG5ELSUq9R5nk+DQ(kx7OiQy4|&gdv2aQhu9$ zx}VdhyU+Q~dEfWBu5*5H5q3gVrE2fJ*1FeyuN8YoTZZ#|^5A`s^!}fi$$L1$b7;dX zhByJp*l89CgtdqkMMj#xVA#j=%lJHwC2v-Ub} z*fMjmNv^mhByUaf;_58Q{5!JG9z6&+v2r`>b-Z}C- z?{1C<2FkV*H}3bQU7{&-7E=_a0JG+Yb`a4hJ?rN>I2n}D^oE)_U!HsI!Oo0^{=BP^ z+z`}ojN8mF0cxuTR1p+<3?p#Qu7(sJ0x{P?km>{Jn5gXoZoG{U`>Pb{HO5`MZ-+ou z6eM@}Ve&v5yyYpD{>MA}XCLNYDVPRc6NUqf;xa(R^k(7FB48=AgwYdD+_$WClHR7!r-~Y*jsu&`EvXf* zee!c+NF04Gjpx6p2tf?NgWCwrzLr7_fu{6_JGx?OaY|P**tX#}Bi}Lt_nrT=rL)yXqUcVt$sU z#Lm~!;}0C8SAj-&;~Sn5?v8@WUx(q|N4RM(Yhbcz%BEl`DFEt(2JmRH!_lb7+7N9u zFS%3NSC|V+c_R6lNF7<1I5v!kE1`z!VB;LeFt|iz@?oG#>!jX>2hTJ?W1l+#9XI)46uIBi2}yNQU3peJVf ziF|M1R$dlE9)Y7ag6+H+HNa5_;|C?ssOOMYD}M#x=*tiWBRMl@StK+9nktUV{1*7) zA|d8EXkiN~0umheppi{;$P|4R%-dxk^$~^Zg?Sr;(Z~i;Js%^+2T?)kp*M2PKQT5? z@SdZ|e(fqRoNqd~P2!YhXhTcj3~c*isrbG$zPA-96+bJ$R`kAEC2CFuldo zOf?x-WxkjNNa!W__2b4)s&Akkv?+#9CV#tX z-{SI@cfAmh~&N?$P?c!g=tzt_s_}36p8(6}`DhM;nY@-%dccfOXMI;3(jb zCsp^LanoY3pN&Z&Z~kTwgFdhad*$MO`9JXo0ZTrx0xWwuCXOF`8GH{SZTLN$tistz zLZVazfaL3jF<;RK^#xk|U?9^6IM{}M8c)m>nl1PYr)Z$=gkB0feN7wSE}3S-i#=k~ zxvGB)hAx4_Cr;;$-gM)Sq!J!Wq18^D$)ZLO;^%yscyWGJq3lKS@QBVvQL|8cZk9i9 zJAF(VJ90`beAJ)kEirlr&I;7^ zYNmx3U7@;@S|mn1w*kE4^(W*oYt+ACy`$4?(PO}|e0wAWGZEKMD!k z%cE}4JP8|JnS~}S5+Mg{hoq06F-w0S!{To(Fe$=2fi@X5_usq^$yk7t#K9e& z{FjjZ&a4vB|p;%jS>?bB7c@OGhN&^&oLlxuu7Q+MHTR`_a zAJE-9oYXPJPOzq~_oP-1Qis83f_cW^Gg5g2y9sqp-wU=0j(|F21V_aYmh>6K96NJ7 z5ppr^i1+c+Yk}6SM6c0nb504h8uDDxR&Y@=^8;e}=(RIryz6LdZF9dEW5CTGdZIS% zDJn24RF3O-JV387URBpSbx#%_ZQeBOHDs^&K9`iVwJYrHgY;KIA1+2d@KV50t2g&H znH=voINx$Xbvs8u+j==0EX==_?4 zN0%92b()uE9|Q9}=p1ss%>#fD1Tp9SuYPBJdFhA7pxAousRKuk7~H*5^;uxs#K(@~ zuaK2A!1S=C1()DC6xKj#0r8IVkoQitLx#NgMw$2T+p>3NotS94Dj^c3zUS?*${Tn>Rp1bNz>$ruhj{xDsUi-amHr7p+RCZEUTRK(^ysHGck7q!?K;pP zU6i{;6;!w=_HrRtK&3L8@~eSZ4u|vV`DIndu4uPQx5FkhZht?bpIq@ua#rEyQ)~|` z;zcS$g_++I`&5M6D_)F9omlDSF!&_ea(1!47y)e6L^!B}95g@@ z_OoxAXcK4cGa2cKJRLs2-|@vt>DHw6r>Mtb;itj~z_bGM9U`sCUkZ$7Ht#*>6y;p z)h(AIH=d=Jncj1EBveA zgROb)(!KLm5!h=%q)vZmH=t}%1ueY@?6)mymIsPnBIYm59aFJ|-!D#FmhVnrT$@*z ze~L|jZK2R>gV1Beo=+=Cwo;2IPD~0zN)WgHv#RNU@r8B>g zz7fY61LB-pOp(5+FkAnbQ6HJ0dSe9Hxg#1H)N{nJUoVEKNCuc+z@XP;gT^J5wJQ8A zCA8KZe>3_N`<-3r7L3Cd8MBC07Aj@%@=kx6IsL6kN4Lf{<=R6@H&Pu%3U8b;cI!K_8%=Zlz08I}oQ6Amn=C;~GH?4hg)5^Ie6Z=AZ_v(o^q`n9sT!60t%To3cm#tsM zgO+ple!E;0Z(?M8+7o9F=L;_Dnp?3_?m%frz`Wuk{<7aTziJ$Yvy<~pTVb_$tKX?u zw~PE|nRoJ?%q2IKPwqZ{Q|^KEA@9zxCv#w};i_@}Uh(9NmdS1mu3+Tml__uSTY6vo z6?@{%Ue&Y;#a<-r;2XD274&3!Kb0Rm1Z5)Xw>jvR6C2B^)8awQ6&U-a->Ao%3K!iQ>0+)zmVL zFPDAQ9;N{LG%JRb2^eH5B4xfT^?sqSRGqI5Qbrk3dnEDfg)hOf@#5{YDk*+9crbfA zI`$QUKv;L50MCu|064)^tez*+=_88Yv8uqesO@5AwPmOIWmo@| z@2yZV?gHr%%rpzVOl6zr#@sc6@4ZnVUAp+ec(5{nkYIsU5Nu^!5M7=sva8kBWttGY zue!S+*30GVR;8{O1v-mPYJm#R_TXB~W*%K%4|Ba_6;nNkEMvdhi}W!;`9)A_ zr+=-}0ke&zljYl_AI;lD87oAeKPy(}^|&%=4fE`y7ERl??e_aKo)|)&VsGqZ$PVWE zI19{(JuS+!p%Z57G3UxU7>H4`qQ|Jq()m{$t(@!Ik=55!q0-~9&59?_I17VSo?ksR z$?t(_AEylmp~BrvOG749&RBz-Z*+<6QIRU!Cly$ke2QW2T%Lxj*k`g$`^Da>D5qH% zl|9dsgc|2mP+?CM^eC-BqG$OC1_-NM_3fgh}EJ13PivZLk@C~P;NS(K%?r9|l5_1w4U%KYS0mGgRvvmcO z#rf)DW7guyx8|L1Q*uh@ANO{3RU}&&ytp(u-2EuZ=?C?jNbf#4hg9V+*f-mEH{v#9 zv_AEfk#_s5hf5AFKVqgRpK?HJnO`lbU@=Gnz+~qxDodi@iskyj+ht#<_n!IFVsDjB zqbz&im3W*InlKAbanP3ex-)0>@~`;S>L>3gPh|9+iUe(@#MX&k71O~8H-iudKLc)= zF;Crrv9V+&!|!mD^8*h2@oMp`D$oy&u$Ii5jqCRa$HxdM?CrZ&oXtIWc1l?}SHxgk z<&t^Ej(hJ7zer{K;yf>|u;9k#3 zk$v2|cT(%~HZIu#InAUXn{gX7Eqje0%gVIUa(XRaiDwt-P_6FNJ2et)X&dtb2=)!Z zvUo-o-spPGR{58CA08f7M|E$2lE_yUV}CVH1DI95RV21R3ut;3dmL4E;vN6%puHfC z1NCOu^b;cXVKE&4n~vIBO7b#;Hct>gJlK4tO3!N2rhSPM0EG`Ssh^;w+MDd*)tb_- z??$+q!r@yRv#jd%r(6}Q%oUxpaeiwsf(wn{d0TiL#cd$BC0t3<5F)J_@wuBSxGKCt zyy>LY;ryjO>k?3^{h|XQ$f`w!XPCamttGNvZUe4V*Ywx+>Q2vls+UU{N9PM_jzONtkN#oOffOT;g$F5Ip3&}vPF^ZY0u*Ui#~mIn}0jX4T8LoF@% zPjV@%jJG)W9imyu?IMp$oT}K1UYB&5I|7RWg;cn@Gb+JJxkMgUPdF3QyjTA!7QIEv z{fCnKKgz)oS(5!z3sQ45E+0V2P2r@@L}*>ou0^JY1z0AXRQ|>m0rotyK>{_F_(Yl; zdkq|2(N_L(`ZQPpOFRpyaUEPk26Prk)ZG^LP60$@3Zx;q9)*jgDE~qcZxrg@_gkJ$>^n}XM4=s#gC2h`}lA;6W!6abLR?~6IbJk zltvzV;=(b|zK+U_mt)*w&Qpl+*F<5N`%)mpbRP z2P(5e4o9`rKiYQrK0G~(G;>n=a2y@&tzLN_srxk#rIQ>!=9wtldEL^^7kNT|O0Kou zuT3T(VlMKCu!z&U?n`@6n>mZfKL6 zk;dI<<4Z{(-`CPdbN#@aIO`>Xio1;uv9P5MxI`d=a#t>}IrKJzII({KMJpc)AfEI& z5O^$YW>q0usab?O8AH)u@|j)p2`8$wG~-WXVn4045kuY)C+Wz#!YbJ-aV%Wln`xWs zgj!^)w(&L{SOAZs5N0TVtjYq1>OZBw>K7E}36 z;jSW=*SaDvfX1zgztxm;{9O<_hao?K97f=oc`P3xvC^;AZmL$eQK4>9) z2@-%lff!1A6X(V;B>nzud5hiBi?<7+)jF5Ylhobb@97B8e(}d_%O79Uz7RNgB9hQe z<%iwCakqYljqx*BR2VG&t$B6;p_BBDY_MmigW@Kj~s zjVxCNu{@{}s|q5->Z5eDAPv2Z=LOU1w?VxzKuzYiKDFtalXS|3GIXnQ%O*-6t*PTL zh#|fVc7PYuRYGv=ougnEGf?ym_qsWu4(`_wfL1FKNsCx^#yfB-%4@Av>HN_+PRc^c z!XkfZc7UgY=RV+5LBc5r0soTeqz{~=1L+HHi#?Gb;5lKL474Hx2O3}W(~|mef!b+9 zviP5v!ls{?4G6^w9ApSv7WkhLKmKpugQdVe@&Y2Oq(ari@#kbUu-H$a2nnpC2hWwm z#{71o&>Ur9Mco|jD*q8Y_-2GU%(>%5&IH^Q$&%bjT($%flcBm20}?^oAiPraa+~LuQ6kO z9XUp@al4)JJP$pPJNI1l+`)CzA>=Apc*CzFu7qz&ea_Gg#!t*93vNWn&Q13gvQ)mg z^}QkdIwtlCJ3hojvH4h31JC&Jtn@SGF+yTmmL}NUo-^+YT`f}>IUVr{jsd3D={1KrL8v$R2>fisnE_X}pC+uV`#gHJv@_RxF_dk}gP zdL+;mW?#Yf#CvP5p^db%!j0O^2SDfH6cR^~{qTK>5LKS41hP|NySr-F6c5ZfoeZtc zyu0i18R5cX%a?C=vT6D~g{keynd=|u>t2qksJilQ;u7f7-mJXS{`&p*kFI{%N@R>}p!(kDujH^FQ)NqxP zl!rxB2;Q{lzk=T5!&vM`YLG~G`?|s}G6aqBQOW)dM{TrLV;Y9W*b_`SFJ0p2s_ZWh zWT`#h;REUOs;F>e-_`lH>0jcj9(n<+cg@>NyH7N&3(pOUO^Y|T&>z8#n-6^3%qodb zS$HJ0$*wU3eKNjDE2hw=GI&-DA)}wAqR%0uuY)xhh;;ci7|&~EC}MBE*Ca3?&e z=HucW_s^H)slF;Cl)<46Qonne~1ZJPt?K`tm&7RfHiEVjU;uV+Lr*;7fSS1_GwPe+Kgz%#bTF~i7B(E3@OLiwO_jmJl|l{vTq+mE}PMUokq4FDpjpZ$hMoi!&@;%=!CQM%PhM)i!!tgtw1#Q zy!<@}(JUgiwJr<+m$jq~$|YPbmaDx1WvOW$r^`Nm!8=Nr-tXjw3Tv@+%W)#m72i(A z%2B$7Y<7m@4GsU?p@&m0?(2G7Nwu+i-xj9ade}Ri8gaMiU~@51tZOnXLz?P+8uV~M z_R%K*rlv=#pmP3E`fiLM06Q`wGzgV6K?WzgpKx!^Xq{)M0{p(Xb!wOLU~cSLgPQecBPUh96u1j3{J5cbl9UU3U@8;f}3^tjU&oACVry z@omqF(g(7|I9pgNANEq#jFzwK80zE7Bt(M8F&VDfb$_GnWJVfZ_V zHvv}`6UG@+WFeI{KgvW_`uQFU2X@u%PKC3;G`bHlb@TSTQLn{8U_uV+lERT-CHnf9ySA=py{Ifu$n zx#H|b&+e0ld?&PQl^rx)*W5hv&8Q~=bFn=HeUTotPWM}(RZrqc+pAz@f-u8@);YzF zp=&{Dd3=7ozLRSC+j)hYzG^F~a+5ovwf)r7(L-D6pG6GM zy1(^`D@)p#E77Ca>ay>#P2~6PhD|H0NC`)t6&afGGl2J?y#7ic5Sa%De+g~TeW`nm zVlx;w+yO_qxRK~ZhGZ`7-W)#BjBQ-3)zzSxG3PC^2N{zq9EjWXX4osK8qFrM`}omG zx@$S{&j)?tb&$_Cb8n~0;GC-Qnf@A^JmzA~4cpyi`00om-Xorpb8>Wenl{iA;96p~*ePo;Y zaDGNPwR?jd-LNIk=CM=b^IP9TV(Pu=*|}i$hM>lTOEO1(pskG6MZCD_%IC3N!>&vB zde&6pN8LJ!sIYWD?ViQZR2g)u;|W*dcFw}(K>w3%rebX`tB+?Iti2o2K9jS3`Qh5D zH&(_jo4Ni%?YzY}znB#_v5cwOH!;{@7hdH5%zmDY7&vJmBG(fa0`@$B7;05N;P*n~ z#r-SAl?naiz_(TQ5)${FqMHR9rpFc}Z+f3kjSMY}Iu{*fFlz9Ee!MoNt6@wflb`pk z$HGxOlXUK6-2Ud5UPJeTQeOQy8@D-VbVnVu8NikV2U;j2y95@eF?r^Z&Nr_N80KGz zGtM`;{>y_wOjY&^y3FIHLHq;cFMwtM1wjs!;N4!$WeVV^yo;^-+OB^6W;LK_@UdHZ z+9n#am%U1o7`pDxL$x0+CtpX->WQAVdXcOL?V&PFMR>FPw?#(lt*T$iBs~(-eJ8v+ z)ed79VL&h?2}1UxxS1IhKASOM9j*x{?69iR%oM+o35dm{FL}rY(+Y8GS$;|yC`gx! z%W|+F1Jg^X`9T58l^K5w=S&>6|+Hu};kGV?)vbRB6 z<*fa)D_8ZCty+!OkXzwwQm9f$vo0s@Y3;RxBAZM|dT#QWKVC5te zO9y;D0OsN_^Jf2iV97y0LbJBK*P5vb4cDh1E<3NxNVD>OaN=oV)|LbE$s27Ik0}MO zyBnj$R!=*7Y?iz2S$_DEkS}ey8S-TbM&FBRJ!NSQ1%5_q6?J9z`a={X?QS|_Fr!A~ zHDo|sVxEB{yn;@(XiD=A4gAuyE5cmv z5+a5tDIuD6AWOK^0T_gyee|6kBD<2v$?jrrKyXMlJIivf+% zDP5tF3uQ&bX-^s_uG|{mlG^5H`ue<+#5A85TGP{igyxSVTzT#c z2$P)%-{Q`Dgc@^_`zEH>id|{hl6T2iXX%$+Hh^`d{JuJ7y`tI0;k-TwCSY9oMNH ziDHYSgnygcq%3gvPl9rfJ?l7PyaRs5oEVnysOiOv=^gr_$8I*bYd*MiV2jyiiAyU- zF{jQwc$(1mep#jZ$-yJV-IQ*1k8ml2jXPc{L|w(m7^wAXZ{@!R`#D3Xt2pkSw!)87 zR+Y!RQi?;o*G43NT|b@%%6u;rFV;A525UTrob6FilDsRl&!qi*zVE{ZWo`*#+VXyTIh158FQIZ`fl{ZZ z$ho)jc@OW|g%6#zjg@~ixKuVQjh=C4ddSW5_BEL%{_Q3`u_2km|4Pr_iV_Myf;I+! z21$SWR=)z2;vI8C7tpgan&1J-eeMaJ(N6|oQqeEHfWv@Z)9!69qOP4sHK@>AjH0%OEjp zr>}5G{Z*~9dO%Jz{f)bgSkewvh3E0zjrmK7xBlH<<0V)~dff=Fj*71!EY&i11+iCm zLpX>I{`-Z@|BL@a*h}aIb8T8j698W}T6t)sHL+KX3~-{-vj7hZ@Nz>deckwSMYNBO z82q0VJYL`x>0}?FHwQqBb%9%FWF+TmckYUAJzzc{~M!*=x`X+Ctfb5Tc6nNd#JgXfl_4Ue$5;x#z1Q zo0pac{BGNfL|^^r)5|6H8u?Rr9%y4MBZpX3XI!4Js*<$oN9NnO)b${B!c~=1d{KO=^)49K8ApfcXV5S%X2vP8} z_CaJf}p>pcp)LNfR z|7`W59D#*Wk~v3-ozPmO$W!9Xusy?5LElVE{9|vSV;SefOU`%a?OVI;bc<#%ov?LL zF-vTOvhqGjg6s5W-Yko|S98(VD|>X~kDbc;iPu1%9{bbA^N&E2D3CwzrBXo~)sy5e z)*G{ngKAol6KPg(b(weE>ldOITSW8DJq&6JB6hS?4;+iUbpMDPMoi};#sjmah5Jtk z8@&Yez9voIC$# zSZ@N%@E9r@VS#=d%Qgl?L1$Sx;lYZzD4SG=fp2n6qu zmvFMsNvyl*-gV()`K6PRC(qs*+`T#Au&6*=({FqkP9i{r;+Xs|pz_`M{+9zkG5T2r ztR$2*za=e?P}MQ87gZ&ABe%v(Ar zYICZ5(6eBDj777hSPx|n@}p5{#|NJkePwoN?KM8@zwhx0^%6OuuC>1OX?0RIgK03; zK|H}M$#{jkJP{3RsHzJjT=Qn03b%6afa6616fU_18n*zlm#?7~NHMKN1(c6P64#^v zibd-@`Vdg&XP^JUhzeEUn5R{+U7S$11}E6X7WY^ybwBaxni?nHrCE7>>+@+t!ti^V z49BFlioAj)6sWezKe}AXzm2-<=+(H>`%YY&bwqdi8TS?2l=djJYAW_iyF0wLr<SdeFb3-)?*1Ald!?KSB;O5hr?~BXW z?i>b<+<=qtAcSbF_kZdzX;YM2zpV8kV<$7ZJ!S~Y{9slJDu(hDo)yja-K-!8`q?tg zs9=HxCp__aL3z3BEIl~n@O*!aMwQ%#yQbA+je-8c!0f&8hsrguclPA9n9)v-f``NBdijms;o!5F(Ok9h&t$#wq+-RKB8D!1TiJ#CN%YA=2cjVPQQJv#&oLW3cG1dufH zJr17SvGkUgf&){XQ;Q7MeiGlS4Dd)#(WlKxZPbZ*kd1;^DrnI~@X41>3p>F@BsXy6 zVI-0y4YhwF%trm6>6vyoihrN{^u5J1LFpvaVS?w}+#Gm#qkJxO-4iiEPBFif2y^24 z8A2ylL?3CTy|L7O-&{oEDPykYa?`-vyHgU<$&RH@T)yyP>J$B5z`SQswjY+W!iGZ} zvh_FQNg$WraU^+w)m3FNSaLMvim!|wPcdV3qs7sw_gifr3_MXHKNR5KY&vDpZE4-9 z=WDye%CbwYW>e%l507gxwiip6ZVEggm-g>?MA!&W0fjVeM_mt()q@m|;bz)kCHw}^ zG9-}r;c^;x27pvwtMLna7VpxZ)KI8z`d?*JPqFP9zj-|b3awMH?54IT|0TNJK^>n< zEti-N(YS;kF=~N0gXyFL#L+ZFEUnLleuu0*!dTx&K^0N;=7BE2Y>lfsXtokiJ34Wj zDX(T}p9?Vav~M^2#qvJE9TFd9HR0&bSNlE zn&kZayzIQ#$w|GtE7m3HyWcr;I;uPgBN*lAhy(*e7m0RQZ(>pcb4dY&)wu_z5L4RG zwu17useF$y^^LLX$Ev7%hlDRbJW}!Qc%x8XTxEj{4Ty|F0r5LnybpWN)3>wzY{8oi zC+gNy=WRL&!ZX5v*YmIJ-S|IawGbkq&QSDZb3eqtGYGnptuHa9y@TC4vEx&nLjC9S zH!}Q}GUm~*k`QP}&JNI~@Bi_`y#X>>8nFV3yZ7@wETaq7dV4L=J*VcM}GgMSFf?tS!=jn21DG zp<$jR1dI?@NRtZT;wQ`J=}*|5Zg!MPJ@-#~JPe>LBKsCEoWjQ^!BJc^hj0PApvt&Qog2Ca_FMNxq4t5KSBBn^~O_I99h_xkY1Xr;y+d1E9T5+#h)f~~wMnm%N)S$(dx4lx`yn#1%1-a;Ubc74MWdwLDsM7@qq9`HP8bNIExiQcaEdi^hN(w3ztX zp}&x?uic9dqnD1VRZdRM;R;!wOXb5wZR6wbVFYRvdQS<}QQwow4M}$afuNkQ!B{Cy zv*QfcpLW2;{Us%l7Fuu3m}|>{ze%_8&>@r71=+-gulzO@7Q`*g2zht*HKdz z6)?)-3GvuX>aDC6b-%1 zu(XFc2|w(gt}!pd_NMVrTyy7`!%C1xaa_*v?Umr6Qq9t1wu=M!ch3S2+~wFYyHOBw z?Th8Me}ve_ZOl*Uu*Kju*Rz zU|4N@5SiEw16X%e(Qd|h@mhejoxQ<-4B6csW0sZS?uK6`JUlxAWM;wYOTFPLqAh`z0*7f8# zC8Of@gc$$TdKkZcMiy?ox|=L*&$#meSKYFjCqw?Sn%-9#&H1HlLCqfzK2yoaj2kcL zCT|*{238ZI!DmF#T4j1)8c&y38o$@Axq>+I+7W6SEopf9Jwe*uy1%b&+cT5;@guKahea9m zVl)ykh!P*x7Dnqx7(_YQp0LJGm5mc0o5}fP3V9R0jbG^Ntc|s^svbIPAQZqETte6} z_5N;S`Pwo(nE77u(q`Gax&>x3@pXQze^jF|T)Ls#SSB~e zWnc5|Uw&B@A0L6iTsP3ffE3C%9$S-B$~)Yp=bwBIKusL`_X=$)F;RdO^l2Hd`Q7mC zg~NUEPV<&*e}05E7HxQ-`_jIR)M>p{F=R_}J%edP z!y!66mHQ=oYE*(|g~~D>2=Yw&{DpVpU9oQhV7}@mDgHaoMP_Ipy%feO-6e0bziQ9+ zlU!xv(fnZ}V_!yGWO4fwkBys%sedSy^}C_||NH$vL!kB#qWZDZ9#f%2jNjC*d#St~ zJ&~Ylixeo&(aqqfJjj&$OaH{^6atB_&!U%%)PubV@ZoA+)A+%&K+m4iwnJc=HEsnQ!|QM=m7_pJ9?Jrh)5d5XjWVatxRAaAKnsr=Q2=2%^95L! z20KA@>s`NZ(J%!#(9-BhYJVC(3_y$AeRQ?}sS3#C0oJNy%rZqQ!R7F!?3ZBwEC(Co zaQ-SA`zHXZP2}gfEr#-!86gsqm3-NA&=hYciKhn1dGfELUGH%nge>E7-c{9X0|$7j z{JsiWOR8?gkUxNqg3jwn5hZ(DJ_oj;o4kU2yy>xnDEU0}OANvS%Dt&2e$K4-)TArS z`NtIQ&`n`L`kCXe`G?LPINnTik)@P=rLx3R+pyQ3TOYB^Ut9l1sP8+j9){AHN~nmE z7p{u5+FA9Bh70lm&_uG2!aPL`c{hCyeCefgF!~itZD}jJL&~%*fP5-JUk8onB2VaZ z5O{kcQ{(2i6SIHGZfofUc#56ut~Bk4;h8PoQ5X;P(x7Q)6vUpHSzzxw=9WHp{BK5I z3N94WMzHA04XI_ey!}oIX|YQ?DED1!$U}0uxq3LAn>M3P3q`aM&;;lxhX3$VmB0IG z^zhdxf}BEH4`}Ej zZ$jbdmME#aLoXwTI@J>bRwIvJfU6Mpw=DLGr9j??pFT_p0ZN{q{Ibp}K7rf1X1u%7O6_(n>R1jpR z<41T_IU(&7^;DhixJKQwa=@j?rTyLB$RJ*JBq=IsE6WbFxJ);sd6k_jqN{C3`E|3? zR$myz2ids#d@kRZPa*U^mYT0pUSHeqR^hvVsP*!?v%XnczUITHZ~w&9>e(&3a38)C zZ~o-E=yu{}T&yT@uB_Ls-G+Udxh&_D1GL7Y?&!IERmaT4xLiq5ob4&03-}J@ z5)nU{?DMhYrHvOz$7T!9;!-^X5X;k~jyPlo;SO$A@duT&3xop$o(rdecjw5AyH$i| zntl@LYru|l7!A?yor!l*-V%5;6W3FrkUt{)f%2B0Qogv1tYfoEMXYziQ2(|vN@lk`HDgg8VZ#brg^t5$h=C}Ari`l>@k5airMRL$zNM}Mb`ruSo zKp2&l2WF!Wz-f+l5x;8z+Igut(5y~?wQmi!$EG~71qx`*u&9q16a*AydJch$$?&NL z*#IQKgTZBkH*~~k|FD1LgHWjr4S~T|z~&Tz?yQxW*Y*>}!b=$ZSES5b4jr8H!Mhpl zO@10JED$hobGr_LeWGzW@R7ic2S=Yx2Uj2c&d~VV4ernxyfr6+YvP;u&hjW>Rv2|m z=URa~aiT|r`t4Fb#+_}vmQgYL#cUcHpB3O<`wbivnm)+$IJfmN&k{MA7k)&j^+daD zcEzStR56>hmjj*(4{zPbngtfxYRJ9uDlA z_z`g>)7CdRtz$PeuVH!irBDV2y6Rzq!F=o$w!qAg!a(XszsM7m1eF2i!r(HkzYWfz z{mp0q!5lcf4^qgDNjpEt4;zcrr~II|T?V3HIrteD^#pH1)1<}He3!m}+Hg*!rnA4w zX#H;Sz=WxJx>zBTwgR4gA%z}K=eF`oput8!x})DFaZN#OpfdtI8n|)bcn_com^+pX z4y>Nb^CjIQF^?KA2qBi>HW%Q~AYW46zgNrrHue6gp!we|&EX7z85RLgqY{YrSFjLp zQWfRx;H&TFLG0(`O8Nk3ZGWWf3+Ebh%(M#e9i?9#MhkU-C3XOn-@zjKN<-G4ELA4h zc8?+&uubH=+j~`X( ztYnhNbZEmBp+laEp(y{bD8y6tqotlpG&aj>CT4W8$_W!G%g`JFe(Be>8^ta@@Y>vn z5flvAZZF9B#F^+-WtI&P!b@=XkPkV^*3%sVW3E|w4;V+oUg0db^PoZU0EP1l0SBBD1*V^+{oVYw;t@=Z4RfrhrBZ(P8ZZYvn*vRhWlpW75*|}VzAwb$d zV(h)B4a#=vCj?rn6IPe(=HRP3+4@h%#MPsy=Pt#cco=~)$xqXMa1D|}#6QHe%IWQ@KPkFRQX%OP$d>Fu zH4xpn{;Eo2N#y7aWm)+3d8^XG*PRk_OF`cK7coc}Gjr!_?$)nVD@!{KKX=7!V@mh^ zMDtcve*fz#*+AF;?tMsI5A|XB&q<|uCgVA*_m8h#5q+Z4k)hv_Y%`U0@RV3UF@?AcyKA{HpliPZnCw(>H6boHRV2&wVr$ zMqUD^@bR^IDu01S$vc7^VI>%RFMa7m z4D8N+(y6=UE*7~Rs4u?v25(Xz`Vcs%F z5=in7EB|>2)RUY0L;B|TQwaTR`hO?G`45=_%&89GA=LteD^vppIHL7{wG0n1Cc0jbd8T4fX3)rFws6Zoj zpq68QCz~1m5Zp_7wV)pY3h~WC2+o_Du5ge$LwVf0W zF-><_FREosVkfa)1@J94{@HT;H~$uxfvU!u-TD%Z4p&}q z8zR-*ta#60VJ+OuDbuvk0d~YCO|6#$sF(UQZAb+4z@%^+_%{fjv*Ro7@AgxcNK8K( z{DeN62CUxqT=9}s@j8_kabJitF1>FcSG@!@4(_EMg8J6Pxgjjv7n55DTpF4_Z+n(| z=+kc@8nzmAKtB4?*(O}q29FzE25I@smfU!y8T=%HKLVCbO7)Km9oNc9)x=)wrv`=B z{hhXhQiH)$vUNNS%TQWK!es?J;Jh@(!fyzH9VR0M$|bFxk4zVYQB&A&+Tk^YZyv9`v zqc=5;Rs>n(-&^J4h{nLKKVl8-lyaN^Q-eO^FrXuJ-%SVQ+o}ew&(%_5dwt-kmlv*d z4}Rl6|5DjQ%_=_V;Y8mAa8>M+c)4^SOK($6qCyZw{6*$`!=rJ#VN2tI%bq_Qvw!!*XN0Wl;SDsxBMz+PmUOR85{lq*3UBIq%daw<L-JjMK&AfGG(Sj#I{>fA^$* zAHzRk5s^S+-q?AWKa`p;>vvm_08x(!646!2Va{oO2G9Jv`&7*YJn&s*p1wfOqK8{T zRbNO`v>BQ$tzAiw27)-MXK^}p9hlv(S^=ny{ zH7?iA>g?*mLj!m4)1P2BLT{#z5EAthBU%a1ie<;Z{~vpA9uIZj?~jiVS(ibYvQC90p-mL#Bl|9dQW=sY%Ve)C6G9Y|ea*gQow1CMSw7eI?Yi&lzOQp% z*ZH3NKEHE*=ljR`!vljc^ZC5rulH+tF4S#Cbx1Hi#C?89`ezy?yL=qdCsU1l>}D~X z-uTqb^?5Y@CZ3mlJ-TVsZ^z4efobvZys`=GHh2iHo=S;bs+tQN=gB0kf~I z%g-}vu;|jeng(rl)AU!5kWjojc-++629UXVW_1qm4(uI@lx%2B)Y{;ve6McG%$|kH zy;#joeRh~I!)j0G$^=%Qw|QT^ELVGsd?g6L-@T8+#)AXW^Zg8ZjKlpMO9|IZU!9*L zy~o_bH!8D4kDN!^+3%1YCpMnjprF{gLj3pv zCs*T%ZH_%@JY9x2-)aW}tZ|nlkxrg9pdFt+QdUl24E%!Pc(s3o+HGsQadVceyIK5j z^mBPeG5g_NW!R8xj|)ENaIdH)y=G_`d*fr$O=vz56A0~9XGeK+d?yb{z~a=!>Y95x zFNS87crdf+z~8a0*f{GO{^O%}U(Ftjfw>z{aRk&=kbBqweak4zh$UU&aUTalbuGn;_ORJr3Cb^C#)EQftwFpBV=;!0cd{IyD9ky#5 z6c|LQT?w-aJ;y8bDpp_2R8QfXCzyHdE-#^b!h*x|J!-?QMCwG9?$L37?d6e(I)|$f zTygJ54)uwd%iM{#ju?e-1M46Ml0UYfDN-=lxA0K!InEVEPEU4Ez-)wY>!yRsOrbzM zc3&(`Nk&ZafxCK!@fXClkkVaB5A3+iJRMK{`nhC(%zL9GgCTwGXAPAsK$CQ=Ru0{^ zt{2>RN}#&i#`z(r@P=dIkEO+!JNO!BG7&|@_Rkj(1+kPN<~##=p`Pzmw6R2+Z}N8GBfov-YP4ld#=w;o6ngUvvi_`#XE zi{#G&Cj%D^<{knyrZZ8v?6Q+wq@q;BpeSn$nNswVPm;VY!Z zkDQ(jE8Lo6x7q;Tp&Aa)*L?NosdnR?(%H^;udw*LO3Bg5#p0bfScH!$RgIyV;Cl-2 zB_h}FC1HalMpir+z8(`mE9W-W5{b{w&R*&@%04hDQ&jv=-%#{~@PV`6_q{=JOzvxR z(yGGQpQz5wSWNQ*ukjH(ZFV-G_#+UtQyQC>{L#M`6jO->DC7_+3{eA<5J>{6UjZXh zrlIq~=|Hlzcyo;Q<5@pl3U9~GCNwZDD_mdQw{QMg^TQhP z#;!Gtt-Pf`Lj|;|T0TrKSduM&?IQo%2h01Esm+z}*@%*@PI~soQCsad-{Q12@hBZ(KdDOMXWr zksn!9Cc+obRGb82jObbEL1(T4kM}0{O-I*pNA}zaaWj(O`1T~~Jj>zHa-UTqI%+&o zAtwFAW^=<~1E2d$VQ=UIn@Bivjq#(e#`{Qa{?DYc`&H~D500x#-_XS;mwUDt_Ny;Q ziwzvwE3d{|dW6_pBeqDHc`?Eyg@S%ZFgQph@%0n7Ha~A2y|eqa{riI59gaG)vL|sL zNU2%lV^Rm7{*?2`&LN z6O5ej&NpaFbGS>e>ih{TN##b^lxlS3EtXpQYq{!yO%{sl;ufkil?Y$A^B@m|FJID3 z&?iii8c(z~yGI&U_cR8PU!8QBU-}x7n=@vcc|b{8!Yc^XX=8c)?5(RR@h>Q|31MU2 z{KKAFZiCTi&!#r+V0>$iIv3yVbwBj;ebKKa-@Emohc5$#qVu(Q;Ss)0$<0KC;!0%1 zMrUV<;LO##JUtce2K{wugbd(OB-%;O`9PbGaD+Jqzb4=|dfJXi7KYqZcHa{vU?^=@ ztaWKQQPw|CkZ{U0YkIozG=1b;+ivIZtPk5P((im2jn%h!8aibx8)xb~nR)(9SeVw& zhPkm)e*W2WbU}@iC9!jJKRXVk1`5O)&D?w&l9F)66D5$uyi`!W|yvo&Q!PQIJt>EfI0&+*oM2rntG|!Yvw>j$vo$2>*<8uGmAhUXe8Y zIG-?oI#zyibVh?KP$=qB~Xp{G)OZ?S#hX)h_%_8HQSN-uVM3#s@J*`dW5bN*< zDo>=V0HQ!Wd9&74x?tC`|JaqM1@*D271qJzFP{_a@Qn^WcbNRFlVz|C^Ngp=xv-J? z{EoTS zG>2^Q)}T4o3`kD`x8E`$Cwil!z&?mt4=$kL>3PIFNWGEQm9?caU=d$7=K7fyv+Uwo z!KMN)$$E{X^%t$=*KLo!cT;3sMyfkxeMJ@N;Oi@-xwN;32s4P9w>i~oc;KO8<3wbc zNY3Quk!S$BIQ^k08et}=<2&*zwn1M21Dwd*&<#y4k!H8V+nhKgkiB1Tbd&QCE^^=< zx-vSRkM;CMU3@nja&^N`*}a#U zn0ufW9FxBMC*7^zx?KOCKmRYo=ilw^{Rd2+|7H06hDrF{=YN6WlWyj4so|#K_NbH= z^GSRi)HPt%3^`JQ@r8-i&*VNf7va!OEwEqDjt|*$-T~{W9F#a^3mjGFA}eRX*BS;* zR&Fdi9g&zcLnPbMTUm|{*TT1|I&W%NxmD}WL1-4pQ~L!~zULm0wJu|h%+Ibc^$FjT z6e>h%g6v%Xq27oMOS9YL{N#N%>LwX)vjAXuYQSLp7ctr?Q82V}C-73S;X1OO891u> z!=?HnAIA&vSN!_9`@R{E#xjRCM0&1D(jgv{iq3#JLIain0Z#J$P zx*Wb8vwM@#$pvG_?XEpKMSlTyleMseuZioSAt$8qL2$^@q}C6|Pv-#jv+9CF=%I5-IU6glvUJb1^Ga5aYn|;J@1JK?Jejwik=#|QW z8e}dVHMnHRXYfjr^it@J`3@^%6~)5fA4B$bb4H}C02*;`O=g|PI~;h>xVH^f_vKGM zaNa+0#U*(*$V=`1KHj-pZD;Doj*fBqxRm^%B&RuPyQl+zH+#qw(y>bfhMCevbU2kD3Wp)EK%M!3@g0Agoi?Qt=TW??VF=Q^t zfhV_v`8DQ)iPG^q_y(RjvHcrgo!uuK|jX zAjcB(pywFyQBprhH$A@%?bQWM<7&{9xlU&I0t!<(8D1t_0|K}moij&iq*@{d;Q*aX zA(ju_ZPx2q?^h3|>~V==z1?k939h#~lNeKEO=vIyTDaC@$PQFjW=rE=ws8p7l$ZY~ zD^5I{{rzNitc-8NWHq;u)+R&H;?!VXMw%okGp)4fbJXld1)d(~?`OkyS9p>7mCpJ5QmaP*b9I3?5 z+A2fQUOv%hLM^gMY0}#^7@=s9UvBsR5&Yz(ICRvIN0mOs_X5|VDn*KW^cKKq`n5;FEU z;Ar%)&>T;^!%ni&o)mtKl9HszQASXjR-(DNQp;C`Y+Ga5I|+_gWebFF8z0`Cb=J0q ziW|g!ru6XC9z+CTw^#LEYWeJ!KjRZx8e}@Gp8D<(Mcq7nRcl|tCSD$MrUF7C>|m$s zDE%a$TF$;~6$A7@R=4;lb>fHKHHldrt_lsHS+5IG%u7Bma4GXV}& z(RqPRK0_Xi#V*{{jAntb5gELymK`+#(aR8y!s?mTrq(r|XmkTXtApN0w= zun;1#ysqVj$oR#KE6-C&3GR`DgQ+B6`v#;icoKZp1Co>kt z_@V8K_?Nbzy7v3Ty4gB2Ttd?bxT|>OVy!^4&&%e4AHJ~$l-zdCF7weqQ4U7sa5OC6 zS;sbOvBC>_y6JuIKg~71cP<_0KCmYmJHKOFJ5{`f)Wb8PTxT*lU$M_Kciv{<^kmBI zJj>5G&)L)sd|Pi`+%D^`KJpmYn_yW&6y!u*GN-zQi?1BekRl00)6!!Qer`x zPKmY;-jF6=!+tD1^`p1({0`}WaD1D#cM;PX_~MDr8dHn$JT^^9_ewMB>E$wK?)E9p z=~f!neY+A*Fz3u@fOnx%(4+ccO9Nnn$)h9dElj(Bpy9;SzH6N{HQpWr9fPX9bx+-t z4w`J4X~3mcej%x*ptA^Qq!&|2{KVd^ywOvpCSNDiRb?{~67?viq33EQ*3tG%7augG z93rIvF_Chn88@mp;IoIOmp#D$jz@w;0RGzz&mJ9&0uu13^syi}IV-4jr(W7MgYeA^jjlcuJT4HUpJbD)kOAExk(+aFWV z#aV+`cn@}V2Th884R#wMi?R+fF}?0KRx{^)ia9m!+a8PcPSLzHced$)`9S?)^!wYf@~u*0a~w(2mB1+qUu1;I+%pCL(5>*ReC|RDb{zu#+-!#bctJp zom!#7!gdfOJ*$~AOpJBp&i731I0L1&7zZiqhOX5|_q5EbE`VF-W5v`VbYr(*ulk@( zsVmiHtw>$AbxvCqy{)Or^wiUH();-y#x#1TgEI^)oqss6Fw|v$nIZvPG_34~XycPa z!F(MHb^(iBRB?dNLKa(|U(Yf|8WBosp|SEXQ##WRcUb9Ch(knle6P%{sQ08!OXMzj zFq*h<(^e70D_e-ISV)>I_SMm4mtY-tv0ouPQ`;n4H=#wYWxFeGspoWWGy3!i%(De1 zPu#vK<%}r>G?@0B_Qcnjur>nt!~;#%R00AMd1I zZd^^j0L{_Yy_YE9*=h6Al zvy5o6A1!Qx+Lyg*15zb=&U`I#JyfeQYkRaa&cLUgxr|Hps*$&S{jTJjVao1py-%EK&6FLI;2g4)pQiLyS0NZGZq{@J%jeq~UmYg7#|7TcjEhjJ8Q zFBq?Luv5JO{vdWQ^%oRUGb;}eXFEyf{@hs(Ll}S-9DhN9H#%L5Vebnf$2K5^zo6X6 zt03PFg_cLqNc>TJy#wI8{~_#jF4p}aKA{L@f1U7iuzI0NOTsoA*qI*oj@Dxp|Becx;yd8U7Y}EsW3`CilQ zJ)9KzX}18N@;IwZ#Tk@P>-@_uwocyjRXC^_pwfSoFDhK<@fI1q?z2@)^ZEk-*?SYL zKN6wc7j-(orzv@W^&s&dH+0q_F!4d^0dZ&^GY#fk2p23jEElFlnstFrg-uO-!6_-L zEWUVaa_Ls*$*Ek!Tm!y7`n3oG2 zie@YTiTT(QtX0x?H+VM>D_J}U@U1TV1sTkU0@G>E)d}$O!KSOfO2x8$!GU{XjPym5 z4M2f^d=w?myaUwE!;+NQ_pPAGBGRxbxdh7##?6^80k$%}1PQl9O*;Q?MEn;cB6cSz z6W*iO(UaJvtH`}ljGw9df{VD5<=Cx>B{$6iB|_0uc4fY$)ft9~S;Q3MXx z&u6EV$+@=JPM+NrRU#~qkl*JW{(K{~RP@opJ=M6th|ZZ=vobJHbCGLZ<`o|A7?a$4 zCH`ogtn0yi)#9V_>-2d106_ijOR_EYMl`%TI=oEe?GywO6GtXb2TNW}{d3QOBgsr0 zMPd8tlT`l|{c(e>Vwdl=yCPV?ovk&oHT8&Gy~#sdZR*plBnkIEIpE^-T7cE zYDfB=S5pTkRIGbWQcnWx#XX~jcPzns1Vy-!2G!B|(>Ku}s|4LI`u=m#fl1>pzlR5lzi)THCU z%CaRV_aFhlSshw1Dg#-}C;Qe#DAE9H|WoBqZ?`Oh}u{`Bu)8H8^KtpEY&)6!@GC-ZG)r6aM7yGKq-EAAH@ z_3ynb|saALCE6Bi!7Db1O@{hN+?$?b}$UkyZOi1sl+&fNnMkezJRH@23HH^=P zGe+90CnfDJw;B~+a!Z%iO+IbLt=;At_eRGe1>J-T!fzn#^u9vl^Rydk3e_oiaMNBT z!eE_91gqs|{86ur0_Lg%l1tY{9Hf2KkXZd9;U?mWM-cpsW>Q~E&lo#0JF<|Vl+ z!T$JE9ZuL|Fgj@4Hvg&$RC7+Dw$jF92Y;5_vEv@KONgO(+`hP?-u<2HAe~N6p!M_| zdsoR9VAQPta$f}ZnM0_JC^7Z_q=YO!c}*b=vv&LoL!ESxb)*~PQ^i*2K?A&G6F3+It#CYh&jAiLNAq8_ zQ&4}f4>RwKU%IwDNfGm(kpxGm@**_aZjMwlAmpJs z3Q~(_%YrA^NgnN5CNU-5K$+G=es&#+g$85r3pXBgvLiJH7{-pen9Sdp*MDN!MSjPJ zfHeAs+o~oMMx^ft(2mJg-A#lq_=USfKJtuRE41{Wla9vM)y)Kg!KN{AKCji*06H-_ z(50o{Q1l$5M2wc4MijyWz(bYApPoh9>9@J0a*|%`Dh1UAjb%=Y#P_8`Tgf0JtMVfH z;kN-fka431E2otfV|$}dUh>2NE1@prXWPL;0=z(b-x#V?W;yVHIO%M&xpw@l0AW|_ z{8Cw*uSJ@;3OF6^51!HfLYmr14#ls7tIc7bkyHG24>-Bo%CvplAXlp+CyQGY!oUzU zzEZl@0J0}^-f8~<}{yCp)00ebBE0in(fn@eH;P9L`A9N?I ztwc%ik50kQ!0?aZfrKRi-<#=0D}=8EY|&H=cF@v1py{NmuY$|MZ3SNTnP*7#0}rGP zkRZ>Ivx$Ia%X->b?Z#Lx1uwie3^|p>s0T0A8>)Zd4aRIFD>7U0eF{2%dR3HNQf7E( zIJ&29n2_eaH$G=MH2VT$m#>v6zVgaCa_&b2OTKYxn+=+t0cSd>iaG%<#a&JT>5|*e z0Ok*%p?4v(t2sc<&jnRj)jJcjSu~uZd3FfdPBn zTyBJmo;{u_eCWH2sp(cg&*Aiyhuhi7tUHcW%1ELw%PX_ES6aj(|NTcd6ZiOIby35r zwdDLRxu9{0IhR)!Ani#@70Aw31yU8fqmrnEwVO!h0cl_Uwj*IaZbO~bCQf>>P5h0P z3s6DmD%d$(R zTl2P~jMtGLDfi$;%u<LR>67J32c9}^zyH)7A+&@8t2lLzb-g*Jr-8jmj`bc zq}OqN&hztWjPHca7fJXQU>TWp^g}!3@Ksx%t1n3-BwHyR`y+DbeKCc-q6&0*K}Hh+ zZX{l_WCj{4Iv<;RhtEIc$=FSN<*@D2>);4oQbdTHcOY_m|vz?y#0c4-ZyJQcL(xScx; zgTXre9og(x5dirGQ1tRO4;?NV=#HX%-o!~1oG$iI-Bz__B%y5r=`oQeq?iXIEfD{+ z5yMZ>k}S1g%=M1KRqotd(M6w*(Yq;bng=LFC`ihkIRetUo3zIwuo|GVPCVX_?aps= z?oj<$!jueG1W(>W4n`PDBzZ%QV{Fg(!LW-@($dy#u{h1UeSufo0LaO$XFVudv&*>V z103FVZ}RlQA8%eZmKeJ1H}?J2#5tAA6g%s zuH(z+{INE@FVJ+0EEOf)s9CWKaMH0CSsU0y^#YfhS;M%^HA*q*2BpI5-|H9jadd7v zX5w1Q`S|=wAPQ0?N@?N6KcgdT57BDMl5a@TOWxR4{V01nCp}X4P9H_j!FLZ--SM0r zsjHsfaBPEQLTN_b4rwzX%>!Upb3~}H7dkJSBt!O z=dW#E*JQBN^$B|O5wuogWmk+3&w88qi8x_1IO1u(j7PXq7=`#Tp*@g1buMG%u7g0!J*C;06r&a3-U z&_5tpMvmo=D1utn2Gm`8<)q#omOfaXs?Zng@BrKWI|!CiJ?!#-qqMZ{cLDj=ugM`4 zap+5D4%9hIK_adrebaCR&4U#QQUpRDIPYsy&?UeJoV?&!0lFt78*{)neodM(BPWpH z-O8+FIK3-70GeD+zT~`!NBBsC z-QK5|`*1l`uSx>l!vziUenDxC4%kBieSSbgidEmad=y-(rjJo0bT#TRqx;3r%pxl? z&c266tH|+Fh#z+F5w!X4?D-)|n2tdIX<+f?kzraCK}<4{FESeKITG?3_k_M^=8Lua z8!-8Q_s##%zNwvu6>z@fLg0ZUGJHX3Z0XbqpMzI9iAspFI=`2^)ujjGE2N19at^V# z8gTDGgTWpcmRg=XyPBx!9!$?ZwB=Hdb55(v%C!;qUr-Ot7XSmiH6t2(4V@2Fs*k|A ziCCIihnBo^dY1p9wEjJSZy1?#*Yj7& z@@;p+!*}sK;+!kT9yjq6WeUrWzD51&Bznk`A1G<=^v1o9#yTap8WwxsUAWL^Ex=rT zgqSkj@Mx$~Q;QqCM)8@r!I~tj(){P0K351TrL(aj{DgzkVm{S>pY8pAShMyu;W9|W zEXkuCGhmiv2X1+@hC1W^A82;K9B!EbvP&-T8*wEq;CIC`p~+PI^P)d_6s(HBiEI7t z|6zV<`Tv1gN5k}7=0}={qGAugDpASCG&G&J{b6gs)ICa%_8ky*p%FEzEvtS(4Vaw^ z>+oM0nTndp>lHBuB@4lE;V|G~{G6aaGGE3pv0GW|VOMDCH+G%1JOg4U%^7sgFsb8b z?v&`Z#v$z9m(YpTxgE$>A6$dCIew-Mzd{`K0^ZvAJp{@BPNIa^st{P5m{!5LPX6Z# zj!R;UdHf4(@j&2!bzXvleyEav6$yKOwu<;- zKbt@IWOQ}Ixkz8c4R5pHYDN2NIts;Y#-DIBv4`V1TiEx#McU2JHDBJ>n+Fb_9k$c> zb;##rY;diPw9;1ZmiFemj-XwSb1l&a%G0>-fz)Xb0Z+!AsHd7@Qrxd4MHqc--X#YUobUCPdeKF>^SC zK*{N=X?4oZ_%JanUgm|KsoxVmJQq7U0wNS3;^jmKC5F4FS;im!42r3gFyyGtI-79i zP)qm9L%qatc}5O9xu~Y&fKkYe*-%J#Z|i|-wV$98{42}tAM=Di`5p~&n%@3Z#T19D zwP&FvNyM$}$}mpI_Rw5Aa}2Bx`OcuH3b*EJha^~^NE7px#97Vfi;(Ade)0q{m)vxz966fkO_3z!0j%;N8lgd#p;(;+1Q)Hsz{3TI~MufGGhTp(xiPcm*jaP30G zRlwDIF1Y{8nh*6~U+cRvBjy3;pe3$(X1SL$*vLlIE&hzOs$2R-zH;~`K(J|Wd# zXX~-aZU&9@sELh4h8O{FrrNhCkM(4Wv!fJBJnK#*ZX9Julx({%Jq&KLF$X(|^O_0BKz~ z=m-VHe5mJw9J)q0B_v!cikNIXg~$?B9mO$EPBn7^4GH>YUPuBYO*8GY_Sm{rD2AaN z#E*y)Vf=V>@Z`%drVK-XjR((mQU()NaWF1_GS7cmV=p4cti}gnsm6yqJXeOfYjwt- zUL&sbeS_$h>?V>w1917ba5=xW3Ae30z0#`rtDGD;tyEs8UzS<~IlwK;z$ z;mvFl2l!=jHgta6)8Es(3f%2>^o#$_3y)O*R>2>6=)p6~L+pF%-;!`4In@}WT*X`= zGL0I~n(ACu1`$Q_JGO*ukCA$8)AI9m6-~P=>&sDM)xqnCrF_rVA3vX844lX0V5mkm zb|9mW^0rG!_*6k%eP5SZT>21tTwAf7ol~|(qod5K(BwX!KyJ9@{IEL4_Bd)k;1Cjh zB}PfU8wl0e9w~;snEKYvD-qmf1nG{^MPj3Wv6RSLJSU8=X^mufVl863Vjh)rs_@M3yLl2AQO)&N8ttNqAe$tJ4?&~txFSXd*gri8aEtpvb-l7fE zRctU~y*W^Rm8RG!0a_sUPd>ub?mmCwg;m>Q!#&JQVkT&58>`(yl=TUMSOYcfFb9PazM#E&rt!(X4u zao#McUc#7O9WKGGq~G*kR%hq-SXSFP3&!Wq1pU~2U|X0!il9$^gzkO@YSe&4dMNDl zGJZh1E~Kzv`*Nt#*-@}}0D%H+eLt=pcuMriHxQ11sSA3oyMARZ2jG8hcV?MCW_f_h z8AC%OH9xFCB|1jZluApTfusu08u+M;W4`mSgrz4zz7XiL*UT*&lCz!0a!{ z3zQwC3#>m1y*&9)n!u`#My z%W6+UPC4d7Sl<~PVR$#S8xF3GFk|eiwX^YAYjVD`YF;ub}_P;;dB#4aM1-by7sSI6~;k93r% zQL?-ZY0|A&8%9w#Mz`WBiq0uEvYh^EvZsRVvn?_8BIQkgW0jtZ$SHXY{Vaza%(pah zLf-!Nhmy9R1H&GlGbPHB721D9pL3hrfQ8w5%Aegr)IL*j!#?K#0yjIy>#*6m{d(L~ zJ!yjn#feN=r1j%xeJ|y}{vEtO1bV!`I}QlH-Rjj*M47=e&-YlFc-*0Onng*RebH6> z-t=rNuCePZW#i;wd+%xkQL_NzngQ9%*<8rsb>K(K=}ua7s*ye7hEEq;4F`8438eS- zZR8n;3K099E!mo+WDxp<4bx193>QJ%%-$+7JWaB%$L!I>c_C~6;B zMEm@poBtsEkVgE}&s!SZSlqE(uG8Ya>}S#Jz>2#?nu$QA?2F*|w2mB0>dI&UhieY( zFyS*W8&uFb3q%?4sibx$A@Jk><{st=BC zT9W^CWp_;W)aJbCxvcvhT+qOI5x8@5nE(b%l``K3sErld7j*_{rsI^1uIvKFIQd-G zM4tRgthOYc5BmfI?@eUASP6rsTTQ^_I+QhN$(;TZep&f9AccN3DC0Bb9ds$0#|rMH z7s5Un{WasgPAj*k+>##_!m=Mih|KGu`1W#04R9?<@`z;J$wi$Nx>~4$+NuON`hKDh0A04rIahr==qF((uba$%MYWj}koP$q zNSMNMNARrzPTz-NlN=HH<&qW`;&s>`pI7h{Di^&)ac3B>GY8&bzMH)E$-rpp?Bk+Ko zmT%)JRcXoNcNYZNN7^O9OH3P`-AJc>UqYV3iF@HkBLbULZ%x}^Svne^_4U$}2iXV; z^B8%WS=hLzrcb0#VJWc)$o)xW(_wQrkfwroHF{#zieA7jbp^0$;<}$Y0_D_`I?^uk z=WO(p&aLJ?^$oh1r1)BbD)mk9IXGxlnhYn{q9cJB;&%h4>a+G|CAqUZ;@?v4H1 zyRuuf(Y<|9V0j%m3=ImkFV%0MPB1!QY$44O{_qe^k!g5PE;SOL55$^*SD3~1Z3k!| z>2Q7%pV53{W@-BBS-%Azg~OMk(rO(lfj@^wE$ zlgB^i<+gQ4ip|T=cY~~fYyQ78Y53c7kFH6DZ7T+H2E;KN_uD!kRfx8NRwxUkrz6U% zo6VN+N!kJ=_OKl1THX`7vOYQT?;by23f)%udO#Od&$bj_19WnImgu0<>m9%E?&`(bamPpJHPKPT-1L&(s9xaizBkfJdf*=5$L} zR_*jZdH|syi^uNvwYG;NyOQ?3{IeynyWhj6#>8OXNHt4w%$gMP`cMoo5Rda?m>K zNboMhD&-IWK@Zgtn{pczJUtd(fBjMT3zfd-FCNVq2Fv9i)?=xJ!ATQ5HYQ$DSnZhl=ey=4pgb7Z{s3Zkyj!KflwG5=X z2l^~dVEDY%5fNPkR-gsOTREUWn?C3EbcS_W_+KbcX z$S*w0B^cFzCF6-u}mhULU72Vg5~;hevR56`n#o+_t5c*HCu7CUUt1b#+e zy5`=tv(K834X}jM1`AkNSje3wZ|eWGU1z)XhLOJgUo$LSqx$Ypn#L`7u4D(1&;I?b zy##or>>OwPW-a5_jcK0YxRUk*%!kERUTXO~a>WJ)+Z^a*+YQQnqVOV3;9>~a5)zi0Xtb(ey}9e(rX|{XGdF^^qn2MEbaW5M68p%ezv#LamxOgW2jySZtl$IoFF_`K)&SKs0bCsr>-LtSj7G z-En`K?pD+{f-r+5kzgFi}{bFjJGwD{@O%f0gZ zFqeCm#Xlh^s(CeTV=s*RB&nF||H_j6)!8V(DS4)A?D@#}yMnE(%Auvn0LAh zo*1sR(R!V6%UNOP-d9n_FTLxj>RpsTCCG5mo(s`u*Z6b)_9G(oq1hH5KlB6m=!h~) zB#wR+u6~2deX$eT;4FSv)q2u3p_QWIn6m{cK&$RkFB&m#2APa6JBd8$K=VM>cR>pkWYftM0cC#A2X$3C z5-nPCuMb2!zU=Pp)@^yzB9W7J@zDp=x|$32zU#gCegJ6AA{0KrUx<#x3NBLuk-hIf z7PS0&sXOI|@bi~uE?xSFI$lcB(6%@!#`rG9^-%5J{u^`XO zK$HTGu7Rj0G2NKYovJ@9CN=so_oIwjNn;ndRxS{mOc^Mi6o4n#!?}=79(;r?II1G^ znV@*ai@#TZP`p0wpMHZ&m_c$CUXaBPJHGVZM-8lL?}$ms{>oL78*8mWJP?<6FH%O| zCehuKfXcH)(%(<$t^>%eG*X zyaBusT|y&%Nfj>r1;u#-yNdsJBI7^3*3jW=KABzkA09}xE4soSj*i|9(*?!OzZxZ{G~r8y-Tf2L#D7f;xPE5F09awpj}rnnnv<+&V19yf!Ch zJXdk)h}HL8-euBLbsQ{5p1G6tP3|M?;w;7a-0H`Gl`?x#uu4fg&swe;wEIhDazZrx9@XXa_6-WqoS)XS z*4cv&`vPga7uldp9iR9-P>u*v^QW{G>%YIo#3Bf%C*sqbtRcSM-55x!BoQ)Rq}}pfSbSh$wq2eb+g_(&*F? zhhGm*b)M)PzUY`x->f8d&ft+m&#@SehK+ALNfh)Sw$d_#^yjBoK3L9_?&we0{DDAs z94`x7(N@HN%5r74RVPD1wLx~FMe*&WAa4Eu9&Y1$tr3*ZmcL7*i8XqXDw8+S`ePaB z$U+lEuhVh!Rs+3tcZ76GWd+pcJ3d;N|x1OkP*E;1)Tpjbdehc_^05#gP*Z!5L;1A=ei^t$oRHh#6GW5Y! zu2t*E^@M~48`ZM8m?c%!eS7T&_|m@f&Hsu+{6ceN3CGbrXo+D(MDZ!YPTEQHq_NqW zrJsU7!anEseQ9~G+o7NzWaoSFxw~8r;n|;u{w{#ncX{UP4{dq>f-YE^^u!K&WVC6st)$z#u=PPd&& zlj~fU12P@&38pdfjljXq)RIq!4Trhu=@~sv8f4d?Q>quQJgy%rv${wTm@?mp2r{C_#7&>`ZCWTNBRF(ubB7PQwAuQ*)2W$3wB&xCKv#8x_1 z@}EAA2*Io!u+7lCA6ak-8`v+FJU(&a`_5~ZVreZVLFO^9b{~(FIp=YB($}u&0Z0hV z#KXL`9fs!xrV!D#WTRR2tRvxjlXr53OMi2bdaNL^o+D}lm*X4t(m&n8e>@F;T^+K7 zZv%P6s`+j+06uL4;z zDmnz=YbjzrmaqyBx7R?~Nr=1==9n!NgUhKJ2;a|P_IlpC_-MkmZM%Z@i!;xg2=&?y zx~p0hcgfmKMe@?MotG$|u+%f?Zna_VGG*tHUK`=@lddHlVudRa$&Ip~^a)uq=m)4= zXb=FS^RjH&Wh@Q$~4|Sqa(k#%kdi^-R1M_tM zlf~YE1ayt~5QCn1MWzKu zFP&1C;VxERQdV=B5*EE0Psz{JY2(PEmDDESH&&qG);h_6@U50gFFHPqg1Tpi;I>3_<j!#ihY4>!ZACv#xLRb;eD#+l_cy%E2-IpCvJ^i^{y$A?fgAVb8tdAY+vF1_L=v zI)NLi9zk{iP?J^*mb!14{Gbf9S9j9El+LyQw2;=5Lr$R9NF>2^EECXKzW)juG_CQ( z&jR=c_f{HEW1^DIz~(ugSX}e0`i7j>&f)jRV+{_r0NFOy?c;)kTOcR^-t-tDG#*mds^nAP+rsF~v)ur6{&Wyx<1yk~mX5 z6a5o(v$@(CcKD}YYnpM}G54+G*x^2_MZBDUSr_x|2V@L-5v0|F+RjMrvw5~`0cpJF zkIqHkd8TZBtM(wwFQ{Sw(Z<%`m=bOv&vYWqtox&J(RVIPzBucJTos8au{6NmR>b!2 zq|ul=p!yc?eINivgOs&-8sDY;H<4PgRYCB=aqL7#+I+xvc8Zqtjh1PGNXdfwMY}Cd zOYdp|K5fjo@vWxZ?yBtYe);9`q{&zr!<|89T$_&T@x0mTiw)`linPbsg)E3E?<~@7 z@kxE2XDT*3k#QmS{KoaI+J(+;-kFReQru?bGrMualtT*vH4%6Z-}1x;u3ACQH5Pcj~wX}N%RxsM%F zhROJP$8osc+t>s1qp)RWBG!;$tXhL&If$`HplrI0bpC=W!9;=4h*j5;L=JgKntGh5 zlF)g|a6onerQhhW{gVgk#oLs9_9M4eqpMBxQeZDU?R4h);Gq`>C(PPhFDjUIJStl> z!bx1vy@;$MJ7Vo|@UD*cj0z$RO^^4J_t6=+LG`?OC>D6&5M3M^6znnsEyC~KP7%9= z)&rO3Jo2>wzGFzF$I#*n4199*=}Drh0-^{h5-EwGbTHBdlpsY= zN~9|Sp(91Qgx-5iC?SyI?{%LuGyBZmGuO;qGjqOkee(wwix*f~$$HmQ@B4oEb_G5? zmYh*>o9!vf2&?{o4GBO3`CkNK^9%+8*ebnXE2k=c-%9(P)h<^05OEE>@$IQ#1K$h* zOcE@!6Ay?a?^>yn$38Nm#3b&VDb5IAg1a4ITLbmUKlU3S|9@r8Oo2O9?SX5#|ax&r<43f3S3#xSA2x8_F`b1atO{A*-F(>1HH#(3GlouvbsxM&SX+RSwV}=6~+?QhxWLGJP)Q zQ^ZQg-l}SO$EK;8XU~saP7X^t+s8kR>V8`H0LE`ImFYL-gL<8s|06($V7__$wT z8n*|?V`1`~eC^}SWNQ>fkC(D67IipC-qW>jdU)tL*VZ|e@AM+@xY(n+;l=zlguaML zd6SIT>O}7R*l(a6I$^bX(7RVA?d<9s%<~<$%$r{4Zpz5+q6Q;(nNrEeaWszZEpCM+ z>~6}Jz_hr-ri`hTu?O~6*8Q&?O&KAyQ_PBCL4vi})z;gDj|o+1&g1wq+1~rqJFh%B z+`?adt;Pi{F47M_%Gd_(LKIz!gs9Z*S*}3xFrkLt0U8~29mkz$n+MTZPKw`7k2pnK zZc-F|x`TxUQhAk$gO9|(SFE=Xzvw{;Bb!Aqx;T=y?54c8G_xu`mKl}=X%GHyRF%>N zN)+{m%2_WCa%|PwAxGED1GGaHe*7^D`TYl^lQ-MnE!z{x?HM*3eL9Sm=np0hHczZz z)k<>jwGPLeIW{x*gew)$sfCzhuoWVu6SI8 zFcv_K#9}n8`6D%RbSQhG>Pbmnu^r9SO~o7k>X}NY>bf8v=Ts18axMIAS5|sK_}TmM zXF{AP71@BI@xBNOb!A~!ES2^m((|_A{Fd#bqr?t#6J6q zZRgpGhS~jR+OA(`Jv+mVk-yzbKL`4Gexn!~hY`?pOoA->|1>59_)p*ru+Q;K5mcus zi9Zl$D3l(6xB6JJVt=`Q+T?Q>rTCSc91qV9^iu?RlxB=+Xr+VnBsbwFw<9(QGNeoO zm|jTv!J@3tO6P|#FKEz}A5(6E0SWQbOioa26~Rv#1A%>Q3K@*x(d`o-e{K$^x;Z9X z)sgD{%E*CA>7L<_PM91RxLe0#H`WKrinDfC!ToyAZ0zhql~P7Z#?pH~Iz- z+!Of!(Ro}RmcB-WlT6{%MT}e*P<819x;UncD9rS`&)|PY0cgl>3Fn90=XIKl9c5z4 zvXylfDR$wdF#vLiZH%>lB(L$va(wFYa2kfMknsRhsq#IRa)D|qaEB2wvpVBsb@-{u zS72}1Hs6Bt#RAVj7p1n13j`(hOby#c?7 zt4D7q#n!a$o-=1Bx5OR5C)>6Q z&RKLE35U2IdRr;Zh^TIhXWp3dx3ftc0t#4$4F(!Jj0_*DvcFVQ1O6Ra>qI>kyU;(9 zeda!ii5t80>yc3qP%uznSTJjl`KHKxjY>N> zWX?8w?2T*ejqcR#Crtuw92nG``zYN|zoYo$Xf7CEvmZR2$}aHUr7?IQVV@+BS;BGv zM&K?VPo3i@tDi_#$ewE9N>guNNt*k%W%EmsU(}9_V`^@^AS|$fn0)qlG~Jj;iT=$R zP@O{1_bxNFmqB@X!6+6?r+2X1I)j=9_tci!0|48VBV*iUl*lb7?o+lV5== zR1e@Ah{$<1u5(5?=6s0;!R1aQ#WQNhwQyc7b9eRY2;auxR`*&$PY5NJdd|~TlrYlt z4WUzP5vHvbhF=(DCoctQ*QGP#lcBaO3;~iZ{lMj>j?rRj2x;P5#$g}Hx>yh1qdeyh z?+y=s-2crf+Z{^Ug!qG0;QG1~o%0zTMv|jl>nix{6?VPDP7D4;-a#0Bjr9W{{G4aD zAW1ieccR;Id_RFi9*WNjxkcx1_)p#c{OMD$W|zs8j+eK0KH>C1rmWLT0DV0gyXZ5T z$9l-#^^$i$uPI`k|Cc=p{RY5Q1d17MWTRF~1%|rUOBmft9<0ePZ(r%1dvPtY%5z85 zlp%QFZFlZLOzB|knHNaX&&#Dyx_Tt|3zx5j-uny!Yn`1=Hh!GjB_8bx^rsF*KLzS{ z_-Szp4wyI_x-nJR6*GqQKdC*A*_kOHe1eEhw>t1>JLyQXkH$_-pB7Fzu_T@^l%JvU zt9i^$7h$MBPGCVsNo&;X-1akyF=-|@^8&ql;wZWLs>UVGqN2f3JQ%b>`pH+{E9@4N6sRBpimXK*JVbE zmnR%serOQZ`th=z9Sh9P%5nGMBR3*0Hb_KhpOT0)mo|?h5k{r~f-rQ8ZZ1T1LvO>&1u~BQMrEhL|FiLFlo65=1a7>}4M>hcU?ZxpOo`z&dBPifO19C9gndD;wi* zo1TNI)S`pfWS8us!`S<`*v0~~yg^BgxCpvk;Kc*Fqj*#sd*ye=c3>Z&Xi!?Pq@N*U zYwf-keH#;|{secm_Ac!6%)>2}=JTnLiK~mq9^67Esg=nGSs;(VS(^AG-7Vg!ofxy& zZf-U;HUUk|JGsTdvbB>S1s};FaDhixoGJ+%aZpUS(`S-f`b2YucfYdcuAWF>xjOd1 zhv3+G-sPFOcGtb1UhWEfSi-kj2Vo(N#I~%%4M3UwmZ=^a%_e~ zJ35=ozRTP#^nsThU)sw)R%2ip-oSr;5XCVkm=EzKX*B3UPYSZgXri*^$(US17KXDE;0omJ0Y7Fyk(h{#<9#` z05JaZrTwf7 z>#H1g_REFXtB!JdW{~l1!GmP=FzEm#olL5SX+X!a%n1|a$J;{#HVydDsc+WdMWd1u zsU?1xtMJ^MWCdhzWQC&G^!=!pm=UEF;KT9|t7gbHY5Kl=VxJ_IFHBBQy_Bl-peT@d@hi9%?&B+cs}Jh$!sZr%x?51cF$(OK}74zZxTEb zp`(82S?1sm7M8mo+hx`lWw=+HbL!bX;j0}kUoYvjI65f^Yr>-3NLlT zW~3%SvunD##f|l~s{(@?Wnvg$+_td3>xF>}7mS)oatf01f@k-dUv!@MDx8hE1kK%8 z)Zq`b$Zsp09}G9~Q;lgAv3)BOpe~A6N9VU2^*uMW*`&Cup z*T)c`#%UR=!qxpq4&4mkNCa%_ixQWj;eD>tj)_m0w;3-`9dN~}_$a7 zC1f5elEe5?0nNzppH^mHhPIi?NCcU>+>MXOTQl-v9P4&kPEvSpA_{0OzaVi~NyNn` zqXxu+&y%+X^9}-Ve$#NxylyUvc(X`cSd@?pv|ELWiGZ>vpCainQ7;;7wpHZ@o-xLS5QQ2-KB6m0TalJ6pfsJtN1bRk z3sKZZTA;sU_P|Hwy6+ zAmjKzcp+UCBf8ixa}ceAR59RMnObV?mF@AYUeRUXJotTz2uV$>MRkMT;;LI5bQI%h zsVoJ%qi;_5bb&@|7h=JZvuGDUdNE*z3-0a4yZ|GwUiq&a9Dr<*UaWu5txHKImu5VA z*b2M?A^Zq<2P1V0FaFjkVwm{9Dp1RdK| zdMw53zVVwBr!xGC5|D(zXT#m#*6@*VV<&nvw^;yVn;0;FKK8)Osp9)M=peW7y>9K` zKzdfEB7PUU$oPNFq%5(zSp?vIDVU$5A`#*Cd|R-*D*&!5BZ>ihk)KP_Pe!gT#cF zP#FA64D$DMUjDcK7S>z}Y8cR%;dNl8&ad_Tnr~MQa;?q%x7M*!SSR41hf-GQFL=R+ zIJIwWUka(1?ib6b!|UMX{&YA|fKjrK9!~zeL1uzL05Oz!OwWmb#7ClJ!FV)JRB5ow;cl29!_6{57t_R#GjOn;bt%q?`B&YccIzD(Yv|Uac zw&OONWZVlD(Fx+a$Ivc!0H&S=)Dn!^e=C`m)5mV^OT^td+^YsB51IWD{p!2 z1u<>w;(0Hv{iuN25}h}*cg~(xEorasI(|f#Rz-MA@K59osetp8%8ppG>>g#vH0cV= zpqn_Z=#Cek!#5(S$05Ed#1RaOmzuwdOWCFAYjIB}vKKB{uP(eB%v~B<9~=F^++wu! zy2U#sYNXWFqsbcIe)@yU8=;8A0wT1bBC z!JxhPs=*-9${?s8&=}CTJc4~YeTy151Lsf?ox>bZkwn>z76CB`V&L*fK5zJ^D|sIw zM@4FEV#V7K>z_%FN8GD*eMI*clVYpGghb8@v>SN733kjG^k{HCqo`RkvGTBN|FNg+ zE3-5xs`@Gkx~NE6uGyMs?>AKapuyGAc&VP(3}zB1kjSEY+F9Bsl(_!Q9Bm=(QX(Q? znbm`c^Rgi>(oc{)>s2I59CB?uMAIJWVg^kvuqZbOh_25TZd!r&u1WpD@(u+Z-9tT< zYPOTi9~LYe*zQmBmJ?+A^64P;zq(pe>(<;xz5=J6{ zWL|tMBeZyUOUDkGe*0g+R?{7E4;7_1^1YvQr6u7|W;r ztWgtSlmYz;VhuPKAa4DBO*agn7z&oz=7}>PQ+$(WJg5ruIWd_fCV_B%)->ssm1-Fv zc$Vw)Wb@H8QQ zThY<2H6Or+4P3>}BAL6*Qgz=k8{5sVCLnHiuXDa?-H5*O(2BVgh^-=M+D$`y_f;T} z+yEUPP`-x{^7YFz?H5yHN_SE>nu&VAMcJ6^K|bMAGN)mUtM+S2SrLB+>22XB>CN}Q zNpFHCROz3jw~Qg}NfYE?(>oQ916^VfePWo!%ruO_I$g_VW259Yqv-v+=5C_fqtv#> z0La1ckCyk91I6~(Z8b6?F*aCEW(R@G-s`f}m{A!j(|cbx7~N+H%e|rP~f^w)@nwW+}z*56|g4xPA(< z9Xm)0?fg6ecK5FnrQ|n#t@UGg-9{M_fW86VEAlG(w5lHvp)OG-B zuV6$FX1L#DMjA0>eA@?@Y?kh3oOz2fwiQWrV_%5=!E(_-`v=QTeb8+B^Xu8N8XI1e zBx#ShrsjKTlJ6%bxCE8i-=@#cp8eYEAUb<)Mj!*Jx5LYwrh=)wm;<+g^vS{f6Zet& zW<~cN;E#n`m)_fYzM@)?;t*DvfryM^j4HeHL}%SM%CQ^_vfbUokm^{QH-la)=s2!w zVkcnXD|TH|GwPVHuK5mRa`1%0-#O$A4ID)!6f+S=2NA=^vSMZ=aYXHR7O!8R+BXK& zpesPgJ}UArjoJT@5Bz87*FRbp`Ona=->H239YeqH3;Yz2Ekznr5kIvE01heHfPnqL zto+&N-BiH)ftYP}cuUfnZD#A&r6{I8#t|Zln$~7yG9`L!5)XGdoVeR{seZrWV+|pQ z)M>xl4_UT2m|2;dhZ$c0Yj~+#3Pg9;Ff)NOY*S^rbt*F5Z_o7AefGw1x@s-mkJcSo zPzN$>#a0L}0y?aZMRlUdT+xgk5q(4KR>d)z7Y3XGHJCIB?|!Q3aX{?x7- z#ZzC|Dbg&zyBh70AVwa!a8dBWVXTCPfHY|IH8)>W32a-_fmIvJ;6}f3^d2u5lo^7V z7>WyMCi!er4_4;8xUKNlpT)oF__RW{lLl!h(j8Cr-{L-ft#iyK$1%s!@UFjvpjCv% zq1zYdv}#esbOpph(+?Ikiz)*3JgDQ27h-APUN&UXff3LBY46nHneZ7lngDQW9~g0% znJg5z_v{83x*L{ii|+*m-g-X_$rZ$w^>);0(D=&z&ARn(|CjIraAf{%CoMtlrlY8m zI-S;M@ElmOg&EjFbfj1k@jv&Z>$hV+Ft&Q8fFv!lV?87l5 zfi&oig1>{w%SXTSi!{e5kmjg60YVpTN&LbVA>OG^mbv>o?PfpyGTADOelE#`nsT+< zReSN0_&YQ4=5W)NmE_WWPxSa%pB`3lPJI5tnr)RgcnyAlE>3+vB5h4~8d=s4`FTv_{M5`gQB&l_Mf?TUlatz-1(_#b)qIE>p^IwdDbwC!{?@090w-Echb!u%iBj>7uW%Ji?Kmp?OXVtfW?o{YvTWEX~9d$JiXx5<4LiP1cP;??MBO-nlStA9sv--+_I>E#LAId#at>Y6;EYUD<3VKwWSID zwzBhAo4dbL3HrPK9{(C{4*{kMsCdiF!M7wcXSPV?ykD>x9nI}lm4f$mAAn)XXqm?fxeI{1yo%X@+o}O#`X#!xGq~fP^=kWx5 zE(%uNhYgfDjg{3ch@V~YbO2lu_SXQHPpTmn-b)2KPRwJlIC~ z2n|5*Xk!Xc_o-4nM>FVUr>nbf^s2sOldF2GU3C7->wM7#Exarv5lpJ_!{qDwVMax$ zo*t`(Ii2`diNp ziz2)GDD4|($j>m(wH;TweD5(W>{1^rqf)u5F^hHMAQ7R);`JmGU4hJ{6yl1!`DK`#D-g@JW3^~R27MwXepphOmiof+C$#6^wRy_D$n^_vX^LJNpX^!%yw11hEWM7{ z*lThkYe{!wvUp{Xa6n;AWIrpJpMC*LIl20+o(_u|@Wj~6d197vg$@iDkDUIj81Un;Hb&U@Lr9Ol`cC+7LnjJ2%T?N^^jod1YtVL%} zj2qrloymB51gdH*|6fquKV%XAqVMd{^ovvxlKa>@=$Py?dHkMhpEwl;Q=QKH^ggJ6 zmC|z(&)Nl=V9?y6^ds@pqh%#0&oOE#Zvnb;_>^e|1GaeV2;1ZdPRc<>1pS=6{_HT9 zOPnY#2P50EOi(oQ(aKIRDJES$TU@Ix>u^Vb_7Qp7k)1sw#bI}Y*pri4lDv0V0~XmI zpzMFo_kXJdYu7)q&kYl<@yN6`7yYhK5PGf8J8Oe=cZCHne}7_c9gI}Wgu=#JwS^FjLT|7yoAFT%$+cq}!L&vE7#~d*SdL<{7_JJ`?w+Y|M=z$W;PHJa z)~~SXFFym-b!&VZ5ZSH|Q4b=IEmuD(KTH;lcIK7MqBQ5fr;BUB&sU#G{}vEFMQ+*G zf8RA?P=Yy?K$k(2LEV=WuqyUDkK-R(8UKXev5vz9(1Ipj8tw4B2{l^kW1nt9JgzT& zL~Z$5De|Gi;&3Atb8NSHA;T=1ySrSA@fN*fX6QVrY_=$m+gs{kPs4;z9PCwhdNX!H zt9|rQD&H}?F0>F`lR%P5mKjS_U1h6O&g@oEqO%a0f^!iXXur#v&e8Sk@telCPHDC$ zey}@%RUSOO1!u%y?Cl&L)wNb5@;=1$ubyS=e~<5CC>nk2O6D~&)i@#!hq2K!so5lV zY~eEJaN4)9_J9Ycf*DU3uLurJB0_y4vb6}`CzGt|Q}qg|maZN6c3c_58ZSz9BD-Iv z`Z(I!OG;79OAf{z3>aBPajCn2ZgI3~6n5y33?rgKf4mK9?SJd9_@~CaSn} zt`?)ozjw1uN#jj5A9WRMR%w#vvx;nYE>G>6>9ZROay@k=ZA{esGOky+URc~Rt0=|;}@N$)hS>5BQOYcfP zkcNFlj}>)$?Mto{Y|1WqW_yJTGeEfjv5R7kzTX#5#)p>n=gE@t4!7hFwr4?u? zaHG_)ijS>CqZ!bW0KN3L0{E8U{^HTs<`Pu&>|Guy%SZ{Xt_EuhV?~XX9@T@QusJ~d z{4y3*&P80C-|;BfCi=SaHxwj{uIN1KZ8}R7=Q-Uk0u!(9do~;Y?af%xu++ujXiKc} zh0`=8s_vMuw^OB%TGiE@l}o!>d_CgVh3I|^|8ixuvG)sfmDNrEVOxuHi^!ap*Ye-3 z&zeYixJdI>7#;OHd>m_#wc=0U|edw(v?$_ zKd>i7c8Fl9q@1mqHCse{xFQv1h!&TZI;*4n;@MezD;#J`jf<3rjB+EYt8OD6YS@#w zz4OPB2aKp1*O+Z(V$#aj&m&fE(;VpcK9M0Wrb2W+)qaUnx$$@?>P=ww1@YC58spFs z|LiBnUl_`Fh+g-|&2aHP=3s!4+JD^J@BRfri3iGtk(xQ>n06Wq*|- z&}!Tu-WvP`{*Z8&5OCCn)Yr{4tSZ^`)=-A6-Bth2IdjTfhh$fUB>7XXE5jaq`+}-Z z!kc8b*#XQB!^qCgu&irLAO57DMR$+oF|`XChRvDHWrg*)N`p}mUyTN-i2%>$=! zS9QW~_ClXB<;v^`yta-tZ-~55I;vYeF1`G%V#L$PMXk)HY1>$R4B7x5hkx*kz=@XE zt>YA@Nz_(1drWjMgBMc?S5i98dxW$HH9sKoh+i!tBMPSqsvqcrENtfZlu@V zJG>RlcCCwL`GU~<<3IQa{w=8!o2=>g>;e(~8$>6b6KnHN94!}DF8TGZ@zLXK`H4br z7%gdT{pnw#Ctq%rh8kg~?6$NSA4`puglUSX>6?%|lcs&?^)J%!gAOm0tG+;!6zE;V z?+@26T+&}c509$zcEJ!!9W+opzVWlqgzeUy)o1Rm9-V3<+=oNVO6fKS7v}W4e-5q%dET)3Y%0o?dX~IutkYFzTin z<|HoZ4b+b?ah$NE;NkEj_K%0?<0fFPKYK@k2v~({{0V@Mep&MaJO1-$>=dpMsf@PW1t_Qh)9WrKS{yy7O24R zNnpMLbSI{&f{}_oNHt1Xy^Aw0Oth?XSG69td4)bz_kDE|oq(x4sszBRyV)0|UB`m- zPoYfIOFn7TYb_a_i1NPnNP82JW^VAzN}jJzW6clA51JUNKLG^0>lYHn0}o@pTSB&0!&Ha=|vH$N?M;69!k)0Y#gg|JWc!Zs!wWsrmh_QI$NUk z($%?ovaXu-ywL3>zfAL)_=qR&9$qUZ&A7n`sUy`Sv2IuIqf^iV3`xU*vxUrFv%F6Z zlmydq;vS?E7a>Za?41p!KwUc%83AO8l{puNchc>~E`2)hUt08e{Xk4EeDyVP-Ww%Q z?-9D3T-L=m2^RsC-~jq%P=|B}O}mbBcHc7_%P+tbDu3KutyOJ#p{RINcfs%cH43`a-pxSu}to6|1th0$f2lp#7~ypv5LK4@l%IAE8|Ps9?j3=7X^;{Y%M)#(U=_M>(`5V zkS%dnP$8FgXuOpQ1D!YpokI)dBB-667YWfEj2z~AA*F2M1Dh2z7v3>FraZMpJ;r}es>-gc~c zYT@xRCYCo;g|&}|dLBD+T=yg27K3&IQ>myhlVwHCrd=^iOG|t6ns`738aoxQb>)6a z#2U|D{)_<0S7fmp9A^yDwaoaJbuW`!f{)}xif^d^T!{{*AYLK&@%nAiQyQobKk z=8;g+O@czy=}|;^o;@s z(m-Eh+qZp?F|9rR`b*s2vb4Rb+^vg7q@lhkg&09s-WM;}V6e+#V$UkKKUBrP!#Frm zrI&-t_t_}|Xl3~xn^ikBds*~UL`&b9m}#x!+WRd{^ZOwqFTE>Q8rm-0%2d-14^l03 z@rui25{CHq)f96^JaFEp=t?0~ zXeg&==8%1YL09jYrY8^C#|)0FT(QALS-#FcEoy2YscPhCclFI+YidRPHUKi?TKe0O z3FTM_NuzD`gV(i0VUvXC@!F`wTgAF^dLJ~e4DdhR+va#j4%NW+K6{u0RbQL9z56X0 z>RT96#(Arl7JEj&tTah9<@Tlr%f#W`;Vv)F}2y z9LQ2fSG*pA^s5VtM;XVJtGW#vQfAyrU?0+kN2q40h>14KJ_%gU@#AOd-&CWT>Y6R>=|Nv0iUK4z-SQ6-N1tI z%puB;G7?|eZE;2(X`hagdh0NdDl5h7f*ftyeaf#I_iBr3daw9+%hdw2CG6Kbn&%Gg zMc(vMVHCn`A^rvrXUqA?j8(&mlQA1r%9j+7OBp3vS7np*PWAJxwg#4-8q?in8!?jz z>&Pi^P~UbXX5*!DX`^aoqb6U#q~Y!1BkxaKcj<#)1kf%}lO~ zz*O?Xko(BXLd-r)p(3_D8ThC$y|b_HrhIhiyn%mfBKiE}*0l2c;GSdh8-X%J2 z-$={ZHu~z4kmL<^v4$^2?M7oC)KuR!rSUh%(Jp|n^{KlbX1}O72#f-5f$?MS0UPTy zvX6n;uOeZ9+-v)xdb`>6UCOGf+#YdGedltOxr`Yb;4*BA5XH zV7@Aun5tYd&Ei>>$x}~Dli=BU40qfODz*niY^CC#{!-@n&s>LvlQDFU{vRymm}uAU zUxC1=G7wG}hBua5g%T!=Oxn@bYjT8*z}MUWM%p4hAmpJ)_jAC^C*jTThuaAgFi^uX z+u^Z@{yrK@%SMvXftxCam=fMU?NA362j0l<*0FwBZ|){c@VPQav(NwG2oFE=gT*zI zDTux{%t<%gO8NRTPy1V}j0gXOLfAjEsP^}si?soj zS)sC>+-IUOj^VK>Kcp>J$C}Yw?RHo;takg?e)l_80xdf|5W)aVwn2h0gYfDIkR|z~a2U7s`>}G-?vGh>N9Aaa;precn?a8~B861ii-da3m z5mep@D+NNg_00XTmAI`v1rR!)F@{`Hc9)beY94*^QwLo*xwnz$a&@|idIi=sRA`Ok z2n!3VPsPud_}}EF9`xtIQOWCYks%NE4~#gKimxz z=#c;?=0OFP=W>8QW_fZM2>lS(z*S?;gTDGS9*bE!i?U)e&3~}0oPhrM0tO^o?5p_S zo}&G?OaJDxdTY=`fQlX(hHk+fEEobqL`lg|(@2xm&S%c3EJjtn`mUt3u9Q>qc|7i@jVe zQ9j>mvbvXOl|FmkAi`f+rcqe_Y-6=h9glJpN83N};(zI){@(Q$hRKO%f-QN)L;3E$ z)cB+zxu3Pl+)IXfKO$^J-@k# zpV4M=0;4MtQh}j}fYOqdIU%u+g>m=49divelUZwmW60#;XIcoaTdCs9^w+wiAz=WqVaAd=*N^XuW8;Zzuc9zTdW=JZ-DK`_kUhf@*Fe}x^f5= z$*hdUZAs2kFOJ@k{ z-{EVAkOO}b4*RvoLn~t{jZ61VQy*6#_a(-2x-ah*GvIS7E)c_a~2S z;ogoNQO`c77xPV?X|>*~hSFGQBJV&;d+jE5@l2ero`yrSUqCK< znr9i>S&v7~*&8xpYA$rkwk32U#D-n~V$-DQzZ$syjkf47o+H@Wz~vO-vK|nMm7u#Z zUeiyIg|C;EmSMfC4jo-#TV-9xPvghy7uv^gyKG}S`)p_q)w}`W;hTu{moqtOhT9<7 zC~U3MGY>?K_u1YiE={-aH%YfX4b-LWZyg6E8r`4NU!qN(YL|WiVAf|hE;q@4<_|uw`$59?%8l*`U@pN z=lwUD@)X3pSI**lhkb^NpaBZ=7c9vK(uy9`jlRUh@zHCca#CWGnsitSfaC|QpWq>x zRzE&cca~>(Tu1Yh0T@+P00~SyKt6uY?C^Yx{u+SAFGfE*a<`4RGD&(&8SSR;6zgn_ z6B7^=ch}8Ezo$bPpAV5U{6*9)pCxTRHE!1ud6*No<*xPwfZ@@HQAp$5;86ul!Qqe2 z@rzpmow%7^{b7t~?p|J-ZcRGzdcCi?*IBV{u9b&=J0cv9T5!#uU2g4IjKeZO3-*4LmDwB_y zyQj$qsTQ?*f>V85rH(39gcMLIo?`dw8@gzh3miINWv2mV)ySTa=9x+wNE4b;^vT`R+X^q zpLmGoU65#QssDPsgOCpCogW*D9Y?a8449fOmw1=D&cUc_8mJz=d#N4=5wnH`#AwcXnKKZh^w9Z=#CbmZ*4dtep~0}GauNFFPNnJrg?)V$6Lgb!S)U+hXAqZfL zjJ!Wj3aBDU=tNFt06WC=lCe_cje~eJI_bC8DC^#!9(9(7?_GP$KeT!lKhHUmnCT8W z1BI_+f3O^@w}qHjK1McbRJ`J2O3h>+?Mrl$SmR@G&~H*#)9GR)5nr3)Q;nUyhhL`h za=wFSpXCd1(|Ikum`l52(}(d}lFt@hb{$Y%`CJbk;mlfdsdBQ;CV_D7<#f3R@txOw zYMke|)Ba)e23XXqHHq;ul#6o%Y6y89FcB*PJ_3XJWb zP{s(ir}=2V$yzA%wJTd`v3EDZ{KkZEZ)cDdjW)q^VX&TOX?BjL<|o)jhGsu3tl?WFo{ zVQVyA)aj7rBdp>XEsPKJyHG#0h!*Bx(#her)e1g(zLz68f!bOFcXB)KerkFs*?zL7 zNn7;T!u^-UZt#|J8snLgxJoYh9PgM?oiThGxzkW>dZ@pevB`&#+ksw1S3!64U_Th4 zg5Fj{-fa+#-fR52%i;+%7rm$bUfWu`&7O*}lE#ZHv$ZGeJ$`2^{8Jlx?2|Os_3(pZvjM&~#L7iFkT*e$x=v!Q@6AEf@DP zB4K>o__3zn?HBLYTU$n7$zC(u*tdq4$G7WJr8KH3WUED?@?-HzebfuOpGybS5v`w) zc{S<7_Aka6jl+T_y&X|B@y;1xzHwlCv#j7gYUzKjN1ZiPuVXXwN56;!^5in zLaUDlQ=2H%S!y-vU{$$Q>3lb**VNEdAi+LSr^{jA;=Ntmg)ew`AhvV>EeN>AY=W+m z$Ds6|Qw+lA*M3UX543^DD+Zbm4Ja&wBR}Ghisv0_5T~5V1MzX30cO=-1qBa=5@$tz z&M^2t^7Wst>%aI;u?L|#DfZMIWL~#Ya%?q&U$5kmwyDBv=Ydo3q4<+|(Av!ALkwRa z1Y{_~?7?woT}#9&bb>4t-FFX{=KVy?I8!oTI@(QXxdO9`$?qlWuc;zJ)xSoXNeB|E z>po%`$=JBfHB35e*M1~9t!U#2ux}TChN>79AYDklfho7RhxBK^y zAj0Uz;r#R(6IvLe4hnGz>8Irx+eH^2*x=1&O2=@&__lQ2F0PGmFtI!{C94XITt zJVgxOH}2UUJ||-gSdLpU!DE!XzNvxCTwUGH0)|whh~m}4;Kq)@OB!59a_fT6?@(i5 zUD#oo9PI1+vo$)!{yP&D%R%$qHxAP=|c-TqiAz}bkH(u#B z?I5~o==7)fRWqtXs^F49X@too`!}yv3==H&N+fD6>!GYDN{m>#xGVQk5Q(V1um5Fx zSuLTj*U&|5K=7Oh_9jxR-88Y=#I!ToO&q*|ATgf@Ha)qPh2g}3m zH-9`N;u0_=Am8O8NICg2k9*&oxCM|XCveGro{Ir=R6m9Yg3>lM6yN{&5#2PhLCzHo zr}wUu>XR;ikC{mhW(-igliH4w4f`a3oIq-|x96j#8f^QBsVBwii( zyR=+H7%>msLRfi-b|KV11K(o&n>8TIJoh`V1o_eZf1yr#i;!E;wcse< zPkl})b}p5x8_28|JJ#qOD1lgkkhLp_!(2>pYV0U83Gyb%mj8ff0<}Z>@HzJUcLJV5 z%!+vuklIcl5tw^%p~mo>agS%P3fXL5OZ`Y6R%dW@Zrl4t(SllD8%XeT=H%E&GjA25*_Va+^~9Xs744 z!(u!O_48Z3$fk{jW%4EDGlBqJVLWfre$nv?A_>FyrhX}X{PV4QjquWBLVC}G;4z8B z!EVje8(-%x!;T7W-&?ueMS=Wz3L1ew--~NSOWs$hhAxhk^#%W6QAlAxo57eF{C@hv zzrz+!6%sgR;wQLy-daayx^g2~=$;I$z0y4yDH7%N$7uA^ZaL~9#=pFj znnpWBztWBuwG)BwIdpDhjh;ENya%-pN$StDb+$j|Jd|92Iz*!#!%eUu9H2VR3hRBJ zK*b(BHAc9qasX3##p}eodcK(Va@vRLhtQZeXzskI3%WP;`UkWej>M}7+Ps%bxt+50 zog}*$G_ov|b+1_?rec(^wZ1OpH|DAHXn*{+lZ=ygR3d4*4$hCVaH80Maa)@pwlTRF z19^ZQBQonD2nJ1@gV@JY`Vi)V3#X^|8+?Pd80}@D>_uvSjA3o|Z za5Z)-w&fyIa(?ssJ13#{IMz_`X!$5KdEVOg`ek&S>$efE9%hxZOyJ%)`UUr3M~vk#IR zEd~#7fZAx+@IoP(W4H#+W6yT-iSWVc9>fZCpM5lxmIaxxqi9nOQ77f>+*E|($2YX{ zCtF9a2xMGusb7;+)5{|i6LjSUCT{n2t^L7=aD_eAF7B4!Jnm@0E55#yz(;U|_Ifzn z8`IHOEm{!|*a*w@W>=v3n97Eg3cmx)^AcaOqI~$vv#H;|zUNG#W|DVCo(akvn2ogZ z{^D@%1JKrdl4hFyJ?h<2{J9CWy>*%K&1cENM$t`4fIUPGxQkJF z`N|R5CHg0eJM7IKx7F3VGELMmx7HA~gq;{$BpWqd zqo}Z?eAuJs>sMus?(*`E^$_KIP?c}Rvc_GDde^!@VE;1@|D%*2OwlmmYp0_Wb8f02 zGoBneq~Wh1SYjU-&x(5vC+R^zPGW15sJ^hkf-a;MBGZP8rUMCuGBOSuRu<#y_-{gW zCW-g0mPMwYD{1ZYdBQzC7$N?0u+~GirZu#rJ~S(-fM$2T=EJAf`*>W&L9(8e^NQxm z=O;W<%JV}^4lmhqa(ZyqoiJ^Q^mnHR5RxQfg%Cch&?kMC42GbNgP}PP^w;5hDQptT zZCL;RvG?ZjQ1|Qq_*6*-a{milmH)Ny@$?lx56_WG5tLn~;!Y5|VZ7 zBSO{*S;oGbv5a9BzgOpT?(?bc&N=tzd+z%_=lmZ1v=t|=hcyU z7jb$gRDARbm!sz8%L}rMR6s``(lOhTJGWF0s{9;wEWeX+<5TZ@B_NUu&6C1qOEE-JpA5>N(_T6`$<)3)r5pyahdi-&$y+qn!@1AZp<=U(|oCK~vxsU6iPrn!+ z@p#-zW`kfEMpaNOA;}$1;%o5s84$!O>U4eXYL6CCjEp+aV(!ITE zZw704{q^-jOUzTecL2t|ZL|rMjn2{HRK#$+oYU--YA~>L5wzOfhbW$_E8nhOa07y! z#1j#oQ=rL!EQwIrBfCLhZ3X+uiDSay(rYzT-l&YKjFh7NviWl(Wxxh~h-?iu=z}IV z7E>1&LU3^*Ot3Wu!s5Js;N<+Wto&E~Ew0C-$;*KHcCBgti^L_lkB%}#6Qt;q{a^ZR zg{f)lGc71oG-Cn=t0e-%Vw%8I6=3Y>+NF3U{)avzj?qdc8z6h_&o9SO z#5owE@wolzE9s16*bR<{=sebdTpYJc-_`bo?vlgxQxY%Z_7|RMUJgB~e}N_C?zNDO zyYZk6GhIQ5f(C8iu~n;(C1yQ%QlcFRK@YA+$RE~;xTijJZ%Q6Sf##%EW(At2smXkk zKA%GbirU)!`Q?3nE8JBL>#BGeGfBkdhN^8n7p$(EAFP%2n-25i%cl$!F>;Ng6C_F`@~L^of;&wAk|3^^E0gs0=h0(WcStEeDuNCjZ|Gc)9rbU zBZhwgTPW(yeMRe@f62kzj0#XCVG4@m{-3+^{az5)-`*!n9fb1aNqgopP`!i;4Xi?_ zi}|Y%BuHp3$AfVVyJfGoob<5{=+N%FEe-HGIm~U#vHwK}iv!PqIg^QHIB`wp(clje zGkNIh6`>)jFEtEM9utB4iTp0LoA@!?gz->Mb^bEy z3}*y@jz31X5Y2J_7V7k$m9qKyIlqk>&$a9eHhmCle%-f(Fh2YP{TI+Av6V1Jpzo+; zYW1B1oF~0xpm^wmy7PmR5VZE?ACU9WtAzgsw2+I8o9-h8GIxzmjbkfsam1ukZ=!8J z_1_9K5aoGvPqAMTl9X<{z(rA$X%;>cqP96>i7V3gJG3vi%7)u%GD_wJAaF|orJpU%{xCQ$jskDMQJ9+ zULMSWy*Z{|d*fh5iHOVl1EnU2kD*iCWM3u#pG1w=FJV4(6z|s6diVKGlg$QOVPzKy zZ$WLn;9#_J`=a`kJ2@A*om!t_6&=e2eSuy}Piu>8d{kF?bF}q+#Aa=y7|+RTS6^~> zwOHEasW*_{sxMA$PFg>U??s3a8c@e!FEkHvMLw2{^{y34;LHPhG5=8d{%)pC88nn#HnLIQL11%ivlaFUG#0CD?rKlg{Ez^C~G*sPFaY50Q>AaOy>2-Yq-O!gx!opPrv@#!Na#>>e@yR@=3c{Q;UYufHKC-`+vZBC8qml4 zEa5Xn90@YXrWwYan&HAtbFqv;rp$tG5X=m*&E@jD$XmAYeGIGRSv}H7LUOICi*Wzo z43w0X9TTXY>!M5XA`~CHSkdyfj{?BM1uXEC`x68uNd0O7hhog%0s1C=bj@LmgtVRaf{H7 zZN8zykj7)jT2>+HMQ2uciv$?4xQSuC75IE5U}lz|n3{UK+%kjDvTk<*%~C>rZQd@| z1&127Er)3qYxnG_>)C4APMrj~7w?g@>o1K6hY2%n`N@8_0ukD zJQNDWQk$K`t#>Z2O|%@)E-ix(H7wD&pyhhcy;%^{B`SeE4GhaArTw?rsyR)^i@=vY zNok%z;U<$b+m9I6jX1IO=25={d8|~+Wc+}tLyCfC+Fp6>gsgfv_(hM#@{5YY(=q1> zwSC+`a$Iy^_v6BhpyhJ;w1_iYR%%K8Mek5ej>53da##bZ$Y5aTT9;BWvt4^$_WFJ# zJf4tcclMB}*u05v-z&UORd}k%XZ;fW3r48HMOHyJaf!3*C06d$nvfR;?B^r^1Sa_=D5xFXL4bnYN*TpYCNq<;j!d8pQj!948wwjJH zXCFMBrS-hj*6i2xEkaVArQ7K@a8!6^R?aP+u=~3AL;4IDf+Tx7XKQuy?y25QLZ=8b z_vw@5{-mwX1CWmAwtuj>9I9y<#T#scz5>l@nnpmYsO9Zhr_Vcj;&DWTi++!~t5uZ5 z@nMHYYUl%)9F73zN#z@j2knyCS|KOKJ8)^*J`wef{TB{f`kPxUi)31JI~E43?@t>8 zUX#u{9ksoCoCiFm@~nqibC+iY-ugue69%-Wm&l8T+Q$u?o1$yiZu3o%S>d5+Agx;I zJBbatn)g(XghjF{jo_j%f$_>XvbkU0PUZS@JkMTl8stfhkayq`OBn8IOgoT`T51_} zTp<{enksXszSS$J`0QO8m<`2@E3w2g+Igr{W;HISr!Qb8cb04S`;Z+Oca*KAL(ZO= zVq9m0lyX#(mM%OTJHy$u-44@hKqKrP*Ebeu$;{2%*Vwh&Yj>iW9EGdMFh17w))xT& zoBYE+LNESbt_8Rf-#$DS^K93_8<%EgPQH2-6t2+^kryV+3(z#^22q3BHLz_iJpwUW zuBe8TLxZ-FxcA%wf%8IJKh)q5xc=t|z9=HD!nFSa@1R-H;6+N`p-Q#u?`Y>pca+Lb zpHe<0&!34}PiVg>XQC{Aa4$%?eXfVz!_)(C zP;t({$^TFwbnXB3d;Ld&)k4huV&61ydWQbr22Nuvls@u2H*JzW*=b#4OMT}DQlGfS zl4u+Pv=#jpsn-3EMXLYL59t5;K!4Bs3!vOUJ1G-K8(oGQUGoLJz`?FQ#ymZJM6RBx z7FohQ5_(D$c=P_{U$O~99_1-X=vqAjvyg4EYfhQd{7N2vsoHJ$D`|wI|0|8~x7_HD z)}Nn<>epP%pNQ&zHH!EXt^VIyn4gI1PxSW(_~b94<-hXx&qh=~{-KEKVAaaCmA;30 zw!1nb58!g+dwAwJrL*6x{lwD0vk^3p$1?esX(vIgK_}6kzOfYKBNQO?)K>J65P*S< zbXOrKxfqp%d8{SKKzK2pPtPR8(c#29*@f9vOPysPlZ{aT#EZYBP!qpBUN?V^$!1DA z#N10i;5`uHV?Sc8vc6B4c*ej;@{$sL5F1{mDOG`e>Q0#NM0DmYM#d-Ka!9e-mRz0L zX3v>@cAaq8yTf&5BvlqKWzpqJj5O2+1hWaZdl9ovLB8dt{aZ_^Q(IP?b;c#RN3k-j!>jnGPS-Es4}1H*mEw>m6atuBuG&*HeLK; znRhKVu<@92V~WyU^fUVO0P9u{ZLaBYY)=zHy&aX#T+;&7mIg6@`ov~252$I&6@y&~ ztt-AzZzz3{HOQ)OO)1n`EqF10y2lOeNq@S4)3JB>h6&NCJfJd-u85}0=GrWm=%qYr zAQnO2n;@(Zk(y|cT&;{@zOb7Zp)Hk|jR`LCE2{719V^u7=T(Xo`vN-$5 zeqV;vDrEA~kd%uVT2>l9V-MW@{y66D*F6-)n>KDD0D>uo8!{e-x8Cc_kTq?#yz@qY z2O9AhK6WOLw#WKyOld>1lxef|duL2%6#hwaX+xssrv=Uo^&Im$t7=y+H!;l#=(|r? zgCZ&`S(AIO(o&aJ{Ppj(y9+$_T{@<#CupaZ%y@$;{m z$lO(LJjPccaqEaF!J!w98ax7Yf>x)NWP0kB^W#dkS@laVU+thqT#lK2A3YvLgjH>z z6)L5W(%C`t14Ty9E>o(G$<=swnW_0zNQV5Y7egZ@1~4xu=YH4$Z+W_CVk^!Z=TF$; z@5JM&(xxwewZ9GiNkM(8XwWbmXVH9%XOU}?SA5Dby~mcO^`stiC9(Rj4SggLXY6GE zNwZ@@nQ(lsmQ)?Q9tvc<%opxbg%*ZgAA%cLET$A#z z`x9SPzk7)~PsLD#NrSV@rq=B7xlj@|9;r>+Vr7q;+O>OOS#;@5z_k|&2bnkM+B8T;7jUeyTWhtx=Racj?#QS`|-dg0Yh)ux#;+qt73MD^~-E|Bbs`&8*L z-V$+FDos&n1kt^d^01hU@!$AyCf~5=?Tlm17L-ea=;!mTXYVxLLFFkgPWIN_M7@YG zP}u67IvMr4+;mNhV=Cw^5NIBA$SA&q#7FFD3Msx8eFHzTp}R(^jj%8Zn#~F2lURM$ zM^*`5yMNgUuSt!f9AiAqa5_7sWTLcI(YHGm3loQR;7s@2ziyOnpeB%esM9Fou+PP$ z=gEND`r=11_wRL1RO)Jn6K?A`cOf(X&JzPv+~z3mowc{as&_oOXF3KskUKf2&193H zsU0~cQYOC1Xq|AWQB8rc&7Hu?N(%?ZjPN5j8-Y)7Jr1_X%NN!29^K57pr#UugnOON zXoBv14#kIBol1A4rl(WqW}WWdk?mZdg0(00&4aKV9$M$}X*TTxmvsYA7W7(E8uN%=)jn$2AIw z%nr^0MjK|-IOZEYfimhdz&j0y&!#s|lU5;3$?c;eP z#$Ual;e4TU;^+Z%xQeU_6IKfhlh#`O%Od{6zm;TuvkQVqXQRyJW0`eWXGp=@C!bd# z^=hKa0mO!5jc<9AxhRQ*-r(1Z@`ukDMJpKx=v~UV@^E8+fF{$xg0cJJ**zhNB~Q9; zy~_`A9^dy6WJVh9F}d1U-i}n9ny;>-rL98NArf62p4B`#d|8+&lLGj0o}I+eT>dmb zJTL@Iz3I{SenSiEA~KJ+VS< z_PoqF!=y6DvW0c`5g3<1@JKi&#%Zl+FT#BG^i7w0hl?58H9>-)k|XOlU6Ch3KYzjK z0~%u8ZtY3(D4l$krhc{eem=0tfp67u1uDqTNYgYOxbT z8Ns~b%qP{xvc~Ue3ZQtl90{_m*-2`keD+i7x|I*#1(AO*xcmdp&&>v{Lb!`XNFv0> zG_rcl7@cQpmWOzjeR-tUOi06lf~|54MIXe%=xrdnU_sEs zetqTy^yR{zb*B;38`qzL%Rz)7jS{G$YTib?p?>0-xinL;pmV#UXRbU{o)Qs0I>I9- zCy=^s;nJ_betHY=zq~S0^<5s*H5dn0Kc#LxB}x%k0JYm?R7%PK{u~5 zL4}(Hhi_Y@aFOrf(cSodG;qpuNV5Yh200Un9el-|1}~aj9qriXrBfZ}VuRqo94b3; zw?dbfKp#{Hu+;aQYgX*lP&d)vpZ?W}KjJiHrCSQKJN(4^}-KGhlf2h~Pib zu~MjUA^gg4ja0nFy76dHAbKL$Ks$nN!ug>|YsHyolfHZXoTJt4kG%_PP2EIurte@R zAss|2XMMA+-oH{e7aNy-o3`2b@{xc($-2?I*RGoqq9HWNZ-1&6HG#}m*|(9tCKGv< ztp6-GZUaZ|HFl>R7jkYR!pJu3V25<%)P6SvW>XqeZM~A3A-@% zXWfY%N06={I=%JVk1Pb9l_4uHG?xobZuFXs^vcri+PXnodd&(TqkfmgLpi!&nQXo^ zX{us1FaCkEi_D-$Lhm*G&$}~jSkSvIc}2QvZfnlydfyN0di|d`wTtWfXRAZmkq%Uc zB>E-NrO!u$GnYp`8=ct~!w_^8>$@W=2UW5SeM@lDOA}3 zC4;2C3B7aZ?b&ZN2ImZ}?&Euwe3H+}wno7;nuPe(I1Pb;TR z8kkq=FAB$~2JmF5^w~Yyl9O|IN>pfQSj!FG{$0CTV`XyFAlmCo^%WoL z8Wm#F0o89!^3u4F{NhgK+kyR&#~LJe&b@9Duvj<4`^PTJzilJHX5h?2yUdCBY1!u! zrTeIMQSU92K4-pIh1lJ{j+S_I_PEcz+VaV;6VQ{*|D)RW*ZvSl&{u`o3f&4byTGam ziq#*Kx?i|4oVka#nO$)?;NhuvQZF~KUW*(%OUlUS& z*~iIE8CE(?!e?e$V}8Rx2Z8LVE>uAE&z*{ei&;Cr4l z?9-U!wD;oNQ?Y%PH$T1bG_;D{927s`sqi1MIseEC4j(*l&QIuFsN$`QmCCm(_a%R) z;so4DfZDGYWyGoMb{V}!bsx}ou4zZY?uo^{_o|citKVK}W2z7?^|2q$vkKubV?2S4 z0znPx8bF>BzQ{UW!nGXstMfX)I`e zH>@>9zRK~GJ%m>l?XdVgqwRI%r5`jBU;>8o_bmsWb96v|-9}(?8DtUu(hKODmIHsk zL(ab{H2(Ad|9i%kUI}a?5B)x~6R5A@O+bm8o%O=puf?<=Ov}jyYvv|!hlqVLxL5Sj zDx~=&PTu+lXFXvluYO%3xQ0wLo`XugT8GzqNR&gYdr}Qbih2)^qRVP+HvEvRN^JOo1uMfo@)c>J=kW_ zC%<;DG{Ka`kqa@G@FocXNx4y5 zgJ#<7{G$*GyqtMJW;tJNcdU|CdBv$l$!Pu0O0V1BqP@om35>fs2#~{kjhnuxa@axw z==e7PB)#$)w~#JsWR zN3P5I6w3i=1uaj;#VdD7hzEVM1ti|)dDrYy;Nic$e%Y&+RJ`tW-T^j?D@4+Y8Rr@Q4RIv zBJ*VGIocshj+RDfExemk$K;L>(I0lx<4~c2+A`Y>W^I?gJWUw!2wRw%e4S!J4G`~C z)X;i+n|U&~pYdctpB!^gyI*wb)uB)F+vk$=r~00s3K}Qzqu+?Wd_&z%j6vG9iZ#MM zaV>~(azqNkO-M-~L|=xM8E*+b!7K9`&yeCG=$x2xJlEgHmeSLbiKj!Z z_>l0v5i^#g&_uSL#QUG>j5yA!KFAI7;DmqZ%Y~PF$l_63Fxq*!!TUY>Bt1Fym1d&!mJZ3_P=!ntJ!jk+rt}1C3sN&WmT*b> zQ2wxRSos2Wd?&?{ksv+m$K(&09tk$8AXTkv%Ek^A2s|2gky+#}>kDBDkpv5Fad#t& zIEC)a$w7m+NBU}F4>8cyhtCI$m3u>6&pEUBrAefQpn_L6ERQbwEhTqkrt ziPGsc%&bBFJr7O%FCJUsiV^o+&;VUJuAW|A)G-7tr9@@D zl=jQ*yKta02bc|9m#RbL>nnI+C{BmKU+J8PR@z{HKYsV4aOrvnfM0RlXzh>kd4ApS zTs|+m9-69qb>E9gpl)~=&lLv1lDBcg8Nn_SE|78P!83O&8H@bEzazrAns^Nk*z z*{*(FLbq9M-LKXre8-}@5mf74Y5ZmF{p==Bw_*$u20}UYT@24fTxr|7FBB_>#cOvp zQOaM7JD3oQnhvU54DMuJj@jqDLzQ-m+2Np(((uAE$JKuA;}0Hg7)`n?`CfoM^1>?( zv~(klap4*n6P$}b@$^J2VrlPrrNR8C7stDPoR<=$2YG+j=EsSKolWc zG0j?5DD&ub-kiC6Yp>ZQ2-Y6QMs zng8YEEJb{;G6`2HzHvfDmK;3LX=!lNOoM;!gWF+%Kkh6txuSkaO|Clsrjf#(*vEUa zdhuZ>kOhJ+U^#Z=*0di58kb(4|_6%r;BDT#UEwiLfS#0vv&gprao2NT>MsXL+ zwVV1h9vE_*N8?q`%X_g^OREr}6wVDYWQct^`Q=;KDJbfd7j&iOw+#+#%PT%D zL44`sC+2S{lglo%J_>j~CuKZ{z?eOqwbz@xl}%5o`K&pA#5xV?rJ&x5YnppA2DS&+ z6#PF*ukxd-#JObeBi9Vr^JV6DYy0Nb_nba~sNWHD*4Q?N)P2vk=5DOHoU$m{nhBK$ zIzOkw#p!~wpz{xW690ql>Zlp2E|Yzo#{h!Ug2@kKOUmcX94<+TVdOUDG=-V=5T<}VTG*qV8D3i9_r~Gu4Lig26RD@gEo;wiSSr> zfiipoWW36gW+a0Q(lta1KWfHz4H#;)3~cBcyK|ULbjY&pv2ZfCS*VtVjG0?$>esDB;ENc!lhgo4j4xd^=@MJK%v?QA zovBS)P%-2Sf3IR?kcD?pyQzk?l-eBVnbQ0Q*O19HFL95(`sy3O@|>EMR|1(dPP8TPuSbVa3s86(9Xli5eEF+uR^yoY zMQ#S=AhQKH?M=0eF%_)tGU78LF%|v4*Zw*vQ#y=fkdMKH(LQ<@r_ABr;nXhvGGO3Z z`b%_E8)E5G673uZ_`yO;&sR#chtUqGfP}BEeKjsmpiGqdtm@A(`#EO+V}n2K?C0G4 zxt{%XbNRUk{MsOk~6s40qbj zyQ5IPcli#c>r7-6Hwd6XDBjrx{p>w2yHv}>G!_^D3hVr}j<=FI*sBxFp(3Hl+f)(#%=k1paaKxyg1`@71^p#QoAlwe;fF2eeAifCYvtJp(tZc-t{q|)iQjmFEs09|I z0uMlKbbHgose>rO@PhFETejEl_!?0C$^q+f$kWB1S>tZc*jJ1#vtlfRTthlw142lB zj37$iikd6Jvke0OzU2|Q@O$#>2`JFd*7=sr@n^qA0@ly^qd+=Pg51Y&YC$gy+am4} z>Y;C=DnfT7Z5gpjx}?^!i`5QUR@mzwgoeQ#)Lu~+_R;lJ_{h3o{au=XmCQAOUFMYuU7^1NnV?{Ot`&F|_=eycSSvCd zbxPm1NLO+-RJH6?c)Vx&p0LA$3?Q#;&0%Dr$2dR&slSdFLLX1Wso}oaA0GTdX_{!Zy= zHrUq#b^;nF{m;$H16Ugi5T<{`U5!{-ZU$%>`zuBcwt<5x!aY?J%zq*MsijNTv(2$T|Uy(TYb6Q&n8=?ysNtJ(`Bw;eeJW0{F`Sy_P(hWQw$wNlsx_`2jzdd2#(-*z-kxjGRZ7cz%aw#BdRmeHqaf? zV9xHKE0VQ+rIX<$?M~^FXSrgmo|)etJfYFQ<%6U+`+x8Ll~n-mJxG<_-@@Fgk% zhRXT{LyZ$%F8OYzx7bTVSzO#twp|wMjY}~wJkL3^_N>X}>l-H|Ii%OLf30{4 zpF_~l==c3}@XN8EU<={A%v@2D2qhaV{T`?m1UJkA&5JxkGK(=$3C#RlEtXU7!Krmc zY%pk;FKqtMbB-F`e?FUk%LD#R!-#u z0q7K&bnX&KwyMZQ%-JyR&In^yuXCJ|zwLCAZh=eVSa$$~7X39ujN?G}=itbbq(BDa z-m*Snh6{BAERgD}kXucG=-dn_M-ug_x%FM7LRVT5?LwX5H1`cceK&5_yv}AYW$*;F zLF{*#{J&{WL8PEb8urTyhBz9xJ+K7lJV(UW%PjUS$cAZuiW+R1S|&FR;xRjHj%4OO zlXg!(Mp+7LWIDY$S$7;OS0QMzjuP_qD3qRK6v2j?OGVJ1zHANZ2m|8>xv1MP3Q+DkvMx){Dgo-1Y@ZmlOQdF8vj7A(jfG^;Zz z6#~1(`waB>&Ag$=m2@(KxhajNOU)mM3PQq@EDfy3S2}W1jk~2LB!qU`*%_aGuUorc z|K{DSb^pc<1JwvDRTeh{nx=cmAQ%cggwHbb+*7us{OZ2-II})hx)ixhLN&{xf__a{ z(mx4mQTp!Pc?A+mgA;SA+C%XhR}I>jLf^HM308y$=qY`GN}scvoHM{BK&c1sP1%ww zDM8d6umy7?C9-o0TXUy(DDp%P%qZU7nfYPv5!bSiO<)6Z)4y$*Q~^7?m&_`pc91N~ zESBzL@X4T-2*a}Uol%tY)c3UG)WDjqsA^HsbNVv%hH{y~c`es=klqWa^vB7Wbl~*9 z;exH32P~2#uyIDF0;@2*06eFMxTgWk9Go4_TTp?zNZK$@oUMGfx1i%d+mRVAk!RPn zk85n6@t@JAm^V%I7}*MY8ke*-V{ZTsgZb8_AS_%VNmaPv zJ(+A&)^fppr$euhnBFffm#q0%)#5w40! zDu$*`Wvz&ZQW4hn&aN*e?igtuJ-Vak^ab`kdvLlDEuOHb!avbZ03IS(1b{`pAE2IN zmN+9A`=Y^9{MtSdS5Z|M@cg!rWGVh1RfMRk5UuR|W@)N;Qe=Ngh~+wMTVag{#@Zh$ zRUWUQebcMMn1cq$bnkQMz#g)-4MAZik9DtT9aEmFt4|&+M?hVKDr>{7O80zpR#s`g zdEKwI$KXAu$y3tvoXuZ`B5>tT9EyJ$j*a7h1otB&48s8|oT^-?SD&gVl;b3gN<8nO z70)&4m%nkG>Gx5cusLTKC+PJ6b6R(uQ z$4WuUcc|u2});;9obqK+9u(-5le)`iMW6-S-`2@NI3z z&(Hq1jR)c>nxuzamMMbKc2B_;E;OLx;UiEwS32{8T@$lLk%O_*5riMgs9<#Y5!lf5 z0*a=Hx#}VaVn`p_4N%k#pWaU*XHMxU+V36K=CdH5)#iFBOr`SspL z?WZ)Jxq2en_t^^6mu|#}^P|XMW>RnwvrLq+@7%JQ<)p#UOk#ua(g}jC@as0G@%Y|> z-dl%+FV$!kO2$9f?tL|K$r95V7H&00_$b3Lujp!z@}n!d9>AoHw`5S3whLhS{qAgp zeGuH(PewG0OeN5?0D71!?)~6ig8(K-+ON$@&$`TEN$ta7R|)wE`A>Mu{xtj19Yq{# zsPol`ElO~cLG29)70j#grc!zCM`fhi$>uQp<`gf{rVq!qW7(Yzp`z7Dac#*2+gIW~ z%+U8tK1};C*SzdhGwr;KHpP#G?aE}cWbSWmM(5_XbXqiNA3rij${uq|TQ-c{xzK=A zHn{X4_GU&iy)(G{N@aT_Z*%UGF`y&zVfc@w115e0()}x+b#UUigq7Z%&I?QXcgrmM z&%kCl8i$`A>Up4G47nZ7e!+HsKj5T#BA@LSVM+zBDmL)zc z>F>Ea(rbN6px9`O>%MH=FhnbST8*~9%Oyv%piS(?iMbitQ`QA+88i^ax`^;~tF)}> z&{GrM)pd5TH~X=TYx^N-OQZmmH~@VpOFH_vTIU6ypUrJ;8QM5amf7J3_ZK@dwK#oZ zZ`tNeO$JQUfMQ$k$bCh)4K9zPEd@*_s)ouj5aK^DdHShw1SK4WC9=g}ONOAR04QB=Y}s86ww zjaeJ^^qzGfa9EkFWXdvId9^EJu7-C^@PsrG5BI1KA|7CJ;nVJ^^wZ(9XWu?K>sdD} z8Rt=bE;7hU@9at-0M$vy}VawL31`Arjmiyy~(0CE@g(d&2-huhF8*ZbSH~OsL zQFG7iL|iw`e9)eMc~$>&Z{wrNo$`($Yh)ts$%!1Vz5ezI(d%?kutz3M4%HYv8;m?> zeIWTds`9|+Y##pTahMsp6I6f?m}P|ZstO;xcKz+;yE2T;^j%bumq-QDVkw5=5`8v% z-j;==Y?ZXr;Ie%>A4#kw#HYnGpBslwkP zF2it}QQV@a?f>%KFZb;HxCYT=KkZD@wL;`_2XJeC{O|lKTSqEs-jG8`cWF;wyLa1HZ*>rHpo)M=#F`T8ddoW4HKZ_XH5e!Y{Zxk677 zrJ#$`$S4F!yVr%=i}~t_I4919f~W_bVdubvEooio$M%9Sf@3NJxsF&x9Un|rj^9V< zuZd(ypTGL)EUcq{A-vydCi}Yis0o6PSq6P0g)}8gB6Z1(C$lVLJ2?*Uz=zvrh2*#Q zGsgDGNeTwtjt!=v6CSPge07Xf6(JTsf|wiNAkagrinRt=BI=JdApoRB>6@n&1p*zR zI_SfHru8GJMpH$c;<^s1acUn6ZZoi>pcuRY$(O$6tj{S&3wEcZOuj3 z{Sr8b#}PSbn=OIiUyNjAd=n4<+nj+P?B2inF5l=&y(BzynPtMnaFfrN&Lous=-R}T z479X662@GFVuo&mU>AK1^E?jfgBv=6n~`y|b&dMlA!?S0rw8^?F+-ujO}Nl655IJQ zeDWJ3{=tNJhudLcX4Dm&I9ynpgrlA6>nPF`t!upFra!UO$39|;mXyLC5XqBPMOqR4 zD1+U??nN+gVc$C(@!Z~F%-SnlexD=%D;dnUzjArQQ-FW>sFA;C3%5)p`7wF?iEGK>2;;ll^ zsPvwS^zS9(_oMguQat>tw0S#i9;Bl|@+N!@5l7>h#w`TQ;nt)=us0cT=%N17-2h%} zP6Tj`&6Ppt?>mTk!ZPZ<1FQcPuj%Li{(c_l|DVSa_89aCJ|seq$5bJ*z%KeSU6X2u zv%uNHKIu{-sdx}()DNh8Dk-jKdZz=a3P!Yfo7i=8nhM6AZqj@{TkKsCX6W4GSD!bajr4VcH0!Ip^`L_dFCdm+cNjY6#_ zYJQfZ_a>}$s32b~wcX7Loj{ZIMcz%jGfaK&jx*CviI|&Ov3=Y3aN*J;)pDR%y3)Fo zltF@pC|w~9R#8+WNM;EKo~2vP79L7c4&5A-^6(75sC37TR=a4n1mH@@@RT8fZ|Gcrkk4^-GxY+!M#8mJ_dl@R1OU}E_gJgz6{1^ zC)DaZpvUK-e_tT8b1V^QVgeRhcfU`oklX#x*4L*Xb$2*UA-Mc28Xp&!g^peu++TIw zs!-0abHM`|eWO{8tMQ-vQ2)%w`jf7&7oApV)d_rGq`J?Im+CzTG6(Mysf6>zQCh9| zE`EWG4Q_;?+e7IO=#we&D4uKiuR%o&NK&0Y@GNc;e7jY~wu(iYqF?q#il z+R=RCHS@zB)fYbOv|z@TZbp4BWg|?BNq62T~{H&e+GRS*o1gFu3NF9 zF!GhSzq4}qYyO*p=pCZd2oAb4^&S?#yLFL6;;9=4IlZ8j=cT(CSDfjqs}mBNG7)$3 zPZ>zp|9Hg`S$Cko*04rltDn!}Ci?3Vi*;!)i&)M$HmkxSk%WQSE_))%*HW@H?d^3r zesnO(3hBgnH3ZA zC!>>!>B?)zP6>_Lfu_8s^izyfCHF!3m-)B|rwf=t5iAjL+)5#6<#De^dA**U`Tp~2 z6lKGjJ|3j`K>D-j`Ae=k&$2P+$;QgkE!WPrYTi?HmVRBnzbcUb)DisJlGZZBS|#U! z@izTWuCJ(g<5h@{YE!xrrV=GkL_V4#_{@^|Mk^LRp+40^+vO4gk0$7p-cR=5==gXV zq0ekUWZw-mzh(Q18qx$>J`^mkS($S{q{nY38AlS?ue@#Dz-=KQVQ_}k=&-=mDx@S; zgNS3X)U&j{@%nR(w>yUc<(8VNPrq(z=GNQ{0H6K3I{bHY#j(4n1oAAguMEBQc)_4` z|Iu4|$DeF_M7U?Cc;*>VmDc#_%8a9@U7WneT(waQ@pZfC<;!Vm10pm`J=dHxc5Gxc_TvI}qH`Dz=j zPJ1JcdYMMWb#?0D+-ddKLnRr{L9YP>6!o!drOzcm)g-Yq`?$ij&F8n72Ty4!y+1oK zWM5dYs#k+Lzo1R+)bSMb;!`o$! zpRcyw1ao#*YVr~~KmT6t;#p>_3J+bHbgx2u{dn(M(tfW`mIhWP@Qm;R+Fadd?y#mK zcv2aJgG09A3fFrMeBdVz}W>lzHmL2g2HRii;7^*ik8J1Mwt6tw=c zuEDa|p<;1Bb}}!<^N;v z%LAcm`~Ihpq8epOVk#tC$`WOnRFX<6TahM7LQ=^RV@@e#giu5=MWV#mWgW7Uke#y3 z*w-1$7-r`9T|LYFbl=_Y``*v*_dM_OKEKyr&KzgvT<1F1^<6*T&ljqHkD31nBqFLK z&yBTMzJ$OkGEV>Uv&cC-s;YiVY+*1{?Ib8CK1=$Jq2@tn+@4yP3xF9IY8<@H2U=hi z4Wh;b&>{cXVD(ssKr7Ih1+P!&)}4@q<}ExO{o??C95};Q5EMdBGoL~4Pr*mr2L#8V zAIJBrfz#H?fpX}9`Q1y1v#(f>Xf<-c>iJ=SzaBYx69}3RYA3DWv_lIblqY7uk^I|) z>iue>%XR}K0y^Sr>GI?*Pww){T^0-9MYI64EEZ79G8bsyWrenEE&O7+EsF(ULoSPj zWwG$@;zStv5-yTlJGag10*6M}S1_*?<1GAV*GN_)Ix*gVe3iqcw$jDq#!U|@5()^4 zBW<%ps`s`6~NR4`=QpT#!;`lAe0w=A?>v;6r zl(#0Q55DAyyUVR}T-S?k@x&_iaerxv-VBcD>i*%8$+46fHxLvklz8!biQnIzTkg-k z+@Jm52Q&0v#JPUL82vB4ez`yUKeTk>k6~2*dE^)WlkWfD-JiYrADAtcee=r8F24Qz zsN3`%)7FrJFGXv*w%DHwTBTnshN#1WLMh}H_9OIgoHWd9XpYCCq#o z*J<1ZFRi_>>(!L|<=O%?X>Uy(&pwQ>UB<}%qUdcwo(>OWw(p+fPLz0jM2C~_=+-tg z#yomXZ|X)==$U{#E6i=Uj+BE6Dq5>R^ubII5;}ldct>Gzi z(wUki_!O%ts~2uR-1jLxZ&TjMpzWHqi(MJ$caSeeNOJ}4erYY)$*;4(JU*dD%0%Nz zj;lzAir(N6x3!+EVwLqRgUTkM#MRIs6Cvm^>QkmZ?HG_>h$v^cj|`A2+W%uG!A~1 ze2lgkt@gy+)k;_34BwBXhW}HK`H<#Asy*w^j=91o8jkdstjgQJlVe7hQaP>~%c#EY zQbm`WnI?+enZP{4Y=&&=Y>U;dN7+2eNVKl;c3AupwK_#&&xu!0=&D2F(hQ5~VK#))&}4L_ zF{P31$v94#_sPmUlG}1I_(r`vmq!b+49)fRh=|McONPu#q(D)p02JTE>S@*72IN8X z$3p%C>{r@b+mEjMoUgHSPJ$(yTW7ixE^4X}-}KlswgSjxZzJ5$g zhw#%rxhC^UeRJ@LpJI8PSBac^ z|M6Uq;g0y~$YYt2qp&g~;k|px@K>#}+EDjyJxoPGkwyMnf2B`T1k)Xn0!qjFR>pWG zwQBNHgU`}lCkZ~gah7uLXsziT%~OUqx~vXPOjzdl!YD?BWf6XLW=D+Lq%fY1VgPrG zlSK<;mzh5;4k3qa5!?iuEVfYn=*A72+pGmVDxPjhf3wf3UhvqehL_z#{XNB~_KS?h zzJeAjhg%Q!q9o#RbyzX>^Gu8%U)O#;0bflQ#Oxw|QSK;};5U1;MWt3UryaJ-fN zQsl_!V4AT|4AHf%McbMy;#1y5N16DayY6<8Qa5x>LhJbBn^mSGm;it}2B1bFehIOq zt|AyDfT=-@3kMH0$w#NjdYrGD&g?lM3#G+4d?^`lad1eV^zuVeO_jx)zYO@zpc`FS z1@(=FooX=8nm!aFfVhUWbsBq|EbwhhMA>B1gy^Q4RFF>f<4%vhpT9+rSY9vU-c?TE zE6{N!6E}~Bjcrcu5WhT=Jy<;aZk3=3RbV(t*WoL>XKUZ1U6#D3 z1N-O00J&7?G(cUO+0Aal7{RqY=?Ot-J10S2OI6efYT*OCs=~RZJ!R@UcIp&|x{3*G z*}3gGhsc~^2Z}C2gDSi7F`F3GI~p`OL?_ia9X~X$j5*W1n;9K-X>SmIlQ;LQR&PBQ z!=i7>_dOQXTew$DTCd4^Ly6PMK4TZjnD?LVT)A}4Uouo*wRbSGCf?)rT*SclWtAUT za4^C9%*Wmy)eFSeP~F1qvG#J1q|7ftb7MuUd(nuIv4jy&sY z^GNYCREY~*me2=>lfN9**O9*2FCly}VQK(XAf%l*Eek3n!s{Ck7Sc;$O-IsL6g0fO zfak|gBpa$HqdoX2d~M-^3}f49?d{XLxJm5Qf1=g4;(K?npUNka=7G`#DSt_hQi!hH z1&s&};5bgL_?^bvNfl!qXj{yJx}q3DnDG7-TPc6QF6^3jjeuEK~%{ zJePYvpH z>>!1J79nMllw^+hZOn4{Gk$qaV*mIYu)M(1D+g>S+o>qF-(|psVn!UwCcRQ*$YWTc ziYovr&ef1DS2F?0B|n+S6ub`2=GBnm_QTHTUO>BbQ(G30shAFdCH)?_ zI)8@@oF)ikT^P!}V#Zf-%Cw^3ID2W4?A${9z9-^74cYzNX&1RXR{0UH;&wD`Yb{Vq z>>ADUs`@5a_xi1-64Ks0O)k4Q$XA4T!aih3PJhc^_(Apl#vz3r*5&K7Uv%>(QI zUhDe5|9aLH_G_p&0mX+~jlE7Y`&cMZl6N8Awr_##tKmNwefhCI=dI9^liZ3yT01%D zSMV%Zh7%COR~Szz(8CxZs%6i;+W}Wq*`}3-p~f-21$Hj`4}W_3V&kiHWlUb?k7PLi zHpf4agV{7+exTSdSlet+BF91E5YBL1;d%!!cuAF=h zS`&$47Dow-e8fp{l3$=2d~h#m4wRE^!+h2H!%=E%E%PX@hO`c{(?Xat!cpTBxJI7# zF`;4YChi+S>NA(>ckI=wKJ(tqY$l5~58BDaG55RQXUbIyiC>An(SOc9ytgpAVM`wd zB|&-b# z_Fi2@%=}1^X$@B03+eV3=sfr&<9S|w>YK}jq(#d}Q$TPX)}dw5=T#~S4DMc+q?$^Suu~bPY0=g3oO39on(aLgG!FGWRl)*Hmh(Ho0W_6aXe&b8q*l; z>V79`4?Ger*(X3YE(3%`z4~R4P$v4GF0kI_N)254iVkBIyt(gt~s!aJ7dm3ZyjwTaI zogVIyk6A-I5}h0_(&6B;C6vf)^zBaQxT{KO{b-UvE062lvmm6*%kns>?bR&t2FIi+fIZtU74HV@&esnFAYr2)g6HdC%P_nfDCo;e}pA_ zhBigGC8GOI^;*fRSud!P8Wl6irUN&0FZ1b?5J&vVP*el-$}y>K{a2hbjiiqSa%F(l zYYDNYJ>0=s)Ve{9ai;%@6Hd?boNbv+zl9?V{XVN-cf8_a)8R^S146vBN0p z$-<57k6$Yikzjy&a;UTrM$%fO@->}Mhqp}y{3-T6rmb4#d1g~2AXs}NU~burYI)i2 zXHHb219b_(;vXyV;FZvom$n4}W*+RLEZ-2;EMNr6Ae1>?Beo~2U8ke_K&eYF)J`P3 ze5*MQB@9Xg_o=e^0hfuTl&D{CYDK5CAy9ey+nQIZx5eIL7>$PR4O9to)1!WV z{_5l7bGuqjK5YbHwgdmP1^d>1b9nUYPAxdeMeu3n`GSo7m79ZIFCmDL1++^DcQCb3- zqK^vFG;(pVk!Ix{{McD9cF$WZv3>mPp82s0$!qbMMOqu?_u2YBTWociFt{@c4=iTl z$SiYqHt72;!+#FC27NSmuNOjBkW8)+{h~j;?F6boO=t`2H4PJv5g|Dd9`*1)STyvt z5$A1`s#!2yZ_xFsexoH{a>Ej$cF(4{I;^U$XZ!isKrKhNL0oj$4IvJ0yALz91ti^^ zK~`n0eAv;M6NCDaQjyR4(=Q?~n1O2seUZy-#joDCA| zT3M7r4E^LhguWFNKr*7@6lnY7Z&Me%DC^Tl*&2$K4ZhvoyhkOnvI4Dq1y?`3D;t|w zY{GFD(YxZyn^^op>9o+tKWvrne7T;V9O3JN+|1fTgYMss2-2AF)N7XCYUh78+#<=% zpZDq7gT7XwE7XVALE0qhFx2S)-!B3+3&maa@Im5;5FP=$Yl6?5FWIj(H7E+)Wx}03 zzT#acNLhJL^zOKyf31|1dg@xSG{>WmdJoud_}{2rdPY$U)Y1;*u$|GL3-|u2li@v@ zGOR18WxWvB1yT?5i7e3n@yoe{LxiuZde$~^RDY-?zSB}h{XuwLe!DF^?K-MaGc zycYQhG;$!Z9wXO*ctSlG*=w_>jCB|inrZ?qY!wGqU|LMq65=RPj=K3S&u_btTu}R+ zh+rbe;-`O_zWYy_#Qbni4iMLadE5X8h6|ar$OJ7#X0v5s^RY!x3hoU;ebv$KM7U^{ z#8$wQ!t)SJ2wnr+H0f7>_I$!<31Q&o!ZvT4ehP#Z*t=m33}=`Qs7>GG=fTPUP;!hP z4aVi;KlX0_-RJ3FMu;MtH82npZKn#q(sXTY9sY7${{2Q3U6CtSt|0)abuqCvxKk14 zvFrs*bY4jxdpNcQlr4T75H*fKcQmLSyu`8YMrj(C_3$C}s+UM$borwNwNcpZ)bSV@ zMnH1caGu9ynWq_&pI5ma+Bnb;(NF77eIW@zS4j*Ry&$X`oyf})#ADW6HGJZzQw2AD zxDa{pb@B)FxDc+dEd&z-3N4GI7*ph&hi_{~Gty4ss-ImC-(RzNeGOi~ z!))CF{`2S0UpRl<%}vfw^V0==u>g&XE#X%*Lk%UPn1|@X3>w+#0YOv+xvtzzf?-?U zmTK2VxA717lxHQN##7+q{_ROPhm=x6Vr981U2R;78Z$*EObGW?PS?|IeQYeRPoKEK z^*rf7OynKp*D!J4juPkcvDB@A5Qp1V$xLifJIteKn(UgPdSSsy8Kvu^=)vU$(vF3;?B zoPLdGPMune6b7u;>yt*85FIo03I>U(RWIlp=*iCNd)yJGS9IknLR$VJ&U}^TG(ko) zT^0LE7Xh6{XUtDP)cf=Y+4%a>`JN7K$*#!To`c4@Rj54=*c}bdHMh9slfD!s5Gm%Z zqk|QLa$Pcjgmsl!(9!m|xVKd{R#jW4R}-629ZfKg83n`X6#+6>qOlR>9^3nb&jh17 zZz!Iq4i)M}((%>J5!bm8xY^U^g-Z!|@fD1$zV-qW>Xb!JYv#yqkylPJJ0vuu0#j)u z=B}6X6>^1tNBsE*_PZiyHWBJ?`yR?}&v^?C`x4{iJ^@_DDhiqK(McGqmYIKi4eR(D zOS_R9qn6tp9@cQnu9jRoglOQVIqBjWpwj1>AQq{s2ugQLustl-V1~18;1Xguex!$? z2x4794cwps@_fRCEprXyKK%^UH<0`dQyyNlHTYc7UO54wdJc)zQI=&HsS>=8%t~$} zPGekf)tJ;l67#IP8-}(%n4IK<+;QJUFiB4<_kOmQrD%!7*rEyWW-gJ+A_#WC+h>B=0&mL?Py){xj+XV0*Fw#iOI88U0uh zH84D~?<^KT@7AcerE3_twssqKtlf$bQu~%)w{PT;*)SIlWY0>jK>Zrj1h_COn7zLB zE|~bzfdUf{%Pgt|owY(C8t72XkfW`F@Zg8AQZ(7Y>f0mO;|Uf$s_FYeE-Amfbg$}6 zv26+$By7UI3s<729Z)=gpyUF;UNj!Os~z@7Hr4;@HN;PfUBWQWhGbkVNiZ2FI#R@& zL*sNFab3KZ8#Oo4uJWZ$yf}dW(TYv`>OI(6#K9bx=Nm8t4kbYCSpYs6FKoPG0!3YL z5`-ER)4`;?Ca^A%TvZ(CEh+(G24S^oH+1)$x+PHcDvfZhjmpGy5gtJO#*NTe4KSK? zlM%O7ev_9FWIcmQ4xsy~MN&(Mwh0m(s)K3u!fC*b1nLPzLDo%13z>j#71v1rlFT}! z=`8g=`&JcgbzhLY@HxajnV9Hd4jQ_bn-u~10?tmQVL+gHP7tycWZa{6!E0p5Q=Hht zR8pX#_V)I#B`@v6&F`0sJ$Tg*T9RMFpZLI)O_6@%jLDh(w+XQS7!CjL3bwcYy9V38 zdu)O;hLyw)jozUN-YZiSF?n+b{Bx_8@$6Dhaqb$iR8wQrx5v9VG+bjGM(pK|nb@px z*6D~otLb=6OV{+l*UNcv3vU?nOa$vXW7l<;=Zq9nzypiEOWG1eF>c9(#!-BR;rri2WOv&-vyAla3v_55e>1JV zR&L}5R`*N#0&yB`4a{nxs4UG2VR#lYfiX8(1&x?jJtCyu=V-B_Et-qL-V%o5!`0#I zE)`i$C&KKwGK3ZaAm+&1shjmQ3IX5)iKM{LZi};b0 z=~fxc#Ti^0qtWux7oER0Lg6M4dpp4c$s8>5q0X}etm(mx-YE$;w{U8ZlE}*~X3FlDFFOcNJNZ;w#e%wBTA#g>2k& zN=%_pDa;erCxd{Sse*I4Q~llLYOv217e<}#ty<|)QpQ4z)CEM1Eio-8E@FX@145i7 zhA`i5;Dk}L^ZeL8Sx!SrEd<7$p^^)*C=JP8%mlp=qF8FN8E{!CopsWzugHu=1i%K{ zNj;Y4Om7047q<;0FZU8yVLzR~_|BeY`}vK-G^lKE%@P9mJiRB_RiO1*3>FZmymBf- z&kq7;H53F?e|yS-+Kor2QrU!V6m4BPX#isIqi>=6h6r5fVGA&@g+C4KrxReL!Q+}} z+j&3Mp=-ni49r>oHTe7E7%mF24lN;Yj_8FQKb;`08;)ZlksWNXbojdDV8C5*PkCMf z7QaI^f_+GQONgH5hOmCzZ%+_QJ$AySrF6)B`2m;T;PMjv^QK(hgUdo@S&IIkH^6OZCzvQ57v@*arIM3hHoxr znp8*t))JM5>;OIGK0Qqa=1c%EXA%@y0)}*FOnz_S4X6urT0TZBxBtbSQT=YPvB%jd z7{<=FaVp8Jq!T!V*+Rh3GX>tOcNlhMz%!N<$e72 zGw21VM;AwBFiYWW+5Z<7@GnmXa+i_I&-bTSy8Ql@*XRG%{kMnIn?PEHSkP1^uk@m1 zqL?=vsG~nQybjla$D9bQYe1#CtC>Ed&q(D2gWRrdii9zczzJ&w8gW}@Iwn;O2mL{I zHN&jmK=5XD>ex6e-%ap~JmD4(ojcB||FX^v=5eIGVW@Zr-H)}q`b{J*hO9HY!^E&o z?jzQKc@5X3y>p#dWuSDbPoC6+-JOn$nn%-d*Bu7T<=(`seB|n_g;nFVX~ywvSV)51 z_9OY+Gs?B)bD2(fm*?NEP>7M9H>FDZL8Ya{o)jEj?yY2|UjFKxNxJ7i*N_u0WAXFB z4|+1xDwYs|p%pzymYj>r#i3R3O}c~NP#E3cHEzSVQyCsS_@@$rb<&re$!WI}b()i< zHl=`4Ipl>1YGv@X_m0Bzdz#+!cAb4YNmQ%VjQfTq-f)=X{TRbX&AFF(R8y_@+m1HfFB85J z*_r-UfnFzDIOILUsx?Cm+&2|%OAwQhBNekUv}u@iN2tY>F_zsxDXB3$2+s%^^(=n= zkK+6e5I@!}Ke%i$)~fAzwtU`ggXTLat_A%bR{V+EDpeQb-i+kA23k4A+X9p_u5zB^L4S=(jsRv1`{W7(l3S>1zv`B_~%{`y2IIkttK~k)Bo>P z9de%vKpGtt-ZKZ%75is9e?+_#ahKIE2pG==4+c8{XkK^R3@d0OAeSBFpXHCE=CFJs z*cC(rqSD_Ezp>Pp5FwsR2!2)wEq9&6+)+n6N|08gn)!u4v~~Zg~6g(yK&o&h^y}~Km6+|+|&dOjVdx3 zB+BuzS@aN@*}#6pRGJVx&NMUtl&FcMDKgjys2{(x$VM(Oie|+tydquk@$7^*pgN!# z^XKXSEj1Vi=mfr32YBK9SS*YO(pvjdzV4YHZlp(#c@7vN7ILQ% zu2{yth3rO1Gjqah7KRr0>k(jHf$s=+-*2za*wtuE%AD<4SPXz+MMmSVMnG%;qYjwT z`OlwKuWcBrFQ0!&S01m;G*O)RVc0*8;4d@cDMGjDl#Te+u+cvZU~UmLL-QKeTAsMS zzPja!`@Zph++E8nZh5ON%eZCbu&h<%mX*V@a#*(G{xt?L=`Y6qug#I$`B_iM`$Fn7 zIN0{(w-3I)OcZuj6UqT@-Fx7b{4sXPUpi20%bJ6bjJ zc^^(De~XhkD<7gPBU|jfqL*eV_=k(B|42m+P8;BbE&)VPh&vK4O@~J0+Ge^i4G}CM zMOa_>E&m)5#}$v z9CC~D;J&w5f}s4?ma2^w8BM+8(G%36_%*du3cpf;f4IgR!@SCE&pO7A!Xdx1oEi0f z^?swtbYA}gwr-n5ZCcL4&^|HVo$U$C@htW^^UkibouxLm8%vz72W+|dk|*)u?sqS5 zAUF`GIA?zY4gI~hD_Ds=NIeojlPg{vx?6DY`7GP@i-o>>wc(x{DY>xZHKmwOD^e;z ziJdmft@oQlU(cgCB8NL3EqA6NWgzpJs{+5^*WA(fyK6kX*WGei1lU%tV+=WV2-!=R z5+1lpA*V_{O%q(`p5e-x@mYbW>fBH~^x;ps7|V(I3`k7?5`YME8uvhep*+ zRNjw0lJC~L9v8KdG^AS|r4u`ee?p1(k~Xvdgc2tQe9UXI0w{5GM@9}niJN~5P7(@! zD<8L#wCd_hA`CkKuC?$x(*1m; zUEkOeVgj>X_}i{vk5BY6{+UfD-3|=J70K0Arxeq3<*D080H~F7tR7&#~G8Z z^0zoA<{611nw)OoimOXCZo`TgyM4@hP#MKOkL* zI}DWqWS*nq;!com<=PJ*aNAFD&spnY&6wJ7V;Zu(rxcAU(q{PX?Dw>It2h;--lwc- z=6q=L>)r3(hO`KpNSsd_mYX)B1N@?QA_zB5zH*7f3St;K1?rpLyK!x_Jkz)T`W;d1 zjiJP|z5{@kAn*XHkuAtN!w4e>mytGo%^C{8o=b8tD$@7t8krO&+}YByPP8&co!alO z=2xJbICAUAAvyDJbt}&7;}ozdd5N5OgNH8{A;9dM#A#u7HTR}7g53dvuVAn1`;ZH% z!ZbxU-zm|K!oyu9!#rVmq*$U4L4dV^_PlrzKo9*oy+`+Jzlk*6qAzfNs#MlRpO0GO z;UdDhamDcM?=RIX7}pRZ(^i0_N|TX~3KU)F3f6}jT;#g;(IsO{%7i9qMb&~K*{R%X zUyJwRVFxhL{ZMuUTL4sfc}L5EVDwIo#WZ3GXvZvH&+@|o$YWbJNY}sWY%A}fPNTby z!+4OiC^-qT-c?WgP$JM(;v+()z@kZg`4rz0!l^n|zWNHT*1=&wq2$ok^32n#zMjU> zZwBqDL%2sn7tv|;tfNYU~Y6dtycA9w?NKxXfVu!t^F^tTUrgrYhD#96$MGyW^#xD#FpaRX z?s1K*n{G+%6-Tbkg|Xv!cfx#4gT|Pv{pJWbE0Opa(}9M06sZ)t4=IBx9pI?AU~qFh7K z))5csl4wz~S(&A|DDUCMYg2QgW8P^;k|kG9_U}XpUFkEvb<{*;s~OpE0zjs@F45lP zCR(~X(_JzRIQ0D^S7qGUSm$|zTa@g5z}g4tI68R*S#>KD2$x1o`BXrWI`%ScqSn&A zzH)PG`nZ0VGo%@k;wfoE-%3Blopn>_!VcPw=W3lQ6Q+}`=O=pvrX_6KWP#>I=S0aZ z$T7|_-Eqy(nn|*kVnv(B1m4;uJbNOsxCZ?|#6Nrws7dWV20vUvSd%(&sLrH5pUS|V zLyju}ZB(J-{^=Dvql6;22N_8!-0j+QRNd<7J`tya1KMe^_~bh->wI3!w{bp9rr4o4 zr0v(fK)!s*t71k*mIpKBwVv#-Kzd(T*!h)Ea19Ac|_j29!-@oKtN`*W;DZOmJuVGY}Ywd7NgjzdX6xq z)&1(G2I_4{dmGw@?6lD?Lo`ss6u5LRBJg)M_%9}L96)uIf3K%dqsOvi3s!hUbPF;9 zQ_Rz?=Wku8bzV_v&~WmyKS@A!aUWF_=INn$Nu2gO%6^&oFl$2A;GK(>l2lINgL${R z8`dU`dvD(-;l_Ia)xahA5xbZ1ycZMDy&;3vR+@Z4%t5!PD#$&ZCy(79vWYvejS+I! zYNRS<@^6N|+yJUmk6z7CW-6J-=L9OgZq_{Hydk_xFKy-VoD2Br%MW~&Apds$`)L-O zW@I#&HCbpvf|Atr47)}l;qI*enhm;kJeHO~YQKq4;{iRD5>OM@J6H723KIsPvyVC3{mk`HxB~_t+D=_5->jNN>A}Q=` z+F_hBV)g{OHx89;>GOK;UIJf@4zTAO*iYkMY+t(~%r5M%Mg#Ypvo0j_lh%0hA1H0y z2DliLZ95@Bi=+FeQBh@6!jR*z+kUU{y6e~E0aoA+&#EIxCr-o1p4Ut20oU*3Ut$ti z8>T1Llr~=ibyS+thDr^Ln4*^1g=u&V!gkTXw<;y)uYJ(x>%SSAE0#ocg2nZic2J`( znj!Orw6O6mI%%`q0+_5{D-Zyi|DDUi7&>5gu3{6hr)dr)+9GXO?DfoV7>lNBld*7Z z6aOb~@}PRZLACw+{HG6V9_w9N2N^v1n}pRhYIYGr>orZfIGPV?$jPa9+YLpQ-P9GZ zcFxb|6Et3_FO4|GRU=1Jq=Ur0cg8upjIZt%^y^Jwr$YDcT%3#(y~E8N=5Xy;MzCH4 zs6Tjf`C{9EUNFf4(`iVy?6P#vA@3l{h8l)A+-luhs{Pn};WVt_JaquoZYjt*{FRYV zHXng<$ZwgFCcqy0Hzm;Q*|SlTSY=ud1#|y8xsaL@tXjAC>`CK8iRWd#MARm%#&yJj zEf>>>`D|NEV#sk^mJhIQ_OwUY%GXYrD z_eqQd*DXs5>UuW%Msu$-81&aV3;Ar_Vz32SJ-b}u#&FZJ<-O1ZFq4PD7wFDuS9ix!a zl~6z<1iD1q>q(`#cxgUV?l@J{B7W}xM-~FQ3dFR?8%BP)hf0iVaPo!r>KBvVgGYnB zZoQYAKzXC7r=iZ{ee2`xqbdp&gH%>i(?=FR`PyCv@73+HNaNkUTc7Udi34*iHnu>H z?!kVAUBT4HqH}0N_jc_Kc}RS3BQdd8O}!d_O2bWW%l>JNdy|QonKG=BO@ zb^@pY${_HfHlEWZ%mxbS+{qVzjLktU@Q@N@<=RSzvijoO=Cqk|G&PmdPUX-DRXL3Nu3k7J!6b1LPL8Oh*B&JQ{8KIQrjF; z^`1fwf;DRw<==fQI!Pn4_}l1bXau5GU}BPBrDfvlj}vVB21x;250JG)pA7 zOfjTTm7)sueE>Rhb$^tij(o)4FKP{UloSW&hK)Yo_`=j{>BAnXk)1H_eoOpPIZ!7! zF9bluoI~tnl}aneK6OY!itLm|o z4JUxfeK@}y#n@2@N~4Y8KYi1T{ze$aRZi*opS}RxqP5@-P~$F|9=wJKF=YnxUgT zG>_rwJwH9k?>y~$BiLr%Z~4XjZJ92=xStp5@{ao*p|`x_eiAVM+ePKAB6)@$&8XP) z#;Eo_DvsFKb=+Sw@lEqJ+swfJ5=VT~cJFr1-YvcSdVf|%<-f@Jp(n;m2-}DToHgqz zQ?uy)42trXYf71Be^OYWZhAY9oW=2mtZ3&mS&f;;Wn9)Br0e?fdb%jpsifR^yTva2 zight!qk#wMXLb13#d_oaLOld8tIQt_gk_caTgz@)WiG4CKjbI;RSGQ|smtEQzn5G1 zCV+m49d||D&{tdvHD#yf0CJ5-Wd6LK4ORc*!BT7FhLbR$L0DA5jS#F#n*d>9ZE)ZcLhyuRFN$l_Jh`Aiq3Uj_U48PWu5GA*w(g#_ zq+Srdx{HYy; z01+RH_nIcE^Q6KN25K`_j_pmlQt#umZdO}t3GpDp*pJh4?1bWay_>6qzJmUxx*t5+ zIyUHT+3;i#-7{>$-+#;j458#2!VXtNK8p9BhTw*^lOh zs?I@Q?Z20j{c_0eDGgo_CehHIcz6uMzTp-EhuWSa^5m!KSaf4_|oQZ2Wdp zdCke{^?MvU_-FguR1@7}Y8swR0NjP7IN>%<3y{MPsCwZjr+4hk5G2ie<}iEu&a-g_ zW#ZdwCc{_QvFc|rNzC9kC6|wVZ7HJMnkqAoZXMcmCLW{dVQ&EUV6uK zU7YQsPYz_1>YZHlUN0_LKJQFHZ_wo7pW9C{_WyH&)FjvW`D_wxO5^1$cW`aIacow+ z`R#$alLlyoHBSVdzD{x7dtujygBut3YzNsfccsF{JcQLT zU0_5#)Dk`%i)VjjH2f160LP5P&kf(qrs`RO82BhR;2Ipa1tHuoay6_~FIN_Z(Om#+ z(3@cm-~vZLk~BWeEU+yd_n9<(1G5$yzuE`^zGVcQ@vp9q1;m%%aX!B#e1_xEzk?FK ztK9=Gz5y;C#_n4}cmhYd$?_Xynzh{D?O**K|JC=00bH#2HDTHV+JMV5grkz>`tq27 z4n`kvg(lF1$6hZXM&5lX5(PLcG`!|M;2rnu3tnUcOnJ&NHW#s;$k>5oMNavm$L7JR z`jRU*EA%&b$UguNjYdJeY0&i10&aj{>Ojvv9b1?n4j+ekg#j%~KruuY3tK|yUm(SF zBG^`7kpqlybr~ZGF1H}Cccl}DKa*b6GbE;1FAVXdag$sy#4%a;(eUq*9lwj1r*AfS zvKao>Su8p}T_vM#rVr$xvefD}Z7fu`3iV`MWwP*`2&x>f!l=Nz_6Vi>#IDvZd;q%A~ z$m8G*=gghzFOf|>-`T0H`lQ>Li6Tz>zDg{AR zchAEZHO4El2+NGZzCy8Rk?yU#vCx@Yb+p;aTBn1LOU&oy?Ozpma8F6I06M9c$lBhs zeh&R8s!Y@cC6t?;Ca->s93fwiJa8d4*T4`2^f$W`Yy|Z_3=k`KRmQk{4#IFz_s)sV_FsoqJ-{?JNN41aIaGO3vc9B@BQ}=Apa!E z3;ZY%6;8ZZF2>D7mM-nWh*f5nU}5IvHM>$?*FWXqFIMo@FX?>soO=^-NR14Tus*ag ziVzV%;oPIf^uB!a_dC(F!_(qyn5Nw7D!ZfbtWWTpRR{$9dMB~Jwip0=P!;ul`(K;q zJiyw$J6A2bYENNpozsr>HzhZQ`&VYj5PJyiZS>4^cD$y7i&ct_cr-Rt$2F2N66+&1M7Q*X-_>sZv-V*nus=Z810DLV=b}F%?|;!1C#|)2(K`LqhA9%_ zCcj(4=0w*~+bf(q4j{6R-Nn5>jj4)BqqzZIZ&jg|EYhYi;hdnZf)1ylE8Ja*#bS4h z#gfLLj(R$akwqm~W;S7=cb4vzAC=N8HPzBZrWC@|l`KB@=gOi7o~IpLwW?_bfgEnd zS2w6mpvpH(`T1+2Z%1@qdCTdxx2fV*XsN8Po)}e!JI2ew9PF?Z4Kgx_rADnR@gM~k zU~V|x4&2D0Ik{?ZE8n|^1vcLvnurWM6j;&Ti1{>M8Qc{?ajMX|K5;wQe(d7~kzKmk z&l65Gs71tRH)?ube)_PY_vi_Bix>=1+bTe@|N7=IQ)>OAIZxi#j$Ltu&mBDXD+}Hn z-NfewKn#7cqs0-*u^V#9x2>t(;kVN9#tq>|~`$)fA?BFgf0Svry8V zSbM5!GM%6jKF{}|R8RiI=|;bIsaxCVI+%JQOMnEH@>WQA0^VWAckPSjEnj`t;Bc)Y zU%8&$Y^pmG>OB7}cj5r*xyoOF(Sq{)^$wbDrs*om2TK|op4!;#<2u?8d>~`vQ`{p% z<0Am9vV+!h7gyT{J)+f;C%AS8U|&P_7Q_=7dw6efGcTjPhVEgq(d)G3SXzvdzIN7W z>X60#bE((3r=M^9*l&Beaj!Ulyx260QzW9`!$~;|h$c~q;nmbd;)_rYW}9~;AjPk( zyF2z`JY@Zu!&;3cMqdH8c}5p^7Oulk&p54hA0^k85JWEqltz6WxD;UgkaF^abMeff zjgB3`x6C#BL+`I7872O%$ofz0CXQ)-n3o?&No%lS=(|yD$#7DPJ?snQDSG;dCLqGL zUIE0RzQe-cOXM&TUJWwvfc6W;_L+cYU$l(};?$s@fZxAxoFmJp81e}$f6Q87Ky6C| zeB+5pR3#D?h?;c5v=mkufW>`5#yB>XSX_gk2XA3H(QE^YMBMrNwtUIT@h#wW+Fx=l zdD_s;`KJ8z`6`XnbBC|4cTH3;ajnmV>!DOsU%l1jC`Fg&A%6F}cj}1s2(g_U)FL!PLTVxNn_78d_!u)F zR#|Te;q|-$FqJa`=t1nexP9FW^xWq(Z@=nt~vALxWaw0ch{|4%pPsTQM>PN z6|P=MO4^^0Xh+|lokgXa?H$ol6{SS?fuI8>jm`Z^sgiu|+wY?NJlH_RdY{F5 zkr-aIBv^1&f;Lu*GEsw{@VRf~z4z*6jG?M=S+N({x_Utud!KohB^uDH24H}~*u80H zn=PZO2q$;B@!Q z>Rkgjy-U|LBR{8EzL%77Q&M=(`?S>ID$1>pxmE8QxT9D$RIQ=1`Ugcy47Y^ym9{Qq z$L;ec@pd|UD&|jR9vc^av9d#bkhC5^%|Amz(6Cn{daAB|39$jw;3BYs1!`JKU%;Tu zq=6X=^*krQ+l!RhNuCy{TOXM}D_u2%7#ndq7ZkdU_{$bbgJURYIv$dD-V1A%`|bxLLQ$dK)0HXr>#k4LBAV$Wq38%{`K8 z;##!L>2|4AoB@tJG^zf#-;5?Jkn7p_Bs^?cpij1hD)!IK<28*E4c?7*zDU-pYblMC z3O_RXsd9Fln*%>**r`U@l}wwVDEi~1?G2^F-kwiyFWpw(F@8xyA(rE1*CwvCl3R7n zQT^J2SXG*01@d7Ocd6m(GRYRK&h2oT(C4aV)|X?9>NOizxoy2H`-0~Q81!k65 zR^5m4-Mp@%@a^ukW2;xHTT6>y{*t?)ERy1!Dnd!&!o6eg!>b1CV2++-<@G7q~nF5jauz0C@Emt{0*1hUB2Jc$B1B=Y{t6MU}Mk8{@tn={d&w%zg=) z)j0(cGE6#A4?T|6#(mWvuo$Jw+oncVN$#3{*O-gwlQg#WKCtx)iTG|1YtuWm7OO)o zitnu#v1_!?+nda*_^mV-iRBGpPs4}q0=l{VyaiR;bdVCB=PRmLCC-Jwc{Z^bO=Nk*u% zgxLu=ZVdbxV1o({QHw_Pax>FIt~5=azxeg+*LBp~O0K&as4Y&Wm4X&@J4UG+6-DuT z0Ppx%N4MNHVY(n3CiRF?lY7EV+i1`E*^3DPYiK=de5y|H)1I#uA3|k}_ba{dH5K7R z9hCiZ*KPO~x;GU)eG>-bN;}yG5bRS)(|D2@^gCzoqIF1)n9hXLjCkulw0E~a!DXu7 zeU(CO(O06_h|brpRq6SZcNQ-y?t-Ef*CDy!K%6*sH^YZ!Tehap$rncD)7HPC+{Cvk zG5ML(=rx<6%zni}53})7rj~mcJ%W*zfZgBlEm=PGx{F5d^VZKbN@~?XE3QaNI>cD| z-cZt;yF-O~+e+*2;dnvuLTR9k%7k`@-ZRE3^5}VN)A{3fFNfrZ6%W7Mi9kT;7+|D& zABUUr*iYQ@*n{``!l6PZw>y$;ymL%><-^b#hqzW!?_+f4x~CcSv5dIVsIZq+{%`W` zeO;8jR}<0&SE zN%RDG^&HT4$a0_=m5+n^C)2FO5+JoVX9ZS7zO&H1W9u3y&~PF^^2`y++Mq|PZ6v%` zmk18@tcJOvi2+2OD2q7k1hzik;CR@rj_BH!XmOob^L+ZF&&-^ed^8Fs)<2b$%w`B&T@88`VG`967={kb*wHYcBJ!#cL zoa=;G+k4)dD$Y-IUvpJni?H}&=X0NMRzyIp)fdoK!-ufg2Saxjrcl7l7PUpn5@ zK)h0yq^>LPrGds7>&dKFI2mnGR#7NK66*Sd$Z0Lv{bs$`?c=7ex$4!I-sov#I#3ma z0f{lA`NeC|^Hw9DL^h;TF4Gt-RwOC(A-{%+F zp3iR9$9i2`5Xn9DR5H4ql#mc4Q*n2*?lHm_1tKRj_8OHBM`zefqY6-A3tM|HT%Kac zT5fs0zE8|r-{tzz3HOu3q9qGw)*3h~q1@4h3*&@=ka794WzR;>u?1VF%-({piRR&I zs#_F%Quj!{MEL}Sht#j&0W0_B`=udZZ1$7QfwD9| z!fZIqolDs;S3jEP7$!lCZz(3%^c|Lc3kCOtRA|1fl*H1`a*o^pA*BEr1C%=#t#Kc4 z>+q+@1+hjGVE@Zfc))v0eDL_D0mVJql{`3$o_F5!O);`xhs0?f zIEHt->yviQ`#woEBfBVx#K7@1fm#09;_~ORhMry?pFu;$;zYYOw)Tx|wN5@#6{$+J z*l}4mZW^y{abKZ-KBEMCGR0h?MCAGlV$Fx+FDCEpOXVgz-hst^N=}khZ(keyhOq2Y zuq!MKg(CGgu}NjTim}A=q{mmNu$BBx1k;!14#sLQ&=vDuDFw2+7Nsh29llBHI{MQl)RzW<^gF24J?^#x zip(t!v=2SrP0R5}(i|?h0eI5o9PMb@3T_b0;8sjc8couz-e_aB{9<((WI%a%V4wK* z;b$Z2>}nRD6p>SEgb&aTniQD3NG}GS*Jnz%q`eSp5+P66?PSlMkEpOWau8bY!7adg zYaSlp!+Hb@!X2qwAnt&ZT^#j^I|eb@x6ATk!$*T{wjOak$8%`IC$(*CQ74gvsRd4PSOV`#gBPU&8%!nQM@i zCo2o)#i9zNDhQhcq}si>luL#$%?~Rmn5IZFRJu*xjs+EoAKY*xg&7Fs3F=HRrysAL z0KRIfXr>NytQ$-yFpPd5m(X~r4_S{?K!c?4aXHkc0KF`$IaQMx^6WaSj@MnuPW>G= zC)pYf#QA&3GI;;A!ONOIh9Hb#Zsi<*`|{b~Rd?E=&WVyR_2B!i9_u4_urEUMj%i1UD)U zlgG*A Nhw8G>kz%_jw#iwRLzctVJLK(>?d7jOIL6VvanlNY=obq-wy#nP-ef6D zR%SW(RSa)|=$X-zWu@;6-syia9o!}VY11+8#K}!+bC}q)-+ez}`Y_M|2SC4%I+Gz` zSl}vgJ#L>*2+8)n?}o?zq_sF91^H^OC!@lrc*5DjHz~#Tp{?NdthN1MO$&k=NdaKF zCk#O>$>1Oj>py8X!?a@}fV1%;c@(a@0GPlA;)MC}zd~BDH+t+D=Iy5E6GS0fCL7KF zWdV-A9o5t`dFzb|-|<7uCqAe zJ|3;2ywyj*O~PIc9S^n<*{9jY+TG;WQ9|7+ zNypC?mR?yOw12v*;W$}){YZ0D-%7~S89&$XXI4&wD%m&9wr`Q#PCouvJW{$_MqFl0 z=2Z|vgzYFQayvxUy`W)bca}zwy|ATMUg*SC_b$Gh`cvh4o#k#c5PYnEP9u>g42mh7 z)eEPF#y6!og^ut#*>;_iQNNs+-6?k;RTYK8%|dqC5%u~X^s{3~WF z=bE6?&{!5aZzSp2G0ug3V^LdN`vkeM<7(qObbYVCT@BUa`7m1iy@aalxHF2M1_7-c z6cT_TEuv^9`V_+L#qHk^dc6yo#f8a-HO{>z#dhzXZt^|Hr4a&(B&vYuy&HE>)U5)y zm$v(rQSnr@XS9)#nFcF{yzponbW^>;Zczo-aFz{|f+CxKL#(M7G4RfyQ_;pAI_3|@ zy4jd5<^={6Vr>L@Z{OIaN3xc*fH^_o7P4+-Y061b%(i&eoq&u=&)^T-LOK$)b2DuN zyki{oKsZ&eOAC}$w$j*5SaCjkukra%-rB8`)169kr~H*d+Rt(<4lGiYX;TdS#B#F2 zPl;CBt{JZc>Zgp<`>4s>6&NuSt#KNHqJ#wKsOM0nke9Pu_3Ws?SW$`0!Fx_E%9l!_ z7rcceMlaHD5IH*Z}60A#<;)0x9I``oZD>u$$L-@9ab^c!L&zVY+hY4)`c z8eqt;Z>24gt+h)ixNsFhj505Wvw~z-&qQhPHX-LLh1d0us%u#{9BsUa*h^HOWBfE% zN%#cpUlqwpr)d%lT@0SjD$0<(_KiZW^HzjJ=;xaTcg}7^WXa^q+zK^6tF|ua0Qw?? zF9Je7w3FtR&uNa~0hY>#b#rzelGyU`VbY}`audygYW@OlQn0i45zW~-bB&&f{-x9k0lHiEDNY{Xa=J4bQ6KZy4C6r$I_8A zvww0{$ZzfcPZc#;^=Dh$$MBnnhB6K0ioFIiq~$)e@FEak={km~$1tVwF{ouD4IOX> z587arqhc<=RJ1|24=#QV-^XPC|l4Kde0|L=)MiHkhXbJIMmG+Mt@_?Fxe6D20|)k^ zdwJgw?|NnmKimH11%nulT2h3@p*Ss7Eg0PZiiC`=+W*L6Nk}qct8(1tSDBKj73PUp ztJ0LG^+Fb#nNcjG_c@>|+0_#+U6(blcS6TlkPIn{5`!MsKmUTPj444ywNRHaX^&Tu z_p<3~4O*841Fz!`_;emwqcfduDtlQ~Bu;a;Vsu@}5e%<0Imngw%*fPLSeuER@xbxd zO_*y+4{DA?F-IFkc4RjtNI7fzOSC!>tS?BNK6VR>8V4}WVTfw`;2T0K7aCnx{@BMZ zV$KX50fI}n>NU$rWpe^#51fMM1X*NhAissCdKDRCCLr{*1G4?JT&6YyhiYouol)k` zP&5QbEQpJ@^#1yRcv_em9w?n^&_yI>_L8t{A2AOY3a>=Lv~7R=;2$6NO^KXS}-drTXT+3Z7Z+%K9oJhS4dUi!<(w2n1vu+*_5F(pKGp>7LFrf2qyr327WB-97eH=cjn?5=9YWG5-_uNhKc+{LW&ZXxE2(mE;?B-aJ%T33%6EW2?Z^N)$F=ipEQf!*h0gyIryRBh+Ej(@CR!4y z8PDajdNRbO<8_K^V(%yK6AS#D$MqO;Y+@@UG`WVD=gr#65`>v33gM-6I+C62IA6%n zU>>2!r`;{xGA6I2+q=BDe`t89#>}F$e^6@B1GjW!A9Zip(*JV#!{1@4{j;pL{|$f7 zzGeiF(Kx7ahN(lJLDR1m5W?oZ03&ZHW@=gu=5;(Uj>s5_nJEDH!p9=c*WMwvn0d1$9hY=I4X$M zlItly7$8^x_ZnIb&Y5&dd_&+9-nrVR_M=uZv=g1`TSXo{zEuSu86Lb~alz0okax&t zs6%I5&-!(6Tv_a0=w{DJCscqQD zPqGT1eSMcQ&E9Y{q*=S8NPU`Z7b^c}Rs=IBK)ZKEaVw2cle)XtGW8qcT=(lQQgR*v zjrI-~J*Use(!p5$JWBn-dRW*NlD6Foy?v(FP3pFWrKkMD)24j~j=3KZOzCOcZD|p| z1MSOIcj^rS#oM9dHNrtwj4a>dlVwE41Q)ESXktw6>1{l4mvx~{M@J-IghM1Am{-;_ z`Qxp-3-JSv$HR>syt)(>b9OmQ-Z!%ozq`s~^I{pXDY$%=u$#sQRGDK*RcJn@QbB?% zO0TH4reS~ng;RBwlR{J2lM4l6$H#6GY}3~f4}dbwtHUEtFOg-BcFGII4V~}1Y#n#_ zV6~f42I?}+?Nua8jgUgb8r@pLwWByx+}LM630mIj1S8#<>pa8$-Njcm%UdNhd>2YI zU$C!T$tYZ5v0IVf7W$J$w+t9OoAtYq!&h4{ea_;Ec5wFddsy)xO$ODhw@{Rw8cV}M zPnG1Bu)W)Jie5&3u`jwGxY1+3Ru9Y4d<@0p52t$eX*g5%woRCoIgx$rs$MTTN=Aj2 zcJDV{?>qZu>xKK*MP$BywOd^Z;-P`^+dk5QlocyM!|=t`lg|P-O&FCH+?ApE7 zwjk0I_I$bbs+j#NuSKh{!z>$W7uxq0h`#i3yyURZF(kLM7&rL?%CWP+ zz#>Qf-orOBdw6)o=KXTN=xa{1Kl>+lmH$qBXgCo)7N5!;QccX49Fg6B%WJ&s@|Uq@ zd~$l>5LVc+!&aSZ)eiGKfg;7^PZ^Mh>=eVL)9S^ZOwH00x=>RXm!DnhIltmTVJVi!Xss6N!A3Tggm(S^gdAkEU;Pmsp`=@Tw ziySz>C9iaVCXbMx!)1kd)~4Pd^wv2B8!HBy?9~Ea-d_fIl^LNBs)rQ>*Q1xPC?3EX zw|xWnCdY%c;(xu7gitW)GRuL4=Qb}@pW+jSky)&97}X7V=*qAO`ap~>Ho)94pOgYF zm=sV@nWOMuPhG^{c zgbZRLFjQ_^hz3++F9OVy4bfUa|LF;89U%Xd_kkN{hGsehX@MGGaHG#bu0kkmbn|25 zsSC%Tr>*^y*?c18jV${_;+DB-kcJQo!|RcQDE+P*Mv?UH!#U65kJwnt-MmSymGtVb zzj5I4u9%wf^6S8bUY4pyxjUlCN-p2&lRBOF?txBWu!E+pwGKl$1{(2cWMZdZ(d=OE z!hpWf+_WH7)|}_7<3@S2=0_k(Cr4o0&*el^s~&SZCwvAC=qJ>D;3CZguHcN#XBYqE z=vmI?$AB1+LDP2`BMdA-5vp783uu(Bz5?@7VpHYF$Tl>!{WMIfe~Qa64}qKg1d76d zBlu#Nuuh)uWi;Q6hZ=}?@~tKF(rO3r6SkDUEocg?VHs9Xr2(KVV$ODJi7}-LqiRzR z=#TsJ1)G;__9 zX-0lkl-`>ifwDQ}j;Y_WC&EEpD$Z~Z0=hg(?n%o>u>|nE(AZ}{gO4$<9wi&2qet0b z30$+7czfyY2^PC;@8y!N*YY`Xg|gTO;rqOV-=CbgY4`Tf(-@{~lLuDD5^h zdAKr;otHTXn;*4y^-4Ya87Z4ptU0#`pH`sc9E zcUjaybJ_X01bPcb0IEDv@a_hoe~R?ccyE_G-$Hfjd>6(>%V_K<-F)z8Pgu6eG%*~? zI>3~sIAIiCw6An7#k6~i`=g?ryhq2p_sL`--7$44kVgXZEb~++sY6S`CrhWuNI{m* zj6S>#;;B87jtbhwMs;NJqv{}X1g=j^G&jyj0m*MUI^!WS7C?S*r;^^hj_r#Mbk39+ z2-g<@0wS?cwW{Rq1azl>1}!q11%Ys>e-A=n4NQCv47kof`uUEU25^WL%+r-WIeHZJ zp$GRBs@%!sU$3>37DW+r(l+$=c79U5TO?zsuIocO{XmL1G%P?=vcK*$R7Mqm+)54**%`1nU}l|XKTbNvjqPkX}TTVmEIP0CoF zA;eUZ^JL_lz*$B2AOZ=$A8Y@L*O>bd*^IEJQUd58^XO&67F_BdOnHx@S~PLdP^BDt za$%Xs;JAvROPf#0|NanIr&s>u6gaLM%cKXN8Bu zaV?ma34i4E1fe%fgF(8QHsA&}PZHpB9d?6%+5?%bFrVO>p(Q|&{;rq1)CDa+mZcZ{ zX+Heh-1vX$^NnSmR-H_hjH_beeF_}U9zC^g_V!d-cjEfdFny8G_4i(JkMYl7_CnPa zM7uWnJ~N2M=L_N{*+HU{;@U3aR%qU;7rh*51s?>9=U^A)h8mDC?{>NINOfHP$*OnW zlg)MVuPc2eFTO~>e{}MmI^lH|?fG}9#GWI7PPL;8EbfnG85aL@uJ6CraYj%1<$5FK zaNZqqxR8{%HyVcOA^P_=ZG0j%)yU$w{@JHCyt& zYy>*`7+^EKKbQIN;gc@|bh*oMc|1cM%8A`yxC8D;e8LmnWS`|$6N$GidS)pf`qRyc zMYcq(Y`?xfve_|_n|q40K86w6^57CN2khM&F9(n0O&aTM#BMvaW!puz_VYg(W7-cy zo@%z6*jb(pz^%WJp8ro;Q2s@~b-zm4c1>Lg<)iXdn~#rXpUnbO{YFK zzW}w6RjHWYVhO*0E|8o9HOS1ds;#_!eP)Yuf#=Mb2bsy`g0$Qfz1Z(my0^GUfyK8d z$^ z*R^QRt!938?GQ2V{aElUxBP26%f|_)4y$d<&fb5FGni{E1e1&|z%cn8D{yFrc?7(% zQSi3PRC8ezJ1gn>$gT6+i==wk&Wu=0f<(tuU^8Hy&AbYFNm^2RhpL62z-HkS35JJU>ba79_qJ*; zmfkPBeVa;{p8Z8RwN^h~G@nf7ozVP>6;mZ=D`ufb$_u;;-h0kTR5eLz=I^>n2O2Nh zTm`U=z|2>UT{tIywW|smEV{SfX~^VV;uqyzlekZ9KLPof@1`T>{l@ho#@WWwCyol3 z>LS>K5Tc0Z9lzj4c5^VQz0@>w*axa94iJ8w>=&lK@cp938ae2#7w*pp(h})Kk3GWV zz0G;?_Ax44;RboiQyU9ie-l5-(^{*ScaQU;>~vaa+PdyoQ;%F$p6M^VV9?M!H2f+iq%Aad zK+pd2c|Y?gA1us0$B^@JJ7;*BcKL$Y$(YF)c**xM=g6+67|n#!Uc+7%;xNhe0F!-wZiItTk3b^(t_X?7`0-wonMCo6n}N@H)|na-R~#qSf! z=dV|V4&ytHsW4Ll9BB_;1=!It$I%go%Rj|i75j=u#{@j^TH6%`57fLWr?ud^Ake)~ z1*+OfF0Lmj;I&#z>O9<;wZ64*glk?XFwj7hwpGGtidK5w9OzubH_-%nnwP-QN`07FH%O^T_U81gqpWTZy zK&ZHz=CnE4K5r#u{q z#Zr)P6_rRogQe;ccM`{9P)mlm-2f`L1<w|^bN7QEfl@7kPS`W zEMTK0VfvBtp1@WtmrQ_b=a8&zvNV`5&rVg}1vh;|@N%htLqy{00UikYGoJf3U?c8? z#`3l!rK;V+{qDCm2U>mMpGnTCMzXeJsi%ksp|NbOP46kF`4TbWRd9E1TU+Oq-M^Lg z@k5?v8Z+WB(A#Qb0&r~**~lmgRRC4r(b`KpQgc`|EKTzRwcK#INcM19$)!B;qS)&m zTx-SV6)P-I#;Dv?YVVd6z)R5!)<b-V}LPATUvo2i?3V| zhUjUSi1_Z0`pK=x_m|u`jH~db83MD6bIZwzabV`;P!}v`?x89 zl}?;?ArrwJDEr=l5sm__Wv2{aku}CKsC|e8ft%_N#8ja7S{m9(k-jrP@f!kKgx0na zGX|yEKjR1Z$BKYx!f`Yxg|mvV-PQ^->vuYdAlYjuakT35tbU(!tc0sTg}QO8UkrA} zPx|K^895~Z^Rj~?J_>xnHsJqLPA5udt$6?OAgCRkp=rEI<6>^Uvp?(cOgi$Yyd6Q8 zaO8VKHOU8+XzF?ZZloMu2EFhA67v0@?AIum$B=P)7QGI)#hPYRSp?Zr9Am7kEgZBX zT;%MGsmbjzrmdf%kvrr*Jl}`OEM$HF7u$?!=}o|OFF747cVVhz_7CcYq$`CLJ4ke| zRiG|PvwuAqr!P5~La(P@V#VNOaos6T>Z@YwpU`erR@q_&BS#&gW4L4X7$-j)^vngV zCkM3G;mq<1($1C!SM_+ec#7AA^gLW(|Ej`D1vP!^^nmR&45=*)w=-0{uzf)ybYO$V zT(GLq5x;`G?Veu(_e-;njfRhs_1gyWs}JR-?XL1>kQ1 zw_Y-3TZT#&1WmeVSG>(P<^1E@O?k{^b zVZ3ibvvY)biPAG3IIyyC<``bL_}({!72M1;Bv|@bSNjnnR`zl`Ke00MRpJklD7xEF zliJUNrNwo-eep6pK4ntovMLx?+Nqk=PGII!9_D?xLQCi!#c08o{JE2DX~5P1lCax-u4zPn3HNjz-b0q&3MyX8=&`JCh^4D( zt72dSS{BM$F8{+ZK$}P*%mCL(QLsH!zJmH&0s(ulH-Xu2z6@#&>%npxf3XKW?@$iz z5B3y-rSm;I{*wwo-@+c8JQ)1;=t)Bwm}VGy5*!&8gl3#Q|x!t7U=8{C_{_T&lp{Z%yG0}QaYzb5GZ zTj!6uz<*fJ_)!=5r!aP;I0$bhgPDL;l8dzf({>-0)$8(G?Ku9Hyc8(UZm|z33Fpa@043AHHo#?UZx|@xD>}8GO~~(ssz0`j zvE(M+*@QiP50){X1D@ePVlMFA-5wX`bL>ybj6c%>ejNWf>H3GRh0SQ>W#rSv#hovi zG`O(S3>g7UZc*)lmUr7qZLKs=e4VyLtQ7U(yxP8^cOQ`ZnI8gYR7&oD5qGaNGg%X+ zzM^bn%&iD4^w1YWI|B;)XpqTgwFoTd9R2%P$x2iHJ>34=*FT{5AJF@cQp3M|Yxx1a z{|)s1Z|Kh^DUc0q(%_>QROkDcjBki?%bAH^y8Ot)I5(Q|uDWg_|MA8n!b}@h2B4EB z!*b-bLC|Yrudjywlh+rPU*3V+L;YfTuNUzgK_;FF;?(H-(gNITuZ>!a%p}D-40Eb1ps*q(65Xg$x+Kg*|>!uo6u=oZ$``}W~d~p5E`zYyq z6W1EhCA-vw2G2k2BPlNMF$4oJthA?TrsahIfC{O4b*9C(c1K;*(82+acCm+VO{CZw z(~sdMhLc*wb;6#sfCyOHVP+0T1xBQM6PQihmK_GW&I*OT!-Zz-b5b<%^+x7dbC| zt`RcI5(n8nS8r{u~|I&jrC(#{n<51?998# z<+DcH*gmUJ1?MS@ZA@Dlz?p>0%8Hm0soOkwul6-mUavFZ=;`Kz_b#qTV-hu#a zkbo65;>NllEf*R$LpoqLD>XZoDe;U|bm7L37Qtt`LE}NKi_t;i+N_3(hPv_k6uQ}e zsvbL5zK=%jBDq!Lw=(sJh5mDHe9o(aOUL**e9eY=6V82H=YA^%vFJpoTcia*)kbuw z6e7%F4N_7hp5_eTqp#+mzMkcW=mm*i4JZ@uAfs7#IRSRDhX5$h21J+9p{y#X5OeDW zlG_KW7A)R2sP)7x)%s;-?1j^c+uQl?c?=L*gb^@6rvC^%_k9&$AaNhHcCda5I4}+& zeZs2+Q)c?yb`{4MSWe&_lZ155%u&a=&`HpHG>HPB3G{U8RUlOoa65|1Q#POQW@@2H z&sqE}7~tfUGq<8jlB#hzGQL=C#K%0{>0+N-KoNcD9b0+8MDqBtrrdMKD!&|V=ga^? zKQBd+q9wcb%&#-aKNOp({x8aOLOnvp+6n`+xbD7eoY)~@tEfPE2pu#KZw!&^ct zYGcmsm40dVHCMtc1LpoT!K=6f*HF$LH>l&h?Bm#_uvz5(WWl2z)3QN%{PHDC6JKC8 zLl`$WBF*}#(0}2OKRbb@Y8`7|+EtTklY1tsz{dJOQ@9MmOJbA2v0Xt&IaeHYaQ-w$ znCBK_*Ici&`zxQg)#`jTA&_~UF7`g>zrDcV_5^DduqH|4AUjK9ZSx_LFT8}7dSw|(-~-Yr^nN`T0-a!Q(=7Swmc(4^XGo+7US{0d`aUKs(nsXUosrp!5R4O42@*gjhT_1`#6v+Xsp3N;TPdft4SP_pjwKGe zc~p1qQ?naX^7<^{3d%K4ggEJU9aajm?p^%blTxlaFv4gGW8(}l>}s3rYU zegHigs)B_nlW^ki)(F0HDT5!(EDhlLVa50N9u-js&(EZN$+>&Lec^r!WFkN_0e2&a zri$}IaR+#JF02l$q5J*ffkM)3c2Onkjp#$=7Z%GhQ6G5_Obasn;)bTbVQ7UUA*z>SB29X6Vas!-H*J2|{lk3OUdmq+~@Gaii;%Zav?Zr*XEV>)eUdI}~6PpzM zvK89xqTHfOAEAC}8q^=_%CP)$VOw4`|H*sd9$K@>k|#iUfS;|qokRGatR6JuR09qb z(JIOKTH?mnS1cfsc-Qm7NHZae=k^~CZuuyA%bHA>Fu2g6V#J5_3lCRmzFE*+kQL$L zdI>7qMpoC~%*a~D2f3}#z+mCfW5p>H$a_pslgRS<22W=R!al+4!Q|~&r}m`+wbXiz zBfj&rs@A1JwzWBiB-8f+)txq#&eTf~bCDFx>)DN8)W75z8qZ#$d%P*D&JrP&0+-w{ z#OhPT@OI;T8@?P_P(2rXzGU0mX4u_rNB9Q3BV?VdPS*=IsE8A5TvodK} z6?u)NmdYgxa+Wa{7DV$NTRdvv56J!)d^>+La#kyH4M`#bFK8L2;oBHPrTX5(DqYfw z*c>$V$_pd%mv=+_v0!DLbf3l!U7-z=FYh!CRK=HSCDuR5c{R8mO_taz&E7Rlh=#@C zQ7A9G+UW_y8!xZY{B(WJ+lWW{AMvEE$BH@7iw%XeHU=2`l?Gap0q$J{4L$0 znD2S2TAd~`6YmpMiBxJs6nP1z_&0e<#Yyg#jBd54v)n)V#`WYbRM!OovKIK^97?Ph zFaIkki*>5PCkVYe%M@tEEGsU1{F0|Nh>9ste={7ZfuSjM6W6u}X$@qQV`&!{z_A}A ztZ_b-i{>~Xz4FNQP@!v@4^ zh#_nqr9h0~F*rL%`oz`*?26N|Y)cOEf zi)jX))SSHw^~`|&Q}xZ4eRj5oh=kxDol)C$5BZKb7DwDUU%Hc`Z9`Li-S)|fHX=Rs z#zD=rTP~pypURf9-POO~YG#})U4lTGI^De@DtNB2S2-$Kj*xAyzc3XVslP4v&6OMW zl_13nR^LE;j2Zx9*?98TT0haWP@q@unY7ri2vWZ(X6~hZTf}zVX*cRjQU=|^c>5TXdLjw{AEtg{S??Cd-k5G8wF^2rwV z{ws-^mJxQ1ggqV0fhIM=g^3{pLU_i%W}I-Vfr;LEuWDN))`~ z!Yq+r!TgmWTgIX%GbJ0pyd5Ylrwu;5zIgYi|MJa~1Ik z$S5SenGZI+1hp=eRXE=2Ea$BJcf->^spb)#Whrhj?><1IaI03Ne?tJv-1Ew8G!&+1 zipie|pKd1AvpfKO=93quNfa_q19G@ECB<;mO0zM@9TI@xC-=VtJpKPe@YD69u=k^| z_Y3jo&+xVX%&{MZy?<*E{eNB9yZOh$Uci4)*fYON>=|TX=;m0PzdUWC5Sfv40mS7e zewKQS8Z9XP=YrxRqhgh1)Ee&)R0_osO#il`=Sps4H9e;hPXs)JfYlW4yW)nmgB<)T z>+Z+nKUM7hn|bu66c8|W`IZCL%VVD5Y(>B}Y7ldK1^VV4FLf0Mt(6JiExu+eK;R|z z;wxC5h{?!uk+eWuMp<#GjuxGz+9Tjo&|) zRk8vu)24llu!1?oU!RsThgiJ?n*EwmfFi|i7B2w=F>BWV_j2?adZG>(SwDw^Wh=7& z@@h%ocM_UpSKtsm+!p;GuA{%wto{>^=!57naDkSNY5)MiPO}J(wKX48!7)KDWC{?z zARjll&fkqCUP`FAijW;ZJ7U(<6vNO|WhWxtTEJ)cj}Bw$$hm_*2JwG>5dXM#|EX)o z<1sTBuq5PI7zx~=8lF6K?~cSXBmmVSO&Yy82t*W4#z(hkZ#*5F7hAIQ}7BgN6kggZ=GsqI4$?*U%^)BbM!AX|p%Z`8R)bVGn2=wHPjrc1Mb4%P4 zu)maGud(^qSg;HLeZOi`!LJE+11(jfsRVwexKHWMalz)o7bdJEk106$#omu;7L`VH z$M_Ub9LgkzjH_0rZ6=1{B&OqM1Ox6T*G(&IMiDn={S+J6{qTmGhWSd1jdx5r%13tG zG5k6CIsOJV(CySaM*GLTV>x#@b$48GPZj05)Zfmz#AZujC_2$UmoQE+)pN}3l;taER{rA7l-+v3?IL!Cy$&QLATi;aJv=eu!(MMPU2OBgXh88==v)=@O0vW4 zH=+pp*2B3PeSM?(M)PjuKI%38tApqB=0>DS@J$cS7whO+wDRh$KXo!)RtOEYEVw48^IH$Rb==|#(ISq!e+9oF+B#+Q$Gg%Rj#4QIW)15RdMp{Y zi^4e&U`nBrmJQW&#hrRv`Q|fU2yVTbE#v>{OTZQWojj~$vR+WB5P7JY3JZ|;;$1SF z%|<uEeQwSXx{^wtfrfSoBGN6$@4G$F*RV^#cH27Q7P) zAJAhe0f#tHgabZewB2t2iyM@dTstrWf`9yvKfL)Us&3&Q|IogbPmFC)5^LhRTz{X)Teih2@-swd>8OZ(}7lYwwuOt>0m4 zDi*|cRQM-g+l5nvzB6D?(E!qZiBAvEL3J><5?F71nn^^^>9XD0I^a0@ZNm7SYssnW zd*m*bSy)zVwByeVl|*pwXqCP74H0&cl|r13qk;FXKZIgl4$=VacSiw?=mMH$y~98= zRiDc{voV`!Zq?TOjEA|dp=q@U8`eYO&C*) zGliYXQ5MtBKKFXe1J*-Q>3M@p=yKE$%0gW*0Ca@Bj>x3*sHtTW` zD$@psU~czuO-0jE%IJK@H5GZWz|OXGjdYtKRTHZ2y<2jD?mJcQmkHvIqRMZaZ{Hwp zL6n#-x=19RM=iIWE9sie<_mBeN7DAx&*O7GHoMzr%vwpMc;+=5-_M9=b+}L2&2)8v zYle{~%MR8WLKe zq+vmeu0o;LD{jm3ShAoS*@9^1=7VJLB~)rnyE0Mny_KUYJKE> zhr)trg&k0l*2WxA9JjN5`Ik-f-!a{yKA1p;5V^{C&l+R3&;a!wcR9`#TIwyFnvC^7 zcs#pR!aP;=;;rO6XWiq@95nPu1D1LD=B%w4E&x7;RewX=JPz-qArf!L22<4OIi4r4-VHxo@xt2N@79Yr$T zFBd09oK4#5|nzJX@~jfRa;i}39xP4<;bU>im9G$n62ip5aW^v<^x*> z66Pi`_A*brOQcU#Mx~E@s7-MZbC%Q9Z>*6veAmYENJoAWj)Y^u2?d|PeaLH@(tGXm z3KZ{BvHlL`U$Nq&Iew}kz$q1zXB4U+QC!weDAkwKlV!bxB=$msF{2H-^nMV5U;;m%Ktc~#!`zgK zVTH~UJpra!jhW>+udWS!&YLwGx^!F2jBDv;NV7=37Z35x2tV2Fb}45@HK~omsn>5) zlH02MwTlKm=U0zNAg-)x8u_KwlnavE?k-#7`DoQA^ZRZ*C`s-4gs#+_P zcc}MlwL~zR2pHGmvUDEsQ`MnHIT~1wFFk-*dj;qR{;&Z0AwzJYOf=04>uyJ8R10Im z zJosQ6_1O_$f5B0wH$eTB%`|S;o3zv2*FM&37IqtM>`eN5NKfN9SHlzqv^7gS0gQJlbkjy;QxBi^tav{(}HyiV#d1inzO^>2D zvAq;@^0X%nwQa`a?o1risNbxyA;ql5U6FC7Npp^lA%9m{Q+3GKBHX2JU!ib(a1=K* zTk^lPygy5i7n$u)-c4Q&3s5JC%E%+DQcRykKdY>{*?V?R={|VgJ=B=SgP;JfEPqnp z9e67fK{l!;2y!J^w9lVVHDF(h&AvO&&>nMSdvkI^lUt;(tm7Byut3x}debycp|7&kaOc&S+ZQo^a?H_N+Ndal^3;PyKaor$!)-nAfM@T>h&LXN3}L}*%i zj-m4AAG#OLE=eQ~iTMdWH4i%FX}7-gn0} zwPtGvK~WGR9cckUQ4mmyC?ZigQbfcadPG!&h=_n7hHOPT0s;pR5TYPOTBJ*j^ezHQ z1f&I|mxK}mDSj_AznMET=gfRF_nR~KyZ6o?{75#No$UAB?|RpI*0Y`!Y3j=s@VIWI zaOxd!8KTCzp^+EJTZDD_Dt>?i@C5*d$t(EigJ5L%>v{C@rD;usH$HX6UyM|^LBGU_TC z(DhcZEC@KCS8AQ#|4l!?e)qce5yjfC!Ss$sBIVpruTtZxQ-C{9ADL*M$w_pP)P8v%s2hF}vBETX70l^DsVBGN+HzwNrbFyDs?eXqa5(lGJ$W zhfox3)ta<_!WPHs(CyQu6h>UGV4{4^F-wQy2=fm&uL-|7RFjb!c%Iiz z9(IfeHoZZt`IV%VCd0_e{#lhIxVI2zCkHBT%{n@0xZswj+?NBdDh(6;cSYD6@ED58 z+i7qxO;IZk!H7))W||t^1r&D|Ay`MPQ3byUJZuOf9oy-y)$7V70XlN27PsR~Uf6C< ze8%5z`IA&gaZ@r+NX+#{*o{c9cv%166Qcgs=lr56Ceid)s^4D0$CHTq#Nimk;)8WG z%cn>cfS5}$e|ZR~hABm zY%kUfG{^wvEG&LSoYh_HfvrMsG{ZcGL=$cB;~Q0Gk3FCKCD8My@Bbqa_TMol*49&$ zs9sy93A*xVX89F%7q&jUn|td{bgGUPW=3`8 z^8{np84IN`0{!k#uN*u0Djvw3&Linx5Pxwl;ihhz)lBJ1j_{%{vP5+@_L!4tkk>Wj zT+nlzlUVN1DOLuMkbn!QHKs64D6{!TYZ}%QE7SyMBenCGn-$JjKaKM^P7cnoe`KH0 zZ}2F+L+VRK%6|E?Qes~IRzAAXw_d&a6?6M{RAz1{Klp^=x`#v{dtL|z)nr!`=R5Ns zeoHG(>Q&h$;zMfX9lxQvKHecowYZozp>p|b>dgnZxK4DNGgD`Q_8w@^ZV1u(v_kB? z<)DI;a$%@1p&l(*Av+RkXPFmSYu2N|IOb=qJz)O&{d>c2TX>(J$s2RajeQ)iW)_I= zEE2k4r9bkgkJA57ugz=#d-S=^5CGvn`Q7ai1vP>2-`50c@k8%Xz%?iCb-xCM!Y@Dc z166))0Yf`XtB4nD25ff!K9xwcqLkk;V3q%Xl_1pX&~_8Qs|L(QsQqd6-(S8Kj?Q`M zpoN|n|B~&Eo$H)8Wys)epb}oTeAVt?qY<2PPyqfoc2GzHV8gE z=H?h0Oj+v3x0H!San_gI(i9B`SD^=@>bnc`4rFpB3nP`n0{Th`aNy}1{(#+B5S;0A z_Ai9^2aTaDt6GPaEkc@O=0AU^y5J&xrR1Q3>kg&qO!h;d@-nn& zq2mlva-b@z>pf;&{9ir+a20wp6{;TERKej*Rca*Yc&WUk80;?&`55b77b0M*roMEr zzZfRA1Z(Rf$bcVfA7u9(A=X0j|~p8Tq83AE)GEcI%qkPhvoiPZynyU zAPrTcZ~}DhM(N!YmDj@q_s3^y<3k4%4&+HVs~8;^zil4n_G)gA(XL(f06?YVpCXs# zW`JVTm-HVnDMHf^SfAjCR=tVd=tNyP1HNSjb(o~Px94WCS>a4eZ`eO*gOI z-#Q$;2&Z2{gWSWUJ_(3)xdT=(SX)RoLXcw5_VtF?>xCd?1T?3}xb47-hZ6uF_$r?H zfVjn-5P;lSp?R$@J&<`Q)8Xow>a(j4E>-WmHN0t2#ww{+vjL0`FXJGtt4fsh7RwEd zE^M1Z#h=bid~2L$#J3PTzH7Jtt`OCqKOT;bGmw{j+IR{VPG~{W<$l1J2@n9uX72#Q z-^DA=vihrI_2=v6pGy+^|KZy3#-U&Iu)?eZ(BhZvt{x-JpkHZXMVL_km4;V;RJ;01 z{>{JN|6T>`f5SNZ3PADO$@6^q=Rp@ok<#V$!_NH1faUpscyB%nXHTjWE8Cz_i$yfsU*5hLX$H<8AkFOo!K}BlY-~NE97W{yD zLM7k(qadj2iR13S0FntjaWC<#HFFW0DYlF~D;@S}a8bY*#Q^fW2(JV{SVgy4OlsPVCK^A_PN2J(^jU^D0@ zQKq7EFn)RO45->E1zV*%EAzq$L?fbB)ekS2!xkBK>jossUA$@VP(}S z#@1X3a6m5@Gs7dvV(dlLCSZM8`zU{N1Ab4~1!Wbj6PI&){`is*JqoP}_pCuvhRgZk ztASV$Hr)Fed<$*78)g!@C<-ckJ%7ODY_e>wyaJ3?n|{_PGt?^wH!y-{M4M7^fop)s zK+judnE|Et^+O{-d*+Y%?tk`cX#>UysCf%L0=UCH08e^zkwk4of1Q})01H%tY`_Y! zXkf zF`Z7zAKk)tCs(eo(k`*mH0aM(k-S*rJbfb*mGQG2-)8k}_GH~&uX+lpMCY2DrrUgQ zkrzFrq4xR*%t3MsBJjV(GVTORfP2CF#-SzscqO2-zx<$3pFp>zZY?_xj>z$v*_^EuDaU`Am{p~!HVla(Z*}bOoFGfTareHz_-Hx)drH{u8NP3M zX;+1R5=9N z|0-!(sXuF_gSWU2>L)T>mUK?jbfH%ptGRkf_HWIUneJYvGM!pRJvUp2&lz=yOzKZl z1bF0W#B0qFs^&SXs&e)W^GaA-l@;Z;{Cj>^2G>_9+&+AwWz)((O#_V2(K|5N91F3GWZK%6Ge zSqstB`=Ke}?>J7>LdUOkyMDE)GKvObz9=8M9U!gi1CncM9x9ZSkNZemyocTn&ED>W z0N?^+7yMT{#LOQs5cPnFygAX6z^+;*vXp~~F=gyjwb$M;v|) zErRVz0Gb(Z1u}!mGastBp=L)q1g2_7G?*$E5)cxpJ_Sqwl`RkSL)v56&n-z$usZ;A z`U}Whvm2zqu$&ov1)t;j6YvVYXM5&*ZTLN4cuv;DKyzJswn1~uQN5?LVtqB}D}m~{M?JAt}joAh}J zX80w&gk4ogV5#^MW8&GV#Nl+%Y+4uise~MG^Tw|U-_sr=!QS=@0OlV8Wj1^f_(#wr z#hDqen*-QP8!{34q@~U1?ggf>7TW{?%=EjogdeaJ%$m&6qicZduzBmg0H z*{6YsQd$J0&tD$?Pc8G`%6$AQugggV?Op-+Bp>ntqDe&o;SC#NQXkuwIGhJ98dh+F zaqdMfN6)Oyy@K~3=yD6pm!`qQ*(<=&?wV0#Kbu+GNWcIbxVes=#jdx+vsCg4lOO-( z592@VP5*cD{QtXt*I&^Y#w;%q4+5TP4tf#u0HPiG3QZ=&!`Kcp%b?ALEfAD`IV!Ok?EPgG9btwJ^w^}0}+T=l=X~aSI6Sl_sr1a2y+Q!Zf2kju<`G1 zPOyW#*n4kpng_NfNb z;I&(Wt?lRtoB@Zk_QVq}{SwiD;rIYelw$#zKg4_q)q+NpZbKW&yE!v!hO8K{RgSWE zfjO?-U>2W3tvLT?@!dZ=Ui=?_z57*a;kdxLA26K(iIv8c+{`@eY0<=F8-?V%KVVho z7N%?vg0`$&>%jCu0cIj_#IZ%g%uccfi0={j41rVZ%gqX_Vu&VEF)DzR|J8WH+_IHL z|IChFC;F|hrk7cWaV&{n&(QdD$!Q_fOnTej98nh=wI47PW(AtE&iRkmXr%^F;;EFg z2sWUIshfy}oono~zmp$!*PSH&iQaHU)=7~1t}J0Ru8FT$u*z$ZtBQCsi+?c=h^g33 zt-k}Q-*V&738y^gnmjFD@a$4nX99g*!yYp)4YkJ#J5vfG>P0Jh>#gSAx53uyaGWF0OP^#u0`Fm4I8 z3w`PzVylFx-oD5_X=A{{a6HM~cjxY*pFPJK<`VKM)r%Ur?71Gz36JWV981Z|nui4A z=R-0)T`fQB9M3ZNj&|@6==+Eth~eHhO1XCWCaMJ2Eh^#x724NJBy18NL5 zMYb!j_K}AROc;hUqKwg6{P5e6hl)Ee@yw(VQUeE3w$w7ican zz|-O!#4)-@zr0p+Sa(rq4cextayPKr?CB=qlYFvV+hJ`LpPokLYu-1q#-ltt8Ub_I zJ=utCDvgQp+7ippLlP~J=bt|=Br4}B-J)h{i{3(?VDm&XROn}>vI~uhoJGnax5qoZ zFgz(u@T84}yI+-liCP+=8jpeo4xzfcAtCHp(!6_Xmu0I!vFsDGu{S$&<${h!oH%~Y zRCC;Y`cmsCEw1%|-Xx9*;{VM)^y?+E$`u^hM$Q9+jHQ_=<-rgAKqs*UUGC_ zNI}|WBnJ;`Z+gc(O@{b9^^BvesJC()lBYhg7zw?j#eTSa!Ml8TPnJw<=g zIhi6lBkMCr7G8fbv4q^$4rv!&@)Y;>n;V1BXdcMX^f6L=%orV@tC9a%b!^IRKgP2A zNmTLRuz?cCx6FtI8y33Gsj`k%(CChl)6+O0CAID9)l1J?3}l`*?IyY+hm+7HHbipH zUD7bJq4NCDp!Gfz_|?)o9U56bU@EZ!f{aF6_S^n(d75Y-t?fJ>%@x3b?#TY?EJV$i|LFLxK1=b&_3)CxAG)3YAw*N zM6j#VQc8Lc$lBHX^pfu@C)W4weKpe)+V8%iF4_2BQOv-X>K+E;p2Kb*lpsc#QobY= zkqN4)?K%0D{fCyfj2oshvDqlz6cFg5ad0auArezC_iOD-?h=e;Oyk?Dk&-wr(h~Kw zmoewraoQsC9r`J4oK0H^Sd8tdbJw9p%K_PMdME2op&U0><8Y_(lx!q*J1o!nj3&w2+K zfl|k4Npw?6fO$E;rDuVjw`0FWVYr{U`5kQO=tU#`b3)OGnrc#F=~2CH%@>UBSmv~g z#I3E_WKk5@#!zhsL#zNJvwf==5)-40k&b>@q@`3 z(_Tr5$x|g>4Fp%I#L#D^I!i6pa>4t4E-23%R?Lu(`h;2{GVGx0(^yNY>E&{YLbcSX ziP}M)$AuRMYbUChekJ=tvYB*!?v!uZY+&MP;kOJyDw_6*m4M^3wwl7J zQll&SDqkz@#iwW43>j`#O|_>e&Vi~fpT2p=d_^$E9ZaXt z9TD;`lZ@UFE{bhcUO8&B+ZsNp1VB=sDyDb>qQ8oVG`mEaZRnXmtbTh(>H!_HkU%do ziabW^a}HqI?MTcV*coJ(nPv9Tx@>ph`=GB$urPgjD!O?^$e4q>_;H>9vIMZSGFZ={ z;a7v&bh*r4x*pkkjuceEx%caXmIh3vhMRz8IkrPQ>|N9|AaU5_Jh@tnll#O(zj9#j zr?k&{g+*mnOSR{;8SFoBF|?(28m`wg`H-MiC4G4?{fc(5rNre6r>~hWA_IX?#Za$a zjg8D_rV<&BIE~4?y{c|LphuHf(ftSepmC<9)wf z=st%+-85#*SgSQmT&#*}DJ~2hkEWda{7l5|N#s55yO`1NUwpfZ8=27vcpaX`R{^3M zRdjuhlW(nl>b$*0N?7BH3DD}@!3u*WlR>?X&zu1`H)}H74-(UrWI9nkC#llW*(#-P z^zPHbwQDtCrs7%oPKlr~*XIeb34#S%1GBzC#xjAL^Bp0Y+7L9Qnd1;#qt8EnD%HHX z7oUFRJ6fdbFjJMjE4h~*Le70(CXxub(9HJSR={KHchTm2j*4M3&lz%t6#>!DLtte- z0 zo8P;u%Xrmt%(z(&-?dgX}%Bh?7Zd@<#1|88;&c{TM1Kk>}?>_*_$KE@?U|o z(yiWS%iBudz?{j7DnJ?njBzRK@oxwr!~RV1r3AxUM_lAim?nZqQzDS~O$nrh(NWs( zkPQKuIv^iI7}r|}P#8jI5bhHAf6w4V=XzQf%drQ3!1}}E$f|iuEP$X9df;(?)8if0 zvD+(C9KvX8T;yb83JAxkzU2g&07ej=F$r1(W{n-0Chj%A^s$wSem#BTQ`K%=6f;a8 zTzDd7o(~Ui9G|(0nUZm4OyH+%hHOp_Pgbj zgG7VX5*N*pfnbK z4u5@dwOV8F7Fey=(UyjRlw8*acu(|N9$5BBI*KYtCRHQ(ZX@}yNDs2IKB?~Dx7N+c z55u14q_&94eNxX@k2rx)hH5A9>_GYtSj|(AnOOeww<{YL+kT0G0_H>oY@!qdK(`H; zhfL?tpggVI63|^Bb|vf{u~4;slsYkr2+~!SQeeQ@0=s0RW^JH8EPn6S;l_k~<=(|r z@9Jlx#ipFY5Lf^;yGGG)dhP5F*d2DwXJu7pC>xzXGrww`K8>8Di|$f8g{dZGWl!Z1|_1bFpcT;yvjODGmoUzpOAj`>T1j zS46f{^9y+#sN*<+C_z)!CV&tGs0e=r`bT;r{`@WO4pb||24vG^<02xH8??6T{N)Xw zK!A+wpZ}kC6hneNfMHm8Ce-PQJ8wqtRQcHpe|_$VyekkSzt|E%^E^E218>JWGU32x z?PmeUcrq3P(ZM?s;WKDSNBn?(25qg{?Mb>sj~kHyof<6AQ|D{BVj~`6N(vyf|}8RnW46=sdkM6*Cpupu-mTw zfL*ELNj7fnZ$1bckk44N?eqKw?{c*^{Iz5psn0E8LFZ)p^wXpLu4$J0)^Q`(kvR{+--yF_sHh{XaMImd z>w~Dc_e*Bhv}^y=qTT0em)++$X3u)&LS%#4lZ=Z@#qJwD73RYd4c*tdD%+pdW+W>v z+MK+-Sm=nXmea*L^Zwf8Rlzf+xpBT2F*9w=p&UAHbfjG9e< zjFY7+ki-3zu{S9U^J0=4rt`(TGXDOUyMd&d_Qbe8$Ip}#n#^;g&rm*o&Unms(OSXPa|7s;IKgpl;VL$*kAx4vC1*{`!(?&keQ^Z()`c*gWbC>F}^59;A>C z=S^Z`lE{;g)8fqaM4y}S+jm%)mEL}Yk2`3r@(G@_>`XsUmEfAyYdM4GNvb^;bGv7p zEOpz;X#0T=IzjyT&kS2iWj%7|69Oz)$&}SV4YbH@3n+-G^-%hCs^dEYSBwk)faJTD z*AbuBcVg(iGH+#`@%It!fS>@f2=HlT*FPf)V(W|t%J$|R(&lT+S?n8Zx!>cP6!Gm) z8!j^PAhzu>d{Sg1Nm!vp3!<-#AbM*@aH&+KdLogbE1RE>+NQiR_IT~Qtjy??@ex9^JZxL4%rPXRbxubROa(>S={6 z8Hu2$8&goechDDm+!K6@i-5FvhkO8M(&HW3jT|TBpL1xk9NEnP9I+2T-ct3uisR{i zV2wdNy6YaYBBq7%buCQ7W&|_~P@gREm%exoPXp-0uhIeO1+-QcA$&F>#nbMpGzb8E zv)BU1LS7v9E}zvk?d_B}x~MQvjyv?^nFrwsab&3j7;G#w0>Ht+^=agAK7LUF3xGxf z%NWEGdgv$194sUo7(dDd)qo*R9fjA4s;2BAYDu8mjP*$kKm45s{MI%3Db{U5!z2Em zuY4QDM;O|zDHA|=eDMbi6KccCEgY~j`81+pX4&WP&PdFPQd%mgdwkV?u<8mOLjl6> zbIPN-MUE|WzSj=w-7JiT%!{t}=^cgCfd4=Tz7(ok92gUIX zy89{VeT5heHLGt9tNb?JiQHFXj(ly}>2BY5A~;EU`A8d5r0_Vd$9bEHBPrngL#})E z+pooKPo;i;LD9>)_LghsRsy-IGQfyFM^*TVu9<_~(p{vgT4O z_v9jCwA`y(^?mu5w!m0szmpDg=^>eyQvic}<#oSGqLb|D9{1A^ZN8&IDSbXZnhNuA zyaJUM;GAPk&~W+>Sg{Z)=K*_fe!N`QmaaK2yUD8uf4~w*0Zbv*a{y+*`?fTg*pHO> zOHUXCwK-*2wMwPFb!W7ME2+LPa1p!XQGb;_#86;9U?p8IsiG&26c==>B3k^}gJ$zN z;%9HjM(%ZbcH#(%=iD~fp~Qx0yHYgY3Q_Z0Mh zFVAaMp)Cj=)rkQuPx}BW4ijGd0h`;#Kw|}133tpqXUs&kN7LvU7^#Ax)`-QJvrh!1 zJCye6%zg7Dh_I@Vcd8j`^mC+I>FtZTSZ}gfVh+~}w|B(|+42bZ;GX<%SQ?WgziE|ExS-F@sPd|^O!mckdD z3|)ZTdM?Pg`JwaoA&Z8TiYN=6w_-q8JqJ5-0?|(jz#5H!vXR@xRdSTvROhTIRFk~V zbk~*mU6)r;r!KR%6lbj+WrZW}IPYS&;#By@O;FY1*_rMp2TIP4n6wvr8hyqIa1@m( zDXf@}5czK>sZ!X9WCGvd9(HtAe?1UO+0|may+umQ`{Y8?!ifzK113ar3l%pK+by%f zO_egzm}YJRPg*ptUpuBG$B|e7)i4U2Q>NyfRv44$iSk4oEArr!kp1_B^7s2|_78Hb z5a)P-*J?mNPD!}@o>Ed9vX}le$MUYxt>Q%6ZrkTBC3DAas6~8Ub3_$WT*KS(z=fK#*wg=ecXok}szepUQcq@KfH zm+E|unGNmg-_w>Vt6%+b7f^4=E;OYpn$EeW>dwqzOnUTPix&6FxQ(ik{yZuXTDc5&mbDsI3*fx} z@?NbBO@o7_3{@KynP^$Cf_03tCP^-6v%&T^CY$Sa;Nq3&0GX#gN^72k zWTqD5v}gJmRua>ep*`Kc_w@+t0p?gc($#)e^y=z`)_rG_cE<_LU+DaBZOeqh#2MH| zecNz2V(}*(3}Ex{gLIOi(n=3;H}RJTf6r#1r_%yhmAFl~4t3+#(_SH-v2|3boK%O? zdtyX>z|w<^w~jQr%Qt_Ml_XW;Dd!RNefp_(Zvi;Yp}To70aavQ*i+Pm7I^qHNZDzZ zX=~y4o3RUbH(wI_2Jr!Ju|P7a`FG291`vAaN}vkpxXo15NQduo_zv?M!-KorB_fYu zt6x3yiujHv5c~(h#G68Qj=in>8NISMv|4QoWJG_UJmfkJMj3YQ{;UyW$L_30R#X0vVQ{^dP}G|hEQ3SgkdQc&ci z*YE&cISXWMrG+}a<_xsa1728bVa8}uK~Ng8CcaQ%L2fZ466n1{I^fs zOQz@)G{qRccFbFqU2OqGrG(d7|MC!M-*x;~9tn;gq<>R~elIR2wBf`220#C%4*hmz zEPsMN-Z-) z3bsEdSNR9*{Rna4b@&w8VPsGt>fjjrcF{UJAS$W5l9y(02k1l#3JrhujsEh^|ARvG zznD(+R>a}Clfg~t#}U?^!Ma^KC2HxqC|3ritfDZ_FW1@L*z>tShaA^=?)&F9V-*;t z>_PliT^_pW#XO3Cxji{tqFu25=1p5gt46N2gL}#%)tW-2J%kh2Y^FzfLzW@1ch)(Xp+Z5fvk*ZqxdTvo(jD z?dIWhc~nivfLx8VD!u+~jh*RE6Op*|7%LH1BnvZ`sQx=)9G7IU%kWeD`FRs~5g;B;+=>&Y zhm+BPJML5*x8Kvc_d(nZPX1GGmK|;=hRoLxpA&*1K^+t|ps}x`&RP5$E9+`cnp*R- z*-&o&dNKLAFb$5K4>(`GjAFQgZOelm>YBnlN^!20ka&t<%6oL9t&{PUTaq&Q(X5!r zYqf(&N9GoSscP!&C6A*n0zK7e3tT%gk5EtSyFYH(!FyUHVx;`2PI;mY<6a5;b0bfN zvc}{4SMG_1ww3N$8~T9T`MFBQbLa#`CHw~rQ6)<(e&-wUoZzb1AjaV9)&0T>0iVw8 zUnSxxahmQu!fT6pGkLYyiRUqgQ_6TmQ-h6uYq|R^`J|#W)t$rHC3{14ojRIZ0q?uf zSD^mVC3>{C^7xjC0MpJX#LT?%RR+T){9vY(63 zDML?u5k1@gMnEylEG1^402aZL@3e7qDH1HV*Ly8U4|ppZk9inL9_Ry|jGO+XlQBbr zwn{fn!%DN#u*S)gA~OytGrN^-J_>PM)TrQU3QTz%qTRG}$EL@}Pz^4pyc>a_!AhEhjpLF1aNog}~D^wz@>LuXKdDCz{&w6+YyRLI*% z$w_I^?z`^Z=a%ZcGW9SHyd4^$v{FyAPa??2gjqF^->=5=Y$)v^fM@FGE-b3wZBQTH&+JZHeGOoELeBH zxaUZmEYj-x&ZN6IZ^>wCCXAT3UbqKdtyj@L+7ugYZ{LACr1-A(|$jAa!UtMGg{Vk=W2G5_9 zvXc;4*pKOXCK)&ubMQtua#j~bA?Oo8E+rl(^PU9VaOUm*Ry^K0@6IdJ+q|ztRq^Sv z`KIt|N(&ZiWqIGD3{pkiUDqhUGQGn(R#Fw}kE;$RC4f~d5WdZ_@!>;(B*evXlU8Eh zVovX2uZQ92$S*TUX{?<>9Xu4LO-*RIWrDV-O4_S%Ln}@h2Q86RK7x-bM#kNf%RXGVWj{(ruEP@5X1HQTZNPiel&(e&<+zo?^$PvIEdj zC?=+l%bXij!<@;^f)+XBPlgTch%vjiOpaGZ1oz2>`ROUOKCM3V_#{^_J5DJ|G~^yO zPc!wj<^xFa2dq$Z7D4T&d3K@ewO4YAi6id=1*WwxRpj;04?m=q$w&Bj4i%=|)4K5( zr%IU1y40-!Frc!|l}EQ14mc-!D)?N1OXi(PwU#p7Y;MFQolJ~0?durMWNxA_k(~o# zY>D~Tqwg;FTsJzbrPthKTQSY(y`$(r^^bSudNhsWl)t_tcS<(idD<&` z`NFJHW7g!mJIHXZ=?6APf;)LzF^-Xz=$#dK zMbU5hF8H5~DweNYcR{}>s6L*(XfdGwshwBI?cSB>pNF$Jn`9^_33DHbcu)}42(rg% zo=Od6$c6>pzMP!ckbyb(Bcs+Cn)^sz?Tr$-a^EbaEDqa6)^*j`N#YL#Tn#=m$qXa( z0cCW9Ik}9!84|Jp3RbCT*QOm^D3p^OmjHCAhc0(Y*}DYYKDceq^{T|FlAI|04So1p z=Rj#GDm!dWYA9e~ZsC$cwey}@HN^R8p68x2&pmVdmP^TGyKUy**q<^oV?=x6Q~iq5 zZDr#7<~8CKq{NR3slB7gjOUO(N(V9Bah=G;dq_cO*1m_hTx>yYp&|Pe*yp&(&a7wa zBz8=z%~7-oU&Q$Fj=mwfTsYHDR|z6XiGo7Z3c|NCrUqD?M?e+%C2|SN1(ZoDwXj+V zf)Y%9j|=n*P0U~Ltsn>VPUM&#Re|-?8M$msqGGJg?{=xxE%UI$iNjIo#XIqM*0YkK zbrTHwBOhciL@^?)9X2s#H&}umgGD)cfcPW_ry|m?P!{F}7@D37fPd)v%G2P3XrDV^ zfMteESze5}opNaFo)8{e|Lc~nVOu$OO%!?8pZ26Agp3>9i2f4C1U#DB6rzLbx)^pp zfK_9Mm`|+;VE~MbB^Gkm4sp?+HkS32kHi&%Rw7fY7SS!11A`jvd~ZzD1Ha668b@Cg z65%{i)i`B<TRg}-`BXabby{J~iSbWYv8o9;Sl z*{U>m-cb~FXZ=yLJcmMm;g*;qFJ7u5WoCwQyzNiBeyKm_*rgFFpZE!s3V*!)TLhth zxaNOFakGs%*$6vebH~jj6UosrW0P)k=%H4h$~d0wbxdmnN=lD6y zdP?m#)%=!y>E-2&{*n>9rI+*RhZS)aAS^=Pe)u6a@N&LCWr|Gf?$8KzsaH0TN|sFEl%*9^GmU^Ckkn45XZ*KG9v- zw70-0mzS|~Fl%SPgx&*t+@DuM7yc{n|yumH`fm<478UdS-pvsad zA#9>c0m4ld7y#BYZ4^7Y@dTnz_)ns6X=6}pYKW?HW{9kWv*cok&n(y%Q6`cV zp(|EPg=i5J(I?Kbq9UT&!B&I%wfkr>ig(lXJM6=D<0*>lYS6ajcfEnQMd$TcwFu7y&UN`e6RWXVJ#9#zMOr;T*u#$BG?a+!)e6438vD}P7}sS ztae`iNa6#C{<8lkqH-uRJ?I1CfrP&f&HS9U_LDV1$w!JQdvzyl0>C^BFO*&ziHBHt#7X9luc4E=L4xNo>M_? zR?Kz3S2YHn+z&nq+;PKdZ92g{nF@&@x8e5F%ZE$qlqJY09~E4C=4AIaA;~pYeb2~U zCmJTlPF)FjJ^b`3nn;v}hEv$wU7*91iBcnxSEaMUVf6Nm;)48J=6k!+pKUIS8S%cR zz<=Yq{=N@F1CQY^q2UZ-(JC$UGhmz`Ys-h0F{rE5J#ET$k#D!h$Ohav;y~={d+Br! z63DC{82G~aOd@q3uWtu{MXQ|XL#dDEabZUCFC!oBC0>Mv6Odq}RS+WS4N%}!OQz^Z z!V}t&z38ZmpXI7yPgh?(9>Evr3O<*Ian3{Zz3HLa$4Habyqv#wDEf( z>+t|u;xV~aj3~Abe`e?SEmY;&@&0qgd~5IaR;bdhb^GTq48e;0cGn1dA!UKPOnL0= z&?}G2u{;$@u1>ULM{ z$8M)KK5^eCGVJJO^2t}tzt>&zmhnRvvMw_7;HvPP(6h|xEB+_NWL7~3i^He|Ehc|f zUB2lEA!u+%1lw4t@-SO-Me9PlkS{dk+cARn)2@u@cDEcjvQm^}NL=t&Vkv={U~e74 zbuvxpercSG-yB4``4{*aI)MrS(2(DpJ%_&9T`0A8)#}THr6r&CHkG@3a3V)+FV0W& zUKYUUR{_4GPbi&i%7tqhR6krGc6VhVf9lXqm-p6f$?m{Aw9I}5I(cBKj$^G!y4s+; zM4@i(0qWM5`NW)LSA0S5>wf1=VUG>OE;L?>IVvANTCsUJd?)h^H7#Tqv8|t#jv~#I z3ySrgmw&%=_c}*kuv**KwaWrtC^+SGp4}q8%&>gnCt0W2XVMFYBl0v;%U!w?_d3B-|r5> z#RAE;Fz)P}uc+bqf;U6A#p`K)nFeEnQ{Amj+V1@a4qRv){t&!gPTNMUOWMTB(Uo?T zb_wP?N1syPK4R^@udi3Q@Ri_7tEi`LeL-6ray9{0@?UyKz9Hp?#>5x$wy4}^#9 zK~Qqo5|(X0+0T^~wV4mU>vg_U_lWZd6GQ2FtlPp0glY6edS&xsM=bqp!H?02_bL%J=$K&nZGYno_gU3)2JS10>AQ+de!!fcZ z>^#4F?MC@~8MVGsb&>*aG@fyMedA_-3B9>dGRp8>P3l0?l`FgClVC9Sy~Mom-l$<3 zo}w`9;ioHU@gdLpYj2~Q<--Lg2fenl7@@jX_5sAxD(z=BNZ<-~{$4_vV-48Y%_hLx zHuyrE-4DbBCi~deveq{|Q}CuaWqODv)D0~=K?gx3AqiCj#{O9UMzyZp%^~)4GqBa- zz|;3Dhkug<=pSOwf7Wm42%-c(cZm7}1`P6??I>ZZr$S?2RY>wz=$3ao780j|43I#qNAkou=GyQ(B!!KY`~+h#@y zVpx4vEcQ5=C^aLhJ)h_5k?|(h!L)CL5`U&bv%wVlg<{R*zfxZ3-=Fo{sjU4! zjqSgtThOO}^GbdjKFJ@<=wIQLY;cNLDz-&bE{sCPlJecd`1IEBy7Sz_ z-T;@7UivjHU1B8SNlA%?M*{&iWPZ4Ln6zA?_wv3<%FL`6!jWB)@&EMH{f6a@{~Ny- zXH&&Z=dl@+y+`7NiK?;dsQoq(qvdz%F%P&0Zt2mVg^yv{XVwhDD7v+W3DTiU(69yD z3IAs7ODW}(cOk>4EPPwX_i2-DI%j-wa`^A@-=}E_E;LKV!wwEf`$X#yx;t}6_DvP9i{TNomx17oDI)3Lbdx_T{?b0~d>z1>=UGVyJApE_*^U4dF#t7WJ6X|_U+ z+|=3Eak2ZA@lA)oCd&-+`2zh$j-bt-y?Z2|GMhaos&)6!oyjcA4@n0LFnsnuy?=yx zVK#wDcbD_ODt6Phc0boW$J^KKF4=xgBR_z+*qZd#VPxo>j_YuzlLkd?t$6jGJjGP( z=)P+I?=&~X+C0KEW7xjIbUW6IZkx^Ef z3TOns1<6=rbRQR;lbqU7U5T5x6)+mfm$u{^a3u)xct+9v^tj5yGBo@eSuFbl79Waa!yG^%S}0nq)8foan@PXD#ky@E-Sd?F z6h5qnkawx7eDCA6=poU7Qgra;zQ0VfF$)B!i-|Yv&K=IfLjuFf^|vqpRkBm zj?(+7|A)Qzj%%u0*F}S%s3-xXNDT^#h=3wZTC5Ziu|WicsDLy91u0SzK+@T_F3oLz0ckIZ2#~lzma5SX3R0(@s{U# z-V1A{_hQm&HUv;7mHSCyC*tm6pNqs)vGt94EP@Yi*Q0EN6LJ_Q$h+Wy1^b7e+vgpu zOnLNn!bK(^Ze}=0=yI@&$cHr|O$OblsVzfy>U}>jicUnB)E(*jsLTlEC_;P|3 z4Dj+-(OH9N29NNB4~4x~N&vk-gD>2QO%AQA%bwN9?LFFj#tXrORJ==xb z(H`4ICJx=bRtK*#1~{efL~FUmNjKiB<~wZG0NjTy`Li9-n*O1==}Dc+jHZ9kFrdEL zGxt#pD4mQGnRE6-d(#r@sv<{j-5+4etm2?uN}zbyoPq6c0YOu0Z{Zf4A~vwBCFYsj zDG`jnSaCrj$CQ0rB^I!x=Dc_zUaSBxe7-Ex_;vz=N22!mfDfGF9H#8Al}RYfRh_K2 zao{*?n15+~s}cPQluk<~5~!BlmgnN0)V*vPRy{n@LyXzYJVn6QBS%iQr;*u8M7YlmrhTHOZQ%AgV^Gk6wm~lb}X>Y;4wMA-Lf@O^I=;~pYmz! z%wYn+40r~j$8AW~UW6+ACcp>6kqdV_v1>U;S3dqhLVB_7-h*FyF69#w{F#TJkZ}!L zlb0=h)z5V=8TnUV-&k#Ll9;rFIrVH@mf+Q=b*fanyqe!bqDFwgoL1(wWLN$ zAAlKliQQoy!d6R{t8hlpPv~cT#Hm~K$vc_ke(N`ual5s}$}KVHuvSV$BFA3!UA+a; zdSYQ3PDRA-2_LNI_p(*maYDP==J#{VNt`ymCZLiX1TL>Uo%Uj>7bu!*VM69RmM>R^ zOQiT_$oAt5qwf(aWhUflM=o?5<8!C$Ob#`OaqMrvRvcoM;<`KEGHF|pSPo7kzokyI4}1lPHEQxMq=I5f)i1KtLHQxy?Pq@J8d zZ<)z@{_qu1)`{OhI)JW1$Q52%Hi*$5p_#i^h%WQwE@&r63m-5H8(nX_0NU0NWH#i= zFF8{LhjqqvBq*%Vc_a_EUwIXvw=1yxh0HXc(-Tz~Nh!#`_%Di!g*jQpc7k`kw*R3D zPnh08Oj)K$_AwF;r-Nu-b_0qr?FF|t9u-W(b$tX@_FREXE!J*yQ@Jf{lzP+wzjaQ@ zJNA#o^3346r&J^k*yYL>tMEAvXcr!A2<$j=YYRv?7TMDWD|dmXV*@4wPcwunLG&ye zUr8k-*7>-sYaa1A0#rci-u`?0bpQVdfgG`qVJ2Muobc|3>Q)l_yoII(jx>amH`HY} zd4th!TdjXwk3oAlo zzBu$uzj?n^76>d{(3yXt3eEDr`JVq+Xl0KxXBjR=ct;j)g42W3rX4x+@jHN_yhCmtCEf?!qg$K@MxkA?shBp5M7(HV;WF+uK#<~|0mJYn1GB|FJ#W7O0c6#k9Zc!P+s;U4P}8Omo?qI{6c3Ael5c`V)30 zHgoG5VcG%OxzYiTgif4;3TSo!1yU+6TZ~CXt?B;@vkZH1w3ssx9*lJ`4Bhf!<&YyB z0*ODbb^aej%B%s_T#4}x$d8#GX69>2yuvIeraytmUD;1CC2!$TDDE}^K4=-S)cLyQEa{AB3i1$vf+fl}&eH?B1H_)S8OSnmE(BdGLZ zrXy`|puODa?sa(Zh&YF%*U5)zqmJLHs1G~!*j*wL^W-T9RI95IXM6PNbXmEEiR<0z zppAK_O1xd#?WjhP+dwC+%IL~2N%D43sTt+cU?<^_1wSSHL4cdcjhxEGfMmMN?V z8d4-O_B>Oy7LVNfaGk2M*g`)$gDt=|>W}h!nl`9A!u9+gwFvu*H80=s?`I}k_D$bY z=UvHNWV2DCe1-W+(Pc2-#11jvLq`WZ1$0LpQin*>C?ZE}L7s6fchVlh#zBh(7mN{5 z)xfdQ9(b^rDmp8iQHUnQkf@3@=yGD1t8%D7=WHSO0+ZN@KL82 zr;t_ZKbiHXN61C{BCj3g*RH(5ot@e?EXlfY3VAH>WsDS}z2{%e9%F!?Qf-Z#yiBtO zz>zJ$QVJrn&TrI09MXVs?NKYg^%K@jT)Uw}LjdrEPW8@l}lP`L!<TEAyikzw{!B z129x8t=P9vCE&eRkdtH|{hu%kH8d2hV~3+BQj(JW{yt)ky92{LjYh+b><02+(>(NF_SI4KBaf4sq z<){Ll- zH$vCVPJZa06^clkq<*Ou^30wx5j$RY{MuZa%b5n(C+K24c@w)A+aX&97H$@nfkOvj zM9EV`(xQD=Er!13Sb#d zI2w3q&>ITX2}6>vdi-_PTZgo-lnTe1FO`e)fhKDlH`zo0G!MOR=o3z@sH)qrF%8RZFwYV)wO zGJUHxI+->$AnT)%&=nQmbo?hZ;0`~9{=xu z|25};@6SlpeX~C>cfe9NB~JDNhQWd*AnkOhD6%lR`eynVJhjl}QQ$;;GEM_lHW1_T zCxbAo;f+68RoI^$|8{jT8H<6zIc3+`joeVjr4-xLa~)9)z3gIdNtFNs7sSboLe9Ll zBW?iPAH%)!GXU-A;i%lqsARWjWRRDA9@m*+B-^8(u(-nY!ha0C`?Kx%pJELC22H+! z-c+7P(DxrBu3h+wiR_yeVDJe*2BnQq1BX15+x0Y}&H7h4EEe<|)@S#}E~o>~@`fAJ z6}58m?}z>&IPpKlZ2YVFfyai8;h6~t|50xF`|rKI!?B!mD>{<*uXc2PyOxy&K(fzu z#QRpbfq*iOw9JGHO+$N@h_oLttX%<$(nW3|P1k$lL&bQDKU3ZpAG^zczEYZwDjzfcxeC~|G?4Z6i>llYk~CqVGLjCZ`acJ%^A+4t&# zkWt&<+Wh0y=r1f=k??s_zDC;FdEbKGXOAO_;VIbl#(DEVtigjNdOL66R+Q!n=^jDYB_m}0mc$Pbr;{4H*6)DC?@Z&aGG<@tZs;X(EDpP3?~bSL@5aWXR?ne3 zHyAu^kiq3Hs8$HKda>^~B&doFVG0rIMrkrqz=ZS0#UmH@jSt<@=g>);w`L#FCUuVI zGP_=x;G|A)_Ry_w>D1w2Gf3WYRsslk6*2b`NF1je4^?fCX+<0h$4^9jn)5!sqx>V^ zW64yv%PPjm@VScj_NXo8G`lRj>lN9H&vM(?IuZ#YxyP;CG{ZizAxvj62Wk5(XqFS% z9^)IK$t#6O_=vvUalyfc!&Po=H{5Eamr{i$WM;0HOe6aG7V0TQwSc}WGrkf11n5Z|pe=SMR)+d-IV#=ruRLT}2wiSZpo*B>(&^+DO2&o~Z zu=hmshQK+*IrMWrraJKXFdV}^H<^j@ZrMU721np!~wDk)Ry10bK>-$CL zH$w?1R`o9Z+!hPvs5PmDcO*@C4H0x|2ik187nI|aY-N|&=CXMjJrZ1&_H!3%d~MV` zf$r5|h-+;J!JexD$bqV2X<^W@`Hgw18u&@ko-(H7h6M6F)xSF^n6y_-srZQr9%)$_ z0lT5XvuE?V0Nh=`#ViG`7B&l1ykW(;Hnx4;3s6Yh_lxz&Xwb0VOFINE6+4#1I{ zO85!$djLWozKnOY;L{Y%0Q)52?nO5TX_$;=YO}^AxOnihyf;jTyX6V_9~(j5;D2(N zX$vi88pPsrJj{kd#6618a(JLWB-?4|(U?|nXbKr1#Au>{m}vX`&f7(wJ1{Vsmwv+g zFMClp&7Y?`c9^E{V~rFPZm*wJ&Cck^kd0D!V?4cZDE*1gf%NZJ z{Anh^$J|X3b4#dO$Zfp@+7i}%=l&B$%vEK`jPKr<@!?)mJ?e9512K>}UWlt7#cA!N zxqY0R-D*hV8UAoc-?U~=*9VE`ri!=WcU{qaBZ=w#cKrN<#<9+#X|ZqY_8hN!ClRJv zWpw_kAK&RJRzDfqIunnP9Ab#m`o=~>RX!}+yt6<4)g{;UK#^tMgOswz_xnZL_?UjS zrb{@IFMng5g;+W6N|(}+YotLE|FB4|E~|{RXo%AEJ(bdhM|ZOCIiNx?og>GK$N~#Y z3cTJ!;n=;FbCulusyj%w@ka!p?J^%BrNwm`3Ot%K%*-_;kC_f#jiE`@pK)~JpFo!c zKDjVe`eu84s8Y0NYj!?IASt&+vE|yqsg$?qXSZfw zo;3ZUc31aS3MM(vVL^VVW&F)3Sh)6vLj7zq)`VM$P8}gtw(C6iVpuz*6vThR+$%K+ zpwxX`V^c;QQSvLuK@2G;P*}$u>-?Q0;)YC$F0IVWQ@sP&>D%u#gNhYu(HAQ^n!nLN z;DXvl`3lgXkSJPnZCcv({?|ge>_fu$0&$KlU*3r3@O^q12Bl*-p-v>bmYS#6kOf&F zWbt0y4deKl$Jb=&_cX8BayVV%)E<9v-`XTtY0~mTp`3NT`Vj-u#!}QOI6t1vXsQyp%weX4=c#{d3)mieqwhw6dS~X%&j)S^VT zy?Yd2N4b-kS;2juWV2wT15Q&Rf9XDF$Sis%s}^HC zy`wMPuT6Xn44JvidZ2o6F8j$d#N4^D#zkqe^TfA6=U_dfUrglN?vl9H`FDyvI1d8IvD0Ma>-5oZpPe0$Sfe-{8}6q2y)g;X zd|P8cSgf-^f}$0>;ZaY(jqa@6IrCCzv<}NNXjgghq>kN`%*c0c2G>x=s%Yqhzkg4N zpc113(}O6mD5GCupvoyzDf@2Dy3fceW*&5U%MxDqIy-k^H0EF3VNEb_kDfHPaD;bD^)NZ7{T`RkV;%~lTw61ZdFm9_3hw6 zlZ)rQ$3qt_S|^heY=ltm$aLaUE$)|9h}{~3V|JSfwOh*gI|tUi9Ug_^NM8)R4)LPC zs`wfjAR28Jg@x+@M8PoZOpqb3!)e?@UnS2TUv;{zr#qGd>Ot=-7>Wu`F#TL1T4}~G zCqU{)2(L0{rOWEY?iV9%K#{kY+(^QO4w@b3`ED{Bb7aX_P>v5bW`#(^EcUI$(m65h zrp^nql);vIu|qb7d*}IA?7R|^UmmYMDUn*uF4YptRm9?$5D=itzV);nbI_BcUP#C@ zp*BgPt5Ejvc}}^vrD3}6QEy)E^XHL(nlQLblU7+w90T2xXm=`MjKe*5d+(ISpK|+pwx=#` zNc=Ws@WR0#R)^F9g zY01o}h#jSwO&~Z1(qC)krr7g8By1#+1}3i3;yym<*|mV(-whxYC#Dcx8;pI*x}(%H z1xJKrHvjel1RRcA3{|jca*DR$=;;lE;}`&ue0S{Zt}9JVbW4p z@@lnO^Q4bvMe_RTJB#1$TW||rMAB94A8>>lhFR=C;;lun6NY~*538l{jgf4d4Q4z# z~!{lSuoI~ySpSWd%LzIn2i`TCpAXKGTd0Kh+t9TOR-z}f^S zZ2C^W1tALaHpc$nb6$U48)Jp7HUbfnpQkg_;O)#jSWc+2XKn&Boe3&9F!Ct#8Fh5) z!eg{wHw^Xn4XG)mRKtNj=rYGRju{~&4=B*55xu|i2>&W7^1txw|3npf>m0QE%-#Fg z`=cSJ_Z*wP^xAi0wg|Yu69a@8NM!zsr!z?)ka6MB(1Ff%eVKIU3jvRwzivNvM{=ZP3b_C`vfx_!0zi24;@_=C98V6mGo!-&By-$pO+a7wE33#6IT2i<)qO7%UmsW`y#z>5L^-)hbKiocCj&jdC*53M&Qp)vZuJ*u- z$ej|;FTf0bB%WnDT%V+Kjw)h`XY!$Yrt8|oY)3gN5uU*$ zM2O_g1r1G0&B=sFmB$w^f=JzNXlF`>Bn!H}vLtIx>|k#poXfuR^>U$ls8f!lriICy zvSLzQJZylxBlIB&2n@T{#)VE9ew;IQj{*kwahwt&REe42w*rbcY+E#}8-<;kM?S`V zZfbBwU~l%VA_WQk?F!nB^T-z|!-3eFFaE-pM~&Ms_*kiRtCOY7*N`w8v!s9=mn;jc zT;(*bzUeNaNLvnR)8nrkWL5y-_e?Yh5c;T6L2}#-EXgxTQ(0^OK<$QAMU9-YFrcpkh%q4sb}}APnrLYgWwOwAa_XG1 zG)g+depj&WaZlUirpMlh*yHDvktw+Sp66;oiL)qUjKJUjJ|)FLdD+3uS$xw%dI$Wo z#K%w7*I3xN_QJ3{QToStQrk-+b(^fMRjuzdiAO#~t*wHYqcT59fUX!Ic-?6j;Z#lY zAGbAf(tj>|wcyr4^AAg7Teldy^23NCPTpN2WvyRj5mhh;TS(6qepN`IfrwF@&8-M0}PO{pn4 zkFR-&*|O4&lFQYp9yH200zg{aUsI%NoFwR{SDdq2c0_+!hppbmB<|X7#_Ga%e-Ejm z;cuu&gs+BxXIp(8w8q54XkBQsT>d-HB=d8%@qxVw56Gq_1+q$SviAfj^o7-PNFTiz zpmRm-3j3@%-=-PB6?!v4;bg{wVgs?<1TrXYzKL{IsI!uV`9TBm!Lx6C{rx*@>-VF| z_+wr#uAWng&ux@D9cJ<(!(<2N!nB5$pYN`}<{kf+2;A>|z%56g8^h9B?C@LqqFxss z6RU}vl3MH_=gtrAC^fe)^$PpS4-j~q2Hr_EMV{#i1S<4IJ#h;*fZ1gPw8UzAv0I|v z9$*zihU|63^$8G_%}TnFkhyq9BC4j14mSZm4V1Ke0jrLMVc-L<6tw|bl9zD6b`sZK9J5>AOa-Gt-1_Bu%1?@zPKbxJ;i%w@jQ*BRcpn zpn6t)d+qU3C7Y*?S(rle9g<{dKX&Km0z4a?$Itg6Iy;u~lEDkFLLs<_Rz%TRDwp8$ zqYnpr-T_sxPZwh@onBwzKSOJ0UwMe`Fl2Dk>mH8!?4;NP?b_ieRVR<^R4==E7MR5j zO{`kaRz6snakOH`vC&AO##(dZ$ul++30$(ZB0IW|ap>`^R>^X-vS;j815JK9egPY{ z^P*yX9?%ls`v}qWNW{?6tWXiJy-&O92%Top%0qRUKVC<%1Ki9HVQK+I1S7+IUn%AA zfU5%;B0nAxtQ|Rc&woF*`~!T#!jjyggRevK_(;7q)3#2y-jgMJmEG7bha1Mw%Q;J3 znZH_&zfu{SUQ!yB7N>p6#zXye=(^-&-@qu@P@V;#dZ~qE4SkmQuG8`6cYpXbg&wn% z--oAro{;Yegkezy;Ecv9W67w!JQIe@_lgxpFx~fsT@umFG2NhoMnf5iHQAdAKNx(Y*4%hCnExU!q~AYeoxn z>MC~6A*Hh!7cyRmM>T9Y_g&X{q9&+mPk))2dtmfplFRoDVc|OU9^rX9K6M};ESp!;=rv9$g}tsr7% z>#4YGot4{F;?(KKN4^a2d<*yb6UZp*Y6`Ub)h=dKp$oggb%Qo0M3~x5{5VRJ77Kou zgK4x-qJes(OI7Aaj-xXR zf2pRiJ)i`pLVIYTV>_aZr&_KQc6Y!>Y?qRcm%*>R-_G9kV4X0i_Mf600RihhmWp5T z!g6Cu4WamKnekG3%%752kt(< z$+%#M2KnOwWCMoL|BT}_m%g`FQpao z0P?@lhpm3Xgpj{)?)S|7UUUD#r~kbnew&itM)>y$@%wE3?Unp?nSMK)zuolTF~sla z>v!DxJE;Dhj`*D``JH9@C-QSSGL85GfrjNUp`)IzBt*nInrrr9YcYr8W0#e>!>7Lx z3f@@l5chRxw0*mcs13lsh!yuOG&7)3p2;h-8u#}@Kz;U4^UOax|LwRJ{}7K2#8LlK zzs4W|5JWNnK@@|EUw^eV$ePMIthp0a0e6zP;@FF%9yh_xgvY}m?_aR}HNq3*%1sT9 zpRhZ_pj37-g)kpajKcqM@IUvg{3}mYBb*ul%9R`xDX2c%5_FFjaztO4XU(>`9)1A!h|__x-T!3rkbdlVBN7}=Ez&9kEoDs zH-fGQoZ?&X@@=ok3!1?SJ!5(ydWm<)Z3-1?uk9Gj>awM5} zUF*R=VwK2*QC@D9p)Ge{Wi-fC{j=^GoOjP9LyVJ%ig;Y(V`QwVJV^UHP{p zi65qLM&KfG1liR0v2Sq%6o5-WwLxG8_oD45EF59j17thUDPmlIqnYr}HX-RN-3`slkfam`Del+m$(Y*`OS5s{|6!=$9d0KPp>oQ|ytT?Ygf&APwF=Nr zoD`W5&hZ$(oFj=}r=9A!E`gZHQnSEoO5>p;qeGCkDFCrICeE11dBs7AehzDX3 zAnVVs{)8PJ1eoeWeM`s%I5~y{uQnW@4pk%eDH0ca9o=Mxf{ItiKi9eBEvPS!oSznD zwerY5(Q|j)s{X93{te%BFs;ws@PSyeG0yKN>~2p1au9x|xXv{4tIW+KYKB5FcIuXN zN>FI%*!^d2O0;710J;GkxFywq4TL0VmIOapw|O0ZD~X3ecUEhUi{)PYIPo2|>a4=p zhoycAvpZ-A%lh){v|CTXrz{qFty{aQruJ#Ax2W8JIynmy%}BNG;U!$yqeX4HZnvzP zqnt-!d0wnkfbF-w$eaBNYEkW(urup~`E;Q5KWs@q!{8-v)OiXDTuGA8w||hX>&Eeb z->va>Bab*Vk&OiiLh=%FNCgU=hKvdbkUpUkPLo1cBL*|6UX;kPabjo^m!o>M#X-MI zU0B=xTO1B_jKo6`0UoVGXRm&$ILq^(AUB66q6>8{r8VgT(=C3#)1BxMl2V-Xjg%C> zFJEfexPX9hGV!(Z5Rt0fgS2TA{O;LSZOqd~o;Q2m%odW?XOP&Y99^t>3;#Xe_s6D- zi5{}c?cThaauiAQ=GD!*@~4rnX}{5Yq#UzE=Z)jT&RvntVu&qXcj zkY^JMmxJSDTX$mnW#1EeMy3)Lb9yf=w`i2vVE4qMEyv@>7=%rt|Yl;mWU0WIvIa2AH+F=Q8 zUA;0ulW8!G+<|{P`h98khv}D1AnI_Vx6dppqqPHl))P&=%uFl4OUVf&cUf4y@XNbp zqGz|O4XZq+{c2-4j4m}!Wbn97G=|;_!iK~by&juC-1sWs+y@K!PSuCI0ObK#uB>Sb z?%@}2N1C>Zp`Fa1FiB$LC{++_e7$-M5%m?Fk65T4BM!LMsEi1ZBj0&{)XG*HHvevs zXZ_>GPK|fYNe+ooGy12InXAx;QIXRjzy7IMhoK)Qi|Eb^;~ot3Jqz($Fw`k181j7QqS zgJTLnS4rROn}L##Gi@ZPlaVbN2T0D<5s#m0!6}YkNBd>h^k<#0)6r%ZJF%k&TrFaL zL@&A8<5D#q(_Jt}Us_z2#MC&d*;4?ZS8Pm=ZzXdAT3r4^22xkMpFqT7BoRBzUd^VIS?#t*;{b zrDln;-)3*Hv?%VS_aKH9Zu6WbO!E+n!x#?CY~t9fOwzD1pytUhklP3BQF)3RUV9ck z4e3d|$scHXkjwM8!soE`eD<)bx1vvEU))L|JB3l@1)(;qNTt~5*L2Uus`!RP zNyK9y&~aAhqrraLH{O}tx8j1yeI%98A1gjeUSay)Z;EXA z%)jN5m+Q6!{L0lS!Z(Un6tR4_Mu+Sc2KK5@oudyw-{bqWi*0X`$t`z6r~E()03%Rj z8sh7NLo3y*d}PM04x+jk)y#Bv_Jax;QBDyI>!#JaPCbItM}|yT z*cjiLvqoUo$*7{X-x@U0ap0|KKmAeeUby?RG_*7k6*u{8wM9V8jrXgOfCIkG{0~Za zTT+l{BOL(oI)HipQWOguTDKYGF69i^SDGoAL=YI#3v+MDR%cA`hIk-K_( ztBWrE+H7Lc2dUkuNmcPBs6c#q$dy@&pn`RSiGd8OQ z>+gC?HFrxi2kzf7eyRKcGMFI{F~_jg%2+!>&<5(dt(t=8kj~Q>(cb8}RR#B9+sRA9 zqDK6u;o2JeC?nbAT9UC}Yy9%lLSLm9W8n!LA-Y=hb`(Jjd*tw|JrE$(F-s#=ZXHSWR?9FoCg11>vP>B!&^eh#OEf$v^tQa*cUv}R^w#3ge6pq$lcBqjKIpLk+Qe>Djuf2>$_{+dTAQqwl)_pm(vN(7Z72WQul$`f+>j7P+X&d<_$<|z^ueae}J(rC2lWpIAYl#64yx@n>0CCL_ zxssiRT`_m971*Vck(!~13vt-e0!NSmwmHupOH~-f&MIYN3;~She>9^+2Y|9k!tcOH z`s|_cd5jal zL%{pia={yN09e&H9IEvShPnt%=s%n`eM^XiUF2|*K()Ldx2F`z=_M1Fz4!9UrH)~|5xGeZ0~ zC*}VpehcE;O9tQQ_>bN|N@FdN`%bY;IxR)_rqHbieepie^0r~;pFN+@e7r_z4ugJi z9GnM;+RStew*`%7&M3cE7O_}*VZw&Xq9N-eLh!IOUl`yVsQVquM1MimjRvB*Fr1z_ z^VL`$MYD)~Mum5kFA*g_aI!sb($cfkOx(rZ>xX=c?|(^!Xm=*sg5wdjqv1kKVi3b2 z*{uGqb+;s!nZ5Mxg-EN!Z`CqKww-sshCal?&bmgez1p>IW>wL-lw4l?+}bLz_xznX zLA@QsV6SND_x{B-i^5(R;?N5gX46%4Es+}e?k5bX@Dn!b2r1Fwzy!HhlqZm|bvy4R z={%dEE*8Fuih2N3mHN=km|@*wNe(;0+Kd4Mh9_VWv-8_Ki zCN7xuBG)2Kp%b<+!YFWnofpT)6WTcJuq;|9?Q>_nilTD|ZM`B|?gz{bX!mDZKWAhd zJI(g2h&88&J~7Q8GJz|0uLRIqVkrP_`ADxE&tvO#qw~^f;Rk3>xv@!z$gR5pc9( zaWN^uP65f4+EQ2(i?I;e*xkf9%u`$l{u0?3U*WEvj z8c+d-&7G&=1Wne;b9n;WARkJWO|L@=&5Io<)E@a{G4fS$_ekbGW+?23zy(OP}2iS?35bJ5jq!b(rlw>&pho2Wc21Ko~hVL#ROBb?(os zBNnuUk@|dewl};aFY7;7TBLRcQC|FnHD+gW2f04eoj9m8zskqPx&{QQPmq6g$gX7R ztyHB&4mFoip6i>RxOJ!Ra+`u9l*w~LLpnU$rpe<=>v zG;f;kxWSJ+8e@@?VQ-4TrJLJt6}Gy&E1%FUgnZSL93+b-f2jfhS*1M}WOSF;qtCV4;R35d%?k$&lFZpJ(ZzIq{ z$J$y@?Ed1M_Sxh~Czs5qH#nirM~Q|OJ;&BG`Fr(;&s~XE_x3z+ZAD)(i;tVv#pIPA zY|de;gc(Y-_B~0xO+)eHu_CUt7Bu(wc@O=dIzOMd+)wkou;*~fDVv$oFvLY46`IGm z;ZtY_U_*NzZoN4(D8j+Uy>1z4s-xi)t$k>i7#gZMUktpGO;_q?X1pSN(0lyC=#wQz znK`D`tvB4KHo^N7(JiETVy{CX{cJ_a92Q@=(_IxpsO&sun>tW)-n z{hmKU7OgdL5&^0b&vomuPCc7|*|J@Y`5Xu^lh=p^Qnf>}BNFYmSxt*WF%CmJgZKHV zwK%0rEp>P>2Lo6(P3Zhkj~a2If}$;ZZ8o)pjQMO?+`G^feV2W*Bmz5~B`Aq~tS=?( zkLc+Q&ao3a+>zyTVVwSXdF|`volA~62X1$??D;4tsynxz>jIXGkA4VPhB{_0a-6#- z8!(0BLj{H&85mnK{oQ09Iy{!K8a$yXkr-(SEu=>Jw7p>6+6D~8U%GA(CeYM4;MGLX zfM;N70rqv;DvEj)-9TKF1wWW~Yq(XmlRG=de>GB_@QOW&ODJi@x^0=(F_*yb_XOQ`%2 zktrEju0sXYifUiZXQ4sxY5QzG1n88_KKn(^} z&iwLI4_E%{ydd;TJZQb`3tDeKT}H0C_RS#}+|!VL`ZEyJ+;V0fD}D=~342>wSX5aU z|7GP+{K&Y_DT#+A<|21qJOR4-+}Ar!BN{yxFOW~(WF}!0X-~#SQaBDhbyfNnd(tXA zLhYWV(>U%L?|rO}vB-oHsZx}(BY#{IYe3Nnc1mhA>XbWJR+xk&@{(0OzuP>^ggqwA zl~LQ6QHt_|nN`mRtJUl<$J@_G+o`l7-Szz|Mn>r{J>=e9(y z?D1{%i&5pd>V&;YuPy0KL(9Bu<-Ys5gPlucXikxO2cxV*!_>IGe0gw2Bw*)~%#0|U zn#X+abIPjJJ&J;?<2KVy;8E#59D7v|IBqUBUnh3BTXrp5 zp?*)y_u-45YI)?1JzRL<8H6c1w40CaGyt`G#S&`~K_^d<`6E=5^y7>p3f1ej8yjQ? z-IQQkFoxyxET~@cVV%H*5%*yZ8}NeYl7af@89N3#3Nlk3E4Aa0-%SL;(NT3eXNTWz zC9R<}+|K*51=(`Lvd0!k zy0?Q4?GkyY{q8EC4hyj2oB@7vprF7qjxHcp_iJf_1_bCDsHzb?W$_D6`o!rG%h$kgtb3^b#yH>|$CRT-j3KyzRMq+`)IVb}BKeP!lQ) zURNqVky6)3ED)$35-9D9%64ocR47oucqZkr^%b@dEt>GlX*N~%$>oJay6*gF zKD<5wDLPA0T8epux9nN)ZyY?9_(ZvNY?r0DhE2Dll!G!h6A_3Os1)^aASV(dFhUMj z=GCmmcAR*l&-SW0(lb)*6uaAP_`~OCko9FL4T~aSSKFV1ex#9a!)D5X?!SPifRTYm zwdpX`KSTR?v9f@IX)F7~%EQKuMSu_afDlcz#|_fQix=w0^n z%fX6A+G*+MU)Y+W?9Ph&fjgsN^`V)AXsN=1wgmQ~HhVo{>80<(_x4xx96anK zY84eS^dzDcj5@l_QRr~vdO=|s{>Cu^1`%H%{&=6ivm@&lVT{DD^I*dHNVZaY7Po_+fC$&DkQM}gTv>^ZToQJp5J#|UjW3uJNWHHJNOfH!H(!s zd@X{1!%rc3eG>K<5*WYcOJPc7P|~&ESw{M!uBC;k%39aDEN9&12@^TaIUY8u*m&m zksJ>l?$7fav)3}Rxy!-t1bQvMRD*CJjS>}qI3K9cV~D<^zsw;54Ozxb)=72(kDg0~F^1!Z9_a z#r683m1+#pJOQo4#r`N%CkZ_=ccSKaeii%3=kqKkYE5q)Hyiq33^!&R(bm@+Py$QR z8QPt9RC*5ybzRTfo4;s$?YTM2jHroGdlKuBHnt~Bbsq&L0cj&2E~F?#4AO9We@5~P z$AG=Si2;kc#*gLu6pGGF$dnk~lh{Fg?%ksPRc*;(@7Z0lPL9JVpfZ*kRr*FDuV^P| z*DT0q>W3`E(@fEOurtmbpd6<)`V$sulpr5Mgcr(u&Qe_7H|v2?*~6onT;V_IuE}R~ zE7}m`XfOA55_20Fi8_D|y#E+>?KU`CpnuOa%D=(2;XjanWd0FKkbh4Qgh44_`Mg4| z*i`NZed>p=gL3yIq1}|R1s>^b;3Xx|EFq$sAyX!rc*geMvV|IJE9QugAngt%`t3jd&1C$xkH78XZ~OS$KK_kK_-!BmW-@-;$KUqxw|)F= zAOFTA{C~HPOIl)>7DWDX4VI^I0v>F!JHLJXRZ28piGP}$#EUz9)9(8v1}pvkoN|c# z+4Y<62q1?4I`i;1-|>GoLx1=Be{sI!yApr7?8%~-rHg5X?ayv>-}tus>ci+#OM~=B zKJW9)m4-8lN7yaAQv73D}p2*J67c1V62y^u31fNH$lqSJv%^vjHt!p@{ zwK?KbMwdn>FC+IZ+FcYiyqg?lVt!7#NkW`{t#2*Qqnp71h}zqK23O^)_iSOB6M6tl z$Gz~s|LsEng1b#Q#Vw#lq?7gnTYheO^W@WC;Ms0^3i`}X*z<~FdgG?hy6H+bJ9L&h zx{R1~=y9Mf@A(P){t+9#rt<~J?$+bd=Ku(q(1F|ej}X1T$N%{TXfhmi#1;00IpP*q z_FxS~p5Z^WMSz~lG?3&sc7rn6%gJw9aLT(m-0@!z>N$P9d82PmW+=1n`ZA##Rg9WX z5^xOp2`k1@C#F2Z7kqxgPJ=hDKbboF52}zmf5eK1PCXyL@=IMcV)&M3PwPts-`V~6 zwnC2)naY)8y&dqjQ`5{2=y3TIk)I-=M12)9esC@5*LsR(v}HFv`2NWaaV0tI$}Uxr z7<9bY=8VPm+?HGRa%z}GWCHf$nrUlCmUiO%YFlkVlq^JaTqes=@-KZ@*rSP9^kW5`g`GwoX9G)!Zi z>EmXuQM1MeAL}e#oY_*m6viSO%8njkUG1tzlJ%DdgzH>2sA_zGm=b?E<#PAop_uQo zZAmFJFtMJg6@Zcz2aw{&!Y-b{^-;JB6}gR&=4}H^27tlDBFHoFflMd}Er1-+K(AeoUx{O zKs)-eE0si}nYZu=?7g;r?{VZpG07KIkB6^2I$tU4S%B(~+Q$s(3pGw1D><{hfKB;^ zi{Ac4bDc#Fx)_6tnU)eZP1+HAsIu5mFl?`x;X`My&;gUMyo+zwOs)p377L!*3JU|u zwG&e~$g4|^-oHOWKH4_A`l15VpFwEC9nX$}pb4yYX;qgQ!P4L!`Bfr|iJKuyP<&XIx zOwN9qd!?{*M zVIt68+fjs;n1#OVfQ zb&D_?T>Wja{~6-el^qyl|D;lF%8*fV@~2lzVr-f= zg6Uh}`X}$p@mUz`1-L@M0P7vPg{)yns$OJ0O03wedXckNoL~?Ds>KZlGWc=Cm^k%R zGrN}e11k3%C8Gr9#v8Af-(3m_XjeL2bNuPU`{H&#KxSLOe889$$Jk)Nq@Ef9`ECW} zF+WL~D)4sbo`Iph6JjzGS!Z4z@Zhm{@&<5ZdD0o1PcZ{LOKu>l;~=-u6kbm=fDKas zrlHZfz=MtSp(;=xr=L4XZuf*>I`el*=#uky!1N+`t@q~X)LeXXGJmSDz;R&ZAFxk9I6M2o~;iJm9a9SrA&T zrt|jG^!xKr30x~<#}gbU7Fx55c?{y455T8P?cjVR0mNbXj0}+{6MhprxKAYBERQ>- zM4%{sZ{uw`55}oO`sz)(mh)pUdq`O#m{=44E#`(>ImLO7D1Q*)Rk(%9@@QQcpziWK zMvqj0rje?#jI69Vp5m;K58*QB7L)yNo=*Ctvn`MP&_fQ*J%RY)@|N$95i8m+0h)R_ z7tIBS$Bop2IS1y?&Txi^Z;3qHJW{)L)?ZMmg$bKF1wUWBwqOLr|QbZc$~huH%Vf7uri<*qAq~O7WBWs__6Rngb?)K0%i@)weRvS`EVIbAM$s*zmOlLl78l126Z|h8JzIRaog;^9^yt20$w?nCu3~N%`G+UIrWAagcz}6= zY{BdW#xoyW&}2{xu*X2uNE~Odqr?}99sNqfm8IxBb}F(d9}ZA)0lQrRf8aq~NL}|y zcyLfDq;&+Bs3qJ6Y`SbZYl(m|E{ ztGg@W?|YA?ofCO$!I?1g{ZIfni2#H<7g>oyQf|%yBU;8WU32f^Q~aY{3(VPqMaa8P z9yMIl5SX(c1dvU&%YHDNs`hsCl0ljTesL)*EW{zhq~5)hxbLEcHFJSZYuYkQX%6*m zk$x3Me>pD6VHP}c$G+(i0A(9!g0=AjE)`3&7@R6HShqOHst(SVuM4+gHota(xXW=r zLJFqrD#>8Qj>eozh#BLl(WL9MNOHv3a3ir(&Fkj`s7w^-;x;a(72m4XUSHx(lJXf@ z#(tbia(4;`+wh!q{!Z`e#Q35UA%&%O;RII@JKK+=VG9s3a-x(@!W&0GO6RVwkL)cy zWRqrh?TOOJeyYi!yZ0!y zXNK_I=JKy`{6xZuPYDg+$E_P#he+0eU6^ko)b|+=1~u@(jU3S$6Q=*$q(t`KzhVPODIBC}U-{gksOPoL+303-(pe-p+1>(6R=n`0NXsGHX$Mz%mXy>WVCRb zBM`SNw;RX>l|v~4z_Hqx5clXadPZRT7p45C*TdH16W3-Ki%P0B(+6NS`uVw?K;n)n z-SCU!{YTUJ|5*e2Uo)5V-`v*k=_sl!H_>Lg4yfPc^d5LMW)hf61lJ%^#!ZbPlnxm0 zL+jni04R0j7|WUBu5yP^bUTx$aS#u0lLVn@AVN{*)CvqzlQw2GRI7k_0YEUY9 zQ>pIpVI9?Ez3NOhU6sy+<-{$PwDD^JiVmIA(?`B{r(^mJUsPYfrSs2&=U95kJ!0oLDxVH1%n9&r(ijBEAKu;-? z{O-F>W_v?Ym!BeVx{^;J0!kt?7&ZmLc-MedgC4DlrzZ3Ea*I6+#1+%C#DFCzubSV1 zOJAg)e5P+lPl_{k0F8>o*chE93vrkTlVpMT5V9>{cDivIZRR` zL*UE^nYDid)C1_&etm(szxJ;z`Tq;|FyRXq1@X_i&l zTf-DRrm}Vao~7#S+(6U=Xk}rR=6WhP}~C0tyHiE%{q>=3-uI(y8+`P zxqNP8$k>XHd2m;~yZBi+pMr$Gob=IKP)HoiL3g8{Bl4h?t-<^4A%O1Cz=+wlA>lyZ z&t)%roJ!w#a>TsmTC;*ROd98umvu-U={z&wFL5%fS3$RC>fE0CD+ao(f;rp0As_92 z@oc%eK8mJsy&Q*CqXgCQORfAfZCFJ6NMq+7)%APc@^tO!Y;CQovJ_$?Jxhrb-UiNf zO7?wI$N}_xETdlL4I)0UNd|z4SWQK;aUgQ-Pb_kc1vYD$3 zS@;Dc3P%NlKu*WXnMhrLNXj7+7}wF-Ub=sAyzHJr_5jb0n}HCFv$6r0&~Qs22|5O= z1x`EJEQoXnyXV(+m=;d%JPf5I1IHrdG;cA`0zM>G_l|$rR zEuB(1pe9F!=M7~n^1K13K352xA|1=>H8h`#?C!rE!#p@NtoEv!%ObZy==t&VCk-dm zK<-~zh%%O5HtB`~bMB9u9@x7a)M8J4i01P?{V{g*DQkvPmFG!Z*ZNZiud8Y$@96=ob}mLG|Fe ztF}BP__TD`xIQqPfIVg zc>N6|>GN9J^MgToDc*d{YYNb8=%P9A4ecEU{5LRXFrUe$boh$oXQ2D&qPTyAg85eK z*!=Hb?1K-Uz_xhU|1YwT!`b$=y3ac^xw{%|�* zABk338ChEJx_0T=N2lZ-3jhzbQa#h+#d+=g`(*AMa0v@gY%4m?@Dd*cv4NODP{C2U zE}J(0DXgF zt?jG%#a!9HnGOACZ9q;#Mu7-s<$?lWU0|hH$Otiqj>^DkK**vGNcVfYIx^}!9O*|( z(G_+e@ji$Rj4UVV10kNdgQ1vkyAJ(4+W-h)oc@Il|2-!JXDi?{AT~ma>Iv8Y%`XE3 zti3mbY>%GPW3U0*p~sxYFcfM#Aiz~{oMAk}ya?Pa!bywutwyZ_Ce1QKJp_9|gAvf? zWoTc*wo(E6ndqf?O8(}g{)2zl-*XIYe%8OZfNze8UwvKR-01%Gk^$$ye&CfOu3?PI zNEAhQo)m>%{P|&j%Tmk+=*S@$We!Ezjb0MK_y)-`E}q2@0B`#vutCK?&1u1Hq!#HD z%TKDrt(%Y@jrpw`&YwC^=)JRAl$;PHO?yzpQ9jNR*s~Ib7pxFCN-`RMXOCSEz^*tc z?#0GM^7fBD3_a$a2zJ#y!qi*wmWy>4(YhJ62bk zFU)l>xItE1{6$zrnQ;-{PnB(^x9;)s<7>6Wjl*lCiVHL3EXmur0UXf}QMow5hOq zIdHZE9Id1`zKyV(*;f*eLP}zX}{%!KX|J0N+TZ zlN_eOq(kn8WcFp|28caBYRc?eczUVoXQ5>kUKoQ)YE(UTln>62xZ1sV`m&Ku;)C$} z$^vyoxqJs}Ea$ExY-QGCu4gpJwdN{l1mwEiCA#PisCSM;J@1Nc zLnYLyXT+h6+9e~e=LFxKtmq%7$1@b|8#173UBc~4vdCx=Y)_{<@&Qc0vh>1-1E^uo zy=`P?gk(dkv+XltCw-{9KBMiriD|V9TkE~bwvr7{kT&e=P~E zyelIR7ZjqFT>hXLb(GEm>mfsJVCA^&<}(&tlchrp6UoL6kn~t?F^#ZLdWqOccN-s1-u_~YXCHv>@v5`m^4}Ep}zI6PXlyJ4rgVtXr9kb zLZPSUz9ff2J>Tn|C2S@}WtEog z7F7r7)p5ADrg|B4o%;%Cl+9QaJ@*>tS5miABr_2A;3ycDd5gTpr+8?o61aS{sULdZwVph z)eX=uob=`?uL0pgzyYh_ohzDAzJ{So1YjbHK~%&qRDOF_!T}^P7N|0RB|Tyg(>6fw zONtp;zpBjP&yrVvaKCLn&t~+qIR^ea#sKq1&*mBM?<0*LB98y`mD_;Q*sAxjsKbd> zcdC0yHsDUu^#-AbTQW0Ko*vlCs;FWN@NOc|{T-v+(+dPVLI;;8x)^82Th=yp_Z=}* zs>ZscRN~FRr;59vs`6Xt*&bpWJ@zI&4!+yWaQ6OoyteQ9h%F~g`zU(ZA$RtCP-5Kh z?$~VzsrK3vdrSAl2dgz07#y&+tlTP~yxm*y@7H`v2T_I|J4KIUNcPPd2cGbhjK5pn zEi|$Hg~_@znX$HTmhh!wL1_^LPXJuoFgDsG=arUEIa7{2jY?&2|ro~8IDALrH|7rt$)kr^*6w}gyM3L0|`xS$V+-OsVkUqxTU z#|GsA{z3z2mMzy6-M2G*N{N_IxtD@zkvFG((mHI09wT~8Q12}sgrL=LAlIr2*LFdv z=jU&wtnagsrHbStf-H2*;V@*HPu9V;cgf&+ye#^P%weoV)Z*yV)91EF6fLvc3)t;C zKUw}5Tq05&JfcI($U)CuMV(Cvs;(#&0FYXXcjKGwAm%)0d?kkBn}B9#g=xuwc@YYTdwLrGPe? zxi%(oetOR9n);h#Wr6Fn3{?o={X3b`7I`;+XPJ`r=|19gszMqiU_rvucvJL9G=)|SKaZ)Ijeo84tPDLTCiFH| zJt-l8wA#T|Xk{Zo?{v;_depGS--^{A51MoemO0UUA2g@s?&F)79m!;S$|h_XtW0l% zX;%%(D^%|eGan!O9GtIyt3Alh*|QS?la@|ELK25O`$ z11C>|N7Q#V5HsZNUDLT~aW=}CaIVh25`tYR2dJqDR#t#A zix`5`;^_g9PynV?SO@7Pp&hZ-WeeK{P&zoNVzftP^hEehTNro#u49UOy{>o^X=Un0 zg{b7U>^{`%m^9ll7o2onU`{#v{9lEPP8ju@+40;rG^|?Zkv*BC!e?hRG`Og* z&ljp*!JLMkJ4C!pVzQ?ydLI6O8|u8{sgizk-7xC@Bd4Q*mk$+REK*reyM18L9$;rM zb|im8Hd>GK0=D!3vM~tj=9wjB>X|!d*znpWeIRWsqT`A#$Mv3N?mrFc^j{6Q{uk~$ zZI~E+)<>T`nDy}5;U53_=&R8xs}~;Lbc{YrfZ_S)2j&Hh+i!L)L=SxsGPiQP0@MYD z%fZ1#`nL^DI$&i!Ijc+MUJ48wbl4OGnzrmIiC9%Q9}wXxToAQ5ts8pfzVd>K3alyj z*~78jT#PG7W@f`?KA3y^MC2ot^dm2{jS_U-E;$#QE0*GOjeyYle^1p_oXv# zf);k$>3H4whTg^ug9sPdc0Y$#B?9Ho24lN=ja)Bm5nz~&EQk<9XyWL?{KCAzOAZHu zSS;yY_RFVXoKiB;v66$xd+0S7qzIqmHYt~(+r`*^1sSjWUh>U^`h8W2UJpr9H-QVf z;L5&@Pe%C4a|bTZEW4GolWrv+08s6RZ^XjC3*>fyZsE4Mq5PbXi#y6&?~TmhVt3G-8423ip-42r!uY6|#G z;Kp9Np_#6lm#Nzd2eNs1_60M|rOgr)wH^uV`^p%B3@kzE0{bcy`F+>;=ey6&T`jn-?7!GRD`+upFf$zC9(qh`jqJHQwJ6ImEmw$Y4VQ6kq0Q1W|ebG0Qy( zXNE4f{(>$}+?KL1q7x8aKP3SXx7C%G-<|P-dOpIxU{>w}{>}?`+7JNq3&hC%X>b4D z|4*7Hu8?fTkuOJbRsB47;^s9SY|P4vI))Ef1LgZnS)I?*k2C#FrE5#9p(`LH7sO&1 zu%{0rXdE3IAo4Lx=0QWz zv<7_0Awh!0XHj8AZl88Itdd0pFF1QaVBNGXZ5*=mPEB@v+Qs1W2`H)hEtBcU3@w?IYqi(lq4@j1b1t%CpylIl?DfZ*2Nuzjf+uh zEvI)N=3`DH6uUYNY4_WND>~1R7aNv&jV{oL;P!Is1aGCz4y7X`dHo|21iA4?H0j%d zC~Xvov9;$`aH!~Gi^jpH9Ln6}RTE=vzx$9@$1CK(}M~+a^8c{XZS%x~HEfmhW zfzKM%W8%u^AD^yV!F0xxwMPxgsxRWNJsVRiZ8^Gl%;Iz#y^m)u1y!F?273J86t*M8 zfYiILHdztkhcN@>thEfnaYJ4Wzmzy7fWIle1M!|BuAUAD_^VK1_|u;09@;(@#?|#| zFoBwmm^BTj?EKSZqBpAx|NYek@J8FOmm)o_pqz}jH*-G1e~Jw5-``#)!s2v$iBJz9DQ(tBa4|&YJRdn zeam^86nY^{rz6wJOKD!c>#$~qd~fUy?5pkSM?*ArD+m~2) zXYL)?z5&X%d+s$R%Dg6mjjV3vpo!uHUgB1(a@>sX`QQ6+ir=u}NWlJFB&lC}i{NZ3$73}h;LI;IkVGl2EW*1)B{mMVH-m)VjF(h&Cc;;J^D zd_pVfQo4?QTbb*Wc^B*{yuZ4l!{48Ne_Le@4(VEV&Vezi7a;VTbXmy)5~NB1Pv^Vo z1JrTru~ts{yMY@YVM9{Q0g&ghPx!vsf%zm@_H<&Zp)#y}$z*w2V@YtbLgR$*{!KZh*X5E{KZjLq`088AP zo`PvVfFUa18si>P%8xJreVqw3t%Ocr9-I1PlW&S6VWc}}QpY0BjT^;V%#0rnCJ4i) zdBub}zLKW05`k4DRrzm|u-{)Zvp*;tz79_aYw)GMB(sGE_+FEItaMv-qMBYydm(TY zG6?&8f+}En@RF0mkf!apDrquMZM((fLWy9Y1zU80IK}y$T-`VHB#lro)C<%> zZ~mUa{GU>V@b`@Qe*RhFEHz3(?VeH=jszoT$s@ZTuE-_?0~XCLal6v216ccQhpd8_ zPBdQtaU_L(h5C>R$A$CLJit2-7rnZF&lJ7@Ci0NVQ;;{s8x<_a=~lHL-y}Ka8j3ZV z#EkUg*2G*KWRjv+Fj8&E}NZTrU1pOQrrKNoq`(H(;fUkvYBrx^;$W zf(x23G4*wrx0l2-)AS>|DvX8Ygy zpzlQX-<^H1^&LNl>Q@T*x*Io6;;|AR{z?wkqcwk4&w=I8_&uvv9L<=X)P+0DOYY*n zILF{M6wkoeKB7l&-K|2a&+B?L&EvKxva(J3RWhu7_ZJ!lz}DW+_k?RnCy4?LcmT0umW}m)Q_s?Er|< z769rtmbQ{ZOE zKM4!O zT%sZ!bq{h!`z7%__ktE+>D7%apc=lu#hIJv`C&W%L1!|{xt*VUhtRW({{G=F{o?X! z5v+$*g5|z$yR33R|GFHA$$OipKULUM5GT8U#eL*tZ_TzXR65!@Xg0U5Gk8URiM6Wc z`Kzn<(T$(#u1!@8s(4-c*df8D1xcbU!2dNbys>Hn!V>$kDuxKdv``~7#l zw$<2dfNm#-zXZZo*_rh2^@zv-O3{fc!^Nrxk3a0fkXnKn-zK$7@JC-86dsVT(_ zC_@`Jkh5-d%yAL=F_pgD%Gl8gI2Vv@*RBx#vl`y3Pc}prK5AUon-lLy_#5EJm{Vcm zyx#0XhjXq6Xbp7LGWd%szT3En>YHY>YY5h}IdI(!9HOODM@QFeH=Z9@FP zUkm{*>GdqGeQyZxdD9T!_XUt~x6ZpyxZ54DtRDO@>I{2C-*zdB^yCCnLH>~?PQ5;* zaz@wmUbU4Hb;13&&j}HZVPwY`GQs=`XZH+y!2lw0C9O;wA>L@ZsGB`h0-RrWSclpk zG&0Q1X%I;}(3#Yzs% zaekI8Q;+7nxLhDT0c2)#{PwglEoFj)0qpb@?2Y@WW#Ot85Xy8k(xjWfxqI&PT=d)6 zTkR+kTk1@@JQKq$Gx|FUs2ILhsQtwCc$Y`s>8I7#Ku~)uglS$t?7?ZyT*GHR@9J4P z4+C{r_h^cCbu7nMn$+%to=ho%yQFFDvg5rT>}()h7Blv2S=tNK4a<}ZZq>WmLl`r& zq_i zwJXbKY0f=u0E4fpr+}x}q1qT$L0lElcRCI)C9bE36PI%0ZO;>O^1B=&9xrIKr*s)U zzRqIDz56_O zUm2ZI4)#Bt#rz4@}u+`1tTw zmKkpDDGUeAjpyZw@+S9-cFs-ITD~1T)H%qT1us9e#vcx3<(!24ynKNE1o>%|0mMiI zN)K-!D>mf^0LJ4GP>9f&Kz}u+0rbkJ7Jy|(EXj(2anh!XhhmgBb<2VA^G_D6&42%u z`-pj?uo(WV8`6`!tDIR zu*rZD*=kEWgXrWdCw0B{mM9h!p%2kiah%m=(p0N@#*rKxJ^o8i>ANGVtaE|}^6xNx z*R}KEd^87OBF1@M$GUL_ynm=1z!%(@U9lF5k)f%MA@;gf z>&KYkZ)Z4V&H*zy^HXWmbW}O|hy-h`}AK&M`CFX=Sg$5CYokgH9l@{RXr;q&j-!!X#wQ7_&xME^W7 z3jZi~9=uoPHD}k|rCm??h<&z`ClzzdMKW9qYmKRS#Y?#!sU`HOPeq|O;mN%{5Eb`R ziL5j+!TD2UxIjSuaXTgd?`)vIF8rqDp+A5?^Y4BiVIQ}wiM<1#+s?093#-vo+y$QD z!^W0h1OQYRnQ;e4jh$bO=VVWzCxW*tX0*(tz1}y(s~^u6&=CMnrAk-90J`KN6niX) zB``S0Q9zm_*%N~$u>(g z$1~Pjqo$%}jmcW1zq~ZSa4P87i<*$n%;I9753jHarpnMPq2-=O=_znoPtI6L(gjcL z2isA+O}0HOi)T6Hkw>qlhYf|=j;eot%C?EwpfwNEf(V0TYKX72 zj;hkQsMwLf=v^%1ioUcX{fStWHTkKITUJBGP207#20EQ=xG5gVbH%p{Q%vS45)-mS z**ii$W5X&DVmigA&+pCTyvZRxEhVS%+ALih{A!BKA<3k4RbN)1HF3@3G@VPwwEopU zLZkk>e|O_q+y=;N@Qi8GUmDjlLNsA@DhOc0BJ76t9iTWoWoOhb%~?01$zTP-4#iKHCynod0x%rQp*Ad{O20OdTEF zw>CUGGE$29ZgmtZK+V2ppRpx34SXVlDPY93q0HK@mOP$UiusK!L3OM$69?CQr`sln zKZW+SHZo#cz9l?5f?YWbc@+$}&BKPAkTj0g_pPl|^X2^7 zdAQJ?rM!+9iMAwumXB0ww|VZEm}9Pk?VHgV?JEeJKvz@GgsFagFtmEq{GBxeHofkm zgpz2;vI{R?UgZj{34N&Tt|5wUL?*F4%#h!D!RXB>Q-e@@Jztnw&gJBxFCe~9Eq9Es z=b7l6FH0%}W`bF+qqGrvWN63z`kgnWHHN>$hQPRrC0D&7XWYm>R_qFr5|ksc2XXzg zjgpQxWSTfwbPhneOAZ45geOoU@lWFUlmyOdE<2X2LgZ_2rWoIQ4o!8^XB>A8&!nGp^JCW)_9?{~et zpp=rPRNjleM8b?Sr@|0b(!eoorrROvvw}h*3GPp0JT2Au3;K)Ly2Vq@x?v~6HNi2?oguP2jtPjGB)lm`>bI7dA!m?!7Nz90|fJrpz0 zRo-gx^!!t?JSK!@=kjBRi@UV7U)3v?+|#2~61Lt~P4-H|LiQQEqOZKXQBZ{$icpxS zKRl=Ou5u0SD_%nK8tcKu7KJv~FUZOTW4%~x>eFN4QT#K^3;klLvqw*ae6Y4)6?~;U zqw=F*zmwrJvU3A8LLFgTM$Z%kfXINJFG+9=);B(S4T&qPEi8!k zNlq~}*H|^o3t}?yAJ%8HRvS2cmIIpQ1=vyj!*a=g_ja`T-2cPB57S2He_=u*K7Fp( z{Kfmh`GZ}9XZP=ake54nZJtZ#O5%wx3l~$F(~cEs11H1%v>iBTWskWW=|$Q}REmjb zD#qR3UrpHZsS;Yy%3F^4M2)Br;v6`iXYnO|Co#0kyy~_CXJvQ$y}b6D5A_335hm{s ztXi*)+aXxL7?mktPQ)IWP4YllRlVi)ZxL~&=5?>od0fa&N~84mKu+QP7lGAEL~erj z_L)iiwi>rqE2119TvtQUIYkv+@8wZ*a5=!q;~k==_(fet+VCg0rF+S???aHzE<#}h znGhAPf_>Yr1v+d+sNXV`ecqHtRXB5kQjYFo#JB-FwV6#Zm;R8vR;QCkZ{E}TnXxR(~ zcMa87sHtximMk_l-<=28+}LX2;~+nw-IWsbAdysUTDf zMn0@Bz5TDyEz?Dryiz79?%py2ot!%$SENkJFNHb58o3mIDh^$+|Uq?=6t}ny=32eEJ8kaAn-R$029BFC*JhNt8CP$fB>v0KPP*XU6r#Bx zO9gO7-RBG;=7Zi$uWUJmU#qasG%J`Q7=L3%aJC3a>rk_RoByu9_yrnsyrVbqvkU7C}}7nqRx{(o_n}%nu-sHXg`^pQ=S`Q{nV8|F+yzjq#3{3@ro7JbKF!Ul^;=gDa+GZBC;Bc zl+`h^M;097x6R?>32L+YG?UYecu}{9vO6ni10)!A>mE;@R^hbk+ijB^ zIYa1c^LTTcc{4!4P!4|O*QhjY*2#adGNpP(%JlNr=J>WcR)wd>HI7?z3yljuu6viS z8tVG2`t@23xPQsGj{Ngg1x}v{!j_JwPTLN9v#sK?PZOAPtTh+i1A+rJEY--2s z7>Dheyhh3_mPHy8%pWY37C-KA%xQcyDXy1ISZ3J7wrMD{usjtL$LG$y*qX+kvh^Wr zc8?lf*{pyP^?62U2{OC^IyiO*Z6f*wf8bzj`}3@!$MDptTFWEG3c0F0u}epz5D3m8?VZcqN?6{$a_VkR}A_NqZ}oBl-T{cR82(E;8=+oM{oj({nw zjQ6F1BMQ|PmaXOn3&j`}x?sl6XMi3W>rB4H&5o;A8(q}g56>YgpfPsFS;HyE$OEiO za~#hAOzH9sp^(W(LYZc7Cc+xdG}0h`MVLLvdpn0x`kV;MWH9VWBUaUHa)kCYKolLS zcq(ImK_O3WR{lp`A-K1GnWTDYSIUY*g`nkMNSI<&rmBrjl?>zh|yEqji4n_-%h<4DfCj!K<)6FTcF(dQLO^XO4m z;iij4Oujz#*y|M87 z(mv*W#+wbG81QeC`12R_e^^3Uo_iYL46PAdv;I$usJfza@@f#GV{3OQTRA@TO!z^u z8|USYJmK9c5ZCir;2f^n6=oXReG1+nyL?y#^$MVXE2X>AknW)IJAg|VB?hP)1#n~} zmcMW&f9mk=i_O|GiWm_=z8CM!z_zm5FJsZW`|aXT5{K@_x%d}Zk{>Eopo?_cZx{(4 z39mRD{9M4tn}2ij`qM*7ei(h5uRpFdEE`?FUg=yq-|O0lO1q;|%!ih3&-a?D?Y0iM zoIC(}CHIN2n|^@8p|1L3yXHw4PM5CuF@huH__uTcVGgHHu%}F+Vaz= z#(dw0wv@+LwaQ*^rPr_=diP=H=PRZZP2J#*VY5c8|p58&T2nx5ir@e0}>IHg>Km+#t`kKKkD0 zRxmQrCutrUc>=08)w;_SRs%oX?Ld>qYMmW7=v*4OYd~zv`zTw^6UW~$%Avjmqr+fB zRGwLO+&f}QnoN%ox(gv*dpp;@0V+{!ZGO3w;8U*}O_*l@~?B&=GYuVUZ=8DkPLYp2c5(URHbSC&7_L$O?_tDo1j| zy~L(e1p&W2r>DGa;*}fX4SR39UDyD{hAGVo&C;&gx6LG!ifJ_rU!}F@+jfS%Q$ITb z{l+&<`k9a94+3xh*Iva!uY@M59QRe-dOGBl@*L}0O4|jn0L`54%h*QKS4TVKTWeeX`&^>O#z!e8Ex0F{fHFLz}n_Qj7h4-TmSbUdWGAt9U#K8qaD$)h#O(z2aiC%bn>rqi{n zOD~VAaG$8&20o{PnAIe}l&0qaqgvQ;_~HLF+wzNP&;3mDmYLkSv zXJOG?GYmn;fa|8aj;{(-AyS;CkcIJnFAP^ZT$HaF+_IR__%N}jlB-|bU*0Y#xc(~sM$S$C%Wf~} z_;ue-m+Z0Ox#1-#iM*$m73&G;{TcgvT+Tk+;gBR%ScphnhQ-}7KYa5PF~xs zPo7oibsK3)CxfN@D?5`G&u9W9h|GsC{w#dwKlFPTT#L`@wXMiRmn+kDHqg8v2d8Ss z#jZa~Gu99mbBxpV7>mLA=Mg}p1xq|iOYx=+9GrI zD0I_m>z?%#Zy0fv&O@fxw^^)!^Nnah5|<3hI#IHm&-r)XPsA;gx*fQnldf;|H9DM* zH+)jcq?~^|zO9M-7MG5mvZG>W#0a8igzWK@EtuO_Np@@To6^G8?fi(vrQw+M zg8IhWo)^QhzEpslm}P70V7+CazfLg7gLBGD%LuSZt_v5fI=cIE?59OmXM`AV9~MbeUpln(2>^3@$j zo|8)&14-9fT1Wm;C*6N{QptT4sp|Gk<(jdKC->kA7Ph&-i9KR5dmBOGqn4wkF~|(wssXer@qCo25!RmH(%Qf zELO6x?c;kS*|E%X{VBH^LGcBYsO$mE$;R(Gf$utrzuz3-TKMq$fi3$mw=q+jUBi*m zDAK&-C>%{5kL}}S-!=pOY|ktQkvne4)=P^fVi!=GMF{ht8|*6bgc!v?NEtb}hcXL{ z$~O}_)lmPFqw?2(hY*LQ>7m=zaXu72>gzbcf+-Kf{=;F5FI?8PO$mv-;kVDogXtKj zlD++{5qw!St==GbZ01E^R+jQwep%50WMXn47rU3z6Hmz1VPB$`d+eoI_S!FYHNI#{ z&#y@(Y&9J0_X}3nmy2h=Te-nvIxRqE=JFmf#rVgfp&Xa+&x#IvUCmQv#o>}n=CgzV zRy9MKbAJG)_Q}J#Y&)CLo*?0q%O8>%L2suAwvT=$FEJ8(vr=1{F3^8$<+YDR&AStQ z9`Dd}xkRq6xsjd72?hps9pt+TCLTxOSf0qZ6+!tX#sk%I$!|T6EI08fHLsn~-)GJW zO|mw==$qVesa^Jo(Vq2=87DQCFYOOj+ORw=9)%i{uFuWQjmR-_c9d98+fu#JG4<48 zJzqn;*C>9}-bE>7zpDNeGkj#%YIbAAS#83u%yH>LO*^r>2-+EpvLi)fk+(o zd_(&cDkBiS5R!51PCo{{bUgQxpJ2VjYSE@`{g+Em9AIT_un@V%(1f;jXG7JZ_6$$> z`4hHAQ*G_VAcp6$))R|c1E1V@K7VDy%3CziQ*jD1^Dk&f@e|jSgUxK6__Ik9(Pp4dhf-}~m-%Xza}0lut|v>AvR z-RfI)DpAhnN_E4WQPduT4RVRQ-V}$-%%;swy0m-7B?^Y$SQYB-7V>yR=ADxLlCJg% z5Nq|x6+(efNG}uL^H8TZOP<&5CE?Sd+CH;%avCd?;mVIh5S&vA003||AtE9o;92R$ zRc-;t*lmg3%d>57I9)(2GyHaszvpNjGE7ZRGCCRdP&8)b&V2);OB0tp&hFJch=qkA zJp>csl$W0u^|a)J;XQXTtrjPNenog7Y%6;0I`j8FJ_Pss@SVGfm-+-%Sfp<1mlCU> zJ8z!iPG15S?zlu&%BG)qZ14NBvJ7n|GL31$8(8<*DGc(7KiJ41l1Rrm;ye0}Q`TNc zdCStlRohq4b_waadCC<9`vusj9DUq>?ycLZtJ_;=wUe_#l;RTtwtM{>>lFW(nD10p zu8hcLBwXR~%sZ2*jnrK?`e3Sz#maupU=Q(N(b?MD&raj|PiZr{IB!PFd!$?8EzY;R z6l|BUD%|Yi3<(YQpygMwYnzJZr;R8Ssqr;ol&+2P12QTUm3j}I*dhmq{D=9hJl5op z`^zgB9b@2ccf=$>BXU9nHbTI*93Oi=zk$4$!7>t<|+`aM!W(&!@djyi6e<#}0 zdF4WLlE@)uTsOedru#d*?{%&`E(t2b+T>F4wqzL=D0HN=#nK2BQu;9{%e%7&v1u!KuqPnCUR zugXQga=pK%e_ZA7!2eibgYe(uncs{QX~Ln6MyZSvlyu^O!cs83#66 zx-L!}W9rmbtRB<~!{5W#5C$j*CKnbUncvhBk9(jy&@H4x)$D^8J8x&T7`EO1A&KpZ zE-OkdAZ+*~0=kxrP$dSG>eA4xZI$?$MX%COGR?%b!{&Pp$}7r!zqer=}wm41fig`Ec}kc@GiKo00i#(m-~48hBxgZY?<)zo-Da)JEzUT|F9lxZ_&91yU}Wxqu1| zKl^!`#Kz#I@#yz%(tZ&x436A87DC({jAM;!Ai2cvk;}hHH1%6(d*46v>z%K#3)H^~ z2%*=iw10)*@xl*IXFhy*TP7qY75#3_-UR)LG55tMwaK9SDI*xJO=Y{mrDV2dkz8by zK2ya*4r)1FKK1&+&@#d!da1L;C(320CmAb*>76TGTEv}%`)pI98l7okT`osjA~p~* zR};JiZRk8h9=uvY@pp*4n=wBW((NJn=G3-^oiQJbwHmJ=_Bdb{CNPsSW|hO{g5|S3 zT;PZlS3&LW73n1G$pXVp*~{-k6b{AheshX9{h6qO?L2`7-O538!Gz;97vFKChGR{e zPRsV0y)CYpsJmKM9aa%uL%vTjUqE>^vNyuI_8Ft=S*p0c%3ucVMG&p*h~4;fi=DwM zf77woGXjht4k=v&_x#IG-ie~b&8 z$ti*^zC^aW$|92RvG*7O_~QB-MoP8ar{j0fdpw7?eD0q(@_8VldPqs2L}azJfkDWj z#<$mwy;MEyxXvt{ZfY=#4ONjD$9CN9QScCkpKr~4Y{E1XqFY6~UtA}84@a80>)5fp zPV_*Jc&g|Mk28e$lbOQz41(*Br?tD6yB4gf&~HBm3Nz{^i;19gTPlmF?kVoIGw4yL zI2KHo_mXE41|wfYRFhT#{*(SQ^X@fbwFKYRQPLuHX&cPq5?R=)??l|`tWf9VFG{0I zPe_F?Lz-pR?i3nwaL4blxW#CBs4_FF8Z7tbgSpq!gP$1mSrbo|N5g1XKuU_udgDBj zZQ5|QY-Q4zwxYu0w>29BgoJR9c~;|Pro)*6$&Vg@0xo=&Yh z`;Qg@5frAXXw-lfoM;g(Tiu=@+Tu|@Lg|f}ZI|hXeY|%H`F_?{%|W^<%S;eOY{ZG*eFAh3Dp1ee%1Y+Q)3r z=$VaIqjl^oGrJy@IPfT31Ped(pa>c#u#O`VsHi?|~ji9pK-v#5&9f9O>`>*5M z&J}4_9Xj^jfQ?}ic_Z+fo*+vaC)VMEOP`Lc?;g1#dSLuzC{s+v7$acw9Lm_fZ2@KN z$bL>R@TJS}%1W2%v0@fb*w@o(7Xv4*J{SZ`@BTl~py7YNo2pQqR zJSIcvsxy|l>5`*P%tXH%MqBp39@&<0ioP;LO2b$GpFfmP z@PE6Cf75%op4xsoYEmWSsenS5$@3@LnufNlb*#D7 z2_^e6m3!GIBBTqQjpfT{)sF466NdOTCBlJ#=Dr?5-Q|ZlB9NIf6cd-Mk$YAKkSz0rW(GCPE^x6$t6rd`7s>Zhp^4!pcKlE{{? z2Az$aCK9D0tkxcN4}I^6(=fZ41WPYJ(gCzIe@>+1iNv-YZY!;Al316Yzl0{L2B(&Isq@Ae#ods) z@?w|8tdx=fpp+Bv9@6=%V1@SM5IGFben>`Y3EQaD?v)2a77v@BI8x1?%e%y#m+<#< z?B^D*Sl>6P(PDSIA=XYBxn$cX%_`_U)bYkYQ3hRyFH`)A40ACWysVVPRy0XS?ac>G zqf68Y!=|1NSiTOIn~K>;UE)+krAx~ngCT>vo1#=e9Ttr9uy((iR_|nmys%t&-wLU> zEZwKiD6zHEecJt;fjyH#T^j?sWj0#z@~l3q#a4wF@_^SLNP%TqvCK6TKFTlKU9_ri zVC&PQs&Gq<;kn+tRHdNh^v}UEq5SW!Tsm9Te_>c8aHn{L(0HZWVxlKhx)T~`@YuD0 zA{3+`5jBMPoIh$rzF+t6$Kd#X@0@Gl{a*t_IZF=qFtq9+EVf0IT9(-5@bRTHmpIMuE!;BPd@U@{#cCSpJ{PZm6NutSQ_KgFt#WiSthV-u7xxtN-WsZusPc`m zA)JFxQ;Be?x_v3brWty*}GiqEAJ@95|Vp|(f}9rJyQ4fD%|Uk zLu+i`E&v42bB*8S7l@00ZMUR^tmdy&xIHRRf99a|(u z(0^k3gwr|#w5z71L`6MK4ZwvuLUwT;e^-fnb{+#zRcwAxtb6G4s8?*J}Zr@r^^3S9h8 zpF7>f!pbAgv{MGuUUK$f4z&;ks=8sZPsdA0yKaNb4zXmNx z$$;Ei#>y>5^^lF3OfhlK-f^>XS*2GOFcl;P7v@3)5qnq6WS*+H;BTVp*aU;iCA(oYi8eDX>Ie!^=%4@m-p}7 zgyf2PWF$0a8^;B>w1Nyyf9H>aQ!ba)pMvT~thc2&uNQq)tSb`R(tIglY{&j!pKc05}GOKvS-at3u?z3m(^&^)$KPAU%3YwdD#I`hokL(GMD=W`eewqkAVzhzBVL-?GIk z-ZfRW=$S^6XLRVQ$F57XYb2V7VW#I8^8aj^{8mZz2H6 zI&n%zVvdAool%d?Jfo3nd{pDo74b6`=TkOCIB1j(IG!c5rMvwIGuuFw1m*%=&?-*y zPV@a59mF=Q*@L^sbUi~2r$ze`YjIXs4m1)uQldtFRw4#u zRnb7cL){Hz@4~1tfJ^_aBr0FWV$QRCnLa?kqz{s;e?|HnH86j_TUz|?Mr@6I+sGp*Ky71T}= zO&`Zp1IBlzQh>>16hZ4kLBM*Qb{xap-OUeCCjgTv=_-Cm_B-0~2X9XQFWdjS|IM|~ z_&cH`cqE_4h$8Amh*>nji2@Ys8I)(yKw^>RsDit_qyu55u9j2(9*IlS|5J zbG_Am9_U5BNJVpICIM3^;doP=b7rc#lR9n1Qibh2Oz6$8-FVVVM1n5XClOAckGOD; zxGkBI8o&(RoStDmjom=E*uYFRr^Z5IoP*$MF<7yG@EE?6y8dfoAKMdg@XwBN@ z+7_;y%PcNA&*w2nx(wXZsH8okcCp+zcW*52WkB!Jo{2l6@;dzBdVerP z$2bpEH8QQ|SH>wd$E zhnVYst=DtSphU;*nu%NF;pUkv?|_~vOV`T>^R_&+90}i(bmu9qCtPbW_NJ`K)(^wY zZLjS=2UL+tg)?sKtXY>hatcYrWV+=FOu154yof1CyCPphsp%r}rs$|wRF4x{#iW$| za^I-WCMvU@C{Jz8wtQaf!*MDCy=aPVK`L`2GGFNGtIP>B+Zs0zYs!euzzGR(JZW}X z-6f&KJM7ak=tC75q46?Xl^b)S)j1EP5LDtkKFFkWq!xC)#W5hHt0Y$LWSxX=^eW=> z^8FQ+M=z56w5F7n(Xzat&(tXp#tQe6Zk_ROOGlRw*mqv^xrqX1GkRL}d;kLnAI@33 zfRY=4UU#zrK6gt?0SLE8tepZ)$9>Ps6rBi^>G+?kO&;&Se7%s zw&dAeHAKGf(=h_~vNRajb*c{{EQp?nY?iZP(^#OT&lb$6944C;#f($dbeH<+ARYeE zV9=Lc!w&ib2UsSci=A=cfTlrp^a7bS>`(6IXQOdjCwc*;sy+wO4gdLC|1sn>Wtdm3+9HDWnsyea1&sNIdM&?Uv^=+)9tv z2c_eXtR{W*)m!K~Y5`~`u6J`>$1D$1I-&!=^y6%a`qEafzCEhVzt43>eHB%b)wtsj zCm++SMCQFIhgQZPi+htqF$kDRlNoY|6SO>qC~cpoOg%5h-+r#pmIOMh4sN#Z$=o7$ zQQ?Fq-#MuNB{tLE#9G)gZbfm%@D~>=o4SVuba&f_S zzU%bN8sGdG88AP-r@x+Y+z-_CZz(1CUIY8>wY%>%ubh3TJ8W68 zM-Y@#J;=nk_dbz-sPB27G80KW+6bKEQ)Y!2=rNJxtVEW+tHu+Nutxhq@vh5X_?Wwv zP!b9d56~|@?i{JzN_*3y#lFZ@$B@oAt&Iq&i4y-7W^)jx8x##hh<$+_b>|B;h*!a5 z744n|Y|3r_k|+P)<@01fskYTsaw4=9_N_=?QL6aLif#Ai0p@j*=W4TEtRt!RUYOOT zpd=OGehM3rGi8qw^o-n0B1Z;lZWUzJVI6Ey+7?_+w^XdBjw zz}zeEhh->Uq5xtX3OaLN@3&DMew@PmJN;Wg$6x_<&#s$u73?A!O3qJhps5vwU+oW| zp{-u(JYNrsU(n-VMoAeA>T6prMggK-19IyU_lv*Fsq&-eGo`10#q93Ue3g%B{8ISUA&rGRdyMyuu!f#WS+ zlIZ=1vH$)znT6lK``a)$f9p8&E;RpHk_DjE@y>;6j?ge1?<{D>lQ=@{#j^#{kz>kU zfJrU@_!x+&CjNoK^??m_;v#?+8R{}I}qVh6AU|-g5w%mJFQ(E7CDN4)i z{pV5R?{kJW@0mX4oK|3-zhye^KG&SD0J{+?Z-ZOU^C`<`=ZgW4tTk@g=^PqF-ffKTeEX86J)ti!NR zFU3oKY*VA+(2fhfQZIt7xz8F`%Y6Pgz^-!~CMW_2&*i?X(>7w8o5tj3)nt2K6?ktK zWU1`B@3Opn(}08RU9gWm1S_H6wGb)3PUdX(E0F-t7E~a`flQ#G)_C-I)t|)3WYJ&r zKK_~pE#Dlf`ibHvJ@+U1jUpFK^6LrW=}VhK4%f>guSlGw)aqP@V0kxlts-Uq3p68s zKs4fCIc5G$Kg%D*G2pE55GAu|x58#XsLK^*Tj*r1`|FxMh2+BU3vr z1n)5_-)`Vj%Ht$Jk794b1w%6@ia>tjeYXKoBD8gZ4m>3GTBtm3Gc9H8ac{j~rLgIT zkW|eZPj`2i9bimvbAKwN9ef~zi&tDcl;Hd~g9rYdpp3ury+R8u-!q=?8P7j^wtUZc zzGpnYZ?;DWBhXG0n43PW1VDNumb2v*`9nJ!z!BbMAbVIsbKwMnO4P7GJqp?{z|jJJ zVp!lOw)-D`Vzoh#UN`MH`l}WfsIC7)jC+!INa;sY8&iv8uNy>gB9+~p>xam)r2eSV{kDzCo$Ld&8NAgK`E=tQq`A^4Y?4dC ziNeRDG?7d`z5EvQ4YeJ|!?!h@I2n3CIOktE{qd50SPZJ3>-L3u5&c`t4{$MlT_IR{jLQHU2LhV{!EmS)9J&hral%Ks% zfkBnQD*0Q)4KLksYh1ezHCcsBYPmc$emy#SMnZoZcVlYS+5@0DQ$yu7ExTTOL2KcP z7qmN8kiA3w%<96mFy7^F4<2EnF*HMnxk*d}%;`8V!H$w;Xu=dC)RP9pO$St!7f=>z z`ADc4zDEfKq(|9g_CvvP3`y6ox>6j@Z~}AD8@2$ycm!n9NzYI6&PM-kAj5A3 zV?AtH9v)is{IZa?@Cvg%uzOlf!f2$6ikqg>nnaZyRK2R6WdczV64%Lt-H6CE<2A4n zi~{0KqAUbgq9Ef__~}B{N`wly4B#a{;M^qg8e%L5BHqT?u?vJr8NhFgcLnF0cmOes9nIVhN*bRqExer&4Tom# z^W2S;&VlNJG$lR;uTCaIwWn6kX7fqaRV!Q`W(-yQsmg1NstNL^&h z0Fgx)H(ea5?7}agv@eh?$-*39G&SJGJ_-UC7el~mIU{o!OBWvr9?Rx@iGriPK=J?; zAqGOGiy;$2b_hGR0fgx+fgBtF_$gt=zbt8abgx-JtrSb?FWChZo?Jk!Wrth@B)I;D z*T3~mp|^12DFfbYFvp+Uo(A{0-4=dB9vAO73VrJ8(=!;NC@Ksh^c6Z9t+JVqPnexa z&J7jUoV&PbIdU56y^XcS&P&c$b67Y;+DlanFe&a&E`>f?fGTLyE%Nwz%6)=A^xS1! zF9`(l?^04dlv?9+vs-s0#~cZAe&YBpu#R}eYmqL5KlOVPkp7O}$EBn19CD)Iy5yPj zSC{s9ubYyAhZj(O4>?ajojSu6Y)-u358I9MyyJmpeNNuM_?pD6p340Aemr|${%gXF zz7v+s1)MGJ#-pnt*t($|hXhpLg=p^3S0|bjwZ-i_Xx}d6lmqsH`-6=Fk!5uQOBOr<_^=d z?)KFd6HW1_Ow}I0%nKIKyd)Xrx~(Go!RzW`6!8*1)zzXOsv_|W(Oun3|7d3L^$1-7ozy{g+;M?BUwl}L}2C>A$nISEbl z+Fr7=h*)QGym67xgSGcwsh;F5#n75bIV6ri$a+xUXMFWw3(;FZt=Pu`tDx~T-5x>P z1822aVg*zl>jCPxnorP>gTs|_D1 zfG8a&q_khj_49|xCqXTBUg_e;4DSao-Q>MjiQ|Uvr-IS#xfi$Oz0$a{>D@lLq}{{$ zJ3G@vwjHqG^Iv`f;i{5htpCBm1sh3%w>Plkl8h%}0Wa zS@y_sz+jLH>YJROZK8ncHoW!SL|@qi->BBqV7^n>p4anOQn7lIN&2~JRM!!& z9gSp{lM<*khy7C~?R+`G=@#}+hoe?^wRKg6A5uInw$I|;60IZphh!El-P99o3p>98%4nr0Un7f}0pC&HJmg&I=oTyR^BI@p8zL>Oe zd>uqH!yFL8daXyXFvzkL)@2(+z8La?gq&(-)odk(@Cf)H7Ph5FO2Bjgo0y2W0^N!5E{EFp+c#mX8#R@>#E*m>S)R5` z;vtGxUl(;_vJwgqTLbT=0Xq*kyx*PtVpwIzR(zFe%~|@!U5kzkOI%&8^>pB77&fBe zPIq3^xDZ{iI;J5oQ}sp`Y(v$5SR{NUDy^%%-T0vT>As`Ap@N@JD(~qmv<#7;f?cun z5a6TdbK*-jL1lbB>17BP?cuw;G5>)U`6K!|*&h?8?k%9QLC6)tJzaggSxMAZKc{i# zuC=^8Iq9fu&mEnb9WS1Ne&;n8&!f1Xg3?^cBACJ`wYF2;HDEp^us0*_rn$ zRnf@#wpOg8+*Vd9np^yufJW_dBt;d|TiT0WKCCV%?E8hxiLw)YRn#Ko9$V-abU>kg z$F1zbxYP4-J9o+qkUqLFaLts9@_yS2DjXa7Lssv&HYzCNH+5SmxM>e&>fOeNp>v(t zRw4&jHvg#^6jlxNeT!41hj=ZZE|SK(xkvL6(H2Tx#(9>}BPZD>h)G6ac%5%V-b4Pt zo<2&P{V$G#xn^WJ1vD`QTcP7P*ex_-DA8$PpMlO1+L!2xFx2USm81}}okf(~_p==z zffdWCSCLcwZ&#UY=s6M*r?q3^;3kR4%Upz50AZxC*QNApRmmQi)P%3yz%idlE z?Y01k15y~d!Rk*+4Ez{iMDmQl`K-g%Mu=i-Rw9kyGvPPtKAIXx6|{YLB|neggUHqw{L`%1>Kg z6|{4O31vJEak;uW^TJ-nCt~sF=gE+6nzsFV*Zqfz=r{n_tkUj#GuE2qxphh)fRm^Z zKA?k{7zB~~5gcve{CY2}8nT?&0*N4~k-RzJ9HgpyP2j%NV6&WQmSS6!YI?_RJ0WDs z&XK)CW}d(SBq&=9FVZT;V`rhO*{rJj&W)*QEH()ZXNT(Y z=S>v}E^Vw85x9QNFydw@j~Lhp$SD8;3kg;R=Wz)ZwyNTD8n`rxeJM?KUeJ+S7Z##dyprZzIva~Qy82-?>#8I^Pp|(BG&MJkgA3G0V6a%Y;Y)}mQ zU`ifT4c0A{Dqd+OLDFrM+#%jLL$x(o7dV4IwLe*$)x4W@e5K516^;)q0Om_Lz58xX zAz`)0WjZf=GyN>8Unl3z6?=wQ+-2XQRFjhTlH!Sr_i>NZhQQ*3V=!aue%yN3IGLi2 z$EMpaL3-3J zq4#I4+XFKdpKIP*mh-5_^})&j?ZCO?Q%Vacn@LzIs)Ev%e=NLeUUwcYFAY`5pgt=z zf0Zrgko;xEJDv-@hXV$zM7%F>GbayV+VjiNcS=^kl|6PceNtZbevcDI=#zKoxs5m5 z>2HdSj(!xdR9iZ+)3$^>Sc@#f(1GdMA^1)Po3}M9`w1Mj%t=&z5BA#0+>@54Ff$)I zcPn$Qo^>G)?fFl4k$*|c^&`I2pZR;R3fNzPnu$RBRSJ^20WVj3q{`i%v!#gq+6Dy- zrhckgaP9h~9dSH*RN)WKtkDf1!rk7@j;00x``t+$5MO>wXWEiS41T3E^$<5OA%msR z>^T2&(p)Z%qtr#6wI#g8v)B3~xI?`Sto9TnW@2 zq1m@M4$phu*Y`mwNZ=>5A%Yn7BLNK!90%l>(P&^k9E5T{^{*6+{!Krt@PEyNJ^SV7 zQ|5(Xl^>S2diBq2gQ+ABKuirqgL#qHJ-=`C{Wona{>`csUr)I2f4+~we=-NS7e4%c z5c59FZOqhW*KnjXiZm}d3P+R2WBYj7x6OcR^qJ)#a>otXdTG%F2!=O{5axk^XBBxu zjN%`pj2zrUnQg_+Y$kN7{owfxK*N9PZvhybQ;Tf?J{i=5Wi37nz@T|fE4hpe%i!7f z?YV$zReEp%rA2)n3Kfw_1H_xXA?)Do^Ey*j14*DKfGczo;|NZ>pQ|3206Ot@g=%Vt zNenay=^70=Jk)9{02P^$zCh|Q2>{ZPhye2$fG8`l`~J*l{GaOH=;U^Js6@$xd0{nD zf7ChwF@}0luv4y|?wXx~U+`&5{j5OrNsUTdy#ttP z`*CgBi9zsPpZo0nf?kd77@VFNK0Q!l?x0$G73XZYegYC6HkZxu)@*n#UNB;aZf%9jrx`s9isX63(R?<1j^VtuwyUwE^+Y(by4_Jo!L-(=Mtgt#O)(t zM>@yD_HZ>8?p#uswv8L^<0O`F!PyK4IO!>SFa20_;w|O}!JE$2?iU7_22zjrN{@!; zmdl+`uq8GSL_N;1RM`4WC6cgiV35rx!_SY;KmXMBMk|(^wG;KUw7vHE|R1}uZ@)}?0HP@)?-Y(bk{nFiX>KU z;u#N9UM%XqQ_YR~xtqOino$D$d<73gFbY-COdpwBV`_T#*wv|enJX973gS>bD|y#(`4Wn-G@Z$h(=3G# z9gHYA)Dnrh?vJc4)Q)=4=a@@w!_oIjo@>yooqn|xc4u&NLa$)0F}F#yP}i)ssMlia zBP3cjeAXO)U9NQ@2zg(AOiKnM#6JR7R9;?wc78xplce`j0sXy=2NSjgN~Z;*xV?Cf zp}-FMpXNX4dNd4>6?RMtr#c51{4cRVE~d|0f<;9J%)B(H(;Wwrl8fXoHeTxWoLi7p zA+BAjeav$M0b6L|DcdvVdy z=hYi+1XiyzH$3Hl;zq4Rk*g+QasON9xv)DOUG2*irQa%h{r$%Q*+4Nz6oaRWf4;{J zKUVoeFahnN&`#le+M#l6`#!erW0TCh*#1I|G=)uNnKb9%QSR1{J2H_LKZ>&LoE5^i zJNa!r@iv8X60pY%?s?Ek6~|(M~|g2uF!2=Cwq9yDeG%DM|x^$G=FlI z+V|+(saVqdP^KA`un{W7UTL3WsKU0polN#WU;=-D>zD-U#~BoUnhL@dkd}s(_Yhbp z3KF4Bc%KBRLA29k<_>jGk9o!iNQ|fMbHRYPm*!Jl@?npcB_DPAk zz4y`a+_@-ED*(qYF)DmKtiH8Tp1qIUp2UbwGpV(8;_=zOWA}FL)&7awH&N+H^upej z?q%w7Fr_!6&eTKgX=i)I_=lqcHNFjnRfZH{ospg z`9zkk4(Y>7eezNjWSD@V5@7_vc74#!N`b86bKyJpR;;aiRu3oyUFj@ga-URLzMXkr zkQh^aw)k_AkLcB~?MMWt@Mm1Z-%3RL_x#-7ttHeksPqIto8A@S!K8O1Ad!`XT2tUA z|Eq1En8(1Za{wF5kjK6Slso9B+-%wf8RdMlqPXFY@R-*2Bv2xFvu6@{rM-ZPk3qp} zzHXF1GpVrcZ)foV+2x%W0_Pfbes%oHxBta<`b{9FKj8XHbpAu$MJ@tI19)wR2)sY6 za^8J+y8=OD~b$ZLOu}>WD89pwFe7FB2PBO0YNGzuu)U_63@?-RffE>=KIM ze-t0cm6NbEG?tV!QX&@1h@p8`T0I>;xWQ@Y&gsfd{#t%zzK0htwMA@jx?Z*KxbisH zW{rz`xx;iJMJ!D(q=TRBM1KqudPKSqZd%cJ!Rd~HmdR%6<^hNI)o;r`vK!u5wsSEf z%t$msuUS4lzc0j}xZc&-HPgOGo z0@~(-F~i?UGB`0sSF|#>Vu$|GwbmqfNAO)Wn(*?Kk4r;pQC z5w9X|9IYCbxSTEK6VG*kyIH0m^D&l@(L}L9`>p;of)=F&DGCI48|R#rI~yq30!nSF z$)$S{LH%UaN9hUep1LfY!U?2y&+A$fQh!JhxZr${f!_xOK;_;j4m3iTmlkHD$=zspM+*B6 zg`YCIfYJwe|4C|(Ckn!oXeUCLyXE~cv$cRm*&Na8`JAv8ymJ-oKwZg3h$^eKfI5LU zWK^OAe#s5N&uk|&fXOF==%8;xV}M*aZzzc(VyO%QYhPJpcXoFTG zGVpuySTn;7paY9(%}C`V5rA4I#G}uBE#Z(qcOc9C0V5LXlb@$GV`rje=I{LShugS& zME4^H*Z-rc0-=Rn*tcY%(KKl2Amydoe>wJlby)`c4VWT1lkDhoecZ01Z3zX#!Dsr{`%S~ko+dUx8i;@*c zecYC24|)3LTy(xoB<1q0GwpY%Z$CA%>r8jLZ10bu5nwmU7Zh4v!ln682KJJl+~s+ZSZ+Z4nf^5s$b zE58$aH@@c`Qu{%Nj2~>cOX*1_WXpTA4KrZusaSl>+@YelDwq5hXEs~gJ=ygth~4vU1-U^N=$kYW~9_(h-soXPh0ZgeL!SNKD z1tXMhIp?FkQB;Seg?sLKkdSA5TYO6Ybl+Zcam)N;MHb1nqc;DuO@dr64@)OgvfyhB zhbDQpT59L8i)^3C-nzVO)ivw(GVU0{|fM~mIz`1xg5H5 z3Quj$rOgrEz{1Ly@551@y|Sg z9WHif`?Hp~Ek|)4|0l(5Kzv|>bHFqcjSbt^yUAuVFTr5@iPUL1@5h1-xxQ`GNFVQyz@&V#=)5^aoC1sSP;qhJgKy^scu~S zp4Gu0G{igYYU3mW;&H0YzeCyTo9nJaHBmQT+9y=VI zi)HB;uQ>E&2UVR7Qk`w4KnR_O{~`zsgAcuGg)D2;4)S!yDBsSIOTu;q^}ft&;LIrm zpb#6G`9Sbtf=d1v)SGJ%7S$fFUOj#S3MGGjM@huO61b2Irv|V21(cWZNhb`y?V97~ zCuHUO@pmXf77vJvys)P){Wew((xA=_m!WTC7OV30@0DB&*$(Bcee-&7ts>u-r*mhx zx6cWT3NQsgjW8OXw(JY>om)UHa&q_8wJ4pcaXJ^+t=R6=>DzrtHJpE}qi}I3Zziz- z;6VZ#n>Fp%HaLuK)O%{>yxH&+h$nhbDlsTFfPK8*x|Z-3z*armB$r$Y*K3&&pICor z-A?5`eRCM!JML-0y6oZT(+@ldSNCCshV^e0h~6=k*Ex4p>|Nc944-yuzPD=J{h1!M zy&S$%^drT|u+`yPog*s6b$cQkSH95Qf4g6A_97URR1Cb;>K3W2`-POBT(W++tM?ZG zJ6Njuyn9~-_2^Y(!qo1FQnnmT(jUmC{g4f?Q?hcjeQ&YKhf=}@1rgU);X@N+e3)yd zpFweqAc24yTJCy(mb}LfQiV|PXr;ssJJ(`aulD47_VUIt0dhfI_3hqXh z+p*3=W!#T(EH(DNl8!#zD_or1Yim6|?Aa~9z9%^R>~>~hhSmp7aprI)c{P0ZEZv!s z>Y7-Q|H4KkFI_cC8NXY!Nk=i`Ok2oPsiFOj1WRHW>4oRy_-?w|MXI?gdqrA47!SD89D&^F#?mJz&kKbSu#so+gpP~H`DG&A5lI?8!=B}K{HD~HA9~+119}YfX zn7exDHQoN6*5Wst9+T_3+qrvO?m||i0O9;{tl-w+%dvGi15fNF1x81tU=X6YTjy7#DzjIJ)qoY?^K%!R~>MLR7E_8*^cBGo|5H=f4 z)ZA#MOzW$0Ozhk!9~&CIW59yF_MDvrJ4+xt-(eG`K4gqTZ>R*SI7$UazK?JV;}IG3 zxvM=}Ab?T-X4-C`%JrN=3a_p2IfVpDmc1`#oyTT6sTT>MOTDHNY?_=N9KQ2#*%rr& zdvD_(y*Sd7j@By`=K<+~TQCWFVk4+x^weH5Y5YE!pY}FMBH;AL^u(tF3ePtAyiuCx z22+~NAt!SlB0#Sv*)Ng|vJt2+I@DfyjZxW9?;5(6W!3s~D#;>Y0ZVyj(VCh(w9azT z`kcEv^i!{2-y9L)r@`Z(vC&8W2l(?ptb>UF(<;@)T0=pE?7Hri2EFLpOKvHBZVj5S zlf6>Z{UR18gQ%a6y3(zLOze)kb~EHHP(|FpjVA(G6Bk4?NCJLDk|@X!IP(m$go$04 zT;57TJH8Y`7eRe9t=CsvG|73DkGy;4;~Ly#jbEd|b9IsEI$GDWt1|Qa|6mUN6HFm2 z&~?KSF6`JPpuldSG>3#6<40tPrckLkW#FR{jwM8<%)~TN^nPIPa|2;B-*(U!!oFM{ z>_sh{eIBf;~f$fU8(e|3lO zz7Ewyd+Y^(f^i7)Fe`mL042i&3AA@5RAWw)=Xe3W%dscqA$>|51>S*YM`8e?_i-`s zPER|AVne@z-I4p{DA~BSQRJv#IgYjdI#ALCc&T}RExuEt>|tpP`_TgGHf6N@IMAqE zAdhVQm7m6=y{=C(ml^{=1QgBR`$7)0Y*p*-sa3h)M#0!TUXJt*{hgWq+|%N}Y`lV> zY+wrzkfXeQz#iQy4-Bu&TlSLpMZe;hg%6^>AikqaIS}}vu}h86OrA6f$^N6EP$0nq zGY?FUnn$i=q-2Hy48JIm1;{(~y=*}mX`GAJe-bA2TThJ71RXmn89H|1XvzwE>9?`Q zheHo^CSteuH|Q`yf((ORnH$s*DZ5*vX^|tI=sfDWLD?WM|Rk*4d(CmI}n-wSkk{I zTLtY6*#N)a^fF3zNrK0U-mbl_u~ip0OFUC7G0gOS>ziQfckl|g=Nzq=O<=|i2={TKAZoq{^8CMQg z%iqR}ZQ^p;N?(#Hby7$AXukfU0B!pS$J`rxQTQ-mpq4^|`pMwj4KBfmZG!DHwNjV1 zuBcBZPE0jEbO6uUxk?uDN^Ynyt9z zmH~4=eA=@&mizdZ@vJ&Z{zz`40tH&ir_6j`%B8#JmJTRQYDU6V!Lr~hnTd--ANWMw z5|H$o3e~VdaeNZ8747Vg{2%uIJRa(Q?;poUNKwg_NJbHb5|Q1IY)O)svQ33-p+YF; zRg^V*NXke_*(M=t#=eH^A4U?hJnA`f+nR0=O+>B-iVAIrh|WE3Ks^+#EPL zx3fNJ(!t@Yk$kLS&9pNsbtwavg`?hq&xZpvehu929gDx2ihPAWNHMquz;1p5I1B)w zZsTDFP8*CUKt~JL>kxxPKzyg4AXT-x?b~T=D3~BSz-uF)y1?5M+s&&z^y&c$^8|)m z10%=Q2D}atBrGEkD2S|&LUI<2Q(y!X0CljFF7uN*n8i$L(}o9j{TF4Owfvr~)VKZ^ zH;b8e8~?p=NrV4&sFGbEsgQYEQ;s@8Dji3X8A6}gDy8^KFgEAm&2H#=ox>CSazz~3mQfv=Af#Xz<#l!gTg833V6!W zsP=!-RN!=etFHbxR~Ns&`#)bt%KD@0zY{E7Jmq|?G<^KU9>doca&uWMFC5q52--F) z(~iI!(!rE?$x#PZE9oN8OY>%-+t1*ZdH$l-p8Jd($J8VqNUpYmiO1?EyZwMQ&h@YBmn7QSIk^GcFv6ggr*7pRB(#C_7QB7ua6Hb8>9LM=0SxZxkAD*8{GMR zlc}W=Q24rDx^JW0x+|Oj#m)Dc=>_;xxBbK8b2jPHc+~fl`df`$C*-To|7HPM4Kz%+ zT4;4&0kHpiilb)3rr+iVYFx&-|ezQ>jjQ zLOrjg62M7Lu3bIg;ghq6cEJ9TVA6cy@E)m*jjlIKHwH?(wBdDCFSEv6l-Ga9i6)=_ zHBJ<(!x8H?pv6kROAQ5u@-jD^u2x}~AGFuQ{rd&Vz@2$r#S>y;i4t2lV_UVQb+Dsy z!wBZ~me=&V{rOdg17xa#>zImVuuHAE~}SqP{XTD`{owjG8prOGk61W6s=Yvsv&)z7L@@A7k~ zT})apIN>WZ^{Mc%=1pJwH>OsrI)H|7hw+pQcv&d^7}~8uP_GR!Z_5=$S)Yx2*_)eH z6sO|&?BwH^w^wA;?jtfsxPbQ(P04L@6q7y#WJ(e4X9zM5{x|YYyY{GPU& z7M1Cp=+ptSCTWU!M(`0hR~&H!fp^`wkG}`Q{4M$CgKH6&Ck@4PCE|ByXDfVex(^eH zHwgr#>i;i8cVS=FBt;Un+H=$c6{!V(rW?Bro<1f?(!j;-l z#L#ME9Uq?nt2v7=2W^Zbno^F*R^tadKa&`Q!6T&~Tj>hDtDlVZaF{dwM- z{8ZENKzjl_YKc8MGDEwk^T1@Z%0)fq5s7O&{I@@AFQEYAYvBk@n~J3*P_y3B^~gt# zTbC^>&WR1b`tae@*;{fsw=WMhpHrsAKi@>kn1zZ;?hD4#>T8gp+YPe^^2-FE*u9ZR+#ZZ_mHmgdcDS;rO1)l(95LyQ7;67=JV zhR-J}gLXL-#>J59Fi+C#6tWHlkF%~y0fjbbDY##@Mz^DQJqsa6A+WvNUcCO@dADQk z+l zi<#G?S$t*o0Dh2Oe|8JUW4g-0kNxTA1#G{;rDu<;Y*(>Vf&0`QJI)`=UHoUPjt;nQ zK^=hc)L9E(S6Z67iVF3ift{B91;+w>o2h&G`pSE3T{(8pQ9-<(r^r`x}_{|Cx^pnoD812)Cu( zyxVqW%{;spQwXBG?koNRurvPSW7Pig8aYoN@oKTJ(bQ6 z78xl*adJc8p0Vo*M8D?pucd}->W*BJchW6ZGQJWe3QJR>(2mG8W13}vUH3hnw(HO_s%^ z#av>osND1HV;Fzwr^g(w59PSrK9&1;&_=&TLLxRBZ;V`V)Pq6S`H?G`G*zhPl-3dY zewtKBz)e(R8gHb-HT7^r&%!|=`1JbD_*s^{(YAG*Z=-g%V83C4Avk(Zfd3cVN2Z9I z*=VIzpokpv)lAPz)=j+#F3ET$=V~@4iKU6$6W^erT#^B)b)(@J! zS09Kz6tRFupgBvax5zRLcChl!6#U4!<+`JNNu!og*3+%5tlxmW2Y^X~jOcpcVeutK z<4B9&ZIhUC-Jj!*q1Q&AH(mrM{(L!Ax(tA5i5Q9xH4M#1_aY(cB@x*JW9ji*#3c=SFZ4NjE_tw&J}wUnq{`1YcT1^S`PjqZH(!e|Em8xIhX z*gs?{ZD`t!(ar>bpZ=(TJlAB0FbbG+M_QE9WSmrs?r)qN+hFIdT&cF>s{{cj8k*yQ z>Ihfz)|YNs_1Ybxvle0SYT#G-#L@9u?r{S)(e!R)Zou818>^nt5RZ41n*7epn6Nd! z13F#y5z7`9aBUb?DxJFzOO=qLKUa=`<}FLXNxT@@=-m?O{;|t`Pe=A$==F;MA=Y=ihozqHs)qMwB7>H@r%Q`p zNFKg9y!Ryc%ce6->0-=YYDK-rvR|-GRqxO#<9#_P*JVvF7#Fl(wf^?a>WoxzB0lb} zg1jaClq!gSosD3s(YMnK!5P@;P6>KD`8zgiw~l<^yYD5})I5T&kxwFqbWv~MFlan? zRHA3;AW)Dv2Od%~-oDK&XXchHQvS|}())v|f@SjaV%|vLlD%|DpfLbJ4IRfupalxa zC3OpSJ3aMqYz?%Y#-CHJfG6!OxoP{sR9&E13>Ii=W_pV~SKlpV&*6a_RnAwlCXg&*FK#@2 ztf;A>A~MIDERn|7<#c`UYDR+F#}i$4lTbH2dfzermF4@lP{OWO{RMf(Q*(knW5$e` zNq_5=YbLs05nl>69di0rAIN!#2;imKs)HChi}+Xt>pMiJPBg z4NDg&VVa~Gfa#gh27LbIWHxHC(-ln4g6x@RQ}bE)b|?Mvh|OAB{oMe{`fe3avc-2S z#B~iENPN&N9wf8T1=`x4xbY|yL|E_9{sH^;2rV|SuukX6S)$u*I>TwP>D=F>e`84H zt2g0x2MCgIwF7BNWF~fNc*a+lW7+fA^fUnrZP~@9M|$i}Ni6BR8YAeER2uji&i(oM zlV5O7f%|21iHFW%v+E_E*$oB_sEZ3tC}y_oH#0#y`OzpZfX%U#O>t9H0F*O!L}G*I zTXFGwsq*3Bja%F`ps%#0w4%6B=g_wnPQJ$#>_VH*QZC!-zTA-&YXDp?1bpxLLr2m! z{f`~ew9`K}meP{*%;QtOb34wk*W-qD{*@F0f;z(w*fL$H7SB4|FhqGxb)3|F>9@JL z*&)ka==#WK@5dNC+-27^Zc$-iPHKJ${OT4Y!6=79Qd5&PJ1GP!f2lFcv)tqu(&L2K zHHVKannvCtNk056nHu*bj4t}*w{vqi4|4`5V`n>0L#u)4*#SHfa7~$KlL;=r zlhczdgI{lu6ZGRYA%(DFQ=pnF`jR{+(bZxINWV<$#zbu0-6*QCHb=E{Z|j}h<|ST1AHHh!_9#B?8GI4QZ+15Q*E~J^Z*%T%r4|jkHR7Cc z8)67v#Jp`Ew3>8gn4506`Km(p2h2Z{d1wRE)&Ll`uiyhZf2&tBk%Y^`4mL4OrtlCW zVn~V^TZdAv$JK?tqb@y0E%qWnvrT;PZAJujg|z!0ycev^IA^&HF&r;6Z`F@jjj&=W z$k3GkMz&GHpZt?FO^ zFIA81at+QKaNvz!`1syv>k5Z>=cWwf7wR2R9!~!fj`=0O;SO7|Y^^JV!z{pty|)GJ(?kCBbGz zPYv!|4P)1Prn+_T(k|ttQ`#F3R9!dYfQ|oH;mmndUDe^8-?*%KPpr|LnHO0$UG#pk zcp> zUnB5q1pXf#0aW`EonLOekS(rd>rl}8VbKi2D zVeAG9nrvVMwkqeB1(K~~p^cMO=Na!oXk^UbIwhWJStZm}q>1jVFSq@MyzAIEk{5sa z;fsVOiEuC3Am#Azp~%nSLK;V5=u3aDoGsTwG|UO6>~l#~lBDQ&UawsHPZud$#uuG9 zaK+;Nv`*cT1EHt3bBH~w$+(YjhMYX9M<)2VATDN?<>*v?N@z*%2uvQ!0Hd9WV- z{5(Y#(xIOQH-V2x>&(;ba?COeW7|Me@m~cQY41<`%>)Nr_Yc0pJ3aq~)C6aZ8^;0x zqZJ)cAg--5M*w23$TEv!#Z43kfHQGH=o!!@E1d&y4fO~pksE@;tA}0AAO{$%yz7)_x@abFk0upSen$RA&Gnb^MGwb(fv@z!PoN+ky z9Kwxz*Qg0R)eZ0F_UYQyXqHDBPfhU}T_t!F8*(v}&NEf5WtU9mB0Q@1r=9LE*DNGv zJ$XYIcN+T~x}474f*Mk0o)ZK%JW*<6%w!Y06L#%1zyN8f{poE}kYx=9XC|l7nRU(W zZzx!pcc8zab^)CrIcWSP;$y>9^$RV;BLvr?y{JmR*vhf|5RsWXA9jczo}q;MA9+4+ zRvDABGjNWaOz?;!x#2y-tEAkXx_NRB8r>{NDCtODtl6gZp|v%5B!{{}&U##FK;~+A zhK-`z`fY|3crVBno@tnf zH&9O*c^dz@ej@(1iDgDsadCN7c}Q!kU}N_9bn`H)`M6<*42>`pC|*SR-LvwuJiw`jrXp*BYR|%NEN>^Vz9j z7@&^z3pT_JhrRJ%SiH7#PC}neRx_~&1i*F#3alX)bZ7_Z#*Ad8X?Oa0J_`~hWBwVs z;6~<^=Wko0PfI*?WQ~7pD1J!jzC=KdHr$Na1{I@XK#nE1&@n821IR$@1{Q-Yx*hB% zM)XyVVOBbP;J0;FZ{+Ji7NacWfepp7QI2uBT4;BG=>Ykl%W-&NwY5uGMZ!c7`_f7oEbc{4()3P9e2kANNo^x? zM=P0z*=ge3buaZfjERf#DvC&$$*GG+-OPTKzQ4nW0odt5MXw zT*xVw_0cM9k9}>BGi&2v>{tvJI6lL*_UXRXuTms`&-2fIvN2{FF*-D2L)k8UZl2@p zBHLQ^3~E2K7b2OU-~rrUb{|rQ;3#&-WiLKKqIf@Fe=?hd%hz${cE@<#Syc>Dwg&Xyk=ejVQ% z)PMWqZU4u6Kln>ZO69@O!Ck+DS1fc2RD%NK<&S=H%mzFN|MVJ|NJIl&-XGtE3H&W- z8mg@iI*%ir#ciAbjS3*>9(@Ns<--?_G4KDao?omRpl=ft54FtD^)_b^o32IJkhw+R zTqs3P!_=elLGAD+=M2>YSZ09DS(2NcvJ`@tTfYdlq%xV+Jvc4g-%zssg13J`_y6=~ z;78A|=IbAtukaS%1$n@<76RUnje!7YHa>*ijrC-_K}-;}4nto%bD&X%l~Y)EmvEr<-v*Fp-hkV*;0uh)AP&ZMc8ocdA(RRo)d zZ@v7=y!LZCFFAVKM(h;@?DQu{_^xDeHr4ZT0eNfaZHiTNs)p~$p2nMG6TYnm=Cj+j z;&SB%r-)lIN zC&ND<6#uus{)?*ZSSCZi;-bB*N;Xo9lMG7EO=d2}vW0nrdtf#^oA!dR6=Kl=eIfnL3+N z7@jLBQCppsdDGsDvF6ImlOY3DNdW;saakrL%!AQ}V|3@}^>^NRp@r{nyfkPU3^j=F0gr-whujQr$X`!QyhDU;Vl+Y>fAQRu1GUl#P~EO%LcdI z&&~J$*mBX^E39|xyR+6 z*GIXaag{K%0KLr5NgGE-g)3sXT#T#MFINP$vd^V>NL=~?jh&UDogwuHU&W(#&Dibj zPIgR+abbVXH6u`YO%WdSHl3RYd|#q~di>E(PigyeC17vpK|UTRM0Ww785}=i-lZSd zkd?cVfhRbCi2lg)$GyP(Q4{c%_2DH_i(Oj=PA$i}cR5u9#@#qF)PeeC4E90npDD5ci&- z3K^k~E8TMgZj+CGu=z^W>F+sfBzXJ98H-&#UX546qN<_}zOOMu#R)J>!0B0qet`QS z&cTzz@F35(xjg@O9omhQG<^R_1f@nC{s

_7fvXq`Og#@z`j@4xh0Q^pS9@VPuIz z#I={th9-8@-4ea4;Ta6_n|8UH=%{IPOin z{TxZDL$&$R`BQ6o{7fk&B?}w73&+?D5R(lcxV{Vjs?i~E>5gC3h&RWke@}jR%v&>s}I0fZL0alk8VFE zp!e%##DaT;1Nm9#8R!uN%K{pP{&Ke|v`B>=7wS`F zYkellpiSUY+i_=u^oWbzX3yt2O|7W2IA3VIK#M2Da|d0OJaLQVXy)W%s_gySZMTF? zgcF!8kD5W+=E1*9PS8x=T4ImSN_1EHw!rwBt}BkIx!C_H;1%t*+q#x8 zBSA~j^<=#N1>-k?k1-Uv%;>%*!iPBO7mnpjqMU&1s2bU$m}qj>{N$_rQPX=jC#Dp> zsm9@8=Qz^yT_X;&4pgzwT}aR_*~n-kXK7y9?DZ1E%69 z<`>P%Bj6u?dg!-!_W+*KT}C?1&%E{rY@GmLwuHm1Yhcyrq?%;WuQ5{TPWZMkwt-Eb zC*^ORS37o78ibu|MH{t+#hGo-m_{;dz&?b@ISf?#W(B1^iyAU`FM(c9zL>(XzyWqs zdevQF`g?Fc&LPI1pf$jFzFyQ2SFCWSqh8w#XFIXvyKgJk-wY!@;m$+b5A=)`+<7x( zuz)1hE?jzs9rfbpBxiF$+ft(bzo8V`spAlwaHL$%Vg( zfw>Eqd!XjfOkiW?$q-qaR+<{)LQMQcdf`7EdH6G_k!cPV-+yQJ#H`csp-G}UAU+L? zKq9oCx~J*#fRCKqf}odBK#RuHe*TUD*2&WrBHjWmP~CQPGj8>4QD=uIQ&n3OV4Z9= z;6c(PH8Ie@atnC~9W)>~&K-*8q+Z6SLR;xt-PgJlt&wqr;@~?CE|)6eN)uM(C01-R z|IL{0U#X1x^}GJ#MgISUv4ei}{(|8CQxKd0BXJtB%-VyS8-g=nNb)<>pj|NVZP8R` zegcK(7k1kdIoo^tu&UG;QUboDpD3I=mJkoyyU)1(dju?JgPUY;d~I| zc~(1fK~_76y1!$(n!4YT&~DvzEPZ7!`sPuzK)-@jnxpfOi5T`9iYkGNmZ%`bL|2J) z)aR%8yT7aE*09sR`h;71$F^IuV^(xEY#%6k`!lXlD~Os>2=dCyTq@A|3Yy6=`!dv{ zgV(!goqGJ1O|J#?)-+F^JiLBO=19#}JvN@NE6AJ;v7b>i6F559TM96jLBC}eudd<5X(w|> zP?x*th^)38w}CG%ACK>7(fpjV!%*|`w@2`BYz*Xv8{SukDAbP6MXZ!N=yP8E8q?npEYcX{G z6BPZbC#M2D`ad_ZcJz4mnbNme$8z*WFde4fPB|g^Uqg0jY}9rVhHz6H4_cQ+?RU>B zE1oPdtDM!e64{8PzQvx!688*!Cv*_hD~#;6)(O_DP!F@tMJ&5h2}i zKcmz%9Mr&qq=Z_*DpfKiQ#ASYSM2Adw&tnDCf;3k`i%m}gjKeI@v#K}53`F?^T;aS zs1QC3V)gS`mrCK9GJm1wIE7kMo%<-u)2wj(^`yO8;zeJCf2A8)9Y0VPY5I{$t1tHr zC5X#VhM(e{e!y<+4e^>!f3`7ok?{#~_#}0ZNMPeTzToL}?-u4|#8!A7B(FTMK9u>b zWb?)6WMA_a-Nq-1;#JqKUo%2jy}P{f9Lv8czUkEi^uD+cTCY!GqaPJw@EB7Z=;Mo? zq(N4cPF8>jvY{nfKaOrAS0!eT$XAybzcvnDebm})Q1uPDtfMC~USL|lNH;^ZC0CCP zn-a0rWrU(`rKACG0daJ4_6ZxE65NxCjaZDyV?m7%#b_$C9aU^l*EwWe7qVX0$w(n^ zNpPI+mb}?BoY1(cf;!3T#|u;6%ITMLp{(oNhq%>AezS`=1TNT~s^yS3_2TzX%TWtL zY;hfd6yYQ@XhR(WWSN1TCx8)(Sf-S{TCu7{=Zr4R+V}?y(+n*EI40^Z=YbowBjeQ& zFcr35Mii2CVXe2h#Ug6SQW2FW#uubbyc)`j-$Z8Vt}n_t8T%#AE(-`z+R@M)t{52# zU55s_@Q(C?{C9*;_O+WAX71jTulq3AQ10J6p)0C?tL?coF$q0IuPgILE zmT7xPmxyK+q6-(T$_-~x&Xae<)j5(myE$SXL^dDGt(NM`KNzLG-k~|S;g#{~#nV7n z1B&fyH#L1+R$b1t@)uW2Wma$Gp6=W(Lrse>iQ?04XK-9|yB}E8iCTq9aKU4SJZo1HcHBiodf&$l2|EW?zZ|#G zHa*HEx=r=)m<(Uy_0rZUJ?U91xE<&R=;OiJm;Ev}HxJWRS{f}WuHwsiYcALfa&v)J zHnO9^E_UkkwVo0*)r@#6gV+nsz)Zt%ev%E#m%FhuMR*jU34m~aVy z!MUJIHil7MPbT2?NOCCZ%hdb`xv=^N3_veeV%VtbP0H*?2_~mx-26yR6=m+HreDh+ znQdZ=_dCzU3wwEP(j5C49jBh_YTImK7HGTO0A3J;_OZI72KCCm zX@ZgZW#tjI{uRYU}A z^{toc>^0slcsHej=8A3;6-l!WG$5Qz6|Xn+{NP`b6F1%8)w+))S=x*ke>wI+c3pCe z$#>`RF1DCAt}Oe=G%W)HJEZXB;z}WRo*@%U7pGaGJM2^|P1Nh4-QFqrnT^eFF!LW& zHRC+k9AnqPy?3zqF~X+E0Fw?U`&6Z##E0Ld(V7 z=FzcNIS2OjR3X1(i)BuCl(r~&gPM``H<_tS16q|HK=r3-`DvN%p;Feb2DUjl?h&4) zI0`M}PZ^wz`g}8+`?J12#IB_Q03+=xl>kS#DDl%3TAZYBDO);C;vUt%y=UsX-2CmP z#g+pi0-CNixsDe;gfrOvmWax=P>5L}*mxSsuRk1j(DU*UK3B(h>h)cj&TbO00XP^n zIyi@@6Vd^&y6v4K@V+8$>25b!pWC#_r{3q~kLy33h&dFnlR)Ag-RRbDpj z+N;S|w68<946mO4_KT$KBblQ* zaZO{?!yJvBkGoA?Pb1yOF+1fC+*lpF>~Y9$H1NyN(&Ag5ZL?W<0rIjRI%PW5i{cH9 zPsks7n)W)OMe^n6$)qFRh%8%k3X>7=i;UlvYieM*{3}_g*m&<%QXa4>2 z*@N#ii!c9=n!>PTfdp*R#cBmFHtKo$n~P-W{124t%arxy~zVCiVm7^6fr? z52Z#;rnEAWE2ZRvEvYe?t>fd7Quj#P=1nqMWj3BsACOT5(*|3^*)g5~qd@Gpt+GM0 z*PRKSX8bk=dntNm3wD8ETQL6l^g3dgoKiG#U9l()C)qk$OXloe_mQ{Vzngv3JFv5Ga#izOSR0n-Rq)tUs=jQ!_y%{lzZOpare`o zM0pjlJb%u)X<1}o<%l!e2 zv=Fl!M>6N$Lrq&;sYSuo{UAL9=Z^Pt%opD2L~rT3J<}uMTTdOo9V%l~A=LZ!RT<5b zfDxfeRa0{A5lwfyY_eBOBg{?a=UlFpk+XqqYJcFQ^K_H}%=yuBP$Wu0eaHKR@2T-O@bPfQ<*G7og0@1FZ5# zp1gkMjRW614$3pjyt-=Dp85kY!GmQT#|oP8es1k(g!u+-qw zr2NQx1OzWi_sz^*Zxf}4&x^c=U)dR-5an2#R>js~hSWi_5SS`_Hg;6=aan`9O_l4B zv}+b4(9Ks-UtaC}I6D%)Q}VcuZYg{=5axV_vJrtBGI%PzNv;j%Sv4mU*D}n3C~K zv_olm;#6WM?c78G-Nf;t>hFuRR}W%59rHo|&9Gq8sliUSNUrHn#;QAoS-i+(rOuGN z2=_L$Sjb7qc{WgIrQi|DgT<@YBv{8hWHtn{#49~M=!5Ab796x~S|_vPP(+{^17n72 z=ctAc6NyeWsxQ0OtQ*Ogkc;>Gg`ebhH-2Jv-uBf%w+?@~qwS9!!#u!E1zl|i+a7p1$_vSVzW>~Js7|^rQR=x>V#hO|Co$K-c_-===(KIEcwDS2Cw!= z^HAZUL&`<rX{Gi=7fp4?yuO z)HrZ!7IVO@`GEW|@CVQ6k8o<-n!%mR%oSt0@d_e2;&28|ACVvQM<0QfqmVVKFovGm zSqr+A0!5~b10hwO;ZP{IIeBa^ZsaW#&NL_lhXnG}_yKTC__IUM|II5$9QqH`6ePuy zrUSLGQxm`!>HqnRT^Jz8Y44x#NUMNH&UVl_7;Y3u}YrqNJiBQy>=?;#X9V{5`X7%9j(Gg^l3O!Wp+?= zZqtF0QE4Feu!=Q6hrF}mMq1CQ-W{?k!zZd+gy{PpL6SwkxinZZ6Y-|}Zf!W-t|cXb zwUUzfs~~9T2)5gkDv6n=;Z4Ks4h=95QRmJ@TD&LK1dTQh;n`v}C#oyXOxNwWre~Wz z;kfentrD$EsDMCONnUH5BTemw`j=EuM6dSD7K8f(&H zJV$f8;`X5Qw8VrRJ{AN%wh2szhOQfWec!lE^q6PVJ-3f8-thSW<9<;BA|X$Kl~M~% z57vgKU`RR4L!ir*32L`-_NE^&9)q7oX5rB4k$+oHkqaF2lK|{f38g%scH+k#9wFh2 z#IdO_DLpxn7@7J058r;kvS||5CH~fEYNJ=jameB=>&A9KOhb|7n2(NvraJ5xf(ioc zk#qp1zcfaI{0*)c=0P0R_3*C?e+|#ChvGj!6<)oiay6-GK6#duhi^aA*exO?nbzS< zJR7_9yCcjYR#nrD#`ZJoPTIFI>wUK({DJV%8Y3mm@{hT@-?vxZur`uZ%<&nDBs;-wQq}T@)>2m(y^6|0 zlc1v*FBgfWq>mWJ3w&Q-;hb{KtD>_`HzT8ZN{95n)^OHyIB+P@%19iP(^M2q*;%l} zic_nQ;8tN7J$I?XVkK;F#bC>hu!BdFhPdR%)vNlN`uZ&`@47!1zVm|Z&c~#J-1Bw3 z52IDSxL?$>VYh(6VAUd=G3Nhja(&t{EYV=xm!5>7qfU z9D$wl0LkaKaQ5)8ZN#J)nh{m59>YuLfinCcozeuer0+8V=S|%CG)v*~6CL6V6Uac( zOdH-Lx3CXLow$BVonCkXsnZ**5cWFb6*PfI1F2I_9#DCB_YoCYHh*F;j{pV}LN;YY z48S*Solsp$kUD~7h}ux`1V`$xd7yUB?Dt{to#$BL0KdNaGZ(-T;E}-Hk=ZYA&ggLk zWZ;*4D2&f0xNGc}dUl2`0BvxoaP*_B4(|N^XP^%|p@IBf40Nb|=%y|`!TB;$@c~tH zJZ&ptNl_I@7{jPhKT9NzN!;Rmo(t{?Xb@UUu_k* zDG$#Y%%L=xbwgLXA&0RL%gj4V-AMt^z~`8g(Ebf<)*6={?tNJSRB?;15gq*+vVt)W zPG_kpdNdQ=j)(<+jc|tr9-)aeiQtNrYbO)Z2XcqW$YzEfWSdC$X0{K}?e+kV=zY|n z@dxb5VMQfR(z*iQ9G@axaHH+{o#EHUO_j+tE14g`w_L*aG+3qvuGrs;V?dltubfRb zFrRCvK{B2XN7+d45S6_?Wu6y(haGQ_OXhCNY|#EL(kd0fTCEFJ zfFe!BgpIA9U&YYbFmz`itGIcb4x=j3u5R`y3X47^jIvThXq-lvmUAo;6i5DX0 zFX27uys1s2Fls6uE^6nubhaY6?ruX!riA?PIjr>MZxWv)jH+e%V1U0~@h6*1){S{E z)HndC-T0X$TL(z}ATdCiaT~l_eR__ZT5}?9S?m7AK+DBz(CPtHT+x5%cdZT8$bUD2 z9OQN$T#HyYH(yh}t-K7_{n~$~PX1?K9sU#$N^3-|nXW34e10Q92FCnVGALGy3V1{Z zMZp^5j$8E_NdJ?!{6B`={okN`zpni?#{W~E0gfMi|Aj0~nN)JrT7L?Dr`Lsogx0d6 zg0g2))#`RCDNn{HM0iGVNhqpc)&iJudZM0m!I?37ls3F?O@N;H6?FYiBW|R4x)Txz ziVb$BFCYq67j?wo8+Wj?-M`0T{FYRZ@%R7zf0FI>|BdqckF?LPNx=jJH?Rzz86zu# zawWzYnkHyNy;1*=qJDSsP1@J1K0Fb5%XpvTiMLrHujo8P-RdN^8`}UeT^N_ z!n3o>OJ+VCPolT=^GiS<9dE!XCTOvNB08FiCt!xS2^Ij-H075bPD#8{SfpF7Zfw{h zUz>Z=dSB#;D<0SF@9*M>wB+@5O0^8=E=A5x(RrOr{k3HM1}r$w3{Qt|_o#07+Q&lO za9YN;sxgRQBRTK4YtDe`NLUI}zPVvv|Loz(kMnmc)$X3W3=JxrZCf*+K2mr4{p^at z>;k`;wP-A0=FxP)mIP5#fDlWo5R_>j2G($>7LEllTmU^FI58e?c7hygv-6V;H)2HJ zT}^0trdsgg@jlT~)wgeRqxnjy31qH%j6i@-E?tN0UQ^n;mJ^z$8*jl+ij%x6;krd^ zKAjUkmqEfjq#F^jJeR1(wZh&*9}C{KOj-|XSG z#ud8zV4{as7Xl^s7v&v_6A$y*ezZ+S5HZS=eIGsd{`)hNXQ!TL7EoX6L1sgU`4hAw z&d!l;BudBa`#VNVyu3}zRx)o{tby{=fO3JnvnbYdT*gfj9e=s=){W^vgJdyOb&zIu z*-mth_y%Zh%26ej=y51uGxW7~Y}3fo&YBElaAqQw33Ko*8oCmN`kA;7#dj_^h`%VX z)z4CB>ugjmzw4ILWJ9v&QT2*4< z)IKk%rIH8ey#eY}$2SJA0}!Oi=wNr@hYh)0`%3puBFqG%3h0|y*EWj?J}=Ot>sHB z)VT)4P7T{Pe#DyO&Meo>vu%nBFI7}#qtz5tTFcXfj5vaAq69b;oYoR(ssVnasRbTV zohg|T`f+rQskydKV=_Hc{B` z!Awp$aJ2FS~jj0?@q{cSMdZ$lbsr|VZz8d>{gxcv%=4xy6n@ksFeAf&}wix z%3re+wxynx!B5}Ec!+SqJrX|jsp=KJ4Yk+J8dlb;6vjLEIpLlBa7)$UC-8CsU;8C> zQP(FP?&lKHvQ~ujpbI!Y&@;siHW5N%v@pKo!~3_c^;PC9h;Exdb};raht`>FqZlKL z&|*j(SEO9+DZuO)<5|*RC)iV--U*-gjN{bvcb#|?rz7RUCg9UDRQ)(E$Y3A)nPXBR z$X5Y}s2Bn&7_+;`Gc1iSC8Mfa>N4k6>4duH#%xb#<0UPs%0wR6dFdI&J5k^yT9Xw= zeJ9&=l@_UT6rG$u)a13Dd1#lG!xc5PlNL?a+3w^w;tu1+p8&!Jh!GQ}CgW{aEAll? z_?3LjHbppAaom2pY83aB)-1Djr{wI~k+u{YP$oNKIz#CK;2!;d?7at6lWmtS90Wm8 zK&02GpeR+PN{grnh!_OvLZnF(5tSw-iqcCI1QeAhpmaj-5PA`jPUt0|bVw*6km7&) z&b)KZnQzYj&wSsRf6lD+x|U|C33>A5zW2TNzOH>;@>c*c-mV+expGpQs@Utu>1-ge z=b0=)i{eG@S@Mw*qJiOx?utW&=$Q9;$uqyM|Hi#+(NGqf)NM zVvj1De#kV4Foq&;*&L*uAppngWs)(W>%HlQullll+fKgXq3Q^SmwQFh5qz{wex7TG zM^*eZ;6JZM(lZn}hSNx91NgJ!)C>KubjRLY?@@wHMrvQ!`R?`u5s4&R172Z!+wXA* zR3oK$3U4`IrJ3~Nj-|A-!R&tw=7T5pzesC?VuAu zO<0DyQvr;${B^1vkxySKcM^(K!g=1+SF30yH3b}RgH=po194Q6Ai zWG#FoX$qW=^?BDCN;;>)f<)s6U*~tPvnR5~?syq&e1lD+mSCWAQoIfwr{yX?1t zUawk2)05g1>_;2@3|Gs59L3sZcKgILM}AlcJkVmse!&cPl9G!6sZyX#GwX!TEE`0} zBd5N?dgZEEmA1&yI|q*)mI}22EAWon;`%UURxN;yyg9SZGx6QF*8@ROyVcQ1i(LqD z@^F4HjwKxS$>6hF82I6|t*w3R_|s!^qFbefi~IeMt?;NIZt`)$rU^M}R-nvcu_JuO zh^btet=aGjhuNdHj{^1~OejN4J@mK6WNSD1dfl1f0I}XR<;9>wsK8<4jk>glpWX;R z2zXPLxh9a#oxT#i)SYmfe0dhy${`rwN&NX~c3o(qWXJ6Om9xyJg!BXAUS7&rOJ&@a zkRGwq+xU7qm*ZS@2+x+;$}B|zaPmm;M9&^|$>2`?qS4XVtn<9(B{5Zp_bImztBEmj z4I~(v2dxH3f^`=Z)HTI+FE94<%oZ^;k6+aNXCYw92gYJHKc*IR)gTzeo*o;%G%$k_<=P2s~3)4ALG9`C{ zIlv&YQDiX>zX}*0F-whK}+ND+MMRk6)*{&7FS`|+F)(?lKmM8!hSKBU~U}yv)<=&V@0#a|>0EBgxDlnaMg0g02g6w%&VNYT}Rs_wr`T zZ>R{E*E3O4TqaKukS}UnGRhKW*?2pxiXUi&k|x!{2~Vg+Qmoj!k7>r==qi~Q9DFRE z#MToeN`A6F3vICSDeGMccQ?};?~^IH_u#(!NC#5-sB){`DEp7&42&DHpK^rzpGOsI z_)q(^qWA*#lOw)RwFuE|-%1~pn|_XL@pEn4d3lY+u<297X#LqaR(d9#FW?%Xyk(tX z5z479A`w%+%>NRjq25mDv+=8xN_Up+^(Z3lrCPlKeUyhchX9{TJ_NqR%( znZc58DZIYHpTF7DwuYx43-NC&8V0fz3`+09$ABzlsaiK^q(4okNGyta` zV&%s)>;?3ox-#C%TJsQ^ha3ej$JP#fVEoQDZg-REhM(>$b6Gy2@bQsTuT45W>%T=m z6@;&JQ!X#Rlo@(U7;8S?I4e1CP@#RtKkG3B<#|gHHL^V09fpsawIF-pg>+8{_#v)U zah?|G-1SFV(#sd}G~V`an~c-XevZ_2aK3w4I9%7!Hu%8O0S&hESd2$Fltq&_;8syw z8=fzugyt#EzbSjnSk?RM^@;?JsshE`K;jtvpndwdl|eqed#`xZTGo6~FdYPR(w)lI zEsdv1z7jc^Sr6_SH|gCA^aBSlCrx z`6i|M0$a%)f2L@L6{-2Jjd0`69I1|iybp((QjQaWd|;43-&(0Zj#6MzzjG9wdQ|{> zZIRCHD*}#V144Pzj3-G8FLG_D<;%Jt{6tO#OO}cFvvDF~aHk0#62w5(nu$Ulplb9^ z_uV^Y!uBI`^R6TR=BfB~-TCTs68*7fT9qXeMD2G2!$@Yd^n4lmAhb#D$cxqoqxTl3 zcAAcP^i`maQjd{~r^mc&h{)j5yrUCOI{h;wkeQ(9}p~H zXI-W%ARDvDjQ*co;&(0QV@67H+%wqAzExJg^gn<~de!d2-FNTpwXgF(Fsm~Z3!8uk z#2Wg3g3ZU-dK>8LHvX7!)Xl2PVU+=ab1dOn?e$ZG1u#wL)WZAoNoSPS8Y4-tXE3G! zTOv5UMNm!aEUicNie(1-v(Ao;egYBKzM!4;{GoHKsz0%x)?dI1=2zAUXx-q6nsaXW z81rLXORCLhd^cc59o(N%UpRf#W@0~du0!VPkN(s-q}+hncFZhv#E0ZZoP2jG2@ee$ zJ*UU4K4zu6vc^XnS#5rZ=~2?q4mwI7K^LZEQIwVne3P2wyK;PmOkcMh-pG`)pzTx$U5am0;3<9>TEw?`6^8+Mo8VG8$PSNyz0T&C1^Uv>FShAQ@mr9!ojok|- zTw`H6yWp8{55zL!p5%4ovJBFG0u~Pssgosh=>iMUWmJhva`TBR-<6wZBTl?LJTv>i zBrJ1QjJbM=Dh&=-vjAsRxo9tJuwZSgjQXXpoBbxJeWZzVs;9RTj|kC6{Bdg^Jop~< zf7Wz-kQ#X=S@byNIU;z6d7@%bjcCrzR_(!MMUGLSFzH|uujljWi&XA zNKyaA^99x>B2K=o;r+i`{Bk*{bMUFm<5ds>J58y&+v6FhtjNBTf?3iE=q zE~lId4pg=%P5HWXF2nM;uk4Yw6QSnMWlh4{kHroWcBo=iaOwtZrym&uG5U>som6Xt zlKA_9P}L`})-bbNx4G2_b&p2fcxAI`*te}M zVmc3x(c0T(7TXov)31jTOr=_q)sT@k%rSVCsYhuyOp2p_0PiB{2sQVm_sw+-9*_RTdt(N|1#yFe-u9d>-GP=Ejf3cNF#B8 zMdFAIkAduu31*B(C1gY^+Yi5Ir=3^DZ7d@O5UU`IIaNsHqSt^HxlS9R^Pfbbg7(1X zIfK_C2sQUV+r&mV83kS%u{;7ZMr3&Hz5)p+NH^jb@NkO28geW0JJw*~U+i4}PCM0q z61R~6J{C|?iSHplqLV;!`=z>yp6C3JT-X2ZwTx2MLtB``3&~;O z+hZZc{f~3}?yqIsONcyhq(kiez6aUq?+@cPT!xnN>Ac}p^)8d7%N?-bSrqq^kkg&hVj55bPQ1u-_FOIfZ!ap>W? z$JLyAM)^^aKs55tMO~LcL&F?6qJBY26bH=epat}H!gs={A&-Q(;nQ~f7qL%fT8H>i zKiHnGy=8u?X&rnp|8DFkXnt9kpE$Aa+qX6df_k!1iC_rwJFBWwdSfJwEyJ`f>t0uwn33?u*Gs1&fI0J{gI^K+$S;7PGgt4_g+ zyKPtht&HkL(a(RQd%8qd2x38YxRQ|o%4P?P^0Oz7Wc@GROaEDf#+h|0uUP#XWEhgm zeRfH9%Ri~@%UG0G_v{7WkV3D*x?zJ~Q3J^=cn^k#Bk^YDK@*?320d1_e4k2WBr9Km zJ3d0RHy7$1MjdXqk2`OY5X$cGPD%8uS<-9m6C z+HpK=)QaR!NO`kYS51Uo44&W$;<_2^VvSsUe^agFI7$1|Qw_7`pyR#NlQT5^7R}?8 zRvL1;Wr=G`K9s_yeSF?9Z6+MCjTnzVIp2bbtdkh%^AnW1r3A(W{Is(WO>M<;&!ts4QJ` zN5S0)tJCyPP1j+|iE2G8ThFI4hb??18mjo7D@>8MdhW^GJ6_+mwrXddgi6I3XagP4 z2SGh4AjH2An#DA89F+9)bV*+O#4VPw7O-;;+Is#=%@Zsf*wy~wfHHHK_AxI2>B!#6 zA!07RQg0hH=D<7oKn7|y)0n7@Vn#$0aH90tSn`G+q7QuZWUYt2U(tkW--8Ka3Kc>y{lBGH2Y}p|idvKIz7DfZH6b;E#gA2|VcG^kY9@C9*g4k2@H%m-4AG-$_bH6-+LJPMY>Vy{+}yd@W7hbZVQYQGlX$;#8oeqs{R<+z%tb@%ScMf0 zK*^><+kz|r)w_G5@iJ=7XAyy8Rn?6Wzb9b6@4yAHbp`3iK+qzA;24}}O_l0d0aJ_* z$|{EfF5F3#5;2|HDKGP6=M}KGQ(uTreR(;R`cY++n{n@GY7Iv{x>RCiop@?gfO?#G z=xSBm1JALKcSIk1;|GD45s)UcGV4j4A}|S)IjeHtr#-@;F+bLrhTOE zC(DlH*W4sBUg{rww9%1S?{LrCe6X{SWM~k8AnMauKT$6D%8u&RFw52WWJZTrncI9H zIJ>ero?Rfi$o-mO&-V7uFu+S-^-bP1?x$YJwRBBVm2RBeQ*-INTlOY@M)=dgVe-7o zPwZP53PHFD9c7t)%(dX1)G^)7-j(1cb3En3-OHo?sR20t>Fj$~MGSEZW>n5)x?WN< z2j#F8a!~^k)cBi+4bBP%GH8J9kM8>t)q*{|U4*WxEF5reLY6WWR6<{;V)@Z=|v8@qsH-3uu)ZZi!is$M}8bk~I~mtp&Abf)hn zDNhOw*|?)8%CHfF^5hQTsRX2&*OtyoCq;*hCE1f-@x@Zl9i1AztwVCxfhR=j__>;& zv#uA3JHwFnfW3c!M>?HxkDQ9tPzOY){c5z=0mffiJTc2YDO|OV)}(Th^3m0M4|%Pw zBm=Q_@hq`|MVm0thhn6mkPB&J$mx?izaU~gEF;`zt)P!YfDP}^BQ?tD`w++tjX?Qn zn5eHl-si>EFNlaQ-%V??OM{H1rC-HT+r?g`-jj~ZJ-g8KQuT=;3*zq_g#VKs$$0V? zWaINg4zBtHu*Hza20Se`E_wasLHLOQ~i4 z_wxk*qrAeup8waq{l9b#z{&AhQ%n;FDYTSftbm0#JI-aB|XeTHUUA)6_lDW z(=f{Z+d#-`k2Z(_Bk@vZ)Yl#ifa54R54Jt7@D;KKgPsd|HiM$Zp4rpiaGLuJAbww@ zA=DG3;_9%uA6wlN7SOC;$fgIo?SlL~*caK+xriolV1Ge+O=wKGHjwdIKO~c~WN9_T{3RrSR@3qkr^=*#ZO#Oz1S_2G!%aQ(ug*x1t zrI`KBkAvRHl|Mv!xXpSI%rHkp%#=tzIDlVBH1)N8z82(ex}{i_64isg5Vn3`t&qjT zRa)WQ@J4qi2)+RZM6=dC*i-f6_wJV(-1Q1Q_q>#WvY~rX%|7Pg_X(i*G9&@CzeeR6 zIYQ}BvfIptO{Z3=IaBn$lA@zF7Ut}XdSdb~)sl%EBlaX60yr!_ejPGmb84}S+g~^6 z5G}^TuX+7YN9>WSx*bj`(!PdROVi#M)TIzv6Q7Dd)D8a);w)l_h7^aEz^DM1h(MF% zmtlKWGTN7uc#712^ZjDE_6~uYdM~J3Q0G}4Ujy--Rf&Z<9KYpV_NvtqXD|`ot8us` zpj9mUweX$!t)WVeuu&#aZUQuvD(4z}`f-fX_b%?k`^}G=*MqOY4U^ZWVSe>%!*7+p z-)$(VT}N7J002P_?yPFePFP-0@AQ|N{c`zv!oiFaV30e%-iN?8KL{^5iwVl)l4x1NrO|vAN$KK=zVDzm!#0 z6jwy9^_d3y3fNrWjI2_9pCiSt1$45mwc}wJ_zMJw!c++KaE&5i`Pvn8KzVQGW*gwhVbiAQB75OP2|AlBl3e9N%lHLx-uwkogf*kdiXd^DO~|+~ zTBu)0bL>TQyrN}bo!9ry{2p*_C;9PP8m6-!*t7LJWWHN_cwZw?|^300#+j&Q0Le)aBrvyJ3HzE_MX zAuDBV%`C<5TBf#~SX@^KAq3*An6DrXInIa-u$n2Fdhs*5AK#91{YZ;xT1v?S*= zG#1F_^EvvtXO4_5@!mgKUKQgQ({@#d;Whmjju?-?p&JZ<=;-v+)9u@9l>5&aw3xUpdYps%t}vM-u(!c2%cvT==~tYauHl~Exh5p;I3kZ{ zV}8Z>W6R9ci2Y30i_81ml~==P%Of^(^dhqXuNu>^tZPbN{E1wB_>Q8jurL`SJE7<+KEy5dsZ4Vu|7q zYNya6Pv@a@|LpftTfmLWBu`NeP1{6Gw~LR#BDS47^Mkfa;}kHv*LrZ9n+Ob=U`o5v z2~zAZ%d2ZLxgPUv8E9#JblX=c2@Y92iVT`8SKlFiY@U<^g-oUi}eyySydiM=F_tiN}Af_8dK6NAA1M4`Z zW;a6b9xOco*&6Ruf^D2~+Y&9e63tWg{bEvATiSmwUr}g;$&^%BQ&j!<)re`@5_eO!Hun_QhxpzI-RDK=<}%b7W-WMGn1S}>~Mc0!MBO@ ziTo&S9MapCmAA<95?MU!U(Zo^cF1`yvbvDQ2RMfN6+E6I4{X69i@m37brWZe-})&F zzQ{hj27hp1I3+w=?QZR4q}0dlxUy#;i$9wisN6Kl9^;p}q^UoL73T8`e$7>@`g^|#-v~KFaFUV2k^w2WU3o?eUs!?>H zyIKDuo@bN5iEe3)TAH`&Et%qU#?hfecdXvA-I%np3V)XnC-5>YizKOwneA>#J`9FT zZxqk?hfc|&{5|ik_RDyPU4`RKYxU`Z9>0x-Qa|B6s6wElN&HIuaM=($h*|TpHp1(7 zj&<0$%)jmIkS;pscUE<`8NHvh;ZI z+v)=zn{Ggn*HMCi`QYZ!q#8zohi~PXsRgz8FpX?&%(2lVZ$?{x=w3;TJe~g>2iu37 z&e=QJf@xi6B|qIkC`ll|PH#-m*@`crzT;8V_%W#7XV8=H4w;U%BFb3^O=20;RJ`Vh`6`$Ow=l zce!ZLL%yVr4Z9|$1%g40Mr{QhQ3q!gQ{&oO?xR%ujmSv7;qP3YK04bYgyq?=Mp%?- z$0NdeOL9=z_v&cQ>%2c$5GfO+Z)k!z&r$-_wne%?xA@Y}3r9kKw@?l9NdRy7hz`0sUH7!^rCHoWgiNu)rgP{j{SLvM zcHZ+3FG z4~J<)-A43ujbp$1{VvNmrz?`JR-!u~yHWU^T*Bhfqw!ZN2s^7#qMSiRbTd3$QJ@#V z^pzhnqG_zEuU2giA@X2gp!=C>C~DRpiV{3o-1&K#*y5C}8XYd@KA>|5o7%~m%|4cP z;esQ}hGjwAz{XN*pL1VtX$-t+v^KFe^>%H_r!Uc*EEdI$D$AlgA|LETdX zV^mn(>Ha(gj@X;%!)}>5Layho_ATzn^!rOP$1&fZ&N()>ezTs+nfhXddr4&lX>Y?r z#5|`y%8)Ibu6@{PU34#KuNAKr-s;aA^M-N7FFzR@qXE4=RHKFz&6=TIn!R2dwFY;S zYLcXh9I)NR4c6_a)nHxW`}otIw?1<7E}T8(%e8rDfWVn@BuLoQ#0kFBtM@YFw9xJ2j&h5sK?%0 zzv){4ae`dVo@r8G-csTd*(A=C4Z8E{bhMYBSpBI95GOjkU#*GA0)Hp_> z7`=#7OA+G?;H=?rDin@1_5qQK~Y7I!=_Ri5B^L$h_4RmHt*bLC8syso*l3VDj zm#Od#u&3+PsZ4+7Q~#BZxE?Q>N8@N0I=n_1sq{8$SodUkWx02(`TNI?jt$V6mLLkf z8Cf0yCpv(NMnAVw5|qWKrZ2^q}`6A3y(M&cE-bIp`{c6|yk zx*oP_5?U#q758s%8)ek`JN{j50q`aM^}4_A!QZ_G0!k_OkR7=JfEcLfDk2U(L1m`Z70N+tv{3`|3U2d@BJAJ zyT2_u_X8jzUX_TT1ui1@tay+zUbJh-h8v*9{9Xe>8R7|op4fuuw1xzNuGim^9o%-o zh+XglP@pdaT=)g?2Oal*>j|XkKWSwCAO2(v)Y70~B-b`H5)cq{q7^%{YC1J!H>@S# zhTqx~z1e$@UmVX&cz#`HXU=suuCA9>j&GjR#wD5R%M{Ny0S4lvqL=oDT{ay6VGIT zD%lov2%>CGpc>KakJVy)j6G}9o?RV|KOWHGU?&!F{-W$kP8{1hy`uQ!Y}K(%Le zOGZ|{qHW)YK26A!bhM=&0j& z$4ZWm>DTpfp8QxyyO;T{qw~0J&K7-WXtZ@yNb0oF6gH-b@B}8;aY+fp`W|FcM9kQ zf%fwB7ii&+sZcKpdQ@m8Ke^BONwI(;#h2^E_f?d#zgfC5bUQ4yBT<5*ZN2564V6F4 z>8W$2>4-l(?eN$Zlp769544sqLYrlHC@~acWP^0R+_uQ&He~VRg4W{1WH|ec#*?P% z1w|iXdk!vgzccY0B{!m4<@m_ZRs_ek-(wD8=cHuzw1dY#);^m?zMg(5%+}Ns{d~BG zMdlAojc0qR9y%O9+qTN+&pmo7a*r>pgV_LaOQ*bS)Q{FK7O)x{tSE)9>3rYA(hcL# z6!mSwXGAMZ?epa_h&LJX(qnqi#J>QGn5YtW)^vK*_*4(GEJt#pp{a@#<$yE&L81#* z_vIjzs~J!D*!%*f{o+JtuI_8aHa=yHkMl#1_>-=aA5mnK4KJtnHmMP>6D$Qm&`n$gWi zREU@u@0Gfg7;S3hR*@`l>p7~b{wTYO*z?iKQ9#+OE1&^_kbQR)w4|;Q(j$$&MkvyY zs(rYm#9Nq+{$TrEeb=7}=*MlOB|`{O2nacGyawJYTpgs(1{g+3=mWX5`6r(+OE{7(PHUy$(-NYKo07p^-?Mm(CP={SC=w6B`i8Q^yqotRDIjI&E(aJ2DlVyHBOepQZDXTxJdC#41g zxMtmztR*b^K07;=zkQ%3A^^X76?(qvhlTF3ms*%rqdGep2oa7Pq0o}`(AE$5Wn_U{ zne$b2?$}3)NtSxZz1gl8=vppeFG-WSI}Fs=n~28&K491T2lZf?Mgy;nUDG^I*m8K4 z>AbM1Dq*jfuf9P35zhXcvQ3!l>2jAE8^7ACFCf`opK}H%kiB%?C;3Nmp0%2n?{QzO zq&Q+e#fV2NMqlmR0z^3e;t{j;DJtju|AfQ`SqI3`K$``y;37A#JoaF+UQ{}N=iP+u zjSu&^w`}Jb#GlhE({StP6>W;-GNP#bnb!xFX3Oom^33HO&xx-xc8^0Dg@bHb{MZ-e zah_MU+MYltHvgIpsYfK%$MH z2fxeN_#czb8LQIE19x#zPluP(ix?K#0AVNJ7us4UV3#6Jpnpm)B4|&f7jOb@0gp3d z(jNhT2}?it1F$4L3G?)dDIk2;`V*VLO3#H&r?_@fgsB$}AJEj^o$p!V10<`_e>BZL z|IeaZfwOXZ8GC|c)j!~3&9;9fw}nFofZq2j4*g${vZ=ib%RT=R-2Zp<$-n*`oZkQ7 z!Ti_j|L?kojK6SyA@={Jh&|w`8h}&lCRMDqf7Jups){cmioalRe`=vsPs7y)apFj3 z0KaVK0Ob_M8M(z^!sHPe>{GcL!$LjkGoAX1gytoOYE9XXN^CyMspv&c1ECGsq+|X+ zaf(k>^9DCg!^j+mCAKlWu2MH{c~SUDnvV&vm3WY4sl`d54*N1*w|euy$iHHA&(ULD zI>|ul%np-T@98MP7Z-VM{m$^&8$W2D@6*2nwm$#wV(dSzdgb1uukMMSy#tfKX_6yH zraq@v$!!Aco}vU{c-8~DT0Q=MGOqTsnO^wWw|=}-~4p(w0{F~8Y`Ht!Lu;9GIxi6rf_;Z(pee1&HwRr}8kGAOyP(5Z=m76cnzg7>p zAFpn@2Xl&Zw0JPp=*`uAzw~YE!xFPCklV0#(Gsx>&}`&1$kai<*V|*I^cUnJ4U{m< z9CV(5=*7KU)I4(}9fh44!4~0YjN5Q3Ka32Bp8xAhW3NI@UQwre5xqN9HD!_|V1Wk# zO89dYKm>&SuP<$HS}KCQ7o?Y9@5UmX;31%V{$#HM2plRoKe7M%3U*jtsLQ02p^eGP z&lPwc_dga=k#;w|I*Au@ZuShdA6UH^Kbd{5u$1+NoN?;Ep^L;rll!+2aft#V;viw0 z`=*7cAI(0f)2K~uWrEO>%71fa;vABv{36oOZ8B#TIn34K>5C!VA{a+pNfNwvd$IrU zT$!5(%Q;b6M3{c%g{wo|j;QMs^`(}{?RWRpdYkIy!(Klrk&8sjr-1Sl%h ztGLgvFLkC)j9r!Y6bxDev)!4Y?l+!<%qn9CS1etYUc#7 z;sQ=@gjV)=WtpGyv+}R7_x-LhXMvP_FkU0SgX;eZv@bLum=*+Cs^pc>ddSOXlophQ zJ$+f|EX>f2l#OKo7@DSZlnEI(gFR^VRot58s>MkNtz-R^w`3r-V%FmmkNj}c5n9v6 zPe7`HtI$J`(+LILd@D2AH5pRM5ptF=N8U2fpZ>&%`0Pahsy~meRP@0d4VahkFgc3l zj$!rf?KATw$LN}7qQilN0A2W9;^;1{m#QwkxP>5_M@?+h) z_wA-72_|Q4*=O9I-CQK&S`yY^#qgLJ@+0C-z0JAmH&&zOOGBNH#Dtm3KGeJ&Mr&~u zW?H@P@s4xaMgx22`P@I#OP(2MDYtPaMVSiMw+|B)9^?nhuI#(j@2jhwtl7c;L@9>{ zar^dPERXJ#{hYd_)c!oKOR*#zvKJr8|GAL*6u>aw{TQ_UlU4?&u?GXLl9#7{LH3b< zI0SN8)hHF`8u8zLE9S{>CUP*|1DElH_6;Ducj=voEsjAL;SQK*1u{C8k8daR{<}hl z@!VbXe=y2O?P>n&x77KY0Cj;s&{StCaeS;9zGJp~Yhb`IJhPS?0%P@Z^$7{O6f_9< zw+79`8)<<=4ifT+1!6ogd0Fda_{ZeSor>u%UPQe41?g07bXqGqEE81QtC#ai<&2a( zd4-66TH``kwv2D8Q|p!8lDVc?FnOu>oQSgQOsMh5>zDq5b2$_!QTYXM>M}UDh2VE4 zJ^Aqh{bZ7KVC{q^MchyF?<9!9#r_AeE}=SG%r5$QI;4^SSNXT#=6daQce zAnv`*OI<@<3%TLE1Xk*wQ+@7)PzXDv9E z1qnXDjAj0P735R6W)FzXgm3(G^Fwk|)4gx_uCrch+RG(vZKK?e+4v{@GlWoEoZ6@I zos8lV=ZOhO+rZD01{tp2eU{c^g?hGc4?ny*n_X1E#JQk-3$r|iXKCmTLGsAZyNDc( zRYA4SN*yYnSw4oYT!*}ZO-oDRy9GfrQ4Z?_pMm_*_|Tt z&A^&bFOn;I=;FTKn-{CyClRA!%@0GC>=GUcXRE!wE4nQsf6zE?Le$TumS8*^*39uV zMZTPv@zf*wXx5=eu5<6)+8=#0ZapxbQ8@E@BVE+3-8uc5_b|PZejvb>(AEZ+jPPb8 zYuT_O)0jr}5r@*M8z-ObJ&fs@zHh|;pt1HYmJK@{KXp`gg=!D@MlW#2KRbi~~55{Pe^LI0yOiTEjPRg-=*E2{H#nt%a73&nT|Z~9m-YoVH%DmbE} zZ9xJs#mGfHl&wrRzOS>5iOgBWkR?2*AEttl%PAn)`m!7uQrWGK*V*d&9pXgyD3p90FpuN6a65X z6d{RwwBkPyUF!9J*HeKfENrH)P7E-1Ub%ppVgyE}K?#cp(2VKTEdhJ<9-112y|?g@ zqq&>>7!wX?$?2BJ=`uJSrbAUVYesGv$-oF!62Bl&%$VwFMxs1jL<$evJHv}6%ftiS z-(HaUCJ>=C?kG5ww*wGnmr36vA%9)nU-#~>b@$h<_Xt~*8~zA+ zC4iX57~lv}{sMAu>WH2n$f}RHXo~qZoS2ACG{zSBJxlGT^qt8XCw$1mqRFglx2PhUsxQ5z2CMph4=al(h5Z&D6tx4>8*mMGP8~tsi?x3@&*jgQ>mPXxLV|SVZwVwwBQ(JnyDN|30px+nBp^~yXtsg72n7>5 z4JydFElrRM*JdLZ^VhIBmUJWR^n2LG6DT`!5{!f4d=P_q|0y5J$#qZj6`t+_T`Y||h*~pH z+T|nI+AROmJoKL&CWaQ@*_pPdnkN@^u8^P4jB#+9Z-!&?X5Sx&HHS2uo?1P_^aR&A zilK5iLnqr@F&g z_e=UQSMH0jcUGQ+cepK4^!2R{Ip^lu>ihe0i+i?y;^cm?FS8!vy)XCQi2Z)JSj{6; zX>t;07@p!Yw`mzOEhV5Z=swiB zjHK~ANcgS={%eR9gMV2~K4I|;=Cy6D!${w)Fy6yWyf$QM--E6|DPq1)Y&F7~3^Ywe z^5-gQ5tN@lEm#&2TE50J8BJ)0V0DfeYpJFYAvh^8n)j_}*jMc??}5L|F8t4){r}hF zf5$0mDZ&m3@P~rK1N_MX6m8$~8K>aY5(@=)t`*VC)}#8;^Q%f{Z)?t5^gvTgTe&@- zts@kXO{0KazPkxvZU`K3j}#baQoRVtpq5_{0V;w>nP!e6Dz}{*ZOfS&w`n;s(%O5u zY|u)^(tkbv|F#xjzk2?{fd6YTV2V@^a*ibfi7SEaff+F) zY*8%>{o)fJn*U`0CbCvJnQ~?2fWB7Po&T8)`yU2kb4(G$T^8D7#Jq{?U=lS594FR% zyF)rhVa2YeQ>!?BTYCH<8z{9KL944_rZdqpskgHZM)o6oOZ^{SWsGWOljlHeJv&X6 z+VjQ$K!bcHsXmK-oGMvD{xq|EwPL8|$ama6#m>9UJD-DUm6*S;;+3oQIm} z{tGO^|Aa4PA{~&ZC-63ak|yhf^ZpQO7Ie5dvaCcY7B}Xu!8(8WrPw)_8&{Xay61)=i?On4^ zVodaEl0lV(Cb~MN6)9}WTnHL*s_7zRRx51->5&0d~!Ay5di=!Q=to6ek(y7 zL~IywORrpdDdtKS4sv9etY<4V}!PogFTV!c?u6DiBb6!)a8 zw4I;a5_A5T8Yvlrns53y=CKi9U<4E7u1Xgdy(J1pldi#hTWYmRarB4?LBbIQEYxI) zCg6%RpNagQI;&B!UZ=I@h6-Z z-g4OGfSdThLk&S90|6Fz|K@_ek~gCGpMLB-V$lw0uoya27~>HgNkE(^k`H8ebZOsr z_`4rNd2#;_dv6{H^}hd)k5q~@m8BA+?vugEkl5SCeAU)|eJM;PbU1sjDbcQjF%f^~KhxCDAsmx_)xf zl`U92Qug}3%>{+q1aTtA4q#Pm>Oa*iFtD>zZ!0p&OiTZG@ZHUu0y}q#FF;(;Q{w@i zP(b=e>NMymRtRc{-c`S)GI|Y7RerK|8@DyQFiKZb{RDapb8>z`Nmqn!$?}{ub}!Am z07Xm5U%^1Xxp-Z=dNN7h*t2wJyndguxO?p-bdc-$&)E3w< z@#j%4lR<|*sX9rm&T!sgx=US5R9g}#^h`KbVB$aK@MY&1pr~VhTPg!>#0Ii!f*dlG zq1X?Mk$aXAgygfaHv5S}0wsOjDL=7Ic6w;b6abQZ;6lpD;!VyW*2^RJ1B3_q?z95cC zYTa!X88QHW)_aLd;=GA?O*DA}6z@1o)O0lU7t~XJ5I&(^dSwVsdz%qCtZ);mmZCpb} zgkPKPmV0YU+Y&?7fP0)ZQ?*-xBNAA$=Wco?PJpx8CU)mJ`A=~wxwnyHTQ;Sw&tg|n z8*4x9bL!3}W@e9)A2H1JUQ=@Qo|q1p*hY>;ei}UPyQs{&q{5j$~m zyfOE38CyQqykL7viRgyiR9VmHDb`L<0k{KnqTbXo_JU@B;7#Zq8h*Ds*lGizO$hGSkmTpv0>MZ9>Mta%mTwXbKw6!cXAp^g37Y?(sQ zqh4E`3>S@zn_`Pm3(=i1xOC*(H7<&754F)N`)_v{QLr6~X)z-rW$TYqJ;k%1^k-}} zxql$r@Fn^&zubgOR|iK#q0{2#NOxc<>q1Nin{bDvdV}s>@KrlP7?cJRz7cb_ zA|tYGt7DbFtFVoXR!&~Dp5sz>Ml1;|MDQBS_oF zz_979YBDLvDZ_Bx%i3}mWA^H;0ZiG5!DBhDn`8SgSzW4nOKv81Jr1LJPkYjdg>5_s zT`xpA60C2vR9-$+C{bzkYW(V!N7~n@p%|qJE-))xfnV$5-JKXbMZSsO9D+MWxn$C9 z>v`iKEhJ{c?U0y7F`-wlzqc0&RC{W|l0bQe-?pf5P}GDbpw%QMi$ym15q z(Co_@pRKv}^ujmMqUopJdn7mUQB}|A8R?m#hD(w=e4vvejvp#FR)R>pdT3jU`;o4s zHrJWA4X!E4tPc4x zXpP2d8$5z8|EyJdcxgkeIA2zd*2dLw<}=2ol11ka9lLE_PqtLJE+#H$pXB}nZR&-> zg?f2?RII;%&@d0Fiqz~4^Y5ok7rr$~^nw?hEKeQEzN2u_Npnr1)wvgfsq~0>xi35q zRc_jQxg~0iZnJQoa0Yr&e{8^;@v2;KF;U7w``JeQ+lv;P21@9mB<`5LoB+hFBe+^y z2!wOMJBI(14Jv)%)9%aU{%BN9;ugj%;vU6t!x2(i znIaw$#v3XTye*zG)C;Y_ucmL!>ukdp7Hh1`4>zb!e|^u*=Kdi{@DD2UuWH;7_u8>& zZ6x;|1LU0xOl!157Dmu>3YGUCxjt{#qqv(r!Cii9+MBU~?>1bysyfeAHh5u3xI<=; zlZ`Gnm=poo*abJB5O{$hjm@SvPF-c~dQrPh-Y<0gOvcHj31{Y)wO8Eg^>L4*DllZL z3Osfmy3LR(j4a7{LY=X?^1R8^g8S6@9aYjxifF=dV2se&-KY^kDsT4~>QvGqUY+w6 zi#FR@2#62+A3CI0(s$PQ`HstorAK8`*GWI>zHv|beowTX;+-SL;(Rse7j~X9jJu$4 zCse4%6W!*t$?lTx4)XaIXv=W>;nhd&>aN!Xz$ruHI`Cp!+QzZM=+zAxyBWci1y0@4 zqI)p+w{@He$}-r7YKuI6-0Xq2F7t#CtIbr?(sj3s$vQwcT@(Eucjh5wk~<%g$DQ$u zL2l)m2uG#Lb(^q(Hn0U~1D!jGtUiETWOqNhbmkv4mM33gD8G%y!fNI|fO^{TAY^S! ziG>E1C~-n5QyJ{tpjes90V!Xa=?@^PSY`8x5ze?gg_fWPa-01a#2z<5e8oxP=Y9Eg z{^<823?DErEsg*~HowA>zKw4gPE>#M5nNUV13U-|0R1f_r>leO0wVqX#wWbvvOrCR zd<}IzC?m14jPw2~`lobntyqXJ-_)}-F52(bL>)gII>gKZvFsJ7ya70{=P4-wI|g$6 z-`&dRUjJSbntT24&jqH7dMfIqIX)W$N2bViWwXOzem$_qC(>6A#RK{4v)cSMF~~tQyx1G4 zOx(H%z+DzSnR_rXYCup?b3phCOA_fqoq+YX@Lf)Xq3+h}Ka5vag~+!N=5gbT1} zmIm3$=5uKgh+w4Gyn&|qUjr)j)bKgnm|Pzd72{$K9Ge61p_~ZjW-VcCJF1Sa6{2B~ zOcjrvaKQ|y#LJRnB4H15XEbX33d@4)JqGMnk3*VD^d{h@NJ(T8tMUQex~v@X!CwT+ z6&?9u-`@-XkUcp+Hu=28cmzmU8UTn&2&LS_4#3$_dNtdibJU{zFSc*;d z-I4f?W)nyJxs@vwHrTz;zw7kw`R?=coke;f+8CyV7ruewJR5*G;U^TUwjS&CAOsHm z9CZ8?21^XEPeavUO}cvu<2r)J1>iZkqfo_hmSFG(VR1W^^>h@9_{q~D;_c4)lTZbV*5t!(So z_)z8MnFAHCPl#`u@3>aXKQ2m0v^I_T-YA(&9Y?bI$sh7Tsol>N--w!AJB#SW0@Z#` zcA5p40MlHO;V56&8#j?tdNRj8ZbPU=Z}m?e{-AW|6kz~JR#U2u{e2(U9I7K;lWzFL z@iOQWqsiyBNL@3rW-qErXC#Nc+@@o3Mw@;&R4A{K%Hee>xfbIo>LK0QTYuYO`r>%- zZq4ys+mbsX>$%Yt!bgi}m0r3%3ye>kH^$6g=IV`$=#T(V8zi8yR^PcB>EmosAXe8K zzpLP2^SR(_Qt!%Kc0hd*o8sb~9z1HKCixBtF(+d4%jkW>g6tymG7r zX3g78AIlM$nkfVjuC!k%a+%%|SiM29YB5l^6k(NTtW~>rXTF8TrW7OW6J=iPCNnl- zIS(a>TrVdicYzH{g%nJ-AT$!XRt^s($plQUw#y)_xM{`}V=z_-+ifDYCm+<&u1hIG=wj zwVprvHSgObRuJPFEvW##nhc&!zx;XhDbM_m3hoMV%d~-h)O6Fdfk5Y-kevlAFaA&@ z)w#5aAroFgzA-bihv1cbo?hyE<-PFq^6)(WJwDO(SJ<9|HGYN*54DbncH0?xo5XeQ zksW>XcyNyaunEn4(R8x7uy}{!mCZ9oh=9gw_tjLS2u6bBtEf6+W_4dy`eAz3l1f*E zl+lK|RpRv?N7&N%_pTsHk)X>`4xErg3s~*Y(#W{>?wRRmRcO#GLj5t~8BbX+f#0S* ze<6UYl<+$kY{QH?jm-e8U4-^?xiqLm`J&br&G?1W~b=5gjRMg~DP=3VYH}@Lu zg~V?wUd10$x{Ci<%;kBW2+6yb0_2Y7etv3T_aA%njN3=ba05jlmhm-QL_OOEq}n{( zyZP$wmlz)t7+GC@zUa*KC|myK4|@46=WR1xMlYQ^*JQ7D>GF%sWhWgdYpGo%hI8Tw zC?)Pg!p9xSuzvEn47I`Z9zfYtAPo#nBS6;k!{^phC#R6y-K~^v5=Zsp^cx^J<(oyw zW&?~`nljoq>`h}AlLgQgXg&tA)Ck>_J$f(P>r<<~c)M}r__f=1J`a~3spBNOQd5qJ zKE7|MIHgm2=d(-XKUOLCBW!E@JJF7GqSxtM+Dw=g)fTbSYNC8RrO2S7`2hDWq4E}< z%92y^AZZB-ZF-zsMRh1@Urp!pc4ChSxIBAnt6=o;yyYeNM8i<+p+@hay5$A)m+7u; z5P^>2(q)FjXoTsY^p%oZU%Cn67v<)7m{s1$4$_egUTS!v0PR#D^)NwiBY9=MEL5Nj zSrU0pwN`bRu5!1H|3NREr&c@O>N@76M=mr}T{gJ=rTI@zF3H4Z@=X0~4bO>1e-~#j2a`jPs z3}vJGb9h?QJM+VC=|1~5&0LsA-isH23bx{9T<*aV`>9%!WS9klVJRrxUChQ?y|rF6iH><}yHBq5rv)jm+KuZu9X*}cY!YWBu-n4;@E6cOT{x85Bu2H_r}|#2x+&iNAd@^)pv`!rrqBga9p;(u-ZGI4oC+gP|bbQ>U3zhw_7#H!ob%6^Tv51 ztI@7*83k5B^oVBZ0*}fx-Ql^im_M0gCPr6khT>{=o=pU?;0yj5xnVxW3 z)&gVGwE>)P2DtF~>D3uVL>yzmvmnVXfAe_jt>Y#{%S(7GscB#&$^=N zXrv`6o&&Mh;%m`@2SZ)L-bCKWOzTtLwMe0}h1)&-*ub01eVmW4Q?$kDK?=vyqTgqq zwTuKyA%VxZvDe1B!o4V({^P%)7iLP(P-y2 zan`$I+GtVXc{*W~F$K;F3s_G%2tB-u$TE;{PopKmi|y!yVxg9H&f&Ubjzr@2g}Td& zN0<_qMWuRDUC+JKg$D+3fO|VHAHh-MMypB7+`vl~>?w5G^eQ`g&|Gn5=g8tuDqSmk z5obiOEh;j)S`SaS8Xg*+1~6l~>cJG}{WTm+Y=?_;k!VQAK;#_-I|n=2(O_Vfm71)+ zNQqO2r=Ze0Zb25fO>A2NqDMocH*$D;(%K~{d ziEdu|6pmm$!B4?-i(GNj zVX}-3G>vuW7qb-B6J~B3UE0!hclB1kcZx=%30;toWw9?Q-t5HPp}v-KQH`8CMk0E* zkC?h*eRFk42Qyiccb%WS!wvbK19U3I zqsiZ%QFG==R@#II9+Vdgq|rSw3^rVFmCRCWz!Z`g(h9{AW?%|!bcw>yMj{GaE_!#I zGS7a%JhEBiQHP{2888*dP5Zkr!%c$2`SbNF9%7FAug}TPdr-dRiQnbJH&;mW1mlnK z)kW5Bciv-J6MDC4GVimzvXn~Vh*ZIQaZAWUeaAtwLHQ*5M)Ff&^*nu?RyCp(YstF$ zI^|Tqvk7mjo|V!Ioh|2DZy-OFbc*s;tZE+WAla37NCLw+{GR?5dJ0}jwhF~p<5X8x z+N`<9D&2J!HN$8y418T^cIQEA2s1>>V|h2RNpAWs?P8E*7L96rI-+&@>U(Hese^Q4 z4u9+lo8M|3@^Fs`ZtOyz`Lf&T&H@`apkRFLP^Gw7f~XDuj*tSV zU_1H3!$T#5KvZ0^%eQTVul}ipn-BXrh4)6%EMo6g9wBxw>3a;?0t{|CpnwfxVXZA0*SBKl=b>g6PTc5g~r8ym3s9;8U79jRifVniTH=I03J2)0m(D*}Hc z(=b82)7R;Fz{>ai&f=^+OUaP%<_$+p6Y8TpqNV+JJ-Z)&@Y$`$xE*a zlo4$grH#fVSGKKqS8L;|G97fHT24ISL`Ft7Ior3SWaX>ZubhH6#Tkx{_VGW9+YovP zIHBPzIZB}L=z;%;TYdpVWBs%Qe<`OA;3>NxMOlWJ2qT<$GZKP(PJD?TmZ6cSJtA9* zm51GrQg??3?d#gL|6=8~j`Q9d)|IYld^uHc_(1)pmzIaa6wzmhO&|KE-5Ebf(Z%&q z0h~hv9#0V(mWY#@));8BzUZX$<;AO%rXLC$l}p|_8~Wl$jdL)Ob{Nx0GNMbyxzYQ& zr2U#xqtQE0eq4)de^;iGbDgjKEP3eg75m(I#YuEoaymbU#*G6oOosrxz158I@=Yyr zAtQAl(pYjs#~CNND+jCR?b<0xS}q=18Em7nKdsyp>2VfPsl!sx%K_(t&}`F1iUJ^^ z_os&8vsEmkU@g|NJz3$Xu{!69l8o`u#4fIzmThE7l*8%5TNr^Nh)$CgQxP|5EsITQ zZp7gZ$`7aXyt>nQBS;`ieK#U<2B2jX#PpR#P501?Tvi^9-ng5sRfIOrlq8d1k5hM# z@(PU{c&nF3;3d66o0A$RiaOGD{B1c}sRh!0h1?xZY}=OeVzfsUrlyh!QE{)jx4DkK zC8py+JXIinarm)c5juTid{*U+9sSK0Z>`@wVt-{`+KjFjh`;yOlFbw)c(rJmK^9#d zOHUL&9*A_;7tG7ZUeq0+)G7Os!ON8oeIVRBBf0^igu%s3hXC{N3^=s94 z63`@1a-XC7HD?j;Qo{j~4 zY^|}}MKoP%FnIVS_ft3{{1c=Az%l$S=+pwp6!((AiK==#i(reSW4P;l$)P52CfNeT zR3-vEYg*2d$l5RH-mwB)iew@+e>;=|NGd`c!Ue!Fq*lGz_xEq|XT6e_qdQYjYJI_=nE{4HIrAx~D;7Jw)+>`WZt^N7A6eF92^p6+-dA3h7I2B>o)q zl{fdF208q_y!A)E%HB(yMXYThvwCG9{52@7Z%XY;RDK`el{%P03xcP#xim{wrU)`msSev z2y>;GJI4(JHj#4CPmr%bJoP22#9>2UH65kC1kOSv%mkX~jsf(jP~b_)X#|#=-KYou zsEYnGhVvi%EZl*49%`3fZY!kE9S<;_D6#Hb)%i~iLVmr-=!kl-JNB)+I*_>OL_;RH zmpYuN#Lw}vs3OFb3dqaO)tLt5t}w?R4V6m3A`@?q&BE?ecNxaMdYPWXb16p8Yn=DV zMZD8)pwW3FoPKy)?5}j%eX^pVSw+mU`-hP1=Z6=wBBOtq=Ce7~fBl`1{c@KzS1)|1 zh0qjC$#}lLeZx)39O12yZ1gXD*fX0%tD)_$Oi$cMOuBKZlwM-p`(xkkzw6Zh{>r13 z{$8n9C@*Af>_80{`$39LBnw;+0Gr&G2@%-4lmf`IHJ+MUnwv7h|1u* zfW(P;sldnND@GnTWD_`Kk(&3RSkLvoi{vTib8S|zHu0kmfCg*7n*Q=j2~U$v3E7g& zT#H_T9zInMP2M}ug5>D3;&Ono_O%39nn|oE2E4&I6h#x)KpCb2vcm+83>Vu90p#Zl zsplR!h166E8}xNS+<;~o_;w*qxrkio_mnYq3pZMaE&}Lk)05Z$#sqEIuf3aJ{6F3g z`P*z*Bp>_=mzH8N;f@P+=^jYK+>CH*a=3b4dZ>2GNs)^?ynW|Ob_T!}=&oKU(~pZR z2hZk10D*?su=KexgD_ZzGga9 z)tBN&QM+SEb z2F>t5ZE}wK_(w+0bD#Cg>+APOef-s{>ldrmHy<}gGW>sJl>Z=*nIjp_kqm!RG(T6w z`=)RPJ^OJk9sAwVu?7FU;{6M%74IzK5~k@THLD2SY+BU5g@*CU5H#1x3B;VZltL9; zb3eID2N9|i|9)gq}qlSV7JRfHwnze)%DqAJA#ab{fg25%RaqdwLLMbFjHa!ETf!<5dzwk zi~>eo{0pN-s9UFAqRE2&UV*Mq37dhsHFp)9&HpuV4cd^wwZ(rxkK3UI0CH(mgP!yi zW9Cc4;_8@E_p^YK{Roy}N`k&D*ixdW&o_>(q!wEfDqp||17EQr4SYpI3OxiY&m#+F z5gS%^W4M7PfN!XeE73wY6M+~w(PckeCrlG6c93*7@oJIP$@RSHLKE8&_BhZdukb2d)-icBz3QDEth^UxQiD@a()eh%UJrnT{} zhVaax#J`LZ&yCA}e_Uqkf5)^!PR6VryRSM!!j`&oE74Y|VDHs?%h!3l?ps~56L+hF z#)OtaHCu83nr|7}SYoF980K{lIdC^p?bs!*cG}@c=tC**;*lO-T!Za!JG<{PivZ zCwMbUf83%c0Wg?cpu;G8@D4XDzYnd*zGnMhnWE`pN_NR6!RTt|_wlMz_Y=4SAXvPClp-1Ya!w*nAj8ed`~a*RZVG0?cHzC}&1`Ut38 zkL1`VetV^DPPg-)6~kp8_Hv_%sHkhQMR_mlxO_)X8q5UWIj`8i6K;Ko9t(k$IxWPH zTz>=Q*6B^RaVw^(N8a|YVp09;`gV2*7BdnEmAYB;qDeo0JkK z_XDZbMqn0UFpH=^KZ`)4kqnt?ygPcL2HLJeL~W|~5bft0;U*@)1$%k${q0o3*Zy|>?o2HdeHB>W_jWLqfe#I8@Wm{G zNc7_f^`n0}UEELCFW2{O(=6g$V_+|Bh9uQptf<%m5_xTq82wBG!=1EC_pv6>zr2+u679lr~@ax)_U(WU7rLvljv zni4Tc>BORy>n>sQwHr94sD!H~&Vh3-=Cku}+P7gEN%-Lr@-B}$9xdcy|f z(Gp~#^5S!^0!&`DU9)zaJiPRpFt%Az_d7(JdB!OtphUkh4b;MOg+O9eimOO~jzF2E zoXFB542y>0q9mZLcRnj%c-Rx*ae4xBGoEe?d-W(Z8SsH@Ff<_rF9wm#2Hqm#^v+gb znkn)SA65Nl>OlEG1i=v=gAWcBLsK)LQa^Cw z12V&}{b_sU;Kd-$k$FVxz*_&agx8X{^T6jUk1fzO#_^BD zaUIaC>3{R0{jmaxGXD%I zg&={GL1qU_WvJSwD*tDmw2FV%cg?;2yg%#QcznO(!86s-R%f^Z^B zdWaE08j0%Wd@>GbpSeXzePywP&rC`c&Rt--MdiL7O$QAx62(9djQ=L&}Z2TYy+ zk_AH*q8P)hssvt2$zAzGe}iZ?*QbHFCB(c^cQn>ABJ8r%=xT|yv?kw7szl}csrIqvHw)Ltewim7!dNz8BuTUu< zfyQ8Sg~UHBiiqF96ZS?J5l;;}xiyQrXr#i_>O`n!!R_(5fk6+JhYhMIf1_K8o4~^2 zS6vUBphPzM!>dRRI!H|~T=Ds9hZY?)tiypv`zXCC{4buKawk`D{8P7Dw=0W*WK>m4ymd2F5O zny%rL)I-Qk9NRo2(xqhmZn_Wi$}|ewIK*7uuVaskp%GEtSD3QLqaJQ;!zMCq`&}aL z=^x6z;v350V(_tPiU!t#7g{QDq360jRHq$ym(R!#MZ;cZfm0qs95ZIUkU-l(`ISj@amxM>pKU~xZ|W_5=Q(5kkz-TX6Ve-! zaC_8wL#S)0E2XDhhOS>&dxC#yZR8Bma+(R7CDziWPd?Lc!JN+`ad<$32S@{TNti(m z#V#*OXnKWM5{6YA*+VsawQR3?6G2Pzah~d-T3f}k={K((W*%^Ori)`Kh}J+GuIJcO`cw#OSUDutf-NU?t00c{zvJVTPR;VKkg~bCb=!dwP-DGFPl% z3ghDXjP?h)OHH*pb=i^Nd`r)GN#$CN4*@JniFg~&R^v(?Ba;#3rqoNuu5$4me za7Q+CvL!tyYxlW9)or85G?LxNv6wnrshlhotc0p}D=NW7;;II+-XLMDQ5yaF^=`?k zmWcr-b^yPIe(<@=-5a3&j4`AE0!^k9Q}o`V z3v(;I&6Rqh8m{WgyPJ}GuWw`*z4dX4+x^Ba>BCpz9t7(s^>)x^Fin22Ck)uxZ`NSo zgE7du0J$>!LXI^pe1w$KP+KrugP{R5?3Uzygl+<=9>yO{)$p}JpH zWBv|_cyrhN=TU8VW~=84v2%skZz-n!mSg4$v2&j2|GpS|`*zGrah~!=&((5DD4%S4 z()N#=-g-WZuqD4a`zkWSsVMJYh7w$SMm~ZLR zBS9JkM@&opGRg_&`u>Vx)jfi8|S=qt!IJs;-rS8@Y83<>SNP&8H?YSzt+DB=qwla{>67G#vJdj*gaHrGzwvM@;mixS`b<^5sm85s&|T-d+-q-};!4g>+9R)KOqrmIQTH$GhR&NE zHa!U@$jpbe-$^jc+e>NzJqOLZWw*6egKXI)A{Glia*+q^3L@Af~#fvlH{cqD8Nb>SEjuumS~!XN;K(Y=Xx2*r>=a-#hTi8C1(u2LIi$_7_q z#}OhI!1BNr@uHnyR&%t!hn206wOemw^NAXV$ESGiokyIz&6fum9{VGsNFLguG}~!; zGgeh%h#Jt4bZpVOKyjkWmJUnqs-yA>$ocz`?>{088eC3CU_W;7r53@Wp{>No<}Qk4 zB`>lrlIfdA?#zsp%CB>Lj2?m-QlWtW`IJRA0u+ ztmbQpUY^O8@kx)mvdySLoO@s%bo7+Sj@`AJ8a9=PAP%b|I*<1MVFox~ELyxw&`{-z zHe^GifD-maw=z#OkQgyGA~_LbzUZNuW8f)&EjKAj)*yG@M~_?NuL7L1HXzA4&_k*= z`9Ial@81Ut|9!iWxzGP;jAv{9tLY-8IMVh*T9>Vb?#t3PZG=Ef+PvKRFr(vEY(78-g6_3tCUa)m8`+^O>}F5}|L+Xrd=Ip!fJ zs7HpELVXXRgO1;{Ltww|cQ#{0<|lWi;Kq;S^35VnClR?Qvl1Zn9`&nn`wJ+`>y@i)h!duy!dUD_jCnX z*C1Y%x{{rNq@&BGtvAKyt8wQ4+4o8AYhOp~NE?1VRA7Scxx{b=o{qp=g0)K)!3p?W zgB>M&Z8A^#)bVu>t{(%_KWqE^T|YPZ{RKNIy_`Fje>lijcZ>gHGD;}3jemF+@gi>G zv|Po9!E6`Vsg=6r-13L3bSIAAaLZsu%Yi9Ef6a=)ruJ70*lum!w(aUdv{4U8m&RqM z%REnn=$z-BB-OcZi+N~Wzb8Jty@QETE!sJ=ZpDF3v1D_NV}JI%_&q*f?!7w}5qNaP z^`f#>Tpd(3HUYbsx>l{iXmmfJLWFL%_VCdP3z=yXD2RNNQZ93G->FgiW1zb@!sBV9 z%SJl|tR-7d2wAkura`WRv!RiaQu+iuSHWRsz+qHU`1qA~%^n*moy0+R)C%p!z#081 zKwu*u)NubjzWe{eIp%tY{XP&F?tak%rK34 z2jl{2OLLWG5lfmsjAVDWUfbz9s#$;@TOu~{{j7XnBqjf1Rekhqa2HGap~KTQajlC! zRrz~(Mltg|H5?e^q`GeYBDL{zu;BOE zRymj8RW|(ShK(d%l!0&k9f=IUOv0^y>cD0QN`LZMGY{ zxWAvA-VnTMyg|9sA=o_>l3W03)^n)%Lf2;l=!}(K@wdBG!*jFj9F!iE#ldVjT+MrT zJf7^Hhpy!C7H?9zuQ}tz=>dg%7mH5?U*Y}2zujm3dpxI^JX=>c4X)}~-jt0(TH7!( zUS4NKPDe76rVHz_+S~{ZbhXqn^o=R3d{hU4@^|f6LNb(lFBy#C+j44E>I=dr!Y8n_ zlWH(Smq|m=w9Cyx8gJJFnPmK`n(*-#H?iZIxJHGyZQJ_EOWfDRg`_uHvfNiqj;GXY zXJISpax-gln;4W^4%`w+4ZCsNCuheaTJHXgwciN6@VsLT6>np#DUe)8&!`l1Li$Y( zcgYSLf|%@OniPJ5(}RbRVf!anXGT3Fyrlkr#6 zNpQJ}@{7E)!aD1+$(EpNix*kk)?VfL;Q9l~5El}jMSNlO|Lp?9zh5`DTZSVN2WyY{ zK~q#vQiwZCYRUdu-f@hFDFUV?UmNOc^M2fWGDj#3K9p5RoEmrv4Q#o~-SGW91i(Bu z0P5j&p2TsNU^RdCF0hC=zO@J}L=a1V4-HkCI7r@E3>F$#9espyyUtFLj5mX+|2T7H}Eafy(+{x5`7q!)$*t}14O(+?e1En zkm**lmgN`%^HXWBT|qE<`M_S3GFT6J25?K<4=Tz#8n@=R80=r3=?aARym$+~MmDzo zIPH|jQ5vPVuxQWW=eh13O`8OxNhmFdbYZ4158-<1f1sbmAJz-RMWzHP#M|p~wr1j% zzCGdnGVm1Z&`4N1?&gTQLR`g@D&O$Y!qsT}{%Q}tqa!$Rvs10OHhs6NpY#&Xj+VYw zt6l(#oSqweH(!$0U1vD1TX0;*u&9#<=fJSgCKR#+@7=!tKKHbWMC*7T{j5!&f;TL- zCpFh8$>)7$l<&z&t0+)xM7B@wCOv!ddp?o>>AB|ey}!y9HTOOLeNOnl)0g@s2&YIc zPNaMR2DT{e@u%910s+)$sgvDS%tyxq8u8e{^X>$;lZz6^mc7Mg@WcEL`^Tm_&$R6y z#=bos4FGNY@lxuk*G`8H(841o-K7GL?Nn3O$=ZR#6Q6Q&fQW>p!gY1U6_A8T-Wu`@ z+Vv=L-_|w2Oc0oqbFcqCLBYO3(+p8Uj|15n z8+}Rs?wZeSfdVl1mYbV=kSIu7P{qbAh3J9T0F?$us05PfGlQ0KU!{nas} znPYxZP28cHcUBJFQoT>7as|DdCJxBO_B6g z=9x8zZg9^ZJ2I*T9dQ~L*E5{Bp{h^?uj25Ph@0Ho=!5JHgxs>=W>6DwuVM6m<89~Z z!KJU{+{XE%r{!%>EG>CxwFox~uEvdP;(-HTV@5JGAe_NDcbM-Q=umpV`38D;dm^x9 z-G`k{!xf|7RxvlXgRS^^34neR7UPfVoRS-UqnVALrNf-}T9_Ku?wIesHhC&c2#zMurTVBr1JWEz^wlhkCxl6#A0iq_2{ zKr@8ev+l}5vj|BIV$x@j&rsv?_p;Z|fqcIY$cK1F$-K()iEmK0+~C`_S_0#A#@om; z2I;GIw2Mt#V&g1kP@;S5lQOz=H9LjrG*g!9nonlj?X2m3C{^|H1L_qVidK` zjcefU_3mBqiPOQ0)HP$~r>ILAUYC7v`f$>qq=R??I!!G zG&fj`m9*bNhxA+Wy8a0{^|$8Y-+bKDj*e!lt5-TYbk}<=Xsz@>7flOWi}~COx00TI zBwH|l|CaagHJRt6yBr5<6iKA*+Oi80dxY*&NBh`gWBsc53!XdG%)4_)qSn5nd(ATg z<>o_exTA2*81riC0Wgh{MDK;Kq#Q9eSr=;6xPH^1aWLZ9)TG^8OEv3KfaG6DD4li)L12md{VzQ5V2XTbM zU<{^Pfuc8y_;@_QT^W~3&Qc!sVe4`ZbD!qgQb{~6l4B>TozTM_FHdR7XU9h$dT1-q zsrIa6%gu^133a)iD#mGa3oq=SFvA7iX#lca$HNA;!t)EjHmy!8<>G<4FjgAxMJYi) zmnnqSaAdd<>Bt4{`)lKCoO1M2_UYN4KWB0LUT@pt?JpH%HHUB(-%rK&dxT%U(`(}U zpJ@qRK~c0pF1L*I^P4)sX^}tFZfg9IU31V!94~8NeZ*jUiGgYyqmNGZaYD{xRGgw2 zJ==aQrsHJe`;r~gwTkBmXR%VvuU)wkApMQv$U*Ztu7pyf%flbt?JdJqJ>POO>$WKK ztG{C!q6|NgcPCBef;P_wlvIgLDxw$C?(aEqcRCc(AUnLm0{R(82$;kUnhDWSZ*2w~ z?Bfn8$!)`IZ0=jUwEEJ4VL7Ynp5B7;%?w-SSQ&$MdPSTzi`c;TjD3Tuur=Kq8?b5FZ;h`14;;@UJW*&fKU{gomcwro+8TY1A78y8 z>Z%U*>hS6w34hpx5`GV-osI6Bww^=RJboFl96r} z2<5?=fRR{(N+CW+)AWdbzC%U%yBLX1sPe>?{qZJg;wxXDQDe+#1#F*m<&sIEjv z+*5yc@=!&M6=Q4y#Ob*cz5Bi~u0gKn#*llwIAHTjvpE40fXz0HGSYCzFEk_cR0R!e z#*gN%n?;-nLW3-01vw)C-VA@)jqsb`o1YbnNktfjoDL_bV<|A@E%{8s)-J|nIsHQV z{DgO07F;K)IxMjx?~I90h$%qWx2aS>GJd{nFh9QZoQymn|IY zC$mB)QV= z<}4x$nx=kw6=>-WBC|R`4}InS=J#7K@E4#0ZO9rGh<GHJUU>6MIY=ZebRv?{n#c@wfRBNLiM6j3ugyd)Wh&~ z(VG|{U6>_<&8ZKj_vELXvACR+Sd@JB)hpfBh2q{B!AR=?m&Fm!%HW{>*nn=Of1mr4 z`Uq4%j zgt}f48T3i+iO)S#Lnf|&C*crZ1@4O$Q+K&qa0_bO2DKbLRDhmzcj9FK7?|^oRede_ zBvld^(mI^m$Q4jyl><;C7&)=*{?zQ|Ps^;_>2&iq(k2)YOL{Nny^~llXb=j>36Jpj zj7fDV*%x=u+;&+zx!x14v59nn5k_m9G~PgQ++ATc>afM8+%uZWCG<{`R>#cCNVl~+ zTCHFN+}iIKub+}Q?l*J78P%6^u4XUF#6_oDG_2dv)JivbSS>2;Ge%uZ><|N{;xAv9%M4ob#?!I4lyIV_7TY23+O6ic^5eB;G*U*PC0LmseN>#=7trL#0>_;5 z`yKl+V~?jmAfbK&euz1}R}sI4u>vEE3uI49>1Wsxvm&Vvy<6C&AA=v~XZ@gCV;;2c znJ0o5!Bfq1+>tGyzV(B=#@ls*xdIs?t~^}5QMdYcbE?bOe~(IjFO}T6>-hRU&({Bb z>Q8>zytcLspLhx-bdl{yO?*g;=M(QOrHwq1%qVz`>GWZsl#GjoIsq-s#8cx@Z2oCX z3ugLgNP{BdQS8p`2p;=7AnYK1bD)j%C)<&|M(EJAN4>?zwG&QNi^7tPeO5c`3J2cz zbI4y&v}thAiyRRES2Z2KleEOUfbWqACl}vLzHu1`Bmhcv+!6M)+4u1I_37Z{&cp63o)Me;dK{OG5+jMF+d`M;k0|2!tL z{~vo_9uM`q_dP8VB}pjTC`2S8i7;(K(j?hq60(IBd(5}Uk}x4eWh$YvOtNLkWDiN! z356N^K4Tff%zQmp=iKMq=lAQ}&wbzLKIb{la~^;6((s+{%=cP8*LA%=@AvzYy|9py zWOx0wi;8qX_Dhe0t;O9jbvyQbuAWD%)z36pk^$u4P3-j4&|b`Kn~fzr`%0~>-`^{z z1Q+kC5bFs|{A$ZTzow`8*5z}83OZRG+J~5*>Wy?M$w<(^a}D`^4O^;X{QQt98f!sa$IH0?Y6L|zwdd79z8<&~JU!5q;>+L#ZhJbkBGPkM0;6T zUR(B_c2%x{f`YSh43nchR|n?h3Lr#MfR;ZHGqJofi!sq!X}PKVu_;hvqW zcIS&duZ`fiXvjgI>LyARODhywirLW zN#xQHe>Jqp;qLVk149dYR%$FL{G`EBeNloE3lWsgZiRRASWjEFoh{sfmVN0=K!8m0K==4w*Cw_9 z5WJ8d@Lq7r57iTc0 z$%A!Jtqw@d_ojeQSkW{Cj16+iwE5c2&V2FOHwoE!n$hZ45Ij7z6$BjN2p}Zt&08yo zI@je?cA}S?u{HZix$uO>kHPK`_VAsIMy;CasC})UzV3DOxoq($MIV%1Xsx!jKKR&{ zJ5h@gA)8}-^iOeyP>o^i!!Hx=LNl&?4V6UqOqvk9Ne0d&BbnWcvu|^Y|r~%Vi)^LK0AS$mD!?q;|zChO>JC(c3k%FL6#>A2*VO){^4Wwbse}cz0T%gYe2t%!ZU;&}9P=7pf z_Nb=*3c^mS8IG|ajeWq{LlttU!P}s0Z0#*Pdv_k8&HsPARQ-NH{&!w80Ao*`g4)V3 zrk|y07m)+cPw2MWmb4we*!6`zCwuEtd{F&PQ$*0QioxrcCP$WHb2NV5s0=()@U3R} z2&Sd)*Q(=RImd)p{EL*u8XP}NN+fG+fZ)TnJ;El zMG9>+D{_*WM9Womm|xRvy?tO5oTqObsix?COWpfPqCa@j_3J_CUax%X@!G|;%hIsO zo%aK5>ItkpDFvWWI%CA0^TkK4O>3>Zr(5`Tv;DetC#;`lRAV;uuE{&ES3f0}@5?e@ zvrPJQ@Em8)14h`<_dA2n7sj!>9)N>XzN+ED`O+}_vJ-Itvl-kE0Eo`ceRB&!Y&vm3 zm!9x+1%Wbx`dndEY7JlpqWcBUgsJ&JF%6!Bj>whN>}?A$$_p}eU86rEOV}O{{0Ymb!0elb{9B;R3ze;r6(9kgsI0A zPFA=LfK%Q&jKKH&;XO`krvb%umk4GVkW04`rp1Y2QEKqr zsd(m*W6YDRT_r8~qwT(_Clvxy8?LEn5Src1=k?p&H2alKp}foUUlgQTUKq|0Yw1cH z7$>_{@#%CM`Cv%H(2hm#L{lMS^Sxn+y#+(fL+f*2Q}pIOCTqrqJs;Aq z__S0Q(VZ>(WxukeN=t43*yX*aqnvsbJt1=&E*c>eyW7{Ms#cq~+)!7)J$2g&IqaLN zHzg@M&u)|mwl;wdVe)jRjt%g3^;O@R@^Qfm5wCgi9C*zAqij^4yvL|7l{dar01hq} zW}&I*8sa7^U*gB)SeHXWhz$sexqa;!W8Dt1TfqxE*YnfVL#^eu&4`c8K?2v}uNJ0t z=Jz(wV&iD|4#>;x@cluoYNDSinu=mtI1|^Ep%jD5B(EiE z0|s67X{9Q3NF6KSw7STr6~u+G*GsqtgvSUxJv|POyH1RyP=?9f`VKMoOG}^Rsfg=K z4aU{0`dlQb;`m*KQY2^`gC(J9uTHmJym+Q&FjiN6Uv;NRVC}kf!du_WBnla1ifJXr8+W6}|SNX5)rz4pV%RDBqv64v!%_SStv5KqaxUrTtHs zKAiXfE9!Ix1z?mmD%6yS`+HKeol2tO-<7U6O&;#nOXa{J1Z`ve&E|k_%9cWQ4v@if zr32I0FT6Cu_=X4s?4r2|5ZXSoGv|>aj9VAmJ>AsZ4o;nF9ll%=x%uR^&pFiyzr&mn zaQx`sLFV!^HFH1fr^o*s4cJJK3UsQMdY3r_NF#7eS z<`HJJI@$!~WS>yEif1(uV`E;gB_PeevP%-xlSm4L)G`~6RP}MXCyLzB_ zJN6Uf%9~E45eH&ASY|FoDI(M}dtY6w*v%P18R~J%QeIbazT&0Cpi<=P9eY0b#~Iy^ zQ-6^&c>~Es?8ig-%{5bNc?Fz>H*4&V^Sv*fzg)J0uve+Ax>0tW!_Ql(!cJ2$DSupC{qh6b_&bxjjELC;Tlw*PjlhUp)>$K)G3IHO z7`|Vzwr@L2$|loKvPOl35F_X5lhN;yWIDSEM8~6>Yex@Keq_j z&_Ol6<<1pfwS~>QkMr)HFiIeYFTYf}4XrcVte`LdQpQMfF(QIxMO9=8@*gd2mn>k! zP-h3u=3U)T(mG>0_7FsgvX-j49BG-a!tAq*6SN{St`4&qCm5ha+TAhPem7~uc}n*Q z7Jntfx2H{Vv-){mRaK?Au^NTkx6yYTSsURhvZBoE59rNZJ}Ocg*&6{$foIGjPoCVrT0nqdbyi;s*8 z2#l;CxM8VLln^XFir-eIC{V3oO5{rUu|MX#*U`^-jZ}@`c�zXQn(>rvPC!U=!^Y z%&kh5>@TWzb0p&;=0O2D)2}Iqr^UZ?_UdiY-*)=Y!Ndc(mG8e?xQWlcu(#oC%W*e_ z=JL#V8tRTF-+)&UdMD%7SyJcc+}kdK4}NUCKj7W0YUMtadU)baO8gRN{9i^ZiadqS z18UncqZPz$Q#>olGE4PrHB)a<8}M;MHc?gJd!#TF)yQ!LQTwJQqk=bxE_ANXoUyKo zPCE4Eoz6aglNXxqVR8+XN+;GTZyXe6sQua~#bk&fhnXCs^zl233$z`?ZId3(^YL)l zWZ>wMd(U0U{A;n0eF#UW-ui*u^ih+^suY#606Seb}(+ZbK7sB)7&r3`<}6G_ja=(p*lr|Tyqr?F<~Yy z%rJglKk)dmzVKc`a=)cB`C%+GS847AIo$A0A){!NXu#nh1I`DW zac9fzlMmMqh7U(2oLZOb$=Pm_C3cEns}Y0plqEh?qN#QL^E5)0A$qFQmX#T9 zkJ&%mc}dwWWw*X*okV2jmJ2aW0X|GUsNyudoyA8YX!4O2G%%vRacF4&(50ttlL~{P z2R&{U9&eSQ$({NrnyGZ@Xv0DKJ~_*%ddrb9F#(3O5K9nQS4m6p2-C3Z_KxznVu4tE z@SGE72rS|zJHXfGVH{%~cirl%JlpHR>6q0a|fikby*Gqn4EaN?5tiW8x{4kGnZdV4NeaLybQ51t|*- zL5Ss2g5MmVO%)2VfB(25MY!!C*Z#_^ri`vC7YDA`=b!aTZ`arQUm+g(Wl~^H!(Whv z$jZL%&=thRwsLU`m%>;ER#y7G#>1_ZSw)-2OEq7o)i;Qah`l}=bu#DcUYXnlx9vve zf`2$6nN{P(ArB~M1(8>T!;_n%53=1SE<|^Wyr2tyHQ1;>m+u}++4G|gwO?zZ_LmR0 z(&asr6SLp7csWD|YqNs*&s)GG&@{vLmfj-j+$#de?EgOQf~o#X9MH}*e)}K4!>kRT z=QHI)t)r(tuHMQz@~%Tcq{`KWgz7$bVxz6M1J}@!vB48R!_vc3k@O_n5drVe^rQta zh0Py=-MJeL1@_h;&b|6!|moDNne z;22om$^ztCuDD`C;VtcDXV3LF`6)X;P%E)@my+y?;qg^n{5hg$&xjZ@ywZ;e`dJVh z<8$HJmv-|xkNU^8L*28`z2oxKk)L;}wZ0#oN<&qxcjBs!wHUvvfisCVxFIrnG0=5t zCb*Akq}Y`~VY7sVUHN^D&5A!p_gI}Qun?sc>=)==t4}_mk>`DpW~`~8H~zKbWOIq^ zOViEk_I}a~I?_r~xBUYqO`#Cfz`*$bkkwi+N%7(k9QcM})2#i`8iz9Uuz`(ky|w+mkX zl))iY3O!_Bwm9&$pH!V(#1fROQ@N<(gxPX%LQiEjyJ?=Zg|k%ZTJVzT+sX^ECC9yX z<9gr7Q~N6WsOFDbZsamZCNQZ)1a!6e4kq8Nj;?#B zz`{+HCUUylG*u|ZCwGHI90%pW7WiW1(ZSntF18tBmK)pAcH>) zI@$oj4B>+!P+wdo4CUO`?gJNJ0~e15sIMSyT>yf4>mQJ50V@rvI1CNWYm2TRKD>d( za;Axy|GX+l@+jk0&mUJhvI-15i$jPZwbufVjq|=A&IehSr<#UTOW#IoUrR{UpPh1f zU7)}+GSzOvM)K8|WkSp~H`OD~3J%Ds-7zuaTDtEEofFj@%Gk%vrg`h6$H*KaU9PXV13!ZVk4ogD1mGxKF)-W zJFRPQ$_9Y#mWgg#RJX7vbpeehjJx>ZR{F$HwPybEwi|WS z8bkn@<3mk*qlc@Aq5Km$iG9_~HT47=Dyia!>v{R>IYhcw@rWaj3U7uE%a2Y-J&5BS zE!k{yHpWrxZ7rA4oEr19Vx zcj?u9&*~W9Tp|6d8YY|QS|heS+!6nhjX-g(c77+ulqCC9s{Pf zOQq~W$ezc5?oTuD&8$49f3u&*#hC7_e$!UPo}F-IZ~*pGXEs(yKa69`kWdsNx35o~ zxM;hkG^J-_ftIAny=TRRj~t{$Gw2OOWdg~5x`GVW@M1z7gt9vZS%e8 zQCJ)at#3)$apRh=!}v>a*Tz@bG91#*3R~XH?=s!;R1c)Onnyk8x7dZ{I|E#!`;K=y zpf~yE(x1O8e&DC37;Ttex8|L{q%9Ni(VdX*y2MW?z;a`MKs(E~)os9Kp4GH{b|OTu zB)AAKyyfc;+o!%e)>KDu>IlsFeh!;5f+T0RNKk8jbTsy{OI8rNFyzPH)PfNSkY|^a zuVESJxhWRdk+n?EtaHn}yrWTE+aTtVUbErnET|M?Yx%>n&#KPHLHXh_rOmOYDq0@S z%T-C>(gGGN`O~LV?Pi~NTZC5`#PM+o4HNed&Kv32UkmvsItKk2mj1uuJAgt@_ z2@pyEZ88?CO)W)Fx*Oe8ei_TV?1)s{MK{^==73w59ET>=hsd$O5{crp0 z{FFv@O1whQi_J5Lr&_f&*T4yFgxM+ru+0H z?ra-j;TF?P{&ZpNEPeK5=tkS~vj$ROE-&N;^A1QL)b|imiQjI~kL9!RnqVi)1x4EG zvjTG}IV#8`bkS9%f~e4AmyasH?|;j!oS860yo~wgU)LX%O{^x~yHI~? zc+p^vbCID>g2NtMOO<`%eucf85cTDzhcojH`YeISTDLS;Eq=s2v;UgMA_PEAwb)q} zTMeAqmfB{O{=}gFXa8I^=J>CW`G4cY@eeiTSVM;LMOk=QWh_;|*AT zTE#YGSMsvFbZjn7ow;C|@f`$c-!LNv&}nc$RDUp#w+Cz*cr?JpE_&H~d2q9PpmyMr zc7|JPGna<^odz;#VntPG ze*AhCutkrIFBIc6$t8Z8qFc0L*a^h^b0-iDH+Ur?;9c^}lMIJ|?u;rAuJN-q-81@c zALS0lNtYagEQdZP0?wP(7YY%COMd86eI`Wu4pcBoBzgq~h#~F~2kkqE6VniThf^c= z>%_d$#1s)gi3O&aR3Z9R8ZJna)0>V}riJG2h#o%>_AWR2$H_cN@z~WP&7tcup&AE$B(oLU%I40M}M>;7fT3>2bUo+N4j(wetC-%o{E7BH2 zvo$fa`!;bE)V^m4Jj%UmRH;!^lMKg84{}8(yC+rV+%B0GXaiYKg^VVejND@Fi|;3f zzocDA(6f&_T^eFr8Y2`ps2BB4w~m!3cXwb&I@~y{bF436h^cNlGSJ~qsK7^-t26ip zrce~2+a8wP%k{St1Z6&z-o~eJedQ}x6DtW0J-=hEW})6-#Hk1q+0oPQ-d3!?c8v4+ z_J&cH@y|^vOfd!@?Qs<(g7`&z+#?{g^Kp1`Qaug}G) zN1b_6#Cr*va@5Mj2trkl0XOPJ35p89$Ug3QrEhPp2N^zUPwy!~@d1eou^R<*y#&bc zOa)7&=C6%FM_L%4XV^dM}lhlfN9Oy@^SP?>U=wg}}d8C%ZC2 zexZ*n!`hYx?`0`bi>mL?G@bF(*s;#;ur4S!U`A$&FRW`gut06j;S?cf5%kltJUyo!{v#_NG#WoGPqtK)R$kWA9+u#bI zO-dakWMwvJZ(u2+gZj7vRHy~2l9{+I-Rvhn9+lw^Cpsz&O$VkbeEi;LY(ub-*7Z9S z{eDt_^%4ufnOR@tHq^v8X$7J8j4<9yl!csl8GGbeHyKqFbi@GVXbWe!bOa_B2wvD3 z^|Q~TMg2f4dwV-hZ+X9%^F+YB(y%_pR3V#pBs79ux`GHhqz?+n0G??$p3D@!fc=@ocC2+D|LxbH|dFWeq z77%KQ7R(6rgK4P9dW^2|U-svt0Ig$U~}YOtu@R4w1H}G{e{DG+KGlq&T#dLvurd58pGEdBn2r z@U@)>&E~^AK*zjcKTRZmr2eSF5F?rj+j8#TTO(wp%_#UWxMa2T?bKA6M{^VA%L*b= z^T2CgnVOQmVATg3p8xcoyT~y%V%gB5tyQ$Q#!i=SXWzr(W7*)!{>3^>IJ9;~l{phe z8gB658@oB?!>KU)@>`D_;wb;gQ+C)l`gO)Onm{{u!%!Ma!dCu)IT3={j@@b%V8v*1 zyPjDTo&rrWWv8VJqBr?U`D)fFy(>LZl83NzI#(u|?B#MQdDwPG(Q`(sX_g1Uv#}@8 z!0_pm`;?Ua^W;5yrEZ)$A)mVC#9l;@`iAmqb}@A2sUqEhK}3cHC~6joi;%98&b6`T zO3aUWN9zG@OJwT)6PE(Ao(%?}YgJ$Fd6{$1UqLu3IG#wF?N$qSKYw6sJDom@V+DM` zzBFq#3)|OyLUY-#;jwLCaO;4iZ6&vQ@x+7J?ez)*f*hxLbxlimD2*;oL zqV@8)KtBo-9f|$X_*vC}vj7uS0Qu-sXiTIkQwxk45R+muDL!mJXZ*6VeYl2l?k7ymhXhT&`%XWfkC=ZMmDgrPp?+?j`OI)}P-Drrr$`XD-^n=J> zdN+gU7yk8k@Sajzhoba9XYcHga;Jr`?p{@vdOB_o>w~Zx!Lak@~Z}YIzg#p z-)KS2%XhO338Nw~mkRY}Z7&y9Hv-XyMfw~svG zrk+2-8;82u*CSH()9X6qS$^&vRY=4&rnv2@1<_}lVuQQ;wG$iT-<#}ER+8JeCJ9PH zg+to{uG26zYFHIUNY+JH%YuPztzQQ3p4aCRW`7&F$a-~KF8a19sTOzNW-nuaCS%D+ zq%1`ymgLvO?i*6bCWT*$^ww+R);eoGbWf(ywXe#yT_~yUypOF;U>s8h2CcajaA~rFsf;a<3%v>|c41*qdN39j3B#iGR;HNn@Je zg-h{MJg@k;apXThYofk0Hg(ibbSLx7c~eU@!NjXy{^m} zOP}Boef#C;r|2V(T2=V8iZX-z-$lF9IIG2xon?D-Fbv0P?;Fm`>4};NB-6S5UAvR_ z$c|{wb@VH|`;Tou@E&{uL+!V!&mHcjy9iUYlW4Gay^ZtWR>%{FjW4}fd zcs)LdZ!rOmRgIgN3g>J4jN2RyG7a9hI$gOJTqkt{@oBUwC~Koc^hN?jgZRt?q`K=G z@q!EybA}k@NG<*xHAV3t@xZ$g!=#`xgB0(Iy*rwZ$-N>U6+JwuQKWGwRXdXH4Z?ea z25&Uf{|q_%GXnyg{W{w~V&M{DXb&+HsF*ofV3t%v%M1BH-TF;_NuS`jpMiYcgtH+!@3TO$mX1$G!g9&ihChvx*Eug|iFp?0Ed%>dqPf8w^2{+iyeviI47cq?DaPQ&hIl#)>un5_)v$D*LBi>)9}KjM`7NCxk-S#kDsR+#LhI_J($ zBLYi?0A<+9&W1*>g@LVo0+Mx^_@WH#xnkVVG$MPCOeIZ?SsjQng-*Ad&4FnCyNhuQ z->@lHVA_2b#n|^2SS0^6j?0+O)`3(}R2pwL2@cx`Q7vo%0S54X!osng#QDP~KqEKu z!Uv8bTMGnOU_Gg-M!8~^MR$Qf=m5UP4nPgs#k2&}ATlq!X&;JFgZQt0{Ps0$c_T~{ znx%Py4sf~Wl}MJLIYa|zDGIWHz}^D-xBndoJdx)(SHI+6_WCa!x!RJeV{&!ktcIY~ zIQg5^aWziX?#%KUyz+h4X&t?h{v%lya_|UuQ@OjL zR+S@Kx#{{=qXnscv)MVDY#MSPv8L~S)D8xYQaW`*_Obu5gQadQD~PhU66WzADu>I` z|7h^>0%Ghj4cimPRMvrZPg%Q~6HAT9`5OzHN7e`|^JDhHRrG7$unl-#iQBf84bEt0 z+r>snXyCK!c*80y=O5@MDSv3n5AIL3+Fgx6z>Fxsr9u?g)wtO zz@F~939gE;J}&NM%~BDA*-V)G$bce$fN&>^$CcVJ zKWgNXusCxgcQ@)$i{>t_xpj7HaA-^ReL{5~L*9%P3Gomo+Q3<=<-s}55fba*Or6KF zh|CJ&=kRB_;~36;(S7rW(4b1A8vvMo_^NJSvuwoV55O>RG&Oo8btX8#D_cL)iS(c^ zzq3_$Tjrx|hZru|i0{h56@(v(e>p`UO+581ap{O6m^7sF41fg~o6V=LPO8-)^8aAa z4A_Pm{zGgxm89|pUsku?4N`q&rNk81oENtbOqCsZX7Qxkx$rCgLdbSFsNf?42({Dx z4w}*5@F4$A_mhunXWi;|6Qmoen9~Fw+xl%$tJ3;@K=1Kw+hVahJJ<8Yd>wuTmamqd zyy6qyF`x=O9YhCfgwF+2@5Ib8jiKam4e3eYkknW~S3g1XdgGvVyCnLle%ZqR)IH9h z*yyW2|8*3>|CPR6`TDQKHT=mpyyB{{KZc^UXXZF*lH7i9g3&E<-|wsb_T2YX@|pHq zb?q>BL0ushe~}F%U=hC+yP>B!o8hRSQ2VerfnMPsCuEw!$M_VS)4vJV$1PvPfqQ-2 zEc6F1mHb7v#vwj1jWe}Z5zKAQ&#=-)FmZLHA>F=w5{sWnE~?v5N^=Z8gWXDd*z?kv zf}WSJ=S7Vv5l-24np3~WHtwpyZev|$aL~;9PZhE6(B!v}!kd49tw|Y8lC`5RBIeQA-1EHaS*DCc zD#hc-$8wqWgU6mcn#vK|eG~p}@vV<4tvWJ)p{V>4;kL-1vC|oGw)5zSvpjjb!olpYXRil8%O(=#jv_9 z7mXXJv%SdYbLJ`B4dbN^K{kn)INd3?B9;I@xl~pS%hU0~oh*H)ZuoQuprQpmW65`` z`RZD7zUR4m3YrZ5LgLOd|R-q5T;=$AmI7Gp9t`I=p4}W(LBHw5#lb^ST#>)uXX*P>uap8-Q z)OlnGYJRUP<|!}_5Cs7DU)~{}fzv^LdxY%^hpG?%@qx~;fj%(o8EY>9u?;L)Q$)tl z@9sgU_LqgLtLUr~@UB`D77jQ)IZoBFv^dFVHn$~d1neE_eq!#wxd&FVMVGz@Swun7 zwkQ(@AqGFn9Yr2RaYLi$JBdd;V0GQ!-a(!w9)ZeLViN&!9)3L@k_77ABo@E$IK&Fy!uZG#}nH;OP$#hxW;oL?WQ1+Z5 zhpawQ;6)__A8b-e37z&MYy@0i?Jrz}#%_7Np&edyNF_ZCF?7y{uD0L?7izzu5vH=4 z`o2HxgC=U`oDUIV2FIKd%$qM7?BK`V5MBb_9p{K0?nCXW21y?K(~rDNaCDZsIsUmi z7MuRM#X5hqlKZQvb|P1zEp@zo?<<1T10x-Q*Wb1q#|WR=csuXF$91v#lk)Sf^c&zr zcQXLZ$fBo6F&;@%%|h_Jg%@fwJj0&otb^XHheV(8RcxfZt-kEsic{6K``mQ%$sz8< zf*L~|tYV9MbA+}KOO^%*MQDLz{WD?yCrb)b4{f@-BVyxR@V-`L!a=dF@R2*QM^P=j zlh2s~zLNCoxwvZK$GQZ@FhwhGd>_7~aI>~kR!6bPWGnJ%Eq45A@Mv=gk`pTyz)!8l zZev_etx2=kd@x7bd0J|nxczLQ<*7v(#IVCBMK$Kng88F?ai)E$8{m&tH}H{9h*RSy})STQflq_{X^g8ox|jzFgEcB?mnc zU{#wfh=9Mzy9wNLqTkv2acGoeHEVT=R zA_l39$6fVoLuju6+Zd`i;vxBg9gP*&5Pg)|e%ZrLJoUzV*6S;%wF}%Lcvmnb2gGy- zaV&wQ?JPm+#jqL0a3$@~R-oqJg=vn$!hnHyX+{zqQog3GF<{PBrGfKR#JAU|P#Wg8 z$@C>CH2QSkRx`R5Q@csJ?jt6&?ehVt6ycVnI}3-5_%U@n(3L(;aIZX=kFmRI2lG%^ zdJS$-!45NKK5Vu7m6w+Ae=gH;xzU$zf(;c5TmlU2UWTGA&4(V9OC)92)JF9;dUx*8 zJ=fBx>HgYP#1XfUB~{TM{z=QVUxN*3gh3ik59*!=oTcsDnM@fulh4^=t3P;nIcWnn zsPusGPd0YJ8v~4=Tip+ouS@9bwi57ufsuSP-Eo~g z@XmAv;c{XM^CX@LL>L^QEfRP#AS)92-m({>U;8;_uphq?JjK2wz}RI2Z}Ulie0V%l zZ*iu}swU&(3L-zO3fktEa^ak7g3+0!T8ZKZ#}0rT-wjm=)4@99WJc^N>BYYqK{~vT zxVU`vT3;)%(4X=-;dS!YTR;eF<6KOgVQmkF&oomwNkFdAmX-$XD**lcd$%{6FV<9) zaY8v6L&}(p0g96fY93tE1WasBDnPrue(&VgK8)fP<7s{YK;79b5B?M?{*g6&sBeawG@v zZQk(p>JaM+TIuJzB!L6o&kwtb`jZ1*XBVzA{CV*bAiHwl@}pGoA!hvnb5;|4{8J*` zN&rD@!pfNe{7ujR*4EwzmFBD*oQ(MWGG>}ovV?a^Exx;O*#(C~W-Pl!lM}M|IME{80QC~6r z#smBGwcejmJ5u_sAx;PEsz-3r0w3sU|Tc-f=nNMFN_kYUgWb+jWC)l^+7^VH+Pdli@|*GJ7t1h&!%xFF1!Suk=PJ+`~I zx3{%d-as#5$1W4S0Uhq}2ql4|{fNT|&nyBD!{ay=dnbcoRV8@9x#Vmjw^et~@lv}8 z*;;`Mka4|cimQ8>sE*Hhvm?7UNf18&RF4pFgH*y~mr#h?o&(=~t4s>>y^Mo8JIOir zC_`H9OP?Q@bO8qFSPoqKeH)fsOUGMDoW;|yoH?gA5Ks0}hpnW4xE#t0f6wc3Ybynw z77;nA+*~BdeLB+8EM`~ZSf`-6dMxCK& z37Clr`}2p*KZkvU|Tcp8N_ z*JBoyuehglwydd?MO1(6K9yOzwgPB7?vHiQDv8zChM_K@|ItLiXaVQ23Orb*jvK0rkS9Nlz zZ{31==ClBF6Iiy2*omHKQ5Q2}K4-KW$53LJdri)L4+$QTzTIK5L+uN*CnRu%vsN<_ zgt|9yCaOQBTdX{UDZxTTZ0BBl`{T!_Z$rJ5S;zJ4?QhtK%(@HLL!auWisViG++V6> z$#0pc(iSTxT@5huOSdx2a*k;f$R4Opr)(TS=*4_GHDvbj`NE5_|KPQE($hvJNvVp9x$ZfhtdLLD^&R5eo$7>mUOLxFgpBGMM0j>vI`( z6B*E0WiJsiu{cKuofv0F!;yewsx9OLb`5DBa~D6Wfd69=dEduuvOhKpEHLboOJD!A z!u*T;T(^v4-v_nG%Eh2>he7xrlOGpex<%gyTEvp!wSu@b0HmHT39p>~(<+Ytzy?_d z<`B&71Nza6LR@CHg4%F}ay@E(DErGNDsn7L)v`v3yYne^OWA}h~XGsL2W-u*mlJRh4&~222 z(@&>x(1;|^hz?}b@*>!b&PTYw4_%kQHXsNLi~25KH2h%!#onDvO#Aksi^OVDs~wmi9n83%KN{jE#}O=tp0xyRnLmWw>&9S6ehU@(Ahk#WmxQ2HY0G@FCa zOknKcWhKpoq9ztE06AH){Jh}5n9bVXiC*-Npe(K4^Uq@qwbJqrrMuwk#+&=md~bsE z+dL5KUTYhe(ZK0{V_!INR0u>9ERrR=HsSGa>%`nsP^(JWEgbS%!>Z- zar>JK#{49~{OO;-eG2auU#KQor!I_Tl-@Jm?a)1y+&wLwypuCkGKhD`>Vomv?iZ;t zg2~>FLo&5}4C$iVWoJpkqzY?`GI{KhZAP!q`?fBeJ@(37N8*g`rDwn)x`xn&9%!yG zOYji!H63)$b%ggEvYYbO(WULY{9UryR^k+$Fir_lsUSFRO6kma`C(`Tb{tKTxd%!C z$eLnXwQqrNf*HBVAif~J=?e#XVxh?qn$d6x%`E6@?DExw(p(<9Yv#ZiM61|vY6W4v zE>NC=6agW8kLD(S`^V&wXjLBR=+jlNdg=m_;8EYGQrX2_xXusVn#Yb~1X`Betto|8 zCYJBw)rND*7YO~>9Y&b6p9OYyLhc%@wePb*~EXzS% zNP2Rils>iX;$e6wl?VqXgGG1qYvyUFMVSVKkQrbn>gtiz20JW1olvj%kO|l*Yca#V z90FkfO>MyEXR!Gde+nE+Ab1as;ehTohVLbYLsV;UMC8})+`EEMX4bI@cUKU2unqi} zxRkO+2ecqdIb#a^?POy$im@LYGVi6rJB{gJtMI~sf@BGyfqb`RAp-hbPK8O8Q1dAG z1Orwx;>8EB$@t~MU%s)^at&%2;|sZxQ6uvZRT_4@Z3KLnf4vUWKe)h7Lyac+hJh`1 z8z`M{Fz_;dPO%JCK*i53qZr_Hpz=|c0R5Ed0#=yBMSvwcKl-P^x zW}uhYNER2A)W6+~2*8`)Uxy;cqny#pdu#y1r@|97h9S~CgVi|0I~5?qf^qPA;%6$i zd>?Qd_~p7^nmo%GbWIq&oF9h%maeH{Vz@vx&{V*aP@L0T8?gwUPR=07h+ql(j+`s;z>jvC_$+=*>Zj=NgK@ObkaHP^Lm%~C^ye4D2tLq=!{lNGOq6)tFLAx6v@6^xCW za!K1RUCB#06w&KCqn>$v4+cF@eGKYpWHpDpB6Rj~K^4-l#E*QB0ler~vZc6%C)1Dc zSUf3l@*@&^eFkI0;DovEGu0VJ10}R$?PZv2@1;HVYd3qm_u=af?-6g3ED zU?SBJ8I48xsv^Z71#rF84@J3DFHUAK3tNgB0#D}Lg*-_!_@Hu8Urur@o*mzh-15yA z+kU5bU-m#S_DJ!$O?Yo9Cdt|6kWBdS{L3t?-xJ^Bd#|1-U1%5b$z&E{?#(8CBz|k` zcl?NvF{09A*aXVPw@^WWR*{fg@7u_Y)}-c*wTS*KPjS(B zf3Mh}6eO4O4p;tH*fReouOafG`m>Ru1==a29 zm@HrGa!L5d3Ze&>Oi_3~$L0i?&}H)6pQ=f4HiC+U_)y;aD+mY7y^`ZObAmWk>bln& zepVH@T47jkf_a&?Ck&Y3Zy8S!ZbuD}Obb$4FWv|!{#x6YDhw-W+LEKt725kc%S5te z5??u)6$z?s8dJ!R5&=k(O`)}duzF^8(igLNfOV~ZO_S0fO%}7Gvzg7j6K0)R8Lzg5 zPv2Qa9)=}Ia~7Dl7^>dP{e)y*T!1mv$F$fyv6`w2Wn?~aFMYRJI!eoe3_4y9H&A{^ zD82qAdth-KFn=~qpf*AMxmc-CH&=3E@PJ2ex7E1MEP<)UyWR--Wv4vNw7d%pq9B%a zKH~$^kP*75S8Vk`vdUTTp2Kd@%luEBSe&p=3mASyJ{h zr$w7xB+sd}pRNoT7l(H4B8? zuOKitL1$NCdN?3{804g4;s95PPz=&ewr_yXvDv6CX$HmO>p2&JUeD5R4PK{Eo@%S2 zcrEXQ+-ueu-C06K1RG?wgU|u!d@8Qa+KvpTDOYhuK4x1qZKpU}-M39Rx!5 zWZcX}y%=2P15`HTF1PlT(bwyk+PaU;n}|`^gAD#kJuczG;tZ=pM|7ntIXzzF=r5bm zjV>m|b;@>zodYzP&uZFY;F%sk^+~Lw%VVfz&wRpA0`c_>Lw3+ZanhN#UZNf|nT|U4 z#*!b?$a72G=Og>9B{KxF!N1dGJ?5-zW(pnbV{a{Bg^(7ym`Lkme$4#=`xAatyPJdAi!M?Ueqc>X6#>safb5po8Y6&!IZ2ooxfJ#}lz+-#}?yBmOt_A7{v z07+0+$p$tR=m>)4R5Gdfu!7&)C}%Xx{@{w`Uq+AgCR+kQq9XD&a zz_6$hYo6#N#`g6<@YyWDhvp5~4`#pz&VhGgdk_+{N1U-$yN|OFJ94P~MBS<()U?T7f zGysEwTnEzx6G5cv@-D4qT>t|-3JGjtN(tR>W^?h?j)saM9H7u;S_mW#=ym|ReUecF zF@+b1?EMMEw-K<`3IZJ3m(PPovF5DkMYe02Q0|ZBH_4n1nckms#VxmHyWPHO@SN&0cbcI6 zsKT%*F9Nm=R-c`xCsci0mWnPhxi6M}V$tw>|22mPo}%HTA<={@V^y|4bO%q4*!vNu z)R=m{jr1f2?)m_F+kt|%?8OslV+}Pg-W7Z~9)0I!z&go+eZ3I^W+RsJ?N}Zb5>T7a z;ldtO_%)V+8Ak0Qijwvx+}6enqg4>zwYO*e<3i4v-~M0heR(|8`~Lq(rKnW4tW&8d zTMH@MR6R1%UzVm?wRSwc~YDN965NU~1$E!mAo_Uz0I#+c>f_jd00+-#RQcmo^fJs#Z|#u*-vqjt@Le$=WH*v+NPb$ zy1nu2^CU;l(#O`w1s3~zAJ%Gaok19*c;HoZ<&LpyFNr>poGF4L+V>=i%v1OEg@qb- zy9IAQ_ApcJ#EE4Jv@3Lu4*dJl&MLfznz+#Y?v?HBD%X@I-y_uOEO&?pZQUcy8L2y^ zN7-^TO!;Z4*^XngkJkGdAeNAiRxS)IYG0zH8Id9A8Y5Z1x!kT4`1EqKTM1=>beTTS zr;Qr?bg9x8p6%qo!L(y#T;$Scdqf>*yyp`qPnsQ7K6mq7!qhPq`$!XQO2~PIiOJr2 z^tMepA{);*TY4mLtqXa>nWSmPdn0Ez>ITaw+9lz=TKP+xR-1<7-HxVZsT}x=>0{gc z`iY%}ZU9Vrq5#H7zAYddi2}nRP+E|&a+1gr1YQ)BEVwjBsY_0>7#6QrGwNh|W!Ed+ zK5I7;d-x9d-L+bu#(hayRN_l4HA15BExhH|9Pr)QXr?X=`C=U9XHP$Z6-4#xHvzcE z6wLo6Ls@h)a$J{xMp5;m4kY5?yQ5YFgFJP-XRJS&b38NyyAur*}SjJ;~I3te2`%@v2XD! z3_l^4@iOLXL(1o1JsU@%dwuld|Aq%W2{pza9!nq|P;_!&g-Ss=vL9RlXfBSbQo$XFrR z^p^*@y24m0=;Hur3j;e9Pq63d3IF`+M{M~y=&_){TnGu(AKMCbJOeWtK=&?1g2i4- zz7?!F0H7;ZVw!3p<}U5WXFk_zbA9dqJCf%{=-lKnH|5s;t%ia1VNir7NvH_VC)cR1 zeYXe3S|i^PZ9w_g0)ihzHemB~wC7jzyY0)NRK3f%`o!c`l(#DX%UjK5&%EEJZP&0X z!t}0(453%0tnktzGy@nzBE=#3y9nUE&cW7!i}6$&>@wo87&LL|-sDoZT&5sYp5z96 zbY3_B`9vM2L2>q@f7K7i8#e>GSqIh+$D2*&E%M*SwA`KN5@}#tmjgLKC+&*z2YzDC~3v4XblRoetnPg;F zTRy1gGwuU~UIBR{_;^1Vz&$eRmEEyRRsZaRK1h2T9=E#z`;z+N%e;-hM! zby#%qChx-mrH__h;aWYuOLXEVwCNv{!{5Vi!$u`_)xGudlM&{hR8@HvoqGK`(s;4h z!J^ow@JgYFhnz#}gHfcgl_?p05r8$`^ zQ`w0#h|})c)TJ7QU67BRyj={SVkxZ>{-~pBbYx-qxC9Ff%s?s?nQHbi zmI0V%vhdTqA0cGoLp*(x)SIDppLVh8VxC1%muB|_->4zAINmg>)IoUa&VsvqQ@1rV z1_%QpIY`Ny9H5->BE-}?xo^0XnVxyGvnzDly^{?RuAYk|Jr`A7BJ#sR z^vaI*fONDEPAzr2O5VKitnuKddzzFke79-lPDQumUBA&)E9*-z?n2((}jZ6=~_=O|q1X!lUj zqIo;5dVAPL!8;Two44wMsM!WtFt>Eks!JRB^;k@b^U3?FgE?(^Z9)tS^^WK zVFGh2J%biW_viJx1_Q@#}?5D(j zfuW$f?5Bm5>={gu?bH?-tHjmb111i(E{;Ve?Khm*s>K?jIqoQf&x2fuZa` zgYLPQr%-exr%qeqM|;>Ic51az1Y=uS@$Jj*YTyL z`rTnHeqx7EA#v$(yf-7WaNK6{R;UNtcKyiY@U!{L_jvV$9$R!|uTlAFi(QC|2A79V;e4Qcg*-uGAj;Yl5;W5`JwR4^ z)N(sy%HVDEFs@S`+f$o5yi6polE5j1iFDSn+VOrCFDdb<`~ji2Q!{05V(qV!(;l#_Tc5)zyzc1M zwmV$URybhG#UVQpFR#$Vla8^22a}3pd(ca2cT|*%`5HC)T-d#uM3rJ5V9lc-hX*M3 z7_vkP$eN!~40MQTlQ14aJ8S5B!;HYt-7NV<1D@{3v!a@$)SVipM~NWjJP8B~(mr1B zQu;Dd$5e@`{;N90^7Sfqac4a(=Wk89Q>do7%;#- z0tYXXVD6nv(GLY_%7H9T*O>6rF{|7i&g=9T90Sp;FRrA0!jKO<^(+w5t|d{^v@Swt zG_w_HZ{Y?v-foD8wT~S6usd)8cB%f}#_sVXyZIOQuG>}Ym};aW=BZ(|Fe__XnI;J4 zaa}q91y2ABrIw0mGU|D^Jw!*(RpJ=MrW;$xd(CwL;TF7U==KxqjEuE)!Y0Cf?W&Ud zmakh;HiK|l)wimfpf^1ZOKfC{LbZF*EWtr6>o#@=SPa1Z_W+C*F4+r+7OLU!m7(mV z*Zn%*zCCxux*2{(?Cip)WU%?cyZLq?pI??fjRkkJl^q2yb#o8wtYEF9tQ_jwqmr51 zYU^m<>mD~8iD9{E366X`%>K|V)-8#;r--qV6+0<^>ddC3#0AcH?#T${LQuMQP1n-X zpwuGcbV^*?asBj%mENK^u85xVEahJOW`1PBYZaMi(d(ci?PLnNxfS+Z3w2~10vBrn zYNCC1Nv!9!$5HQVMyqnuP|v}#H|v{`I#y&aFp#&1e8#`tuxav^+e1@_lhBIb{e1q^ z)~ID1z4y6Cpr6}&KuX9LW2^{#A&SY(%jTbC%fJmpsx3-@IBeVmO$3;9C+$A`jNkv{ z_WI0U300>Y?mVODj3Su8`VhcMrd5%*h%^Cvw%|RsHHK=+vu2}2|rSi(Y1(m}_v`1BCKFM_Y$;`p_eR=-uC z%Z9Ps+}43Kh#7oYi5`dr&b`MJ=ybX+JetiKwxLL5ZH5Z>8qotmodroB)-~KF2$Y=! z6-mrUBSyGQ;OUB?dUz;@;XFl%J#UnFF0rBnS`nd`$M2Rw;iA>EAK(OChzH5YKs6hQ z2gw6gf}dK4G4=P~-b|HNShDQKT`RRMB^R!Ay>6$w#0`U6)mnifn?8f6a<~;x{%%wc zIS+tWq$)gor+|{)_F<^77-ebCkiG@hnl^m^aoJ3#(8s$Bgi26i z8f#p#3!PEt>zs(o2QywddYu}#9hHv>mTKud<}AbMjR@!vp}NW>1c)fM)jk?jevKIb zUesus2VILS1S;6)($l&Y)SPURJ8${Y($>-8lcK^#hubc(k{muCOB{=F7PTe~Ph*7y zr7Pa`O@imZ%g^>F_D4y*%OugMH&ZU_^e`?&s{D~^|V1sPWmNKd(e6(nAukMGy zEtxHRR5-Vk_6YQb;2(@tPJ^vV>^Q~;ldH|WMOW;i^Qk8C!&}`M#z(fkIQTCAh~19L zEgc*mBJZ&mQJ_6H>e#;OwfIPPUaI#-L-Y~jr;k_wStA7Sca`$ zId2A`HgPCPC*oL2!DUnuFWpYzy)x{3I&2zD*F}aPHY#QU5>M^^x*5byi0%vP_a|eA z`<+imw&9z6Sjs}fpqFZG(`WSp37|}4p0Jw(U7r%h)PV&cUpckCm+&$pd*0u_?>6%B z*oik{+e`9kO04swkucVZYnRhFHiZ0n^K28hxGCE}^m5 zC9%^lX8pToHhC4=J63#beG%GrYdFs$-kzo_FnS3SA*?v+--5cy)s);|zfbxn4Cz)1G>4Z4R4d9dkui`fL?Y5SXkL1r#jyEOd#H;pbg zZaDl*)!rFGjax{acl@;UTYvL*T^8tQJF*Rpo2h?#M%5YqS# zH#txo*N#nvJVK3fC?m-!j;mBp)~z(yl_?&&Pv8lXyb&=)=w0huvGbB^YJ_t$JA_^j zuGF4#AZ@`rf3iZM{$riho5G*QAL<(BWEr-~pY-=(+Dp@tfi2FlZu~0NUV1)dTd{;n zlU;h7N#FjocE>9+`Ww`y3Oq}D4e|H1`IjN)5m(yKw!w?WLAsW!ON#9|4Cq`}jY!d} z4!Ol2e0ULqas!?klmpTK5pe$*NS`<@MHsTAfnFD4NVfzF;!WbjhS>Woo(5?a<5p%9US|gJ-X=3yv;^x~59pRmIk!M@s4STazWC<5p| zi|U?VOGm?+G$I+r=16>RQ<4LshBZtq9SM6h4yUsPI+3i~=OBL&-EGkj1${ISiEaev z1wi|bzk3YzdaB*F0M2Vx9DJ`F`#62p zLvemSn7Y)-rEJ_Fo`G49^Q`%ir9AihCv>aN=~r{Ff9{I)U$zI=O#K`z@NeOO{}Wa0 zM2peu3jv2MXH6o#uNX6rq*p8V@lz*rWOqUQ=a%-8;EzS{ZRs}-ITO0^9+h) z(RpKcV+#wP%e}8&p+i?4e!raK(Z!3U!8Q{R%x%jAnMvEB%fMF3yae+X*W8+SE8oBFsjm?#Kz$M$tyS2uBDa*;WT^~#A~J=8W($9$H`VjOz~n-evnU1;FHI^!{)x^_V@MO z=7AJur$!)!$Kbs{LuJo7!3sy3O}_`9&d|$X@onYWhg?aSziUVPRwgyBAY2WWx*G>V zlB7&&)f}_FQA8jfVv6nYhn(OC_%f#`wFV3H+}?;Bri%pRxoxkwxt*X zZWTPJo;VjxxKIRw@2-bz{(C|N<_kFxp*4#I_FJAWp|Upe7@Pyvfv;rz_OQM zcK__v?IJu?z6dlG#L!nEBTM53iQ9_%qX2mxWynqIVcwn)=u#RfpAzbqnGEE~D1usv zOo#E~S}!%A$Ai*Q#N!$#Kv43}l5=Dz5S8X!5ZJP<5NbxQn0TU8w5g!l@cN4OV`Luma zU+lEJ$+&w=TScOqme^Tch~i+aBd2Fv*APGZiXjnXGj;OX73Y#A!8JSW-JdbC z>IZ?2J!>Uew{CLmI%=h&fnA*pTZ3s70E&#&p7K2!*|1PYd;Zp-{P~!Udq4OxBT+q} zbS7N585-D}{K%R7{+_~3YG8{Fyx0KPNVe0{Xcx1+htLsz(YtcOD#BM@*=Xyyrg;dT zm3nv64*3$IdOEt9NK2@bZ>kvU^iE&rcVTHRvBi>g>P8mtGbOft?eXQMRWj-ZZT!`} zgg00)Mp}raLIbvrokrxUCnZC<=3P4^fo7aMA3--kKa+cHA0=%wg`Qy#Me~_d>;rutljR+A%!= z$vaqylca9cbtm*q;vzTOj-@M)o@h|hjT#hj$_ZOi$!*|dN0HoTXy&=_?M&afrAyup252bMs#7&FAC_Boo`+Az52E1pu|ig zE5Bi66r!$2^3bmm^yf1IeH0(+^W2hq5Y83)alQ7Iw1h2(bmqtJ7?x?2PDs3Uw=qUK zUoP;Sed`!)4?T!^1a&Qje)ZXa$`x{1gI8JOhDf;?#ChiSYK1aSx9)P=)>o6Os&}x4 zzTQnX4RrMhRCsN&&c;W!zfc~2K;feut#`Awp>Q3lOJA&}BX_$Mq%14d5^kSMTR6Ui zyl3|YLqE=%K2SGZOTbGn0R15J-o4q$x#c#zIG0k|ZC{EPbTcF;XLhz4$e4$I+_yG2 zGe_TRg{ju!k0~wtJVy6ui%|ktv&jF~dSI=X?cV1%FNL5Y6zG>QBcOL`O5GrmL8f;G zac5Q(@s+;5DUW#2yhLg|_RFD&{Gub1CQP-E*m#NG{`msr3;W^R?)LZ2`H>sQQ-PC9 zw;jxCN?$bkMCDYPzDP;X{K5xMZg^LpSXAoD%=48Ab-d{IwpK<4c^$b5>Ig$2;ngft zN=D!%>~a?iaa2+Gr`TtvIu1^*Y3r23wi<|(tt`L0!TOFK)2*%DDvPvtKjf9~)!-+ zCQJ)70y+mY5##zmnfVq6h3xPJ+rUWlYZcUDuoB@&Fc(0>l&;FTkZyo1*uT|X6*{0O z-2)78YMDvNzJC%zek6wcO@H%-5^V#gl>%?#Cp+*A4Hei-hH;zy3K&Lftc6IPP(OWW z`qJasy9ExnU%E!y^o}*B!3H*+B=+?{I3PIh$q%3XURvjyzYiiG)RBaxZeeW)$$A4c zpt9`7zB2ks0vN%%7Ue6=IRY3DQdm|*80hLl?S}#KzcGuXi2^SVCa!@`cB@CL3KD&}MB*c3KiZ@ta zTvR7sEt{I+d|AD6%ep4_e<2@SACWIW#&-t6jqb{Fu`j}yV{Wi4YFo_0cIewY@A}vm ziI_iphrE4z_tXMtp8)F&X#(ug=L3f!V58G{$!#NcF+E_Y3e;ggq-yHfr{H+T|J9Tj zwUo2+4%J!Oa;g~NKK5UN2j5Cg_ovq}m*4$Y7y4>z^h?(OwB$%+YuQc{_=-#uZim}(Qr-^MfhJgz?s3;$@3?7x z_Qh6{QfeVLtzg5}U7`==8p5gPewIa%X+@nO_={A(LHV{Q7a2%hdSQwRfzHPvtyAw_ zQ#60@X2}h*_z@a`4`_8$uuEM6wJDI#L_0tI@__xNT$5QXY{+Oie}XVNgX_)}uIp8{ zq;52ePl$HAER!9nX5>^hZm%fh*cz6Zj(lE*8j3?*!VIT>cU;yhLL&=+@0d^*ntj`( z6b{nImS{nzfkB}V>kjr7iY8}+WN67j!u%W`-DH6^SVSi;a|u8P7zgjMpU-Jt|FZt@ zGnMNfsd@bxwDBxL6|MI0C~?dSBrGzu5QpJ+^)raRCIx0ER1oL8>V(-H?UZLb3p^G= z+@at8QYG`x`l4o4KM9d~T!vsRCupRdy;0(+0X&Yx_qJ%Qe+v8u6I+oFLpEdDWg z|4=bBIR%!uf%8VJ^ct=)XgC_|eb>_qDSh2jUN}B_bYb|?fG~n+zG9Pund|_~X6LBT z$>2^>=uOUhYJBbC>{vpt%vZ{s{_n8HvA2k1W5V<*SQPLc;{Z2pHKBFWtYp$N9V#m& zx5BwfD7Nqd1a4O?@WTRFJByD1AE+#VCdZzEhUaf&OOwXUK#CM_PeM}3c=pvnh@qtf z>HVdySbvop*W7vkIw!Qbwg&@rrs?;Ks&?9oeL!1x5SE*nl+{!%!(Z<2*Gt`6P_#9u zY&CTep@$0=!O{YNP&%=znk50Uwv<6Q54RdB^Xft~7n(!;VT7*J9_oE)b}V$Zl=w=A z{;cbj@jVW%Sb>3QY1q~E4f~k#4?yL0 zD#cw|<4{l=W}yzSQ8=)(7?KrfN=tCLeKe0WSs9ko;Iy$PGc!^%EY$jFb~e)3Lih2K ziXT9@xaSwQD*DDGSUPZCi+rGnsE|(FR?VLfrF!WG;gDCkeex&!dVUTQUpI$x+1vbj zW*@wa41;w$5L}0>@6L`Rj?7N{N*nWK6v2mG#ARkmq0eGwMGsq@bS+L)xR>axChKtd z!U@DP)qV_xQlgiMa*>(j`NL*X_uS9NZD^vco?k0L=lZngigZQW(DY71958fIP4mTTlizGF~9;y94-AmT15sK?7+-?C*d(VQ=Ee z#(~qKdE&q#z#ouf{e6jcLqKE74QS1h&V@ts*#gryB`Sukv2rzUkr$hb0QDp zOB3KE;#tD`sRHav`@(5Afvz()s`rs2fn_Ai)lleKOrN|g~u~qD` zX_4wu+e_^gn@jcT9z@@O(&Xw9BmH~N-B%a$1v$2kC)lMdP|1j9RL@c;&meZctT``K zB)Bu6X|-3GXOCSFJmC-52Y;Mo#9<#{$w#o$+lP?MRkFkhttteheiwL`x?=M2)3Oo( zj(Rcr04T5xNfS1dM4BvpDJ8qQK`CPS+3?}_s1{fAR_piG6url*V#^23cq}~%h>r-@ zQPiVqJRllv+Xg7t(S)IJ4^#xfALv4n{_RV1*qAqid8)ORm8Z*>IQK_0X*W`Ui_r1# zJ+2*?zLDODk9a3Je-^K;BPW0G#v{?u3JZ>z&R_9C1TG&c#3|safG>UCPLr3=a@NiT zZKG`|?FDML`ziJ32fSBb#(aoOILkS`J34MH@hB_<6uUAkr`V6VefjOnTW!J}gSC>M zwp(TUU6!!e=!?C)7Byw_f*lE-4&&p4u7?T&ZddZs!qD|S$3pg{UdE5e-w-gpb6Vh!dfDaParD&^%Y*lON$8hEjQZ-ZYIEHgqzzBb*RDId)tmF-*jxgH9LjJxls< zDsQ5SoYtEttl=-gGh37M2_qhp{wBY}zf}7mw8ea*IpOi~+Yy@EoqAJwE}|fXRR+M&F_}u1 z!9{r`jM2{J9{8I*@Y6hGk*uD#nKbHU9m}2}QKDmzH9*rrf#&Nt(;}{XL+Elg2RxWL zgDBlcupr2i)l?^UK9#)LB}uVBJ+)~VV(1qnEEC3VV;-`nVxN$Y>#BCyzF!UE{E6r{ z-$et0#Gr=B=b|&hpaQKKAU8+pw}34b$Z6ME}@$imL*Za$Np5yFTT)zeA@A1rMd zilL&%@cv8lwI~!=591)}8FR225ONh}5c(E`-elr4pd$JrK7Gua0Y3c*MRi3kgFb?N z63H3cm;`N{UAm^#d3{i0=kN@hY{FpEUwTh}YFGOb=fl0nbb)ediLf@xyB&C*0NA}u znv=Q^WI29lzX*tW*_;owwmTYB(S1r7&?bhDeMRi{zZ1>>iu}*KxzEh?hd-eY@XplC z#i4&JhhAX17%)tU#r-Pz7|0a$Z?b0Te& zxB}IYgrq9Z`ZN$kfk;nO0D;q*ZT2ahFO0h|T|vg4!91pSA6V1b&@Hy2mq<#$4@_h57^;+jmBNC+#62zML$!m% zGPbH*Q9^?yir65NM1J~sb*9b6Wr8>iyAxiUxyk6X_L8{yVxFoZ9p&RYJ1CorG^3d$ zqbX5~7lTR4Tn#ja43B0L-{I@$Z}8kKeX9<&2xMdHnwL1q8c36(#su9KoZA{FwOH;T z@CIo<^`CZuZ{vIW-p0p%=sa>Nq=ws|)p&vW9-1nTu6zu<;?1OG4JNQ`MCN6{#do?= zADTYpCPwH%@{(}iifO1tgV=dgfX*vQneXuW9yj`f_wA}ls2B7{=K1J(1BY`mPHG7# z<*YnjEuJH(Ai03^1F2-sG6U^RBaw;LGHLa0E6!Tf$7Y?pu1bLi9a!ULNye$^`ZD`$ zC7CJG*kl!a$#W8om)8n^IR8+glP`(nO#i?lir=KA#~#iGTgu#!J70^~|BnBgw)slH zLX0PVPLce9#0~>K;Aas_o;mwAFy6=$hnjbQX=FfVP~>NP_dmN$ShJ=_o)Mr@L4*qd z&YK{z<$Q^uS#T`sE1`{t2AKLhFMtpC&z2av3W`S8o3%m4>8w~Ne+Sevp&>Sd$W4F- zl1GV&|2tVK8HzH@4Gd@`k%jgkYXq>zQvyt@FR6`>dCNp*!{FIQbOMd|-USWkPNLXr z!-=sXunn=}%kbuZCm8%py^o3~w%3n2D}tdpzfUr*duNEm z$F&+rRm(2xyA)7WDe+qD1f~K>rXX8oVBfs}Bjx~fQmWF~uh=(R!TDIe97hU7J6Gf8 zL=in=d&Vp$ix^-U8X$dJR$2b$_JW(&xe=YXbeaLq9s0uR`Q^8=;Lcsgx3l^Aqn`!G zOzm8BH5Xldhjkq1qN`sO!Eqd7yp!8gXSy@5CmN~Q3@^-)r`FksK9iGLAPr&`K{86_*&2o(S}ZV{X|d7Zkee-FB(G)3pC8PU%wvh8X0q zK}sQFK(%-@vYLf|Q0({SaB`9yGqO|big;vNd^6&O-eulS`v;IY-s{q4dda~p4(C@f z5-lfo!cL45&Z7MbjF?0D(}{#!C|Kj%D=ia+wuaIEWHpx(Qf@YE5eD<|pr-*#H;zt9 zf-`&ZnzcY!jf;G{JuU4)#NL5QF_H@}=gMDj8qf7E0p5H8{?N1-0% z`=fz9DhwGwWxY{Q54)fSV8x$(izJ%{Lka+lxdT~QpzaLyCu{!eq=1#W*ei}jhU!@$ z;y<2RJQJK8-{c@oC4shqXZvKMpEBpefPpi9)m&^;N#NW?&b8!RpPU;wsJSUA ztxN^J-N=&7*O=L-rP@5e3R<2?F^}FXv*;+t=tA@-7q(1@Kxw9}l1o)NO&5NpeV2NC zZ)8F#LRul!`fS4JY5plug;Z8u=ZXx(zS2R!J8fkt`jnoge9*J84bx6WKBturz?q3EVl5t z+U^I^I?cNWr@&sobGAO*#0tuq??}7DRf&C7$_g(nLNmx{Hc}jtzsJ^sTai>7(Zs z0Z?v8c_2|1a~LxbjjeM2QeOR+_L#rY;E;=o2cRFIJ%`lOZ%@`i6OGo`rKAsd@*(uJ zI_f6TOlk&UV0@3vlO6)~Uzufy<|;1VfDk3@DIenw*XwodN6~i zxs|ZA%iW35meIivtuc8n8>n%NEs%O9!_Zt9#AnL@nF?c&5CHm^f~c?@rJ|8g$UYg%dOoEhQ;6zZ(*%r6sOWcr^nFgm zX;#R1^x*Tk@6Wa0T>qIHKXdcP-2C}xtsk*izM=BE5#sW=X3rmM?XY zn@v(N{GwEWSsBQl@7tD6>Cu@-Yak?QJ2J!|6(65qm5pbPtk2GP)_=rUDT0xtty_;Tv(6VmS5csE2phIva!V1n z_`b^WH#3NHgX%hxu(`~bi1hbIASLb~cEl5@woNG7=3`L*?Qpg@;hh3~lLG6ZQy|+< z5X)Hm$paNx0dRSBnT~2!DDON#$amfklrr%{j8BA~GhhDm`)j3t(q^eM2!BTClV~?V z3Y-%2q5O=yWhdMC>XlB5U@ckW;H@f~dygHRx2R_YwtR}E6gHv`(jM3%KttG`1;ly8>_7$t63PO2-Bm821L%_Gww2z|LQOVfPTWY4X43 zWX_>#zY0~Gh3z?tTtW)E#+~5EEhx-^>QV6QBCcGQl;po)bhqPr{=z)(Wat=qBs5vA zkePU`PD>p62)s-paQY=UF&zOZ-#70K#>7L$&F~$pEcSLIyo&YVq=d0%imQy};hIVD zje#wa8#L+^HbD~Y{+6T;`dfkX>NH*|$M5{7*r4bil?9 z4r2SvT0Qtr;R_yFw5IZ1Zm_aF+p@kXMWflf>fB zg^jlFn;__TF0zd}Dp#W;vIMbX9ud=tS}J3)F0q>=iwYY-nO9OKK1{!@M&01^6360h zv&v*;*2IcR?nx7w+E)73F=w!cqfU)P^y`1uF?OX_{H*SC~R(TqGzmOft$68#XlQ{^5 zr91k)9X?imS}pj>x;l)z%8FamRc~98%mi-&9&XA1iEdm${hdWPIub zurz$+xnngcs$XLBheOpEJ2a2-3_<`#;gcL13tNxk(H`#_*cDkCeNnZ$R{QzN+-3aU z_94IL@i=Gdf4?a1Pt~G+MnC>T&&}!ra3!!%F3$i~e9ie*z{67BX5#V}5g7u$Ix7d5 z_=@cXF$n(^FN{C*s{hOu`s`e4w`rchl%9to1s5j)M~{86gzmM(G^m9K-ltH6X9}hV zve$+Z{d^H)8UO`7K=xsKD*`>1v>x0fLyw~a6m-360g|=~*q2W{kzpSF?*rAZXuoi6 zq%J9zKs2m9<^xT3LqN@L0Vw|o;AS)c65)9fDsQ4Y0!L#7_WEFAj4uqZx{gP9s#6|N zO%M$9fra=f!ob?^lJdXY<4xj{>kT5G2su(Q=2pSm?D}%tc$s~1y}kqS1k~n=7tOCP zT3A0*P@29xEm~955HohbSgoM%O~$jT*aAKERs5(1W3@a1k_Cz~^4c|VBb+`wfhp)> zZK@blEew|kWYw$t9@n`UK!X&hYHD=IglpkDbfqG`S%t)!E}ucTkzUuDJCd(+0pKW> z4h0bzwU}v4my0uP8Sr=4xCpf?LMMi><9$->ar161BxTWNXqsY8VRFf~UEO6OBj}!RMW7~W<8x5~n$O}XIz+7kb48mm73}UUC z>c0+!`tk4thp0gMja8^=wn8E6`rJkS@I>ZXa;{I#4V<|tXe@kgp8R819548#5xmzW znC@tb3$>?rK-)}~yC|E4Nm#^4vY&!gc6XKQh(Nt&!SO8l@ki}d3N`QC49tdu;oJk< z^>1GFYnp#h#1B7iL2V0RB@$BW&tK|oJ;Plb8RLXHbS1F?(_(dei$}hVcTC7wHnZ)0 zuZ5#XBk`6DNa&eUivDg{pI>vmbD6!l%wC;8q}2WuV&3;-bp9K&dvlq+-(bM6bHG5L z58gt`iB&O(b{j^y7QR3g(x+&NH^d@>s%{r+`-$~f(W8s1E|0_wjNNu9d<}2wN4M9Wz9ynB7?Onl@^P58P;%k$V9q$)zDtNSBy>4v3&QK92zaPO=XYz zw%70@TzX98Qa|30W-Hx8kPRdoEsLSDiO#zc5_Qf3AJz`p4Y(n42Hw=EuK$ zeZW!$MCnSrjO-|lXZS&x^r%2v`K~KgyuGaI9rywhKevJb>4|ss3<`sUaS(f(l-% zKC~WLzxntY9rKc`lZN`1g+(0+hj7#yPhaW8oy+b_!22W#kw_$}e+MUnev5bv{LZ%7d8F!KR8F=?=kpQ9Vkk+;~zly-$~bCR5$pW&R*VvLt7 zN~y$A$}gC7Y2Ul9XjpWALBQtg0ht6#z$^K)ttS7h^HnsZE7o0_mTwJX#;YF%8(Kbd zVcApzNdp->=k@m^dnS|9N=)#rO30KF$l0c}u^L+$*LU3Ab%*O^|7zcN4!AnPruPf@ zkG#-aUsOI{(lPUmKxR*@`-(H@`cWmBYx6nV?oSvF+B8hCx3?O2XwDmF?RQO?dOF~G z$;2w*&7;iTR%R(nT}J!$xyDbm=iN_ZJ&uGa=FQe};H&?p2J|1bMm&kPe${e!!$uOm z^JF7B9UB#Xx%ol9?#1%6E~8K4K3HcgTwI#d>E&cl>2h18093^`km+(Z(Z9iqS?oc^U=NP2dcpp+-Q5PMRzJpJ_U8|wq zxV}5v969=W;v|Wsb&eG5vh6T)L)7^gRCZR!)g1%V6RgChp|?rPjvZyb%@7)Swo#n{ zaHM16o!_8U1lLUCTy*n`qhv0+`Hf?DF1q=}KJ^=0^!Gg;L72{_5O%R6^8^Qp0y+AY zj?a!-qisd=t<&B)I&R(bdR!QT$UA`Ey-T7>3#U1QDD2YUhH65(kgU5vUp7e_8_s1O zq@!u^$*+neGo-#rlt>2mxG#u2m zI+c87&u;O=Mw{;TW*&GyvontEQVnb~95KyD{%9Z7e;pqy4mToS*ia?!XM1oAO2$ydgcZr06K z?IIL{yWCeN7n_z!S$|i#rck4OyW#`q1@1A)I&Ldva=+L$@>Zi-AeehaC+hv}u0w9y zn{p)GlRl{55Nbc0@!EG?tE!4uOUEPs2=}2rEZr@zu$m#ILVy?UoOBE`)QS{ z5L4(mYQnY{XIaBFC180eqse$GAy%u%dNo)4GLF(A<3vgDOsO38&`=AKjWEvrMM0rJ zU%LRj+Qe-m-KGnBOSvf!vhPe>JQkDT@2QqJFLcv$m-*e#2)hXnq4Vfzr9fXiO#urW z%%gW9@ep|$>4Tp*;Dlu@0VKy;gcr~$LaTluK0RXW*7KLhrDpwHg@!HVYcj)k-iYci zLzsD3+J`#gP2htvv}$-!6~Ow&e2J4IF;Ktr5e{bIH@GnW8CEpko8MCy%aTs)sJ@1q zmrD=n9@ubOtN!DvUKd*3Ds3}+lWjask>yc-)5~+lGRs%H1-(+I6JFU&>jB0!Fq8Sr zss4Y*y8FvQS~9c>B9Oc%VX0eK+h-Z)=oy6e?p??`iojIZod{G=LqG+UO2)IV4nhnq zB}h++MS}8yqgc;yjuh~fV&LH*18klDFHR-DhVL}@nQx2lByfl^aQ^(KY+TUB^R7WP zxD81pWVa1LYTt6sszNW8&?i*9zy<#n9S!-6w788loe*8gN=f}Sl{;n8&(y-L_%R8% z%gq?4PPrWm-1T;sSH#t4!uSY>718=@i>}M|a7-!sYQijJ*@Rwtbc5Pz5FE1k?YwC5+Az{VACx;bYI>{{Y^G6n)yw!@)7fZwj?x|L9I+l)G9B;NJ|WqUoN8>J zL5LGR5lZZT6ec^O&JE8x3L(@{8J*Q$$)jdw@}VHZJ#1jup*!4Oga zPJ(BgW)Q_ST;rDHG+59125NWcs1BLh7_B0MVRjC$El{?3w1&U;y zWJ2fdJE{`Q)6sD)pOAOD_=p{8NU8!09EXqucEP*S3HcT5Zt%UgP#KX7YBQxn?0HQ@E@@6i9ovK0Q=KOQ zk^DfX!6>$|tckd?pOeYK4uE=^Gz5U|HTNXYy?VJzVYlN-QNYobdj>IV{sLIn z?#T=J;^KKr2(5**RrFrwUe<-%U0j9vPsKMXJ~Wl2Wv4BPJg*?5Tp?+zR{C<3_G03H#V&!;-op2W z(N{#g2JfIlodg*srbxt~@m|IwrsVkPJ&BnwE^KS)Af*`YLcXnLsrb;I!=u1s>iR;E zmoZ|1MPmL4I|wHWzjX}^u+Q5Np{8(iZGCsTsf>3-+WGo0g}Vp2#)QNkjbr0~1K0OE z3y{CJz_)J(!Qvl-_YW0AlT)!^_C9aKN+(Tj1ctI;76?(HVA<{i5W`delDot~10Uw| zfzg_s)y$SSIDB-7kxuB9ffpBoLiA6_ee99Lz-iXmiEZ+oyHfn5|9@FLjnKO3O8^>y z+f@tvn|^3P0(_vd0Gb>F{<{PGjcjSsxY<`iTE&0m|NeJsM}7DAj0tyPoUb}#&u+Yo zBCkcjMgvYgu*&(tT7?*}o<32s_c5pR^j&-<&I*wCl_u<^hu9R>ES_}X=)aLUgYfVR zBnb>Q_DQTb=(KUw3}T7SwC{v#R}spE@jQHcEN&Pe*Ka00zmX{E-|kX==j-F$NLey( zsrdz!oy$-ino^Th7No;ny*$sNdAn|*2emFX_SZZ6YDkGnn53GYH23NdPLb=)gx6~$ zuK{d8WxQp?jk~$=DfX!8gw?a;+$P(5dd)W_2*9NOzI(?vRJ8WTvB5Dz`u&2>oygCE zNy5m(E-uzhb6_X_!m1Cxle z9@k=ot^!{K3~VdDcqbYb1h@;9A^sA@5;lb>6|gMWg^#4|rj&Z-9ClbA=dA`TXT}S% zKdP#}P8L7B<3pwB7EUQ)r3TD6z*^>C28J3{-GNMm0(`F+TT}eAq~7U4#=F2y=3*r? zSH{xq72;3&GVh(d<-9yG^MjZ0I*yR?uGiIcV643u>c3nALJ}+68APc}FE4##AnQS# zKZqG#fjB5m)D^~nO&`cJdJ)NCu#YV-C^u!?&bk=*<(KI%qC8M9!B+C~!vgDs&%RB( z%`N>~j+%ZI?TcTc#Pj;RtlG)w4U}rR-)b<6>s6ey7iUf1jsMeV*Uz{yxvW ze7^VV`Ky_$%Qe?^Ugvon@8f;EkK-(4%}|s0??qM3$n+6r3{KR$aDJ~Ab4jXfQNA`bATGVp`VZ6gMR)~ zTusng4mOAbfBuiZ`I>Q`N0*|AnHIXw9nE&wbf4Yo^(?64@X*PYxKDQsUTd)SQRcrf z0fMj3@KphmbPIVt1)bsWgG@;APDlAhn6Ju{+*Q7ruJYh%ZxDK@*G6|`l2z)Jm{0wT z-8tpt2PUurh4sj{kFm0i%y^1|4)xKB5Mj{JeeyBL3cm08j*2?|9mNMxRoMdF7-UU0 z86Jk#fh`Fb#Gemie)&r?`guJR7Q3#4DVY0V>pju%9QbZkxmZ4Uzap0l z6ZP_=He0yJM}66KC!kXI@OwT%p1QM~qgJOE^#J6%2_T;!Fj2@|C7MRZ3?`7pQagACu${-W{#3!HQ9h=$>!LF_2ofXF~w}r@f@q&Hc}o{r}vQ^n3{!P({PZ9}6)2V;&_1FNz~RI_@-C zf0aYQa%a^>!NZL=MDuV7SlZ#f#a;YnNUhH_drLm))8*d;hKjS{2yZypg{If`JIZ!d z0uowGYU%zX{f-0Y;>44%t(?t>(Al0YmO1To@8`^wf_QIyz0Au~hpg`ZpQ%I|`_=ay zoW>3|LQ7x!-j~Jxquj{Q1=AmM&8wu0PPVz>#S4rtOi4=ab1kv>7IWeD zYS(y=O*&1_b7X#A8?>gLI>cCHz=a(MbQ%UVxO%DonaTXsSp8p{;dHSYQqalwcMc5h zUuP)0>9pDLLZuJKP$2wLILO_)0uE3JPq1>RSjU+5tc3LDszw)BpmTTNi zM+2=-LwhkabL`@76CNmPdwTpYJ#1W`+6p2OkC3tK0uR;pPa zy`wK)!asHDB11g;GV2RiX)nM^du9WM!WNj==45~E&%apUe=acnBa5Oi90J;g2PbAv z>~&5U=-oUsH5{O~Mw2mPC?g$~kz**|%!_PO93^+wA;(Bm7j{TCc1{6>l>Z3Twu#5B zExq$1RW=#5B0f)pw8#nU3#E*_#E~MP`Ln_JXFAirJ&>7FX`E?0o*!u1_RT2C>Yl}g zcscZjnAe}PB8t~!2^`>Bc{-6s?(#v5)2W*5FiSDyj;_tO#o$P-_7| zX`|jw69vVBJCu!s0FQuD1~vr2Mbav-2UZ0 zxIAzmdJX)HN2P2>X4e?)ZI7%Ez^$T^;@!2o&I#FRs^3ii#ts3#w)GUL zQ{nHb@mHjaAiOQ0KGd^{yhJC1WteL=*-O|ARa#<)oMBI(5YYtbh+PUOR@ky5pNjr9 z_e1*Hhw#(`Uek)&v^4jLJQsfiiTzKz_M?savwkK4a(95t5CRNTC?g4o|eX;l>9e59^74L2`pTQB|^c? zt!l&4>{s0&*7SAiGD2WX|30A8lg73wW#=33p&BMjjy${SENgz3yX;}!nk7@N+Ifb_ zL=W>S%Yq%xQhniNLS@7~>FXL>AUekt>{hXhxj56Iv?=(jpcwb=jSm+{k(pzvH?g_X zwbR|2RZAha%f&h^tvg3Oakh_gR0fOA@2a`Wfs5Vs@~gi#uzDe6LMxDqs(2ZFN1;gH zQH$Equ+PGz>UY$^Z@0)akO~4J(|8j^?I0IW*c@(6Eb&SM)?Nyu|Q9p8>FfHSdRJj`<4*kCAQJFK@VI^B{r1XIB~y#hZTuu6I((@(hTLRD71u4Eb1t^750GiT7% z=p?V(Qm3-gJiJ+b^uAgXF)wB%ffx39ZZtF^z4BFTM{PS#=f&hR@%WJWn1)qzr%k!` z-5y1_2>?q;LJmI9ZDAa>UNtNGp@A!;ru^pKnj2Ndn>g+Z9FhB0$>pNXQJRHxV+)*1 zRg-+^M%K6Uh;vrY@^Q?seGTgwHSW^u*kml8$kSVO9ZwftFg+Y9r+i@3o2Uc5R*m{s zFs2ntLO9bJFt2^tDVEg@s^MDO6a1ct*t{a_^t&SjZzDw^`;a;e2C{dsItkxQxsiyu zFJpb??E&|T7Ozb|puCEt#XcUAo%@I)WDy!6+8HOV8i|L}V(iCm_q8;Ym?!qzn+R*f z&(h|5=6f;N?wmfS z1`5)>2O@o6HuET)K8U+nzV@<>8Z7i|w4~z==-HdrbUvd}>pRLJPfy#S$XqU{Y?xXh zJH>HtMGcY(Sp7RXsrxvPcJoTRX5alnLD!JedT(k zh|NXNShi6<+1YNr(00Yy$opGru@~_0)nLc$XHf%R^ux^W@7*h$m6g6RV9!eFU~&c# zmY<%yj-HgHeM5wZ>v~mL@`&hd8S)w({P_8xsCk2H$JSkO^OfezNI^GWUd~CgAoeT3 z);vw@t2DVyq-7C!J017-c0^<)e(Xry&{iYWQmafAG(mq9Y)UkAxj#{%&_0KooMu|~ z5I#cu0x{I2TQ1V@vpt*I1kXpN;XI5exI>Mbxq|O*5H;gmv@b3$ep4JjGh>!K;OQtE ztFJUQaqYv08?tv}O-|}y0N|x9On2jupe7!uA1p24Ehv-NiPS-26h?#~V&SU;e|tKb zD3_X}*{!6MKO%oKHP=qss!=}Cw%q3IRvB(H?2e5DFob)swr%u=+Q0!~bXE~8^0w{y z;itH}C&@>5Rs~k+it(#nT0D8@W6_co3WZv~!hhX=MWElgv)Tl8fXH-O=-FmE!o^KyLlYwGC zC2%<=Xm6sZZ!MVQt=DYIaA=c!{p5Ii@-Fjlr;j)63Ee7X>5tXXUIoG#8{vf$frr>B zEKUBP{MWciC-I9HBj$QF(junJO4XeYPl`8T^0fKs>9>$guyaGLG{OO3Q3uY;2y(bdX2IkM=RB|hfgc;Syu|>Tzmf?M z)J53mYoBz4_Q6BU^G@%_)l47tu-fx*=W~_h&zgl2S`@!VvRsoq z*KHY*1~t+WdBt|C&WrTc2S7oeE&aK_qwKGypyNOTV^2Z{BA&P{i?C(PZ1ZM;o@s@7 zbAb;k!bbxanUoRA1RFR(SIv^Aq!7plmM2Lv zc>^HazN5M|``0D84ydkmh`Eel@=+gOI0`3aI)r3}HEf_~Oic@un5XGAD9FWT16}Us z0Gqd=`pddc=i2ih>F>}eXwMH<+F9$pvm_S%cuq?if0_IM2g@f+MrQi*(|Z%%en*La zStO#%jNNiIANHv{@Z8azAawU__2kW+bDRqgMK_V3y+A28lxuqRoQ9of*MUMxFn{Y~ z;&IxSNGPMn;96F5S>a2qP}x%#FQjF>TazxuO*&560xwXd@O8_+(x=~rzczNP1PRG7 z@0N{{(N7-e9gI+uUb{|4b}j{7N&XcMjrE1?(L12;VcPzmXR;r~2#AjCYgm zvGBI0y6AA+1}#ZiPmKgRxWBbbj}V_AY|&$5a5Ze~Mr2x9%z>2x8Gif6hq16bY0@2t ztgHdezxt|KG4i30W`gOqr-sxuak6yi&T;1jq90#A{<&AnlYV4eA}}_i>~0ef%QrhM z(+*zWCb{T*mhf?!Ni8I-wU7TzZ927g7rw!3D(=hb*d2FdPq|$ve|^qxymP#o?1))0 z4kAzjC;Y8KTJ-Qx`+Tp;Ku5cstAu)vwrQi6sh=^5AO=vffLR? zpWhytZ+8CNBNf4_9p}=$H@Kf!uSK6D$)upCB#la97mnta-9yb*ZHN$iW_@6Hlk?^I zi(U|-v)6^~qYGd!FXb;;GO`5r3JKl{)snlu4c2DT$d#6wA=B!alK4Hb#s|B{i~=Zv zSrOt-N^f7~8RXtQp2$uh4fi0tA;85$1FB23Htby7R?aaZkmsIqiNXp4(`QgY*wNy< z!|n+_f!<@?l3+mMJR6f?(+e=Ck|9HNaes%fp8UD zhwkQld&i3*KH;lK?P)enTe^McqnrQWhp_c6(FqT!4|Aq6V?Lt1$gEuklPBEKlUUf2 zuyK}L${5umF=vS&f{`K>Lzlqf2&u;Lk29p#vmZY-5%RiBt-f}-9%X#+gXRhY^Mh%0 z5}iN!(oWqS947C{`J{<$^mK+@>j2&4_Nr&4)CU*Mk3D@>`s#oTE!=fOXtea;+d^@k zir&}$1eFx@IE4|;&McQ8Gy<)HGGX)B0$*l*jzOtzUcptX6COHa?^r>%6cx471YhWL zswouBjxX;7uE{*@tJiK<@``Rqi@W(QszL97b0|9NW4Xr_ce$h9t448K@Lx3Pl;~_N zP3jxZ6U7~yXu~f?6ZP_Zzj90Hy9a9=kKfYAx#!9%9gi0oY%v&2$dw7~lrjryr$(R1 z*pkVuZzTsdoA;{cS#LalM^0$dA?=iXLe2hOzyq-MFs~r(U&P9ym?khW`>d96sndL2 z&!F~)goAoAJ)%qlrT{Qtx))$}rXDSGpdhI z=-(lEm>1#)5Zt9Jbs&18VIV_m2Yqv^a>7Wfd7tH;_{K>=|F4>MXV%<`d^eW0Q(*fk zq9m;;bUvEfE82*T3(1jaJJpi&xUArTcb&R`tUgA6g+I0^OfeF6A5>HgO-9lBqVxOL z^;CO1J$oz>_$bp|xFMf-x;Jo2@m0zSG6r%Y!&|v(aa~1&w!WG)mFSc&qk+Z+WwRQR zKF{rEje7^bO9Yr#1OPF7?x(+M9y4r>!h-$iO&XsEw}1l zUm>{8u8}}3mi`(&`~e5B|MwC7HEnPpz#VBL^RvXW;DzcXy<6VL0-d(>w&`W)%4F?W zQ_L-3#raUcR-%ig+otZfUuzHlt@v+70RzIdqtDP^ zZ!Cxmq5tA0kW2Xg-;zCZo2~8gEm~@sOU2Rc ztI?czGQXDH3m6S(U3-bbaLpLELWR5k1`6Qu>O1CD@q2E_LACf?^*MfKZdRgr; z$46^IP=LIdu_hqC0`zCubjg0oO%_CwJw9e5({e?FFYe}%LvkfIWv_;Ps8;#9d)4i_ z>$sYE$QJV|>qI3}%~v7p;*Js+XRylrTp;7{QlO6X;<9M;EIFbKPsM~JOO?{?qcnV+ z&<3x>6UU}bhiNn&h#&jlby{4>3ze8o7a8CRDi?+2&Edd7t4iA^BOa5kuA7GXuVw_o zk2-JZZO9Ykk|W=1>ds^o!a>XvUSy_$jYpfWM*6$HE^n=4M|X{R&B|)sxcidXDpa@W zAZabfk`uiS;hlZv=pC`7T7l*_$kJPP>T-A8gAKx(S!ZJI-AljPx>xfBFa*gqK!Xtw zLZBoomczmXHEbRoTyRBj&T>0B=D&06mW>@!{tZR?!*y^|RfY6(KpF#2fnz4ZW zEN`RZTS(z74dvQB09zbtN`dkK=&#fBwV;ti1~rW*EC z^vT}Xu@38YL@>FcnQIC?0sQl-J@83-@YlAtIFWO>6<$wdHd$(@1K;P$Gb}<*k@!QT49|Z6> z-)-dFBtNv4gK7I$sW4X!ROC4+IT+m)LS3CO2za+HN6JzpqsZl1nfJpJ4cx(2_y-RH zs+5$;ZVDVq`aFY=F|p)d@C2ooNHZfZ?t;)DkJ4oa2ocS8)|Y0k`8=jD%a~Vn_y=jPU&lO+Kcg}=l&7|%UN+fK{&@e^wEyG^hhY4-|Kax z!yY?R?`|bHNOueX_URLc5uo{4YZDmxv@M^M-3QX>diM;J@mW@SdtWak?vScO^hn(% zozskYTEe7}pJo6_-H^3!P*KvLEWX#ODKC+`SH^Ku634w@_xF1v?1O!Uu@9$j6Z4vC zrvqQu!3q7@CI<_9Us@Y;_#FK9B>RKUW7#DxjRh{2Fcvu$coHa@E-}BOjyQqp0nTH_kOQmSl00M!JAq_WA`yuQ@W*ak z&WtV(A_YVlc2w-r!Y44|VV9A6_{E%M>;y)<%gY3LGmm9&P9#5-_`4>}w*H`x`rpt0 zx~5}_^;#~V%LG_8IYz9H-n}>EBLO|XlRRG!J;;gBtoB-*rfEA2W;_X-Lx=Be;)dQG z#4Qa$bDL~#+jvsZi`>TFQD>u(TZ%1;!Q^T`=i{ukpo0B^_xXRbN}M01M}PF0>yZ~3 zIk*F&0EhZm<62zD@>ik1e3cj)Z+=Qk9hgNA9#(us!?J=g$m^n6%R&4PUldqMfQ+Zj z@4pO$_)5(Fe}Mu1#hCnb51ikd|Bg~{Rg5C`rmub|pPFNlKS#an+t0j+3J`Ro=`L&z zRWeNihscqOB(`$GQ9vDxts&2?1Z+fwBLpX6|C=W*0#_e!aK!sd96h?Wbu7`ZCQ&=! zMYg)hdilxY8&*_Y$2D*Hq1XmYVXn7C+6gPgkGc#kdiK*>!e<+29j$C{8x_|+c0MM0 zKuZ9>c;n~0Lq0pCpa=FLg5Oa?ev||7-2)E)q!S1G7|yixFlE355QFlXQok6i zB`CCr_ht{BJ}uT9YpCdt8pAWWe=@*eKS(;}mX`UKP3_`tMg#nxhJ>6{7n+zF>@1+g zuJ&YYLckSMwk#l=Afl)S_?#OGhemk(Kr{+mHC==Ky5*m69%Vk8xxVMDCE-2bc${(u z94W(ocnp$YqeSd0s9}nOE(8f`7E{XmLphQ_MtiAgK46)`y4; z84b3=pX%|Z5?DfghuhsqXkSz76YqW0wshP(Wh`k>%5(jpGv{tn*V1o*?mw0)35)}* z7@w3eM$97zZ){WEQWocX`f|-C{g{Ao$(Go)A`vkk2^oK?XY2x;vJ1agR28ENcK7sq zYTZ-0fx=9S-SFlLW+PFX)NmZK2h-lqFyK4$E9^+?Gfv~1MQ-x^$q1ZbWohn zHAX?DC|&C3`KS)P#SHWSUHNq10_!=W6z9hN zs>CFH1aneBE0mZQoSai>1P8y{Dld+;FWxPkjv~G#A66X1_4H61)9Eq{N4n^>@8wr=`y(Hi_T4=IenfACqjJPgg?k(haF*=f2)ff3I{ zb-d-dlK}5rkR|T^yxJ94s{T7sJqPX)mUb$fZ_Nl9!4HFcrWur3Q^QFV-_S*t-d@pkGjhz-wl{gL+Tb#{AanMeXczZwVe467&vR;QjqmqQ7z?yk^uU!7)rBS9s2ZdTHi;=^mr%7@et* zb=w02UKp${=l>_6(7zb~zazu4(h1K;aXh})*FCq_NGdOqRQM>Vf0(&*jeo^Ov+<`t znHAs>{wMcF>siAS-Jex>8w}%sKfuWe)a`9u2q_VF568HVf&8a zmT;^57H}(|N@KtRG-{pyj>7FVLlP>17uA4ti8KRfadSC%_S{?0sH_HyPMHIvvJ!B1 zv5JE(%=HFHtga4*^kWY@f;{MVf*r!aX5dc68VDa@S)Of{C>UBl*e`m}`5K|FgCQF&Ny@>O?&R_@K09DDYO z^T^)CiPb2*JaV^Uazo5ZJ3HB(FZZkzdbe>7#2kQ+Gee}R21s4cu#)jiyfyA%v`sCru}1S+z?a7S+@QYEL{d z-M_)Cbsi>x_uxW*P)s9MyM*K!))IZ}p1-{{&phk0CJpV9S4Yesb%&u86Y0^nwDthk z#dkTGkM16J*>YE&GlOzw1|2te=iKZkp?33g&rt!~t4l1maxSiBXJIdqg^&+eQ5P-I z=Po5Js+wm<7AAI=Mp2ZQUyu zd^1C>ZlAj+ko&IqjFf??F3Mp3Jo60U;}=PGy0)kdEOWXGpJh2!+%nyDts^1q_1T#E zFq2}1g_CzQ6=GQT;I_&yvarv<8?#F7?YVyYELxnUyT^F;riJ=Q2OX|Fvtj3*0~-T% zFr5h%(-Gx@@FK0v08Z*J_Ouvt9WY-XsQmQ3t8!V2n^#Y?{`&JXFXg6dvEepCuoUf^ z1^i$TA1!a(x>-r+@T{|(^X7n!-t{u)4bFd}9*|kgU}Q0dze^szc6!X?>x zT%P8{`~a!jY~a}=+Co)j_5}R;({$mKk)rHI!%Y+BLrQqoF`fR4(PFf|;Q7AwUV+DG zq+q4APwq~ZUX$5QPsDFriVJvgbIRmo#h4dqT!x{=zOSy@nQRK zWV<)+zRmNk{+4iVl-jH|$F;4TeTX#7^_I-%E0*SqrJar)T~fKdqNk_2?4f|s9z@<_ z%cE$e>bvzh?|-Pf`k5%IB|G54I*2O?d|sske)TxDL%A`NaZ83bR5lkzFtr-}nHMSa zH!m)G2NylJ9^d<>>I)9{QFcM(eN9@tg?V0S?oi$i+2pU}$1boESERsQn#o%mu3+O> zIK)y@g@Z|Rr0t?co9y&z`oxQPjBt)(x(pb8pU955h$WM%q#LpYtrhr>XQsCES#?%M z?+CueSt=UIvy$uT;f)eVp%%Iy;spYQoTPr@O2=Hsy()3SRW2^P)YE3q@W$s=dyOJP`L5T>yulFxD0}*xX|hv120xE&G9c`lUB7J1}L%9sdI> zFG?)08IYY0c!a#`)_nW%GG#EKDqP5(IxY11zJ}3mQ>9&=Q+#Q;FKD@+QC(+IuLK07 zP7w^u7<-r|zM3HeeIQFeNJhO2Ff5Q#@hp7Ts4^KsyaMs09vv)zHh^jyabP#($~BAz zae*a8Z=EiUe9V9)hHXCWvx`ddiPsY!3Vmw9^(1pMZ3iw(gY_1wRAM>!Dl^STOVsLL zsfvy!Ea5M*p2n;iuFoPsKGzzKAh zX@CM%cOsHBJ;J&8mUJ4Hp(WYCgY=VCL_Xi$zNOh7qZe)zPFeZ5uln{VL|jNe3x3zQ zeUHZQ>1E0HN_Y4=|8%&P58ZN-!%3mF&#*w&{%hHF^&xLjb6fGb3tKrEcd3}SxRop+ z+PVbVc*QP7yQibMLCQD3em-K*r1b&SrxX(JQh`e07`nE#|Bit|xdDpeiOzWD80S;`dv5%6=u^OJt{jaop|oF}uu(E<&A%jV*~H zI=;}qMdQEsjE7q~eR3Ny1!x%ij{LQ~8I}vouRQFG6b$k-Hr;hd2p)Iao#_Z%;{(t_ zar!NBiP3?b+h@r#0=>hz7{JrsHD7k47v@8dFwwb3zFkZp`mE3LRRj*%yXreik9X;q zKkpCS)0RJD6S1(OChO6DGCRBjv$Sh~ykmTB5a9(uy1WVC{+F*7`I_{>8-?`wV!^H{ zQkuw{$AGw8h3_y30W*LTbaSKRW0z3b-hU}wUi1JD3eKqSgTs+B^(OWfka)!Z!BG@! zUzseGRD*19E|YgYoM1^Vcy(}ZaB#_XuhR7p={g58tMl)oJsT zg&r*_kM!YPp;qX!B|-(;ZMfnU^CqrV8M=1t_Ga~K{Gjduebt*no6WFHQe-B{d`GFw zltBwsLTpfvg@NV1-Be<^GcDnhOnssKq>$8-_O8S4W|eI>uf|R_(qAsDAiwZNt}WXG z2A}4n&_LvYVy0@)lpyp*c`_XvOKc>k9zn61z_{di?V?m;U-iIo1HIR&PB!mHWu?yS z3*Hq~jEsw)iW%d23aPoXFF=*LSK_~;7@BYlC$#F#J#qvnWrQXQSdV~a;09PX6ZEyo zGVEw=jLE*~#9GA$ImWu8y9Vol(&D`0WEiUp{M5-W1(XS*6UUx)-W{oejFolrNE0sY z(_dH<@+a z$hL7VYMC48#Fv&`wBHb#`p(hnWd%lU>qZPnJ69h3j=J)iZ2uj_MGVpAD8s?#+A{u= zZhQ7xCk-1ncpqV9$>gqT;^l;P&NL{^l+6~$8uDDawC9rTvR*;1gedJbUV{~8ozL`| ztu1PLj<@_Y>3V%1pu;p#TSqcdR_Sd}@J~Ul@}W$`Ft>XpFrL7VxPr2L8?b1{QWcGC zJ+pB91+PQ0f|n9j*`7?EIB@zhYRLrQ>0+)Y*WpCvYfM7p55ZhjdC@B3V#Dn&wv~eY z^8sps+eYeyB8C~DksyQGK-Bn^{RO;vloBzj;?)r<(BG3Zzb1lo-P$D95@%3 zz<}o>%?SiKIK-C5S4By4__FTs)cm2ya*Kj(6gLNWY-7+(=}4IsJ5w=tL_54@Yr3PO z%bZB?pxK3m5;prIt0w9g^MS-cwGqv8K4wJ-pkA^O4MM9l4{cW}>UC@K>||oV_V@cA zg(cm#b#Xj+1EMLQ*tfv%x+7JI@;80ep89&ina`en3wL*DojzRf$W!it)8^o?6Cu(0 z@3^ldUs%tHpQ;g!dpF(`~G<~9rex%Qoc1sSs5-zrT-DbOmIC1xoSyO>hm+U5Y zhx$ERD=x;#vQ(eo_ojzvB%uWz643S;qjzhrJE_~F*EYX&bJu=RA%ts7V2N^7oI$p; z?`b@8d2d!qi<^v3=d=CF+Zt}6qn&(qICMJSa|Jo!1qx{-tn@wAR=$gcp{3U-t1HNn zFUEe9nAu!>wC*}c(&SuMOfOgL7@tW%c*F+nDUki7XJvwbC2kG=#G>u1o-ft0z(bOs zoP;T3?Z34HBAfw}*#?-#E*3DDwsr}~oj$W!A6%;#OLQ7BCIVB;*ku8Y^3Ow>`5Yb{ zeWvZs*=`NHhe}_^#q)WYig`Fn4j(!mYovCS>x7>%WQ57}WQmMd;#RutLvLW6XqzlM zKwmv+g0LK|dZNtgDB$H20gCzy8PsG+Ja7DJfR(RjF zQs|S!qAm5?gextas#>Sm6xqk`)TfhlqAf>B#VrHHG^nl6xrbI8w4{&0tYB5?LY?2I=? z0Q%C7ouhc-+Owf;INCAH;(l}pcKR}L313PY>-Ysb{25-|Kja=*fZqrxfZo;7dXP67 zShn~oLf5Z518n7-Sq+Nc(97fZ2%7P*5dov^XYw6&_!((bpPV=i%i~y&5`YaI?*kaF zbzA1r@!!*q|5fSSzu|Fo1F>5X;k8din#kf>y0qYNDr@O;30IezS7KPjEB1>H#mAu^ z1k4-~T)yn7^%*ELK`=W~pcVyCyIffU%_#eF0^}wL9YYo4FV}nCiZ6 zh3wRFp;5Bvq`GHw>ZeP^w=A^=sCOq?^A9cF6qM?@zTidjB{h*?IW+6RbTD>&;S_is z#fo$5{ynGkjEN*@!(|7J$9_kt*%a9r4nm7-NbGC4ulQ7cy0o?r3!S)oZ0nOZoCA${ zZ!t51Nk}mUv}1o__6XKR4vIh&fb<^o&K;qW=oqVe&?-PynkV1?6Sg1x332|6K>tVI zIld8q<-BtXH~$VA(J$URt_1?#P2A-1J0SXryyiY~0zOWE5JFEA?efAPx@e$uvRce` zE%@=9C}Ew}pI)}p^7oVN{6nnqp8-G|`?E1Kn!X@>BLQQ^mJ}uQQU>H%qN#}fbOJzwzfw%owU9mX#Xl18p0+|%DtvSzh?jP22E*D z)-f=CKlRI3T!{YTZR*BA9P~W3@+qMf;ZD}*k$Wna?yg!Yxi|s$(CDQ2d zjU9Iex$ zSCJ{q&bkzZ?g|+weYX=GH1E!`Y1P9#Ck+<*W390L(Uv#E2PqNiZ#u=KC1S65-*<6J zn448x+DiJ$M0og|WXbtOq4FmV9-vyi{lX+&@yAeTq|w!XdGEiGnfDOTRH8_0>vxm{ zBHcMnPYBL#>dB_!h$q?x#CLN}o1p5CO*}YuI0D`74M#Hu*;#JWUE$Qbkgd@MWDi}q zes%PfP8UT^VVfiAh(#6g9;O^VYwL=_yx%XXQBzIv6z)A+9Bc95QRn<6+gOuNpEeH0 zfD%|TOGKWb1@fz$Iw6c(aHMTfb>a{gb6xl8#jGorHhdQJHoBTVJe4b59OKXSBl(lh z;kv)JF=F6r>S&S17?}CCMb`V4@3u1k^R{my4c0raGu>^mZ9Oedx{Yq`B4P+(eY(Oe(^=-2XzZol0U#W&xYq2jO1KFCGT~ z5}1va2RICSqPr1B8~BW8A?-Tg{Gj}6qa4nEHT3JkoHE{V9;;%uxHJ42k*GN=+lYa zhh%0nM%o+Tfm4B%-mF$y%;>_=z5^m69sbzcd)d-p$(}pU(jyN{?z$_{4of$%E|w0S5*Q)9Y60EG0td1 z_|yPY=?lWnPiBE$!v$~x$bq3Jz!=Kqf;};6#?kDxilciM^L}NGf0;^ zqjfCNB;;6f-*1GmcYK~ z#wiSqG;)cY40_~|Sn*ikBsy1N=UylvK^dGwE}$U8{n6r=49VkRVk7%DD(VFQ0Z z)UsSH(YYNOfyWoYZX~0&2#-QF(%|XOpi9Bvfp^uCO%!MO5FU^ok}L87W*F!QkkCR> zTlZh+@t@>p@B*t>ikjSvb0qw zSF&)q3~WG^zc~+u685~Y;uq7q^-(<}-nK<1(yLcC;^31gBSFPQ1@<$t15u37hFPoX z>o;()qr>pN`bVu@BNJJlVq>CedZrJr@a7`>{CU3@eO9C1c4Y~k39+)|4Aj@X;S;1}(nqauj>-w(n(tT<$FD7F2UbX)8S2s zVcPQ5d_BOF)2xCPYQO@LrQ8H(<&m$DmxMQg8CduTZjGvEibT4bB0v@q!;2K(A zHD-C$zH zg?1{FIb~JOl+{Ps$%eZIKj7X(e2WSuoBdYm#W_=i@GgKA*F*(1+>%P5p-I<3NpA0M zW_z#eIXa5R+MDMLdTuh1zZ_ullJw0MSx;Fm4SZrj0+Ui?xp^Hf-;`_i29ulcp)a4y zAA5Ov1zcKNj_OdiURPNl;_B&snO-IKApLA@()|ej#`me8!;m{8|L@V@|Ly4gfBDkC z`}9T+V-a3MfOXR8V&lLdkG^Ovmn0Qq`_qUs-jEQX!~{vqR-~4okW?^B?_+1|%R%;+ z)O!+?D-V&HEm_Mc!*jq&C&RV~8SJ*G7)w6z?^)a51N`%tnbVC~)m z(6j})RI}Qb-IuiI0B9=8tp}LQ5absAZcbheAQJ?`kzzEPn<8%$ zq#A?~zYj?quucGQU}*by)O-y&ks|rKuPtU&+Xg5aeX;{oh0ZjU|F@0GKalpresBF> z&hu}1G1y2SGQ5<;W+3i1Ss?PN`_wmGH2VSsU4KMuB9}9lfKVjB6RLj-5(%Z3p(WgY zlwZ;RRFeJg{`dbYIsZ>-{2xos(NLv9{?|{CEjH9pBHqWn&3?UjMfCB)OW1&~{@8o( z5fHlk%6txyzVyK|F1M90(W0w~++r)fwl2Mew`sjPt0#NtCQ^UPer&%3CnNa><{Di+ z4J*~L0DAx^r15bx;3bstv}mI~y;oj;a<=O*QOH0#{h8th#k1Xt%I{S(%eLUyorz?^Zy_h= zAh8Ej&t_6xy0`}RPxVVrHA=3O>g+pP<6Hq%SVuQYAV={FWQ31{PH1d;n=A}t($8M{ zjyh3{bdw`ZwmGdR+ck!?9&W7gt|1;pxJ|hxK*4BL6-5&(OxOhHnk`5W?&2@ju}d2Q z6{6pFQs!3S;;}SCm*54$S~gJwD|K1u#x<|DQ?cf|EAjh;7;f@N_wC%tz%S&J%QqM> zHr8F+jqmA-{qm((!caCQVDsiRd1}%q)Wy3MYdOAQ*AtXrY(G@>#&!S~rQ#c@b~xOl zrY^}<&2_C1XJqT)&eKv{Ck_S}%4M-fJM|raSc35LO&rJ3} z6D?)`RlXgUuxb)Zo{U9yP7dUV4JCF;uY2uA;|dz~ni~>7?t|@(ou{xL$AwCt(Y`AF z+3aoNuILwVh}o-Vw|y3>1ycGBlatxh6EjBYS)xK~uUXvpUxo59nCPK#)!_1@Ypm6% zb-_1-#Z8DAUnW1tpE(}$^~0C+I~m224>R7aj7evnAT%a#VLvEW#KBw^eeTZ;lOD;j za@Nh%*K>cqDr-`_nQ_i_CQg1ymmT&UWtXkWI0v5=xa$$qG{}F|z&*S7nWP%WjFo=x zfWL4i`>PVmxuTQ(5_`!Q%^-1IgeAC_S9I_h*hkb>^ zK}m&tWnZ|>b{In!F#w%ve26k9TkU#t^M=nJ{A{!`#n$bb%IT2fp9Cv}*wrqS3_d6?mLhbUQ1p zt-wj{hH_5!@OrOjx5G+eCJda>$7}q8nEXhGWynMgeTROY(p^}x+IWLRP04WC!wm*E zgrf&Tu-h?yJ74#{^hb|<2}^x;*_%-Ctb1HS?}KN&W{WJ%M1(79dF!8%s(`FCL4%d2 z$NsZF2thSZ?DyIhARd-B~Iy((FN zeh6u-`i?pTw*B$NF0Sy$x;l_*$srKUOwmOeEX*n!E+{DaT=}L?6LZt~{0>LYGtV}l z9}Kf^YdZBlDoxm3t4DbMA4Nf2VE?3bIGtiK9ABB~?WAjo*$*Sxl+|Ajak2Yx7+qXQ z0ecTrd6KZ97w%(Nzoz7m`1VAv9y`;WIw=n22{PJjJ8!(7oOm#a`{0CvjuUA|(ITW! z=%T8?C^OKIIzDM+0+||DS#QN2dIYU88_^@I0))xN@||4{$Tm8zV)DYb2JMZf+THSP zgYZcgx4DInO$*dvCaT++f7yv)t%mgxihk>~M)=n*C)+i5-+#F+9B&JA;HsUAUVO%v zd_;;o5whv)_<^Gk!Azy^Icdxm;gzSyH&Ep#>Ie4ip7PDc*SZ$oJ}*Ih6x3YPuoPtE z_Z_8qY3sf)5d)r&K+brd826u1SjU5UNzv-rnV_ z#ZH;hLT7!xApu2C)I?l-D9;Egy-`>i%{*ck>1XlD6L7EBmJN5=Nk%MP0oG;s!7&2| zE2ZnIx|0r>uo!rI^N@jIJs)cVV5BO|2&xvaTK_6?m7-N-Nm10ajIIRnzPWixlUj1W z_)0^h`O=&^2dj%RN?{4(bzZkamlY$=sDIe266m)tcVx{g-4)T#XVLxqgbS2u6P8dL z^%;{ z~ZA2B~u_47-v;D>?NxSL+|S7o^VXS1*S zLD%1MzWOk>u!dl4I1ypuu*5;{FWRLWtBperU3s>vp}R^BVmuk zK822J{J~L_SM<+x{XFXyp{8%foyZ4G?85_w(QJNNXB8w=t_sS%^1z!SjT6}t?d)PR zy5w>&BB?=MLW)77qHG;ZCMYn&Eh-WAfQ|Neq0v*P*?eZRZOcUjpuntdkjO-(BXN4T z<^q)OU8W}peV;7z5-&jz+(M_!=;AsS{y+A<1Rlz^-+v@gLiXJ#B3oLBvP_bYL<>Sp zk%UmP8#5yNG9ig#60)Vqo~4=WTe2^aj6M5|7{e_6FVFj)_q^}(Jm+)H`#Y`?|0DcU`~l@B90Hm&O3-7Y$@RYeRrzQZu}j1A;maTJ;P~HdU*~s6s2C zR-{*kOdp&96`v~%W48@PlLi3fxn1EorGKhl{MQnvEynd}d?Vy8>hNv9nBhHkDu^o!Hm4(~CL^2CtnCHaqVW0gUbh zDzZX-SYA~4-Pg9R<6xFRKj%=USoei&n669}CvD0yc8^enVa@LR*hb|D@3R!<`jXhk zE%?I)0TOJFm*}WF3yvtFCkjhcy^FY(Z1>29MNSj0zs-TAj;lz&KyRImmXF8qV zQU`pqN6=fdGtfHR0eUWyXAHqj`7sF%uQ1&_G2qiyfB(v;@D?PRGYod(_calR?-vl+@-`6ReAn3(fbaLr5^vehS&lLT}baB#H zm`bOx@A)k)BmDuTo|%COsiXwCT{`PKJtYYtk55ZReg9>@_7|NE(BbrVg35DP#%=)b z$YcuA!`7kn9C)_sW+Av80P0D+6wRpjM>Be{J*oe?YW_`)=Wo?7{<@a`&+_x83wa1! z$~6k8Y}xJxWQ|GebPqlk|7%UUUoLPP!?Nq#RKdRud_E$32f*moev_&eyW%Z~-d zZm@941dOA%=zyvH_B@^C9}YbKLwQ_(m0AB?pIejI1U4SRKuZq)X|QlG!FLQ0g8(d< zyqWsF9-)s;{|RB9i8}?f&`wiI-VnoSk7PinhCVPt;{TpBiv-og$B)L=Tfipf%m<$L zE;RjtX=tsE9-q1F>tEAj{(pb%HwM=Csr`a<59k*6+ly75f`FxPMtN%rwkCBw&7Tj) zhq!%{=EUM{%L+yf?Dqx*7%tac|K_D0JQS_O(9|-q0w{XBHs$XLB>!E<{_On&()|O{ z{bzxS|A2J=H5K(kH({Ajbv+clN#$^(QlkkanbkG{R8?XJui|0UXrc>}e-0=I5m$2O zHmWXWJjiywr&>1s1iQCey}nucu33M$UDiIA@8~aA$ml`PYt0o!#_#hia9dbz1Sze;^?mOuAt z=m2Xyeq@$>nG&0$>*qSzuC!x9@6*$&5sp*Wo>SlSa@AAPY6je93isJJBF%{2ntG`wjMc$aT;u)GpuV2H?tL zk?lKDC)k9;p(-FW=o#8va|zBCt8*nN z_ql;dM30{uPrgkp)Z#{zz*XCe{K1JegEJ%+LvtZ1V3@Xi5obVu1=OgOgHa`~W4*mT z*owO}bO%4aW?IDtifc}LLi<-Dk>!EJa+!zYv zE;8wnp{z`hmh!|#BT5M2MhSm|Fd}ty4yzj5+DuyrBEVWGEdZs1C(pT&SkQ#J2Jpf5gH4=oO>mlWFnighz(N9$a5}R0EyBNKnE6#?IdJ zR<+RHH1M(2a8pm)EN;gd#G`?@%TRLf;94`FgfwiS7JJ7tC!r$x;?to| zKLsQhdjk~%mS1$&O<{LUigh0VA(<06`dS-oT)H|GH*utGNP%x|A`v_m_@rA3|og%lg2xi{y*WqeQ{KVCE z?+>r)c2&Fc&<4Ga?qz?;YN^zBlWr&6x%?5$Yzkl-HK@wURa>7;psMJ(A}i()U8~<2`K1M=xOG z!13p`iFKNbCcw%tZm%07s}2KZ2g?%bq$*t$ReJ+9^|eL`P)2RAjK{WvKN3$%e4uIr zAS-|ZpfdXtvB2rP$b#$&Z!%e=0@v=9aV$M%SdH`(YsM}s7i=`B*m@k~1OMLP`=YW&8TDRT(?0H3?EaW5V@|a19y+Sg`>V!tJ zWbr%J)po*)AO-zVLavAAG|oQT>y;+rSy}cTy`q0WERJiZ1n{E!_*iFW6yrI}VT^J} zzjh_AN<2MjlH=lFE$&1tkH&L_Idk@al>5Qt2L`n^*VbY%NBwUGeMLQoM&kEqA3%ta zRKD$_BxPLxZuLTXT=s%=E~jS8En!1bvZr*wOwDQ#tWwp%i}TU3cP&znb+EfAy?`Rl zPhrXWIuGNnF?MzF+Z!<1doy09&rx>yjd|P1=gEha z9{7C3F3OLaZNuya?0kcdpIEDu!0nULFA@SfAc1;ROGclqJUtI7trk^w)fIN8SGP8E zuDU|0uzH{6vp5ka0}iPG7N~q70>Agz*Yi)w-vRco(|?Yaj7p}NT{ zRxROjUf!_TT+L=dqS$d7#SB9AA@k7F-vX-?c#ywOcp2p>jAx;^ydXbUtWk45|LN4m zs=b+cv*<>AZ7cOKkmmV4gdSNiIIU0P2XtlQf_gYv%@WK_93u$!LcaR-yxNv_rb~g7 z1&@{Om-C6WDim_xo#*HbgcMA80%vlaUJaV!2G~W(~OJ4 zknOjL(czO)@#jyS5<6C$uCwz-NQ-Ko!-PAJQ+c67j&p@~`SOwOM$L#v0r`&s@@oqd zM>)F(<4Xpjy-<_Di|(}Qp(~!J^hzU7WZ!FEeiU@Xft9*a#_Elo#*-6(Ws@~f9=p`1 zeSnffmym%v_AVw>=sVnsxo|IUQa0i9km!rVpd+lo)ip7;=M+DA7@m~ISmCqgMBaYL z8@W>@{$e;TBj7+I%ZD0Q#h#YtJrO|LnzxH76;e5l+Pjc`oFtJluDo|xi(L5TdZUxe zj=(vYl;8vC3yFQiQ|SuSz4SC3*EJdonU;V z+<#BQq83jy!492du-CITnM4nOz_Gi(?Z~?#J25BImTb#sF(D5QByjFt?OUQY7Hw7k zWt#?l4kca%7U~u_O?nEv!T+kZ*I=-hkm^Z@Fsk_2hZ+hQepK3B?@WNjkAv{95=B`~ zNXZ^$PjR;ajZuxu!A366{VY5m=pK6#FK%MyAkF>VWfM&YGm?P8@Gw|>!!ME4f;_7+ zya?@7{Z#g7GpA)0%CjjwACX|n#o!xzj?~({@$T9+xX49)FpTU_LJ_GGN~Ie(wt>Ui zeTmjg(p!POhx8wxyFa5RY4+{q^!a5|!y98&w!-uxPT`cZxLI} zZf$Jd<2QX{cb&di=raOu&?yU&AN(?-0l(@EWB&)L; zeS}%l_>Q6+EC0obscxJC@L*kBIIw9}aA%x^Hv$dcEgev*F(Pq3oNym@<}j-FPkUQ% zM@5wHN1=@28P1SRSu&{d zBQZMLHb@uC z95M?#a0v(0l8;(P?)mVUfU`fmc*{}zm;$N%_iukDLy)V^WJ`PvMiaJ1k=huFcV2QW zMe9>yi5m@SbJ=$!4)v^Se9`3#9w6_|zLBYTM(U|LvuqrTw;8P*ReKaRMMB5{&_6YY z5pM+VOM~!_<4cp9?!X*Zg41OwB}$QfQ{DSxbnbF?A8h=T=g#&Z{t=HscFXJ?_12GA z59}itAsfGXTN|W2Z&OVeFP3tdH={_P)mGDtq|szmfkwC@ww{(1UhMt)i9ST+*Vj91 z%FlN%A0oDASsOxAC3ZH#BdZ+4G+ie?z<|IMYiFOA__=veJ)=7t2E^$;@^%-i4m22FA9{DNjgHG_ojfg?!x6ex2b5iD~5 z&HE!Nf%b+Z&O}G-9ks{vr`$63T(`bHQq{h>|Z8 z*n-mr;s{)K7i%M?2)#5r(fK9rK4FE|x_tr~K6tDYeLED{Z!aCLtdx0@JxsIa!kMBe zKD$QzOZ=mskTQ#pT(RaS1|^tD*^f4o)q#|5;HP$%Tq&O`u5y-~T%u2orGL^xNv3`a zEu=V_RdyltbG|zHCnY|cEvt&mNR<^go4hA%QpBHh8u~T+1|_^vTZotx*{^9)@a22C z%Ztu{`{Jd#;z&PXi*@Woac7gn;ok8R10tjArHV%`E2La9SgU)-ANjz?D?l!N)iGVS zKg;eDiZ}5zw6D1lMUfL+EFm_@?Jpwn`gUG6^&YunaM(2cOQqdYN~cZnQRcK9{1mQU}S5`X9>DpYmTmd@+JzE$r>;4e+RIx_bm6lp(rlYkA!oub4SybU36 zagF(go8CpvG<`D)H$_F3GnWNgzGHm=R6BhZKjh7y>RcQrHkd2Yk0RthXF>UoBIG~5iRh0agsi52d4Om#Uz}j4Xs738GCWjgg}L$sbEc?e49egLH1zwCQjHUXSQd2+(;Y_Om{MO z{3Plzl63XP@?6wT!oX~o=Ow+Jzcd8#6PuUd)O&Z}#n{MF7>DyW{z?+_g15VOv5v=M zwmJj*VO^crd3*zU-?!G_ zj}YXtzp1Q1h1MA`%^&}1c)jU4s5`C-WCw~fo_jq|!qr1g`DKx{@4;)i5k6e)j?>0SDhS9s7DHBMxJ4EU8xE{ag6%ut16hdJ|8 z$)Pze@lAHd=Y~ZeKbp!-VGc4uIPx(^Tc`H@%W(ZYy-NI>B&sQ6j3Gu((Uz(u&R!*k ze*2&~j8Fq@)M4}L`xHA5>>O@sh@YN4xdK0lsvoC;yM1;LkP&Mi!D-IXPhNI@Ij`^o zMn-{$G?8LIIomkOJboBMi0(KrX-hR9$#a)VlA@}XR>&SI%F}qH=TE%ovR3y{Wnlc@ zoSeUUK7V%tgQCo58c0+BN*(HV9Ns36|2qzEe(t34dH;UCOSYC9wf`)Y%)dGh)}MWU z)Y$*1vH#VK_z$~k{8#*+KWglM0dHBhqpaUXoHj2)nUb6;RQIW$kTx8^OIwpRl=zsMeVIRM^H6LE^y443S>7=|b$NQ;S#quU za(lHq?FIVSZ9mZ&JLGMxK!xeCSioh5E{>8u&#YMWmkJO!B9w)*60dX*S#?Oqw))x0 zcNu*0yM3n}v%*(+iUZ=poQo9d0TVgS+}K^Ydb#V|7ks8o&lN!MLCOOBy3}^@5%(~(b)BY*{DMz z-hJyrr=z&bxDN!+sCRK*|7`{N&q$9k`svev`@_G{n%7|&U}L_Lm>AjKx5 zaiSERHJbnv9!0g?`OcSviZf#SGgGH0z2uw2E*}r++o7HJulb8+<|Jz^SLjcO1WnCl z92$K}nY^6n;GNv9OMV{hTCrQS0gD?pcrh-0KX_r_ah4=N(#;7Dbm#BSgi%zpJ_Vbto7*_z8JEC}O%2q;DjqU3Wg1xPN zl*5N|W_tX+LgiVxEsOa;FohyP|G`d&UXdx);#sL z;|F8EUhyqyKJ^*9N36!YTjv&3Jo?CshYN9m+Y?B|l(iGi3Uh!5p_pz_9qVCiBTifK zCQ8^DWiS7$bb@SJT9+D0p8v{R4=(i2MDV{?<|>Daa!{X^>V>6;c|m8AXw8FbVCwA5 z1z`BaGVs)V&ZPAOY4uK`7fq;|2vqu{ISCWa@)Yl(?P`4iRc!l|nJG(BXhssklmvx9 z6bNZRRIYzqG)%T0&Wn9>&R5X?u7xA?+Drw*jA{&2$4>bAFxbY4Gd*`OjVNwan~Mh} zTgts3TMCGOJf_-od`)$WmuNx0MB$*qFl7i8V(AJ0%yagE=f+cKHv8z~v*)k9bX$<< z*G^h9`;Ckz(}b-${W$=84c{kh0H!F{nvMCYo#nD^n{=fe>VxJ@2UxU4qz!Op0yP(f zW@WYdh`vP3=)Bbv-BqLP9k}7&i)volZ1fP2r74GNEB4SH5XP9n-CyumY`^bxpPrLv zG=2Vq=&g#wv4fd%68-Dbe>y3PW~37RA?y}b+&2>pSX9k!@~GqWs;8@~s3qfzuoHem zHRxiEY`u0K08lTo1V-vX5UN0iXBe>Czo((5;pTvx3Ai02@FGV#FP2s?KSoP|dvu?M za-jY;6r(BLgNvXfdlr;52IIV%-?-#h=Vi@mu;DrS75Ft1p?qYQDMO( zoB<)C>&95;(wT_j;bhy8%uIckyV42nN;bpiL}wi1i$7hojGU{V0Ra|+ePI1U==*^QIZcmQS)RpJQvzm8 z?k!2j(hKurKhG-OJN!{twk)s`eC|5&0r@IrH<8s6M`Eor0a?jS_`LbVz=TQpw^8>; z>Veg6j!F8Tm|7sziC-R!7?wkTiGsESr#n`kY>h|p&!x3*1%%im6cdys z#R{0=(!Uz>?d4Cieq6Q|6E?PkrpREYSY(1ug*!dhTfMsiUro#&Z_9r>vV1FPlPy!U zsF}IYKakIqH5qZ8qD<_atO%VTIyTxssSnPD&1*D-EC~t>r62UP7;}|2scWehE$Wnd z2nUnlZ}0Q(FS*dajl;i$|1kXDP8`oJKC(orbNORJ9r%RyOwSimxKhgPFs(>j8hqtI$qunad?*aHPMFUF9C>Y62p&o z91H#l5nY-LpTIo2TecB;USBi9zADzl%qSx2LMD#+VY&;!L>Md|2eg@7d}4jZx%Rmr zMJ+m)HCwQfaATbFZq!Pi2;KsWMuSEtMM@_1$F5$6lF?qvX@_nB^JZ$hZ^+tPv@XbD z)ex|XH0uUDkE#Ym|C_bZAtfQYi2i$K#-=LuICvCx6M#EO_+m1_^78y_eX_P(C7R{d zfZI2($pN89M^2!IV+KcTg^1`-P5$iH;e=6<_A|Yi)2?rnCd(f|P2=U?qV{~h^OqI^ zE_n(d4~(Omv3o}-8WT;i^vW!&(d@N*V5*O}HaJN;Q*^ALJS`ttA*~)d59C7gAG+3Fh2OP;>YZJ`r`XB%2d(%H>#o#}BkN>DF{Oz{*KZ0ufd&g`uWbT?!WILBwNO*D_$)}NPr_2*iW0ys! zqncWn9IAWKb!p7Q&lR11qFFOWWb-*gT%T%z>eS)_Xrt^;NUX(LF9>QFDj#6_p+CBR z`JqQ~nXGkFea`;;%PoQ8&2HEC@BMhWLOa{)H7y4I9%S*K@mSj^CbMO*$?F}n zE=<9P-Lan4?PHEDjLDNqWf&IZ5K*xROCliVl#}#>y_8GD?0{YRhjPEVq&%fK)6{M2;FBwp)raQn~lK@Y|h}Pjh z>L&}b|EXj6^;T5M+ZeS5-^~@G_MJ&^_!?LAsZKUj%Nh5rDb(72+ellmC~vYEgN`yZ zwQLKwaw(Cre94>W_>`QQBaz$*9)e3=i8PyZtf;=Y1lCA902++z#FzSwh>*EOBd zUTTQ)(TuJ=Dyx;!HQ-3&Ga=XXX){wU_KtVfSNB(t@R1Xae!VFwORy)$l{Xxc9$rJ= zc>8tVYy9(++4On8!)~{nZl^?7S1Nu2BtpOgm`c3-<&E5!c_2HQz(L?~aR!)H}#7h5#j#Fc!Wcap-x2w#49iAj~**&_XF-y3yy};}YHD6=}j| zc2`-yyl^l%&v>ptnWv}WrwB+PK+x(2|BWw!BoVf3(@q9fyplv?u^msqVOlAy3y$QI* zQaqux?pxxTI-s{7L$k}yykjhl(!Of3!i7c=o}gH1vIKW--`AZ@B8!6}C(?WZL=4F` zab#j?RAGcptwKo13k$-!OsteNc@N_$itrS=>iiCzw+pBh413XfE!Ijvt^wXjGz(|c zTZJ=vb9kH=k?3wcetmV&tIkB(4VZTi!I$R{l&Q=nfVQUue{4p-itNP~se#54XE^tr zZ_*_14|z_J*hr{y9Gcq9U9;SW%M>cH|0RBN#05=rbqwB zv>vjP(LDxqOG7ccw0HYrCy=2NX}7n4)pWVxtFYO{Z$?j(r0VZRS_|3v9>5F9socp* zuZ0ijFCGUuUox?mQ42Uo`iAh<4=79MyG~jvyxxSm3quz_s2*=&zW}0i?(BA`h8@Qf z3dUAl$QbgGA=LNhQ4BYQEx;EF#-duW!>FP9n;;!@Q`mf;7vF1g1G^+OK1+*`0Q=T= zz_BXgJVR-LYCr)Q*#Xut)S|EhIG86Q@#-SD*_nS+vHUkGB7c1h^JX>p-gl_hPD|8K zwLM_nExY_Uj5mf6-auC$48X~UK~naeno4WWb-a2)`ztv30jhNdp}94W|HXUA1OF68 zkyWFmJJxr;EdZUf)m4lf`Bx4W_g+QGrTl_^{$ED;|3#X2{eKj1{=F^CFVD>%ns@(6 z3-wLQeQ9=)lu0H^Mqhjl1yW-=NE@UwN33_6Tru?E1wo!IjC zW%MV7c7V5uT1q>+JU6HUHmGZh&ypAMgFA#^C=ig>JT)R8h}kod=pi3XVdM zxATDVz7zb%CKsIsCvCT+{*Ikt5bS+KnYgy!PSfj+QWbg@mrV#9*Rj(IjNSD>HaUYh zOJBP36JqS+MYrnu-4OI22~+>C9RrWV6V0)kLJU#V;A^l?%#_5A$p2QJ8-hFy{Cb(l zKOr<;EaPH(9cq0AjQJd2KmE|)4;%0(gDOK}F%d%#m`82tsiMxS{8w77{qfnqF;D&r zn9R6G_#IL z1w%SgrqjIa=)NA6`N}9gNZ}=LYKV(kg+79c;{<7*UHA&5n9C*S9Y;7C3y{mpLzwYY zfz9M}W{*O2QpC&$|DZkp13ro7wv~lWII(Uou6+x~qg`P}6;J19%&A57I|Sp=#kn$N z3Ix!TV1af+a8TtI2Fi~=55Vx*Sbd-WNO+PG(+f(eGUj@;FzWyD;dIf0#{ECmzfh z_R=yYS{5Iu2=zS(d{(gq2ipWi9TlL zpM@k`mi*;XUU$yGuhJhQWf`AfrL%QwBx!pK z;^=JDnnUqG;ib@;oTVaev3!r4&&3w)bfz+o>_pGK%Kvuli!(QS;F)h4&ypq|OXrH8 zjX&afLx{W5Qde%CZKsEPzjV0V^+T_4cJz0+oP6OJLSOKx5+yOs8bx^quG z3ViJu`Yitx&()(+Gfnqj#If^OXs2N{NU+ASP>J1s2T16cH5*QY_qT9;N=sj%#>J;z zQ0?$Z@JLJ8aFodou$@ z*$T`R_T_RzyjsJOFz9mBe0>aL$z{&2$xDS)xv{Ed)`lf zZc?RDjzAbVhuGfy)mOB!Nv&~vL%KY%|5p0{Q{Df*+oNrOAH4IOJRaNviOA|yeL)umBB*t=D9$D3pK^moSa ze&;{84HL1Z(i{P>qBV)7Lcr=`bPy$?N>4`o=DlNTS^RWRv#wQyP4xq?;@v>TPe|#) zCUDnvWb6iS$P{qV!^*hmIcN1P?AMS{hw@L>{drf(6_0m^ZmPIP!q&$H8BZGFZ7e8@ zpO6YPEmf@nvqg*sHVMEJdB;agT4BiRw3pm0Vk?*lH6Zk9?MSg>pO3$IkoPci0 zOyHkKrHHEl{HaG<0@d zy?T1AJ>}!`T3nu97FAkp$`U&ceR3xEEi#)jHi4~I4$I@i?5nZN_I2-Mc_k7$b)w^t zIHD{*2?JdWvDLGu-e$B7hqhbkkYH!^b%Px$_q`5GKb^1tUL8BN04E9HCq7tB!b#fM z4+`deT&r9PD%1V4+|A=#?J23vna^xn7y~sYCop?`n~l)diE&uR!nq!L`*YEV<(uwV z@yF$83;y^RuJE4_9$Fv~+py0!b9|=S=jFWVv3F00&t!lN#oovbY28t=W9g49)-0*} zkY9&=miFHU<}1V2bK0=7jQN z3T(A8*|uX%8R^5q2O(<*`GB|pb{aELu|%huBFqyE+%zp@!#rnY1^oB9?1YeyD~N{e z^x}|{=zD(nNF`mz7u|&8AR^A71QrHFr0*UR*_u~yko5WVCX;_6HF+tNdf4f5sT!P5 zMex?blx_1p7&9jk#SCvf$jHcbuJCXc$^KN4d_}xd@pF&CY=26mG~M`0_9v%B^uj6V zNC^32T9j-<$06?KPd$>fFA%H|5x>MjRA?$Whz-@2{C+C?6ULiORl)li=n_z(f|3=*rOHCz(`kt*-mJ|`iTymC%$!1s@A_%YV>MCtjA zIM}VuVSF95OfC3zf9Vjc7@?oVhrZe?T>mVkxn0q?fBbPs>0>s@Jh2^Cw>?7i``0e% z9orG55Jd?k@z!GY&<>&|(NO1i-?vV@sLoEe@559@WGXHXHoi?YBDSorHwBIF!$I*XG8n*6;6b-4-ppnB~>L|>L-NP zI$~>=U+sat>m!`P{=z~QGjW-qrLA$XDz4BA1ie|$#EVPPae>lJC49kG4#J@ zKEvKZFGcGOt|{|edz%M5xJJxMkOBdg3BHkJ-*zw~t?FR$qZCoZi|(76o#7Z85Qnz2l8a_% z+un}r`6)Mb#%k}Puo4+RArnxv8!cKvr&wrTh}LNR4*Osh^{*@FS3#B$rUnea6}rPU zEIYxq#6{x#(VVVW72x~XuBa&N+^S-sPFthUq-=Giuy?Dv5ajN&y4iKQ9*PGwd@7tq zYySys7$}2XsFLuHT#;j?73c#*R7loSc7?!VXR9Zn9Uo#VVS&VRvv;}0ZcKN+3Uj#L zSY_+D-mB*atA&Ty?xk=M*rDM#*3f~^Ln$)px5uRjZ!fQuavtG>|%!Np)ixkDnt8G@hLcUZXbF8pRj7gW7w)SC-*=k zKpJIJWwPW$J>qgX;x6)#Z=g-p?v;u1&dH-XspL`SMq440O&*R|UgY@3nrqX=@xFN7 z14iH7I((E>SFft8#n~ET{c|;`b<4_?sx`5E(QCIP(VydPc%qkHMbWmmK`zK1yco@k zl#LXkj5TiHB#9ejv(c6?TH&VxMVTXyt{d#7FhvZ*B}NrC;&R(Ay#sXy9#C=mi*n2F z{rta1zHi_Ubovi;`kw`E`2(H)??2`O$Xb@iX3UFgY{S{D-;x(19ksL zrw0@Rh=*73o5!*IK(6*%@-MPztAp^q92(yWBX*;8D%by_ft zm|*c@Lji;O z!~$S%pQe2nB#9zw5uyhDZw;=wdR@b{^b~#1+po0SzDqgfeR|N~4_+WIb(_y(mW#$4 zO%5KwDI(PS5Ui7;6}Ul7ftv=)4z4|&H`Q-)uKL}M$lPz=YLn913d`&R;I$nk5#EcC z9Ur~Yc&hzbDP3eBU?iFO;LVDd*8NM}SG!oHNE#Cx^{5d4eI&t#LjSR|C69|6XA*io zwH-4TdaROgMEp!%Gs2=-im?ZXVT$W6!bzw0EjJG%>u}~;_h&XimL23cjOWCu(QcD` zn%yI;&}fA9y-yp5%?E~#9&RH#&H0v0yB zj;p-&NHOeyxq(gCnGW92gcDMa#dWj_x(hasQ+Ppx7M@A_fYUckVqrZ?Xuq8LO&Hjf3Y|48HHvS1b@v`zTmleg5 zNWDPuAuLoB4b(Wy`fVIN@kO$Cysm{W&g`}09wD(%uCKu`j6cw-!fm%J>ELgpB2K-r zl3(zV5U+lJBc8*StK{tBMaYl%tVkHa?G8}{eRsot^DZ!9y*&s|L&;_WxBsaj2LyV^$ApMTeB9=`c* z#{sSTijguff-o7IkL0EyDTbuBI_t5p^!?#i6Tax0+|||fg2)Od?B4PII#E>A@VhZe zMs*l;B!oAjtzQ6MWBM+}u^jj%D-JVXt>Vsm3!X$JgbMjjbQHt=U0x5`DWE><( zPhNcYByizgo2^R_m#0qXn)j7prk9+}ldMajL@q)S^?Uje(!Tctuc%u{jBs@&de|5v ztxr!8zsM$OS5r_2C4z2@FVT%wFZ><8WuwMto-A24X%{QmFlYW0ve154PWJW207uVYgWI7423hBX z_r_&~0n3t!w-)2z!PNi{ZYfs;GvQpd=Z1)2#8W5FzW7LidGXdjs-sfax6D2HLSs8B^r7HgASe>$rwu{i?Bb&Zus zMCNH@9KG@v3}UW+wYIV;ifBR>!NKJ*s$r z+SmM>nHX`8#DlVXOmqoQ0fv}aFDxh>`y8l$`F&hZ&leHH+bIqAo1%_=`qaPz@i0{9 zcgC}W>icUtg6V{>7wal-lKB-Ol@~pl7qv^y; zyuux%hu~n&W8ydtH`1+{g$A4;hN?}zO_s>xeHy_jMSYxv&r4L7{~{B|qY|p78<(L&x6j+~>ij#ijz82TPF1a#5boezS9inh@3p zaDE!t`v*Tnc0f7TElUkmTWPv}ZjA?R4sew=#c;CyNXZPv6FB>S$bwBZh#WOXZ)Vf> z5VLzNah0y*CEIJy3d%CP;}j5a(Na>SA$ew(Hm-$G9-fBwx&y77kqWXqB`;t1EnjC!F{9MXp!sNs4jQbHs@Jm48aqKiWTqpHdC>osp!24HDu&U!ARUS@~_5!W=8r zJ8$PDM&bu#w*>)D6A+<(A`RBZ9*51VjLZS(+~##Gikv26qt)58b*K=y4O+(PH;QPd zpBsPR=Psb-(^7yQcsU0vf`+7Xhkt|vnI^*f1N&lm4T?$~n4y}c`IXw!#U_=ib9|Sq z#BTn}#vIO!s=a`p>Oue(5ZoWmc&Z0S3`Qcm@H>!zSli>*M*l3CQOX- zPwg1?e3l;k&6AxdUZ@VSzbtJ%mFF?Ij?@KB+6F%=5`X*XMa8 zWPVCuzQZi?!cu=>g9`0;p~lu1Y5lmV$K3c`T*g5kkZ`t7zN)|~i zl%`MU@K~wWR_Z zOO;*$JwH&!?<%DCba%>xg%+(`e`KzPYBBC*bgnz8zjI)WBE8a7jp0O?^yBt8SGdws zCfa?f-$g!4GCtSgqps5>>{>6NMFYiKmO&Dos!S=OaZ}HNkSkwwwS4gI<;$lwdE4G~ z0JoXZ0xDB}WUN^(K*B$Ds!}?CLZkzl;bf*h;5YU3JVV8Wdib|*I^S|PP}l+(MesFL zYd*LiHw$$^Pw(IlV|Y&|ji;VrY!0PzI76uyBjVmRf2Z?Zy80mW&p9(x3i%DTdS{FW zwNR%_my5zb*~7s8g#5Zzd?7B%n&sE@dX&sM{T8www(5l9fGvuk);yn_m0t`56V6O* zd^=B`@uBetFpQDCj3!YoI`4gWMgtb6 zRZpp==|;~}hH4Vp8b^oLZ{Kc}-jFG;tlmNY6O4 zuIkhcmE^;P^=uvm5;~&o61j5HSJRR@JGr=!pYWw>QEOL8&~T*K!r<230^G^T-WfUh z^jL|jf)eu_zRLw!^Hl7I&#K_iwp~wrS80rZ8r1#MPrj*YEcWV$XU$G06Qj| zTuOm%Z?|T^_;bg~qW6)kX+C=;tG^iN9~N_L>l{rKl03d+^FqIk$@EqgW~Xm^1C)~n z&!o)ORmk+3cP+oFE`RLFb9N-?W|LXfu{C)EO_Ax`JXKh6X9%3v6BC1HN2roudM5HC z4JVxL*?peeTa(qz`?XoVn0JhSE@>0AJM4@j(FdxD4;o=y%hNw#6E-Mu`Nk?c>pg!hnW#rSurwg) ziYWm(Wei&dloP?5=OR$}v5MR8#G|di*LII*N02THcrK86$)lWYZjZ|LJwMZBQ`H!N zTwYi|@$NG|QG}5g&m(gj~s;7R~RRRW<{&_dKJ={K)2jNM~4?0JDtx z@^bu-@0#sqKn55gO0pp2G{S;Y)0eGj1Q5Q@U5~pC7jWR`0TbVFh|(b@d>SD&-sOSi34(igKH8n-^!3ua}I| z+4Z!>p6p4or_2(R>&FBxH0JbqDrwEg)=aQiqDaL4#r2G)rs^z%9)ntLCh5c=$h;wT z8cUv~7bt^g6B_AmpYe%A5v@OFxGRZGU63oS*j9bHXL71@6wS;OJxd;8>=7m1-WXR~ zY{YhE8BaMQ4<%@Eemi}yMVbH8binN5oa9bVX^DPXNnh*p%V^VAQFH+D1$#2;84{%1 zk*=hTNr}{|*rfUjvP6={!@}va8pfjyu8-%haq}D*zIQ!%&t-#w%SD^fpkIxAk3u3{ z?Dyh=Pz25U7q2_GC49*&ci(VKyn8n=L}X3eo-9FsQ>x%y`GMk?ZxB%(QO0dku9Yx4 zWfvIKfwJV*E%6RU7&l+^{LFpxm`GIdJ6332K^aQi;~>*O=uwb3el}Bv(?dsqe+im+WBBF&N|67 zLGs#XX%-VZOoI_epD{F}^pf7CNZKg)!e5uE;jb}7bFR&k3(8c%yQsCm4x~fh@qAIJ z8&J%^PyNuA2=sz)gQ9DAk{TdCA@}*pUZI3cj;!~V2Fh!#o}3;<@8&b=pL(#GAD1&C zgHOf|!JD*&DJbeCibhlV(LSl3HJbzfhrKtChw|V1$48PPlqC_SP?UX3*(S-JY%y7< zl5E+EOpKYLtRaLDlcgji*|Ls(gpz$h z>pl}qb88p6eehn!4iCH-PQCNqJX+Y6P3`z5fBHmmJS`XFvdV|-nK&X!JpaWStMy6d zSp2&K9S>h{^;Ic$-{b>V)E&1l(YTXY8%s;Z+%*?ttN&t15G_B=^eZedJWZ&3I` zJyV$4v%~E)0|XEG?4-fg^AJ{GkfBQ+z&|DUH41XNKe&EJ{3)n+GY2@IH11|qg4VXi~3V)(Spyy_a)MG&zBPt?dGj=_#?*66w=-HNOuWW?%@TeS8=Da;B$< zIt!1aACjVI&s%oe&iN07ZhlTX6+MGLlsZ3CS46+hLe9bGEDaEQCNty_1_XCfyeqp# zKaYpxS9Rv$oAO%mb1;oQT5zv4=5q>A385nBkA`*B=4C*t<(W_3@`zwhXgKU=4fm6t>xln$xLJSycPCR)2G5WK&{t zC^4I72o9!e0sDci&31uz=^y{ZgFL2IP9|)sy8<=0BxMp{k^Qki?(gAy#@&HE2>$n7 z-=8`{_5@;k0zFk&el5O`=P8kX(!TCy1bCZov^x-InH>^tvQAN2<@30r3y`^#p#rVn3 z*9vzVw!d{{@;jLArQ9qo@XB$xs;KqU4W|=&%xhEHfv2VbtdExzNq&&qp5vx*ptsOL zr(w*cY!&5pa;ZTNunwyymA^kw33&!7QeHkvG`0xpmth$rKQOv0AdC*6;_pu-tmKGAA_DMr&np9Kq6%Ui8cKQ$96|mGH@*idbC|-)Ev8@$ z^n+wW5{m5S2z0;=ns4>O(^pn5?JrOA0L3{mK1s{4xc~6I#n%?&&p#OKwJ4Y10cJ#} zx(P7ZQ`h`7JuAaiwl1>or<>nkFl}m$uC&-|!c0VKBQeMU7{M6K(~b``#2eSSUFpsD zy~sbas%?2=wmkX!JpX_<3$f_y+8Uqn!Q(e&W)A|h7qv7kia6pTk#~5@eGTvf`M8dT zZNjmbs}EkAFvo08LN}`j%8kP@PwA|1jz<25mzeGnsq_7~6CVtDN?aFrK@2x_aj*o~ zXJAU!(`>0B-lHK#^(!;d7%@!nxVNDrA=z{FsiLQE$!AGduLiZm+p@Sz=O#*jSL8F0 z9{?TKZ35{nM~oUPzD!3Ya6DB#u1v!sW!zKliF%}DdyFku3l>*Ob3g==`EURbj~knP zjIemcDx2O$thdB5>zsf@AAw_VeH%NIE(KU1Yq>MJTpN??xROBZnGWYFN-? zSjQWMofwjDAJD65iok@`p9G5y%oS3(xPVJ5kD{wl>Ka8d;?=84!~v7!t>#l##Cj83 zg(8eyx3_RxOQ95Ps$MU?rv$~gaQ>+3t&f`*L_d{2_j3?ks45ygd3WOg<_&nriR46> zUFw=V|Kr|W{^*(ypN&3DERW0@JboIjq?T{$af)F&uEWa)#5msu02<=1WuEU{k`j+% z5(i|z9zm@nnZ2R&6;5HG-Gv*1)>~SAx6f}?`mEU)pYYYcbvrs|R8|;Mv_pMOD}~&Q za=`0`6>3N$c=b|kYPUDl&*|QH*84$jcBJao{^y|a=hx-7gFQrLnQ;j`Oa7rtMB?Jr zUK@jIvM-*elC4B|-p|YfvLvrlA6gkFv0ONmL_gF;WNqQ6B}E{WZ}3?rIY z7bmN?9l7K8-+6u!p>e@t77n6m(n1ibxnu{@b;5zPJP}>B{&L=keAz3|0dw2N`Xz^0 z<0+Wc_46bWDUoPxedUuT%LiS4@#|MipIMmJfxJNT=0G%7JcM8=!{G`|2NA@=m%CE1 zS9?7Qa!%fn7;B2+(+J*@R9NsH$5`bBlhX(j4HLX-YQj$HLyt_`7KO2e^s(UTg_jnc7(}&QfoItkvqm~BV*edVVpjH1pC&W2U_*{uo&@RQ zKVm57kw1iv_u3ftYX~mps-#s!G`NKUT%01wa{zqB6a|7OptL3kS0U^R{$fi5(i!hX zM6FjU0s`E>ILPLE+1v?u^gdHoeNjCosaGQ)OO z$WX2CZAi3*g`f`p{J@3?kd-)xJWNE0=U`553Pfk6&=G+40x-@_Y6eEam1F%`gq~~YmfB;n z$&=?JXJB>NaUv;WNWYWbwWn|TzsO#G!_jH5344MR>aB(n(RFli_tBJvb*mx^i9VjY zmVO$oZ;D69KT#2W910CwW{vGSN>a#r=WlXt$^?mr}T^@=)g$vmvPd!ut z;jBHarfjd6ekNjg{Mh=bp3E1w=*Sp_!nO{~xsMixcK~4Y)UT;R;fyY616baGHDx%b zWn%bXz0z5!Lif>)IKG0ZdYI$Qubbwu9$y5M;y`Z&v{@3kb~{7uFELk%??O+!jq0da za|(~1a=&PzXE&Pl*nks$Dhh;B^nqgFSdtYjgUXuw_3dIhsBbJbB0PUtw5A;4XI0Rc z(P^T9Hnq}0-ltH#Im6RlK6=pacCSyM?f6WVb+!}qE0thY5SGx=tsBV zC6c|EX$s+a3$78)w<IYZp-QQe zEEhk0AnUQjT9!MYXy0SCylXwHzJZqq^m}f(MYa!_9lU+bYC1M3Gv>bDKFp_1j`{9+ ze)iPt@AP|#mOtt`X){s#;>oeF1Rx)7iM0R$AqplncSdl}^ge%EvgR3K-vC zd?_zR5RT)Op)Jefr3#Zg^ZZ3S_jNZ;Q`CVmYT*)*urN@U&VOd+c1ytGfXQcjy9*52HxCWJ0llwKz0MGK zUyr#0+5szrMJS>V0TI|oq&NL6Y-sX!8a(Ru0bSEN+80w;Z(V;w^nT#~#Cx^DsLt{6VY9#4U1egQwTmx#myH}vT#y=*S&itHi#MCOYwle+gPL3$b? zRSQ3+{_y(n^pglJ0<@u%Wt=>MKTyCPnK=k@{PODc9m4yFH^o&#Jlw~`-hAxFB*u(j zNGW|NXYh00orlSA;~=VpTABZKactYGmWPJ$#w^7S_MTz&EWS~LdtY>xC|pye)cZNL-odx1!QP^HMUO^U&}y*EtgX);a{^=3Y!Wnhwglb z8vFLVWE>2Py?voDQ9QSzGD!EWJ;I6H_}+=4g|*)N?!R4`)&oei&G-Sm-LoX(33^C@ z4dBiQFsAVfo(B<9AO9ghot~B(yqQo?%e~a{)3A{^K!bBrM`=`QO|3I+} z3St5)ZAW{p#ll*fQBG*q{aUz~r%afgjI4PIWQ?NXu#qX+rwWwT@9XGl5a-ncHdJ-; z7Ll>O%=FQD|GVXg#ILlGy9wzGWSw?oP0p5z4c;LCyi6_)c*+V8deP~zm1f7M4Vg(1M2Pa;y?x>hw=1vicK|;C% zH&EWc`u4bZ%%qU(nifCmcaKvf6MiqMpP=YI1MJ z;dxD!#?LlzsRg%JST6+7*YMg=C`%q18gA3*uN#a|$R_JvdTKMDB9(p2vMXjXWNg1P zgvk`v8oJbf5>f(f=<=oK(K*w&{Cbvu&=Y7OJ>fi;0gnW^->Qeg$Z>LBFKYlW$-wt8`vuuaKn6NxAuP ziC2q>W*k+*6LK!K&pgzcv2U0&c!+i=8%U|~Qq|<@aAch!uI9e+(wL`_%=v`eOy&TW zSGN*EnQ-xp9ao=E9?>*$+kQu$qR3M3($Y7rB$2|-oXt1E_f+0~E*bW1@xS*P!~hxf z`l$N;z4QFjl^CY-FX`Rzm4Z9Ycb^4kWt;;j_I!HNM;`5mj-r9w@hosDZ{zV(JwJ*2 z?WKC&fF${+b>@Kzt?-%i3WuPwL7hLep~UQL9=Zy-57>$8$aiPk%E@VytW}J40cmG` zO26ER-H+$Y8u{h`%K#sQxOEOKPCe~%p)(SFs}{PSM5z#z(tvB~tUx`YTXkEzZnJRu z{_ALB<<}EDj=!vQL^2NKy$aO_kCgI|FH#Nw1>+@zp%Y$RX0jZsZn|kCWA0Pdy_uTR zL5f#y7vPmwmcO$6%<6cej)=E7(s*1YyTkDWFu>G2^=Ia3%xPo{{qj-Nz$u_2;h$d2 zC!(lNg#njdfTeX=>FYp-Ax^jDF1Y0d)NvBEeHcRX_M9ng8Ti*9N-W4X)+VMJdpAFb zXI2-l2K^mc#c}NZ*h5Qyzmoi^;~rZ2XKojUzs2Kwg5`h3R(_AM>>dAM&&eKIx`&qT zp`|8&lda)D*FS~^`2p0ZwFdx5x;l)31SN+LxXhL^STrt-I?hH#AQS_(Bm z0rneP5k(Ae2{7$Kt?mM)xitnYLq01;O-DDuKE?y3dY%E<<1wTR#t5g>V>qc7nIo&2 z^6Ec24@e2?`raGCKMaq!z)VZr&%e01zDPe54D?L_xR@PUA7taB0gdTjj3oc+GLI@l z1G;0+&f^Q|=Xz`T5gdJ@U5ZBMtfW3}+BlRgtT}&$9x=EW!E@``om1!&!AvK?9S&2T zd}VKGpN8pgJhwb3nw3f4#}+XUmnbujA)itt2$3W;8V2EjTjiPu!m?_W7d|hh3-wML z1_YYTmyZn^OrPU(geZQBZ%jHJuNv&mWW2KcCw+YWBX6I-a5=|b!svyM!OScHYq`(M4<7*}K38Fz^XWoQx$%nz&CF0sA8CX?PeWNN1 zh+6eaXO)UMq9GiZ)U*paE(AD#Jt8bRm7rX0b0`2!pSk}MjGjCh3@gJN);Nk#AuHpi z0aere0Zbp3bln6X_aVT|=YZ#-M$I(O=>_)(FHP8nC4dE%H{sO1Z70-7;0?G#+ zVo^K}mwJjJ5h@ZtG|o{~1~fRSIzVho%+Z#vi8-f*?PgQ=2%t9Fg)ps~5c_7si8w;4|m?y9k z2qy{zq1%HLA)mQtYYmph4}Co{Ze1bdSpCKq3c9&z$q;%Hx=~NyAoT-+`E`R5m1|W8 zp5f0vw(@Z|xDzz*xKecNloM>Fg)z7h$r9yR;%8RqaVX zRJR#ZEGIa7b^8`mV03k${CZX!CmwFEg>%O(n-_LfQ~pDCi8N0@widMuWz{GsyP=H2Li zT~MF_9`k}FnZKKbrVcdduE=&I4|!sW%@fbj6u{F4+tOS;~@^$hgP&A#$P^o7xpCxh&7O|wk&=4_qb zXGf%Cmwcn1MJGA2r@gbmy13j6x{&c~zjsSyorMJmqzXDW#y#K@#jk(-+$kliJOwH1IKStTKOA$qN)Og;x%u%>Zw~-6oE!DI zgSPYKmtJ|`;kN8=@0jImC{Zopk=m7nfiNWqJM6ISJk;FUaAfvLhx<-M@(DA!yd6OD z7Gyfn{D>lBYok+F8WSdi_nxyBKg~xKfUdj43eW^Y<6#J(Gi9Ud7b3vK{w$%STli$* zsvZw9Zvj>m|F$P<5$@`Iv5V+oZ278ugkEK&*3RL~U;c|0uj~K+Es?nmR?bswhy04+ z5;l#iw2CK0-x#F_Vd4$w%@}7-R!kIfKSGm`f6m(7P_y^;Q;zLrlAj!EY7$E9F&FU% z6k<^DCnc(N(o!g49DYOAP&MqDsv_?LokoHLtW6!c42)PLAkMoW)|}uKAWRg)vmiI< zN=k~eo6Gb&SZ-pAdt3fI{cyPS?8xg+FP51BW4Z+?j-g@k%>2J5!DX?Xbd~rF6OFlx z4jC5?GF3Pq?&7AvzI9Ab%4rwWTBL+JRZ1}erpTXZIUDXw(!eY76o3_^OxTu=KT+&B zrl9zR%WCBUL)zoGQ`D=rf%rGEJla0Uc~fnK4aJk*lOnUUN{Ba&XxL_sLTK+#tW^Ij zyPoC3pi}L*AoBQ5hzJv@@V@r((+{@4(Q?#ao>QH}ym+yQrJr2GFt?-$rx!i}@V9c8 z8yER=3t8X1UUSa>UV^Lv#@-v@Gvvalnn&icLvyh<3jRvp+A3q3E>9!?%3$bp4wX}( z4r(pd06s?5tcq+G67Lf!e;nIh|E@)cxIFVsn09?&(a!qf2M^S#iPG|LX#mnq|Z@AA{8mXdmrzh{uJi zUEii1+z}&LkO4G}jhWcqh+*?^3<#9}IX-Ke0;x@W*mmdT*`>}W{I3NR_G#|JP zDg;QwD!UEb5Jw7k%W$#$u&>emxKYz#&)C|HXzz8^xQ<7nDRfWBWOBM(clBwCrE~vI zN!LhDn53s-Yx-sGM{6J2IfGE)!zUwD6G8XgcKiTMB=kMB6;+;&@x)CGiQtufHaaYy zm$Q1aV!wtL2Z6W7jXx=E{zM9+>a8>&^GWB2WtP@)BN<8^3h(j?9^E?_>H2wiq!tpk zBLDgI&4Zo(d`F;8cph$36JKzjCzWfKesvw!NedVUT#^Et1CwCnQ= zN>3Vv4*6zYbgUr90Lw}Q0Wg9jG&XzdrUC+x&k4Jr$`z^UFyyH_kY`Bnz$P%~V>(7Q z4L!akp6M@X@&tFYI(2TaO#f_a-c3{35J0h@YQBY+Hx9!he9kt1PtCV(eB>@ZM;JXBcb;nT zq!1s1aYs$Qo+#T2Rb<=O1F+f}bKj*3W__NsPHTT!e)QrP>EiV5eLT0XUd6gF-_<#y z5Xll-K?&7X53;ovpL7I%rJD12+6hXv!B5JA2o4{OeeTQGs`VPvaE4#&7%HX7dk>u-Q z#i6qbuj4+B)nReERIXIIu>x*(01zPd*o~pgUv{PGtN`nJf7A!^gB!I3dW9>=IyzYm z;D_nS5{+27eQpir?PI$OU5cUd7?a%S4Fd%zXUw5te4~}~(q>Z>Jc7XX$@YcHp_lg_ z)Qx|5&5uWXc_vUs#WYI+LU z=*TfUKCn=LI*wtbi^9=3-k1&JFgp7eibh_>s3dV#Rn$K2%A~_tVa{mPTqT+h^*Fg0 z7ZVL;Q-p-4bH<;yZaOtAtQj}%yL~t4DoVhEB^?_gaKtrUHur>TdX_e~xdKbUBS)wA z!|e|5H3j=h7R>bCn#?Wuhgi0r+~MCA+9FMod2tg_KJO}J(`4*X1_I(oB=+!wh@F}4wH}kw2vUPjMR}SQR`RN#pz*1Mq?5se5eK@6TTL>9 z96&g6q-1&0_@Pkknk3QAtX9%-vD_m~SN2n0eM1-%S?LFNLAarA8}u`zdPT9^xGIJ5_Vo)>*U3!Lny!`Mk|5oK_hR zeiRN<;u3oj50i$H0*P9NgmFXh~5@ z$7GLkyGY3_PgRybj0!&G{L|9R;<1QGki0}23YQ4Py`XkP$GL!(QxK@x`QLENGXDoj zSOalnw@Gka=K;5ecZCH!Dw#P^6+RSL-IA^1qNQMyQ zaiQJ^|7f&Rp39cCW!91OZjxAt^GFs}IKfe)iBp`BJd#Akd*ri>h3D-<1Z$AQ&LEjJ-&Nxz8BCzq^$pgLGH^8MM?;m> zan>yzSQ`ETd0<@%n5?o8JppsfV~zD1{7;%cZp52bvr?)gj3%lRQr|7z(ZMtg3T2}# zcFxD%dgDw|VNW;`(ry$a;VdG^DSlm8X7UXSsQVZ5|F`(cM;%!lhCVA1)NLAG!VegA zyZ@}JNT?K*J>}=HVPbR-I)kQiZ{gEcgEbDjq=ULgn<3HC!xu-rkj;*t^{*fOQ4(`R zBkzmf8;+)!=V&e^*mD>cRhKAoqwQP4Sang$HN-34>7bK=BHWFH zrb70>I;C5H?52N5 z6O1?xlC_p<&ywdAk!Sh_*i&qQOV{br*rkMMeq5;6Wo$2x_cvr1Rf%j)*upV~IuJ08 z1)LMwpKN)LO5aKT7qlUU-V+zVexdO48oEN%ucr31i z02i49Ojf^fxH5@({&-cme9N{yFz4e9d2!16rTZ4T z9dk{G6SN`UaZLJ_$3@;3E{|g*F>c1>Gnf#hoNHxhljl>v7i6bqzo+fKj_0PX)xKJT ziL+`-q+309bogr0{JLG|6IutQ@)BBrFalr$)Z|ZUKbR9ChRQtnx<&f*vy|@3> zclj7Lp-R)GXMXO2mhH@!P{4fXUg{EN9oyk4L*M=mF~|S}5KE}ya_Vc2Mlgk65k`}W zz!X{2tsr;6LoriHF-S?c7}i?snKYg-9$Mfs{Oo(yLyTkDnv{n~GBqd3^YsYy*>kz? z3QxYF%zeFOKeP>$J*7)qjr`dketzc0+t@>8Uq+}V*D9h->5Bq> z^@S4eRXBz_IZ*YtOZ9x_GKjFogPt;dm*U*iO$+c38RLrdJCWwtw1J5JD%R z&BoE`r(zn>hc^ywT3J0#obqTlbX@8AJ|PUcSbtHSoAZ+N^!?Mh(>~Do)n!i#peQ9- z(^Az=4shw_k$bELF7ukRQ@j%yELL#osqyrG*A5+u^ zh)S8jIQwoRy%r!9{%A(sE5SQL-$6`@Wgctx(6XSzPFnEObN$U5~ibz&(r~BL=zOf46 z9*Z8ipMPlo5f??<(|1vVz0e6XKQMQMlz28&ZT}>UzZh5hkt8KJ6IV4mGN|tqFJG(j zlv9RsWuR$zBA9A}%ROu_(j`-pV;)rgu)9ukqbcH?q|ce;VR*n4wq+M|a1i?rZiD9t z^NAD>;bb+kTsU~$|6uo}thJA!bpCh}Flf!p!=tGJ<0#@V!C(B#60#FjFQXw(wIxRq z2b!#vW2kQVK!h-A8n0#w zuzCwR=}A`54SmaK|I}yPrdK;IGXeo^fJ(S^YuTG{4S=a+uqaNlyrH>gwymvxVD@

wuQ@W@`2Ns#Wo92Vf$0J<=uf%!JVfLizM0f281{^rW}QE?CKd zXU>WI%1s!~A?ucX*(Qs;;rvg2oD27YFj%7rz37rc8V`&ccuO+?Q#*Pfxa-?ZW1mNqpdXw7 znA#J^FcUv837g2_K9Q7nv;RfEKkjUIi*Y=dWc-&BH---`Cz(`&8a*P;gy!r3dxyy`DBt3Q*A#oc zc|uIb1P5{iQ|kF_<2r#JPZTku2)Gq#{5VyWaNTF0TiEnVhc}I07X+Z4Lg$En5r_u` zqwu5_>ze-Z4`TxDzK;|-6&&73Prqh=?8Eq2&T629_ElWHCb3Rk9Qzs}an)5xSm1 zpru?|oAOLkVBohozdeV>{C6O!slJ||P32dKoUfu7;Ve(Zvp;<2CJHmE#5 zXFuHXVpJz^aDS5e)@vW7?F`spCl(TfWTCy$5OjsGBfJk#Y>H~faiI03mFr+>xc=N? zJXXi-IyF0jei!A89_*ZgEX{wg`})!4{-Vb5sABdC2QKw29pm;{hcjaop7`gq{##!Y zqaz;FhPIVK%l+M_`J>SaBX-uUpPMD`nNG#B|8%_7>Ui>qt`@8S2C%{lCOFk(aAY8< zu$Hr&m@rnk%>PswHPq7vn(T-?+*R!V`NKX{CsDeNsrmg;^HG`?xd5o1-O0)LDB(ab z&hME!Lhy70xAFilvuWj3K+$l{Aw<-3tJ~PaOLv-Hkms60%JnN)^t(T?z`Itx#miL@ zXXW@J(eL5C#Jggm>7}Sf4IZL$lu{~+1FmaO+3&0Rj+Li0TSo1pK9=S2>jz)wR0kF& zLV#N+JqdOQsCAai-(H=HtqZJ^BFA7WHp(C z4i^4Ik;Z6=O5mY9JR-{={3ih#mTnj&JjHkP@Qk58#}=*?pd@kfcvL;6=Sl>TlL%OV zR?kZX2TmG?Szos%xX`%NGcozNSkk<6rc!JvaKCtlc%8djzs${|ML zw7+eIY4BgBs}M33R9GFq=Xmm(oGD|JUl#BTedu)~lU-sxWaay+aYbAkow@AG(**cW zv*_ol@?{4h*1(dKQ?xw60oc_IGvn-1T+$hdGkNcBT*+`KRoEtVJ)yOVaq6H6JUny$ z<;y=Qwu>f8rL#?`b6rU;=YNb?m#KIWv`#Rtu)9rLi+`~?Q7cT;4X?J#)hNP$vtG5v z#IM@gcb@L}w)u$f72S6y6j;N64<&9Lze+jwb{Et=Voj|hbUsB`Oxc;KbJPzj%~ZT^ z-*R7apRRaC<5aqf#lfm!1OWXVV#WUgI=B|WTy(J!&8#z}Z%-UloDz>C8g_Dz-^ozm zKdc*7)jmzF_cr2E&e&N5>`h-||5FSL*ja8cfJ-(L1IYKW|B{Snp{0^hM4J77pr!;W zK+^iR27{XyEx68Az4mL8*$01s_X|=g45do}s=L@i8+|t~bQ2Gj{pl=wREW+}-O+B$ z3rrMX{;NxX;2+iyu+6NgHT;vA2E4AeHs#+A&(k|%U(`MP%KXBOa=NgcgM4;tX#l{U zL~u5&`Hri>U5C@IF|o0{&R;^Q^zGOI=X99%9)-Jx zFaY#>F#HHcra?$4Sp*teB$)Wl>&3VDhU{u>0PXY+XJA7*clE@Yc=UBH<0Gis0AB%4 z?O*`W?H525#hi zK*L-A3uJ|zN9|~N+Dj0yQ>!hW!O(rE5Ts16qUhL{k!EQM)Dv3vQcXH=h%ImzM0rSW zg_P)q)v5#ejpfhO1Rvlz*xlqu+V@vJINd>x=of#b^jQwA`eNg<+&D&BDUH#N@N?0n z_EgVDpQ;kdkFm=HJ&pI1N4KvlytT^O$ZPmzi!iLL_1FfUWb}io2Ljim3>&(9-8#RP zjoN0f;hdtgG84}hGz=p&x<$}cHQyR@Xlv)uRDX=nTqdqH<`Z3&J_at~z|!QW8tu>Y z-Rf4m=u`Lg?Ywtj`k~9OpGXv|b+bRs(=&O&KKdjkM*QPM9fl2g5^=3>;4(P?H?n$U zLJov=Wc*g_$B^xK!ZgsT)pWF52zxeXervdtR+jYc(iSu+E?c(wxa69l2-6jli>Jdu z9M<$kh!cPn=S%{Z73=_2Damu#N9z1>4+DWLJK1$HI&5 z(xrP3%=$fG^{0+|VAh|xUH&GZ)*hJk*AGDVK%~FBbN7D?%=(LG^8e_UcN z`FEx9ze9)yM$!Kdk_18l11-W;@V3IlVbs7%E)WEHA37(63`Et-0>v98gzR=Fk(q z!ruJOCg-okD;ZkgtGJ0LwPMa@a3}1}>5o&W}E5@Zvb!-jB&n^TR1OV7Og_ZHY3$ zK6W-{`;Yqi<=7Z&=xWXAJs%Bps|q?Obt`&!SSdpMlZ3P!ZZ#_NKR+p2`H6s%8urTl6pV&2H!2hAu5w!@!t|-`- z+v`sOTJ%ENeb|g!78_AWBY?`0a$!L{vxX7>y|@9qb|jTv0j3>PaGIGg((&d+&&lAyVvv`(+0oI!SsizFIG zL2=QKyE_b38*lMc6$@pToMJaF2xQY{yh^5_Zo-BRIVp?aYSKwd9-b`pgHFScbDN&b z$nRhfl|d4!afBS0F<)*X@V4Pb!@xP+?3DsBy1IRzHbX}PKuG=7)g16B%$(byJx#H% zaX9eSQF$V0Ml|INAomgAfrJ&NZgvjlkj#l}O-U-DjZ(tOFMrmypRoEEm^hThNZ41K znfc@$qA(NL1pAB%9kXx5r6-)#iY1lA5s<<^rMk)9_o1Bd9pOGk z%s17kjR@QKWQoby^wN0%>E8F(T*PWU*ogy3E`<47DqiNPBIc;!zL(K9BYHnml+-Wl zHTuWgY^b*87&Is8mse8mpxAt-#ImYa(jL$Y-k#lo_P;byEsiF@8ao-N7keN@)r`1B z4)!6g#E6DrRbPjNaqB4T==6YtHuu3_wi0JQhM!Y3d++0=b(U|x(3=QfZie;MNQfg~ z+t#vW6o@wt& zgrS7YJj~Yg(snWyu7F#8Oc!*)3<)t1NNC)MNW1necfrp^o1RiSQ!Dq~iZUbi|1leY zr;a>=gEm6KWy3U1!l8yl&i4(elnWpEAfrxZ?c}3&o7@a*fN95)1Vwbgj89sFf4=pa z?us>>Swv7cLAR%;)V2#4{u>WzX(dZb*7CW?D} zhY*-Va(e3HCdJu#a{K&w;)rf+&vf{8WWtX>^_gM&sp@awi5>IfB0W;2Had%Jqi5Be z7Cs*UzrAOA34CD@^O<7_gFi2mi;(?cks9ZopH(8d6YnAN5m=>f8V?;BEFycl#A)JZ z2<+-l$*bM9^_frB6=v)>ND8z>HC3;26(G}qXZjl2wVZNOh~jZLSc6=cp=igfMHmZm zu@~$qD5(PuMJwQ}zSoTz}@{d%(x|Z_eW%pVL47{-1`K+OyZp|5w(Xy=H!| zng6?M7XRtGtADWWaIcyF$G&Cun)!c%W*%f}uT2b?Dr{JN;?M7f;q?8o(Tf%yAJa@+ zz=fJ}pG~@{TDI?_&J15+NGFxYVe)Zr^%GpokrPsb>(nYc^5z;HD5Q(;K8Bb$7YdNo ziR(BhHc-e2hAS%e9J`@!o_;*JD=9x}c1~RSM0J-OB z`rR6j>iCvj&>A0XXByKnpmPGRhS(y56}@{+wf&i!)100{rcWu;?n8Et6kaJ*C4^F+ z0=?o#UBJ(cXD*=;hSw+;r?UWMRgt>vZ^1(S4WEAc50YVJ{)4!CjTTi+D(GTaSl8-!zxCQ?{Zc}@!t@{6sy6Z1|4(8q7 zy{=)eYxoPVn!gF$_a8my9t8N0U1t4*RrUYVUDsaM@Q-~t?{y9T6J5hsfE{<@hi`l5 zhyq^lTYB09HEEx;LILSE@3+>BK@5WM!Z5%_;W$x-w$Ec1wAzHG8lgNkOqlCngsXXm zRp23x#`9aBYO3=d<;KOG)#0m(7ZBj5kp3Gwsr;G;R-Xtf;qT$W*HO~#SIZL@9xj%N zn^d9eH46*?f_bEdPz}+u0mBD3H{z@AFR{~UI|7+~`>iB4XQAOSB+)nuc8qF7#Nagw zi5$&b3Pz~2N3_1YEG;!dycc24%%r;~s>QjrebB$1c*vgb1y=MYP6m%e|1=H=`m5a%^e;YA{I zi_Ft>E=eE{p)5T6^QKLW&hW7v_eTt!rPptchx2!5s6_vW^lUfpnk!6DDjY$P%zxeDKqsa4qYh@i%y$P%!|E_z{|N>-r98}N@_6oJ&q zfa-$u0z?gIF#Sv(1nb_G=`m&wy?`R~a_oY*bgAma zb+8TNO$e10;JSxrQBDAV_5#(U@f|WJNF)AwzLp4TG!UFu24|&*({pw~PrPOCV(vqN5AWi zGQbe7t!^sF-|vBR zp`l5c9WlUFgsBlwHTKY3nt-UDY1rP*wpTCg)kJ%B-(EGn*D?GzyP{2i0bT}Ygg_oE z$*O;R1EEOS2h&-)2oszZbWUYHp{+9I{H|D43yPA8qE zhH%V`X)6Swe;^?H*nI{--D-d`SXP`MpPg8$N7UIF<-62vr8jzkw`TOu2|>ePw_f*M zkWh*yKMEY6#{3wTnEEC{+M&g5CSDK47TL5;G(K<)0D&#zn2h^t0xr`sYxluleQ-t{ zRb0>-FfHn`56 zjb6+~q5(bbx3P)(8_lbJ6N{_8*Z$wWW*C1KjyTYb9PnZ^xEMVq8k1x|2RwY-W44uI z!qA(O=p79ey4~-dhH)nbNQs{AuN6cMUI0w^<|P*Rw*yF$z)E6G_63;YQ@fz7?85iX zzwNb9t3&%jmxNDDqL-!$saj+|{}g1!E$>?b3i^j1e8}IDYni(9q3wRYu1Ew`1Q=4i zrVmbRoF4{kG(KQ=K~W~mn-bbcCVC6F+;drq7)eSbcs9m>;Su8$&3=BWZ9__6z9d~c zs%bu4BGD}&6&L$1yas|J8edOZo zy*1)$mCz>54p4?f0a_VmDpxy2|O^dE6!{=t9uPvWT2|M!SU6{gV7(g#q*6M%Y6Wu&=QrZmYc z^yJ_TaM{=jxZx{1jt}5`zGbd)x%TqiGSfrfTe3<;TqK{9)0ESw)*Z75ss%Y20PP*C zU$i?BQ1y{4Yn)p)@c~DHTD5Emr1A87<8UpA97VbLi$Keb7(^IO1$VGP}tDXR`b@ncObQjlC;o8lYp;Jp&B?sSO7E$O>Vr} zby^cG9PpB&30|tpZkq^7A!D%+!ga{dMB`mOwX>cd$e(?`50sZvq$))ERt)qY2cuAG z*H%SJ;^gk$))$?Q^N({WT{6WD8&0{?nI|0SoHtz-!(IcEK?2VXripfkm_+4C!dq;^ zsZ5hKGCI$vnK3DD+n`M$*w9Px`&*lZiBv1fBYK~`v~-fth19E0Ds|u0Go_F2=yM)I zDJv0aJo9Gl&RV!2Du6pIeXqb)XwBM4J^O%4S#h!-Y?VC{~KRyf#4?otRM;5JSU|9W~>hF_cZ1HBhXwU+ZgV}iT<;0C0% zIGP1UWM?50vyaXXm?2qcNIM^pFb+>)3yqY5GUNoS1mZSD-@uJO?l;`rpdBRxR#!}i zX(@EkSNW@@xoW50e|<9TrYAMkiLlLugE}v-WbZ(u!rJ7xH@z#@da3J5laf7${8Vh) ztAP?ccq?l~U;@IpVykcyG&o@AI5(I_TEQHJOcsFGlo7zZzYtJ_(@yY!klMdg+FL+a zPCWfuc_SLI14qqECeTEo>z;r|*fh|K6cA=<{;sec!_z2z?ti%I`oADj-+NEmf7hQY z!`i@d5s;!<1PqF*0a}+X7S{e2Wr`}pQd6)^#ybRK8dwk|{kx8lfu>7uMz6WS*fC22 zs12WlO*TXgs2v*~l$0;c z09Aht@YDZZ4F$YB{9*LOW>~x3znJd>J8Aq6@&h_47YLxOs-zdVZ3Di2K>!Qn>m1_Z zE+_!N;eKUYS(f~k@9cl|x%b-Uzt6V$e{y5{@BHsQCgtB~y8BPUq#XD=>RTngBTpl2 z$?gQy6(C|G9?xpW(!=cZdOPuUjpcEuyuo;D_P{g@%RxRDU5xNhggmYk@45L?r|^UD zS738+Jz@H)rp$vR20CuKM0h-5dRh+@i;-DKZQc3HCT z`@S<{8N)1or_X&|_x)L}-}k=m&wYKi>+YXCf~Q@wBw`K z$Er@(FCpwg=^dw4Cgop0fg2$sh7JS6;4Z{Mm7SUam?YJTwVVpHN{a`~@3TI`ifRrejKae~29)ps}8xTPiAgnmzpHUwilor?I?`@#|<=6}72EqJlSY&oMjW2mUB;sDc0a-ba+5;^GR&Z#IeMZMilH)ArHz6-*l;JH z6iHy62&o_Tt`5A)m_TMi7BCgN7_?y;R1HM&^A!}O{(u_7oc<9y?G@;HOMqw403crAQjDXKlQJWdaMl{N}6`1A5H6VFgnd#do3er{LrVxL$R-?>Aos-9@$B zG>!@1thl|Q8BSHUGNo=}#^|Oi;IiENnxY1@D0IMSrT^Slb_8 z7}>_d4x~!KUNe1vrtk0R``Y{Qm;C*E`VZsu-9~)3gfu!)^C}fsHF87Q>WSDzn+q`4LFf_gy>$fpg1tX}NU3D&I8>_xe zJu`dg-qf7rSymc{!K;;GxjcsrUOHzbDm|e}2nt3{>e!drh(5YF80EU6TX_#3RR1`W zYbfA#aUj7UeIDqN#hmy;x~YLm8U5BBX}{bK3D4?Mu6D`uUm1#XLO6`+^)g;Yi@Q07 z)Y)zT+d~x+cDx&rfPGFm;vxkUJq1CVB2QbtNy^Bpj^tJ2!3o?YjvgTNRdE&`5iJ;f zq0zZ~U{Kw0fE`N^klF;39CYTKG@Ung_(1wm4V7bFGGW0!35*>JaSD2&{c*w1dNj~- zn)*)fb{xfX0}UJ0F|SXD$LU#W(nF@}X@C;gid2K5gyJR-JQP#lB1iV!%HLC{eqNBP z+kLKd@KPp3<`E=mUc*%xIHE1R-fJ)}6BJ>4BEF-D$Tr;k7RJ4+BFu+n8&D%Q4!Mqqni)Fn zUJ;*gfra)^=YcD$h=w7?Er=!70}4Iv*H^aL+iUr#z*-PojO*{$WZ6S9pY>OMWkMm^ zq*gl2ud#+%G*I6jd6wp#ID_yE2vU2jBL4u6ODn=v!pS14)W9K@Ey!H; zx2lFp)g@@~oo_9J!O!^@)k6+y-?y$vu<^NXH4DSYaC*oWWb40U8e6kbQk$6FmLJF& z((ri4^~sobaq}-*t$PmMHfWU+=ii~(9_lXQ-XUj|tjlvsexSH!hAd8|Yn2aLNOvui zEmkb!l!{dqtiKW$8>xgWIEp()G#MD>)s;ugdqmSY^ZF|;gSr!Vb|sd8{pB+er% z9@fxzGOfmKL7tOf8_TeD&_rh7F2od1jox?)a>DS-piK*Ip?P}IkyX){Ey(V9U}YRw zn%aUGt5StBwjfQxVC;*f1v*!;1C>|50#oaBbtwG`?9*fX7jhQ321evDbQFdLLPF-v zetsDY+4o4(HzD>f#-Kd8H;ILF19r#-_LG63glG^%s-Q}z10<;_c1`~n>)wJ))q;k)iC$ei>IWMYFoms9wjd|KXE+Y+zJMI3>P&;c zm;V}D5-4|tQa7NKjV(xb*E>yB>Xm>gIslA=4>_(xVcJ8*`pZLqGBAb=2k#pTLS6wF z<>-o^@D{`;_#HSWOVltJ)d#pY0)!GxW5E{8|1~l=BR`r$LtAAi@!&b^21r*A0UtA% zb)H*%8GU*c_{q?)A5Eg=SK(Otah3mkJIlwuy&d@XxAXn&eE)X7e>>kT+xLCv`@Zx0 zdIh2=XDc)<78A=z+hL|Org2n%w_GhSsE?sKN{zolXt1)MGn1{mW|)DD516XxHqEr0 zbnQrwPZ->S)Wnxxb7PoVoFujd){lP_;r#;=CRG{kr z>SMb^b^&TEnUY6s65^;hsN4FQ8Zm!I`%vg84@{eZ-$v{aF%MbMnP<5cz+$AtrlDQY zcuhQ6!6N5KTlnb?uv-g9_k;fpfa1@1E-Hs&1$;?Gff6{l?I5;`*tI-^Y)AeQF7|_{ z*S8i*8K%_8t_mE52}L$#&4X%aeyMmgW+KB zrwqh$*CnV8c=QEed{u#a3sRB{%%m^kQ*`OK@L=EeWfv$5FxUZG?Q%qRr2U}}^?NQH z4)R+NTW10K(wLDv5Vi_zo@J(G;wp#8A_!^#un#}ib{kwLFK;r9?*n7%A7&5)29D1c z3xN?SC^r$Tfou%~q=pDL@Efw?yTSP`P1u6O-A1g&{CCF=oA9tMXtIChJGbxY-zY*jbpBI9XUbWf*f{2qjA95P1rgpQUBeFs z;m=;!`?AJ~Zb3eX+UE3=_w8W6hO+33-^@R}N#%-h*Lx8bai@NTz5~>iv_pn@883 ztCyg2=x4}5G|(`5Gm>z}-&c340?7J`oe&bXZ@hdO%mi8VcI5MZ_}KKp#~xQdt+dt76eGvrhd_9f0k(2bs$(&yetkkML0CwlEmLKu!gOz~6t=d%%w9 z2X+JZph2($ojj_Q+B3r?g4d-Zl0@8+UTs01v^*ZBTs7Y8nsF>&>Sh}js%Y6anP(&v zU@uvAcJ__sv0xqO6%=lI2>Ve_)!cI1LXhxH)uZAu$?g!+wzMv9q(X`)Um6)3If)h; zvluXnd0)Cto*_dy$V{Z|v?#fQ{MehVLPX`!dmDwR)mNH;{z`ry%%!@a+nuHP&2r~P z@XXzT=gK#=K4Ko`SDt^YYIC>-9&#pjHLXshHpM6D_Sowt&zgtb@6=0=$A+iSKqHU} zm;19xWc<3TLbr!ny zzoW%oZwz>bAs%4q2Gg*mfyn(-&`^3HZAFL5ahy|0>KgZ9wQe67wjkNSQJO==tg`X&o@1b`_FJ1DA$!K( zrPWO9ApMF|kEl;Umw~BeSj48t>eMKn%BEW5!rYid73{oE6iuE8t6Q>8n}!Y`guc9_ zghE^Kvc-DCI8O2&gd0f zb;?Mx&_vgw%exYGO#`8HwY_b64dI6t!Oo#ORd0cvL&x{4@_9CQP3L_E%S^0QOhiEbMgDAIFAREm+XWQRj`D{^gBV*rME-)3heG2l<=2k6SMQV|QYB|k& ztP3TQs!R5)knyU1oz!z7WY1e2-6OF^0|vYJS8!cTJw!vxWtns?D$ zL}~A0qZnPM(DK69rD^d)f@Cr42RiqI-6GVud3VjSGDY^|qRrEeY)B4|_CH7kyDqZ( z{xi)dev@OUU=-<*4b%>RMynVMtyZnHD31T20fRg2cp}Klr^NnJazy$`|(@uooXT&c4f2w+k&(KGsVs z_Nd;IPks%YBVxF<8$Qn5dL*e`j|YP}(eU(yp$TU>VKH+{@%m=)*2(<6%)%+3X1dlH z&-4|s-b{dEuXP6QZbxO0_AR$ZXeb-rs5&KLOkunWTb>_!1Nyi~vg#UUg9M8NfyRzt zYfxigsuEA&q^rR6;;C~>DpDL-U{RV5?(hmVD@bB2{Q%9F?uMBJ5ym85X*voHYKa5m z(C-I-pN;Qpa-0Pz%n3*~G zKDiwN7jp|XVyx|I6#M;2?N(AwV`Hntj5AT{7VjAt?c^e7| zQ%>`H32PU@Of(CaGk2}|CfoSCa;ksB>wPEjZ~so>|HWedPU8O!(2s}}7+3?_Mjj$2 zltXj6Feup(7?kXJr8SKue7vW7HqW7x=p1R1Qd%4HTGLVX&;{-gwed)DAN?qt@pfwDt+4 zHe7!8EcEj*qJQ-lFZrLfD%v+nV!E9|FSny)lRt#iYvo3^+B5BliQ4-J#vz!K_?~s# zag4JZ%ZB10`=_F0iFZzi>pn<59&Uc8AWvZ9c1?8B@nw0IJIlLxjgg(I)yN(S*seB> zS6*mTB_JGUwJW#CX9MBTSDVGCh2?j4bA5E9m(Bv zE;a0@Yye&m^f{C;*=Q6KV5rclz)QY7kWktoc*m6anqK*?6`@d`gHrVpR3-stdKOA_ zq>ptM+4w3U`W17JS*`==CS$v@_0h_REr@#}?hIL+A_tDOBVPR@^+HQntLyt6jq{CD zhWZN^c^{;GZFb)E;U@3p$&y_6-z2vIqOX7TxGPJ%pRXSZ=X)Gb3#WWOKn--+_mnQ2 zO)>O+oP4(B86Wt7%fR){SMlb8whtu>rmra=gGcSacDml5Ialj3nHGoEw-1X1&{&yP zaYi^++}&oJ7b%J>G=hHvIx9;*USKOR>$-8m+C*dXEx7MJ!CnUc{XbK&X4kyiyGF=p zdvMQI0DGJU2R`5SE6Rw{^*ivyjrDwc`i=qWI%Hh-of{M5YO&c`Ap^8D4@;PXY9!$lmK|T)d^q>XCS9P@obr z1fubq6uwpN{&YgnTP=TZt!ahTA9_TA2X&B894$)5q||)WNxve2jdYEGG=*p6|Xjo3V*wyzd1yDM=PZZP@h`j_c&eoG9td?OToTuasQ&)O(6a{zPut;?fKN+ z2cM+~C)g1^%@yUZobRP#rmb)%D~4xIT`&`_*&J9ye^6#0R|)puJKb;zvNr^7q{r*i zi;tht{aBEw7&o2!)Pl21Ba_S3saNNLF;&=Sj|6F3=>mBV1wvIPzZ0b@jxE#o5$506 zvkBVodCt#Y?><(~L}|Sj^x-gK9$5}|hcTD#ni;xJVDaV2sZa00#nTq%!ES{O6&Jvr z!y$1#ra0i?(;H#I9oQXMvZrU+V3hbEJhR6Izl^V?Mw7)s!oUdGYjk917SUqWN&PxX zx_h+meC+W}-VCK+k3F15&F^s?OFJv$FJ{Nxxy^9;>}U z3cb-)i(}<*YIT~8?@Tw5JD0eFJO zK0yLJmAb!k-}C-Yt!skj$6)hSPZ;c1w_Vy03fDx2LHCz(qArndr|~e3vUop@8GM@c z6**AHKAe3k-8dNNRXL7No}B~>E;>d&v;d*Tr@1kBi&= zHm%N|jWTgMN78@m^Y{(OJ$CtI(oV-(40HW75?qPFTS=1+1SEXvMK)Z{38 zxA-Ayliz62&hm$9jp@4B2E10+$_gy&ng}tL1SYOMLgFiQPztn|guCOi_j8H6xbBd& zO0^F2Mn568IYG~L&3mPFInAnqKH_^e1=4xY0D;TCbUJFqt?mjk5J+L2SpkDqq$%95dcwMTHjD!cEB%LN5FZI z0CEGqAv44RbbX8mFvz7(K zumqAigUOM~a5?A$9zX#b<*bZm8^s;Gct^)tD5lfUCT7EC#Q>8z(y&dFv^+2mI%Vjy zZZ{E1@lFnNH@BI?Lm3ub@|pqN7Q&)OmKVN6KY?&;Y0<4j-m;XDo0$gly1;?(s~l6{ z%y!+ti_djUWt|=iF0{*AH0d$xwfEV1_?azLqaN*sXKs)2qdD$-9V8bo3FC=b ztycr%i{Fg3$1iNsU%__Ah8<2&;;t3A-Sa|OP5F9ETxzH1jo#Rhc9e+qnX`AHAiAp1 z`8G}YakzF?Ps6=}%RwcW72cc$4s7B~Ztts|M{4*NKg}le;$fp=j30dbQ=aRGF0_Ek zJ@xPg65&Yu@P@@Ko~>p&#j*4DUHy{mu}MSk3?854*W^HpvkB5SEE>&P)>=YB3cE$R zsG_M+H=1grvTSYK;SPp1n^1a*^A7XrO;2-|=Lq9PPjB92m#&V-$OH9a)z#LNkXFMe zx*lyVY3gD34#QA&`@FSD*EIGH6MGi#Qx$wc!)+;>IkK~uMh`#XkH1;t``_8DFx4Y} zCMWrtrcCdHE?Ytmz~;(et0;SF;mvPP%d`glg`T9;^7_0Es8E?hn4_1~fC`mr$eYc7 z!6{Y_L} zYhMbBsL)FS-zOW6extq|SX%;xwPx5mXu@49pt$k&IZzuklYphU z&H|gtQoyypiJR(w#g8F(k~K##RWfTYg4Ut4RTJ&n6BJa8iawpA$kf?9QMby~NJhV} z;X`bgAWKlf2W@>1`6`G`%>SZs_+Ri`#*H7mB;d;oRe5s;wrP=#doi~NC!Z9eMq?|H z>7k(HYRWb8BX?Nh7KALwN{v{00h?O~dGoCWBCCh+3i#nSuw~QI!ypG?;Pw{e+BmLR z_fHpG|0@FilSh=crJiNoeyimY@9yO8+^EE+hpGoM`l4r@Z*OSZy8wZ!S(3YxFBh1h zbtGsN&2*-Xt~ZFJYp9k2!jTu8JzBOi%_6Q9n{V21=j&|u4vDzBK+8XwrGyk_G^(UL ze>GMp|CxJPI9;S7a`;}M{n(QWff!p_8%-n!C-d0W!L-*XLn4L63?#$fvfJ^8;@LHS zH$RbqZ*S!C(0&V`SNe_5qig@!-0kmp9K%-YAC)IcMILbSzf1`7b{$2s4OM(J z*R|7-s%ls~cp=s>{tf+-z0k8pNnFe+i6<5k2&>LWGwTno{@!?C%L7U= zTM$miiOji)(<@E(a^Z+ul5N+k2Kv9TAx>8=tI35}oD#-;ggv|}oOIkzXW}ZKN{HIw zQ^_7WZ{9&5V7CZn+GScKemJ@?&o`{C8q0IYK;#+_EqX*PXxX;A|I8#itRGq|U*|Yg zIr`z6T$^d=J5wjCed3lruZzTREr6kE6>JA!iu1+u+GFRJwwu??pUGEGQ$f|3TCu`p zhZn8vuI#Nzm#C$c(y*YOfVdZ)@m7~^7{e%xqmq&5+QQCbp#?eq!JJtpSXwGKqCJ|I zFzGoWdbF!z@NnC3>uSBgfeM>P9v50vV}hoVdjY?csL-1z5J~yettqoL@i`@@6Eb zl-o`Ow(q8gT3}a+%;Uo>nSzKSt6@Z?6wLuKgBBap*r z?KKyD;|`DnE`Dc~R`l|C81Ccesql46w=Kvdx~f9q#7W&C=KSWYe0 z5|`Kp-wxb=!unf}QQv6>S>YU`4{^m7dvt(Bvv?h6&a1)Mk2dHoW0 zmDw?OH?IyYh)jU+mk!kxSX&!0)nygGM|YRxkQ^rRi5`KQm58(PT=oj6QDHNjw@3RY zG70`vG`)nL(73Q|@o2@-8}P$*hr2~r(IwD-JHvXP z5H(ZWGNyge^@%Y|v2FE2dSr3e=kV?N2D&6W7TB;5w6o+CK84IF;q)#&V0=ye^%kVB z5UmY6|5eyk?s{tQdQ|8*{ zi(g-<{tX`Q-{m#^{5fC;@Wb)=Y>Z!9HIneY_@tXyR9ttT()o0w`xtwvI^Tnw_nuA& zC?CeDJluHJE3$m{$j7`0G0}mTFu}b+aVa8#(w-Cz=%ehJce>@YB0~}$}c?Ad61XA87bm-2A*2&2lih16mnpi-(G+D zPM12x5Zzt~Uw}b9*3_*JTJO2le6QGVnKSs|^X!EK+Al6~_{g#-@$m=2bs^+ZF!js| z5bN+tbR(!0MF5f%7wu9>qI<3@*{>4}>>Q6_y|DztO571jZE);NYUDhG7&AH(SLR8-3KTN}4_UY`MzZ zY<3~EySC35NqXbZ2mx;YJM1n0lV<= z_FroSRy)j*`d&>me=T~szE`t|h+=o$soe9(Wrx#xe8 zjnGo3P~^qRr*5~O*st5GvZBuK)*d8vy1~tTdoz>#7@UVJJ<{nV?pti1+B@x{FR(Lu zR`F<=&#xhgJo{Xu9?a=pm#KQI_hmVM z0!m4vGnH7Y;6&sa+87o-Bvj_g3HoI@o7);cCgq7_Uj4d@9^2hvu^Ottt7+cj1%PE^9ae3t{64Frr&IuCz6tAckI>juJNPx&KxgrZXfeDWhZ1~ zpCk|#$OseD(fX6_dO2sL6F0)Cz_qccow*93`y$(-Lt3H?ICS^)sRzGx4uQvR15Rb# z?Oq)d==etK+xxGcqd(1f$!(zDzPJB+Fzqhm213?(v|d9hhT7)IM`mSQ-khFzU|4xjUK5yMA}wCN4$ z$#$YCa(f>>nk+D%_5f?4o>j~}&DjxB{uA!ojw2&gR*^*c9i}}!{mA|kX_-sGUm^5_ zZba^M?{yjZkUrIwixWeXMml4Tu`ce^io8Bf+&;k>C9;{3z-`WM$!@{19|D<%OrKoU zG&Cp8{8}_CkaF4h2DWE>%^LPvrYYnYE!QWOqY^(s>^ck(Ax3l zB}AZW#S!e5*&ThF7PmGQ-|buodzQVSmf4nPG-)!dZ(x1Fd>17pBqNAZ=;?Xbf)Pc> zDUTFR)M<){C(B+B#%D=34r!A710JuO*?i6fO5LzY*RGKYZrn@~H@`hf#Sdd!`uBX6 z_*`{A!(z>_J`NaOcRO#;0|x%Z=xB}}FrT>YPZxHIX)7CKYJ1SWre3jJ{q7VWrS<9* zvroZBgb(8~PMN%qBImRPAw44skzmgksDUya;S0U5>d=iAfwQVZF9Q|=xTDGXpXiE+M=JL1L$E7RH4jO z#V}dkC5Sv5X}TU>v}rf(4M@tw@1U}J^i}Z+?>i6{=R9HxsCbGQH=E4x3 zZ}%jvu_I~_IGK>iw?#1Q)6-u|#ZuCIUXO1<;CddxJfICP6O~nc@V`l z&b?m|(v{%eFs0n*1Qt5^=bexN8At32pe68BSLgJhP%3=9)Q_@4N~8JOFL?^i)fhq! z&havz)>Vede~sKdBc?!AdLN#rT2>+b*`8!4u|I{^NuCu1KuUcGh)Eflu-k&L3iWuo zc$Y&16lBTJF+DgB3Wh)L*trEcosp}%CsA$3hp4mC)!j4g+-F~YJ}|MW9qJJ>5z;)5 zyUcNKrXAtm@)6L&W~nY*9Jc92fIeBDA=JnytvfkAA^z%cqvbLB2{{|DAcw0=^1Jr# zf?h)qX@vSw$3TVsPG2i(qPMkk!8@$DJT3;^Z5r~sGfm7Nc|}v%wH>%Vl(_|2kRM*^ z)hkodX}#9%0aa;XieP6AMjA^)6tt^zj?eXWX%7;DbF&iTUy6TE4H{ta1jGPKo zS9}Q*x;#&Z8_?f^>4{31^zXXdf0@7g&X@lws#=7rQp~tT{IKI?*it$y&8iDFirs(= z&^WgsN*v?1+xs6M_7!^x%3yy@WiBxjm)eLH2hB9GW%DH>OXte5ERSQc}k>43D^RG*Lf@X59HDZ z=sFk<&2_!++A}6zV!jH{!b)W^_o5M+r9rSr)s&E;`}`}^AVIL8GgYzhHKFY5ZM{HM zVl1W&RHs50Tb2XM(3~yEGq7*jKErxsODUU1ai)6q&;;Aah1YufOE@RX!Bg9sqJP(~ z@P7i!|Wu&*BKcu z2@F5c0ImU_u=BGD+o=Nnnq3RUxI^Sms?Ldvhh3dA-iW#t=iL7an~FU%&VUR96B=;w zo;LcSsVY`7oT_Fy>7-ZoMD-%e*>GL&K@VOhlk3ju^1)Xtx>nWx7paQh4|MUbjD?_e z0F^zI4u_A5cd3D0nziCl(#R)3nHp?-m42LNhowpBA}Z{_#?_#h=NVwU2_*rxe=ba* zzy5-JpR=*{4^lwC9$IKZNOoUv;-fy&(>)t~CFhMD+%hg5;hbwWtFI_@Q3t^XMAV_MorwRp|0!;};LWQi2?0c;>~3j~i^ z(yfkbnZGInj&}G zL+69GAax~3jn?_qL^=N}ec0lfC5bh`Pbmhf$^~=7XCpe+x;U07&|3)4A# z{5W6zIf-G&PBl4(ORZ<+G)FP4WRZ$qZ+|&0H{Q2#<~Os~rP;UzY!hy|hPXf&1i+N| zGi0Oq0zlCvdy`%f9eYyu7CL&^`EpUte|{$!SVv19X4#vnFg>o4VD{y7;}E(Zn|ora z27dtmOpf(2fy}7#W}g3)z3lS~lq;T|6F6#yQs0!#8+R;LiWH%sH6NanSh7@4-%aBf zS!X=WeMp)UI#?3Ej9UR-417xkyoYHqZx)e^X|LrBC`y)q#r;kAbE^k?T$4B^e8wvt zv9g}zfe&1I(lerGL%Kl=wIAwb(my(wd!h|>AmQ4Mj%F^ynXXWqNAMl^QtET2qW!F^ ztRpxu<;l`)g_0O?J)Autq7k5MW5c{~MR79(F7PfyO&~-K$12&VB|gwb#`CW{k{t8$ zgzxckOzK$0P@(ln!NaWH^aEt05k2vpPC{@EY4r^K<3gwB(W@a669bsjHK7Jk?1R*qi& z3SoVD);2VNxQ44+B0H-tfNUqlB33G=-WG%?C8l=xYw`X0rkPWIbZcN_0-9q=+c^&- z7}#t)$YCN!!hU{VUp?nEVR6YK#88qbEn7hjWkDt;IPIzFjY{hb zeroD`E>7F_^2CTwCTf~txNCkua?x^klF0iQzmsAAlY0NJI~Ey<%!4mvITIve$;O0| z5#Xpn<%y!g;O$8t%lH~xZ&K4_F%e4JlJig8n275+7wK07Qv--LgfEH&%eg4iH?WGk|`T(P`mj=~G3mX3D#_5L%Nz*q;h*$G<} zElf1v3CGuXYct8aB0YcxR@QST`O+NVh-@mIN+)|_`4YGbx+5Qlq5cZy-_my ztWN_XDXZK8esu9UiUK?zuZTFJKj?)J>9=Rsyz{5wcO1~zD}CmRjqTBT_GHbL&n6~D z9=qiBt7;+xkvZ%0VuM^klu=BX`uWgn8f_Lwz$2_yD<86IQS>GH zi3$@%y&o~I>{iXj$=p2oj3yLpnthI$IfrSsFrjA)qU+@%UXJrapCg|ebA#2;x0jrE ziSm5Ha{YECntD!9h1~zRVp?%81FyZZjqt}*lKi!HqgyOd%66;f*pBu25y};^H0dQ_ zuc0WRZI6LUpOtR(yZNJfA|B_mR|mL;-;7rub~$4LRYWYS6QE<^pa78RlFxaxJi)Fg z04OZZb~w(}r_EP*B_)X?T(F zpUL6BCy9TnpWhkf|9xWaDgERYB`QL4hJeo5C21aX<*g2!+h9H8iN9Y2RqWhz|E0y3(|bFBn%%@%nx?7v4#`zG(n*XTNrU{X7dv` zy=(ka+x`l4_;EgAGfjnQAR_cQasDv6e* z?_y<`%fSm1_b0@}Ubq%CTy@(X^#(-W3Xu;GfXieKLXk4r_QQSnC)Lu~;k{gM3lz*h z%F`c?D1L2cE`i{Xe?lp(-x?f82YJrJaoA-S-~hT1PLE6z87ZXa(FN&X!xZsqD7OXj zKq(*jmWDdAgNn`W7yIA}0gkhKzy>PL@>SXHG z-pk(q_GUtdy7)B9DNiRM3sjbfok6Dk2pq-xCKkf$skjSRoiS12Mv!S3!x~Hn1`PRu?K; z*4}uNcmVO@Wfzf7*vO7n*i`lwWW5y(E5Vk`KRI=?L5aeG4a^WA`q(atydIfG`JsPg;QbXk{RHc%z^i3pP@IRjG@2BYa07hNQlqR8= z5@Y&)1Ae+I7}>aqgP=RrpPZCh3Hvm+;Wic8VhF}RyTpRGAo8H7LuvRH#5eY5CwAV4 zcH2`+SH4W+?*3vvesS`g1nc+7{63lASLXN6{JYKkZZp4cK!4wwf9!Jn+TGlx>2JIF zEu4p))~tz53hVSqw}<>X9N%1$Qz+XnBHMk{Gp5-e&|fc{A?scCex0+|?QR%tca^oG zwT)Gg=;+<>mP?wOcZzRK2l=7orHNm7m5e|KY-Qi^JrCr^hrw@F9*{#gesoe-|5O<& z-fP0skBXfxfys5CKLfuojW{3KwNLk2dbk;41m+P>9 zN$EwRz`oq8O^pdUxmxKg7Z2h^SU-T8WzTog?V@^B#KyBEz6gb=En3bjp9Z1W_{0)e z11+{fVIL{*;obNcGN&VTNG#fARSAU5ZMLnuY@ zxP(0UR&Nr_osKEJSTx%-)zkQ;Ky3ibAe}t;>&g?#5HzS%R;CLZe?#V?SFiyyvWO8L z;PN+WW77*z-c=Z-KzI>FSgBZ#<}1wXI1y$xKYBLX_6_rkdop{8$RL1FJCr>{W7BvF zw$|d!jBH;a9zgX$Wi*k>p!6I+x(!&>kZPiCcY%!rCW3oDMCC|IrU>7+YIEaZ&uQZ}RIUp=`F~WHhoY- zTQ%XKf@(Kui7c2vjnc+|DW`8py(^LQ;5oumum@#ysWb{ki&A`yWhL59c zg2Ir|Mc7CPm$2bPtPSbGGD$kiw(;SU6OP8!c1T92zRH(w2^FQ#cB#8h14&__Hwt*N zjt1*t35g1#Kyzq1Fq}IDHfifxn=mysP0&>`N+{z=%PD*wB>YOi%(VtJ%M=ZBFKa$hvGv`!1MwaiWYHv3ef;`PTl!97Zpl_`0;&IAzXF z`Yt@sSwNK*;*>Yj108@)@8y%q=umn;G?R;Zv9yp}Kp1SsG7o+!q_>_JyAi3h-pmrV zEHRdC()tmTK0xI032++Dsjhh~XP7a@oq>*q<66BLNlWIxRfRHVmMXO%o z#`CoxqFdL-I{5kIW8VGNAJGrvf9JUTcd0}XED=t1e?<2O`>py-|KvBKQz%`z8%qFR zvznIx{dv3(2DLhM?eLAE0ozyzCM1}OGj%mym$)*$QSf9Mqg zXl_9=OsSDw6*vkLl*V(yO$jNEuEH)`B3bbB+`y{c>$QDAZ z6A^}O2_06eU#w#+T^}mH4s593#aFPW%nEBko!o+WSEGc%Pl^dd*x);ds9F$oMGF#a zV9Edt$75O13Mids^ug)q{T-4;15W)ui()69#bD+;Tl=HR4(Ev+VC1RAwf>Zi_TPQU zf7QQ>Y&3y;iwDSiAtWfAk`9!+XgT3@yBc$%L2>87UW#lw-~yF)G3uO)*n8I6=Kl7IGfVFMXSiRTE}3TBI3JT&e0wCyrYxGj zoqA$aT|2Ww(%)C~ksS{yCTM1#he;}J1#6xxbN)LRTG3K-=fOsP zrGh$&@0~yy&aCMEU=!5vgKEZ*mTQ2Q`WdwQi*jtM%fF>k@L$!G{1xtdtMhlvzz_j2 z;^mT)qQIyU9SX;t0(^D*owc=#a!Urr-8XLH+C3T`JG_5bRxQ#!6}{)KKw&|!(F+c- z#qm?giC^x+Aq-yx@e$&EmZUcYv=4OQy2#TDV1>)(MX$QGpu*+GuP2J`0e<&)_OAvA zf0oUfnQ&q2$2zDZVL-r+Vfl!U zfpxEw%(Kai!^m9AtD#O6$SdJDUqR4c-_+@<3=P~!R~2-!mj zF-4MfvS*#_3E9bRP5&m|9mporx@&&R6`hGgh6F+w+%DvFtfv(GDajd*)xmrg`O8D-tFv`Z9T$NTNvrtZ zU!7IdeufWKa$?kJrrtu9{39fNzTamDCBcKFrDoo#vZC`_{fXKjox=ep5UCd`f|z_O z+|We#@K2U7JShEP4gk(cd68L}OaQ@LD=i_H-236uy1&Q1c_a2G3zrTZ9PZL5&A?o; z1Zo8(Md3!zM&6kolkSt2RRuMn=ayyy1Da)kdD5dh_0q?8?5o{L2p@t2uwvMO3c1BD zx*S8U=h4gbJ~ih&PxNI6PUUlB)Ny+k6t!P&hH)3yti(&19ycQ+lV0&*=v*ce>wX;kiOQ zajPvO)Q@MJ4pC2Re$si7*Ae8a$LB?i=Tt^MqhDw4#(R!F&YeXR3-0PLH8&grQQ*5m1(}@QS)2JJimtoG|i3#8Q;)kFW8wo zFgecHuV>nS@+9_%t%pEQYo?iYrXE+(mG&Jsu54}_6_>Iv`pxO^_6G{x1Uu=A%kDk6 z)1b`)Qh`d*OQz)InJJzK4IvY1>5LBPN7#Fm4Oi(a?Kig1r#1^4L##$rg8XXgf)-E2 z@fi)$o2Q^~h(qI$xN?-*?TlHcbPc1v5rekz^^d}SF%$h>L>3t< zp6k0`OpmO2l6mnl3cZy%F&6sk1_22ViB3xz*G7-eJLo1vwVqdsIX6jia%|nb7qmujfvldHMS?HRnk&5(e;U zD12eQFJfak(S!TVyAfSGH>cXEcq#eM;VP#KpKFSy1)iP?^+PQVg)*d=vCu?1_9zL? zv7SH?PTlO-tq7g#-;=?U=Io$=$0+ujI&Se${RMmf0pOz`ZRgOB*PH@Mc|Tt&V#ES~0X zyFaWe9KL~{`bseR$#O?7QdEeE)7b8driM%^(Y3UoOigRsT>j-1iBRX0l2WfHib}bA zjn7K_7HZYgFgl1Ut5G122WW`c#(2gyd-uHye0R}3aYfSPdBJSX$L}vGMlHZvPHqxM zJ-)fvL8NDvbYCi(JoPr}OjFAZ@yM;p_?^v+odk}WQw)1*FuA9(h}t|U`fjuAx zc1zap2?<9@pd!cxjre*T|FFFPeNTk-QM%8k^cBPrYn|V!2Q@L?Fc`;$dp|F9ZCxle z&Q&(puX!I--~bQp$Ud`#WaE?VCv%=9JH;kl|jwURX&9;8GwH9P8Fcjd|~h@{qReCTNqnn6Tn<3w^R zIgAGqb_g9J>@^bzzTWrNK<3Pi$UWD^wyY9S+WT)^0D25NGUq1(_oJdb z&oxY8r%ZW6LeX2X&oJK}O?RL~)s*V4(IBH4d{Gn=(r~e{%IL~7D?@+91;GbAMYo>q zWoqrid`$@THJ^++w15^BCkN%Y=FWRuEKU%3SloR^-=#d{lgQ(VN88Ki+uNq%kFO(N zbK-x+tINZVI1sN+Et_#FG6>ztG^18I>IuRk`N4unf8eC~t&Mxd#a4*T_CaTcI{~M1 zY{rUtPiMWI*g-w!v6wz7xPP~r>CsrllmoP;A7VJK1Ipo888$!7iIq?U7c8dp!&9J9 z#pW5yp=SkELBtnO@%zRE@^(U0Qh}Y9#~oLZrKc;7E}T1c#qUOjtMFUbvX2+AduAUqECgroi$LBjyQjsO(M*d?j zzkHqfz3mf8eE*XL7*5lUj|l@lC!-7u4ZyUN@MjjQV2kO9elu(@q9{DFAhThG`@mfm z#8CVwiospoPY9#I9lvDVMwifM($Ps%@6$rlAEXud>P)J$*QtoCgjAs*?!*kc0>uFV zg^!mfBfR6KR#~&uxE)9s3P3UZqp0-eia@}_)o|R>B|@CXZ3AiBlj0^LIfECRBKj`e zz51~2^v$D-HaCF1{}N9FW{7`ppa*;&VhRhG-NwSl}YMtA<2Hh2&* zje2jGtU!oWYfP|N2)XJ}gCI+0&jizz(!;%n(WUD%{r456qbP6r87*Bps{0#0!>x*rt{2IoI8i)t>B9KUg5;OWvevqj(B|#k zhE$wDSv6m^Gr6ApxL*ZOmwbqcaD# zi^5u;w5s)*y4=U9clY2kr>;v^O9NXZwzXc;wO)w7Rbm$RHOZ~FSYtXZ^h5;cW_!Jd zX>Q!3C~|Vmygxs!pl6+GF*!MDv#)WF{Bau(_fJMfJ7PSyS6RYBQ50v8@TCwt7((U{ z+0BvyT-ah=sURJ^+XOJSw+{zaZyO#rnaMM4#Py^8dP{-o5uzF#)M4{7(m(*iEp5T9 zq|=ovBZa}+aX3P+ruUMJdv^R;VU}yqkqt@*gZE<~Grx*Y_tU=lS3g-sR3#ziV4}C%gu2;CiLVI9csFqkcsx#h^5(JXJ0AfK^@UYDr5!wGe}^GB z@4c@qb>I8ac+qdViQtBNch>1*H6U~usFBz&6y8`kIkJFo>-3dS8=~W6zb~P88SN zv4MMGtKFB-mSx6U2V>fiiAALS zbTImruO_vcL?B*E8)Imb)q@^Ko(^$S$t~oe+3alt@WD1iObn(3$KVS<#~Rj9z36JU zB}-l$dQ(17w;XRHe0p%_mu&7-7q*wH$>;ZsKR0`qlkJf7lvY~eb>@xF!^ZEalb1kS z@rKN@p8V#~H*MduLi8>|+OQ;u1ux;&q&-a{DnD6nl3CcP_?3xls3>JRM`SE|Qg5$!RjGS!0L&a! zg{Ddtu?Lw1g0&pqmG~}dpJK~6Rf*F)*&1PLfjkC{yD=I-yk`rIW`9Gd?QaMq z3qs}sr8T_ejvIgXp7oZHmpn}sNw8vZgo6o*$uP?gfHabQwzatqUm<-7?z_F~4pj)o z5$*s_WY2_VMB$9T+O;Vz{V9{a{DkYK`O9xlw;v0FCl78`S{3XHEtirKUIQJHa~YV# zZ#3XUp8YqO{T;VAbHe4$4VYcZaY}GU7pN)Jp9sUCm7=ryOwpOX2RL4oY=f)wZeP6(3kP@`BeTmQlblSH z3W0Yq&iDFmn~dX9f3sgxWsi>A{jJp>`cPx_fFZ3bwiNLEKUoIG5`cc80KGbJ z9svr9+OyE~x(28wtHE%B{AEIp8GM8ASA%2!wM4vu_CM|WvC2@bKEVccM%sA@QCCV( z#2TemJyXH&c6@|=bz!Ebb^R#epfvpe84+CUd|*~6Dv+UNpHOix$5}G3O>WaF)ab-K z_VtEvWEvqZYDj7#zlg*+SyMn-yE!gf%ri5$DI-rw7Suh}GWTjbK9V(uyLa2mnBSeiEXeVU`h^i)Pg=e&Hj+F(Z3f_!5t@-&A$0cEOea!*V*Rm<( ze!JBDq|qFU`K0Ow_tH*0I^LKgT|EdTLE5Q1NysKVM(iv`Js#&+cMeuLGiX(WIzu5| z;_6#`E%;8IgyP^4+m5$qp?Lo{q>BIW-SB_XxlFFaO!oo1Tbp53=j^6*jt>ex@^(x308?jieLI;I)FS0p>q6M=q5wcf4!zgmK}=W0i{kNe}OjbN!dQ z@FIT>{Ij@m{5fhFS-GCTt|8)p+pl(=TF~V&C?&GekCu$7z1!js2u_JuKG1 zyvR(^=7xQWlKW`Pn$1iwgRhbjr@=vb0d21m_b4(aD{9=!k#JlypL_fKh{PiY|6Ss+ zSI~|-wfNdAOIUGFdIN^9$~6x_pSNIaR{pK(hPO8MHcunAeci9PZLj-vHWwq>QB1(i zeMcKz=_Z~rm@_~%gE@LlA@Ys{(#ZZC2i zG%5@`U=E=Nk)-Q#TdEz;5G!*8nqvt*B8R>F`%UUgwAQ3E-$JTfuUPK}J-$43tiS)u z5pT)r7ss7<*sHQd@cFy~$WI4an<%%N8rEzf*;6G(lonKy#TY04R$BJVI%Rm_6U)Q4 z%N*Mz9`Amu3j|+Pgl&Y0gfSKpoV>GuJVdP0%WWz7inCLEZlVd-Urv@xtkyU1aTJfG zvA_0Zr%DoSkCc%>XG5_n|5KLSBsW50v-|Tm?i$mvE5@%M>2OJvGs3zs17igwh^YKb z%*W58*8Aie;eb6-J$cigfs?uzK2qZ(NbQth7AoAW7qz2S?unBBZqxf=*KFIoz2XZ? zPpKcV1y-}d>@w1`zBwTC00_YIm4*%)rJJy>n#3%{w|0Evq_|U)>1vD%)Wp}GKUq-2 zjxIZsDY6%Yt5YV$N30sfSbwlYeEy^|ZS|W!bbWrRpi5Kf&?)?P1xghFEniVVo_VJd z&*UKFs4y;(0irxSIn&fJq|j_3+wbJaI8Id8LZ^B~&d0wd!Z`ROfn{ z?W>FCy5i)?N(_hZ8EWuU)(#5}Qd1^g{wy%7DoUE>$%-)H@f}!yLdv0VGLx|fnw=l0 zovD%PyTg*)ZWUH&;$gDuz(T<1BkJ|^<~+YJXJ==-9qy$Cxu+W580@={{eFUl9Z>jj ztjCBLW9Vds$D%SFZ6BKFNLt=toruzKaB%H-pJdfMW$1wTfLpSDW3JSIX`6u?=ZaDL=gL&{)16#oOGe~&e1?W1&*vid znesCY;66+dJ`ib(3^GfN^Rq-SBuWo-x2KP@ZTECC(39|?z044I$ogD6vUB1sBptUu zBGRn5+yuR@0KTrBI_g0dAhM0u=XpzYZMvj?;f7Unacjn-+yA+`-RSL(ifa zymC!9sLqt+l1}Al_R!+t;R83Yw@H~pT{Y>S4?|Tt-bXe>cAM#}J8JV8H^0T2L$xN* zbP&}LZaPa?kNiQ{F1-oZ`1+qL63TTrihLs=7Ce-w`%F=;9SsakbYuqhQP*3qC5qT_ z+?S5lA90*jku$cRI`mz7`-Ik=pW^mZX_BKR&jgZ&>sdILoF*uhs&bn!YpJalpG3gg6)c*}Lx*c)SWn>4HOd%bxXCCP$=Clno{(pem6 z%~Wx^219|$Mht^^JbAB#NXbKDwVk?Gl6bLnRoLZY)51q?Rx5YBXzo|zyf?GZ?iw+BAdHaobe=rIxC z-V9lXnD1{uy)B5pM6tvSxW{FETkyV}TJ-LUR1qOa^_kWG8eHbj1qt>sjj_$C;t7qI zBA)sPW7mWz-JrJEUgp!1eAK{~yyGb*rcO~AAiQ=iX9b!65by5vTVXz zuC3W46*J)trJtYDVKSLIFd1j9oHa9P?PVfubDp$Jn5;JA;;a{P{EE-IEmB}^c44hu zZ2jhW6L@<;4ow|wBoBP$NFGlKHYtc^@7q;|4r8*)yci3XJ(YJqdRmro^&Z((E6rTh zT?*uPRk^v967_kB6&N?tO%^C~9teM-CMlKxFCROnpDf{y$}b6_p#@nWE~z6O{N&9v zC!#$=cgs4z|5iTLb(I)3QNlc9fc_jw$Zmi&)$B;YlbQAL&QyJdc((1aOi}C6R|OZF zGh3xkHqCsrv~a@=wzrp*ELFuPL`#saW{95SJFSws3&5g20U&CCZ}j(K?4;ryTzrTr z>cEYky;ZV5@u2xV%OP{MTx}nmT$5#Z)Py0E66QnXfKdj^#I!C?HMJS zGv*N70BuvVrk`Udka-?gImni@H^7I>t4mY6S{s#e<4X&~iT;H#U8hdei;FbvrXR^y z6;X^!iv>ke;u}UYRC@uMUSWWe`~iWfG&In}&kVLFaMvIl%2wwqW`Y!}FH!tztTqo^ zzb3tOJ*Rw>Q}`H*6^Vr(_mhPqim1cf?JWh|5DC;#ttTxq3XYYy&s_Y>i&y}J@4+6j z!xfb^_~~3DrN-L1IljTP@O6GOZtqgFYiN`M%Wcze=$bY7rkwW?WI(codUJ5s@4>m>5*Y}yB>nYeT3R6k@G z-TN(jx71_y8xDOnyBVTnbTj7J5T-tA*J}avqM6+YcD{e`T)Y=@P;)p(p5xpR!aKPq z5NIT=lY1qSI;mL+_)l8$LeIOx{N836A9Ep4%bRmiGDwGRt|8hZ5a`v_k}TI>esV zn)E|h=NH+(V#6V1K3Au`+TJ>=byR-@mz}efzifOv{57L9g(f9?Bhs$5f)_wFsD z%sUi2)SW`d*9EiT8%#yxE)SiIOPPun0B>c zTZd5ntMSCl#Tjzt)Xrp$BGOcyK+;#-{YKI6?%Lbjrqfy!j#Tam&yKltN#{t_4FVqF zU$grI)rAyWC%UWWjfr^oqgInw$5+FUNt9qx2Z=vIf}mJAsgSfw*j z?Y>g4A=`6OF~Y2|6y@M{NL$7#JUr*O3IAQ{yADTk{Wh>T!{E>SRN;%7K!%+8aKb|0 zskkzWMKF4=O#cLq;wm?T34fGSz%TY?k$-8NivaX1kw}5!tdj9y3!dtJ#cv1GZ{>e} zV}q%Bzjj*s!!lotYA9LpQgpxKp~Pn_+|vUTPEu>FkaN9raE%D*K=l54$2TUmw%b`) z6>V9|n~gnM<(GA(V)f}sX}D-fQ?E5muHSXPPgwqqBXVu$C*%*VZnN7 z7Ox$9z4vMg8%ttqL6kD{<-KDwDYwn{LUG`Y1;etcp5<38oMFb1mlft+WCElxsBx`nB!2BHN@lFAzW`JCOk$T7d<9g-b|s!TCbNX!3N- zQ1Sa=3w4c=;}x~S0Y}%PMosAhv){4Xp;~l_*GcR-(1S8|)mTF`^m_S(u8Z4)L#(~I z4!F8kseuD=X&tTE$I=SadU8n66JHxLJNh>3ry-Fa)$c!yPMe-z`-oXNb>98`ax;sE z(uPwkNGr+AJSCF@->ZbNrI~B{aHuggr z(fGMFJE5g;p@@htOYvhrB$JK{bVb)1i#8ZeAF9g_hZUu1F5va^28t0Jl^vcW&>mId zrK!Kt@;)k(%su3YCVGnQ7%2bkc~I=N#A?y)t^%*+_X^}UDXkM06G_dDh@CYoo|Z&> z_)~F{F7xZAH62pPyu0zsMdWAk(6bElH_{#Nu3p;n>Ykpl^Kxs{3tR;eb!`xKUCwj5?{u%Q zI%MJ_7~Xez`bK_a@Sfbv=b8t9DNh~_Od%P3D9S^jlNo@novAzXt)TaF0@WAij6)#}SMz~|b~e%(c^<4l z9HuynDos}R<)8E+NY}#hF=vmS{1(~0&iHW4wJrzBc|kh!yn)DqpQZfLki{S;aJXU{ z#!14{ETZ$i+g>#?q`S>_k8T%9w!f2icIl8H`j+!ZJzPfmqQ8)Lvcj0=8Q6w6c7oJ2 zn8N=Z*#$>U`;kGX=oj3x-(|7>o^~48BhW9$11BoT=PZMU~cJM2vHT zk!4Lkfeian<9S5%O#s3BfedE{P;tiQk!G0Q_86L;B&5sF0J%@?Ipp+$FSw5uNnrR} z3#R*@$4C4vq}G4uZ}>Z?necgKNE=v}Ha_~ZpFFE{f3h4|L{UL2>)RsyHikDgXHCrl zte&Z!jlFoMUmnmF;{VncOfVr;`s)1Zj4eYbHJEG7(71p3o!0;Oy*J{&dW@$zih2yW z6hUsKcvD-`s0zgR3#VKak|l@dcur=O?F z5kZ|&Vty#^ka?x;NlU$5ckiYeei)i%-M)(*KM=}X$4?Lc@-c}mrP={(<0$BC*pJ?b zy>*s)ti|+@L97G7#iXD9g2?`5U1HKfdy!8Stt>aTRcO+O5-QX`cAwxeipwA5Q^r848RuZhLA>33{M(1 z7hELs^46!c{|8Kf!8Ndc#}8Y=*DNQcn4p0sDw2?J1x^E2-+yj#`=^m>th6X*7;?J5 zMg;l>Hu2dx>3N|opTD-awfzNf{;U46uKjAw0fFzR8`vJ{z@Krw^aO0SKm*1N{wZMN zO!36SHR}YXY$zeVf`tyjy8+}Q^#(+~B}351g{iAw2*^;E=K9ZXQmLetlWkV1n&yjFIQX3QkvuOonXEncl zh?{<~ZLG_}4{V5rpD^ouz?fM9BJ)9Yy(9r98*+8eI76Gon~Q&DoK&L52EaoUBLHj# z`*awxsBKUuxYWZyquOwt{q-Lo^2a^-W1al*?)<$%!9XppY-SN;BAhuyEh?_Qw8lA1 zO}Oy3*;7HE`v6HsOfj}wr3NfSclBAUg4Sr9QW)DN2xbU{1NAbOQX{rC& zqnyG9$8H*|y0d0YZzvW0MIhcbtBA(^Su{rcc_2P78ldg9`RCEt;Exaaq)Oo*s*KF#|5`i+QH=H+cwa3Q&#CVAkkqpXR-1Q z##%IHix)lnugd5DmhWZ#4h>0Dw5UdO9W9Z~XOpqIWd7p2XO$e((;hsY);aNE_{4Tk zt{~wh>z0n09H>^(SDTsf9p4a!S!9kc=qJJMe)t5akaz|=C~Dx-&gRS~ zZP&~7jGt8C8_Jt7Jf_umSbOV^*0`W$*URv28-D+3Nc{g8W0^nB`JXns>37xy`_ImQ zk`Ro+3ku*@aHma^#<>!z2(dL~NGDJjmBojY8H&a4a_Kd1`UX6PNA|_>(-!Dgd~H5Z zcavN#s38vwRvf438Y!IXNw9D3@yH3`$|qkNEiqqCW@XI_jb(b|&JXZ-_(6&ZyzOEm ztG`Hj%aNk}fRcYpToh1DvAbWof&7h>9_*KAcaPurc{g%$9@ZmcwE|e{V@+UvC(n!RwI~@s#Xrc8Qqt+X)$nLCXnk+$UsUyoGSez7nR6<5=G5=fnAl zP+tyr)~+pqf^*K3N?YY1mz$yPQZt%tjf&6^FB{FEI<~3Ue^j;ZLI0LfO83VeRyuZ~sNT;g^2 zmgF-q6M6H$78U#2KG1OptWRUBs83)RkS_0r&8R~)E#Rp?fm+6V0q6}~18v=odA^P& z>K!LC8|nz4)o3CfOm8aA6aNGt6A?Ebt7P=RyZF{?(E~?0rQHXm#ngpNwWJZtO)P33 z@O4+uQ0?n!OCx!vSXqcuA`mK4B6?4%}>u{7YW zi{UwWj}#Sfu-NuF;v~GPk(__j@CDaT7PYCvzb)Nm+MP4`nqef;F+3gu6_0;%etPM$ zuh*0+r}XEK4rgDDTCmPKE;YoQ^fNubiI4UL*UomGi7Srj^7PRiP#R>{(erd9B1y-s zxsfZQkj9Rfhqk#RgDo;QD-a)*ArhKr_d9GYX_DfMQn((9WbPEm#Zi4qf|>h)g6<)5 zi<`iIETio+t$~g!fk>MUJT%EdXkr>#6~W4M9FDh>U1VWYwqJ+n2857mkyDt@EEFY@sq95CazuAM-lyC zyqtMz!ImR9`#V2bVh#~e^n;T>S-Mq|7`yP}&|i6FSgUs+dC6?pBB=H#L%=x;=+E#` zC&kBT2U47^cdPSn>=sN6t{Hx)Fx%WuIO;&5!@ET|#TBB#52 z1%9&JRzfk)-ZBjO@e=cl?gUnl{u=ogls8Un&B1Xn&XMoiB|EBYUN4Adimsl`2*(~7 zTp+=OT)82Si4sC{M*u*&>&K&&1fSoUD{QH2^mAUjpgY6CXqsW)we%zjHd11;nvzP( zAR=L(X-nq3w^fI;tMjoTvYz0HFZI3qVEz~VnLCf3iE9g`AEMl57S)Ks?Fzc-=I2un zlj25d?$d59TgrcaAf#t^-dXlD>w^Wo9C zKte{Hp015GCrEy?y;YLAW3vgC2a}p6_3X~htzG;AnUyGHpUvz;46^Yvx)}h2^$)@J zSg_c>CJcy?t;4PEaoydgFh!tU#NL{w9dKvu8Q4HkfC|Sy)b}v8-oufIKk$Zxe3n`F z)*~k8TZh<$4BF)S!PKxL?;dWCSGsa}jDNDD6EsD<2fCSmL-Ikx`>*MwvG!CDQSQQT zKp(ytA(jSzK-za~oxz6?D01@%nqb>1O9vYzwNAHnrwF42-#5QyNs;Ul>qJ^R z2OD4Cv%7fB-EU~s?&P73n3~MI$zt^@2F2Hn9EPQ@UHR�rPzX4J05ZwN80hf9u^&FdJ93_}b1rnR5DtI^WV))Ju>hZ53 z+;QO4p}qAED(ZnFsf)==05u-y4ZxC`x$e2aUE;jB_1IS_wD zkQVBm%NToK<%l|b9q)1uQJsoHM;A8tyq;iDKN>3S+JE`qmmZ@5EZls6*w=VE!%blr zrdTz8W}fgGLp`y=NS+D$$+Bo$0wUp|AsCx;eA$bNdzLhYRGBSR5P%mb`v8YGVy%u~7dQa=;SUgi(tcYZR)_fh-@YTu>DbfuIQB#jHZV_;>4 z!4JWgl>@;SSO)+lO8x?gi{`rBO*G{krWy4Fn)V=V zGM_pk*B=g0Wc3qEd9$`;!D6)!G$#_CNQwWrW=7PcIQZh2zzaxv(+B400-HPm5KR<8 zu&8y12)pc1uEIJ^-iSKsSQ|2?*5mO+ZQfj=4RiQqJA^4=c=?{aOW4aeS^vIICJNTM z0@vGTCEq!72jdT{?2S>}x6K&0NX}t`@(x+Ej#d#1l5uS@XBh{+OK+yt$S^Aa6W-bp zh1)3^TyH!%)up+=q3$cb#a7 zLB&rA(sR?#F$1X%^oMX87(#V7M5YR}Gtlp_U~#|8og=YbzAZe@n+GNAVT)tgH*ClF zr;CwA4${N2m-CQuw$BA;!EYwN-9m8t-Ce?M$C!dqO z;~`rh#l*`dAhj?K4B%ko9|w2U?26%Z<{cUG?9mT@-17dyk&oY00zW<$8-;trq&oYu zlAHM|a9!>EZVns0sB+%3%!Td#ZVZajVxm`wzO#E}Y@Pk($L(mLsCCCn6mlhT09^ zym@r8H*G^_b&0$%0pm%^li0iouB*kJ!(}Pf4?gh}4}L+#$_ZONHhMgv@?pv19HtYw zG*064HKQ8C(w%u#9s8;3Ru#dvTQkK?PGS?*&sf_uncq)nY~g1nYu03&eC+K}ZsknX zIzd|7Df_oIN^h%u7@PFE>NScDbu3a-90r#|^Uag3`!D=1V)3{FMATWACx32MO*%Pvu9<+XcVq z?a3AqK|T1Q$^QleC^gbmL=-4Lw$)INPjW`k@K4!snF;6Y9t~pH*j=Zue50VXg=Mkt z(LbnF3h4$temqkQx>PEwfFY;hVl~38i_r=4kv31_@6=I$w;Jw``MUr6%I7~%)cwC~ zzAo!lFNgz`P)jq_0d7=9G39FTU*?$xzjKf#EJx~UG@P{Qhdz`sQp)O4^xewvvlv2d z5`2wt$9YTDIS5DD@66mM37IMZ6CEMtHy^+PoJsx<0T2HSh7XpevQH2KmaE*z2;->B z-Hs0`hh-%Sl}AI54aiDF1O#5!-zLSfAIYNu^0iu%8VPFfb=*}d?>jA`qu9eNKfnFA z?f28pMwDp+3AR;kX3cV6wXj+yDf)OuIdjJ^3;GbGUDVK_#(^873&7VxP4mIMbG8FF zJ_hZB7v)u&(g$yHOyy!_7&p6rD680nm*nW0OjoHywB1ML8`b8QBxwA=j=Cd@zDRFr zQ{Cv^*ghmz2I>R#$I7h|c3I~)n^l{f_dR$`AWBj9Fz=UpdXn?7FS^AT~9}^4!hKaOy063XP^tkux!g%Sr@< z!{+MchfR(*=C6VYMmHW&a`l`;2>WG*-Eg5Bwmi3*p$D1BfB_W6VOgha6)kPvd4XOc~3~x{kt`VR3C6srp)vzIT;t~(6}Bs<#p4V z`p3fZ!;rh)?Pz~LqJ4<TLaw zJ&S8+-Yt4B39j?c8P)ZrB!UIR_xKpT6+aXJbJ$GCJynUA@z>xTY@CwgGp*Eid9aMW zS{#jCO}HTBVOTF?eN%K#@)I*g7$}97mgvU57s`{&2_mDj@!iZ}$3sHCE>YT^F7mYE zaKDB8c#enYZ(ogWAajzWsdY8f0y65RWC>ExLD{-uYbc^E5sZ0!)w2lB6x}^))uU#Y zH>Bd%!=3Ibh`3P5F$=f*eWt)V6gO>1GL?^62HCId{1P(eid**17oEz|5b`|U1B}*mGD~oMDeAIF|()>dOrbrD}sv7aCD~uJU zZg()sx>9Jfa*fa6*3o~5EdHjLeM>pKW+M}1PZYCdhyRfLV8oj-tJ0vI3ly7kmp4v3 zZ@y#z35W|2gh6V!2am7-{CdvBGkAWooVTZ#k@36#Y>+ji?WqG4UqiSlh;|hfGzm>L z_iWq&D|%k%>wmoLe@9H{U-6j;S?n-k)d8^&xloH-_jO}bpx0OE9`-;UzW8Qp&dJ<1 ziPL1S&5o+F2Wd|ts~_sTb8T|idiJNu&Hoc7S@VG0g?fCPkvI?vQvDS@P#Jv7*>b?o z8~%}lw^@Q>Dvb_oIAFejIyD$ZX%Rc}_h!iL5DDmFYAWu?)FG;HsEkn%eBvV*TeRWaF!k*^ zdpB*RL5{=Ix7Y*iZ#Mv&YSNoK-qe0V-jHrlf+7W00SIs=3)OAe)e{M z&Ce5|v&Aa{RNR&3Z%XH;47&8;Mo+xH0=P8J~k_I=@{+P)x7_QO$@`uN~SJOb3< zdVTIV_ZHEIcb${OHw-_~!V%sy*1GY7ihd>;?>?sMm#aB{y<@qdhM#J#X7SvfCP zdb20@^saL|L?=`J_X*tpNhsr|_R)=@T3z^0eKS$&FR+STmFZSx7 zBBQM`$r{RK57tE4)2MKq|Flz3>0b1;t2@d7=JFQL;hrvSm?m*^Sj} z3b`(6kr|-L!Y9^Z|9FY>;&pTLs@7$Lo+h%&D`;p z+?j7jwS8+zpG3)f4ae)Oe1Dkvy1FR*}vEPaz)zRF{u7)-sSFh_~VKRIY=NT zop|??ML4+`!|zzbYg=|`-FXKq<$0#`$xM}iqb{|pmcs{^bFKKdqRdok^4^1Oa=9}1 zmQo*_u9l$8d#+VivF-L~RF1qvzZ*90X?^z1KBZ2$;d9~3-yXameV|LP_+i=u-9&ej zg36|VtKgg{2Wi>@n~`^`*>O9CORVXKdfX+`sNZ(yTM*2li6ji$(=s7^v#b+OJQvL= z_9G<7x}+f2bvXo86;PtDy#IZV>%CjruXI=gQpJ`_*PNXf3TOeOO5#``DgBd*T>T1n zzRbFhTNt)8PcisMybUY$?ZdBQGu@T*$M7BBj}G65jq{9+j?P~jt;T>EeEdg2>i2is z5!qL(>9$ZyHv?ptAJU=OV*E>KAdVZ>g7p(7k<7qD!2LYKxAqq$2k~;i1dY8=%TW@F z`9yJ?c{GynT;(qh$# zFU%i|d0f9_kx$_lAd06Z;uBAhOJo=^;vm-80KKY-84y?maK8jE5zh=$QHGC#6Wo`G2Si~_oiQ}c*iT^{et@-Ro}Mn2^HP$_B1s!!5AHT$5>Wod4uzP?)}3) z$%)@2TrOsejz(_J&exS#-<~tDf@km|DL$mlAXrF?+-hE^7q#Cr?uWUc^>wqaO;Way z8?K_~biqC07enlVBa#m?QHkFegCw0_tT!ctTwUzZLPRdAnw~#F%WH6t>d2Ky9Dvyl z;_nxO%ejH=G(1r~{>)dwIW>op+@VLx4t&BUzW^N8n=Hw9t`_ zs8;8{V)(H1UpT^FSQq>o{w=-91Me0Cl}uEFGY#$m+V`6!R4>d&h@{K2#fKG#1}LDz zIxQpZP#6z6eS`9gr@hDkue*OC)N+^P!F&u+=It5T_&&hKNHOB&*r9Lips0F>|B~J0 zlWGk`1VUE{B>j#pMGPC*BCi?#WYHJkXSAc&TLJ&R2#6wW5{CJx54lcs(La=Q2P?h= ztdUAo>uOFgv!J`q!Q;igHVvmha=vROoET;0{X#xS?{PXuf(!Y_wys-y=T!?Imr(Nf z6pw2w-GihdzzbTgM1f+{CXs<6hTzvf7GBDDCv9OGhiLd3@JI`;$VS+2MG}fR$Vd@v zJ6Ke(q*@Vm;8TV18`m=)BVlg-b43Hndw-2O63rdq*1hASuqB;FcnyApYGpOHQvcfAe`Wi-D0@-%wuySA>(jaunim4nmaan^T&jD`1VPVco>iRGn?!@C>lx9s5~ zm0=V=YAklMOqcV_6A$@Oah>f4e3UI)9nV`F@#4r${G^E~P-3`yayHU%^`M2^R^x2f zXnJ)g{|E zaXGj3g@Lwd=dX4s-=8cXU27@%#eWw-*FocsET)ACnIKAR7|G~{ak{_;4|9JX1K01y zEo?k1y^NzV2xT6akPzI!g|b=!14&W5JY#$FLL@% zpbvV@20SIHl9+Ky?!Y~4g0ae@u=NA;xb|z1ZXDy+iZxO@=bGv3+og8VkSSo&`NqiE z)G;&hHpFIyjJQZSN0uH%$^(w-^IFIJ4CTs4J^WxY@m0vD+Z-)tHzH33Z}6|H`$~gF z_MIF@02Q7!j%RK`F42vclRSFHW%TmPkxR&3@6Kz)Z5lb1s+&2FYHITt%D~=WE6Yaj zR$dZ$+f?nyP`Vefp^SEByhQ&<@r$MVQNQpA!hIU2n89pOFCH_>iAxj}K_`so-wEgw0JnDLRz$V>R|fPcmeI@gzJ@G(=sj0lgc z?<3l2rY%Q2(5dnY$2ZwXe)F##11;9nmwyr3Qw;#g+fqh`A}BHr2%3&8B-zKbg?kXI zP7oh*(WD=_9%%;a<){Q7kbcBZAuxEWS+N7D>{3+To8sX1mWk5_8u=*$4Bj$Wf29_= z(Qy+9I@}sBjLc+^#cB6Ipmyy8M8%)%t&sA_|8ht57oSwD)THb;sCk3He1!TTO;^HC zo%kKr4D>ty6*WeHKVDfee^Hhmm{d-3hMw<7LQxfX&TgNmGf=x9e z0geKESPqp;b^FO8$zG43@D+lEK8N|{W~6ZcXd7S@i*gxr%xqx8i{+*gy*#Gy!JG1) z=1qqFYdcZvoLk6hmDjSuV5%**ccHv$4q0xJu-HScoXBfynOfl(9U5%#Bm{CbhH*FC z(k|cWy>vHM^*w&!M0DKkD`)rQp8EBw-#U56kUJxb@tXmrZ#)7(xnPK9>!i4@T&M zgc?Zkdp&pVJonyn=Kr5Lb7sEz?i`;7V>Zb)+50VPtzTK%TXcqPF$=dpCe^-Qt7}gp zaVdFK5iwg3;M-!~wAgUK92&U6tR$uOG>tPHAM#XOyuvT)DqsHHg_MZ8>f;$!b(%Jg zH!Whv%z&6SQ17kO<%n#6Bm02d&>x%RKoV|VHvdGiAuQwSHC`et7Mm3KUZ`{QP|0M- zbqA+0y?0SY33^f`;+44dcH|9OYqdfd$&Re#exxD%_5<(Di(PV?)_!+)YN*&`xnfnPQik<{ z{D9=%apw<@z@~`oT-o|U5>b$*aQ5aD4#xYZPW$7hW*%B`tUYu!u&8Ut)FmIBe z6SSqHv*jVZp;}3G59{&NxV~bGI_Ce?fqpBk)4Ot4lf_S|E3e8 zPK7pC>bH2M?Khn$@{ibf=GD0lzYP{a(mLVy@LvDj@A)k)FtWsj^y)9uExZChPIVs# z62E~@^lO04^#NKApLn0R=2FcETAZq@0mRx2Gk*dbhb9RNQ{o*0;EO#!Hw%5y-JAbB zsVkrqg3zdC-|8H8mpj+z@1A0~Ucsl0!S&h;f~;tl33!-BAIdVQ3$(=bKqYf5|KbbN zU^D!)^$227fXe|e{YubVQ!}MOR$xoM)~l(6D)p@Sm-rp>J09sM3+P&7?DP~x1~7Bt z(`hl|i0>|_PhbfC>Zlhh7s+ZegDAZSA26id8OEnmU&Mjl@T$mub@Zw6e}uo*3t%C< z-+pp{);oNDCf#KYyriCbG;8I_Ece;Q?V$9zA@Pcl5diGhy}V4<_b!w}+wsd)zHno8 zlmxogs9HuXeQu1K#GKluxp~{hAc0ld;Yguwe&XHk>`)a`9-e+biKnL{&*&Rb%Bbl- zAl7Ieun8Vosno)Bo~(XlBlIfOIu7e%ZmYq^%7cI$MP>=?V;2dFJDoLT5r@usq#LUc zWxwr)>rvTzs7Y2XqODew-A$|kB5yNi%E4jwMAk8cgL;A1h9qc=`;9YHNy@()BG6Cfe#9A! zrkWRu4*P$JxqGARnJV8}_l*>1v+2+Fdnvx~d>zU?l47F)&bv}4h16LeNln!Lwt}xJ zjwFAs!S@K3woJS60UipWU~*p+5rOaYrwPtIPfL86eZNv$_>{DW4>6y%VfRL10v8$j zA$cc8>tparwp$-4#ucKQuE3usGEg*#*S~W<-N^DPeq8O^@$Aa}oNwM=dj!vTIvzT= zY=TF=!4eS0CX+oAP`?d#{U}L_3bSfxaNdy7q4Z%V`Y=tS!s8w1-=&U5bfRup0hqb2>JOZ*CTL=#y97o@d|j|BkK*QL-V^9 zIhpzf#zqykddCu+LsgH4T@7q}wH&xB9$qKxTg~rzl@#E1GVHmhOon^J$#2ChGU8jCZD(2E4lr)@#n)iGM5otAt8Y+rv>MmNVz)o_*2SN9d1aAkZ zbQQKV+%>#fp`-04oF(mI@lZchRVczH10$jzRQ+;Zo6CumMO5*Tvz!R(1W65#6_3BS zOUqgjv%a0#6!o2sy5lCb=+W+lut}E7c7i7PzW4G=dCg18URn4n$-m>{5F7}k;7QwH zb*Lu^5=HvG5O^PS9hP{YU2-rgwa3C?rPbDO+cfWN6mxHibB^`QVGmWkcXz#@X;@Rq z9T|t82_k(FO=qLe9jMWv0lUq07@ukulGEgY52d}8@*iuhpPVd^zTT~@@X)VM50fMU zEqccA)P;X~@LMqx1)yU-?@(PsnA%Q1P7^wUSC2k0Y_zcAasMh*(vt)+k~&Mq9Cr!P zFivZG-L{`9ftlr{G4*7PAW_{O%5T4n-HF4uE9t=9oJ+W*r0Eu}-PIrqc9+!l-20TP zgs@7Cd83I0kyhBRt-}0vYf2va*QxU2>1*Te=0$G+V^xGT)PWo<_D8H|TV&`Xzo7D;ZqP|>7S zd}96ht6eoK^dZU>(@EYFtb$eErv^0K2mPlVl<)0dvRS{<45%w=$OHP6>xAtFsJ91p zi~X{FhPj(l>LW>^EtC3}HFvHI>|FZ~l(; z{a^P41k03UmGuUi8eI{KuQcDzQ2+_?XIu*rM+sa2g(U3mJ^9;l)EPLu^}Q0iCbCm_ zWWOg8A4V5Oxa>w`!Ayezefv=7|zs7n|?R0 zq*-_U#ZU_k26nzBB^FnYAv40L{3pE>k&>v!#5EfvD|U$wz2O|S$?~5A!9gwfXFd4$ z{`_10RSeN3usSp^#g_WM2sDF3vo3Z2fEZy*^CGy-VlQ$;GryfiCtS}wo2eljOF0Q% z@ennD-4HPVowPxfFZ3JZ6%ZwZROIiic5DdJTj!`R(AG#_Y+;EnO2~b?zJJSrH54~9 zV}>ny7t@(v>U}o6<%{Fm>4_)rH!$Ou|3KrZG6xP)g&H9wU}$yN6BEuZf_lo0K6WKx z+-MJ7e&)iE>npQe|BTDSwJ=@#*>9|=iPw-)?(LJ+8M#NrobUB>GWuL==!QBf%x%G5 z$%_UMWdn;GIFP&@cQm4$zBg0~-QS|$N%&Y+{x2W7{Xx97F zlsS6Vz^!G`iN>W5s@da0^ySwphUZHspe?u$dY+;Luh;tw-6|f8Swq*9saX1ST8T~z$?;l*&q&)!#I2Q-oHJJ!^$oqNCheV4Je5HV(A zfObY{KmB?5&jWv6k3WaQpR?hA-eNGiyqEPXF$?;b#bU&YhhyNx?46Pr_}DAxIy)Va zgJZL5yIy18m=CIc%N5>u;M@`bY)N>SMCZI6h{sEfJxenHKybnd5I$H|>uJm|2M#YgF16JX4(rwDIsa%{r= zD-kK~nVri9MrAI|?~XhXGTRN)xPDQF@ZHMVBR46K3sC%21@@bn7m->g1O#YF+$+!k^eg=@gNA{3{HoMUq zebz`8+(;tfp2m(m{3X^{7+BruMiE9KKO+yI%h{10KZwSyWPk=~j)*yNloz`8EPA@r z^Bm}YEJJBV&xcQ0o4te-G%7?*9hLALTYE{AN=g%3e3EYL5GelXLV1`K z&2mA3!)$DvkEms`44|k;c`m%$wty*6PYfk?%>Y9;Pnj%IXG1yiMd5x=s)}A&VE^c) z+6W7#GQo?G_mKl;xJ^+4uEs;99!6(n0{P}IwxOoC+?Vew=>6{G1L{0qK}nemi44+& zKGLmfL6UDK1<`kG+#GLJ-C?2k*dh0g|ASS&D+P0AT0>a-tm%R!#QDCHpDCSnavEQ~ za!*~nD1SU_6FrT+0CFF9#_zR%Ai3}7y8Azp;1{$7P{xP@1RSmLXBGBlGG^Kpn=3iE zPP-{wk0f(CJ5Wyq{)I_c_4iD|7*r3Zl=XO_M#HealmCo9CkQx;<%Gyb{CyfxN1PY?na=&>G;y$*4}YQFmx_UdOYE_mYl;*r2K#!&8G2D_Eiv+;=gvdHCry7ZAzatJTHQCJWTC=8#Ml9Dyexr z#H55+Fr^VvE$_ay-Aub!x-MZ!9jz*7I|k_Gx2`e0$0LLy``$)h5{g~B)pln#(I8#A z6jAb13cdCukr^nyT5xVI}dgcF|=W)neE1ngtLcZz_mou()Q zpne$+xTR{yfGBbRm_4sSHD6^?mWs9p%tH}_R^|HYD;S3y10m=}F;Td|SpU4S)XIve zP-!^-H;uCoy@MYOU)%54%yh1m17|hVA2um2HEuwlZtx@|x+dYvilYFy25$&`0pdWL zbzrptD1E1J=74g<5<`1ghN)lmLkplJDC|`>o&E`@%DbXgE36R^jT<}HTbw9-s4C>+N|UMthdDiUAk<66z_TS? zS2SY>2cot!1ZD4u&LM+mVbEHR&!n*1#eMdsFYhyFn8zOF#$4@wdTp3rjZ-cX2|=V# z^hp_$;~@eHeF`T?LoP8|eSB>BKKY7lEcuOW5jSt#g|rH73grv!G(OyxYb_iGb8(j> zhl3I#Ygt^+UHZ1sbLPe5QhZVg4fLwXBFghAq~+u)=p?2d#!lfUZsikJ zn+`p_92$P^dJRm%s`FgOQTcmH$KPz$*4FMtBFAhattOkKUjqm}sA;OP1PE z?Aj2EL|>;Y;%j}DTbH&E_FhFmWG@kR?2_Vb)xEM%^t{wtI$Q3NF zqa>PqF<}AUp0^I5{ZfEmn~HEDF(9#60$6x=j*W4Fl5jMXdZGeTBce6Zd4$N1_y?bn zUptTJ+{PW~rNo1;RfuktB*3ZuV1ev*#nkao$A07ByA{)yq_6FG9OVt{AbQ|l`wxgp z8u~#W#hr2)gb%*>Ffx-qdTs-=bU71vnpkkmAP=FWC{iRXbkaO96L%qd(NR={@&;91 z%8t9eIP-XIsy!I8_$BzmY>tN=3Y??X2sr375ZYqeKv)anv#B{?0&;;F=jg`7s4hn0Nc@sH@^FdK{G>$QhOhYq8oj2#ZZ8E#G$w5f) z1~=*$^^HuHb1d*Yck|!_2)Y=?dGVvmZk$;>oVc)LL9N7^m5S3q@%m6so9RV0H5{6Z zzc0S4<0Oc*7MR7|*thra>t~3ye6p##@HLVfS&g(>m%#0R#ZGE$De%ok|lk^=j#=UZJyO%dIcEe6gP&nmt{*hK+3a=J? zoP%UJiDh4`zCe^np9FP^QNV%EHd1wQlAhp-)*Wf4hp^VrJwMC1C)xIULvN6-3f!3M z1rJ_MKUwC(m&x6MCiw6=!eP;9`5EZOHIapRi7aG%UMX(t*RWev*mK`3=ox~1W0nwl zA-k)c!xgRXtf}NIQ2HNDL?AuOXx9W<2Zy@#`aZos76LNqt`jU(sQlLZot zlJc$`M;h#$zemU} zD%5(G1D#LU{}om7{6#8tj*R(Uu#@Gv!m%m2WJ7#OVW)nOlbuv6qlCcjMUo}8gzyTj zuGeE6tWpo0`2lgPHb}0>x~CQNqS&(AlyJAauw56C)6XecK z@|IDkhPQ*rqMAbAt9#7$IG9rBO$Wg#P}QF>Ul#8@j`JObHI-7>34OBx8I^__(;#=S zaQy3n@P|MC*|Fu{0Zsi~kCy*w9b0CB%zPPWBw%<9nSB|)QN4>5&DvD?je~QKvGpn( z8m|)dX?5dkuH!85C86=%6SrueZFVkD{jk%^)ja3{RqV!%D5@DQ{w>97%pc^ehy>f8 z*d1WmplcO9&1HkJpqsDsku5Kd<&9FnQ)L>e^SMU)V&>3<%`~9Fv5$hvB(c`$z=HPe zfLELD&E2A9htWzLbLQ=1woTQ|K8QIt%8?`Z#`G}wBT*Kl=1Vo3iDBk=q)l+voiuR} zk$H=L5kfk5pxkjw&6LCa-NM9}hKe=DcP#$#hvc_f#lAdQesdI~$RVm_TNk?>PHqLC zu`@p12bh1biYthDLWrH-D<|00+&*fE=PJ974ofE5*UyVcJozdmN}^(xmw%Gy8T9V^ zwj9F|MY9c0M&~@Ugq_*DrhKl4sex(JanP!()7aJ$u>p3;y#>TKW2dQ6%Y`;RYVHU` zb=xjP|8k zv@Al+x=3U1*zNJb^71og1I^R^)1MlgK27*OCym6{QJx}|4rGX?_+?pjc1aHY^f}Zd zVkfHOtnm(PDqNwJm&~&G&W_*gGO1-F2nH@I@_%@|H{;a4Jrf5J^SJtPk_cvLaIz>6 z%6%$hV)$c?lZ&l=jxTJb)n?|Bz%mrh2 z9DGIdmp{Ms1H06U=kMG?Qi(!85v3zmPW_KSZ0d5Tv=T)GSD#X-z zDdJZ!#|o=;xjf8gq_+&``d-*yT?pn*^)1hD{zAw5AahOqg3`@VJ=*mw!|S*r4D;dz z)N#W1jUkKl^fplc9d7ATXAg8d%761%*rOGcxF;X!6#?G3t-wSIPgP4BuQ6d67 zk4XGQ(YHvcTQ3CAP|o5fOdQTsXgy+8ZwpT z@-`todgg#GP24k#AKj9R`Pn@yO|Z8WJ7&60dDj49Z_1ii?ONh;2}tpqr(n4tpiO7? zpwMH+JBJ-;>S0ZAV?Z0Y!?{UfM0TOr&@IL2Uz}U~CLOl@=6CZzmbiIj_WD0fk$(O> zl+nGSQTZA^gl$`QO}o&)drY-XB)H(5(v_=x5$^PnMx(zlJO1bMNPg~Nf83AW?n;R% zepJE^an~#V`bGNHD*}PlvlQahqo}h)*F-$a*)e0(+Ec0HFZhmfqfhd8Zq{HzU8)>3 ziTjdHrDxtUj|KJ}h|iyv7C41nyIeEN7 zV;)5tI5Ru!_2Ssah#T3B?0`H?3{W^SSAO3x#0;3bjD)&|ztsK#sh}VU67pGn4+Bq| z>Lp#{IbEZ}4S7bV@fSVc?^09!ix%*I)q5x8lnCSXu_Wtzl6j-B9h?1-BeZU3c+z$* zEf7LlZy005$w|zpeWENH;Vr}7%zm(6Kw-VX&NU{b!uP4`R#I0JQ(nultz$Sp_a6MM z*Sm>+k$cS(aPnSLaI)n0`JW*2rLHO0P$iMJo5z9=sob?Lq?4&?*otg+u@O`{fBPu^ zoufDBu3@sP`6*We8g=V6di7K?uVc^7oz$c}l1Ep<4>xOsFZ4w%_s6?&Y`*b7I&r^c zvG?#*7+TXv!`su;Zjvgb(cqT%z+R9)t^m4aSduPS)yMJ>%L@DS`+Zs^S#%T?o-=(t=xVj z`N~rL3MXr$#ofWKQCx4p)D3 zZbx2m1BSAau3qa`VV&Dc-ei9FimB$nY&o?_n*)X85WQQUM~!cNgqQ5SQr&4+!LU6A zJ+`Ci^mXYBEqpTY^og6tuJJv2o(b4&DbFE%z>D~>pi-y|Qzis*5W;ws;qosOg8x;M z?SJC}^9O!s_>Z3ddR$n62~?p%Ji!j*=R&^p=raGCF_ZKu)kxKs^!}Vn2V>Mj7anRI z1=?C4Y}_sCS@7ay3UCW}Q7{!1P*1+(Hb@d_yr;x?%w(J)78pLDUI-5OBHwLp51xVz z;(Hc0;Tdul+fZ3ib?VQ0wi7!Y>S~oZHUgGn2wyyPN!xfd>qz6wd_UmeSdH(I`Z(6P z?PoZo!VIG@Rb4J(KQX-vGY@HO@;lm}(4~$IC#RD|JjG!9QTyB->b4I*HHd0}JM>DO z9k;1y2+mpMSq_@>seY9lNSVn|xpYZ>kP;Qr__fNqKch0vVFm;i*S`F5(Z#=Tb4ACC z11Ry54QMixEG_8Pjt|xnZlysImTc+-Mg%-^`b4gJkJ*5njSdgO$Tj}aj-fl5n#%m9 zh2hs)@XBSJFrSjoU&|oVE5D@tdpRGAiq?=z56<|Bp%cu&9y3-BR9n!h9%PZP%5po3(;gv4z8<$I1E zu(zAkC#cTEwQCAIphjMhf}UsBA!Yr5u%=Lx;d2iO7#hPkdW{7&>nTa7+V)X6N>Z!! zcpu*J^n*1gkLT)vQ^L{xqbFRi*Q(yr4u8#h*;{9?oxiX8$jT>RTfX?$B~?LzT8Oqt zBH#2B=Wz`*4QNEc+$y?LBk9a6jMQwupccODS^su9Nsb=*B@~nTD0W|lTe6Mo=Ya)I zwo0x;x6_0I^}hD2XtjV{+lDNO2?x?s=s*u%V;RQXC-cIKx$#i$K+!WHq)hKY5hLZt zr>+ePU2Nj0X*qX#WF|*3P8%(;ftZ6gIFL@IFCU*6&I%wD#is`s&b6MA37$XrUEYA% z|2i-Ajpf#;WVxJj;C2r0mLWBz zXc;>=&f-GN>H63+TcWsO9mOTEgZZp*1UQt?BuNQ2Ha{SN9#QGO8~q~YC9fL4@0g_0 z9bG#VUUN#hb|HW}N$G`k>r&VY+CfiVBBt3vK#xRU(_if}+B$xIWxr4N=uN2H7lj20 zRQ63BhL?=(=|QatH=Pp217~rJ98`PYfqjI~JRuvv=uhLFn|~O=ASO7r%;D&o87fNjSOta!7#=kwiz>W29TV`SZGCf)~!<-=yRCv4=dsOnL$7zZlQ zmQ7D70Qh2{6Ts>7W;$CMl*?gTFMmLig6gm&E-xUemI3)6BX%Md&M!wtG_9?^+`qZX z(wlnu&ba4Ts_L5}3Y5gIPnbXN)KXQ7ABLd<7MnjDGo~;pT zyr(tjUnAS)d3?fVS)q=s-WRc}+-nwnI`*WG)k|IfGjXo-Tt1~uPv@XBuwQ?&_sJ_y z5b46AsVGo3f>GEMX-cq{7j}mtumts03fBg+M0R*K*Qkm57PTWJ02Yup8F2s0z zjMxqlE0z?BUXqYVi+3%|Z#MqwE@c_cbA>rtGW}g=UWQdG+RZo-zhf z+K4|O6gK45QnxbFgQ>Wn!>xvP2BY?j@|C26H|T(#;4Qh|G3b(LSEQTDqzuO{!{j*W z6na?^k8@b^f~ynHo2KX?n~ye^k9obH9k3jh!5iR~UXkxuv6@zstaI8_D7!;N6O?62 zt)_)zxuapqtcYm;42h07Hrn6@W1*-XNr2c15H+SB=EOka^0{9+YBpkSMoF~E01|O%t|I2RFG*V>yl&I7BvaQqb z98`oSBe?XI6j74HGw93eQzqy-x6FF~&@nyF_zS{((>3~E8qht8dD~$Z>oqOHlZ3zR zw9^h0kVPJ?F9O;}Av{bhp}Ve?m%Qgd42zRkpk{7cf@k5q8!9kq{t5gwhvCf7)5$(U zK6?*0b2DY8Fl7QAYz;&^DpU8$e65l`DA(Kub&%8avp*n11vK@nNe61sZUF7oBbvtI zE|JtX5w9_+Q3vOCr&o&Q^-^r$F&>SojA4l8h<0x~^E$bJp>^6%i1qmf1}t~K+Kn!y zL>^Wz&IU8&H~M{~qkpyEAyrYWiFuMulFxy!(FXbzO0xevZ-=yo|H>u7{L=CWNBd*$ zF^}49*d{oSwzFQgOuH3S7IOLCy*tf|KRt#7UjB72BWy3HkdN!px=}nO{gqdQ4A7zH zPmkKpzJ7S6^p4)pm-^STW=)i(hwk-k@HpV#0Q~k%4iFi({p9r1JJKHQntkLAvc}nl zmu~Xc^7%+{AG&tT7dgn{Nd~RfAClnYYx7Ox%|igVv{sH2-&8YFL_?N1@3L+ly{Jl` z?o~FEtXbA+5O5*OY3Eup_AU(wT581!uxM83ThAvr7VuoZ5!Wu3QwWhi=)!miA+-!)k4VWn@>eQ7N&?rw>_Je-_ zm0#>c3~E0iWZK{dq^U~N)7b6s!C041?&miFUMn?;@r*M^v@DkpIH4 z^0y^?&yv_T6^5!x8}@T2HneZhX|vWamDZQ_s2$u67kHIyt-#y0 ziL3xtdQQNPZ1jmq)vv-4uOnoD`PIU!&rw)N^Y|Z-S7Q?Wg}hagH`Qu|bY;2j8J#OF zie?!4Jk(Hm{`vd72|kN7rIDuiGiQWNH)(*P6?OxdWc(uI`8T?iq<0QmZapK$ET1G4 z+#;xWuiA=9F3G%g;qp>eHGR>@U)69@QIWl)!a4Kma4>!6ZJP0KM2q@u60;m0j*jIj zGf@E)v>|X_yFq)1Eij;=bFdR{z+!P;_T25U2_)hpz6OZDN) zhUoQ%>u(>vE3tpW$3cH|_5=LwuLHpDH^wcPJ9iK_DMW%KC6p!r?3hB*X~4y*F^iy5 zk0z*T3^A$@Iis>hNWS$fEFrx|O4Ta58y~(t$HembXw8%mV%6oM;O+A~Rh_NlBvBPg z1ZYPFA_og3RrnF*IA%U_3r~%$d;;Kh$@*#mf;cVyflJB))a6WXYV7Hu3$G%X9{8J9 z2tB^ay*h+F{{!-mLn7^T#k;@k=AOUeG+-HiD$@3rkf=$dEam=H&ue)9lAcw&m6L}@ zO$y!wD!DSTMEE?uxYs*j66`pGD#B-?mBO^lM34c;YW~4 zq$9Kg;Jl>F1xb>s?UJXU#ek&v@`zIl7xitWw9)rVtIH!k=-Q?dXE}Vke0~aa*IT^PkUrH+$>tH<8JT+M&n6EwR9js&>^U<}Rqc z?j;R3^e+jBW)0|w=ZrpOVaT1mTeHSLIB>L?U(U8lulLi5PsxcpWk@;Uvk+nb$tteV$%cUmUp| zz2Y@=>Ymq{=x!XQS(0>Sw*H)TwmWk2d$3+8l~=Xu{#m(!0`W41wAU>PFX2$96Ag}i z)6b+g!Vaz@O+(zD%8N)gKEg7mtoa0<#^k|2K>IaFC*h46OURcBLL`+>>Ol@{20>&Q z)8?V2(r|5$R%T9xE+*;-W*R<$X}FU30$8Pbo*{CMU zkNpc{yZyYwmpH8?4x5GaemCYb*AtlV4M%b`TtpdU+F<6;m)!H;kolaSoHNiy26oXn zg#k`d0~h;icJ+rpQf`0&QHX9CC9Kja9RT0eR)_5N8x2;T!%u*C7(z~=9cTp*x*@)E zcLUfAM&F`Ei0*)B*vApw+D~$#Rmn(FPex!<|FYu#b>;nk`B5|x%<$*-G=Rb;1?>IPT?4)-GSF5x6TZq=e;&j2*g6zuaAAhqy0lg5|1bp z{EED=W=Cd5w+?%PbvZ8*J@-mwTT`=!gA=ngkEf1{)e@J1a1IYa#p z#x8$v+TYA2IqORb=s+87QbxfRt&0-Sz@vvQj5l=|MtvqG#5lm?f<=w>p#`@RbwVDP z(g?YfYTYu z1aY~UromqCxpj<=q}i6eH7;%90**E9u-N*Vp6DH zZ}@gJvzlr6g4DFvFG-jlEHA9SmBs@&01RE2i3{7iAq5LDBK1)0-SBkv`h2~2?7l6{ za(y#wg<>M2T8nL`b8Q-{r3mTI3lT(Eh>VThkz1iRlb>ak?L8~_b@F0;#RF~WyrV*_ zPh}=kU3i8*Mx`yrx-^C7=+}SJGfoP%dG@kj&s=#SHY>WAW z+P#kZGZt^^yg_javv0!_68X`!Cuq`hb@~*B$sECkypOkJVVnl9;i&2pOZzOo18!zr2ZTap zAjiVZuV3XJ;SN>Bv=41sYu^iuxb&U(3M_vdnC%9ahsIAi9QI`CO}Ffk3DWJeJsc;> zF`BRa?k>7V@2xZ%cYMKSyBr$@SgFRnTi9ZFeGf!@raFa}ZWMW^j8UN;gGcs>KjkK+ z-J4bC`k<-g=z$HB;{qY-VQZ7aIF}0fEBZKH<-DTOcMqc%TSfS;bB8Qd;JzCrI0ajj zcFUXrW?7bmACSphAKFn;&HmbXtOJBlM zSR!(2KiA27-HS^&A*gn_-W21&tv&*}0s3P6hyn*PM0yhLF9T)$I{kudUeORSg^4=O zDff<_XSu__oZH&(E+S*`$Bo znWSV8zi*|H^wT_lvH&d!o!8yGq*W>ut!FN58$Nq`Z$`*sMe`(+>hx5CO^qlnI5#)c zA{(uaCEQ*OE)Q$e7#!kfM8@a3An8Z>&!oDJtQpv{85A6$_L?5r3g)3gG4+WgL9gD) z#mUC#11~-Xoq8rp?+%xO&Ld0vCLT^kDTfcLkDUg)&8*n(-Eu_#wPB5M$KOyQrrj55 zN-pT-aq1a?kLt8_SmN~86JUXyja*^j7gg?-yN2cr$LQ5&=yg_n`ROwDYRjj+jF02u z{rxQy&uxH?!|xIyi1xw@3IhFTEX6+0Q}_quI2lQT(Vq7$6;V0xFiOxPG^j++pHtuk zrKK>KMqk1cKpJzxb5Zy2!f4FmXwoQ*kgjkT{VgmBls7)(en3KSDL);ZE;r4A)>u}zD0&KuG6iplySP9uI>w?>D*WVK_O-4(!+=Y0!QDZh69`Xv)A|z zDS6>dE)ivGGBSo+C;3I>Os-2yo&Eta@GXUnY3_u1-ev6Q1te5w6ep2?*01QTi=oC_ z$#xOTJvTeYv?$FCp7EFs-XF)h;FWzopjw5&!<5M9=#}iMxL!3HZ-*{n3=CKl*&=AHDy@ zG`F;jN1PtY@h+JQQZL2DlAq3mmkT|~urOVMoXW+uz)CM@EBjbaP687tIHQQH= z+tvr5Y3_r|CT?6AJp|~rD7Y(&O=}(wfcbStXvQ|%IsQ_%9Vl&rvoqkWY6m&07ca+M3 zGZF!Jm^nl^k_>no)3;$QX&j4K0SW*+nd+y6gDMY(@3`(-BuNg&a5rX;R|D9iK|>&<8M-#{{P-5N<2bi0tJ6Tw|eX@5vcpR@)66UzoCJJ zPy)fYrC$mAb(;~)4Ct%%k7&^!cZ>gTPnTSDBYcgnVpo#pFZ$tcpEOQt>~K9q*TShM zze&<4kDv)}L}926BxcXCe*!QkIq0CiPJ&ne?Fb`7ZG?^^rbkr|`D^(G`8Y=-rAY~i_1JEu(Jj)R~BW~IY%UB++0h&q`~#w7%RAoU5&wEDAX zK}}uJsJV+JPP-!*P&IV`HRSaze-f|L1AN63cwnWBRf8RS z*X2!w3f-H~iD29}&77lIDS?lz$kJOj)JmEZtz*~2-JrgODC@`3e(K#PE@162q6Qzd z&?*;in9g8**SeoO0##0gQ#fHwh;p@I5*%L@8kr$AVPx`13V9=E;rLCvS6g2ajc`-y z>}me#!mj?A=iSh3s8jB?DD2T~Yama)PV~HRR`tn=&W~k!y=6=>c?B2t zxkJnn>I#yG&Ak~*owJJ*&CABb*@@$Z4gn@-62{d=%L<2IOJo}g3m<9^KWe`$(4|es0(ndaCkqS$- z^~&1$lAO2eCskD#mIAlN3>h|I3qhqnrU@nLFR#$uCTN##O*m(jb8JK}q?uvbw7rb} zNz)UDa+&~pjKEt-qQ)~BCJP)3`Wq# z3|=>MIv=xJC;|T-Ises&Ch`SK+H@}gH5QU6rrt~TPV_h)<|nyXrP}4Ak!f2{7}7cV zFud?{8{IT!W&PXPWfG&3Ssr`Onf~xT(rgnjwhNi0BAZPl%4N%&${e>5Qm@(1NATgb zA7`e}X+MTQ9*e$7u1=!H!p#6rZM?8K@K_#U^nJ7dpZ`@EmPb~@OT}}S%oS^*ZM_D1 zXN5RL${zGjC+BWSs}^j=&<-$9h%WQuks%7ljhniZChcx98+z3Xm>JkQykp-+N&y|m z3&dj46C^7NMzX{sy$g{639Q9riLfNYoT~C8(Z?LW&Q?^gtvt&=RbjBR(06HO+O_F| zF5rxO{)vhGF8A&KI2^_rR)=1L0SL+)kg-`z+D&Be@Ezz7p#K4O$v%uZW)8C-u+I&( zD1dIF`id~3L2=(jWrGh$y}9$x5--z-{6;wsjT}FWo=$X6q}94%caJab(EXxXg)YFi z!~hM_;Ad;Z`%^z4DXExGHs4nV043N4kE8mA(Ly7tlm0oHwk0RH=X{8maXr9y%lPdE zQ;HC6Pa5VVsUE{GS#NsVuedX#`0M2z)pnXEH0eCudQ70pe5G3M=%cl1v7DE^KOhHf z>cZMF)iw!WJd0)#-26Wh?-X(Pe7~=eU5?fEAwH9})(r`>N@dA#n+ z*5X8bQH4C=tGY#nYLY_xzPoJAU{efjcGbT|IVUbppQO8cX`!cwDCYxoke$ zxS2g!NoS|iO)oA>_&OS85QQREZxGQ-^HEO$Y7dE4x);gSPnMEAQ^G-d6Iz!b5

F86&Q?$hC^__#Y zxcZNym8z5TDQpsPdwpcQxy=P;?(w#>^l6J;;+r^g5Pb&AY49w>nf?Pey|)n+ zf>whSa4lC6*0+KZX@_6s#MLWE-jF!IlgifY_(^Kn?gAI8E25<>oAKD$yqyMcCGI8(3v5tuRNC?-fvTxyu{zkL488GOteKQkkI%o{As! z7w8yokhMi6#?TcN>~w?wAIj@LqCEWPIsW*P`~S^rO82Ahzqn3H0co&Lk^7=W;)JAs z^cp%hdKOWpp&_nRRYq~^*g-6%p=GcH&DEozwWlHZo=x=O)|qSgI5l|*smtc3D-g2{#s)EBKDMwUlQw&LcnWS>FQKNQKNqBN=cZl zf?!WD+v|%qL0q*$<{01j z#y40OVVS|aPI7O)TR*hf1}E8cx~p*a1Xr%1zAn2DAInyzs8G)3lt{xuN9u-acUlx? zr?m)$s17Cm@EBXF#mF%U^rbzCCVc?euLXd^1afG18e+Uwx%xcgFky z(E4iE<=^9$e*X9Fx;!6WM(R+eLNv;No`WFPgiN50q*z&p?KhxKcG+iBsw5I$?~C{0 z6*WDwGwSXe1ZOBH=*oqzqv%rjWs??YS+0l_lWF`R^o8YIY6Vd0ok6u%uzW^Y##tDa z-g}lv2?O-BZ%|!9RA(mvXM3j5^}=FY>u^>410GZeO9HGhnlOK}TpYecRIW|Yd+5l8IEGrM)F&13 zYwF2{h4&6YWF3cf5?xtHpQBG3Ag6um(yv)`o6ERR#y+hFvgW6U+zwOGN7Vu0TOPWJ zTw5I;$^7tcP$pKziyHU6osU|2=<6n(OwY1MD~MYuXQ576OPUSPyutp(zcwrjnDR8OZ886*0 znID1*?>Y=uLjr^l)w7^B>^<|9W0i&dmPgJdvCQ^qc_Zs^a-Of1IE$0kHXgvAY4J(yushSYI#UkNPt>s~wm%=7 zxalyA$vAIGWB@AO_je3?`s=B0D4`M?_wwSWsT?&@bKbyG(edtr@`O96KMBY2zp za=Nb#<`qY}AwPkDEn6o)pLT1j!R-Q1REJfU=cihPq9DB=c-`vfrnV^%8qC%~wUdjd zeLD~Pq(sPZrP0dJ@aCqk{>$04*KR`dCF8-LsY9m=nTgc5U^HFG+(x@vSmL(M(#UT+ z)1R%;NwW$^1ryrods&~)U&t@s(ab<{mv9N5L7ST=iT`B=IHmJJ2O{3 zulf`P`l}_)^q{mGV6_jItRvU?3*CHs6Fl>jpPsqa$@+C?r`Fk=z3@FYj&k6o(T^gN z$DnHL*xy|Y^9!c-?-s9Xpc%3>sYIZ_%$C$)S6(3XKl8D{HU1!5|0C&{f2Z%>CH@MJ zB1|#{^{w{}J5F>@Ut^0>B{oiRC|EsQre;!}HZ>`zH zAv(=(%?i|MI1d{oDn&N}mV7q_DV5Ljo>k%nXR zS(a0M)}+YA`+hdYuSM#~gA^mJN3F@J@0y1cD#de^mMIuJta|hJls@Kx@$cqhbFbU> zi@aeTt3^1S{|lZMW*4rWlpX#R*+Jj4kkmz>oy4AZpK6pf*Z1xzYLb^hj2GAR4ejD% zTYS5?7#3lr{yyQdj*ZQ&0ErC!fy0AZ+i!w~U+zaF-fV<3fD%yO2lcIFzsoMy`-}@L zcDI~)`N-%_$!YHebt4bL9i3DY^{0Zuro$lpOX{oxLg>?6E)NAPxp9h{fi~DfgY)cX){|c%rA;IvoYBJ$(@9LbQAhrKbOOU z3KWVCk>$PNZFB3xF-;DNbE7eSAI)UnxZY09_C>Ics%l2tviRDvklZwnj;Y0cdk6IF zUR}QWK5X~i3EWc?B}j*qr936ohwtR28wyzqJ}D7BU}+pOq%(5KV(m6eruKT3FKj0g z@B4G`t{I%ig7J_eTK6YB^2S(mket+;s8t08uG0*31kFAgS!b|AyG2zisl!@GGNX6m z=*xz#uHtPqHHyibH|r$rN0=_wkZZo`d_nW7%79WTZ89tTMtnwKVC$z?E#j8XguoTV z4Sf5-Vm!i8y5R1BUH?GPHtkqVP90W?elORWLjP$=p3H-!-B%0X-yyG~m_)4|z~^l}Y#q zKt8_{Mq;m2N7M9O2K(>2 zX8-$fvwvOS_Nxq$DbJvMq0Ius49kz~FSxOkq7E{v>1~yiHrRJ!1<^&M8>#8PW{#lI zRd2LFL|!M=ErNOqpf)tfoB*FZ*m_UA$ zpB_99Ecl;dedXLi5oGBu0T$$xAmC@lh!UR*v4}-t0HRc$9Q#iw3($(5 zx(KBEv&fUI;tD`K)Ww`>t0ARX!I5nx1O_LHDI)nu^X~^_{t+-jI8ZKs%NWk8=LDi^=fRdlhpYYxjA- zi_v<{i!;wrF-fRV-(?FRHl1Ryr5R&)NZ^E}q3T)udj&o=s{FG|N}RP24)4G1>M_!6 za2QiJC2y61vgY@g(En+l=k8xT4j^sKq}c~}oJtt-7mJ$G9y=TaLV6GO7sFaNOy9vq zSpvNW^Y17~T^K_7u0wxR8hwc{ZNjt97W8n?zr1AkbIb6M!wpW6)0|4nbqpZXP^=Ft_Y<>R zO#37@5N!2ckuKyK$zD_2;BoNTTd$ic*T1iyXCsu$3&Y1K@uhW}>IMj+lgdK9Nq3h% zuMq0V* z!6BrDCQkn4B-!*jnc9O963@eKUJtve8lpR4pz||4WtN_v-%QxIFuC4rU}8ecSGxYT zRdA)TF?)hU-$qu-3c^bMsR^FFh=+E+e`qi9R))JCBsM=nGGtVBseQR;Y`Da)WBXIX zV+SmFg*}5QpIl~5o_uS-uJ?I3&z(f73brMZ*9ci0<-5E{81r3~X8$M3mjB41tp5D* zV}M?1`(p!F^+QZzfhNebFHPYGowd6TMTa@*&Qkq8hE^~cB+NH02&5dz#`_!?XsT<& z!pmFg2?Ja=u1*RcTH1oD@-Ut6$2gSKXK^iAErdU%;q=q$mSahM;bVM>$y1xzWGfK7 zy1PRPIr|U!s_IY-i+fQrxwfv~@wap`bJly2iwU=l(r+>MW*M(PQsg_j$kms!4!f_f zhqGk;n$+N{b~h1Y>k9NxtQvDAKGTufo^F= zF&ps5+rt>`tSb~Wvg-AB%(s{o1Q+fHn&OYc{t=KqKMi=s>#RYG?fiZc(}e`+>Fr6> z8RBNp84NY2j8y^cxOc1|m^=6pIISN!uO%IL>kHQDoD%%vcmgyo8_JY0od=}#wL^fd zokAXEy4qssdXkXtKfR{>Ulxj)q6hHHh#saOXl%e={}+D^P^4hLG;|-H74p4+lQK>x ze51HZ#}I=In~(pjap)58b9Ec@`qya+iaN{c#J8w%R`JO@5y-BYZ~f<=O7 zOgz(NzM_`}0JR;=y~b-;Wq|C6s^gQuU=fYf@BCRz;UMnUVJN0;sT8v;)eF+@pUh`j z-ma`;);};Oc6t!g4?WacBm%V`2Jh&&%!JUg+ixo*e%kqO0;&Fqz!&@ckA9HgS?_in zAkrB?#&;omFUxF_4jAGdfJRaE)`h?-S|Bp_`4YqO5DbX5p#;<{z5_;M`rHb_z}b;$ z);0%tM{E0mEvW~>sni6(C(qAgrToM9#r_p{^rZIdIIWJjVB%~jJH4$oYXMW?K%;`0 zO2RKoV#klIbL?gJ)*Iy6V`%dPBJISFUk-30@)Cz0{17B|V6uH=pQNukkpDCXTHTsf zy9u+Uvl<=Pa(|I`amaWIF9Z!8xw?X|ATd--13-l&k!*B4YF`AWPUdsmX)n6zbJHYP z2-uVgR!2A?QcwJN9`7K?!J5gOeBR=^SV?HPLrMY zG2T!n2IjLHK$p&Dxmfj^)$|d0s$SXzS5V(pqh_lMjv<$>spN0pCVYl-LV0>K!yev6 zTN5sHup9cSH&9v36?gGuY$>y-MfuyOpfj4f^-n95Xoi$gY9g(Wah#L`?>>s}cyQuT zy^VldOnMOKuMvpW0H}LrEjr#I@!}+CG6Qu_r(pX&k<)6Xx&@UNx9$pV zo7E8$K5+8$@P##p)z(XW{*NlEIlMng2!zC3Ekv%p-RQN&YTW8~=BoOqK$jjZj5qDAEakKDuwZTBa^Jwy+Xk^DJnfawY6wIgD zFIBE~v+FBPA~U@B=;GksOBK!sYOU_d2(KUfyz$jN*A1K5`u51)#YCU~kM$jkWE_Kv zHCS6SDkg&Qi>_X0gCGotD^4XWlzp8jkVB|(x zj~`68_L0<`(%9Q`KKPhu&d)GL8TL5MudmJ%$5%kf335EV@K&spXRa#bVo=Y?hI`+q z;l0r>#*c}l@Y5KB;M}4Cb_rGXee#Ifj~Cu=$~o#emi-Vhvnz0q(z$`x#F3YGCAdd*V5a15-v-GIJIZnwWIZ`4hlT4o#{>8(hXSozFT6T> zm^(RsCulSr7~M4Xvso`X#EgOLNl)<^JzXyM=4&Y^-!&ec_I}cH2M&A~xw(9;`^ZLi zbp@xsCm6mCsQ8jxU<~hja;-q|>tKOI{pzCVtWPH5O~Z8`!9$|UjMlkBnQdQ5o$@-7 zj4$Cq0`Dvn9TdB=HurSRjFoBZs*hrSClkes|{^X;y zrbX1LmIt-Y`dO_HE`1~<%U{139VNI$OZN7GWdF}=H&=?eEB@>p6kTV&L)*!FqB25b z@6fVG3^dL245)O2=caiNj;zt?K3*oOt-QZ#)HZv4G%{YAP&Nu4P__kRJ%WCAmiffF z=V;ozFMV_>UxQka?bgUQr3o&URPrlol7N?Ck-oB)zhDi=qZVlic~(LJSdS*7?fJkp?PYepG+X z(?y#F%rhJcU%tD?S83`6)3^4O@K%BAA-aOyiR{f=j;Mya17*`BmSD5e;p8H57qLO@ zj9_|fFjN1oeUKAskjxnE!>uDt=qH5&na6ha_f@YG9knh9im%nrc zR~%QJ1tWRzq+TArqbV|`Z+mK4*!u};9oAIl(04$kl*(| z%W&+6*4i}E2G6HE1wOp;);@WQR$pSb{qstV$+V4hbTsGKG(T;!-;gGA=&QBA_ILsSX2pmVAbwQX5(!GPnaUN^0|FR^miWL5QM&~z_H=lF|?(U zJb>S+r<;_-Kj;nKRS~y;cqOeck{>-AyH;Vzprp4bh|F0!>qX*MyidTYv`s59BzKul zTXHw-ACgTdDKEXB)hvA97j%AZVr_!WDTHGA9qlfY#exKTN9)N^&D>?>Go$j{)rT#w z(w;oKtgsdVT~;&|B#%}c)hVrG8&gNur^`Ar4&NR$y4SGm7ZyP5)UM9SRqFgxq;=T- zBB@!H%QYF1swv-H0fg)pBhrX>R< z1?2Slp5X~J06D%`_hMN)WJWpxEQm-G#AhL&S&5^smLV!c@ z{@|RCs+e+*K()%+g%)%M+RkB}%%S#K)3Z4aG!g${9VRsi(_{|qC8pH^L+&uGN$wmx zOiC(2GFK2B^2|tLVj}Ikc+hMNOf-R1XoaUbJohYlzyPxNK`I#ys`~mrCFcH~|Nj+e z4%gE*AO-WkXKBxRL5qVBP)oQLjjT)r!K(Tg@N0hEhJZ&|Gy$*vi~ivs|#Ye+jZCh(9ZA|pq>0ys6eM_5hOiKCv?95LzOK5 z1meWsT}AV&a|=8C8lbcL-z-y%1ID8GG@uE6FECv}U|cb*urf@IIb?+YD=d>^C;;>q zABKh&)PdnB1l`nAXNXB=EF&W5Dmmwh;)QxaJw=-{rX}ScuBC7h{0W>R{*29Gv|uNY zld<2yTn7E%Ouqwif*l~~=orW|sXw?)xrx&_5vXz;P+y8jboMixZ3}-<4)FU|ncuS# z{r|QPwx1Hu(hNf_POl&`vRqo+Io7pEPk(C$lE=s^MMA;}cFn-+yQ4LNHI>xjz*QLo`Uu|WfC z9oL%Hy+lMmzjs)S_+hsF`T#YF5(M(ui$R;dwV9QBDduSnP2Fo!`=}kzzI2^Cct$Fu z15mP`6UHW48w&gO85W~64Bk?cwra}zW^ui>P`tfOLriO}j%eU>FU*-Q^_;!U;4Q(v zW!%D=x8S&0b&*Tnu-g9YR!1p6{j`YFLVIre^oT`$3zkWb`o=~W+0ZlO6rwHrO;_Sg zh@p`Iq>Cn>MIk1ljxr;%9%gz+K7^H=9g-Do57ctA4ZaFm5(|x0ueMvxj9ydpkr{xK zpCECv)M-{{vfqZEYLk1{xF~%O`+46?x3-Aa{jHyZ4Kd*&8#squm*hK=z8uAu5(0ZS zkW(YJ>W*Zioer3m)N5C-4!oLP zl+j(Ua(P?W9#gdg>E#_F$MzbYJ%-}_smgCXRD6&HE`Ae^XF_yC+o)Yq9s6Z1`?Z1h zNLN0a*gcR+nCp-*UO4tX3-{b~SO?yM|Kb|uLvAbUMT3s-ITWqM!ot+qWgCIWbdF%C zV}ADo`a434D?+A%g@#YQ=tmag1+m&W#%^zg%6i+C_ujrCCaugnIg&TzYWm5v4xQ!Y zzKHgLG6;bMA~EGn6M`n9j|%i^^!B~+c@RusoW8bEtrh{vb`}v5Cg~|7pHnVZxqY_Ebiy&1=iJ=a#mjn%6!5~JaCE@mcq+Qb+g%gw&-6OGe0 zIZ-+Ku6TltFlkmjM>> zxTGJkn3i}78nkjB&&V{p5tlfTGx7AX>by$qdU#Ikyey}FuG+DRA+<-q*Ip;v0xN%H zH4CqpL&SPEaqyIUg&T}Yawa~Tt3(o~>F z#$3p?^Lr$!)V%PeV)wS#7d4;#U8P=CPN)btn8AjGHUbSW*xa*@sGc3f_{^17#b4^E zcwe>)C7WR&cKKA&tWcTg>{1y5*Y#r})VbuBI^lT9AF>9fPY7hzPo+A1K=i$ujO8;uJZ)VqBufPkh-oHm0U(tx( z$Y1YruI%WnhpOHOm;4ezhwF*sTjOdADo@HtSc%7`Qu^@ zROi!U@5Y2VI~_JQ76!;8Zzdbl1tc3%h^3Gh0RI-#*S{z|>X<_DhiVQ*Nje$Q*tZZp zot1_mcC4T?d9rWR14e!X?1ve@*v?Dc*PlyW@QUR8gdOZGG;-evga3HM!kCr<`923E zR;qr~4x*jvwR@}aJoIK}=H4w^gZe{sYFw9H#!jLW7iq)bXXJvc?;@T%&F|tNiky;l?9=Jr`3xh z8>0P%DoO}JbknD-dQb;#amZnck&lI=9-16V_Z%;@Tt3Kbv!$sQiL0m-(VqEgi(aOlC`bV=q zB-h?g7(Z0=`eW*=5#8xQ;p+4kpM!CChMsT4KWC@R_%;?cWCbXnu@^s^7S+0Z$tEXk zx2~ou-<2Ke?F10!+#s}T4xq|b5SuRAfy_l_4S|~`#&Pkc+e>RX!b{<06H2x)=h%&% z(ws86lw&9Y@l$zdf;A~UsH98n{DE4@l-lZ<$)O(eT2=I8pEl8!#nAJh({yGMm%Y4! zr+td-z{#sV99s?#p81%lfG#FtganNeZEYfgY03w6YAtVcO4c*<)fDm+M-h|uB{;MqBWEJ z;%;SZW(nZPpz?&wIadkR+J70>YxUfG2-6V~%s1DrT#Vr{AAD7yxy6df(0lQt+Gt!7 z=K>Y$KUe<3BN;??@dZo4P)a>3ixdVGXg1St^Mq!cLJgqTgY}5fME9nWIzEg};WG_O zHu!uI-QCd46q=JnzavbZCI&<9gkktT%~5Izs}qZ=p4-dHlNmZ3>PB8buc7#&rxj64 zm=O?YV;g9Ff5byE{S9JD=*s(TG;Pa7^DCGkRS9{|V@n{K)gjHxC5 zh70-UNv>UB?ewpS>6M<|j$W!mH)ikMGqAN-f~QeyFSOZr@Y@|$7t$zbes|I0bu<1W zR@Rz53(hlfU-exJWd1g;2e5L91H>SA);l`(zhSwbwScjWgherx*3&p>Nd)Tqx zsu%%D?ZK2v=6y_zi+#X(%KaEtXHyIG<#WH)!ll>`c?ZEPlA+EIt@(RU@_)DQ6fBj^ zJu7^+83tYH0VKbeRPR%`xo72GRU)?~{FYi;)KOGz0G#%FL+Qp+0`d|44>;>Pje z{Vy0s4hu|V9qn2CA<5J#`DWlwGr7rsNIv3UFw(rrzY*k7VnSFg01ZAGfEep~0qpNZ z7~=Q|078Qh4(w)4 znyrIFiXISRSSnCOb^r?oOir26QwW)?AKKjFAHrD-XpHBw@$ctKrivTWBFH3-X30j! zI{xvaj*FkyoRpJ~es*4#ou_hUo8=~L9nE7Rh5Vx^axM#W_NBao`o6cVAOg<Ct@d8jgxIe%s7tICd6(h^Td~VdNR@k9`TJS75 zT39$eAg-WVu|{&AaK>JRNt6p^S*3M+ zrbDJM9~ZTj*1|XpU#KrYkvr|yFHCEm@MWEKw3UL6%-j|`e6582mR&`vHTz<#FUtz* zA74RaIm1kA5={;To1@4JD~Qf~7B15P7DTe-+|eKQ%8WqmO9MH+MasDEQCn!Bx%JJ-IM?mj}8a7vgEa>6II*L|?fZm{U+*%fHLTPtMG=4Tu86m~rp(byJ^ z9K7wztY?A@a9>2xc8YRmfiYRY1x6=iTRsx&4{E=ucGBat8Hd`-nV`e$HEW35u+HSA zauRoeCfZZ=(fiBRk#WS{XZ?p}F83W(sLm6-pw zZ<|R@0}Au`()s*6?goiK-mL?JC-}qZ(zTC6 zbY=BW?~=gjtWbX0cwro*Mfv7!x)XZ)45Yz0oCZ-YPYuBpYsycm@L7m z*FY}m`tc_W?d$Jpul2O`cup(w8ef=E_!c2*d1Bt*BQ_*Hj0e14NZRi3X_Z)8Lz}n@ z<9R)wt_h5EvJO8dTr(N0zH_(v3ey16S~$ZwDD?&G$q{!W)y(Df;LLkFrO+fFj({uE zQc>rJ_I(@LdA@QvM4`)zLJ%X~uun;unjXl=@Y(6H_QGJG(nfDzg~Y_e2wsH9UfZ80 z+?qY_o{enZHzR)WTIi`ClvmIWlhb4UgbbyI>Hz}BtLC<5JtSWoo9&_O?6%vDMSj>? zq2u4~X=U~)bVd2>+@V7Wc1K$RM(e2Zaj?HFu8E!+6XqI)|1j1%>~8nkk2Z9yu<{b5 zRQIV9y^;Bl83tLR*Wtd=jmvscid$jhgz~iB38UR##MdgnSo=`@vYWePc4wXWgC1ezo<&{4#q>m02k zvCEo%LQY7JM;()Cahmh|0e3MU!=;y%uKv6{xRJBRwiOAJN4)w)H~_tKdwS66#>`41 zE;|?P=0L@52*~K6RETa$;?E`X$ZBFID6b%1r|c*dEJD-vL-x@Vc~2DETyNA{rbpf! zj(v8rWZT6$$&Gxn_cn63l?Xs&143uybQ~|TAw=hK- zj-fblRm4xDoAD;u_AN!%z8$vNv6jGgUZ7_w;Ai~^ z&bc&z`EDzSte|$%yza7Nc0#Cw}%mBVqxg;C4Mc%Q?ers{gIX%$@9wnG)^}J$dpx7FzZ?U(X z2UE+1O&2zhN&OX1)wjARpC+RoC!3V$Hl4GTGIdfd2vIf(u9K}uSlGrsh^FmE!V$C2 z(34B&!2C=&3?cv%@y&~<5lg(G=(k4AlyaK5Ot4^XOKp4?9sq7%K z!{tnxA4Q#o+~g8d_B70dT3l3eLt0q(^ViJu1V*y4vEfdE5@h4V&t^E)u)>0qTv3YO zV2k6Vg!)b#RVQqIHXu-0IkEl1z2sze8D3*|@nG{Cd~7sjiWO_aU5e(3miRoHW}+GG zg^ts1X?aP3@P;Q17d~w&LKkd5$Sl5$cPI9}f>5w#q82J3zNui(hi9U+BFL(uoMg59^(7B;OpW@w&AT_T>&YNE?kFTG@Lge> zoI3xrKq+b~s}+^z{1md0zDD82KPVEVynS;`dbZSU;Iq%e3#n%|okW%FR0&txc2#GH z6%SsHHfDmXl0bT9TOM-$v>VluoXU}t?j-3iJ zlA)SXZ!upLY+xw4nAxLB^gF`{A4Bam&%a$`aIflZV&aC)rJq&KfK1$ldCbX%|MWc8 z8|!i(s~oej{^P5%|5pEhb^m|=XM$d7{DYxkJf6097Jj4bg`P6W1g3Jb6D}h(5&p`D z4flvkF0QE7?#+N<_XbTnPCS9`iy+Qn79ALZw?Q>vVk=Q)azT@|;q?kaas^?sf=F|k z1&(}*ZH9cGVSSfBdg!7zi15(P0I#62FW&;cejiRwc)>b~1DxRXIF5o&wZ$eombm|B zX2g~1*&R-TTks*MJNIZqyZD!tD3_>H`H3(SQ=Vnj1Ys+(Ez4Ej!9i(9fCqh9jFW!mrU<#WZ72UncXS?(#+XW@bwsusyG_oL*vG zCn)^Iivq2Q#E87QaiCK~o+mv)Ey&WIu$Z0DoEA>xtU0>f1y?t#cB4Prq^O3`!SDlR zHEOi|D~RKD-sssLV0R@z2>t7iO#55-psW21bOC|(Y#B301SnN5@mGgO{pxRUIvuJg zDuYqN+Eru<6F}!!s~LG%b*Zm{$)&y%v^#LZ!@)Yg{s7~3{w&kWYl=l)L3lfat{?#B z@g?GKzEJeQj$x=8jKOZ)01&FL!*N6P83Rbhk_|v7_@G~Xz)y43Lj5!}$kiMC<%C&% zf~!+>^&R|61NmRpaMj5Cg;`y-qCb||)pc-nq5sLXS@mRopHI1JMOUrpYBaGLF8wLv zL3<+1H`#YTTMnx>Anlb{Y`ucO)6b-me&iv1ShcSCPl-j%nP(v1xw3X>DD4d^6lOM@ zll6TvyA*MrTqhgS6yb`V*Jr)Q@`E-zIi=bs3q%Ih4xWk9^vs!W-SK3>!#o7gWU?j~ zVV|~oA~$3k6o}uTe~2YO(JJkHaCpsE8Z))cn#Hes;5urt_Bo@C2PZmt8uM`eVvy&) z-Q-Zhuq2%@hyLIyGw;`jhxxAelLBJ1>x=euLSJ_!ojT6-soda@wptB7iW@)s>}>BT zra)F+c2TzPT(xCx&Rfk2iCZEf+bj=!0wN?D{CxuoS$k9rF2EIvRcVL!FjV!0F?~$Y zZ&AL|$w=AX1J}sR*RVETNrbGJvd=eQHg#^E!qq;ISvW*g1(`a)teSJ^v|{=T;OPdA z<{b`{{)tCYoFLO!hh$0Mkf0KKsbX>01cn_N%7OuHBF*a*fTVJh=re>NojwORjOYbQ zbrr@jbW?uFyk$;Rk5V#%+b}3dA+v(!H9#riH+;Z9FKPRW=3F>2sMriWberZ3i5O-w^K z8sG3uI`MgA6_P$x_8z${~)ZF$fcrbx0$&xh|-#YL_G>x(j zL|@DLOe|rKV)(a-BohU{H`zMzE@l-|M^!bRi8}Nu!(8#>zGDf18P9=;BTVUMuyM~T2#I5M5-RK2< zN2XQV+*QVX04jI>5bgd1a=H!s>p81_6ixzm@_+vDGv%P-y?_qg0uuk9df&k@gpojE zTpdjk14kx9)E&*}m*?5&x__qu;T$Bw0y|i`IVB_pmpL?knDE7w^?n86fa(;xkVZ`pCg1YX?IHr>BpTjJ1m9xg-mmY>-tNA?m$;wUUr)+3W%7uEWagKoS=RAr zWOXEy4*V3b@>U(BJppAkZVpT-Lf8u8*Siv$@a-zpOO(;6oPH#q3seyq`1)hFopXK9 z@y=T>PWlFyeeyb}xq(wnVSR-wf>HiE-&5oO={JlnrYj{J-r`1er*Qf$*1A@d_HNU& zKSduI*(F&!k*gbLb>_>(Pdra5*ZMCh)dJ-I9nqRV7g7aTgvX{N*z*|b4a5Z=!v_~V z)>kTuekPRp-gJJxkMyI^Z<@WIBshlKSwNBZ9Li~uPf3lvFyo+?uDLgV9Y-bi^TSo_ zAp6bnA98sA2F(YEZ|i6>B=`-|6Fp@L9+2McNxC>;^ge6j5)jU0?>A)dgC(@FD-Qw3 z0RA02JqkQd2dL^5tWKXG(H-*%xk>#b+U_MdBB*3GHDv`6e<_dg-)qXN-=TqWk6krL zIu#UdbON$=_@E)|C5xT}euKG3(7v}qN5rosC$GP8 z<&FmDbBzfZhAbf%&=%W?{hZV6eDpYGJeAY;BF?~~jNj5}n)-@%vBI#>>&urrfT`gV zQ}l+$WJqE$%qW5=#Aie56h&Ee@upb{>1kIjpLlcIvu??fT}nldEpj>VXZEl$)E5p3 z5&L&gW|GL4F5vCGe9!dS^apW4x9|mLXBEYzdL`LYaMNuRQa^g@r052U`U{YeLK;vX z8EWM{o9i^3sp0av95^T*+G*pKL2}4X?JS(&c6P>wQinCgd^#6Jeu&p%xf6Z!0 zur&*P78Kt-(V0@}6lQX^ps7}7ZQ$X-brBswZ0FbLDoQB6cG6TbH`TAttVyvl%kwS& zT74+;;mBR#yV_4=zty@UM05#dL7i??RvXrG3AdgmrP_JuDVNTn#Do09?ZPOj_ZpiQ zR}dFUwznUM2YGZmz#Jx-&_+`Y`sLSO*0bs}P}kSlR(5@YP3Bq5 zFhcH-M!z#TJIFhpS+VG6n0bn%ROt3N@;>#I&DA2%gC>;3Fb-dF7uxa($8~5 zdk68q0~)tngW=4r(-1If;b{1FhU2>);UJWT^@Mz(sIHbP36_=*#4H$Qtsr25%PR;9 z=qj&)1-$W?M}Upcmp%#z@D0=Ndbk)m$Q1-yus28|rqF@KCs-j*m+Ays)m(BA4HR}o z7af5b)IoUx`66)i%EzenGf!5(vN~d`6K3^&Sv41{)^c^RSY0buU4>OoY1L6&^^;e_ zgnw<6WP*8&*|AeQ1cR`fNNNU^RXtarp`(3D_Uz{My9MYoukU}ThCD_DJ&96?rht=$ z5h=39d-9L#(hmX&+a%?U^mwWhGeun-i)a>4&yL6*hY6I&)gD>vJ8*wI4Gk z`sfy;WX@h}dB43P%yw+3;)?WuO`g&~oL~dKneweJ!s^HSOd)h$X-WK=nKung|JhskpH$6`oAlY{o zvY4=gBIny_JRSlHZ?s>9;HRP{X--svWui0n5Ir=h^K$B0#u8_m=s=O4f9|y-QGy*Q zQX^UCCVM5=`iUJP|WbgT!>-kJ6>v3St7e`0T@#Gqu$#*}T}RWnR= z5;|P`^z#vlQJVOE9NHo@H#wDk7dP^*#V(@?)%rIj;=5K5mcek+!evgMteDSt6<-!K z<@6KAT#R#ZJiTv{-OTw1-=A;xf(vU_5RY`t==8xlMp?$kmFkB9vQZx;M{_nLl z|6=RsYm9g_hHe>OK^#zf=1ZBKHaBG9K%S+jGw2taG#?tYJTG6!NiRf?=zMChP-7+m z^uDf}xYTv_7n?xF4h=9b^&3mkD+tqgxRNR)Q$fsfL@zUdT!$_CzqSUX!23MI=SVD}S<^ ze*#-+@SiKtPs`36>p#~Bmq)yo*?Qm-QUc!@>upLrV2IdA#qd~@Iu4-=QR7>$;=39k zNtYGn{=t8q!LRda{u4PKs%1 z7h1H}_MD4T)l5jI-nPMur=A}Q+p^{8Vj1p8+hPvG9;*6?1+6ss~>35=)Pb@;_K;X&p`a;2F+t)bF{*L3#K{Q!#15Xcpv4%>`EwB7_F0Bb*8~p>N`WzM*1c*2ApIkeLBW z>P?@k*O~^0*T=adq-XBeH5NVj4?P8$$F!tDE1Dg-qKvp{Fhl5x%XQtt=CU+MTHk)x z!-900eSY?!%ISk|gkXE1X;wKwTsUOH2b23?>xa5 zC4du!x091u2Wc--G-Af@+z~R;52^C^?hm*(chYU|n!9z!3~+~F3&5%>n7nV^Z9`;- z#n)xUgd}{lyAc;!u@u(IX>4fUNX!d-$;KdPL9&sc9^eVJw8iS7IHkJ%#He>lW*1Nq zI(V#ZIW5Um5Hu>F7B{4BxrEhNWImAj!WhRd9_|(z0yV2=Z;81c&hv6wEp6u-R03}L0caoChIm6Q$oN89~&}NUe zf5E|z53U8W@7cMqbMr9~NxpNEVTZ3j`~Y|X9^by*;p5enSXkqZ(!!bo!I+Kf7z$X) zgBN>TqFr8}^V-=lc1j*E{_!BkCC8m)%~RW4O}|(GZlFiW#N5GRaz+1;zyz}DZnC*z znO9+9Zjb|$rO3v3uLT__0wJ15EUWcslR%TBh?K_Kh4iNPchF?nZlQSwfhLWg4tBaP zRjRwSQ%%Jn2tX{^d~8hPvzY4XaG1}5TAA+XK)b-5lc9#h<$Un1;djv>>UksHeSqXs`L*TTmroMiyKqFRHfkRa9GUWZaL+H*9oQ zJLUUBQSLA2C+aUIW;C*AqYRnILWw5=Xkrhb@Nw<~)eJA8k|9S7T~Yz+8zwGqaYsLp zCVT}t%h|Q+5o~ZdMCx8wKf|iaiju{V4yCNsMB?GR`3a6_J0} zcVF(fzYv14_dgkzKmz`UvMv4`S-upx)n%9Zc1_nJ(dO9){YP3l4@zgg?e9G|m6GGs zJt(!k+yH^A|Lxn9V$aFqV*5BjpLrWwOHP-5U-e)k{Pm4e?hvun?m!-SG+XWbNArp0n+I!Oxh9JB%n+{8vI1l4gVc+0gj1*ethf4};#(l; zG|4p3JkDdU4+Aq8u z%Ep4r9|iMzDJuLB{!j^BhOqN!esKlc+(p5~i0IY&CEQ2TZK|Aj9K|{OoGbv?vU8dw z&Zfs0`VA@^Y6$BXS^x@)IUlm#7WAc)<6ipZKetR6YBgj!*3Y~yNwyQ#qza^zh^2pd zoAtm|uwQFgM7y8Rq;!9L+cr}F-oMsFAw^@Z;QDTlGA&q8Dr>O6HfzMPM@6~ozR)eV zRjUK7OJ+B=5*NK2_|A@p!QeFZ@7L<@+fp*w0n<0)-q-jGLpA5-a1i}nl0<3AoeOq} zd2(+I&fT~W?kv8hVf{^Aw6hs5kqB~z@Rq3IsH%bEv(-9$g_5cax0HkLA0C%}UGU)A zY3Hg7b9<(?pBwsO-5D%DmswAyo45D%*Lj($J|tPOF0Gc`@C^`EU+^Ulc$Nq?<__zk zyV``|JZBu;Y_?z2_*&a&-t8yN#u2L3)qvwG-~lyf)7k@o1Hf(@@6IX2MIqaR2S1#Z zcIi9R%uel4E{;};v!8arM-ATxtr0$p$#d5X?xD{{R2KI>`}nxr6S#gP38AkNo-R_ zM8Z=oEc1HxP8`#*aKnSapgX>IaQUDj8kJT~Co!J|6-H>Og=pcfCVuUl8ME}+B3Kxg zAMyMa@K}4x7B6!1`1?K6C%7XYp^~=QX%a)$n9f@g=)jPg)I4GH+QcjHtspYYTSmA1+41-jCGnEpQbS4O#AqTNFjv%#%U4j7O6#F+nm_C_xc7*-0Fg) z2g+LpmJF04uSavuJojH$F@!CrJaia_qfy+?;a zLpkWe;8!1Z2c%yX+amKU_^@^EZtj7MXAg+%OY%*Mn4vUGvB@X5BrRJ6nK6GjM=n5hmYd<>hdzyP~+l#_GI$)MXKLdkB8f#s4( z5VtQnf0=I%G_A@MlV^wzXTl=D_r>k;oq-(NmyCZ|5F4)_!WOxGj2*bOLIz<=1+Xq*a_u9aR&y z7JgfAneqn7&qlMbgH^O4G&EahZt z;Yi*mr>e7tQ&X*SCf~(>ojxX*z3rEbt$9lUe6ru{3~7dJAG{nVVJxOrPrTk<>C+o$ z%jmrdmBX=WH;3<9Zx7;sZ?L{2O$FuG3>I;vI#|T%NcW&@`9oOAH-lx+UD7NOdmp=A z^tDsP=CPFr+0(o}v=E?0WH#nKZqeDHQsodG<6L$V97LP1L{)+MiCJ=_s@Xfh94d-C zQEq_GP<{?0>mw=9Yp}M*oQM zR6b_>k@eQI^ouuMXo|e&g0HZMVAij*igMrgQu!-XGFdiFlDjKpPnDn3l*GR=*KTNR zyp$|7VGxF3J%m_t6j}tN{?r@p=haxdJ~8uo6dW&u$WXFjpy&(CMm|UiSA-**)4D3$ z&Jzb;F~2$7z;Z&}ETqk6I@OuULf`iP4(XrC2WrdZ>TD)-C1}NXtA2Z>(yuJ!lR7AD z`^FGe=6@`1-_y05Gjz|T1>mBnbS!yU9nBAYB=I3}108%{gu$T(-Ms{F_C-!K4lhwa z-L0;i0l#|Odf@5Q$YbvaXg?2kj^+U6^O^sM>B}`A@^jBOi)peLG^TMLh!m;p!`O&Z zT=pcoD`Kd~_KIK5@zK9ct|l#SC({OTUkkYwBYx_kDC~aaRgt_#A;)0waJKEE%U{CI z2yMSt3yOZO*%7%0^mtMDRT2<#x5AD|+5+<@VAi?No}iCECQg4#%-VRM)i!Th=kf|_ z!%f`F!c%;6>loa_`Yt$xKBpN3= zp&PF%$j5wEwzBtyz%@QL7p}OrIa%l(Kc^YYr`2Vc zXb0#y~qabAJ4|F z2>hjz;eUy&_NSHe$Mt`b8~=-s3;KKazpy|+p3#W#Z(|#`fi8dWD!SwQ{=@^*Py<^w&~j0QMV(TPXDdUErVtzKtT z;8qvWrLr8(`>d>!OKM)xT3yCF_stnei+Ek|*%c~7v{@01;z?I@RfrqRoJ)od*F4|-BEnLs<7x( z^8}X`HigiRDHsnWXtT1}I!#59LFX)r#OF$_9xOy2@OH-WU7pZk4Bce6(wBzY?;xVy zF4USN{;m%-4Jfq@N;2({7h_k-lg2o!Q79j8xXo7v(7ouy7rHWLm^Qkaihn(OoLR^ znynYAq{FpKY|#S_pH`un*>mNi&~ynyamcp_$wu{5=(H7UpX}JYp+9;A?Q`H8a=(OsAlU}nEv|6`v)u@jcqXGku3T)eDiqWKw_B=dDrNbOPh>N zo~2I%o=h2B5%nc0jKj~##avWn`7nv0kYG-qsbGQo+x)Wy&R?RaC%>+`y>x$tGypG> zUe=CCTWWP+ZnPBGsJHBW%jdz${1oJ;!rn*dD9fB?Gejh8418d{_r?%(<%B1xHjlYM8uc{urQ zGUe%f)+}>c?xKhEi*tH>A95*Q(cqXiiXYrf&q$#=)rkTGKbS((biNtqyH;Fi>*CzS z^HI#RTs4$$UkFfmZJEV(^pRzpR*O?Wz3DogM4hQrfNYeu%lti{LVms-;m3VP?dD`a zAFG`~QwWO1$~IgQLcoJo)tD2YMr^|HO@PKuqbm;< z6$8j~HV8N(e5_3e#{dhC7j{mXu7()nKt`Fp^%jXEA4bldT$bF$8lK1SFv3|Z$Z$Cs zY@n~E4gV!Oh`bR4LcTdQ{9(|e0PvJJ;=+Uh%5R!HB?~pZ1R<5q1US6ifSP+*H<7n0 zikw~1KbyBVt%=qS9&SNrKU#) zOkd~}jU}{)kd#CA)wY$$hN3uIJymGR_g_w$RXJ*H@L64XIP8t$x&*@ndzyY>{1}_` zO)|qSp}V$R!QtcbNZ6u+d9`Q!u8gk!={ZTyq*LEfW{7w0diIeX<>|!7;^z>R<@k9C zj2J>_S64bvr8?PF0X=ac58isPNgxRG)qg;gTDl5|1WATPuB}}y@}*; z-oC)U7L)Fg;B`kuAX;)E{4z)A-8fwWgKl|yg(O`+>ew2b@nu;No3D|#wdG9g3ja6d0m<6qQEq9_!O8JBj5&wb z1v_(Ab~tCBOq{e>_t#>aBa{e>j^GJS#FppR(x1atpqt)G%6!28p_cgH@}d8Hf2&akdge1tL{RZDr1ZXUF zJ{=|82Wx_4bQiE`e&mJKxqE*`J-fLUIsc1z0yvY5-)fTNqb_fe}o8urtS1TM1{f@PJ^)pFb; zEl4HiBDAb36hvh1cP6jwbX^wdQO+?x(!F0f!sWf2&Pva_o3@_~I*r96Urr1idN`pE z*}qZZKVz(E-`E*CK$g2U-%QVH4qtpvBRV(I_^T3$$Xq z3k8AZ(hnuER->n9#!#qcnFSQ~Bat6-j@;)vG9KfR&N8s$JCVqPbG`WSNa4bH@jHjJ zrcdwQ!o_G4W;=kY8Pdg>JB%uKz=pxAbQZ+y!i|Y(^A+BpxVORE+*)KUA6@d`chqK6 zQC8d#$SQ5yH~bydk#iArVu=jn%ripZjkCkFwx=OgIyybd?Bqjt%mW3QKCWzDQ@jIx zYQ5&r0;wsgPk`yhBC=IjFEN6!em*EN=9EV+cG&f7?6R)I<_DQK#;zK0#qW3+nC9;- zLAXl*Kv^+#4{~bXX2p`PUz)SStM|%oJX#J9*V-u zoj`W{=)?>zU^GP+`R$7n+)S}Q#|PvHYM%gNOsylaw-pgN3UTE8y@(ogS#enr+C-kd z)C(;X+o0yeCbVR)^Jaz>x@O03JhF~fUY=L;@>Q6T?CVvfD{|bEWT2X6KB8cp-NUhn zw9lBSpmVg5Tgs=rnp&6jS|7;sy?DL{Pm@BQy?C>Hx_ma6C;)?$TYX&R8rJpHwj5Vc zA1OJ1{(EcI$>bkgyWRC+{EaOa1;@fTk^s^OJPP~0`M?Vr{b(I_B{aXW-FEfq9_hn2 z79~42cF+X1*MfRAn)06rs(5ZzDqF`p1uxIQ9Mi8UW5PK>bY%%QL^m+ZZ z8)|Y*pefZl(t1|79X+!A{0Jn7GtO`+yV$H<^iJ@!Rr--wM`<`IBn$zQaFH4nhbx4t zO~gm|gTgJNR5c6t9>{YMnXJ6p`RSrye)2f~kfa`I>^S)%G!zBw&kRk=Ycwh-rZv&T z)HDhkw3S|9-SXO~WB|0Y%NIJLi+;NRl5oOs2Ly1+u_*wkyxva)t-9n_aHM)ne>qc@ z#b%6-zN^$`-AwPZo0!e`)X$f|+=_k|LSW=IsgD6{E$9|@!W2Ht%`E+nN)`csedjQQ z?2Tf1^3i}uT~`4Z*wvn30a>63zGgO>mGM3)la#Xk$tn8_m&ZyTt=hU)>cV}l?UH(5 z3tn)Sv2cL7uT+C$ioOP<_q!yT7&)8>SQK;ST7VCJ-dBhtcO2<_@n@zB_na5PzYLlM zY_7pDmGpse!CJs{%7Qk?6ykw_Sv!noZ+i}|B>xiezKkN}SMnoWHl!-jr>POXyIP{R zdI|E3$`ofFwS!NMoE!xY`8~fV9s984)%B#*eJw|JkRmQ8^UCDyYm}KYN+Xq4azoYN z(wBvz!~`W3Ul$kB+e2n3ennq%=Z;=Iwcvd|LgwM4MeMm3wXqI%@%8Pj-HJ3}dSmU9 zj@*Zn#8G*1nM0kLbJR_cvKP3yj|Iu_0V+Kz3Pl$y`3cYK@gIo=5 zu`g$tH{9H(dU^V|^<@6`qfJ5sws+Vi+}V$=9=OTbPGM}zm{cn>NOjG2j!}90q2A;T*J(6MZoDykHXK}9By%|YaKzwt z`j+T#mS$NkDlHoncWaj@XTRRq&_o%mM1ev^@_ht;LObZ0cUhZY$35&Byb@y*1a`M$ z@P{6&p>3D&aNz%~y%`8mU@qcg6}BN=YU@yvMg=C{T{OhwOss6B}p7P_#rxP3(oF z?LNS2?&&Uf<*dF`l$4b{Xxl0wa%{{{n%h;xtcnM&2B86V5iEZmD#%VBWce=kkQb)B zaIL%$py1O@KnSaZ4k6pwen*`wxy7}#?(ZCJ(C;wt7B+Hn9N?v|2~WT}pTZ?Au51L$ zTnAjdltP|HXF%UHDJ>YmN*??LR`V@|%5C0;rzr8B4M|&%_caVgpKUJQf|*rM7TWck zY@@{o?kkMdmQ%fs5>;W5#yanaDm<_+A)=1(PP923Gt*K#Sef_%GZaPS-x<34?P%N8 zxl=lx#ld}_jF{_VHZCWi5J-+R;RP0LpdQQ{_c0@8WOh^kS%;7$+dUoVTeen_m>~FFks8Y2CRBO5pXm{LG?VoI!_hOjtuUQXAa&}}fc9Wii^Bb4{xp?!l z^4p%A)Z5VTinSxK`V75iE-ve(i_O*(-sZdtQbwY z1o>TOYZHJQm%um+9Le>@nBFm_&y_|2(S~PW&%ljs=lP>#(l+SH1?dex7DFvdhH)+x`@xJ~}azx*;b_c(HM|{V}c0BO05!tV;Hs zFbg^CP%hA+C3vGw@bQx3>4OY?z>^{aa>DjI#<&B72F!*TM2_$dBLrK&XdTB%fTCdQ zPgL6WCG)#D7q9gS%H?;H)hnZM@ncLvskBlN1+gSReQRPLFN~=BWSlrQL|4%;*n`r zsxlYDs}6TBNs*N^s%_plsM(D^-Rt3VqTo2p^~p^1xxpR&F!fU?;kr&x7Y~~XE3)(% z(xaGrlp09zmUx8k>HfDLHV8{asZ;mmTB>)+ia+yjmvEig0}VX_&hhAN>+a2Le(NgP z>F^f^o<4QjcKN6^4JnXhB?|>;tsNx`!^(`SiK9_GE{DF^^v1{~40;2=Fz}V;A<&=k zY4B-19*Rgtm2Ot|j^=q(nOHfI(acT@u-k2*Qz z`ZekvQ4sc}C)O2sV@7mBZYEFCQC|gu8pbrZMm=`P{GwNzDy*)qg2TBd#bj61Es>59ymJNyR~zd_?1Jk&2L00XFuyG=hSvl3YL<=*$8)jwv3zTF)H`z*Bkv~1J86>IZ+`XWi1)f+IkoZ>vSW4DMnd|c%kOX?=EWDRRr=`r@K(iiom zDVR^5ydefVFTS~+#FF!m!b%o89F%NHd|UwcoO>Np=V5#MZB)m1)ZOnWLHuF*ovJ>s zfC|+ofo)#KN+_8(Z=l5(9ZYD{)hgcYT=r4=!t@U@G3B2T=Nuc4-IFE*Z*4)YKCS8R zfhYgi_ue?`$igbYhQaP4&TFMMy~=^E0++T%v3kqeg3{-2Ff1EL5SnoB1P9ym?%z@M zUGXDPwQA?GMrb=jrxj^{xzRE4=B9Mn^E_qhCe}@BNd8!ln<8;rKM$kj`od|~s{xxt9Gn>hDYH25-Ihku9)bYdYiaQYfFF z!4gzwXw^C8li!LjYtPy5oET}cnd>@t{$y{a&*)XOuM+j@RU9z zwaD2|Xc|-nYjKI`K|fg_KU-RqFNR;%a6eQXQE596%S}+3#~(Rzta}+9<((6kYhzVd z#KL_gn|}j~u<|VYcg0D6V0i!97~Y>TMWy|>-1g2VhM&3M8&HTitj_yFzZAZ+W#7Z^ zs4|cpvUJUUUU3Dten`H&H${Z~2{-$BDm^l1owRDDlL&rYx@W?976~M9jQ~SrKZt*| zzrqw)zUX-cbrHP>B%ZvH-Jmcei#YBi{PQQ|z^WDnY_+6$f-552*J-#C1&;6?n(z@e zZZkYRLLTPr!i-l?6F`G>G(GSeaemOf4XP=(0e@&VM_l2<-Gf|5pl469@QyMkcqwrn z2Ur^$?357Swq+6v>#C2Q)B(}F?i53ahBuur2>ba9w?H)l8Bn_qSp{(WX_r$uhAq&9 z1YswK6pDCW$NlyDqF8#j+Lve5zLJOSa<)J(mQ6X_q&iFy1M~j9{9nHg#M=Mv;iLZT z**#bx%u3niPxU{49p%?tZWH z`dci1sO0}D3;Q4P`yYz--_@S~7b)8Rq;lu}Lh5%#Opc6raRR=8LtPv>`Z!Yj9py$^ zRuKxNGWp^`H*p)pNDf8naA)lng`ZJEzN4mU!Ex=wB~p6=XElH>&O^-u-Vjoug5m6T zK_N*mep-=qs4pHdNgXNSgq2Z{hsLbYAB=`KS(-6jg z^9Zp4;>Bw}zC^X_$x+BXa7^k`+UgqzKOfy1hT`Bj{+M$T+&KDTd;^eBi=85eoLYPR z`Q;__qz(7HLQgl;ATv}ij!)OQB)FA}9pvuLo3^p9ui93LG2|Q6JS6-niksh3*jONhGZOYnK;1n=#9DU>ULvyl>l~M^--w=9s(X zW?#*gOmP{wfAd^)>6G})k%60m+T6ox{xQSuwTc3;dgQ{S@ock$=JnHh%*DLVlr;@A_3n>Y(f6R{9YD*=JBhtmhx zRixRy)~Y)TD36?$eMJ*kkeX6Kr)DnlM5Rij2j=3XiIL6F<~$ti5kV)rv}Hkhme^fAiVl;9p?|YA+r>CBcNRY+?FlS4}H@ntfKtwODIC^ zpQ(*lMmbv#YW8IToXbJA0JPr7r!e(#4YM>}fYHy6U^(~u+L5?cUCAT*!Y&P+v$HwV z4(h(4n+`7CKq0rdIGRwk27${NS_A&GS12zs8*!JYmCW)wtT-#uYgYCFWxCVy(Dta= za;N0R31O#iVvf1t>DHHf<@5V$w$es$M?-&+gM%)g;sZn)I#7R?dDRg=-K<-h(q$gw8bBD?R>EKWrvcIhznu6*4*>o`|?EW4aBmd;djZZJ$1EdS~f6 zLGxD4TM5UqE9lC^N$aCFV7= zPXcEg-V5I>jdJ8+lBPz%1}5^sJS?{~Se1U3OX1eSyZHw^C0_gZ60h%(uxlU64%%w5 zip-4}dNjDYm|;jes21vefr`Fc=$qYSH7D}b)A$Uiv2dfw@D1skra%933^R}O6vnWR z<9BuAclz@0etR+6?s7>8SI(@($$9{!Yo%8i8Jc8zs_lKaFtCLS)}Pe$U_N|d=dAfu z$j!%5zFO<#0Ymy7Tg$pP zKnE!G%Ktcyf;6ii5QfAVN~7A8hW2~Kn^_@dZ-V=_bj>(6Bn5v`m4Ey|{@5{YdFew? z0q)E<8_W2VZ@nu9p-$_G=Pw7UyU|9iQbPIkfw$9L;1+I#kFhd=yhbQw7sILU*=>qm zmsHcHvpQl1+=r#^JAT36I%?_e0zYEq0GsdkLBZY+GgJ~dxcn&AnB!u)SISU4=oL@- zo=K%c+dWR*MiF|~eX$$pACx+(ST0?y4+~-%un2_{H&|4G~dh5*@r#)ex zp*p>1rR461#$&tm0dtoLM278VCW2}Qn%%F9wQhN7)>-A~cpkvy8w|~GO=~$X$$(vk z5yqRfbM$8baqbI9m7CI(zN7SQ>(MOra?ls`5myU*ot_gCP^s)aUw!-dbY4dh?PSZq z?GXXrC(`#J>JDsNZzL&uvT{d{yUKv)oZAtz?%lrOiHRZ3yAzzP3Yw+!_Pu*&B=a=J zx|?eTU4RLbp*zt8=%aP_zA6_|7KZmo;6t6PzM}76sUhd_BfGT@d#^zEl-quhE~4e8 z#G0lU3W9BX1-OA~GW|4lS&6g_qWH-J^2rA5patC>-co{`m}|M`#ZZduF*>cQo+d*P0X1G& zPUr~8pc{pq2gEgAdzNjcx6){3>}Z=5Z%IhQ3iRy8mUG&RF>BKC>sL=CZ1S_+=cB^e zjvXPwBER&Y^;uZFE>*aJv{joSWfKDuf~WX~?S7D(KH%U@UT5M@apH4nGB;W?SYgNj z7b1MwEu#u{lx2{*Y~T#wXpd-M3MgUb`K*i~#8VX-#$_vWHNXapvjCp=8-cbT-;x

0a5BH&yDtEaaOi=d^0&=Q%md7|Bo;&$9`x^DK9! z9_t}=<+=>hlSz1DJN3rxDMZ~QhMc;L$}thr@6j^OaYiIMXnnJ0J^Q7Kii0$qFFmU< z2%mYUD;$rz4Q!bTEZ{!s-d9^2FBqe8DuVloSV_^?H+DSE|E}EOfIUEp{-`N9P$N&_7_))M>mq zFgJSV-j=GlH9G?3*yL%R zF@^p{!)-yI{f*T7KjgTh)$z{XQ4hX^aD1U@n!SpBDiB|N_?OM$|GzxEC!h5t;oO^#8nq<1@7TL(v1J{`X6KS|I!-Z`ri95ivP>ER;o?4 z4MTSb>I^}*V&iq9r{WG_#*+h>(C9~!8R;p;wKc|>t%BE$g~Cr>{*Ia*yGQITu5DP9 zs_3M~o;I&PeP>FByaiG|W2R5I51kEyj*#<9f>P;GKzlj#R@?kyyr(=Qo8>!lRbz>( zYDEw`UytjGuVpzD)6v1S;jNJhs%={wwhHibRgYnVl3G89&0`KSGz+Y5pIK3*ekKn+ z^VnhrIB%BXC>e(6$r=KV!mA;q){lSVr*vqyGb{^)mx z^2p5OV3tbWN+>-X;Xgm>Cpn{l8QmQ#Le5m>w*P2QOv##T(7Jc=JL=XNBr}~*f>&Z? z4Vi``+rsO~LW@?5#(am-sI=EjnvMJ1f(<0^-Z)^O$MYSvr)Y}GTdC?z9m3wvf$fG` zi!DB9`&@cQX!k*B96bJ3)5+E0#^zX+SMn;Q)R4xO{aroi?jqsw?VhlAx2VF%daV z`b55yq}Yw@0B5QAh{YEp04_Y+rQj}W#btH3z+hYP>V3bA(br95Bt3M%kMnYs{iiS5+?HZ7;?o1@N9gbH|^Ygif>+t zfvFW3BHu&g=#N~B6{Js>7e@`Mr#l{D<*vI{wBSy=&f`ffbdMOlcTW5bk>M@vuo43b zJyJX3L5or_!^>_?=Ic(T4%B1b^8TnRUVX@8-jD8p>yXj#lec+D={x*bY6nDh8E24c zk8>ix+0FWFdi~^wq38NW7r>zj2npqJ>#(Q5-4Mkb$E5z&tGkv@s zJoNYWrSR`{8sG?$+A*v>5S+*abM3&JiNx4pJ#As{+eD*ku+Nl$+A9=&2VCBd!8vw2 zzKXi600{x<-}w*Zh1|VJdG_+g-)TyK2en(SEfWL1>tQ@57485^$a&dOy`L0k|1fnU z?jDhD8MQ24De)ae0i%XQgpsdK{kAE=DZVj_ALr&qn#vL8&8wC-0I{G*BR-)L!ZilC0soGWfUd3rmva4UB4-#+>G48wor zdw6h%ylWVZ;fMs%N|0gT0z7=530M`EcE!n;8wr|AHG7Gv3u=fzdf=D6OaWZxM$Svj zMAna9=-g@FQDU6$Amttia+1x@yh%vq0-2)_Mvf~(aZYi-N1UN3M2C}IAuy~c#sa-m zdkbxu-TL+EJ^jssmG;kWN?kpD&9f|9=$ib>QPLNAWG%2}vMKa&4h>)>CSD#Kn?F^Z z{6AM&^9A4m^FPW>oU;sMS=jfn3qMK-Gdsyt;_@#1H(g#&@_O>vtq-6ixjTm|J1mzn zOo1a4K-O$T%WV0sAf7GC~m8st(&}lmCx7G1mnafV%F&wW@e0)l(t73jYa#&be{pX zM|ee)EeE`?Hen~Bv+RVlGasN_0jX!TTsL<+w_G+Uaa??&TT+c-`{p9S&!Os^kA!g{M zMF}I&KV3c*w~x?I%>$mZogUA0U_?d20z;2)IR zNZ`(_+?RJ#g`jB#53m+S$XruPqlf@l4l@12vz(w@^1@T>kTyz~y$Bx42P|DD1|L$x zq^_9a{EL43qAvRNpJ!7TzKV3<=IoJO(8sn{;FhiwaUT8-rqaRpfMPsUP274}7xYKr zkdO$Quh|)N92}`B%7FkFG0~GOL~{WLJE8roVQ^#EMquC+C&?>DyC5-PPCR@K+?M<( z5d4ZR;y5zVjftn){<7HUVtwzo2-;46=8;+QRjTn>&a8OsozlSdBjdvm{HT2`^wA#Jj^mrig)V;q`C(v|0xO|r9(ok#ekb%zxChcw;Rr$1ILug} zw;|GS87S!|$w^`;`K5Sd%~#Aw6zeerj@BoE4L8RQ^$_NvY6;BPNfrQfaVuU(Sb{(1 z(hr~(@g)y|`<%0>5C-!L&NKsUxM<-OfXDGdU`%?3NNjMY%o!K>0T3f+nX-11;V0w( z00QS`|2VNHAU0DgfDahx3Z5sCg+|K2s9rBk7AlvYH%9nNZ!tju)9!1@GIp-ajU^q1 zhv!)@NFVy(3GgTBR(=J{ligPj5?@dD-J+go0^i^FhzoB0VJz4fuv%^esxokOQ_mqE ziMYr9UbW2{n3Xl8K`{gm4L#723T_`oN8lB9axI#yyBee2_N-+OH+6H&!fJBz=!QbHgU^rM6(QCzPg2c%yvfb_1Uu|RBP=XmcWsJT6oe#hWf;_uAwS0~=2_b9AAZBr(FHL1b-+E{Kb%p_+^=CEh zzxzqr&RS$-*H8$HEd?cZ4!?{(w4;93fAe^zy0%H#Xo_Ki4yu#vD) zVc6TmI-#{Ny5L!5^>b?p%gF--%kuI|kqWithMP832AWUlq7%sCI_mf%zzvOt6D45% z?sWs7OO3rZ%ey(PzVW(R^4L*y_`&7JaWa$#zpAtH;B_ovh5$2&(Ji@(<#DNCplrEB zbn~XT-nb$Eu9HKXUasXviCoY?;vef?Al$Ac_W33+U3NuvE3}Ztiomj3zr+Cs zV&bVS7)f9pz|I3z9G~dlCN$T;e=W$t&HX(Pq*jcL{!Z zJbXql+BA!_H(5Z0%vcm+Pr*}cZ_3P5_z`~))W3O4GNENWV>1LD#VO?H=B2?`FjbT~m!H!ADM8Zo*ePX{>hX+Z4 zCKA0CA*+~jMBR1KcYmB}prb_kG2F6RJJ?1aJ2A+EPn5|o1Yk3(cS2)SEi8z5j($h2 z9C5;BKjH%Z8|*Lj3RP;pP-qHzZpk;je%Y>37HP({av(E^ZZ4o$L}*MpK-|WbXoywp zQlkTdRX~{oPM%Nt8?E`D#=2xF8@R}`PmHr@%#TgirD}3IsH!g zS4~NO#r4Y~CNYiF#WCWFj^>I>r6VUF8vCT>2T~{CP@6iMdta7uev+)z(*(ks%TOdH z0h7=N`uZHjys9B*l2=1b#1x1UL_$D8q4V-9zH}!zbVZco4USwB=_F!%amYJ3yIv?T z!C7wO8?F)B0jwFu~&Oy9b{Rlz7Ei@4_l5pF6I{zj}b}SE`bh?s)U%TgQ`H?>Kf0s2&~s9VIk+ z$h*I8vK%9HD)LkS8ze6zN|+EJ!mV^I9Y|n zmVlgJwJvC8%h9hn>m4?JvK{r=c}X1}i9A72foD67`ww9XU;3bX3GCT@q$+5$j%n_%wUZ29$iJU7;mx^SP=m^219 zM1_VKUTTOiDuRUU%WSJ(o-Mw5#rlo8a>$eOvRvWMnsnUi4f@{nR*u_kuQ%#*X{7aR z39I&Z)Zlwyc-!XlLZorspblLzaBvW_l@(>uku-hqE^hFMi{sjedY)J1c@Ll7YRYv$ zL`l`?6*+qe@Ki;_A02|;VOV=Z;1GfYL@5T(n$k}h8#u37?5Xw6K)dGZ9&{zSxV;{f zRoTsXf|QW5^54@NIY_;GzT#Q(QMVx33`Bi5%_n!EvGUyLB_+81wtizzF%w38B>0_Em^qBJ7Y_; zOyt%+Yb&W8yPiY>nXOEZg#C!E$!_Khcj(SQ!_x-WTGFC=$?=N!$lG-k@K(>#Spg&A z12$6qLFGnY`mz>ny=&?+Kks*u)iEb-4m(3j;cQ`%n28)BEUeV;9nzR^#=P+vLr=Xd z_Skf@`_}_Hb(bn!KmfQ?q;SAdYvUal*CsWbO)7lk`4TyX8sI?Q%Q-s#B1D&)Yf!jIZvwc;g_mpb{zV&L!@MVa@| zm;4lZ$wDh?%3Y6v4uQ=x4PSXXm>2a-?_$S`+>~Lcb&l@KoX<%>PT~0&=ti8N#~WCG zNaE_aKKX>>5PqLOB>3=YS~$|0CE3FsVDBLG^b!kI?_7V*3R8cj<(Mi}^zPtOLl3SR zPR1^+fb!7Ivd%lk1yQ}i<{dM&4v(nvoy5x^y`S~@$ASC5^B<%`E*6EKMn#aP-j*QI zwK!$U2kPIxGB^wc3F$ARySJg)u|o95IX&EK9Nk!GnGXgYEVs-Qx#NM0Dq{13800me zVL)}nl_`*ToKUl9eEJ<#Zv16AwF+cL^o7YZDrXNm=L`T^4#M4k??L|nTK)i9{+f*Y zy(Ir1ul@f&KL5jj76R~g)gZAr_Pzq7HE_3aNL)Rx)ebsMq??lgClX{pD1#u+n4X87 zqv)dD!Kc-su?3y&-%)QtABo%7XBA*1z+@=K8(0tDy<0QI#L*ikt&dq zm@vjQ??MUx4j9t2JpVhu321=T1EAtR?@~!2_GyquEyP;_v<(Ylmk)bfSxcm8X(qVK zn9DzSx)*Z6_obbtFlIpy$R6NJK7x0e>5812JMs*(zYl;#ol&EF)&L*bGhk^)WG|9zKM_*V7Vh@Ly3 zTzK!*3JsET<<30R=WkvI2964u(A7QKi$SK$84;&59}X)DIVXv9DD-xn_@MB-us8@M zu>HV}qo??iR~2X9XL*gbuZK_3bwU|@HD0U6k5h6S$^rs-URv*+vq_X&vfkZ9~U746FVK|>Kh$~Dd(_{pGSr z%*xd=QrOgQArybi%a)%?q+`ONztwz9z4?tW#Q!h}+}XdcUzyD+{cWMkzm#6b$U;LT z;+&qAG)TNE16l%R7=l6p)vo$dM`|jR*VlbH0K((}bFyF%%KCofPuXFmDCI{q~C!?NMCY)4@W_<^DA+jLKtKT)>5bQ7_z^dnU@JSibD?Gk6v+A z7zvm;p^iR_?H0D5`Ot^-x{7~{^Yy)Zc`TyAqO)P!F>O6Qo>P1bA$?yAZ5{pP)DW?O zC;}_JF|fMj`c0&hs1f}hH`uS^8yED5h!10gp;pvD0oq#8DpDVJ4Q|8iK+N&tH>!P+ zgHT6qcdgO}ouxSOcig3BILfWf)gC-vmihZS-lcSQ1Y25e6I?SCsIi)S?>NVc69!gv zDwE2O*KnjKjz02ItCZ~O*3XzMo^*Os5U!=Ckok1T zN%C08J0A86QX{(GorzR(Ql{H$aluTAm|DPT{pjJD1M#;XJ$y=f{Nh~}f62SNvA7*d z=loxC(a8-$_u{D{m3zE1M=XvXpmW?>4(VtnLVVmoxQ_U0d9VK}a*ZmASK&6`x ztQs}sUos*G3=p|p6ta#WEn6A(U9;hKi6T&QhKCMj|yoWwb^frjQD(D07=4h*zc$AP zP6ityiO_9>4XBhni|3`MPa2Oz2^(Z*y>i;!dcyrlY}1g@^_n29Wyi+>k7T%)*$jiX z9wVg9E{H4;hebWRFgG%14+@ObMMx8JtN;Wqq5zFfqL(Pk6ehs)v`Mhv5d^?4n#dp+ z^Z%_Hk&FGv8V=ZfA&qDzmnmm&Bsuvd;s;9gQs=Dj*T19AZ2^|=#ncKvKr2PbLwV#m zdH4Y6@X!Wm82bGb+PdH3I>|ycKV}Z|+>|8)=n3OsNl#w}sf=S+rWS9ILAqz?0eQ|n zNgizM=MZOS!T-nJo5w@hzx~4_N`#RJS*Gk+OQa%0WlNIEE>lUiY?Tn^ltQwFP?QOY zY?D30WZ#nAShCB$jBSkBuIJGP<|S^cjIV1&BrHUoN%){>JO~CLC_a{BWdv*J=4l{AO zX$tKIn?245g&Fw>`f$du1MsTj!h2V&Q+d*BokbXUh6;1?ikO~WzgCqb_;Kp0wQ;^1 z=Lc*%Ada^LX!(`mmQ*v^do`bN3X6#kyd+UZ=j;m~A0|t)A;ZmEdzTT*ri&$un-m8x z&(V>9BE!Jp9o-YmMs*n7<)@HHFSJpX%_-W(JL&znDW; z^yAm94DHOlO8<-G?yt)1zrXgMi?{rJzyJDvLqE0u%@qC36al6v4@Wq^yv69N4Ys)O zV?bN~3ELq3v!dG+Y7`h(q4|Oy`<-=mI^!n@h&rA5)7(ba?Aj5}A;MJ}!&&O-m2(bF z2LfN`MAS4zAHvk1rv_sOBS~P~>vA9+UIt9R9=4>@HeIFxUxBTCIFYr2Kt`e}Ze}Td zv^^pET<4M#xr-2&>9Nc@GcY04V3c1{D(1PCYT7oBYPtqp#V}5(Aa<5BocswEmxSm{ zTq_LgeR1jyzfG_11}hZ~vW!?zDp^8(9Du^nZbMb_j3vp^UZXilYvXE2ZeOS5_oZ2b z7IhBXo_B5)Y6ZUO31gmo(DK}KNstZZo#UuI*MOD|{UCf5QXSz?hf!~m@@IT^j#&W&VW$|3z7JcNOTO|xrID0>#AquaP|M>;(6yZ_j%Xc_ zpXK;I#*N=t`)s4LrGuv(lPDJ$Z=mkOP9Xf1nuIaTTn=Kl@EjKobHW_MR zIWe=hzfGfv5`~N?-+O0J-uGU@qR6va3NIn#QnNUz1>Gt)m`E_G^fh5DFYurf-?<*Uz4a+3)$fvfv zC{DG*ha@EQ_w+T`+A20kPO+kmDU8=%40WuV>8)M4K<%XA&@ieMsVB=zetIk}z~klm zONHo3+WUc#7Ka3`$21YMrp7Cq_rmU>z=*MGM3F0PH((ETS$Kj{7QcQ^>+ofRp;yLV zs_)))#(XV_MBW-1U>=JPRPc43h-4K~(dsJ4s!uEyU%9jP&Mam!$n##jhv4D*yIxJ$ zH!@^pS_N{lyWDxB3%NewjQVDLuP4CpY;#@v)gR3Pl}UuQ1t*Fgsi9`T^BGlTbj>@> zv0dk$lgi+N=-QzdF4}|Q)gK#A^D)lJOdX)Vg>ECaR3d|s#2o;Q?~u9pV&C^{VPR!~ z%SaAr>x(4ukAh1j<#(GqlCNRn@9n-H-*Qj%_|Qt+S$~}&F(3RVBQ5)=A-;aGut-io1~USz z2kU@aXGAp_6y>xo);@@HS6lm9#dV^);IlBySTNdeCuD^;S+TY>a5(YxUaBa}?ZL+? znoJ#<3;hknOlKK)0 zMF{O^GZp}kX`#RN8c%&ro}J81&KMlznG=7t53$+79n1IZq@QwS`eYn{ry|hm zxVX$UC95P2JVhJ(q2y5h-r{Yj;kCN`6S@YJp1=uiBEp8{{) zWjJ*0>T?!;7=HaJ`jFR7J(Csrm%BI0LCqA3O#~pt8`m*hD9+AMVD_FW`xI_WWwU_^@#`5q$WjbWc2U#OOo zUu18VG?x>j4OQEe+V|%zKOQJgdNy@oB~{{02hFoa$@EBrJ7b7Q>{%I(vodS}>M3bh ze%hPzvkK2DnMixCeG+SPPc@eXqz!k}xxCM4*?0H?(}#9FT0>Sqo3iUaGi~{sl0xA< z{_g$xzk%cbc7OAL9lhFe3`J(^2c|&~)z~s0UwHbwYXO*wS=9YWF8^@UAmfMXXm^bR zg}~aAxW5E?s8Efl^nJC1MXWZ7Iq+*9vXl%u>X~G_s=A~e{h`fuqr9Q_s#lBbj zsPa(P)3LDT`2#LCU%oGJ`$SnIz+C%SiVW0or5#C7M%I@n(pj&8bFiJjl4n6onQb1x z#g@V7IA|;%XX{Fqe#lJUl}_sT&5z-pO9L+*I%-gqXmXR=_X>e-C^%e?yzDf4Nt0jj zF{;KEx(jxf50SJEYQ~Q9e}+^2ef;0S;$Pu+e{f$;j6B7y8kQRZbm=pg$F@QB$8XSn zKbi0!igVBuaIGt!bgi$=*sKs1JyAXJ%#Q4*a{Y|Gz@gNZp37 zf8XdtPeYETLts`50J^Xh3VFXjWM2xH~rb0O6>iMnC%23iGfK3NfDBDa3_Kg(m*F8<{#=jnQ_!bV>mcQ1$ZaEPL z0OE9Mn`5}{4Xuk~C!=vWxZk0JlX=(#q3vS52TeG1PQ3lYuS&Diuu}o zV=tn*1vxd=5@6&mq6@8{@+kc)R{qVHz)KH9jv>9N)_0B!?~2#pyL6xBmtWMmoX%eV z;|?nY0Jo$079sgpBgf92SraVnec6Dygt1{JjF9l-w%iOv)FKPTgX&33k$p!XR`_u| z9!o#ztZ*LAc7>yQtUp075ASgO)%5if4fV0fX%45}fBs-;KOp{kASl^Kq;6+LxwC9% zV*_i((>=%bwKF8pj#SbfZzw!LlG*!&q6+o~uJ zOSI_ad+{eU;4NhEAdx0OK|iwUE)1aGJQJ|L=x1kqBq{emQXkj$6AY>7^Rv~PLOo(j1`YO_k5eE?PE)+Z3@9m< zUAUiMnlcy)co!#hsA2~I!^V^gErVqqZquQ`E5EUaLc_U~#!cLQuocl3wo$KF?|yX# zFo~a?J~$qiZnE`|E6Z!z`}v^c2$M0`4{YdM><~S`6uG(e6RbXxq^k@TEsGV<%7XJh z(2(MPI({^%B3ExE@rx0d)}CLCOABE8rnzfLE#MfcZwTTC`8#s5(2J2?&ko-I^Ap&G zYS01m+o^%{#;o7djP{I;PQPxp%Dr9Y3YKo;1d!zZ+>HgJ_ipo)tIH9HRV`l#gh+Z8 zV6mf3SCUcvPy>8Rq!PK!n;8S}UQdS9{&q(tc;Ny(p{7aSQ`_RHNP1#!)_B?PNyfME zx%_Q5wn>2`Q<<7!<||6j$SaHM)5}#~mg`r!IdH+wfxq4h`^E4#_k^|tenAz~BnGJS zV8Ebs+F_@s{Es8Y4&p(O7Qgos48ljcT12i{qjUyzPY3g&s-GDr9 z<)uemGhM4ewQo{+*66yDPoRa{p&+c}W^IiD?!y}x)nQg8ef2?@q5+&;%K-IQnbHbA z_C9d*Q5{FopxF_!v?Gj`0OAVc*7n`Nfhg}tFr|Typ?E5zbxr3XDi5G}^-TkC3*asc zmS(L2rgwXzNZ4+RqBCzl8Z7;_i_?}9b`B80;IbuLMgHj{_s^iNOUNN zQNAdGEw-)==FsXnKEisgV@Q*A%5vyf{2`4WlaE5~8@0%s;CD{Jy-uKy%B-po!RZ9p z&0@HU&BvXAES|^%Z18i+<#8lJ$;UCE_7vnI#JAs&nc>-ItjB zjBgt-Dz2yeWUjqQf-w&C21f9umRFc{Xw2|vz#f`TvBP+1hCnp~g2v=mv@p%X zm3C?fzgmUrK~ndn4Ctf!@MGWadfe)sq>6Pfy+jB3tM~tMbNJ=Iu?^tG@T}5bgsRmA zNk3AxrZ8+V@8@o4n^{~t;pDBikoVObUY^>HUvR!jimWL^gcb^&t)@%lhhFY1G7}!2 z8?YS`%+o!d|8bLf?o@<5Bk5I2C6Shgynz)$f3xUWe&(y{Dqlia8o%j`P2Ht;C$_DH zeUwpJQ`N-k4*H~tDsz<*!+@_kDR{y#5G|Vr=BFx~7dks#bnY-@5rVTtq)X4#1ZnRy zbJId&Nh+Xkbi!FxKLXzXaV!+IOkQHI3#ZJ^O~T7N)Kt`xNY_upW>MiUwwqP!;3OGj zJ$Cq)~ z;K=vSN4GBcb6?aG_dmlx2;^Bn7AgeacirvlNeUh_kl3}^&3jT)?jIEnvHKN|>iU{47EGJVi>-a`L8iz2%PRIdJ> z6MYN+QNJDM@UA4$O==uM5bE2BT+cj356Ifu0H1(_nr^H#(EP7};GK${k@jc(gI+aM zp)#ogh~>jU2tbVm)6k9>viz_=@@GS7dI;F|eoJ&xK{^|72Ao|b=!vfn0f8>)8_pDv zw$n9q)&h#U;h4hH2cTt}Pp?xAm5;wXpl+rtB{~r1!=QFJivHb2Zz~Ye+^F`wKyn7y zSZF144_cVCROh( z#iH-(oz_!U>otvQAN>AZV@2yh+Sr53`?XA@%=P9N4`0@C({Us#5N&BM)eoY(&?kax zD)}BQDp{Id$#neoWU&8?w;DnCHezmqS=Rf+rLXEQz>Q1rRVS2GV?&S}bYU;~c60jy z#1pxk(a0=L1?(PG%(ypS`~$j#*ydY!>%;BDYRXv-;6Wzih61yQ2a%3M>Io#ASsw zi`8ep=&ZA6oc~ir!!L5%|5c^*_t!y+_V@kzFTV%KpE~{~NdG2C|KAg&@qi%pNiz%< z-jm;^IM><8oDs3(7}&(|<9_H|sOpNE0eeFTm3egL9c?i%?ZZ!Hdnr?UhOSwSShf22$h5h;Es90!*1Z|}X8tO2dq13W%$=0-FqYqEVa>q zQL2((;z!GR6}Kbe3^-4c)4pmzGsYAj6zByc=r3={{_Kjxgdv-{qDp!Cb;eFF;7Gav ztZQFX*Z3_732Ea>(y0mY;gw}}^w-W=Tg|zSlq3mTs@4n-O@sawT6G07_l2FnNFc=o z7eDtq>QRfmxkX*V=MCWICG)pQq+7sFWv-gE%Ko&wKWm9fj+81!1wLa+5iuz1{0)oWB|Ieo}N1^UzW=QJ`|iPedeV zk?IFW(IIy`W*>@Zd3?xx&9W?EB&ORpm#5wQ<^K0+QR#PREBxv6xkR0)u==*@dJ}Qs=9Kbx(X|DFF-;QD6*gm=UvQvm)RFp3IBIVhs{es6xfW!i1LidoPE)o8&el04=KfR_S%Pwa?L zWO_0|ryV@V+sS{TGy60B**|lfd2OBorerjd2I-%{&;VKGH3L7n-yK=vC0$xaMbR`t zwOV=!47G&Bc>btcj70f;W0{qA8>O%km7oUageHwF=|cd}h$8oBahuj4S~dUbQnz_} z09kFREFPoR?=hrFlwsSOsQ`!yhzDsu&H+O_Vgb!6_juak8iGHpzeWI^xEhiaMM8oP zA3<~nfA9qrOf();w)A=-8Bl(VW9Q3oQHV#lRnP_ipo*F_Xx7S@=4slvqR;?;MUo6d zHPn!it$?#aDWaAB6|5-_36v^30eTbld2EE{H3ATwzAWMrZZEKdL9D853lFgZ0CN-I zfuXgw-DWm*sQY5*7fWg|8?zt46N;sYnXZ91jA;^p#W}#n>!BlxtS=7f{m(N%Hn~_) zADjW!oO%~Dv#Tge5-4|{?+10C_4fb$kxviM01y#i05x^B0pJc4oAmGioTAM72%SY4 z;Gu>{S|}c%jmKGG^mzMU!0*&A;Kz!grd%_quW38@$!Be4VrNb1to`7{ECokw#DnQi z%dk_K{z!n0lEg-+3FSEA5k~}Bo|UGI{fhnVp+EHz*#TuMD8S@^7d~{>bB5l;^>;3(!*J4^)lc-$dPiY`OF|QRfC?_Wul`?g!Orw2j^O z9O3S&YjlK&I4uLfXK|l9(-%9%xIkax}$X z9c(+nZeWPgx*>8k2Vl{wwhwu$!B&JPI+Ko#&!~A4@KxZye zgof;kJ<((p(X+nst2oc_cpSqvgH|Sd%K<3XK1;s>UA)}w{PM>>4O4^P4@I0C5s=CK zaZ@pS_uOvfm1U~xW8x7IF}#0*#X6gU03fr(D#bVkBAh4l0tkEO!0swNfCWL&)SJ*n zl%u_(!%598r&-hWM{eY};|2 zp~hE(WJ{oo=LXRQNa14?BsjCuMVVlR;Z36YTB5oCWHrRqi}=+uzf4rm7SN^Tg4qJ zjb7!|8-DEbBLCxDHC{{HY zT5u-HqUc4JUoml}=<_MvE6!h6Gg|7?4>C4b-L4GTrtc<%Z0Ib@l!H#>3gYK1FXpz& z?)12+al^%HMxHIlcpnUu0H{31A0`y&_eKlmiv*r#qqH#OOcM0N(iq_L&B(Fuh`eCh zzBX!>Be2Fpxq;3d_-_|wXHt2Q?Fo2@WoR}c^=9?x>K)oPpnCPx+fNyubQUy z{p&>@4I$W$O28)m!3$=d4;IJ+bi*l+$pe8HaAor216py%={-Fc@n=gfviCDHdGcY4 zW`5qL*;<`+x_q@#Q6$LxiPbFmO?h$2Uan@bpj(GUe(2ta6}!dh$L?$UyPHi3cm^Xu zzq?5TR8?9C@-`w+Sh1_}pci8mrvD*5`j(R=W>M%2B-hbP}k&LEbCM9y+sBdtMTQaXT2WQ za+{)!1a%xEo!8f!KuZs-l(okUmf41P4xi;6ke4gIn6VN(;w*L%ZF(c1Z~84W&9hKp2Hs!|G~5} zPPc_2@^N2WBOkU#K2?_`Svi#jCAv5}|DZVk_@JvFKN#vTer4_G$?Jxvof>ifI}fNb zjpRgVt3vKp6R-g<)>v;ME#|Gmdy|slwfC4CN!kg9!xvX|?=CgOo%ptE*G|uWEEEPU z-$cq?uY%g)U9>p0d*f})j-CgO7o>|n9vm8IyqO@OLYx~k_pUiCU6XuSvr)|S2d)b6 zQ>gIr(@dvS8VneGjdt9C3fC9oN>@qAX(x`jCS4px9 zW(o<+Q~evm|7Z>hAjX zdsBGtKyz`@N=*N|c)-);AKApdzmIu}gBQ(2`|YVETc-*>mg>cSypRodGip>~NKYYM zsiq5DOA_i>SWgpmk#nB#x9Qq+Jds15ENVk|@zxw~^BFhXJ6mQ@ZlfSRGZ-dQ-m>qex?*BixS_>)?ZclWiZ2$(Uh zA?U0|6Y~l}^d7oMutBU{F`=#^H%y2_GkWMk47Nui?wtCZ(`aT11o>o+Sj{E8SoZMr z7Hw7PJZcvWh?&nvCkwdrBtK+=_Wg}2%6|KJVFWE!oo{yY=*uL70|Ghexr6z5R*2{M z0lJZzz?gwe16r=5oM(&_MvnXJy)(9q;dP7K7_a)5*D-x}ohVxEN|p-jGZvn~_v`xY z(gx2uv66LmFlmxtQj8XVQAF%c4-j~HtGG1W_L;Ht%&21i$0{b_-J%)TCv=%@Ary#J z&rG}KR%T*I`bM9cyzieh={@dJdVDEb<1|tG-R8-u$`!D|aw|h5QFM%KzWU>pi$3Rz+OECUB}#OFOw6F3ovpTU4!gk%V+ z(jMAN`T->sa%BuM+~dSkS5@=p`nzw?2F9C!bPJm%_Jj&b*D}aeZUdQySGzd%f_}Y#~?w}Qz^)98Am%ny=_`=$`cEMVwpQkfr z=_ZKy>)T4sKS;4eBIztm6#hDqW(-{Y)}bH|=c{264+Y8(P#%Cr+T4BPrZq?=!1z0F zg1z8rnJcmKQO3&zAJ^k%Dlf&%ZPahU1w(^1&?fx#aHeNVGjHL+;AQ;PR;u&Ip=G-5 zF;Fozd~x+ps3YPCi8Y8mQ}T-)z2k<(!$Yo5PWXLxv5VFD%Fqa-j8{J1-s9`lkJ8&9 zW;(KeHV(n7#DLXIZ4xUEC1zz^+4q&lYHGkNq|vB`>jc*B4|lddN;RZNnuN1sAUA?v zBbknAhth)6My@F@wA0>?PkYpeXrny7=6~98KfRLHyKaEojG3S=gEoDDL)!`(%(r?8FL>FB4lX zK8zBozjY<4`cmp!>zB0CU_rs@`r6h#cpg5+#)>#&ya1U(NH^@y|u)D)-1f3_KANAp2b<(bm#rvm4 z+HcA@>BdP_oi+=kd>t~6Fpm_Au|B&35sgTUEAyzr6=YrH9`<`zJ{IqHYb6d2Uj8Uk z_~`hcA=m3;c}+}fc%Jps|0j8i8_>9dk_dg%E#IP1zkJ;idgYYHvZ#@&n3%Fl3j$UH0#uA+9Itmoe z_^ljotzWc_7BXyv|H6&qKSETEXbz@whd-qiR*H;nc0%ht4k!*6*DEM@s7enxxlR|M z-N(?BElg|fGtj`xUv=anWHZ8MM~6HNX)@6`O{cYaIty6v5qf>t6>E}9&DojSH{?R}+OWH`i6 z)tm^m3Rix&zwF`b0NKT$#=ghxO^*)=h3>Ux*5YX#YTI?$xwtJEXRE;2w8Bh$Lbw

E=9g3%!hLy3 zIw=ms<4?QA7&@;DuiyAMNTB~PS7OBJ*y4(kQ#J9 zSq6U23$$x6Te_(cQ(u#(#~?hxZq+`*DfzqAWdgWNK8Ka6%Ls_tK1jUBX`wWD%T==v&v!C7FC zq{j~8m$cA;tf^AKO%`}z=wG;?*=rT(Nz-eHC!2Rc(s&Tq`JOG@VkCm1GUoCM4iCC# zyTXg0lg2b@djEjcK*K`K#Jn!&XB|79Dn>9SdGEyr!c_@eLgo)_>G*A@5$i{&Zsvu0 zO@1VI*e+Jdk{xIRN-GzrS_mFlSE^$ImD=~UAn8ztt|cu0jVJ{SwFB@~RA z1v&>Z$R1y+-<=ZLZGOKq@dAxMB{j(2Mb!MQNA&SY#pjyBwO3=ieI5Z4j(K&AqUFTp zG$LGi$T9llbG_WT-C-9YPwr(w8-f$ri zdlEZ)#jtBZDN(@hn0|4@w{IQ$rEUZ=xi=hOlTOKCxC&-d@4&sm^j&En8-gr-K;hgc zyvzR17KZ+U*MeEI5o#c`a|ox z&ewdc4A>)uS1Yh;6TAga+3)%mo8`1}md>iWLeXD&P?S#PC8Tu@nUm1>JTmnKT+aIP zr0OyV?qe-*ol`kJ%)dM9gN$e@uaR~lQXc5U$JO2F(a4+dEoBS?@G#p0Ch;UyW@BFf z_USjra!Ct*r{MwW;O1UY{?8O%Au*`IJ@kt@^&=a@gP;lI1~$QI*7bLXmfdjG!70?p zIkrezb1=zf>masIfg~PGeM|?EbNn?)&;?M2Z5W^dkFEeSs1Z4CNb>+$qCn=vH)tqr zmD(}t1(H7zFdb)^{vxtBQ!1sBkM8)FSNaFsEjq|_8bjsA(G4iz-N*~*0%x3?^;wRt zcG~bAK(x2`0XSV7Sp~WuDoONrr}al&sc|?^kP(jnL8>VabghT_l==rWZ>3HM`h;&= zmD)|ZI--Ma4~X@xn3cCFe=-l_pE-`LH6+RCP{T(!!0eIw?G`5OI#h|r9}vA6jH}Yy zQrR-(=xfZXN2MSjdkyr#CEvo%ir^9L{zyCgLhB}Y0 zCCO){p!%rS@>oQ+at?=s?IRbaW0n}jeZf}*X9XWK_ju2pz>YWL(%~d=9cqFHmKNlJ zm;%?Qw;hqEn19zj3Z2IhOh5}?3!K6)i(J?0ft0T@&=kN9Bmn^bo*&>1dVC3-oSSJE zMgVdGb1J}#0y*44A0(w5%C1eu29jZw-BLw1~*du$mjF=q@S2 zM=KSysTM}Jh`uiP42GE3PDbA~fT6dXMhNEcV3QxXF+P$<=E$S2#rWsu)AK)a>X8;j z+k}&>UG@Bjn}*z8jAmU%PdR$y_irX@&S^je(}+Mcqs8p0oOMMjbMsbrZmZ7?0;jOu z{u)##WICYzKVm^lDuTWsBeRPkc3;z-Qy+f361e!uq^QyuRenw}P@ea*PN`0g9}lXg zH$Kzxp>V2mwtdMxGgNRl=ChZ!xYcN!g5 z3b&*jyX?m481+{6W;~4H?lTr<#;-y#qi*d$e2&JDbGau8i2{{@@ z)M&BAb9}5$`<{I%t8r3F(($lO-vLs?Z`VuZG`D!`$x(``dzmjw-|{|Ur;4>3+XGz>IPgN`3g*YT2`*OX(-Xja>sSi z#N16+Q?9PuJ?PF2&Ff}krm`AHD^tR>lZS_m2m3}?o2$Fayx3*!Iw2trk@W!@v<#oF{7UJmv=m`q!x zB=stRxeBw}3fQ0A&Jzwv9w>J&Uy43|A-cHxT!gr{Pzas-vKx!q4js>X_gw8<<$g?l zVB!?j6N{)a+N%vjdoYG3$uvj~QPQyJ{1heMx{Qp| zee}a-f&cX-=EV}K8iptbsLCLSV6@GXia(66Mh7_D;p>$_OUvrd@8TTHq(vTe z=N)9FW05zP`)zb-@s<1Q-hI#ZR9C<=d7c^?zxT?2OK!q->jxMFOZjR}8uDi#3jG!Q z0x2R0#*tg90$9q9*^#DsvMY89BpIL{khJjt?VQ(Cw@$;*&Ze7(;N+J-!G;jcxF9lp z^3YGPD+o&J)+MGFzvwjQsq@+#NBYzE&v1FAj!RV7jV;O_D`_i_y=ii%f zCQG}@iV70!uPmR^{+c?cQ3r$0sPltFq6!cP^5Z2dhL1N|4;b!U57|g9&M2dchp&^-jyTcGVx|g z;kPxoQODfk@F!p_ZMu`Ql0&Y;*PAFZ|7LY-Iypk+mLw9o)ma-ycA+_~QoO!R@x)x} z*6v5ThJWyyU))SK#nnSXPmnHEL|t<_@C`dI zcX{3lzntD(BrwZX@cnyZmw{|}&ztXYH~sXo2Vk_382X-LDJ%gsg!f}9^fjm5V2kn% zJ%hBES3;0vU8}QRogpQDInayYpX-eov_>>*m(V>(ny#Zr!J$D~ZdXlNSi6nq%eWXt z8@!v<&C>anJ&Wq7f|0={XN67iGvQlDK!nXi1>*=tn0|%vJ#}}~Zu|t>{bTYS!>%I6 z{zsT)!!^rD3I*jj`!F{?r%y9;rsVlZzf~?Ny(G%^nbzr^_ShRs>=4|T0zgA1*UAd@ zW2EqOfe`kTS>olVo)}r(+iqs^?w#l*op|{uj7wVpFevuW^Cq*=&m!su- zoV~dyG1KQribp}1045_%B5}jsgJ$>3AQ7rvtddle?JjB zd0uxiWZ>}C)DKlAd2D3yy}u+*&c zj&xW|ppgHl>5T0^ysM4%DHI{;`su6POQMAZ1>sXk4zI=BwfJP07W!B-8N_1zPhzJh zh+n}u$CDE454;(vY3pyhl6a0VRBE5=k#Udb2jxD}&StG@_re4h(kf%rA6@NhMa#k2 zVIFPna~RpHX6N9LdFE{~#jS(Pyc5humn z13w zRM=OUHkuWrde-syut%xnd-0-Udx5hQ+wPE%880MxT{M>S~VcMgPY$W~^Vq zFvgJ@YbnBX*t$N7i==6*9}XI8GtXR!x;SkrrtfAVGaLQsDXQ z2A;~0sVjTH*k?%E?si^<{<;M3a0= zur54)$G+EgJ70Z#kWz4cf{C%4YA}vt^ODiV)LI|uSyVERAEY_=EX=y@uzPQPCX;31 zSSuP$)c{X69o=HhR+`jswzQjyQWMKvRBV^s8B9|y^HM|(Xw-BmlUP>fiIJo%iZXffQm4VkbMhSuu&B%J_(gC zUOoY>^NFQ90QHDDibZ!$85P9aJ7f6uM)&y3M+*mbuWdb}%5;{W92fHRBnroSWZXG{ zw0ksFwb{q6_kmn|FPQmXsP*uHK>ePFV9GaPUJ{~!Gtv%v2iLFl+j z5g_7GUqR9WmZ9~t_*KTA_di58v|tW6og(0sUDfdO+?Y%FmXY7gSN?Zb`2PqV>i_gJ zgi$M@W1xCG<;A)=hKo!|aOS<_bt~5S$B{;hVXfFB6H#kYZ8^SnU{&POqH!|zTO0F2+}-Q-A*DmLdP_3I3~po&+i#Ab6B;UlE{}f}lWlFUJ1R#^peRPF0}#52eVH=Bp}q zciHxUf>QulFi;bzh>{?(Sjmqw9NHUkEGCS@3;V;eZWy+Luc0h2vh5*i zpFfb-@HW;|^t-!;;J;I&JQZWuJznwk7PZ0%LPV@bj-#jKUW@)SoBNO*qB|pTJmeS{=PU&YZgC--k~e)pvWl5y36*zZv!EWEg%q)`sL$LzaB9t_o)(IX26w zobNiM@8e|8y}iv2WWIf{qxffwhCgeO{Z}6U@6~>b1aK+oup~7JQ;W)t0h5Ze&XZg! zCqa~thMH!nTI5+I*|88CG{Z=a1P8B!IF&@Qq2vDMo&Q1w^fy2J=lt-$>fXSA>iU~^ z{{I*6Tu*8kjo-Af1F7E~~uPPFBj_qyX@6FCuQ)awtOrxcYIafT8Kv^zORlW z610y*)q#Cb-QUm8$>f>L+l{st(4C)PkMR&cdY5B@N%-DGi}oQ8%iZ0!X>mhlY8oCA zx^Jo<^$_uE_nRB*%s4fxm@|}V-uNl_q9uh9TPtL;Ij&Px{H)Eo{GQxWyo@Xmq^bU+T+GOI4TgWiF3%h0T4I&Am9gAaDAu zAT}?&UPK!|>N{in5hfNP6S#t{F?@>PP-amADaXUjb4kYs=`njmj&A53&1(QM+6AZJ zTtB0Ubg9a(G@fo~^gTv+S!ueku=D<&J;8jGb0&DU*#={Cd7)#NWf{05$+H2&Np)I5 z)*kc9YA7owe@jR1GJjgFa49OqKkDs5#*WDI)g4Mgp0#CR4|Rf-=HHmmT}xe^_O!`B zWl#4YzL?G`EKGyPL;(KKSZ6ikmCEDo_s!niI$#2Ixm3SieDQ%+>)gIJwKwX?SSDVn z@Dy)R=3?nqh?XCYa+$h|l;*v%Tvyx8bZv+BrOd^_ z)z@q{D?vr~+tq3;FL&&4N3^pUMTO4d2j*KO0*s3Y1N-**#raJU;GjGDdW20~+zT<@ z_OwXhfS0~$yPRZ)u+&tyth}74H~UxiJd3NBEMc!1U+-`ts+WE6l`Qc$xMB*Z!a`LJ zs4ht`ZzVXeD3Zm|d;i0sH+3)i=6`&z?VA8qqD6EZ{K+R*qd{&J$2TCwftHq3`vsli$Y_euXxXO-Ju%UmxpA#OoSIx z8t&fk8%{p!v(NgF4@H6Aah#(GS@XvI8NoN}@NLASup`L8dneQzLZ$avrq*ydqzc$P zFq&cE2GoSrPp~%7TvHkTu!@#MSLZ;ES&$OJ)5GJaj*%q0wn%8*z}EnzHclgSzf&Y=COrm2B5pZYtAHz?z?2pd{O*3$;po9 z_4T4XLd*CnRetXAWpGjmD_3Ok8ty-fs>Te(4WaEsDJwhRm-oG$&N3LDS#|%Uoz}*a zOfVAzFDwsnx&}j%f-f=>HqQmutXcJuk_P&mLpHq962^E14<{VH>B-pBBHUkpbj5ii zkod|&JR;3mJngFvoV(G+Lp{)JhjiM_cfAcv(&rV19;gqJVki*39mTocRH*ONVz|fL z>aZS^FXHw7{^_vQ^60~xVaYV7@!Pi_$WIm=Z35^K_A==nL4UlYF7eZ1Im1|DtBHzR z_}#o0MPbv3(>04B?o0hdY(B=w_pVl_~(M6Hz2Jc|J{ZRRwUK(_q- zG0JxZLh=kwl>AuqC)nL&Iv-tEhPa2$0uW>XgM}bB@OnTm?vk}a#9haY#vxYWBoIfg z0iEftxle1DO$T3`l9w>}*2a_)+Gjxaif&{+lfnie69WF~a(_lbL7VQX>wq0CY(Iu< z;DJhx-2wq~C*Ve7&|S!d>xJO7oidkNph)-^Gp|q&>~Qk1#;4bC{Yl;v0(dA%FA9(SG|{a;pw{!2>STth1Y;!(MQS6Og~nrgZu{(Qhu zxuJK*8acVn1V!n65qo|t!ocIjCFVE4_BojZ!tNQ95DOhq#pA;F<7W^j}cI4Z2RDAAZppspc)0x0rD*=o|u?;aYZ=MIdg!0 z*A_ML(`B#C?B_R%8+SK0Rn?*0OlNUaE+_iMB#6R`1du~hn8_#cL!Uoe(lk%bKSr{kuR~Rq z$Vt2`a^V)>;yQSZsXeCaS>PoAX;zFCIFuJ%1M*Pd&1kH#|IWhF#-2~IvWI*U6XVTN zo+-<(>P|amW;Ds_ePN7tBCF9Np;54D!O{Grdxk66`bCM6TDo#Yh^>=At=@uC>&TIi zn+M+&C2*H%K(!=kggE`UG8G2Cc2&15=ohF)W8qMhwP<&__;})Br6H7V zlD<=xx3=)%o2ur9HjSfU0VkQj<7uL^Q!NR>4GO`hRBGFpzIzY2VE0c5?426?TCUIZ z_I~v7=A?#<=I4g#_*GyF!UUpkt_1D1x+qkwGTs8xktd9Gm*07gg~-^rZ`xEC^(pK* zf_SLzc3ukmJ#tWmnB9TAjd>D2&Mxoe>T5hMX0IgR8?5s@L+<_;znL3se8k(*uLSa8 z>O$akPeJ2H`g)JiTag^g?tXp;Fnhn(ey?#ERWu7gKD%_*VCIRWY9GAHv9s4B+_d&o z#ZpD?H9fzKxnp|n_uP;1Mw_SI{I=8({k1mQX*rQN#BPRFpmR$aOSbO zJPj=w!}3CM%$W?qiL~f_q*a*uHmY@l-hd%Ib2$DJtPra85p+70twY~SF*i-L)YE34 zVC>ZE9!KhixcF9;5KUeQy4M}3<9c$A!T9QR*a;XzJFDM67`$Hy1b*pD!b5F@s!WiR z3of{YJ?W4ncD54t3Qm%4puP#m(;nSlo?K_xDnfmKf}FDfjeU?bU10v-jUF_(Kq|4_ zsSPtx2vO5~M*=h9(w`O0))gnFTC{q59G-b@nH;T6<m<67SLR^*us)kcZmM=bjlwi4=f825Z- ztb%fl?6FuuK17$w*Felx1-h)qT#z29uDHa)_CUZog6ptT@L6c$v-E|rIvy~TQApup zY6VS&8p_l_AGamhs#Q21#-vz|+@8}qUt70UQ7w0{F%X`(;FcPt5niw)XZYFOeMH8KCsFu(yPLfERB(Hc~t&&@8(gt#PkD>-7$&XyI2KS zgAg6JP!;HgLv@l4&S(*&5vkjyD4Y7`ytoTGR6I*jDAM|deRZih}jDO6(U`%gT>>dB~ zs_W^S;(~i`3L%`#IPVZAKX!h)SAii&aKQ}ye21ki#>SpQ_(x$uT7e_aUYZ)!%7Sqpg}Kg)rK{tbBvCB zt18PU6kF78MPuhVPwb_ zOG){e^Fx+}bDKj27VnP8mvD%qU#OV}>)ZH=+Elj9G5+w-S+&4PX6Q(D949bU5STxG z;U~mtV1pnKb!RGg@0$Db5A#BH5$EIDPio~ZxzYg%D!7g-fu>6JY+=6l&FT5H9T2$* z3q@ZwV_yqGyaVh;<&kPV##_|@(>6R0vXx{SCS&JO+`Po=DwuUHR66cn#{uWgp3+c_ zfgPtL*0gbNfr?FN?ORt^iNl9X+tX1D8AO%3`Hvqh%|}ZwanIKCvsa#-(}BINK7D5^X<K z5AG=24wh-wr`o@S&t+d1YFZIBpzKsTYqEEa_sDFLk6?e=^T;tZAeO!QE)XsVm=iha zWw(~o@T5;^93PLS5F>vyTXB~QwTbiS-aOX6r}|d%;CZEcS7D7gOWKF2EB4g%sn2Ml zV8qQeRrvl16Mts6vP;s9w<%gar$LyndG)IuAgbnZ2*jvE2GN6DcHc&t#Y@t3+l_O5TN_0)YU8?r6e=#4L7@)>;KiQgcT= zn@g(_W9^p}g!839isX`ZxNYIZwgb=x_ry&WAox6xXUP?3sdgT4y0NCjyR7Co=oWKe z-=^Y1xPVyYTvD4YGs(mQsE_v_c6oTTN%*M(tL5~7Y7u|+_lFo`lansHQM8yZ=J1_jMdu{o&E8e z?yf+|veL3b&?eCe0%mc3iI_8o-_P!dhG-`$#I-57^W}&g*x%VC9x|}sW!;SZGmIDQ z*fWYHek(2Vt**Cq{brOv>Dv9|$)qD)-_1iY{UD|?Ko51>x1Y&jK!mc<4M_NC=I(`s zyxFAF`H3y9={dzser(6OqZboihri>@i05n_5fc53`u=Zr@c-GO{eS244|p^qwqzzi z@=$2M!VG`J)Bz%g)F|NVLHh-Da@B%l3W{jo`&%4_1{vX>u^|x3sFw6qH^e^N;sNx! zXX3^m&ivyj?SJCmzJhHYR7xKXpS~r9oI~i*y#c+-U6io}H1({yf#`u7;D{KQC^IMk z(-HZYvxE{ux6c6>rVhW&YQ{di{_jMr|5L_--_)$Xlwmu#=w)n;ReVc$og#3~Bd1V& z5b#KTDDyJg5ha4rQhpmfp^t={$b5Y{j6wXu{&0@fqaucMe#OkY zz4OVF&H}gfE5>a-UWA zGevDo4tolgd_x@C&KmfVN!JTN>p>nmh>)B@=z=a3D7&+z2!8=&HBa$I8HP2xi|2ho z(m$Zb1prKcFM9Jk+2DUy)6U;QUVne>pElRfp98;>4gR;14gQ_yXt$DkK33e{u07uO zrjTdcS$XIgD4P}6eNr;P;%g&urQwCbmk;ee{rM?D8yy(c*%M~c312(EtSds#MmN27 z8QMlV1(%cF>P(G7@@-`^uKx!F)?L!Tj&z^z6ALefT>s@OLgrp<49s=O2Z#rH5qbP{a)@I25K04*>8|A=)EwnIEY z!O5|`qF08l6@L2~C3;;64lT1l%r2K?9i}~+lbP@Q+l*n`d#Fd!7yW?F8?31WiK2Qr;#x%5U}W|32$UObx54%# z`^1ZH27|AKI%Ff!SLfnu%+IY}Xpqn`7C344=7S_914^i>Li70cx1=47G74!CDQo?3 z@X4)%udXRcDuEUsg^oRbvys-5-gCX28|h<7YXn8m-qs^*Pv;JAAqXp5k2@YTHVXPt z_7Ud2EBSu7_nBisf!gQ{=sh6Sz~);)iKf2EqN|c#JZFAEj*k~-y(un^#;Eyh@7PhG z|3j`)_%r${j;jukuO>GGOVMEm*-Hf;X-Dmjl$xxG8T=j>DEc-o!spI|=Jf+sGYC2l zC>{{F=u*R;D|<7dh&$|4RPiUVuN3QM1l*zMlAQS6^HLLbp%<8yy)6I1BF}>O6h`NF zWL|7tVAfaptUh9|O47V6W>OL8(TbKy?>nc+)^S~8o{+F9g&)|BOiO2ccKJ0Kn8J)+jv#zK! zO9&-C^n{Ov4tKM)?+(jDI47qstZ#jqq?eBrQS-G6$(xUg{v5H(prN&z-wd4?7?J_L1U1pp`vM{%V&S%>*f%wBH!U@7xhI zCpB$|&pg4xi0%Vdlz^R0Iw;j!2HWRav{imOzjP=ed-L_HJ$K>!(!VSSA`$z_KuIf| zTT_=b-om~0C^>9Jvh3;PlejDN_;={wb8@r(xvYq>G9(wx1=XZ2%y_?en5-7!bueh^ zn;J}dVq+lH|D$eagEyZ*W4yOvM)A#Hp=%K6jCzB^39>;GmVYiyo#c=yotQtnra-AU z1_Q;U-f5LWDH}t%&hv%haftGCcJyT7Y2z`wIkXs3LQ~x^6LG1Jv*SS6yB}pKz1bh+ zkeW(xt5w?nU80s_X5@3vF8SwcqD}?h8bbZde6ida&;@io zuEKONlf3hWy#!I|m80f!M)!M!iI*e&RJC<)`lfZr$cybT!=ZJ=ew%_f8Tj#eOU&l& zU!KPdVGdY68oE&lXcxTH`|7JCQe=G_SqN)7XE$@Vn80UiQ*og)ggicm<*nv>3%8N|d8Ck7YJcUb&eX zZrJUv@6x0w&ZvlsIT#|_2he^`0s;W+x%Z}Hh{G053-txg3%`vK!bR1I*&CEE3CJ&q zCaTyvoXeIg&X9ZX_Eqd#mFdaJLO2#y9!BR?S!f-b$s*fP9_>GygDCmxDzYc9utoE8 zmyy$|ljK@%^;wbBdVDhzC>|3YL+II?Q&E zmx_7)^|O*%gX$OCt7-w_m8;*ug62kD21VhJ`1&E&t$u&XM|`$ z1Z&IFFH&6|DAmDyu~$fofy;+mSM5AKHv5F+p=R|Vh#YtcFk%d8eI)(Hg@7GX8ueN_ zd;LiV<@JrrLlGOzF0>J|X~#i!*3o6;nDk%&xdYI@@)Y5v8 zue(IUtcX@%Zjb9F`Q_(8edvwC(H{_#_pYJb*!t5ZwRKB{eIwHYO_x+dAPA}*{KNy~eqx#A$0_a#zt{-%SdZ4K-GIUK* z3g8;NPIUPR2~5V(F^G0VY4m3!@TAvktS}9* z)5J&!V+<^>;miThE7%4dU14&YhNT^=7}^*&apyigTUF|#aH5ABG5%g=IW%+v32nWE7Ga#mb^yW7@ghb#{pw@-o94Cs zTAvf&p%YQ1W-N#vD?0x;VOM4*-5eBdTBAgfbJ|iRCa351U=Nr*-rs&?tclC<4tIK- zXFhT3(Uzktk`S%v9j@v7kO4Q9O9O1R3RuP^?`9uSFbyd-9N&|_FtFcH9Mg#{kwj}1vGwg~eDo+hpMT~k!lwDO0bld!8dvSbyES{{s@_8$f}*z%oi}PK zxxtuLYu7;G^<8K@Z!=ZhPgJpQ5Sr#nwde|Fw~AJ|b~CZNZ)-*2(piZn6`|=f7Kx#| zC4zxj96?c*V{$$${EMC@Ycrup86dx6_+WwpDp-w-34OwL1-__4#w`1*sV%c2_V zG&~stu0IxSqgd7gQeG|_X>2JOwaN9gLtt+`|A%9re+{F(kK;y9rvsU*1|Qt^p@l6L z>;jFbOix(h1=1`^n}AuQg%&^Yo9;Wqfca;LII@-|fbPiuWtm%eAK>X)qx>E;P78_>4?L0Cq@No2c3&r@%+SsToNFrZNtSIs8?@HCU zxG|-9P##2bgjsyC6Jw{UDP5q8d4gqIN)H9<08M?kn?2i{u7J3f{L6|s>ivHQ#D53G|4V@GKSHPf=I8$@0zQ;un^@xDGHe-sufKU#JMXO- zJBf^V2P9>Tuv@1A=DXFH*rz(`7HRAW+ z8fv#Q>$dA3eTn}JL>>(w@~0xrf{2pg$P@OXX-&=jomO8?EiQS(TH+QqLU9n>WGv{# zz21-Xo5DV+xXZVYq_+L4{36`%+RQ170Aoo)UAWsOcS_3XNe}dPIF!4Wslj zXUQYE+>KrDFBa_9u2y^*z=55;^am4c`fV_7X{eEOQk07itOVWUzvw3N@+^~w>wRjf zn~}cWi?}aF&q9>n-c;7UK2AX|<0@+%=iP-wS zOIL#WJjYWK^IgJrsLX?VL9kAIxL_JLPQ5_0jiky5LI~1DZomo|?aJ)bg zjmZ^e@R95gcR$O3$R)cWzw6_f;F<1AXD+17=Utf^XU_yZgmm6Dia|0Zh8pt|!U2!U zx2Cc-#=lK&3E~QPaI|mq$TD=V+G%O_od9xnT8g8|&mv0O8VyL_o|%pMrt4a!>sHq5 zMVe)ZdP}@LzLT^5-dp*}#RdrThW0MH6FICN7V*fmxo4+I`P#*R5}jtiwN5|iUX$Tv z#7@j(g{J7jhT#p^s5&V12kD0aHF+`$qj7Q2u}i<%ue=}2(;zD*8S_yKvq$AEFWq_J z#X&6Ll`E~OPP{a}>2kkJ{MgLIt#QfA=UVKAyyXC7c8}SBDEo|G93+dZT=#$b6?C(InxBL0C>XG++uNgNtMe`c~ROp)$N(hjU=^w@%mE_iVNH2 zblW9@<^CvDvJks`rT>JM+KSCk0il1LwmZ!~Dm4PADu=2ntQtu?&56uNx}gKPIs6pe zbOF^3TeqkIjJJ?+C{s)4;JBV|GW|r`B0ysG>>ANjEzm7AHMp>SJNw;&tycl|&9@fx zb$=d{oy|N7g`fFC9%$Zun=8L#xA;?o!-2|woV#27rMD#R-8Rz|J(>ULp$%%lQeE$! zDs-RqCuqUw@(rL+D$BaI>tE{&7IgJt%J8K71Hh)_1jto{yC_nmJl(}d^wC>VUL<<| z0L#GtNtvyH6tKXh`nD-V=%aV=sVUQe>pj>61rrQC0#RqN1m4d>t>)WaiohTxA!_yPLWt5iYdluH*w~IUcgCK=9U~P z6!$EL`2;=*I=^@h4Kn$t)da65Od0jzWn*fPW~%#{qaRs68eP9(>OM6V2*37Q8=oXg zLOq|=6I4H%=MdG1#M*{}$2FR~n|qjFevzg6<3YVb`t7)#5cHus?V&?tXl#uEc3f@N zOY8jV95mt-cL#5F)$G-Z8*!DY; zp`qg6%j{)K`_9$IG~dZpkQhus7Wz(@psg+VNV;BZNfqXKy`Qqg4(zhD6q2ha=^ohc z%u2n7E%^z#4#iYu*Q3YSbzd#N(mX|sAbu(HJx(i+B$VqNV~^=IY-sWtuQk}?f~#n2 z!0e;%W4ztK@A1{!)+1F9(-9haWn*ze;a-F(t2lgAB z*$Y8GxMB$lRh}8tRDC<|1Btl1B%ac+P-Qq6i{`a^_FFD)2@R*q6EH$^nAg;5!;+!( zEp0~GMvc$WilI{$&zKgqpiRVJ%7ZH7v=}w@Q1Xkf*a_ng$7xH_L^rKU=A!HjlpcoQ zp&NtYJMCQDr1;C+@t~>u(T>>ut50s}YXw!7Uy*|^g;*_>0nGXy@*Y6zkD+=*8eI^4 zo*W8?Ki()G?&DTX>^{X9m|IP1lM;0c>M(cUM~q=xprH;>YQv8L|{iZpFBpKz*HguokX>D3Ed*?TPxbT_mB;Uiq&nS}BsyoQIw+8N> z=oyC+YKB@$6bA?P2v(UmX}YK1Q3Dm)VrK}pXN7uXB54e>=ts;=ywqk={bl*2aJ_om z8B^vtY_A9z^apX(!%3y6-M&BSIbf;UWpC}9?tbjqHchhqIyGi-mI_+jk`Wbnk`ac5 zevBG2xf1S;QYXE`5anxCn5~9*^TLYic-iH{Pp{kFypeO^+~ob2!$2TUg72Qiv&oPK zHmf;2ohOwzhzZ0w8)I4L*ZkB_nnh~&;_u-+$~{hhJqDjJRTUge(OJ-e)uofVaV0AZ zUKpqXO(u1LQjj^YxL%+Ex5B<-Bpj3D4vsqLFUH3*^$$4nldn~S_8yW{bd^)^iM{Zq zp@;3aeL1&oyUzLT8t&r#L5RX4{6-|P+05oX76%x@I%b4Ta?2% zxHiC28YJtKeD%kstf)o>W7LTual6F_8HKp<;oV{{gn{HpLAdFyB?Qn`Wub$vnq8Fy z_Zurs6H@&@zLXhr?6DH4FfToRZYrnhpy2p4 z^9*V}S&Yi`0U}ULMx3^q5lsgPA>o>hSK(#T5qTR&A?B2Yv)|7X3?RlqvaA{R>F7VW)TDuq)xXRnr<%AUs@+XYAjg2mXeMv2Vcs0)$sx-TVu^zu!*&pAP=82O$AY z{cn8r#C60U)7f=)dgJ!traiy>gy20GEV+>d!-Qda>oeols^d2pHl&c{EQN4TnO&MGSzhsy68PZ(2roE;p>MN@Kgl=YEOC9yNU!b z6a2MPa>k9F{9I>FT~84?CE+!h`v!6)b~3tm=V?H&fR`ioqT4I8(8F(G+X|N7Zuq(} z^*+lpYk^2Z-;MIwznRzlQR?;A&SULjO43~cvk>XhM)ZkTtWjs={|HD}@+j$ERr5>r zJvBa~gnC_5%@nnwfB|`({sxU-18xw*KVWnLt7YV&?S-EZ+I2+OGZuyih+tfqorv|z z>mD>Fn)-r*2utVFh9PbGoXD`IfJfuar*D-t*&5w`|!Xj}P=>NuExq^2BGni(wC8FJP|0hHpOS7=~k zvt=moP7O-j2^7=*#D>d^-1j8kpOBF$Eo?f- zlhd0RP`e?Ia=*>wr2U^Y>ueQVYQGtaz0Y~01z|0Fh$pq3h+W1$f}(hl`w#-tAs+P;yUOy!ZQ# zWw&k|fru#WVeC8sOw%Ee#a?lZYn(14%#c}Zx9Nx#@bk(d|F9u@B{v&a`#&%B_cu~( z7MNq%d%Rs#>JjNRPJh9$bN+{gT+aO&U0^D80!R=20m%D@|Hl64Hl@m9mX6J6e={{@ zm4R66wf!(Zl~wr!dBJ5o^#fy2gwwkM0)F3yt{e*}iS+Ud* zB7d{G;0shX#TwXuaUKS=tNpbXt=G=0@_Org7Cn7gX-@gfXKpKY{m-}E|BL_G*A{5k z(H-s7ac1>6dQL%g%_KnaFODn=Qq9&8aSYwKpO8v3koln{`Dr^rnhP+nr|9PN?S;1> zuvWLA(h!9Rk}-6PoenD11y!cZ5U;C#J+#s~#0yR6e)P1t9rGJt3&d>?>hW1M!9Igo z`q%m(%b)*^NCPw~;BTeAbe!4BWy+AQ!uEFl6@x6FTe!Bc59=>sfHtBDr^Zp?;LY){ zfv^wAy&&)(1|S);RZJeJ@e#2LRk%1<5N_3$3C%YMIAx}=Ax6AodF$NWLuA=8gJh0;|j2wxTgImtsZjy$)Zp zotTkYC05-*cb$^p5QP!Egk^l&h~FXTyLAF&(=bhU0u9O!oWVmZzo?!}a&yb|;n9;* zzh{tr1}Z+if43?Q(W>5Lih&Dj@6)JgQWkR6hQ(UqB?Z>fORCX+lL39lHswqLU|`aA z9$}PZMC&7w#Z%RDw%6g$0i?ySFh_L$pljkNpMOF!XO!uDKpHCsQHd{9h%{mE2QL#qP zM&&SFbGI!(hEtC2D6mG4bX*51f>Q2QP6pJJdW>x9K$QWc=yX1$`kKS6pz*0F@4+8m@{#Q(KY!|*c%efvsuXQX|*g?YRw zgay$(lnh2Ogu38yLwpcmSs8Db8go|K zB12xznpy-}3sCfYb8e{b)2ksH`{`HD0AB5vDq00d&gg~}r4;OO3qcfFvd85j4oufFmeD%$ppN|q75_BHM-{F>>=niV4x8Q?bM!8iJxDMoeu zE?MJuWobYLv#%T^Grqhb#}3FHxOrR=f@(oGsG;^;MM^MUc-Ee^E>o+*$4I;1{%(K& z@L5?7=de1>M4O|JgoV7YxDPowk=zgq^FVe8%f*ZxHJe0iGccE-i;{K~ktNy$Z}c1X zWvaC6b9Md*C&pY<2W5-*8VMb&($#bCA}3_h2ty~|Thr&JeQ@16gi|cmN50HJ@un~{oP0Bl)sy44AY$hC) zmbdeqv5PRAjl*i^-Fu@@ZvhTidsGzEbyR{ zJJFq{NNoVeOv=2{rM3c==8DQL1eU5vvCiRbEvK4pv-#+Ra=g&Y3FRy(@q^Al#HGCq3mbmF9I8t&?!?gUxy$DdHleA*TU!{m6+dZVQL+~ zii|^Ae@F36*5zNuYrkS1z{LiWoN$|31Y9@YRe*H;(lEILF@j$*0agQ_$&Snx6R;W? zW?`q|f$T>U`X**eb>#`1qA-WvzK}@wv!aO7B+(sMBq$sgIT?d3`(_3-bM}uU9OZ#u z0hb_YX!XYh611gDNWJ0a=4sXSz?;}t5lau5-ImvkrX=@m&>lM2kg)`rP}FJU(P3c3 zTFC8~-%xlyM8&TAvF7n?nt6Lpz30g>UrB&x2Oz#c>AdokY!V*B6mY?@B2C{LxJ^NK zx4JJ9QyNnlr%r{pB&=z2(aLq(^(?0a#=!!XIysEdW~FYLQT@of8uB){)TECN=*n)oxj3-+e zwTEmv1q-bcx2Kzu74hLS{Yr~GqXi?!B5uXrAlzfW^ag&OVFMoK%b@4U)Q#LUnHpk|C0s1q)5Zi!gqe5t{_4L9rXy;{-K3Bi*)r>+%?OYUfA z5$8o@!AX}*N2;xpZE6{BQ35V_*RnMD@n&x`rJJ$mgw$sPk?o!A>9JQZM}vh&(V)CU zyF)_6XeyJTjoThEnu70Ja-GLY<+aM16)WvUiRX0DFqa8Z&I^A{Z+HShpHroi!E?OLb@2I>7F-lAeYIq$35c?vcJ6sqOxCXsg)IN^++iy%lDx{ z5eYO4hygioU9qyVnzMKApXGdf&U{2Ja3{nC6lGav@IojFJNjYjbs{1n+1vDkE}{CA z^1;yq`m1>XSB|mm2x#$5uE&l)1Rj3$r#4hXvr(2?anLIni*Xk}0F~|Wb3A~jbbOt9 z&tF7yL3eyW{#rl9hFAINk9*lSkLaNf{VLJi!Hqc**tkci$J>&dOru!ttei)T%V7wH z%SpOIATalLTTBN|tPO}dtvSjZdw7i^fnlEzB4_Z>UE(LCHsaOsbu+E^tlLU?pWSS~ zXr6lO;I_?JJnfyD-Mseo>erL8vNxh{z4{i;qBEU<2(-n~1(b;;2S@j4{6 z_$(|^7wvw1->!R`DtXtYdhd2n3NGS2(38pNVu6x3eBc*sFJE zFpoO@xF6proJO`p#qx7OP_wq39T8ca&F>{1vb;ASi?qh%l%mIFO3rqOslZ8hHzCJ#E& z;cyjs=XP*W%5w#?5A%hMK{p~yFLCS0Bz*Q;PR~ZnZ&JoA6Wyi0FHJ}6*?%U~=vMsM zGIMTSg-?bM7C?hp0j2rhQ7YALy3Xn6jeq9st?9eBSF)rD-AG3eap@voDX^>65qSr z!S092dCtAO8G1FQ-R8mZIQm<`wOb7(1xFE3DE#C~mxxn{~Qk|Nu%w5pji{d*d9b}P-XF_hN7eD21rX5?;f7o#0 z7>$Sv1KVAy{Bx|rpKf>iblIQk1$-xUF*z-0mPqxoihifzCA!`9JDEI+5AaLMrH{Vq z_gy`;>1P`V|4=2rHH%?#@spp~@uk*}v0nA|a?3KM0jnscmV@IIj4HRXWJ)yLTld%# z!5O@p$J#pO){lXSj(aKF;u+96yDNj9wfh>~t!!(;OpD9yS9|UsZsBv)D5>Op^YsON zm~~~D54sr*xMuuJWyIdI zM5o9N7`I{A1F3<<-e&aNOY!h20H(-dRWhKE0J6j60`dpFnnY3o;0>q;#tT@v* zJ34-ui8i2Q(G6xeS6H|=uZxJ*Qdn@_k3G?zzQRg2q7`E@e)gh__ci6~Cs-&>bpAJ# zaMBdj&4lr)M%_30QE76V>*@B05H9OX%T>kc*87stjb~~t%#8>wsC|P`)z!6U=G_*y z(q?7|V@9_U!GQxM$JLA^SB<8Jdl4lvi})$Tm?KdyJw)?3+tazHRYtk4b`ST)WWtZf z`>GseJD1W`@jCPtgaNkbU^D9BH6V~)Orr*GaKZ%K)RRfmj+@*H-ceM+pmyz0+=Yb~ zB#+0X$}GO71|-u^cV^eyS<9!RwrvA>X5xAs%guWd23{s~6eRtV5WRmEa`-y%B>vB9 z(Zd^zzx1Q~O;v#T21NA0-WnT*pzMQhpFY1GTIaxsf=>_CiJ?bM0yJq(eqQ9aQ~#P^ z`ak2?RzD?|Iu$@WjpQF>%Fm5mcr>tmb106>=9aU0%cnUGsX^hA_>y@)F~Iq>s`RIr(d_qG3a2?o+SB=<0p?oTQBsokMmhN#N^M`9q!K@(uBXa zoA(xEJ@(bMGvUnCpgqTBs>r~<=so>FS`h)dLlr!m-po8Pxa6sIcpxKbnQ}9D_orxX zR>Nu8ug$U@(@*8w(S+QeklUu)a&^LBGcLmd0RtVFjyVDjD%MuaPwDFx$m8G^aYHbb zs(N-IA5xE#1+BDUB*EAd9{cCrcrUu=DNlZUe(v$EfVd(J-RlV}ItM@eE1K+k_XEv@ z*zkn+KZs6p!+OHJh_6l$+pI%_XGMMQwjV$X+XP#{A7jn)`k!Q08UJb?WP~d9nSANwtNd z!R3BW|5K`Bw#)MJhWZXJ)7DeE^Pieos4uo2wxTPP7c(b~(uQrRnCz?FDLYRPl(O2F zsy<7bq24;yLISP><;ev&2_Sc)4=+4#x#d9w{qy9pk#jj{(qW1zXFihQ(Hm~| zP{UGL>FU}P@!;bU;r*VmXJWb=^i3s$9CZKw*&3nBOd%Sf5wAN|0U*tNN~&~EW*}v8`p&Ac40~umnXL;xogj8JfC_d>mJ>g z#8UqBp1%lW@efE#+;drlHpl~`B^@q3Bx9;)tc3D_>f9q3U3X|sAesAsR*m|OAao|Q@6;Kn4>PVrPPjLzluaNCT1c94I|*bA($evGtUVo&3Q zY$}81FZ&acIAsx~OqItj{?N#A@bzdB7_X`rz4OXoSTKbilmQ)-lP4$xl3Rn}PsmLS z|EKaV)M9&1pVq;FyzD1vVe^|2=*f%niyj=*;RdGWm&^8~ixs!9b6-3^7JZDJQP>uU zdCocyJsf!Y(QhkYo-(iRo2Ilqy~{Nw#HEYl`d<{zly3Sw$UAyYEcl4ufhSi>AS#cZ z%CdU@)yK{g{pSk;0KIXO#khwA=rH0ZWSo<(i5*d<%Hdlup>W=Qf-m(UvG#Z~el**b zW<~M(YUNXwGQ?mHh}FVxRaF`F%{|Cy4Mli0jL#l z;mUPt^n+A)5*MPEDNY?WAkDmiM-&t|RtzX-mM0S2S=}rjF`q5>mzbap=LGM^7vK zV1cSj6QCRs9L?;QI9+WIXYve@HoBhjdqw#vN}SqApLuehIS?GEJ^i}a(*%8ntoBNv zh)}CPZc&*2d|6T2h=AU7Q0YXo+WwXy0;=M}GI8DDSeHzDy_{=WTMlK+xvvq7!g)>&kk!JCR=8^znSwkuJg|Yo<|Z0OP@mq zL}ymlNcs}Fjm{6HSdap~CfVL%W)mw9yXTFWBssP(L@1?wv-bZWPLZymG%-0BXc|{9 zIM$Ky5lfdf;lLtVXmiIRH0t`+1%RbGxsr1zh#2_l0Z>H7dN5w)w!Vj8t*EM? zikr-+?xGLXyskw|0>&YNvZB0Z3)yb{2dm=k`2GF=XdC|Ldxif0Y5bu-hkvIz{V$?9 zLBCf}!T{NXMwVf=+Ji{MSPCnKy}`)*37M|@MTRL#wgOeO4!1V9pk-v4X+%0md44fv zgqVlW!@u}IZ=|uKwsa6A1Y4uq+sItZT0nwg2&9~UBfl9+yx;OZC+BTUPtfuXGdt6LKIg%d)#I-Rh`$LJVd; zG?EzrckGEm@Pl}H%(&sScI}j+)1|`7wC}enss`>#hw3Qa7C&+KyB*sOmD7Q4+gv%1 zmkT@zWX{)BV2&(OpZp&IK=h$6=sb@P*o9Wy(>eH%`oORjDlFkeKzjPD3eE!uiWI9x zbURQlz%j}rar@mUG$w}+5Y)cy_H)Zcl| z@64~?nP30RHk|+LXR$b}cK4f=zG!5!RhC!k$69BZk=tXBc6Qc>UIN-=Y*sT?t#GQ8 zX+135r$S^naCw;tn-^p&(Yu}dFnd|cu_^bfV)HwtCqsbnu6Q}5Q6)DM0 z+FHFUME37)?FH^a7_S&52>tT|caQ)EGO|>>si}?U{3j3?Mj>`~89*2JfWlKRtQ5=G zQ^yUIi$Lhgv>IMiUNk51wt}AU1|gIPmAKkSyNofbu2ymRVyqx4BVT&=g{9b@;-u`+ag!S&R zv;g#B++Tj|x*uq!JVld6b*key;7%sSlTNK4Ju$pzbLIto1ow{%E8Uq6_6nCv*Os+= z^sM^~J$t8}7F-kU45dmYM=pBFuk2^`h?I&XrAP=%^mz#*Q{U@?R*HLH%N?JwZX)}I zS%W|6Ptm4;xSsfhth41|oFX)r1_3DezQH6y1WiErC!gg zza`GI*wW0Sn#R5?u0}F#&OUs}n;zoa?%f7} z+taL+L_n@fZiG`s(LW)b+f0mX2DBYI0!${d^XYul=h`wz*MSqS9xUiv1c(fq#QPCr zXMd>kiiV4Cy@t&P?p+hx+9`lT%>GMRVD%>?8n>H%h}=bJEg|)^_WA+)Z-KtULBEXq zS~SnC$E!8%YfC(JNq2)&mUXKGFo=TTsJ`6$a$~-48sqDQAK%@ynq5rUGL|j6_BJ-- zSlflPvN@2`0;_05xq3Z1Lc{?00a8mEkKyMYpjM@82Q+hYy@_^yI)&dQ9iaE_HSJ-6 z)vTMbnpNtlK(Iki_vvVn?j7Ia^!mfr!2Sa1M7o_#7A3I9Fk!RBO}jFQ_Ppl(?$aL? z3f~TUuW+7t!apK@duO=i$yw-mI-moD>7c&g)>VF)owEXV&=vyG_Z{>!5&#OD0e3-c z3nL|dLV_v)Jb=YcV1nw{2kV3ZFU_>+^CN4Sfg1IfLilxS)&qoJ^K1c*x zTs$4*@ZrxO0HFNmi*LmQ!a3p2(0!P_^h>=r25*GjFaIbUyF7>&c9yw%nm5p}d#L_v z-Y)r7(>4$)8E|3BKtRNWI+Q*7{H5K3TK1!TqaP~>xRp+zq6@y}6kt!Xp&4(6^aYr* zq|~;NvTxf78#`Kxwg%9oS?HJ*GZX=EtV!^k|AfddY-<9Bm^S>H@~8$8wwRkiZ8M=h z`QTz3J#nbA^aX2Hmu61X-FSJA;|(lq$wClVJ}LxAPX0nMB;=}|-4nLH7Sb+0{2jdn z#)Pe$YEM2xoN9rwFJG=liNA{KxU;`5@m}*PGHWZpVkwFF%p0=)3|Y*n{p$D?|4!Du{ps9 zG7L&wBEyZw3%+?gdJnS!SB8r$AeI$VJ>HK-n5rP2=e^PWTJ+I#Zk9zm@CAdN3gC3M z&|1u;5F4PiX26zYPUud2U7hr7V_bD0Jk{Vfccu*Wrb8L+jUMEI_AZiO2yimJ(bbT) z%WR=$h2Z7N#hD_Wm&1qMT`Wr%hEX_o?sd=%&eMIH^X!r4%Oo8@gx)I z7{2vE<8YdANRvPUH;rMrDntnxcz#`_``D}_cHT7-LN8{#0+!2YPHh4FI5nGCHcJi4 z*DWKK$HU}}Lv_0^NS0hQa6GizzwIUWcH)8iO@Hn}`3DBJRS#er!WV~0cuFcMEBkSs zL{xLg#g|{ldK^!NI^Vh}Ykk*Bf6G+=jQlKE8b}DD3~)Ye9$Ni>*n97|rrLE|G>V86 zMUWyQL|piPX@0Nstm! zrsw5bcdv8y`qnvT@87-q-hKA{{@{nk#LW55w>-~y#xsVt6FH^fM^xwG_eDP*cv|Vt zS{3v9szJ9osH8e9`Ia0|AgCsQi1js`Za$(iZl|>RV^jfA2LF(cc^&{|gZ*qG_t%C# zGfhVLDX6=s=nWHHQii`HE=)W$_CPJV(C;kpiW}lN7*~bfd8u_il>I!@)3%?xHURnt z&c|uLv0?^q)J7!5Wm2*M-aoRZdvLeL*AnePuQd9*f&47Rd@cO_zD3kxJDme9$c(A= z_z`PAB2Ia>OCdk~ShPiBl|UX>Dl90-=f2Nn#|v=l&P#vqXL2XiuDmAhQ#(tw(cQz) z>5wgC%C=2~xG0aKEn0llkKMrU3U2)VQ`~BI1uu9G($wbdwM?|T^776oBJiPrqh*v% zpJGpJ}CkV`qJbtEa0eNNd4Bf;n;ocYy%?LeUlM3KJ8^0MEt8 z6l%rq<5Kbqv|C1dW@`A#WfV1^t|=Y3S_rW7$A<5bbF6%@o@>DZ7kZ@9VX)IM5g6b0 zY9e05KEYCtr&V*~M5TKxj}8L1p)XoLyCib_Nr0)biuV^2vsgUR^er6uQ<)Ybmq4iw= z1LI0KL0AX?QO!k-#XR~=Kz^};voj2cB=rhTK-O|M!5Xj0aY9x2!iGTmT>|jEg~Dg* zQF^C;9>d)qDu2X;Ne&Qm0>HG@2FM&QXKi2i;5<rGkLRI~oxFe5X+5QtOZ>XRN`zrb(GY-uo7sSB2`-VFj z{k(R$v@(us>sgYRcW6Z$|BfaVFKlf4faJy$b%K6P)9Is442~f-!vFqVsX|Qa;ZyN% zTJV_B2_Y`mN0$1wO^7FmkjhicWHm_}JWn}N?8sLOk%$kDo%ik~F?)D6MjcyVLsK7u zVkp~ekP4P65_{!I^ff~)jCvJGIdrr}E&icumz+a%@^u!HZ;$ zARYUy;I<2UgKMZpqPDc7%n+h|`)*8EB##@i)(6gwzFZs>{qzM7>+I#o$d<3-qmG@t zrq^%CBz}g>Y>`*{hD&sUJBPt$$d$4vuSvH~YX`Iy1oA0d$m-uR?^%;_mkCvKfU0y1&6U8;Q*g()V zpz@IX!{s(@BUWXqhPxY|9HQj8X-eqiXPe z;ON~*d1W^?tTfN8x-cZ0Y^{KE6=Ug%S(5&RgE#^KKYu^5-*=(LwQI4Ql8|JV2HPjx z7!;ckJLexE%w&K<_jHy)&x%XVtzY+grp}F^S|w_`LAra$RnnwbE@5?!auG2}p7 z6T(ewY%$dRhet@t;i#+-wK}`#Wv96hDG$yK1wd7oV6fdVLX`tm9A3S$#4Si|pI}|P z7^qQ%yOIA`Xt(DViTJ3_unV1-Fyx8>jGuy9qEPS+q@9&8T_8-=7dl64DGkmE8`9*^ zooYD!F7NKUv-VrpIZulAZhXYpf+HSyclWk4{lIf)?zVwJ?$8l5k{Url-iG?9xN-0f zp8Gyp!p(jWV(t2eA1wxX9`jx@!>St<7L-<&Xloxd8+X6Od!eT+Z;j)u4h)%G=}#ss zM$m7%b@8}>?a8-v^4;n0&8jH__1`v;C9A!D9WiT-h|zdbk$UZMH%LT_&-JB-&UL`N zGoDohZomAUW+aO6hAnlS9ND|h?Qgcb_k7^NHqoWTvjZ7(z9oL>tEyjyHVFF@x!tK^ zbZzt_CSKm9r&8F>$Hc_&S@&G`0r@wL%i`W4LkY2cwjnLjG$Up>(H71M^^9;u8FZyU zO_bvidGb0Zhm^0hsogWT=d7L-$?>|(YQ*A$4V$M4Z``AfWnkKg!e~_r#{kk){Kvg}Z;q|o<(=<;a4hMtBNX#3c%$3s^U zwxlg3xd7D0>3KNqVixTeVe;GtP{jyOrUI&@#l9qfOviYsIVOWcpKeL+V+6(^nI4w` zPFrX9L(-QxdB2Oe(8bLZkhcFj$4X5AZ1CaOrWoo9RBDZ&ITjJ7l8G5u>PbaLGyzBg zE_?#%O`5a~WPAcf=p|Cca&U~K+shB^vGiQ6a@nq-qpR=4N9d6sw%BW2M#Pw@{Z|v;( z4O@%Ug3fHKfNa2bL+#kZ(2>{J-EN#Fy${1vDMqaun3s<&d2n^LSw`x{nt zJoTIdd3@{~Ffb-OJpyz@iaGBW2O-P}18Lui98th&y)xZyTsVHQ*2Bv{MEhm%^f!^F zxe+h5`?<~Ei2E5%%i~4yP5fNSU>>d0}ET)wtm;)&>c*$wC z)as9IIZs$8ZM&3z9;|UpbVbP@%*DQbHR7dOT?uZ~=QXw|o&m52f~Oo)u9%Q7J%ON} z&|pN9YO%D8*W z@kA)l7&g2;d4GY*_gm2Y6p@YnsjCBqv={hatWAJ$<{FsoT0anrk|2DZorf&a|3w)D zNMnNQGQl=|nj>up^kCN>5ISubbANvA?^jbpk$a0qj1KRl*QrVM9PKKIKYKi8dVZ{0 zozJ!>AKthxb(AZN6|06SRAlh=jl*kYHT1~XZ_RI2PL9dT?(fk%xUSthdmmx)$UgG` zuSMkZuvanQ>w++Syl7iWH~JJ=mg2xdHGHh$7Q5*YK@%aIY1qqmKh+f1GWxC=*D?T$ zbe}0r(2mVGWc|r}d0G41xx?&1lW^89?6*^4|o9$R>^iO0aSq_6za>~)^f=#lwU zcu#FEQsELw=iB4_S(cxb`_O1=9$C-~B7rs)_O-N7?}R}$%a4ul8WryMm30yh|2jVNeKP&qfg>s1YDzwG{kB97Y2ZUJYz??p-Yvqbra&GpHAwSi2fw-0z6 zIN;5Wl9`jGn6$K;;e+?D)QJZewN1G^Y&-%|l7U%57{UTI;G_*2iuf)QZgy6U=LlPV zDz=H+RWi8R7C3P7n@r{FvyT?VnGT>o15`*@W&a38qnIxMay7>KatgH@oEO?y5Q$p; zhMBGrm=`Wzf;R_)!wjB=Am1dt6&0kak0S!GJPfPn8!yGKkQ)=sOHR!!=}V~}6lW0+ zxpJhjdH-3ZzGiFzVM&uBwh>KvT}lc(HPUyjC=@Vgoc-gNF>S}5l|K`Ik0VNRg?}3; z(f`$QC?Uz#!sU}mTj#*YhZai4xA5=cpH}qP+mx)>(hsH`cGOzn(=r_zl?n>eeQ;vO zd&7{VRGR_qWAjCK`lEN>)e*jKTuDM)Z7-K-_#ysF{!m2Ry@MPX$>d($Exb4SPLpC{iFssp+@3t#Hi&?-VIl800i zlK!?V;|Y8npPfM<^?8>b+s3fEJE4l`ABhsEv*xl{hb#)i!XOwjMs>VGxOh_ z#qiJF{m1zFfA{zQRI2%Z#~%Kr7Wdch|BlD}H5UJ&V*&r&@fW${KMlDl`Q31o+;GBdOC07HptnTWnc5ow_eQa`l`w<_x1H6)g3PTae+`fABE z$;(wPPm|@jxaG+ddH+{sH)+=c7*Bs7Ml&jpc&<>>7%aAXWAeu5*C!*oi%%Y6m4sMv z9yG;KD+ZtRSaF?*`5=ghy75(|b&EdIu3-lIN%`l)J%7xkocQjebev&;%LST zynT$^E;rsYk8}J#_1L$6SeWm;^5N>DxI@lG9ogorx3ABKBOc5W8cEv+>1{j9$`Dcm z#AfSx{hMvD!a}R_y4ua}-o%wrhV44bH^hE4oPwy{NH{}Q_$Zq3(TwGb(JIGhdgJWR zM=s0RJNT|!FDe=N>yBAj0$zkLEB_Q}Kcs*@LDk<8HO?I%Q}CjGY*(1W*N5|w6yFHH z(j-C<8U;@Eb5yyM#vjmu&O#KA(r;L^&RZ*%mxr#O1wePy`Qo$jZW`lOvrK-F0)dOX zv)&|u_(|fHO~e%s$O}ePraj_;P&p3>41TfkgYP2AhLLwVbT1(Ai0^3wwN(>yFA%m* z2#q?N5Jv*K7FSE+J|jf$>YrD^r8-`2XEONLi)*+Cvo_GwXs3NqOoE)R%f+8kCiAnh zHF=BqSt^GUU{<$1xhOh!1Lv)|OfNod&wG+;XsGwyk^4x<>)XBYJJk875rU8m)nXLy zoeLdtt5l9I7`%A&ZCIy(X7s0LfrX}_9&vG>CrAMYKZ-~6&-EZ@UNBU;H!wgN2&am@l%F7rv3vuRkj%Dg z4BiYLsykpBeWU%r=jvjUhMKIE2M4}&3LR56dFc7t{9L_Oz%5PtYxDI=O?bynR6L3N zOShj6d7B*ryaa6rNQ>Z3<)#}jE-;hURgs!x`Ghn(1ss=Ci^EuegtQpH@J**1nvF9@ zZr{1-KYkQEnolPPu^2_D7r#esXLy=hzMg06^AuiGkWes3$F1$lAA2Of2K4s#PiANb{z#7&uEDL}O zQFndJK$OSoR*;V241A4x6g$2XjhXwX7wMPLGSsC{%`eHnVTK2WOknmhX{h6?Fb_fh z@Q9@f?c;942`B5p_TlzH_eTCedU8O@v*c*;Kt4NZX3s8sBBA{_7_w-nJ<0zN%HN2k z$Jpcn^x|$@*ihR?qXw`&yy4#hQd8XLnRwzXKQLk2c9NRRq{WV+8t}WJ4zq(56e}Ou z6}#+3xkKO8D?=`%p3SyCDJ2$mx%la;xL0u$O&!&@zQ=f7166Yaq;XX5iI-wyM4xq> z$Ud|lK7)9BMkYk=L{OU^8Nc)@~E01TB8FaOXb$2z8(9Jd$e2r zP3V|*>fH}}KDxy^rYPZ}_nmGCLShYryGu*Y*%#P}Zro8_3KHafw|nlG#?yUq?{om_ z{@S*NxW-Wcdck>syo;UwrA3Szcx2a|?T$5UxZPXKeo!1vH*d5Lk+@!U&#e*GH`IH-fU+JL7P}vy2aaxSva|JKdpkf3#w%& zdUidH)|7DdwB+B49Vb#xu2jb>Sou|}3H7?PMl&au_}|~e_Fs&ktY3PWRS){WMl(i^ zhh0}f)zB}9K|Jz|aGrH(K6gf@h*8{XeV3_jzlSvC7HId-s6EmjTcuiDB1h!LBfm2rJ5-;17=)eFQq8`W*Mq;a{v}|`b4+pREg3$sx8;zb zcP^;X*$N(HPn);ixYv(Uzb=s+inG)ds>qr@RIrlQ&7L7$2dI5F6O$|VP$U_As8Qsb za`jBAg?_jEW?9#%wEXDg!lEZrfj$j<_Js64DE{uYa6`xF=`{*t@TDUPzRYU$YX!s^Z2Fef|sT}&-$)fvMAAe2BnQ#^*4`W-SQTIu?i3RXJ= ziyox?fH-~Xj5v|7{O;`S0%WrpSh2_pNjH17pRAsTZNjNW-bTz`a0GGP-p&ee>OO! zX>X}S4lIbKiJ3hm?XKLfEa<@UME%2L_$T8qO@N%aP>BDAqg2jXblTy7=5jlj$zwOs zqJSGD2r$hmOEBkza|tyNKbiP?DK(#*i?d2GX@M*nEFDBjl}Gos(Gw;kI6*& za!;_q%2TzIln327uk@(gIV&phE?BMKFEc+o40;wo4qTy1Sp}uO6FK+Ib^mb>9e0@q zxB;j_M?9Xdor+Wlo5ytMqi{4y2EQ6s?E*uSOt~q}ST(j0KZ`R6xpA6wWnuwk#Smu} zKr9Ti%2(=L>+a`u%qMm#%NnreH#P+4H3}uUN+$aad2-k!TV55s1&kFez@2QzK8Cc_ zy-MFF^uCH;wH5w8$rYc@d6+vfk@GHc<~i81|8-0Q|HmUNeIs<)iD{4j1qV|O$Ka<9 zj)Af`S5$-9KHufOTfXxq*9ALMZ@a(CR6Z;oc53KC)$l?cnn3Y{IAqDVF(~PIlAF|b z2Von57X8WMP`kyeEIzC?(otf)Vvkf~V#AE1q{!OQ72F*G(v-)#R4HUgaNBJ8-cLD| zn2Gx>DENvO8>DR3OrC)_Tt;Q>H$;@jb$xTu3K9>9PYa`#e$3&=Llrcn(pT~xsr5=_ z-?RuxUHeLVrEcNoS!*m9c-};phx!;2xpT8p_bg{D5Q;mt*7&et7XVo=vxS<-C;j;F zzaVY@3&OI4L4$sxRvpz8fLO~0iKe|5-Hp=5{OKjnHxQqy;3QV>5q9}5q6Xf?imAd@ z$si`-fQDW=hoJ54#i;cy3NmG2ET%{F@EyN9R#2*vUc$0(}0zdrnPi0H=~jqTg@W#_2f}4atu+ z?Oj#TrqoPh*e3)jWC-``G7xoa!3Y0`;5wLN*eYYhq&@Wo=ucJr4WlVYG0ORWm zMlfj~C|J~Q7rw98U4n<+1!RPmouIHi382USQGb!20mAmGi-^gE?XtF6OcWH>gzEaQ z$!hqoz|8osd=G!IPQc>)ugN+=jsak!VZu9dp#}>(e-F9=`{D8+EvsmD>DW^b?z7kL zEC?;3z8WwBp?*>zHXn6@;@iBGa46)lj@Zp`roq~~ zynB*ySiU`@nV+653cqMP4N{M7g|H_Z`>l=Dvkest)5U!E@R$djH`|$ff+NutX8yI^ zZ-ld}@-S7f2HM%lCyVo2v|BX)Hu%+Ug1y9>ar64LYLj^1!%M6f2WSxf8Shgm@1}c~ z(pQsne6QHJDE`1uig9wCXjcC86MLTPhYW>ynm3Cd8b#2FseC{_aOd~Ny2Jc{zd^pt zH$X#f)RW(&d1Gz3->QjxzRdq+{+H=>uLs9aJDmA7EcH*ZeI~@Dv#g0h>=~4VnXwm3 zB57{s(^r|n6H|wDs;#^oHEl1R8GcPH6Acu5QHRy#XXv`!sYQXI|!3g6pt?vhET{=~bNkND~5%vkCA3^}+E0%Tgk47C6`rPbds-7pi0 z283NyAF%)NloOQ-GtZ?fb7AG@1F)RK=Ik-QnFcw%#G+K z6YZ5X|MrQKaTtD@AF2((;B^{TWQf5F_N9$VN4pNXwQGlp-2{!k-t=o$WIxc>OS=Gy z<_Rl64WQOxsXefgpK5J;YF0(=ll;(kZtWcPDk+WhfP;;|$(xvT2vS2>gPJ*sT!eTc zC+fCw5xrn{^=`B*>SF81Jb{e{h*AH3$7qkfSq}N!SVcqKN|5M&s;zxC64jGf{DE+{ zXt;E&f&MP5cCq$2Q^cjX)JAye{w``+-3$;0R{>56&5zR8+)> zE=V+Sp2w4S2ynX+da!<|-Ie@ku{@|9;Af_Yn$8H072BQJT{}Q|{_(}ItILZzF3>Rw z!ngeB$EF-=zF|S9^DKthx=0zUCf*ab)Zgl>tpuT*PXwl^a&JjY8>u!*O{~Q0U2|%G z(^+0+nXWCp;@4;XzQfZ^3k9Q};vNQ&;eN){+|-$T!Fk}u4MXQtd_o3;(bL!4qM z(&K$&2DO3nwCbabHz`;p7&E=3*k_(y);{H4QnZ%R1+MJu(+1w7J{OMk{n{RvlgzmC zGi15(9{_gUX?#3(Y(=KStkWt`Pi)U@I6@8r&#+Reic@Oo05AT!uO$iG*vZv$_gjoL_}kxaQnI#wD19K(s@pWXS+UIhqT1Kim+GikB3Y}|V4b`Fw(xcF z;B&@3vh|+3S7*L4ED2pwf0Wdv|4~kau+a7=)e+d%chDfny%bf0T0LcrTAyQs0{M%L z5)J{4Z6`oAB-}u(8ReAzy+%(pfjB_@|G4c0kv5n58#ecSfEXD7f$()Sm9+Y}5^S2e zF}hG(PS(~FupB^iJo=8f`Yb^TM66~LptCc3VKwZZy$pPqB(`rK__+Uxj6xW}Q)N)V zc5g3s@hA{RNzWo11Nse+|H6@0HOfI^^bo|8T}BIA>x5ZpXb&hmhr8x0H&hiQ)P z0B&C@j1z!IZw0dRn-B}x^!=gN7mh)5I#bJIy^-$CrB)?ZQU)pm3GdXzFe8XBM37u{ zuVW9J*hFmLENZLjlM8drp>2oa3!>E}T`YI!EG#*C-0(7=qdO*ZE)Jy#+k zZ=D5@sj}CQVN!f{+w>iTnrTWU`z`Df(%1fRGp3*MQUNd;Wh)U-UW&1TF`#p;~ z72gvPesND&Xgjl+$QxaS!)kVtCSP9Z=as-TS!-?2-`c^YDCU#4-8&le19Yy;z{zQ9 zJlGCg5_a@UALwBP$pwegm>_cxO%URg#ZreoRQYyLRl%*h0EILaaXbfhjK5>i*`ZLx zsg2HGUTf|Rwzr>2Yge7Y^z^H3Tp|X&N}yeXe1fil|Xg z{a`!u$mc}v4m|Y^eh+b0qk~AkXZssgKMSIai{wD)^-E50jgdr#eT8TM>=*7I-nP)G z&wJizLeJj|2KxqchTTd3Lv4U7-u7|_L(_Z!NI_8neDJEQ23koge_1Mu;7QRFmspI>+%^U#)rDMwDG#4|s9z>Aig9g*=n9Zxq20 z5QemLYe@86!`Qh?iQEm_+BAqy1gb=zU4~D4Z^&}sNmv9vh9Xzr)+llf#e#s&u;^RA1|Me(u;50!o^&-xH@oQ zBYjO$oFNA$DUPabn~Xk75v*6HKV+tio78tNNr=f5DY(fMZ1CPPI=wO__YqUxu^W?> zYHhrXR}0O(cRBs%@Tn%dWwCq7p}JNYtVW(ZD3G8RZ!Yc_BXPPp0)womZxzaPwQk*E zwZfFEQ1S^jSr;4pw~QY*8omoo>m}VllmaxUzWvUZl5UrSw}A}2V!)Hs9bq>nS??K% zZabrXgkgEkBfmf$B(B)enfetWhCGKM=~~a@kiO^5!kTAf^LafB_Pu7>)~B;9v@b5tcZ|@IiLaQHBzkh?9LjJ#_2@4K$e;VVbdD;582YS=EMmMn6sFF{dLX zltK!{AEt#phAUlaImahUrHtq49183&VLq&Fohb0-U+R_>cH3X^* zCU9pfIluNsNsM~$(xVIW>2_vk@IZC2gKb=5n@QD;WAOf}?FMWA%j590n*erw?Rlr? zDIb2hAbA#pdQyk+>zi_5@E#va1#yR_eZw(1zG0rlL*D^I4LKk2M;G0{C;LW^QPQBR zk?{2;K)@<=>-ChY$8YU3!uAzIZM_qBVaP1T_F>-)4NpO~X8L9XvMr<`M}HBul>^&` zCI9CZBY*wdUt{xs&>Ud<-T4=>=sydwh{y&qgHNPY)Ebs9D2rIjTqe3nld%wo9bgLm zhJgqo&k+FRTDc2SB=(vQST4pwF1}7puCLtk`9mkdeWA9fht{74<&=*VetGloE#ISw zH$y+?>tZXM_-UNj(Mq%N+tny$@nq2cTuTa2y~d;u0Z7W=+B{htztTp_upGvoN1i= zioEvVD(~g{lgr;2bIJPo`5Xmt65reJf|iQ#29$uTioE57a5w1scc!i_Tn_&(c@HJN z9Pv$WrMD>80~ygrVC<$EJf{%G>%GY%!mq3ZGNfbQ_Sl~>`4%jby<@_)_NY_+_&HP- zNdz&9$8Q^LzoxYj$Xx>qH!1txSjkR0YC1_&4>RL$;tsz(Dkapj|Km=tpW;04tS?vS zJoJmdHjS&5VhVuB(}7{o18fLn?VI0$(45!D*H<3y1O4i9;Wh&z{hYw8r;Xt?#qq>`wF*7IdNpu}c**t1Vi%;DT`|xEWsK(cjK;az71q)=eHZ&^jlG5jPOp*+v6Ar< zUVDgW-u5Q4XB82bDZMVe0isf$m&Rx{@}~@n*x2!u=k959H~JJkOh?2cm0hMak49fv z=D~eP$#wO45q26YYkN^Wr%kKClFb?rpFh7?LS?y`)E0pblOyxoE@Mmg!Ui>CEJ}V3 zU#xw$tg>}Bynv-zVd$auAyD_2ygoASsX0+v6q+0(urDMH=$jq^RAhI4rY?h@(t_uO z4!G$yI4#ky=ciqk|As0(rLgpY`{9uX(jI3k{j#DA?JiXMrS;V!$a?Kt3aYjc(HV5^ zh!$?F|AEnP0ch6Z2XSFj7qAExjN2c(nq&Rsu5Qf%v7gsl;d3|~=%3zKOfl@PQRD1h zp2SsS4s@;2Z^-%@953_f7fTpdhmMoJ9#Gx?=s~{KvZFYFWzimwv5I*AHG**w@q8#xA}ihIy<445Nt~Pl1y_?1Y_`D$?PAwgcy26iE4{ z3%`LxDbDjp0B>a4-6wamR*V=%$rW7E!Dc<0dWi z_U+^cq4y^d-@Z9(G35!L#u_zVg4ROyzGOcyCg<}SISN{Hy(|WhDlcTK$_t|5HzU&FdOZ)W zG+Sm|3w_%t1lk5KU02;bIiNZ9-pMedY5wWwh(ptPTX0j!*J#sm-JNbB4Rr~;#HgFS z&i%VSxARo(as}YtKA~GzxqSA>$7atC5d2(hTiNaxhBfGQPr02s65-m!mlu|ut-N3T z@eeDtbSQ@SSPoZewZuvO!OgG1+rJTD)0w8n4 z6mF>M99C=IQ?%E?8{Y!jH}11FB8yJw+dU5JU2e(EM{}9$%CU z(*?a?Llka?m%JQkJq1K!V8#VnPWMt!6Y4Ad7`Pk8lgd-n>{|0Z-+z;&Jhp=+J~2|& zJ6k&I=W70mqVcHcNj~HP&cvpbuF%=gD< z-i;Xbxp6!7M{<^T9DjTJgXfKee(X=~4MK0ZzB7K8nuHCvXZoJzC&l6MT{l9HS`~)2 z%Y4r?Q+OK2a#H04p*~=a!9U)L{DzV1EVoWpXkOx77H)L^Cd=tNKw2z1T~i`{x7zTr zkw+VEDI$A7TJd_Xoy)LjgGrupPT`(oCH}P3OcCr=V}qfWCmES&FrmVT6L|W*c`VI9 z!o3jF=GG3ezlUTgzGZ-3W;EVMw}Iw2o1jM06!Vi|_~VtLQ%hxeaa`-)avdO%+n_n` zP6Nb_r5Ak_5fa_?S>B;|5_7c^bsf`z&3qjArf5kuUEwBtSV#C^x!UXH0+hIG^wWW0GS;q125Ym528uJy zZ>HL#DpmXYapg)g14K>iST8_k)K!30&2LzlO^QxMu=T?=vZG~F74!s-;DPJSBk*F?Ug?H-0sS>|o%LCOp z3L}0I!8Ny>%JsLn)wg+M|LRgFwfANtJH|i1KQ#0!vm;JTT;bm)d^gLuzJ;ae)9e84 zzi)YAbicv zQp?8ay1U#2YDqRP-0g4u9Dj>peEB-Y z(U24SX)FpG&s3j%UE@FV%JX1X%`GekLTHxIDL23gu~Q}xZ#?)(!73~nc>dYQ6J5hs zI^7kEC?}dV3(m=;Ct3z9J-9ewv%Wq2XrwH)fR~Qt$iaU5|J=0-&qXn^_S16s7vtxJHdM z0Y(j59I`dzI#YMxYjbnjjWfG7>Gj8QgjAy*yUQ0!#S6`ip3$k)geMuayOlxeAiOKj z#jf2!UcJ8=NSwR_0=w@sU|!2Ri>Ca9w85nN)&5@XLmo5Hg~$oD?PnYy2M22Lp;)kWY z&bBRe>hlRaR)xva`o{n^+weMEJ;<%0KC0WMCGqQL-xEurjZ>H2E0?fQLt54clnm0p zik$v=YX=9 zM(~xzflhPJ9jMyKJj_5Y;bjJKq&(qX$je9Oq#wkhy@mtY!>3l;1O~;)O^5JTzF$J* zV0k9_C5#?~>`C0UO=7r8H!)aoS7b6AD4*hWZ>!n^auG2YlD{4R`^rp77cB z^-=OsKXn(2!Sv}Sr$Ke5g5VrXPUL>E{momT0bNZHTb;!GsPcSF*$o}9X8WT@=F&mb z7ZR@E7@@$j1$$S1m5Bkfw(5bJpt&v!z z?i<8GhA@TaeyYd54BO{wN`;@F0jQ5pJ&HnDjJYTlBOiHuUkHoz$;KnAdw>y{zZ6tV zG+zP4rUL9^Ihb3FHF~hod96G5?L`Z`EU>8fs<4f@TK z!$xyX>NZEc?4MbvBP0M*L&R6j!}Lv?agRHrBo@8XxD zefIRGt_7+cNc+(G|EScO{)Vx$)wT1Y?^gJ^6u-`9&B^EK`lT=N0!-w`dnWJ9m3#C} z#$)vnWZ;BIBIf|ev6WM=)UUY*Z7EYav~_sPXC4kMT z)jel>>+k@O3&{&5q$WS4$yU9>jnz5eV9roXj{!eR!MCqSSCxi*#RklD)uUp z86*GMLoUGK5@6aXi!p824-sVn+!ab%wNqMQ1|x|ybxTyn|D^-DDnvH}J%ydy9<6zP zdSKgZMfJsFkKzkg81aI2a`b~P+|0v0JAOrM7gY!4{*{|0`0VjLM*_TK~7esNt|p&zW}-y=kd&oCdgHwz=#3Uqv|Mja!kblNK{oc zKvDPlrX>E!s~v1>+S@z*ga$Bkg{~2Ni5vTS5Nmf0sIsUE1lfqV#ajuAtUs@A--kYO zv=9bxZEO{sIEizcfNGk6$8=ubuLV>GlEFiVZfu4i7FF;xZ4nrz4D=K1_(fWhpx6j~Z7H40v-#KF*9-m$=Brdk+OqF>isa0@^m2QT%VWzC4qJ(Xx zyRRUJcL$pr3m+sqehe3HnV_!<9GS82taHE&0?V?MN)-mSZ{2NKh=E9KJsy>+UUnv@ zBA?Itu5-)k?so|#QfbQpTO2^0C^x?*3?mMuN(KZ^1gM=uO^-+%&ZkQ&G|$! zmGi!dw89*nk+TkO{s6NIac_@=Oz3qvllIA!d#BH{m#_>+_T1-LQwbTbP~!%&MN7MD zn38p7f#cn86`b&pB(!-BBcHh>S8 zgbcf~%XVVcyg(zc{MOX=qrz4ly^k9Zt~>dYYCH-de_$t2?+a;p;D7Q3=a)Z4gBeha zpqW};f`b(eJb|{SjX#Qf5A~Jow?F{usBbW$$Ys#oid;q?r7Zx_xrZpf_y03iA*brQjiT|D3daJQXAj5HYzaqb0mF3GVK zrjI>wEfLI|ia)pkNCxj9q@xJ1h0jGP0Iy}m1R`g2|NP?LVgytRIEVSQ_31B`?mf4Q z0}3azrOt4jkw+x@ZQ>^m=pk`5ttiX{(`U?R-?T4ao>ixDTH>~n61m$0wwGmg`%mN* zAU*R%x5h;Hxwl%319zEOt3(aFO^eo5X~)E!y1lSrLN%2^vv$bb!5K~L!Rn(l|M+gU zU!Wz1^>#;M7s94F_zHi`g2$=gxX`J9l0^5I6!909}7i?yozC^s1OR=a0 zM~3G|v;G@rqxLrmi6-^DVl0qx5Ie}e zCHI1m;(>5GQ^WyP{_8g^J)GIi$TCK-4@Uv*`fJjuWV>!7D)DN?omUPo?T)Cuk+{Q@ zj?Ixh81X~K$Ta~3?l_Jq4c}r!uGEQK7Z1nUBfvNuJhfba-#6SmhTs%DrmU@a zW=KcWP4QgDP;E&1Ye{oqVO-tKmPOO1#};9_;^9VG#TG4D(c(+Hua$$Hp*(g|4ViQ>hsYy*cvNtTk&Xn4yjRC^)6Xn)+w*^Eidh8u8p z<)+KeLx+2vL!W1~IM_+PdYJb>xFsmJJF?+ogFIDIo&P|rXIw9ZH^cq`Vb%g-U&zwU zz_fTs6ttIHM@4Nk&GWT&Tl{(l@iTt)t-N3yxP3=*k>dJ#QX_W+oaaP^C8o{nva@CT zrr)gmKVf8`9FTvaZgi?fFO2_>EDf46(+>mhr*dvMl50b21vYD+$D7SxI{nBty^|x4QiUEd7FKT)9|PH;h0q`gv$rwh4YnKF^(t|g)~&3CEMG*HF< zGk<|l4@l#Fj3DfO;zGABSTfXWW;III?(r#u(Ll1 zb2Q=y_<$#LOKe<`>E}RPvo)08P#J0;(|FxiiD^M`CV||WSR=|#yh3}L9~-;qOqb1! zestT@J@%UWq7l-&Zw@?EmKy;x6KrqSGjtaJMGD zbB?Xe9E|#+bK=Pqe;{c`x_>z2w!gn z&LS;4wJQRMzc!n$+!_^&~q- zw(rri>cGQKQoba6!8Uf5H%#c(JFqc0$?|=G+9G{0<(RbX6UvO~{nHZWL851$X-dA) z)0{(j!-aptY})qZML!y$wCp2M2~n_b?X8TjW9Kx$~<4sXB@hHqe~Z^=$| zBYQd}dn9}01KA%GY07+;jC-b+FYs-L*ToG&oz_XEmbQCuu4jW~_vjhEo4A;lrJI9k z!*k2!!qI^#gO_yEi&5fMB=%O%C3GJBfYxJXl*+C}NA<$*0LoN!l3OEWEL1AP_0{Qt z9bkWW>^BBPUKSwjWsnA%_Y$B;Gvtgs229PWTg1uAS?q?aF#wq@r!Y=P5!73}Vjv`r z%S4zvY$+jj{D$?_wL@V#s4h#a0ya;P5f2A>^ujp6s5Orh=FS!+<;_juS%5iEa*^tO z0DJzSIZK#S(p?W;muI^5t%^v}>S-}EgpO4w-TYt7-N>a)2JZ@_i3r3lDgvfjCvto* zhJ>v;1(*Wi)Z+if-kZl$wZ8r1q>`a_#zO2eL?OqVAv+045@krVE6EfZ%)?$qhGYmK z#LiHX*qM?c+bmILJ5$?ChU{(Fwmq!Aw{xE9bIy65?{l8t_w{^#zvp-U@WR^5vev!s z`?{~|dcUvt1vfx+HvxTQ#56E>k+D54GFg=!fwD8W!K!B5C}LoyMQnfY`JHXfOO9-Z z8sy5`<>QiTF0{V)w^v=2$AFAi-Dw55g|4OR@hqsywm5t~VkQ~6vFoLK>(g;5CpFA= zAm30Q*h&Y%@786ip2H|QnCwgW!J>*6R($X1urX2mFhzcXon8>4AnFsv>_TI#5TrJP z@CN)&#-TC#?TFHmgUth&$F&itL?3|>0SEgznL2~RGAG!!yir1I6^7lRn@bNYA$E+G z3(X)JF|g|9yyrqu6t~=M+Y{4U0cko6M7Je!Zu zKt%0#T2-&5&Ay5Ue7TsG$)KQE`gUp`LzI4+>dpS7#dUn^`|g<;*6LM--4Zo7PR&n5 zuHr*L-gyAMH;^lD#$!NrM9KCiONEyRbb9(xiMEY-X#(nX>P$7r$BJi^0YwKZ6zx!c zW??`Rarw|ZdTr`1px>od#pVVeTOIh#F8eKq&x2PqKgLYcoj^vao3U416z`U|jj^}O z3W!2dO7=`Gp$q#qzJn3$43%JJERFcL;l3%-BIJ`dSkakYLnZ;QXxjVSOprn_5wq_d z0pxp;yu+XFzwEkETyqaQ=Jo!RHJGY-wis2$JYf|_zrg}B)W{h)5F}c4!%|@B?jQ!vzdY)lz7E(HmMQV>A&~d+3s&qATzi$k5nAG`{nh@0UBG zvHIWzcL(VHKK=8%-~UFP|3;nvITQW&_rFo+zd8s0=b_H+Sg<$Lf!-;d_${iq&gd7jpwqISnlWr>oeQ9!s7Ke8w6318AaHew_*`#+g{ z{g0BgB!w6vc`+Npqn1x^bk{thE&^A3P@N9KbxB;h49h*#n+{+lVd$bt!hEmH>!E z_L@PxHC;TG#R#J6#+O3`J!GHzIi}{3HJ>wZmrvTsBF6hAXSsTO9)nllJ z%g8cgQH9gxk^TMO6d#1`xFG42-F1OQ7KGIgP~{yBOEKWhj#ITr9Yz&Z-8C&fcW9qm z=||%V>K`8{KWv-rxOB=4{}uP)*WL$gQ?WzmLE{^F;sCZ8-di62rC0vumlxMq+L*bf zC?^Y3O3no*kVv|Lk9UEI1A4!DaAIqW0JsOs4btne7&WSQoS#~%d$zulEaV81QO*z4xjbT;(B%ZJ(DzlnCe z(MIK*kY7+~^DS_j5ar!_4pjTfY{93SQl*gfOVl$cC$6Ok^~X!aB(;p?Y@Wvo9_5$n z5gu!o0}v;&@Y!>}LMM!GAhynPT>-;coI?vVe@d|JFQu!qO!()fc$IECc$~14EbS;b ztNg2x7hQGM$LXwGwdsuoEjL%=QuwCqM$7XpA66(=sYfx#K;I8sgHZZdQE#EJ@ppTA ztK-dR73wiIr33oX*}sgg;@EJV9aJewL9R2ttT5UQQ+K_$bi`ngh*}wHUAcAalff!0 z^RVyv`V0}0diYIksj;1!qSA&v;=6}zhMu3A(EZBVo6ssP^$_%9RqX^qXabug;B61d z0v|d+v6-)t>C)+ErXRa<3}g9r92�TL6l+aM|QJE%F| zBNkPPdRXn6^Tl07%g02^*uD8n=S{22bcdkjsFjsY_D`$eKR|{6rCi!j12pXBd?Hi4 z7}p!g082R75Na)*$5T{+5&bTZh{^dUJnt)cN>(b9+YZw_T!V9m0yXCre3N2QV=5|Muu(dSD?QP8D1G>({e9RHUIe7#D^Za z8B0;lR?c5g5vl}21CnH_5G`!ggc~Sts61C`MbH-5>aWV!8mq`V;BC_y^Fs385s^%< z+kGZM9sh#4fGkv<5r6rD>qNVEkPMa~G-S2>8Qq6t@Qawb8B?^WvF?$!FFri^%BHOw z6KudP$}sTP)FgEv6Mds#1qz} zidI#ru4n*U*BRERI)j`i~KVMpCQ zVXE+7Q7*~vsF9!V0Zr1Zq8O$g2g2--`n?`Jb#(^i@8XZw(gi;I@ASnl9=LiikFL!y z?a7ifx;qx_um|}~&3s}F^t8m{4gv&}W3eE&x+1c>Us4RxU zmUM)o91)?Zjv=1L*7&mNFb%JO(d^IFA7qnnxL56tFFJB7|A#epa$*e5y_)5_(%}Ck zFSf|q#nOjwCT>b!Nef6BJSR||$Ha@bifp%J3Erj4p1J*==q4XxCK;HQMoXIXLPCLa z!agty$M56*#4mV8I zTLTdxr5=xvUH5>wMD3@2J;uCqW7qchztI5Mu&yC>xCd8%8f5YT=KGJT9k>}Cd;qZ6 zvEQ`29Z7p)boOe`rKTsnOszk8R`}GB%$Sh@!&}i?!j6^WUOh()2m?fT6BYiKF9tif zVguA_LqN(uWyZhGg!QUA4h$Lcc%s+vQ;p zMvoSJ6Rzxmob1>eLs4B`1zWaRttIvQCFwH+vQg2Hfxw0`7-J8rgWtGm$TwkXa&Fyp zc}N+1*!O$WS|+E&_vq9+jid9KPHY=fn-ntI18}>J)InksvDh)(b1M0BC8?>8l6*@m zk59Exj}+!qOS2*-GKRs#R|M$3yw=#BCa#XK8pY~Ms9nC3jd3Q28og=H9B*z*%X;&v zS?!p*-}T3=s!R!BWdv517S+is4fqmly$QO7*4UM<*XE>>Z-`PIq311Uv)nC3rk>E; zFI~vW0((QFncvjP$@oRr3FkKsD+Qib<=xpju@0P)^MEXXZ5JRPbDE>Q%f`77DyMN; zwnP`@*1NZ5gT5b3c~phqlHt;ZoDSHP-f}|UFL*JxS*?J_*@^-D#)gSlI!i8` zXo&6v&EBXVz>A9pP9u6OoQZM4(vEz?JGlb2RxS~cR>3zQXpBD8s@(?`%RqnhoxCb zVS)*N^9cUN^nZ`(|KIo>`LpM59>M>oc?1C7PiCZjUSfvhP^%^%FdT&6^9PEvE9#P= z-9)gl0&M&rIRY>UO-HlvfCC%OeDDUfdKEX*9XS*RcmtdAnjo?9=Uf01z^?z@4*^kt z_#08c5Lo}mWuV1d>`#^x0_irIC`RZT{CqV;+g*6U_Z0koo@@_udXUXm%*aWhq~Q9S z&NThXIje}=rIBHG>%r$-t*A4JE-QdX$&s#`rB;l`hslr|?`nj?WWf zxV|pwT)!)1lU{{AXr>>4TWA{{QD^~CGlOT$#9cMbw5pfaX#5sun?Pmhq6k}`?ZKV} z*F@QjefHk*$8tvr3w&hk_?I}>@qh`pF%w?0mcZ24o;kUKZ8POWzXokNJuK)O!d#`_CXW_J&yO0&|w)VWS#ogrq07(Sf zQxS$;syl6|L^F@KLv1=cOZOuWaoOX_Fltt7Y;}uv zt`y(f^Ym6heDd63W{)C}EP}0n=44cFP_zO3J0_b{yr|AuU zDt4@`6ZUt?iX79q4!?$XLaqBr>dbqk9YDhH!@=qy&@nt7!3KThIs?!O>-lciPQyOE z>zMOU-Fay80*Rdo;H+8jHskR(zI&TL-E?D7NyOhH`yU=r z!hyp=2U_XPc4#2%D1{R(WUpB6(>aI%Y}!p7b$cpsJ1(a}a8xSZ!Icc^B!TxJfoxQu zt!@s+^**|+oo5Z-w_1n;7+xFEtLS#bA^=vTd4M8o17Itt=F>2^X?98m*t;XBz!ADS zw8Rwdiw=raSEibcsnWoRZ>^|_K|QQd>@jAQq-oz}9gZmEF=A-fZ4jon1^Li-GW5!* zeslw0e>Ve*;Fil5Js*z5u+Yzmoi)AUc&bkN`SjbDYlbPIiLdobXd2*wOKIoFh*X&% zfR&dVDcJg8dlmleL*zovAkj`lC=D}vSDmQ3eo2#z8#}J zo@9wqmdqT8$PjtBdBb|zVPB61O~Y_|tpwwe@-p^bUE$}b7k0Z|4qWR$(}M@Z9+6nu zG|+`7EX$$^ZoO`*r9}!>24-s#0*r@`b@xZ{=wm`}U>&EWFw;P41>l>JfELp%1g*vo z;<@K3M401lo}NNI2v?ov29k!XjlTNJQD$F5d_0WTG7LjCG~*;DgV2F2OJM`5XJJMy zjMF!e8M3qfR1iP?AnTWhK{rqWhO(j9i)xjDEI@1bv!?R>)rXR(P%mTq!NNuMSxCdv zO#c@07w8n2XCT*>+HoH>A3Xynb)YQ?pU{6e1>mz;9tq&aQG9fbEn2Q> zz=bi|%?_Xx^Uwn2nO~1%c;;~eiK%~V_mU|!Hpg27>Q>S7rW9`Aq z&!KGDBn;1h{slb1B(^}J?$r`ohe~6&HNQLe9CfH7&eAw#2TU24(CLcxry6`XKk!H>=fz`hX6^yRBtr)Ifz(3o7S6B4-pv2BM7)DAI+4j z#(i;N?gK_U!=Q~kulqPQv0B}Qb$w5A3hs;Mcph1KnhZ6@tr;$u04rfQilR{~fHgGA zr=7t~mr&&2hk-l`9q_%Dc;M z>`GwT2bn;ZRT<$%a8b?6iuqOTXF!nSCyQ<(JqQ?=Dq!MF$BFcvpgy3~f*OJ@Cz6cu z8lNZ-tGTmx9m@$A(>FbE|?P6ojEfnI7^#{&K3mk;vVy3Pk^A^}f-vZQe` zcj4jzJ8lR55x}M)!Imva@4IW?<4)fn;U6Z3+@QR8|Jc_9U~gIm&??uu&jgtQsKur zG#>+*t8l5n-Za9VS@i%tZz~WaPZy)=GaTtgzIdAn1`nK9wM6 znHzpqJ>GEj!|!X}RsXRj-fs0jq z4qgp_|1L6N#njqrctsf%?Y|8&K@}S^(j0-h={B%kW~xF;eM}X&6}jw&1qB>?knn@v zbHhr11O7y0Z+KoHSQYUE5*W#5QCXnXHjbOG#K$4;Hcz+3>i6Q+m&3r2r4XR>a{;7fqdmN#J6zUM*Tw{DA1cpisq@DqjLu4JmFui0Bu5}} zlD9TdH}(@|plDd!cV*nNaB#g5u^a6h#w>Y=D-`oS2ZgG~^8^VTXM0kJrkY+zwIxX=pZD7DyPeLzyQP33jUT9SS_dV%1sAE%JFZcuF2>h9x8-n@8x*@_V z|DsA-vsrCM=f>L-sFeKi)3I#aw?S$Z%*h7&VF+Ru%EpH-IR%dBHAGZS(}&s!*SbzORkUq{^POOT~mZ zcwBW?44DEH^1`5xmxJbC{su_JquimelECxKI&}wv?;9y#Bg;+I&6XFoo@T7A^EzaDE`-nM=lYIVp=EnDc5-tt9JM=#w8{n-MBZ5 z2_>^H2GA9JZ#0|enNzdJHm*hcB$nVKY38Vb$lf*yH7)oIF17 zu|P+O9vka%o80E;8leAxnfZj-oBT!WvfmYTduQ|G+TNS7+Ux|(A-XArPzXGZz5q~& zYiU7?LxbwjKOo<~at35cIGB@3DzsLO-4^Il9QD*aGl+97Tt8lXT`hNRu7_ zlTD7jy%EPYso4Ebr=ss0oqN2CV6Md4d>q#q%?EQ5=?32^af5S%d%{(%bVHN}hnr-v zmdigZP)kn)HXOk?mqHCh41h2@(}5VrIB<>QT|NWYl{gXoc~Wo*OoUzAlJrlUxa`P% z8zi;_HbkvfaT}b#5Dp}wjtq_h$N0f%wMZxH>}+nO;%B>cXLaY%LnDwPL^8txGG`A6jzpE_- z9-3%<*(;x8v9bR{T=~c)-lOb(O8X}!Z*ni(WWo6LzWuCP+BJOXW0x`Cc0+TE#3z%x z4flt1_5wE7d~!X4Dr?naG!?L;540hlF}Jx)T{>4GsJ6W2O{!P*Y4aQBV;mjjDv-A=?l%y=sDK)9 z0pJmC;&aCUK8KKo<6F=j1&}U!6UmeKb`->d%fNT^WTh=$@G??`|?~VY8J_Z(8sOsYz91hjkLi|dkJsJN=<}Lg&i;&KcBxB2mo;H@kwt)> zOBV#I_!L9vrLXd7>UsL{k=7R@vqe%bV&0ie1qb*xf6cDkA=G{H9KTWUo9(vwTP~4` z!Q!taQu3K8@vUClsd;0uhr*5vf5=N9Fs&0XLGPw(b~1DDqj}J-YQ?M(st*NYKMw64 zmTjzj7N>0~csFG|og zsYHq!^-;hmp1)4ApL>Dko+BZR`%NjX*>YJvY$Ajk=e8%972qCT5Cx%W_8fqe1$M20WPCmgl(r~@|2 zhQ;XQ4*0>+E{M1X%Sb@SuY$#E$T+q>fn{=h1NT*<0NNneC^K_WE*`>|-a+`$I6~;V z4JPqOxC`a&%Z%bshq(13NX=;1-Fu3W8!^At!_y}yz={WlFwQZb!TWSc9rYQaU2C#C zjyP8ET`s75TDn+qe|cKJwq>8y`#+dI*X7H=uK6lN1wsPixGmY6;WTN_d_~Bzo-qV~O>B$<$HO@C-c&)x7--5D}r3Mcg z^ZjOu=@lETwoq$)&;3=?hnVez8YDFyrEEgp_N@Q>==Im_FMJC9mG&uRw6hjAgJq=% z9|@ErJJxwb_;)mT2w&O|&WKiwdduFHA<=&Rq^b4f2_aM4efxIn`+b1S@a20JoUhVN zsn>|Mq~18^Z`z&WUd0)@5xD&t_Rd-Y zmFbIXdpo%g2j$-k*1!Di`puE@Q5KXk@K}eDJiv(93zW9R)}y$i{6lhEr6@0I_7Zzr z_&K`~ZnHu2%h-wVMOLyNC5((_NMZR@&-+R0CiQpkw=XG)E_xEY@A30d_iM)QwoglP zl3g|nbLb5eWo88968(&8oNt2NMNg0L%D`GXG|xNZX1$e5gO2%PvC<>4BX4uq7Ex3H z-Y?9&8vLAx>8d$Yviv+lNM&*BDIG`dua%YO{1M5m21_aI$2piE-V|`@bukpPzWUy6 zpu~N3PQA`Ebm>xKm3`#iCx^vj>W;Hm7O-qK8s;wtqE^l5HR5R?_wqnsJ@HQn8!XTf z6_Aaq3^S6QjLn>46ZBd~n{EaV?47*FMT)^2p26|Q6j(!O?Mu2we>|)0?O=8j2RjB zFWKvy$apYx=^b}Q$H6_!u&u%@OiUI&C5VkeXTJ74=Ir&b`ugDOr4gxuse-DZQ(Ac! zqJ`L*cdrB4C~uGvMGQ)uVCK|_v`p;O8Fr?XIvq9OzG6U5+8fK5%u6$s#s^jN$IR7ch>zR-b8D!n5GB`%s*-QY4%OaS2T{l*7vkEXL$iW}%c?Eqv4WcFkVK_*p z;Qb9$BkBZdG!?yki-4uD0^hN#e~sROqCG^7pg!TZ|GOWRWs}l3d`KOWCrUk`4X%q2 z0eG~l2QKzy1JLB74Uk>h#7BU}#Dm!R7<>krDq|StUWy#_uTf{@2#N7?k`*_SXzp}Ed=v@+p za=pC#{>907gB=l(N*AA!SoX#HTP^#IL887xwJWV&qaC|lgt@yX0>0WA-$Z+uG#|7D ztr}c?bH`hn5c_PT!lSC~@?DeiqThZanra`9p^JW+Aqo}7dQAGaDfd|9ts@pE=oZdM zK?S#(J%O54bgMAWht>3|j~zdj3ZJ;?3c)g2ZC5L`_T3M)M5XmrjRA!I+b{hE)mmd| zLaL$$3vv94+(m<2iW;??uep?Yx7;(@&)qLze@N{|hgyN5dV4+I9~wE5j18ExTo8M2`S8Hu&Mrzs!|~vXc!U;%W5fvqnFQZ z?zUHr6_{d)%&S(*0YDk`G$IVOa0uXa+1>azhr7eim&gw4qBVVqloBRZXPMx z*~OXm<=HvgOU(Em9&#Tai3gKU%-(r};J%&Vhs&DZc*iV9O@7w~E68pUT8-hXOen7C zdsO(nNd*I}MS~aS6L$5OG|aVzfDN)?k$ehp-7>$UNa$D4vMO{`#q#n%t~vPOYA(MaR|$>P$Z8g$pZsw~Y_I%Vs+l99;btvBk2*tuCnn_WLUWxaL8O8eYh zRiLm^he!>hHRThs_=l-qyRP-gFLVz?@pVkAm>#+vA@MkByXb8~BvTnwM9nc1QM3N0 zj6HKmMl|}%PJuTrrEk2=T2Av!oq}WWW0iOZQ<_);h!;22)g-J+7{5^4NQ4PBY`|-V zYQI5=YwoAFU&c8`2PBS+Dr(Wat3S30!ROAwS0Lx5jia#9h8~XlRZ?o_0A57 z_b;tp_$rJ!KCBKJg9Lq(8*Vdm;oWp!k0Yb!&P2OPD7A{);}Y++E3W(OW4zbSjY#H$*rlfBDk&1I2@K zUmBRH6W&Ll8PwDq>U~!p=a8FU6xVWmxj16Nc1+v%s&`FJ#TXr|9*;c7adcn8MYUV+hN^Vp zm~pVEdLwa=t6q~oF1fh4LO7B5Jh)}OQN5)24MaK&Kg}OSd___`KT!2YU9tP9%^wG; zxlN}Z=FFI}&xUQ{QMpK}%hEstU4rfb3yQ^2f~qJ%&x5i>p$Q_> zJLsL`AYK@M6LeC{Kn`*>dfV)IkYufme6Czp@q|Bqc?`CE?+FWVEjQ;*vlJbbFT+R_ z&eUO8`Wd&`BNRNFhMdRJm4eKduW?+6+_w$Ao)edNd{wG~)79w0ozA&}=yd%y`!KL0 zOGLnNVBP;@*-*u9fe1kINIs*c0QUs{`$L7ZH)C@%Nrs#164~eL@Gb~;Tiv0y)9BxrQ*}7VpG{H0fZF}G$B)Hl(6!Meg*!Limk;xRQJ(z%L%WeEfm~- zX}gU%?6BP7(tZ@d^YNVD^#-qz7=QAd-^Ij(iz8?RuVo6=>|^MayvLL9 z&sJ<~FI}A}c0POER6a8NVcN`Sn5EpUp|>clS8wbOrgu%7=ga6gVY>=&i&J!2+xp`2 zXm0M~pNw+RVPY+UlbDlzSgJd2;5;0j1I!@??BE~!7^7V_0p1`2a_%Tb6a6!p+k5vTfd*VvaYdNS^N?_FMS2CLz zGh=P1iwHWVhPOnyCY|M7f45@t@@{x~#%YdEO7hr=1(cU{Z1dn`o``a7lliT*Gc+#B zWom^p$#lXpWFp!^*hJpO_|j;~@H>KR(KFWG=2Jl*C=)fVG~3RyMZQLw$-56@ZB*4` zYHM2`gPd=1lX%A5r&Fqo#{{=AkB1OX;7-0ekW!mVR2lC-Dfl7!-3$v5uLpZTa> zn6oBuMNwQnJ3$u0(;u>^_C}S2YJCuvz8nBy>7$2>CM$DG^)nScM^DN>cd5dW;*W zk>skvJ5RY^u7{|%;&9FN8$P3)w82deh zJHuOlvfMh=zK7IweHJ4`s5Yi7EyxNfY)^4jUF+GuarNE38%B09TV9Rc?R}grdCzu^ zc+yf@c#AUwQCLNafGows{ne(nQX6+~EPou7Vr9ch~sHtEwAz=q}>o3zFvg1XS1dNC9!_Q7q3aZ?vB2 z+2}*(ES*@_;+4E(e!SYHNmz+fQ5yP0Ivc&OsL0ZCtJ2$}`$InNUlVA(=;FJV=5_&p z*QXvM)341p9wgfYBcJHzIS~}?hAKqv#S3y*h&CJS_;D0Bf&eKaLkyd5_^DvD$T4E5 zsy3^N`K30W9XIdT$B)>h1gVQ--DgOekxxwuqF!BdFdai>Fa2RgclugU>Ok{SxA9}B z`pbLB!QbWv-{fyA-SUZoQZksW%DI0b$Y={bRTy+11Bs7>$5gO8U-d;5IOS`l-)g@x znHa}Z|5Z^#x~+0%F_W%L^{~N{C?yjo%X?K?r{2Afx_G&!HS=0bRs6`4vHL<>WA!dV zq!Dy+E)xMF`(UOXV1VS4)F(_CNdO@D8UXh6?mXG{`ILUgM{=K>2S5JVZn_dSx#yZD zuXCy8U995gh{jJZaGkPi#uN@_R?W^p5vt#~Jm0u!M6$t$nm(N_?i+*CL1aIkmkV|L z_X0l|aIg>JWu0CKT^#-rZN+g{f~NEP4c(BTZncp2lSQu^8pWRj3)cm{1!HHX2IgS2gHsWXwng9lr7;<~=a92<&-rMn?Zdb`tIiRaSFVMEmsp-{8$w~1l=k*RhiPzXYme}{! z;{M+K%d+t~avf{}poYvnya!uczNq>J{&M-3)F0N!^Q13tc~oU3uk2g+(mEzzo1~qw zi!Jy<+;TBIPPL*GGoLZ+UcAh+pIAKHdht$|i#o?uO`hJpKR9^}Ur&lPM#9%;b2$r~ zEVysx<-5mzGaW?0oU9~5o$$`-SW@!2*d`sBbm5~f?+F%_-q_1qo#XbT@Xo8W`x4Xp zy%;jRWg<*_v&z0Qqi=H*idBYRj#h@z^=n@iOwHSkr2F&CPT#%xrAFLB^sChZg29Iz z-SC*v&d#cF9+2D`F>Kb zFEE3Z!K_1nB*Ni!Kx}|r_SgeaL^neNwKdvKyUqcmaVWgc^yyEQoA?bi1tb6hpFlJn zP1t#!X3Yd##>ubM5a4Z_f&WRJ-^krm#Yw?7f7pV5i5-xDO-eRJi$RdpnTk(wfm5OD zKn1xY98ckj1r-J^GVVf-%^g{@S&`q5fq?rrWu|}UJKM$@^DTaIGSF?)H^;9g32(ft ziDDKMW>+(_wQs8!9&n$CB}eY)gkQVPXwrujNZGTobNk{hZPSOmQSqEiP&pB74Sht7 zn=-vXwU@|iMiA~Rh>oSw^Gp$p6CW1k`_qw3x={z*VSBNIURr}rS^0JVMK#L*$>I+7 z%Tr7{;DL;FOuzki?hvG}Wms?>DC!}IkwyVgj{UY=IKj?p)&T=7R-G{zEMjQ~eJ^NW znmSiiOq^)wrJY3p+mnH0oMIrs#g}5|^m=PRkksl*1*2-eD-qb`yq&?+LuH$-XxzCefu#J=drdnoZ&fG? z0j4cG2lwjNlYd?R|B-F@fB9!@wKZB$%e!cp0Y*o5<}^)VqMQ-nL|p1%#MgK}-%^DJ zi5E?0XsH~&*Vkm_3UV%nCJIanuJyMMvAnr{METBqudvvgBRf zi)|5Y5_fFIw`k`XX_s8R?y(d}-((-%hWA5t2Z5x&>CVy;s>u27z^gZNHk=YfMBcHz zw12;a2TS|mIwgvxC;gFXI;8;)bN~))1fq>)v7cvhRyZkC_Xe{k)M@ONwor{ zbaXr4q*G1A(8bank`n8KF_||r4f7=tD%mi#qbw*5jLeSJN0RE0U?B8?Rm?5pkw+A5 zv9bc}0RGGmK&r-vsz5&+$WGl_zcf}JI#$}peM7ppP^i!&{n8Rb)4Yl8in}!>ZxxsI z&xRZ4o9^na46`(ak19K@?8(T#silVMwKp}2r&M>902c77lNRJ3iFDDW3V z?95HFI$eHsxcMiGYJ+3uV-N zLzUo|HeQ?qUW&i7L)1VSouzV)eFX~w_6R_knY~U*hPR`EKGilPX*PDy7!EV#fJQ+c z^C!!GtJSOeEP;-6Zum=$3NuA#w~G!7d4z(6UVWRl5{|D)lPsSp_J09pN{h5`lZg-!PbZmw1AF6+#JWt z*N8)P`?Wdp&a6XR)wcsOf#g!!`TGjlGgQk{?Yo|P5AUO8tkID`C`LOqm%+<5QLQY{ z6^I_IdR3*`n4GlulO^y)X~WtZ9M#isQ3^yZ(hu+?rOoGf40JNUs(S{!tv`HpcqE*` zt3`<^uPJ|@)|kP+JRT?X?i)HGbpJE9D@qU#x=a3_n!K=*QDfo3HHyBnW>kpGcGkq$ zus6Xq`xf~V>$22 zC&o;|MNYjV>;?wg@H0$zN&WgPD)j8kiWw_$tty${hfT5*j}}qAhv<)GaZ0Hy`ueCka z_12!UC$5+7(m3y<$TdB>_Ryf-u>DI;0j3@F62TJ7u?yK?_ZSRmz#zJGMA6@E?5W<< z(--ljFEaQKsW?SQEbmW?E1lfEUDIkhoS`W}i3h3XgnBep2)KqH1(|c9h_>II<9k>8m)!&BYq#2e2_oNN3dN0?B`3A}Tc85@dcFEbM5f)}*YbIlD@?w5~hWLYOcj#=~)yS?|2HcS!fPJpE+ zybm!iBjBCvyg3%d8`4FLd~}@W1Owh(IQ${ynk{zhu@`RmungN2HkMe@sB@J06u=Yr zkUI)gh&$yM)QYSd=lUsTetT{Ws{!0gLqtyE=DTJo5K6g{34btr|DHjl+f(?MVLEb{ zc9eiBPSlrf)upgdCMsyBc67D%hr<(Nsn6AQPfgr7L%DeNDQZZ>0NUBVR;>s$Q&+}j zf^`7*aH1Zy+w+oJz^RJ5fPhyGuda6WGAC~jJP8wx_P%hAeM-6!O_jvfA$Uew14#5n zVQfeg2qz5PDx+Wf-{gIg2GdgToEwh-AQ`O9FbeiY19{eNkE^1>bN%Cev3=*hurpU( z*T=z*=><@mU_DIN;jd+6!_ez!tBM-E4X%T*7yBP4&c8dOmjovLI%Ll|94(Dpktv4OvA6#2@-k&|DZ;iinAk4eMx+7Dp%6taMw?& zfj#(CuXw8?FJDFTor$P5ZRC*uZvibXUFR6)6LCArX+&j+q1RV!ggF$*B@K6mF9-h8U%Ir{I?tY;7f%TyUv9Wraqsa_ z=`Xe!4du;)9Sc5m^VuWcgGg2A$IYiu4#n{cw`biN?=kfuyHcrtdzwC~ix{wX1^dALI+|71(AZ87#HH)oEBX({bgOi{@$-viY*)k0 zB}K9@BB^ZP!LvxxA-HQm((TyAKzl!)onmQDVmmdg@21!;CSm-!4L+n;@3Wde7?=HB z2iYTEYO?*)PA$`7U4Fs-t~b9l39nu_$$DW|Ew^R#KN<7Ss4`+5mM;)PWgka|)*vcN ziu=kg%4G<7d^@$+GEkV6(okylY2xq$?gKMIwUa@crsA*6jj5IeQ95s+1+anv<0yXW zPZo4h7}8D$Oa@q{wwQiU;@};B0ofdSxif{$9?N82|f}&wrf)^M6ix=duR*(FC!+ zl?J8ZX)y0+j^efS_h>w*_)X;Fag8z@B;qF@obX+!J2_Uv02Cc>ki)^o%9HqB_zFZZ9w0kQISUimv~- z%3POYmfJ^?P6Pceyc=pXK}@V)zFLFK*K|J2PT^c-&*J_s-ldd>%I${kg1&&#?!vg( zz1qffJzv_j`bv0?0y~WcOA0wlB?gPjtlikp3BSd#2FkppN|Rz6pj~qBN-G`Ss^7sG z;iQ;TjVW`waWTWIw!3;+7d9z?|GNUiKl}V|DWd-(A@4uSas2zd{~oC(-o^L2Ke|G1FN#>DJTsfg_Ubu5p?$n9J&^60PYAxv5r!nzUW3H( zV-(wem^fzifaJTq$3tQ%Q13$sQaDl<0+m?pQ>)l)Qvow ziAiC~WxX`3EK$xkGP(1S0n%#WR~dk){~VxPfE2L~Lc;mg9?D7TfpOeD6z2>H6?J3* z=P}(|sNnNeJN|@3($P4B@AePN1H(~AH1DF#%}%Ry_X(NTpV&p#abxCVc2UzNa_dDv z$>ZtiFFof{e++uXZ%oFBzAcjD(%)B*Ff@g0!&1GGEqEG&>bR+H0B!8Td&^{9=;;f! zl{>g3v7$iHV@6?Q0$HhfwC`h`sq%;3W4q2Std8T) zT(=_^dk*hld|y2ub@NTMv-vs8ht#vs=u@=V@@*W|6}h$sp6{cVhbi!?t}}ef@b4

?(L2e?us!%I=NX9J;oRK-#!khK2hVze67Rdn=lbxH=;MT^x%h^ysAjm zql@vzg!rRd>h^nY%Zf2*Ws6NN2->56-b(%1g@iMIIumFAY<8|+i|qK?I0<*WyraX? zsh}-8irPsrFAg*bkg2kW<$^by+uf@_& zmIH(zO#;vIUjDdiQCIJgf{lPTD_LC`cRH&rvR!?E47V`R^h5dk$A))(ZF9_J-=1^h z=eu7k$-OQ>zpXD|7JNzAEK?ZTVKo^GoU(0!SEvFA8QG%5J_-?cR z@UllDWhjb>1)Ad+ilK!7%prCLV6xq}!ZX4Re}4d7#c#H74LPvdQ4jrLCF?=<3IjvU z*pl*4ZM{rtKi%|0MIX-oeZ===WAVe1y1z7AXK8d?+0o)pKN5NSWkQ7~m^0H6Rx50D zQy>T%XaExZi|cT-3yjU*xX;YRPmb$IKwrJ-fDBt^5)>2oYmcZoh`~F;Ybr!t*5Frq zm+rDdVt?HJkom@l4{8qk8qn*+)QT=Kk1%h2^7S1K8o1`3CoX0YKF7gc zo^@X}NQjCed%zt3i@i6GhqCSa$45xn3yClasf4mbw$XwRLX3TqY{^z+pAkuxOh`&G zWl7m4dzOrSsU*T=-;B!_^*q1lUi{%TuNQNk&ht2r^K%@Z z&*!}~5PfQW)_GB^Dbfd>`iop9#fq1t*KN)+H;%JUZ@4e8CoIbWvF)LGUU$Wk_>t}s zt99M8f~dt}MwA6D#VN;{+rvOI)W-tahN?r5#E0hT0Cv{k;R>k|nvuU-H)>jwt{%X~zkBICGYbJ!L`!Gk?ehLri#^G>d{G1J6@uB`~YwJ^^+Jo|U_b8pndK~&n zT$Jjnan(89RhMaxB*$;35BfLr>F%+Nx$9bB7B|2g4IcCk)j~ss_({OsJ1QVoS2M;t zNmtY7UUcdH%V*>sMys2!~pWaqrDuKw1WZhZkb&D{fkr1T0T8Bc;4JPDe>*%$;9i zY$K%KON+gFcVH4~jDR74Di=+z>A1CQ{UG#1RH2?^za*%$<`#vnV*9fs6m-N-zL!fW zf$asS`GFDwEh^XuhQj<2)b*8MzxfUIM`~hz1Pr`VPjGf^_mGlQ4D#SjA!cIoz@z!q z!CckNDvW5s#UoGm9DzK)9#QIWw7DAod>VZ4NO98Xw;Cg#TUzdRESNkBJv+Xk|J;|3wtzQm zzZ)a5${cAF84zn4?T{;qQV=>yjet30S*;G*6K?cI2hKmOHFJv%Uf88Z1S|KIpzPQ} zY68xwZ=$E?O}(cqlr`$GR|x88YbPsWGm zkF(_K-$tK5F3ucLeA}Z;9A@4Q=XVwaYtDnFzb$HAB_E8XVlES5J>N&F$_P=zO%JLB zed7XLlEF;!`r}N}IU^Tw2%1oR*6=H`c>al@MY?z6anZ*>GlrXI3D=1FF*S^7?CbGv z_0f;Ngm+*4M#M*&K9?^Z(-}R?K zNA}wsjHl`_sz$L&fmGNuC`L3*&hx#itmkN4`7zACtYZI3A1;+h0m(E-^{Hlt=#`^o z9Dn9*%=s9nn6m4|-#)L=cAQ|XMuKj}uXi9`s9*oa8|+Dh8V`eK^mpwCRHHAD)t)b- z<}wKZ^|)O$PID4{L!xP7QZz4Iwy;M9&EA8#9o&(AOJ9kSM#QEcOD)pr74(RV)MgCK zAg-^ek_?HnU%TZG9=bqOKE{&ObMND)=wlxqjvR$R&ejb>1eiBVBKfOE6pu@2LxYiE z8x?Yg_DzV}=SAJ=AEc6R&?h}#gbo{+=hg)znCy&CcwM_wm>xA>@UTw}AF zkXVOd@AEaN;kQy!i+9FI?b*HC!1Vg}JIjka33)$0zne~a@WRc+ zzM}Lgx8&p3>E~a)+~pbH#*?i<|F=Khg0<6%VAG6|q%~t00^tOf5i8nm;-i6t2})8z z!*IY}(Kx7-+31zMPZeL>y)re?r0+7Lb1Zj%Nw}48YMd6Df+Pjx1e%akfwg88G=;@g z%c8{Wb==SAwx;I$XtyKhcJmfsGLRR3JAJk%%jH)olk)H1zoQ2<=b4`pr2%v+{qbjF_x^;0tB7Vd7E5~eIb^N0&>EOz=Q6@*Wka@E`K|j zB;ji_>a(w5|5FFM;B6tmX+~{?IFKmgP9?bz;KoHIFC215y6X_ibShrwYZ`%pdF*X! z)#mAf0@yoe<13N(?^-Y-f1+w+17Xx;f|dn7-AX%q*4R}o-?DDMG)>J0$KtYilbTS; ziG(8Cs`e7*@;Bg;*Af$%H4o|q>V3`*co*+J5=p!>^E5SW0P~XcI{HerW}>-v&}YQg zrf*jbH3B_Je^J~BK82xh<7j&1%fJIYfsp#J!-s|0t3f~>i`(%hwRM-?6}sjJLM@Z9I#$a z0snV656Zf0Nkx}fH;LRk#!Dp7(97pExZz(gkN!t$M@Z0DwSbMgkpS(+Mgb_TpE*IT zz}6d(B(x}xhS-5uA?PN9eP@F@G!_gJBna%Zf1@bIL+JyB)3dPg*+5VRw@FH*#kC+h z{;?7y*suIUrOTb;cE)Xc4tV1Bp~f-37+Q@FZu9W$1|4>mJSt6zUj(b~4=Iq(UQ|U1 z%Wc2ufE`V1z%02S*l}|Ls1>h-Rkpy7ailT^abz9$v(QcL|{H;GK<5Q)Okb*B{6W_WTHjDUq_*qNr7B zT$KG}czC7q5mH@4zCBw;dgxsDSAY}L{&46Cr+?!Mj0judSu9XbeuODk&5uYucyEh^m`(VpoIrS|C+;4x?V$4^EzJV1XDBP2SL-RH~)D+kIOLq>y?LCM#WN0t19) zTBI5vMFd|#5lzU_8W3N^+!#UOGBsI^`{xjI(IX>Qhd%wJN&B)C`4~+FnWA(aBQ3`F z5(9t4(d~Txm($SBSp1KV1#GMPKeR`-jm@T*g4g>wMKVaFv6r_YSB=%eg%A|7+UX%R zuX)`;t>D5E+UXI}2ENKeTpm$HH{!yS7VF5lvHdn0ljfJHhbzOU!j@a;J$iqPzqTF3 zJxji$(FN+*L%t}hk^ogLy%gPmhgP;}Pmi9M394a$_l!Tw^S45KZ$Q5d3QW1|3o-M9 z`KMr{FcV8Mvp#h~qTMQjqms%EYS5Q`HTg&2VHhzm*-sFiGg$S#Elr6pSnq~y#RsT@KVB<-mvoxR(p=@2WwwlRn-T5x>KZY ze<^YN@BG`J@lv3|ep^6qtZI7koN|niL^T9Y+XB@*KZYYS^`fRHv7ctBM%%xWfb#p! zS1W5`oc7MgON?!p%2kQ_k)%h{09yE1Ufp!a|Kq;4>tEtiLfR59hhqDwV6letJAlaq zWdy&;Yq5=?6{jiT?}qQ_NlYs?l-id`WoJ3}3cc{onOQ&XXlKvWs?zcPYK+{W=g(4t z>5^zcfWnK7;e`p%MA~vK59l%JvAJZ_);V+1KTQZwc2m;Mp>NYduZY-uliQ3_~DkbM|D(%)y#nuRTX zOth!D6SkAvB4lJh=3Eb<3K0dSbfD~T$^BMau}}R&#M&N9qF}<3}VK-Y{i` zb%rP0!o5K$`GzN-G*#|7M=n~~RzZ>mB~6|&48vba9(gvVfJ%WhU{xT$!{)Amc1nj! z7M1nSaH;NEQhfa}+BKjWAPe5j2x#bvp+*pqddWZWw*;w;eWXLctOPp(G`ypg;IxDW z1l~Iky`SQ-feG<#pajCwDBr-#!F0-;Wj;fwgx;Wmjl zkOAdiVH!69yH2PV>bD6#3gA@<`UV?HL+mL08&CyFFMzMa{@ub~|09Ks9U#wt)N>GU z|20R-Ws^n%;Y5^N4@zq+py|}kfoNv?Lv0BKR)c&;N)o;fOJ;&n1;v6cAf%DMss;S7 zR-rtgTvf+NT*E`5d6Xcch%v3{+btW>q^Xvqpj_F9V~2#bMbA3Whbb=JLr9_OnsL{M zHjja>FQXC`bm_Z+FViBB3T!~Fu7j8I=PeUTG4KxjP8eJ3r#@4YB(>?20toAkp{B&$ zIraxihI%&d3pvJfec6Ikrt~T{ifFn&f8cp9{vN^v7|?=xABa)$-vBdm4P-ZOD#~fO zznfC_zd+~u@7#X;8=Z@OisKP%NdU;zVBM+7*^SvfNYEE=zFkNAh+DghLA{fU{mhT6uMu2A01+q))-$#CisVSXvJ@Wy)H@-4lG0Hdh(J{2b8 z>4V1=v1u+F$4Pud132k45nhMmT!~0J{boSCH&(m8JLY^F7hR{^jj?aTtGjTyCieEM znZiqZrZpgvU}X|;N7ICTVI!z8=}OnJTpd*jt?!9mh1zl2DkqLa7gh-IT-|SQ4iQ%c zlovwY8wkCVEUkkwXh~rXaV9F|%!xjs$2W)5!4}7mJd-fORrkp9yb7Y_Ws)Almn5wR zl1D0@3j4-w5_R3(tsg&ONqK>R`r;>AA;`h)o?^&5UzB;*aEF?-FM_;#@Gc8ABl8oU zvms@v`tu~C;3rwkn#*dqR<|6M)7dm>GTeuUhC%JubN6Hkk2Fi?gKP3J>}x)Pi{Yn& z;!%hx#k6Y`$4bf^If_*_Ut^D%)B}@w-Z!md4T(^B-tfU zhWauS!C_S=9-#t1vKOe59BCR)W6ieua$!#>`&C9C5hk||wxB~qt;Sf2BFTLe4b?vQ zg0^q|%)*A9s;KV~$BSc7zhFcoF3w;dDawL)7x&gTt=`8yDC=fn%bhza;gX^SXC}po zD(t}?imy028^BfOQ_k~;Kcmriw8kv1o}cuT8ZuB|yt6n#64I6rB0PTxpq05f;jPE1}=bK=COv}S252c@iy=yq61HRb^GT%@)Yc< z%(~Pk>L@H=cfwz0MfkC=93AyRyH(~r6=U}?G=pzIV@bqB4fbbuQi#-@Vz<}k>J<9x z<>e3w5d?k(!8~1BB|;ROv$*>_^Wyh@EBzXgNIAZfUr=qf7OSLL5YpkK?5rQXB;(=1 z7pEV5H`MAXhOnzlJfdXZfX#)QAB+hLNy$34YpMZCI#Gqryjkds+fyk{#X56w%CqU4 z-VKV^tYQgw1 zK~NdL?c|Tlt)rdgW)v` zgmH$7}c zt`eoGulfzfkI_#8vYGT+4#}Q;=BEcPG9%s)FP#|lCc)`yzs_@!FSmzI8s4zGbK8&k zU*gAzLzNzEpQ9XrfiyH@&KSa8`%Xs1bI^m)V1|?0vwk}3t_OC92xU#Q!@nOo5 zgz>U&DVwXBXF1QkyuiG9(m4!jV3o8C7)XzC4vT$5BbcU-Mng5dxoITb1|L4oUMn53 zlJaY6bG!#HN*;wo05b<3$ZV2L}}hlW0o9hBfg8jX7!<%X|~h&s3|*K+4a3mNugx^TI{u(X z6Gd@Y^2JxGnwooOQNx)C9&ZE#g};NslKQ24*>`Z^lAE>u-uxmHzchy13KjK-x_pk0 zWN&P|;`jjrJ;@rg)rQVA1E?>1ueIt|Aw8Li4kvu4)+zhPWL|?@WFh4wDSy}?nzpZm zSXwur?JaobPX33Ully~NG~^tgcsDnzYVHxcB)-9e{U%Kk=V)+6R0EbK8#<)w8|bir z(x$HNL)j&khiQJU6HV)($I-BXJ0JwKdvEW^ebG$@y(}ZRx%Cm-Q3TYcpvAN7*4#C^ zg+);-`|Ib`tDF1h&gW_BUt;RZ-f*S9r%3>&>j9h-2hR+?l;bES-9|6tXFJ!DhKs}e z!Cqy*XnxSsa7N#P(5<}zTRg@a#3$wP7#0$9ZEy8y=F&u?Hd*O+r*m}DH?NI#u43Qd z90ASqI7b~OGN~&wlqT$)S>xZeoMXByR~xW*+-=u$owV~`Jh&B47#vy-Mq!kW(UVW5 zRw+{NtDTs^9Y8s%av9<$U2@^)o>~h{I-GUZduz;fTIK1I&8hl0^LygCL1?h+hBsnL zGaIboBU*D4IYUld#d+^W_l~sBPZ~dnnm^ZTYIN#?-|1%V(1h!IeyR)U5`j7evld}$ z#I4w8gd@D%miVUd#yn5`?5R+L2O7g~pGXva$vhkaDVrW2=XhQOECs})uXjEsWmcQ= zo?(1n`*p_bsEKM#ti7qocY3w7T%=~ZI<#B7x~-Rfq-lQd2!f3(WKGvTexSL+KKQd?Fxq7tzt#h7y|XDR*NBZQrT4v_NtBIaEu%v^KL&=snUPG}3uhM88*|s<>oNx>C%OlBi+nH_HPQ-%FU5O%dk1;T&(F1adV0)@7Bn{u416_z z9-}S#GS2U4Fw86mHk^~9hBh>phtWC5|8Sc;=JqDiwJJn&zf{l~l4sMFtc2`>0f4Tv zQKBqk4?u6OP`s$>x)2zJq05E+0mh-P}A*( z3MCjk(nMNE`FglmA&F)91wKDu*1n=U@9_0FIhnX4#jK~)ud%eCD>LA)uc@nb65D_d z(`kxY=Xkp}?vQ2wP;JAF$lBxBkW<4C;s%6Hog034E3_}vy0mt&*KXLc(FOfJP?_lc zChe`OaTD>DboWpnmdz?C%@*N= zC_-I#w6FhKwP@$>e^P;C+QR<_w@xIMfYCNDS>`iJUf_vRXR+P>k-oy^A-XQly3Op3Vq)keBv?7m4TmTSl2dG|F)EAB8!aKz;r>*jvFFAHzYo+JeR38{&O?AD<|kogY2uO_Di`OBz+YZ zph>a&HQ*cE0o~)qC0@{Fxi<`B$?PZxWE9je=KDt;N5Hd5V7mYy%wX$1 z`j%FMY9ldG&TnFtsiz4Q;TP!8e&_W~5;AYH=jKY^?{zeC@qK(i3;7MflQm)i!Ri8bI&M@oEbNh=&| z^{y+Q9W*<=d5vs~?x#={E>#Q0hCWsGc>N5eImBAU@2fik4LzyCHe7MeCDRNmI{aBK zbFo$8np27dPT$yiM@&cMF$pt_3}{k82=ItMc(nxykftQ~tj@1*t{+$=`Sdm!cH6JzyY&FdwCIlnuz&QEZWtp7KjVL4Q~MMJ0B^zqClLA+kKoeq z95-;)aPLyurY5YT>N?Oumk!V2YVV5@sUgpUrEmM&Ae)OXs%q zWe$`#NY<9?{tc0`=d%o;PUxri%7f-!i!%fGhS;A{Kz*QWDqQ0A7^sulu5hE04l#UQ zT2agl;ln-ACnNN?Om7w1!lT_pL|Grxxs1T-1`wmA^(c-&)%GLKZr&Bmuf#M1KSX@# zz^vIt%jU1_#^rrzKcW$HI!qlR6zl~A-|UBej8!8FO^SMpE9bGKg3ZG`jhS-SPYXCQ zrk0>3Cti!3)ID(Pwr3dB_79CYre(nFWrUILWRU{K5;E(h#a`$Tt?!>Gyf)8ksyp7o zrz$(~@Q45SCO_pnb~b)=s1`;a=t{80-%~-|a9f#;6V=r0k+1xm9DkmqY<=6q;~c{S zMr|fyd=rkKvl!)XlPM9XLS%oAb-vZ~nQWHZ$>@>Y#qego{Ri8Wtn|iLF|r@LcYna$2e^5ip#%Lh-w+fB zqF~0;M6TTds>f3To<9+~(t6~G24?ZtV={d+kUGGI1*#6C*_~)s<}LZg_7H$;Qa)DozqH+h7dG zG?W=uX{`u#x+6qZo)p;q9L^eN7kXq0R-fYsg!wIsx^SWh5|MA<+aC3;Xitp)y)*_=3%bSn$Xrb$7L9?mnuMgin_MQNP%=- zC*mTcwIWsQ_!A!7fhM}xSK2sYqQ43>E{p+XxyMs$}ut(M&YQ`-Gb~{ zOSI2S6g=2l9eZF34`gEiuS;Uvhpd7yWfG)YgF7H;>+H2!8n0FEv6r(s?|V(fH?LHE0GmvLYnW3{N$W(-zpytQdY%juSeu*__&k6NyFadE@16dTf zO%^is9c?rHP(eC3sw}Ci9s60!HA}W{pguFzFE*`73RZa$wa~o{u@iG|5Hz?NX%LZe zJj2u=wNI6A70O-bUGhdEsQx@9{Gx~eU9l9bx8}>-7NQyc7 zJ>(d~X9Z%Ss@ce9Y*7APs&IUuo=~MUAFJ~cxjPT=H=3F1p$sl4wo3P05=*`3!D2z? z1xxdD2iYcGN?^%SAM8~-L#@0~ml4I%bBJL?ueJz2ZXC!Zt;KG5&Yad1)gD7s2!8Ri z9)^|=KQNp*RlMN?SV9aH)HK)C1I2|Ozq!q?+qxZCx@!F~NwS1iorXmIzettl~koA@>l@6!L`|7UauX)z`6cug87tj4dr!$uRhUjfXh^ z(MahBNUqruqzWnHZQUq_(|Mtw*P=SQJgDgNr{=(FAxGm+2dQBkIhSGM zWHFKB(~Eq~RpZIX2uQ(W|W@=e}RyICJSn+|rnv-_qz_ej(V$BltO=YHaY} zE-FTa7aCg0c5A58R&rwehs%o=B3i~2!b(^BmhP$-pXg%_=WRGTcEWfq3&g)bDG>h0 z4A^E2Wi-ybR$Wbt1t6I`hp>Co9=XN&?Fr#mG*Bkq%L?>pbT`M$~KzT6q(=O{I&y|W6Lcx z_c=irdI?pdiWInsW5+qB=oSP~i}#cZ8x?q-7Vs z=9dO{!gt6-GdY-4L*=HS1YLA5%au+ewmZh{axa9DezfnBb@Qv2Iu3sz%Sv|#t0AaQ z)C6WQKwiR0n$g!sKO#lK^*q~oV(_T4uDJP|>j5{U8eoI=f<#1@MqoPt8-GS|Y(X5b z90s-{1-&VyZ^OvQY>#^mFQt#jUAYt~?6+rc%f$1C3_;R=An-t2f$WUJ$k%tns9v~L zx7!ihH>BbtojDUtpL#T6yxa6XpE#p+B`5O(_QC9CBWa$%TMa7`4;iW%JX?CJvC&fb zhlkXyDUm~?*Z0&2$OvS!rwQ*PO^k7n#1b3lC5&TL4(0yjUrRFEFwzr!>T@W-FP7Vj ziQ2;-3_G2@-bCB$0zxUFsn&qgclm1AD+KS5rsRcP02n6m>WO2awrC`5pw)N121OE! zdCiV>&k6Lx=VrXWAFkvO*CDGH6D9dMCxDk+D=!)olbJ+CcgQ8ns&~xG=^f}+mQ<@1 z4H?{XRn$}CAoIg4MF?H+F?vm~-Q!5X-5d({$21^%rW$E`+ONybDBL|CVD`j5BjwZ8 z@)*zpyQ%q5cwL^7t)$}C-kf2s&9EJs+ROE@4)|JGm+K)O=mf6kF zqSCwZX@Y8#4io7@X3{MA6Q8oPh3(5@|0eH(A6wT*43wGSL*r&9=woc;aqyAY}(fH(y(ZNUp{Osi58bV zit2-{T`r-fQzTs8`68X>0v%t8MDf{=N<70%x;Q@^-=%3txLe{|w;uva@|WmP2_m3I z!)xbt^u(KJ2XXC=(PLhO(l{FNOIeHt01qBS`_HNEqqV~Ls?OZ}=1kj5m}n`A4UWH3 z_UKi9n1QL^4_8HjdF!tM$6s-@8<0fv65j>kMm0-|6AhM%`T~JXX=}Mp_3DX_K?)oe z)O0KhH5tiB3Rv?e+1U~Rvc=QeBfTFn==uZi69*AGFXQnF@~~`#dzW^L+Ry(ep4txA z@%IaWL$|*D2cz${#S0#c4h}91TIzmy>U-2wTg00+Ci>K;Prkx2dsJPPplg6=9TKR= zH9(pj<`%kf%fd352`01dQ0Sl%L(>&N4~yT2VmslcynISBlcB0P@v!=d)u22fo9whz zS{_OSzZpbJ2vB>GWvT7xb8GUf?Q_=Knlm0IvB4+K&FpEtiv3wQrZv|>h#D)}ZNT@_ z#xyIUKvMt9Lw8R0;40?kw1VawrfU*QQKMK27aF7@_w7^2BLnq9r@!-_e4A5J`spLm zDcxN%pH_drbX`klvr_7g&YQS)OxcZ;!`D2uHM7_5%&l#xR*|78-0%yd275@^HKp?z zq*ATQc6aW_*DFIVLDA=g8PJ|qtNtySS!y#}Mpo@UpdxO3Yqzol^pI993SPdPTo{}W<2JnX<*&^QiRCsLGXj_} zQQx3`)Hnk|JKkiI50Qc*fb?%eVP2Nj$YMY}TAnvoN+PVP#e=&UcMRWx?1wQ;r$&;; zHXpA_-@`3g(4c?{Qx4lDDwI% zj^-?&x}ydZ$A9C5N^=D&hc7Wp-ci_D30T9&Sg-Ztgf@EJTt!f2Fm5jtaEvIF`hBHx1jy4kDh5HCdRJzx( z6M4aEL*UE5Z7vj3GJvQtYJ5cvyq_PlP(Sk)aM>2W`@WVDQKk;FH41LK^$Ht~0VHDx zru|W1D8kn_+#?XYWX3Ul`l7vD0-w9gv3$tnxTELFq(){{4~DqsI2f8<5!A9tl3XugF0V& zDXPF%yR6{oDghF76dnGCfURdcFl5;=HQwOy{Me6b-+tRM&z^6UMqYUG9Q-Q3|lO;XnTR+Vr$eLBY$AJ>#5yyI%v%fNW?_ z_!u`-P>tEwrzvNqH@;!bTAP>Nezj`98n92)eVPvb#(UZOCU@sCMxo7W5kD##Z zdYI0pPGm>2bKQumpzp09e^|}ivFTn4`k@rqe5ara<-Z0dAKAnMRaTlE*s!y7`%si$ zthsMNQuwhnCMfMl6(P0!fGuKUXwW|@vJeED)BDLi1k|s-g(mqZ%zv9eG4BL=7h)Ro~JK*}?c1^%}uV2FX$Kl~07u)vn{YztBk zALKTqrXe>NCGHQBy6OAs1QXVbfE}9d6vkt9>$Gw z!qe_TXKn0(v(VpodC*=^@l6ij#6L%UyI8dr2$C!IN$QI&$kc;uz>;g)f;_m&5 zXt5J5cA~{jCi35!U)8Q{t4O!?WE~g~dyt{H60lCc1^nh*%0MgfI!90FInR@7%#lmy zC~zMI1$r7O&Im)A4?<{M%s_Is-%5tsmNhkD6jt1saC~-5b1d?-CqL}<$ua3{$`<^>^@=F^vL6Gt- z2;c8|rJpP$tUfHLnNZqb8GavWnL+P#CkJ&9?f%C$nO`F!98*qSKcT?NaF*96n_Pm3 zSpA^JAJSb|F;}A0hvA#$5;#}Tk1D7@PxjDE&{7pSmv67fq1Vl@OAYphh?MK3#8Y{T zrj?l1z6A@R`IC%$0#6}4y=Ig`Z@Xo{2xow}zQMMo_r?Zrc5)|XdBKxcXNJDg*4*c8 zdw5|*pv^Qji6GD88qt69HN(~3?QaQv5{$z1g0lMZvNUyVXiRG@Yzso6eBOctm6E!Y zj&07nPoV-h?AaUIesOpj`8*If+_vAY>Z9CD<_@}Bx{Ui6UJ!nL>X*m2Q(uENG)!g- zGUQ5=*N;@Iumpvyx}FR9cYb*SC)zh0(71SxS}Xx~lc@o<&ZR6a+RnZHQTEFd$f2AN zpc?cAI9j0|8Koh_{c&me|10QMmFK<1++DI=iN!S*2@^HTcAvg& z#r~BZneOoZSY8rew@my;r4E}o)TE<|*m37$nM+M0|)4$%5fEwsOcHcxFt&UsON zE_c!_%^z$*78E`W#m_(3zE`VO)C)Ak>KsSuzQ?QyJ05j0zX&kfHKU=)edY&)1 zX)n74Q56|Sx?q~&9mRxZw#>fq^8^`*Aqh*B5;1bgEvBH&l`Q)x`2CizV;D~L%I@-7a5IvMJ~0pAcL}3><$1mx_90+qp~crW57pOIZJreL6LqL z`%$j%U{R}DpME&iI!Ajym6MJtF@d^o!PgadHL*kL+V`uUf)r9XgYG<~NX-5hT1;XR zg~k;4)Ixg?v`i3flGg&Ferz-wx&E{sTL@ zJ_o#ZHj4+a6j3#v^LJ;~jx~tb3^_+V4JN;QqfZ~-0B~bHxAL{*+*zANW7JI&9$cWW zVGw$SpDg_YQfHXtM-L35TqK#EMq|KtsPmfSck#fcJ-l`_)Uf_VJ_EcE=_?zZs2bJ@Pe_5AJ;D}1ea z8R=FHKCUNLwO@Hm4~5bpy4`DrA}kCVIUd*ul48?rui+*4J4Op^$fDz%B35HeZoqVC znl9_~w7sfhs+NWXR19UW*OxVZv4Mp768-b?o1fxdt?-qa(s$-BIMJ`x{)5$P= z=)NWZW8)`)?YFuS1&EKLK)2vKDQdL?wbJE`VEe|jW=vM2czlC7p&#(08eptHtewk| zX_EEYjFW9=^@?)2xF!mv_FBdG!;A4#cnTL2?ecmZbd?P7gH{QfEWeMJ<4IE>g$|=1 zl#7tiP2~e`!ZHsxC3_!>mPL8fZ6u@ZuV}C2qW8JUH)abC zdC6QF3VA0_$qGc0X2+mFCx>nEQJ}HM=up5LjQxiVQ`3s7OR@fr2c-tA%T$9Q)P-;w zGY|P_>pPSqs@Cqvao1Fz@7Rl?E960a^>twm85wUMk_OM>vdR$>?y^E?o%X3jeRfe3W%K_1NfyZ1$U*7dP z-8&h5R`G;>H?aB8YBy{+3EwA5P>egvEmQC^`#7*h>D*`ZF9+QDR{$6NyIv#HR>ux# z>UTqx{|LO=`TSGv&km#IKbg^zC()2ZEI^Z$+VfRHr);}`e1ax#XV?WCSh zD!Feu5zzE9_l70hjC`r|q*8Y@Bzp7ivmYYikMFLsQ1$#;x#3G#PS4#Ur}Jj<$f#87 z#En&$R?Rir^8$|nC=gI|DrMgv%k7h9pMeLTH4x+Q8C#jPW>sS^rKcVldA0>9*ag6b z_>N&ktyA@RPDai?{z(6qJcT;k121ECN3O(;KYEx3XO#;ASrzFmbQ&(WM=wBT2fB$dz z+B^sB!?J}$2X2I`gL(s$ufw-30)BBwxH)~`j(eQ`=;+kN8at!C}Y1-l- z^sn6rY*f$zHbAZ;-wns~`{nZdL=Yl=A`4JM7bpOJ`HOqMkkdrQ`J&vuEtApmsUIb1 z`&6a74an1|Fz7Fjc<2pA-)E6yzE=q4IavhH_>g6t!z_wt6{c z@Ey&2X8JTSYv8BCt^kK&>IBR?95~VNx29rQBHx`)zuA$HUgBhOywTG$uH3Q0**~Ks z_okHVS7n)$tROaL_ycGDoK206Yy95yHZT1L%-#t(r{Hr0LfF0 z2&0B9qE;^8m+1emzE3A=4k+&(Ehfy;Y5`(&856;#fU~ zBwh*XQzq1xz>@F_io&%%!qk9eMdFbVe4y@d@*VB(u9im2Zh0$x&xFy)7hX|S+9D=a z`OGqYqU>*QnauwU`j77^+NpJ;g6zv$FX-p@oR6nSoi(K#q_=!>g=uQOwX!>Le{cWm z7&Ei9cQbtYdnhyf0FD%0b>NIer0>&qn5WeBSiwdgOO<@jLf5aaY?dyy$Dnp9y7t57ll4^B4quL;$?5=zhkWcs}2k)g1@ z2BE`|$K%i3{qXe8kGCq~ls&|iwhTxR6QQ&Y_e1Sqq%+>N`*p;4+m-adD3UbH$fd)H zUV!;GT>$#W#I|4+UZQl}cM`lQNwump!-_gBW$eNBO-X?@Mz-!9tMWcXG_FXC0+cjU zpe|@G%B~MVcl2BCwl5@`uI=mG*k985T+7}yZ#P7S3sEL_g=y)uwY4#bBL_vLWgxzcfKOnY!iv;c_L@66UvcXM8_~U}UhN3VVpN7T<#CnI;ehASjSI z5iUbFWQSN$_yyojmT?QigBp%w!qUsSGPQqme7KD^}BR(=|&JmYtP@#LJM*A zLCV@j>qgTG6DG*z`(e+Y_&>d(F1Q>?Gn61p#wkub`hzlDPL9kTp!GNBvav|bgvewRhEp}YBWp^WBAsS39b;Hr`nWlJ7WGgeM>z=Nr zkJHY6|If_pJP?Do|*E!x23+pFb4`#$7 z8Q^VI!!G$d0yjIw!oOnhgbXb@|v$AL7pvnL+Kgr;0*3 zz5s8)`r*UV89ymU*N#iNTnjFx#Ku=PqmuF*pAQahK^BEDk7?dD@MTm)54nB}na#9d z{Jq;6IbTJa8uVD(Yn(AJv_uJsJWgy}YR=bGP<{*%Y{9mQ92kgQVT-r0FbGiU>&u&R zZ{{$bw~5biI*{bCUvYmMb?h5-P0Jl?fzj$n?U)Z?cR*Tyq%ytF^{0NnPm)PFz+5F} zlSWS4f-to$s42*{+8cf_zKfm&xc{JyQ6LKTznWS79^}_P0|tfD&m7MkQMjV%(&mk0 z|M*bB)X!HrCIeOvPy41W!t~gsy6uAx2Rie!p@p?r7bP6lDZk14$hQ$VJlbzF4Z=?6<9`z{5&a_)0Az@g z>$f0lEFZTZ?Hq_^HWXrLA8H)qi=ox{;5HA>ZqWTf?}%dtwssOAH!MirK+y`MiD~KB zw=NTlKMHAjE+cqqD4G@%SM~beMjMH>)ls_;?^W^W=!VY)j|zjgsuwss{CJ4$6{&;1 z0VW?h+!Ob!|7deCUN;Na*BUft<4BaKp>I%fs?0Z}W;mpS5{VwyyXY;5{Q71RWP?5O zPMT(e0FS+*FyWlwqcg$MKa-Ld&_V2Jna$TzxDrHG8GM*t^Q>Y+DYkZ_pE=H))bQaH z@;WY}G~|DzzLcdM#f5S^(%WaGOo**+b;QF@Ox?oy43ddo?D2>oEy zH-dPW2q7g*@CC$evObYjxeV$B)ezvQU&qRmw1@4OGb2~c2n(=w!*F%f#Ouv12uG<} z!eZw?YTNRcj-#Vw0!y$p}B=bF4wbi+L_k?3!r8;yB;Fz;`s_42q62 z8-um@Hs4T^;Pz}H(QmUe#w2Pqz4|#-W`)|;z zWVGxvTXelqoVd_@8gl{cge&hlrR=rg+s(JvNVOrr-Y+pyvY!97_d%{>sHWF6lMQr) z`SpZ7*E_nU+S)2*t#l=1)4ln*-JWnL#{d(AqBwG-frsjVrrbwNB=r zJESN3uzk1rvtha!Z7kpaVeiZ1p={g!N0K&4niMe=r3k5HH%UU$lwv|mB`LBcTgF@> zOT>f_#grvmOtKX+*|&tO+4p^!u?{nH`JFxY`@HXS-}kfJzxP?*XYog$K9}p7Yvwwy z^E}Su_#WTmdo;sG?@-tIt7ch(I=kp#=HvNIi^Tryd{blEtxtWjUz6_F?v&?|s@}PR za3>DkyUpH~uSc_}s!%3*f6gVnj-oV4F=A6t4dXa8Zj3KCzM*T3SEgjf!ATyCxjw>) zJpU7ETD%43$1A%L?l;f-(%zKZ^MwZUwscRiH!hBjd(mB~U)@~#n`JVOjK)4wE5^)C z@is0_j;X|X?@aB}+@reN&OJH#$o4G=#QinyLdn}XF1pJh9OM5^t`K|)D09YfyOr;w}Kc={#GFH3II&-22a2+aqT58vq14-+F2F{xt2^n zz|D-9_C}8{US2_b`zSuQ<1cT+e^zpz{AC5vmIH6(jl=J5kx~)FOTF_f5jvP|DmYnF zX_IbnmQ&j5RO;bm0(En;kB7F|NzPF(B(qoTM+%vh)Yn+hv0U@0ZmRaX(Rp_@;=ha?kMHG#IRYktE^2jZLh4ErPqw z@X!9l|LoXoHLm^j`$w-dt;VZ}gJcCdkp|%AA{}9dO`lMnO>BDsJ}W3kN7^Lj;H9IQ z8g9vU-N+?~W(04vORPS;Y*R?tvOix~EY~|_wxTm=Qr6Th z&JcE$^=B0~H00I0fj%jOqLxj4C_glpl86ERQeTaz=FPDjr@E8h1+()!L1$7cyglPI z(}w=^88`3A?@!Jk3tO$TlEaLcH-(DY*py%UnTk3H2ph67fLz1akL zEw?GW7uJ{qTof)M1F#nBSf(ooyv_=u4EV0z<*W#3gaGbPZ~ze49GFe@7#1#`SxXg% z_v&wg2^i`MLUu$KFLk@x+1l-gf3 zvACPjizVGmYf5A;C^W#1LdTfwtB(oZ`|8_VowTcKbJYZ`TH4hO_Wm@Tx#kS}mf zyHe|OfXw=}J}}~{>?p3<72ECl{tyYu#)?t&L#R?vKK%SH zVegeTdQqt@zb;4Ah#r%m_opJ%m8vj=my37bfq)%6^V%s?xa zT}!z>G}_|%B<~35AbafDZy|55lD7XtN!x|AV^(!(wV?ahT@D*8x{tJk=w$H$s`Zz-E3kgp9MKNkD{>Q4(qv&T zC_r05SgTn2X8Y96394_$jwgKiYbeeCG@rF49KEnV3%bxhQ%-MjxhnglU_JpLbPI+{ zTNH8Ba4g&jQYJxTH)~ljXmmv%Sat9Nm7Y=jzSfpksIDz&+BeJA@v?kS{<-wxQ zacG;NfU-%)xmZP`*w@NUxx@k2I?kf|*fi&qUZI>=zTEnZB*QJXv5Qs8jc(J)@TvUJ z&>%lKu_{~D9*=`;nHSX&$c*cKf==3qJIjx#2VrCoP*LxeFCV?qc!BeEJ6@L-^?{AN z!xlXpr^WodF6&Z1%J1p*SDDaT8`f@YNc~Bnk1L2xF95H7cHA7GGJYOk6;XlXtJVDlm%2n!v!e1S6! z6rB&z(9C79yt=nRv?}!Kk6In6)j74g`c_TCAK2 zKE<$jRuFGPU)a%bWtY|ne+cAW+y_{0udT_lG42ZD(|pb^E^=7U%Xeb*w&-D)9Jb=o zA|WA_$DjR|fC+L$Xb0V{Pl|W@OZ5fC1H-k?wyp=-8xL}37GG`Iw*J7!2#Lx5J7!P4 z^e$*iDQ6NwBd`(LQSYWFWoe!ZFKMI_oKL|v9Zc~u zWdZu0wk6h-4HCxWcwjnf6y!>R-VL6y3o2Y!fCUlx9m4nSxqTWd2v4hHD~Mpr<@gwP z6&043%69s6PtHW|Ydo4Bl)xo!{Qe^)*vRfUmQCN)Cx|B<)tZ<3t_rnGR60OMuFU{NuW=wh!Fg@a@3NW1)vM!1XyRX>Bbfxj!#2G$Gp2 zJXqt#*Qs)#MiZ-IC*;NOQSw%P8y#$YX)`gAl$UwrSVKrQb+^e)C*H3E_u zLJuj9YUSolh`h>9DPobZBa8v%i%_q@ZO?CSEUa@V?u4)aLn>PDf9qkgh zozYV5wMG(RGyJQhZ2r*)Al@upqRBV_Sf^4eQEb_@0{zclqLPZdf=zok@9PdEr2p^^Pn_E@$E ziPGMr*uAv~7afl7t!lg>@tT z9+1`_yXQ8w$+eS# z${2y^RE?8n({?+jFw>l(QbjF8R>)f4qN2Ahw}|2=Ds5ZGOsaVV(um1(ZrtPA#RdE7 z@{M8)z&;>L9eZHRym3Wxk1eet;e&7;RpY|FE$d6Iu(SRQNw~>Gj1|p1nQfmLN%ABQ zu47SkF*1L!qrqjO4emmGD_$6ra@O(-_r!fr$A@RLCUOwNVR z14myX_js_a#g-23!Y69yj?@lYAL=#yZe^r=Z2^j%Wv(D3y+QSo($a;$RJ}y5Mbi&K z%oht0D+p7L1USSPJ7Pv~0af7IfFj$SS(7NB4qZ-<@l#8nVKcP~jm;OdF%-zalwVsKu{fOB}i&le_d znN)u-3pL~ceqaQe|L?*9XPyRHX_-((Cv_Umw^>2V-PL0_;e1I{ed3ZpfgtFQ1R!rX zz|S4MFA)9v9;GE%Jl!IZe4OWFUH z+}1zqHR2>1hUsn%16h#Qej`6SqB)1a>a8RyfJ?Q^P1xykEbNf;C!mR1o-nr8q=RHf z@W?;&>7z;?i-VBf>qsXuoPLpX@%cANx^x|7G?Rei`rYzlnm`%uLBq%jf+2w?3PKfW zWEOyeSSul9F4$}d!9$m0yq7ARzzcLmWZxd>!fm7zVye|S5fUkzMJnz6)f zp-k+C=I)2ibKyTRc0iS>c!d?jJ3F9L^9|ehyG#G?oFg2^4_hcBsCJeWq;$zOzEj)W zHr()(%>+9lq&g1Bqr zldTYzGRm^wyppcS08H?EhNu@=po`Uk&%gbN5ns*DMDl@ z$Fa{TbN7O2zu)iB)6%0Gcs_^~?_sIF;;u~=pXAc+rFhCHW#(F(8m7NKAXTr4`-0_l zrJ~iIg;EIvIyRk-6WsUqtZx)8P9bH@1lyG0jH zxZxGIK+Gpkcst1-8t$uwVKk^3i2eEDD{j>4C9C7|)7)5{46BRezYWDd+hq7C6+qdl z#6ewm<*kxipTMP*^B$)g-ZHEGGj@$kyk1k5kRBB7bhoF4n;NpIN;5>_RPvi*& zq;wt8wzSd{YW+Iw9#j#d=^s**Wc$VWf)2t}0y%-A#xX%fH+l!ONLxYBJAZkMaAvJu zv^oTR2q^#d$PRDVb|O2#ka|EZ{c-! zd{rq;2cA3eoJn6n9G(Aur+bqUGT~`iMW-BmsDlD47QxThW+dVRrd}V(N%zoxj8PBJ z&KVGI$V7X>2OFy@6DJz3qi5@;Lxd_4mV$7X3=IrgPwz?hP;@S*mc8biL0Y&gO&3!( zJqG80Rzgzny{N8OzH+>WNS136n9Hu=8bGBev# zRw^8q!CiVu)T7FBO3EL{Ge>*`ZE@)Keb8MCWE3*}cQ{78xv_2M!-<WPtKvobc~Qg~O(Y|oDzIQpmHM12$al`m z0k!qq^Sq`5s>AZix_fIw`C>dnnCbzxruOSE8h4uxehBePG@}g?=DMoq-NJ_mcs!sL zdAQQsOP&^{;4zKi#V3Lh-KOq`7vCnll&%fu8E&c=xy;YVC|p6L=S(d2u5YmM#u|LM zdduznnOq6tm9Kl5vB-HOauzu&)+F>k=QX|Atd!2wUQCuttFMP%EM+`?PrpO$*YQt7J=tvKSGM-58 zP2C{{AIP;hIP6y3Ub_?lq#AzqASmi1x-9H|0!81%w}Rj`mf3D!&^tNI{4xan><+|V zJYia-pM1CN!Yq8t9{uxMXfXGxaIGL-arwY&NSy z?JsUr|BJzpX}GANI3=_?roUVdxznOn} zPnXXAIV44-OQ7KGQFe%1pvF{5cSR*pJ$)pLk6r;ey-j!i)ql!vUYd`eZg2 zvU+Q4tZ?9$I8?FUyzR#t&AiJ^1kv_^f<1k=D>abQ29 zwhl$tL~~rc&Xt%vW|oC zcN-e0vKQrCK~&Uo!y*K3P+GiLKEHPi#|{l-F+rX+-RCSQsr`_$JVhSR=&@mjQG7tX z?U7O3G8PFLH_a$%(~5@(8~XWZRG2uc3TlnNkOKY~?d-4q8(|+*Xow!LrUROdiR=nu z`GgoNk6ePGi)%0gy0@$##>-ZKuHKo_lc=D}prXL#Lh2x#F1`P=Bj2p$pp~P`WxoAlC3cxD5@sHKM|WKSEzY-jUUvW9F$Cnk=pR`7Ql0xFCO|K z5&bX!?}N=Qw{c7?AmwFsv~cxHeY!ITvBC;80x1L7|1Kf#o|ayM&;721+(o5lgb7CN ze`?12O#qAMDT~Ym%)XNr3x=>Cl?bb6p}`ECdrsm4b-3lkgs~zpwvEJ>|1KD=T(>V} z2J@qQ_*z~!YwJAIy=9*D>xSCDYq9}@(Y;Z-Bt!PWEo?zAE1X^SE-+#FqX(J`1ff>B z6~xG>_!$5HX+I9Y4h7p&6ku&eIg{anISNa{j}n#($D?}^pc!)$@f8I5lhg`A`v!S1 z&0VD%Tx<(29{FK7T!Fx7gK;OMpT&%a3gw`IIhEZjh)>DTXxbDd#qj_1x&DzCe(dneXWxVeggVcP=kMZN+1g=`E#L9oG~~S#Enf zaVIC`?LT1Hi$#eDTk%K@=ct9 zec3X-YYpJe-Z}Yo19{9+vnjLF^=wAVam#1vp`}+Nyq}mAe1nY#I{)Ivy|a`e9bu#guh(l{Btg$YN|`!n7tMHv7y9!a?mLXWF2$ z7vWq>23!X#*gQrFEh^?N0L6sW`QIb-avW@XMF+dFTk* z^W4y}sw}LFGH}-3e!Uj+n;K;Nu8ZM6rkO|qH=V(_e;dtKu&;xu)TngGKBdNHEib5- z)ZM?&p<`Y186`JMkT~icEdVa*>vfAD3mNl68GTEP{Gk7vs26DcgXAiR{=nuDaJp1K zfuz|85M4)6=ejq57{SvOFtzJ}9J+FxYsh>X?hE1VMclI$#4k^?(A1%K(fg(kYg z9ixqduE!?nD3vh2?TIyvkoqMR;vB)mr#BRoHkc5W-6R;oO#Sd)zH;1_@es_w=!0jm zI*s>iz1t=|rfhC^-y~7_;n0*NUh)|C!hKpbUXw1^L)ocwD0*o2yq{vY=>9aTjI{$S zvw#46`PK_`3$hxGh`d)4b@-+}JkD$xbJYP~bey2{=b}#J(lBW30sPt!LIZl@S|*6@ zEt6TB|40FpqY=~j0Z9vFhi8s~%*3e(-IFIq;&U_dqIDxCkj|N zv=rCkfG2Ka+AfhioJ*N_bS$$D6o<@;_5+aMZ%_39BUMcl>v0+{yb-_v!cN7MWf}z( zQlwwt9MA(rf~fn@uTcQ#1eo~eF-r>FTcDOV04j-lkDUwpmu*D-E5yYfJ_MpxuI_qh zPTH8`506Zwwm}tnyf82cqld>oLqeovW-T8G`9amwY4P@uDXBWFZ_7^-bInSU-8`Vu zX$3J^USqeTZVC2GjPYaHF1i1Y@mvB)eC|mM1C1A>9WK~H_v+Wy;WhA(8+5%Bd}Ay) zpyFQ8y8-*=WNDkz4>LwKiVu+J*3;inu%A9@1woiX)0$rMwS zFIOv;+x(V9VS&5_jTJ;pXadlb$|J%u8cbQI3E~PuT^z)w6ekqZf(Wjb51P+H&R~9h z?w4OBROa^FUU=L>d{~Nu(1OY!me_2+LYFF3QFz~!^+_knD)okzXT?SSGlzN&6pdQz(1> zS+Yt?WhfsF3%N3`LUpd-Q3}n#l;t%}|6G$2p-=%w-6ju-|LU{`Q)zMG17Hv=fT8oK zhTsFF1$=S)>EB&WF2YfDyW1#Onh7ZO9}nZQadov?`|3`1&$D24eS}xPC+=JPbt7&u z$04y}7_j?^uK`c>k41P^(U|`g8*LShSw&-h*1{}f-pxp-?tV&*y}?IqMJ|!P1$uWk=OSxE`?`@E4rg{I3_p}+FvvECu5h4d>q8RP zQ6hDr{_sjs|<3G#6dXh4E5U->+tqz z_^iJoqp2Dx*dEz7sABNi=DzJoxh3zNw(1X}{%)c#f6k%$cQ~ipm?a<~d_K1+OFpdY zYn5p99h_I7Tw_N10%Duxk~b>}vcTj}qlBQ2Be<_nvNOGdmAM?SuB$t%)qx6)U6 zkzs2`vLN)Twk=48kM)wU|3LVMulKpsrsk!WB!;%2TRU-8Itb*V)Pxzsh#uaf@njAt zNYedaZ3@Do;jOIWw}OH6JLgrJwh)Gj?Dqu<+L!gj;bqhj&@F_=(SvE?z3(k}mT~@6v9ZxB_5Yz5kGLm2p^vv$%9|iT zJ6llp?f8rFEafdD*PO1p4s6D{;1mhXInWK(3&Nh7m)73~h%o%V9JC?R&lIkaBOiAh z%+x!lqhRwknDL$Y^@ljJJj)Tu07?J?bQLrwTuaz#{K8u1S;(d5a~;+%q)Ch!VU!mE zft_oiwpA(1_O^Isj-2Fa8`YPVRJguJ9aWXDwBY#2w38G;f8lFatQ(h`$Et=mw1E`# z%y3`t-y%rFRV4)E8})r)nv?fg$|k2k_Yr(Y5s1(aC>co4ff?!C4{PAILanE!LEbp) zI_~x0kd5Y3!27%2*S*Zu4fUL(F!fN>=gv8>r&BkbS84@;ygG=iwXeuiK-14D8Lc2x z^QM^_!dDP}u`n<94uGgwgCSXC2I8NTmoffc-$C^G=kK=ts^nMVuRc5f0^Z<|I&PT3 z)FSFpKIChjd3r%dykdJ!+ahxF`C|`XI(#OVTd*8}%dZEK=`Y}^0OqvVDB5}aGo_0> z{(2ciL))>}=l*12{9hPe&e?ttuK+MEB%%@INl}1N9h1@<3HzwX5sJIm=;QqiqOZ!H zmU(5BnZEVcqz#u;E?nWeEsVc=&vn*BZ3VF~sk3gT#m9K99Q)E#kEBD{ zL3B@b!ZWyul#YI=!iGOAq(q(ilw=`$3+`&D%ALV~%HR}%C$|q+?Hr=Wq#ROD-Bqmr z?A7ER^4MZ8i5UWIgjx@Pd3kz2bWo3F!UUx6V4GeHV=ZWzH}WVo(Ls4P*+mfObQp7{ z{WEOMNL{$B;d1)N2Ah6fBjYk^RX~00Q>2+n$!@*egZz$7s4t>Vn2NHGlyGUzx;-J1 z0dDrUO6CuAogtzFJ6dFLYJ}z;(xWSgOibV&-|HrG+Vq-jnvlNCYz^Vz8GN1Y6mjfH zL0-zKDC|No^k5^a2TTbIXCKC;9tqfAcu0rO;9~&x+aVy1g!a#9>0uEnL0~B%xkxwf z;|PQrJ6pAg%cHwNy7nenRxyA&xsXnSh3j>z5=84u;S(%O6TtKeMBsaWcAsI+f^P+@ zpptTjv~a`_8kK1xc>ggPN}dF)q>PCJKXPdofQm|ph0EafbU02~``6?WrY{pv2B&}?j=Pl8@RB|2KGgEg2}kGD!Y6*e!Cv)*x4qTl#+%yS9x+; z+}gJn&U~vVJaZn&CdwXC>Z-B#l;0$!*ANdf9IvtZ03Y84%F6xFzxoSSExn}PIEN{Y z@$H@y8|$XCqgN0-8oxMJue-8*3EnUdWR$$9{cwR4H0Rw%NfCohplcAD^Y}SdDvYw= zC;G^U8yUGw^J~RtM9S3@ish=09YoxGSV1=#-Y|3W5?%8t1m?>!AaqL766DieGUIcj&c2GH5ilGgoT>>vIGcXso;FLi}%nkqG$CQ5k95{7Qc3oFf+iO-#-961FRwusJ6BH|x}jDOW@$rzfP~E`fvtUCE@fdFenz}> zUFM5f)4NO(AsMe9q$oy0i(`ORuftJ~^?_1`ukDwWeBv=*z z*d=spQCP_htq;DK5Qp#i{X+T||DUal2^em{Zha7gqYKyoAM(ID3VHgM{G_@c?hofY z>Q`b)GBb-42B7tN7Ihph1kQwp7Vg6DF8<&8OMmU>IEPmd%B$8sBmmW_~*#C^5}a51kBj8W^YWwa&0kyGQ#S>!=+cmr6)qOSqn zaq`j%LdVI0W%z&kP=D>9{N~T&f+*BWHf>T2KJ^?HDPP>df6_pA+{n3Bx^4LWiIPBX zeSr>JM~>YoEhC_fG}&JWMc+?tFro+b?c?W?+;-i^vH9aiC~POTv%~$o%Ed4xc3hQt zpptnXw{Nsm6VtBmg{MREI9AHuPSolvVJxsBc4JE2L4@r=_Rv3YJJ{zSctb4%Ow1xO zJ-B;QzK+8n-Lfn==JZ$Fur|^rUd9IReKyeHmmD&z^)0lRKw5640Mcxa$CmZNuaT^y zgc4llDZCq9&DtU5p{T#oQQ`MZs%WJTxQZKd)Ow1CQH zy2h0c)I~q0>#N(jsc&i(zAawP%>Lm2<-%yeArY)`MWMIG9uK*F=}>PR+8kOIGeH95 z-$`6S2$6@n;f-2gc_h&I#^b>HO8!nijX$bP7&~( zy5^{s>nHK9DA5f;(Zsy@p!6$grOwd|iCmm1@p>yv)aPHUu6}JegFR4P<3gO1V9J z-cr=!K`wWwwqniSVh!bQ8DB7DMN3(m<>%3%xN4=TZ<>>c{ZWBeNcVJH2e)5|P*<*> z9cCUSPJo#H^sFZEOzkv&euz`8KU-l^rA!=XFAsCfbqZ8cPiQT9*KTAXYp2ftL~P%= zs$|Yr>}x)rom3HlDo@ieEH4|%oNEi;RVn+y!H>(XAch>I>rmVK?xVM&`Z#^=&i5yr z2$LviLPZR^#EcWVb=vvRs<<~KY85)ehs9eX4AcZl@xZlSn+z02Z5~sm!R}u*L%BMh z9K48e^_JI3D|YS(q5F4wyW&LW12*o zmE6dkwpv4QLC@_ZI!nS#I-Paz&V%gGGy{#K zk({SvJM1^dHP0MQe+MFvx~CAkA(9#Ge5{WzP(^U;@msopaelpIy{Ao9L@Za}*H@Dc z^ZILr9$_c=engENYqDs~@s>TPfE(Rso2E{b-$^cKq!>kTvx%zBlnOguJ0;z};j_Y- z_pVX*kFBr#K0^K{tD_6LO zFUVJK*DjHp4{J_a8n+I|KTpyQYew4-hRK<_ys_JD=keu>?e;BNB6Dl<6^&RRG&HAh zE2<|kPt~9Hv#sVDaN3+u_jZ2;+K`E2y+&KqK1K`8=LNaAoCxX-Xt&CAb-8kKD=IXh zZ0$Fp_~+N|U*Nz~E{U<8j14_#TMx%GrD=;j;ZM@~8kooWqlDlYd*8`#3;UyLV@kg4 zCcPpXlLsUVnpiI=R)DU=AtPYSTjF%gIi&FGScc(M`C!+}q8yVVrlEW62Sd_xx#Fg_ z$m9iv-F%T*&*HAXBD8~c=3&3hmQh%onlXI~Z;qC)!sKowK{_>DWH(BpZ0s9CUx$#=hBN%BE<{db(}KzK+v& zNmmneY7VX-bh(Ywdwos~*x^XnmX@}tj_~Esl5nSEg0+X!ZU)t+9NVU~99g6nuJ$D* zLSzzYzkK5ZD;0gK-Jmp|vNbbip#RXJAZR+112UXo%F`Np%Kg(~-%(ov?;D?)viZ0c zOWpNiRERY^Lmu?-BUv+czWr)^k@Wz~A>iAQ+RFRUh1wO~o^LCYM*7$2NL?`hkR_&g zW;uG>+4>@ut^u2o_go>Wz=?zI5kyzleuE8?Yv_p$^tjhzcY?UgWvsw@jj_CJg zd7b_`p>kB__;=E2Fi&4M{|MIcoZ#t2Km=xwV{HBojcjY_Q6?~TpRj!^K=G=AfNUXQm zi|n@%HR{GB-ED}fK44*W@P8Z)0rP1_4ZoQHz&IB%iQ?PQiqgLJJEM2 zPjCWKgW;uZ6YoZApGKO6$b5QY;p(DFafaHS=DGI!Q8yO0Ot?54Ll0`qb(%8_2sJI= zo?oN;#HFx5sg@0d*!uK2X4oyjio)}q4S^3n>c4L@1QYXsZQ7p*P^KxerWBSnW`>Y zLG1dTukmWf6##LkN1bZI2)rcH=@+|&zm%OH+H;6Su9IQ$l`6=PeDmd9cf`K2;Cb7; zxb=whz?qTD#Fh_ALYB@o%EU9?`(%)Pmf*FW=~X|fCG0I5X}*Df4Os1n-N9NT9E3xJ zW>ijsuaa7_1&Ui`11?HY)jgAsKYy+Ni?ZEvId)%chuz0#3y$tQR2ZQp@x`(wK*o`f zNw4nbETZ^?Y{Kn!&Nx>uxzl=UN9UOk)j@gg9=aO5^ikUV5XR z>TG%`yJ>D|1<}-DcrK)KiLf=d=|o43CE|~_!i8l3-N0LL`w|KefRoYPWMyG+>!a=&~X=eX)Vtj zc`;Sp^Xvk8p@F`)4wYtSq3v#y2e6YZlv$c6YXK@F=9qxSk0qqV@8Io_YzE9(NvwwD zv6$B&i$ip#bm9haF94ye)_XB>xL6t0ck9_rUb_B3@%^n&RVwj%vM-@~W+#7{L$kO?-lG*w3*yNb_5|ZIC&13>s%Z)^f{hz0Pw*YIr z_^&4|z_9!Z_-m;x3vN^FQ=fxZ`D z^+sI(3#qi0F~4cNS&LM5c-AA#+NtR9_#dxxWHb1!lJc-XXD4D9J})uon^S%8aF;@%1kTr~Qr zQSNdR02GT+HL8E^5pdBE6(lW|WG9coWt%Xp1G(h7sy~wOaWbQn`y|c11P+(55@=;a zM}wPpqZ)mZ@P8zWLkU7Xq|6w?;Of@mcxd#h9?J<^L6a)yj-ZP^!Ic*;qiX=FiaSa; z{!7gCZ*h$LBRQOug((UTx+fJiBa2rA`5OU1Wfnjp2Jt2f*I&hZV;EK1DS@>qK4mv!gzmDAPY3-9v(dzvgq&MwiK7Xb(W7Lc}zl z`l%&?bAanTx6B9Q;NsCG$wS z%TN?2TvOA`X9=|#HRa#?LIm)ojMnk;2Q(br*=GW{&FVX(n0yv!W`K!3a0k$I;}yh) z>4|!WK7ToUjanh!)3LLc%>pugCKflMzi%8DcGbXr8GImj_pqoy_I2IZ^X2oF3BX%9 z3Eh;?h1<`i(|tB|be(-#l6pOHkCZUS1%p(NM3H$BwvN7na&q6+ZE;6m^3=5~h%*$K zr%^jp*3pIgc(sN)EcuP|I&yGxA6lwDq8?TBQxi*j^^U(ho1n{xt^uoUL(*XP4wd6f zX}Z8GBj?z@Hy z2`NxDit-HXg#t`ZB;8APKH5bI-DrAlShZ32NR)n55DN@dCtZ`lVPf1aunj&bukJ=r?rNWPN%p`nc--RG|9i1WQEmp1}2Mosdj-xCXab zpkK5c;=n81{*s-W7R!^z4&!^iEQ-R+*#0icyHGv#_3mPcpV{3JX?WxH4R=oG+S}MQ zsaT~zhmsamglKg)_0A@q?dpC93?3_dp8T|E+{yJ1BAeHyhb1!Xi>H?qSWWBJF zyNCY5lPotiT!|ndi%^KpAwACL>x()DGV5hl*XL0iEUdGe6}-m7U!042w+|Z;sFQ(u z=3N{9RQ2*^@vwq5Rn+5NmLs(zXTfqj-tnW1hItF*&PoBsKy832^C%XQi?9VdjbiQ) zhfl8{yh#8cO$6IZq9yg-rwKl4eWg(!Xiwn-szX%hHgJ(6v@9>q&>{C#0}OykECAN? zT@(opJPS8ih8*oW@JzvL`$d!MAAT6qJ_;WYSS5Ml*v^Nk9Hs{yXHRwMHs#_d8Ny{u z%&y--t2l|1CM+n>Oe8>NZ!0ShJrYw2e%+)7$n2%`5b1}B%ttD`pk7A;nBY_I$t7(+ zX5`n6=ZYK*9no*Ox#2F{dmBH8N!elrZlY;!+$3ZgA^r=i%rLDM90 zaX@#W(zsjuVZXyTx@04?#GgmvFvz&~izToKNYAgl3$hxxkjrPllgjjGJtaJTcOVIFn*sK92;;Klna}i&P1Q zh+aqFHB%9GuGOwH-}J$#<7z@%gqwb+R;W)s7alm799wCa$9O@;A$qJKH7vy;W=vd# zwDn^~#N-f9wFAFqjAqrl&2dSE1KSj^Gc|U0c1}v+*n61`=Sn*}{f|ix1Y<;^2U;8j zHhlf~;%Jg?8|qtv9~wOO`?7~3L3g%|s|dGh>ZiY(ssB`%7u?ZLWr|nWpnKjyn=X*v zIdd93cbqlP0hQpYQaJbf*n6KZNjt<5SO!qxHF&4ym<$SGxpgn2Ox)i^b9vp&?2_LC zK)worSuw+HuL@iKG?mhey|-QPe98NpD~POHEeLMM&-10wvCF#78}B0TpxS&q@h&}N z-$(^#&(9Ag!+npp$jwfeYx@?PDqeZ5c*W_GhoaxOIK76Br9pjCg*Mv@`?85;Dw1oILnv<^HD^3=~pKdH8zBV|nB~z__ zxX{p?=hgR(iZ3(Ribw?UJn}wnKu;XcJzYW!OwVge-YG@&yRfxS5=A}189a?p8Tf_u+!yz!F-442c{?0slq+D zBH}i>eIMEH(y2z9`RqK816jEw{DHQei&GxEw&Sac*Ls$p{ZV=8<4Y(<&0Pc%oQ00D zKQiXbl#5p#j$C;5GO9*TKa@C@01NG9?1t*q!RzB_19=r;Y%YEueV!WL|0ysw2`}2x zVv_ysre<1{)zqGuu9F65B!!>6bboM*5-7$R2P+u(RTcg;6kMc_UOsSku%xGdy}Yod zo>eO=2mqEfvKz~2AkabgN(c>?s2plc%?yyNbgFf50(GL=V>9v_(Yz)C3~l%u%+7kw zT#q;E>uYgZ^y+Ik-uiq4+5BQK+nz@OM>hv=J>_v^6H*_(p`r+XgLXi-NjzGqc(rDc z$Qlvz%!a);!cJH`IDEnL$-}~+_mj+XmMPp`_ARepj)@Q$%v0cZMiHuoI6qh_i|aNj z;cR^@xr7?-TR`Kf)hC}Q*S#Ze%mvpJG9|S`jieCcN85+PgI%3FxNmY4t{@6hs9XHz z^w&flafpL7RCa(XGYDT5ng;X=(D_SEz!W5-e>*{=HX|Q_Y%u$A9e4# zE7C~V>HMa=MEW!P*|3=#&T99MerA{vm2(ow{rb658v&{#w64VpkLl^uA69RA+kRhG zKREN~>nZj_oSd&YJ>>TI`9VH9t zA2B=|+j;f*z_T-H^?L;iUT(Km-~Mnm>vk=7^CT6j+kVVmW?=|Lo(fu zipuP)o;M~o)WOM6ZyzeXoVEQ5g=!4;l^Gc~gPz)5&X#?AUYXtebd@;^1$fQ68xEQeh1xP6}&vEta2{AG@LYw9YxR^3c@xloeaO17hErBRTmsmy%{&lXVu&H3<$;IHV3n6{T}510|Lpau+49$h09SMZ@$#q?RRBO z>o;=Xx}%US)BYi@LJ-nNWub}3fn7vr3sPela1ax9|Yg`E9FjL`hJZ8al^KQq;^Uk#f&f#`e5M|`~D6|B;zQ7BdvkVXz12-_F z4m1s1NLoR>$;*XPEr%g?xRR1VD#mSZrMG`BSo^MizDD-TiACF`=$nMQR=oZ8L9@c| zqZRm<_x%UdbdUoetM0bFfCIhn16=xnhn`VVq%CofeYP}|HQ(|Lc|8+=ac9mwx#fhwPJP-cvq2y0w3CcD=|E^4E>_c@>i)PYj+1 zYsrg5$2I&^m-Ty=3OSZy1`z=tpRs5v9joU$RuaLxNr?}bgBeS0*c;~j@L zTMqLdWM}MakP+uH*U4%=p7JQ~eZgZ|(F#w_5 zN1ZJHEQK_-ZoGfoGHO@HtVEdoVMKK5Cc!F&i5rMbf`p8}ebx7$!>#@a&T-C=z(yzn z7D5BvfBqXZ*K`NR)zU$t>SC6Z(Y_R8Q9#qu52bb@AmHCp&!Lu%b#I1Rrof7czlR-> z_?vT1{u;i@>SzCqaJfwgboruwhWjvx23?!1%QN1 z0YRa770W&?7q?+utgQPUa>0V&5l6E!po^j8!6TuvMj|h8)+#ww>YHyJ&CF z6dF_>__miz*8J<~u>H>mqTdAnP;gbHuc4p{#MI-)H;(tFA~~iKN6v;nIU($RWaO6h zQTg?|15c)%Cco|}+M=T_bg75i1GNJ_bY@WqL5*L?u-etu!lRzuaRf%mFO=uCJ6hBd z32X2->DO<|pakh>Ky}G`5%zmDm#{Id&s@jNg0vRg6DU9i{(~m6&iaH8lp6LOulvg!D@JPx0GqrQhgKj+?sIV))>xyR@>&8a=J4 zc#McNxqcZo0v^TLJh}!ADi%`A3AuSf_I9|M9QPgBsVOi8+E3g#R`0HyvK+jYC#XWE z=`2A3Um>!_t;eSZC#Qx)~rtyi4dKc>$o>owE43nObwFuO(yIH}7vjWT(O zsW)mnF9~1EgWh`{E`PVSvmNbPZ&<4yUgmuy*`IeS0Tp z#3O8<50StYW6G|!nf||hpQc~%Fy@N7<@23 z`m)E`qgs16Ccg^1C5k}Ei$n%e?gBKEgvvNWeC>R;rJwlZuKw`V=6lO$&pq^tdL_sE zN_qct4>bp#{yPGZ?;crCxHKMA2p-fJDhOhTz~2Y*Swe38@(SBuPk8S<09*WM3wPQkhCpwn^5qjGdC~rtD+M z&P=v3%h~VKbv@Vb_k6GGzVGLL{qF0zpZj^9{@{EWb8esW{2a&UcpvZMecTUiU%z=6 ztyg772NAJBgZ}28m+ckKFCDLZxaUwLdcESX%Mt#K!O2HP;ssr>y~zPk({QlV4#xV3 zJ!vZ=oI9GcgJ@3P%-`$3d)?Ol&B?u6gpRl_@7+=O{8dE8Ic4iLr>q}qATLu3l#2BC zF-*puqMC+w5_CxV^uqZKj2asej5lx>&~%9YuzJ6tSz%;&2O3vsC@V$c@hj0x7c%ezh2k zeySiQeJjYgT1giq2{{Zs zC*%U)z@6j=N-zm82CD9~Xjz<)tI+ZvR%d3sk{4x5fn9#KQVSe_pbTT09%#srq_tTy z!g90HuXY=GUfU+n&`nmh-1t?fMe5V;kuhO5$UHaVWf&2ol@^Uvs1Kg480$w_=>}aY z9p|B~inZDC!pAmd;uD}6b69?GMqh)rSQ}$<$R(pM&V1rHi-M8Qh&{LxFE0Rar|!Lh;fGc`)4SkO5`*^jCqC*&*2bi`eBI#5yw1>}1=bL`al&pRZ!hq?g8O$ywTFfQRFwEI7+K}$ZRYaQ8Dq7k$C#t z@V!!Hi!%QlV!?Q<62~}x_V{kuV#vw&SK!Jc$VpQV^pdX9WymymDMX(qIE3ut+Y_Va zWm=h$u_!GkyLgTNHow`I({*0p}$0LW?Nowqmp+GDA}n= zDX(nVd|p;>=goW0-%3i6n$Xc18-=vKD+^wOFH-hxi_hZE&DtAslv^tNU2N{c^|RSj zc{#{&850k;fx0qR28rfYi`RdzbZx~{o@L?`KC|iImt%AMuj{w<%vlXQTBaxWbgVal z%NAx#`i!VXl#uyw=tBf+dYZ{<*17N)^VqQacfR}S=xJ`@&BO~)deJ4r@%cDkmNBDX zJSnIoOlewV_Q^fdLnX%SEZU?`vlr zrz;u#8%ozsf3ZF|usrzWX7mhnxh+%_E2XdEuFuU+n;zEa%}|H#pcD^%-)?^W%c;gJ zUjC7USjuuGmB=3e)qD_04cAq17I~C8-4Xe$H0+NTitwd$5T+)Y$R(LS)tPC%{t)e+ z^A&ci+RNU}$N||+pb^1WC;CC|+|zYO$|`*8{mpytdae^WFZKBc*_#=KIROHL-@7PYy-#(< zZuOqK)M$Pv<*c~o5yZPE{1>Ai%x8|Lo;EL(;sl8cv}rp>*j$B`E! z_wdagEcnlimMxv{WD{ilv1JzHxo(joOFFL6MEp7Y8ZQSvs34f`Ad~eo;uJ_TiZpKv(G@v zG}uW6`xZ?*Ef@wn0ubup%=V@I;(DPw*r*cE6tNZkvmtuB@APhu8ziU+n5MfU^LI2R z$TaM{cLJdld>1i=kbJXj>6q0C(vJTW2{&XLX+8{)5@g4`nTz0IzkEw+)mSe5$IsTv zuvCK%ywS=gBY47qeTaP@@MYOM>)_)*5j&yT{3IaOHHaCT$JanL%II+<_ujb;k; z_)MY~I@j@6Xu9B=35MP*f3PSungx1wSbj(Yuwnl7`@r7@uEZ2Tc*8|)tlcW;<+K^H z0cxoY-iiffZk$)p*BW z<<`}4R?M>SsK#F_uvZ9trS(uhndP(OU|6INJ(~e!9tZskzjy(^eo*W2;5g5qkNuv| z>b5Ru`50-sk^FFxp~TC6T2cxW;pYLUcw*~9%TGk4tG&xoXJytZo$GOV;FjwL}kAD98ib{0(`E?t%K2XlDE54Ut5qF;t_6m!+r3Ys|^NC~6>i z==ShEJyG~40^AwhYMsZ>dF514%xdBS9t0zGBULD{p{1s8?(Yih8qpOn*yEnG~PDTVzoB+29A{&xaAs za!c!&&f@h&fNItN)Xuma6q(BcG;Z1eGi4Z%{Nh2M(RruHNgS3Mr`k9q)LS8um-Q%X zwge-h#WySb*-HXG;(~3#+e2S_yZ4Tr20eS3XHt5ig5<8ID;QJlnBKdJ%pSYd+$ z*PMYxq1r91Qx>D;M{t$sCXq8UO2=wrUPpXe*cF%yeq6NhlZoC?{*wCwq zb=$GXEYS1(?s2o+xM3jWvRtCMiNgC=l+H#?lRW|hoEY#H8L$t)-E>N;VqQ$ za=E5+O<9HaVe508@#uqDeRdo=DH<9fqWJ)nM4h1@u6pm=xW#jB_YLiF zd*x%H1L7>Zial259&t|}^xVh%c+T?wIy3{7VCq%SW~GS>Go#GTBhRDw6OHHH5FoGt zJYYmCWVJHMw5TOTh$G`Pyd(QC5z5c#C(Axj(o!FY&zL3T9@}ECoKtX2>E*`Q`xfdn zz}CN3bHvdG_NfvA&kQ7k+(}U=9=JHOX5{JNGZL-6a{G^-qj=>ye;1hFOPIypV3@+2 zmquc)ga*uxN@ct@HbTAXGq{``q;;AiUsZ0@NxtaqJ$I|ct)e?$wy2bll8D*yf@2%G zp~BvdlLfh<14I`7*QL%hH8k79_hCC_S*GE0bx)ZQpA0a1U{Y zqYoYzg)e-3zlJRcCN#4sjl&>Gu(PcZDNv#FnlVO|`hc^|oW5V&&`7+wJ;u@|L(DJo zl?(9-PxPo}b#3_7jm$}{`2v<=H48cF7jMBjTu5j=9~}cr1g@IvLba`((BgYEBl-^?@()sAG(`%obl-ES~FSze!e%f&fy@=`d{Y(BJf-caoSc4P|xORC^ zDw!mf(Pm|zbLAb`tV3vJAK5l%(r5d`W20M=zvN@1jK;M7B}Nh%kfcWnus;;o;0cj9 zfG1>VfDKJvyg&|*KQ+9A!bSs+`X})LNCYbg{ACbrm~#&(|1RIatUh*lltNek?*s`1 z>#+X<)rbSAh#}2@$Y4N4b8hs4eNjqmGZMthR`=;)5S%&b&^Q^V272cZ0jkvbHHRfZ z8cSLQ9y*Z&BDlsN5Nm*@5_8we3RODt1VYGZXoeDj{S?@!Rh};JD-$wJW&`-G<~%e$ z11#a&14IzgqjbrPFl&ZIE0YCelCr=`Bnq@xrGna~Y3>!8SI`8Q_h9d&deF)AdJnW5 za%aT{$z8cE;2L2DXp@kh=vV}!M_v&D&1C=IXeKhGNdgr;w?=A5oFWqx> zr)jdK@Jq9)wZjjh%#Zfj%iR*@+zObi*5AfRrGBfBA8Q4vz>{T(VwZ}`xEmL_W0YO* z%I?(;4Xv3v&K*6}c`HugSeMtb*Va!0Iu=F8_h_zmc4RqJAO-aNEQx+(%m#j(?-fueICnV4RwD zGP=!j!MA80U8+)?QX#BQ1SCOImEGz4ib{}jmbBp*^2mMkmi)N`Xeu{7zxWk)`)Q*y z_JLnF-Z|VLS$<*p%UpcLGCCeAQka{k3$1$6$!uxtcIl|rdVEmwe4$$3V9gWnxQD0> zSrI3>9<27ACr;n|%M1cR`s0_tIo*Kh!s`(rQqy6K(NJRwciAFD0rol9Q583n?kwe! z{zs$5>Bym-r|xpyBE&8cJf`ccb6VY1_-9UPen5+(mc8LE!F0RXYIM<4Qs~4@PU={> z`>plVBUWW$c7g7P214?715#Kx`6#MaeALLDiLJwS>*Kj-)xL-DrGaf&{7kDqZRNeAZ zb@I7b>B)R;N>>r)ORbqsMsW`D3&hq|TTKFbDG{|qh6I2Lo7KTI2rLl z^z~n#YH-BP$^ArF4;wf_*w=1z7oqLlmWF|D(yLl?6RhoQ8%|aQ>P-N-TKrXvi)-f4 zW3h8*(?|E8exaVKBwhMYxNj`6dQ#V)^qfrXAQllh{Q3aEtnOcgkCWa(|ER{1gcUo| z+8}xGW!if-m^O78Xm>PoHx9h*!KK6OQ0%MWx0pE+xZ!U%YhhHU{$3ApSI(Ep+upk9 zZ;7o+G6oX+hq?^5d{k-Qa8R2vd>*55+Tr_qTc1}+WmfjHvwDX=jh*e@XCG*9JY?&7 zvv}u`n#-3Jo*{Oc*@4DhBQKFVuIVH3pYXELwIlsbj8~pPBKyvToSldnP-Sl$I(nWZ z-uUF`%NO>37&I3sE$b6<1c9llN4i#3LXuJG<)V&x^FR8(o@{DahbCVV@dktO`cr50 z0mXxPq(T1D_0pRi`l7h~AiQey7VTposf`H-3UVBA{j$}@8Qhyv+$H$-cqXJ=++@5b zk&A=wK#vf}I~R%`E&wbE>28OA@rlpA#!KU~hlLAjcT^Kjp-Y3g1K5le4zZ{$WSHw# z9Dbq4C|cKxTRW3I0R_DMTt4sh<2K)(t9+{LWw%vQg=Y&XK2_t{tv?b=vVJ(T4B^IM zfIeN0h-WqWS$b&mw5(sB=?hdZ32PfP@mH!aH##=MHR-7-fXl@8rN*&^sierEojo|g zF$uZuTV5W#rSHR<_~QnURM#V}&Y#|L-{66ekQgjBgWUuxF^JUgZ1^fHRhc;GD(n4J za46itZ%M`#7f7)d5^BpB_>!q}^}5|j(wiyqy!7%HjwY_J-It7fyme1o8^4MQmCe{@ zfI=K!A!skGkSzQ#TjO7ZN_(4feXvA92EWMY-F zV-biEuIe|lAJd&Rm$ij=K|uE#J@Ob^jICpt6mQ0%y+?CQeU%qqIK-q@!*e^8G24O? zH8p?_syTes`&L{3MvJau)NPdmc}4SP^5K^beU!+xQTkN9-RQa@blU3s8g_G)q$B%O z0i%j3w||tQKV*NRTlVvf3ZVnNCVuzj5&ZkFp8`aCG4-I^Wn~|E3rq&362NeC0b!)S zMw*!aw|Q528nwc8El-~S*7=lXI)xn#k|zCR=2^Ydk2&Ab=#NhfL73a7Fd$__r;Jur z(hR7Vi|Ob(krGN;O5Ccq5~{&3xT?!Xvi#bP4_bWEviwJzuA!FdV5tK7FdRk@fQDn* zU{ez5C&G)ou8H2wxwXhSVow>7gbV{rfK<;nfO-H=d`Mq3iaaEmHPhBL%(&Ck1TjT) z!TiIkqSp@){{92iO6%7^DHZDtfU>MakaIhw|D*#{&9YDTQ^>K{iz`$ z(7zGghZ+UBs>iSQF_KAooZ<}8(!w|qK4Y8MYc?4OktT`$n->zEU?MvV5yF&!jWx{F zdZfgZ{-%!Z;_sC~-mX%c{2mSL8=HH!pzxMEZQOIEAKntf(sT5%TWOl-9kuuRfKQVz z>@Xm#lqzp^Fz14Iw?FJ&R&E_s+_;)!(xtp?cA)KKS5iyy+i;x#46C62`7S(SYx|%2 z6Z{oP{u`qFd;8BDkBm1n*5aCveRDlZx465y2({^UO1{}+x!=uC;h7b8(loXOJ8ww` zFUaaWM&%pE=fYPpSMg0Rs|RjdTORt_5UBg|5wg8xfNF?;2Gy8>$~;?~8Z`%fcS!6> z6Ev!rvS^*Kjo*)}Ii5d0-0iGAC#E%0{nED@=9!d8})|*9Gty6d&Z2E#x=c?)WwTyT44#Dw_4o5QC zcwySf$NNY*t$R9~Jh$n76aj>kw>!1AN1JziY(yw*c)Q{yYu)ZEwj6ikQ;;^?6K&>w zQ^G*~DmtvA8t5sX+2ji{WRlQboDZOCRH=2aZ&U3Fg&rT|YaObGYfo{;FKB1vTQ&L0 z`IBb4Miv{;g19RT?-w{DS{L+UhPEjns-^!6S-G9evMfU_95mv_{5Xou1iV}`a-Rq` zg1l1@NY7@Yfh$ z8`A7vI9w84@^ME0GP@0#d4r-wNsaLBUIc)idsO~ID)w9hiP#l?AHx>B{@At?o?C=2(54PhzZC!=2YrJvqm>#qB`u9l@_j>Mtaf0# z8vA!_=<_OpVTuD81~ird(8Vw$ErkKWcrv}|Ct@qmMPTL{a4zJ1!=t|k{`q`=-YuYV zSCF+d{MLGoj9mI3U8jD|_MZqFlpmI`p56gK5^sPnPtN{C?15;1zC$NfL!?zClq+1W z+Qe?V@)L3Im)7&r3MkY;Gc5nSCrR`LA-f*kyLB*i40bE}(;X}Rc~4AChf&W(Xv)_uT(&Pk-Cf-#+U9 zzu!NfGaARkbR>=Lh7LK&8>(j4i*EnxvV$pUVO~}pGNYjI_PWJHS|#>qZ(M%fn{O_2 zr3dc%eZlOzv;{=${|P;S|4GN>{n`Dy*zI?*+rM1wHo^AE zGo_MwW?`AT!TVCP1|9e7X&o0j(l&}(*Gx2#PsmJ;DNp=dKc0A7E)9N#*SlRe;#P0q z4Hv>YTCvx(C+BW}a*G0r20nuDsPbY6`4&(!)883-ilLDo@IIs8m*mkV^%JpZ|E)e| zH(TyDq|H7+ngRrn#R;hH;1wzC5Xt`QPLaroXd z3Q&QuU0ITvW^26eb40~wCy~E71Z_z+S=-o2Mu5gcoYIO6mP)|V7gm+wEA$ZSss!W! zr0g7u*K~D1;+MvSIcM10DEYb;G?(fs=?duZ1?4yKTpg>pl7q>iIQ;oRwIOp|4pm5lw?pH_OubjNTj(rV~7*hxZi-^V* z!iB5@{80Ji5_9xz7G3sBEvh?;We;-0?#phINcOI_+I9~zcM&9%d;5KRaX|P_#6pd) z#LG~+Z_E!;?HxEANQCL2sSh>gIrwi`^Gr@A`jzMUM7~|ix!TW|#SP?~#qhM;zQsDi z)>(gnDn|p8f-=7q_X|b}bUmdW1L)$8^#tim`9v*D43O{5*bPd zDt$a@{WU`pajSK&XWk7o>y&yVZ-Kj{8k=FnYfvqLC4lygjS$_JHN#>e3uk-3eL^3lQgd=aNh@L+Sl%6Ee!%Z zS%CIHYB%R)F(2y+`!(Cp+5Po>ZBgmG0Yc6nCTnt(x@0COec(C%gG{}_a3HJ@zwTK0 ziSVDt?B?9Wrdc(d8+B_PP0luEDXeayY9NdTBs+*@KwQIRfh&mrPR?Wwg*RoTkbRh8yDaUcqG;f`CBbH`(43kp zV91+d@2;>w6#n<(yEl3VXobj89tcC`2buE6jB{{}CYmXYTL0r8I>cFRd-cufhYnCC z{2=J?3vvD>&~?@E&R9LVh)nQ4fc5{j2sfrjr}(@?2(rdNbA!(-bL1k-6F`SGUV_)y za(75ri(-?~<%WQs>!vp+X39SnE`#tQ+Q<(Kf4F5Z8ZylV6rqV9KxN0>e6Kob99*GDE(G2n#pGZG_&y zy%FB5p<{zgFH*PW$FsXeR`dIyt@?z`;PDErtI_jwG|R_S0v*br!;UB68EQYPRXukc zmZKax`z6sxJ)spYunBK_t=nx?kDGOy69i<_+IBu~senG4nn&qv=3%VtyGy6hBPZ&i z5e?=f_Tezi^!-Kj)(S^(2Ai~Y7kJkGB=3v>{t3lPH4JGGg8gtDn*h%99YvrImLe<5yq_EHATp=1ZOQlu zsKywUgK9DKd`k6d;^I4+S6Y4b9zyXDPufNFJn=zR`x{c5xRtA)xptO@(YPtMkfViU z@jLZ*pK5mOa((o01i^dO;uQQ6-pJOBpo-S2^0Co|mimt_6FpEJ`4gW@1=2@8wGysw zWurJ@uqYVN7S6LGTaxsWdK+J8&cHY>Gp~8OYL?o&J^p8UIJ-gn(C)bw_bcE3Vt#`E zS!=Z4g1Ns1bN@yI`>(S7lSJ-+A;DZv4pDy#;KLQEHt4BQFGswt$#nAY8E7sQRcaNF zxng&5v-xel;6!B=fhI=@rcTAS8X_I7!hS&jG~b3}WPqlwtAOc- zKLFJd7&j*ykW6HeH;aA~7G|v*27uk(49u)rqJjDwwT-w7n!k&jGOW$-xDw|{SRVKV$xej}MVEKPXEJBxkoTg$ef9U#&{ z_u(kK)XYPXA(^g)tG1C}>U3SLnm!!j*Q?IX(6`;c_0&ugJ(FI~6**l!D@X`o1K*4uEW`+I_E>RjxkPEurivJ)a_?I1^O20i{_L zmy>Z19#lCnPnwsmDonUsT4tE2buRgmPx6JJ%}0gTL5hOM?Ju=C!_`3&)Rm(012~s# z=>)a4JoS-%Nk1MvBfUa9V?mWqA=;I=!DGqvyOX;g@tf$;qt5%DG!B{~t)nd4SUn6t z_UFO;I?xukc?s{49Cv>^hU)2%!3TSSeQ(1_``Io5=UI6HWp>!g!YSYG)bg84`zp~R zrFG?`7_10Ro;K93i97zfzpuHa_lQ_cx&?##_+uLBAgLG0kRyQ_dWMPqVUSMPrRqHB zIWmv_Sb9<0X+|f5TZ$39k5^Jlu&Fms-{$C^c8nkTISQrYsQpDizfnGeftb^?942~Ru)>J1nqj?aWs0T#xc4?_&6yUq;Nu+vkK!wX*Ix zaJERTbP*V`!}Xs9hPSKV4a&?(X`>kXq+ciF45*g*Y|Cf`FG@71eL+*RIM585sU*(cLmIMRD4#*o zB5>+QMzDYVP=e&o!&bjx&4?$1EZ5)Z_c988Re;Jaf;ehU!3|VlCX$P0z)~P8a~lA1 zFb}T*-;ThG1LJWC8keRK;rE^pQ#cvFk20Ui7BPbVKyLYom`wrq^4u0P>J`X9Q#0a8 z^?`zOOFt3vEGm%`%hdWMI`?((UlQYOcyul9%2i=DxW&IKiD5dBz7ycBz$htT(462~ zK(YOeEtnhiN~N`UZ^{ssW`?5+%6+)reaIma;DMZPM zWXMn5th)tSp0_;X=xG17uQkwLrjF->dZNxAr5F5#LQ{y3zv^c|MCzg1N2adLy{8(l zc<&5-Gy5UZ`PKCHGL!sM*T2jeY<_X}Udj4JMw@zxoXs7?`Z^BDmqU#k?dv%a*~RN7N&C`r68|^ycP8h#Q~8cy5jo zp>wr6<1aTJo@?z+qxG#FWEeL%F5EEB2;Am>Tk>T>3}~;SAeYpgWR}BpN`5n&mRv%3 z(Psuhfiev|l@(sfoz0V5BP03LgsKrcJ(qc_v0&NR_qZ{|$3r|b{xMbY)tQ+O#oug8 zh&FkNe&^tpFxfKUF6{(D{pW7`uk6JaWT$zs_#}{pzZvzh{a>6MtTnhXhCZ8vJq&k) z+N59gr>+FPD?^HO!KgXkqF!(DFGuo#!0I0bMPX6+&11+ow>>8$-nkx8$LZNuiI#a< z?3~s*b-jJCdW0#QVCHO{9`h3+{aBF609ym$LV0Ar8Q^Lk^bb31vEsF?&b&mN>7Tj+ z>RP}We@0Lj4*M5MKgOHbI|X55?^tNg#hW8rO6t9{&c@Ki`You(!5ezi85@VD**vu~ z#tGB<4YvK^I3phR@ifh>!gBAC)g{6t_FWI-5tu3o#R+qGp<%%lACtUB{5w7w^zueW z8}z8GHkl7CkdsNf90qKzQLMTu|3W{91bMmYScX|y-bE~L0G+zlLn~10V0MI% z0wfry|HU|+Bw2P19zg<)T_!n!yA{6KL3EuO#{05R~Ph;f|K5bJ`&kR zplr9bmK$_TB`J{XVpQRC0OMWxVP(X+0;f}JT z8S>9#<(Q@Y-jmL3Z;gTHCd?DB$zhPP6~_avzaq41!MK!Dt$hmFI?(wUTUKdkaB~KP z>=id(|2;_z6;4kbDq^DH7RT1>Lx)+tL~u#pJjVlOVMAYNewedg>XjM1gd~oCkpUHN zlSvDL5B`y`Z%jtQA^}Nb7PXEysaf|fmBv{2>bHy+_ZM9!6b>}#EL_6Kj>nE|y$zHX zG|5y7vIydE>+1cgB0>VCO!n zn+BjC8c5nKp$`p*NC8x*x}N}_{0rS*Yl_q<$nb5N2gHNpf`ZV9R}(OhCfA{ht1wQNOL!Z+rUx zxyj!?>YwjT&jS82cM&H;{`xzQsy+9h+oS`=fQ{&70vu2_YNfxHOfw;iSSX?6DuP^H zw@)OQ7o|)P-ri0_=$Bh`R!uStSsURt{~1EePWJ zB89N7I^_1NPvOt4@|hFmn-}KgE^JgcH{d^rIQ;Hi$)=OXWJgpK;4Mc-P(fbTd`VIs zS|3i8m=$Rz*ncs4{-h#iMMnATh(u8VCxJD=&zF2%rGd%!9iS?A4M24U;+C1I8;Hi}HMCav#=B_PVHEC6fl zeJ0o}uK41v{xAr6e1Y=Sw*U*cas|ziNh1eUDdDy-%;-7ha2q3mTJB|=e5&CFrltHI z)TI--+MJ;~qS-Yd&IU-w-|w0!j$j{SfYWmq(GMg~&Z0MJ6y({*zU^Gmw7GT{p7Td2 zpGCUuxB%_YSoa^Z;0oxX_7*Ed;Cx>=PT9o`NXujtCu;7VEJogz9IXV6nm-d3)ySP^3 z{?iEM|Ar>of8sSDKS95e*A^C|suYu-h%T#4oEG-RU%JFD!!n#(M2?0XrtTKkFJYRR zgV1;z?ht6S008#nkJx9$>nq^Z0Jc3zkJiM&&k&gyd3;Da*MA^Y#`_58PBUw&C)~py zqDdz3`Q}e!{7NR`cUj1tmXS;EU!CkDCwk6Gv>sj^GwYTP^vp4l+W+FdaKLzMvg?K0 z+}n=}bCNKV{_~bBM1cL+s{%BkLI6UBvF)#`-I6-oi}`XyP|+go=%KZjXZp!ed^@|j z*feWEea9Wj3!v10z}~|hy+*l{UT{-5ui}(ot6Z+|&DatC@$|ZVRV$(JmN3?-k8k+) zUuvg@`U!ljx+$XP7kQek00feyfp#TFN_eFTm2Ce$k4EzjZzMueQzB z4$pLZb?lld^5UxGS0>lcYtOX#lDJLS$)`;pk)-#_!egnFHM`_Ghr##$dU}ZEjc@a& z&)n#lyDb*)DXu@~n>z08DTN|;ml}9K_PqJc;&a^qfD)J#l%eqO?w7fQ`=rRHCO6Fn z0kPuz#s4e(-nf5UXoj%s`1b3^Uv(UlT!Td3A z+ZZM5bH93Ae0{WJ+408W$;Y>haLV|Ak0UIC!JC*vO=OZ1e2MHq3a3DP z`nrt5y3U4)Z-b5>U)$V2nCBkQXj99a`xpxrkKu3gOWcwl)fvi8MsvVIC&ZPJFJM2C zUr4pSFOkQKNhtBR4=n2#L&wIbPGG~VR!DQ+bQpP;D13I!(N9W@GG?!0aYbc9;9K>BA5P%KWXwu)c^-TuUBG_@yHz`ox1ydCK;I8966D9g5|zG z(o#XS%;$YMNEWIrXcRT7J(hzioGd6lKcg8!ezO>?E!h-awUr@wyu#wZ_a=j`j7Lzp zVyVSJyg(X!4d%gVRWOR_o^?Q8mw>yIJR0|RmKTIx1@0?MTuoPOpK;+aw`SM`RX zXQggVwgTfS&_Q(38vBV+y*FzcXw=Y4nr4z8BKrbibJ{k*v7Jdb9?&3!#|sU%;|oy5^Jk@#`Ev`iuyjmo1TV^@d~c(slSAL<&=rcAYT zG$ej#)ckl7G+1o3inwl^A5gB7ZYB1k)fg_AA{}HH(7nOhM7&~$%NWG#sQlL9MbwBg ze{a&5D)%S-**EOn&f(`noniumTwmF?y`It9(bw0PVXEBu)_5##lkKC&T<5tGO{#?l zZ%#i*!Wd0@19oP^L3b=*XY%Df{6O&yh;Lgw?k-UgLGz1Q0_022uhwyCOnlL|8I$x$`w*1=#CQrRaHDR9pP@e{nM1uZ1UiTMLSg|)=joTpT74QS7r)z= zM`>S6xqRTOWVpq~x1(=8L(CT@KU)#ipAZVj7oKh#v*oLcQc+RO|BfCsEKbot zuhHA_8XQp!NM5jau2GA>zNfo2lsA{yKcpBHUOeijTsW{}uKc3df{A3#>V^-m^8`Ir z!`=*o?y|Yd{&xEwDo+YYE{ln5Dz+>v%b2Xd-|w{IzASvQLDgg zBGBusXsw@vMeDUs7O4p~cE&^HJ_onx_ zsh9Zb8i(ha?_~rEVY^Cep=el;(K?cYlwcg5cPsv2`MuWWc5k7}WVkEugfBXHx9g|- z=H0HD1PhhyC$|Mp<)cQ8qUYHH;Fjvs4}Z9CBo&k8=r|78%DW#u5Ik#x;JxAFn1?q9 z@eQ~&cS#vNo~jKD?UifZi*hC!@1-xaa9e6F7t28{C$Hy@F|3ZE1A=oWTyMUswAx(K z);Maq)8wPxv|?7nt|a68wc#dm(pKj$73d-mGiKL`hw+Qx)^F*=X^k9sljE?jBWE`C z@Cm4L*O?j-XtCIbfth+5K%QHqEkHoSR#$dJr(w(OEL)T#&(wkZ-EBwOaK>|L!@~2z zgFLP-(^Cd1Tacd=>gP8=TiM2RO!&2va-GHY{eWtE)$LaE>XGJr@hU(f2noe$KCTAd zO<*lj`VTNccORF^5ON7VC}maaM!B=7{{=7 z7>|?IM(&r9rw%rcq#HtpSRTMPSPcD%5G#`K97NlfbZUfz&TBg^e-!w97TRt$zU7>r zq*{&G)*Bgj)H<8;QYj7=- zSCwRhj(W%W0`1pV&YD@dU%EbF?pfBpyt3_j$bnYEix$qa_;-b zkQ84sJFo!;)H9{D=ODjL2p|t)C(dD>1zo^QVA#86so2%jaGV}J)I36M>IZZg`*sf} z?S|7P7fyHT4UVfYGsl6q!2&T2h)DQ7j0oy#R`9m>ZYpJdVmm&ayqF|a&@9|k_U6g8 zT$jkqHeR9iQ>1eYdAiaVRj>gofHMqsGF}cW4vZXYTvvIyNhgvb$6s{1`qJ1Dl76rH zQ-fnYi$yASLf%2I+Ej|`&3fd+qP2?YX?)TgR7>7t#w zvM;hyoipqV+%~NJ7&#V0ys^n-!Sh-E*Blhm>?Bd{{2$SZ*&2WAXa67FqKVjkKG@u- zad>5@|0lx4nUv-^?fnlQEnX+rM!aAXX7~x5PZ124^}VF8stoxEb|@?d=rzAu*&Y8t zYU<;JfSF?hHKRu@IKH6eokaH77ici^2fJe=0KCdF(Zj2Y@B>0`HXs-5hCTkxt7ijx zP)I7k;mGd9)q{4>v_=m;95YE|?;^uytkXbYHv|w5O!9NeRbX8`ibOxUzIMP}~K5BbxdB+)4JxFZ-ZZUE(`_>Q0n7Cm^km<~f>_8t5S z;lGO7*L(ISEvU9*W~D^EBYz@Fq1CbPWieL($Mtx(r6IlySN*pz8?yw|7kQ2W1g@kP zP~0S6fw2$9cEv%5hH2*o*LA$S;hH{gI8t~Jyo}pFl{8Ie27ypY zRKW>gP2uKYahwhdjl0!>S7c;=SpW?lyPPZHjjyI?K8Ln$KTEXU*;_$++4v& zvuO+fHS)+Y&~)C+#dUY?ziu_Rzb->_wu?>9Llc*Dv^dcW^y$dpgNyPkhkEt&GFu zXMi$_f@&85SM1)9I3ve(+bnU*@MF`IjhX2$5d2MLwi$6ooLd@f2BzIv>E^l9W3O}D z28awft@_yjbz~&O?`xW{%Pz2vbi86@^Pp}_$ zEssO}xKfOH6Wx)VjJKlzcgYs+uS>N?OR`a;1eDjSJnGauh^i|!GP}PYXUKKHzU#-a z$HQRpBiXpqQx!;RKS7jHdV-dm5jokrn3wBv@v!iMtIdOiIXm*Z;SB+@by$H4UYDBT%7w(pI(;O(c#kT9Ya>d#d-DZN|8F96@l`U7-@=exQ9Yp9x**qJ2xY%Y_27(@2hm}hULl57UT@}io0s-Ug>raHLHV9I~37mBF)N6+QPXw@wj|{=jf1QtYwL**d?#rOmji*9o^Qg$J**3hH~sRRehmT zMxQ!n?;@{XEo9Hq50C?)k+-m9`eZeB8_p(UP5W9_;H4&HL*Uj^bIM#g$y6oaW=Zs`{WYUlW54;WJJ#;POTqn)?B4#+Ameg2Br z7M+o!BPF~`#N{s6K5~*pU(8s^bCx07trwOXXk1+t5-#rY8kTtWHdJQU)ty?JrwJh^ z*RJ|RSMcncZ2fALnMp{WwJ-z>_|^yx4s4%Cf6fElVhl8qD|Asf9M$Khgf98TVs%*D z>KS5rcjkDO?h(ZrPCir~*dBGY1By3EoGm9KG!?uAdd?Cd1ULXp<1E&hzP6 z*^+*nvjwWz`!bfjlm0|H*q6TLqR!pk`v_R{t5?MpIC?+IXr!3h`_N1~K`<{K7v5YZhKK;(_ z`}=&q*L8LM?&Wnq_j6zO_1u5-Dl-~B=jZ$!=W)D`_wjzaUMCyWUe{yicZ};^3Yd*K zd5oT2+i)pf&Ew=u)7AA^nFhd-2cz7Pw8NU9o~s@N;Y>7dss_oY&NfaxdKAq$W~fqk zr%&N!%c~)6ueXZZvq}R84(-3m(p_q~cW|%eT=sGd#5FoHvljWlT9_R81{|Fni-noe z^KXV~rmr%@^@tD~GTVKOP>8I#rFnwRPj;!t{YZt28~B z_i)4Rr&oD7Sdk*-%DV3O9aa{q5m(KugxpOoKhbUN?0baseK|ZZFHW#;JpQB`-|qa&^sf2@yL z?>|F!2}B#dd{sI6*{;R7L;T{LJIZxmtDr_*aJ?&)*m6Vq#JNG9>2uT5s0}2zT|sD_ zB5LTSF*V=mq?U4gP({*SN%s9k(PLO=;AlUJ#D8OY2V2-At&dCvy2H58a@|g7o$;8_LNUrl6z^o!sTY9AqFYd0+yz*6r5}5Q+yPsO;UE=C{8jmcy+;kwW6B9mi3n z+35+O?!nU5z*FDeBeS88pY4aZn1T5hmJEX`o#3nQxS&g@-sURySvS)G8CnnHF=3(; z0}9oigK`Yc>Q`*^2AC&VE_dqxCm+EpqqhOcj z2{#~pI;Mepm@GO{1p6Tm&j3egx>#ouVaR5Mo=^vnJNmL;bsH4{X;TO!ID3{lu3R0he zLdX%+*O8;e3?D}6=|Y z|E?r~Tsjdb60vowKI?PlkN{{0d>giPFNkE!&oNEz%f=!%z9~vbiShnQ+LyVYzgiZ55@_(<=y5I7I+u6rVMwNuaE3of9 zbM;?E3`r&1^+oxALR^!nb@Vk%&TBqPYWhjGJC!SCLbnx%&*;cK|0=rtc|cW)wZCcij`-c;he^1y!zwnhsNu7V-6oyyI*7d~Po* z%|THo!KsDpiNsTh#wVMmTW}4wchi@2uehxm>D>0VYY5G;yhXg>RduUB=)xy>orm&5 zT>M4reqHz5{b^5b!lwP|(d$-04~q&i218{YePhynK8_o8Yi00iTXxM@SvmVAXxhww zou6b7siLLelxL>=k8Jk8liJ4qt@}TGmOm7qg?{c5VF&t3&at!EXbuemX06_oWnjb1 z8S@^Tx`zql{bMehH287_o_LZD2qyl<0Th?VLGKu_4Qtc6B=>eI;sy9lPBsA}a}g~h z4xqcm^W$!0x9S~UK#}Cm9yDT9`lh779#r$brRe=9L(DXdQ9ii?)?6((;#$(paD5HEiwK`$GA|{DIz=|AFT{&@)vR26gC#g7 zTjf?fpKu8ow9&1eDcR?N=S|H>NZ8ajC$>uG#ne>skdYC}w+iLhXLg%^rq{7O>XwWx z9hbVLrkivIjTdwOU2S^h~pRVrhC)NKUD-9(P5ZxwPU?CcMo-|zaUxMLt_MMyMK)%g1KeXQ35 znuQ({3(NgOsCV-DZ&#HvrFC@J{sx+gi81Ab8$3{y|FUdl?fZ3oekFN@w3184X3JOj zTlot|JgZlgxiKNodpHkTk!*{RqO#YwdiQx`rkkh8L@FF&{bUoT;1(2q-&RB67_b?f z3Mqd((Vo$A^a@&eq$ODM1l2QB1o^&fVKUHT998-9^R6{m&FF=FzQ+!h5rpa9)Fv_v zu@@0ezy5mm-JSubm(O#yyFD>i>I>7o9T3sgi)n=yNYx>F0WUX^Xj$Z^eJYC3rtBr= zQgH4eJ^R3fj$F=dA4Yq#Kjv=A;H{mLk!3X@GV_tWwG<_4D7pD!QMbE+0~$Wk<*tbQ zk}h5n21{_-@yIH8+*{O~7Jd9_j4zkKKvHUCDq$oM%XZWq&OZy==N=q#b$U+X(X$e4 zPFaGydO+WaXZEFTEgy9-ZKld2pknuOdvCp`gAN;&5$`BWI(lF`U&9IGebERLJ5@WI z=uf~o-AdM@=D3MwD6ejB^%iQT^7v`zQn)Y`RzuiPA@4V`wAZ0+*5|^DXA+OJHWc1`wL%>JsKx%o;ll3I zb)#K+{h9PyB@#5yvc$#q#|9t@zgDQ z)RCj^cJ9l&JyM)t7bPE@wUnME`}1(xY9ZM^vvzlARMt5Oyp7I@;L4BcSw?XG@n z@|PmdJmi}`iSpR=!=+z3Sx0wk2%chjlXoHH!ud;?k~ux5E~N3%^~ab)RN^@j>|rj{ zmg(3Y+@adLcg_2z*a^MPT{hDvrb1RD1F!{h^+1|TrLA$4d(UVGr>I?q*WPW?o$EXK z&Id7ms#STXiXR;AEvMWdna(eacDTG^&ZI_cFcG@MPvz?mHwU|Yt>M*S7hkS>eq+?I zAcOni)4`#}4EjN;Z3YhqhBW);HI2>DWxXQHhX`&+kjmTina}Obw2i7qM$!gj9=A5YqqS`|8-%M-m3qb0i z&oH8~w_uOr6(x&Cx0P?6`00W7tCXr@_xX+BU8k@!sVQrMD+`o_OozMA{4TVk^mVT! z9uFr-G7)7AMFn1rmuYAcDfg)hwp{&vXdSYEku&fyu?op@q-4Sff`8VUm#mX!=2&)q$;Fi) zyDf8;*ZsPG&I#N75!_gF?ajZI0aHYK>7ZS{7dO6YuyQ{KzWC)29S&R4EgUYQYm#^LSm+BsAf>+;sTVdlQROWD%ap$G3qOSb^; z345{|#fMrzGPvX`Co+Av){%1u^8NO1#qA>k31^w%gMN8xukiwTRz_n=W1EUI1U{%2 zUPyer+Ssm)5Ve-52ra5=7OZ^w(8v2-o34}w|rfIEf7fFMe6?gqz~TwdQi$LRUI>m zINg4|@#d5m1z2-x3W4r>fReD>HmZ4ztm3(jv>g`xHRVPEn3pk4QsUA2;?XF_d$fYK z>XCkQN6#Q=oxP+Wo_=FOfq{R9rY8Cb4$+=^c`ST;(NOe6psXa^+xhAUTf(V*Pgov` zkL-n9l|?}DuG@L^Uam=>fm*++=$@3=bNc&&J@OTv^Suw_^D$j(K?*<}u(!wuRT}Eh z;dV(;5pvWi&7RP*ZMgwl#qtpuFzG1FHTfqaY&qZW-U_+o0@gZ5dx1Y$^&GZ45pWa>sMVQ~our;03a~ zbi-`COwnA)tKQ*NcvchO;tCYGy{dK<$sVv-zu|2(DAuwb($L8AX6iM*>`$iCYS3}7 zzU989MtPl)L7@_bXYpn(=ISe7tM^hT~`TU%ib985qk5l)V-d_}8I&|5iT=}Zm-O}bWnA2@KhAyn}raLUoD6A-? zGOmu8*vm8Sfre3I1#%I;oS7Mw5f>7W^n&*z&icXH1CY71kI2yl3`UXk{RCm4@+AKz zsJTPkiM^khg-h;0o#$bVmZk&iPl)e}7;GR5(XQZ6qduc}5XjuCnJ&JgsBBcZDP~*3 zOAF6nQNqcl=bpCK1H_dXOLrSPGzIj_bSDLA+Ms#T{k=iU39k<~7}KGvGmSJ%$CW8tM3v8G1hP?}s;JvAlp3alM_e zns*o~&)(QU1-D%S50Y9&*hy0;wjN1zM@R0Y-`T+Vd)3p?@HBcWKzmoD#xB?%_7W@V`mnhN zNkZT^)a8OeC(##d4;4X%nd!>frU(S2V?l-40%E_lCK*hs<*$kyL}iqfLTw#W%iRY0 zsmQ_FyUWL|I?-7^6XY0VtE~6cjSOYGdu@iYrvX8j|8f&_lCBakwq89fgg%~hrK<8( z3oBch#0M+NB6c9bh`rrnfuz}d|6=NJJESgd&E)S;K9@9zodO_7`RcnkIh!N;e1V@ zOBP)EZ(HH^?<;)$!=~t45RkI}6p3*Q+^*y0A3S@gdut2=ZzvFMS8N?(gHt|z8gG4p zpV?IfVwb-+=8NWGMly!a(PNlzwX284$H%>#77vSJePv5VDY<(ra$ zGQWx36{X;d^8O}pUoNA_6PHUP(*o+H^UQ8vH%VI4U8%MvkkZDd8sr|Vo9+gz;LDyb z{0g>urS-~Ir28mVD^#4XeQ_g!C2S;dmX6&NhuY!XQgLuWv}RYF&`+7Ag~h1;%hTvN z7kMU)d@TxomkS3q_h?|~baD3G!Gp)!+2K0c`<@^oKN zop7jyw-!(LuI@O+eN!(ft&NA*8b8*q;3Mr4XQ7#?q@l^luV9Sj=(5`LX#J)m`V(uC zRRL7bO$kifuz-t6M-7IlYx~WxfuU2kovw&Z`r>4H*iT%tXcd*A#8b|Kd*bAU8W~E@ zK`BJ7|Wl0Ad(xiI^sA-a@9 zH?tkEMM`zU+t+!>?}%mF6<+S+<5*4wxz<-GUj#P$r=1Tu$!iid{y@xS%8hf{ELRSpr(-*$ZWCoVbq3EkviLLM|~8g z4*T+fsaC+RhIV>ok9gK4p++;p4jl4*`N>#<%S7#&$D~YfL6^AYj_JD@ldQb+c~w3P zKy*NWz0#guG=D_vurqHkhw>&?(M#NQlIv$u9CL3P$gRyqMYPI zU@W>GX=(LYGbxCUPo-z+^*(KN9oSow_rCT}&Hsi-mfc^w@uU=Hv%VYR1mrPE6lsa^ z8S#zjf~PU19$mhfSFEQi=@Wk#jxxcx#3h$y|4R2vRv%so2u9JU8$A2^~0=tpCQ|}U!_{q&|bZDJy6qVZ>v6!r~V_}P+%RB4U$;Y_l!;TKvhz<;!2dT(5Q=Ex#{<$CI2)pfnJn-gRdORsd z8R-~4OgkWRfKI;)J0PgtI(biJPNR_$7}(IA+!z`L2m{x1fXYUC+=DE9`sXTL0H_V@Gzr$hnB8DBsHyZ{oT>ND$^?^r`poDDJSZ*q3Xnj+an2E73z^ zW9?(#afUsk*T^5jjN6`0C`5hOzs!NpM*~J48wUelp`4+UZbmWE$XGdJpL(dntRc@WW^lJ zK2lz8R>5=W!netH5igcoiC3Q9EK)Sgjffe;HDW`*F$v4rR8rH&vWNMEger{AkIJUn zjTD-YSsy9rvSw`$Szdcn<-5DHdq~?};PJLkd>aNw9whKp9oyqC&!T!jUxXVIh293j z)pfcDHS~2Kl79Za*S6Z+pxC@~2CwySgAu(~pW1XN3iK0E_uy_25&o7Z3u}+tN*4ul zN-~U8B_~@vo@LNN%T?ajTMYGhvNT#S`s|Ighydm*hwsaKCAvCF+ ze+a6+2H+QQgL;qmC8gI5^S)~oXe)p%I7yGlY(eaH&;A~AUspA*!9cI)i%9kNYHkG- zTWs>w9hqna>Y6W^rv{|aqr&8w&D(Adej4wT4}E==Vt0LN`x?)wFWrq(+}K;l9nc=? z?y;$dixoS_yLE#s+VIEB_dNJmHg!9y>WI%_c;psAua z>LGEv=)<%1Ys>6?xv`lRDItJn-Y}$#%B7??GspaLSk3gQ+h&RA>owba7OIpCJftnLk z1`|3|04QCTfid_cFd%dMWtK;<#Ev{e764)5`ZD00Dscvf%h zaqP3>?H{xKPgU>VG(D=2V|6@6DSh|nw=^@ba$)YUhXfL!-1m$@&8B6HR7l7nTqAIC zMqL->Tzc&M$>GC19(r)%6HOD*>mTf7sO8B1Pf;&lx1CFAtKR$UF6PMoCr6d2ghHne^XKELZdp=z3pY(4SyE*hOx&KKDz`$M zK_rcwtU=e-*BYqyu#VoJ%$|Q1oEH@Y+R&=hzGWHMHZOL|PVx9OiHCE1qPa4M8`1`U z0z*OqR8ak~rclGj)Tr(*k>>thm-SBPbnm*<=>FPp_La^ss~98agRhf_<6+Z>o;DY6 zQ;8GY#pi6~ zHBG&=CVRK_m$6^W^@X$5b|PB2mQeL|VvuSs z1snE|GUFaZ{Kmvfw;&@ZF683-=xsKP^t@RLWd`MJ8v&C~D-AIbz4`|@ z>-|${$)@*Oskg;kwvspaM=ljf_=o3`u>)!z;v~z}M)t11uVN>MXY?pn3L8djD`Aal z{(6p6!n5vEc-WeW*ie|CUdhX!j6xBYhd{Np9PxjPt^X>zenz$ORIc@EUNZLsIgBkn zY8<~I2u}K9?CMLO1eMKC7;Mam5b0DxGNR-p929&XFhmF(8!wc7Wxa?Xg_(e(fYc*U zE!$feM@X#@1JoEN1ew5)l&W=wlgDRhZ$MqRCN{O@kJPgNU0llslF~wL9$UJPEufT= zRo*wDB;RHrZ1W33rQ*QM#d); zEl)nFhwafTC_JjNWdJyBE5d^Bak_ko-IZ~B{l&<8No{Gdcb^s+GB*g}0-oXBdOg{h ztUwAzghQF;yD5knu$Cjagenmp!FIVj6h(45=BMXY4)!NFE6uz-aDy?o^Ru%B*T=dI zn@LNiEB7(fw%?zm3zLzK?vc#x2&EuSp(BVF`x2Q8?vop`j4$g4R#8OH`(QaBLacX@ zMOAq;w2W%PtmYtEJz)38vP?5C?8|DL>X|plHEzj3oJtLuMysWVpI-X>lO4w$MCm-d zA@5RtxqO;_XY@m#XVxOE{(+rxrjzOo8O58rG*gt0;M4`@3-g=m$M-6wHS>Y7unRvN zN&j^;{gM8DX=`#RhnXGVZijBY;8h}Teayf~^*II6)RJ)nnmEL{$?U$VM{2>=obh*0 zR0~d+$A-=jBOU31UlCc!kIHX#R)uZc?qHc8R`;+4qH@LR0ljqDtR#ft7L!k)@D!s( z(WS_+*LiUjHZ_S4-gb?jJrOa!?z9HK2f5F$O%j8SM3#PZweAk7ngcgYhQH(Y7N6nY zi2q?_{hP9~en{!^*TVUA$lMPTtqIp%GJ6fyN6H>cKCXH_l1bNb1YH!>S!}+_JTdz% z3LjK<)3y}!R?ohJ-4Bcr6iwPZfcbpV!sQ*+?^Wp+ECzoEe#olc?|{zHEB5o(dxiRT z2dQg}qFCE26w~`=b{R2xWDn>agq;aH9QhG=7bd*;K89<$!m^3LHr1g4V)@Tz-)%(G8 z+zb6!UnEbH;oC5u0cn{o=)Eg#l(1#Sr1*~8zR%7D=YqPdt>$@4RPnb{Lw0i1%YJ8Y zeEie1x&kC4=+abMGDkLbyr$2&^x&O*tG>n~S@7PdcrQA)51YVML#fggfTO*|&DXoB z;H2&!2@q`(pROXf+p?_YHP+$^ulg3f3RziC1*1 zGp9AFH_C~dWU|PwNs2tgVTu-?Ub>Z_qtUh^fuBch%J();X^(8%b-hnF8Q`^5)@Nbq zzET0uUbH$D%dazn<#y=f!wB{EHEttpe#+WI*oi7mefT8pg3L|Os#K@}=?B-zSLwEC z4)Hz>=~6KcHrr!9QKfFX9@bq zjobRdz9$0^-%W_bTk3}?8~`M4_r!no)gtc>R+r7x&GE9oT-q)-wi&-GMtvu~ZTxWU zO3u{fr{ncEDxaCdx(5ZpJTz!ov2336x*(LBSM&_ILyLpyXoh3HJZ!;$GsJ{e5VK_6 zt0VXGOa z9c4{eN>+^BbpO(NL*sEEpS{SQUc}*3D~RA>(nVz7w#G7a-`OO0`%we^YTc7pF2rwt zcr8-XG^%s6@y#Z&c3E$^+(2fxr+5K>wEnFATF$I-S-z^gSJ#Q}X!}^oVQH>yD!o+TjV@b!!w7tO?1m<)NDwek^^sUgY#H=o1Nj{*65BNc_5< z(W!ZKN$A^E30_w-Evuf<6hxw<)MBoHu|%$^31uyJ^xC+vcGDnSB( zK(i;|4F1R9b8q43;nwcs2T^Dt?EUpfg_ym}h zy;T)G89nQcBwa>?y|FY*rSr8pvlJB^&BzLbyMK%=3Vb_^QVPp>8%CUPN6pcog0UpW z^*YSKikOR?YkSOnLmyw5iq=&_6mGDiLHnR{=`TG< zfA4$$QQ7#9%ErI6_WJ)(1OW%R!2giS#`k0X-}R3v_qbf8!zz{$SDrXpVY{BI3E;$h z;s-L39s&r5{RG-2jq}eKlW=&`a~&|R*djF`^1Vy=bBL`1RfAoI6#*X^06%bBHv=ab zz^?f4E`vG@#qf`o;HczP##I1Y(xO(r^Q`_RHq3v%?{8Wsc0h%q3oJqB=jyR*>i~D3 zxou1@BCZ_*2fZ4Ahfk7`48IvH%|Z|>dyg5EXLSA`2%$aNve}mbB`(g??3z_(#C{2)utox=M}_57n*CZYfIn&o)PF` zNE258qmOkCEO$N$$MBuS(sY!u=al|!gTn71m@$vSinu9h8JI7)oi0kL&36-dUa-gw z8Q(IqdN6-F+O0nqE8WG2KqVee8q?T)kwkgRSMsJy_G?i|*s7QP>4=Qkmm$zqAb3jX zU21?AG)69=$nb};Z>C!1pED)CEjuH&vYNF59e`l=QbE!3S1Mp8sq1l z-fM8jVrh>xt9?t=7%Kmj?%p$@0_S${F=cIKVtK*jk@5R`q%84a&Y$zb$eFd4$0A9y zSgpv0vaA)j=m5Vf3e{_bgJ>t9*j$bwy_J=76;H*98AIL-0VC@K(zUH#f^&U3Pderg z1_+^@vFnjY68=PMZdF&7)}B4aYAtQvz^GEWIXGT>`tG^CCnH-y-uYF7^hbix{@S(V znbvz8^p*Dtn7Y5Rm_g@uHx?j^lPY-EZ(hon_R4ygvv~b+YL-^@n);;>^xMKq>WK9x zv2de$g-Wr}KEbP*+cQ}2a{E%Axl{VL`Bp8b#;i5MbG_Jn*8MXSZw;BjXK&iVv>!o5 zpF<+zH3s~1vrc#-qln;?eeZYYcklrJJoqtxYyA(P_D2EKex2<9TDIAAm4RfTu7lwg zQs@{g+?}v*mIjr&_~s3M_Ex%M;CN6sA@ta(?)iQ#^_wwEW?i8u?NH&6n&?7LXa=yD}_9m!MuJvr9D$ z33e!Fa=ee5?N*h5Eq*ZdfwtynB7PdHAGI=2qQIZ_$TyBYLq1WZNdWX1=?;myW*1aJM0=-T_-!TyJ}4 zq^6bQ3T&mDB9Gf#=Q1tzQlaQEp3^yxn4W|^n71u`_{a>eJ$&MN+k;YvEzg&aKZxi_ zF|vuU(9EHqq_S;F&@WL}GOJ|+pC-yZ%HQi`y(oG0xF;V=fEtZWO_!`dLecoBW~Ant zVGecfS6=KjeBQ_R-n~|C^C{V6Qa@d6kEb)@`g@^^Osj&%Ivn>8zkUzaCp~x6P^`Un z)CS>HlfTxovBeR#wj>ALM_o!OEsmHSvM?)+xOwyTojbK#b7tXDdu7&vVq~?vCUdkN z5q(av$I1+l_(i1XYP=&b273kQgg!7q(gQ7%8*~F0Nf+socz~SR!FvPhhYRIGQm%wp z!D~D&vAmwu(L0sxfBk;4sNKG6H}|VOd*jj##xKBU10J>A@b)2zg~cT7*sd`D%uK7e zNU>4__dtt*WBb_n&=JyO(xwKNoweaYLk=k1DEi zQhRiXcN!9C%~4k#oxAe3L+Qh%p&^cjT_@6njde#(CL=C?zHOv)PZVf8|F_nO%yb&m zgIvC=c^nK{P=;v++~^LZ0p^F7d;=i?jolO2i#M^0SKzgiQydIO(sE+D_VfW^a&RZ#;5=LXC5#IvDN1A z31=!Gs#~i7N73Vl8Rfqvd3p*Kbp`0%_yN8d>jWqYazSC`44Y&7jog_;4KQo-r~_D%i0Uwq|Np$}wo=MhvXFn3UZX9kL<*(>VSfWtZ7vBrmYMwAe= zti`McaIP4C!c|f^TKBusQZY=q&O&>N#`B%BQ#<)Xf9Kc7(Z9pjB`$mX<`4kbo-Z08 z{$Bv5N;iTqVQLBug8d#fdvkb6egir`1`=n;TXSTZ4p!~|2}+HBCv`kw;OV@8R_;hK zheAk^kWLZ20nD2IgyXIQQ*MzNv!E*hjCr5`y^!vIzW*`)hcmFS7=%EcZ+k}kkD zGCxK+9&KsBftQfYfdS`WMT%*y3FZmHk; zbWEMzv`5MQV=b(A)%H#U&PenqBamRrp)9v>h3e;MH&~9c98y;WS%|D^sA#_{5^>9X zYv8Eg;o;My?j)CVhj*d*!l`tphAo z0@zi8Akci6?*gG68%(38n?J;0e*#(4M5*h( z|5B0EzXOJw@Bw45)(-0jevaP$4*t#lt?fVP#vc;hkRhK1)Bu&b>tbvq>!(aodlK)u zZghThaJI47vDae~j(Ux+TcY~F>mq6VO1RBUIF&dIx@Rg2+<8!2^7ifuL;Q?M-}ydU zFi_F1X6IpoJS0Bg8SNHVFWreaqoZyqxpAW<2aw?lUV=1_>F@f355eAs_eItr3oJ4G zz}Ugb-EB(ZU2I52b^XtkIk-A-nkq!P`zpK*hHaLY7cY1BJ%B(adFDg zSg)2*5T9T7{9V87-+OU?<@+H&>}|OXRT!|h^>txLJgRcQrxSktN@Wd@!50l(hQC&T zuOEhuMo#z>t`SD!V9UHzuo70lyL9U;0fwS%gE+5$W7-eo0pM%jO-@^#vm?P_<`Lh# zqWfTsmmVU6{oV$Jn}Zt#>_J}tr7M?NX@R(qU?`FC3foid016$VF>Mbr8T);xWIlMum_g#06kRY4I=d8vT^q*&r0xdr7|sHjpC-`C^}ma4>ZZB@lDZs2BANhN zF-{<5{?X~!GRMoRO6+?L*dLiVCY!RtU6kOJSqJu}s6(F)$b=;kM7_e?Xt98kE&R>lDV0FAe z@^!EeH;$#9M?4zCjyHC!T?eZ>tNZ1j0tEezGp>L3^}=v~HFue?p@z`Vf%QrkbTAmP`l%*fB4bpBtH5PpB{<^QqV9IJ{e z#x59co~ElZvejKjT3Dznm)i;r)izb;DRIkeA#fGLcd?W(SjFNezb1SXcC;9dg3%7| zZDBw#x*-$Rs?f9^4unx))Rr-q`RY+1%0S&T#aVVcI~TFW&3-M`n-gqK-Qu;G#Uw~6 z`Uk;Uq%s=K$cFf!FWob|VN1zN<|POP?!)ya7RB1n)wX5HsjH$od+4;X~mQ*8uc; zA3MFx>I5>FL=B+I5LfNhKuq^0Pl5Zpfd*y<*iB_m!CI;!goH2PpwCwIcTA`W6d-UT zwn7KUXHMj)zm%!{5#IwYEa0g8a09t+x?u{pVt)*>OL@7?Y908Qg%~g~^d= zMYBLvD~wLau7Xy{{vJNJ1Rq39I-=;?XFkG*4lwR%90kDfu}zRu{;s^{S-!RZr_la) zEwoEY;<0Ea(xY1Gl<29~_%#5UOD$QcIs36kvj+%7NPHF+Ny2PtM`!)MtiW#){$s@M`n2 zUjW6MR<;~{cQud`0l6mcc18w#S{W4K{!}eufc7W`j*CB8erjZ znw;b>=}vCx2nSEamnKoC>&GJRCVgO@L*~WOsn}{Y!o=h~!Y2DLNbs|ufVtEdCr4i) z&eGG%Ak{RIoE3 zNcG>!CT}IU5Juv$%ldQ+AnQP2ybDQQ6Ok4Kb8eA^dtPR;G0X7 zos6`qLv+tB_3J3|UfQ;jRj=F0J=!k&gw5@qYI-m~pBF)q;s|E&k=XA|erhPljesp- zkgMqhrw`LLrq5o-*v|v-)JnGuP>_#fh?tXP(^_QjT)njt$#A1XIaj@BV>egShs$3o z{iQZ+O|_qT?8}^MRC*?P_v-~j%4(7zeF$577t;k>)o2C>iwT?_sY_RpS}^*?q&+~O zve|&JxfcIUm!0xlO_8RZT9Gz_c&v;QLJN@)A!r>}O66ta_9KhVc86czjMIBs?sO_k z!TUXv57(McujoUoE^yww0Q=xilwI}-UAmwJ16j+P2Nv_4@dg_bPaqk)tYNonmJy*| z(+R=v&SA-oSU~_o@SdS+1JyyBY9vLt1H1a_B$Okwf%x$?b77HEyLJG*6l;K~$$wc~ zX4zO{ydg|Xph5m>wLn;n+q?0qD(=UZ*0<56edInsFFt%@8hDL;1drzW(Lj~%_ZwEL zdFoS)KBU}dQTAZ?vUKkMsR|j60N@ynocxPt(r+k0PTPJLNvQ_ixQXGymQ5j9_-f*8 zdH(QtZ71ylXr4wT!{~Z+82Ip|$XV^qs;xkX07V6Oh7Awci|MYWYlFxSkw1z>PI$$S z2YsURH^_~TGGLSb;J{3P@BOEAF6d`Kk@dbR42TN|3>6xR+)#v~|RRIv20_fHav>ZR268L`l9rzq5}$<1CVSmcG;Z?y&Djfz=n@$1&}Qz^BdEv@-iqFwT!2@fv92A548;MsZb+( zYl>->^)Z(n{4jH{$AI$8%!$y=$TBQP4-Vg%5*k;9Wj*~l>Gu!)?;llHWGEjA{MeCP z+5c2Sb2%zDpbqe<6d(HhlEBawRM43*+{)Q3PKZq{q{M-J2>>&UbUP5eWz=H|j zUDpjwVo8I3;3#7Q@OexJHFOQQu6H>gxm(%SU|>B#dLN@fYGh!5Nwuj2#-BJvr1P^w z=htgtYnxf1brMV4_75S8`&{afLcMf#5^r#YCnou(D6C`AB|#C`H`<54+6DEO-^UQ0|l-d>vFwdevh9`8()9u&MQjaL2e0H zeW>8LH!sqcJD&%y`Z!Gg8`G9M?BmEL-?WB>eIdr3Pqc*gN4yAOa`N%4ZVAC0q{@?F zXQ-j0nPx|oGP}})<+r&yUy$@a?{3DwpSEwuhpiP2cn2R_s3^1VR^JtFcVDcM2kA_J zta$#LGdiLmXs$pslzn-)}?lE;-cvD%q*Ex{B^qW`KCi4agIxBbJI zZu=40+s!;-PGeV_=pICae`x*wDPZ(3&>`zCYnic@4I$tPGXkS+Azs)$rmndk;#yps{xHZsd9}){55vEZ`^2>3?Ms_**~wTgQI@qkmVxDBIesZ+2Hq5AsYw zzh#=v5od+Gh~xQD1AKQJKMOFA43nA(1$YL3E}&=uiige&Y}mwv zK6^`?(YOp;&?gzOglXSMumUcCULYDtb$02sfPzZEK?(|4P~Fa2rrIBVnqH24fP#c# zC;(zg;TZ%gQadd_p-YIYvjoSQy|pr`QBnio*#gSnv8M@$nK`cwBC`ZpPeRSDljLP1%80 z3e(~j&84k)j311aw5SthzAiP_q#K65PR&jA3LS08Q%*YBp%c<=X0j(`o5H|= zs#SsbZH(#VC-N=UMP#sIWu!{qW-RIqOxkE!Wx5J9}+|CTF2T=nP zBJ)908tp?hB-#0C_K#Utl^sdU`ar49U6fqewKJt#>m!WqMu_V(~U>)tX^-GHBd&! zHFZh~%Yz9qzO48a1FrowVxm{?y`KtstZxRaoO9VZ#k(8Fz_zi}{etV{od*{sNe1#X z?@eGd3Dm&cO2>%qLeS<3FYS>=f3)lve2+wOX1c@iIO4HqYDD>F0WB*}aWF;c&Kl{n z_T!^5SEO&@Hgl*u=%Iy7M4G4 zuwr>FD{wUE@Ov;nlV|b6Dka+veD3z2jl4!pAYC5yY>?=P88ZnGeWw(2sAxqz4ldKu zJ8ARr-j{{Y=Tqt42)ew~JV13$ix40-Yb=?T{ljL0kp_nIiy6GGAUopz9uCCXE6%4M zmL2RT9lwX~8K*e5DH~{@3`l4Ata}Va>UM5>mVfE$PbZIUy}={I0+i7c@$pKyegldv z(cMCp{~S5TZD^KX*M${(qta^mWA%=^-6PxIvWP#JMa`acE!IAV#@!g+4|MdxPlw2S zu95_bHf|)(b49@P9(5?q%=$CM%PKYQ#`1z(;SuSD^()V#A~8B!oFqJa41a6+kHCuA z=ZoFcJzBjck4Kwuq|K|;9%*E9bD6vRsXSp5cwcDdrM_MJ#>6*mE!ck49k8fo`5b(l z5|6$$B zJKXH|*E-{k9((Fvzx!%vLHE)bm+%qKTg}po4u>+{9;-Wjp(%Okd+_^HDlFJct!=2{ zr(#nK$B=txyJ^Scolki$S{`)P5U`H}230$Kxu^#9->aad2Q-oSIADI4n)o)BZx0012=8U?W4;H=)HnYYjs4t3zt0*y_o!o!(3A+ntyDS!hQ6Gbj&c)kPR)K%1EBF*B**ER>_NGa0SHOkPxIN z^INPyGUZ1CVaW<^-2qKd@)F$-j>gpD?;}g;Vry9d4}Jts{EL_L8}o3;l-S?$Hd<`P zM)F>sIRS^xdSS_8Bn3I{c=&)A3uT42sdqS$quB zkmYmpbP3E(eWeW^R-A&LuF(ee@Fs$HMM7I-equGTxWyepDmHx~E#C8vH@rXrJ87sT z^bb+_uD}HbIE%D})K8~iMKd;tsa6Ax_D&L?GQNh{&rQSklAB)nK2G-LF+Y8kVTiFE zGr5^|TIkAJO!+Eu5}b|Gceks#xr=@X0ZY=ro2@3ts!cGCzTAEya#9aAZk=nX@*o#o zuDT@TrWgo20~^DhTSU=9Ys2`{o_16%S5&QMj6`h=`B~ujW$t~KyVy)?{6j43zYw7K zU%!6;8I=2P7bfTZ3WvA=N(a3-t0N*G@X@RARPwylpmcl02TK`ZbF5|FQS(@ldY&`#4cbp@>jS zMUg|~e4bi`Bu!F|F-guziX37d5h8~WN}(J=4wJK-hMW>PpT!vGvl+)>W}bd`Ywz`0 zYp=ET{_fvvul?D3e|CTM^32oB^W4vU-_QGfy|3$fzi-&3HV-8DClO715$|yGCThtt zIYfB+$Y6fy7voF;{O9FDiz)ln{cEZ;?@_XRmI>%vjCFE+>-M(iXx%6LdUT;!HNU+w z{lt0t%F6zLCx(QWm7)Ki%9H=4La=D9rxDnex8kV`K;vw@_LhX^f<9Kc0cMP{OTO;XaSpWRnI z*u0^hA*dvwsk4X7)A1B4JH0vOVG0y@=If{a*OO@Tu(zjj2bSFU&+7Ml^w_>`&&mYJhR<^8jq(*=~_=h4Ug!G!z#% z1HS+rD3K3g0dgPF+JNjz(0*)UdJeYN5{OtGQlRs3jw+I|6}aK2@FCtybSV|)3nZ<> zz7@Oxu+3xoTPw}o;pVk&ojiKtk)*fB~9-d zcDcIlJErt#I8>ngQeWqR*LB>auoO2eRheUSk;ddH3*2-J5~u-JBT_}n*%Gq+(kA*% zQO$Ou0~lq`ZKQy?)sYN|?QY!*bxTWdgGBhs#*v6a91VgePecoc&bP(W32;w#)MUtI z-uWc1ESXq}^@rFBut60{?P>_Od-nIeG>xMY{k7lR@H5hV8FRznnq+EXy!|}jGTalY z$8WNd?SI6iH&|nR@9$%ljwsXJ_>9g>AOh=`4OS}PmtY+LoO!w!D+3sz*FC}byjt|f z5k;24rZ&4E(VMqsNCJ}UNob@Lf548{a;oQWUMPKPqfDu%|I-{ujyq?)?nL}Xt^EZS z)eB8W`JK{UXyRqbcu-ru2)<&m8oRj$s8Y%vv?tgHNC#w}^~k2GE7rfB5Lg9r5rx^)lq?M< z1}0-r;hN5&_SHqQ^5W*o`4yWPI!PId6Aih*eA@p^w^7kjB@ZN9Gh zDQ{i0s~c!?I7lpfoM2jfbip*6hIDf!f$nCqkTx!-hx$UI8k8@H$W5hlR4~JSGnT8AVTo#* z3Bei^*LPBpJ*hsE7uy^>pN|!awdTcGEAM=Jg5jRjWiL^?i?%ba!@?J&Zk=82|3*r* z*vO?7BEfvT59XuXkMl7Hw1Upp{GIvO`g`*+h~)U|+3^0z1p^NR(qyOZ=lqg{mz@S} zcmyzQVne{q0zWt&K-Aha(*))0c2eq7>hM- zh$iGgQ^ht(06{P{;wv2!5NMi%vQONMh^N>@9mK3TqHa4C8a^w>ezxk$t;2$m-gHh8 zI#%D%YlJzb2bbSnP8z6}k5zl&rdOqOq$zy5n-sx5TzAeZ8@(vKq=$53rDM!-46`4q zV8k>d*^xFnR$j_g`lM497De;1ejQTARiz8*B0SFrn6|%)pJa%o?5sr)wE+v7_txVh z>waYhsk0sr&za0c{IC{p&ahB_%-Xd675<$^csDj0rI*s4erdU&rAev1tsu^zx1)$Q^EAVAd8bswE}cz29c5|$@nE|hfVp4U6?yO%*dK|0Z7y2n#Q0YKY)Wv{jcXpe zHCU`KADCQ;p&Wu+1=hUDru-QhQWAmr23)b3He387c|u)uD~+C7GtepA-bROgYfrR> zcVI_N;+RIW@DI-y=aV#ENO4nS)*xI+#akcU6$^A(*T4k>&9-YZ@2liECvf}JMBLEB z_1*;%kNCx(JXYRHfA~DlEg_76zobWALglWUO2(cP1A-=XFEq-6f2?+_iikylf>$8& zp@8P|z0_R0ecSn-mm-eKT}BKZq3Li$Mb!sp%@LYB!$?J=sbOl$Hsaa`LNsB$TzpQO$yxQM_p5~3yR>jDt<0L-+fhwEtcEn$!z?It}K;9 zYsqYUnQi5t`_p;&Z`$cvsH&Nc2WZd*8$?n)XhE=;=Z+3U&AOT9BTq%1E!wlYH;P*5 zzMQGPv&C)KPKlF->{|^4zH|}Z9{Fs6So5PL-l{;7l?lt_M^G(_@NspggL;>oroxj- z^SG1rr*3ERXlh(K$$Z)1(~9n;!KPGsp?e-Jm8gy539Ps|i+1Ent_b{QcH;(l2LKN{ z2tBl54^22)9o;$Te6e?Rsl^Y3$R_c?vEsX1S;}{}G7w|^rpx?)EX53z8Gdu^?lB=N z%Y2>2L2S|HIbjs-j%CEB;&baEdZ;kHoaoQwAvL|J>etv^@jT*h+>V-Jc|4 z0i|dMDMaNe=dRNQS3otx!+jm?8dEpnemPxULBe%O4n%~M>bn1Es7yrBGH82Kp28Wk z7)Jz)l)=k9(%FYxZ2*z#DO+zuXtyC^ns4beEPMcgL*Re(llTty{_8C%zJtF1 z4WRG;3l#oWevaiNSyO}eK}0qhy?uYiUjnhyAE=rEHHa!RT#_Ql{7PHGl*6_`jgz#z zuXKGG#o36zKw*7~YFgfX0`LMNVFJ8;Z+OuEn_-9l?CW8QAt%76*}u}2;6A>!~44&RaD%^BqR4t|u&{F3V1KO{vj?9NHb8fu!}&!`2scVG`Ty z>uG0Qb@zb5ADJZoM)nqnuU+4<*YDWtH%av0hrRw7AHkCF(Yhwcf14z)v>j_KJR zG&Ug_3KH3BiNQlvfYCn|NiKq`A&LVh=3vkKI+cA9)kdOo0dKn>|`1G8_S>AL<39QFy)5w#&JvER$Ng{ClYDY~g~4^`1adgBwgM(+*Z z%?Gq+;3|gH4glN5T&*^z)!k`H$2Qh9v=*ISa-T0(y*r zFj0i+gYChSMT#~-=U-ERo!-n?VlJMcYPMM5f`AQYK%(a%03YWJV<{}txJ^AiNS~9M zO8w2TESAtOdA8t(OyXY|OzZ=MH&_eu1wg9gHv;tP=6&=tH1V?I#u1nepwr-jr1d3- z*YP%QYmJD$;#E=R$e9ZsJ(UHUAYR|9eg(0&>>zn;stHMdSBTs*am1;U{Cv5%z%D}V zHSIB$C2Sr!%=4gb_I=`4I$U8pV2|b*tfZowCg;E%3W*ab@CSgMB@W@#Ou{{xZSeIApV0z zMssEShfM@sJ{7)JJJ-;{SQ&J7#Y*Eq5VaSJ2hF)z16gAz3hHSZYF-xlc@=D z7g0E7fHj%bavs!N{!pFqckjRN-hcmw_Q8ZQ(^oH&mEsa7E+fixspphwnoFAo zch%i_CbTsrtF>87tn+3PG;mmf45r6X%t6U)aZ}h+BniJh?HMIIOO%v`vPTr0Shk6a zlAa6L6Jy|fVrScmeF>b8)T|mcH#6nna#Cg>1@3Q81_0y3cd2aJzlB`4Z}ilCL*upUHLr2boh_8qeu!s zBGCSo?t^YJGdn(XShhwO!F&NeA)E(}e&k)C)Pt*D zPk6XekML@)55OBT&@XNPL1LHw@%jVSSlFaHa6es4($5#T%q#qr?os%&dtqO`(lsI9 z*|^8Y{o;BMKV4+cvo=lYnc(Vt%p`11^F7_PviQ>w*!(;!WpzQw5kV`yq;=#n+Z->y zb?X0Ij^SA3|JWbc_DnCV?S*h-&f`LeeAEiZT{BIuLp8SKn3~n zslnZw^*+|(UL1VQ}YnHl3I+|@z+-F;m z7?$?KDUGF+#!0-(F;8c{fL7iEz6J{XMSuPNkkCPosfQbSrV0vgdC7br+go;Rnv04p$$uqxYg8V+N;H(jvHAuK|+ zMfHyTXNb^=%uQH#!Be>po*jS31OQw&^Rdj9BnK17+IX?ScRv@Ao@II ziQL7!st+R@5&bC~+9e~W1;#&QYfLDNrg;2g9<`igG{pp}`hjYZL5{gdWUBN!JJrt> zzv!rzwH;ws9?r^LIff89sKFV@iobuG$pMptX)jqzA|&)tM)=<+D~7K1oUS;bM4K9X zeS=lCLph)w7uip@lBOn2y;j)ipTiXDQiEeDZQ+e-c~RO~^gI&%7LgM$PaDy3t=V+_ zfDUyH^mNhMS`n9}U^vc!+f#Knf9thL=7?*O*BKU=?!Z!=Pd>|*H8|ax-m3h7 zUJuByYJQ15T3t8Pw9O+p)V@9KFWxl&zJ(#Tn0jm&Oiz31iLf07Mz>S8MMZ7XZM4um zD)F8<+9KoH$M@aTY4#YY06{^(TTCN=$t1iJY-^#dvRs%5UGxixxQgntp!EOwaL-g- z9Ay7?daWcS(y^#4@Mz$pgHOXxAFCR>!N0TwvI)%}H?fzbZ z`oB}{)vHBh=$q}6#m}}+|3`~bkfW?P<(M0uK>_}Z+|Vsd|DU>41GxW(f2}TsnyWgj zMNy_I+Vo2D@;&;vYUnLM6yRLw8Y)zK6Z666N5hLhaYX4i_JE2Eu>3F}R?lWZAecO5 zFuV9G6WpsV7=g(gd@a;-x=n322pkQG1~mT_JndL0E`u4?gMV|Z+rR$SKfuPew?Qr) z=)lcRAZWYvb$3Qu+=1cLGhdP9W&TZu~=l(W|Fd?kd9>#zSvm83_LT$!;L@wRIv*G3hahu|^ zn-*DVH$4=sD`}`>o#YVQ z)Nh)9lP6PlC;5PfwD!d4(i21-E`F2d3{F5(QTY$3dPLug&osrWv$59#LgqNlOBlY0 z)Kq$GQw>qyw|IcOqdzsB0!R=BMvDoLfvryY4?9%shjqja-McrvzBDQO#adoL28LuT zl~m-@3M+(-J@sg>3L57{%$-uEwD`kq4^B1O8Gfo<5wUh>4)3~cKUOl5ws_QYNW`;i zzh)+t5fmb)iL-E>ssQMdc^Er$3m1*@PFONkY})NqCSs4v4paI@t_a6~m)rl%eM>mx%1$d65Z1JTKYphU3|>z7Ue@d8nsZG(vl z#G=_i73%AP4lAH+1=5^%Kr#Z=By4_@k50*7sek#Eu2g$`BdLgJK4RRvz$(x40*i11y}Rrey%&U(cB)|z-@&+phm zc!sf4Z*L^{xYbfUkx5kW3g=uF8a?&TAmjXwH8Jki>~C!$E;5aQhJGgz&d_fe#*o~% z)-k9JB|IzC^9InclXDGL!vFo;2>($c&K+L7pZF?!kKBz@x7`KE+>}j($LthVTCRcE zJ98oQ=z&I(neB>_WbfOjmMuDc@l5wqhiuz7VLHFCtu{LD;X;MZuA z{bsUivkP}3u~}6Y_qx`iF?r_6OD$VaC-FXjalRVk%?X%NYI+X-a zukkWVUBVSB_S|6>f%2|GEkfVQK!{(QiPhUce>pJwek&)kFB>@-`IQcopME~mAf1X` zV0HQ86O=I5gII3(2LEaPd}2l?Y_QIxv~WrtwPqi-G4_>iy&>u66T4<0QHpPz>%qiS ziflb~2?FJ)pU<0FMMlx8noFPP>e2puOE&*=+NwvwCwO?$^rLV({PW%XblQ(Me*13r z_xt|-yuZ)$@9Xy(&Ti-uaKt<2EQ2@HC|eJzZjJa{s*$EeWvi)WK+z^d#FmmF7# z^Om7@$wx|?ku#{f2Ey2ZVn<)1`wd4eGe>t-*fb`!dGh1v^10%GMdjmFAO!8=|DQH0 z|7H-wKMGO&>;J!*I;n9K1!jfyVgPSIE!+N6u6L8Cb5HFJwBXfNv=7u5?9bKWeZu2^ zr#j3miWo*!9aysfI%|m_h`0@;K#?{KtH*=L9K$&3UdLfnJvz`s{sWfD)`M1&lg(4Z zZq`4bc}uN@F@~)?sU+P0k{koGd;O`8l!bpG;QGJJ6Z$UP_``)8TmAq~Kvvh0rXrA9}e!nxI!I9_9}D>r&Hw*!$6 zviT}W$SSQsqDZBGu63cM&v+9l#Q)ro>nc>ayok03X1k_D3gNhSJU997YZDveJ8?}< zj^PEI@nXToTKf;&x@Qq8eUdLLC8fYGQ%=t5(W@f$P#LqJN0P7Z)1A=&SE{r}X8)A} zdn>N?cO&~j65;MBl+C4nsdwf*-xR}!XkxyLmym9&i^(9H!GkQvmFeW7V!t|GMf2;S z!KzolGf88}AxhLBc&SpPUHqa%t~{qiJ755L&)#+5{oRPrRFNsCPYNRUebITiJkYqb zrP}NWMZ&K_wTk~idZB>M^+8mxl`4I_n(;Q(-dkbmYKEL-3w1i^M(n+$)R{F&yI7r0 zgF@G{g8puNH-gTXKlwOw?w!DECeAy!Xux4EK-Vtz&1`7;u1XY4g;G-6C3b3CA4N4? zxwGp6gyXq%LH^bOgN2qk66GfK5E+i%R53sjL&#Z`EXjB!U(t1n7+$1Vm2RidrHiaK z40FamJ-xs5KPrD)W>A~3Bxwr95V^87`=vyUo98Ji=j^6*9Dw!8$jimQFhC+udA`y~ zB&>mr+$wvdSk&`8WfzvbX9NBQxoE!nTPVf<>obfoRCN_MHt?-Gw1s5?`~+{XoPurx z_Nk4qPEj>(P0k3QYAmae(iJHs+c{3!8#gBS3>wh$<-paP$%43Cetl@q(e!QrP-xKq zGvJAT!gv1P*ZA~&FR=VnU~!YPT2CbrQ%amx+4yvICwrN#L9v(PN zb)vRW+d%`0%|kRBPMRv{QF?~96D|{nRxb4{??888y~m8o*a&^PMH$oG!Q7)y%=O|G zCMqDceuVTAcJIE0DUZe#r4r!MdXwt?&!8<(0X*ZAU^%O``_uvHPMdfnnE%k%VZ$bitQ;ant`W$4NCH0;6nC#u9Cz58F!kRoP*g7w ze6~?m8Zf}|TCv}CTm2QLAlO+r{b9dU^@t_PV)G?}zhc{-aMHf&hltI`eP8KF{ko*l zVW)#^kKzvqex>U)1G`OV&r+=(u#2g$K`%-yXQ|@CduYIOXLS%HA6j$#mJlgpcqq!t z>5W~yN~_qSxS-7&e}_xmiWcFlJbb(-uRP#B80>omB6w0+fOORXZde9p@*vM780z3Z(WJ%jQS`b z5Zp7G#VHvT*EFSnJ4Onbjwhpm>+e(|`R-S`ZEFzqUf8b>;G#uD9UaG9A=}0r+D$T4 zQ*nS~^|GYi&&5Q?s;V#imRM@&2zz5S9Vz;1=%|YRpr^#2TNc@L;N}FNuXIVG3qeE2 zXC~9ndA3~wBChAJ$!JjZK>~cAKxm=t1D=TOjc=&~*ml%!6l!Gs zM8*-BXcz$AB`@`?V9}p7=fJ24DG#%4(g5J6HIAJ&D|($XZJEHZ3Vx|jb@w-l7B&_L zoy57kpfzjq1B;ubL*mH!GfZ~P>Uw-eAe&;tgu&r+YI4edq45 z9egm+RoS-GuA?lyCck!!mJ1(nyHDtjBfc1kPAp-W2)YsaY3Yh%Zp+QN8&@JuC5X4? zNi=PV+Sxo8MB7nFdsV?OSaZ~OL_Xl0e0G*iDrwtE%~5ot4rji-jO(SQBb<%)37v~n ziG&BZ6t*nnq2C8$44iyFHqJ|Fa}Q;M)nn)aA1(;8W1c9W}>Medu`H|Bd8u|3*; z_St-*?RLR~?nbAs({*k1|1b$pvRnnB1eCz6d%9}ox^1>7cnRfZBhXwtfQRva1 zqP&h!5MbdpQh{&QyGMWu=V&alIp!qWOapwT5sg```LP zb*Fx4{$fo`#t7;c`T~9LXJxnoguSh`H@g4wZ>OY5U78~ZZHByz$l>2qY~TsJ9{x&4 zVL-x9RWarU)1Yj+4?Y(FzGe<|E84ucy5R>Zr$;>(q{+Ez;j|~v*mwm3>eYf)OnO%8 ze^<`d?_ZzvP0l8|(M>B=P>|MEe&7;^T;)SvV(+w_t|;bLB-GAQ7#8JEMD%CxuvOgHDjqz+PC1{Id8kb$yDq0I|9Q0Akqb>qK1x#WKIO*qXfgTfx?w-WA0i?j zVW~nRr93i&Cg-14J258h%2ZY66xeEbL-L@{scr9PM%C_LZux=*&Tg0Re#Uiy%$^rI z7FCd$b>8Q@TVG@-8nPNoC4YRcGH0!T=uJF!1uZz1D zy!|f+)^QuxWuD7n;Ie3IiW6tWdlm%4LI9`HA!P=TDA-0Z!noa-HU^DDCdDz(5C||rtFMTaactal?)cZ z1`h#rYYwa01Yb{vlU22c9jVc{0N}hPIgQ>l;Dk)OsE@wAbt8I+faX!hCkpV*5$tS9 zg=Qc|!Ly}G+>Jk1Rc_T=6)h9wbzT(FfOhhHWvxqREUusVREqICm1eHixw`mN>tza?_=N1!j? zzvEBJ^zY;F*T>;)B|SmdLVK?29iDOMCtD^{r@px{q9}>z+Dav8I!B ztYfis5kW~7Z*5}}WnwMA$lC<$G7rB&x5=K|HS;f3P{0`E@EgQdh`>lLbtEaD^|cBg zeJCNa{ie$w)ie;o|4L~wvQ=BT8w*qw$E&TwXF?s2KB;+gp35Phd$&yIP9ae+cy6q z)3ngsG?=dY$sxqXxe6Zg+gx%>wG)Bso)azgrY|Kor)C(sr&rp3a+~PdBEg^z^2hN~ z)hYzZj#<@j2fS6L9`rfgswW@ydq+w*AI$&u>;x`?c~*sU6vs_fAZ^73mF>*DIu)Ch zz9Ce2CnR*HI_Wihe0t^OQe({GTE-P(4qfbN%BnN zslS8C(zrlM^&9+FPvA{_6}sQr8yZt5PSSjDg3b3_56Sx1huYZf;w<;-UcUAdO3XQd z->W9+DMLO%m>_A^;CGwY$T1w+)pR~jax7W$mDD->Tw-J>igS5=K7?ZC=DKD~bY|PN zBg3uws?oNX)I9UOLM%>BKHNV%^rqWLc8oep{~UVO0x~lW6&I3ytwFpD*)J27InxuY zttD-#tMxHdkdjmPena=9Ztta=?Ryt6Bc33w^(pf_(YCMe2BJMPX3GPGEK{h-6fSzN7-Z3k@lp>*v$~BX$ zLq%tv(+-98DwJL_!{=rUh2p#2795goto(eFUWkuyt%WCR#e@Tq)xmhnZzitteaX@rDbd;j2Z!X*mKp4UB z>is&>jAyn!e>O~~C>Ytw%y_wTRY(3zN4ATX)q?2G{R;g?3qmeI!bzv1UGE*ba&j!< zBWvU97o_2IR&f$N3i- za4Y6`F;Ua^R&oK^{dIH07J)sqR2he`f^$rlKhi$&KVC*We}{{YIc7y!w~tt!CV_?7vZ=U8s)Op+*xGn0G_(jS6*clYOqZC|( z!!UAv)sdz+c=5UH!H8B$bdV@VO@%<4=OMzpcCDE}i8i0;*`nx$8COb9HFL~8h6W5<3NR*^?yqzOu8$#G0H8FaeUT|~eVAW= zqun|8E1j6r%JLh!dE2oAIg>UUdxvjOV=j$3@_M!Oa^r^Ip*j54pUZp8xaI*ypS{y< z@E`CWz#JKkS~aLjAdA#j;rPr>CwZdUZ>em(ul!KkKXSewV>s;ioLy0%Va8ZINYR=h z7IqO%Y0`TWHs?6Ky7ZXDp9YH528Q zr11pY?>$qH7}_E^`!Fs1$7yjc8&;hw;-;C|GP#ST6t(;I#S`KCoJM$b4WkhEPHtzo z8@rL6a6%+v2GRhm(lu;f66`%B4C-d0DEK_K&2fucwKmyrIF6ydgjbtCZbW&fgGQhA z#XK>2C$TiaD^~PA?>_F*@ZjjiJr;p0ahCWEIjkRYO=JqUsm>|Wkj_}B+8-qPl++VK zl_ugp@D_!ZS$LFSLJ})`_DRbV6IYm(@=kn63^jVh5OM4|-;u7atdRVoqP!#JWy~#t z5t3)l=teZvdjrF(cAP3K3RUSqR@eY}SEUPnuCAjF8of^iv_f>=ka`EteGJCUpAqCF z<0&SX{vkD5%4(nUfTB>V%1*m6W7}hgwq0Z6FymB+I34UaE->|8Ij-Vp`W?BDKV7@Wvbq3V%gAt%SH3qXwD(=5o#W}``&Z#X#gqz40Mw!-;o^v9foa?D+=S- zx=+Wh;;h1^0tk32XX-HYC{`5x$aq^iVQ1iW7Ll!;4ji2^!J6{p^w@SRBYC|FVwc&j zqB|^Z*J0M4tu|hpoFQVJu3z=3cp=N5Z~Hdf<8!NE5gn)ypl%^W;X*J6>>MobJlrw= zCAy&O5&!k##|M=VRZo{v47VUo9FLfSEG`>-#^)~1A0wdpT?u7oGObBmym3j7z4Uaf z*^b0DODR^0AMl+BAxcTH@))uu+XWi~XyO54C-oM13;0mk$xNhu7s(c*I`XFPyYhR7 zBQ$dgiXyfgKWwCDuXT4nJE#Ahqy)2qG5l{PM&matu>dMS?}4Y*Y!67^+l4cRgW@gR zI`on0Ee{Yy^;J+mqMk%mAgaY>4cJ8te0JuC`-g<@out2JtQ@#sg|r0Au1M74LjXJp zZ*{xvmN4R9${J#O?8XCbnV5a7NkdQ|8e6s?W~3Qp|H?W6^e@Kmmy)oVSMjH$BZ`%Y;mS=nc=l$l%tyxa@K z)&pSrWG&2*0Yo;jQ(tf0_vPgqUv=p(ijq@f|se zFnGEu;@nBfnVYhrXI785W!|NS=fu%zYTP7b0M+`HAvxni>_eqD;psI;3*SHRtrv4> zO-F?Dof=+7*B*h4pm&qhSnFyOWg9eaBoZl|&RC$?m9MKVeefSh6c`$*sGnUHo%w}+ zZhceE3o)w+@KB9F1Aw19nJ>?*AOM>4=O*XrSfX?)*dE*hR$Es<4X&(u!RHU4p=|jB zzk}^->wjxO_9Lt|GjrW1}i2M8MkO8m*-ZZMrJ5qQipl|ll5h>fW8E^ z@uZ`;I1w61w0)dCwS#6)_f+gfe}=;?B-WxLa>if9*j>n&3+2QOTa~?>36ni;*-A$3 zkz~!@dL@+Tx}l1g!n^=z@scLt&_98iK#%6ZwBm9kswF~;BFXXnn#B5`Hw<31+#QFD zMI>2j7}M^C%4Z0yG#sQyTeWE=uOD_EJz^_B)T~7kbrQlhWt)7fJEqMJ79L1azvD0_ zKueCha+$^#Q0`uhse%gZau}-Uy%%Ivl@VE=A&q=}v)TiW;%_Jk&6-q6$9X_b`9U7O zyn=_d(t(W5E9b~Cyp0iny)8PcV9mwC!D&gouOX|BAMLZlPEzT~2^4m?qv9|* zY6QRA2Hr(c_fO5h51KU4l2YH0t%_YW`qvNnU-tE(=c}{#2W`+@}J1s+wtklo_u9^6vu8=$ArfizZh=Pp84 zdJ8R+0x-Ay8Zb6^z5gqnh=(I+{sDr?UHd5pP%GHNqg3Sq{%pS~pBQ%Cmm-yL4^l)B zt8fLbwC(r}y$)yt_+(wf_m{#C9jWQlIBF!it$gqOy@s~!peu^zKlOQaBOxu zmR6Yn{nc(PE-{As(ncW(E(i4q!*bqnZdDh<2g>p5X_KR%GKUp|ne-lPPI z-0wUQ9C*Q5wJ?Du@F3o6VIs@d7UImiWlE(voA|G5kG~He*gtA@y6Qms;qnhbX?ofg zcHCz>Tpu%&UDrrtRnq=ZWVI<1cmc9Fhs{5xh@0Me6E?rwWd5N^lV8zQE#8FZ-j#yO z9h~c&oDQajLn*St#d#Yae={Xze(#Z#2Pxq4j;&iShyP}dfwbdyCbeeHDcW;XDe~p7 zrrEET8g^A~jaQk|f86xV)7Rk>%$13G-`Gb0>qP zbB_(S2(s?&Sy12GwO3)hRY#`R-~+NKwJISH$*aOdDBnkT6GqE%H&2(XA<+_t@HaHL zbOy2ogAvajcxz!x)3SI=a{4aCKD}!6+vV5V4w<9+-}GF`eVEVWojVQ*{N19eq zXZmQ5|2=i(_hS#d-{9_~C1&pib73#1tc~AZgXdHWa*!H3pc69HSeVmNX#sRE=7y{z zC&s%@;Oyrqea#)0KfeG5owzz&UkkyyzWju^ip!gDuPyUMoet+}@6*ltJ;~T+h7<5N zBe%$I6pSpAkKlq1mxoiCMopAoXpD1Q@;NJrUem6g0Q;Gn2u*Yzq^bBqd?hOA9`VCw zzng`==eFFgK8MiJe#OA08;mQ}{;HkUoU8fL>Q3w^hRpDf45G)j8uFiFynQP3i-q_F zTip}`Jt7_iLO$0#?V>NqqS$S?+I)j+#XFlcvsub4RQ+S>d3f>_^1YV%6)KdflUJ}yZOJrpwB-gc=)CkRy$ecRe`tS+-7~QD@DdFE~K4b%7x@{QSh3N|X$)H)in1N5h z^*q$0;Vh84Z28vLGnP5)`+sJW`~&gjuK;Z#y5C~tGMX9QLo_#48xf2VCF5#{a%5S)OACgms~;@Q z_rVHV-3#^_;6KP|32esu9l5Y4l`o>`3n%3PsMA)r4s{R^fz*?uh<>F8Kd+D zrmsGYpcK&dtcvf|Me{;xzy|oQ7ppPuV5Wc!XbhjPA zHt@o>CqsZb${Gc9)=mbigJ^*o+yOP~;rJ5}f^F(6oeX#ldNz>%DXtR+BSKWpBv@lH z09qXdSCMobJ5WMB0~Sp_^l^~52$z8%VCCjz`VCGHoG}d|ek)2vf5uTcBH;@~)d{Q9 z>Cm)T6ix8re+qN;`*r?(9Y(*8)89W%Oq0NWeeWWCezq1`T?g9j>6=%m1wE_B0K}vW zU{oa%n&vePZJKaG;?DFS9{Ek-7CSBq?*Kc6&}&e8m1^r1Rk7?V-SvSwQm*TpViZ`Yc^(460(_dh{>&` zQ@+DwaI+NR;H4RW$C^82r#0+IXG`LuF!o1{<*^Z#6aBcvDD&RF~c{Z?BRj?&e$Q)Q2@DC*NIUy{sM|`;fLjeonJs|`wMn* zcRD=ryZ%X%u`NR0flex}k|hh>65@rTaG+<5UFUU(Yo=oFqD|KPKCJs2-q1R=)~of3 zZRY4Vu&P3kmJQu(Va0rozG%a%p6Rg|;=)bsy%`r&?XW{|NA@{tuOQ!}Wa(>5NsP22 zbOUalb5uufgsC2Rz%5ljJUMz&za&($CN6qyiThfxb?%uUoFCo&ZRHdUrYm+Lv1fKv zqvPVsl=8Tg%-gS4cmkgXQ0D4~D&lAf(C`~rro*Mwlwowv$zDmdQOx>Eq2IOALc!6d zXkqVA!}{BgvK0lKKJ<)r?WLzh8sd#+?&)tv$0=RyH?502Eq0SfF!Usksp0L@Teb_N zWn3Yms2r|!9tn>jE0dk7mo%cvHa@@TAfD`3|9XJ8By61rRqp8kWJucR zT;zNt0oSkpVf0MryhUr7?VI|EFNPV>{v*3jN)K>t1o@nFR=n|X{K03hEcB;+b1kE) zs7fTllW9apL_<@@tbOQOD!*lUr_YWKcY*N2aCVE&RY*Ldn!oy3W%c|}(7;7MsC@q!_G5CZBD2x(<|=kDVLLgm8dfIO zy%n;m_fY)3p&n?K#wR`1j)sUj7B*=IW=FRYTWZV&I!85KwAlPy8HiE-#`yD|B` zuFri3d}Ykkc$-(z2NV8Glm{J6|63}6txM>)hMA2rY>jE_K1geF7ByoBFHb?^Q;xtJ z7xvGE%Qw8^XAI>=60;@i7aa#qgURHLvy$K^`)Y*0F0)sd3vVSnLAUTFNyXRdUph6z zcENtb@fF)UF{C59zoJ^#R1@ZSf9t|rzMfHEnV7Oq{8>80+HJ4x*e+}@0AvBRl3xro>K%AhuzRFl3LWr{5A{6 zw5gtpg9F8a*Uw&6TA2_3xS;TgZSIGlls7|fQc{g)PNZKh2|Pl#O5Z8Tw49MoXAtCh zpG+D~=$oy)OUBn-k_rAi)@O7^Gr|3ihQ3S-9i7yI+m*>kKeZloOA(cmtURhuBL+kP<3O9BUAard~-potLTD2V(44wq0*`3>@a)-pt0xp3E`TMUDhd zH;xpY3euvx#MLqDjs>ydu03pnp*A;mEAlVo3L_WT&d~}18%(rWO_H3wSc%(FW<9Ed zgw5h!DSZ=?(EMhjUu((^2dGprgFBDdCmFE1^(+Wf7FFK2nv z-0gRtc?2~DUNTxL8-)(ObxP=Z3(F8Jyk$I7U^^PpliYW!}nW%Ut^5&FK}12w{fKG~na93<_BYjxq!hs^X0aquzC2(~;0Q zU)aiPbmJDgaHN29sGDy1%-M@)sRzke5UU*{Z;Xl?yO1F#HlO^9HK+IPuD$CFq^upy zq4H3V>`A4&4Qc?U*lIzFPVO)AhWYEpWmbG9FGn$H9ktqh232O4Ye8E^hwY_bcl1UM zgElPr^}YpXvtL0cI4!JTPca}6R>hOzxZmEmq3 zAH=$sYKC-HgEM!nxzgQ88eKegAjzA7wbEag`l@HDhswcGXB_WGIo(Jw6tplOagdr& z9EA~5o$jQwUY(+8Yj=UyWx=<^7UPcTMHK1B5VvhqAjn+Je0S?YxZSBsn8wu1$M02I zAId~X9(rgV!+iS07{eyZT_xiIZI^>b4r$yCE!K?;f{`lLBjqObnB(1^*4dw|I%P}W zV}-73ZA{!5+qK41$p@M}pG4@`p^LEd=(HK}G$5gH5zjUe-OCjn$Q)WJ6mbVR)UYbM z7B<%fhD@T{(S;(h4Q|yPD9BpQ)SWFPJ=%4=m-$vAdT>rC^U*%*OUXCF>Slx)C=&Vx z7pG3?^8kNSnS!OTxzk`TuSe&uKPU*X(uiFe8nS1)Cm3zQGgcHF;VxMBIO6_9MfR&L z?>zNJyqK!Y_&Pm}MjrRB(1f%eEF8CfLa+$grnM@#LU$w5n_iH42-}Dzi=+k@s3HhL z{wn(|1=Jl!#C66>2ENjX3*-b#)eY5Yal&cB4CAN}JW&rF1Pg;#84#>!BOc~+Kg*P7 zKgCz~T507AY~z;1(kYT|*@9Osv;Tl5UWEEzeAs;HT7)^KgXuHem*44d&@GuE$0kD2 z0A@Id4YC1ohR~WZ?XAio%6T_^`^N3KTu-eOM&9UWi)Hnte$iaRWn!o3hB=XYMca;>Kj(A~z?P~JH>WB)jYKf-ZPku-n|9Fs-?j3wv#dJg)$K#f2Kysj!aTOVV z?(B(FxARwE*ZNZWs5QF(y%2*C=Pa%O8N7<*$FvS1dt9`5nmo$8ULFd)XVQ1pfpAgT zeD@934b|DozhpaN6ETc%C$tZ;E?2)nypU$qF6h<6t21Po`$F~XdEfmBi*;8@tObHL z`h)1;=SXXb0apTYo_@`XsY#8OUrz~Q(B-69Dn99+3gThC4e+yRvpCO_Xhz1fHa^G0>y?xdIMUwBLPJ@CQSSNQt{^CGfq=iI7o2UOj_TD?L zscl^w4T2(4q6pH70t!-9q)3a6CL*Fjlok~c5D^iOo*+nz6a@hRAtKUCq<2CGMLLLp zbd(MWLI@<8-r+j?-0$qQ_Br=_ckg@8cg|ja_~Qr8%sDgWnD2PU^FGh>`l35yE=DAH z@5I_CGXYjB5GPSMi-2ZF2Hl+WhrgZI&vtuhtZnS~%Spr(8RE7q*-*JFZOYec($RHP zY}lbHK5?a$WA~jGkv(UW3ed@b{zpI{1CTc1MtY^M8eOJFXqrbayjF=T|Jwc&#&pLo z^>L$h4fBPS)*tia)oF!LElv8hL9N5oSW|_}i>AH1PMMpZlsL14%TH{hb?o*h&)W{I zc5jQ+y4*oNYl{v=6vu`AgiY?H`rb>Fi?OM#Ek7)GKgHT_?LA9W>!E#T?$+1U-9}ou z8d1ep8_SDdO_LFk8|FzyPF;u7iuaxt8a}1*x$Y+ni@!%hQpBi-Zjsa}-lVZ8$0oDy zH7s7GIfpFt9^`kchDKVP4zy-Yzm}Zqu$WLBcG!6Q+*T+fn>c|-?<3mENgD~xZ7xo& z?rN$t^5oGGdM3AAqSeDSyTx|sd`Oe+D$B>&9~5G#FIulpi6Q;t?B`|cn!b(Qcgo8B zO*n-ME~HuVi>ADMu8lp2FSc#))Y|RiNOo!zt{Rye43iTzs;0O|B@BhGT)b2jvYHV4 zEJHn6fv2!u+K~O#Oc>CF2AK-`@1E1fUIT)w$W|I*n0ewzVy=h(oCOu%xTYMJT|irF z-@EH5D59hn@XC7e!6Rbm*{FpsI``Gqt`r|(Cw-B|?4MlD zifFrH&uwgd1Jg#1+T%tdP&~>>lu%d461<2JBTnF4=z%VK?^e;~{jcSY8|79_HQ3qm%Wj-V*=vq_GvS6PQfuYB35E<)+#^ z`1Fjhu4i=;f2?$ z9#&=q=Zp81uo^>!4RiRTfb-XPl$7%mW@%J{+0kF@C}6o0dj(4}9N$uO0kt7N8qCn91i&*4*A~+}?N>D;S%2GImq>$5DN;gd@^(A3b;K9sF#AX$HGT zGicA3IZ;{Ccq=FO*R!<}oaqaJI=uPI-AdKL12a!g;O&BIFlyI|UA0FoWN14WaoCyR zS{@J|b3hg~&tpQz3{rN|p_M=o$83y>q+;xgYJIR+V|e zeExoHsq=B+On2Q_i^oo*v$T>iY7xYCil(-BfLnJm{Hi&Lu>y~iDvww=_+{GXN^6DR z`VAi1;DQLR>8Y(D`g5ocUr2014tX~}w@a2gnrW~0{BfU~ft$?E-gK3tSEGfqUR1ED zwjF$5Pl$Ke&S4O1g+X~^AJGOYDAzB&i4iJ;Mv9+r;0)l&XOUw8pUy1}(6g@%|_i#RcrhrY_ASjqsjZw zgI!B`)2U=}iVM|qnhnvByr^3mG`YP}QH;3z8amO^Kc#KbzX`N)nN6UpAE4;3xkF$( zMX*%(3DbK^@RwP|{w=CnkX!3b!ey!v$$HAR1vEk-1ZwfmU0pbfcJQC}Wx)QNW|EGiMG;z{d|y8!R)Xsc!&LIP!WCX{V6NSHYeH55q@pSLB2q?crEbK!Vx{ki%U$~^v=-=~WL8kxZRa4s$(^SFduHW;M!=NM$&S^B<=R7GraT>{P@hnf}YKXoNmOD8t zLS5~cbYsD;%8&E|j98-msL_N~`LJ@?cPpy;)#pn6>_0S%gPE82Mq0o`upvxe_b|Fi zn<2%>19qj!Vx-Y^vxr0=e?8m4GV!d_iplg zZ)DF_>Rp^v{{HX&|3Gr&j{k~t)!ts)05)s|B6DggA>E;gXa}GvDzJg5hx2(z zHoVVk$;%$zy*%xHec-EJr2o>{ut3dAM-8mivPt%c_U6Y{0@P<@=KA|W4WdW-*DnfB zeOz;JriOfBwj_iRZP5`JrWb?FR=Wq}tRvOaBS!P(T9EVALLkFw&1p#zRk547lAG~M zX0@dKa3M1Op0U@Q_X1`BU3~xHE54~Ch1WJ!E_MK(BqDKxAVt;vFhJ-Yf8g;!STZnYgz>Urv1hl)QBUGhLXPK|Zn|gl6_IzdS&nej#Su&rx`o+4K z>@Xpv)S%a6A?s+Wq*GlLSlaP$Cyazga`%XX=&`kqLcQY>UiYnC??hzZy=@V(u$P9K zs}al24m9>tg}LsCtr8cKL7cmg@bubcu&?X*hdyc|2htH4d5nI8yyjus7$@o!R4w1D zy`L~zQ6+i5k9kyQhmJ4Pt;WG_d@1X)?*qqGK<1OG;Vw=|8Bo$Qm*ydTrmUz%_v#8W zt>x=WU`$ZG-vqoPS8a*sDDupc_E)f$O)|*BD!`<84mQoJ_$<+I(z8j%Y%?;nR)~tV zDOWD><~ea9?9~LTYcIA=jAJ|yd-d@F;;O&T-j;*?X?Q2k9arkuZO|XORtk}3IW-1!RwXr>j7D>MCxv(Y|_Z_Q6jd`7` zbNto>W7x|Fl#Cuf`#cGpZ$dDS0L9|B0>Iz;`KL|!KfO)){{w{c_rO2@{%7|`7`k9d z@t_4mKq-RC%l8w;ds^f$FNk0bHWR=ah3gA;;u@N6g7{Ay^T2F$c-%Z~H0*;j%j?`1 z?_KW;KWsess7Hc>snxwP?L?F&tD^@Vfvx6Y)|4v+BpSO1_#Iv9U7FK zF=t5M;M(_Kl4FPZ&F4|#C-#pVsu;mRw|z_|k=#@Sx|&3Mwm!6;WLE#l#oXeMt`5TL z4QM*S|Az7&A>q$UVX4SuJcGhgIW zf9K-|o>z5INBQ7F5ue@(KlG5;3!l+SFD)&vF2{9tN+x@bT1Th?N=QLNcIHf!2h5G| zHP0JjLz1RejXmk7rhSbJ3-3ytadzVD%hY^|yEXCnWAtLeHhKcNq(U;7&`E=b7SlZG z=cZIoJ-ghGt0;T$w4PhKRp2MgF35SvPvSDGF-^orgh)L^f}bWuR3KvVEVmLO-r|3B zexD0k>#BBs8eVa*FiMq>X$MTMx2{sUsVZ4M52!oysOZxnU3v4Xq8S-YYVFPrubUL< zSI&1ngZengXp^4Ph?cbGYD)A62RET}CuNO$>P=0r`sczA2Gs9*OPG(GZe5Zi8BFJA zA#n;f%Sp2#E0^X8>%Cc&AZVRbS$JyWCU4hcRYGDhoO+nG(OXkrUc+G8_v+Om9hQ10 zC(hJkB4J^7CpH@b=5)j{8MMvjMzsxj3UA((m}Y*nqiXoK zSPl6QC(_V6m9RT~Y@(;~(yCN~>2?LjV|1MjoGJk+w?QJ_I!(_4i14|!_@rMbC^HAKbSSM*Wt%ifX$LFL#AgUlQV!T)2x05hF?)dKi>-EdZP}E=<6=-4eyGIif7(>f zk#~o=c$NT%&iwH&sw_J=4M}K-ZIYxoshsCDWqHlQqxE|6EeUwm{R7=??|5BHPxHLj zuFLmK{HqFq+7CA$>?|fd1Aa zpmBRJP^o>D(<9=eq58GHBOdaO-z^KZWo?16TI7URgba`;{G{QurEbFGKsTmBi$oWdNHS!;xZN=lZ6`q{T6v=%Tf22R- z^5c=~I&~f5qJGO;m+#nojM&)DxdnE%i6jm$zv!!EN`|v_^6j9{{5B)=-;4ArHrIZ_ z_Aof9>fkHm>ms?zf*_%JnOi(fn$3-P<%MspItiv*iNcc}CLe}VkN9ccRh`Bu;STQ( z*^&Lk4>rMM1adMNGO!ekBcV{1?%LGl)RE%h`=veeUh!w}Vs@k9)r7f1*5k8pq*HS^ zph45egj66=>s=`}eB3E_&Zsv0ZSt7w4Y61iejC@DXILJK`5`0r$ZXC|@zJ@bfpoRx zhMN(~qF3*b+63uC+_Oa(c(NqPA`B)!jUK64^RNQ%Fx!(VHu zaPR*9BP(H?n7sbWXLjc98!^{;-?-=L`O~~6*KSHbse?U)W!b^<-J2mn;9Bx@gTT5F zPdiX$<8n*ul$OaS$NkeJYfD}pCVG(1C93mO&(F3au73~P z)aT>K=-wXOi5|#kMGj?5sw{J+*V~if7w^^-T`8>$Ox;o`UHBSv<5+#1q`HLZ#UEim z(7OQ+KllV&tWiJB(7V3!6J|nD^%<>Aez5#6j}JzFM0FzlXh!h*IKHE@)_)H7%)a+S z);N>(o&qYSjg}?&EvX9Tu-#444V2YjpXgw%SGyqx1i$9j&oazSlnam&xA_r%JQd zTbj3s?(ET$^Y9wYw;=^5ais|E=%5Js=N_p;Jmy0u_E;25>LUUM7_o*NsC^oIy9>3& zVq9+u+|a9M5e1|_LMIVNBpJe=jA;(s9n=tabDu~|43d*LaO+6HSFe~Sq^olgJdZ*B zxl0pM32HKOwR;u@t)vDZwR@kJx#FyyjwGfR`D@TZaa(IgbY-~Z8+3QRj>vXihXa}( z^>A5z7w1C3J&f|88-n*82fta2fsAc^r^LRv7r}*XCEJE??Glhd#m@|x8!4CPD;=LY zaMqMm?w-Oa@$U(F17j_L-TPIUe!2_TAByf)qNhW><2#iIem`M+O2nND2f9RG_i47o zow7LG{50(1#f%hbEnSg#J;Fj~H69>7^$J1bA{r+(6v*QGmO5ic6r4^(i*yt}y;*&N z@af&eokw|o{QH_=Sc#3i6g#ul(2Ya|E~;0j;km2*>3VW`lUI5TWP|TzKlvJsF7=9} zb34^>FUZM9Pmf+2ZYn*0)vQq?#aCm%E=~(VPomL2I~WlVC#Fj=$-1G`+#a8 z%*ytM*^M0U15F|hJ~}g;5;7Sd2=n4w`a!Cu3s4m%kwI&PHJvZ)wEEjWCT5Lhln;9o z5|((jZ`UOMBHTSiPNblBx;Z@~G7DWMbyQg{TEWYqUfk|_d&#mdSEf#0W|J!pg$XCU z5|BWRu3u&)scA_3x1@o;H zFSraHwiqd-g5dt${?*>7aeV>3TUSS;-4njd@w#jVVN)u50t@Yzi zNwA!}7$E8O{B)P<5n{9vzekn87Qa&; z|20GX^-~6QzPp6Lz3_RMFZjM>|Ax%qzIsPTA%m0o-eL!3jk-~b?!PRUSXzigngWh! zXC7et;Ng7AjW&&05ofoD!MioDh?yf=GC(v{t=&Usp~jF`o5&t6b%N$yf|bv5=9$dZ zPik7(J3ndBGmd+J26gUKO- zoh*vji{0r3h0WUik0Yy~rs4DhGFOg!SWia0sCt&zamB}LYu`vd7OqUR%^@2=>>{_j z(&*Ct!J|Qrcf~hi9QmznH<*0+r&0DXa`2$R~A3YMg_x47=Uy&@Klf&eNT&q5Txvr01Gz7%<6PAUwfd)Y-`hmM6x5a4v22J}V*&5VI2@x`jPG5BD7SJWF zjpl9(2~VT3^6A-?TcH_6fCVDNgvkfNOa$q)>_PiND-dhx!k8_z9)Jb&{fEG{4 z)nZrUL+B1a(uvyGi8#T2LDVuj)~_Y>rqx(eP@M~uN}qLw7V5oZ4IP~=`8wT@6iaiT*S z+N7lXODjo{FncB3wtzOT&13R9W7deyE3Q)pzycd~+EARryL-cK{klCv!(Z{V?{|5D z3Gg~t5_jr<&RZuA>1?;$ZCn(rO>*Ghuz6fA4sAV6fNZnxxL*14pJy^;hGZ`(QquY( zUeJ_%jB8DY+b8pG@T?z7D~VDt z&pij1>h?KBc9_ZtDDHVn)otw&stH1xE_2@J&`lKvo)dJW49-W7w-U{hh~0vwO#7v$Izf?LMJ zwrc`A`^9^uFmrunH^_X_Ui7cZm5AnyohG(HunaR&SwEG zSBac7rUSJ|iUOd<)w^~5gbBTYYY-OLA-0rEMi~W3N-A}suqR!Cr#sz^16~WLA5TCc z9yvv1uz8I`?D<&gC{`D+cr4*&q}8R8wE5(NeJdy1oBK<49UDDQYU537J1oo`FoLtg zRUv#qjY9VnortZ!h@4sdbzQ4UH1t9n&4L1z1JYIamO21rf5Hay!KL0Aqw0A%79(0m zLB^HGHEzZr_#Be^$hQAtuyGY^O(pGhW-zp)li&LZy5AD3I8HLKVWs33NK#$H!Om(L zC$oJkTZh*jsB_~1q44j=HoifU|I72G5)RUUw%h1U)D{Y96^;x<>!Ij zAGC*wrefi-zqyxwo0LYNUriQIRQbR^)pZ$jBSb{}^|vQ;h=ejKVQZnID4t0eZ(;09mh9>u#<&o zeA`sDGS2O2i$Uy#xoXn`Np@;(w_l@mFk~MoMhS+Ku7?xSyiN5my5X~{wEw!SY%ApX zl`I4|r14YCwx`%b|7A z|1OjtQ1Ef}=Hy+~7q*1WYgDX%__Q~wU3qZb>~*b?$>!=7zR!l2PX7V{MM`lxo*xGn z{J5aXSk8Oh`XlN9GS3d%cpvIRudBl8eAlsSn$Fb`1UD+6;{I4|)Nt2tT*cBuY0KIe zmY=Y{J`h0~0m~SJiy6em&j@;?E=2@%1pWyF%TdeF$%GdZY1sG9<}AjO8Ei;{BpKIubO!KBs~G@#pjW z^LhUHe*XD>{uyuo?b7vUy!~_i{MTIM&-L@4Fdwp@6ig!acm#{1d+wKLenpg+>ndYc zOO&W4e@qwtIt^A>QmX+;-C2ylH1RKa*{}eH#Rs0$6z!uyS_(V0vpDetR*}~cP}kXO z1?=Su?XC9p%8u@qzV*H=%wKcQn`VsI@6+1fCxjGUt6#bGA#BrefJ&VFOTzjF24jX@ z8T?OWtw5UfTN((q_kU)ef9@v!+)ezsJN%bD>OXpSc#7zV9KP*(yeteCz!+iYMZPNA zRo&M#4lH)4Eh+&`R*D1iZ=zSv%3Dd9FY?%2hD?mxvfZMTQYT~Oh-24qRw(RSgg?iYvrnc{7j$fwtTVH`!sHSyPPTV<>L;^(it!rs+*{>0^b| zC_B>tw&FBw%LqGw-!^nZr^IZ{0suz=h^sJt$fcXbKy>Jkz0!`2gkPOkMM63rSh6?? zgOeiEBD3IEesz#MOaLRn2vb8rG0o^fH>?#eM)*Dsv3&sMWag7yfI&%IkG%jz{k7~LeDrr7k^d+DPIZCy zC{2lA8$dojbx?@(3MhyWv@CPM{KTi`b`0m89{ zU`Y;Ouv#592@snSpd%dcXr0&$BluY6SuMuxbr`dFgtlmZG>5l&x@;Qr>PgfkR)IJ0 z0k3~kjz$WAz7kquWY*wyL=gPVg1ec6kxLF6XK@$X!z{<}k=>mqoD=A(;F2%Ma40Ao z^%KUN0qA;*6e7fa9H3!<22R}G9smqhb~C#08~CC(g}dL4)0}dF>YRD6?8=y>p|$eX z-N#Wn&HZ&Yuc98pm^E`2?@>1?JHQ0i`lSxEQUq#RivbGnzpH)tTY89pc9F&5c97Gl( z7%(>kUEnL0Y_bJLVkbZ21!fPX(~5-@TSF?lR9RRxuyNEeU(mba0kh8YI2fx0bMllQ zQhaec2jHs?*bi|&;8pYnW80TDij|IGfE2b~i8#|CqhCIA2M-H~AO{0-_oF_$gP#w9Xme}z3yl&@MbnI_;;mMiB+bt+ zQtZPsg%Y!ll-fjg_N^Sc81n7zDR+|z(b^cs-hUns)<3fM|Fnzz`-;d+bgmz5@ zAu)z4o}pxhYINI_r1L~WMn+Q#gZdy~nxy%toJRCx>HArsi<^yz4H^)WSj23zqw#1G zkUT1mb6^KovVf`aBh;MSf7uH2k6f*ObAi@{l&}q@REaUxUfZ<|f=JO2X9h>?KEDU! za}&8%Q#!2|pvQ}g@DYP)6kUEbQf;g#qifdA>?qXUckEHP)BUECIbTB4k%F@ng~lX7gZ^;8^6KbK)5mW%6K*R9M4Sz)K)4ygJVt##(A1!M z;(^*zzKKnOpByIfnaSiF`i(2o1d#=Kw+qgjapJOKJ5Q@DuYOJVVahtojM_!_Ki=4Oq!cb#3tjLyif=_Kv|z zd{Y`)2cbP141vxb(CpjC^Q(sv)_9v_edd;y`1Z3ESfFh#jl(W@Km@9+!d;><^Ba`DaAz6?z1#N?t zCGjFBDSMzk4Q7x{DFh>zguorWH6=b%W5jl2CkSTg!71~@QdCQhMx)Z8aV(_~e7~bR z9<&Z|DTYm-JR<$V$$Arqqk|+WxMhL3e&G#xXWFrAhY=*|C<+R_hM=Bug3f2SDBSJ( z`ca0|1tEm8LCP&103jI>oNiK!V1QC?N(3coW_#jH9S zHeuUafea&ZtP{ep>>7ro)*FW$tIyaRE`J`jb=8-8n7IOHqAR+1(fF|~IpdP9-4`|P z+;@9*S@wN39Sp5LmFsb?$qXN;aqhwAgycvUxwL+{&!^rziXcAO^?p$?6Kd7kLBCW$ z{XlYWKy%->(HAo7n~a(`)E2R<)BXxffc-LrNvjI>>rG$$jP()d@ZWb1LmOe#C- z)x`!xg0I@Q_jwu@F!TqoAL5-J9C&4rbh)h?4FeZQEApZxAL)Ph<>RMKx7QtSKe{ix!?N0B~DAzZST%Plt87Zij z>RG~j8;BRN_Z6r|Q2}y3GMRLBM$*Qvfs(vSDrM!Lr%fZqJ}PgamzwMB?}{I?Jbk|N z+ui$2R2luE3(lpvGV8!N$95u)tg@`@G^KoXhH7x3wpMQBQ<8QRp+EFXc9P z7M23)L5PWZ+>>l@qwM&-G0hk&&S{PW$E-U60c}4lJ{<8n;c43&CHVCpP-O;QVd8*NrV|Fo~6uGeXtAU{K z$M%*-k zD!c2|Fwc9s5{Y9z_rfdv67!cd4O!i>waIpafDtd-!GfySD~W1E&^WxMT|}}j0a2GH zJ)xXIu+YuACzS`~w|v1L7RL77c;EgLW)TS(5S5G7p3}qwK8EB6Y10JZdnfKyju8|R zot=*`S^L5Ez)Vao^O~IA1Mpnlw*FE_{-NtK+tDDKe*jc^i5_qU!yL5qayOxuqBbPK z6B-4Z9c2=Nwp|9jUdd`os6sp%Tmzf(ouVXrQt-0F)CcRx_R_)WqJcxx1pJP78RLq& zhq1;RTdd%iyVS$(Q|KL3?DXBhdw0u8IVBP4mu+h6UF({~u|+&XR%)K_)>(o+&DR*! zscn~0j#9hqNeUDksq5KBXmvO@XvNw;u4+nchbiS9@y9< zD7EZW{%qW`mU7J-)l8tuq(NDev~bCZ!KV^E8!|7Yl;o~l|E|2nKPpmvGgWmV?Q5p$ z$756Z-$grKuY%TP(>9SI)z*_;{%Rt12}lmsekH^37``~E1G^(ro4LMg^*-qrqI`IvcWa*6nE~SA{6Qg!!p;a3PSP& zr%!ATJhT3WO8QV4tf?qG62koUgt3^tR&XOPgCAQjS$oJHIz(m4@?h;S&hjuac~yL4 ztG3;TrAI&VoMZx#gz$n~7J=S}7zwE|UTcY&1Am9D8{mq)06I_DwoZBXsE}44Bq00^kd{Y>~8o@sf5P18)!!c-DIX z&w6cMpM94*%a<@=V6^10GmH1ZI<*h%&F5s$y$tM01jzusr8a`3vD`y$?-^VtUJH}{ zg&it_rTy>5fc_c!+V%YtGaG*)p5N%U6GV3US<=AfQw^Jp)@*w<|N997x~x4fBTQbd z<-X(9@aM#EV*2m}sBo>_hAvZhb~c}L6M4R0)S0Gv6y`4!T(BaC4q0K#oV z2m*d#ckxX~u5U)W916cBtEP@-T$-hIXYCTh)*wVa?(e`{^f6()(o*&jNpL4S1p^UI zFp_+{@T$w5YuJ4;tSdj}59&||`3>K%WiKt!6gOW-hdorCc`4bh@XZSuhkfw_bcV5< z?GOAfF_-ucdfogVcRwia38TRAeOgDxK`%2ZYvW+$Ouc_WSxB*Sbl<0!Q>v|1?|ITB zVuq5;x-nZ#v~c+wRUA8X z=iKXoA|YO1u4FvI>uq5cm#gooE=@|8TWe43q4g-DN%iqbG$&Q&d?{)CX>q%++l%p%ALq%jKgBUCrivlcbewb} za*Ge*1tN{l1klLbY;fWm1~5bF?;>Z=Q~>&;&4|zw2Xw$oCWbwx4!veO&WT)X!7^kL zY8wcV*qaJlimO5RjcFtl(_vLZMpFW)3Z%1L%UB*CbL*4}%lZ4O-!0o}3r5b1+KMhb z<@)ZY8HJC0V2JbF4bD`Q@uU;===f6jltKCZmFhFz zDH=0Uj%OS0gzL{&Omb&OK6x4Y8k zhWxZrGxHPv1=^Q+L5^#JGtt%G2b)lzOlhh#DxiyMr>axf5}y@9*FEl2O98&hq`;>%bPLBsr=N9vN0Ru3>;-MJe5 z-PSgKMtym-cv`iSOAY1rmlkO#&S|62an4$yyj1!*vQ_k?8&O`aGs}19^H;6m5IT9j z>cQk|TLFQ^(;^+blh{AZyc7?WDTT(>kk4^^KVk4{!*q}2;hv_e2I*Gkyk6+(OyqZ0 z1>QbYKg+{3^dIYCe7=ztDdmhrXrI6>a%*JqhrZ@| zT|;Bmt)+I%>p0vRI*2H$#p!eFsR600MePCckmYxF&wfj>?V76Pcvf1Q%;(I1sd*N; zCE4ndR$|=qss7uXiiYpQ)5|L>V{ZBLKetKN7Y;OGj?#yrK$6jT8R|f+oBA9Es;Ut< zqSo8>6t53gYIvDltjDNhqp%-7I?lL>`e_$>r z=>Db`-|<@=dyUftOi#ASaI3{e=rA>UGEeeafs06U-dKSx3#ojeP*)=5C2cR~l_EwO z)>iZE3OhR-hvBWLsBptcrG8$roO#hXU}AjyaHuNmks-|6=C?G!RI6f2gt<}BdtvNw z|FUZ$e=Vc=>jxHt4bMH9^f~6+IO<3<2rQQoL;LHa44iz)+;>YoZ)>cZyR03+>tB(Qq1$xQY`yk zw4MB41rKxtk#v20>o67$b|*?mC|Zz#BebHavQG3UBAE3QLHtjcemD%PRr0qge#Dpy z5CG~X62{kT#=$AZ1^{9>?|vHL+VgK=bt@z=8X)Z&wwGJcI^uEr=tzK{1R`2lVA;B9qG5)&3b}EXB$~&_C^dbJ8 zVqy=>OlEdm6dE8F1vefQ9dE(zJL#?dYE5)Z=84;*SJ3)_h8wI?B|qfLz&mr95#<^` zEW>GF`q{)w-#)z!hr!z)EBg+f-Xk2nu@Imy#ZbHZRsM`3vPeR}=C}7xvo;x{?Pc>; zRTJY>DdJM-w0eJE3b}HgkK5XAKrW*w5`SaH=&&=?hl9~DxR!1o-N{v6`+`ML{sB2R zZ?@WR&9CR3*|C-6*sD~*p})*?ndS|JVI;+~XG17Y97V-Xddn;d0N;PljU1_OLDyg9 zw2GZfiHUi_@ovZN`ZsVp!V}~~I^b~F{%X}jNRk28SQCU4;5q*LC`bS*(FyP$A{aK0 zaf&e+6|5mZW^Ej%l<2`LUTNY)0Du5-W_`j(Mw!Fy{j826I~i z)iO>w7RitZA||Ub2Elk-qob*Yq{T_Tu#;UOT1q`Wik@!yo;~NX7L-3f(nk#4wwx={ z3yeD$_9QIqGVAj4-w2Y%fKGXib`sljgA@nB?<1)jFz>X#aU815{OcKa7I)J^+3rs% zJ>5YlQvr^556=kuOYOM#uT@Z)k6Pk%H|i-8?m*lWD$KPDUT)dIp7@kczUEQv!bJjb z_&b|8x19fv-a|Wh$7_<^?lEXhi>b(N6pJ+bAwq&t#666ERpUoVE5$W2J_X_ z7V-SI&Ga56A0y8`fkf?JEMm0CTuGC8YWA_C@^0$oxs&$sH)4-Ve8O2|7wqBEW1%R0 zAOHPQa+$T#*rMwx-F{+KbY2`yQm(o+C3mdqynONEtNe){`-P%E1;)E`goVwZ&bYWZ z**eLM&SbIdJ?bg(!vC#USnOR5zzRr!CE%!pDFmHIoMK3IaZ^t6p0+E=nNziM^|(V6 z5ILQEh~g75-O=F@N7pQ)SkiQ(8Tctn{ExmRWg1eU1YnP?cFY^QaMZ-fU(Ns2DF)PF zH?Aay>1*AqwyM|NLJk*PHp*Rt7e&%&XuBI@X7>&hps!zwQ|`<3_!b(Fn)68D28bCU zZ`e=%2Tqj#$XeE)=lb^@KmR+74KFnjMCN-y5g0jH#_+m_-9E90QAlVSr^=w{VOUP$ zV&7FzY#Gh?E^uiF`8;(^PCtV_LsVlI7B)K*ND4DOK z)>HreKDfWFRR5i@ga5sIMSR5mp~j7Vg#BG5+?9!;3r6!8cBab*FtN~;8Bojz^qZ2c z4X`h&2WY7#sg;3Qz;B}tWBmX7ckM)rKwpW1#L0_3ECVYihv-S(O%=Va%NbmGYIwC< z5xOyZZwnQ@+#nRlkOrYWt!{ZLO$eqh9aS_jP5JM7$SO)4e*g6N?Ph#~AM%JDNI_(* z8zIrbYE-Tn72Bxh+me$tRt`LQtnKfz3E+hqec_vGZRskcK5GgY<08E- zcXoFdpqYFW#rEWN_MQ=u@XZQ{8SfLKBCVKFHFMQS6&DMTEpo_G8A~D zC@*QyzgQj3>7jeEtY>y+{uS5{rBrvQr5(vQR7;q>K+MLE;3=-;vSk%g^aT>1->T~(=h;^C zvi@Yl3;J)LHu9EylFjaJR&*LY@qEt{KhI7kdMc=JYeT)r^%EXOfQG05RJ=RVQoSCT zB4slP{o_&NA}r+5(+n0$O%)XHZ~O5ByQ!}*SdZ;C_q5NCAgV*o>Q=*Ert(uelLK5UK-4uZ`b#!`CI z;kyR3jq6NcFjkl;Hn>_d#lz@)A!#s3_F(UNp4#Ccu*qR@))rhhF{xt)i;uaIzVKR1 zL&98?xUN``Da&4+Gpw0nN!lljzPD0V86iseCy;nGHHI|RV!j$YoJ){-Cv|;pt>Odj zbn3H5Ml0_$;N`7{44`|1lv$0vUmFjXd~%RIk)^B46cZD)`ylCzFfcf5oEoR^7pFX= zzHoESp*|Q}tQ$^hjOU+!z?rHj{CfDK0FRff&M{4C3&T`Y1-+vOU0#MD=?dvoaoUqD zdj~6Pae}8cUs*{ZW4sj_BdHRzbp-bD{FLcY+bd*z?3n|fv;%XzRu}sY{*<@`#qQ!nECM`Yym(U5`AudaP&k%ENBY=tQB1a7Bjvt zZipW2cE$3{nFR+`pSu?~d^g8QF0Y@P5Jjwmt|s$ ztC*Q39^H;!`B>AkTPQ|v+Z30|(={zVg>C2(^${lfjz6gtn?ErxSQ7t1f7g}k9}d~z z&a8b9vJSeUYuvwAW1Coj4jYF-Jak{uwukprP@rfQZ^hlx*9UM5LtkzdD<0yisQWmR zbMwJf9Nm`+W)Mp#IWT5@lekO6+&;^GR!$_nsB&zcb(5t#we`^E(Y=%vo2D@(zN_Ry z9O$IX0I|g(5^nLq$(gjaK(^MbEk50gkb2NC4ndx9cfeYg(f0u!;sHMdeMWp_VzotH3=As)h7!@saj!ip(0Sbhs`p(NK#6SB__b))Z3dr~hMc^gm@J#PmPi zEU5pVyrlkH3VCo}fHn`)4}ce9ZSX@tM8%No+1Vg0KEb^q!&@Ug4VP}5JC$^@~EKn*!XqyyysgY_>nn&$}801CkZOmCk&ZU99p#T5H-gn0}wQcK0X-W~LBSPpX zh$xCEEj9#2#g2*)6-6N;iXc4;K|s2ofP#VoihvO5ozSa@h!8pfYzQd(J!Mo_n8v?4Kcf1+wOvbChp<;~PHUyEy*tXD7hnG(`98iXUZ(14Wqw8wL;v z8V0U-*tA{{cJdr!i@g1gokPo8!hZgdh#gO4UKeH!c>hTv$Orh!mRVL5h83_3GK@8Z z56C}UJ{u>HIoCD?ZIhFtH>6~C^2O#zp5YP$Q+YGdRmJky( za)1RKgTGln)Or{!85a-u9w15k`Hjg%BoLE#2h$8|0G*&;5BArC1t<8|iT!nAf0^Q6 zrudhS{V{O*zl>IARuh5cM_AaP;R1ed60Gfi+Be^6`J{LYAM!qP@U16mPQqf4`6 z^+ZlyrDjb=Z-hD~vP%2$nL@IdrJ1s1P@~W|kQrpsdUNo7R=$*#cfVGkqD7! z@qv^y%e!#T^%kq`n-9wMml|oD?F4e+;njaBap2cT(f`pSMIlMRI>oY{qpN3`>$M2% zEiuGw-sQU&*@0k$K)ev{g8#$Z7XJ%Qqpwphnm9S>KFc@Jo4FePQITVF_2c_{(DhED zYg7iN7FORr4`B3AfTr=wG35b=M6(UE8;txJ0n>D}*r_ZPfa07d z4=_1w1{g=BU5r>;{ii^Y<3Q69)))}8k6b(!n|$78y=TVbH`TH^Spl+sTI1ohuTC6v zN13Z;GYW$$y zCt|3UfU2wgmd@1&BRQi_xw;=8Ia=*AdVG0R!IfkO((t|PbX!Ee{nlb1o^EG!k{JG` zps*nPb_tgpC5*s5=Xzp1+AXGxr`^4`6$jJ;Y%dCJ04t1iYGmr5OIO&PGiE3tcS zM$SIs03$dwb^j&O!Xi@!Pr{3^Q&@uZq;)oU&Cl!1%syA4pTu!hO9fba?{8Clf>98j z%Z5}fw^98A^j1(pPF3JF-akIl;b_y}J<)%{FZ6&ObFCX7&~vUemL(}O&; zE_}jobaBZEdDE0P)4Q|1C_8#2j(d7Oxlcv+qM8$+6?I(`ZE-QFS+5$ zK1@=VEzN!W2EMh{_(5nLjz6?6aQp^G6Mj2OjtbRb{nyu3VWcWXzcSvroEH(?+3hsC ziK3Dep0AK8c`8y7J#0P%RS+dSz<`}JmL~0;u7+dXhf^En)zYqysyz&th|n-dbx7t< z5}cYT6J-|@ucm2qUmr{)<2*`(-j z@NkjN^R}&Q{tK`3#;t5+^2Ea7cGk z_cF?059amvp`*J^H^4nrm^FHGX)cqs+9}E7MM}lJy&u`4!tbTeKOH<{w7GgkgdwDe z&J~nbWH+^M+taapSPaoCfM=<860351)4%`G(` zZ#=4WfD8`zMRdNYut!X2qReS>SgAl^W3shpOZ_UNk*jNu-raGpqctb1v0~j?F>C8x zs1*&0RKQdguf+P|HQ+WHj}dG~cE{#S6jfJhsTf?`7J4=2ENVJbi|Z+aA9V-?dbz)$ zP-UxJ_S4;9tJfaesgADR4IWKtQOC3TEed4ps-Ge%3aG2o$KUQcfmMepFwoUq&~=Re z05uY>Y=;Ifxx5i^|6DHiK6jVP)D!xp+imOGsU;6iLi@)5kJ4fU9XN%CEsy6a5%nAb z%KAk~ZkFL!c3Y1gN|K%O6WP$9Ff?*v<`_!RIXXHj#_2i3m(^tdeFD_x(0vI9eeP}- zE=Tb{#x`nCmom@TVse&hc5hi|Q1q|Bqixi4%&i+|_uWzY5(teX4RiP`9amlCe6*&C z{v4d@haT79c_(OamcOroJiyubA;8LdWJ|{7aRbur90JnReGVv^^F2M z<+V|G*}K}p_zg&HeAZI6u1Youk-9C6KqkSmI;fdL3K1#c5~d ziNHAp^mDZ1#XSztRI1W%pz~ZD5K2vtgpli&Ggmp7880=N>#*JJkPe!9cHjY)8t8GO z6|eS{I+aDsjgE9Eze8v1ZN7O(T6<5c)t5B%1=R9>y43gXY+ieMEY<$u%$qsK(!)bc zmE($o_~y4))IUPS8+?^8GiHmW*s4oP#G`JA#gG~ni~J-%xc)Sh z(^)Rvu(GI|l@E5`dyfm>P!CkdT=7-0t4m7v*X1|yz1?O1zB4k;L3dsy!oU5ze=Z8r z>EB8_mOd0FhBMesN}6|4zc)u=jIgZ>!;?JRuYo~SEwD;-r3P#c<%;{sm-v7DT%u}j zQBvPXsZY6YdS(4!0;fz`4D3xz05y4gaN$Ax+Q|WNCy9IgE{*e39l=Jdg0CZw9pZY% zZ1%4~E+8m$#`l02?+C_JmFakx!opN&Z#yCee0yh%Uv^rMqmR+MjkzwKT|1m z+@t)K^h3gEajlFVEx%g*Ozwd6B&lES3mQWt7DSBh5xjKOx_p5Hbx)Md4I~RaFa(#h zK@G1QLH@5KoxEgM${AyIJ9*c!$dKnO#T$Iv7`$*AIhrMeqs)e+r!NwNVoGGVGNT3P zT6^8!Mo!MFX4Qxp9Vy<5DDniNSkDuPDOeO#u^qbF!nvQ%R%Sy1&0=bg_0ZYksH1gd zm%XZ1$kcAf9{CDoM^7y$q-H#(wp8tW&COwy*yYDEZ)`9a{=`E|G=!`WIrdY`b&N=l zRz@MXCOhpLYW>$JYUB2=n~gIt+@j0T%u`T>n%*WA|5=s|bLTRBeR_o6^h;B(9Ike(`sm0}c)I;+QH!Vp)E9RDb_@VFd*T zIR%9YHNd)q3Cxo$2=4e?M-#8jU!tFU94qnsLg&zX=8hHeyTH;yt7ut!F zpCPtbJL@fL1^WT<2D*FI-qi6JZI%Ke70a*XY3@{7{AzZkon~`fjmR69Entk}1vQ2i zd>+``a9C>ap;aOL>Yc5OR$2Lg$W6x{joU(E+vATcR~dMhwNhKA?lZT*2fOSXA>V%V zwIi2jrmmDdu|i_{R$u+zgvkLfClIrX4O@NQ82PzT{Xgfe+F0DPiR; z>j;4c;;{G7fnwbQ_5Mz!l^Rr2KI`4$pERF4amwHr``Ce)Tc&G}HpYG!SKZn(4y|<@ z*3f@)^`VBGWxm+`hMR&z!4VB4rDI0(h0Og(OaCr*EMB3HrAN!!{Q9)%HTSjhd_880 zimhYe^{S1oXE`0Vnm&V7YAxkqSIV?Pos4iXPTFdJVdzZ9HAGVWrk9bEzN9ICk`L$> zn$8NGM}tiwwD1iT4Dsrz(J)8$idZVV_xqY~wpZ?%pK_2hwB>k1yzRmSN)2vdgVQ!l zMpU5A)^zBrV>|n)SyRl|lo@j~{P@BbJ;MwSoi+l{VxgF)rSvuzogcfa7&yGL@q3cF!-`ympBp-^=!EXJo$|r%W{Ni zGr(AiXyFFuSn3#1sl72-i5Yx=xr${dU${Po`G(p+NOkPfX)Z*erg-#Ryt5Q+m&`QbYr?n)ms-ot@Dz@ zDN?;Z2nx|cfPN|+N$?)Oba2K zXw}k50#-EldcdvoTcq|=@xhH+(#PvcqHnIVyOq3R^xE+7bja=I=c)M%D%2kO26j}L zgiULgjRC4H*WH)Hvp<{H)_F}8ob4dJHjbiXNC)wfTOd+fV#3^vG$R`CqmPlwBw@F6 zqbFZe+Fs^8=U_LGPe%$Cz1M=fn84*#Xvx7=gY5m3mh!U&B~&D??B1)yBNyC*jLl|S z>^C(v2(7WeZt+nsjMm*_;K7cB$S()P3{bW@&VH;ju9zUbmBE=!mv8r9YfjSFK7V9P zE&FXiK(N=IRmW)TEgt%?FL^dFPO#0xm8^bD-TXki)x2z+0<5VMcjD8Cg#`D>RSH@x zQ__SpONdE-Rt#UG9WvmB10DJ$XuT6r6=6-dv~_tZ7wHA41LY3pP5LY9c@{$cZAcr> zh&@Ym7C9PU1$rlUo`=2)EJE73Y&odH5}bjq?{dag*P@X}17`E?d(f?5esmkf-luF0 zQpxbI#>x!v2}l{WFG?zTT&V^q#tL*AiW2i7S1Jh z==D4?0=4^#>`cCM{WsK7cP}>^Gy-Z9NcONIRE^ny4p~pAGV7R0qGsQ4cCI?=%Gaax z!C7oVDMU(6YE4Dp&^`Q3vem>lR1k)0+~QLvmlZcVC{_#&s+&IEAZ|}*a*QYKR5`NH zH)?<>!qq^ROuOPNEv!YI9 z1yjWkQi7-h7?26DMVh{$nDaO=<`R&){Fd1Spo#Pb3&xzrViB!9=#JN-tVqDZ_V~^t zT{xxj4K>>gE?E!eyN%I_zzIBqzM=4T5ZsP}E<7=tGXu?^^Gxvh)+6Bm5_b|=wqdY+ zJP^r40>M6IFN421bb1Bb_5`*8%hCp#1b}P?dM^+bxP+F<-Uv+YRpc|Y0k6e6OFQdB zGpWfpkbR%oif`jQrKl=opHm%M7ZrFn_u=r;OTq5OfA16h?O(zpBIsy*XrKw3Gq<=9 z>ts;vimkbQ`U`_xU-n8431cgS$-AyChj+OGKQ!5`wygHYTQ>URmqH=A8wtaNKio0; zk4wnG_>w@3ApY@=p+Br3P`*AHh#Ur8y=4$se#Ryc4=#;@RSq#r@ep9=L$>k4EF26C zrn^(5r$?Wqx%eN-DY~DK$G2IyuV%x;!_{jf&-wVo-QZvV36|f9R1u$G)*=1q+~)X) zTDm6o0otuqTwlfmMEoVt;=Uoj6J;vh(8~w}P{PIy?u1nxqn*9*|F->TQLI_ZyiNqXW zTr7C20 z(b`ATUrju=NN;`@UY;Tw`q5QHC_L@(UdRxqgr-2RSlem$a$g^@n{{N% zBb3!mgHYCN{qt(@r?c-tl$eU~j|rI}kOlcCx}UspFYeQ9 zbWPgDH5|ct-70jqV%$cK%%80Qa))@6&?8Kbf}NO0;ModGURvL1WP*+J@j5%)hO<-Q zYUT%qSJJW_KA5V2(u>iKzu9>Iqn3%#I}0llYX}dCl4UDx%T(bP=}m-*PcGgwty`4O zwMVU*PPaImkz5rLziHF;T#f|9L@rel0} zY(}nsILIusvXYqGgMJtJXWEllK*jO*p7Ek{AYO-c9v)CCCDmZpwNN%WK5DRSOESK4 z{{2Nkb@5qI>ARo3b{__Q$zT8+OD90I?s73jN*6I~`55Bs^@z?6!H01>V6#-iA$!ml z7PF=Bs^sOOfD z`P+OogqI%{dtEYnrEiGxl>V#C`QN(n|C;Dwyadg>hjes@1vwrySfUs%N-V z-PF`eeYZw_MgRq!J^j;dgJxK>xiQ*fI+>lOr%Q9MlR>xQdaZ9({&<22vshysWEKl0RPDrD&{*VK?I={pC~TqpXtA35w=$ zeem5}k=u7_@OS>2fab(Mcg>^$4hRa_nA)(A{*AQhuo_d5UKc+B)sM9%XI{wf6>d^| zRX^A2<}2-~MpyoM(1hCHEWFVS3^HOVu%By`SW(B!qW5=P`SR|v`O`?r2M&d63c}C3 z%Cy6vQvR>%J8xjD(LF}=m!MUekGfQ8ph{!Uyh^fVG{4SmFRr;IcJAtJ$wTMvSI9gt zTOj@{nIL)+F$%05J@=7h+;@LL?vN-e_Fwop|Cu=Z3|j}^f|u*?FsDilwgi?KIg+|F zG6(xq=Vk`W1=OqQ;SCCpUh-!P9Ycw%nEH6>)pmdt7r%jH3XrNu( zk)zw>xpy=-YL}?=tDJ}fib=KuY8&<4kMk^u{~KVm;UpD%~dZ2M}b5?=wen$rio7`0U$s1bD2~|Rb80@ z4FX+XVpx~4x}xVXwZ$pRSev3JswHtpaJ*M#&n#ORTJr3@=!t@Was1=h3A`ut2c3=_ z)X&fAFY1!~m->uZ3pyu$YGe@IZCajKStb{m!`@f(fpP2AdjE)yD_grx9)x>Q(wf`7 z_VTYl?{D3MZt)#s3C+?2{LPV;oU%_dn@tAokA8W3Uso)+@+yz?9)U%D+=3My1Xtb= zYZJWHuEdB^V=4(}Y~EE+6zmz=Rfid;k15>NSA2Z;>a~52gwpZfIX;j#m6+AU&us;r z&*hi}E`lvVly;pJEDlix*(-3#d^8#KT8PUH2_6FyAhQN~GkU=EYsAxAK=C?*QUGy7 zO=IkA5HzI~Wbh6M8&s(woOtNzcUs-}f2w}^caWt)KbDaPw;yZHQiqvC8ou!&tZid1 z(19-_*|}dFv+!*jPLMfv2<3IT4rl3Hay+O-pRJ1TZlgQEY4#h+1Zgu*=NrNn%nN-( zI#u$+?~W8(y*a&Z9Jidt&c+N+7y!~#=dH2jz~!hnqe%01rc%C%AXCEN&x^g<1ivHNfLfrA}2 z_xQu<0cSM_40#mk9Lk^ur)y$o@R^TqSM^zXedfWS))UE57e{OW(W>L1JC2}d*CItS(LgchspqGEF_XRGTl=rB@}JS7-?SzF{v#{@76GLH zuAfz#Z$Wqg_OHx-19eu|009xw8HOY_4x*j}(o5Pvg0Ys*l&xHpF_jNf7Y!bR`up&8 ze^9!{@Qfz}GKUzC7B%h@=Pvxl#He}=#&VruJDbfZP_+>gEC42$5{?A6S|BlFVp&EB z9-PN;(t=NB91>zDHb#A*Z9~v^{iz7N-;_VMvMM`$!ZOmS`e! zaMmAM90Dbb#49fa>r=mjJ>$T(!3|2g&it%C6{KKBq7MtA`LqI_pakg@!kxKPH+oGIh{9)19L>$yu6QU)H7hPM|c z$`H1q&BZ?y_kSm8o1lbd1YLFyQU)j&gAluC(v<%kwQf2XRZFSW(#ImFgxY2 zJ+IMAeB&cr-0|~zChxHQ(RG{ON9J%Cc$If9wUpu`f0N?n88l^yGRf(YuUmZa1~yxl z9R@IT<+rDA&%ABBV0?#VE_OhXep)(>#!XBkz#HRzPt`zKJYiPr0#rT^<$k%mt6@LR zNw~fW>9R-f!z~*Et`V5abb_{TvJRbn7si}?{Go`tGf_SG>hsL(f|V4oCyH9+S9Bfc zW$z%AhrtTY0m=Eafogm1v8@y9?Oq`I>pxltg}p5p8&_NE|83J?)?mnQv6-W^yUZgV z+L^;(i62CL7M(Dd7)T8}Cg$O8Y{aM~RH-7A*_-bcrFJi{_i+~H7KJ24Z91*zaBv8x zwy9pV{Lx-=AaWjKkM2^Qr{91hoHW+#nRDT*{;XGYvE+U3a^XnmS(`#*=G$J@+6UiIItVWLY%@L%4n71*tm-?GPWq` z3DkML#rUqHxG(2)_XR=B$HLTwdt;i$K!0fqb4 ztG&p(g%Fh^pB&Tl1r2jU>rC4QL;L$zomRZFU&!}>;RY_C9j1Gn8_YlW8C?0{XY}&{ zKo$uR$MRvWONH@|&q?HB(WdN(cVHr)yGh^s#a^!io=GjX$Yr%fCc-B$q#I&H0SCil z8=4wQh7&E@p&MAS3rfude`_XpV1z&u zot-*=k-X%meI|HLTX&t`9;4Y2j}=TIxQ(1#h3>jL2;gmkp505ErMXT%X2I(((^k)J zY4l}C98Qjo0-70rDRVC|LIK!Z&%E(H^-?XSfbv`u;2Xq{B}hNn}CN8bVEYgcdu0XFs)_hv|RZ_1#Tvl;Ec2L#A$_0nP`<(?f|Dyb$p0FN#>;w&;p0=68g}vLQ73L z)rCa%d!@bY3CVFmCEG5)m_z^m+$xUt5WF$+3F5nj=VjT_{HvsVFU$D9HIdG=FQG?V zF~4pw%a@40YY{f(OT!@|$WD|VV^gwjqo)J z6tF%|fat%28Pxn>=!46nrxckvgD*0}W;EaQNuB72i|PBTbw1Pr!I{$qQ4^H2lZtJH z&Q>$$9`9N6X@|aPHDl(*V5yk!-M15@t=;AabQ*TdD1;alTCXH#5BQ=5b6R`>6MQ>$ zz^EdZIvQ_(bpyX^n9vHvB)9tIyE8|jT>vZr?h|mGGXcdMhY=a58nwZ5QwM%bdPI?hig)Mp>ReR9A!48Ut7Ge#@cF zhMs{>7mAtq6P4i4=+5J7%!UXoF>U0~Z^4*=DG2aty)f|?{+#MOw(&J|2BIFdU)G!j zA>OPlpg1@dzZ5LG@k79kDCyk+Q{4#&W=RVeW*SbEfjT)(g9zk2IB5BV4pUfRjP+b2 z2s3rI0K7Y?!;1YgZ=#UkKLsW+GvSGc6gUrXMjS(Nq$qnygOG-H3Q!)S5TO?3_%ygy z9d|PLQAZ4*vD`3DauQIy-f)n|J6+bG4>v?u2YjYgnM8N52sOTH8hh%2qkB)RyE29< zfwX~11azH1);91hyg!-{#o||$o0^dvOv#&F-eLylK@nr&5CC^7hM+l7lsl0nS~uA2 z|ImPAoVd=)7s@Hwlv=kg8m-+q`=w4EulY{V?Gl4D{}}srASa(Ck}*UNf_2}ql;Q__ z-PX1z?ZEn;H^LhYykAP$n=2}WlK<|4ho#=Ue z{o@yzO&hc?x~-fi4#lvw2|)ZwA-zhwVpjTs@LU~1AuO%CRuJ)4TSWd8$o`{)!xUSy zR+|{7j@Mg1+zZ!BN2Y86kfe%20Dwwj`! z*0Fgk!iAOYJl8i7-NCpOFKp`MEWcmGR%SLfdpDL!nie-(M3bKRr86RVPe zDXt%w&ZZtDk*a{-rh-Ny7d0?O*zuAtWulku`+!h&nKH+TCHe@IYTUn}1#DMxize)iO zJ>@@`X7adjL9KMZDgUuUh6Of{k>&II!Y-*TaQ`U~RRaTOp}CviGq%jEra#TCEhT*A zLwJ`!p3nk93oy8r_I)@$Yg*7Z*Y;+>5hdHES_*xt7d`I%n!&+1MT z+|S%zaqqZ`7Te7QQz;`w74%(b;da?qslNSSE7`;y=i=9H{0W~FcRti)n_|QvEf^$) zoVTf51-Wnl?eHk7Ejp(){aT&sOR1np9(KYd6*iDUJ^e3*f&YsELVwlTn32UpM2OY{| zP>9Y(!bA%qUCIQyzpXlGSgZXv3AuYqQ|6!zcN`*<&H(3FghEdJ{V!Bo9QbYGg;IVk zk*)zv_lhz=9J!{S9R!WP5M-^NAhMz@3#kzOG|WR4G%uxrmO(xNo)cf}kOsX3`rMd@ zZpYE$Th@_AA6^clTqXli46z@Pg|fBa{6#|zPvKdl$Ogl3$RiX_J^-@6Efr{SmLvqG zqHc+06JFX{E8MXgGvS`+OxppK+#h;m=Xk1$e~2eI5QS`d`(L;|-56_t(d+^oe!A9; zc!q@lbO@qO&vxb`0iS>i%18rF*(rMv^jd-0G(m$JYro>vs7qeHZ_*O__PX0>)8mqm zGd0-(@}308#vY5kRVxMef$~_^kIDV_*I>5YdEoMofszR}AI;d77EhR%m_=5%GS?4S z9Cdf1QuRn{KI=lZ6F!^A6v-Ckt8wi-EM0fHIv|@mVyHM^=;ka?(55G5i`Reu1daX~ z7dk_kXjY7UB`|Fq`@f-HX?Y&KnD6Z&IvDS7Dg2owNbb>?nif9zz`WahIl^S*K&iOL zyO}<>Y+;L|KUA9yQP6fUwPbc#2SkML#p1y)GQq}ZvGJ_4>@euMMhKz`;@lpJ{{!y) zbP0t#=H9ZheD;U)8;jM)LU#4K_QapE#QpyM_n;fEiL$}^R^=0~3@}u{*W)e%$9;lwEt8#ld6GX_g?N`Y}re89Mcx;POr)Kd3_WfTx`#zQ`IR(IJ{UIl4+P z%s?uS>R%Hgf-5q7(Tz1+QBaWAb9aNo0YX`~@$*5YJKlFb-g&fY`42Y73-hE=jRAI` zzdgQ&xNyuL5pcr(CZhSXZTkCP$3rB?Vdh*hAT^$(Fu$RWE@`nZn>AttF;@h;oCm>x zn*lV;Q?dUrX~FMaZXwe8MS1Q+c+L@z!VH<6jk-=80i}rHRlV zA}~=C5W_?X63b;*;B*eYpa{q?_jbrJ4gFqo=8@LTTpQqTJVA1JRHbTMFB@80w)OWb z@KSI@GZ1+PILSQ&nf7eqS0G`rFay6Fpqf9g)j#S=VlL#1oiky9c;b>B1^}g>%YbwE z`EL_)a?&;H4t$DpOb~DvIj??^J4-H7WDB8Nw-%l#Fx6ngh2|le4lF*eaG$!%B z^hnil`@}Q1+YmbY2b&1gQ-62Xz?IMb5m#bAo3eydkfULsYc}%@*gVEllikGMKdDLZ zs2)IEWs-Y91QuK9_%M zu5I?Z#E|4}6tXidmm19|jt55i0uuknFEw2J7>0=Rq#kc8!#98(k9=M=ayz{nfE_Mha;UYC8KFtB* zOO%IE8zy&w4<^L9+w0uW&JoKpk(`%x8J2M3@sq3-6lH?a{?Cs7yYa)n0A5WA#2a64 z5vMGOAR_5lWPlCv^Ocsd)L8mn_6s~W{F-G$&8}29&|%qcvj4UQA!9q|>+_^*)pIIJ z;x7t^d^)@go_vq-|NTG0W6Uk$@(w6qfX?>~)!j~exAwNtzHNKZxYi#B&jBH4mX!w{n3Gu=8mT>M z1v*ld2#SPB6)XszJdt|KjU*=xVO-e?@e5IeyIOr;h}~{6u8(_nM;LWSA5JTL`g|km z9_p;=Kf}xa#Q}y2AP*o%@&`$6XTcbj^ghp;ic!|&jCsJB`4;H6%n)B_l*3QrCku|efX_ptLgxQ|iz&THnASnOdWd5Vf^Cv~S7wSFl=@j;Rl8yB%F!VSkQy?MH!Gl}P(r-n$-q_`b+Xy&rYO z6iflN|1rxpo9hA?y)Kw+QA5MB-E1I+p(u3HX>PW9wv!0zUUfr!M6`!7^+t!*%W4gn`8WKe^#*bXiD*|KwfZ}>8pgV9qK%pG9ZNJw&6nH0R^ z24gYs@S|RK8R8kFDKRXiQV_8{^2+X0p@}glM(B^hP>BLP3GABdFvt|H#1(?{W4l># zhj^gg_5_!zahITRWDUP=EZxAzdagk<|HTgGh3lHT2Xq_c znuJ_$>E5xt|C4$AF^BqZ|N5tqWR~rgYLu2`i7f!~MKe~Cj)_zB3}g}BMYiO}RzuN# z57%CoABK`4Aa9IrVS?-^+w9Io(K2OEKQq=U);APTyHHd3^wUB3@lgC7Ut<6}0w)No zm`?KyX#`nrfs@HxZ65orC{kbT<+DS_&HE23j^X(3Z!nTcI2FGa`=Vc!9Ywq`%T?b% z(ePtTslK=tSZn^&1?YdgU#$Ry4$>Ixgvb!lvyku-7)G~HxL)1#NKuX>vuTHhB>H&y z>3cddxhcBQB=ZOcia zzNQLG34tC-MejyR#K~c+J#?teVLl~-ulFX5cRSql?(Vyn5SkP>^}*Hp3V>^cj^R=g z0B1PNulR>LdW-M^Di8PY~i-* zfo!M_lz9)+z-;Ia;#J{y{>KVjToxkNJwgPqolYW!N6&!8&~`H*BxftJgXtei)@?rW z0PR_RCP+{K4mw>&w~lsljf*=Xs0__M!Z9rqqBjD~xd2#&evthdk&|fg!*7@rmx;Vu!1z%f+TE&cOV;)}3vvgid%6r8(l$R(b#IxzQ z=nt)rbVM~dGq-x24Jgv^)3U)xOk32=5r)c$gxMaIlR<~sk!73ujxa?R_&UKyZ7JJ% z!>S8JSze!bCI~Dcq3J>PYrXxpnkR=UNnT9R(k!4>whbmNK-iD*taWpB&Fq(Y<|*sK z?FR!AT3$ubzX0?!k}dWpEZS0(c^Ig7`B!Ur<5fT5x0*_a`B~*ejJl82PKw_*QTkv+ zcqTcrhuQmP)fK@a(tIXJ$+ogHF@x4Fq4r+!YY6%9sjB&JsOpYUv1KhjIE?Y$sNb*8 zzje6DVV#5*{>VkeZM}!1K1*IXdnwe+<{FQ;nTq6wAr;Y8ODXb!=SPfX_bW!M1!|NZ z>by`JB90nNbWGGv;M6)T`zd|hyA{F@>*#FI%zD0duY~LzXamLq$zU%;)P;l02KE7Zt^GY0 zbTx@%YQAwm`Pth;zH1IK-#1q_beZF*+K<`F|JUisJoD?o-Jc}7w{(+E7mmpRILa>(l>c@> zRYicyYsydo#ZGe72>_mgs_t?$>q66^5#2arD{F(Kx5{POfBdu-{mC{Xd)~dP zdN$aK8olH|9p`)kKzck-M7)Ft3t|mtSE8jH$M0}wbKF>(N<>}ku{OVF)t40T0w2!H zvLsB#)4P8o+9lI%XwklQm*;a$)T~l%%K3@iQy7ob`02y<0dR1iGzXAJ5_akgV8V%G zrrOCwv5U=Pw)gT9kA7Lb8_Mm(j{rcRJMzpm#x6oCj*3H8EzxjOZcD+)YFpte`Ue#| zrq(_e)RBH~v0~z*pF)^%1EK!{iUmSx@50|CE3L>gKGay#Si7;{Sr6uG9^|4UC2MU} z-q&vVvSKMJ;xst}h{1I=MEJr$u1bJHc5L%!mc01BoQlTLPnm@V&wFzc^}nclgi&WJ zbn>g?WnA0`kq3oDnkc(8SVfYTB*fW2F!fgVDIEnCIEYA&B(5S3qS!CY>&&RGZt-D+ z^-GGEeIqlsns1^jn#ji=;=;$6VFoe$Uk!Mvd12&fZViQ_pQgx}d8RW}b`l{x?74&@ zUJxz(p37vgk)1=lX)lO0_6vHe?XqewvCF7apDYSi;30XbRf5qsz3#C)`8zqboG*HOQKPcOFK!cDMdR5IlzE$=99zb8 zWyRXvUF*p?5%mX+LwE4c+`j#i>UNxGg=Og=1fJYba>!*9!fFqF(jv}zMHJ3cbJW;a zU+}5$b^SuZ*KGQ2wm*Iq(z4$0c}L6<8F|{3gxD9hh*Ff5#!0)@CG{eXrF|ZqwWC(e zo{@lla~jILK5e1OgZ1qu^DsMVOoxrNR9M@LrU52>pcvGi$|0l_vfOc;hh{?K8;lM^ zL~!9Sj$+{JG&p_ooY;u^Oxx8EzHHS3bl>LS?GpmGa~XiZ#&zXO6qBB6a=iS7?w&TX z!l&%!oq}vuGv4|W550!^^;sF(w%3jq3vFrxwxr0NvtJKgqDaIAxvN`#g3S_vc zz#vhOKchzZf7hstq7g&%w5XGn7xF_rtlVPm1tpl5Hh-CIwc7h>&ASh`Qxl`Epg13? zEeEjQ5$){*(K(hW(BL%h1jNt6Y(6QyMZ8P>i&bKOy}zc|(IwM82M*W8uw&WYMDmM%5gPizLQ4oyW@=5cOh(Y%r16LuW3Iy8p`+s~ z`QvU>8LeC1xfXkGI*sX+c*9M@f5*5ZBxpltSojw7h?c%P#JN#lbS)RhI8Zhe$!3RQ zY=cGw1VKCYMg>f1W`x4Bu}J$Yd?gG#(13gSAQAxk!wo69@ltRosCEEk`5e@NDrd{B zG?LfiQDMWZZ2=iGmwQC4&DOmcdK~hx!l+PmP?T*5RUBVb%49#%GqgR&@pjpv~>!`F7;D`CVoV4jPF+Sb4hf*}CI6oDn#FruD7Dib#0D>le4MlpKk>vW z<7D?iBywD<-ecc;q@5}l;P~PCbj-EkU5oQ_PDsuQ)={%@P&8$<-@@D!6liqoIX4j@ zn3C)GyBZzTDh!;f8TL1in$1d0@aXZC4{ld(kS-Ty1RUK6`>?1LL z0)<3i$l=-{cbS^FDHkIB zFkAPxPA0*|0a$H-6^jA>f9hryIQ~)-h&@mo1>d|Bxa4dYLTZ~d*m7lrQ99spVqwJ> zUfJwujf`z!`7RNNeTHma5Kz}8v@uv6;4>$ohPO2UM=mw`9#4GznUM0&=&$_sH~zl; zs{icu1XCcuX|@I9F2V-$*>1KFLz9=CMW_bb)QlAj2@ogSfH!J=bev~c0305)JqR9k zz$u?9Q2|XWjCdscDE4y*q%}Z2MqJj_0H%Rd2E1C*DYJ#d|G6Oc52U95_JI8V%f0+J z2l4+Ig@V8IZ|D)LLDKf`J?VQX&@#UX0vH3TW0S4P)I`d*_?q}M-UT!Y6p>55p`0+! z2nK|`R6z!_W$Dy%Ow2bFhmJ$o(nH8X&;(RLJ{XMuEjZaf;-`J zm3H_Mb+g(}=FQ1DA-=dt^!6pS9>>hX)z?#kHx7I4!MtMpm|qJ6QYCs$gQW&+ayq~j z_T&;O8ref29{*jZ`$i51pl*5Zg&70q;Z2ly{|Eznz3pl2w_DuIZMO+LMK5+p-dz-B z^kEwaQ`?vaYna-syO}iZ;_b=4PW2yS-*Iu}?Um!!4M|M#-t+D@-_3rJYiSJPdtz4m zX1hiGofO?PlY-ATtOI=N6dh3Y<5hlVIoBF-9_K3Bn52k0v}>goW*5l)Q{wdVsnJu( zZ(+x>EhU%Vc7AOI8qb-=8j3d|=bKWd%yMVKs66o?L{5s&seM5kqOfGdsn^C!sA1kh z=I4}xN7d50Bs||ZD$J@hX1*HV7j?>?@X;2CI(?)O}8#htA(CC?c*r8mhbFgzFu&BO&80 z;5;o?(OPhJ-RFZ)OStBHSaQUjuT~yxxOx;XXQ?^Pv3hqXkACM!#nRr z7s{ZiNYLO>K2vIo|K_2#g>+S*hiXTWvI>-VqADM@hg-EaJ?U!chLpwky61Q1%xt~(nK|F=IeYfz4=+rzva;5C z%hT@re&Rin;yjSRQ7`R=)X|jF%ZM&Mc$2MnAB~5)i2?a5qdA$UQf}Jf&wh9eC4OV~ zx7_XSFSXZehxOntOj_m}P;fXOR;v3%iz!Tq*ymvMw)XmdtgFG6{HGgNL%!Tu=Z-FE zmJ~`*IX#rM-qP|)vYIS&3xkxMk7RAws%&3jALpb>9sqPWPX1M_+(wKPwhGD^2H~z1 z(#xqwDsyI1S^e!q=9eV?SzE^^+g4T2+(hJ?M~!LSu%f^H?`1DFgM+!@34A)v6+&IGY-adOz05Y5VuOj@a zZ+%EOo>JCz)%!sFHeiVwZ0iZMr;UE__cyCA9Ifxg__VUzv27%_7}jfe6)n7Ie;FZZ z7v^@;<$kFILyty;uI}O6zBseHm@4D)g7Q~onc;Sa4;6h1))>3k*wP#NY-Ww}dXUYW zw+8cJj)pg<$}L==*cm-M65adwjE_r1?TH2SuI((F03BNYNB4A0P1}Sp!w5Z5N!@9L z=F6)lWB7%lTQ6S7GprUlp>LN^y+@_&WMb_Od5%yHNH0o+y2-1rdt+@`p%BsYLeod_ zFl*~X^NnhIZ5l(vw}U*!MZ~SfpAiVAi2%N&ZLf{*0OaiexFWr=Yh(jNqf%eI)nKc3_v_`<(8^kOcx5K zEM&)%=2OH#Tf3f`{{7u+omI6{MQF0Dt8PxTcvA{Q&hp1fYVA}UiM*AysbhOw*1jW# zZ|`r|^~s;sMh(TpqcX%M!Sm-qEo`UhP%^iWDp^m6I!NeyDC9Hsnb}6F+9KQ8s~PGO;t;K zHBq)LY-%Wzb?qlA+b2~+m-H|#!%RNgUO}d0eTVCDVu4RhtDD7S%9R1P9^)b&tDJFM zdW@=)pcR7A_YHrRAKPD%xW|j4)VC*VgCrgDk#+SFO*mjs(=Wo*Pi)&jl`9RQRrV5r zmewscofJ#CFXBSvO*s$ygjFM~5U_aS{0o?iqqkd0k2c$fTi;!gcEy6uj7pfRlA5kblVO}}*XnZ(O>a~- zu-+4RS2p}!YbJA z-s|;E{+Q6R_Gwss8pw{5H_e=?Y~PH4^~dR8zIj|5Yp_D64tpi_-Kl%iV-?nfoJu#* zRz*)o9AjE9*$_I>v|WTr-WZzo`8Krqw1A29>$a)YZ(=f%1Vm=9m#bup(FRUv1UQSA zPOo3XIUV>np);ynv)o8#g5)Q%zd03`Hm>;S@?6KAahB95fhKk{b+td^hMQt`j(d=< zEQ`>Za%-$>a3{JxQ8e9_SOPRu zn$Oeh`s>%xmJu4u2ps4zx2cV~mVC(QWEzKRT>#4TD5`6lKsi&1y69af;et{JO;{Mw z&T-b6jbDrUw>+?`kr(b9>CiWMU*uVp()56PNp4}7nk2%`3W0Z71=omzhoc>${g|(| zFi!m~zq8T}(}`6oiQ|&68$^B&eOw*VUkB;Z*vPIe1~GKe_Ssa?gA+BvdVM&n zF4@qkdb(UJfc&U(+qf8W!z_G8upGZ2bp;xAe1+Bd{yhYw@h#B>N#iN!3ohxXEtFA> zV}ms!EZ=mcxUNp~!>Xi95WL-F-)bhi;7&CT*#wcgi`kCYJ>2_{i+KnWjiFq`@R(Sj zKROO&DZ5^!?g@$SInf_`PuxbxyhTVsOs%B=E^u*+@>_xRn zj7RGv5y%_^O%`keY12odpU6%TEu!7FH<|XCVR~*Kjw0O?YenP~ZdS_nU0B5eP{iV` z#DOs8QNTE?Bf=rvEPp~JaCyU-!KBBi1z}J|Xu5_;b@K6lb5b<5%3x}y0kLA5> zB)Uc%w>ZMLq^1p*bQk(4aquBli0Yn^FGUeMn=KyiKNJc}D7_it|~ zM7oSMxYOnb?#{Vh21SJi9Z1EIJ`OD3Q(9dtO{ve>7t3e8C}CB2#G}VXCGM6K=JFCg z$E53x-z8C%)7Lb2{j`dO{ENBbN1Qj_q%KZA_@S8d>9GmR7EqBhpqdv?QWpEd{h4cO z^x+MYCiLRF-8S(qEvz*N&#(Hr3`G~1)N5O5`;!YipJ_1CSrC_{^YVH}9G3zpahz^l zh-V7ulY1$glWfQ`6-A`XDcVD;eZFkmGLt`*+Q+g6XW~?oCNa+)RcDdxp!gcWH6^PY?J;bcjbvbDnI&!}7XzY}!`maB=S?h@aHz-|Pigu!m_vL*?; zNl<1Qne{aF!|_pWs2sa@^4Fiw&qVtc21v~uDG=-E0vxt7TFwByhXTc0oXd#dNP4IH)B?Kff^H;+05I=n=1Ht2VRhP<}8Z|;3qTB+1< z*H2w%nrxyoGJWrBu3ZB(T+-e@G;H}cb5<=G0Uyfs8*&;{Cs~1E7`mD}rfw2CiJ|Bd zmySS4u#ID8bFK}{hd6M!oAFCX4lt7AXGqxIaO$qTx?ptjMX~uh-9ehFA1d zx^dIjEAl5q9ys3=^E%5V_JHec$nC0xuhPvmTO@?$EZGjAO1y~& z+_d`$8)^0WFEG@b@9rj9$#D*6=Z3z0O6UEgg>Yhf*sh=FRTVF7r6g0vI<$*Y&u1+8 zJjZ@tS1mKVkBI}hNT9q~tOc6AJHE-Jcs+^jd)K_<#*+hCK*=`r?B_B-?wmFtQ7FVtYuIxWnzjl_(=R)$f4p`C+R4Bf+{rW~ z4vC=cReJz>(hF|J%n79e{Mj0)1V?khOagE2m_Le%@L@{zZI)mi_nDE&Cd^}`ml3aB zAhI~a6&4X>=s*qED*-7UfHt|&y}eLI8*BAmi1HJPLU?QuJI0R=axaDx2Z?h?B$ESW z3zY&H6H5Yp?PYMW?C4%irn1Zes1d#{$H53SSb)mQ@BZ@-p!T^+!2FII18&Ua?%N5!0A^;Q~2EhS_R3&dP^KRUADosDMtPa#*v zX=R*N*3;i@VJqwD{~3UleQ(7+{jCvRu}^>TdRF|1|8kX9{D{AJv@8DJieLWs!3PM1 zR{V&6tsk){OJwqEFNAt!X(d=T<1{}6AendGr3|Zqis%bB>$E$$Q=TzacFrCA3o{Vu z_)QGco+vN=F3k8C>yg>{NA}f;%F5VNq#%YKnLv{O!QT8&PhA)#a`ZzY%3Z>y1-P-A zK2E&}xy=mEUIL)0-0kbzPC@zE$V|O7pLkNilR6IL#0}PnM4wzF4EEsp)6{m>@jM?m zE^KgSjp);3+t#FPUg8yY+l)H&oM!sq{fpOMQ9Xsjgg(glu>R~4MR#F|R!phTwh=3D z#&34P9u$ZvxVr!djuFQ8WjHOhfICO#QR&d?LbTgK+GOmu^F@Zw!}>UQ@0!YQ=rQ73 zMyTwp?pNkKSEaiuJqV)`P;1rr<v`$X(XARvc~+!${4763h4uX_0(LBOuC z$^YPN@^=ZB4XiQ+6;0l7f9*6mL8;>lhzqKEV|>|}eIu_?%mXwI)d{+UJqEh20h{Yf zStgvDp~%I}I<@v$h7M2MBG{a-uCC@ZzqB=gZ+5<*Y$2r5(OOjP@ZN3PxGsT0bdBbA z&#IloG~FlY^x+a>r)WuO36XE^q3hP&QD4SH2Tcr5mU57v|D-Q3e2)9b>Opw{S{GFY zUNhf6&hst>yV2!KsebxkFiBr)?-aii=Ab~N0+OL_DpK-5_13p8@Ek{2iEgXn)!tkg zKVl-4m1PXlPBxtpgFJ8xCI67ZqO<9=Nj{NsS*CNlII>rlJ8Vk5fPxC|;&u7*2Gs5< zS*b~87L#tG)(Hu)ysVMH`MKG*0dOb)8?Ed7CdoAN3L3;{0TxINVi7ctaYIe=E+dZP zy@(VM2B`Z<(RnC0bL4#UQPD2JeX`!hh9zGn8xLOG>=Jf7R++r1h%nd&Z~Mrw{3aW{ zjHoFL0nDdR7MiKtG(Cq#xR{@4y*?x3z&cpd?0z+ur3T*Zujx zXL&+3hUU~Z84n;RpolF=*9DSIXF02}ViZ9?w;gY2u10OQBDbN-k6>(@I9;dbg@k;^UG}G$?)%4h9is$jN>tNIxu@+k zba8HBs%&uykCE^I=hqL$uh$Jc{YD?3z0U$B!s9MnZ5Uob@&!shZpQI^WErk2T(90> zy2k{m*J3h{x;SW**0o$^M?*Lx)=P-|OjVUC62F?rIB^pbsQ))`{LTaQvxTqz2fFY}frQyl4Fc*Z~O_y@zzlKnw3EPDgrYM@Q@JnXvG zo(GCnpwyvIFX)n0TF6GJc-JqpiKO{hzm{!A{FVI@PB zxDD9mWrP4g$U;Mg7Du)uXIQURHUeE=KCKe{{OrL@)V&hVkNT)I6y+>Pk)kp=D--k3 z-l#Qhn-@h^rEcgpHs;mV%~A{ujEXgOW?q4Jg+bZ>x2-Tg6xi+P4sJ@P(w?@N}4bTTU(h%MvR z!gVO_!_z)=k=j?sQtjT8I7&@SvVYPXe(E0>M7Y7GaJ}psqn&+*RWCjRQ)J7HZ6xx@>U#G` z=lj##F`aYC=cL|)^~O`|=W!N(H_ z!n^x!UR5wdy9gkdf~@C|1)d-N1V&)5GW2>X=YyNkSlE^i;hATSIn1rg?%o3NJbd}? zDwJH0aG5P3@#PE0xiE_L6B8_Qzw+4G99+CaPF(kXq$u&-;N|uA1eit8-#>EVX*4+s z&x5{&?-(xA#~@)b7l}UFy<|cBXT_*j3eC0`5AHtMn{!WiPv?f#3(T%7S2?RV$Nx$h zeTJr7MlH$7@IdWt)&T4v_>no#HV+uD9NWQyR_h-wHs&nBaAja7>kMnl)?>6eJ8dSN zy578LIn9{5;k!=cgb;7k-2gURIgtDNZqKPlrB5@%iQdG8Llz{ukpOhFm08OKXZLW! zw)F_ma>zKo@t&U;`yyh;BW(s-NS(PxOLvUAHFx1Y?u&R~^-lh**2pSZ*5Ut_lE(O; zDCf}a*7_~;M)jS7;wLuIVfMfAG&iNGK zJ1hIcC&nE(OY!R!M^6t9HW60kG!Kfs+n>5cXwfBN>*6i_Df}cTQ?S?2w5d@G%ZLgz zG6mhcnrhsCxas-%PtCXA-qzN>z2EevipkE^TGyYH4O5%@G?{$$3m<5=nsv~gyQu;J zC;Em@I1<-!+HqeWKqei3pxQ?XXKp%w(XVa?l~gK!JH=a0_wAUpt?+!=A$1AV;#?aB z$XgVf<;!fn*Mt=`xuUA5`(ATReXGp?e39n$p2kzDxT!bA#aXX8bDp6S*U&#+z;U%> zG&1ZpZ0r@6CEdJ1<1@5-^#k-draKrldw{0v6B_zRIpP~jJ0-k|OD1e_(QY^zd1%cU z6|(FSi3${n%hCS1xP|yKBLA4k&WOutJUJbGkE04N7;LCe2|AjBFTtdvCwcl~g(-y6 zSNG`>cA3}W>$efnbDip!EBjg(h^2tR+cwG9m*w4GnU!nqaqA`SfZ2=5ML(pYU)KS? z33EdPU=tH(?$QY?e?b!cq9vxu#!ZJIgDru$A+zpFm`yJC8E4y+bsa4h&SQ+L-U)eY zYC8J$>=!s@(ZU>TH}x(iWd21kl)%k;i{)3R=8-i63O6rZo0>P`+FXk+b+z?PKI4j1 z;746ocTEPOy>hkuA5Kxucq@qRHn@B(^x@Ay(I-R$q7~+wvK?0v)0OJ;xNx0|iX+5r z9UhoqbSi6MQ`fG%pA7nDQuc{DavhS#gm1CK9h+TbDp@apT{FgU84>C(2CTn0+c5ee zdabSMLFP3Iu5`=Z1IYag*uPe}(cu`HIB}x+o!bUlTY^iaW||$Dw55Lc{L7j{TLpuI7mp-C zk9$Dsygn~!@cbsD$Twbkk!-AbI8 z1@laS)=0sqXHb0nlcK4MJ`-m(Z)b%l3sN-l_gXr!zX;Miw(IuMqP6_1FjhF)UY}B8 z>NI+tBj%$i3)8iIW)_CO0*Q=Jnqwd2joRoY;Jh0bpe*rzBz%MWKtWnmw-0f8z1?(E zj*_&TUd!7}bjPHubE!oqgI@X0m3Z7eib{k8f$>i!2`OK@b~n~dn!>_+NKf&{cZsM$ z*w^z1^7h_|R;4OzdoE%p?*^z1i=?88)na=Mi z^re|Igs{yRfvIT!Qj?!rY;4S~@=m?k&^&q3H7mj{-DO+ZHQehx#5=?rXquRyN8u`r zq1#cKza!G$&Cb@x(+V}gQar}IG)6ug{G=)S3dAk3 ze}3T{JN7}kHFWOaG37G{gViNN9j<*n7|d$|qJ*c@oumZ|s^CO5)r3*vYzOM!wgyv& zjTXQ4P%{G22Muo-tA$=NGp}>jdiRZ5IH7kALmKKQ-SO#TYrJ#0w9o* zv-~FJU&*IhBz?5`lJ&SCqKRtzXn0nLUjCSM76b`a zhNaHp2-Ap;6ZP}Xd-8C!`?yJ<2XRaqENl+&d7yn8>1R&K!6wW;QW2$xu-Mz0K_)J3 z>P3!TfO@+ynRpf-ftfgpW=0%EIl*O^ET2g>YS)5SW8qe}qXo@FjkY#~H$gTN!NNSp z*iJsbqlMZpO!z7Z?7t^yanWf+uAkfyLu2$|JSzgD4Gb}r(v=HdUKJwNPJx`^wsxW~ zQ&FW4dx-ac7G`Io48z>xl#TFU2C`H1Sk|ochDGs<78|dZ4?1<<|Wtzml5-xRYSxme5WbQWldEoq9>Cc z!)z5j`zb9mhf?r4`sdP)+w-kEnyo$}jC}4I&+(YE8k6ok8A`=3T#qu+Wj9evaKTQg zNmm3VNNHQltX~y$BrX5k)pdFgZt?bh;J^lULd7>bZXG4kPKi*DvR5Wg`o731PQR%) z8AfmGmjk^rX^i5wa~;5Cy&vXpx2i0tr=#w6m1aWF1;0;?$})Yn8^0#weGdBYniZLr+E*rAErxcyj7xwyfW4K4 zEC~K`U)r#Ho3|8+h+I#W{_@^ypPxvK)Lvih{`ePz1cq_qqE87r9p!=L#?}{#0R{%{ zOt*8QrG7)ToswARN1p2Bp2PPBmGpz#^=4w$Jy;7wkWM7dhrnx=fZ8ulUp+%01wEJh zIiKzOsE`hJFZOO$2-*Vm01{SK>m&NB3cw{zgbc2v=ogb;^o>$Bk98h>VG|!(aqfu1 z_H_qd1|3CZJo~0ZbrW2^4)NwI?S9=7S6vkCNcFVadGh(aJtx#0!VMi>Z+YCRxtAJh zaMu3LwhNoCN-e!2Or0a{1Ol%Z+Md;3RHcjgG%w1|p{`Ps?fK@Bv)b8TBi&n)oP~GZ zSZgz2`ZA??%f@wl!AH@;ka>NlXW#HdBcV3Q?MTZrLm;1a^M%t}>n#NZYlFPc2{}2K z-I4G1IL0!j5Sg2_OPdUK(wcjdTL4GIym`9m^4G;3W={?hb?W8`)%eFyTH7QqC9Usr zJ{U^F&q9~q<@j}^*l=-fy>e{m#NDnT!rI7+g-$5_icvK`>FW(iQqa%?w5=Nms5ydz zl5Y6)l1l9a`ps|9lNV^=&HIn~)h#2SOGHUn9&RKF5-kE-jbrXCX9He$M?Hx2A3|A`c4wX~qj$#;)goV_q5X=z@p-5NA1xLmQ zVwLOo3|vf0G@5!8Ubz(H=jM5{tu>bS-Mw$(kmpCc*^SEkh>1YXtBt%Tw$HYM$C$Q_ zB3Am8tJPs-Zt`Gv@5ca5Tlck1h*?FAb*<*RNqgkPLg##+;&>r+OdcB#H-AZF36q4F>bfii(?kzy?P_+^YT#l=LbQYQH*U|brj-uxsYWqJ^g@L*lu0%QHHh$ zJsD^!rD@%}#aLaFTKvBKJwE=`Ve`2p=m$XzFw3O??qgv~=VyZW;K3q^8G&iQc*<7i z>yTMIW#Jo=4vu}LO+a`Uk;wt=`-NF1i~^e3P&gD#V=GnMlPDPE8b2C# zX|^)Q=tk=C$KyF#=e^l)Y($zK-R1@0pr|8oD>41EKSSG1q*Zy9dm69dfrWydla)+Y zOj&&Gt{Er!Jqq$@sg0}22bj-X`itPbG@HHx?P3x6=G{%Q1$)j5lxLK#O;P~1y$1Y^ zOO)WyV&4pRS`SQjx-KZt^cd$X?_~LlhMb~qdt|dMEcGV;l@oCTnvz+yhmCUD+eO7p zcU(WoIpYud4%6~_+k9{3UnAQX_MiCTut?%)O@9`od&l+Qhu+YKmxS5Z+hLMPyhQSc z9>peykqK2vm(9&(avL5HZJJYzbe$?M1q*65K3{A%#i$b^3->|AvS`a`Z|CrHBZflM zia@SCN(DQ@v|cIQPQNb3`y^VRNJWUETYkSDz?Vc^?0V4aX}0H@IuEMxBr3d?)I6(} zP$AB?fGY!PM+VxqA8G|XRfW-A!jSX6=yynoEv+$r+div2@}DQvB5}lw>2k2{w2g84 zwD81xVVQ9+bdIzL-IBK7fBJ0Lt<LKqQN0lWEauQ^znD%JLcn)Qbmf z7%ewhmM>(5@(bKTvn`Ta2)hmSPoLL|KPt#5PB|sW21g{KtPo3=h%sPRX-;@1Fl8Fe zX~Wb*r>)U^;~$n3FD8xq-b&i~Q&Vo#Iin}5k)Kinw%VF)lbc8eJ5418Rotz1hB{sD zU&XxE*R{vsb*8$gc6!9UweQJ?r+h-4xnGkXFCtp$5r37PL4^{3Ku~C#2UC+{D@}~5 z)ZbRrjVdN_&Dl=YnY5K1$!a>b;O}aaN$u>es4pBk`LuWN*n^JY?N_&A#eR`Yc!0h} zBtOH?SRH`cZ2?fM(~*82vmO{6v?`K$f`($Ks*`bkoAnotWXfuHh1d=k-+lb10WA4&>&m#Mx$60}dxL3&a4gpcy9_DYF%0un_#@Ce zi*z0^#3T~wdjGgK#n0?eKx$q2`=9X)^7YH{Gy9Fdr8VX_2v!6EsyQ=25TYPitE}UB zs3NHK5XXHuU>KA?r&X1wl!ccOGWdmhpx>I(mkq6kYKK|r-{keOQ@BZds-;peI~D?x z_X0s9e>MV&2I$m1jCp!6rdk61Fl#P4Y%v)n5tCM)sSsF4F<2U3`F6Jv7k2GK@DfEb3)O0 zWoT_upGKeqeX0j*1(}7IyP!er>?J>zB#6>((Q08IB_wloIMd=6FX85BW-**Ih@V|@ zuV>=w45j80;ce;tGW4wzXv$^`HTLgcG0ynRa?*#xp!&f@^bA_og3v^uIn@UcNA7+A z`<*3Jf&0bFNk!Br)OeJ^G6EeA(yCR=))?X`(A7{CqK89p=GbQR%6eJZ$5!^_75lPc_g8$F6@P5Sw_Nf0|Ag_21Vny; zRpPEd30bC;PI-Hqv76=~`tiy42)@Lty0~0^+auwdUiER9ICXU2vPXC4T-I=ZsM_)V z$+csXhpjdJ4|e2ff#+U|VjIayPQeqscxGxPP9PfU-9c_{Iu$yP?{>5|Z z_Mz>ORwIj}Edfo>j2rZ|dQn0y_#*7~463f@yhO&UOXXSWc5F7+#*jD9$(voh=)=C@ zN;m)E$n>qf!s->LM)3`T6A=uv5ol}jb&74kCq>;S+s~|bduqiUyXWLVm#6DY_72m+ zrJmv)^=HuWR&sQ8R%YUxuUeM(%y;UnZ9JeQ8nkZE@tTLwhNqgRU=PR?>Wn1yle|%- zJz@@?6}eka-F|lM(!x4^V~yD8&+PBzFKrK4jc^OI33WyHobQ@Juj!BCx@^=(@n3Y; zpP}Ewn)r0i>8ZPj4XpwlHh=XWCJLgQTShF&O&$XMrgd3+atRGJ%vq2r2Ds5`q9uM| zzaca#+v;patn_&|_Ywt+vND<$L_@3d>yuC|KJVOkf%0A(1$3UN*e11%IMqiO&m{(- z9uj8^VQ_SNDQNt0jzlthTiHx9$1z;*m>F7F;0K^=`9{w#7Spqa)P^19~f}p%! z63c}I^4jf*3sXN3Mn+)OziCu00(fBvd?u?D53=CU=-yD)F8x_skgXU1khEmVFlcRn zp= zW*^%m;I@2UDkBW#!CY+sxMbFgrZ2XDZb^Pt@Uy=laQ|!0uKfMSwv_*b=R^>q+V^8} z&^>D)YOzVZiDtixTfwy(lY37=>rcX=jow&l-*96AJM*(D$hse;HD^++-4?CK*24xV zWBL6h=kMJQIROp6U$6SwlbLRUyCU0`@9uP7szLi>iJy3q?#X|Iarj3%W~P4QQ^yEu zyBO>t#hoE*`G_9+DK^@kv*8Xp)V%EtM~vzgKB<lOwgt9 z@3z^Of-W2*E>_jUbq0N??9X2#<;paNm$psv>zPPeIksVzX-A8Yed6zcDN)_(oY@?tTdm~jdmBf1uED1w%2TvEosMI; zGH;@J;I%rvb&`4;duBTIVIzqYxTxqSRe-z*JH@J^g z{(Z=G79vtjLygKh@kV2jZv9A(Pu6>Fx|A+&2x_0-mN=`~KRm&8tKkYQp6n_#aI{G) z_6);wu{@)ENRVXyQx$B1tsY5fJk&WjWD z+wr!$-*l&E*q2K32g{xJNJ{otqjKzhDB~5w09zYrTfw^y5^_1!AU2S5Uzd=+5IWoJb--IKl@YjM-dPf=d7s^-qchXdf- zv0TsC-p}gOqGVG*U$3mgoca8DN_^j$hg9dH&2nWZ-a;E$3$^FfwZ#XSX(h{uNe%M5 z`3g;T{phwnXC|L{{{hNkpe)Msei`ipRoprcQTeFw;h~-DO6$Dr-TTif$TCbZY|pQ` z2kNhTg&h1WQ7wWAc!f;QcSkMR%m83jHZJN{;Z;8fJh9&T!+0h?5!PXVb`+@|&C3X_ zl*Bw~SXo6k4lI);VIV_ShARdwRtjlwoQgKtmKjF$0nFX~pt+>J0A$?Ce9Zhoj9RGa zig=ts#qnLb>iyax`V z%Bb{JCTMHh-QAxqrMfR&7H6K38d8@azJU_6$~L zy>{HTxkslHdbCq#-+JU~GuB|KDWk`fU$siA&#;raufV+zzrm_-PfM5M5W!Jppfcq~ z_FYjp$$Aq}qqOP5Xa!F+%k~-hk|3`x5|tJVz=&m1Um+5_;e$~FOxy^3vGrAbIt zOQ>c|c%FSQ*?~`7iP&{z{yys=;Q+0U%mewMc$k`G-=~Lj17rQ|+n4smE|G0Z)X%x6 zNu{&-I=q)~7;|MFdQr;};AO-hXpSr+YM~(Jmqy)SIp0o+3$f8Vo&~JeJgb>}u#gOg zD%!4gNjy)H^Utsqwy4WwoXGQ-5xK)t(p!SRS+Qn{i!hd0s=B?IY0z6BRj#PLDea5& z_WTD?Z>1iW`QnScpxyHf0NCX zc>+{dGoY$&$~2r0ii~r&E;5`kkMWdCxTP(HK(wVT5EN4b{T`rqCV-L|BNpbW1_cA7 z-g^363vn*&6dWwI1n4;)_E7Z~+Fiiqkzwr)CdT=#vWtn$g-jsmc)O(RGSswQzY%0Yd#jklu)gw}W&t1JMP3``d zT4I}}PuJCEttpIWa^9b@G`kmP`9|qg^{%La)?~G__;cBEe0VdH8Wj$`l(7p-dNT^% za$VXwpwy$yzVYj)FiOhkt{oR#BU{L)=%N`EjY#u+ca38+M$E*i3G{3Ddcm3Wj8}>( z`%0wbmn08Xw&Knk$_}>T52v_K8G9`perCct4ob zB;oLV1!ewJhwJnjbR;@5QapyJj!rHi#_2w|&yE$QNs$9L%XVIGk`_6(jL^9mpe+Wg z)?waD+GA&?`Nm{50u+yszJ@QoQu!ILC;waE_5P^m zgycvWs~@7gRgcg}>JOdN)+IYo35%u?pAygSZ9fzAljH1;o4TQ+? z=?^mn^2A-xIWvK+lxJ@j?fjYR^(TFp8y7EyLEcdZ8rp}HR7{k-M7;aD&jMg$5XN_& z0m@tKsXTb}`Nkk;R=?=sU00_`NO)?O?#JEA{MBY&3U~LTGL^6aN2rMZ-V#*kN z0{f$AOtg%+Rn?pvbpS#kLA?465b9P=BnD&9@`$0??d!5jg`+Yce zVbziVKyz?*qbO%|mlR3sfG-7@opEXUb3vFo;&)KdUq{&f2Dp&l8%|~Adj1EL^~xOh z#!$3_!cpo@?~?{}-&vCEw; zC@ArHa?G1EJ6YnwptF1`ZMVr*0@kPgu>LW^$f1$8t!9%inK%}bIGchkkgt|?aNBKl zFkXyH`gq1%_oeC6Ar744q{-7vgDKJZU2H zA5Bn3o9-{f-~1^quL0;)lrka1p(s@9RPSs`sD7PDs=D2JmokT(Or{<&8mJjGU^a~g zsG0>~-=m|Gj3xH@yjff0$lACX)XV%M4Jo?|}&?U>-SN>+C~9{Hrw)35SO;$r3mi2MyI1ja;=4TbeWt+&G$gOS~yOi9Rp z%+=N18dcJ>SuP+qkPgKX#C>S>z?n8*YJ0CQvNNkgvuU8iIyYJG{?Foa74Gu?tatWr zIDXY~>z_59IfUsFgLOhGN%I4Ex~d}Gs?dy;1`Tv5y91|C3%JAmDFI^CYh%PityRki zk_GhSTlTUOWG_#klS+v3#MMw0J{oHCBEWuz@HHvAE5)4YOBZCh7=jGg8v?#Q6V&b# z%aI;FNkp|bp!h#jU-i@P0pIZ-at+Agwgmw94+)}Xv79pjvi!33P$b>x`}Y`MWhl`j zL{Yk@=rY1S8Ww_2N-glfT-TNn+m{i(==nAqANti`OHC)pe|Q}k1jJADBa#TFAE>dgP2s+W{}YBt z-@`-xIP}TisI>GmHGJjVEA!-!Fb4=_B$|{yGXUZxjyInNyU0`h$xtjncNZHH2TW-; zU>k|V!vP)-(Axp#4#9waKtQ)%O8F5!{(A>zYRg zj6U7#V)D|Qm}tpa*KZoFr`^M!KC9OliyzSx7&)F~mP)1N=OznIODjdp>8V@X`GyVt z)#~FP;`2*G5xtYT7j{JBZfL@WXdap~+DmNL$D7YaPuYfXPn02o5yE>4cuL{**K6-3 zrtsURio~;~DNL4Bd?QmfepEhO#Ia}@5f-2bH=Agf40RV?e)gydM0le5-lhs6>D3y|wxltvDquyyr}Y>34vtDe!VuF6VEoYz1# z6~KOt*YT#_SAa-K#O!c80X_T(zgQhRp^u*}(Pa#@H8@;!x2?j>JE7}oC{=gAS=a?+ zPTe9^%K^Pjc^AM)=(uyLql{*dD~GH+mzBw|vPf2ThL!Db#Z3GUwlTsXSq~n3Svk4| z@^YQzFU(~8)Z0FfC%e2<6>Kvfv^j;lv;&H$vo)lx8>QIpyL4dWK`QezI{Ch%0FqDi zeVF=jrS6yWK3;RKYY&zV%fk|?w$1UQ#=QKOHio!HB}?x2$Pn=G6OXg_JyTYo<+hc? z+e+f?A4t5>`1+kEr+Xm}Jf9=vec$KNw5)dEcBAlYzdrd!xRL#CfRuzX7eZl5ss`OV z8pQ*8QSbrMQBgLL=I3)x<@3GkqwzQETP3AHUA<#^p^Gv-$<{wi*%aREpS<%%dgScq z$UX(ZTYLTVtr8TJ=nVa@0$TB@$%;Y2`N#dl-(LRbU^n+{D+qo^&>XO^HHJ@CN?2CP zUFfJ`&z?2Y3%>miuDy8Zxm~RNZ2OyCp&erv^apL3Du;@pxt&%hnxNn^VuR){Uh7SY zejTPy?i(Hp6)0mKp(Yc{AjF7>O2$W5amR6a+l_)(>o(Wqd4vhE;|wR?e||Kb0IqlK zKNCU0?$9lnB?S~LSw5p$!va{Ai|23BPuwKVoyyg}?6xkTQ`)qs*&@cmlx< zbD*lY5zRRgQAFVnoF<0p>uRAz$W?+%+G)F zm>&rIW4qhFBYgo%{QGZ|cz{~}PD29*<6HCj?AI&j{MXySm1p|hGes^pti(hA&Uh%N&bmT%1LZ5VljeUVwP`5SImY-(IorYE zEf1X70|IX5Dl(4)-zx^HzDx;cJwz`I8AjC93<>%5d{+K~z6$kPG7o@IgQy8GY+e8t zE2znoMth^@<$9KUu4?vy_ zw;lV3p*n7Y3>&x^C^eXCP%J3BQ(oN#1Pw$BwsC=WBiyzFTc2(ozSpHbvg7mJ$}`Id zPS7vl(=x(BhQ8Xx6*QvW2Q5jahn{#9QL8V!MmrRr|4hFRQ(8|GCsgY4)4;*1!Yy;% z9Jl7(&(wT26-X|r+L`@I)IIL&2VQUaT_UcVSsCvGn%kS6?37hqALAz(_%HX@iMtCA zL&eA8?aYI;cYP4TGD@&%YSKZfE%S+Gq@Cz{)38pm`H0l~TVjMvXFYsIvk%4cdJBh! z8XV4$x0^Rx6TitF`07Y?8lb5j|2AyyUm-A#rHxo|r~w}fcm&QUrZM)K-ep%UXJuka z>l8K$-1y&r45R^JZcD1n<+hCOJ+^B`xwcJy+J8vu>kY205~4CKH;Izt2^3A{lSoe1 zBWY;Ps^PtM_Fl6y!}AfK{n@p-za3A`*>J}FZ;E_fqi>-~!_nyMsVdWUd8k;uch0uCt7|s!d`E^J16U zbWo2L4o>$1(466`;-6=aK&9JpYDzezzo>Ki$$Ziam32)<@n`SU52jocWX0bSU)=dn z&c>j|&44ya$s>nFh`gZ+8sT)U16WZVYTAyfic5E1@6~YGd-Ux64}=HG7XgO;6s0^P zt&~jose5b<7ndxn(-7Vx9}LyH5UT4R6W6=xQFSW}@lW!vIozICId^;t@{rxS%Z@;a z*(acRRq179pLN(pyjoe}^E#sQ32fXIux!t%ZqEVBiE<`<{W9WhNWIuh$3=AS2$3H> zq6;AJ(|I_s#P%n=TL_*qo$oBD@0fmo&RWD3?qixzhD%>zN)62d-+tViT78)JKoI+# zYH_KYs)5&ApM=trF?Hb+x;z2l?8G2sgO^(;C6P8`iSpzXdux5XG045HTimR*_h8wVm zFZnwCuC7w9bxP;0<;w%?)rB7)xh+xQ_Ob(SYPL^wjU*_d~i+ z+A#A4p_IV*$p8>rQcY$}cp3Yk>RhJcGUCH-JnSzpE!&f+`Zl}-tjB*UeX@#4hubkT z_Nqsg5h)8Kx;C#{Ge#Tx-CM3+Fu#i60Ce^SG<5-8imK+o7DL5*(E})|7@Rwbrt`L9 zRof;6nHx*tW8W~M<0*jP@w!`Iyuw4Cu zR0@on1!JZE2_N{IfKh+I;$Y?ds1L+ZRL})Ib%Z-u6yJ3l6kv9NrKEr!7lJKC!bfYZDo8`=D@#h4ha09!yqf|dkEB7&H-M4oJZM$9Rpa4fr)%Euw~Hk zaF7nBDG-t+QO*#Tlw`O7y|*wPh*_Q2pNsty;PC$pT!WQ+{7p>wZ^T1EEjO-YBmSM) z2;zDoIRQU&NqIMjt8`g8VMJSNDi6%<3kbocC71>FWkgqmwIYeD{5iyhj{uz@CmH)Y z4KZ*79yvjX)_!sCqpO+Az}b;8qo+0YYZhdyf_jh3S&HzfLzf{+%C{!h4XJ>fOy);1 z)lt8E!*)WsUY8-gj5xrI(!+c~F{QpWC!5=A3DG!!Ckv{QzkK7vEOH`?Svf04*#c{a zml7F5b2!#sKjOR2L7RLYvcJ^hsR^b^{4wRdA_}4zUdF;_)TB7r*Wce@e9`jE*7)0k zyc5m(AYY!L=;5bfc5!bd!d`2H!v*;SZDrdr+xs=yrVrYBd3VjWWR67Hxf*v7rHi3Y zml63Kd#ax`wWgCs2;R16attP2B_l@OQRVogRs}6-H#Z2M?tK6qOD%|5@e>6}_1jXZ zrtMl1MU0D~Emp|9#}R^Km$|Qu=it9cEF%u8mc``Q^0@RDM=7Mk4V0UCrYS~(eXxEkzZwV?! zqk8^7_TD@m%J%Oco>D0#EhZtRQYl2)WtmDsk`R;7RJIVZMPbe&31z~CBBrcaCtI>k zcG>qW!r1q*jWNsVIb8Sh{O+skdq4N{x}W>`-S_X+AM+}Q8FQY;c^sePINtB~=lwY# zjG`Zau1w}Q{FtWR?ufn@Q7JjuIF2yAX?l`rB;<ZUt-M0Df~=q(dtcF9wn)~;19aoOC{^r z$w=SK&BnIrmwS2Rj&0jC{FqJr0()@tST;2Dgt>Pe5$iiNz~l#~x`kfMrKRfpH6l27 z8#2}ryHp~(;2z9~GA;=!y{hCoi031fhYk+xne1Kdt|E@Jyyy6dqV){H23TLV|A#Se z)kDYTuF=;{1~fdOs<7jcvglwFGn{KPD7EeeD&)0(nx>}^N2P|2_a_n-Fr^WzOUH9_ zzvL!qiDiA(7=A5oW@%~p&EUGE<{$?g0S>=^y}Z`I=Gi*)5I1GLfJGARHfakq@zLFF z9kHzwVm^xZ8-_}4{X>2ZRKuunqnjc}r@p+ZuYZWxd^JSpf^okfLCGWLqZ+sV$&(qz z6+aayI^LCq?$s51kG#cKw`;TdWJ~Pp?R&?2ajR%>_)L%WFQG2&re@VRm-3d%*RJ##Fcb;Be%ooIJ%y(b~Vc z@6KjegekG0l5`+&hV#>`{wTxfw0(j znxYN|@c2O#JF9g>wXN-W+DA%TW#rRVrPJhoA)^uts{>RFb#-4Dw&;h@qX)ak59xjV zqszG^L=H^Em&{(pnZyuYry!VWL^_ zxNXeqF^cFdwAw1_qTc3PH4U~-Bh;JX2Nd|>&50qA=9h~E{bTw8(7^`~sqCe%!?gqLZqu1h%9HBZVYR*O z`Ql@G>01j`hGI)3T0!jmfXbrAP9B1fe{JijK~3^`b#78gl<(upaKv7rNrC4|c=_fr zylp|8kbx+CXD4nJehD>OwR@RC4CK+uop56E_jnN$n^oa@|rtR$H{7|gg=TKDlb7>0Ph8!xpf5PF2G)^ zMF)Yng8GoAOOd!p30p0Hea@CQ*EZ_Y+^#&yru=)CM4t)Cp1HY9?4vWmTHu`o)udBE z84r>JY1zaeS|h_WNX+!0h+RBRvP*Xmza}8f#n`^#Ueb|qy8yohs+s%%bzkfPl_Are z;>wK)ofh1>rsExd_Ae?fh%Ajlf9Jq>b6pQ$x-)=VZ%U!j!Q@H+BzR{#F4q5$);W$@q8)ObZd!3dlWIV zw2nYWuEN_?0mQPhLSRZ@z0u3pixdGSZi|K$)&JU{U$>wAN~oK)pcci9Do@j((!qW`110eC=$58&XsJMf)&!I)I)}g>&ng5dDkX2Ju^21b9CR1V*mj)yHUu z!WUf)J+FT#b(;Qgk_vh!n6snM-qnCIz~ojnC8)C^WfbMHR@BCiW|rMkH#EnCX=_Rh zOe=~~jN1;9zmQo&2V9i)lb`C`ZF0UgF(X`ZJ1~9EX zy+1W2?2q5D-Ww-url7x=Ii);3WwX?eA`g^-B2(Az|3ob$1}0DO9DA9b?#geS_~z-& z=dX{6bt7WfFGMbjrL2YZ{=5kW1E`Ns>DHQ`||PUuK3>l&#V>wWwn*UQ@i z6VTY{jiGD1b}vn|7%wUn;`wEXg9TQ6@7thG1!@7q@-qgNPwx=R3s}LR^&#^z&0}!D z_xAD63s8V`@$NA@>x3ZD>F(3q)t3K#zAVl}Fc9>_Pcq1^>6Fgg(f$>GR!HLw=`4 zRmW_j7#kB`d8#GdKmF)nnZ(>suH^Ho*%({#8FMQE$&=e=^E)vFrXJ01Xdv(>TZf7O zEj>wF6tlQQxp4+73rPB8a}F15=9prWch<SK?$c6^RO(hQ~aJpGSW@+2#2Hwn{bHZwbA4g8Shfn9%KI+ynl)2YRw)Rt66W#(*0v9 z(zMX=K&iR|GBF{ zW;yTIw$-oLA=MU~`pPzScvO{nmiY$rHypz7>@Q@4<2ZV*bq#l)q6FB6U^NE@*oj_I zpEdwC^SdCKjcfRaFC3T_e<>99+r|F3i~avOPUQb#F~M(l`c1$4>fet0-!AsQ-S*Xf zyZirp!i4`pzuUCl`kPbuZ_Ftm=hqQgdCd0?0L|ak3s4_}LF5Eshms>#xsHDc@4`w$ z99H$ifa)WP&~xhpvfr;)?Ad+J9COS~>70G5Hlf28xdxzPuB#L)*7it0cq;%ZDs=za zfU(NKI}gxjCC1P%4 z?L>zh)aO)g@2;)nFt<0OAr$T*P85rf-A~^MnHmF-?Ty01Ln0}!LNo^v3MWXB#NJe@ zcRP?OqWsw06u&4r-@Hy-;gfU##@wK@*KLZHLT`e111_m>4>du{6|GjuP;^xxkG>(x7u7p#?u2$@7xOV_LqiC%o0x^%YRC39$ zQ957m5>B91yh`eS?6KG!DgYetY*hiLG!0o_?gy`qNcdfPEi3}gL~c!-9z`@VRjyhr=%g&Cw(8-Gp{BX zn%}9_I6Shqoli*C`^C{4{VlA=Em&^296~vi$a;!-aP9BgiQn(8JDgMa=6!L+uKc{O z4%D}zqJlHNq(CG!_mQxx^F(sHUO)&3a~JCitmJtcdW{pKIXIA`>LfU=oyxgo4T)6q zlhlR69lI{vGRfZ0C@XKv1uDcPGlnhny~TYME&->!<#4{*>}GPkc{{R@AQl>NRNXQC|;9g2}%jc*qxBH)2+uQ&Ou{zo2VK{$IrGv`#0ve2f_7TnYx#v~!-43~F zWf!l1`!iLsq)}@5m`5iE=d#kLyGf^m*Pf~2iZubEmb&@JDtf=%HFR;@5LX`0b374! zWzBXNnmM)LGx#&qjU4679-yRb9%H_0s2F}<2=#b04|;oY%4nzWp-eV;0fnPU&y$gl z@IfvO`uZ&rgB>om`Dqe%Z{EW(A*EGP+tQZfcaVNXdaQm2+g~q9c z!=u)bg+s?e?EM`apCaGUkG^i#l69^Ewipq2a#Z}VsB(c&+Kp(-Jg+NP+6 zh*mo;oh16cAKnqzZpFN!Q&P2_QJDlOS}?#1imCbl0<)aiqHDaIAg zXTn_^U+5|5u3?@*<=b%`q-7x#lh=BH8EWG6JY!h}m%AhXOYEx3rPyLOa?&?^z`&Nq zw<^N-t<=snMN@T_qipd~GYq9B+G>b)p=TwdyV1RIw^G2zRD0(urxnk{=H%E3=`L)` zH2W~QhZPH8k{D52_f?VkNXzYk`7d?D51YSXcgBLJ`)|MeVxR|-&ncoT!_(hX&YLvi z)C^6-e`4BRfcn^VgaLGc&95MeMG~~A?clCY9)q7re;L{CK89Yqq2dRTObhCwdm?LQ&fg0dMPsb3Mv!aVCBop*t z3beqYw88nH*i2(9NoYEVSm8-kq^13ur>KirEc|PpVv0!Ti|R*4l+VO*fZB5a#9LTM zjs@hn)F<#$(Y19103d?^ELqb4NaQFKD<&nc%=#?|!DF60SWEaDdeP-45=bl0;Wq>~ zyqF%+XD(*6oG&yT1fF{4rb(DVS1aJOot z(vK3y-Czy?qYA5&vGmn8(sGDM?U(9p7EJWJ1v{@K##S0$jpA3WP^3>5O~`7KPT#MW z{}l{Q$JlI?p8Mc#%|U1Efg3F*IvllcYFg6jvd+gpoqqGfSm5$`dF5})so~;{Et@n~MxtjE_|EKhkhmSHn&3iVy%;)KBAEc*Iq83eOomk_J~6?mXh?`Q+qfa*H#AaX|wFeH6HuH zS+q0%$Dz;(?%hWIh~1i-N#{M!f?!xfYe?xnKHx9YFRU7Vo~viI&RN81_nv z6ADoHFcF8-qEtKj<~*1?K_X-a!(m=YA-sySu06nTv97( z{O+r9Vo!I9535R-DU&M_%{w{hXjh_%N_5dxa}nIg#{T6HhZ&V%A{AjZ2k_8W7+!#Q zClfnT{)Uo6;tn_sL(iM4ZcQoe1s?2)&(;xlcVbz5xpjXf=%hUt``~PV@Xo8GZQ#73 z!hoQ7a{$ci+ilRqw%k-jjJI+632N`w{$rmt0wlK?{qa;`I33Y6;uJuihYzY!(?K@N zK|qPrfq6a>i5_~6wi%%B#lyRD=3&hY2`lmHde-fvMbg)`eF4+V$Ac0FJS7)Q=e?C2 z@3P*dTmQrm9LB0;o6gCEskj?8j|%AQa(pl7B>Lu)q)o5XGU&vORRk%=dL{uao69i9 zvCjywX>f}xy?CWM?H#%p#`7q3I{TD%GzxH-ol8xhfJ)d>CrlR5bE0MTg@?Jieu9{k)4 zFomZ<@C>nSgiqk=*Ae_ByJOt^_7p0)AkzWscPmK zzgc6D_W|ZbX?Qe<%Q7Y*Gqy7#kSOC7sha>_!+*oBECJp&J`}SYg?&lN>YDLmsCp{V zR)-{bX-#E>o&wnj>3PS84rvM9d_QksLwNfejh+ta+;$%$*{3E3Slf8;dLFvd9-&VL zX)`EhOhya;1g!9I|QNp|VXLwX&~`w05FIE$z^) zzNMsVy0kFw0MQ@tL0lt>7nZuedTX^DyF2<`SuK>UE!;b6N3BOZ->~ijW z9@VWIX#ZXCh?*CG%Kx(Fq9|pkTnEx z3-GJ~PgpmIPoX;w-q`)Po$lDmaO{3*XvX%n-r`R!cerJ1sY{UTt{!hq#K>?c!G=LE zNKWT++i@T{zKp~VMtTZrQGn(OW=L-Y?B{^ZLarq+aLi4#{Do9QifL2%=`GV|C(mGy ze`jdtlET}hkF(P+Wrn^Mjc+6@889%pHFDpkel9riVX-AqI<9+ z&?Egg0jPT)ASl%WRwF46J64JkT}^!O#yW$oM`@FH{bz^Taexsj1lvPEunoJEP+n6EvMNKG?P8Z^&Go9 zL#2VtsiXZh5@zwQh8r&SH|~?qT(x|&+09k0R5yGV>AgXE?ET0t{}m5y_HwGe&8@Jd zwCl!Ty)}1kF~9&TIA051nat8_aj(~&yvwQ+TP#}257FFVX{lgo25N+Bo`@qB%%TUQ z(K!j7K{A?RIX|px=NR01b<|hu2se@R1JG=u^7L>Mue)d^mdjJ!ZAgO8I@FpkH*nMG zqVipmk_Y#OS=_D73W;~xu@Ty@{SlWI+|+B@Ke>8+;O13om+Xw7g4w;Gprj*V5nJ{= z-h!DMpAlx$8DUoDL zdA1Op^PolswT$&uhIC-6i^PfJoWh$8rP?*$wlQq@VtRpouJZ8c9RbO&lFp4~n;2*+ z;PboODA|KFN~5n_Xu5mHXr{WpUqAyle=<+si<{Mnix+B;Or{~y#zj5s?YM}gdL ziQ+-Ep_MPxXgUv`-cy%!zVa9;-!(56!**OXPrUq9$~GaP!yMyR#={PNnF${1%yTp3 zx&E`ep1OKqE=yhPfo@CtsL@TQ?MmJX$koO?hUpY^0Bu1y;3-Ob=aTInTQk{u^Y-4{ z`N5z$iL>T2majZ}P+pQ6wV4hww0DfXxMuXu9L*xll>3w^xcAoDx4)ZCn@w3WH@Ha)!f&Pyk>H3~>Bs)AH~nv!fZxo>@Ba8b2LAhwf!|Es zFNeIpJNW%>`}HvVyHEbx^~t97w*OsB-2|G_TyjVm@0$)S7f?xOZI`bSSw98+R`P)S zIEf41Lu}!qop4}Au#Dl#A0(DYF0ql$0_pqSmf(O5b&zIE3&HU>^;S_GZU3_DFxT1v z3=n*x-N62m#{7)pM^&QVGs2SSx z{YaU2^;6~PR}{Sxzq4vy;OMw}20*A2{7KND=MAX55N(a8Z<`#Tp^#Wm0No+=25jj0 z|L{h^MpK`u4s;j+z$T@q0W=ij-UXL^h9;h2KXp)6XA~$XGS@eV-91#3=F3^cb1Q-A zT=x0u30ChV?r_m>-zTJEMCbUX5_6RM#BL>qs>ra4N{*T`Ranukf3#UHN_c8X-%@(O zbwpfMnno|@&+xD$Mc-n*08jMO^#1C*lk8>eRklc%BCExy~j$@#nWhW0$#nt6hq4TnH*(40!1(dHSN!19FpGE^<9 z`Vrle>qDUL)9$hbdma@dFUCly{9@JFSLQ23LTaQPR<(+FGCxlM{}nw*5LAdN!{*pW z#1&O3N^l#SOfHGz^oDj(LXLbldZcjl(_SBI>>(AD&58zPdw+#>3Q?AMVH9EPZi+ z)%*Ui;!82Ei|oj`m9<>PWnhouDFM!etEB{v)Ats{i*2sz->&ItOCJ$1c(kW2D`vZ1 z3fICuj?NHkd)LnQM~PC)5lNeq`=`!%J>~RrMSfNuan%`9gQQ}VSgGjy5-+oJ03`m} zVenaYpzRKoas+#(mRHo%6|d@_MZ4z~=io;LCDC)1IHQq!Gr0JX$nRaId&|XIT>M$s zy5afF-+r7}5RBsA-SBujI@l)Fak$A(?z*O}EBUm@eM`L{yc?US=&n5%9_&%yf?4!Y zlW-VOr^dnhNef>HiIXZ)T{*>qYT;!~*9%_sx8$X&9!mS9x@!c<#$N0U6#nDkP5mg^ z3G_>gc9osBKT&T(S;1*FEd-6ZyZ(R~8?YH)Ahw=k0u8+PO%o}12Qu;_TFmW<2R^m> z3^1j@5xeZrz9=;xw}cJ5n#RyYE|?>I6+Y-CLj>8`n z7xh$cG9v{5*2XWv6AaLh(m^a^_auRCAOIN{FjJVnv?Xu`^<`TF#i?=32e7zqqOF3| z0sVCZe*Ohvr3nK+3R^>AGf)%*G!3Q!al6S1G;WOzUa7{ARXhZkhEF2C4XmAp02wiJ zx0SSG85j>q*F%0wDm#hU&>hs;IR_4q=PjVVj?hRXzDk`L=w^qnMU|0Os&zpGKb0EE zA6EnB**=w|WgP&xI4+lB8|RtaTmUz%Ag#V3cH@>H{|V-be6x;SvxYZ*SYjj zUUJFK9Z96S6V!*A((05jy?njGOmdr_^dCB14n6u*RSMx-6PJ-KER^M=zc5<%ID#ig zsnpU0`t+so;_M;mr}oYJp_vYvqK05Ur7l^%V<)zoe-*K? z=rbM@;ojeLM>LQX2OsY9JWWFlbMbfAjr{EH&bmcfwYR@{VJDYqmPQhVXh&=WvFTJ$ zrV4?=uHE(_^nQoTkDCeDd9_3P>+q#5oL8fR!>pb3?NB~x^)sg5EzLr7j)nHM-H-jM z^A7z1)xC2N_l`0?#7V%22Gg`zRWAtxmx^J z&g!bqE8|W;rCK4 zoX);~)|A#5Yg6T(W~xwHi4w;&qqC}mENLE$^X|e}qgMwOr}i3|ydTmoo?JZEKgF#w z|B3w*a%n|#SL=`Zh&`E_NAJ{@f3i^6Vz{GwaY$6UX}S!E&>uxmWmj8RKVG(8Sbn%2 zcC{~TO8HwG$iHEC=(*TGNR%7%YseCip4&CM3I_(n63ZG*94PN-b*Adx=nza?zh9D zx^}Hv)sxZw5{9^^V4ljNN63jA_C53Ps~05CX^PY@bd9MrZhv@=>ZQTCUv*R8? zrP`#Cfn_}7U^;p^e2#Q!dMO*`0P2eqfYgAxD?xOL&vQkp9B?LsoDd<(6Tm79jWtc{ zmqCjn69X%w4uJdWEZ`Vt3a=xMX1oSaJYe7Hr)@tF&(m{1gXs0Ald&zUiVm1KTlymO zbwCwcV|N$(ab%2OHBR4(BSWPU&M-lmsk--f&%-R;GYl zh(GIU5rZN7b;O#C#37dS089P{rpsVaVs-#re!?&zF=`!=#BcL%ralu@9ubFrf9oWe zB5%=2q`w03#BINz_4CFkeXSwj-J>tI23GZ7aCkTx{a3s`!-f$fYqfBg*n_2=z?N~I zLqv03i0-X|Ba@jPk4E~tv+p6zpTKtAxc{ z715V#<@A0EYue`4?x;_hefH@e{~+j1@T1dhyMzZ(YkN2BfbRT2v-ah7Vm^4?>Sk{I z@z?H+5CD_g+?^Xv+YNc_G&Z=fdMP`p*W4j_-zW6kv)+>JL{C<->kb)ouLSvYeUM3F zuG==9gu=H^nVatw?fz=HV%2~N8|#@yv6b-rWSY}bhvxkZ?eA$D4zrFLOe52-m`7K+ z*St2icR&5?Cn;$F@In_T7(W+aO-H-eASRtIj`aSyy$ZRPeN1zzVo~#0h$gXefOZ@V z(7PoxBAKwS{$tdY)-8KSyt)dbcMnZGswkh(#tn95^Sq*$_?*ih9)9}K(eA?k?))Y-=)CLN3W!_6l$mpRGmLFH zHy-y25^W{FDD+5vXA}3@;VR5(F))<7+}&$)V<4Dz1T1#EOTaRUaSm)S5gWB}?~Q@L z7a!b}g?SA(k`~Xa@I&4C@#~1mW3Dq{8(v$4KfSh${>S-eL4%1~NkfF?BE*FS&O|52 zXH?sanB4yGb%dZ`QtLyA`3mgB$?8MEH3sVm=?NzMRT7gi1z#%Jwizeuslt}Lup4yK z27vzKH-P>-o#J;o#qTljKV}U42GD;4=zpUW`wfo&w*$xjBja?_di#GdfDXWw!PJGl z3&UkgW-lo1J3;xupQeOqY=kQvU?y9wa!xJil=5_w?f7m2c*bN7*xk;otSMtZj*8Rn zKS6bR?hqY4=r&6KOl*c|C*ot#z5CYC;~75gq&2~QQUcBs(+|X#shJK8&7QJrDjkVf z^)-?20B1GK4=CP27kF>PKl;{})d`)K)>XsdAhADBg#Reh*|Uye4)(HH?hLpHY|+%K zvD%n=(ia_OlrWw&{T;pR>Duxf7E{KIJ;_HgX1Nxsm(-Vx!9IAxZ{;m!d3CU9ZU3?a zostVYF|@Gt#~~fuE|6)BzPOGc0y!ji?$R2yd5sX}{*iKhC1S!QM_0|WXAOZN^DvS7 z;Vae8frBw{dzI{(oy8r2N_EjAY3^F^Hv+@?w3YFYd^XpR)Y8#na8LuM&(PO2AUeAn zg=KLRZT___-z=Z3OY2Hzodd?MeO~APd4_JH0kD1RwID|_y4skK{{9(MA8)P8_<+&ZwyNnifBUVKYr!JtBgRsSSfo61He(M9K zLELRyN_y41t+PcDx@T&Ob{>7l9WqN!*6T9ME7Ov>)Ctqo~`VtQf+&0Q43 z{FE>7BIjMx<(;Ctm824*dnj(RtcB|9z?~+RYnQwIXu9hFZ_$@zkwZ$djwj{Bld=US z4=SH`y0BFZLWj}SKz}NB9xJ5%_;CMYoodpAu1X&zOUGHk4DWh_*w8zkGS?&_pj#Wa z$T3|cFo@#!yx1NTJm|%-YFc!Cr@9qey{-=b`%g!B`dR`UGXsw1nnr%)tu8|Fjt+*_UczVV zIC!9qDN5%^S#^6vJrIgD{Ti^-#rl|Yi|)3Yggaa9W^^ZjDN@@KI>gICqlg0MLLa7% zsC7m;p3W)VJ-T$n>9tRv`60f#bl`*1Ky>%f@8W$VaCyo$M0r;u7L{&>IYpMDO29je z*Aa&aFM*hN08k;#_O`%~{5WYajI_9ehF?dRE|XZ>#z?npzeJSbKYjxTVK7+@T~Ti! zih%=(Qa+gu&4%GryQZs|NaK0t8I|6DGW&Auq~T+#A&@a($_4z5fD@h1Hxg9bkBFnKIS`M(G)s{4{o{5>5E3%{n3{ zH*jzL6FUZ1#y51j=P4|RIHd}tk&#(whQ|w7Ri`_byF8Y6Agi~-&+f+t%&PpcL0XC~ z@xUB`hsKAn&n@&BVV!T!073r`&Aeq!Y?1-MnZO;Nps*S<8H#GjKN3fqSE3a2b>f|l zeHox1s?*gUvQjyH`#t_!0RXb_Q5>RlGyp#pa1DYI6dpe%1KUA?6Zdny&b7{BYrdClePGlSO=NT}PDv>eXCR3!GHX~!o~lut@G6xR{< zd2mRnt~yyE3jjKC%T)jg&K~$zqLn)LTG6;MyX?&Kjs8Zr_D zQ74$EoIvHw2K_H;YT<7InC`aXV1)Vk#h{)3&xIFOFxJJ(mA15Wzj;S*!Ki%{;CH(}xgFrhT)~87(p}Iqq zzNe*`>kd3{(%_mRlPss#$gHQhqqk@~sW00etneE0qmjni@lu&(X<1?6T$Ks0%~11Q z%ZjGb*a8nDPvW&wQ1YWx)jl?l^>*cL{9%~}DuK`Ab2OHXqK|dx8kuJzcal%XpW}KC zbNAM!yE;GYEpBC7I(9wo!nS#9-VvdGkrZX#FXDztLJMF1i4mAmr2-v($R^4UxUvCo z0h&TYb0R-08X9@(2}W_IvnCk98q+Y?H`ix6?3ld9e9VQkK2JD-ZM=S#Z;)a({a0AFJ0N$ zv}{E_4iL{L(Dj%?hDwDMZH3Z{<)QWc)IrZtPrJYk5pd86LZ4q z)DU2iEQr&BC93{d5|=6kbua;Ly8yYucfovbKn3~!qwV>Bru}yf0Z_7I{``tJHTlxmI-tk`yf^w4vGa?^rs}H?MVc%DodR~X+Y-`8{ zTo+_$J=j7N#W4DC1LeoJNNQi8@-2@Cbg#s|5;RJ9nOOFOF%yC*S07&^w3qO8jD4TT z=&J*=kGoh?T-lSCZ6q7)HhXz3Lf*FlisC8iI%2q+7;M{5vJ|*^pO7P0UPu0+YHRp# z|Ae^t9s+B3VWwm8DTxzaDvz~#@1&L&S*%IXAAw!sQudnI#<~3;z5Ztij{nXV2prb_ ztyNH+K+`^aRk6-w=Z0~_)aHLaj&ntj9zedU1SE`b4^(Z9Tgugz(bvyDFL~QoDf=jX zUP-ORs~fXqgzZXz(4;Q_yCJz!9I7N~(`DiH@U8{!`srLJG4c1|wvVbe@rS>pTb#?d zhKy@p%;w`{OweRWcBFeCKU1|VvddSRqi&hzu_GiriooUy&+@n(48XoD=>2q%)jtx9VoY)nI=@h-Gbhs; zm33Ki*r{{4Fze%RvNJL|O~|=UD$ViJisd~7N*~M3G-8o(TbSowkekXQfU85ryKV**#m})M%}k6wmb|E`y(?rTPXA3mhc}Fsn|Ff z8aU@~0a!rrKsA=Sdjm{wz~+SI%DK1=j*V)|;<%yGYtsI9Dhd-%^1?6iz3@SB^~Ap* z51wIiCyis@8!*}csBnO$;IY6qq(;C?%ir=+FWsjl9UMCvQ#E+<{Zj=Mqf4R9hn=zB z9SsJz)PsY3UaOA*K)VZ7E-2Dcq;;^5u031a&6a#dBMTgLgSu9nhlqP8eo9c_Xfl3x z|LM7RDWw7pMc-S7gWXQ8u(Q8;%(aO&#?2wbrqyGT`B|l5p`}P7x{3 za)ysAAFWP4f)2w;buIfcY?-3Pv`h-ytu~jJk;4Yf{W2aJ!EVxco3vwUY#|LhYq)o7 z-N7t*n1qEV`MkZ@A<@^;vZ5HxW0=+Xpix{*IEaj1CEuB*2f*)3xNyy+T{tP4O`S2N zGuI}fwUXb|y7g+RtF07Qq}=Pz729fdZ|khOAj2%ty|RB)s{CHG>@u2oMRaX1j~vJ5 zv^2!**DjsG!l=+;fi1jP7(ELCSh~p|-HR05o2@fP=v3a&B`2?`f;-b`6^<&$a^;Si zlv}xdGM0KGQ~$64UvY6D3@6>S?7?vGl>AB~FqEgiL_Rp}n0%j8kZAK#vcB`<^AyBL zDBJg^=iXzMeE;v;%CvTKyz9of68CmI&ox9=z@T|lgT5ErPAJt0Ea9bfQC77UNPgmG z!E<*nJho5U*=uSi_&`$Px9tpEB(z%x@3nPKLu3FdW*+iyIgKN9aa&( zxOcKZRzKjzc&(Lh1w(eZ8IDsCV;WH$O7Yun)4Hl60v+t^(?`m`KJL;t6Wt|(Tgqf2 z>dtcPK-F^vG4G}@FD%654SPNG@yal5a65@DNHjd1>C6<_-9g>_X&OGcAQvdH?ISt* z_L5P7ZjQExR-vsj5@%7D$%=Cq>mIAo_bdL*Ksxlelhi27pR#(JuZ?w`tLt!=&B}cF_tc{ zOge05v&DoJIr^2M!3G=ELYG{c zBP(S4Dv}w1u^ZCy$L>|)fXIQMCdbDNH)K{}Wd9Cjr%&GwF#=kV>2Zo@)_ej+L-JYJ z8~WOuIXcP}f!w;@MsIx$*z$pW&)Vw-@e}%rt9&q5YH~4D^P;& z9ThQW7X%YBK2K7o^D`XrI%lJh_60NcOY+O=%RCGE)PC9~O0jS*+>hNi)v|eOOlTnC z{iDaFi~8&@w$^dY#e^+I%=9qKJ=Iwsp!=VS6xlY zn)&hj{^n|IZSSAz(57Y_Pg`B~15=*{%oUx~GF#o4{ji^|WZ=On)sTdnXr=hP*OGugXyl4;MdA7sisuTo?Q3lc-CFO}Gm-+Z?HqJL{% zNX57So;$B><|)65l*AZHrSHBkPpCbPY@@Z6(pSM)MNXCMTu{r;?T~)_^QU{0c8$A* za>ol^%`fzugDwChJ3({om7ON9`iEnN3&g(V;@E!k#u+}~6+6z~>rd>gDe@*XLk>29(Xy;a?rql@){ zD0+2KVXO~nLPjP>CuHAl3fgA%wQ;M-sD<+bHONZP76s}YFCM3+64s{H5vwh6vl#SJ z2dFk1XXF71`7!hvNnPl?Bxbb3>yk(-I4V7LnC>j4c);mq%y_7F#-q8p$F9N+!s6o- zT+IDu@HG(!#%5skGf`u^+DLlS?)GZ#bpYYIqaG_|9DYJ#E!*BS$ja<_QSBkW*bNun zCyr?S>lb2^2^1}Vi_mI8g?);$($lx&32P5J;%!ZPt1S+d$6S#`-@hLl(7k-||0jk4 z$^3(ssuiWWa5*!!??{lT$|AYHeZ?@~@EH#xbXACtzt^& zoBMiiH~u&rG5Af)s7E5w+#B^ z-n`#KsmVIkbnQkkW_oS6rl3@TtccfzO3izlfWGH@UIO7lxe4~c)|*1t2)P)*dsOH!*!sZ8lwnqO8m!7Y zqy4x3!k-YwYDw_}-BGZ%GcZG%bq4xfXI)h%r>56*lz!JY5=Bn}*xE2&^*|GnT>}Ob z2_|J0qdGSf-bPX zv0dG{L56ty(AX+)hq5WFRjC6rTzh+uR;)Jh%OuRTJUeo~eNFF>=hU|oj}6D~Gv#7q z_uHC9ZrE*-p-ZIw8%Yh|_P^aaw)#ZyYm8XOBUE+|s3fg8jF)sOF|mzFI-c2ba{=pv z<;ESS5y$=?fYM$~s{RXASex}=8KJ)V3l#I|WVxmAgmEZ|%oxf&?V z(4%8swD!+iDIMic4nO!taIU_GjgeBFtDs$zLVMTV@;;Ya*XaHKVe<8nRVGsI`rZk` z?&bGOj*iJXcsluw1l&&SrX5y8P}ubGQF``TQ)O>ny>)pG&-h`0 zI*d2fmi?6t|Nr7=(q8mnI%-kQ6R^2N{&fV4ABpSlA`3H-aq#7NKWJqb0*OlZK5*5f zoQ!>{G6A~9X`|Gt)BF29M@VA~y)@jgw_YuI}GGV!UB8+e-uEi*N{9GuO|da-_Y>_beYBYnTEvag=S ze|(+V_VJHP#8T>?z>cCRc%`oh7Uz0^(T4$xOgC|Nh+Xe)&CK ze$R*BapHIU{JlQ>UN?X53;r|vB|S9;2G`mm?@EgzhMtyr)m~7O)L->EU{r9!s{QYeH;j>|1@BA-T zAt{jtlb-N)kSuo)%jV$9PBHQC@B}3J1HFbqGRH70Y78ry3oVXnOv5LNIGmZZ^T5+7 zE`?1)qn4zwUdC;K=!x7OLQBcMdkR^TZLkq3KLK!Xq8}(RSw9agTzgGM9up9!{+!s` zbw-285+%eIj}br8Uk%2;$LiCk)HU~-zj|Sa@K)F&_#*l?mZDXmT1jFr+E3R0F>t*l z&EgHnr_kT*&ptR9u)@LYbsV*m0!cZ0)!LFp99()C-T^0*&;CQqZ7qTdXs%H6g;myL zVHh7&5=ndqJs_;f>Y$*m5NLun9k+vd^9iwj#RwpCL}pml76* zC$K9+wg6fQC%wG_$86Y@9mV;A&zQo&;>uTJ|D>SWTdv z94MFYSCOYh4Fv+2$X&;9VQYE`epFMOaM#g|Pm}7;Z!4|wO?JDyu)GX|Q|)S;s~O+& zjp5p+(NvgsX?TFOAG;qKj9dj?a+o|^1GJ??Y62_BWKXk=+0?bn*r|N0S94BWI`!*a ze`LOu+bfYzbDEVPxy#TdKtU+HQhE+(x*t3_@-H*X=*dt2I9jM?VYBB23sC zPnUgaN97DG9(arD1t6F%v~lpb3t!a@ z{qCiy(f^CR_l|2STla^fs3AZ{czUTei8J#=#_qlV!Q5da@L#Yu=Q5{rUH@%A*n77wsR`nis3cgSw~Aw zUlX#0t(h{c$mVT%+4?s=@x-dV#^)AZ9tury#jIUF0M{h(u1V9AY2HLRw13WnOyk`R z)fs9*$6=LvceE<#l@5%EtOxTj?T04QQ6Ee$d=U=dk%Rg@JUK3R(ak2jPIxT_SU~zy zg=a9ik9(>=kFc?;W;%F}mt51_nRV*@g`>9yPvxj;M*1XKwU!Pi1$B#y3%8_RQM+I1 zm~=T*Fo^FU`$fJTLT`d-KES7PD1kq7#seuw+R3lu@?h~4MWCp%MFvsXqsShheDoH} zirz&Q-1~OD7y5lc?ZUby8cXIQF3g^}Wghb>q+<1w7U$;hTP2T%?u30}-KFtqX$SKDD78kkV&YFcgLtcGMeUF)$`i5BO#`IU}0e*bG_cUAssT;#)(tJm#P zK7SD`J>&8GGp&WDL)uR)rH;UZ!EFa3kABMg)Ui1B za(9r>gb@PRRxBwF%r-oZ=738#IiYYoI!dj$j|Sj!KSvT%4RS}D5(*khJD=|9g%xf4 zl}R@@w)wlTX=v4s@5KcReAV|N67nftYTQ{?)>Z|fl9$tfoaJQbFE}}zoeoJ1^`!LZ ztUOYhWRzAl9B)A$aEv?O5nFC=Hde${_w~l>_bjthnS(3ug7kuXVmeazGBu%%uxCIu zt<&RLA+5Oq;fh|%v{jy=j)XjqNQaPr+DPdQQ?)tFH(B-ZQ(Xq`{tJ7p(3^2Dos zg5xFooImGAgiS693)b!tJDDDRHBKu8-Fxz+HP`wX>@RZMF|;5HV+(t{-i;Y{O()kq zJw&aPLkHchZ|;VfD3dW&@-!y@U#9NPFyr^BvFSOlSDgD z@)<4;C?YHdtbCDln?9EPg8dwY>w+WHa>8q{+l7nSkc3i(2gu9(>l{&*QHvW^rgqt8Mq0FTcB>lAr!oZgi%#K;_ zvvDr_Ns%+_S3Va!+S{WQ#II>(u=CZ!U0$L%PrJ8iZx^m86`hHExdyg~0%ZucT&foh zn2}Xj9%ReFVLU>7DBH!j%~@h@hlinwTSGmoUXR>Ok)X4Bs@r!r?ZSE3rN4I0vV8g` zL*pf;&WI*6S%ag9mTtz_a)3p|kIlo~L_fxGBcRj^rn4531n1nu>FIX^M?ROfEl60h z4*!xv)-@7)-*^Q%++tiEbahfrsT5oe0JyTz7yizx4e~r(=T{KWBsRB{^XrAR&=+Z9Pt?9bGhST( zeqzDeFvKQX1SO$zp2SRy8_s(!6+%0dZcq4n*%5stC4aPaM4|;+mif(*vXY~(OMpIF zz2A`O>2dXoM0=C{z8K1a{*9tTF_U%T<{~K34x84-1%_L}her#dsG^8;ci07>TYl#c z2C!V)aL{omo|Q*wT(;NxJWV*K?$?$FPCU@usZO3X4(L$fv!n1@2$v6=w4ov88^fN) zK@~$bZ$Q}hxg>fXWe9kkdA1mSqXNM3?2gZch8a^XHyu}{)-KbZmS_{Cs_)S*6ERPn za@>yC%YE!JR$t_NMvSr_>(V?}y~DGK$WK3 zD>i%fs>IwyNA#Z29{HN==%cw`r@y;zSXS=5=t{m{M1PI5+pGDjG)_m6pAe;a7{x%jG0DJr%BTkYMM|Hvqym9^| z(5%_cy-6mO&ZlIl!D*L*WycadBcku_;FO7on1$!J8(ft)Jd0Jkju!vPrD**0((Af} zgQ?QWKM7C3U*AUtLiuOdXE?$YpAATLCgo)k`lkP1a=Ov9JnewbFt!rT)Y!r}Y(UK`E&a_gqpx@w)b+v$GF_e)u27jN#VmcFnE_iWM9nyEBMZQwmX z20HgA2oi|EF5xQ&Nupl>jUISVt02HFCOM9{&<+6F5;233VwdIXrv#|q-`3A4$?fPI z5NyrPVXrx57%rT-kJ~zA`|j0U1yjILK=$u4JMJ+YACkrMz$o@{T)B{9zWou6Wv84Y zPSHHMH__5!heL*jGPh?b_*Z#%aLJxfld}Q+GJ&0hp99UBuv+;Xp;G#h==98LJTctZ z{88`yUlG_!?WQ-_I60SYnYD3e1!{Vq_S*qHS|?5*WmAWE_i!3*B3wG&4<_kELIjD((Vnx_jtCl33&SG z5@>}Uo!Kl7Jdr(0K@q2K1)og6xd#$ag?yo_=EQAnRT`>tIW4&cX6GcO*IByLlX|%& zTNH;YX^~3u8yGknWq;fA#>u0HPu1%{Aez`o`5!{wRdKaT(|r{jj}7>pezx!eJCNT6 z$>0+j?=@g+w|)N0=L?lF|23xrTY$1CJP(qsIa_kn&epHILqz?cwcE3cJA@t!?SGJG zP>wm#7FeF)k*fq-d)ew{?lS}pTXACj?xfCG*7_8-*T=KRKE>UFn`4`eRoAvyhC477 zR8a<0B{@*J*@H!qI#7Cfx(XgV!n-qMdw=rM!kc;L{1Y9KeDv1{?nDw==TmFGxVFzD zx$Hij9mJ@jmk&M1w!H|y$aiSB+)6yxFYy6^Wf{)X0SIj>lB8XwB178s0L47D9y?Cz zxHC>w4lRk6@p2H^H(;jK@F?PWnD~6g$)2JQZF+(&_kQx{f4*kabO|>x>d~$-1cUr4 zjDMbh;-?}@ArgOo<>CbRJI7*q2j6>EFw8CM3oal@<^aLahAdPQ9gmO^91tYN2Wut$R$TAtOODvE=#mkOZD zq)SC+c{N>$ie`C)`Jngx`xB|wy^q?NmMUZBdNGIa_!(%=>~P^jng# zwZy>dxAf^8QC^N>P1(R0!N=#t-W-G+hakg@M#X4c=+Vx=5z|nqA#8vP=jsEW=e`+r z2Xa0C7oJ$mvTPQuKqSfi|L=F9#Unpfs`wLfQ# zbK0MGdsUoe2On*x1O5#egR29eR;X!-jdh%M`QgywU0iu! z5)D1G4^96bNU|ay{)r$RThsHSbbYiD)t|CNYZ>zN2dQhQl8w z_M1c-8jxW41<(2$(%(AYVRB|vwaz)6nJ$rQge|E!u2XO^u%1j%On~LVEB70idcVt* zODfFhzSU*b%W==S;ruj% zkzMAssdf?&6|}4C9%xwCE2JBB7LJA!G}%~RA!*A{R;5}zPQH9%(Hwyr@t@SJhAumZC>osOD5^^z`PwCn=jlrc~=$tFzF zy&d2b?PDm-e@Pd!|BBPu|ApruO_9C0!pE?^Ce&fE^1Y8g5s__&7)hTz^BO8%jm`*7 z9&%l(8I%hDa?tG5tWMB!{ zyxLonZ%pdDzkg}RoDN{K^qUX=B_a~Gqx3wZ1H%Vm;AzybOsB=5x=p=_T7=ylVaT}a z!SgQz*T+r`JZ2T2{Gxgd*MZHEyJ9$DT37d(-#9gqj7&%WIgb2e|~*-;q>_{ zCt0XL#k)#55D1`ik~cCp9mYKs zYm0cT)EP2h9bc_@#kpJk+o(Ge+we^XT_Gl&w#pT2k%Dzk=R zz897Lw4yW}Ry579BU1okmId>GC1SgntDuAkMm>c)xs?1sJgz~x2^FO;&9o9`0M(*u zZMr%}3rVu2dd_}zRoN%qGjmM}`zm{14WXNN5}qwbFpgKzT84L~E-muiq(8B>IMfg5 z2@4C~DVYyUTgg(+)qrm;f!4ChY$;rQ~5`dvivjzbK^794+j)zg?GAYg2 z@!%1B1qKRQW5-sON)i?lldF{HD>NiJ@*>oZ=7n5Oe$VnXEI>0$d_}3GLGe=l5T=KD z6kd@goJVj8SyfhOg?@IL%qyr{d16jPQzyO*)G=7tsMk#1Xwoj)dtRuXen7pcgIj3X ziO^BI`L<=eIy;$J;jU^{8_!e0-6GcX-T^de z^(k~w9J$^l2J%H#cA_0N@x40D- zrq~w6%7H%vJ4pr@C2k{$_ElKgM%jixiS@!PHi$#y6+O;DAY70)+pj-Tl>ouo?vy(`?bI0s66V_~MntbD3l z6>Z7vvaf}qdhc2l@h-u3u6Hz44SpM6fa-2}c-I))@6;eKT7W9s+scD z<`+~G*OUOLbWhmha+g=PCqb?Ttt~S3!BYkjixjo>X9ox7| z74o4`2&1u-LxqXNF(kF81bMxaUoJfUUWl0{d!!5PX@f-rJl5)@Ysc&20+axeRc7|! z%xYBQ)q&_X0vPDeXu*F(h5@>)Gg!c!5ca6RQHVHD-1}fO-;X?sDl>tNId7UaTgU^~ z(X%HZv>>q3F)g4;Vq!o>8wi_i(*yQ_#^RLA*oi^Lp4!dkNW)El$OT*jwHT3qY~%Mw z3+C4G|A{dhRuMy}Zc2qv5Jwyb;@Y@uKTG$52$R5D%cUAl+t8)+*UdH{2Uyao3L<5b zwG2cPce?jSF56aP3NiCQ!owm^Ha&#iVSb!A_;f@?KW9(dJgY&@8~Q z&CAahYFKPZ!WYs?zuLwwQ|NmozGiTdy;osbo~lpm$6u*kLAV&hR0e`m2SEy6NRt|N z;qb)6KN1Q9WXWzcaW=q@LHH|BE;-FB=@ZqDBXmb1 zc`oh<5-P8y46}n4g7^CStYB{H^3dj&25P$>o=p1+3`?*H)wbWIqJnTSmb4^Gs! ze$|MhHn~L3&XO@`3m%X*o6fXWMv{7K!c8^Nv4<2IQq8DWWU2s+GuxH~er-XM+Pz~y zs?)gmrM4S1LX|eVG7&@^2V$xo8v0RoO-xolJ^u?QJdqp?I+B)>^fw@?&iQ0h6tM_4 zj2~n{O*wVq#9bKj@OLl39XX7^Uf0mw8&H!}8tfYlAoziB#EA_^Vxb8w8%OGg5@r_z zU@K>5;V%m}AOhGnt>cW2O4K=2PB)ge0YL?lp)si6o|DWtLZWMbp zXwN6~B-?7Q+y(@*2xgV=vea)+dVs3HmU4meKyNnEaFFJVyK+34YQ#YsW)$1tmgx-W z7!vH%zdZ*{a$7IQPz2nt-$AiA6hEE9h1$Fw82%2Pfx=bL(Dk_Ao&pxM-;M}fHVHj% zrm-AInFoz9o7PFFi2uT{>C!WwGVTH=)Lb~30o-DiV89RPH)E?oQ=ks((DxVN#{sjo zdUmBX2$p{j+6bL30Q4-_;4njD0{+``fQ0k6Bae*L1#(nja>dru*?Kx#@6Oh{v$e8q z?K@lh&YwjEuLcR)ivf=j36h-`*G*lU=u~cs%Z~xbl2j$|<1tu@h41zxk^L8{e65x+ zSs%0`HXz6bggsGpO#(2t2_N~~_R^WDuD=Ez!^%d<+hr)^s&B7VcbRVbehZ87I^ z{Z2%#rDi`Qib=oSfOxm#W3`EfG-uS&2SzKJ)L$4?xP7JarhT&}w>e0*Rat!aYXu>@ z7es2d&m8+24qXg6w|dwK=8rjmGFi7b! zc#NCRaomWSmyC6e(}-D|hE;9kF}@H?$wTaQ0i4+^skKEe-l!tB3jI`8G5TZsgYMDK z1qm{NL3Xbc6fg!icVlOA*Q`k6smNx`ZdvqGo?*-OyH0Y752kn04tr%VTi?9&Y|u*5 zs{vu-6Pg)(RvY5- zBw@QtFpao36dEW6_+^sVXED1<6i4ek*BgdI^=l(OtV`tY=o!OMW(9?bSW}Vg+NbD* zz<$qr=rz84@pvI*w6XA(INYFRz|W+&B1 zF-HxcCX9egvOK}#nG1q%q@TBnau4RvBIUGrtE}2$KrNiD#(6)=kfM@loioj&FcBjb zXPZ{WT`5JMnz%NFVpl_8*md(pRX`=bLV^=8HiByo+|7Zu{ zUY44F4jig$M;9qeI&|nEUpcrmqZ_t#CjopP7BnqsA>!2!klwGtV`j!si+QjbXalst z34Ci3w9^vaHs}u<(`m-dmg9lihH;6$mr){tTG7KdP4=ozAPq(W%Tznz ziLHRfwQM`K1)BZ@G}Ud`C(j{!AgNX$MEd>C%gRrc_#=ZL#3pt|6Kp$8UsxxHv{&tO z3}Yp!`rtUsSlGadjE^-(0%^|2hEbmAui@z~PCYK^sq6Qj8;=(4b71yqxa%`DO zRAZG*D!91WYX0w4cZM(OjuiPkQ~-tdaiJf3QfiM)!TtWo7ho#PA{4v?OOuAJpM(yh z$NX?NaYIqiB{mY6Y32_w^j$MJsN>pR#vV)1Uv2~P47Q5b-0Uxxi9WvpagVNB)_63+ zMhg;0_2MXcFq5>TAV6G9`}?aMtT7DQ(`wbFrxeCPZSIx{pZPdxIQiIn%T=KcH z-9oeT@L;)hD2+?F#tIY|^VHVRE@Cl`!=~E4=kKi}TK6qO)4bfF>yE?Usr4D?W4m)G z^vRXQ9XD05QM$qXIkwCArT0dFwM{TZsF8Ak(t_#Epb(%f_Iy`95^2EsVeQ8HfjRL8 z@fB6Zo`@mU5loL3jI%*#)@Ao}p;7VE@8q^ej{Nj{;_o*g9?F>rYZqHB{W-KgtcGs1 z)0Bhu!F{y=^Nh~>5CYk^OTp7dJ7^S@{|IqOM1 zmPl1DRhHpDL3s`+yH6&w8yU3}+klu~Ds5B-9JPQ%Lq3TP|3&}?nx%b=7or6PpGrOj zwYG{Tcy;TYYtdFL7Ce~|rYZK2*@W=~WwqGt`YUPwun69bq&HgK)2@ZjWoPRazH>VN z>Dt~6h{QqPiB$s=8X3Ih4-mY8)c~GwW{5f7^@_Fi|3%+h@aku zjcz*A$f$auQA^!b32Eu;3h5gM|kvLSDcIn<V88KGX*?$k-@QZ6s0cP%q03d-3%%vKvo|0OUOSPm zP-SP3(oI9ykZ9=Me7?15p>vP3v}#yl12Xa=PB$^tqrEw3S8|(;CVU^La1hU?4&k`% z7^hoqFXiv&T-w{~E_ln-Yez82+AE`KxWnZBJ4)B4r}i%E({I?4exl0;f)VXb%;O@7XlVLiXzPdp*;e)H`DwEgd_&1 z#YaB|tvv?;l-GJ9lcI~AC}!*dp{1DhFpRR^4jfW~92hU`{;)yb7J~jifuL{w&3}V= z$F$M%56;JlIz5WRL{ch2yn0|qkd(rtUYqFI^pJ^#ZIivIvD;c}MJJ~lsxyeM+E27lFeM+&HXiGeU`oJ@%SA3Hw@usLizir;oScJ_z;5BA_r&mk^tM~q# zSPXPT$aFQNKu`OIic1TF6|ex-MgTeS8SM4;KUz0St?3_8W8F%=fNun{q2y8QyUYoA zuNdRX^P0g`P-#$6m?}r{2xTrSo1y7zfuvD#GC3O*7*yjXL{hk| znXN(5&GCY|e1hY?Bnq3zrxK<5_;E2&d`Dk8; zRQcGBvGwP!n1m5kVTkXxbKFh3YRIQAUq;X!cOOqVIOm7+!416_WV`x|fT+JQ@6=2oHF#o=7rA~mNV*jb-76zKtOPw8Gy#o_6T zf)tf_mcB=A^Y_tb$Iw}g6D2}Nuytyx#WZwXiE%wWYWukdt7#jM-7|osBUA>oFICV+ zP^b7qtET@}wF&+dLoh^>1xgPAAGT27`Vbm~bDsT?GI))7%m5T{p$|}H=V4>B2vEte zh>d1M*1}uWP#^>%T-6~f46>r|?^1x5+ef37h~E@Dx3oLD|0~Bs$cN}ynOcTnp;?Up z#psH;5QAuX?#NJ~hndgVJ|FxN6aG28Lw-KmYYp1%I&z6zJuiA0x43)?MU_K|%dH8@ zLHipmY!?}9*R=Oqq=r#!q5s2Y8m}VIOJi zwy@isQX>@GI#9l}#WsJZ^+H)qmM!iult*G&60D#4^(Mey0ZjUvCwQ{|m{n-&dw)Bw zaA0X-h$SCnfKv23V2+u57~6Z2b_GOe`KWI-pxgTwIT)R9Cj@z+1<0w_HXuK`X5yF4 z0e@f?2&z94Fm#_86h%!Ar6v0>T^RaTE^2LE`@d~fdfP_pKRC18ROxV|hO$t5dlZ|P z5mp}p$6}yrrFYNmi_4MFTovJaBu0H>G;imD7vczVf*g zm_QY{;i^aAr!eYrwB+!MheJ5v_rhHl&ZCG}%8wt;`N_&woFWDYN3xo~*}uz(_|OW$LY- zX_+&9)@0!2@r1f-eu_^;EYMsThYtF1AMOlAaDeq{iIi2UND@^NK*`5sc%FoRWY?*` zGf~$o-;5xl?W%ki;qfDO3T}c>RkFN%UCQIC>lNB_#fTzU?50Zp>oSNBek|Q>rk>~N zF-pE@^4~FF7^B1R3W|Cjq58<^p1IJ3na?ju<*5Civk5sJRx@awV=q6vFa>HoJI3uP zpx5JKrR_*cUbx-z) zRc3#SU5GDTxl2u4N9pm*6M(zl3@(wJOdLx313lr^@gE9pOym{%`^&IAbm&u{HwZ>; zqOuNHA9`B;d^+NkQT-MeWl`~)p(pLG5?tO!c?c8epk8f^SO!n2X6 z=^PN_yy-U@okunRFFlE@SQxYCvaa}26Uvrd<=yf4r!=Le&QH0~j3%k*3B=^n`vv+2 zs6fyHS7Tz1X{l7c9?>%udOU2(%c z2w+Zw5KeAli%+#bumN!#7_+{_v*U7N;JO7|QiidL(la0fP3n$!q-#AIekE6kfx3Zr z7>DB@^zv9Xbvv<6$Lp-$eifiXG@5loNcudT#C``$M16vo&7g68{BfLn>^OM=^yV7_ zn1g5P-$wW+Tf2OHCFhRs2NTqh~2C}^ApHkzXr zk2WATsc<@1e!I~`Za=2x6M96u1IRq}ZvA)p2mjNb=cc963_-uVO1_!_hnaHh_#Qk3EGHmJn|tFVYqO$_x<7~-Z`&O`FUtxfEQ zP3#|n=3#+1q_`0+1hpSG+olhmNx0Gc%bz&5JcJ##OA3NeQ9r>M9mzQ$rF7eX)OLI7 zFutt9=tpC5Df|!+r)>SVH3nOA;GZ}LHroF2IU)3l7J>cSV(qG2gmehD8Q>Hp52uF{W6*ANd7#NX2$}7;M7>&~|1#>Vs6( zFd=UA-3zxpCD{U%U9H&rNQ31rFHWI~+llvmPB=SK&S1xW4Mh)+DQ`d!0k@lejbzp$hipLh=37rSRU`Cj-JYoIrGBJCr`MrZ zK(TUJV>Iz+RYfyg=*mta+;0_p^!*M;e&3E5=0si&Sy0b*HhACE1&;6E}J%d*nUmn8k|k_|hQZGc^Vbcr~;Mgg?J6DQ^Ay=i_n1LX5ZzGYs25 zlW@EPZk_PlQLeq_9QnvE^Q7=|>)Aat;J5Dg2w~}8QM$W;bmeU$EMH08(D7^PL{PQp zH|9^vZ?7?DB>R`;gh(*!CHX1;8Z8ke#l26-`-`sv?i0-)FXw|}cQkqO1?gcnW5n6_ z-S>7(UEz$QB%sc7!cs@MUWOYj*3b?_SLoTHa^HGqeVA7{+~Fd{m5>!Nmk)hnDMu1; za#0?yG>rO?mwWa5(;(^k`n!-rwZOkWO@-a_2vUG1Nho}DL02?5)wH+XD7-C$Nrr9x z?Ww^~&+~Lsy=x0i^-B6R$8SzI&z^vfMU(TqY(kXzx92NH`~BJXsVG7(K3F?Z1+OayQH+%Bj6G}|f3;^P&? z$7(|3Pq|;hfmo05E7o7E2E#8#ipaQ#(0!|zRLO~ z<*ETxHB+fU*suJ0mChXY%L-gRk(y3G4-do>;)bK2lnUD4u#??;JUgcSruK2ZSTpb1 zBep6NUwDGVmyK&{KdYn?8ys5G&tH!#c3%8jzHs~J!}#Zlu0Q+S7LWPgwqm@A(rjD8 z%$EV_N(zyeQ3BjFTc2i<9kDa|Yk-{pT#pnC0QfT-km*YXw0wLwVUS=wOA)3Bm$R+2 z;6^tfy_;#Q?;c7S{g$UN64*3 zo;oxWM)0yN=t*bPjwyh)@X|O38CTxTGAh;wDWU^7jm+gh#vb5JEZPS0BunZd{eTNR zxr5wk%OJw^$pRn*8FPHLX`gdE=@Z+lEpN7eQWy3g!BAwk5onIUoyky#JsAYP(ts!S z?KsoYE`SKI0g>BKJZj0^0@OmWzJRQI`5ksz9T&U!6H4xn_`%OGg{@;-=8{IZgAdN)RwR9<>YMXQY<2qsG&c1J;EeU|7y=mKG}srSOh#2 zB#3f4euLZy4FcYiuAPRnwq{D7 zesIkA>P10zwFkG3XN2F4*6(bPp1MU?u4o6+*fEBVK4mtkRF59UP+$v#?Y^_RtwL>4*UN_$S2P`T;;qQHO0`Y8FH}9yc%GzsMZaN;l{5m zf08#ck7H?E6~kOTO#v%9A>O|#PBgQvA(J09b&Dasj!`tuh_AlzHX4~n86zbKrJ9tNoJ!I4Ksm0m11ap^ZQ+m z!(ne)buGx0XH+y*h|yYr<0+Bh^`jZPGl%4P7JP8^M>)UV6WysMsHHGDIdyfgz>)l* zd9?vvVe;i2?u~h^Wm?zek7Y`y3`X6iE<&-l&M6tqrOwS$ok*r5`_2wjKDjKhXew6qgfwGy_>FIH@H`J%) z!uc^>3l8#|EgHz51@#Czv3MOzQaKiCU){a7>9oDx(pcYwO z5;bt7P|Wx}k%WO#`2_1CpcLT+_2PUB-%~ z@Sk+mw09gZYdDmj=XC1h`%9O0#>9j{Aon$uwpm21iFM=Nqsvc}iXmLv^5Z^vObxJ} z$S^;{r!Or}Ifaa|SEmVOguhWwF<;c~4vkej7&oTsA2F$gTmODqNe&r8!c}>TJt~pP@T{nO9_%Ee zQ5ZQfOnn@3JK#{)if(%(WDLJVC%TRp<`aEJBnydq%|&!FubLkP-C*`ERdG^}LP{sa z(y@*rOAmfT7OHzj7; zpbO4z?DSDw9O_4d*1v2c-o6#o{KLkQ?ZpP<_t-T`4^zlYi;b>?Q;2B5GdYSK&nazs zvH|gzg110hgxFD^3^pK8MlU;nSEqD3*=7&?E`Ptz*bVfCQWrqF>$|ChnE{2Wg{ILy z4dStx^8d6;@xO{!IO94}9964JMAM(RvC)rvGcq&Dx}@w4$T5v-*cx9uY$b7aisUhZ z`9^mwM~&cD;Bn{pfdJ?&{XOF;ux9uHxqb~JXrsty7H(dzZmAM8B3GHOE1~;?zDUr zvNzb4JoL()JbE}>K@fY*kurm=11kL!fpbd;U&0z&NGX5*vfSXVYD3cDx~7y5rz$CN z9-_z99l``jx@MBxB`8*(Ax)_{+n(BHUeIA; zctt#VEL!TJROTw>bf|N3Y~UDSGS9F6goM@GFAA_|xRmNjClKnsgt7m$Qcap&tD?tB zFjPna^OPOO6J(k>FgoGG$QGzkzPpkoB~eLyouvVOtHq=_`{aH7u&MdFT$WEJEtR_N zFHqRem~V{4)Iodsb$*Le0!;Ncayt2i&%9i6U5{HUNl zO^xIx=$;_!2OIo)H^RZr|6%3OsiA%12?s52JbD5z&(_y&&%2^NsnIE6{h>5BA}L`{ zc#X*YBNgJ}H~rYIIWD}vF=Z4wio1^bl`zS9tv-#a<=kqT11i7KHrGJ7lt&Ssh6TX# zQPuFr5vuQ|`O`Wcc;4ly(B0)}pkdd0^m5G`jlF&8*diJfxHbq8l;`eMjbiq}?e!D* zwZ*~~PEo=q#B}GFpxHoYV`i{4BX?*lU&U2=SZUXZ&(~A!JxpK~s2D2Vih2*(;BhYy zQ`y>mhQW77YR?Ab+r4vi-~&NBi=6{=O7#_B8v`~Sh%N9#65Q2G3d)Vmc)Tx2}YI2-Wk=zg5*P+CH z1ZWfN3u;Mh5&z@$wft}$tH75F+V#K(*s%LEjwCRVC)csS0gVFM6nD^LP*bi@k`&mF z$Gl;`y9(SkyJRXW+Jl4&M^(yvMJX}BO@71R;DjDrt`waWfLc4(!5E=6e!L7YOk60- z7QiuP1IAiUJlQ5O132=5^;w31(V8`|f~!Xj0n8ZOJ#bt9-F47*CZXs4Ho_M{oA0J= zv}G!=*f@%$|9(KBzrPUp!#rJjphhw9&xeih4Z#vn0JR>|8N~j6Jd=O8j9CIt5bXWb zIVvpRe5*Ij;JT~?wLC6- z_HBdb#W`oeeZE$gR91;{US3Yb(UJWT+NSrRzvRbwMd^@f*06HS zQjN0dq~OT|WsDl!2MIt2*UUnS(r)DY=&&T8>U8Ja{&D8UdBeMR4f`1PSzqaYVhml} zarS+UlM{c{J}nLoh=GCbLx>=R8Nx!YAC%QpkRA8}pF*nDl-M7vz9A@*GZ5*R8o9jK z>$JAnDK`qn_0t;HaqKR7a;dyMY#Z{RgNk(V3CYyM)Uz>nYGM{em~Ymsvs(|+!!`6y zPPe&6hIrVjAK0t+vbC2G5 z?B0xiQ7kPs`-+Q62SOvug5+;r+X+(6MYtQ`vfkuus5nuG>ZJ0t9Bdej? z^oMxMB&062-{c^nO{$YKBUP+F#i)1fS$TB&RinI%<$C7q$>Z3DS%a6FpX=OFP@97@ zuVR-g4Ln}NcL69YqWV8pcmL}D-(tG|pCe}fiYTPfNX@(&DEb{Cy2p&}*Z7Lrwm&~U zAws6NDXW3gtoEL)ts_0*{I;i;4zlyTtXmaOm!V2znf4FZ^LEA}O4Zs4S`nJB??k)^ zxI-1>XDH??D^NAsb5`Q7@)VYQjJhlqTFrMXG^i+I<{-Nr(~9=64vnj66dNE1s;|S= z`MA&rUILuS7x%wxckrn=R&?~XTSc<%JEJsu0_g-*jdq+wPu_soBa}ON9Mi((8ZjzI zOADH4D~}`HCqt)<_Y9rEj_)c!z(x-Fl*d+KpDM|u_1T-mKVS5l=u{7~>+&$t+syz* zEFZkZi5_bYz>E93iMbmgPF3yYOCCO8o*O(Vv~D>}$*&s~<2bzj1*x^WL3P6j{m*hKE%TgSHzhzmj~(p^vS@Cab@@P#zj)8Zjit}z zTkfUNlT&3c(AP9}y~B>Ws1fC#Dap(CC@E%|Pv4(ZoVShK)zo=*S7{E(g^ED7VOW*Y z4pd2uXdnE*2+bDjRo&KAuhoat8^N5vS0$Ooh)=^d!MpJcmLml0s6;>dG0lpDU>lUv zeJkwzpl@h<>cjVaH=S&hIWLriXEb(DxUa{w@V(3N3p)Pp+8@4o@K9X7&ODu%JCs_3 zQch)%q0MkG-ZRH3|d{)ZPt3da<5P4)JxIY$AC_&qFsL7qI&QxWf&K z)W_PFlbN3exx*4o#Fw70oun5cC6Ud8yg7)SqnZ1U4qgq``t-%LhOT5ZVZ^YK*(W(dB(5vs6=MCA7%&`IGVw_URa@PWp5Ka-H(T)ePy2% z%kj+|gOhw z1SnsbSh{cmE-mO&ZZg~1&O|jX0|5|d{kf0i@5L@CgN`38AyyEIM4d6@=V2Jpks{Ub zdb6XO9Q&0AM1t!UeQr2d?qAxvADang+gM`v!PW4^;qq_@m1M!x8rrP0Yie z$ISmERnNZ)BW>$Cx8})TI0s-Go&OxR42$1HPtRJ9sp7XNPcikd%l)dt$@`?=E3scJ zW6su5gT&AZ7+tvB2K?M25xM?L?laslU#Ew~RO{=AHFuZT?KPQSYbjm)`Fzv}2Cj>$~SWW<)Q0;EOx%HN2a5 zEwq@9VI0Yd&5G0>mbjC}|8{R<*=qK ztT=UtPbBODpYe^m7k990=)(8L+%#v2GF3)TAWsjcTX#i+44&1bijk1HBmolXNvO!r zA`r}qx-pQFCJT%5ScWks*uUid~h zmSDp8guRoMFRqy-C*Zk|?acKyLhI3}n={MDf{V^`J*0){%rv?< zlX@4>^$-4GIIi~ZkyQWm{&m96AG;ZG!d>~rZMi4j-Z__+L`;>t0!yP37w^i0DL0W(oqs1>+Gl{ zAfqgCqz@w}@@w(?I!!#!7IZIUi`y8%-8lG%u`$i5CD`foWn(no_@~?CnRiqTBa;1k z9#Y*?_^Xf%>3L4YFlPJII)7uznS(+7@=k~3FW0a&|8DSsz~9*5ouQ z6%xw))a~0^E$eH4-+;{3UB3*@_Ia}lGb_RNsn7{V50$tHlj=HbBwn@rmQx3q>k2|d zmv+f3`cAqS-ny|ahsQULx~8|Ay>CH^jrFOGNQ&{qpOPN)-++9@G^N%pvP0fLPBS~0 z9LKWL#{MX3&GhlHeb;T~pzyfX#nDlq?$k&2bU{0LnKMcdhzLfDaTn*P)5Ezq3JRH@ z-30a=Qj$t`DQLav5`AXOB|bX0{({mH*U1ER$9Wj(IDG!>*#-i08Si;9E62h!Fr5+8 z(;7o<$USr-JbZOEMwIELkNv_L%#|=1Ko3#DnftVojI0Mc7#1MxH)@7v#6uq|iD5k# ztN7vm2q_1AQ9e>6Cpw5N;?qKfdbsT zed&!Bcs(Xa0V=WTJ$n5b^NJ}|0abR9!Go}*N~^yRU# zv7NSZ6lQp}uWv0?fiVE*DcwbnuAtP1jx6p`draLw7T8n>ScxilX4k_^NvChuKqOr+ zKwGW3hj2S!_OQpeyj{=N79le;c;aE7__LE7a8t@+u-N_03Z$ZQ6Zhiv{~2!(V>0hg z>UzitRGBGiOq~R{t(F2!bk3I~+Z#Hr-zpK7YW7oUk+VD;-x6CUpR%i8+*y5*n||Aj z(TK@i?Nb*(KSA=j!B&}bnF&V^YYc0h`7E1$9$I^hn|_LR4Wz4{$OasHmNRQ;B8GV; z=dGGYilT_!U`0{)tN(|+_ke0LTGNH2hzNp67ZiemqK2XfA__!Anh1#W8WoWyAWeFr zR0$mfRFo)HYLMPTM?s_$nv~FcLJcJO_&?9goqOk;GxN`^HTT^4|BFl3V(}&6`!?_1 z``zzT-iG$%FZxDNgfnbpMT!!#Q{e{fqp!=@Ns{;RB>N!Ag}uOg$~DV${y#94i(0~W zTr&Cfa@bnxABIKF`QukvsT{cNmi}sE57s&a`a^()9gO#;z?WOk)ML-Lo7|gAaDQNO zT~_#T+O#-|H3!kSx1BfX;Gsnl4|*~1AtBzGtH1b1qpFlB|0%yybn3S_v{J(=Xm7hM z9EctSv8ZNT(AX(*OlEeg0M3%Du_g1|r8gr|#%nWeyl|$?52IVUOc%59iKX7|xrvp5 zq~VbU8M)YkyE==;Zy%_sCIqmJARsNFibfyX4D;f zx&|Dacw}2bZu`-auNL(4PkJ*UG`YHvjdVAqEUrEZ0ZrX217Gt2*&bKGK5kb!k&Ml( zpaaOyu=+&oN-O0uxz?(zw^ne-xNUIP{n%V@AIH-9KIhh5X`b8Jsuf#7T&nl`r8?|d z_;ppQf`MO?9?Ej;qTg=r<$SrUS}yJV9+ZUt5LSyxkM}=!*f_Kf;x3%r2ib#t$4!1l z9tKNt>O?$nLKGy@uRw`i@I$EiG_w6Zgn=7HeHj+^9@+_3<)MHUr4?+<1D2086G}+& zehw6O&j3Y|_KNOQgiqtm_)=_!IsdI6l|}Ex1>>H5dLB`z)(&&9y8OaZFfyf9Jy&2Z zQI}x7z)EGu16mI^fM&`#4eEsGqM>d;iJDk$vSB@@`1}}lisf1Roo^0I>t~%&&iuI- zR6dLbvcfK}3bG${d11d32JkUVNYFSjET{=W=RPEIAbN1Q@rO%tm9iHPRSFD|y-Nyw zVEwKcvk&3V>tyvcA?p)XG^G%X0$G^_P%`DxpTD)h+`JeU(eXVv zEzi^5I!&|vw%-|k0dH1Fa;Za&zl{dsH)USoY*}AJIWp0mb%1Qo7VO79q<@(9SqTIu zG`vdhq1HZ#OW&w@zw%Z`S<=7OliW!W^W`H`a%}g;n>xgOC^h0o%U-8cei#*fKJxwC zg$G{pntrUxhi&CM196ihG^@)T|@MoI*N*au_)leWH0U+1X+q_ z<&D*64&A;cyu&W4Be-Sl!il`_O6npuy4sN93A81jtd7&JCXMp!ux;_V@$htG(z;ZL znEIv8$Kb4ahiqpbeFxR;n*FcWEk1cnP zFrI=wxpq5A!*!kyHbGMbnA9m3ht#@9$o|_@36%iN3UCSN3kRNjBY@A4glsRoj<4!Z z5y;Cdg_8y@#CHn}$ai+3VN+`?$T3`D6#9aOy%T@q<69utpH|Y55|vxn^o^CWTANPX z39XhP{FaorZ>Y@6D9UW#5r3W;N#Nd-vw91-tv-zPISs}NJvi*Q>A4bfm%JrH+!jir zP9jDY61b-%N6qg=Hw5&5`u;#6qgIKeO6BC(en_kt9blb;uBcDkc$_(GX4axjxh9I# z_0#{JGF@@LVmpY7h!4R{q{0gmY9viZJwME;#;P#k916O~+H`2F_Gg!z z^5i~*YvGFh7*AhbiQn~kNAzsZ(_~(T>`L}bqEtRxtj{%~;oqsoZ|?k^A6|0w>aV@v z=lpjH?tnSCok4eR!9y@xTkc>#D_8s$n;}bNu0#WY>gwrINM4@UQKzd4ro&O;6l&n&Sltyp9a7Lw&F1=9Wl3m(5K>EpQ)9)M49Bx zlNSM)q$whHjxn8tqzKuMuM~PS%_le(Eko<};?Rb7DMmXAGbz=SI`E+ZUSExX6#)oI zD+&9m>izT8)P%dxm6l9za2K)&xL*w3)<4UZ*NqhvsEnb*mykka2YyE8OrxSBY<+CA zTN$Xv+f;hc(K&7sOFd%@Vl~6!;!nL-xZ25xR;2op-~m+qEi;J~>&cU@8;V)4 zUujdze|oiQebVmD;-X#ZI`nr;ZVrBSU?6)C1ONMCfMFm155heD05w!2FfmF5+Ji5h z-VP_qXZ|>=R;_qMqq|%Udz(Lstv!-rdZx;7MgBp*TaAoaulT0?|w_ve;ciu?mqF&<%^D%NL8cPmRS|g8BMrKRelb&x^wC#dT)HYiT1ukVhBet zE9F)f2G|DLM{RaA<8_$|H4dt5DCquOf58xNGNI!%h zihjGQdWY9o>zELjW**BWc^VA_1V+kjoKKHxY-csh?<|_{T*^RGX|y+Ben}#QDIr3T za#aYjrqmmp$FCXdb*7DC3fdco(8&QOjJ$eMgo5r@cqaqd5`Xnp&0{xkg{9HVt z3VQ(rE*^Q+|2u0Xow0sj&a1jDhL{I_=uW^>6-|3q;|&c*EhC9v)Z$bhDbGOzNfRs{7UanVl-idaIO#MO2!5z74L--0Z> zZZPbABS(-}o8eq?mS4$pEr!q5bo-2MVAnEy!jckg&nKveuCBWL{OKhe7ptwSKc7G zP2*iIy?))>D!w);^LD~OLQL9~X1+kRsc?Ed{WJ6rAP_e$J2Y&fbN1+34v3h({!0z* zeK}`< zV?1Z!U;(+-v|n_%8$zo{!Li{cR|G(WA;leZ0tsM5k^7;xzAka>l7p1#AlW=f(+|!N2dA(99_Q8>%t-45mU?MC$~&#{xqv|cp<}otvO7@e8npP% zEtc5Tv#NKWV#9J)#)o~jf5vTpB-SQ=UP3aJc4OV_Q=RR7SVr2E4~Hym?Y_kB{a^`vjlJ_n|3mqaxY*7>C_nO|?{Pe;toDrk!-d&9EX_H{^`043V#jgc zyw*eIR-J8i8;EjDQ6`lWJ{i)CEhIY;coHYDoa%uBZWxmIAHuG+)7EqCyNUe%RUaVR z@R0yOQ-dHu^K1nh#<3Z$;}LzBm0CsG+uCy{U04E9dpcYwvG{FY87i+g@CJB844^e& z$@`G)K~Ry4xPvS}86|@V*1xjhPb8{RL%kVj0V}A@hj<;tht8KM0RlW!!T<@HAp8w) z7EysA8jSC<)k0B&DjQ(YBOS>*z%jah70R3Q1@+xY8&m|p!EIhe44I?&KJZY3H}@fX zf7$>lana&?GaLdJxj_Ep4l%NwkhnaD9m_qvg<@zK?s)skw@vJA(%Y@eM5ifAz4l{- zy#X>WV|d9#e>TduYGv(9ETdkye{7ZkG$xO?_u_9O;M#o7a5Ba@ZPC!%d~ihmW1*7Z zrsrS|GUY2?b{f+qLuIdO>9NNg-ok+Db6dHqIX`BYiKY0jg`nIDm!eC?FZ3e?z(*98 zet#AuKq6Qjcg2^ViJ1!?WS=G1OfJcOTf-(t966)G`lMcd@SL6@wEC8u9{*^sUE2EUHZ^H zruQGo8LKf#%6|RC4S=zmqUE_gc5A7FZ=@lia3aV4+AcfW+7S)WHos5YwV%5|jebn! za#yPTK7@TG?*brP(la)xxOrmdWZc#WS#Q0FOGWz&c}W@ByfjW!TX8(?B}~LMCHYh| z#Ku_IVjY9N)!7OqKRG1daK@XDI!Nv&au85;P&Vbs&QKG>!Q=(w6~}YVVtGAh8>Jp% z8F){>ox}^dgokImOTVY#rbvvMDr?q$Jv_XGV%b{Q>@kuWXxdFk6htw1UDsK^@k@qv z@{t#Ifn!^bmf;Jh+@~rioGl5GT0z~n3efNE-|>6g;U35qFW`JR`&+X}v|tZNB9@ww<^;v65As-Ni?vPm%l&Vf;m z(gkDD7`I7h%9WI7+ToEpZZeX;`^;ZYFJP7H+?`cajxg z-s}YKr2_mU3If&j3PrTeK&|UPe&%KI%RDOlYkntzwQ-GyDoR3rnScuzp{$lF5%Jqe zPS-D0<8BJSSMW6Mn&H=GcK#^f0t-)5QdIVaH>?F>PS#3!##7G{JJo@q{;4vbi~z8a z)XA2%+>uq`h#TV7j-B#1@m=G@wWwhV5J(4}ROPSjLt?WA(~oYew&?HRsT{h1R*ouY zC-5>AtSD-_ApZKbIZJDUuG`AAFA8j+vjo+N#M6Kq+!HH_Uv`qMEyV1^sea=W=J>uV zyfyNAv=`mi^GViKjCI81VoIsJ(7Fe}WKC)(;2M6&@lN7GEQBhETNyR<8)MSRgLBah zUD*yFS+C16IF+}5+~_i#e3_bMce8nUI3dqnY-Og=G1m5XTFl^%^%Hf4Y5YL2K-^@I#jJv5a9Iq?k*EQM$w_)tZBIVPuHlPy7|1L0})QR?tjy&Qm zt_RJk`9TdjlN*1>=?fWmkC8#hAGURzU`SAH@1RDv@89J-9cT>QfUg=}F#<>ANBrfM^Lq(!eE13@O?{zy(&eHqh?rp2z#I zCTKiq11tP!NK4 z7oaagmM^$+V^85WQ!evfBO6moK}F{;FOe;ozvD`=j$a0s>8 zZJzssR87#NV*?(J;*>%Jz?rKRNfHQzBwndhGFQ>Rc;hM~^JT3UPh;X;1H$J@AVZV5 z5|0&+iSeP-#_?wjcEGj1Ct{fkkINsp9N7_eiS|FiFc$5f)BPTm%o+}dD!_bS4&X|W z!b^pV$4_&Y6>I-C9-$jP#WSrNdHhTT)GNXT$6kAmoJweolt#T#xLQFm$jSX_6&=2; zJRhTS;$@oM;m^yEe7N`VGe9{BNwMO})eva#ce7XXC!AC4# z^>myynqnxOLlyjTG^FGuMSJ9bV!_dnR`$ zCF=D4d_yH+%<^9r8Ez>)_Os458d)@PYj?Ky;L~LO>ViGDnTnHR{9 zBil!58Gvv@VgcD2U~A`vz!b_v28%Fzmciw%zPm;{xiWHZKSqVmWAVQk0LHU~kuY~B z4ywwxf{(Q6qTZQm#ZB7_Wg@^XS4lRi{@iL0|FA^UX2Ju7nU+|~ho~`)OhHtgrhmt!eEI*qd*jszF>cuk0#0_Pu?imisn5*yz{8yZaEU{>0%L)v3AVZ=m6k zYgGWiv7#U=l{3T#GuP^%F3EmmULL(uDGP}%yc~N77R?Bi?HT-$@t!6IG~-I?6IVng zmp-vJeN)Qx99N34SUeReRP|~S+0T@$=XmSs{ZDCGzfK+65km<>A+?vxsXXNRNvAj4 zKO4j@kXU*|j74W?zZ)zoY~Fuc3mC@beH96wJ+|sFs?M3sf69f|=qcN>vOSM$*B9OQ zb{ZBMq_Qb^KrNlG0*)LsWsDv%eR9jkP3Tuu#f$qd?y?#@XV+GKU_@l`?ni-37RXVK zz~fE=*ENWQ1}AbfnS;iwuiY+2&CYWb^2ua_cym5cAZ3a?)i?Q=J@*qMfU}iALyO^W zk_<_|QW~{_RqVyY*$sYmYu^r~YDY3hBr25G3D7HZy`C){%Y}h{9M-sDC4$KE456RI z8sO+lQng;Svf=7s>lzP657rVlc*xd1mF+Ea3 z1SuvuSMB?E&gE`{*uK3ufay3%sbQQ~;jAYIK_Vb?qj<%%!2nwjGpl&9wuW6vkYC_> zTbZMzG!hkZ zlX=EhXrk)9Shr5CX%%_n44x(On9@7K()#Knqzk?J;6R?1z6*8*28v$}k<&?$0GMcu z9jQucP&odiyOqAm%cD%k?YHaAPmLb3Xh}}GlCUXfDlMhbiGeKBYyl^6VFIgp(mQkQ zc2-JH+q;b|s|xSY>$G1Lyf_^V<6iYDjEn1=wZZnWGNI}(BX8L4`Fhk|#BVwrwuQi- zjf?eV#dQC)5&8~Jfk7WUF9`-PexWFlc{G!ZiTjX2IZKDbt2V_${EiKg>L>4q;)X1r zSq|B*7uJNAeIs6o%3TBmK)C%dbFCVxs&QIjP zF4Z3qP-O6DQC7dj#C66ZWZUOVOb1^(2ZQRN__xz1y+APlpC8fy+#0XJZ8}t2$2e-q zFv1eH*e;p<^@ZN^uJ6zHdOW}Saf@<`>jA2K5!Z;w)-UvszoDsa4no%VQ^^A)25Lx& z#NHpLFD2<1698;R5xt$h4?$c*%|9!IeO%|=!%{erT^6TlAK}l|-X!0|pQE@>S9X+? zetMM8wz`@;e%9mBit+>F5eA5Jf*|xYaEfGDkViOW#l4I(* z)gIi6OK{9ppRIm3Ix1Z`ES396#oDNy|Me*3C(mc$i$`|qHuJ<78fyhfTIm82lM#|j zhJ6<(3EMAfnmU0+72c?cOQohsws%`oYU{c{NfBna)58B&juWKAffIe|bXCRT}Eok8FuUzq;u)k?%wwI5cQ6-d7 z*j^+I(T#jQ0p=@vaodf1U{3CD3Z^H;zfpro3V3uJ!Ow4@WZ^|lD?jp)9SCLuQ6OpZ zmY)l(y<&?)4zEoIyLZ?0diIsN_1C|A@Syd^-_$Fpb6}e6iOHgdwP@}Bad`TV;qK+y z?+=jo1J1$$q2hpwa=?>;959RyxLF6pu>;E80a@{YNqN9QJz($tx26{BngUGSgi&AI ziDkv9JZfen*mANBMDmx2w*aOuQ!p{>DR@XV)LJlxDw`Hu4z^y*`LL~Yp>b_S)M4|n zjwjd~;S;IMq%gL#!Gt?*vNigo`1K!NH+?eSHGov@n$xUy)G-q48~09bdym@lB(crP zgsiN4y=G>=nx_*~Wks7nIP=wn^X*f8f9U4BpxsB#sMu7l3c;7Ed^&4aIl zG5CkY0BXPMAE@gFwcT>AQ@DCh0d%1&~D~HxIqi)QopAA-- z5lx%Gum2!vPez3yPmq`N$Ual{h{8p0vm|xis~xJUeoO;8bXr+xQ8 z=Erw|OS)f{zb|#i1na*gDhlE;?;Z(Ra4(iBn4-xR$yQ2Aku2UNI))|B1eosFr?VJro zp;hHBQq`FlxvNoApw`Xz3K6W&NBG+Men7@&X3V{uc^~yVQhIT9E=cExG<6B+!4*fL zaW+vrpYBoILqdwTt$L*eo8l{|IpS<}#-n8aY z-uQg=K18B?wpPK{m1NjDE@0+~YtnjL9Cg)p`)m={r&1R-Z>y1B_Ppl!?$n z=OAqR9^$nH=rj~VhCur zi&KLWL?6E2U~idNRKz}nQBIKvCpeZ6=bF^+e{f41=?oX^$k||SUtYrVpW>1Wu+T>I zF{~gcFtYu2BGKRUT5CEPt8Uu9b<@;+*(ccw}Pi|WYzg#>9IRk<}|1Hm7Lb66BXzY){Ut8MC^RjJn9&H^zuF=Y9HdD_{YQ;lZzP; z@rO@qbitRQAcrm`p%Ohq1*hjZi`O73M?ugyOZp6Fi+*ET%cBSy{g@ck-w-14tJYMm zGT^RL$oMuJxbk#gLIk@9?#P9!w%E-h)=&5DLzX}qC$r(UA)+NCXdiO61`gDM_*hpn z%F1ma>G4f)E}QUMuQQOm$CpvuzVAik?U^rI?_8|n1u(kNI;}Mn* zqS;2}8$SXi^#jc70&|OSDm(HCj$cmS3FH=?xHrDjF#}Q_hjMmiadfDOxYD1XsOVEjLT&(MfCVQPD*Pqd7w)~XMrnou__l$-~qN%&Mc>Z(*v=*eF=XL@{MEN|R$qRRB{c3D#8BYm1>5O(iBr zSLjz)M&9~#M~AkOD{!hDIC&l z=Yi-v-Dhw#mp1kx0F!1m^#%#GJSEngT#~WKmmiZg)M-;-t|UAZ6D~>5)coe+biu;9 zzc&-$cQI}DK1s%)K>xSQgUTNF)8+=v)T$)ehc-zR?CGPrWH!C8UuCtIv3L4~@KTy^ z)1a5CUrn1|q~;&_dWLnN#J&T`JX$hWzYjS)Cflz4#Woh2W72}k^VWA0sQe?n#{9JY zJ07GUoK4RF62EFm`w%>c!1r3^`C1vtcV5nH>g)k~;9#jA)8}YmJGecCG2E9uz!N@^ zfLnJ-#B57|)U|nvHxRO9^xWfd?a37M<%mCye5}mmEQ+kJ2)Uo2&FYy*uy{NCGnr3) zU|?v*s?@2N^NCf2+Qt>jQ%6>0Z@r!pXil5o(|VmTGQY?5md`yXB`|nwSUUJrpPSy@ zLwY`k5F%h-t5T0fr=dcw9toXlMMC>K>UXysYyGQPP}t~q53h^kjq62a56XW)(Fjhs zQ|GWL!K|o}C-ii~@bkcxl5W)@ChQ}}qmHcnD9=NiT;l4dv~r(NI~PE~y^qmP{KMR< zk-5v9tW9`n*Qrjrq3a`^Y_?rcb@55vy#nksk10vw4OPQ=8^^X-=ABFPZLgUA1fJ9F zR4#nG?Dr*cfEu+d0dN~OV)poovD6a*AWV&&a|M_#F$8w5T+6l_J6Ty$6<}CUSXu6) z&Ta(s7BuZ%RAV-fezvOqV|uohC*^Ir>*bQ&_*|~N$Kd(CfFwMOSfS4*`^G*R*t``4 z#*?PQ3|h~r-Xp37cWr5PjeKFHU6Eqs`SQG+nen0y=5vV$V6V&nJ)I=9_b>$wbM5*LsL$Lpui{ctiAT)AhQ2NKr+Guz+MX=zJQ9oudPoEc3Lp zk$sgB;e|Y!(EGhBme5hd@X?d-30)3yU#BIrQn7aD;s|JpS%TmuhiMS=gII^9#hxvm zzGbuL^kK5eIp4?Xoxyp(3UG{w#9RRpS~gYeeBTozDI=^jx4}Z?DgJYC{rK*X^4!=P zLZ^$PK)%r{9K9Tj$U2#y2oh8pPv$SVv0MDMWVf)mBJli|_qqxvwDR-C3B$r}Wk>HU zQ>97NNbk054nQ-K9xU>?iBM7V7o+7 za8qYXjZuOfJ|-j>(8mYdMv9W3z>iQLl0pK$JczOJZl=W^>N;Q3*iydTfc|AO)vTn~ z3CAud0gUaW3u^?{<=zb2y^nz3T%cn{cl*`d>NoM{%Q_32&$ZP4SY$y-Z&Bdj^M(&t zix8|s(xTs~ZtM5i4jIwXg@qOm(`|BosYvD>R$XB+tSUus57^7LJo&_T9Wt@()Mk^R(w%LBbWn&LqF2S2hG;drcx&!-d3R+iL<&FoDpE$sTblYGQRh#gMK>gLyiGo zPCf4P>XPzBjq6iC^?sGp?H9!MN{}yhJX=Q9ZNIAcX88w*l zeU?0%>ZAtfZo)z?yc6pCC%-6&;n7@%YXn1-;W1k zIuU)!wk(mO5)GXUAO}#`j4BLzD z1Vq3mK0yyjVS`ch%gA$!+}UFyq@Nm|8--Mo?Xs%_6GykXGtBaI7{rCknL2}?4+%j{ zWMGO}gXQ2Ep4J*Y)i+B`lyk4YI9gOLdag{7&zeWj+Ae&8N$2TS-|Yz5Ll*N*FOsqmokw(h|Lqk`F%(kEDBK1lkLWDz56sy<+?VJA2*5MwSk`U zm49CPgMhn^e`tiaD_JQwP>*uxX;FJ_c|pGQd?@zE;$G*}_(~$layx>U9u+|KvrSjB z${fq1YFj#qO73QziFs7iAvkQH6cavu!Vh^rH@%`+KNFTZzcvJI-Jo8lrTQ`wq(0U= zh^MnebpPTUK|qUslzT8iJ^B^TyhilLqfSL@iWPT{-fk8S4ahlh%u4o%9}CKA&yQfo z&5bAdwZDti-@6$M{gwZ|H^^Jc4BUE@aslaTMKA$f(Ew^e9Yj~hQv=)^__TZ$3jcF_ zk2e=RCl~D9S)%>@1iEI$Un{7wjzh`($l#etB7ceYIfSatZ)^SO#J!+%B5Hl{qBF= za?lTYf~va<%_nP9O@OcsYdY`%(1$5KjfazFGEw-We>ykn^VPV54(BEwv=>e^{_{H6 zU#=26p?gKUAdP+6HWcKGQo$rDpJVnmM@)C7Ub^MkK8=%Sjxoi8?B4(N)#S z!RcgsyJ%jCzG{{T)uzjh#i{vb2PVW<=JEB+tnu&X%1X;rVvWr<_4R+iCp(aPKojO0 zpD%|RaDl2Bc?)yKOvPY$NG(=O{L;}=N6$ztpWqE)V$>HAZK7M!9_pM}Nvy*J>@hUv zxD@^#zWc29y|<fqy#&;QQVGSS07q z9|JB4cR~!-D~Q{=QccNLPZ=WI=8L@S*(VlDNs(6=OyBhRe)_HQOYI(jd>W~iW|RIf zGB5|md{XtuNpCj9&~K)9;hBq|I+0~F=S&{-+TS!g-Z62eq`#7N*YW0e(C&5& zTKyfB@uSGmR402AOgxmfolcO~hFoUILq1h1+L>|d%X-;9;ifbQmGmi`q3g$himT^o&&jom8%Ctza`NZFMjK5N z2f_bu2mgP1Y$kzoR25=K1BTIpjBnXldYoZ=LVac?nl_lCg%z5b(b>8IiTO#jA&*QT zUMrkTY)+Q09I0|KF;P*hsD8)1>wJkSb9GnGMH{R<$wLKjHrfKnE`^K0D9LQxx_2e) zILq}57sh(7Z~l_`t^)oy9lEWvXf^aSr>f?hUnV2b{dtS;`i`yGIO;s$BT@I82A+6q zop_Ml0+%U{U#hf;D**+)#r@CI?s;yU7YcbFVldCpR&5QJ?pF3ozpN9e_arxJK9`#* zLEx=TcSK65qB7SGcG;N1x3~`}7O#PZQ4yS_aMsO=Z*tYCi;`bvhw17^hK<1{YnMN@ z!fu4$y`=cdNr@RR^~L{-sLDA5G>}_8G>mM3ehVMxEqQ~yL{%$#N)&%D?yxd_1Z6j> zf}GeYQ-M}HhNE6y+lU7O3FwRG)C83yZ}eTxe#NE741r8QZZf5(+43PmHghytm5R}= z+6AG4Wo1EkR5^7bvfre>f}A>BY`;N8-qfG_xji2>V{wUKHM&T9%0`E#{iWpOZT+ z2RCn03@U!&Gxs59unQN^5WoR9IST4ZX~zw~{ypHeskf*aE1>{C&t5JFq5y)Br@x@Z^+8T?keeOkj|X}9!CB$p%yn>f{ZF2+ACqe+BEGg{p2>1KLlR80 zr1!bFBlp0$!~$*MILV?Qy@;VmE_IPpr>56ov%@qF5H5_N+JT&{Fw$2~26fEO?&@O^ zHZMQsEV57LCjp0o!Wh1&w3<+t{}=cPwgw;S-KHaBNjb~4=SVl<0o5YnXUxr2ko_(p zm`xwo0RNk66hj6WE*;{lF}Zfa9uOT6^Oc|UyE&!bw}yCnec)Sh;rB5#no%LM%f)_c zYTFIG4@(V+Azyup(x{hhV@8m*#81Ec{F9{B=#L;5OYu9l2Yd;xsH`FCl?i+s(b&N+ zSP_4CbdiH#y7Up%ss4t6ckW5hZSRZN7oS-paQ3+4WRH5xH(VrDdQ$%SxLQxH+kDSy zd!vDi(S9lCUSval$i?*~YfDp`47V;(UZDPmxz|1fboT;GmX^s*WXUZW8;xy}ff9rO zNntDBz^Y(vAng(GO^)raXp0gPQM>G$tP}>Y5Hp{ipMsN4UIyfwQ0x}D)G+YI!LrBq z2qFb&kiqPohY^3_T)`HWxOE|41rSD!m;*xZQLp8SR7^inxMp|<^ivtbfPN}$sQD+j z!b(6|N@AB~VIQ(Z;sJtT6jJRF=%&GE^afqaQR*J!W7O+eC@=E#E45 zVX6Cz%jIfC5s@B*n_+pDde!}FWNY3LC5C2inJr z8Jg{Hlt>&VLm%J@K0bqGaXE;k31rE)E1zcFG5X^QsD*u<%ujA6B`@ib;#2JSL;}U= zmrUB|l;!&(*?*tcZ4_**VDNu%m?;*vr=YL*;LYLeaL5e^)7O^SO&eEO(QYYNI`g*& z`V%i=uZKLgQ=56(=kNoH5c`N!DTjukzR9#|`y&}E$*-rXG>*B2shp%kG&(uv%wCeRI&L=Wt7yHDEJs@tI6_ zKN1-rQsUi@v<5#(ucSf>Wa-SQ_I!!X>i1Q&i@kW`H>bf4d$iwecO~_jV_7ieBBD}r z@?{c3q?|^UC$8BL`_*o^dd=BYE@am0%rpgZ^Kv-k&%booIN-9rCA766X52{p% z(ZN+diXItJ>D3fUM!$Jg1bqZsf-(d3h!PLU@7qx5(y=uR`T z61=UOwe+4&lXLa_FoN8G^AAE4ZxdeETrxNocHKqL|N7!r9Rn4*92r@ravD<}=ZQAY zr~O0JaaFK7+eORz?Q#8mhKk>5oiKQY{ftvM=BTd&QKW^gZVZk-=C13&H8A28_+zHc zNaE)$Y9<<}%-IFm6aHv&EbB?2KUu_oD4;d9-qN!CjQSf}sr=>@qeO_f6s&LW#gj zq+&EE>b_bwDx98Sy1Kyn=nW^3rI@#6{;>6K&zf}JLmm20fs$t0LT+j)4_8|UFJ8b! zAx?Y7B6vMJ5hTC5bLOrODr;YiM&l)mGZl92etr3Y_7-;K+5^|+Be7`LDa@N|S+q9W zQoBZ4#``t^-M`C&D1#H#S(!)wP}1IvNyekP*Yb-g$0Fg8{pS;OFlnT|MptHdOVpq@ z^#b^~Uwr-gO0cI*eUEhIe-IN=RCC)2bhQ!GJDfN0wJvXy+L&b{{fq zX&ToAFP3TgWT4KRqJ7d%EnExb&eGU?YVU~t;e02hOb(bzYX}JMs8UW-PxmU^pdvx; zXF&DsU`_T>jjwiW0RiW0vRBs&Wt(C-RqBtx*iSec3k6?ZZB3@$pkV+hUo%B`BbH&2 zuOpv;u~VzAGH=XI3cYvt*s9EIZDav>$BxMUofy$X0sf+I&lZd94AMjJZ644VY1%p4 zVMk2r!uGI1oC8;U{6~AvD|h^Fq(mI$V&jBlGe8c#Hng|6`!e_PB1&>hmi7v6g9$;h z_ETL6reZhcVM?X3i!-UUs?KLDMeJVx*yJK9qaGm25<>-v_~p#0ikU~kIRE3P5^sp& z4cS_5@11?NM~7%%xf>tpP1Jd*i0I>4<^sJpTqDP(Q)MGZ7hwTN?0?eV?_sHIsEef44Z*1`t1?=J1w-DV)7%Cq)S@@^Oxh0X z8h}?PpDJSAqF7A=cMWG9{IKAqW2AIkIL;2m873RdfoF)t0vU&XuRrkyq8sw{E zq~Y40z4o7IXm6rqi9Jp%T2BI)+Rw~QLIck0QsVKvMyTR}!gv~;;Y2g)?l@5oe!|=y zRdm-Ruh7w)&aANd-9F^yC3brR?Svb4?pcP+cqL)Hg+<5R`yPg zMaY>9ytnqucUafPFyZ93<}ltm5#KY_+bws4Q*hb)5VGakPzVs34@#O|?L%nZ@X09L zGw9xhN*RC-Om-G)-edcXsb6&v{V3|yo#jT**bJ`%@;FgI4V2hAUc^e{Fh9KyIRpyF zH+`<`<-p^afM&VF>O_eU#_3PjJHglIdE)>2t$rM~_70EjSt33@IVIL@8Nu`FYXB2N z0Uei4M8tfLb4@#_Sk$SY+It27O2dgXUvPQ-^5J_P>LlvB&qL7t^*wI$nlb45%1rx{ zkls^Com`8`050^4>Cw0kt8QQi7O4q;E`WY)H%N1|pgb_4R7MsLkOnuu`W^#;_h(=J zw9x%e(daz?HH{8xNWDahL(2HN5zVn-pdRidVj-bW!%8^Ty#5eJ%dCodp=9j!@0mAR z75W$c8n2^)H2S}Fi$l7;2Qv-rK0tZu{Bt}9Z~=9F{I7sM_+M3};%UO&W+Fc^9c6z5 z^+o+PXoymmdcd&Z@V7`GXbAnUaYICpCJ1Ma{52YR@o!*5!_7El$balEZ$l66@t;xM zgK_)|h%1XyWaHw5yF95^1P#Q2q|-SK@R03q z4fO5>q7z?!(0Z3i&X?$awYPix5)HNhg`nz1o^7O7kkhB)*$&GL&v&u^yhWIuI*nSZ z#}2h!q-&~WMgGDaQ=m6Watcv^qT6QmN2E6^K5Rdp->5a^owJ+t<1{SoKJZUF@Q^!* zf&UXRfZFf*$19NjC_ms(oMY4=oZ`6%MrdBC@avLF9po_e$Ju-iHJVw!t zn2p?06@8ecF64H@%IeXvM=GGpLciT!Z88=BQ24|+3W2Ns70)Y3!I>Zh~X z3Jat40=^4Q8!m$-bBfQP=Q|_nE%NUd2`2R;Ecu1g!aS-ed7X-9GQoxs&Q&XLACe1t zx_M&KM6O6qjuKL^8zEtBZddAOxHSk=)*m^1LNOg%FENDLo+W8Fu-Q&v-&i=kkrT*e zml3sCuZJ(hSW>=+P&X{=D1nEHfk{tTs{lJWY;weji!7oSV%U>kKP1Nz6Vq>WM)D@u zK(B!L7MlFi@o+lBn!_mINf6*^n&}tQw~(+E!|cL^a{i**DEP0`W&GdyS&_D1%7RwK z`JbTAi>@|Z&i?vCI2l5h^_dYiy*8}7T|$&t-py2acW+5SqCCvK^!;hSj>ehTnPA^? z%Ih5rSw*sO2J8+B_6o|h3G)J_OC0IIXT?ar7mrsaMEu1RPsO)VH{pW7Nt)_ZepdFP z_iU56d?%-~!QYatM;nZy7wlw}Fra+f zNVxy)#=D0BAICzDI(>XhloAl)fGPW}Y?}|YAzN_YkTn#gB{p(VbExLTK2s*nRBZ6H%v41QEBOGP?2PFh3hs=`=OUy z->`UCny0IJQJ35C8^yGn4d;W$#*VNxgRjU&mqQMjxD$a!|4}TB!3b@;>5g6t z^u*S(q}4x)cdXp*?f*Mt^&h9v`v1cCVmW9jNO5B-Xtzetep3`LV{m=;)~S)SvLfW_ z@2jIuXOp0Hr?#=rv0x|K%MvYEvYM}RnlESf+;7XtAfC!Mx{ZiYk=1BQ^YN!XZHf!G zq47IA_z&q@Ety|`;&}{R~|Lj*GW)@|qr+92WV5LuUK`iF3KPb9qBm>bU{qZ3tVdSi|z zFgpEIAXZ`ad)x8?!uy{ScHhjuL+aXlODl&@_x*8%!-xMf}UOSM?^9ZQTvJF4Bl_pwQ?$T!X-Xv_cjEfSIvAOFU9?RPCdIPR!nXYe4 zTGKG(6|s(Y}vTLZwi2%8Fpp`drO)re#(LUB7i81%!t!hIGp1TB|L|9!&V?ft_Gs~ z!f8T7b1rKaQnJEd<8!cv;?PuWC&vl)R#4lt|4rStf;p$imU~HW6i0Bufh9;9g0>3I z(U0v-=7QU61EY^KAs=przZrWi4t?JFbiz;tVd-Qpy zqo20!yRw#BR)R@trtA;5^&`VRD^5n}-Xn(Z0A*%AAKaVix%_;i`iUV$$ruyE?{oFK9YNShS0{N_j zz*VaYAaS*YqX=n$M))CSgkPQT6K^`&PuFsFNRZEvHw#@S!XbbC0-5nfSg->>xBS|iC(+Lmxu$<3%%hBUF7Xk03Lx0R*J&u zcD>RcjH8?-jAq{MX?PN>+;^|QJ9~J<-hhLP&FkB%6lw7jnHZL3c44S^QAxrUW+faS zf1hv$KhZ#u8;p&LB#sJhyo`$)Uv#_v@g`q&*~sio-oOjaN(dn5!^3;8+n%Z1z7mnAE3hWevV%}U0Kg(U0PK|l zzyo~F6DKJ2X!#A_{`0b}Jl7~)eIC5gl=S{jNiApG?ZG`vz7~i&-4a_g#(I@e&tDwC ztfgEm7eA>uqitk-k$=>;4$!);@n~6P!exp^Vvc!hth;|J5_+>AeqF(CKwbC_Gy%|ti@n#%QYfacO#4xbPBQrs zw<1A&LzZk$t60|!STMFFl!l9=uJmuxiaR>9d9$_xZ-D4-*!Z%>y zU(u%!_3F4$gEtz98mU+sV!Khg@f3extv(GuEk``>C)&hcDzL}34G?46@-xj%!|{L0renPgr=djfH_*BgYDNu3H;KekufreUahYH648DN$+^W2CMg{MyeB-+QAf{~aYv-NG;1&%l zy47k7Ga=5_RYO1tT(x2C+;dxwh9)NId2-b`@)Yc%zMRUNE5pO60tD^>WTd?gb7HG% z-5+zN^vaeOM{eMpaNM^vROwp^4q?yRdN zX;+0#3q^lcXt;U-nSo$0*@{yQ75j4A=Y&At_b`uOR&%04DkcI^YJ%tjaFVr=zTJRM z>uj76JS@e&cxvmu#eC_iR&wVjtW0vAZ@d010wDOB5*`dwJZA%Ab*X6YoE#1I$6c9U zai3+8foy%ZxJjEH;ibP6_}C-2ejgm^Et%t?(pZ-3m0^E&V`Qv;j5bVHpn>Q0GY_8E zFF5-ppWC)1JfcYFJmOCo@L0=Fx3LNgNc$+z*5*vd^ZM4z`F)z5cVv{j8c~LHzXs=+ z7h`NIA)%20E1D8nrQds?!u`bhX^yNk#N`u2L60`B_dy3G5o3-SnXaEG0sF7G_*m_8 zK)|-2^W1kt>bU3IK^(cyoNBf42_OEvrt38VNV{hrag{oY>a@x|{M=SLj0)>QAMd}!`r(4-d@~)7--UuBqQJfW2!lfl~Ha}O;Zt$BjgN7%Kz_pd`MjilyWUJvTOR0kt<#)9( zbGJ+**@mS_7slCRE#6kXj^DL$S9zL_``_?yuEd*N& zC!1sLMnkq?GtZ%rNqRF~!LcHlEXj|L-i=E`gzZ=11pf6#6OO5tRf!K{1pnEmE0RO} zJ*L*gaK0bMxLQ8jMzbj#bABdnk4*%2#ane;%h$hOY5P9^YfqFy9LG$iAxhjE9F8%c zfIc_FRvGCIA5ZKM?|c>-#nQ=ADCf6)(R}nqGduncg+Yv{Lb}&u{Uaa#l*DK593+D% z{OFP8qHrt4fG?W4`e`ty=fL}gwf(-QUT6}_@=kbnk#ztRI--e?+1mR@$C<6Y-IOm%}^0S7aFiO23uARaVjyvoFZaNDC zlN1~~&GPr$44Z$bhOP0^AL)z=7qUB<;`jP_Jj-09)3wSkd+e~Mz74RFn(~!Z{B2#l zd{pg8ysV1-C)T62-xnI|Tu$8*o{h77EHkunllKtpOt(R%ld^_f8d12rG#}jPsax>n zgK0zd;$UIuDY#_eoOm8)G}>rq`@`ra7h)0#UkYbvO5a#dTqPqOC0x~u%q*DhlVr?7^+ z?{}7wLn@R9T>uW<#{{v+xlIPhgV%|`9^N`kk_X^(xo9#^3MM;jfP;$w3rx|(cTKec zOh31<6TydKFArYd`{*~Z#`le5(rU**S8ZQ^L*|E!r&B=#1gOrt@`0wg&AS{>Xt7RoAZssq&(8u!O;j=3WChO&mvpzTFl=- zyiGiNIk~@kj|27@_L*(9bP9E3;Vi&XOt}V&l!lf?V+yy`LN}fm7&(a)^VQaK+8pjEmdr4M`DYy$gWtp#4@_dRZ#jHwRKm3!zx9msjTI~uaE~>%@ zN_K*^nnYT*E#+}Wfc&?(kft)D#21DfS}nCn1|T=GzB*5o^}Za1?IrqnYv$diJ1Z+C zQtLE4Py6jY_c=BpNF|h&H0hCxg*1wC-FVYH&fiD6+3?zxak!um36)F&2RgaDZ;iXU zrLxwtQblwmJs_uHY(1(ayc`@p5boLz7OP}_O|@m89@3nva2@aX0(qufo8vjStOQ8O z;_f5%WI5o(BX;0c!F{Qm@E@bhm#5wSZmi_s-+)98&Xki*>r>QPkdPH&I6w$4xSd%Z z)sk^%65tEhmi&!^hoa*vh-lTsBgsLo%;YPcl-%4uh~+L2+_9){Bf1W zODCQDnG%AT1dx~;4$`n4a4o<%D7C$>0DBKKHz4+;lF&rv3B*E@Cz%`ly%+-U4x+w| z0Y@&6F_iEQaEZTqe+A&|AnJ!Y2UHuN+Q5Hf8#r{(`(IOJ`>oIhfjng%vTlHY9SYsU*NmLP8$_wCFsrWY35^uv|p_>>(xBd3gQktk9yy? zD3mOh_U-T#3!cz@8~gay5q~Cxx$Y)xm5V4$k|w8?N_gjNL2ZB=nX3aPKGfrh6g_l;C>oqJCyh zcg$PU&ZC~|bpXp1>{RVB!Yg~q;l4!Bj8E!!%VO_h{n>eQTD zO;|%3dUI(XAc`xPk-^mB0QLZY0`|5S*CV-&gP+CVo_UvEG0P!vN&t zHiB44@JPq`nyfb7Q}5MjK7Uh7eJby;^3^)~+guGpt(&Hkn+++hl)d*&ppsQN^ckRp za33gX{6+6D_4mVn*L-yKyE=&8?ggsOjvHKx&E4vqPEMDA8j@^r)$1IER&;w8637i| zc52?@1Lp2d@;qR#m(!M03xF3zxi8A=w*LuamcW#EV_=4#1!HhKX_4 zhb@ujqOC+}# z9~!9e6o&4!jxA2ryFIpx$@N0>0ciKwNl!73+*!<7kA^00xj{#HjcG2e=|}w{Q5F?n zoY!tHq{#~)r!-#z9bd*jeH>}81d4hZek1n=RWLL8l^WKPACTEn$)>e_06%n|&!pDN zM}e9#9w2?CDN#BPR7=XmA{;89q;=Z|_7EY$XzwDj=7qZX!MQ_~L0k=V23CtH5+wn_ zas!H%3Dw9P7JjT|T6a|FZ&G~#b7tGkwaiT&(%_R9jYpCi>zDpsIpn41*^ zesw|Cm^T}eGJRBxsuDM*x?Ws%o?*Tz@lx*iA=r?SK;_$Kzp@(NE(~tIA!-5%h%>${ z9u1lUir@uzQy!e|N|$7MoR~u6fX%$(UHs*FZd13=Yq~-77mGg7Oxg)90Avr4B6tfb ze80ofI=EWU-OSGD^wRma;s(R@a&a+AM?)wpW=Z5kas@dV@)-SU;)r59mdjHTj|hL# z5I$PbGQ9f!IVIB3UEsB+>MV*!K>x-E=63jSFNJ;=uRYB_?5#4*hdAb;Wqc!XPGV>D ztvm($^YiV`i@fiQPwL#jVw`K4e7hzXD2Ep?LqJPdiA71AE~Ar|2wzPlPj&IB7>RF6 zBQMGQtgAqu+^=4_fBw+6A$&jt2a5gLBJo4bB^b|0+R+ z{8tI85Fn`A;$NoS4*eZd!xzL6#JBhlh#^HFMpY7aW!=l$wZ^aU5Ms8iX9r0v2cW54 zq&H%+i^j-P4?caUve87kaxmPhj>I4=6pGH@Z@#t6gBUZa4*ZVZ}9AgYG0A+Ia83czSg9mte!cV07 z=ya8vmqADzW60<7v+<0{#kU(zp0n_$yZAQtLIA7_*#aAqn=Y?QTF$Lvx(s9UaNyiC zj7ngSZS;xQX|H?~0`{1C?e-kjtIH}PE&fSKl_JLPZ*QA2J|`9Ss8vtpsDbJdoqT|% z{*FXGfxj;0@|#XPcRI1ykkO`!k29fK#mZe07;YCm$JztlC`MwyXJBc*JxsR#>Ro#bOSbc zMZz8j+qs7qiJq)cTy6oMl+2BkTh*6xbJmavlY95`V_DF(wa*38VoQyVPeD1D!VgCe z={!CGVky0Mtgs;+IfMGcnnR`l9Vr{+K3}Z>P-@}ZJpi$zm!E{0cA#49XY9dYjQB7Tgjl$A8-_oLrxRmxADl} zZDvM~lr{wwwSF@%ucQ~sTB_;i9(y65&|TP|yKtUlPUr@VDreBFPoxy-=SgCdI-#B! zpHr-I9kHU~oYQ`Rvi>gn=2FKCNI8p^-OPi;xcQA?tmqJ8CkNLNC|b)6GmgLwK#wi} zd?X7Ssw&u{&-B5?qO0srM=c02>=VRLkH`!-QCSIL$fC1x&PUfB&>|#Q0d43!lu&pW z2B+q80BW{h?IQ5E)S)7{j{|hIHD1l!#|B-5#RVC+y>iJ?a|1`M!|guBJnDCbf~+rN z5LZ6lbZX#T|K%lqf3sP>(@1{h0!O~lz%zc;Zb~K0n(Mw*l^U_TBo=sv^+@`M$3h=C zU$O>WYbWUAMJM%}CSI{^40+$hT`rDO63M7j<}k z_UzL4r;pW-yyD7Vq7!HcI^qNi1p^iB$#*c$YMvL*pX0{uVdobw#DxfjT6?o~V-sFk zAb0rqFqN|UTY^gb90@uZ?2ZWj5%kI@;ys&RUXB-r8h^wgb?_LqX&~(ZBJ= zpsXynb;l@b!2bKkH)>Fnz=vr-h9HXUidnIMC5yLgFc)o`<7LY>!VCh8+ zq?NO9<-4HA9f-;v2|k8#UAg{KPW`3fVqBp?{Ry|*;pgWUJ}^{i+^jH*8LP*&1j#E* z)*NoBA7|;E>e)(`y2w;h!dP^p+w0I0ls83PWX%5ZP~X?wB&C{~^|4fa&_X^(s9ulPd%auJ~c~fFkFJ#x#QAlPJgN z6^GkLmdord_uiv-vB&9Va$LZu!F{)n878e}IY#Q%uBRHB#IHMF-4ghEiZHli`$%>$ zuv!eOq=P>jZ4IDUSWJvsZh*F1-sOh{)5JZ}{XvnoA5=U?q9xSe!#3n#!KSRW{nPGr zgX*W$Z+v$mwg-=%p8i=35I1}%B;3L!-3O{saDNwdwbs@cVW|;me)4R@`SqzFfck^c zW8lg(fRSOn$@P+x!L%bbaINdx`U%QcsR;lGY&{WTIG4eWM>a-k->fb#jcTJ!5I+AX z#3t_t4R1`XTY^*&&#dl4Blnqgk_2KEVCT78-UK7?0-5M(N%B)ook?3ESub!aOfpVo+#KlLehoew3V@4G2bjrSU_)g0OJ>ySDES%{iw=}eS1*2 z2M3@qFhi+er2CXlMoXmpRY8eMqskV2!fe@UAMcmEJQ1UO!YNK?8j`##RW7A}+R*ea z4$8>lF{4!wapU6K4Z1B!^7}#20uP=#Uw)x+z8}}gk3QE)yA?uT-v%YG(f9SAii zEQejSj=dOoJVy0)PIkKlHwff<83TZMCJ6lKMrhdi{;W_%k;Oq%7Ti-KOPhIa4f3uN zr;~KoX)rdrkJIO?S{r3=LGdt7I#QO7jNRUCN@%XKv`Sr|bW*qP)DSJg#SrFOfbrM)l_%p0wlQ zMJaSV{>+AnVOGI2&{cNeb*S$lX=IOkU?%yMZhLs9 z;nE~?YZsXEeS*`MtzDKdT_>BFeDur30^jewhE8L~johadk+6YI))RE|Dd$Da37Aw& zAs0Zo_R=+`Gta~ReywP$#BhVi^W`s0W=14dg0#)(syyw7+b!=i{X*h8>Dcr$6h-6?D4Zo2|BT~5q=Sai$7U(d0lQx=>b{E1fcx%A0+7L zW+R=RplD<+QyO+B_AifPRB|_iDfB>*>vFH_0mzKFPCf&NrS z9NUaXIFlFBcDt_}fZ{^LkGW^lI8lPG6p&7sYX$7Ot@uEg@Q$KFpFBnIUQH_i3}z4A zND*B?FO=^j1370;k^;~LMKZzR8m5@fwO6WKdDpvcA&*kz1y{K#SVmaK7;tVtXln($ zxd}*|Q6q8+9(ta4L}{`$^u441)S+eqpK*HlTKe?Ix^L*xuX8%fXxHT-O4L-XSlyfx zxi4R_(2G=smfS3ybJ0}tr0q}E5Ab%v0&Gf^Gm3lw0j5)$-NR?aMl!c=E#=9Ir!0L9 z7}H;B`3k_Muj&F4Le@Wgg?tw`TgeQSIrQvOLMLk)_{>XngtI zE+tBD&)|04Fmlcup6Z59Y_ib3n6IFZ^_5E|*oJ?6F$F6@I%Mp+?)kJV*Ral`n00QBpvfM?1qr2|#g6B32CHq9K0lzozwJh?oI!o!PI=5@2bzke@qIdNgjOo>G& z;V2LkQ$PRC9I(DAu-|73y53rfK5ZwpuZMD!R&#O{xO19$C;6KuA(2EPV1W7~C&6SA zFBOk#>w%tIvX4DO8W^A(uNrz0W8STEb%nf~8gw>8-$pPc(;((aVa#lUwlgU{cNm=d zri-aW+<5F;q0;GicV|{z9g7$!=uqqBT6zK?X?>K2potqZwy8bb66w0I@ul3S(p%`p z-r6#*sCiLHS;5bB6`Ncx0n#15L^_NCBRF0IkKKb~gx zxiSu(s)NHh)UOx(WIc7rivI^gS!V`s>~IoH!}t3{5wZy~0@0_RvWEgY1#{g6^_nM( zs-?l;7up{aja}|8MptCZpn(9=3QD+qfA`p6Gor-oT2o`R&Djm_)iIwU3ka|aWjejz zY7dA-4?8g5?)H{QH(cQ6Dh#;a`_%l@EeD75O~+Mb1une=?dyM^W8X4c)9l|}1hzKP zn=leIoqegHBR16Vun>XJ$a|8u#yf#-R15~y;3{>&frtO~ZA6blAATZXJ30{G}) z^im}z792LQq2p~1M4QQXfNB|cEixET;X@9}^HYQoN_)kAz?-=Q9c5ksIE4Qgm;w;> zBjvzy*aE#WpUJzF&~kM55@}iD0OW!CM2c)iY)Cd9fI@-Xu`z82^`QKB4oa#sL3O66 zHt?sn0q{Zpe{Hz>TV4?Bd%^n#PPz$t0y-rcA}d_`CBxYHNwTwM;Y)l)L-Vw}?8%10 zf{`$%HxCwiVhwKJd*)_uRSuyA>e3j(Wk|U96-RGP+<7eYw5@u)!{w>Bb|<6K0nrJ8 z2Wg-8EEYh|JAL(*46QQKU}Lt1P3dLQWl`pd^xdg((xwcR*N&&VAF;v|3+!!9BUUgt z_>Nzp7=fq+TfMIFdMWPJEd<@lkq=x;a=d;&5bpAW-IEpmn!EOb1!U;p4S17bU%vV^ zV?4zY?>*3k^Uc}_RPqfay#OL%ILU%wI(UAfVOvoSM|uI@Qr%e+<0oG)Z521qG!ubp zQ6=(m5Km^%e0u|TI`{_;u8 z?CIQ+z2;vbcI2i>&0$9#E&AOUX~k_ED{J6WN!hSoefhB#{(9_mduV3HGNyH{R%PoV zu6Kt_I5geOT2Pv;KEcd6M9;lBq@5(3~+ox6lDnrFLK&sq%ZMK1@BpVnemf^m8JA!+#Pi2vl!;OqmF_J%Ts<_<>6+Z@eW0gC7^7>j;h=-b)}HA zp`qyFYM}mfRD>W=a3r|d^FhW`=qSf~fe9l~bl2HoD0vTksSIk$CA#3vZT6KtnMqgC za$E$!s~mv*_9c}(<^wP`Fn?}Ex>^=|S^SIZ??!2ih1h5zTg?tJi0RUmn?ay}*It9k zvd-ZpvB(&7(5HLGrBAS={y?CzfBf*@g?Id)f(ymU8{kE!Cj5A8y z7$1NtBkJA}K^op4r{RPv)+@_Xn!JVz+v{N>+L4t$#X?>+vlSa}k*+^i6UXDurc>z3 zJUxWs*+MBtuc~*;`4GX+wNA5~HGe6?JBZCfLMF3(A$^T;6DLTbmLD6(=+`a0hVkTC z-HkNul{;aCa4hpG4IYI>C4i&kO?SMIVLXidUO}_#g>4o1r&?zQ7^%a)kBgKthao!mFkLm5xtJm%u{f|t3XYwAgXk4_E(P} z9NT$cJ&VMLTao4EzhJt=YdkhhY-hmoLe|-pd=0uyzk_+xm@IQQA-CH|GVQpXSe+$^ zLhbDS*t+}+{2eT~k*q@0ZlPSL9^}`$#~7-v!tEJ?Jr^am5_a^Ni>7JGlb9mKrPy=Y zVXs(Y7D|APG2w$I>>-JXjHKM~_KxA`Vpzz6{;+^Zh;c3m=bi_#kq*x(sDji zT$C>g@zjw6sP}}IG=`DR69QDxrpW+Zu$4RyI|G756d@%425K;e2 zMSQPo8oH8!yEEM(u0D-oZcZ#NVACmTD&3!ad`2Kb6|_*4o4q2q&?b1#)snW8*2-l{ ztn~Ayu8l^sdX5_eg^mQ{?t{Zk8Kuvc*C!2CJ7i=&GU6($3==heYPFH^b*+FM3FuwW(w`bAtm2= zk|A*7XnV-%ZI+4#DDoxUs*th#+*emw%3qYX7@7uiJDo`CB4iOcDBTb`?`70!f--hj zBbaw$F<^CIR0UrcE_xnd*U-JUFC=Aq8{Hu6-8CQ{b-mrGOeZHpq^FxAM=J2HQ#x|; znN7jwlK-zbuWFrvq)SMe^a-e=2=-sMco01@uEAnGl=@jqA*AWqb)B}Wx!0}rA_PPX z(gzcEpg|ZoV#L1TBM++a+48llyO?6X1CVs2`D==(>G}sm-9rkG(NS)GoMUYE^rwS2_~9LXk`R+L13j_F8hNXje^Cq3U_|LeZ9R19 zA`&J@8VHF#KwV0I5g`GvOoeC%9Dq1suqErTzroxI{=Y1bdq+O$q66W5#XWs2v;iv z`IrQ((}V?)yM;-J^w9NR)`JD_fxGkPSNn-V1_4#g^?F>XpKHA-mnOjZPM+~37X6*4 zg-1qB?L31Z^MTHqI`^<%4QU zNoHnt&W7Kk0AXIjE<6P2u1%dN2`b}qY0sCq$<(`|cW;I{zZVLVCuHq}5|*cLE@B~E zcDvVFcR#9U`JdSiI~@(Q6qZi2=v&J3UGWx!Ijx&HA7^5+)eQ3uI{^7kCy(pf@;+Ic ziQ}D#@rG^N{#Oa?@Q!Z#UtLQ9u>$lO?e#4ItRv!R|BxLTK+Ev7G3cv z*lXddrc(ThX-qupkmXN%YtOMkCPCFU(psj5qBWFIQ~>H2&L%&HNlZG8!}qD0QSunV?v<=8t>(SdtD|f=3+Utr;|N}q(@w@YuiQ1HCZt# zE2zA)c>LnH;QBqmd9fEjADU_VH&U{DUoWc0@DwpDJ6^ZTjx9O-W16ST&y1A3-t#!liDr- zauFa3>jrmopF~susXZ`d6u_qnE5Mg9dOYZKp$O99+*jR7$-M;W;Su za+AbO;fZ<-yUF5d&e+oaOGXu;l!ZjmtKB|r-|V-?!&X1O8_2?`?sKBUHaWTCxQo?` z`+dGIP;9&r08V3_oGs5_kvQ0ZBcy(prw~;t3|hGgkEiI&ka;BWKz&92BDU+;1eZk9 zzVKSGn*=dw*;Y7xnw+4kfiUk+&RN)hP-U_2SZ;ajqb>h<5LPlyYCp}NdDgUsn>V}m zMiv2#h$mpeg5D(xm_{~HayKB641)Xd`1lnKq6lHKIx*{|(9=wBl!V6Sbu9gQS%2DX z#JDz0m{3fiSHi)yMMVQh+Ib7k(n_e-nn2(1GB(nTkSyM6=nF!Pz~OM$q*A9CTd>vU7B^5SPrlrCdtn^X)x<$P9t& zHGTuvwzt|f-z-1PutC%n8~Y#MwF0cO1816gkWG@iDGuJdH0p#{Y>fq`gU}pC zzJ;47olct0Ox1#(_6Wb-jdlFUTTz*Sn7qUbC56K7dH{qdS0|J7RPg1QKS?sRn|x-sJ? z@`G+G|01ks7bs{>rl5+-U)_JMHl;u4$kWW%w>F1@Jc^AuLui5N67;`vAHfM@hP_#* ze#+f^6~X$sBy8x^`mDe_zJQ@xO~d;X94Kr`%!-YRPMK$NM`SEpV6^w%;Mi95i5jFk zHWR8izU{!0cMzNY!;9U4kjA5}DrOXHsZRrLlR__nHomS8WA%1`TfAp0?Vhq73m9EJ z6Vk5=Ktdk~?#zX49@#{gF?ycDih7n=_s6xT;C#jgA$b`7Gy~8Oj`m^-~>W3n; z9+ch?Wy`;dCIBp(`aNJYs=uotJfwia?P0n^Q+c%{mtRXwM$eCKX2YZ4d#yDYDR0ge ziLqur0?SL9>s<*-y7v8Eji1yc*f}JB>r(AI^moC!X6NvQt{LO56N^vmwBnXDd^&(W z%WqSE{%};2!ZW7ij%RLSd&bq>nKNGbeqNyW3uj8T{x&V1r)gmP5CMUOod0?4(Uykd z+CUZhZ@P@ch9+>;joiJIirm>lhT`w#M)`loVavT4c^X=3j< z5b7@?hnW|uDD-}I4gl^$Ol;9Lf8rbDXeeaIkbD{)iFnL>0(`=^jhkML?deF^&j|=- zL?pwei%cAbS?bU2y+WJ9J5enpeFL2iyf~~&v~CEP{Aoq+|6S`X^>5VHY^n`VZQ#Fy z4IKRV#|&uy*6DYlqO`0EDze0q0I6I$=d1i>8AU@7!Od;n?49o-ZIy;%5)+rMWTp=^ z)#s(*syGEnA_Qyx{VuvirtQz=5F($-0f-@M%AHII0~_a)*4M3R ze*d&!T#hdr;zx2CVzPGh02Ddsqr^R6(y$zhNhYsMBBpdmKo{aiIc1=r;{%WpaHLUK zq4n$gXG-8CwowGWay>h3q`kt&xqK5-^Pc&4kLrT>{a{SCS%Ar5F3_X6@BYG>{%$Ui zzniV)+Ek>y$kcY*#COWhGsy3rwfpyjaqrVywH#CYVzf6g{+;%BPYU_NSPJ&T6!NNq zsWT5)A$8`dHc#DcsJjhypQoO%|LP4;PgtsN^KW^r|Np(p_$gS!5g8cm!jex3(FtJ4 z*IiHqdoc8^mEi^wPHn5-(BI>8-O}2LSyOM)^=c*0GHM9k|9k*KGTv~&EWfuyePh5V zv9gId)I0)eYjpn|LMG}M{&7No`@fKP+Th1meTCy%0J_!)`NQ4srn@EO-d&*eci4^d z!%S+j!kaM#OC&%M#6QRTV!RT5EdZaSQQj0E^5MMCX7;4%NWiQF%HYDD{s@mLz$f`c z#;!sU^Kn1^)m}~-GL9R1FC1@(uAiUjXVHY&AymLQfVRl}^@x*;iQ`{zutyd2+~{QW z`^P<`#V#0yv{W_bOnNH+?DTCL+<;A?PAw}k<4+`GQ76VqQ?fFkT%Fa~FVuMC{C2rQ z(DymTbwV!&;-)8Y48yo$d&PAL@eo&_LPq&V(&FKw`V=E? z|ANIz*EMwZ$fB%^vRBox7M;1NdMnRSUGACJ0u$90lhYGE&~Cr?c1w|F~$i7jf;K;k$%Y7C>b$=?5j40w&z+{c3s? zx9hiZ&0&j4aiEUw+?a6cqg@{(M`(>}pC&Bfo<>zM;d_RPj7_0~6dPbZ=>GHMt^ZaooBDrLsTQgY{0D3R4<9)*xt4&RnBvCZMju)PIouZBd0z3Y zy!zF;{{xw?X2C6dj3>5Nuj}?EMZ8U`l&;5GE2rCQyS+8E-Af~k;Q51H(R73WOUcB9qC%OgTwpsqI? z%~ol>RZN6X`VdS2B`Fslq)_Bo0`}Y+X<4NP^vFqMbvL&>P^lW#{MtO36}JBX6HSIZ z?7N;cCACiSk&rce8#Is+!mcX z_LFIpq|_oz|Fn=-sdux)#Tf5Cw-sM86v13e+*N$nm6X3!!`(FxParla`T7EoHwG0P ztzjr_$i;qd1qgm`pdNbxG3@2$#-Qq1ZOvvk!V%Hi8LS(@Bx$yl;sel~J{aMs&jIM$7NWt)w;i&j0FZ;d)SnmPAR10kZ!YPsmgS#uBy9oq7QJ zD!5KjNn6qd=A;ACPePDsx(+~x;`hM%-LNaazk|vjp26o{`3B@m@ID66&;9TM2(JLL z5uT-e!C7X4qv)_TB{&;{V*q5)qJjAj!jj_<3!VTQI|z;0<3@hcqp0ix!HT-b%$kTvRzUxhr~97<3SOc>D1JZ` z@v@zS%w0gg{ll>SFmS~Tqdo9g0~yu=TwWfCPT7IU_4#`ySEVl(!9#q9$R!+r_GwWR z8qp0!bZRZoA@=)W{eIy4vG5thbLMRX_yBZs6PR&Jic0^Me%l{L^~Z5*<&%(WX4Lik z7c-@B7NyWp)rvmStqWj*5rgYDQ--CLIhnNswj}ZBCT7A__eSW+ z2B{=m%iVHZ$q9z=svx%bciT60pWIo|B}ck+x7l}+q_!2F($ZLY1Y4>#xyPY!2%2r{ zX>bcH7(yd2zrPz*$`_=s<&c+pab4sc;<%>8X^Fb$uS{q30gs2M?AxO#K~9y|l2ovk z^$mW~aeY->T9}i;vnoZptzlh;ru!zRehA@B6E_b&s?Z6`%(~=$zAVG#IbTy>q)_DQ zm(WQ!8owXM^;msGXaoYmFP3?B6xk-j*xlDH_Hx`8YS@-BfHoHE63S8L)U0ciq{!OM zhsV_TKODwnVTQtYeBVqm*V!vT3}32X5vRnLWD8U}&s6%c7DBd~Zt!Go%sjK-bf?gF z5-+z-JNQmacOh3oaFkG~Rc?Cy!#g`X6bxVp`H^SQ(Ovi@=+K=^z?b%A z#G+VoiVPfR(@kcVyS*#-MnC^5FYr%a{L_^b{%j=>>hu0NN>$W#`tQC@vxe}LOPct+Ui)8aMJuE$VO zg~}6UVmkbrs$lTg1@?|%^-HC$)`^pi#rr|+~mnv{5 zWQlzwvu+vj$Jpf_{TnAD#0!FpKMHuAfw}s3TpiR87%U`9H&pAt>iD$zFg9aA)Rki2 z$?3qNY0}aIs1W{%wZ-(B{iew7O@=k-V3I`Em|bP^a>!&^X=G-ivO?_1(+B~LQ7uc} z*wG&?=pTro_8p$VS_M0|aXEaSxGjn~pRd*YZIX^nm)K2@OF|K9S9W#UEwcK+MeC$9 zGWjCH@^GTktGAiMk8vc?8h6)YJ32RR9Dq_ZW0*PKM|>nBiwcW+g(iDTmOWM-gf*Xp zoqNse)EvN&odePZJqBGn>OEkc!kaA13?PVRd}W$_`RY%_u?fe{4*0MUyf6y!>RZA0 zdP+JO@0WDD7(H5fDs)Lzcrx&|3X5iBc1YUGoMRx?k4mf?!YKc;(JElC@S}=F{+W%H z`s`HurP{#XYXjheUaF%_brAoY4kC5k{x7cEl;Q=_HG&Ub{|@|w_uU`DlFP@w_kD?w zP=+2&eQh=k--(W`S*}XW5x4y*aZlI!!7tI)oNm->@L9;@TT`yS^FHd6EnyZt8BdEA z_bU@tH#`N#8jpmemCd}~PbAQ^AU?xaRVJm}QFU+Z<8q!|?%`FRoKQ_u^dOnDk|CO= zO~?1EuY2yJKFs>^&w03{Y376z+hH|E_%9?^`*9k4OQ7X7kF@jA9AEOi7^a>%m8lPBi%R9Dr7#)8b*2cF5-~ z=sqpb$~%z`w8#GSH}rM_q6^bPIfN!D0}N3=q$yAU8;)vDW(9BtW(%k-W}w9vqefx* z>o0lj6dwu%M?>KeLM#An%lyCH?7_ctGsuAD0Z8%JQyw}1or;5O0Z@}S2cVrSe3lZz z5;f$>Po`Nt0Il~R0>OXvWf?$3pb$tB2v8|$2k##P)O3K1xHh3T6;sr;qHu=dw{rm6 zU4+yl|LV&>j}3%qv_z6=5CC$W{E1}S4I8%J;SL3W1VjXJ3pJ(kS6}u!F!K`t_5%dL zinmbwFdGO;ALaT2dZn1id>6oH_+ZHUP+ZzyeIZ-HHrD|F#!E1s9jG1LoY;dLfb0Li|*|LIEb&zgor}mx^NQe08|QzloccjQ5w1-3t&M0 z-S-XY%3pms02#!Sh$O@$Ep@qmTRZA<{p*WOeY^hGn?`-RsGA}6?4q7s|B0?fdbn!O z2PfXM50x7#n?FzSK&_&(o1;6ylG<;ChKRPObKSU~X96A}j|+&C44gTNXod#=L~t z#>)4`fJRiT;xlSH>OW39Ds?TWYeBVv|9l%b=%eNdsrjb=i}@yMf&L}co~ZUjwE?OP zP;G!}1OKmV0CLd(kLt*wQ!sY0$X!@5x=sU*ZHkLY9NX84i_Xt`bM6$S*NKxio?*t} z1oVN^P4Mk*m_G)$2WLfeixvT-eCa6C6O1b4$;1dslbl=4R6xLJ;kHbfP2!e=$pa>EyG!e0a)Tnf60#X#nLX;v>1OybtAYF=4dXIDw zklq4PLNAd7AuLF;xXZoo`OevUpL@PD#@^$*_q)R%3>XBGwca(~cRur(&zy4`VXd-_ zSg`D;2_gQep#V1x>G)4Wqt*%IG`}&Uie?{H4_tuhB$AJ|=Ze7!0kBmC!;`rkB%F?_3t!MuqDcDS( zW4j3Z*4&5T!I^yFSb68GJh2(|93`dXtl6LT{B^s}Xgk~~54xCRU)O|CYIY}zOd`MR z5S0wQo9i#Cs^SYzv?>T*G~g0o zdwTYZQ1g(}##X`dX`dul#hD)s>=ApfX2cGyap!W$4sj!xA?5IrwlFR_ag~6+8G5MO z8>YO#F_Fz1XbLzUfmt(Nb7yc?Y$HS&zdkWv5}XPyb5s<8rX>4kU*tP7tt2GYq#o^z zAZ#OcKBiv-y5*@Th{pjQFzU#*wTBsscE;_&4v6YKFHsVhS9>Jp=jnec-NHcHL!!cL zZ{n}hHn*G4IIo;$B*GVQopA_!P04E@@GC;npv@IZdu7zXTUuL=MNP$Po9O#9Y>!`L zhI%Y2tY`fJqkjUDKQ{2k2L9N<9~<~%1AlDbUupyB?ScP8gAQ;H#0`s!4tY%RZEf}t z)@r%wKWo`x==28GRlW6VfNCG$nM%Py=)`+a7| z&XsM1v}yA=?N|&`Iy4Av{T~w&jLY!5wF6%X6g*U00x($z2uOvE7>MWiHbN4fXF=H7 z>WBN)@R&39r}8Zs{wLu;fIpoDXvGDbfP;*E@SlFXN9X>h9*?s3$|lP_^g8(@6yyv( z#*^uA?ZgY=bT|a*1?G1U!bK6xlkim=0j<5A+lagC+XyHsn2D#M7X=yA2p?V40|^s`QX7(887~5DD_@|Ph%3k`GGGk1=rI}}o~tMD)UrCF_z(4x;+w|Q zN<~AOmQtN;ir@Y$4L&5LfJ*p0#8Uw_u%f4>bdp1`{!3>rp>5n$p$YdY#6E{_ALFY z{q(M!Q>lD|-xM}sAw*a>QM7);FEg~ z%XUl06#Iz1nz({={g-qg5Zc^^wW}O_%=fi2*zahbYIPDm^rSG27@C=1@Up{;b@cGl zk&Z*GWr&|=I}q5QtC)6K#u*J7995@&On~omh|o;%MBha}A3Fig(KY5V{0!iP%981Z zNcT6&g@cj#B1)onL>{l^bQT~29sVWPjP-&^rc2mkjEkTG<$6P{3~2SSW0HCKSK~3F zp{9aZ(U*awYl4zG9>HI;v;6Rl#-KZXgbj*-M-?$QOW?6YCs>%U*tXSyadMCh5BAZ4 z#|A+R;x>YsjGn9|xbSTq_Jviuvx9IW?JndxECD`-V*y-Oh}li3{j~=`2MieU&_8oY zT(ZaI=Y*eYX`8!;ub}7qMv0)Wjkde>?(PDNAN&hOu>+^jLWGG-LdnUewQ^uXeWhA< z)*)QF^XZU;%39o>W1(Y{Q`)!Q#+T?CKSDq;IruLt!zvIr4_!aN8t%ujk22Mq9EwwW zUNCBO;M;kd{nvyHoovM{_s6{Ez=B=>w^yzIxxYW18UEP79~<~L8$kXaIlCUR$DRP{ zVA|iAz{R*r9S^BSPfa;x&J$@L?40;$)~_I|nwq}Y<~Q&9Uzg@SPLzI^5s&Fr#R>($ z%_)P81B|J2jRawEwyk;VObH>p#Gk1vmk}{h?c{s^m;7;_$Q+mb9?1wW1`^k!I|1D~ zXz*|kVN;+S^^8!8Bdbtj>IUDzFHcG3&5Mxtbhl6MmY+hfZVDJ!pC1wM}+jwXTm(x>W?5pyVG1 zY129aeqp?@ZKzLWQRsVku6xi?O6Ri^OyOOU^kt<3q>JBIW~8f<+SqM)ktYzH;6oHS z6L#T(aCg$|i*V8TMfBt}P@2RPybiBV3Y-dxRaiuWUbrUQ7V3d9{TGZK8sX@L*9$Cy z+pYeD6HQn*0E|Fvdi~uJ5ps+X_XaDs5sx+1KQ6jSSNA;_(Rlp|@jfG2$X9}Qhk+(H zLmUQf>I^fu`|1W9sy^u<*>N=fj*W6@w!+m$&-M=_} z1!(|-ASB6`A#4M|&0Rx)_4Pcst(R~KsE(-yC}uI6B9PEFVsHQtLoD;bi5Uc7_`B-I z5eS8YpJgG+NHf5Xk2F+FX!kL>613r4RM6hi7NU&Y?`D7S27h^EBy>ICK78{pvEAds zZf?r~>hPqFdalV$v!_0lXOI7Q_;52|WPH8pb6>N~btVxkYC`SSygqe6p`lW^%Fn*H z`mn9bi4l*+`{#O2d_1>}2>j8e;jPIVks4@7KMB* zX^MQ%$#YDumh`uHb@|!_w58DPvpe(I6j<|F*iETYm<)h&nLr%51|FcwcTToEFA>mW zA+3AnuT0o1fD}{(A3@)#egu4P9 zvVhEy?BN186Q#GnKvAea$oq~%1IxV22PiuDOd3$_r8-X3<=?U>=YI0*xH!P zyz~zZ3Wtl>cl$}K;TJy=kc5dG^yfL6U4JK8i89v06j*3sNGE>6^M9MWH=Y|a>3Oa* zIx1|=>jg_ZT@e{MxU&z{LFf>y) zTfwx#P4#v+6#ZFGyI^%GWDu&JEa}V0#8F$>(-gFjS1A4FaG5n8s z=hgEsShn(hgMCaeP>N>=J}0R~QBB-gpbkhP=3-BPnr&%qp8#=Sg*+HUI=inT;wJw& z-6lIWe>Zi7PlNsN6caR&4hfb8$J86MST9ov5d}j=Cyc^+AIyC#e!V}x*E81lY6W;u zg)z{D9Q^=CFcQoXTkmLexJ!E@Vn=MIfWbV1E(5^kTNo17GE}?A%o$w_grjaz-HLUF zOPviZjF*>uug;8oDvglnv6+4GN#oWs%2#&vJjC^kE)LY&<&Qw!IR1QJNAn9U^c}>T zn{F$TE@EkXw21AqYsZBzoyuY^iyBwukBo$SNACQqN;RpCgo8{*cE zZTaG2E7ysAh%a@X0fv?)cq{0tjD2B~N#WjxuGT*_=y^qFaw}U(JY_6z(F#j(Nknq&1>C&a;dMa({6Xq z$w?ILjNC>j5DIb69=Pwoc3ZPieZzlpWF@369)9Sp@*sMzP|679irRA;`=uZ}5(r#118| z#XKPtp<0Y%TvjMm^}eSI-YOLu4jy*3j~W$wHY{}nDRU!{Hf=h(rNj_G(w^3Y92%%L zo~$`h&fZ*P)hW4W__NE0*yTq5F669F2o>2dmNXSy!qXmx2ZH8fQdNKI#vsm%d;)qGc1Zal22nfawhR~_^#gSZsvMviJxzLRt^ zvN6*uT=C;{FpL)-UuhD7F5o*m!wKA2=>Vxgu?Cz#wYvZ02sPz{FTc)9C62WCmk9t- z*KQ+~Z`o@S7oCrl4bY?vHd-l<85$Z3EYOHguXGf*idr@ovfs^!jGUMl^uTCBt>{%} zxbhiTHiOyj*9!CZ5SyK}BxaT-AN{D`p~2?blZ7>XHhpfjP0sFj!+SJm)n2$MpO(+s zJyU3$stPtyPeR;eYIdV?hbyI_q0-^0%bSBT<-2mm_|8`_%5@)2)DNwnf#4%MxB+I+ z`6w7>qKA~#d6h$?3@?yXUdQ|t&NUORw@a!8aKR~>TSWo3Mr2^zY zy0PD^0j3eXN3}kFPpyJQ+2^3SvIOTDy%^VW{B8mj6QO#};`)Hn(Kc@tOM^qeN|x#t zdV&v>ULh-xUfrptx_*zH0HqPdrlyKs4^p=gy&AT0n)H1-fyZIsR=2Ns?WU_Usk-np zN_k|yZ7;G*0}xC7u_U4`FKMX zxVU6q7_+Z*K)dg1(0r}!=4-t|{gN#<5(<<$Ur=N)X&iC(C-O(c#zkV-lC%~g{-?<)7Tde#KVGew8DO>?4Oj`+6+mbFyx4Cia>p6H z`wlR?L2`Rf>#(_4^6P;{YqWhu$y4kqQCD`(&va+lhe$Q-tUhwt`?mrLyAv8Cl)94- zQ*3B4{R||fw^>%VtH5R1E_#HnRX^q2!CIBFA-t;Z*`isByvLly&&)yG&*2((e;6tb zp)bKn5WCc!Mp6(rnr`2gJFMeDMRq)!i?ZTP$PD^+ix3w@h^7Z!H^8*7I*??nymD>8f!}Pnsq(D*4st2&h1|Y_XTKoqUL~sAO9ut=Q{O<` zigcp@i<jU5?0D!O7mfcNGa zoyjP#NHmr0OS)@-?_PN_PPrHpgWFx)7UZE;O30! z0q!T(OE8$O+qXXSfEKR}=D9u$5SfXX)Ax6L{%D`TqCMOAovka#>6WL^35GRAaoIfV zNwrhHT_cVQ4W0@Zz9g57n_PE)VVL0AMjJy9hLA?|BRWL&Ch)1M|iDnpq;FY zCvic=E5Q(NwOZw1R9c+Xxm!c|pPckZxDW4@A}dv>FdJimaDK*I7qTC{8|{iGCXsa7 ze>vm$RW;;fWtn1^UM+OVZzH_y@JZ!B?X7pygWoqGMXE`zLBDF=Nd1q1rPtD(%(dp) zB<5SfU0l>QqPW^M&rhxSfJ#HGzD*$Jnonq7C38AlzB>NcywBk)e)i@}DGH1=`LhiS zz1;;FSKgTov9{V}9dXPq=ac?vu~dS6$pXe?gAGlUhWW`RWr6ndo>^kAZ6spOUr zQJx#kpl&1NH#JD^41sjoONvo(Wz18I5w#}&p_bLtW}c4piqL7@Y-V5V5KWL}1&shE z@-h7Dd;;@hJYdPBzoLh?MV0>vLhq|#V=-gNW^w&D?GcxR=W9(-_!S*sU+qo`E<%%^ zN~p)~r$)#6zF#b@97~odsd-GEy)>Go9ETV>6Mf9zlxFvrhl)A{4QgppF%78Uh88VN z%9#zCeO3B!MroPW4X=l84pCgg%GIu`@YxxQ`986?UHw z@UZ`T2Q%(|U;%Z*ypSr=RNzJTztUR(wYe(|7ZjA9ufe&EIHq0ybzEHn7C0^#{~e-J zn8XorG)t=Navtf2RK3=r0aw)z>;9-R=|pGAG}&aTtNSsww^@Fvd`U~oKiD8{K03zF z=3H;J>U$6zajG;bR!jU0*e%4&)Uk3-S#{oPAGxXBCSdGo6kvzR7w3Up+$F{pD*j0^ zYM&W6rCavI`cnxZ`mkjA(P!QQ-*Ov|Dzn|5g6aInK*QH7q>9}O ziNsAqYD)0oRs`%M>j1qji3uwTaxGvn7{M4W162VF|asQYQ2jRQ`SoK1z_ zGETliT21X;!`C>%Pq2xK3NOZR&WpxG1Q_@vikif`EB5y{W^)N1`{3)fjL?E!vV3Kj zf@KqY!PY!g)Q!fJni56F@PNX+k zYYnO%K18p#ItLu#(}_H#BmOPb-xOCz!tF614g5G_S{>@?H7nB?vAI4frn;pib)T0QQ9noj?)@t~+=sbZZs?d<&68-co1Cpyb z5hdVft){VlMk(N#TTN8^rCiDr=E`f9DXcz{WR8F)id`KHsKW6Mc*m2m_e6c(3mCh5 zusxGZJiKG(f%jKCiD`cGo4*OPx|3*^1ICla(fPGJejC>vDClQ0t1j*2m%XZ7Z>H^R zHV(dy9>i20c#2c{Zn34C`j@$O)n!vj;p;dgV-NV4G|p=o7;n<8c_t5I*6~?-^`l~e zOrq?tgstnx)XB%l_v{|lnbtD&OF(ORfXO!EvoW0g>fy>^+pPMBjopI*58=r$lQ;## zbrDBEm~oX^W0U1{b#$bKrl4UJSG*WfW^sNG>g5!BEE&^T6WC7|hPo2bMJ6d!W73X3 zoEc6hxJADVs8VEXu(ci0$hcP^6}_0j$|cA`kD{AHKhSVYU`Gd*IU@a%nm72vo*RT} zKW9DltB6s`?JZjm*d8|pno*w9xR}{k z!ed%DQQ_+KufnO_ES3 zieR|H*YXnEj}eDh0xnUq!yo}LoxY>tT94==N$IoM=*lZg{WoQnbqah5+FvC6?Q0Q~ zB!-|nt+9$~66N%PaaLfs!{04Fec_S0!i65W`(~~;f=ne|oIMbZe+0jE6VPf$Imrxy zyDnYK{7oJ(1DS>BiOkxQRP-}dzOeD4ft)R5Xz`|W*_&IXQsm_4hl$o)$1d%j4v2iJ z-!MDMGJ;7E8B?VuW@A;Y46O-OHP>S`2d}lt$(H-v9WQ{#V$tEPTc^&z(DgtwtQ43I zJE^C7^+~)7_Vwdr5z|^TxfM}i9sLH@_pQ<|v@N}?qv-lTodV-3CH>1*Oruh$)**Lc zqGMM{6Zt8vR);v!%wurmNc7Utrp?#K!W^aDP6@KCZhSEw$)g2Vw_dZS}rp~b;Q2GIPnV;d2XFybCaarwQYT!)5W1nLSl`eQYJMQ@UaFRsp<1bEz z1p3X1WK5K%O`0{}=tx{=h76D)*P6c12IXE=p2yTTIZ&^hSb*Mi^%_QMM0Z1cuLRS>t~R0^`G(!Bv7@|m7q30*h4Hg>?C zO6XbJM9rMnB&-ey4Dt2^EX0j`iz;Dqu1}j%1~G%^WgV*g9I0%%VnRvqp31&;&Lhz& zKFgkDwYTJZR-HbvHm0(*i-@h#2)R^tX@tQkRsw7S_fVj``%~=xdnd8n;2t}764|qx zs1S8=qKszATP+l>`)xy7JU{>Qh6#2Mn8-yHf6S(Ielhp01CZ8YR?f}c21nl?aWT1d zBEvOAFp{5^H2NAM=@S|`A+LG1MO-+lbdYRFm7IN8(ixtd@^Vi+6qR-9!MqSqQ8?H( ziXJ~=?CCt`zl{(E^KMEnCijyk-D@@vNN zTKor%^Y^TiZt+(Nr?H+CLl)4Tr>M#3qBQ|hBXo`ta_*NK9A8|0uDK&}Zl?6X)k}(VI zF4-!84F5)eF&*agS|LW7==lU1l_UHSbb@&f9z?VpH>5RlGf;{vyU>M2wanJC2ikijV zNfD3YPbAW!97ZnxX-d9Fr#V9p#xsRb-!|e`L&G@8qV!w+xg^369EUDVHKW#lWdaKU zLX4s-$n}#jXk;)mAW5hf%^P4q!aw7(O{z4>qsi$+DzZMbzTg>9m$K@6d`>EYK1(!g1t{2?Fs4?c~rS_Qxk?=BHouxkP?BrwRZhq^^i9(2`h+0#G6p99;!Y#h|J(A*|4Iz*;mZ2%Yi`${h06N6rr|31J1UN%KkPgTX(5AIRB!Ag!cYHRuyW`Q$WJpDU&ccia zrU$fOFE>}nm$)dj$_FgK381t{km8zq@R&UKO!Drp#>(=NT``+Jy=h{{0;iKL znH<>iD=hlo@-uJQigTXf%uEYHCv}2y8_R9k0jyvhU$~~29nF~2uV1>VWvWUO!b$*j zVwyI!EhN*1g^ZR2na~fck2ar6@4+?LVp6cRi{`Mt>B;E$2IT==78#XST0EyVwE zorC+Nj!m#Oax;M$LvZTwqG7-SS5kO;lC@~Rn)#BC95879lXT&FOA43Fl%~V%rJ&go zw5t*^=_WHrOTHuDyf_is-OWRsPmFnSL7K54pycErp#pfH%hvGJ*18XdO>H9t8P}*E zKU0y-Wl=zZbJ8vkkHZtTl$N=??*y2?% zmMtbBI}@z7Fn9UvO=x~6sBs_r2y~?^HQ|HC@`}XyRef$MQ?&J&y3^Sd(Jo2X;BUS zl(1X%gJ2 zJ_wU2Ses^vYK#dLX924wopBrty>7+zACgNe=TEQ3L~==bghii?4?DNlM|JF~_Wtb0 zn)}iirzzH96H2^XJCY`sP91T*P*7`p=m)z~#V6(a>Zd+_jF4lihfYJ^$Kfc;u}0-w zSFP-MFW=00)2SrZ~@wm2l$*o!`%Fi$o8F__5c$R;+uQX&za`maOYB1P7aHS*V@lgUDylfu$`Ve2rei`_;%RYgEsBcX_ly zSGuN7lAq2wT~8MA{>@n~q*SmR8$CYlbG15_hz~2SG5T)4I>7a8U0K3?$>IdUboCb; zQo>@|_?p3O#4;)iSWq5Z--T)GWC)2smp5Ru{e*=h&Wtu~)H_u=d`Ilr%*3^@?hIyT zwUcdclyM`MJ6u z_$xfr-rK&!{rWAvI^-2SURxahThkj3bpsr0N-^U|h7P6IJVexx?&H7j)vkfTZq|Wc zhZogq*=%x!uQ!N7r|?I97Sk)1mF_yaDW;?)s_nIXpkb!J&VGAvLj=5%v>$u%e*K3f}54-OoJ`Pri0BX>|gbc>_sW9XY2xaQj3U281^>jh}ts780dL#W)Q`_jkVs0P&ym{aCy z5P5_o`;!!}kh``h#1?%#Yly*u!1 zDjzwiPJCCFmNX4SSk9xH2b^YR zYVu|MaN5eO!ABk}JDcmoyO?y`Qj(+>q3k7nq`~v_G(y`&O?&J6U+zki-h$!Q5@TF) zJ#8!wdbU}-(JPN${N^0~IC;$Rt$u-EIxj&vGHA#xl9N=k<3ALQ;^*Qa9{z2FOkN$D zri5ZDBop3OLJ!dspHZvk)q7x)hYGVH6*+9HqJ*N(Al&LX=m0QOkpV31zsa~WNP9@x z1LjWi+1peG6l`}jh%cFz+yPgKw_egjLLRW~)Gw7%pexOi%| zw)?Gf))UN^Hsj&II}hxH1l)%Zh^avj>`*Ru3H1UZkqhhPlihw-3{ z>2g^nSaz+7nHJ!E_o&O7MyzXUlU%#I|K1;}-Pbp&-{v+xWNAay?3JP>5Q{z)CpUs8jAEQKEIRKWk6FuWq8ru0;`PFlliDclZXH1u>(%eQSBl@&LxL5h6}l0( zGOkct#iH`_vnBG_g8A4@SMl^fZ2Q1?5zrh~M(L<(m{<{P9^BHG{`54MqbbLxb=5Ms zqLshWHa;HHAA*HTsVYE0!9LxqZ( zoG!FkHcd3oI1Kl!ikf)!m^`hA%Sq)U5`RYEZ2G{=n;wN3p0#%_&dyK#sT-KPU4eEeCUeg zo)LrmvtCDBzg7E~ReDR6EAS(UMQCRpokBPptDv2Z0CA@A5M-qfC-hYPlNfunT44o> z3!eQVgBf?gxFDZW{Tel$icwE`0E4X@gHrX>M$ z!!$m?zt|AgXafBCw)8Ts{ryvDy`q<>Ic-$444?;4^j#mW^9>I+p5EV4QHk zpP%LaX+rk@_iIRqN5^1_F=S*q!wY<#v4GxFebvs!j&#PF$KOviZ=Mt?w<2>R`h?lJ z+}t1`Z3N3>>#N&{UFvj$ZAAAisypFxJK=9&Z#12w@F+C2=s1aN} zp>X9(OxT!6w`;sLm6kafCGYHfNZNvUVIU{(%*f$g!DmNACvixb9eabY?>jYxKh-p~ zKi_#ZvZ#VP_Y7Rb_RC6d%Dpa1e8Hu}9pxx&y7Rsy?q+dR>l$|t8>UsZi9l4CGHp>9 zs04AOwjXy7(0jTF33mMCnGu~*8L2FvpJ!U}LNKZuxj;1yVO$I~=5-c+l*)t%+a$~XdN!HAZ2}>otjxqc@!nfv zC1M)lP*U-9Mp~D77J2Yx(9Or!;3_RcSVU>sG+w$R>G)gOXXr1UlCf~iz{}g?aJ|mXi)O=!XMdv!_W(+F%N0u*puO9y-#a`b3ud$O`%ANr&DxpAJAUBhK^Tp`eQ| z&ek26hr>wx*A?){NyZBTJlSOED`88|1M><~)WQ&Cn;QI5VA4EzWx!4I&g7|ZgW{CS zHi!8iY$NpGktFB7Y0a~@EQXbh!WDTy)H`-&DqxEX8yC<*Sr!um$DajM+c@&JRgAK?8SH@G^2>4U)!A9U$g{rLK3 zF0f!*%(BJtm*w@7B_F4L=NoRD`1zT7H}F8o_;OjZHS25{DkE)$5A~&=xitH=)FXIl+c`9ik5i2$6;G0nge;_Qy+Qw7K?KYEw9Qu5*Ity*c-d6P1qvQLWr zFIzo$n1fMIK5X&7a0b0T(!UUduriF})pVetQ*hCG|ErV^n%IZirc(6zNTHS@RyfQz zNh9Dohhafc9chKn$Q{-VAMFC48`*QKzLD$Em_IwEqFp8RS}&LVzB1tFhabc6fawim zsuUWI)XBBDd$Ce0kGs>^o6Rly*697SOis-wFSI2h5MzJYebpMY=$GZOw{JPJY= zo@SunhKAXAL!f8X*#wPJXJ}dGFYV{Z4W>ubf681X-AGu40w0Qd$Is@_RKZ@V2yKy>TYKn4_mUR6w%29mD_t$l)aV&3FWBK4tiJ@& zKcDG90JoAm!yoYRS}=qn329_n{X- zX~fli&-e6-?Vqh&gv3}RrtiabNR%pCBQv9Rw~;GMafL;fAU~HXJm*<3T7P}EpIv2z zGvj_hO?KB4_zE!(OlQZJVG@O7FGY#W^TCXPrWVA3hAkpI;Wp!y^~^rc(w{A!`VS># zTU)q)`r&&nBL1!an8Kzwvyw3VQ%e>Yy1tEY(!&hy`qwA{svAh~q$NIG_6?K00>cES$;%6UX_VWhWy$WHEnJc4(z)ues;09*;A5EatI)MI@P13T% z`_(c}&5K&3vc&Wq(eUW1qQEZ8pr4^L39I9qi=2rmAK!@ChE}{jh&*uLG6LoSV;6M4+XipOH()@*{cOJAyKg*9m zKw}R80nn>a&Xxk@IekcrjCa=bLhyNBNglz&pQbmkj^|zEzXzcR<-JO&>d~YD)6g4Q zx%21wz6{O-%S?FnRlyZX+LodQ>A)y%H{(gT#^1e!!2Qy#Rc~gcaOmWro&frftk(lKT->s@{u@tt-+%WB3foyNcH$8D-_SXLRV zjTdnY(8(&|5bb#BbYM+_`a0DrwmrR{_0&FewWjHcQV7fltcZgC##D!=>zv+JsGBen zt9)Fhcf{?K1oTw=>{p51ItcfxI=>5Ml?|jq)spSGL|NP0?<4lZMFSiNt)lfan2X)6 zwZr+=b$8r&HCv}|#iLi$Sqc1rGXTopoGF0PDJ!&la%savo)`iBJUJh0v1R_!DSPr5Ah<%(&Gqg?fiQw@G@Uz@49yybUI9XU<4XdC?jvF9W+;rIgbv2I zi8?Tjp!fnmZ6n%HWM|`(5cta%n=qg3^C8PwnDon_I+VuNqc3f?8yZfffiQIw6p)94`l0mhzRkTKsR zo{5DY@xuOfroHK^!*4ko%y~C}&f5q~5_(JT3}E*1fA*cidSeFw%2lN>Oi{sl=i_R{ zdzzT3a8m&bJqbe%kuw~9d2yEBt1sMI#%#Yzv#ptwlO0G(4J*7V+2H}knG3G_4uQ>vtV#>8ear^iU6K-;Ze@7fZ;M-R~r%s|V z6w&e=p!fr@&?|?HE|pe`1tP8aK_j}RBTBIL@V(iw=5d|gnRgFwwRw1XC|2$c=lXG^ zr}Vx`oTmXo0L=<}@^SDm23Cwc-wGLsrO;^Z2=Kbsk*l}9Ucd5A>+#290iVA|Gr#|c zy+?B!UaS9h*%@rBuCD4knps0g`ROKmx5rRH#Mh>;=(u$J;=K|C;6brG>&Ea)p_cXr#Kmb_1TO+PvIcj( z_@_GP|M~wv>-Wb7{@B3(MjHUOyZ*wx)s44OHo?)AdeX3(GG(azd6)9`@U~Alcq% zF_~j|0w{3_wL?GFcHU&gFQ2CsRajt#pOA_Rx~q@p>4B}zl6-TRmOupd_v9Irdo`ZO z*OcsWN<@6`JL3-#v@Sqal_@g#3r^{Sjny_LSW7C^ILxn zZ5bdO83kd#-iJG9@u4SWDN(sG;o`#2#u|gzFcv$D6EFM6d3MEr35X0@c3u-FsG%p) z(4_(aEEF_DfxtS(0VjwfZr>4W9@lzvcUZ6D)U-Z$nD6~g7)7!n0Oj8Eiq&}b`R+C` zA-mh>71)9~HG}!CUR|HKo-(HABz?ENG0vb>di~HFI9$Lm_7u^yFhN+DqzZ|e$~#u8 zMZLjoC5^!ueRer*v2#^A0QsgX#CSr6aM5{n5aOz$-v#PtDG>~DFeH%B4DBmJ*}pT{ zTtB0wDd%ZC_KrU!zUn9{zB;Ba_y37V|1C28`|quPCk-N$k^fdb1Xl!%LtHQvmNiB* zpTnAqEj4Z^$$2vkUcZ0nQ~fs|rvOedKLFFST1Q~=ZTKUw@SvX=ZAxvSUxOQzvVK#ht%Wg-GR9(5)4ySX8ho)5M5ZFK(?S1 zANvZ8mY~C>V+II#^S}APDTe>l3TMDEN@DsH?!aQKljxy@eR2NJq7esJbN1Q$oZ^n) zIWB=PfLo#v#bDA2E^Qb2H4hZ6=TP27ym@i&q=%kX`u)>xHv%bNG9K*pU8yi;YXv4U z2*m@L)TF5cD-9{UzaY7B)=>keogQVa-Z`?ZUiZPt(%SiS&7jmzbTZ~GXOtAXw%My7 z#6IbF^+6iO`{2&CAyiT3I$9h|x=Q6}k1DTO?nBXQkuXob!!^?Rc z93hFvI!y7wRe-g-dX@O?!Y-9XYURw2J~{bHv&vKN;Ki>~>GJOs)^PQ31F1`$!)y&N z(yYL1Q`WDw#eLrA{7^x8zA)JN5dAaoxHhUyQHbfLM@M46#!Bdbc3Cgb)xDn??HO>c zVe%=#)_v>HX@|L!+X%S*`E+mu6Q*E-;~2`Y_$7%JTu4c(XA10MyCf>~_Ls#-qMVy; z@{|{2xkZMRubzO0L9q?!Q&)=u?ZVDynTf+Sp*a_qog+aHxFqKnd~q}$c#n2-S*0L^ z7}fA@y$VdPc*8khm%z>a7HGPf9`pU@X{bp7T!e=JP0wiw0zFk zqkgobQrLj?35pP&7~nK9laN++mfl7`e5}U;pC7IZhI!R!w?#m99}C=EKH3%5JR|>9 z{E;4~E|{MF9&XuI$Ic(jCo#AohS?93WuIEU7!!{=dE@yP+|&FLwE>cQWFEv}bN?vlvYC-JZFqTX>n*SlmN3ID?RJ_-_TVg5E?ynxd9wqT=hk1w`F(?XgQ%TY8x^}E%XgV8yI z2V-ZhevxLQRMHv|^IgqIsUCp(EUC2KI$UeBq;Rt;e);F4&Y{~c*xN{FwF)^oG1dTe z`76Bre~=243L9wvYu=DrOMB+^e6g7af>VdeU17t`#6;-xs!FZ8 z?cX>e)`2P%?qaEEe&wC~loUU&Ls~veQWUF_*>K^I1x4n-TO-nyce$a5cpy3%3}f1v zxd(NKSL3*`>V~SvGd)MIGZpBbe<5r(Tw&H!eDpyL$r63?=IZT#W=}w=#d*f*tlezb zqJ>{(BN}sVa7VNFYt;tb?j(kT9XK}614|%^vqMdwg;+bmtLPlqK4>)W(^4SwkKE38!`jTT{bv6_ohc^EGLl(9*YiVC0V^3u zIt)9%23ZF<;HTU{4`Yb=@Y&lStKO4e56;}cS3oSB_aNhp=qng)A88vO#To>aYd)|Y zD{~u6b5C?VI4AvpEkaGMY?J#yvDnjD_U%~gIa<>z7Qg=()S!Fg$kvGQt)yFilpvO| zdJ<}ps}MD(3K*A`_!T7v-%AY5P)9zwX~h`a&QFb|hN#1k4NzM`NckO+&@=!)FFUhS zn*i4g`U6Lkn^}DJ4%v->zOQqcP(W1BdK)_w^xY#iv#8hZJB;-Q(^ma;g@<9m?-RSi79~NP?pAvoFq6?ir(G7q&utC5xOQPksyhEuOkJH1WA^%b83edfbujf z;}wOD+JEAA!8>*DZs~y)W*{>tG0A`;Hk>;-{8cHoL2N!%Pte5lj_CZ=C|Ha2kNkbw zBf=}Xut)wXEN%gc#%Dtqx^DLy*GnIHwnJKmgHjgaboy$x!8W1d0kidZ*5VMUe4=IVF8%S@ zb+SI=o0{p-CuI+0_iKNU_pfur?An@>L zLY3nh#XX2^86=yrdo!0ZJJl+)2jo)z==+&zA#+>DP`qf>09S~i$>SJL+Y{jnGnatV zPE**r_Y(ROGl-$`lL<>!6Q)6}+xYn9b*@JtCW{IJ^>q&wu&JrbM+Xmh(^^Ab0jhu- zS%`V)g&7byz5{eW7l6wZt_dOm0ZKJ9QTlg?@ewQ@6i@?gpMQAXN2um!!MlM2D0>}5 zSHdV-E%Vvy&{GVhSM8JN{VqCU(bu&CP4fg3qK~npyeqOu^gHy?1!G z{2b#1g>$cH9zXtCP8d`rDe&TKa1-f-@*E71pxnl^5d^K?45Up|8>#j^b~o&Q&dG28 zimvK^8)}#$>|McDMArgVPFCv<$xW&k06l7jbuiaQ>?LU~qQ-BZbV>e@d73xqD7B z0wxr7X(LTlmsZD?V!q-^qYQpay(kh{`j*}q$=9KLJlyb?Bg$LZ@NiGXwYQHv%`>9) zIK%g9>tUyX@(ep&+ltkNgDE{=sNYu%RwTv(ldbx(cUiZj)u~z{TwZTj)8LC7J2>Gc zp5iL?2~Fs@#|#)y)NF1XS5DV=Kk6|yIG?N=uirIh+_g+N>@L^NW{jQF!9~wbrOFH5 ze3JW$=Y0VO-xtZ`NK2{$T`AZKkpw25AwoH32n{N{nddi15*lb}eAs^5(LjOq73iy_ zgRBn{u&^4<;PzcKeKi~OFnqE#c}(m^I;u&}bsxpmPrhkfPF(s$vdnsV^vrinl&GHM zl;tK{iF3AL+#}Z&s4F#vFqi$D-^O<2`={JYksC$1?0u(XL|IpMWWa_Hmdq@cyvZBu z_gOknJWrO!QPSFzu&t#jkF5o^BR2GJ=CrX;Ho6M%Z-`86OgoGn9o3*!Pat9U>ArHz zDBI4=d2$gWo0)kcGOK0_AyaO@K8}lr#lQgGPcCQ|g}1;t#>K>)F1&CG*ZY=w*1?Nm zG=E8B-BCuOlKBt`@JLv&Jm}b=(5oX&bBJ|J4-k#YS?Y2O5|((NIDd{Oscq``pvY&) zW;`ndj6B${m79!X)}w@SOmoNButd@+jg1!5)v@sw@2Z!{r6V6Yw!fVYn+``(!B&c7 z;jgl~U?7*lOLiMXz-T2xCg)>jK2)4DR@%Eb^zA|pHgn2Ak98ZMHhC_NcbBKiRSu_` z$)pCR>GH5^?PF!2CZ5AfXK6<#dMNhoR2!{_#8}P@o}!rE6EL3A+pFa!%_d_8eG@Tb ze zb;E|?!LsD*rcd4vGn?;MPny9UE4CyJHmr`_CESdHAWsMT()vkIfZHEbL&e=v{^*p$ zG7ub~C+IslzYi{QjuAF$To-$G0(nnnYbA=IM1+abV$8?|k?UKPcJ?A;&(rZi8hRZi?(2MkY;sA`Hv6__~}d!Wt`P#xE=1E(=Ta<1ffHm2>_& zFQ~&S9tI&Ic~Fg#ipv$x+-yi)2`Ak=WD`~90wrU`e6^N>YBJ5eHBK3Q;Pw5)>pJE` zpvf36PKVs4I0tUVu7CO*X{ca3Vrz&i*K%`z6H`_jqK|ynqYL|{zGP144!+LJ`hqW+ zGCSyh#_1+$K+*nmY~I5tleZ?PqnZ)GesBNo1b%;4s z6D6UVCjLYwu|`~P=BzMlfMGRh#!Fjhw$6%R*w{-HTJk|9?|~XXJ>dO zQo1cSHUL123r8x@?jiOt&i_oa?s3ZInySorVeeP{*hFGQG5xW)-to%=vw9)|J+pzl zF@P&MqDLObc)W3`a^~l@xtY3GN{=Bg3VEjuI*K&{@RV!_j?v;eb=)B>FZ;>W!F!dx z#e^&A(B+DfZmH_p7>QpEMLoEQ$At2v^s6rrEfPoj3fO0)ehmmep&uX4WM}Ph-M9q~ zu(AQvL<*+docXCF?Y%$xx98}T%;oVLoMX2JQ*{z`Dgl`U3M@=Ht&m(~SVuuME1Cue zydILzbajXvnfJQ5$13v3i+lSxHHFVDNvNRbBtT3ey08Idapls@U18ivxtqZv6jOS~ zM3?X=x2yA%W@g8YCsENxYn#{ZwYcXdeJ}BJf+I)iNW`ug)#r zrkr`^lV3-9>lf$#+BxCf^IbR2=&EgL|FauFb^n)#zR%VY-IMi2RA}+(TmSPN7b)Uh zv7B+Q>r;NTa6vPu7Lkxo!ZUu^4>6Zmg$iU8iyK(&BZMf>Tkkz;*0+L=6HzejM;TbDIjmT7fEkpCj_QCz-mt9e4W?uHtz^q&}6a_nma*5Q!}rEPf) z3=7iyJERpDpnvpX{&@Hj8gOGcs>mLVASEmzMtfmT>R=j>nzLMdGgqxz;^cLa7PqIu zy6zy}sRHd^p#KZ|0cQw27i1Q`?>8_eFNH!-c-MFe0YuJZ}wX@OoUYvrh}t&^JLL z1q^;Os%=$lJ4p4$oqU4E9c6yJvqJxL1NH`q0R{-o0>1$Achb1ZlsYz&os+?*Vc-3F zZYvXGBT}l>o>0^i61Ea~f%Ow!hG@kNMOcORwr8e{xd<&^>#!(4W}+F*?)BRTi)7t% za`RA*l4%j_0ue1#>87u_gwRyZD{`1Nj2SJ5L zRB`{0jPI6J*XrwAKfO=+Dt746qjMG(hr{=Nk$&vD4ZMqRe^#FmP@A=ElCK~L+cFE< zki7m&J|Z_E_$!x$M{J*a)if!?i(a{_vmrX(Ouy*F1ZYPs-V;l35tZlrczo8k4C844 za;q#Z6H*XvKdaA+X5}D-Z>=?7%55L~`T*lG!SBIxu>=v?aG4l!KH%19CGGKuKN z1d=Z4K1@&isy5vR^>sA(GRQ0xuzn_oYAsOj0rJLU8t`B3?*U5I8#111ifHRv1TKN> z5pn^m?FTm?fKOr?BcMy}O_78<%glU|rv2HF)#F(bksL4>yU?M^7#<`tP(n z|4_8CqoBWApY|D`9H7{5iy@u=&AwkN#Jl!x##zVm#DHqIbw_SKiB!;pM13iPZsv-r zz_&gd^VN*YC1<9uxV;)Wcf53@u<=FO%S>zwIPRw znQmZk&5=K9{aVb#=MiFc2#2gd^#~aw)xl}8R8yBIYBNOhrm#w}^!geFSVk$7PxO*N6 zqNv0ZZ?Zk0W3@I57JCUt`=6dYap*BmsY9J1`iWcTz-?6V3UpyxJ$_wLvxO!8$%Lt7 zQ5`=&K$K3;6iL_6z!+THk2>JPJceqNL!N>sH|)B_Q15e8z7K=0Xr*__3?hWG2{OM! zeD$9~7To1+9qHu#RIY#^au^L=wt3+Yrg>#g63irmWiemd2wW zlP>y}o?bfo{mqdJ$)25D;=54@!~vEVO_qp@b|ibWD9Wo93kJN*F|o25P!9^=C|zD1 zGG^=J&s%bjIU}E1RjssR}s`D#8B?Tw`VJ+KD}3EWZF=0NZ0Ynd69wJFCUghlYAVnce2!v7>1rl$(}r}}TSV(n_a*4)!1-2HG`i@(M+!%Gm4xOw&gJ)C4@aEcnmP3ukcBOy4oQY4ww+sK5)tdH9lnbB>3fxaID#iSrD6GHG~Q^D$>2tEEn4 zVr4%=hg_01f#n=*&z~Ju<#KcN5N^tIhAX#Bl^@Q$Yb=xM%)SQK10VV#veWkrm*6L? zf5MGA`M9Gt&s_aC{T!0q2H#ShP{sa!Z3vn)^G!pB*EaNoxh5L609kEBGfrUK-=n3_cRS(xvETVO^TxUKr>0XkpuT7&r9(k4WMZB}yQ!@wn z8)()(6}p3MFcIL3R*I*PXJtjAM~?SdnA9#^8F#m$=PA14>Wdq6 zMTQ+SUv20SHb(S5Gx}@#t$Du(cS|eBy0t=2J4vUADx5n^5|O6DK4Zv+*vRdWRP`2= zsH^B01@fWy8aKCRP@+-R$K_XqJ0gQ$4V5J?{fC%Itx4r;u2aw zWa278hq6r~ei84eo^UrCE=W^WH+Q@I^GvddTRS(k$opms*MvrSz9;uCU3mZg>wS+F z_9M({epcG}FE3*6`a4CNLl2i4?W@(u+4n)_fWK5IJSLD8g`3F2RKDp#Gjx83ly9O} za!4%_u+Sg5qu*O|7R-Lz6ZT{(tNP1G=Wm9>%puuTGioPo52hT`UjOiO?ftXeC&TY+ zTre^|_HE{@X?xnV5mwMl_MVybDmol-NDUDVn3h_KlnaKVz5Yn*xpB3#DmIu@|A%uY zew#&BurXiu+*qg6O)Z*6u77xJ>K4FndN4WZaJGEYFTf7`uyaU`YCLBje@V>WekCce*ou zZWdpgs-q7tI0k1VfA5r09^?A z9r#?8oUI>&wf%mL(5~y7e;QbRJ(WKx&k2_2@vVh)6wmyZ1hHNWmPUdL00%ZzvrsE)w04 zaiAPyhcQlQ4cuQ=kxFoWzbSD^N#+Op@!vvut-_V%<~O#1N5%mV>{L#G&Cx~PfJjuq zn(10{p$W-GMudr3c#nfU>K2_6_D6MzpC6eQT&-d7*??B0jF@F8FME%tP7L3SO;tsvz<%dVii1ti}9|H&pk^rT{HK7gm8F8?115 zd65vYELF+a2dZ>MEs5`V@45n*p1aD10DT&fjUZnlMB#NfnAtH2YBKVEq!;Ji^w@+Q zDL~@m8j$w&uxFvfSNkor@t5 z*rcw6Cfzs~MaC?Skjt;p5{TZi*{7#m2K1_SgwVD;u`eget9bi(JTJ4c3>#z^`V^;D z%;5#t0fvXaN97B5-<$yGzM4sU{T*qwy$Out5bR6%1N1Q326Ro7|ACD-ij8{YO&va( z_B_CMiqUJ7i`MXFhritS^oSn(oWEG3&M_LA$dvuuz*`n_!Fphse|VTwRq`^d{rE%xD)mm|9zna@r2R5?>B`d5i#G0Zu1C<7kew_MX12~DKum?M zn`UW55NFIAxTEXpeb@*&=TDw7sDI4EXpQS*<|20iy{BZF<-1^YibibS^MC=NFh64e z6Y1PonBQ}$cFO&HN6Pb1=#h{g40 z`Qv&V@vJJiBWf7l46h(G6)A~3(-nPOgKh3p*~$j8;%jcJe2rrccVs3g9e^%Yl94WJwF(W`P)dh0ss zc{kmv%5N7W6rCT<;0XKGg7klu?47rCkAr=i`nm?k3CIpPI^?P>lG$E@VWIQzk6PQ| zQ3Ir9vR+F26+?sT;duu@?e5&)>1;F{V}eYO3tWuVf!n9*Ax`6MzTD@rA?_}I#%M$C zS1KP*CjOw{Rh|!3%8%=l^N(!pPR4fU zOGIOn5xN1}rat=}qN~Qx#cxVWop{^x@!Lm9^c7bcYCv@)Nz9_YXSq9%s`8a1J}@RO z{)5g$JcM}^7%S5Q@cVIL+QIO*sM#+H+qbaOC>B>CiCc*aiNAFSeI?~igkALJZ{zI{ zV=bO;Z2$B{z2zp{yM6!3ul%o5YS{~!@wlml1|ig-`^YwaV+QfXY0(_S3U=gAtY%*V zAkS+2uUjjif$;h{E%6EHLH}Aw?%6=crPXD6O;y;m2zAT#16Br*r3*TW7<*|cZ*+}P zH=C_nxRXESm1h`euR62SzSq>`tP*WL74no{UIcOI_wU}uI(hin9qqD7K{UmLnpxGy z(09+W_6uLk8@PClCwI(H#>>V5RVtI?yp%4oj_n*~+U(>AXw_ytIA=vv(`MP;X^LRf z@ev1fj;mE}`peDLy0&fkm(bZ?f23X&T2ansNjYLnjLyLY%)vUN`KBhROy8-=k`)II zy`cTKAt$bC0z>i1A3WbW9D@2TfD@5v09LQoIjyzr?Ue*~-10jK*LrVb}kn*ryz|GgjgLU-98x?8FDh#ui)a%ou+rm^QSTTD#~Gl za_otgYf6Y7AqL-!S&mZJxJo}vN&&+soTja^KW{g%L%0Z4w(aS^o!E#jS%#oA%fvDq zwRj7@ZK;O3;KNu&HQt3!Rr<@aT1g-U{}A*BR6{vo*x*x93=P0Ve`o{(zq3WOX6)kH zge=gEh(SDNSQK0i3`I-mMsQ*K1BPFja@xuF~Q4Cq(Z^kbCrx`Ma zuqc$d01aSKyW?ng0ytwCP)g>2_CS_z*DJfThh;u!j*d)iDxXLtF~30=*DM@v&l)+N z{QM4uYE~A&4!4s9MP1W5OT~p4}kAdA zeVr#y%nVqsV754hebI;UdJ$I>feZwlin{tkPCA;@X09 zL2s!;;|Wyx1>Clt8U!UKKnE}f2S~T2mXiqdT^GPKDj?8m|Kh4Htox5fn}3}*SeGF~ zP=RHl6oy-b5Vp+~kruRrEJG9&HD~|^(ohju2v!Gfs*EPa`V9WYn``)Kk1+U@A9<4* z=>}i-?&hTSf+yu%Wuw~z&Qf3Sb+BT>>Ayn^L^n~iqXfnaKwH8sG=s}Oov?eEU|Ubk z>i{Qpun|x>a`y+}82l?NfCx1cHYN)J*<7WYbA#_6h@cs>88av$+*F!Bp7l99iT8bbhdWk9|q7n$3inJ@Izm_ZxzSSJ6po5RJk%Zr!?gy6!dw?h0|oz6M3;@XiLt4 zr<*2|OTLDB%t56)Nqs0nOFB!9@yl`<&EQL=`(Rs(Poqae_#I&@-2EO*jw_tY;yaJx zk602S3pF7s{F=thCUNoU7kkkfZDcu@6WA-TS zNQl(Y9MCyTBYq!p6_xoVl9igQk(W}+{>WRNH)+gBZ3R)rxnx5GdZk33VP*yY{qe*7 z#8n^D(+)#3ksQs(4?ZqyX%9C%ZiPyarZ%(o>C@$1P$Dc5yI>3QcB=~s#y-^H`LpKc zz?x~K$h~mGvuwFyd9i7seoB-nl!_|b99#%_oc4)?Xwh~eS|%+cd)~RKi0n(;@@zSq zEF9J;odhu#_f$5PNn0S4DJ^yop~Dfx;_Aqy;0`mW%gD*fqK(5g!^`woqxKi4cS|4M zyt^;gva>;$yj%cs#r$(R2Ybw6R|ZNZ%Brly?JuZ(4?o+idElM;sjsr^h1dlw)sFc> z>oi>@`1l7hZ%oet5HV1k{1}iv9 zJj-)AUPjQZmjN2)xQP@jUWFK zx?yKXEbfC7L2fEU%TU%4oAxqO)NeH(o+Kv@KYBNBMz?YI!stt6Fxl}W3`0<(QHEwm zrr$WuJ+h#FAbOc&U^!;M~SjiAl`6lCGa4I9`P18qA<_s%R?Cl1R5O~b z7n+v(87`$CV*D4ohlB$2c@H(E3HT}Xm1rjK0M7s4Fs=TToYf*H^&FU{n>0(HWVjK- ziU(rWFaGL|{Si?gk>tsNU=x6v5PHON5>(NY=C(RMJV4=0tQ6iHn&Z24;C*nIcE@Dh z+p<$T$7i1s<6N<1 zV9Sz!V7P$zrUp1~*HFzJID4gS34jMRUIs5;fV$Q{TN_vlJQP+Tp#HvspmK?NVI zqCN}=@Ya3q58lZ2JXOrENg=u=v!A>Y5zZ#QcTYnUm`&8J%9y1X^1!3BiUALWB+{(9 zM3|xt=di`_I|d_kTgK_LT@2IHTg{R$p$p;v=Xpk~U?6*~bK30!5f>J`2mNH-RKj&t zlS_^3yF-ZYaN)KnD`H_Q2|V{Z0<)Z2R#)ALY|fqQW-4QqSbd-nX_$qDPvl7Kt|BWf zrcL;h5*$104-MCM*zYl{OUXV1H@fJ$F2Hz&r}~ihHL7C65WJ7R^hpi-KQxM!TPo{3 z!jxklcnk0|g(1cj6)6YKY#uckL$SzZq7ODdDj%OzlTId}~>=TP={@l&SzZYqp zgjc#}y>xnk>SOOaA?vB_02GP3yApsxoF)x*0Mm|?`^nHq{1n#bai`+ThJ9!kFn&>`1kJ{zBrQPr2W@*ziQc+ z_D`Cr-$TB>--fUXF|2)7bm3e939XdR%c?KTIM*uofLs;yB+$lq^X*<`ZkG$Oj zszz?3N~aePtPc3TnTM$j61~KkpTd#$>(<)_4K~cUXMT$q@<$Skax@fqF@8HWRL79{ zsqS_#A6 zL8=sG1?c(r7uW|wU1{$f9quOYD|>#xUoxIGRYWVK72nRbY=sHWdA+?@KH#(Wd@_V@ zR3nUbH&iDcY>WSL?=%Jjy!#n#lXU<+q=NVmZFX{|)z3Fj>!O60H1qY<-yyrAIj?VE zyEPa=;Ek>GNXsTT+w2yoz%2H*qJRoaMLReZsC#Q~(1F$D@TNU{uokRKt9F_U;AhANpq+gCVlm*VS z-F=&@6MBV{>Zgx_!O4TLN)WMT7ZKqM;U9qT3QQmZ*@sy-4+awu0e(e$2VphN0!lbb zbd8z|$`Ol*W(*Otzr59s)n~}MkBx(qoj^p{+RZr+V+dYv${f)Vp%IU^HfkilP_bW; zT)h|T#7z5z^r1Q4dO_++LI~-|S=qRNt`_$1Xqf}wE}Y=IFXTNc`+MRpG`{rPp%SX)hX$LxJdP4^68w<)Zc&8HE`xkBm z^H|swHHB2Tq!+^X4=Gd5wG^<@!oaD7CgYg#zPN2f2qN8l`_sR;dV`G#l0uCqbp(fK z2dQ^UDGyt#Z&3P2w<8w~g!Oom+}tFBN(R42uxdq_Fzi8Q_WF}YN<*Z{%ru_6r#&W% zB~QT!XHv4@*ILq+T}S>dtNp)m;Qp{ZfBybYrR_i0z@Ka2f9@J!|GoErC{tjvLDv5m z9&}zq9}3p4_c{cGV3kyVJx<(0-H*zJqHidE42oZN2Ha7xmT~cZ#u1|S^`;!j(Bb(& zwY~wrtLisrsvjOsped)^${-7ovXbCV=s0Us3y$3=dbwLwWuyZmwLD-O@c7c9aPtp) zr868Y4u>IXe}_~9q-z|Jyq$*;Y&f7@pOwUOKWjjRk4N-L;vE_ON68a%+?iX4cYnRc zc=KrWm~7 zrjh6-je*ewf}!^NtPeopAm4lVL~_S+&k-v27J??%wRm@4IM@))i8t+QWF!@%rrTQIYDsIBTKAv2@}*fjRuWI9AchN? zJhqM^L6+;oNs!Ub>*?lvxuexY13&D30`7pCL@+}D1hBok7|Cn70#0~)mOdy1L~U#o z0qJDHO4>PHq4i?RYu%M5rmhCHsoz*l4msogH}g_V4(-vJ*W8CSZ}3`@Xp zDH0{ll>VGa-u|8fqrT@G{V|=c$jYiZJLf66dvzZ^cwN zF%ET1pqq*%)=X)Lw|b-%!2|Zung;iJU*0{N>iT9&<|^LdL~AX7=rZg(NP6}854sFSMWbIGXY{rqmX)+h6Q#N3v0WhES2 zeykegEP9*mW~f&r+nR$NMH7- zE6}$L#mQn=V~)tr;3Jc>yQ{KZTkAQx9++_uoRv;`NZ6N~vr!M^TP@dyz>KRiOW~7R zcv)r+@-V`kyqs{BHBuATU^6oNEWy+8X7OO~SoYOkzHlT6-@_AFgRW%hM#D*TDAt#@ z*?QoNV^Twia_efbj-kSdCkjxnHMp3i- zyjsV+b)e%o53lvjvRe`}zkcKIK>vyi=iQI;&S1;|*AHZm9bhyI9r-j;d-H-~&LPUt zc7~}U5s_xr=Xh=n0`nD%__A2$=+Bd&dk8m?jjNJn9QQcXPQE}qO6}tGPbM*U5$|oO zj-9_A$_4l3>e@d9gML;PWhJ}PT(Ps8EH3Phj@KAqd+*jcLhztqqLa5IG#84$l1YW+v$ihYAs4C8cZ5sj9y}liG(f|6g1Tq#u z!Ls!Bf{94HJ3@ol93qh z=Z`T^I+;OcTm;aK-0l$pp9yjkSq+858=d5y&IX)f$4O_gb`sxT>Yk@+K;mNu#)59dCYY1Zw9Lr~zOq(t`KUYF-ap z`_s*<$;o4&rZ|{dBjo=_Bc3t_44c?Q9pq4&5ytuIYWhK+xil>aKnPE zTTr?U1<`5>@^pwlDr!Pm-{E@~Pnyum2(21*mxAlz7w-hF!Z)p*zlLkU>Kk-*XSs;D z9Q1H5wVW0~zfP-BL-7Fw9oxL^btm7M{N)z+?NK4$rmb>yiqQ?Prl?yA(}7GrCK@$? z0R`%CXGM$l)`qi{AIbRU7RQX`H`m46UWd+flpD;rK2qWP@UZ$J&lR9wHvaVOpq|si zAU7Gl`=_2IIQbku7HLGzI*(l4N~v}5sxex+;kpihjNHj$&PD=EOMVi;J=mH*Cu$k7 zzTj%(4BC9^i;qp1v(JsLn#rUgp02YoKQPV$#5(|R{C5wbW+O{FKX%2yR?W1Oeuv!t zq{KXsG1LtT8vm*PA)-$Wr35G6Kx}D_p;(REPOLPLgdgYH(8r|KW3z;cy~?g)_X{vD+I19OHIgTRlWBr#P8#tX|}B;i(FLF~>jPOMLWepnnh> z-68l=7Qm5CDn5W$^5ylqLx)wjP+o$5HeWNY1qzyCXPX-8XvV;>g_7O#Ke!M?>!iJ2 z+a6XR%DmBx`>s>M!_du!q{0#bA$>rG*ZgeAAa3~dp;{cyP-g!{D*T- zti5eTY4nXLiNl4YH^>0s8c`;&Bbroe%C>@k5b;)WGAR~2!|F_@?_J?IVb(25m1~e= zsALnCJZaTNsnD(2YU(t6%vl98mY>aXO@?_B&2l!EMAok5Xcojnr4>6My z@A>%H?%lHw1+wa9dI-GP;vMp>g$elL+@u-%{hlrBzLYbs3gw060|JBbN%h2Qr3VT3 zTqnB*Jy=}L56N9tA83t~dAWNO@f73rdhx?1;)%H_+8rfVXRdDwm`K5%ofsUVAN)J` zQwu}BiQZDY#RVqXe@7~>pSd5u_7zMH;NGP6PhjXmXjaA#UD)G(W==2%xF$qiV72~` z{vBdO#FBXbv5DdhwuQgp=mKlMLzduVbu;E`^~TY!Ip4#vA#ihJQcoox>uB6P3n!dl>Qb?PPlnl08@kqpy&RMDywFU8{ix(Mi@?o!L^>(Xy0HV#{c zkPS&@Nh}CMzZWS(+cyIgQZyZ-R&Rf*_SWhM=;NzZXP@88lcyXGe+3^wQ}^}&`|`|6 z=SZ-|O;vPk)fe_G=2$}!KhNG7N%3+y;bhxKY_RF!uZ&;87idnTl}MHhrU}lsu29Tw z5s|k4o7;HJXa7-0nF~YRWjSr3@O)SphI|z_)J|N^aDm183(V9990uE;SoI^jo8P?;xG+W=M!jGL-5LnKT8!{Vw^*jm zYvdQGW(ldQoDMjeZE<4xdtmBi*JJfF6Hbf0lmu$r07$YTMVznMja-~O>BCjNKdJ;Z z^M1;$^W5O4=jht}P!YO%Fc(E=Nr>WM0JJ&XqZRVku**%$g1)EuW_}BD*d@R=`643- zPvxA%LS1zD$je!ic6->|@|_1h3=Owv$n3b4sNGi-X5d5DsaMIc#mb44*Urb)UUt9%2mB!!D6!0B7lM9r?fP0kn znLvejFpp>A6n1z7(m*bLQQ8HNb~14{a1*77RjXhS58VdN=g&gd)#}ffRZUtDtLY48 z`C`4^easScRa}eCK_8T3lx$@@e^bJf-m$EI7rx^$RUS zsTp<1)_M?iU)nf-6jtG~$|9avu1-6iw|?Roq9-aOfDD?XvQ3Pc-tKKs^EV(}{CL(9 z_fu@iqV-d`%@>QC_@P_Z5&KY$x;mT;L@&-6Bf+@%k&MhA7wT6M3<|ld;FR5yd!Vhx z#h$0|i`Kd8?Uxv<0Ma5gBC7lrD@p4XKdgJe6;J?@i20wZ*H!S7}aa zxZz2Pdx{Kft;b{O8;YO@PJ2ag+It3HVSWTa=1SC=gSM^`8Xx*sr1n>}8)o<@Wcjdo zbgiWA7ZhG^XS4iJ51_*{t?){xq~Z;QBKuq#LZ9F8jmxLabbkBb-cytLY0jN{1azQ@q$Ia8IQwPs`nJ1z+rc$XmU(IO@HlE=r-WLn*n zk^(&~+98m0GCAS663k%pL_Pj9YN)p{Vki}qWt-bsuzWo8BK(Y1X*u=Se+U8W zhynch_2(G;-5SsVM{GEN_P##%Z)P<-!ZMY@ahdm7`M8PvZ|zidN(%cCch%P+F(VTK zjIwUdbzmPkKt3o{f#g9KHe{t@!(;$L~z*P9#>!-1{%VP1A7l;8f zP@3Czz`u)XKnr=48h7mHl0)w?+cmM9-^s5r^m}ic2je01lRKul;g64Hm*6o-XgigL zuC$%IiVj9J%Cf#9Lh#d^41t+evI`udb#9U)T@fFvHk&szwzT*%BM%;lhR*21I?a(Y zfGl~!OQ^NjIA&Z!<~S1Lc8}$Xh*o2QQh-JnLuT8l5h_S)b38u0Tr+hH6|W%ns2NH- z+zHZLMjs|lPqtFbuX#HAW*rJ7ww6ynI2;e)juB;Rr`&<8N*85Of@j)zLkOxtzvdVQPN z*~U|i&r3P>q;aPTv_g=UMarifWe#}no!^i84FkFqk8mNi{AGewDbuqa5;W`G5)Mgg z^S<&?Hi0--tok5x177ahXcC# z1(*i-&%C?+q0P8h9R->t$xWIF4fn8aw(gO&TADtbm@IM_#jlZCQV@MjZ$TF}vRhzn zbFqhh-v2r^gJx9_e1SY^6O>C&y43DFQ&z9blOi#F`GNtVB~pS{cYDvj-^M$6M0ZWt z;>s|d7}9VWXBmK7*_Of4)lhbzff<;+%M2NoFre@oB5%CEC0*XTAs4oOO0hg;Bb8H? zjRFk^Ix}q=0#i>$b~E3{XrC%8JjW=ayJIIm@bemSSb{7?QENAFUMJC!3@b zzioOhyC1Q<9nvVnH%QSH|ARD*)J8ShEA0xFAqzwYJhRQTMd1~k5X>Ch9apjmi(8r` ze6r4lO!$228&9oU2K9~VZE9WW*}LHQWt(d6>*gf>_Zk3lu7vBmr(VH2||;Y!|GDq{#O@s;_|KE zG9rD{8OPyKu=S&}7~07y(5KF4_68t$ZGz7oNZyRpQXxX4t^K0bZ4|}F@#dMR(ven= zUweWaOs3U}O3rTQI9G1a3en+7Dg3zn$G+#f*bb^)?6rizN#C)xV+km&ytn96Z5OAS=Go zgxRJJz}GdcnG@J1DDA}m*WQ;$L;d#skB}vr>{&wAvX;nhqJ$)*5HZP~L?L3#i0oSk zrEer8p|LL&gRz8=?7Jb9bw-R~mVQ_F_g}C99(aLl!83ZCRk__b}*<(WxPD8bL)S zM2iO@TagkcpkPUu{w<$o!$>fn6OG3|$Mwa~q(~7mSZs}zqj4B6|0KFoC}+c%WVj>o zVVN=w0?yl@q@}aeG_>l(Zo?Y81y+|CZ6!_fb2Rx=za;Kv~*bj4? z8QZ{?DK^IA2e27k4ejZ-dPBRbTw`~nMyi2cDoBqDag33%IaroX8|bHw62-yRBNRU zg4D<$s;rjsq5~^NW>2Q_NkdTA|0Xu)qa-7z;NY+DU{;R<)np!eB?^=3Gx2rY)O>tr z&gJs9_jyeipd;??ah(x$C7(idenNmZmRA~p>jKG(EQ6kh5&hpMbr2&+P9euz>`8fs zDV5(dzodcKbmAYrh?u87B)Q1wF_@S4h55teJ87?bwp-nlsi~O4EZTj{Y?&U<^GhTg zPD~JD*jSqz`dl|*Se;v-gR(E^JL9GSrb_H#W`re47EiWdkyyfxU##Dr@#H~)UQfk) z!_;t!D@!8A1s!eE-zA-9HUMsY3xW&6mr_d8%?m%p8I|)gZ2u+p-9zeq6hb{j7$Gk) z*F1lq6nfgAhbmu!28-l&j-dXm`Iz6FTZ3xL{xrk-^4Q9VrCSGx#^oE0mLM;3W@Q6T zlJSoHNUiwDr>CNjJLCpS%DF4{GngcYxr~}kb>w+&N6p`caX&W1MElDZso($k&NYt7 zYWqA8UpIL$?wS7OF4YKt_L|l&l$=ac$_XEro`7-&iM**#yu>|!HQ;m7bmN5+vHIlF zMduBh1=ssPg-bE=n}^0sA1Ao3zV_TMwI&iKf%)V0OPf4EI%Cs6QwGB(D$k+TY-SS= zI7Hr2oe+FIxD-36)k$Q{3L1KXzglpG1Nxf|nt)ZHDctW-hdu6#!l=0$N>%Zu-+1i5 zTR%-&d*$@RtLUkEdY#{b+y*4^b7Hz!F%k;sHP;+QeO@6ktS-OxqZ_8E+iHT9D~k@h zr8$U^0e=gY=goK@9B0LY`_ucsyfQyGpm+sop!J-_C)Sd@$Gv4v5wJ%Q-fzi)J0wWe zhc^U;w1^54Sg?xPEqjU?NgG~oyJ4eibG1Jibt_)~f+*VDpDIn*>TE-*k1PvN_?~y% z4ay`wsl>m?&z-|(09A@y#EV+>i#y6W2F^isM0EE!g!Tb*(|lKTBNB9F*dM)H9cl(w zp#4*X41;N)X5U)Fyr`+w2NK*@?HZq}4=DAcR<|jwBik>?s2~#xaJNPnmPMLmwDc;P z7_X}C&ewx^o2eVM*>pZ5)+mNQ|KSOW1z}csc#4nq{OERT%0(7hm=`e>lY=5j7RKWS zXfh;n(`FafcB$O>o~rCdP0q=)$-YV^9j`;>_gMd2448Omfh6uhhFi*%KlygS~GCi6~7=0jb^^1|oT&!5*j zicg88B43B;wSYnWzZYovfp>R!zJ`OLf>tB$dY4S<=j?6Vu?JPCHmj~kA8-h{q61Zq zhq-F^+?g^p!GWx>m3Y9(dM|Yf%Q&Oh4yeKT?0|el>k`9X3RNd&kqmtZ`ZRHqmnMn} zJ$d6wPiyr#>mgz%COcjb}uVVsWf&M~3J{@0r>Sk$D|| zbkJYzPiXgGvt_W&yEO1;%P)-p!egU&GY(^e`ZvD?eFK50Y!>>ck&Q7-RaYHkHS*Ag zXl)WWJ4-!ph7p+tP+M7ATNnObrTU*@q(FbpIQpE?4T0zw_%|5%HTb_&I`uob6uvk< zzR6PkAyziZvihqba5cOMWxBFu!IHWRhcq&+s8sEBV3Rp#jHm2EMSHDbm-~5aLD}4A zu}T{%H=Gp|21os7%x&r|&xi{Df^am0yL-PhKAFaP8%Amixmr+A8d-As^r3?4>I#Ls zhC+{w`}gx*JrA+i4-sLo2KgV513D<%j^fl4K^P@{6^lXgeMMMgFpp0Km>yO>Cv%bI zWNbe%WBgQtJEN|A1ZdcPgPMi;o=O7LBhzUy%FTwZI7kN`Y-b1dPh9YKlS~D62KDc|xlm4zdBAU&zuy zw>E{lr^GA?jAsIw27M;mTm2_9<_=*;@gdo3_9IJS|Dc!~%Q!@#;_diVL(f&w#t) zi3Z}HuCaftS@62xA&hZN|9&)D@k>z%^;xRW3^tqlYpJT4%;yu~z3r@PrE>?{CR{A# zUM4Af@_v8h+zW{nEKO#>yE;^9`#w;L8D#SRl<})E&gUpmVQAi8 z{pKYUkRty){xu)9@dC5%kJO&~aFNV$Bhjj6cAv|`H#>|gYwBX&Ke?IO#{GW5wy0T< zDJiPq=0CQH1s$hZ7$e1C;Aa2FP~4Pu>wAPs?0n7O+R=}ZGFM%>75wDi_?9%C5NwvL zM{E4+2mhXULL!WKmzwP#PxiLCKytu&$xj@=>>(R*t~|-MATdHRujFWYdYD`jFbqb! z|C^;L-&_6LftgLm^3?U9=gnH8X!$=Xr#)*%I84?rrj(-%Uxn#tV%(I+N@LwfW;h9R zzn7yZLY6tn4LVj#i&cJv!k={lz1ig_-@H8N)soGDM?F+cc^M>TP=;TB`tIui2d!aw zV@Axhj}qV2$-ABHX8u)w9rK{+VzL&k@BLz7V5t|11EKupmilHxTTf4WysN@Mk39ba zsT3Sw?@Zion#f8mHl)TuHWi^nB~R*v5M!Vf28#d!d|mY?RVpOE%WudAA9S zXK}!Bi2DQ4jKDmZX%~=$#x11LuG!w==r7vdx2D9p=PnvvFRx6JvRUo$I+hyh-X;)t z@V;q?2XFG(g|S?!*S1m|WLFlKvw9NPM;?D4ZH1qC=zVAV@L?^7TetTfy`9e!uX8`= zH2Uf|-}V~_$3aK|7~+|>Ul10(LllF-yy1_bv!MrC-#U`Hb2M{C|AHJw-+L8yw5F!EvNo=_S1O#9%Q;D7P)_1l z%iA}z5Dkcb(HjuzHaB=FP?G$7;!X2Iq>(03F~a_0xwpF0xdnC(lPWJ;A{5F`JeAR@m6n40;VCAs1fwJpoiWoznd z`fulE3+5e7HU4INR1(wa6VJ}=>f_f@-@eqrN_~MZGbi~J8)X0; z^rn#VQ@zF>1uMS;X379eHv#|Kq=0CIUu&wv^aF;Lulc~6Tc>U_1x|Q>W8Bgd9U=x| zHzHx2NZudO#v~uy3m7&7ow(w9Cq?ya## zDsvu3d!uh{r;A=sIChFWP%IY>ntb~$E$nWpS@02F1{~&J_mj#|TiYMjr^g*Ly^p*| z|HG5xkU_kNrJ+#dxpNkLSFb?8*9p0)e@NJVr{8Rj%$rANGm?^Dqnts~7yBL+Q*!=3 z_Km&Ky|?y7`Vuw6JJ-d6S3O=r`+Rr-bWXrrP~48D4?JJacqpn%tCDxEPlTkKP-Zdu zVcP6JNicBjs^nEaKWFCL#?y{kNSm=^5{nxvM$HfHr5Qp%j5R08DzB!@+P4kzG|x?I^|^s^l#6N(OYCver;WCU7~B0hwJ53BMA-QX>IH(9?r&e6a8=Z+WUH( zBr`l3H#F3?f!)~e(RjG-gTBaD&)|USw63^&eB-QN%2*yBJn!|z;~zPw-=w$>A-P34 zQjAOa#voEWNckK=cd7(=<TK;|c%&Xr zl!vXBmWMTaSJyp3<7n}SPZA9^f5vwL)twkjVxCj9UU2}K4Rem=;PkCTwYH(*L|4_H z#vKZq#sq#h*&?Yl8;UX>Hj93^9YZ-gi;kv=;c3O}71Gl=1$K7V#C&j@omHzV96p_zj#z4Fs83pU16h^xjQNs-E~; zc!nqcUjIMmJX6huDX{)(`PjG}O(hy^-ZeuxRITzfD9|lW`Ld z@1kDa(i4{t7qA#~8)e<7nfS!={hn^|>PGYoJ5q>peBfXTeg>GYj^GXK z3~$qoAsyHQ#r)au+yw8imFyx3+?OpmeGwrDH4!X2ji9}Dc}z?Whf=|TK;N3+hWyYe zi5ccj(2guK`llMX5ZXMLIhVTmuBc)bj>NM27c!Xds5|nyouC>sD(L?j`DO`6$9DE5P40R!Z$;7ab^0B zl)D@vEU%N?MFcer(EHSey66D9mAym^>6;+Bi`&zYRa?n585?>ek@C|CW z4{t7>SxFh4O^6$Mx$j>oZ+O4-zgmKXfx1f~@I4YBEOwg=ff3g88aco^EV8_(f4`ml z1lUbJ6{_J*N*g}3;$9s=IcDVA2G$lP+k}KT7 zo5PVE_lc4gs95VnE*fw3#|Nm5uT8*r{>V#ch1c%yn$;JG`xT^m0-44IgZ9>HiD60b zOG)RvI~7+Ggb0I4CrXM0hE?wA^KE6W0TCzjmH5^y=8cCicX|6_=0+3o`VsV@vns7v zPcpB5yyOWTQyD>2B%@RG+ym)YH%-|hpzL4SA?lLMm79IWu+4hR4GC>UMlQe)kFk8eRt<`K>P3&I9)pylPwSyskF9lwRpF1m)d@B zVY!Pgl%30H%61MUg(AnN6>i=+EsS5RpQEBK;cKIA=MM&W+Xbzadd~?ya7zz=^=3yF z!&o#IraMBs2K+%x$QLO#WqAJN#)*sZ0$SDh>!k&$Ck|qD1jW|RH;jIx~=cKR%eWlZKpo=43OZ?Ap+#$N(;uRUFOmi*g2Tc$CDnhZ=C&7i~^Buj6c$D=?! zsX?NHSKymdOAg+1s?L3BtkRMq?u&?hYjA4|mfo3amembh&Nv)*J{Md|ua9}ZQM#l0 zVXodwdyq+T@5${aDIvKUSZ2vxal%Nrjv0QUU8wet@aUDiA6 zHIIUxaK6-J*e%XLq9du0C00_!0caA&yh}%Ofh5^GTl!4U&s?br(NjNV&fN3b>%fo1 zswy8Qp)L{NQOeGP{x9rU*S+uD)HHEQKPwM?qYIVHUBtu$Q-3cSSK4R}9<8I#vPvZg zk$s}n#z5aebH7uF8iAjpH>9YecMcQATs7N|#6W1#f6Lm+|6HN5!wB7T(M`(X1QS$Jj0UU&NT8}5orOAkT+1@CO;|y&9eiV z_So?Y%R&xCr;rGgrLV%kh)rs#3Mr|96BzHLBy`yJvWBu!~DFgoo zO{T}!uXl*Vzt?sR=qeYqX1cGo`^>R{4BY2CLr5TUJD&#ew4fZ6CwTuZ1^E2~kC_3^ zM2|Kne>Ad_CY%JF-1>6iT)o_8BmAYSjBF3}O7d37evVfOwK(Nyq$Wj?z|yk8%UKh= zP@gExsO+P42!APp-2dtA=thDl+e_&DK1@E8Bn|5bQ5K;HJfB@J)JhC&x(7>5n9&*c z9!!+F!|-kQ@~QKqIGgUiX+Fvx1*m#JV=za};YLwX*WlQS5MTGirAJ3fu23qDir+~x z#OC?CiYHZv;LO|1g(w1q>1PB19F>|?ezNPhPL1Slvqxk`S2 zBP!;^%n5@|&KCufoAs+N6*MlRCggODLD<_s-`?t$Pc*fBq3EqB`M@p9noZ6qa~7*>-%cq6WQe)=)8OZ(YNE`xQp(45|}t_JX(C5>5wnD@v1UVJ1yZ+ITa%mKKO+J z9hmbhYW%{1!n$(9DCI+TN9$DDBOuc)(5KfKKBq(}55ClN-cxi1%BW8xL<1T$_WjLs zHut4@&dNZkDyeD+vUd+8)XUL^P&~Kuh{lXi8*Y>#b=}C&Iwzef-eltEJ89^{AN(;f zQZzyVX<j zST*Xm3MRR=Y+i-8zzWVy!gn%v|1AAUYn0(^9R8Xd-Co!ONGC!z`);arCZESsQweSwp zhV#M$GRx&RZu%c`Z-?E>KX@k$_HJV|jb^5eLs1{*(!AkTHr=ptSxQzQ;3LV5XDQ>2 zum4JS^1@~-_Ktj}iID8)u3VfLb6BoPq9q3$sfvMdG19J*;c&oWH|y(hI8wZ*&#I}) zh7Z>R&a9>0!ZJq>E=M_DhX+zo`v zh?e0vbk_}kq3;moMyez!i)QWh12dLJEFoo*6@y+a+2O4WLkpIj1T4RFx81rBT$R^l37QIRNB> zcYMZ@X<@(JxtoMxG|+i$@V)%cZqO#47You=wFDLek~gm5RO{*S!Wbpy(vO+BXh|QuAAh(S&t*9A_8_ovZ`J||pAD=|zs%-do^~Rn;i}?0@ z9M#DNh~p9SsAeAlghIx-D6`||AA>}d_ruZH3pKiY#weonmm9$Xt00D{UvuVJ)nk!K+H z_++y~ZkF$S6z=_fIe6zxtBXcA!0^kw90tExY}lhLamBx9j3=gTS{ zUc$JK73h^S`{B$$yX za<+>@9Ns;zUkFEEx$PekZE^A!LzJu112MA~r_$g8vcD(k{N5i)yE63>7z3lh^-Sk2GhzEWX z#?C2$$Hj3^5+Wkt7yp|a=LrM#?%!2XKN&y>H^JX-JWMSO2z4pq3Mw`O>OQKTabx=^ zsK&MDMpjc{BMTS`pE5CM5P6&;RZhymnVMIvAR(tr{e+;?rUe%n{zwR&XO#HF@IBi} z1b+thhobUjkU!Bjb8M!3C>G4imZ7btoN$FbcJMZx&hy3j-nuLhPqV{Bi zYiZ2QK+{E*HAHNXPa?nU!PeCALyc13gU{_rSIn3@6GNWy8%^!Yi?p3e)SuI{)sD*EkkwoTzMZP6cc9lC4Afcx{GC zs?)O&mxt9&kDOr{=2E5BOCv5h0CqYDWKHzNtixZ7|oXO z_?${GqlGQCS%!tt7>_BvP;KjYt{3i?B6_Qz8BwaTr=ZUOjTF*lbNK;#!~(jOg~H21 z)bUcTO^&rj+T_-J)Vo= zjJ2f5Zq<^)$4u^dHV))7sAf9^TfV1yu-NK$Vb8l26<5ij09K*tmP4q8eBb(O1x{lQ zk`}&~X4!L^QQSev4umMoo1nthov+JwHO1PKQ`bLFy&h_RAn&`L(XAFlW)db(!QUUSs&I2hcaKLUuic#1|r{a9L$5+{Ghq~MJf>+}3_HWta^ouk=E+y^zPy_+ z;l_vT^(BRl58NJ%mGq;*|8GYF4k%xcpBW)JayyxIMa~g>y|S*n&TO%RWnpo9P_(%mdVR3ncuCma>3GOzGf_*#EQmE zV?YaU80lDh0~zLd8uX?_N{{xP5)%Sv&>++G#a;67OBu=}^=cJeIvtZdO zH$+&y1V^27Fz2=4W@W26rqdi&e%J?|flO~giZ~ArOH!kpzMFwIabOedYl7|fwBi2+ zVK?kcs%}q+VQ*F}cy!Nyzo)zH!VRrCjfp_B?m>td*jFx+wq5ZXvnYyOq6*GDMhDp< zkZ8XYZ5A2Pca-t5)Qz%t=MM{X$a(FSpp8k@1n2f&5MjiFBE)%8WGHbBZsqjBV}keO zo0hZeE~|+w?0WgBt!YcO{5$-a+~W?dU-}NHmgFL$@z z7vNXXN~l8K-m!_UcZx`9r$a?fxPV@}^Ds;@fZJ3bE>v&6#XFTh;fQQW0LY%)7j@)C_ zHo(v{uqw(s^}Q$9o3t&iUgN>Il~kY1MVe@yhNfMLZVR5uNR~nS9eI)JFllt)`sC+k z?qgR!DXo5nTxI$R?*rClGbH)sb|^2~*2beOzMKe!8M#`U!-L9%vCQBSww$v(^OZK( z8Fos*JS+xNwSmpyA#K=y9ND%{=J`Ic?&J0#zhmOnQT?0u->l|A{2}ZRTFc*(3;%Bd zxoYSmF;MjfE&w;o{?x~vqwC}TAsYDGpweIIV?xKk{~s9mHT1t&ANOAhFzE%k|0MIE zkInyF*+?IoKgWi|Li|j9q;s5XX(SM@sy&EbN?LU~)DiT_ZhTX^)An6D(&xz^QpFh- zzE_(p^k_hMnKBcLD%)5y!q+T&Y-1SU%lA`U;(H`c71>un=X)A=^Z`f22YrKn7N89E z+EXpvU;f&`_EUp(kfV&4MUxP121r_P@8W0+;1xy!*8wSXGls}K09+Ncw%CEN>fchk zAZMsHvf;i4B}2>z12}<)jmikgP4AE10#T~z4P^);{4_(LEk_2T5LE=V_PDN+_Eu!a2G#4CS~=<*$~t|?NagD##lV@AgP0F1lND7mPfL0Zhq2JJaeu~>QcU)!TqXLBf>t(Bao&-`#uy1#H#M`fH#(`eN?e2Ta}K zRuz6=vshLB#OYm(u2h}Xqpg@F*hg_>TmRo3XvBI7DZI~#V7epK=1-Hbv%-qm>;$uB z^2L)%JZ6I~-6{|bTepS0)zW$mVFpSqQ$$KLAGNdpj2NK%@t4HLsWh!1#YX<1&DHMt z9JYz$*YY*Jjm!8V<*NZRb6}k6 z000^FetTnVhh{p1g_8xVe5i_Xn95uK&E1y~mplO@9>aI6nZMM3>zRhl4cag<$gqpg zJ=rH9yEDoo!M*5lr`@i2#%#vGIc=RjP-Q`=K~6V6$wWLDQZ_A#wI zNip8iJaTv+tJv6(o0pJM;@lA}Z!vgT?cl1?`7!VHS0=eBp@JfOl0a2RLcYS3HiQs4 zsgEh=*Y~2aidsBJrKpMP3TOIWR%eLog}=aUjGiSL;=A*HU^uGA5?r{5!`T#<;P@hG z7SJbT(Qnphb%fwUj3p=tv0zJuu9e2G)epY5PByQy+{yAJrhgK7bo~R0J&P*%+l0dn z#fIz#g+3tTsl$Wo(2At?#eSW?GB|xA)$#gs`7ky?ZAtyj_GjAXFPZW?lb2q52H%Ny z+Mk{`e%9IbcCJJ?>+rEW%YMs4%$BRnj=vWwrU*uo5h|l5QH~imc{Nxh-zAP2BE$Z~ zfv7b341x)-z9x*H+riBw9hJ~Tg?K(Vygx*~fJutLGwBlLn2=vIJMxp0d>+|8BZP8W zvsmc{jOM@<@~Jdb62RF_wCjG zCRbOda8{i|M!;(b8_7ovC1Hqa)C@|%{gG)2l4o8u_S?sdvgiEwf-_D>Npwtp8_7Nk zF8tr92{)eh<{Y#r*TmimevYPYj+{e2VW8x{(n%_BFL)LMVMsOk4nYq<$Bbxf^#tvC znL_uuoH$~j9tYmwL?BOYv}L1Z@28`8->drUu81?T979j+>@>kDF-@4rfr6PZ9k#sh zwVsK!C&tg;IS>2sAwrp^>)3rp>>&zoBgRHTHSL)!0pDgw<&mA^K&@C!=0T3qJInNu_ef+YXoaQ679;iKjVgG1+TAFa!GpT6HNOZ?9h{$gsRKc)7flP76 z|Fo;HjkVIc)_M1~F>S4NpRqmO4?em8!m74|E!?&~i8yW=XcaDH@JK9o-&>pCPlS>X zD_5qxNdC=_aq3gDFz@#Md?aXh@ZP$me`Jhn_ar}hmw04|=gI#CL>`=zZN0SuR z^?iwN*EZ|M-(7)VcjpKl*bNbc>d0$+M=K}$PwZYkEO>g8KeB6yA=4L|yV`XjyLE)v zdA&AX2Re%p^#r#6dKzC8bo5>O*3}N!zRMF_Hs~s002Zusm*Z#^+bELk$ZBBer_E`^ z>8jX#shmm&$MG=pSIt@w-LN(oD6$JjAv>}-R_;3EhkI=t!d+f+n@s)9#{e>^hlpz1Nr_NB!C0CT%|Sxwxq zlGc$Fxdigu`&$s2D&UZqU8%41jumro&Aspex_0=0O~HSoVA25t^Y;MDtky4mKJMzl zBvw~R@rXgLOCZ)ALV5X+qzk6e#mi!cFmAa%&~cM26lYfp6St`CXjjM0D4iG=x#HfD z1Jx|^8;N@RDK4adV4|o7-Wr{E;o0I`*VV+Z<;!OZL_&(W;N#3-{!hPGy=~cS?FiPF zXEn78EU{-Oyh)oAS>D)K{50kb*Sby}GcxP1t-cU5}BD z`c}EPI{&G%oX?}@EeUmZv-*XmUC3$2 zX-`If&SczUr3d4-93$Hu`j7-s{XdTetsmXV$B{k2bDnP{O2uN|KK^)&c>QH>;i;lv9c@{1}op`P#!;Jk%-{Q zZFn7@vg9RzD_xbe8o3>5l8zaTy}s4UqDECC!H5^ASqPR8(E=PQYEQBH8+>^&W9W{n zfp%WsqDqdh{th~K=qj%Sgzr2=1i}nK)RPsEU5*fH#z#JCG;T;J34?q){u(X8oV9NF z{jKIE?(B{v(|j@iO_ROUKQ}MNR*VNUEPFrbBP-%a(I&J?87XggD@#K9T>W1@%9aR8 zc--CpBwa^{=7jO+8=aUpU!5v;K((0VcfJks6r+k=uSm?VNMYMWd{w#ec~k zd2aTaUvB@>YD@kj>*pub>>oMh2|R)WxGsKK4R3QRz!*2$eNX-x27B_vC}mhX`C{f zC*eo1QkrMUgxy5T2j?W!)3%KDx}ATClqTr5y}z6qGybV~+7xKZtsQG$d5TK+Zy;cE z2Q;cV)h)rWco&`_nDK@c=M~L{A7m{Bg5ceH>O0hIRwImLg?d9;nr$eVmc!eBxOh94 zQz`FtuBKf7=0Iyh{>3`6P~QVN-PdkrusO1Q>5y_Mmft66>#NW5*bsG(Z$9VHFNizl z;V%f^I`c-WIpYtzh1tX8i^NXiAO0QLFHMrYM}cfdt7L3!YFWV2c2r-w=kqGJ#;eQg ztCP%Eucw;dklzElb#x%DedZ4B3phgguw=oa*Y={*e?gFq1AwtSf(|4F;(2BFT!XiUU#b^=C0ETx%addGS0M$Z|A3o((AdAts3OIKcS&2T?_FI0r`t zr>w6^QkR@FwuPzJZ;d(~;OsT(EN&K2=VjRZCWdsMTse@@K%(xq1AFdn<0z-#qW ziqnZFPTF4YdZ2t~89Fxg;q{DS(n05MIio@Vi`Aqwe8^mMGu6$EWey(YgMbAH^X;FL zIGQ$nJoDrQ%$nqh9kd#H9TYm7mkr%s7}z%TKr6ZnyTrL%lML8$y`e8=2|pbaK~$us z>zMf|P8Z>^hS%IQ{k&O5H_ff$oewkZ#X)EWZ_vx%P|cbsXD;76M%br2*)!vI&&#TeBClVw$;PmD||rXJhyPr@UbtbiWrDkSSkD8>oNa_ zBy>H1Y@Z$%;FwX&@*G^RJYRy@sx)$p{<9qI?*_qtqwVRh|GnabJ|6V(pkv^FJq8$l z4bxN1^z=17eND#z9RqX>&@n*A038GWi5P(W8lfNL{u3vT{>=1%L&pFe19S|~F+j%v z9RsjmU+4!p`a+;D1Ud%j7@%W-jsZFb=ot7&@n*A0PNS;{{b0WDE0sV From bbc8ac8a6ab898a666bc8a77cd427ed4085d61f9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 11:13:10 -0800 Subject: [PATCH 09/15] Update Docs and Codecov --- codecov.yml | 3 +- topobenchmark/data/utils/io_utils.py | 2 - tutorials/homophily_tutorial.ipynb | 904 -------------------- tutorials/tutorial_add_custom_dataset.ipynb | 883 ------------------- tutorials/tutorial_dataset.ipynb | 454 ---------- tutorials/tutorial_lifting.ipynb | 543 ------------ tutorials/tutorial_model.ipynb | 499 ----------- 7 files changed, 2 insertions(+), 3286 deletions(-) delete mode 100644 tutorials/homophily_tutorial.ipynb delete mode 100644 tutorials/tutorial_add_custom_dataset.ipynb delete mode 100644 tutorials/tutorial_dataset.ipynb delete mode 100644 tutorials/tutorial_lifting.ipynb delete mode 100644 tutorials/tutorial_model.ipynb diff --git a/codecov.yml b/codecov.yml index 85ba6f8b..ac4c5a9c 100644 --- a/codecov.yml +++ b/codecov.yml @@ -4,4 +4,5 @@ coverage: round: down precision: 2 ignore: - - "test/" \ No newline at end of file + - "test/" + - "topobenchmark/run.py" \ No newline at end of file diff --git a/topobenchmark/data/utils/io_utils.py b/topobenchmark/data/utils/io_utils.py index d0b0708e..2cd86386 100644 --- a/topobenchmark/data/utils/io_utils.py +++ b/topobenchmark/data/utils/io_utils.py @@ -13,7 +13,6 @@ from torch_sparse import coalesce -# Function to extract file ID from Google Drive URL def get_file_id_from_url(url): """Extract the file ID from a Google Drive file URL. @@ -47,7 +46,6 @@ def get_file_id_from_url(url): return file_id -# Function to download file from Google Drive def download_file_from_drive( file_link, path_to_save, dataset_name, file_format="tar.gz" ): diff --git a/tutorials/homophily_tutorial.ipynb b/tutorials/homophily_tutorial.ipynb deleted file mode 100644 index 5a694129..00000000 --- a/tutorials/homophily_tutorial.ipynb +++ /dev/null @@ -1,904 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_1117779/40423503.py:21: UserWarning: \n", - "The version_base parameter is not specified.\n", - "Please specify a compatability version level, or None.\n", - "Will assume defaults for version 1.1\n", - " hydra.initialize(config_path=\"../configs\", job_name=\"job\")\n" - ] - }, - { - "data": { - "text/plain": [ - "hydra.initialize()" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import rootutils\n", - "\n", - "rootutils.setup_root(\"./\", indicator=\".project-root\", pythonpath=True)\n", - "\n", - "import torch\n", - "import hydra\n", - "from topobenchmark.data.loaders.graph import *\n", - "from topobenchmark.data.loaders.hypergraph import *\n", - "from topobenchmark.data.preprocessor import PreProcessor\n", - "from topobenchmark.utils.config_resolvers import (\n", - " get_default_transform,\n", - " get_monitor_metric,\n", - " get_monitor_mode,\n", - " infer_in_channels,\n", - ")\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "hydra.initialize(config_path=\"../configs\", job_name=\"job\")\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Group Homophily" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Loade the data and calculate the group homophily" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Download complete.\n", - "Transform parameters are the same, using existing data_dir: /home/lev/projects/TopoBenchmark/datasets/hypergraph/coauthorship/coauthorship_cora/group_homophily/1048349801\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Extracting /home/lev/projects/TopoBenchmark/datasets/hypergraph/coauthorship/coauthorship_cora/raw/coauthorship_cora.zip\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torch_geometric/data/in_memory_dataset.py:300: UserWarning: It is not recommended to directly access the internal storage format `data` of an 'InMemoryDataset'. If you are absolutely certain what you are doing, access the internal storage via `InMemoryDataset._data` instead to suppress this warning. Alternatively, you can access stacked individual attributes of every graph via `dataset.{attr_name}`.\n", - " warnings.warn(msg)\n" - ] - } - ], - "source": [ - "cfg = hydra.compose(config_name=\"run.yaml\", overrides=[\"model=hypergraph/unignn2\", \"dataset=hypergraph/coauthorship_cora\"], return_hydra_config=True)\n", - "loader = hydra.utils.instantiate(cfg.dataset.loader)\n", - "\n", - "dataset, dataset_dir = loader.load()\n", - "\n", - "# Apply transform\n", - "\n", - "transform_config = {\"group_homophily\" :\n", - " {\n", - " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", - " 'transform_name': 'GroupCombinatorialHomophily',\n", - " 'transform_type': 'data manipulation',\n", - " 'top_k': 5,\n", - " }\n", - "}\n", - "processed_dataset = PreProcessor(dataset, dataset_dir, transform_config)\n", - "data = processed_dataset.data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define plotting function" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "colors = np.array([\n", - " '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',\n", - " '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf',\n", - " '#aec7e8', '#ffbb78', '#98df8a', '#ff9896', '#c5b0d5',\n", - " '#c49c94', '#f7b6d2', '#c7c7c7', '#dbdb8d', '#9edae5',\n", - " '#393b79', '#637939', '#8c6d31', '#843c39', '#7b4173',\n", - " '#d6616b', '#d1e5f0', '#e7ba52', '#d6616b', '#ad494a',\n", - " '#8c6d31', '#e7969c', '#7b4173', '#aec7e8', '#ff9896',\n", - " '#98df8a', '#d62728', '#ffbb78', '#1f77b4', '#ff7f0e',\n", - " '#2ca02c', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',\n", - " '#bcbd22', '#17becf', '#c5b0d5', '#c49c94', '#f7b6d2',\n", - " '#393b79', '#637939', '#8c6d31', '#843c39', '#7b4173',\n", - " '#d6616b', '#d1e5f0', '#e7ba52', '#d6616b', '#ad494a',\n", - " '#8c6d31', '#e7969c', '#7b4173', '#aec7e8', '#ff9896',\n", - " '#98df8a', '#d62728', '#ffbb78', '#1f77b4', '#ff7f0e',\n", - " '#2ca02c', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',\n", - " '#bcbd22', '#17becf', '#c5b0d5', '#c49c94', '#f7b6d2'\n", - "]) \n", - "\n", - "\n", - "def normalised_bias(D, B):\n", - " out = torch.zeros(D.shape)\n", - " for i in range(D.shape[0]):\n", - " for j in range(D.shape[1]):\n", - " if D[i,j] >= B[i,j]:\n", - " out[i,j] = (D[i,j] - B[i,j]) / (1 - B[i,j])\n", - " else:\n", - " out[i,j] = (D[i,j] - B[i,j]) / B[i,j]\n", - " return out\n", - "\n", - "\n", - "def make_plot(Dt, Bt, max_k, number_of_he, plot_type, ax, plot_tyitle=False):\n", - " settings = {\n", - " 'font.family': 'serif',\n", - " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", - " 'figure.figsize': (5.5, 3.399186938124422),\n", - " 'figure.constrained_layout.use': True,\n", - " 'figure.autolayout': False,\n", - " 'font.size': 16,\n", - " 'axes.labelsize': 24,\n", - " 'legend.fontsize': 24,\n", - " 'xtick.labelsize': 24,\n", - " 'ytick.labelsize': 24,\n", - " 'axes.titlesize': 24}\n", - " with plt.rc_context(settings):\n", - " if plot_type == 'normalised':\n", - " h_t = normalised_bias(Dt, Bt)\n", - " \n", - " elif plot_type == 'affinity/baseline':\n", - " h_t = Dt/Bt\n", - "\n", - " elif plot_type == 'affinity':\n", - " h_t = Dt\n", - " \n", - " else:\n", - " raise ValueError('plot_type must be one of: normalised, affinity/baseline, affinity')\n", - " \n", - "\n", - " if max_k <= 20: \n", - " # Plot h_t lines with different colors corresponting to each row\n", - " for i in range(h_t.shape[0]):\n", - " ax.plot(h_t[i], '-o', markersize=8, color=colors[i], linewidth=2)\n", - "\n", - " else:\n", - " x_values_to_visualize = []\n", - " # Visualise only non-zero values, x indices have to correspont to position of non zero values\n", - " for i in range(h_t.shape[0]):\n", - " # Get non-zero values\n", - " if plot_type in ['affinity', 'affinity/baseline']:\n", - " non_zero = np.where(h_t[i, :] > 1e-6)[0]\n", - " #print(non_zero)\n", - " elif plot_type == 'normalised': \n", - " # do not take the ones which are equal to 0\n", - " \n", - " non_zero = np.where((h_t[i, :] > -0.99) & (h_t[i, :] != 0))[0]\n", - "\n", - " # Plot non-zero values and make sure when several values have same y value they are not plotted on top of each other\n", - " ax.plot(non_zero + 1, h_t[i, non_zero], '-o', markersize=4, color=colors[i])\n", - "\n", - " # Add x values to the list of x values to visualise\n", - " x_values_to_visualize.extend(list(set(list(non_zero + 1))))\n", - " \n", - " \n", - " # Manually put axis x values and five size of the ticks\n", - " if max_k <= 20:\n", - " ax.set_xticks(range(h_t.shape[1]), [str(i) for i in range(1, h_t.shape[1]+1)])\n", - " else:\n", - " ax.set_xticks(x_values_to_visualize, [str(i) for i in x_values_to_visualize])\n", - " \n", - " # Size of the ticks\n", - " ax.tick_params(axis='x', which='major')\n", - " \n", - " # Add title and labels\n", - " if plot_tyitle:\n", - " ax.set_title(f'{max_k}-uniform hypergraph, number of hyperedges: {number_of_he}')\n", - " else:\n", - " pass \n", - " # Add grid to the plot\n", - " ax.grid()\n", - " if plot_type == 'normalised':\n", - " ax.set_ylabel('Normalised bias', fontsize=20)\n", - " # Put a line perpendicular axis x in values 1, make it thin and black\n", - " ax.axhline(y=0, color='k', linestyle='--', linewidth=2)\n", - " # Make y scale be between 0 and 1\n", - " ax.set_ylim(-1.1, 1.1)\n", - " #plt.ylim(bottom=-1.2)\n", - "\n", - " elif plot_type == 'affinity/baseline':\n", - " ax.set_ylabel('Affinity/Baseline', fontsize=20 )\n", - " # Make y axis logarithmic with 10 as base\n", - " # Make y axis logarithmic but manually\n", - " ax.set_yscale('symlog')\n", - " \n", - " # Put a line perpendicular axis x in values 1, make it thin and black\n", - " ax.axhline(y=1, color='k', linestyle='--', linewidth=2)\n", - " ax.set_yticks([0, 1])\n", - " ax.set_ylim(bottom=-0.5)\n", - "\n", - " elif plot_type == 'affinity':\n", - " ax.set_ylabel('Affinity', fontsize=20)\n", - " ax.set_ylim(-0.1, 1.1)\n", - " else:\n", - " raise ValueError('plot_type must be one of: normalised, affinity-t, affinity')\n", - " ax.grid()\n", - " return ax" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plotting" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_97245/14240756.py:24: UserWarning: The figure layout has changed to tight\n", - " f.tight_layout()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7QAAAG+CAYAAAATGjtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xTVf8H8E+SjrTpgNINlLJpKXuVJRSRjchSNihLHD/Hoz7iAvRR3CA+PCgbcYMsQUDZFih7FFpogdIWuvdImya55/cHNjRNR0rTyefty1eTnHPP/Sb3Jvdyv/ecIxNCCBAREREREREREREREREREdUy8poOgIiIiIiIiIiIiIiIiIiIqCRMaBMRERERERERERERERERUa3EhDYREREREREREREREREREdVKTGgTEREREREREREREREREVGtxIQ2ERERERERERERERERERHVSkxoExERERERERERERERERFRrcSENhERERERERERERERERER1UpMaBMRERERERERERERERERUa3EhDYREREREREREREREREREdVKTGgTERER1QP5+fnYtm0b5s2bhy5duqBRo0awtrZGw4YN0b59e8yaNQt79uyBJEk1HWqNW7RoEZydnTFmzBhoNBqzlomMjMSLL76I9u3bw9HREUqlEj4+Pujfvz8WL16Mq1evVnHU9VODBg0gk8lM/ieqC7j/1i+3b98ucXsOHDiwpkOrt/Lz87FixQoMGDAArq6usLGxgZubGzp27Ii5c+fit99+M6udixcvcts9xJ599tkSt/+RI0dqOrR67/r16/joo48wcuRI+Pj4wN7eHnZ2dvD29sbgwYPxn//8B3FxcTUdJhEREdUTMiGEqOkgiIiIiOjBxMfH44svvsDq1auRnZ0NAPD29ka3bt3g6OiIhIQEnDx5Enl5eQCAzp0747vvvkOHDh1qMuwaExkZiTZt2hier127FrNnzy5zme3bt2PKlCnIz8+HUqlEYGAgPDw8EBkZifPnzwMAZs6ciY0bN1Zl6PXSc889B7VaDQDYtGmT4XX+E4XqAu6/9UtKSgpee+01AEBCQgL2798PABgwYAATY1UgOTkZgwYNwpUrVwAAAQEBaNeuHXJycnD06FHDeYs536eYmBi89957ALjtHkabNm3C4cOHAQD79u1DYmIiAODw4cO8qaGK7NixA5988glCQkIAANbW1ujevTt8fHyg0+lw+fJlREZGGsrefvttvPPOO1AoFDUZNhEREdVxTGgTERER1WGLFy/GkiVLAAANGzbEt99+iwkTJhj1EkxLS8PLL7+MzZs3AwCcnZ1x6NAhdO3atUZirkkRERFo27at4fm3336LefPmlVo/KSkJLVu2RE5ODtzd3XH8+HG0atXKUL5ixQq89NJLTGhbQNF9lv9EobqG+2/9cuTIEQQFBQFgUrSqPPnkk9iyZQuAe8fSF1980VB2+/ZtdOvWDWlpaRX+PnHbPdwGDhyIo0ePAmBCuyoVPeZNmDABK1asgJeXl1GdvXv3YsaMGUhJSQEATJ8+HZs2beJIJkRERPTAOOQ4ERERUT2xbds2TJw40eRCkYuLC7777js8/vjjAIDMzExMmTIFWq22JsKsUW3atMHChQvh6OiIYcOGYfr06WXW37p1K3JycgAA06ZNM0pmA8Ds2bMxcuRIdO7cuapCJiIiqleysrKwfft2AICrqyuef/55o3JfX1+88sorGDlyZE2ER0RmevTRR/HLL7+YJLMBYPjw4dizZ4+hV/bmzZsNN9cSERERPQgmtImIiIjqgcGDB5fbC2Xp0qWGx9evX8fOnTurOKra6aOPPkJWVhb27t0LOzu7MuuGhYUZHhcdqryQSqXC7t278fLLL1s6TCIionopIiICOp0OANCqVSvI5aaXpt555x3s3r27ukMjogpYsmRJid/fQj179sS4ceMMzz/99NPqCIuIiIjqKSa0iYiIiOqBoUOHllvH398fjRs3Njz/66+/qjKkeiE3N9fw2NbWtgYjISIiqh94bCWq+xwdHdGnT59y6w0ZMsTw+OrVq4iPj6/KsIiIiKges6rpAIiIiIjowU2bNg2BgYHo1KmTWfWbNm2Ku3fvAgDu3LlTlaHVC5wLl4iIyLJ4bCWq2/bu3QuVSmXWfNhNmzY1en7nzp0ShygnIiIiKg97aBMRERHVYa1atcKwYcPMvjAkSZLhsZVV5e5tXL58OWQymcn/R44cMam7ePHiEuvevn3bpO4TTzxRZrtHjhzBhAkT0LRpU9ja2sLDwwOPP/44Dhw4UGqsR44cKbHNWbNmlRnrpk2bDK8//fTTZr1XAEhPT8enn36KoKAgeHt7w9bWFq6urujWrRv+/e9/IyIiotRYL168WGKshUPKq9VqrFixAv369YOnpycUCoXR+ylv+YyMDLz//vsICAiASqWCs7MzBgwYgJ9++skklrNnz2LcuHFo2rQplEolWrRogeeffx5xcXGlxm8pkiRh06ZNGDhwINzd3aFUKuHr64vZs2cjMjKyxGV8fX1LfO+l7W+l7ZeFF2hLaw8ANBoNvv76awQFBcHLywu2trbw9PTEsGHD8OOPP1YoYRMdHY23334b3bt3h6urK2xsbODh4YG+ffti0aJFhptQSvLyyy+XGOPGjRsBAOHh4XjppZfg5+cHJyencvff3NxcfPLJJ+jZsycaNmwIOzs7NGvWDBMmTMCOHTsAlP99quw+XFROTg5+/fVXzJkzB127dkWDBg1gbW0NFxcXdOnSBf/3f/+Hq1evlvn5lradCz+jw4cPY8aMGWjZsiUcHBzg5OSETp064d1330VKSkp5m69ED7L/VpXSfqsXL14MALhx4wZefPFFtG7dGnZ2dmjYsCH69euH1atXQ6/Xl9jmjh07yvxMi9q4caPZx4ry9ufz589jypQp8PHxgY2NDZo0aYIZM2YgPDzcqB2tVos1a9agZ8+ecHZ2hpOTEwIDA7Fq1apS31N5cnJy8OWXX6J3797w8PCAUqlEs2bNMG3aNBw/frxCbZ04cQILFiyAn58fnJ2dYWdnhyZNmmDkyJFYuXIl8vLySl22c+fOZf6+HThwAJMmTULz5s2hVCpNfrsqozLHttu3bxviCAoKMrx+9OhRs47NlZGZmYmPPvoInTt3hrOzM1QqFQICAvDOO+8gIyOjzFhL+t/X19dkmYEDB5b6u1dae4W/ifHx8XjnnXfQtWtXuLq6wtbWtl7sW5Ik4ddff8WTTz4JX19f2NnZwdHREa1atcK0adOwffv2Ch0rg4ODMX36dDRr1gxKpRIeHh7o3bs3vvzyS+Tk5FTocyqUkpKCd999F506dYKTkxNUKhVatGiBGTNm4PDhwwBK/w0r/A0tSWWO60XFx8fj/fffR79+/eDq6gpra2s4OjrCz88PU6ZMwbp165CYmPhA770yhg0bhv79+5tVt+i/PYDK//uDiIiIHmKCiIiIiB4anp6eAoAAIBYtWlSptvbv3y9mzpwpZs6cKTw8PAztHj582KTu9u3bDXVVKpWhblRUlEndr776qtR23333XaFQKES/fv3E5MmTxSOPPCIUCoWhzrJly0qMNTw83NBm3759DfVnzpxZZqwtW7Y01O3bt6/h9cL/w8PDTZb/7rvvRIMGDQQAIZfLRZ8+fcSkSZPEkCFDhL29vQAgrKysxOuvvy70er3J8tHR0Yb2hw4dalj/gAEDxK1bt0T79u2Fvb29GDJkiJg4caJRjDNnzixz+cjISNGqVSvRokUL8eSTT4qRI0cKBwcHQ52XXnrJEMe3334r7O3txbBhw8SkSZOEn5+foZ6Hh4e4fv16abvGAylsG4DIyckRw4cPFyqVSgwfPlxMmjRJdOrUyVCuUqnE33//bdLGv/71LzFz5kzRsGFDQ91evXoZPo/k5GSj+oXbesaMGUIulwu5XC5mzJhh2C8K25s5c6ZRfLdv3xZ+fn5CJpOJnj17ikmTJomhQ4catm/h552enl7u+/7Pf/4jbG1tBQDDdp08ebLo37+/sLa2FgCEUqkUX3zxRYnL//DDDyXurxs2bBCbNm0SSqVS+Pr6ivHjx4sRI0YYff+Kf1fPnz8vfHx8DOWenp5izJgxYsKECaJ169YCgBgzZozYv3+/0b5QuP41a9YIISq/Dxf6/fffjfZPLy8vMXToUPHkk0+K3r17C0dHRwFAyGQy8cYbb5T4fSq6nYt/RuvXrxfPP/+8ACCaNGkixo4dK8aPHy+aN29uqNOoUSPx119/lbsdLbH/VpWiv9VF41i0aJHYtWuXcHBwEAEBAeKpp54SI0aMMPrMx44dKyRJMmnz3Llzpe53xf39999mHyvK2p9Xr14tbG1tRf/+/cXkyZNFz549DeV2dnbi+PHjQggh1Gq1GDx4sGjWrJmYOHGiePzxxw2/yQDEuHHjSnxPRR0+fNhov71+/bpo27atUCqV4tFHHxWTJk0Sffv2FXK53LAPvvTSS+W2m5OTI5566ilD2+7u7mLMmDHiySefFB07djT67h08eLDENt59990Sj6e3bt0y7M9du3YVTz31lHjkkUeETCYz1KmMyh7bkpOTS/xdKPobUvy35EGUtO1atWolvLy8xPjx48WECRNEkyZNDHXatGkjEhISSox18uTJRt/tMWPGiJkzZ4p//etfJutdunSpmDlzphg+fLjh92rmzJli6dKlpb73AQMGiH379omGDRvWu30rIiJCdO7c2VDerl078eSTT4qxY8eKpk2bGl7v3r27iI6OLvO9SZIkXnzxRcP6Cve/yZMni8GDBwulUinatGkjrl27JgYMGFDmb0xR+/fvF40aNTLUb968uRg/frwYO3asYR9ZsGCBWL9+vaFOy5YtDZ/R9u3bS2y3ssf1Qlu3bjUc56ytrUXfvn3FxIkTxbBhw4yO1VZWVuLVV18ts62a9M033xhiVSqVIi8vr6ZDIiIiojqKCW0iIiKih8StW7eMLsyGhYVZrO2KXEBs1qyZoW5JCe3S2p09e7Zo1qyZuHz5slGdM2fOGC74WVlZlZhkLmrDhg0lJs9KUjSRWVKiprjPP//cUL9z584iIiLCqDwjI8PoAvn48ePLvEhd9MJ8r169RKdOncSECROMEqUFBQVizJgxJb6f4ssHBASIpUuXGq0zLi7OkKwEIH755Rfx119/id69e4v4+Hij9j788ENDvYEDB5b7eVRE0X1z9uzZ4rHHHhOpqalGdYpuu+bNm4uCgoIS23rttdcM9R5//PFy133w4EEBQIwYMcKs+Nq3by9at24tLl26ZFQnPT1dPPHEE4Z6PXv2FBqNptQ2n332WaNESUpKilF5TEyM6N+/v1ECsixF99fZs2cLOzs7k/32xo0bhu9L0e/q9evXjW4E+OCDD4ROpzNa9rfffhP29vbC39/fKCFTlsrsw6tWrTIkL/73v/8JrVZr1HZ6erp44403DO0vXLiwzFiKf0bt27cXCoVCrFy50ug7IUmSWLt2rbCysjIkS0+cOFFmu5bcf6vSokWLDDFMmjRJNGzYUGzZssWoTmJiolHie+3atWW2WZHfyYocK4q2+/TTTwtvb29x/vx5ozq//vqrIcnl6uoqcnNzxfTp08WSJUuMtmlaWppRAnzjxo1lrrvoftu9e3fh5+cnRo4caXJTTFhYmGjXrp2hbtGbgorLyckR3bt3N/o+F9+njx8/Lry9vQ0JrP3795cZZ9Hj6bx580Tjxo1FSEiIyWdUWtLRXFV5bCvvN6SiSjruvfHGG0aftVarFXPmzDHUmzZtWqntFd1mX375Zbnrf/fddwUA8emnn5Ybn4+Pj3BwcKh3+9aVK1eEq6urACAcHBxMEr+SJIk1a9YYkrteXl7i7t27pcZSmEwHIPz8/EzOX1NSUsSoUaOEn5+f0edQ1m/M33//bUg6W1lZibVr15ocB/73v/8JhUJhdMwr77zRUsf1CxcuGI5BjzzyiMn5mF6vF999953hxgNLf48sacaMGYb3+9RTT9V0OERERFSHMaFNRERE9JAomowcN26cRduujoS2TCYTp06dKrHeW2+9Zaj32muvldlmVSW0Dx8+bOhR1ahRI5MeX4V0Op3R+/roo4/KbLNooqx79+4mF6mFEOLIkSMlvp/iy0+cOLHE9fzyyy+GOn369BE9evQQcXFxJvUkSRJt2rQx1C3v5oGKKBqnp6enyMrKKrHeI488Yqi3e/fuEutEREQY6igUCnHnzp0y113Yq23nzp1mxadUKsXNmzdLrKfRaIx6w7377rsl1tu4caOhTpcuXUpNbmZlZRl6s8nlckMv1JIU70le2ogFs2bNMvquSpIk+vTpY1ju2WefLXUdP/zwg9E6KpLQrug+XJjQLq/nWWECQaFQiMjIyDLrFv+MPvzww1Lrfvzxx4Z6rVu3LrNXmSX336pUNKENQHz22Wcl1vvzzz+NtllZqiOhDUDs2bOnxHqFPWKBezcTjB8/vsR6wcHBRonOshTfbwMCAkR+fn6JdW/duiXs7OwMdQ8cOFBivcLvHQDxwgsvlLruc+fOGUYe8fDwKHOkh6LHU4VCIc6ePVtiPV9fX5Oko7mq+thWlQltAGLkyJEl1svOzjYkA21sbERaWlqJ9VavXm2UTC2LTqcTjRs3FjY2NiIpKcms+OrbvqVWq40SwFu3bi11HcuXLzfUGzp0aIl1io4IYmdnJ27dulVivfz8fBEQEGD02Zb2G6NWq41GgPj4449LjbHouXN5542WPK5Pnz7d0FZZN6AW7p9lfY/++usv0apVK+Hs7FztPblzcnIMIzvIZDJx8eLFal0/ERER1S9MaBMRERE9BLKzsw3DjatUqnITyRVVHQntsnoEHz161FAvMDCwzDarKqFdtFdQWUkyIYwTK/b29iY9eAoVv/BdWsI1KytLbN682aQXafHlS+tlmp6eblRvzpw5pcb+wgsvGOp9++23Zb7Piii6/sWLF5da74MPPjDUe/PNN0utN3DgQEO9JUuWlFovKSlJ2NjYiMaNG5v0SC4tvgULFpT5XrZs2WKo6+DgIDIzM43KNRqN8PLyMjux+cUXXxjqjho1qtR6RfdXd3f3EhPHQtzr+bV582ZDYqpo8tLKysqkJ1hxRXsNVjShXZF9+MyZM2LRokWlJjAKHT9+3ND+O++8U2bdop9RgwYNSk0kCSFEXl6e0XC069atK7WupfffqlI0oW1vby9yc3NLrKfRaAy9F+VyuVCr1aW2WR0J7TZt2pRab9myZUaff3BwcIn19Hq9cHJyMus9Fd9vf/nllzJjLdqDtH///iblly9fNpQrlcpSf/MLjR492lD/888/L7Ve0ePp2LFjS623b98+sXnz5jLXWZqqPrZVdUL7yJEjpdZ99NFHDfX27dtXYp3s7GyjYfiPHj1aans7duwQQNm9UOv7vrVixQrDcuXdDKPRaIx+Y8+dO2dSp+jNVs8//3yZ7f38889Gn21pvzFFb1JwdXUt82alvLw8oykLSjtvtPRxvWhyPiMjo9R2UlNTy/0eFR3iHSj9xoiq8Nlnn5m9/YiIiIjKIwcRERER1XvvvvsuEhISAAArV66Er69vzQb0AB577LFSy1q1amV4fOPGjeoIx8jp06dx9uxZw/MJEyaUWb9Pnz7w8vICAKjVamzYsKHcdVhbW2Po0KElljk6OmLatGno3bt3qcvb29ujV69eJZY1aNAADRo0MDx/9NFHS22nRYsWhseRkZHlRP1gytrWLVu2NDwua1vPnTvX8HjdunWQJKnEehs3bkRBQQFmz54NhUJhVnyPP/54meUjRoyAra0tACAnJwdbt241Kt+xYwfi4+MBAE5OTqVu10JFt8cff/yBzMzMcmMcNmwYrKysSizr3Lkzpk2bBg8PDwDApk2bDGW9e/eGp6dnmW2PGTOm3PWXpKL7cPfu3bF48WI0b968zHYLv0sAcPLkSbPjGTp0qGE7lUSpVGL48OGG5xs3bjSrXUvsv9Whb9++sLe3L7HMxsYGPj4+AABJknDr1q3qDM3EoEGDSi0run/Y29uX+jsol8sNx76KvCeFQoGRI0eWWWfs2LGGx3///Tdu3rxpVL5q1SrD46CgIDRq1KjM9op+53/66Sez4hw9enSpZUOHDsW0adPMaqeo6ji2VSWlUol+/fqVWm7O99HBwQGTJ082PF+9enWp7RWWzZ8/36z46uO+VTSeiRMnltmujY0N+vfvb3j+448/GpXfuHEDJ06cMDwfN25cme2NGjUKcnn5lzmLHvOGDx8OpVJZal2lUlnuMRqw/HG9aEy//vprqe24uLggKioKP//8c7kxVreYmBh88MEHAID27dvj008/reGIiIiIqK5jQpuIiIionvvjjz/w1VdfAQCef/55zJw5s4YjejBt2rQptaxhw4aGx+Yk+yzt4MGDhsdOTk5lxgoAMpkM3bp1K3H50rRq1arM5Ft5WrRoUeaFXkdHR8Pj1q1bl1rPycnJ8LiqPuuyPr+iifey1j9+/HjDhf2YmBjs3bvXpI4QAmvWrIFCocCcOXPMjq9Dhw5lltvb26Nt27aG58HBwUblhw4dMjzu2rVrqYnnQkVvIpAkCadPny43xvbt25dbp6T4unbtWm79gIAAs9suqjL78JkzZ7BixQq8+uqrmDNnDmbNmmX4//XXXzfUK7xxxxzlbUfA+PM4c+YMtFptuctYYv+tDuX9TtX072pRRW9aKq7ob1d5v3MP8vvVvHlzqFSqMusU/94cP37c6HnR73xpNxYVVfQ7f+nSJeTl5ZW7TEW+8+aqjmNbVWrZsmWZNyqZ+32cN2+e4fHWrVuRlpZmUicmJgb79u1DmzZtEBQUZFZ89W3fSkhIQHh4+APHU/yGpOLHzvKOTyqVqtwboDQaDc6cOWN2m4B5xzxLH9f79OljePz888/j9ddfR2xsbIlt+fr6lnkj2vr169GqVSs4OTnh5ZdfLvOmRUvRarWYOnUqsrKy4OLigm3btpV6AxURERGRuco+wyIiIiKiOu3KlSuYPHkyhBAYO3asIbFdmtOnT2PGjBll1jl48CAaN25syTDN4uzsXGpZ0Z4s5iScLO3q1auGx+b2fi960bXo8qUpmlx6EGV9fgCMkkBl1S2aHCgoKKhUTKUxd1uXtX5bW1vMmDEDy5YtA3Cv51zxnnCHDx9GZGQkRo0ahaZNm5odn6ura7l1mjVrhsuXLwMArl+/blR25coVw+Po6GjMmjWrzLaEEEbPzelZau7+otFoEB0dbXjerFmzcpcprwdgZWMqau/evXjllVdMPsPS5Obmmt22uduxUH5+Pm7fvl3mDR+AZfbf6lDeb0JdidXc3y7gwX6/zNlPGjZsCEdHR2RnZwMw/s5rtVqj5/v370dUVFSZ7RX29AQAnU6HmJgYo5tkSovB0qrj2FaVLLWPd+/eHV26dMGFCxeg0WiwadMmvPLKK0Z11q5dC0mSjJLf5alv+1bRYxsAfPXVV+X20r9w4YLhcfFjW9H35uTkZHQDQmkaNWpk0ou9qNu3bxtta0sd8yx9XH/33XexZcsWxMfHQ6vV4vPPP8eXX36JPn364PHHH8fo0aPRrl27cuMCgMGDB1fZiDqlWbBgAYKDg2Fvb4+dO3eWezMMERERkTmY0CYiIiKqp27duoUhQ4YgKysLw4cPx88//1zukMpqtbrcxFFNJIyBe8MVl0Ymk1VjJKZSU1MNjx0cHMxapmi9lJSUcuuX9f7NUV5voQetWxUsta3nzZtnSGjv2bMHd+/eNboZo3B42IokIACY1cu46PYt3puv6P4SFRVVbgKiuIyMjHLrmLu/pKenGz03Z/+1s7Mzq+0HjanQt99+iwULFkAIARsbG7z22muYMmUKWrRoYRTD7du3DUm04kmCslR0OwKm27Iktfm3qqjytkdtitXc36Sq+O0yd1QBBwcHQ9Kx6H5SfJ85efJkhYbGByz7na+I6ji2VSVL7uPz5s3DggULAABr1qwxSmjr9XqsX78etra2FRoFp77tW0X3FwDYvn17pWIpenwyd/8r7/hUVcc8Sx/XXV1dcfr0abz88svYtm0bhBCQJAnBwcEIDg7GG2+8gXbt2uGZZ57B/PnzjUafqGlvvvkm1q1bB6VSie3bt5c57D8RERFRRXDIcSIiIqJ6KCoqCkFBQYiPj8fIkSOxfft22NjY1HRYRNWqXbt2hvk59Xo91q1bZyhLTk7G9u3b0aRJE4wYMaKmQsTUqVMhhKjQ///+979rLN7qcuPGDfzf//2fIUG9ceNGfPjhh2jfvv0DJ9SJaoM1a9ZU+DtvztDNVLWmTp1qGB48PDwcx44dM5Tt3r0bd+/exbhx48zqdV1Vatu+FRkZWaFYzBn+vC6w1HG9SZMm2Lp1KyIjI/H++++bTJNx7do1Q2L76NGj1fX2yvTuu+/ik08+gZ2dHXbt2oUhQ4bUdEhERERUjzChTURERFTPREVFYeDAgYiJicGIESPw22+/md0LaODAgeVedDN32NHS1PTQtVWh6HCUOTk5Zi1TtF5NXgCv74r2vl63bh0kSQJwL0FaUFCAOXPmlDtyQXEajabcOkW3r4uLi1FZ0f2lsNddTSk+lKw5+291JB2+++47w29FixYtMHnyZIuvo6LbETDdllQxdfH335z9BCj9O198n6np73xF8Nh2n6OjIyZNmmR4XjjCR9HH8+fPr1Cb9W3fKj40d2XjKXp8Mnf/K+/4VFXHvKo8rrds2RLvvvsuLl++jGvXrmHx4sXw8fExlMfHx2PUqFFmTUdSld577z385z//gVKpxM6dO/HYY4/VaDxERERU/zChTURERFSP3L59G0FBQYZk9rZt28xOZldG0eEoy0tYZGZmVnU41S4gIMDw+Pbt22YtU/TCY9HlybImTJhguOgfExODvXv3QgiBNWvWQKFQYPbs2RVus/iwqiUpuh8Un+ey6Pau6LCklmZra2s05605+68577+yCucfB4CuXbtWyToquh2VSmWlb+ipjyry+2/O8Ma1jTn7SXp6ulESq+h33tra2miO4pr+zlcEj23Git4gtXXrVqSlpSEmJgb79u1Du3btMGDAgAq1V9/2reLbu7Lx+Pn5GR5nZWWZDBdekvI+0+bNmxudF1vqmFddx/W2bdti0aJFuHnzJpYvX24YNj8nJwcrV66ssvWWZ9GiRfjggw+gVCqxa9cuJrOJiIioSjChTURERFRP3L59GwMHDkR0dDSGDx9eZjJ72rRpGDx4sMXWXXTuvrIuOMbGxkKtVltsvbVF0c8yKysLERERZdYXQuD8+fOG54MGDaqy2B52SqUS06dPNzxfvXo1Dh8+jMjISIwYMQJNmjSpcJuhoaFllqvVaqN9oPj8kUX3l2vXriErK6vcdZ4+fRoBAQHo0KED7t69W8GIy1Y4LDsAXLhwodz6V65csej6S5Kfn294XN78reb23CuuvO0IGH8ePXv2rJJ5ius6c3//dTpdjfcgfBC3bt0q97hV9PccKPs7f+rUKbPWu3LlSgQEBNTokL08thnr2bMnOnXqBOBe7+pNmzZh7dq1kCQJc+fOrXB79W3f8vT0RPv27Sscz6xZsxAQEIC3337b6PXi77W845NarS43mWxjY2M0zLqljnmWPq7/8MMP+P7770td1srKCi+99BKefvppw2tXr14td51VYfHixXj//ffL7Zn9559/YvDgwfjuu++qOUIiIiKqL5jQJiIiIqoHoqOjERQUhOjoaAwbNgzbt28vs2d2cHAwDh48aLH1t2rVyvD45s2bpdbbv3+/xdZZm3Tv3h09e/Y0PN+6dWuZ9Y8fP474+HgAgEqlMrogSZZXtFfdnj178MEHHwCo+PCwhXbt2lVm+R9//GEYStbR0RETJkwwKh8zZowhka7VarFly5Zy17l+/XpcvXoVcrkcjRs3fqC4SzNz5kzD45MnTyIhIaHM+r///rtF11+SojcaREZGllnXnIRESfbv319mj+L8/Hzs3bvX8Jzf05KZ+/t/5MgRs4dYrk30ej327NlTZp3t27cbHg8YMMBo1AMAWLBggaEn5ZkzZ3Djxo0y2xNCYOXKlbh69apRL9XqxmObqaLHk9WrV2P9+vWwtbU1+h01V33ct55//nnD419//RU6na7M+rGxsfjhhx9w9epVdO/e3aisRYsWRjdcbdu2rcy2du/ebZhWpCxFt9XevXuNbqAqTqPRmHXuaunj+ttvv4358+dDr9eX2UbRz8zBwaHcdVrakiVLsGTJEkMyu6ybJOLi4nDw4ME6eWMTERER1Q5MaBMRERHVcdHR0Rg4cCBu376NYcOGYceOHdUyzHhRjzzyiOHxn3/+WWIdrVaLL7/8srpCqnafffaZYS7mL7/8EomJiSXW0+v1Rr2Q3n77bZN5J8my/P390bdvXwD3Pv8jR47Ax8cHw4cPf6D2NmzYUGovsIKCAvznP/8xPP/Xv/4FR0dHozrW1tb45JNPDM8XL16MtLS0Utd39uxZrF+/HgDw1ltvPVDMZRk0aJBhqFydToclS5aUWvfnn39GWFiYxWMorui2OXfuHM6dO1diPZ1Oh+XLlz/QOtLT07Fs2bJSy7/66ivDULNt27atknm8yzJz5kzIZDLIZDJ8/PHH1bruiij6+3/gwIFSE0pF9/m65j//+U+pNz9ERUUZvp8ymQyLFi0yqdO+fXvMmTMHwL2E4ssvvwwhRKnrW7FiBcLDw6FUKvHqq69a4B08OB7bjE2bNg329vYA7vXEvXv3LiZMmPDA77W+7VtPP/00OnToAODeyEFlnfcVxqvT6dC+fXuMGTPGpM7ixYsNCfv169eXOkR48WNvWaZMmYI2bdoAAFJSUvDVV1+VWnfZsmVmTZVQFcd1tVpd7g0PRUcaKZr8L+rAgQNo3bo1GjRogDfeeKPM9iri/fffx+LFi6FUKrFjx44aHU2CiIiIHg5MaBMRERHVYTExMQgKCjJc4NPpdBg/fjxGjRpV5v9JSUkWjWPIkCGGXkNHjx7Fhg0bjMpzcnIwdepU+Pj4wMfHx6Lrri0eeeQRfP755wDuzbc4bNgwk+FZs7KyMH36dBw7dgwAMG7cOLz55pvVHuvDqGivOgCYM2cO5PIH++fQxIkTMXz4cJNhSDMyMjBp0iRcunQJABAYGFjqheopU6bg5ZdfBgDcuXMHgwcPLnG40N9//x3Dhw+HVqvF5MmT8dRTTz1QzOVZv349XF1dAQDffPMNPvzwQ5OeYTt37sScOXMwY8aMKomhqLFjxxp6ngkhMGHCBFy8eNGoTmZmJqZPn24yJK+5pk6divfeew/ffvutSQJo/fr1eOeddwAAdnZ22LRpU7XfKFR03lY3N7dqXXdFtG/f3nDDSFRUFN5//32jz1Or1eKll15CUlKS0VC/dUWzZs0QFRWFiRMnmsyle+3aNYwcORJ5eXkAgFdeeQVBQUEltrNixQr07t0bwL2RIqZOnWrSXkFBAT777DNDovGrr75Cs2bNLP2WKoTHNmNOTk4mv8MPOtpH9+7dodVq69W+pVQqsXXrVnh4eAAAFi5ciE8++QRardaoXkpKCqZNm4Zt27bB3t4emzdvLvGYPGjQILzyyisAgLy8PIwYMQLXrl0zqpOWloYnn3wSt2/fNus9KZVKfPfdd7CzswMAvPPOO4bkciEhBFavXo1FixZh6tSpZr33qjiuz549u8Qe4jqdDuvXr8fatWsB3OvNPnv27BLbeOaZZ3Djxg1kZmbis88+w6FDh8x6P2X54IMPDDdYuLu74+uvvy733x4PevMZERERUSGZKOvWTSIiIiKq1Z588kmzhjUsjSVPBYODgzF8+HDDfLYdOnRAQEAAcnJycOzYMbRv3x47d+5E9+7dER0dDQAYP348HBwc4OrqarhgvmPHDuzYsQMAsG/fPkNvsKFDh8LT0xPt2rUzXChfu3YtgoODAQCbNm0yxFI4nGS/fv0wZ84cXLt2zdDD8caNGzh+/DgAoGXLloY5Gp944gk88cQTRusPDg42DKHbt29fo6F133zzTbRr187kc/j+++/xf//3f0hPT4dcLkdgYCCaNWuGtLQ0/P3331Cr1bCyssLLL7+Mjz/+2NDzrahZs2YBABISEgwXMj08PDBs2DBDnc8//9yQgKzo8oWxF32vW7duRW5uLoD726XoZ/3aa68hJSWl1M9vzpw5JvNdlufjjz82XJguafsVbpOi6y/tPZW3/ry8PHh7eyMjIwMKhQIxMTHw9vY2O9bCHmIAkJubi6eeegp79uxBz5490aJFC2RkZODYsWOGzzAoKAjbt2+Hs7Nzme1+8cUXeO+996BWqyGTydC1a1e0atUKOp0OFy5cwK1btyCTyTB//nx8/fXXsLKyMlo+ODjYcEG7tP216HYsy+XLlzFmzBjDDTJeXl4IDAyElZUVLl26hMjISLz77rsICgoyJFYGDBiAI0eOmLRV2X0YuDc86ciRIw2JbJlMhp49e6Jly5bIzMzE33//jdzcXMybNw+rVq0CcG+Y48Ih3ovuP0XjKtzXNmzYAJ1Oh+effx4eHh7o0aMH5HI5zp8/bxgS1dXVFb/88kuJcwFX9f7btWtXw3Dqp0+fRo8ePUr9rMpS9Pfv4sWLhhsuOnXqhM6dOwMANm7cCMB4fyrp97fob3VR169fx4ABAwz1W7Vqha5du0Kr1eL48eNwcXHB7t27MXv2bBw9etSozdLWX9L+XHT95n6mRd9/Se+pcP0pKSl47bXXABjvtwMGDMDbb7+Np556Cnl5eejfvz9cXV0RGxuLEydOQJIkyGQyvPzyy/jiiy+MfiuKy8vLw7PPPovNmzdDCAEbGxv06dMH3t7eyMzMREhICFJTU6FSqbBs2bIS52Uuetwr6XcbKHnfr6zKHttK+3yL/y4UHrcrytzjXtE4Svs+lPfbdPLkSfTp0wcA4OfnV6FRK44cOWL0+7lmzRqMHj0a0dHR9Wrfun37NiZNmmSYR9vFxQW9e/dGgwYNEBcXh5MnTyI/Px/NmjXDTz/9ZEjIl0QIgX/9619Yvnw5hBCQy+Xo3bs3fHx8kJKSguDgYCiVSvz888/46KOPSvyNKWmbHjp0CE899RRSUlIAAM2bN0e3bt0gSRLOnDmDxMRE/Pe//4W1tbVh+PyZM2cafq9KU9njOnBvJICffvrJMOJF8+bN0alTJ9jb2yMpKQmhoaGG37IuXbpg+/btpSbzfXx8EBsba3h+8ODBSs1vHxYWZjRXekUtWrQIixcvfuDliYiI6CEmiIiIiKjOGjNmjADwwP9b2o0bN8TcuXNF8+bNha2trWjYsKEIDAwU//vf/4RGoxFCCNGsWTOTOJo1a2ZoY9GiRWXGPGDAAEPdmTNnlll35syZQgghDh8+XO5nsWjRIrPWX/j/4cOHS/0c0tLSxCeffCIGDBggPDw8hLW1tXBxcRGdO3cWr7/+urh+/XqZn6M564+Kinrg5Qtjr8hnXdJ2K/r/hg0bynxPJRkwYIBZ28RS63/++ecFADFmzJgKx1r8eyNJkvjpp5/E8OHDRePGjYWNjY1wd3cXQ4YMET/88IOQJMnstuPi4sSSJUtE7969hZubm7CyshJOTk6iU6dO4vnnnxfnz58vddkNGzaUu72Lbsfy5Obmik8//VT06NFDODs7Czs7O9GiRQsxY8YMceLECSGEEAcOHDC0PXTo0HI/rwfZhwvl5+eLVatWiaCgINGoUSNhZWUlGjRoIDp37ixeeeUVERERIaKiosrdfwoV/c0o3GdCQ0PFc889J9q0aSMcHByEg4OD6NChg3jnnXdEcnJyqbFV5f6blJQk5HK5ACC8vLyEXq8v97MqjTm/f4XK25+K/lYXFx8fL1599VXRtm1bYWdnJ5ycnESXLl3EJ598IrKyssr8zB5k/eZ+pua+/9L2o8LvT3x8vHj77bdFly5dhIuLi7CxsRFNmzYVU6dOFcePH6/QNjl37px48cUXRfv27UWDBg2ElZWVaNSokejbt69YsmSJuHPnTqnLlnfcK23ft4TKHNtK+3yL/1943K6o8totPO6ZE4c5v03t27cXAMSyZcsqFGfR/bFw38rOzhZffPGFCAwMFG5ubvVq39qxY4eYOnWqaNGihbC3txc2NjbC29tbDB8+XHzzzTciNzfX7LZOnDghpk2bJpo2bSpsbGyEi4uL6NKli3j77bdFfHy8EKL035jStmlKSop49913RceOHQ2//23atBHPPfecCA0NFUIIsXbtWkM78+fPNyvWyhzXC925c0esWrVKPPnkk8Lf3184OTkJhUIhVCqVaNWqlXjyySfFr7/+Wu7x4a+//hItW7YUTk5O4tVXXzUr/rJcuHDBrO9ydf8+ERERUf3HHtpERERERPRQKBzR4I8//qjw/NlFe8Y97P+E2r59O8aNGwfg3hCrP/zwQw1HZL7iPbQLe3XWNp9//jlef/11APfmnrbkvKdEVDl6vR5NmzZFeno67t69CxcXF7OXLd5Du6QRLqh2WbZsmWGo9rfeegsffvhhDUdERERE9HDiHNpERERERFTvpaamYufOnWjWrBmGDh1a0+HUaZGRkYbHHTt2rMFI6qdbt24ZhmPt1KmTYU5WIqod/vjjD8THx2PixIkVSmZT3cRjHhEREVHtwIQ2ERERERHVe5s3b0ZBQQHmzp0LuZz/DCpu1apV8PT0NMw9WpYDBw4YHhed+5YqLzIyEoMGDUJubi6aNm2KXbt2wcbGpqbDIqIi1q1bBwCYP39+DUdCD+qtt96Cp6cnbt26VW7dwmOejY1NpeaeJiIiIqLK4ZUcIiIiIiKqNxYuXIixY8cavSZJElatWgVra2s888wzNRRZ7Zabm4vExESsWbOmzHonT57EwYMHAQBDhgxBp06dqiO8h0ZOTg6ysrLQq1cvnDx5Ej4+PjUdEtFDa/jw4ViyZInRa9HR0di9ezcCAgLQt2/fGoqMKisrKwuJiYlYv359mfV++eUXQw/tWbNmwc3NrTrCIyIiIqISMKFNRERERET1RmhoKHbs2IFz584ZXvv6668RERGBadOmwcvLqwajq/1++OEHLFq0CGq12qRs7969GDNmDCRJgpubG9auXVsDEdZvXbp0wfnz5xEcHIzGjRvXdDhED7W///4b3377LXJycgDcuznq1VdfhV6vN8xxT3Xb0qVLsWrVKmi1WqPXJUnC5s2bDTfBtWnTBp9++mlNhEhERERE/7Cq6QCIiIiIiIgsLSgoCI899hhSU1Nx9OhReHl5YenSpRVq47XXXkNKSorJ67NmzQIAuLq64vPPP7dEuDXO1dUVcrkckiTh/fffx4oVK9CpUyd4e3tDrVbj4sWLiI6OBgB06NABv/32G5o2bVrDUZtnx44d2LFjBwAgODjY8PratWtx5MgRAMCbb76Jdu3a1UB0pnx9fWs6BCL6R3x8PAICAtCrVy9cuXIFYWFhePTRRzFt2jSz20hJScFrr70GAEhISDC8fu3aNcPxpF+/fpgzZ45FY6fSFfa0liQJzz33HJYsWYKAgAB4eHggKysLZ8+eNWyrAQMG4JdffoGzs3NNhkxERET00JMJIURNB0HmkSQJcXFxcHR0hEwmq+lwiIiIqI4SQiA7Oxve3t6cS/gh8zCcT3777bf48ccfERUVBbVaDXd3dwwcOBD//ve/0axZswq11aFDB8TExJRa7uPjg9DQ0MqGXGvcuXMHe/fuRXBwMK5fv464uDjk5ubC1tYWrq6u6NatG0aPHo0nnniiTv12LF26FB9//HGZdXbv3o3+/ftXU0REVBe8+OKLOHnyJOLj46HT6dCkSROMGzcOL7/8MlQqldntREdHo2PHjmXWmTJlClatWlXZkKtdXT6nvH79On7//XcEBwfj2rVriI+PR25uLuzt7eHl5YXevXtj0qRJGDZsWE2HWis9DOeUREREVPUqcj7JhHYdcufOnTrTC4KIiIhqv9jYWDRp0qSmw6BqxPNJIiIisjSeUz58eE5JRERElmTO+SSHHK9DHB0dAdzbsE5OTjUcDREREdVVWVlZaNq0qeHcgh4ePJ8kIiKqf/be2oslIUvMrr8ocBGGtxhe6fXynPLhxXNKIiIisoSKnE8yoV2HFA7h4+TkxJNFIiIiqjQOD/jw4fkkERFR/ROSHgJrO2tIkMqtK4ccIekheMrpKYutn+eUDx+eUxIREZElmXM+WbcmuCEiIiIiIiIiIiKDDE2GWclsAJAgIUOTUbUBERERERFZGBPaREREREREREREdVBKXgqS1clm15dDjga2DaouICIiIiKiKsCENhERERERERERUR2SkJuApaeWYthvwxCdHW32chIkDPIZVIWR0YOQJAkrV66Ek5MTZDIZbt++bbG24+Li8NJLL6Fly5ZQKpXw8PDAqFGjsH//foutg4iIiKiqcQ5tIiIiIiIiIiKiOiA2Oxbrr6zHjhs7oJN0FVpWBhkcbRwxxHdIFUVHD+Lq1auYO3cuTp48afG2Q0JCMGLECOTn52PJkiUYMGAAYmNj8f7772PYsGFYuHAhPvroI4uvl4iIiMjS2EObiIiIiIiIiIioFovKjMLbwW9j9PbR2Bqx1ZDMtrOyw0z/mfhP3/9A9s9/JSl8/cN+H8JWYVttcVPZFi1ahK5du0KhUODNN9+0aNvJyckYPXo00tPT8eOPP+L1119Hz549MX78eBw7dgxNmzbF0qVLsWnTJouul4iIiKgqMKFNRERERERERERUC0WkR+CNo29gzI4x2HVzF/RCDwBQWaswt8Nc7B+/H6/1eA1jWo3BV0FfwdHGEcC9ubKL/nW0ccSKQSswsOnAGnkfVLLly5dj2bJlOHbsGNq2bWvRtt9//32kpKSgV69eeOKJJ4zKnJ2dsXDhQgDAv//9b+Tl5Vl03URERESWxiHHiYiIiIiIiIiIapGrqVex+tJqHIo9ZPS6k40TpvtPx+R2k+Fs62xUFuQThEOND+HP23/iUMwhZGgy0MC2AQb5DMIQ3yHsmV0LhYWFoXHjxhZvt6CgAJs3bwYAjB8/vsQ648ePx3PPPYfExETs3r0bEydOtHgcRERERJbChDYREREREREREVEtcDHpIlZfXo2/7/5t9LqL0gUz/GdgUrtJUFmrSl3eVmGL0S1HY3TL0VUdKllAVSSzAeD48ePIzMwEAPTo0aPEOu7u7vDx8UFMTAz27NnDhDYRERHVakxoExERERERERER1RAhBM4mnsW3l77FqYRTRmXudu54OuBpjG8zHnZWdjUUIdU1ly9fNjz29fUttZ6vry9iYmKM6hMRERHVRkxoExERERERERERVTMhBE7EncDqy6txPum8UZm3yhuzO8zGmFZjOFQ4VVhMTIzhsZubW6n1CstiY2PLbE+j0UCj0RieZ2VlVTJCIiIioophQpuIiIiIiIiIiKiaCCFwJPYIVl9ejSupV4zKfBx9MKfDHIxqOQrWcuuaCZDqvOzsbMNjpVJZar3CsvIS1EuXLsWSJUssExwRERHRA2BCm4iIiIiIiIiIqIrpJT0OxBzA6surEZEeYVTW0rkl5naci6G+Q2El5+U6ql0WLlyIV1991fA8KysLTZs2rcGIiIiI6GHDM2QiIiIiIiIiIqIqopN02Bu1F2tC1yAqM8qorJ1LO8zrOA+P+jwKuUxeQxFSfePo6Gh4nJ+fD5VKVWK9/Px8AICTk1OZ7dna2sLWlkPfExERUc2p82fKkiRh5cqVcHJygkwmw+3bty3WdlxcHF566SW0bNkSSqUSHh4eGDVqFPbv32/W8tevX8fs2bPh4+MDpVIJb29vPPXUUzh9+rTFYiQiIiIiIiIiotpHq9diW+Q2PL7jcbwV/JZRMruDawf8d9B/8euoX/FYs8eYzCaL8vHxMTxOTk4utV5hGXtbExERUW1Xp3toX716FXPnzsXJkyct3nZISAhGjBiB/Px8LFmyBAMGDEBsbCzef/99DBs2DAsXLsRHH31U6vI7d+7E5MmToVKp8MEHH6Bbt264du0a3nvvPfTp0wdff/01FixYYPG4iYiIiIiKW7lyJVauXAm9Xl/ToRAREdV7Gr0G2yK3Yf2V9UjITTAq6+reFfM7zUdvr96QyWQ1FCHVdx07djQ8vn37Nnx9fUusV9gxqGh9IiIiotqozt7+uWjRInTt2hUKhQJvvvmmRdtOTk7G6NGjkZ6ejh9//BGvv/46evbsifHjx+PYsWNo2rQpli5dik2bNpW4fHh4OCZPnoyCggLs3bsXzz77LHr06IHp06fjyJEjsLe3xwsvvIBDhw5ZNG4iIiIiopI8//zzCAsLw5kzZ2o6FCIionpLrVVj09VNGPbbMHx06iOjZHZvr97YMHQDNg3fhD7efZjMpirVp08fODs7AwDOnj1bYp2kpCTExMQAAEaOHFltsRERERE9iDqb0F6+fDmWLVuGY8eOoW3bthZt+/3330dKSgp69eqFJ554wqjM2dkZCxcuBAD8+9//Rl5ensnyb7zxBvLy8jBhwgR0797dqKxZs2ZYsGABJEnCK6+8YtG4iYiIiIiIiIioeuUU5GBt6FoM+20YPj/7OVLyUgxlA5oMwPcjvsfqIavR3bN7Ga0QWY6trS2mT58OAPjtt99KrLNt2zYAMEyxSERERFSb1dmEdlhYGJ577jmL39FaUFCAzZs3AwDGjx9fYp3C1xMTE7F7926jsvj4ePzxxx9mLX/58mX2kiEiIiIiIiIiqoMyNZn438X/YchvQ/DV+a+Qrkk3lD3W7DH8OupX/PfR/6KTW6dqi0loJeSeT0Tq5jAkfXsZqZvDkHs+EUIrVVsMVD1Wr14NZ2dn9O3bFxkZGSbl7733HlxdXRESEoJdu3YZlWVlZeHjjz8GAHzyySews7OrjpCJiIiIHlidnUO7cePGVdLu8ePHkZmZCQDo0aNHiXXc3d3h4+ODmJgY7NmzBxMnTjSU7du3D5Iklbl8586dYW1tDa1Wiz179pRaj4iIiIiIiIiIape0/DR8d/U7/Hz9Z+Rqcw2vy2VyDPMdhrkd5qJVw1bVHldeWCrStkRA5OkAGQABQAbkXU1Fxu+34DKxDez8G1V7XFS6pKQkJCUlAQDu3r1reD0iIgI5OTkAgObNm0OlUpks+/XXXyMrKwsnTpzAoUOHMG7cOKNyNzc3/P777xgxYgQmT56MJUuWYMCAAbhz5w6WLFmC6OhoLFy4EDNnzqzCd0hERERkGXU2oV1VLl++bHjs6+tbaj1fX1/ExMQY1S+6vEKhQNOmTUtc1sbGBl5eXiUuT0REREREREREtU+yOhkbrm7AlutbkK/PN7xuJbPCqJajMDtgNnydfWsktrywVKRuDruXxAZM/oo8HVI3h6HRdH8mtWuR//3vf1iyZInJ60OHDjU8Pnz4MAYOHGhS54UXXsAbb7yB9u3bY9CgQSW2HxgYiCtXruDjjz/GqlWr8M4778DJyQk9e/bEJ598YrQeIiIiotqMCe1iYmJiDI/d3NxKrVdYFhsbW+LyDRs2hEKhKHP5mJgYk+WL0mg00Gg0hudZWVllB09ERERERERERBYVnxOPdVfWYXvkdhRIBYbXreXWGNtqLJ7p8AwaO1TNSILmEFoJaVsi7iexS60IpG2JgPdbvSCzrrOzENYrixcvxuLFix9o2fnz52P+/Pnl1vP29saKFSuwYsWKB1oPERERUW3AhHYx2dnZhsdKpbLUeoVlxZPMhcuXtWxZyxe1dOnSEu/SJCIiIiIiIiKiqhWbFYu1V9Zi141d0Amd4XVbhS0mtpmIme1nwlPlWYMR3qMOTb43zLgZRJ4O6ispUHVxr+KoiIiIiIgshwntWmzhwoV49dVXDc+zsrJKHcaciIiIiIiIiIgq71bGLawJXYM/ov6AJCTD6/ZW9niq3VOY4T8DrnauNRihsfyrqffnzC6PDMhnQpuIiIiI6hgmtItxdHQ0PM7Pz4dKpSqxXn7+vbmSnJycSly+sLw0pS1flK2tLWxtbcsPmoiIiIiIiIiIKuV62nWsvrwaf0X/BVEkO+xo7YgpflMwzW8aGigb1FyApdCrteYlswFAAJKZvbmJiIiIiGoLJrSL8fHxMTxOTk4uNaGdnJwMACY9pguXT09Ph16vL3Ue7dKWJyIiIiIiIiKi6nMl5Qq+vfwtjsQeMXq9gW0DTPefjsntJsPRxrHEZWuSPrsAuWcSUBCbY/5CMkBux8uBRERERFS38Ay2mI4dOxoe3759G76+viXWu337tkn9os/1ej1iY2NLXL6goADx8fElLk9ERERERERERFXvfOJ5rL68Gsfjjhu93kjZCLPaz8KTbZ+EvbV9DUVXMiEENLcykXsqHnlXUgHJ3K7ZhQ0AyoDaM1w6EREREZE5mNAupk+fPnB2dkZmZibOnj2LgQMHmtRJSkpCTEwMAGDkyJFGZcOGDYNcLockSTh79myJCe2LFy9Cq9WWuDwREREREREREVUNIQROJZzCt5e+xdnEs0ZlHvYeeCbgGYxrPQ5KK2UNRVgyKV8H9blE5JyKhy4pz7SCXGZWcltmZwV7JrSJiIiIqAyZ+Wp8eXwLjt45jDx9NuwUjhjQJAiv9p0IZ2XN3PApr5G11mK2traYPn06AOC3334rsc62bdsAAB4eHhg1apRRmZeXF0aMGGHW8h07dkSPHj0sEjcRERHRwyohIQEXL15EVlZWTYdCREREtZQQAsfuHMP0vdMx98+5Rsnsxg6N8V7v9/DHuD8wxW9KrUpmF9zNQfpvkYj/8BQyfr9llMyWq6zhOLAJPN/ogUbT/ABZOY3JAJeJbSCz5uVAIiIiIirZsuPb0e/Hgdh253OkiPNQKyKQIs5j253P0e/HgVh+YkeNxPVQnsGuXr0azs7O6Nu3LzIyMkzK33vvPbi6uiIkJAS7du0yKsvKysLHH38MAPjkk09gZ2dnsvynn34KOzs7bNmyBefPnzcqi42NxapVqyCXy7Fs2TLLvSkiIiKih0h6ejrefvttNGvWDI0bN0a3bt1w9uz9C9MtWrTAO++8g/T09BqMkoiIiGqaJCQcjD6Ip3Y/hecPPo9LyZcMZb5Ovviw34f4fezvmNhmImwUNjUY6X1Cq0fuuUQkrryIpK8vIPdMAoRWMpTb+DrBZVJbeC3sCedhzWHlooSdfyM0mu4PWeH82IXJ7X/+yuys0Gi6P+z8G1XvmyEiIiKiOmPZ8e1YF7kINto8DA+xx/zdjTB/pzvm726E4SH2sNHmYW3Ee1h2fHu1x1ZnhxxPSkpCUlISAODu3buG1yMiIpCTkwMAaN68OVQqlcmyX3/9NbKysnDixAkcOnQI48aNMyp3c3PD77//jhEjRmDy5MlYsmQJBgwYgDt37mDJkiWIjo7GwoULMXPmzBJj8/Pzw48//ogpU6Zg6NCh+M9//oNu3brh+vXrePfdd5Gbm4v//ve/GDRokKU+DiIiIqKHRmhoKEaOHIm7d+9CiHtDa8pkxl2S7ty5g6VLl+K7777D7t270bFjx5oIlYiIiGqIXtLjz+g/sfryatzIuGFU1qpBK8zvOB+PNXsMCrmihiI0pU3JQ25IPHLPJULk6YzKZLYK2Hdxh0OgF6w9Ta91AYCdfyN4v9UL6ispyL+SAilPB7mdFZQBrrAPcH1oemZnZGTgiy++wKVLl+Dk5ITJkydzyj8iIiKicmTmq7H++lIEXbZFqzuu0CkUKJALQCEDhIBHmgoz/tIjskky1ktL8Uy3odU6/HidTWj/73//w5IlS0xeHzp0qOHx4cOHS5wD+4UXXsAbb7yB9u3bl5pUDgwMxJUrV/Dxxx9j1apVeOedd+Dk5ISePXvik08+MVpPSZ544glcuHABn3zyCT788EMkJibCxcUF/fv3x88//4yePXtW7A0TEREREdRqNUaPHo07d+7AysoKnTt3hru7O/bu3WtU78aNG/j222/x6aefYuTIkbh69SqcnJxqKGoiIiKqLlpJiz9u/YG1oWtxO+u2UZmfix/md5qPoKZBkMtqR3JX6AXyw1ORExIPzY0Mk3JrLxVUgV6w7+wGuW35l/H0ELij0eOWWo/8XB2UQoYWGj1aQtTdi4DF5ObmwsvLC7m5uQCAvXv3YsiQIQDu3dQYGBiI+Ph4Q/2ffvoJr7/+umHERSIiIiIy9eXxLRh4WcA3zh26wlPlwg4k//zVyeVoHucBGZKwzHcrFg+aUW3xyURhtxaq9bKysuDs7IzMzExekCUiIqIHVpfPKb788ku89tprGD16NL755ht4eXkhJSUF7u7uOHDggMnNinv37sXIkSPx4YcfYuHChTUUde1Rl7c9ERFRWQr0Bdh5cyfWha7D3Zy7RmWd3Dphfsf56Ne4n8moLjVFn6VB7ukE5J5OgD6rwLhQIYN9RzeoAr1g4+NodsxRl5JxcFM4NGrdvaHGBQx/be2t8OgsfzTv6Gqx91BT5xXff/89ZsyYAaVSibFjx+L9999Hy5YtAQBPPvkktm7dCgDw9PSEm5sbwsLCIEkSjh07hr59+1ZbnPUZzymJiIjqnyGrp2PknynQyeX3E9klEQJWkoQ9Q1zx57zNlVpnRc4p6svNmURERET0ENi1axf8/f2xbds2KBT3hggt6yLv8OHDMXbsWOzcuZMJbSIionooX5eP3yJ/w4YrG5CoTjQq6+HZA/M7zkdPz561IpEthIDmZgZyQ+KRF5YKSMblChclHHp5wb67BxQq6wq1HXUpGX98E3oviQ2Y/NWodfhj1WWMeLYDmndyq9T7qGn79u2Dra0tTpw4gc6dOxtev3v3LrZt2waZTIaxY8fip59+grW1NU6dOoVBgwZh9erVTGgTERERlSAhNwFdz9+GTuFcfmWZDDqFAt0vJJZf14KY0CYiIiKiOiMsLAyvvPKKIZltjr59++KDDz6owqiIiIiouqm1avx6/VdsvLoRqfmpRmV9G/fFvA7z0NWjaw1FZ0xSa5F7Lgm5p+KhS8kzLpQBynYucAj0gm3rhpDJK55412n1OLgp/H4SuzQCOLgpHLM+cYGVde2ZO7yizpw5g+nTpxslswFg27ZtkCQJ1tbW+Prrr2Ftfe+mgF69emHy5Mk4evRoDURLREREVHtdTb2K/55bh+PxBzE3xeXenNnm3AgqBBonV318RTGhTURERER1RmZmJry9vSu0jKOjI/Ly8sqvSERERLVedkE2frr2EzaHbUaGJsOoLKhpEOZ1nIcA14CaCa6Ygths5ITEI+9yMoTWuDu23MEaqp6eUPX0hFUDZaXWc/Nc0r1hxs2gUetw83wy2vbyrNQ6a9KdO3fQpUsXk9d///13yGQyjBgxAl5eXkZlnTp1wo8//lhdIRIRERHVWpKQcDT2KL4+tw6RWZcAADIJEMLKvGQ2AMhksK7mFDMT2kRERERUZzRs2BCxsbEVWubixYto1KhRFUVERERE1SEjPwPfh3+PH8N/RLY22/C6DDIM8R2CuR3moq1L2xqM8B6pQI+8S8nICYmH9m6OSbltC2eoAr1g598IMiu5RdZ561LK/TmzyyMDbl2s2wltSZJMXsvIyDD0wH7qqadMypVKZYnLERERET0s8nR52BaxE2subURqwV0AgI1Ghn5XHOEb7witVQVSxkLA0c6hiiItGRPaRERERFRndOnSBRs3bsS//vUv2NnZlVv/5s2b+O677zBo0KBqiI6IiIgsLSUvBd9d/Q4/X/8Zebr7I64oZAqMaD4CczrMQYsGLWowwnu0SWrknopH7rlEiHy9UZnMVgFVNw+oAr1g7W5v0fXqCvRIi881L5kNAALIz9VaNIbq5uXlhStXrhi9tnnzZmi1WiiVSowaNcpkmZiYGDRs2LC6QiQiIiKqNVLyUrAh9Af8cv0XaKR7N4a6ZFph4EVHOOc4QMjkkCp6n6VMhtbde1k+2DIwoU1EREREdcbUqVMxY8YMDBs2DGvWrEGbNm1KrCdJErZt24aXXnoJarUa06dPr+ZIiYiIqDIScxOx8epGbI3Yinx9vuF1K7kVxrQcg9kBs9HUqWkNRggIvYS8q6nIDYmH5lamSbl1Ywc49PKCXWc3yG0sO2d1yp1shP0dh+unE1GQZ95w4wDuzdmtsrZoLNWtT58++OGHH/D000+je/fuCA8Px4cffgiZTIaRI0fCwcG4t5AkSfjll1/Qtm3N9+AnIiIiqi43M27iv+fW4dCdfZCgBQTQ6o4tAsOdYKW7d5OlKBxhXAi45+uQaqOAXi4re+hxIWAtCXR8Zl7Vv4kimNAmIiIiojpj6tSp+Oabb/D333/D398fnTt3hr+/PwBg1apV2LJlC6Kjo3HmzBmkpaVBCIGgoCBMmDChhiMnIiIic9zNuYt1oeuw48YOaKX7PYlt5DYY13ocngl4Bl4OXmW0UPV0mZp7vbHPJELKLjAutJLDvpMbHAK9YN3EATJz5yE0Q0G+DpFnEhEWHIek6OzyFyiJAFp0drNYTDXhxRdfxE8//YRevXqhUaNGSEtLgyRJkMlkeOWVVwz19Ho9rl27hnfffRc3b94scShyIiIiovpECIGQ+BCsOLsOV9JPAQAUehkCr6ngd9sJQmZjVF+hl+Art0G3sU+iyYSJuLp5E/bv2w4IUXJSW9wbFmjQiHGwcXSs8vdTFBPaRERERFRnyGQy7Nq1C8OHD8eZM2dw4cIFXLhwATKZDNu2bTPUE/+cYAcGBuK3336rqXCJiIjITNFZ0VhzeQ1239oNvbg/ZLedlR0mtpmIme1nwt3evcbiE5KA5kYGckLikR+eajLEt5WrHVS9PKHq5gG5veV6QAshkHQ7G2HBdxFxNgk6jfFw5lbWcrTo4oaoSynQFisria29FVp2rdsJ7V69euHzzz/HG2+8gZSUFAD3zhHfeust9OnTx1Bv8eLF+OijjyCEgEwmw/jx42sqZCIiIqIqpdVrsfvWH/jf+fVIyL8FALDPk2PARUd4pTpCkivu98YGYFegRdtGXug6ez4aBAYabsIMeGYOBAQO/7EdWoXsfmL7n7/WksCgEeMQ8Mycan+PTGgTERERUZ3i4uKC4OBgLFu2DF9//TXu3r1rUqdJkyb4v//7P7z88suwsuIpLxERUW11I/0GVoeuxv7b+yEJyfC6ylqFye0mY7r/dLgoXWosPn2uFupzicg5FQ99ar5xoRxQ+jWCQ6AXbFs2gExuud7Y+blaRJy+1xs79W6OSblrUwf49/VGm54esLW3RtTlFPyx6nLZc2nLgEdn+cPK2rLDn9eEV155BaNGjcL+/fuh0+nwyCOPoGvXrkZ1Bg0aZDgPdHR0ROfOnWsgUiIiIqKqk6nJxOarv+D7sB+Qq08DAHimWOORS05Q5asgZDKj+bEb5hegg39ndFzwAmx9fEpss8Mzc9F24iRcXr8aN8+dgqagALa2NmjZrRc6PjOv2ntmF5KJwu4rVOtlZWXB2dkZmZmZcHJyqulwiIiIqI6qb+cU165dQ2RkJLKzs+Ho6IjWrVujXbt2NR1WrVTftj0REdVd4anhWH15NQ7EHDB63dHGEdP9pmOK3xQ42zrXSGxCCBTEZiP3ZDzUocmAzvjSmdzJBqoennDo6QmFs61F1xt/IwNhwfG4cT4Jeq1kVG5tq0Drnh5o388bbj6OJsOZR11KxoGN4SjI00EAkAGGvzZ2Vhj8tD+ad3S1WLw8r3h4cdsTERHVrNjsWKw6vwF/3N4FPTSQCaB9lB26XXeETNgZ1ZUJgcZagc6PDkPrp2dDrlLVUNSmKnJOwe4qRERERFSntWvXjglsIiKiOuJS8iWsvrwax+4cM3q9oW1DzGg/A5PaToKDjUONxCZp9FBfTEJuSDy08bkm5batGsAh0AtKPxfIFPISWngwedkFuHYyAWHH45CRqDYp92juBP9+3mjVzR02ytIv5d2wlvA/5zx4yQRaaxVQSkC+HIi01iPeSYvmVno0t1jUdUtycjLCw8PxyCOP1HQoRERERA/sYtJFfHVmLc6mHAMgYF0A9LvqiJZ3HSHJjae9sdbp0ULpgO6TpsNj5CjI5Oafv+q0etw8l4Rbl1KQn6uFUmWNFp1c0bKbe42N9sOENhERERHVa6Ghodi+fTvee++9mg6FiIjooXUm4QxWX16NkPgQo9fd7Nwwq/0sTGgzAfbW9jUSmzYxFzkh8VCfT4IoNg+1zM4Kqm4eUPXyhLWb5eITksCda+m4GhyHqEvJkPTGvcBt7a3Qppcn2vfzRqPG5Sf4/wpLxLzNZ2GnV6OL9gCaqWMg0+shFAo42Pvgtnow5m4+i9XTu+Mxfw+LvY+64s8//8SMGTOg15c/zzgRERFRbaKX9Pjz9gF8fW4dYtXhAADnbAUGXnREo0xHSHK50bDiKo0W/k2ao8v8F+DYIaDC64u6lIyDm8KhUeuMhvy5dSEZf/8aiUdnWXbUH3MxoU1ERERE9drly5exZMkSJrSJiIiqmRACJ+NO4tvL3+J80nmjMi+VF54JeAZjW4+FrcJyw3abHZtOQt7VFOSExKMgKsuk3LqJAxwCvWHfyRUyC/ZCyc3QIPxEPMJPxCErJd+k3Lt1A/j380bLLm6wsjFvvflaPf615SKeUB9Ai6RwFEhWyIEcAgrIIOCScxcL5Otw090Pr22xwqm3BkNZD+bRJiIiIqrP1Fo1fgrfivWh3yFLlwgIwDfeBn2uOsGmwB4oNj+2W74WHXv0Qfv5z8Haze2B1hl1KRl/fBN6L4kNmPzVqHX4Y9VljHi2A5p3erB1PCgmtImIiIioTtJoNLhx4wYyMzOh0+lKrRceHl6NUREREZEQAkfvHMXqy6sRmhJqVNbUsSnmdJiD0S1Gw1phXUoLVUeXno/c0wnIPZMAKUdrVCazlsOukxscAr1g08TRYuuU9BJirqbhanAcoq+kQkjGvbHtHK3RLtAL/v280cCj4r3A/wiNx6C0fWiSEIEC3EtUC8iM/hZICjRNiEAQgL1X2mNslyaVe1O1QGhoKJYvX46jR48iLi4OGo2mpkMiIiIiqrTE3ESsvvgdtt/8DVqRC7kEdIuwR4dbTgD+uRH03ike5JIEH2GFrqPHotnkqZDb2DzwenVaPQ5uCr+fxC6NAA5uCsesT1yqdfhxJrSJiIiIaglJo0H2vn3IPnAQ+swMKJwbwHHwo3AcNgxy2+rvuVRbXbx4EW+99RYOHDjAYSOJiIhqEUlIOBB9AKsvr8b19OtGZS2cW2Bux7kY5jsMVvLqvRwlJIH8iHTkhsQj/3qayUU6Kzc7qAK9oOrqAbmd5WLLSs1D+PF4hJ+IR25GsWSrDGjq5wL/vt5o3skVCqsHn5P78MUotEkK/yeZLSul1r3xIlsmhePQhag6n9DetGkT5s2bB51OByHKu+p6j0xW2mdDREREVPOupV3DV2fW4njCAQjoYauRYcglJzRJcoRU7PzZVqtDa2dXdJ81Fy6PPGKR85yb55LuDTNuBo1ah5vnk9G2l2el12suJrSJiIiIaoHsQ4cQ9+ZCSFlZgFwOSBIglyP7r78g//AjeH/8MRwHBdV0mDXu0qVL6N+/P9RqtdkXLwFewCQiIqpKOkmHfbf3Yc3lNbiVecuorG3DtpjXcR4GNxsMuezBk7YPQp9TgNyzicg9nQB9WrHhveUy2LVvBFWgF2xbOFvsXEGvkxB1KQXhx+MQE26aPFc528Cvrzf8+njBydWu0uvLytfCO+xnFEjmXOKToUCyQqubWwH0r/S6a0pYWBjmzZsHrVaLwMBA9OzZE7a2tvjss88wffp0tGjRAgCQk5ODs2fP4ujRo2jTpg0mT55cw5ETERERGZOEhGN3gvHVmTW4kX0RAOCWboUBFxvCUe0AITOeH9s5X4uANv7o9Nz/wa55c4vGcutSyv05s8sjA25dZEKbiIiI6KGSfegQ7jz/wv0XJMnor5SdjTvPP48mK/8Lx0GDaiDC2mPJkiXIzc1Fy5YtMWXKFPj7+6Nhw4awLaMH+59//omPP/64GqMkIiJ6OGglLXbf3I21oWsRkx1jVBbQKADzO83HgCYDqvXGMiEECqKzkBMSj7zQFEBvfEVO4WwDVU8vqHp4QuH04EMyFpeRqEZYcByuhcQjL7vYUOZyGZoFNIJ/P280a+8CuaJyiX0hBE5HpeGXs7H4IzQer6bfQjbkKL13dpFYINAw5Wal1l/TVqxYAa1Wi2+++Qbz5s0DAKSmpuKzzz7DzJkzMajY+fL333+Pp59+GiNGjKiJcImIiIhMaPQa/HZ9J769tBFpBbGAANpFK9HzmiPk0r0paEThqZ0Q8CqQ0GXAYLSeMw9WjpabGgcA9HoJ0aGpuBuRbl4yGwAEkJ+rLb+eBTGhTURERFSDJI0GcW8uvPektB7HQgAyGeLeXIjWfx97qIcfDw4ORteuXREcHAylUmnWMnfu3KlQb24iIiIqm0avwY7IHVh3ZR3ic+ONyrq6d8X8jvPR27t3tSayJY0O6gtJyA2JhzZBbVJu26YhHHp5QdnOBTKFZeLSafW4eT4ZYcFxiIvMMCl3bKSEf19vtOvtBYeGlT9/S8rOx7bzd/HrmVjcSsmFTEholhcDjRowJ5kN3JtTWy7V7Slbjh49iiFDhhiS2eWZNm0aduzYgRUrVmDz5s1VHB0RERFR6dLy07Du0g/4NeIX5EuZUOhl6HvVAW1jHSHJjG+2tNJLaG5th24Tp8B7zBOQKSw7X3VaXC7CT8Th+qkEkxsyyyUDlCpri8ZTHia0iYiIiGpQ9r5994YZL48QkLKykL1/P5wff7zqA6ulsrOzMWPGDLOT2QDQp08fbNiwoQqjIiIiejjk6fKwNWIrNl7ZiKS8JKOyXl69ML/jfHT36F6tieyC+FzkhsRBfSEZosA4USu3t4J9dw849PSClQWG9y6UejcHYcH3Lv4Vn2dQrpCheSc3tO/njSbtGkImr9xnodNLOBaZjJ9Px+LgtSToJQEnbQZG55xG85xbEDrxz9zZ5pFBwFFVt2+OjI2NxcyZM41eK9znSruJ8ZFHHsGyZcuqPDYiIiKikkRlRuGrM+tw+O4fkKCFSi3H6AvOcEt3hCRXQCpyymhfoEU7z6boOncBnLt2s2gcmjwdbpxNRPiJeCRGlX49Ug7A21oGL2s5bGRAgQDitRLitAISAAigRWc3i8ZWHia0iYiIiGpQ1l8HIGQyyISAXiZDQgMVEpxU0CoUsNbr4ZmVC8+MXCiEgJDJkP3XgYc6od2kSROoVKoKLdO8eXM0t/C8QkRERA+TXG0ufr72M74L+w5p+WlGZf0b98e8jvPQ2b1ztcUjdBLyQlOQExKPgmjTC3E2Po5QBXrBvoMbZNaWmbdbq9Ej8mwiwoLjSrz418DDHv59vdE20BP2FhjKPCZVjV/PxmLLuVgkZmlgJWnRU30J3XIuQZZXAMD8ESGLEpChdY9elY6vJul0Ori6uhq9Vjj9TEJCQonLCCFKLSMiIiKqCkIInI4/g2Vn1uJqxkkAQJNEa/QPbQSlRgUhkxnNj90oX4sOnXugw3MvwsbDw3JxSAJ3IzMQfiIOt84nQ6eVjMoLb8hs08sDhzaGo6FWhy72VrCRyyCEgEx276+3jRU6SALn1Tpk2FihZVcmtImIiIjqNSEENNeuIXPHTuQcOQKZEEh0sselpu7QWSkMQ4xDCCQ2cMBVbz06xSbBI0sNbXpGTYdfo8aNG4fg4GDMnj3b7GWioqLw999/Y8aMGVUYGRERUf2TqcnEj9d+xPdh3yOrwDiJ+6jPo5jXcR78G/lXWzy61DzknE6A+mwCpFzjntEyGznsO7tDFegFG28Hi60zKToLYcFxiDiTCG2+cQ9whbUcLbve643t1apBpXum52v12H81Ab+ejcXxG6mAEGhZcBuP55yAKicDesk4OS+DQHPHdPi38cBfF/KgkRQoe+hxAVuFHm2eeL5ScdY0d3d3REREGL2mUqmgVCpx+vRpTJ061WSZY8eOQWHhYTqJiIiISqKVtNh9Yx9Wnl+HRM1NyCSg8w07dL7hBODeiIOF82PLJIEmkhxdh49Ci+mzLDrNYHZaPq6djMe1k/HISsk3KW/UxAF+fbzQpqcH7Bzu3ZAp73oRiiv3Yyg8vy38ay0DeqmsoA/QwMq6es+tmNAmIiIiqibaxCRk7d6NzJ07oSlyES7RyR7nfD3vVyy8GPrPX51CjnO+nuhyOxEOcls8zH2N33rrLfTq1Qs///wzJk2aZNYyJ06cwNNPP82ENhERkZnS8tPwfdj3+OnaT8jR5hhel0GGYb7DMLfjXLRu2LpaYhGSQP61NOSeikd+RLpJt2QrD3s4BHrBvos75ErLXObS5OkQcSoBYcfjkBKbY1LeqLED/Pt5o01PD4vMHRgen4VfzsRi+4W7yMzTwlmfiSm5R+GdHQtNwb0kth73k9kNbdQI8LWF/6BRcOg1GbB3gdXO/2HHj3tw7wMqKal974Mb/tTjsFI5VTrmmtSpUyds2LABr7/+Otzc7vcM6ty5M9auXYunnnoKffr0Mby+adMmbN++HR06dKiJcImIiOghkV2QjU2hP+P7sB+RK6XApkCGR0Md0CzeCZLc+JzRRqdHS4eG6D59FtwefcxiU/botHpEXUxB+Ik4xF4zPXe2tbdCm56e8OvjBTcfR6MyoVbDOkwHSWYLWSk3ScpkMggIWIfpINRqyOztLRK3OZjQJiIiIqpCUl4esg8cRObOncg9cQKQjIf10crluNTU/d6T0k5e/+mtHdrUDXoPP/Ss4phrs0uXLuH999/Ha6+9hpUrV2LMmDFo27YtHB0dIZeXPKRoeHh4NUdJRERUNyWrk7Hp6ib8GvEr8nR5htcVMgVGtRiF2R1mo7lz9dxap88uQO6ZBOSeToA+Q2NcqJDBLsAVDr28YNPcySIXAIUQSLiZibDgONw4l2QyFKOVrQJturvDv19juPs6Vnqd2fla/H4pHr+cicGlO5lQCB2G5B9Hh+ww5OdKEJBDUySJbS3To617AQL69oH3Y7Mhc/E1aq/lmOcwRgjs+/V3aPRWuHepUWb4a6vQY/hTj6PlmOcqFXdtMGTIEOzZswc9evTAq6++igULFsDa2hpPPvkkQkJCMGDAAPTs2RNNmzbFtWvXEBoaCplMhrFjx9Z06ERERFQPxeXE4euz67E3eif0yEfDTAWGXmyABtmOkORyo2HFHTRatG/eFl0WPA9Vm7YWWb8QAimxOQg/fm9UIY3aeCQjyICmfi7w6+OF5p1cS+1Zrf7zLwjhUuZ4P/eak0EIB6j/PADVE9U3LaJMCPEgU+5QDcjKyoKzszMyMzPh5FS376YlIiKqz4QkQX36DDJ37kT2/v2Q1GqTOsrOnZEYOAgrbyahc9JJs9uOajcM/13yQqXiq8vnFHK5/IEvIOv1+vIr1XN1edsTEVHVSchNwPor6/FbxG8okAoMr1vJrTC21Vg8E/AMmjg2qfI4hBAoiMpETkg88q6mAnrjS1aKBrZQ9fKEqrsnFI6Vn6caAPJztLgWEo+w4/FIj881KXdv5gj/ft5o3cMDNpXsAS6EwLnodPx8JhZ7LscjT6tDd10YBuSEQJGdizydaW9vb4c8dOjcBm1GPw2bZj1KvwHyH7rcLETsWIkbZ08jL78AdkobtOreE22eeN7iPbNr6rwiMTERTZo0gV6vh0wmQ2xsLLy9vaHRaNC9e3dcvXrV6HxRCIFWrVrh3LlzcHR0LKNlMhfPKYmIiIDLyZfxxak1OJ9yDICEVndtEXjVEVY6e5NzNneNHp37PAK/eQtg1aCBRdafl1OAiFOJCD8Zj9Q7pqMKObkq4dfHC20DveDooiy3vdSlm5CX6Qug5A4jxvSwc45Go4UzKxx3URU5p2APbSIiIiIL0dy6hcydu5C5axd08fEm5daNG0M94DHsa9wVv8QBqQkFGKk5Zug/Ux4BAceM81URep3yIPdjWmroJiIiovokNjsW60LXYefNndBJ93ty2CpsMaHNBMxqPwueKs8yWrAMKV8H9blE5JxKgC6p2I2AMkDZpiFUgV5QtnWBTG6B3tiSwN2IdIQFx+HmxWRIOuNzCxs7K7Tt6QH//t5wbVL5BGhKjgbbzt/Bz2dicSs5F81EHJ5RH4FrdgLS8uxw7xaC+8lslZUW/q0bIWD4BLj0GAPIzZ+f0ErlBP+pC+FvOo10veHh4YHc3FzDOaHtP3NN2tra4uDBg3jxxRexY8cOaLVa2NjYYMyYMVi+fDmT2URERFRpekmPA9GH8NWZdYjNuwq5Hgi8Zg//206QZP/MPf3P6apckuArt0W3sU+i6YSJkFlVPiUrSQKxYWkIPxGHqEspkIrdAGplLUfLru7w6+MF79YNzDp3lvJ1yLuaivxsT5iXzAYABaQCzqFNREREVGfo0tORtecPZO7cifzQUJNyuYMDxIBHcbxFD2zMdkZshgaIvN/zSSVlmJXMBu4N6WOjz7RY7HXV22+/jcGDB5td/88//8THH39chRERERHVLbcyb2Fd6DrsubUHenF/BBM7KztMajsJM9rPgKuda5XHUXA3B7mn4qG+kARRbIhvucoKqu6eUPXygpUZPUrMkZupwbWT93pjZyXnmZR7tXKGfz9vtOzqDmubyl2g00sCxyKT8euZWPwVlggHfSbGaI9gdk4kUrNtoJWskAY7Q305JLTwskHAI0FoPmI25EqHSq2/vrOxKbmHvru7O3755RdoNBqkpaWhUaNGpdYlIiIiMpdaq8ZP4duwPvQ7ZOniYZcnw4iLTvBMdYQkt4JU5NKeUqtDW1cvdJs9Hw17BVpk/RmJaoSfjMf1kATkFp+OB4BHcyf49fFCq+4esLUrP/UrtBLyr6dBfSYKeZFq3BsXvSLzYesht6nekRCZ0CYiIiKqIKmgADlHjiBz5y7kHD0K6IrNTaNQwKpXb1z274NNMh9cTs4HYgHg3gmnSkqFnz4EbXPuwiXb/N7GEgSEPWeL8fPzw4ABA8yuf+fOnSqMhoiIqO6ISI/A6sur8eftPyFw/5zCwdoBU/ymYJrfNDRUNqzSGIRWgvpyMnJD4lEQm21SbuPrBIdAL9gFuEJmZW4PkdJJkkDM1VSEBcfhdmgqhGR8LqVUWaNtb0/49/WGi5eq0uuLTVNjy7k72HI2FmmZWRgqncKS3PPQZOmQXmCPhGIXCl1UAgHdO8B/7HyovKpnfvKHga2tLby8vGo6DCIiIqrjktXJWHl+E3bd+g1akQPPVCsMv+gC+3wVhMx4fuwGGi0C2ndGp+dehLJx5afrKcjX4eb5ZISfiEP8DdMOLnZONmjXyxPt+niZdR4r9AKamxlQn41GXlgGhK7wBs4HOedWQOlXtf9uKI4JbSIiIiIzCCGQd/EiMnfuRNbefZAyTU8krdq2w+2uj+AnBz8cStYDKQCQDwBQShloqwuBnzoWrulas3tlFyWHDPqW1XuyWNtMnToVLVq0qNAyHTt2xHvvvVdFEREREdV+V1Ou4tvL3+Jw7GGj151tnTHdbzom+02Gk03VzoOrS8lDzql4qM8lQlIb3wwos1HAvqs7HAK9YO1Z+aQyAGSn5SP8eBzCT8QjJ920F0uTdg3h388bLTq5QWFducS5RqfHX2GJ+OVMLE7cSEIgQrEg/wTss9IRk9MACbABcL+XsI1CQtu2jREwaiq8ug7g1CjVYOfOnXjllVdw69atmg6FiIiI6oCItAh8fmoNQhIPQECHgCglul13g0zcuzlRFJ6+CQFvHdD10eFo9fQzUNhXpJezKSEEEm5mIvxkPG6cTYJWY9wLWiaXwbdDI/j18YJPQCMoFGWfxwohUBCTDfXZWORdToKkKUwL3x+NSI4M2CmCYeeRitS48RCwR9lJbgkymRr2Q8wfPdESmNAmIiIiKkPBnTvI3LULmTt3QhsdY1KucHNDcmAQdrl1wm8ZSujyBJB372TTVspBa30I/NS34Z5eALnhbPf+RctMRz1UuTIoJFmZSW4BgQIrCT0HjLLo+6trNm/eXOFlOnTogA4dOlRBNERERLXbxaSL+ObyNzh+97jR6y5KF8xqPwtPtX0K9taVu+hWFqEXyL+WipyQeGgiM0zKrT1VUAV6wb6LG+S2lb9EpddLiL6ciqvBcYgJSwWKDWxj72wDv95e8OvrDWc3u5IbqYDrCdn45Uwstp+PhXd+JB7XH8OU7GhEZzojWW8DwPhGxCaeKgQMGo42Q56CtV3l10/my8nJQXR0dE2HQURERLWYEALH7hzHstNrcDPnPKy0wIArDmhx1xGS3HgKEyu9Hi3snNB90gx4Dh8OmbxyN0jmZmpwPSQB4SfikZGoNilv6GkPv77eaNvLE/ZOZU+nIoSANj4XeefuQH0xHvrcwvPs++fbMuTCTn4S9m4xsO3WCbIOzwENm8Hlrz+RehAAJJSc1L43TZDLIAVklUzeVxQT2kRERETF6LOzkbVvH7J27oL67FmTcpmdHdQ9++FQ027YmO+GHJ0A0gBAwFpSo6X+NPzzbsIzTQNFCUnsHAcJdh2aoe+gsejq3x/TVgxH71MqCIgSk9qFQ4Ke65aHf7UeUQXvuH47cOAAPvroIxw6dKimQyEiIqpyQgicTjiN1ZdX43TCaaMyd3t3PBPwDMa1Hgc7q6pLqOqzNMg9nYDcMwnQZxYYFypksO/oBlWgF2x8HC3SOzkzWY2w4HhcOxkPdZbx+mQywCegEfz7esO3QyPIy+nFUp4cjQ67L8Xh5zOxSLkTgSfwNz7PvYKkLFvE5TkjDG5G9R3sFPDv1R0Bj89Cw8ZNK7Xuh012djYOHjyIoKAgODs7G15///33K9zWpUuXLBkaERER1SMF+gL8dv13fHNxA9K00XDKluOJi85wyXSEJFcYDStuX6CDX9MW6Db/eTi2b1+p9ep1Em6HpuDaiXhEX00zmRrHWqlA6x4e8OvjBQ9fp3LPm3WpeVCfj4P6bCx0mYU9sIumgTWwk5+BfYMIKLu2hazTVMCtjVEbdo8NQSOxH2mHJQjhAECPe7257/2VydRwGaSA3WNDKvXeHwQT2kREREQAhE6H3OPHkblzJ7IPHoLQFBuaUiaDvlNXnG4diLWyZogrkAM5ACBgJWnQQjqDdnkRaJyWDyvJNImday/B2r8xAoMeR/8uw2GluH8a9uLExfhM92/0veQCW50CEgTkkBn+FlhJCO6UhjcmfgJbhW2Vfxb1TWJiIo4ePVrTYRAREVUpIQSC7wZj9eXVuJh80aissUNjPBPwDJ5o9QRsFGX36KjM+jU3M5F7Kh55V1OBYhfkFC5KOPTyhH03DygcKh+DXivh5sUkhAXH4e71DJNyBxdb+Pf1hl8fLzg0VFZqXUIInI/JwK9nYvH35WsYpDuOFwvOQJtVgIgsN1wU7kb15TKgZTtfBIycDN+ugZArFKW0TGUZOnQoTp06hR49eiAkJMTw+uLFizlMOxEREVVaRn4G1lz8Ab9E/AyNyECzeBsMD20Ea60KkMmMEtmuGh069uiDgGefh3WjRpVab+rdHISfiMf1UwnIz9GalDdu2wB+fbzRoosbrG3KPo/UZ2mgvpgI9ekoaFMKAy66jB628guwV4XCrosP5J2fALzevHfXZynshgyFdz811H8eQH54OqQCBeQ2eij9GsJ+yOBq75ldiAltIiIiemgJIaC5dg2ZO3Yic88e6FNSTCv5+CK8Qz9stG+Ly1o74J/zTLnQorn+HNrmX4NPmhrWetMkdp5SgqydB7oPGIGgXmNKvYA8sOlAiEkf4z3vd+ASo0ezBHvYaOUosJYQ7alGmo8CHwz4BAObDrTsB1CL6fV6hIaGIiAgAFZW909Zv/vuuwq3deLECUuGRkREVKtIQsLh2MNYfXk1wlLDjMqaOTXDnA5zMLLFSFjLratm/Wotcs8nIfdUPHTJecaFMkDZzgWqQC8oWzeETF75JGRaXC7CguNw7VQ8NLnGc3HL5TL4dnKFfz9vNPVzgbyS60vN0WD7hbvYcfoGfFOPYaQ4jieyUxCe6YaLBS4m9Ru5OqHD4FHwe3Qk7J2cS2iRKiIyMhJCCNy8edOkTAhRwhJlYxKciIiIACA6MxpfnF6Lo3F/QEgF6BZhhw43PSBk/9wE+c8pg1wSaCKzQrdR49B88hTIrB/8fFqj1iLyTCLCT8QjKTrbpNyhoS3a9fZCu95e5U6NI6m1UIcmI+/UTWjixD8BG49CZCO7Cnu7s7Dr4A5Ft8eBJi8BFRgWXWZvD9UTj0P1hNmLVDkmtImIiOiho01MQtbu35G5cxc0EREm5TLnBojt2h+/NgzAX3qXe3ctagG50KGp/hLa5V+Fb3oObHSmSex8GwmirSs69R+CIX0mwNbavB5BQT5BODD5EP68/ScOxRxCqiYDDWwbYI7PIAzxHfLQ9cweN24cdu/ejWHDhmHPnj2G12fNmsWLkURERAD0kh5/Rf+F1aGrEZkeaVTWqkErzO0wF0N9h0Ihr5rewQV3spETEo+8S8kQWsmoTO5gDVUPT6h6ecKqQeV6RwOAtkCPG2fv9cZOuJVpUu7sZgf/ft5o19ur3DkFyyNJAsE3UvDr6dvIuXYQoxCMpepI3Mh0QXiOCwSaGdW3sVHAL7APAoaOhUfL1jxPsaCNGzfi22+/xdy5c03Kvv/+e0yZMsXstr7//nvMnDnTkuERERFRHSKEwNmEc/j81BqEZZyErRZ47IIDmiS7QS+3gihyCmej1aN1Qzd0f3ouGvXt98Dnd0ISuBORjvDj8bh1MRn6YufMCis5WnR2Rbs+XmjSruybMaUCPfKvpkJ9KhL50TpAFCan7y9jLbsBe9vTsPNzgFX34YDvHEBRf9LA9eedEBEREZVBUquRffAgMnfsRO7Jk4BkfBIJa2ukd+qFvV5d8JOsMXRyK0ACZNCjse4K2mouo0V6NpRa0yS2xlqCrmUDBPR/FMP6T4K9reqBYrRV2GJ0y9EY3XL0A77L+uPo0aMQQuD48eMmZeyRQ0REDzOdpMMfUX9gzeU1uJ1126jMz8UP8zrOwyCfQZDLKjdXdEmkAj3yLiUj51Q8tHdyTMptmjvDIdALdu0bQWZV+fUnx2QjLDgOEacTUJCvNypTWMnRoosb2vfzhnebBpU+1t/NyMOWMzG4fOYY+qoP4v905xGXaY+wTHdE61ub1G/augUChjyB1r36wNq28kl7MjVy5EiMHDnSIm3JZLIHOockIiKiuk0n6fD7jf1YeX4dEjWRcE1XYOLFBnDMdYAkl0Nf5JTVUaNFQNsAdFnwIux8fR94nVkpebh2Mh7XTiYgOy3fpNzNxxF+fbzQuocHlKrSe30LnYT8iHSoT91AfmQehFR4o+r9oK1kd2FndQL2beSw7vEY0Go5YFU/O8UwoU1ERET1lpAkqE+fuTcv9v79kNRqkzp5rf0R3KIn1lu3RIbVP0P6CAFvfRja5F9Eq8wM2GlMk9gFVhIKmjuhXZ9HMDxoKpzsOKykJX3++edYsWIFXnjhBZOy5cuXY8yYMWa3tX37dvzrX/+yZHhERETVTqvXYufNnVgXug53cu4YlXV07Yj5neajf+P+VXITlzZZjdyQeOSeS4LINx7mW2argKqbB1S9PGHt8WA39RVVkKdDxJlEhAXHITnGdDhGF28V/Pt6o20vTygdKjeMeoFOwoHwRBw8eRreMb9jpDiOQTkSrmR44Pf8Nib1HZwdETBoONoHDUEDD89KrZse3IYNG9CnT58KLdOnTx9s2LChiiIiIiKi2iZXm4v1l37G9+E/QK1PRtsYWwwNd4Vcune+apgfWwh46gQ6PfIo/ObMh8LB4YHWpyvQ49bFZISfiMeda+km5UqVNdr08oBfHy+4NnEstR0hCWhuZSLv9C2owzIhdIVp3PujLimQAjurYNj7FsC65wDI2n4E2D5Y3HUJE9pERERU72hu3kTmzl3I/P136OLjTcp17p646NcHG+za4Zbyn/kPhYC7PhJtNefQKjMNDvmmSWydXEJeMxVa9e6D4YOmoZGjWzW8m4fTnDlzMGfOnBLLXF1d0axZsxLLSuLmxu1ERER1V74uH9sit2H9lfVIVCcalXX36I55Hech0CvQ4olsoZeQF5aG3JA4aG6aDvNt7a2CKtAL9p3dIbep3LDmQggkRmUhLDgOkWcToSswHknHykaOVt090L6fNzyaO1X6vUYmZmPXiVAUXP4Nj+mO4uX8JFzJ9MD+LF/ohPF7USjkaNk9EB0GDYVPx86QV9EQ7mS+Bxk6vHnz5mjevHkVRGMZGo0Gy5cvx88//4wbN25AoVDAz88PM2fOxLx58yCvwJyXhW7fvm3We/7ss8/w2muvPUjYREREtU5CbgK+PLUOf8buBHR56B2mQtsYT+jlxr2WFXoJvrb26D5xKho/PgayBzjWCiGQFJ2N8BPxiDyTiIK8Yjd+yoCm/o3g18cLzTu6QmFd8jqEECiIzUbemdtQX06BpCm8afN+CleOLNgpjsO+cQZsegVC5vc2YO9S4ZjrMia0iYiIqF7Qpacja88fyNy5E/mhoSblwl6Fm+0D8WODAITYN4b4ZxjORvootC04i9aZyXDKM01i6+UCuU1s0bxXLwwfPB0eDbyr4+1QKRYtWoSOHTtWaJmOHTvivffeq6KIiIiIqoZaq8aWiC3YeHUjUvJSjMr6ePfBvI7z0M2jm8XXq8vUIPd0AnJPJ0DKLjAutJLDvqMrVIFesGnqWOnEcn6uFtdDEhB2PA5pcbkm5W4+jvDv5402PTxgY1e5S1i5Gh32XbiF6JNb0THtTzyjv4aILFdcyvBAhta0t7Vb06YIeHQ4/PoNhJ2jU6XWTVUvMTERUVFRyM7OhqOjI5o3bw4PD4+aDsssKSkpGDRoEEJDQzFv3jx8/fXXKCgowH//+18sWLAAW7ZswZ49e6BUPtjQ9vb29mV+V21sKjfvPBERUW1wJfkqPg35FhdSj0KVB4y44AD39EbQyxVGw4rbaXVo6+WDbnOfQ4POnR9oXXnZBbh+KgHhJ+JLPId1drODX18vtO3lBYeGpQ//rU3MhfpMDNQX4qHPLUxi3x+BSIY82MlDYOcRD2XPzpAFvAQ41o3zm6rAhDYRERHVWVJBAXIOH0Hmzp3IOXYM0BnfCQm5AgntOmOHWyfsdWqNAsW9k8KG0h200ZxG66xENDScd96/yCPJBHK8rdG0RzcMe2w6mrj6Vsv7ofItWrSowst06NABHTp0qIJoiIiILC+nIAc/XfsJ34V9hwxNhlHZwCYDMa/jPHRws+xxTUgCmhsZyAmJR/61VMC4gzSsGimh6uUF+24eUJQxz59Z6xICcREZuBoch1sXkqHXGa/MRqlAm56e8O/nDTef0odjNHddl2JScf7IDjS6tRODxRkk5qhwJcMDG3K7QcA4yWdrb4d2/QahQ9BjcG/eskqGbyfL0Wg0+Oqrr7B27VrcvHnTpLxVq1aYO3cuXnzxRdja1t65JCdOnIjQ0FC89NJLWL58ueH1oKAgjB07Fjt37sSCBQseeMj0q1evwrcS84ASERHVVpKQ8FfUEXx1di1i80LRONEaUy43gG2BA4RMZpTIbqjRoUOXHui04EXYuLtXfF16CTFX0xB+Ih63L6dAkoRRuZWNHK26ucOvjze8WjmXeh6pS8uH+vwd5J2JgTbTNIkNaKGUn4W9SxSUPdpB3nEm0ND8UQrrM5kQQpRfjWqDrKwsODs7IzMzE05OvDuYiIgeTkII5F28iMydO5G1dx+kTNMhMLObtsCBpt3wq5M/MpT3LoQ6SQloqz2FVllxcM0poV0IZHkq4N2tM4Y+Ng3NvUznTawvHrZzipCQEKxevRrr16+v6VBq3MO27YmI6pJMTSa+D/8eP4T/gOyC+3NHyyDD4GaDMa/jPLRzaWfRdepztVCfS0TuqXjoUvONC2WA0q8RHHp7wbZlA8jklUvuqrMKcO1kPMKOxyEzKc+k3LOFM/z7eaNVN3dY21ZuWO/0HA2OHfsL+ou/oL/mKKDR4kqmJ8Iz3ZGnN03I+3TojICgx9CqRyCsbWpv4rO2qcnzilu3bmHkyJGIiIgAcO/fCMUVXkhu27Yt9uzZUyuHHP/tt98wYcIEKJVKxMfHo0GDBkbl4eHh8Pf3h0wmw5kzZ9Ctm/mjMhQOOR4VFWXxhDbPKYmIqCbl6/Lx/dVt2BC6Cdm6OHS6oUSXSCcI2BnVkwmBxkKBrsNGo+X0mZA/wKgk6Qm5uHYyHtdOJkCdVWBS7tXSGe36eKFVN3fYKEvuQ6zPLkDexTioT99CQXJJN4fqYSu/DHuncNh19YW8yxOAW9sKx1oXVeScgj20iYiIqE4ouHMHmTt3InPXLmijY0zLGzTCqZY98INze0Q7eQEAVFIKuhQcRZusO3DPLvkevkw3Gdy7tMdjj01FWx/24q2Pbt68iU2bNjGhTUREtVJqXiq+C/sOP1/7GWqd2vC6XCbH8ObDMbfDXLRs0NJi6yucoy83JB7qy8mAzvgcSe5oA1VPT6h6esLKuXLJXSEJxIanISw4DlGXTHuy2Kqs0K6XF/z6eaGRt0Ol1iVJAucuXkDi8e/gn7IfQ6VEXM9yw/6M5kjMN+3p7ejqhoCBg9F+wGA4uz+8QzfWRVlZWQgKCsKdO3cghICjoyMCAgLQuHFjKJVK5Ofn4+7du7hy5Qqys7Nx7do1BAUF4fLly7Uu+bp27VoAwKBBg0yS2QDg5+cHPz8/hIeHY/369RVKaBMREdU3qXmpWHFmE36P2gposzHgkgOaJXhDL7dG0bNMa50eLZ1c0GPa03Ab9GiFR90pyNfhxrkkhB+PR8It04409k42aNfbE+16e6Ghp6rENqQ8HfJCE6EOiYQmTgZADuOe2ICN7BrsVRdh18kDim6PA14v3pt4m0rEhDYRERHVWvrsbGTt24fMnTuRd/acSblkq0R4q674uUEAzru2giSTQyky0LFgH9rkRMMzUw8ZTE8Es1yAhp3aYtBjk9CxZY/qeCtUQceOHbNYW+Hh4RZri4iIyFIScxOx8epGbI3Yinz9/d7RVjIrjG45GnM6zIGPk4/F1icV6KG+mITckHhoS5jrz7alM1SB3rDzd4FMIS+hBfPlpOcj/EQ8wo/HIzst36S8cdsG8O/njRad3WBlXbne2InxsQg/8B0aRe1Ed/11xKqdcSXDE79n+0InjNtWWFujVY/e6BA0BD4BHSGTV+59Us34+OOPERsbixYtWuCzzz7D6NGjYWVleolTp9Nh165deOONNxAVFYVPPvkEH374YQ1EXLKCggIcPHgQANCjR+n/JunRowfCw8OxZ88erFy5srrCIyIiqjVupN/EJye+xankv9AgW+Dx845wzmkCqdj82KoCHdq3aIOuC/4PqlatKrQOIQTib2Qi/EQcbpxLgq7AeFocuVwG306u8OvtBZ/2LpCXcL4sFeiRH5YKdch15EfrAaEAYHw+ai2Lgp3yLOwDnGHVfQTQdDbAc1Kz1OmEtkajwfLly/Hzzz/jxo0bUCgU8PPzw8yZMzFv3jzIH2AnqOidGsWHNDpy5AiCgoLKXW7Lli2YMGFChdZFRET0MBBaLXKOH0fWrl3IPngIQqMxLpfJcNfXH9tcO+KIe3vkWSthK2XDX3cQrXOi4J2pg1wUHs/vH9eznQWcOrbCI49OQLd2/TgnYi03cOBAbiMiIqqX4nLisP7KemyL3AatpDW8bi23xrjW4/BMwDPwdvC22Pq0ibnIPZWA3HOJEBq9UZlMaQVVN3eoAr1g7WZfqfVIegnRV1IRFhyH6CupKD4CtJ2TDfx6e8KvrzcauFduXdr8HIQd+gkidAvaq8+iq84KVzPcsS6zOzK1dib13Zu3REDQY2jXdwDsHCo3LzfVvO3bt8PLywshISFwdXUttZ6VlRXGjRuH/v37o3Pnzvjtt99qVUI7PDwcWu2934CyhgQvLIuOjkZmZiacnZ0rtJ59+/bhjz/+wJUrV5CYmGjo0T5+/Hg8/fTTUCqVD/oWiIiIqowQAn/HhuCL06txK+csWt21wbSrzlDoVIBMBqlI+s+tQEKnvgPQft4CWFVwNJacdA2uhcTj2ol4ZCabTovj4q2CXx8vtOnpCXsn0yHLhV5CfkQ68kKuI++GBkJfmHa9n8hWyBJgbxMC+7a2sO75KNB8CqCo0+nZGlFnP7GUlBQMGjQIoaGhmDdvHr7++msUFBTgv//9LxYsWIAtW7Zgz549D3RSZmtrW+KdnYUkSUJeXl6Zc++oVCUPM1CorPaJiIgeNkIIaMLD7w0pvnsP9KmpJnUy3RrjD+8u+MOjM1LsG8BaqNFSdxJtMm6iSUYBFCUksXMcJNgH+KLvo2PRu8NgJkjrmJLmQnxQ3PZERFTTYrJisCZ0DXbf3A2d0BleVyqUmNh2Ima1nwV3e3eLrEvoJORdTUVOSDwKokyHSbRu4gCHQC/YdXSD3KZyPaSzUvIQFhyH8JPxUGcWm1dQBvj4u8C/nzd8O7pCUZme33od4i7uQ+qJ79Ey9TDaSxrczGmEXRntcDu3IVBsVB6lygF+/YMQEPQY3H1bPPh6qdaJjo7G66+/XmYyuyg3NzfMnj0bn3/+eRVHVjExMfenUXJzcyu1XtGyO3fuVDih/dprr+Gll17Cq6++CkdHR0RERODLL7/Ec889h5UrV2L37t3lzrGt0WigKXKjcVZWVoViICIiMpdWr8Wv137H6osbkF5wG73C7TEwygOS/J9c3z+nfHJJgo+VHbqPnQif8RMhU5h/TqvXSoi6nILwE/GIDTO9EdPGzgqte3jAr48X3Js5mlxTEpJAwe0sqEMikBeeDUlbOJT4/byfHGmwtz4Ju5Z62PQcAFnrDwFr3kRWGXU2qzpx4kSEhobipZdewvLlyw2vBwUFYezYsdi5cycWLFiADRs2VLjtb775BrNmzSq1fO3atZg7dy6ef/75Uuvk5ORUeL1EREQPG21iErJ2/47MHTuhiYw0KdeonBDs0wU73TsjskETWIkCNJdOo1dmBHwyNLCSTJPYufYSbPybIDBoNPp3HQGFvHIXaanmvP322xg8eHCl2/nzzz/x8ccfWyAiIiKiiruZcRNrQtdgb9ReSOL+0IX2VvaY1G4SZvjPQCO7RhZZly4j/15v7DMJkHK0RmUyaznsOrnBIdALNk0q10tZr5Nw62IywoLjcOdaukm5Q0Nb+PXxgl9fbzi6VOLCnRDIjz6D2KOb4Ba9B95SOqzyVQjJ8EZ4ljvy9cbzEEImQ7MOndFh0BC07NYLVjamvWio7nNwcCg3AVtc8+bNYWdn2nu/JmVnZxsel9Uhp2hZRRLJSqUSgwYNwrJly9CxY0fD6926dcP48eMxbNgwHD58GCNGjMCFCxdga2tbaltLly7FkiVLzF43ERFRRWVqMrHq3A/YeuNnyPMyMOiCAzxTGkOvsDLqjW2r1aGNmzd6zHkWDXv0rNA6Uu5kI/x4PCJOJyI/V2tS3qRdQ/j18bo3LU6xmz6FENDG5UIdEom80FTo8wuPm/fPR2XIgZ3iJOx91LDt1Qsyv3cAW4cKxUilq5MJ7d9++w1HjhyBUqnE4sWLjcpkMhmWLl2KnTt3YtOmTXjhhRfQrVs3i67/66+/hr29PWbPnm3RdomIiB4GklqN7AMHkLljJ3JDQgDJeE4aycoKl306YodbJ5zzaAtJJuArncWwnAPwTc+Dtd40iZ2nlCD380T3ASMQ1HMMrBXFLm7WETqtHjfPJeHWpRTk52qhVFmjRSdXtOzmXun5JesiPz8/DBgwoNLt3LlzxwLREBERVcy1tGtYfXk1DkQfgMD9bh+ONo6Y5jcNU/2mwtm2Yj0tSyIkgfzIdOSGxCP/WhpQrIeJlZsdVL28oOrqDrl95c6R0hNyERYch2shCcgvnjCXy+DboRH8+3nDp30jyOUPPjqKSL2FxOObobi6BW6aWDTVWyE80w1XMrogSWN6UdDJzQMBQYPRfsCjcHK1TC93qr0CAgKMejebIyYmBm3btq2iiGonT09PwxzdxdnY2GD58uXo1KkTwsPDsWHDBjz77LOltrVw4UK8+uqrhudZWVlo2rSpxWMmIqKHT2zW/7N33/FRXWfi/z93elWvg5BAiCIh0UGigwQY427H3cYVnGY7bZN1dn/JJruJE2e/iTeJYxuXuODewIBNbASmV1MkgSiig0ZdGk3R9Pv7Y0BoNBJIFIHgvF8vvzBzzr1zBtno6Dz3eZ7jPLfxVdZYl5FUH+C2XWYMLWkEFQoCbY7Corx+8oaOZMT3n0Rn6Xp7HrfTx4Gt1ZRvsFJ7zB4xbo7TMWR8CkPGpxKVEPnwm6/WhWvzIVp2VOF3ng5in3kITMKNTrkFQ2odunEjkHJ/BIa4Lq9P6LpeGdB+9dVXASgsLCQmJiZiPDs7m+zsbMrLy3n99de7FdAuLS0lLS2t0/E1a9ZQUlLCE0880eF7C4IgCIIQSQ4GcW3Zgm3RYpq/+grZ5YqYczQ1i8VJw1nbZzgutZq+wV0Uut6hX6MDrf/0o5hnDkbdmiAMTmTE5FnMnPAdNOrOMwp6g8O7ail+sxyPyx/6mDIgwaEdtaz98ABFD+fQf1jXyipeDR566CEGDBhwUe41YMAA5s6de1HuJQiCIAjnUlpbyoKSBXxz4puw12O1scwdOpe7B9+NWXPhfZwDDi+ub6txbK4i0OAOH1RI6IfGY8xPRTsg+oJab/i9AQ5ur2H3ukqsFZHly6MSdORMsjBkfCrG6AvYjznrcO34EMfW90iylZAsw1FnDJttg6mwJxCQw8uVq9QaBuZPIHf6TPrm5CEpLqCcudCrzJs3j1/+8pf827/9GwbDufuxO51O3njjDX7605/2wOq6zmw+8/eA2+3udF7bsahu9gU9m2HDhmGxWKisrGTp0qVnDWhrtdqzZnALgiAIQndtte7gTxtfpty2gdzDGubuiwJC39dbM7JlmdSgxMgZ1zPo4cdQdrHFcDAoc2JvA+UbrBzeWUfAH55Mo1QpyByZSPbEVNIGxSK1exDT3+ShZdtRXNuO4ms6/Z5tvw/60Sm2Y0g8gW5cNophj4M5uft/CEK39LqAttfrbX26cOzYsZ3OGzt2LOXl5SxbtowXXnihy/fPzc096/jf/vY3AJ588sku31MQBEEQrlWegwexLf4c25Il+K3WiPGm6ES+TB3B12mjqTLG0idYSr77E/rXNKP3nd69njmc9KqD+LNiyZtUxKzJd2PQGnvok1xah3fV8sVLpWcyqtr96nH5+eLFEuZ8N4/+wzvvr3c1OZ+2MZ0pKCigoKDgot1PEARBEDrybfW3vLzrZTZaN4a9nqBP4OGhD3PnoDsxqM8dfDsbWZbxHrPj3FiJq7QOAuHp2MooDcZxKRjHpaCMurDgU90JB3vWVbJ/S1Xogbs2FCqJzBGJ5EyydHgI2GVeJ8HyZdg2v0NU5RoMBPF5tWywpVPWlIzdH3lomTJgILnTZzJ4whR0RlHCsb2gx4N9+XLsK4oJ2JpQRsdgnlGEefZsFFdJQPLee+9lzZo1TJ06lRdffJExY8Z0Onf79u18//vfZ8CAAXz/+9/vwVWeW3p6euu/19bWdjqv7djZknDOdw2VlZUcPnz4ot5XEARBEDoSCAb4/MBX/H37a9S79jGlxMiEkykElOFtYpSBIJmGKMbe9xAp183u8sOZttoW9m60snejFUejJ2I8KcNM9oRUssYkozOGVy4KOH20bD+Ba8tBvLWn90xt96JBtIoy9DEV6Mf0RznyOxCb0Z2PL1ygXhfQLi8vx+cLlbU6W7+c02NHjx7FZrMRHX3hZbyOHz/OokWLKCwsZOjQoWed+9577/H666+zf/9+amtriY2NZeTIkdx7773cc889KLvRoF4QBEEQehN/QwPNy77Atngx7rKyiHGP1sBqyzC+ShvN7th0UtnLYPe/mFPZhMEbGcT2KYN4M6MYMnEq10+7H7P+4mUlXAn8vgDFb5ZHlAeNIEPxm+U8/Me4a7L8+NlUVVVRVVVFZmbmRc1aEQRBEIRzkWWZTdZNvFzyMt9Wfxs2lmJM4dHcR7kt6zZ0qgvoIw0EPX5cO2pxbrLiq3JGjGsHxmAqSEU3JB5Jef7Z2F63nwNbq9mz3krNkchevbEpBnImWRhckILedJ79qQN+OPwNLd++h2rfMtTBFkxBBfvt8ZQ1JXPMFRtxic4cRc7k6eROn0lier/ze99rgH3lSir//RmCzc2gUIRa+ygU2L/+GsXvfo/lD3/AXDj9ci+zyx599NGzjh8/fpz8/HwyMjLIy8sjJiYGpVJJIBCgqamJsrIyjhw5gkql4s4772TevHm89tprPbT6c8vOzkatVuPz+Thy5Ein806PZWRkXJTzzbZk+Vw/hAiCIAjChXP5XLyy433e3fsOquY6inaaiWtKI6BUhpUV1/v8ZPcdwOjv/oCo7Jwu3dvnDXBoew3lG62c3NcUMa4zqRmcn0L2hFTi+4Q/DBn0+GkpqaJl037cJ5WEziPDHwBUS/sxmHdjGGlBOeYmSPxBNz+9cLH0uoB22x45iYmdZyi1HTtx4sRF2fC9+OKL+P3+LmVnP/nkk/z0pz/l17/+NTqdjl27dvHcc8/xwAMP8PLLL7No0SLi4s5eR9/j8eDxnHmKpLk58odJQRAEQbgSBL1eHKu+wbZ4MY41a8AfnsUTVCjYmTKE5X1GsTk5hxjFEQZ7NvNw9ReY3ZFBbL8iSEuGkUHjJ3F90QPEmuJ78NP0rIPf1kRkPXXG4/JzcHstg/NTLvGqrnyNjY387//+LwsXLmztkf31119TWFgIQGZmJvfddx8//elPiY2NPBgXBEEQhAshyzJrT67l5V0vU1JXEjaWZkrj8bzHuXnAzaiVF9az2lflxLHJimtHDbInEDamMKgwjE7GmJ+KuoN+f10lyzI1R+zsWXeSA9tq8LV7H5VaQdboJHImWUg53/LlsgwntxMo+QD/ro/ReurRyVDjNlFqG8BeWyKeYPiflSQp6Dd8JLmFsxgwehxK1YX9WV7t7CtXcuIHPzzzQjAY9mvQbufED35A2gt/x3xqv3Sle+ONN87535ssyxw5coSjR492OAbg9/t57733AK6ogLZGo6GoqIjly5ezbdu2Tudt3boVgBtuuKFb97/11luZN2/eWa87fc56tqQhQRAEQThf1c5q/nfj63x9YhFpVT5uLzGj9qchS1JYIDvOF2D4mAnkffcHqM8RN4PQ9/jqI82Ub7BSsbUarzt8/ypJkJ4bT/aEVPrlJaBUnTlzlH1B3OW1uDaU03JUBlkFhO8zVdJxDIbt6PPiUI+7HlIfDd1UuKx6XUDbbj/TtF13lnr5bccuRiDY7XbzyiuvkJGRwU033dTpvJiYGK6//noWLFgQVgZozJgxfOc732HChAmsXbuWO++8s7V0emeeffZZfvOb31zw2gVBEAThUpBlmZYdO7EtXkzzl1+GMkHaORrfly8to1jdZwRKTR2DvVu5p24D0S2nN4FnNpQBhYwrTUf//HzmzJhLYsy1EbQ9tKvuTM/sc5Hg0E4R0C4tLeWGG27g5MmTrQeV7Q87T5w4wbPPPstbb73F0qVLGTZs2OVYqiAIgnCVCcpBVh5byYKSBZQ3lIeN9Yvqx/xh87m+//WoFOd/3CL7g7SU1eHYZMXbQZa0Jt2MMT8Vw7AEpAuo2uJx+di3uZo96yqpP+mIGE/oayJnooVB45LRGs4zmFx/EEo/wrfjA9S2QygBr1/F9mYLZU3J1HoiS4bHJKeSO30mOVMKMccnnN/7XmOCHg+V//5M6DedZdzKMkgSlf/+DAPXruk15cfj4+MxGi+8zZDT6aS+vv4irOjievzxx1m+fDnFxcUdVpjcu3cv5eXlSJJ0zoz19hYvXkxaWlqnAe2dO3diPdUWqrvBckEQBEE4m7Lacv6w4WVKGr5hzD4NDx0yE5RCD2DKp45vJFkmTdIw+qbbyLznPiTVuffPrmYv+zZVUb7RSqM1smpRTLKB7AmpDM5PwRhzZq8jB2Q8FQ24NuyhpcKHHFAD4ftoJTXodVsxZBtQ589ASr8nVPFGuGL0uoD25fL+++9TV1fHz3/+87OWCx8xYgRffPFFh2PR0dE8++yz3HLLLaxcuZLly5cze/bsTu/1zDPP8JOf/KT1983NzfTt2/f8P4QgCIIgXATe48exff45tsWf42tTOeW0JkMMX/cZQXHf0dhMfgb7tnCj7W1inacDjmcCj0FJxmHR0HfMaObMehBLwtXfe0aWZRqrXFQeaMJa0cSR0rquBbMBZHA7fZd0fVc6l8vFTTfdxIkTJ1CpVIwYMYKkpCS+/PLLsHkVFRW8/PLLPPfcc9xwww3s3r1blCMXBEEQzlsgGOBfR/7FK6WvUNFUETY2MHYg84fNZ2b6TJSK8w8w+xvcODdbcW6rJtju+72kVmAYmYQxPxVNn/PvGy3LMtYKG3vWVVKxvYaALxg2rtYqGTgumaGTLCSmm88vG9tRC7s/JbjrAxSVoTLsShmOOGMobUqhwhFPUA4/HFRptAwqmEju9JmkZeee3/tew+zLl3f4cGkEWSbY3Iz9X/8i+uabL/3CLoLnn3+e++6774Lvs3DhQh566KGLsKKL64477mDq1KmsXr2a3/zmN/z5z39uHZNlmV/+8pcAPPTQQ4wePTrs2iVLlvDoo4+SnJzM0qVLO8yyfvPNN/nxj3/MgAEDwl73eDz86Ec/AiArK6vbwXJBEARBaE+WZf516Bue3/Yatc27KNxhYmxNMn6lmmCbrZ3aH2BgbBJjH5lHwsRJ57xvIBDkWFk95RusHC2tJxgMP0RTa5VkjU4ie0JqWDUhWZbxHm0OBbHLnQR9pwPcZx7UVNCEXrMFw0AJTcEUpMz/AaUIm16pet1Xxmw2t/672+3udF7bsYtxePm3v/0Ng8HAY489dkH3mTlzZms/n6VLl541oK3VatH2kidmBUEQhKtboLmZ5uXLsX3+OS3bvo0Y96o0rEnNY2Xf0RyKNzEwsJUJtkUktCZBnNm5ysjYk1VYxozgulkP0C9lYM98iMskGAhSd8JxKoBto7KiCbfjPIPSEuiM13a5zZdeeoljx45x00038dJLL5GamkpdXR1JSUlh89LT0/nd737HpEmTuOGGG3jhhRd45plnLtOqBUEQhN7KF/Sx7NAyXi19laPN4SWNh8YPZf6w+UzrOw2FdH7ZG3JQxr2vAecmK+79jREPuamSDJgKUjGMSkKhO/8jnBa7l72bqihfX0ljlStiPLl/FDmTLGSNTkJzPu/jdcLeL6DkA+SDK5HkAAqgyatjd1MyZbZkHP7I843UrMHkFs5k8PgpaA2G8/hkAoDty+WhMphd6YesUGD/ekWvCWhfLJIkXbH9oj/++GMKCwv5y1/+QktLCw888ABer5cXXniBzz77jMLCQl588cWI6xYsWEBdXR11dXV8+umnYUkxEDpDtdvtjB07lp/+9KeMGzeOuLg4ysvL+fOf/8yOHTsYPHgwS5cuPWsVTEEQBEE4G0/Aw5u7PuWN3W+ibaiicLsZk6svQYUCf5tnPU1eP0MH5zLq+09iSD93QkuD1Un5Biv7NlfR0uyNGE/NiiZ7goUBoxJb96+yLOOtdNCycS+u0kYC7tPf387sQyVc6FVbMPRzox0/HmnQf4BafB/sDXpdQDs9Pb3132trazud13asbenv87Fhwwa2b9/OvHnzztn3+lz0ej2JiYlUVVVx+PDhC7qXIAiCIFxKss+HY/36UF/s4pXI3vDNo4zErsQsVvQdzY4UC/34loH2lUw61vFBUXOCRNLoXGbOvJ9BfXN74iNcFn5fgJoj9tYMbOtBW0QvyrYUSolgoIuHazJkjki8SCvtnT7//HNycnL49NNPW6vmnC2L6/rrr+e2225j8eLFIqAtCIIgdJk34GVRxSJeK32NSmdl2NiIxBE8MfwJJlomnncmccDuxbmtCufmKgJNnvBBpYR+aDymAgua/lHn/R5yUObE3kb2rK/k0M7aiP2G1qBiUH4KQydZiD+frO+AHw6tgpIPkfcuQ/KFyj76gwoO2BMpa0rhuCsm4jJ9VDQ5UwrJnTaDhL5Xf3WeS8V7/Dj24mIcxStxneqx3CXBIAGb7dIt7CJatWoV2dnZF+VeM2fOZNWqVRflXhdbQkICW7du5fnnn+e9997j7bffRqlUkp2dzT/+8Q+eeOIJFB2UPJ0/fz4bN24kOTmZ22+/PWLcarXy2WefsXz5chYuXMizzz6Lx+MhNjaWYcOG8cILL/DII4+g1+t74mMKgiAIV5mGlgb+svlNlh35mAHH3Ny+Jwop2AckiWCbb1tJfpkRU2eQ8/gTKM/xAKO3xc+BbdWUb7BSfTiy+owxWsPg8alkj08lJvnMvfz1Lbg27se1swq/4/TrbYPUXvTKbRjSmtAVjELK+TFoz7/qkXB59LqAdnZ2Nmq1Gp/Px5EjRzqdd3osIyMjov9Md/31r38F4Mknn7yg+5x2pT4RKgiCIAiyLOMpL8e2eDG2pcsIdNBn7rg5ma/7jmZDnwHEq/cw0PEt953cgkTkYWtzHMSPGELhzHvIzRzTEx+hx3lb/FgP2bAeaKKyoonqI80E/Z1/r9caVKQOiCY1KwbLwBhiUw28/R8b8bj853wvrUHFgFHXdkB7z549/PjHPz5rC5j2Jk6cyH//939fwlUJgiAIV4sWfwuf7P+Ef5b9k5qWmrCx/JR85g+bz9iUsecVZJZlGe/hZhybrbSU1UG7ALMyRosxPwXjmBSUZs15fwZnk4fyDVbKN1TSXBdZ2c4yMIacSRYGjExEpelmiXRZhpPbQ5nYuz9Fcp5KJpChym2irCmFPc1J+ILh95UkBf1HjiZ3+kwyR41Fqbq2K86cD1mWce/Zg6O4GHvxSjz79p3fjRQKlBd4TtZTpk6detHulZSUFFHR50qi1Wr5xS9+wS9+8YsuX3PTTTdRV1fX6bjRaOSBBx7ggQceuBhLFARBEAQAKhoP8ez6BXxb/S8m7Nbw0PEo/IrY0OCpLbIiGKSf1sSYO+8j7eZbzrp3loMylQeaKN9o5eC3NfjbtcRRKCX6D08ge4KFvtmxKJShaHmg2YNryyFc247hazodxG4bMA+gVezEkFyFPj8HxbB5YLiwhFXh8up1AW2NRkNRURHLly9n27Ztnc7beurp1BtuuOGC3q+yspJPP/2UqVOnkpeXd9a5NTU1zJ8/n//4j/9g7NixHc5xuVytm82OetsIgiAIwuXgq66meckSbIsX4zlQETHerDWyss9IVqfloDQdYZCzgltr96KQI/ti26NloodlMXXGXYwcPOGq64HYYvdSWdGE9UCofHjdcftZqzsaojVYsmJaA9jxFiOSIvzPpOjhHL54seTsvbSl0DyV+vx7c14NbDYbFoulW9eYzWZaWlou0YoEQRCEq4HT5+SDfR/w5u43aXA3hI1N6jOJJ4Y9wYikEed176Dbj2tHDY5NVvzV7cp9S6AbFIsxPxXdkLiIPUKX3yMQ5NjuBnavq+RoWT1yu96CerOaIQWp5EyyhGWzdFn9QSj5EEo/hIZDp5eOy6+m3JbILpuFRk9klmdsah9yp88kZ/J0THHx5/PRrmmyz4dr2zbsxSuxFxfjt1o7nKeMj+/wQdQOBYOYZ864iKsUBEEQBOFqJ8sya45v5v9tfoWa2m3M2GHi4cZkAkoV/jbZ2FpfgCGWdMbM/z4xw4af9Z72Bjf7Nlkp32Dt8CHM+D4msiekMig/Gb0p9LBn0OXDsf0QLZsP4qnVE9qRhu9tNdJuDAlH0I8ZgHLUPWBOudCPL1whel1AG+Dxxx9n+fLlFBcXY7PZIjKw9+7dS3l5OZIk8eijj17Qe7300kv4fD6eeuqpc851uVwsXryYSZMmdRrQ/uqrrwgEQmVHLzTYLgiCIAgXIuhyYV+xAtuixTg3bozouedTqNiUksOqvrnY4hvJch2isGkFSltkENthCmLM68+kotvJzy28qoLYzfUtod7Xp0qId9R3sq2oRD2WrGgsA0NB7OhE/Tn/PPoPS2DOd/MofrM8lKktEQpun/pVa1BR9HAO/YclXLTP1VvFxsZy/Pjxbl2zc+dO4uPFIbogCIIQqdnbzLvl77KwfCE2T3gZ5sK+hcwfNp+hCUPP697eSgfOTVZcO2uQve0yTYwqjGNSMI5LQRV//uV+m+tbKF8fOgh0ti9dLkHf7DhyJlroPzwBpaqbfb4dtbD7Uyj5AE5+2/pyUIYjzlhKmlI5aI+DdlV61Fodg8ZPInf6TPoMzrmq9oU9Ieh04li7DvvKYhzfrCbYHFluE0A3fBjmohmYiwpR9elDxZSpBO32s/fRliQUZjPm6667RKsXBEEQBOFq4gv6eH/3Ul7Z9QZG6zGm7IpC5+lDUKEg0CbfItoXYNiIcQz/3g/RJnZeWdDvC3B4Vx17N1g5Vt4QkdihNagYNDaZ7IkWEvqakCSJoDeAa9sxXBv34a5Ug6ykfRBbLR3EEL0P/ag+qMbeCLH9Lt4fgnDF6JUB7TvuuIOpU6eyevVqfvOb3/DnP/+5dUyWZX75y18C8NBDDzF69Oiwa5csWcKjjz5KcnIyS5cuPWuWtNfrZcGCBaSnp3PLLbd0eX3PP/88jz32GLGxsWGvNzU1tfZunDx5MnPmzOnyPQVBEAThYpADAVxbtmBb/DnNX32F7IoMzu6O68fKvsM5nuIj3XeYEY2bUJ2MDGK7DEE0Q/tSMO1mJo2ajVLR+zOHZVmmscqFtaKJylMlxB0NnrNeE9/HGMrAHhiDJSsGY4z2vN67//BEHv5jHAe313JoZy1upw+dUU3miEQGjEq85jOzTxs5ciRvvPEGP/3pT7vU7+/gwYO89dZbFBYW9sDqBEEQhN6i0d3I23ve5r297+HwOVpfl5C4rt91PJ73OIPjBnf7vrIviKu0FucmK95j9ohxTUYUpoJU9HkJSN0NMJ8S8Ac5UlLHnnWVHR4EGqM1ZE+0kD0hlaiEbgbLPQ7Y90UoiH1wFciB1qFGr46yphR2NPXBF4hcu2VQNrnTZzJ4/CQ0+vPIAr+G+evqsK9ciaN4Jc6NG5G93shJajXGggLMRUWYpk9HnRxePtvyhz9w4gc/AEnqOKh96sECyx/+gEJ7fvtVQRAEQRCuDXavnb9uWchnFe+Tc8DFbQfMBKU+AGf6Y8syFlSMmn0TAx+Yi0LTecuc2mN2yjdY2b+lKrLlngR9h8SSPcFC/xEJqNRKZH8Qd2kVrg17cB+TkINqwntig0o6id5YgmF4Aur8OZD08MX7AxCuSL0yoA3w8ccfU1hYyF/+8hdaWlp44IEH8Hq9vPDCC3z22WcUFhby4osvRly3YMEC6urqqKur49NPP+UnP/lJp+/x4YcfUl1dzR/+8Icu9WnUaDRotVpOnjxJbm4uP//5zxk+fDhGo5EdO3bw3HPPcfDgQQoKCvjkk08u6PMLgiAIQnd4KiqwLf4c25Il+KuqIsathjiK+45kX5qaBI7Tr7GEAVWnd6hngtgtuiDKISmMnXYj08bdjErZa7cSQKg8Z90Jx6nsaxvWg0202H2dzlcoJBIzzK0B7NQB0eiMF68HpAofg3XfMDhmKWgawRALuhuBWwER0Aa4//77mTt3LrNnz+aVV15h0KBBHc4LBoN8+umnPP3007hcLh588MEeXqkgCIJwJaprqePN3W/ywb4PaPGfaUehlJTckHkDj+U9RmZ0Zrfv669vwbHZimtbNcF2h3SSRolhVBLG/FQ0qcbzXntTtYs96yvZu9EasV+RJMjISyBnkoWMoXGtvQW7JOCHQ6tCQey9y8B35oFHX1DB/uYENjdl0Niii7jUEB3D0KlFDJ02g/g+fc/7s12LPIcP41i5EvuKYlp27uwwCK0wmTBNnYq5qBDjlCkoTaZO72cunE7aC3+n8t+fCWV1KxQQDLb+qjCbsfzhD5gLp1/CTyUIgiAIQm92wl7J79ctYMuJZUzZpeTBqij8SjPBNgV3VIEgmVFxjH3wUZKnTe+0Go/b4WP/1irKN1ipO+6IGI9K0DFkfCpDxqdijtMhB2U8FfXY15XhOuhHDmiB8CC5kjr0+h0YhhpRj5+JZLm79aE94eonyfLZahFd2TweD88//zzvvfceFRUVKJVKsrOzeeihh3jiiSdQKCJ/gFuyZAmPPPIIycnJLFu27KwZ2vn5+ZSUlHDixIkul6lsaGjg448/5quvvmLnzp1UVlYSCASIj49n1KhR3H333dx7772oVN0PADQ3NxMdHY3NZiMqKqrb1wuCIAjXFn9DA83LvsC2eDHusrKIcYdaxxpLHrsyYtBprPRrdKL1R37vdGuCMDiREZOvY+bEO9Coem9Gh98XoOaIvbV8uPWgDZ8n0Ol8lVpBcmY0lqxoUgfGkNI/GrX2EgWW934Bi74H7iaQFCAHz/yqi4HbXoLB11+Ut+rNewpZlpk8eTIbNmxAoVAwYsQIcnJyWLhwIXfccQcJCQkcPXqUrVu30tDQgCzLTJ8+neLi4su99CtCb/7aC4IgXIgqZxX/LPsnnxz4BE/gTPUVlULFLQNu4bG8x+hr7l5AVg7IuPc24NhUiedAU8S4OsWAsSAVw8gkFNrzewjQ7wtwcHste9ZVUtnBe5jjdeRMtDBkfCqm2G7s0WQ5VEa85EMo+wRcdWFDVreZzY0ZHLLHQni1dCSFgsxR48idPpP+I0ajPI/zjWuRHAziLi1t7YftPXiww3mqpCTMM4owFRZhHDcW6SzZTh0JejzY//Uv7F+vIGCzoYyOxjxzBubrrrvomdliX3HtEl97QRCEq8uWyl08t/Flqk9uZMYOI9F2M4F2SZ4Gn5+czMGM+d5TGAcM6PA+waDM8fIGytdbOVxSS9AfHn5UqhUMGJVI9gQLfQbGgAS+Y8241pXg2tdC0BtZXUhBM3rtNgyDVGgmTkNKHx96YE+4KnRnT3FBAe1HH32UJ554gvz8/PO9hdANYrMoCIIgnEvQ48Gx6htsixfjWLsW/OEZQgFJwdakQWzpl4LfVE+GzYHeF7kJ9KqDBLLiyJ1UxHVT7kav6Z1lI70tfqyHbFhPlQ+vPtIcsZluS2tQkTogmtSsGCwDY0hMN3e/3+T52PsFvH/fqd90tL5TT5ve8y4MufCWJb19T9HQ0MD111/P1q1bO30S+PQWt6CggC+++IKYmJgeXOGVq7d/7QVBELrrhP0Er5W9xqKKRfiDZ/ZFGoWGOwbdwaO5j5JiTOnWPQPNXpxbq3BusRKwtSsNrZQw5CVgLEhFkxF13v2j60862LOukn2bI8syKpQS/YcnMnSShbQhsUiKbrxH/cFQELv0Q2g4FDbk9KvZ3pTGdlsa/g4qXsdZ0sidPpOcKYUYY2IjJwgRgl4vrs2bsRcX4yheib+2tsN52oFZmAqLMM8oQjd0KFIvOaQV+4prl/jaC4Ig9H5BOchn+77ihe2vE324ggllUSgCxoiM53i/zPDxU8h74vuozOYO79VU42LvRit7N1bhbIps3ZfcP4rsCalkjUlGq1fhq3LiWleKa3cTgZbICkYSLejV36Lv70c3cTxS1jTo5VUihY51Z09xQf8FvPHGG8ycOVMEtAVBEAThMpJlmZYdO7EtXkzzl1+GSgy2sz+6D+v7p9MU56Sv3U6W+zi4Ac4clvmUQbyZ0WRPnMLsafdj1ve+g4kWu5fKiiasB2xUVjRRd9zeYQvB0wzRmlD58FMB7HiLsXuHwheDzx3KzAZkWYUrOAl3oICAbEYp2dEpN2FQrEOS/KF5P90H6siSn9eSuLg41q1bx1/+8hf+9re/cfLkyYg5aWlpPPXUU/zoRz86r8o4giAIQu922HaYV0tfZdmhZQTa9IHWq/TcNeguHhr6EImGxC7fT5ZlPIdsODdZadldD8F22SZxOozjUjCOSUZp6l5G7Wk+T4AD26rZs66S6sOR+7mYZAM5Ey0MLkjBENWN93DUQNmnoZLildvDhoIy7LcnsrppIHanCqndg3VqnZ4hEyaTO30mqQOHnHeA/loSsNtxrFmDo7gYx+o1BJ3OyEmShH7UKMxFRZiLCtFkZPT8QgVBEARBuCa1+Ft4cdsHfFD+NsP32Ln5SBQBhSU0eGqrJwVl0tU6Rt92F/3uuLPDh+18ngAHt9dQvsHaYSUhvVnN4PwUhkxIJd5iwt/gxlVcQtPOanyO021U2gazfeiUOzD0daCbOArFkB9f8+dfQrgLytBWKBTEx8czd+5cHn/8cbKzsy/m2oR2xNOPgiAIQlve48dDfbE//xzfsWMR47W6aNb0z6IyyUeS247ZHbn59CuCuPuZGFgwkTlFDxJjiuuJpV80zfUtWCtsp4LYTTRWuc46PypRjyUrGsvAUBA7OlF/+Q9md70Pnz1BS2AcDb4fI2MGAoR6Zod+lbATp/4LeuUWuG0BDL/7gt7yattT7N27lwMHDmC32zGbzQwcOJAhQ4Zc7mVdka62r70gCEJ7BxoP8ErJKyw/shy5TXDWqDZy35D7eDDnQWJ1Xc8uDrb4cX5bjXOzFX9tS/igBLrBcRjHp6Ib2M1M6TZqjjazZ10l+7dW43OHt0I5XZZx6CQLqVkxXd+3eByhftglH8Chb0AOv2+d28DXTTkcbzahDES2X+kzZCi502cyqGAiGl1k6UchnK+6urUftnPLFvD5IuZIGg3GiRMxFxVimj4dVRdb213JxL7i2iW+9oIgCL1PjbOWP6x/jQ2HFjFth0RqfRR+pTpsjtofYFCShbGPfY/4MWMi7iHLMlWHmtm7oZID22oi2vhJComM3HiyJ6SSkRcPLj8tm/fh2nYcb1NH2d0BtIpSDJZ69AVDUeTNBm3HWeDC1anHSo4rFAqGDh3KgQMH8Pl8jB8/nvnz53PnnXei14sfeC42sVkUBEEQAs3NNC9fjm3x57R8+23EuFupZm36QA5bFJgDTqJbIoPYAUnG1VdPZn4+c2bOJSE6uSeWfsFkWaaxyoW1oonKUyXEHQ2RZYzaiu9jbM2+tmTFYIy5Qvp/u21QvRusJbDx77Q0pFLv+89Tgx2VmAw1r4zX/B790ES4e+EFvb3YU1y7xNdeEISr1e763bxS8grFx4rDXo/SRPFgzoPcO+ReorXRXb6f94QdxyYrLbtqkX3hTaQVJjXGsSkYx6Wgij2/rBFPi5/9m6vYs76SuuOOiPH4PkZyJlkYNC4FnVHdwR06EPDBwVWhcuJ7l4Ev/EE/b1DBKtsQdjVZULoj91DG2DiGTi1i6NQZxFn6nNfnulbIsoz34EHsK4qxFxfjLi3tcJ4iOhrztKmYioowTZyIwhhZUrM36037ipqaGsrKyigsLLzcS7kq9KavvSAIwrWurGYfv1//EjWH1lC404DebSbYLuPa7AuQO3QEo374NLrkyHY8TpuHfZuqKN9gpak6MpkkNsXAkAmpDM5PQa9V0rLtIK7Nh/DUGujonEsj7UWfdALDuCyUI28AQ+9KsBEunh4rOQ7wzDPPMGvWLN544w1ef/11Hn74YZ5++mnuv/9+5s2bx/Dhwy/0LQRBEAThmib7fDjWrcP2+ec4ilcie8ObGgaR+Da1H3v66lEr3cS4PKQ5oO2GMSjJOC0a0seOZfbMB7AkpPfshzgPwUCQuhOOUAb2gSasB5tosUdmu5ymUEgkZphDJcQHxpA6ILrrB8CXiixDcyVUlUJVyal/SqHxSJspahp8z536XWf9EhVAkAbv01icLyGKfQqCIAhCyM6anSwoWcDak2vDXo/TxTE3Zy73DLkHo7prQcSgN0BLSS2OTVZ8JyKDzJr+UZgKLOiHxiOput/jWJZlqg7a2LOukopva/C3C5SrtEoGjUkiZ1IfkvqZu5aNLctwYlsoiF32KbjqIoZ3uvqyumkQHnsAlRxAyZlgtkKpZMDofHKnz6Tf8FEolMpuf65rhRwI0LJr16kg9gp8RyMrJAGoLRZMRUWYi4owjB6FpL7M+1EBgK+//pq5c+cS6KAigSAIgiBcbWRZ5suDa/i/La8Qt28vY/eakeUUkCSCbbaxyQGJUTOvZ/DDj6HUhieBBAJBjpbWU77BytGyeuRg+9Y0SgaOSSZ7QipJaUbcJcdxvbWSxkodyCrAFDZfJR3BEHsQw+i+qMbdBObIwLkgnM0FBbSnTp1KcnIyCQkJ/OxnP+NnP/sZa9eu5ZVXXuGf//wnL774IqNGjWL+/Pnce++9mEymc99UEARBEARkWca9Z0+oL/bSZQQaGiLmVMQmsr1fHD6dj1iXRKLHA21CnTIyjhQVltEjuG7Wg2SkZPXgJ+g+vy9AzRF7KHhd0YT1kC2i7GZbKrWC5MxoLFnRpA6MIaV/NGrtZTyEDfih/kAoYG3ddSqIXQotkV+7tlzBSafKjJ+LAhkzLs9orq7cnu6rqqrCe+rBjuTkZLRtfug6ePAg//Vf/8WuXbuIiori3nvv5fvf//7lLy0vCIIgXDSyLLOtehsv73qZzVWbw8aS9Ek8kvsIdwy6A72qa5XjfLUunJurcH5bjdziDxuTtEoMo5IwFaSiTj6/78Buh4+9m6zsWW+l0RrZTzkpw0zOJAsDxyaj0XXxmKauIhTELvkQGg9HDFf6olnSOJLaZi16nwvwhh0Axaelkzt9JjmTp2OIjjmvz3UtCLrdODduxF5cjGPlqg735ADa7GzMhYWYZxShHSJ6jQuCIAiCcHn4Aj5e3fEJ75S8xahd9cw5GYVfmRJqxHNqe6IMBulniGbsfXOxzJodsW+pr3RQvsHK/s1VHSaWWAbGkD0xlcxhCQQO1dDy1Sasx1TIQQ3tg9hKqQqDeQ+GEUmox18PsQ9emg8uXBMuqOT42dhsNhYuXMirr77Krl27MBqN3HPPPTz++OPk5+dfire86olyPoIgCFc/X3U1zUuWYFu8GM+BiojxGoOZzf2TcJhlols6PiizJypIGpnLzFn3M7Dv0Eu95PPmdfupOmhrLR9efaSZoL/zbYnWoCJ1QHRrCfHEdDPK88iOuig8jlDJ8LZZ19V7IHD2EugAqA2QPJRA3Bh82hE07YjB7zBAl/KuA+jTvMT/cNYFLb837ykaGhro06dPa0D7yy+/ZNas0J9HeXk5BQUFOBwOTm9xJUni3nvvZeHCCyvTfrXozV97QRAEWZbZULmBBSUL2F6zPWzMYrTwWN5j3JJ1C1rluVuMyIEgLXsacG624qloihhXpxoxjk/FMDwJxXk8MCcHZU7ub2TPukoO7qyN2ONo9CoGj0smZ7KFhLQu9gl01EDZJ6G+2JU7IoadsobPm0exrykRo8uGgvbvaWDIxCnkTp9JyoBBIujaiUBTE47Vq7GvKMaxbh1yS0vkJKUSw+jRmGcUYSosQpN2bZZov9T7iszMzIt2L6fTSV1dncjQvkjEnlIQBOHK0uRu4o8b3mD9no+ZvkMmzmbGrwx/UFLnC5CdnsmY7z1J1OAhYWOeFj8HtlZTvsFKzZHmiPubYrUMGZ/K4IJk9DYXrrW7aDkoEwxEtt9R0IjBuAv90Gg0E2ciJWdf3A8rXFV6tOR4Z6Kjo/nBD37AD37wAzZv3szcuXN5/fXXef3118nNzWXevHk88MADxMTEXKolCIIgCEKvEHQ6sa9YgW3xYpwbN4VqQ7bhVKvZ3M9CbawCk0dCCRHBbHscxI/IpmjmveRkjurB1Xddi91LZUUT1gM2KiuaqDtub/9RwxiiNFgGxrQGsOMtRiRFDx+8yjI4qtuUDC8N9b1uOAR04ZlAYyLBxNH4TOPwK4fg86Xga1Lhs7YQrOi8fHrnlARVSedx3dXj448/xuPxkJCQwLx588jNzW0de/rpp7Hb7QCMHj0ai8XCmjVreO+997jvvvuYM2fO5Vq2IAiCcAFkWeab49+woGQBZfVlYWPp5nQez3ucGwfciFpx7tLOAZsHx5YqnFurCDaHt3FBJWEYloixIBVN3y6W/G7HafOwd2MoG7u5NjIQmpoVTc4kCwNGJaHWdCFQ7nHA3qWhTOxDq0AOL1MeRKLYlctGWyaKZhf6oBszTWFz+ubkkTt9JgPzJ6DWnl/P76ud7+RJ7MUrsRcX49q2DToIekp6PaZJE0P9sKdORRUbexlWem05cuTIOedIksTZcnXajouHOARBEISrTUXDEX637mXqdq9gcqmBW33RyAoJf5ttZowvyPBxExj23R+iaROPO/0AZvkGKwd31BJo1w5HoZLIHJ5I9vgUksxK3Ot20vL3/Ti8RiD8AVIJB3rdDgyDtWgnTUNKuwnE913hIrtkAW2Aw4cP8+qrr/LGG29QVVUFhH4QLS0t5amnnuLnP/85d9xxBz/84Q9F1rYgCIJwTZEDAVxbtmBbtJjmr79GdrnCxn0KBdvTUjiRqEHrV6BAwtwu+dcRLRM1bCDTZt7FyMETenD1XdNc3xLqf13RhPVAE41VrrPOj0rUY8mKbg1iRyfqe/bQKRiA+oNnAteng9jO2i5cLCHHDcQfMxGfdji+YD98rmh89QECe91t5p39z+DcZBRGzQXeo3f76quviIqKYvv27aSlpbW+XlFRwYoVK5AkiSeeeIJ//OMfQKgE+dixY/nnP/8pAtqCIAi9TCAYYMWxFSwoWcD+xv1hYwOiBzBv2Dyu63cdKsXZjzbkoIznYBPOTVZayush/KwOZbwOU34qhtHJKI3d73ccDMoc39PAnnWVHCmpI9iuv6DOqGbw+BRyJlqIS+1C2fKADw6uDAWx9y4Df2RgfJe/P180DaO5WSLBU4+R8FLYprh4hk6dQe60GcSkpHb7M13tZFnGs2/fqX7YxXjKyzucp4yLwzR9GuaiGRgnjEehEw8E9LTJkyd3mqn95ZdfUlNTQ3p6Orm5ucTGxqJSqQgEAjQ2NlJWVsbRo0dRq9V85zvfQaO5tvfRgiAIwtVBlmW+ObqF/7dpAUk7Sxh+MIqAIjk0dqqQoSTLWBQaxtx0GwPuuR9JeSbC3Vzfwr5NVZRvsGKvd0fcP6GviewJFjL7mQh8W0bLJ8eoazETCiee2XdLuNFpdmIYALpJ45H6/zsoLlMlReGacEEB7UcffZQnnngiLBjt8/n49NNPefXVV1m1ahWyLLc+CRkdHc3999/PvHnzUKvVvP766yxcuJB3332X22+/nTfeeAOj8VrvCikIgiBczTwVFdgWL8a2ZCn+Uw97neZXSOxLiqcixYgCJUpZQh/exhGnScaY14+JRbeTn1t4xWQZyLJMY5ULa0VTawlxR8PZy2/H9zG2Zl9bsmIwxpy7POhF43VBzZ7w4HX1bvCdO+AsK3UE4sfjM4zDpxyM35uCr1mDr9oDlW0PsCN7ZJ6mMKlRpxhRpxgJevy4tlZ3ceESutyELs69Om3fvp2HH344LJgN8MknnwCg1+v5/e9/3/r6gAEDuP/++/n88897dJ2CIAjC+fMH/Xx5+EteKX2Fw7bw/tBD4oYwf9h8itKLUEhnPzALunw4v63GubkKf127oLAEuux4TAWpaLNizqsKjL3BTfn6Sso3WHE0Ru570obEkjPJQubwRJTqcxzuyTKc2BoKYu/+FFz1EVMqSeJj+xgON0WT7KxCIzfQdlegUKrIGltA7vSZZAwbgULR/VLpVzPZ78f17XbsxStwrCjGV1nZ4Tx1ejrmoiLMM4rQjxgRdgAs9LwnnniC++67r8PX09LSWLx48VmTZLZs2cIPf/hDqqqq+Prrry/lUgVBEAThkvIH/bxTuow3t73GmG9rmFUThU+ZTKDNNlMVCJIVl8S4R+aROH7imWu9AQ7tqqV8vZUT+xojig5qDSoG5acwJDcO/aGDuNbvpOlf0adG27bH8aNTlWDIcKObNBrFoB+BsvsPhArC+biggPYbb7zBjBkzyM/Pp7y8nFdffZW3336b+vrQD16nA9mTJk1i3rx53HnnnejaPM36v//7v/z+97/ntdde4+c//znPPPMMf/3rXy9kSYIgCIJwxfHX19O87Atsixfj3r07bCwgSRyLjaK8TzQBpRKlrEDdblPpMgTRDu3L+Om3MGHkdSivgMPJYCBI3QlHKAP7QBPWg0202Dsvoa1QSCRmmLFkxZA6MIbUAdHoziMD6rw4attlXZdC/YGIkp0dCWrT8MVMw6cdhi+YEcq6bpCRj7UtQxkEIp9oBZA0CtTJocC1KsUQCmInG1CazmSHyL4gLWX1yC3+Du8Rdj+9CsM1HtC2Wq3k5OREvL506VIkSeLWW2+NaGmTnZ3Nq6++2kMrFARBEM6XL+BjyaElvFr6Ksftx8PG8hLyeGLYE0xJm3LWB/pkWcZ3woFjYyWukjrwtyudaFZjHJuCcVwqqvN4mC4QCHK0pJ7d6yo5tqc+4jDQEK0he3wq2RMtRCfqz33DugOhIHbph9B4JGLYoYjiM9dYtjalEW2vI8bfTBr2sDkJ6f3Imz6TIZOmYYiKjrjHtSzocuFYvx7HimIc33xDwGbrcJ4uNxfzjCLMRUVosrKumIdGr3VarRZlBw8UvPvuu3z99deUlpaeMzFm3LhxrFy5kmHDhvHCCy/w5JNPXqrlCoIgCMIl4fA6+POmhazb/j5Tdvi52WkmoEzA1+ZbpMEXIHdwLqN/8BSGtL5AaF9ce8xO+QYrB7ZW43G1O3eSID0njiGjkki2V+HeuR/vjmhCTXna7imDaJV70PdpRD9+GMrcJ0AtqtYIPe+CS45/8cUX/OMf/2Djxo3AmSB2QkICc+fO5fHHH2fIkCGdXq/RaPje975HXV0dCxYsEAFtQRAE4aoQ9HhwrFqFbfHnONauBf+ZTWNQgmqzkT19YnFp1ShP1QNStjkQdeuCKLNTGTvtRqaOvQmV8pJ2CTknvy9AzRF7KHhd0YT1kA2fO7K34GkqtYLkzKjWAHZK/2jU2ksciA8GofFwZPDabj3npbKsxmcuaM269nmT8Nm0BG0BCDv37CTorJBQJepRJxtaM6/VKUaUMdpzZnxJagVxdw6i/u09Z2/LLUHcnYOQzpXhdZVTKBR4veE9T6urq1v3onfffXfENR0dhAqCIAhXDk/Aw2cHPuP1stexOsO/b49KGsUTw59gfOr4swYZg94ALTtrcWy24jvpiBjXDojGWJCKPiceSdn976W2Whd71lnZu9GKq13vbUmC9Nx4ciZa6JcXj+Jc97dXQ9knoSB25Y6IYb9Cy8rgaL5sGEyg2UPflhNkcChsjsZgJHviVPIKZ5HUf4AIwLbhb2jAsWoV9hXFODdsQPZ0UDVIpcI4bhymGUWYCwtRp6T0/EKFc2ppiSy3D7BgwQIefvjhLld5NJlMPPLII7z77rsioC0IgiD0GsebrfzP2gU0bl1OwV4ts4NGZEki0OaII94Po6bNYOjjT6DUhx6mbLF72b+lmvINldSfjKweGJWoJ2dsMv20DuSyo7iXNNGMkvAgNqgVBzAkVWEoGIRy5AOgNUfcSxB60gWfjr/33ntAKJAtSRIzZsxg3rx53HrrrajVXc+8iomJoba2Kz0qBUEQBOHKJMsyLTt2hPpif/klQfuZ7JkgUG/Ssy8lliaTFkUHQWyPJgiDkxg5+ToKJ96GVnX5nnb0uv1UHbS1lg+vOWIn4O88o1lrUJE6ILq1hHhiuhml6hIGXn1uqC0Ha9uS4WXgjTzAbkuWFfgVffGbxp/qdZ2BzxWF3wbUtZ/dccBeGaM9FbA2oE42okoxok7UI13A59XnxBP/YA4NH+0PZWpLhILbp36V9Cri7hyEPif+vN/japGWlsa2bdvCXnv11VcJBoOYzWauu+66iGsOHTpEfLz4sxMEQbjSuHwuPt7/MW/sfoPalvDzgPGp45k/bD5jUsac9R6+GhfOTVac26uR2z1sJ+mUGEcnY8xPRZ1k6Pb6Ar4gh3bWsntdJSf3NUaMm+K05Ey0MGR8Kua4c+zbPHYoXxoKYh/6JqJSjIzEbu0IFtYPo9qmY4DjEGnBiojbpOcOJ3f6TLLGjUet6cF2LVc479Gj2ItXYi8upmXHjtCDju0ojEaMUyZjLpqBacpklFFRl2GlwsWwe/duHnrooW5dk5aWxr59+y7RigRBEATh4tlysoQ/rn2RlM3bGXrcjE8ZH8p/OPX8ohSUSdcaGXf3/fS98WYkSSIYCHKktI69G6wcLqkjGAjPmFBpFAwckcjgJBndoSO0bGyhRVYDMeHzpOMY4o+gH5OBetytYIjrgU8sCF1zwQFtWZaxWCw88sgjPPbYY/Tr169b17vdbt577z3+9Kc/ERsbe6HLEQRBEIQe5z12DNvnS7B9/jm+Y8daX5eBBqOOw4nRVEfrkQg9Qqlos6f0qoMEsuIYNmkGs6bcjU7ThdKUl0CL3UtlRRPWAzYqK5qoO25HPku2sCFKg2VgTGsAO95iPK/ek13iajgVtG4TvK7dB3LnGeKyDEFi8KmG4jPm41MMwudNwt+sQfYAHSd7hJH0qlDQ+nTG9ansa4Xu0mTL63PisfwyH1dZHe6yOoItfhR6FbrcBAy5Cdd8ZvZpU6dO5e233+bGG29kzpw5rFmzhj/+8Y9IksTtt9+ORqMJm+92u1m4cCFDhw69TCsWBEEQ2nN4Hby/733e2v0WjZ7wQPHUtKnMGzaP4YnDO71e9gdp2VOPc5MVz6HIEtLqNBOm/FT0wxNRaLpfpaPB6mTPukr2barC7QxvqaJQSPQbnkDOJAt9s+NQnG3/E/BBRXEoiL33C/BHbkCshsG86xjLtrpE0hzHSPEcIrHdHFN8ArnTZpI7rYjoJJFJDKGzKHfZ7lA/7OKVeA4c6HCeMjEBc2GoH7YhPx9Fu32C0Ds5nU4OHz7crWsOHTqE291xmyBBEARBuNyCcpCP96zgzXULGLmtkimNUfiViWFlxTX+AINS08l/4gfE5A0DoKnaRfkGK3s3WXHZvBH3TelvJre/nvjaY3gqrMj7tbS0y8RWUoM+Zj+GESmoJ8xGikq9pJ9VEM6XJMtnO64+O4VCwa9+9St+9atfoVCc3yHrwYMHGThwIACzZs1i+fLl57ucq15zczPR0dHYbDaixJPEgiAIl1WguZnmL5djW7yYlu3bW1+XgSaDluNxZk7GmZClyENUnzKILzOa7InTmD39Xky6nv873d7gbs2+th5oorHKddb5UYl6LFnRrUHs6ET9xS9tKcvQdDQUsG6bed184qyXBWU9Pjkdn3YUfm0evmA6PmcUQU8X9yYqCXVSeKlwdYoBhVlz1Zbv7M17ivLyckaMGIG/TRl/WZZRqVTs2LGjNXBdV1fH5s2b+e1vf8u2bdv47//+b375y19ermVfMXrz114QhN7P5rHxbvm7LCxfSLO3OWxsZsZM5uXNIzs+u9Pr/U0enFusOLdUEXSEB5pRKTAMT8RUkIqmb/fLIfq8AQ5+W8OedZVYD0YGyaMT9eRMCmVjG6LOEhSVZTi+JRTE3v0ZuOojpjj0ffiCiXxk7U9Mcx0DXIdQy+FtTRQqFQPHjie3cBbpucNQKET7DNnrxbl1K47iYuwrV+GvqupwniYzE3NRKIity8tDOs/zKuHcLte+Iicnh8bGRnbt2kVSUtI551dXVzN8+HDi4uLYs2dPD6zw6if2lIIgCBdHi6+Fv235gPUbFjJhpweN10yw3d7F5AswfMRYRv7gabTx8Xjdfg5ur6F8gxVrReS+VR+lZlh2NGluK8GTEPRHVipS0ITeVI4hLxrN5FlIcf0v2WcUhLPpzp7iglOMBg0adN7BbIABAwbg84V+EL2Q+wiCIAjCpSb7fDjWrQv1xV65EvlUH18ZaNZrqIwxcSzeTKCDftd+hYynn4mB4ycyp+hBoo09V5VElmUaq1xYK0IB7MoDTTgaOugl2EZ8H2Nr9rUlKwZjzEUuaen3Qu3edpnXZeCJ3Iif+RxK/HIffGTi041qzboOuE4dKnsBe6eXgwSq+FCfa9XpkuEpRlTx+kuXXS5cdNnZ2SxcuJDHHnsMhyNUYl6n0/H888+HZWH/3//9H7/73e8AkCSJu+6667KsVxAEQYAGdwNv7X6L9/e9j9N3po+fQlIwu99s5uXNIys2q8Nr5aCM50Ajjk1W3HsbQhuvNlQJeowFqRhHJaEwdL3t2Wm1x+zsWVfJ/i1VeNuVLFeqFGSOTGToJAuWQTFnf9Ctdn8oiF36ETQeiRj2a2PYapzGAms2dquHHMc+CvwbIuYlZmSSVziTIZOmoTeJPoUBhwPn2rXYVxTjWLMmrKVPK0lCP3w45hlFmAqL0GaKA9mr3e23387vf/97xo0bxx//+EduvfVWtNrIn1fcbjeLFi3imWeeoba2lvnz51+G1QqCIAhCpGpnLb9b8yq2tUsZWaFlimQAdARPh8hkmSRUjL3+ZgY9MBdJpcJ60Eb5snIqvq3B7wnftyoUEoMHRTFA1Yimxk5gH/gJD2RLuNDrSzFk69FOKURKualnPqwgXCQXlKF99OhRkpKS0OvPXR519uzZqFQq5s+fz80333y+b3lNE08/CoIg9DxZlnHv2YNt8WKaly4j0NDQOmbXqrGeCmJ71ZEHqAFJpqWvnsz8AmbPeIDEmJ4pERkMBKk74cBaEeqBbT3YRIvd1+l8hUIiMcOMJSuG1IExpA6IRmfs/oFwp1qaQv2tT2dcW0tCwexgx2uSZQiQGOpvrRiMT5OHP5iOr8UMwa4FnhVm9aky4W0C10mG8yo7ejW6GvYUNpuNtWvX4vf7yc/PJzU1vCTWzp072bVrFwBms5nbb7/9cizzinM1fO0FQeg9al21/HP3P/lo30e4A2dK/aokFTcOuJHHch+jX3S/Dq8NOH24tlXj2GIlUN+uTLAi1KrDWJCKdsA5As0d8Lb42b+1mj3rKqk9FhkgjbMYyZloYXB+CjrTWfZE9ioo+wRKPgTrzohhWaXjUNwU3mwew+aTGgbb95Pecpz2q9UYTeRMmkbu9Jkk9x/Qrc9yNfLV1OBYuQp7cTGuTZuQfZF7RkmtxjBhfCgTe/p0VIntC7ULPeFy7SscDgd5eXkcPXoUSZLQarUMGTIEi8WCTqfD7XZTWVnJ3r178Xg8yLJMZmYmu3btwmg09tg6r2ZiTykIgnB+Sqr38+yqF7Cs3UJGlQmfKvyBLGUgSD9zHPkPPUrqtEKcTR72brJSvsGKrSayfU1qkp6hcW6imlwE3B39fexFrylFP1CBfspEpPRRcJVWIxR6p+7sKS4ooK1UKnn77be57777zjk3KyuLQ4cOIUkSn3/+OTfccMP5vu01S2wWBUEQeo6vqgrbkiXYFi/GW3Gw9XWnRoU1xsSJODMubWS5yaAk47RoSR87hutnPUhqfN9Lvla/L0DNEXtr+XDrIRs+d+f9pVVqBcmZUa0B7JT+0ai1FyHQK8tgO3EmcF1VEvqn6VinlwRlEz65H75gP3yq7FNZ14nI/q4VkZE0yjN9rlszr40oL2ZA/iok9hTXLvG1FwShJ1gdVl4re43PDnyGN3iml59aoea2rNt4NO9R+pj6RFwnyzLeY3acm6y4SmvBH35coYzSYByXgnFcCsqo7lWPkWWZ6sPN7FlXyYEOslpUGgVZY5IZOslCcv+ozoPkHjuULwkFsQ+vBjkY/j6Sgqbk8SyRJ/HPgwmk2Q4z2LEffbBddRxJIiN3OLnTZ5I1djyqa7y3s+fQoVAWdnExLaceSGtPYTZjmjYNc1ERxkmTUJpEYPJyu5z7iiNHjnDjjTe2lhDv6P/Z00eeQ4cOZenSpWRkZPToGq9mYk8pCILQdbIss+zAWv5Z/A+Gbz5OtCMKvzL8HE7nC5CdOZhxP3gafd8MjpTUUb7ByrHd9bSP4Jl1SvIskNTiQG7p6O/gAFrVbgz9vegnjUUxcAKI6sjCFarHSo53JxZeVlbGzp07efjhh3n22WdFQFsQBEG44gSdTuwrVmBbvBjnxk2c3jG2qFVYY4ycjDVj10censrIOFLU9Bkzkutm3k96SsclMy8Wr9tP1UFbaw/smiN2Av5gp/O1BhWpA6JbS4gnpptRqi5wIxvwQd3+dsHrUmhp7HC6LGvwyX3xyRn45P74VDn4An0J+tqUP/J3eGmIQkKVqG/tbx3KvDaijNGKcuHCOR0+fJi1a9cyd+7cy70UQRCEq9rx5uO8WvYqn1d8jr9NT2itUsudg+7koaEPkWKMrFgT9ARw7azBucmKz+qMGNcOjMGUn4ouOx5J2b3v+26nj32bq9izrpKGysh7J6abyZlkYdDYZDT6To5IAj6oKIaSD2Dfl+CPzI7xJg1jk7GI548NxFdygmz7Xm70RpYUNyckkTd9JkOnFhGVeO7ev1crORikZdcuHCtXYl9RjPfw4Q7nqVJSQlnYRYUYxo5F6qAqknBt6tevHzt27OAf//gHr7/+OmVlZWHnlJIkMWzYMB577DG++93vohb/7QiCIAg9zBf08dK2T9nw9euMLnUzMWhClmLxt4llR/uCjJo0jWHzv09TE+zcYGXfC+txO8Ir1KglyElR0RcHyhYjNCiQCQ/+aZR7MfRtRj9hOMqh80EpvvcJV5cL7qHdVTqdjoKCAp588kl+/etf99TbCoIgCMJZyYEArs2bQyXFv/oauSV0QOlWKamKMWGNMdJo7Li1hj1RQfKoPGbOvJ+svjmXbI0tdm9r+fDKiibqjtsjns5syxClwTIwpjWAHW8xXljQ190M1bvDA9c15RCI7MMtywr8cgp+OSOUec0AfFIWfl88tC2weZbgtTJGeyZwfSrjWpWgR7rQILxwzdqwYQOPPPKICGgLgiBcIoeaDvFK6St8cfgLgm0ylvUqPfcMuYe5OXNJ0CdEXOercuLYZMW1owa5Xca0pFdhHJOMMT8VdcK525y1Jcsylfub2LO+koPbayMe/FPrlAwal8LQSRYS0zvpUy3LcHxLKIi9+zNoaYicEpPBwZQ5vNo0mvV7G8huLiff9SEquV1PQ5WaQfkTyCucRd+cPKRrNEMm6PHg2rQJe/FK7KtWEqit63CedtCg1n7YuqE53S4pL1w71Go1Tz/9NE8//TQ2m40jR47gcDgwmUz069eP6Ojoy71EQRAE4RrU2NLEs6v/if3rz8g+qmaMUg+okU9taSRZJkWppeCOe0idfSsV22r49K/lEa1wlEC/aCUDdC3oPTpokYDwvatacRhDSi36gsGoRj4Ial2PfEZBuBx6LKB9Wn19PU5n5FPRgiAIgtCTPAcOYPv8c2yfL8FfXQ2AV6mgKi4Ka4yJepOuw54y9jiJhBHZFM26l+z+Iy/J2uwN7tbgtfVAE41VrrPOj0rUY8k6k4Ednag/v4M/WQ71gjxdKvx09nXDoQ6nBokN9bmW+4Uyr6WB+AN9kOWuPQGqMKhQJYcHrtXJBhS6Ht+eCL1YIBCgvr4et9vd6Zy6uo4PzAVBEIQLs69hHwtKFvD10a+ROfO0nVlt5r7s+3gg+wFidDFh18j+IC1ldTg2WfEeaY64p6avGWNBKoZhCUjq7rVEcTV72bvRyp71lR32GEzJjCZnkoWs0Umdt1up3RcqJ176ETQdjRzXx9E04CYW+SfwWpmK1PIysh2fcqs/shd3UmYWedNnMWTCFHQmU7c+y9UiYLPhWLMGe/FKnGvWEHR1sK9VKDCMGoVpRhHmoiI0fS99yx7h6hMdHc3w4cMv9zIEQRCEa9j++qP88au/kbxqI2n1JnyqKHxttpyqQIDM+FTGz/8+LfpMyjda+erfN4Q9fCkBKVoFg6N8RPmUSCjAE95mRSVVok88gWFMP9T5t4G2kwc0BeEq0+UT49WrV7N69eqI1z/99FMqKirOeb3P5+Po0aN88sknZGZmdm+VgiAIgnAR+OvraV62DNviz3Hv3g2AT6GgOtZMZYyJOrO+wyC2Ixqihw1k2oy7GDFk/EVdkyzLNFW7WgPYlQeacDREZj63Fd/H2Bq8tmTFYIzpXg9JAIIBqK8Aa7vgtSsy8BeU9aGAdTCjTeZ1JsFgFw9mVQrUyYbQP6cD1ykGFGaNyLgRztvy5cv505/+xIYNG/B6vee+QBAEQbhoyurKeLnkZb45/k3Y6zHaGB7MeZB7h9yLWRN+sOZvcOPcYsW5tZqgM7yEoqRWYBiZhDE/FU2f7gV+5aDM8fIG9qyr5PCuOoLB8DI2WqOKIfmpZE9KJd7Syb3tVVD6MZR+CNYO+jer9PgHXc9GYyH/OGyh7ptScuzfcIv7BO13Mhqjmdwp0xk6bQZJ/a7Nsw+f1Yp95UocxcU4t2wFf2RpHkmrxThpEuaiIkzTpqKKi7sMKxUEQRAEQbhwKw9t5fVl/8fQzUfJc5sIKGPxtYm8GXx+huaMZPD93+VIRYBln1hxNOwMu0eCSiLLHCRRBgVKwiLhgIJ6DLEHMYxMRT3xOiRjfA98MkG4snQ5oP3NN9/w29/+NuL1zz77jM8++6zLbyjLMo8++miX5wuCIAjChQh6PDhWrcK2aDGOtWshEMCvkKiJMVEZY6LWbEDuoBy30yRjzOvP5KI7GJs77aIFXoOBIHUnHK0lxK0Hm2ix+zqdr1BIJGaYsWTFkDowhtQB0eiM3eyB43VC9R6o2nUmcF29J6L/oywrTwWsM/AF+7VmXgfk5K69jwSqeD3qZAOqNoFrVbxe9LkWLqrf/e53/OpXvwrrk3gu4uEJQRCEC7e9ejsLShawvnJ92OvxungeHvowdw2+C4Pa0Pq6HJRx72/EucmKe18DtPtrW5Wkx5SfimF0crcrtDga3ZRvsFK+3oq9IbJKR5/BMeRMspA5IhFVR5ne7mbYuzRUUvzwGpDDy5IjKZAzp3Gsz428Xp/Lqm0H6F9fRq7zM3TBdg9SSRL9ho0kr3AWmaPzUV1jvXplWcaz/wCOlcXYVxS3PjjanjImBtP06ZiLCjFOmIDCYOhwniB0x9dff83ChQvZvHkzVVVVfPbZZ0yfPh2ARx55hPvvv58ZM2Zc5lUKgiAIV5tAMMA/dyxh0+IFDN3rYiRGkKIJtNl2xvplRs+4Ac2wm9i3pY6P/+9g2D1ilBIZekhTBVGhjtgrK2hGH7UffV4c2skzkWJuvfQfTBCuYN36ibGjQ8OuHiQaDAYGDRrEQw89xFNPPdWdtxUEQRCEbpFlmZbt27Et/hzbF18iO+wEJInaKAOVMSZqogwEO+hd6NIH0eWmM77wFiaMuA7FRehv6PcFqDliby0fbj1kw+cOdDpfpVaQnBnVGsBO6R/deUnMjjhqQhnX1jZZ1/UVtN0VyzIESMQXzA0FrU+VDffLaXR1a6Awa0KlwpPPBK7VyYZulwYVhO7avHkzv/rVrwC45557GDduHCqViqeeeoqf//znZGdnA+BwONi2bRsLFy5k0KBB/PznP7+cyxYEQei1ZFlmc9VmFpQsYGvV1rCxZEMyj+Y+yu0Db0enOtOvL+Dw4txWjXOzlUBju8ozCgl9bjzG/FS0mdHdeuAoGAhytKyePesqOVpWT/vjCH2UhuzxKWRPsBCT3EGw1O+Fg8WhIPa+L8HfQbuK1BG4htzB54EC3vm2EWnDDnIcL3KLN7KKjTkxmWGFs8iZUkhUQmKXP8fVQA4EaNm+PdQPu7gY3/HjHc5Tp6WFsrCLCjGMGoWkEq1lhIvDZrNx3333sXz5ciD0d5UkSWHnlAsXLuStt95i9uzZvPvuu6KntiAIgnDBHB4nz61+A/vSj8g8qSJbpSMonakCpAgGSdWZyblhLvWBAWzZWo1314HWcbMC+mgU9NMF0BL5EKREC3pDOfocI7qphUiJN/TI5xKE3qDLP0n8+te/5te//nXYawqFgoULF3Lfffdd9IUJgiAIQnd5jx3DtvhzmhYvxn/iBEEJak0GrH2TqI42ElBGBqhbdEHU2RbGTruBqeNuRqm4sICs1+2n6qCttYR4zRF7WC+c9rQGFakDzvS/Tkw3o1R1IZAeDIZ6W7fvd+2oDpsWkM34grntMq8zkOlaRoykVYaVCled+ndld7PEBeEieeGFF5AkiaVLlzJ79mwA6uvreeqpp5g1axaFhYVh8x9++GFmzJhBnz59LsdyBUEQei1Zlll7ci0LShawqza8DHcfUx8ey3uMWwbcgkapaZ3vPdKMY5OVlrI6CIRHm5XRWoz5KRjHpqA0a7q1lua6Fvasr2TvBitOW/vsaEjPiSNnkoV+wxJQtt/vyTIc3xwKYu/+DFoaI98gJgM57y52xMzkn/tU7F60jYG2d5nsPISS8H2cQq1hcMFE8qbPJC07F+kiPADZWwRbWnBu3Ih9RTGOVasINHbwZwnocnJa+2FrBw0SVVKEi06WZW6//Xa++eab1kB2dHQ0zc3NYfNef/11FixYwJdffslNN93E6tWrxX+PgiAIwnk5ZrPy3NK/krBiHQnNRqJVJrxtomsaf4CM1EwSxz/IkYMSa79xApUA6BWQplaQrpUxKU5f1Pb80YdOW45hsArd1Mko+szqqY8lCL2KeDRWEARB6NUCNhvNy/9F0+LFuLdvJwjUm/RY0xKpjjbiU0UGqD2aINLgJEZOmU3hhNvQqM6jB/UpLXZva/nwyoom6o7bI7KF2jJEabAMjGkNYMdbjOcux+1rgZo9Z4LW1hKo3g0+Z+sUWdbgk/ueyrrOaM28DtLFnjoKCVWiPqzHtTrZiDJWKw59hCvK+vXruf3221uD2ecydepUHnjgAV566SVRblIQBKELgnKQVcdW8XLJy5Q3lIeN9Yvqx7xh87i+//WoFaGH24JuP64dNTg2WfFXu8JvJoF2YCymglR0Q+K61YIk4A9yaGct5esrOV4eGTg1xWoZMiGV7AmpRMXrI29Quy8UxC79CJqORY7r4yD3duoyb+W9k8ks3bCbmBNfkG3fxw0BR8T0pMyBDC+6jsETJqM1GLv8OXo7f2Mjjm9WYy9egXPdemR3B1ntSiWGcWMxFxZhLipEbbH0/EKFa8pHH33EqlWr6NevH3/84x+5/vrrcbvdJCUlhc178MEHefDBB/nP//xPnn32WRYuXMiDDz54mVYtCIIg9EYbj5fyxof/S9a2IwzwGwkqosP6Yxt9AdKzpyInF3Fsr4Pja0P7Ya0EFrWCNC3EKTtKngmgVe/HkOlHPyUfReb3QZy/CcJZXVBAe9WqVa1lHQVBEAShp8g+H46167AtXkTzym/A56XRqKOyTwJV0Sa8HZS99qqDBLPiGTZ5BrMm341Wo4u8cRfYG9ytwWvrgSYaq1xnnR+VoAsLYEcn6s8eIHbWh2dcV5VA3f7Wvo6yrMAvp+CTh+ML9mvNvPbLqYQ/3dk5Zaw2vFR4ihFVgh6pK5nhgnCZWa1W8vPzw147/f9UMNhxNYSxY8fy7LPPXvK1CYIg9GaBYICvjn7FgpIFVDRVhI1lxWTxxLAnmJkxs7WajbfSgXOzFdeOGmRvuyxmowrDmBRM41JQdRRsPovGKid71lWyd1MVbocvbExSSPTLiydnkoX0ofEo2gfIm61Q9kkokF1VEnlzlR6GzMGfeyfF3lw+2HKMyi+3MMS+l1nukxHTNUYzedOKyJ02g4T0ft36HL2Z98QJHMWhftiub78NVQZqRzIYME2ahHlGEaYpU1DGxPT8QoVr1rvvvktCQgIbN24kOTkZAI/H0+n8//mf/+Grr74SAW1BEAShS2RZ5t1dX7Hp/b8xsMLFIKUBMBNUtE4gRtKRNPQWau39OVzvg3o7KqCPRiJNrSBRJXV4/qdRVqDPcGKYNBzlkMfhGqr2IwgX6oIC2lOnTu32NYcPH2bt2rXMnTv3Qt5aEARBuMbIsox79x5sixfTuGQpclMjNoOWykQz1hgTHnXktzSfMogvM5qhE6dz3bR7MerN3X7PpmpXawC78kATjobOD0oA4vsYW4PXlqwYjDGdZH8Hg9B0pE3g+lTmtb3y1HtDkLhT/a1vae1z7ZP7Al3LKFcYVGFlwtUpRtTJBhQ6UaBF6N3M5vD/l3W60AMqJ09GBiMAXC4XtbW1l3xdgiAIvZEv6OOLQ1/waumrHGk+EjaWHZfNE8OfYHrf6SgkBbIviHNnNc5NVrzH7BH30mREYSxIxZCbgKTu+uGc3xvg4PYadq+rxFphixiPStCRM8nCkPGpGKPb7YPczVC+JBTEPrwGaFcqR1JA5jQYdjeHE6bx/q4GVr21ndSavzPYeYChwfYlzCUyho9meOEsMkePRam6+tusyLKMe88eHKf6YXv27etwnjI+HnPhdExFRRjHj0ehPf8qR4JwIbZt28ajjz7aGszuiltuuYW//vWvl3BVgiAIQm/n9nn4y8o3aV70PpYaFf1UGnzKMy37lIEg0cZ0dGk30lBv4FglKPBhUUv0UStIVksoOwhiqxTHMFgaMIzPRjXiAVBe/ftLQbgUevxEe8OGDTzyyCMioC0IgiB0ia+qCtuSJTR8ugj/4UM06zVYY0xYU9Jp0UZuAP0KGXeGkSETJjO78AGiTbFdfq9gUKb+hONMBnZFEy12X6fzFQqJxAxzawA7dUA0uo56S/s9UFMeHryuLgNPqMdbUNaf6m+dh0++qTXzOkhU1xauUrTpc21ozb5WmNWiXLhw1UlNTaW0tDTsNYPBgMlkYvXq1Tz00EMR1/zrX/9Co+lev1ZBEISrnTfgZfHBxbxW+honHeEPBA1PHM4Tw55gUp9JSJKEv76F5s1VuLZVEXT5w+ZKGiWGkYkYCyxoUrtXirvuhIM96yrZv6UKT7v7KlQSmSMSyZlkIW1QbHi5cr8XKlaEgtj7l4O/gzLYlpGQdxctg2/li8NBPlm9D2f56+TY93KdryFiuikxhRFFsxg6tQhTXBdbtvRiss+H69tvsa8oxr6yGH+ltcN5moyMU/2wZ6AfPgypw5KZgtCz6urqGDx4cLeuSU1Npamp6dIsSBAEQejVqhz1/L9P/kJs8VqMLgMapSG8P3ZAwhw/BreqAFdATUs9JKkk0jQKUtUSqg7O3pRSNYakSgzjMlGPux3U3ataJAhCJJGiJQiCIFxxgk4nzV9/TcNni3Bv2YJDowoFsQf3xamLDEoFJBlXmp6s8eO5fsaDxEcndXDXSH5fgJoj9tby4dZDNnzuQKfzVWoFyZlRWLJiSB0YQ0r/aNTadod6LY3hgeuqUqjdC0E/sqzCL/c51d/61tY+1wG6mFkggSpe31om/HT2tSpe362elILQm40aNYo33niDH/7wh2EHmaNHj2bhwoXMmjWLe+65BwhlnP32t7+luLiYMWPGXK4lC4IgXFHcfjefHPiEf5b9k2pXddjY2JSxPDHsCcaljAMZ3OUNODZZ8eyP7GGtSjZgKkjFMDKpW9VfvG4/FdtC2dg1R5ojxmNTDORMsjC4IAW9qc2+LxiE45uh9EPY/VlozxVxcT/Iuws5707KPMm8v/kI3368hH4NuxnhOoKSdqXR1RqGTJhM3vSZ9Bky9Kp/EDDodOJYtx578Qoc36wm2Bz55w+gGzYMc1ER5hlFaDIzr/o/F6H3MRgMNHfy329nDh8+HFHlRxAEQbi27bQe4M03f0/6jsOkykZkyYy/zTGfVjaijpuGTx6IU1IQj0QfvYRFrUDbwTmcgkYM8UfRj+qDZsJMJH10D34aQbj6demnzjfeeIPnn3+eH/7whzz++OOtryvFk7mCIAjCRSIHArg2b6bhs0U0f/U1LbI/FMQe2Ae7PrKcYVCScaRo6F8wjutnziU5vs8538Pr9lN10NaagV1zxE7A33HPXQCtQUXqgOjWDOzEdDPK032mZRlsx+FQSXjw2nYMWYaAnHSqRHg2vuD1p/pcp9HVZ8kUUZo2Wden/knSI3XQH1wQriWzZ8/mk08+oaCggEceeYTf//736HQ65s6dy+rVq7n//vv56U9/St++famoqKCxsRFJklqD3IIgCNcql8/Fh/s+5I3db1Dvrg8bm2iZyPxh8xmVPIqA3Yt95XGcW6oI2Nq1WlFK6HMTMI1PRZMR1eVApyzL1By1s2ddJQe2VuPzhD9AqFIrGDA6iZxJFlIHRIfft2ZvKIhd8hHYjkXe3BAPQ2+HYXdjixvOol2VLH69BM3BhWQ79jEz4Iy4JHHAYEYUzWLw+MloDYbIe15F/HV12FetwrGiGOfGjcheb+QktRpjfn6oH/b0QtTJXXs4VBAul0GDBvHJJ5/w9NNPd2m+y+Xi7bffJicn5xKvTBAEQbjSybLMorJVbHzjefoecZKm0hPEBKe3nzJo1elgmIykTMaohD5qBWkaBfoOgtgSDvTRhzAMi0c7ZQaS+eae/UCCcA2RZFmWzzUpJiYGu92O2WwOK8+jOM+G9ZIkEQh0ngEndKy5uZno6GhsNhtRUV0sQysIgnCF8xw4QOOixdR/thiPvQlrjJHKGBPNBl3EXBkZe7KatDEjuf66B0lLzjzrvVvsXqwVZwLYdcftnO27niFKEyodfiqAHW8xhjKfAz6o3QdVbYPXJeC2EZCj8AUz8MunelwH++GT05Hp2uGopFW2KxVuQJVsRNlR6XJBuEh6857CZrORl5eHz+dDkiR27NhBcnIywWCQwsJC1qxZA4T2m6e3ufn5+axZswa1Wvx/1Zu/9oIgnB+71857e9/j7T1v0+RpChub3nc684fNZ2j8UDyHbDg3W2kpq4dg+IZJGavFmJ+KcUwySlPXWzh4XD72ba5mz/pK6k84IsYT+prImWhh0LhktIY2f0c3W6HsYyj5MLTnak+lhyE3wLC7CfafxqZjzXy48SAHtmxgkK2cNHdlxCVqUxTDphWRN30W8Wl9u/wZeiPvkSPYi4uxryimZedOOtoAK0wmTFOmYJ5RhHHyZJQic1U4D5drX/GHP/yB//iP/+DHP/4xf/zjH1EqldTX15OYmMiKFSsoLCxsnXvy5EkeeOAB1qxZw//7f/+PH/3oRz22zquZ2FMKgtDb+AI+/rHiLZo+eo/YRiU+Vfj5gEJWotSPRKEdhUllIk2toI9GgVnZURDbjc5YgWGoCd20IqQ4S099DEG46nRnT9GlNLGJEyfy5ZdfMnHixIix22+/nby8vC4vrqSkhEWLFnV5viAIgnD18dfXY1u6jOqPP8V7uAJrjBFrnInGvhkdzrfFK7CMGcasWQ+QmTak0/vaG9xn+l8faKKxynXWdUQl6MIC2NGJeiRPM1TvhhNLYdupwHXtXoJ+Cb/cF18wA588CJ88E1+wH0HiuvahlRLqRD2q09nWp7KvlTFaUcZRELohOjqaY8ciM/QUCgVffPEFv/nNb3j//fepqqoiNTWVu+++m//v//v/RDBbEIRrTpO7iYXlC3m3/F3sPnvr6xISMzNmMn/YfAbqB+DcXk315m/x17SE30AC3eA4jAWp6Nr3sD4LWZaxVtjYs66Siu01BHzh1XDUWiUDxyUzdJKFxHTzmX2Q2wblS0JB7MNrgHZBWEkBmdNh2F0w5AaqPWo+2nacr9/5mLiTOxnkOEBf2RdxTcaI0Ywouo7+I8egVF2dXdfkYBB3WVmoH3ZxMd6DBzucp0pKwlRUiLloBsZxY5E0XX84QRCuJE8++SR/+9vf+Mtf/sJHH33EXXfdRVZWFgAbNmygtraWo0ePsmHDBr766is8Hg/p6el897vfvcwrFwRBEHpafYuNv77zvxhXrkXjM2BS6PC12RIqpCgU+nGYtDn00WpIUyuIUXW07/Wj0x3AMFiNbtoUFKkze+wzCIIQ0qUMbb/fT0lJCXl5eWGHgQqFgoULF3Lfffd1+Q3feecd5s6dKzK0z4N4+lEQhN4s6PHgWLkS60ef4tq6iRqzHmuMmXqTDjoI6DbHQMKoHGZedx9D+o2IGJdlmaZqV2sAu/JAE44GT8S8tuL7GFuD15YB0RgV9WeyrU9lX8sNx/DLqa39rU9nXvvlVKBrlUmUsdo2pcJDgWtVgh5JeX6VTQThYhN7imuX+NoLwtWvrqWOt3a/xfv73qfFfyZIrZSUzOk/h8fzHifNmYRzkxXXzhrkdgFnhUmNcUwKxnEpqOIiK+Z0psXuZe+mKsrXV3b4UGFy/yhyJlnIGp2E5nTPbb8XKr4OBbH3fQmBDvZyllGhIPbQ2/EZElm1t4ZP1u+lducGhjSXE++L7KVtTEpl1IzryJlSiCm2iw8f9jKy14tz85ZQP+yVq/DX1HQ4T5M1AHPRDMwzitANHYp0npX2BKEjl3NfsX37doqKirDZbGd9QFiWZeLi4li1alW3EnKEsxN7SkEQrnTlNUd4+6XfkFx6FL+kjzh7VKgy0OvHkqbPIE2rIEHV0R4piEZzEMOAIPpp41FmDO2ZxQvCNeSiZ2irVCpGjRoV8XpGRgYmk6lbizOZTKSnp3frGkEQBKF3kmWZlu3bqfroUxq//hcNGgXWGBN12enIHRw62M0y0cMHUTTrboYNLggbCwZl6k84zmRgVzTRYvdF3OM0hUIiMcMcCmAPMJMaU4eueTdULYHdJcgrSgm0cKpEeAa+YBY+uQif3BeI7Nnd4XsYVafKhBtRnQpcq5MNKLRXZ/aPIAiCIAhXrmpnNW/sfoOP93+MO+BufV2lUHHLgFt4bPAjxB3R4XjHSs3xkxHXa/pHYSpIRT80AanDA71IclDmxL5G9qyr5NDOWoKB8OfltQYVg/JTGDrJQnyfU2cHwSAc3RAKYu/+DNxNkTeO7R8KYufdBQlZHK5z8uHaI2xYvZg+NaUMcB1lEOGBeEmjZcj4yQwvug7LoCFXZQWcgN2OY80aHMXFONasJeiILOOOJKEfORJzURHmokI0/fr1+DoFoSeMGjWKnTt38r3vfY/ly5d3Om/OnDn84x//EGeRgiAI14gvy9ax6eU/kVDpIl6lxa9o2xJQiVY7jDTzOPrqokhUSSg62DOqVUcwZLRgmDIS5aBHOkzEEQSh53UpQ1u4MoinHwVB6C28x45R88lnVC1ahM3jwBpjotZsINhBqUqHMYghN5NpM7/DmNyprYePfl+AmiP21vLh1kM2fO7Oq3uo1AqSM6Ow9DeQGttAimoP6vpQ5nWw+ig+X9Kp4PWZzOsgXfu7VFIrUCWf6XF9OvtaYVJflYelwtVP7CmuXeJrLwhXn5OOk7xW+hqLKhbhC5552E+j0HD7wNt5xPIAhpIAzm+rkVv8YddKWiWGUUmY8lNRpxi7/J7OJg/lG62Ur6+kuc4dMW4ZGEPOJAsDRiai0ihDL9aUh4LYpR+DLbJ1BIYEyL0dht0NfUbj9gf5sszKom924i3fzBDHPkyByMzvhAFDGD3zOgaNn4RGp+/yZ+gtfNXVOFauxL6iGOeWLeCLfKBT0mgwTpiAeUYRpmnTUCUkXIaVCteiK2VfUVFRwYoVKzhw4AB2ux2z2czAgQOZMWNGayly4eK6Ur72giAIAIFggNf+9Tb1H7yD0a7E167NjEIRRZp5GunGLFI0KpQdnOWpFJUY+jSinzgU9bAJoFD21PIF4Zp20TO0L6bDhw+zdu1a5s6d29NvLQiCIFxCAZuN+qVfcPTDj3BUHaMyxkRNkoGgIvJw1KkPos7uy9SZt1MwYiYKhQKv28/xPQ2t5cNrjtgJ+IMdvFOIRq8itZ8OS0IzFv0BEn1bUVSV4tvuwy+n42rNvJ5KgKSufQgJVAn6sB7XqhQjqjhdl/tGCoJweSxcuJAPP/yQgwcPolKp6NevHzfccAOPPPKI6J8tCMJV6WjzUV4peYVlh5bhl88EqvUqPXdl3ckD6ttRbnfhWXSM9nm86lQjxoJUDCOSUGi7dlgXDMocK6tn97pKjpbVIwfDn43Xm9UMKUglZ5KFmORTmTDNlbD1Yyj9MNTmpT21AYbcEMrEHjAdlGrKTtr44OPtlK1fQ2bDboZ5qiIvM0czfPpM8qbPJM7Sp0vr7y1kWcZ78GBrP2x3aQd/boAiOhrztKmYioowTZyIwtj1BxIE4WqTlZUlAteCIAjXoGaPkxdf/wPqb9YjBXVoFNrW/tgSEsnG4WSYx9JHG4u6g3M9pVSHPrkaQ0EW6jG3Iak0PfwJBEHojh7P0BY9tM+fePpREIQrjezz0bxmLQcXfkDTnu1URxmojjYS6KBXdIs2iDwolUkzbmLKuJvwOgNYK2ytJcTrjts523ckg0mBJaWFVOMxUtlGdNNuAi5ja8Z1qM91H7r6rJYiSnOmx/WpsuHqJD2SWjyBKVz9etOeYu3atbzyyiuUlpbi8XgYPHgwTz31FNOnTwfA5/Nx6623dlpqcsiQIXz11Vf06XN1BTzOV2/62guC0LGKxgoWlC7gX0f+RVA+8/CfUW3kkYy53GovJLjdRqDZG36hSsKQl4ixIBVNurnLVWaa61soX2+lfIMVZ1O7HtcS9M2OI2eihf7DE1CqFOC2wZ7PQ0Hsw2uBdhs8SRkKXufdFQpma03YWnws3nmS5Ss3ojv0LQOdB9HI7TKRFQrSh49l1Mzr6D9iNArl1bNnkwMBWnbtwr6iGEdxMd6jRzucp7KkhvphFxVhGD0KSTywJVxmYl9x7RJfe0EQLqeDdSd59y//HzF7j+JVhVfoidf2ISNqPH0N/dB1kGWtwIY+4QSG0X3RTJiOpDVEzBEEoedctgxtp9OJzWbD7/d3Oqeuru5ivqUgCILQw2RZpqWsjAMLP6B2fTH1OjXV0UZ8/ZIj5nrVQdwDEphQNIexQ26g9rCTyoomPli+lcaqyJKRbUWZfViirVgUe0lsOYg2qMXf2A9ffQZe+TvU0LVKH5JWgTrFdKZU+Kmy4QqDOAAUhCvdc889xzPPPBP22r59+1iyZAnvvvsud911F//5n//Jl19+2ek99u7dy3e+8x02btx4qZcrCIJwSZXXl7OgZAErjq0Ie92sNvPjuO8yuXo4/mXN+IK1YePKOB2m/FQMY5JRGru2/wkEghzZVceedZUcK2+IiEkbozVkT7SQPSGVqAQ9+D1w4ItQEHvfcgh4Im/aZ3QoiJ17O5iSkGWZzYcb+HjtDo5uWcMgWzmjfU0RlxmSLIyZNZucydMxxsR2af29QdDtxrlxI/biYhyrviFQX9/hPO2QIa39sLXZ2aLdjSB0gd/v580332TXrl1ERUVx5513Mnz48Mu9LEEQBOECfVO6kY0v/AFTTQsGtaY1mB2tTiTdlEuGKQ+jKrIFjYQLfcxRDMMT0U4pRDJG9/TSBUG4CC44Q/vkyZP87ne/Y8mSJVRWVnb5OpGh3X3i6UdBEC4nn9XKofc+5vAXn2GXfVRFm/B2kM3sVwZx9Ith+KhZZMVPpfaIC+sBG/aGyP6KbSWaGklXnyBJtmJWKIAUfMF+BOniwaUC1ElnyoSfzr5WRmvFwZ8gtNMb9hTffvst+fn5yLJMR9vV+Ph4SkpKyMrKwu12c9tttzFnzhz69u1LIBDgyJEjLFq0iK+++gpJkliyZAlz5sy5DJ/kytIbvvaCIITbVbuLBSULWHNiTdjracpUfqJ5gqFH+xKsj8yc1mXHYypIRZsV0+XWKU3VLvasr2TvRist9vAMaUmCjLwEciZZyBgah0ICjm+Ckg9g9yJwN0XeMC4zFMQedhfEDwCgxu7m4y3HWLNyDfGVO+nnOoqiXcRc0ugYPH4yo2bOJiVr0FWzlws0NeFYvTqUib1+PbKrgwc8FQoMY8aE+mEXFqJJS+v5hQpCF12ufYXX62XMmDE4HKGGCm+++SaTJ08GoKmpiWnTplHaply/QqHg+eef5wc/+EGPrfFqJ/aUgiD0FFmWeWfJm1R9+C5qtxL/qSo9RlU06cYcMky5RGviOrjSi950GH1uFPpp05FiEnt24YIgdEmPZWgfPnyYgoIC6urqOjxo7MzV8sOoIAjC1S7odHJ88TLKPlxIS3MD1dEm3PGRpXgCUhBnShz9+00hXjOa2sMuqlf4qOZwxFwJMCuD9NHWk6RsJEqpQEUMQZJBDvW69nTeOhsAZYwKdWrUmZLhKUZUCXqkDkqdC4LQO7300ksEg0FiYmL44Q9/SH5+Pmq1mn379vHiiy+yb98+fv3rX+N2u/nggw/4zne+E3GP7373u/ztb3/j6aef5tNPPxUBbUEQepWtVVtZULKATdZNYa+PCw7nu/77SD0aBX6ZIGeC2QqzGuPYFIzjUlHFaLv0Pn5fgEM7atmzrpKT+5sixs3xOnImWhgyPhVTrBaq98Cqv0Ppx2A7HnlDQwLk3hEKYvcZDZKEPxBkdXk1n67ajm3XegbZ9zE20BJxadyAbMZdN5tB+RNR63RdWv+VznfyJPbildhXrsS1dSt08HC/pNNhmjwp1A976lRUsVdPJrogXArLli2jrKwMSZIoKCggts3/M7/4xS8oKSkBQKVSYTQasdls/PjHP2bKlCnk5eVdrmULgiAI3dDi9fDyi/+NtG4jAUmHJGlQaYxkGrNJN2YTr7N0cFUArf4QhiE69NMno0gq6vF1C4Jw6VxQhvbcuXNZuHAh0dHR3HzzzeTk5BAbG4tW2/kPzhs3buSVV165KBnaHo+H559/nvfff5+KigqUSiXZ2dk89NBDzJ8/H4Wi+4GNI0eO0L9//3PO+9Of/sTPfvazTscrKyv54x//yNKlSzl58iTR0dGMHTuWJ598kuuuu67b6wLx9KMgCD1DDgSoXr2WrW+8iufkUWrMBlq0keUpZcATnUhc7FgU7kH4PZF/5+okiFJKxCgDJKodRClBLUUh0bVylwodoaC1JfpU5rUBdbIBhfaidswQhGtOb9hTZGdnc+zYMbZu3UpOTk7YWEtLC+PHj2f//v3Mnj2bTz/99Kz3KigowOv1sn379ku55F6hN3ztBeFaJssyGys38nLJy2yvOfN3ljao5mZ3EXc6ZmOu10Rcp82MxliQin5ofJcf8Ks/6WDPukr2ba7C4wpvG6ZQSvQfnsjQSRbShsQi2Suh7GMo+QiqSyNvpjbAkBtDQezMaaAM7fWO1jv5cOMBvl31DWm1paR6qiMuVZpiGFE4g+FFs4hN6ehgsneRZRnPvn3Yi4uxFxfj2VPe4TxlbCymwumYi2ZgnDAexVUSwBeuLZdrX/H444/z5ptv8vnnn3P99de3vt7Q0IDFYsHn8zF58mQ+++wzYmNj+eSTT7jvvvt47LHH+Mc//tFj6+yOS3HGeZrNZuO5557j008/5ejRoxgMBoYNG8b8+fO55557zuueYk8pCMKlcqzOygfP/Tv6iko8ai1qhZa+hsGkm7JJ0mV0mCyp0RzGkCWhn16Asu/Ay7BqQRDOV49laBcXF5OVlcWGDRtISEjo0jUqlYpXXnnlQt4WCPXiLiwspLS0lPnz5/O3v/0Nr9fL3//+d773ve/x0UcfsWzZMnTn+UOhwWA4aya5RhN5iHDapk2bmDNnDm63m9/85jdMnTqV48eP89vf/pbZs2fzzDPP8Pvf//681iUIgnCpNO/Zy9qX/o6zvIQGgw6nTgMJ4T1lZCRknQWtKg+FKgu9pCFoAwUQp5SIUkpEKSFaKROlBJV0+tuMCuj8YSdJGUSVoEbdJw51qrk161phUouqHoJwjTpx4gS33357RDAbQK/X87Of/Yy5c+eGHWJ2Zs6cOfz1r3+9FMsUBEG4KGRZZvWJ1SwoWUBp3ZmAcZonmbudc5jWOBqVNzyYIemUGEclYyxIRZ0UWUGnIz5PgAPbqtmzrpLqw80R4zHJBnImWhhckIJB7YLyz+GtD+HIOiIaaUtKGFAYCmIPngNaEwBuX4DlJSf44usNBPZtZqDzIGPl8IC5rFCSNnwM+dddT8bwkSgUkW1sehPZ78f17XYcK4uxryjGd/Jkh/PUfftinjEDc1Eh+pEjkZS9+3MLwuWyefNm7rrrroh94GeffYbX60WhUPDKK6+0Zm7fcccd3HbbbXzzzTeXYbXndinPOCsqKigsLOTkyZP84he/4Oabb6ahoYHnnnuOe++9l6VLl/LWW29dUMBcEAThYti4cyPr//4HNI0+1GotSTEjyDBmk2LIRClF7pmUykpMmS3op4xGNXDuZVixIAg97YIC2vX19fzoRz/qcjAbYNiwYfzqV7+6kLcF4M4776S0tJSnn36a559/vvX16dOnc9ttt7F48WK+973v8c9//vO87r9792769evX7etqa2u56aabaGxs5LPPPuPWW28FYNy4ccyYMYO8vDyeffZZBg8ezEMPPXReaxMEQbhYPDW1fPPi36jfvA6HSoldr4W49k9CSUiqvig1Q1CrszCrdKcC1xLmU78autiXEWRU0cFQ0Dot4VTJcCPKOF2XezsKgnBtcDqdjBs3rtPx/Px8ANK60Fu0b9++rT0WBUEQriRBOciKoytYULKAfY37AFDKCsbbh/Md+ywGN2dEXKPuY8JUkIp+eCIKTdcCojVHm9mzrpL9W6vxucOrpSnVCgaMCmVjp/bTI1WsgC//A/b/CwKeyJv1GRMKYg+9HUxnehHuqWzmozW72b9+Ff0bdjPYb4u4VJfUh3HXzWbolEIMUdER471J0OXCsX49juKVOFatImCL/LwAutzc1n7Y2oEDxcOagnARHDlyhHnz5kW8vmTJEiB0NjhwYHiGXkFBAUuXLu2R9XXXpTrj9Hg83HDDDRw/fpy//OUv/OhHP2odmzFjBhMnTuSdd95h4MCB/PrXv75In0YQBKF7PvrkdU5+/CH4NfQx9ic9NYc+hixUisiEQkmqx5TeiGFiLuq8u0DsqwThmnJBAe2UlJRuBbMB8vLyLrhfzSeffMI333yDTqfjv/7rv8LGJEni2WefZfHixbz55pv88Ic/ZPTo0Rf0ft3x29/+lrq6OvLz81uD2adFR0fzzDPP8P3vf59f/OIX3HXXXej1+h5bmyAIAkDA7WbNa69wrHgZXp+fZoMOzJFZPSbtEGINQ4nRpBGl0hCllDApQNHFzaJS50WVqEHdNyGUeZ1iRJ1kQFKLJ78FQeia2LP0ED09drZWN6dpNBp8Pt9FW5cgCMKF8gf9LD+ynFdKXuGQ7RAACb5Yrm+ayA22qUT7jOEXqBQYhidiKkhF09fcpffwtPg5sKWK3esqqTse+VBPfB8jOZMsDBqbhK5uK5S8DJ8sAncHgdm4TBh2N+TdCfEDWl+2u30s3n6M4q++wXhkOxktxxjVPpNbo2PQ+CmMnTWb5AG9O6Drb2jAseob7MXFONevR/Z0EPBXqTCOG4dpRhHmwkLUKSk9v1BBuMp5vd6I8zSXy8XXX3+NJEnce++9EdeYzeYrcj94Kc84//73v7N//34sFgtPPvlk2JhGo+G3v/0tc+bM4Y9//CPz5s3DYun9bR8EQegd3F4vb/zl13i3lRGr78vI2BtIMw5Gq4yMlcg4MKZUYRqfhXrMjUhK0YZQEK5VF/R//5w5c9ixYwePPPJIl6+pra2lvLycKVOmnPf7vvrqqwAUFhYSExMTMZ6dnU12djbl5eW8/vrrPRbQ9nq9vP3220ConFFH7rjjDr7//e9TXV3N0qVLufPOO3tkbYIgXNtkWWbzpx+z+9O3CTa7QkFstQrUKrQKPdGaRKI1icRoM4jWpBKlNqLu4mGjpPShjg2Esq77WUL9rpMNKAxd65MtCILQmbOVPuzNARFBEK5dvqCPpQeX8mrpqxyzH0OSJUY5s7mhcQoFjjwUhP+9p0rQY8xPxTg6qUt7K1mWqTrUzJ51J6n4tga/Nxh+P62SQWOSyJ5kIVl/Aqn0VVjwMTSfiLyZMRFy74C8u6DPqNYMGFmW2Xa0kY9XbKN62xoG2PaSG3RHXB6dmc2EOXMYOG48am3v7Q/tPXYMe/FK7MUraNm+A4LBiDkKgwHj1CmYC4swTZ2CUvSTFYRLKikpiX379oW99vHHJyFjFgAA99RJREFUH9PS0oJKpYpIMAE4efLkFdnr+VKecZ6+96233oqygxYHs2bNwmw2Y7fbeeedd/i3f/u38/sQgiAIXWStqeTD3/0nsfVaBpoHkp7xPfSqyIc1g7IHXXwlUQV90I4vQlJ33v5VEIRrxwUFtH/5y18yceJE7rrrLiZNmtSla7766ivmzp1LIBA49+QOeL1eiouLARg7dmyn88aOHUt5eTnLli3jhRdeOK/36q7169djO1VmrLO1JSUlkZ6ezrFjx1i2bJkIaAuCcEmVrl/Dhtf/gdxgx63REK1JIjYpkcxTAexodQJ6lalrN5MCqE0tqBPUqNITUffrgzrVjDJaIwJLgiAIgiAIZ+EJeFh0YBGvlb2G1WnF7Ddyh20GcxonYfElhU9WgD47HmNBKtoBMV1qy+J2+Ni7ycqe9VYarc6I8aQMMzmTLAwcHESz/xNY/hFUl0XeSG2E7BtDQezMadAmA6bW7uGTjQfYWFxMknUXKZ4a2q0chSmG4YUzGTXjOmKSe2dmsizLuMt2Y19ZjGNFMZ4DBzqcp0xMwDy9EPOMIgwFBSg04qBVEHrK2LFjefvtt3nqqadIT0+npqaG3/72t0iSRFFREXFxcRHXLF68OKIM+eV2Kc84Dx8+zN69e896b6VSyciRI1mzZg3Lli0TAW1BEC6Zb7esp+Sl9+ijzmCW6VbMaZHV2AKyH6Wpirhx0einTEXSGzu4kyAI17ILCmgHg0FefvllHnzwQSZPnszNN9/M4MGDMZvNnWbU1NXVXchbUl5e3loi6Gw9rk+PHT16FJvNRnR09/pzLV++nC+++IKysjKqq6sxm83k5uZyxx138Mgjj6DTRT5hXlJSEvH+na3t2LFjYfMFQRAulorSEja/9DZ6lxqjJprhhplExyRiUsV0OfCs1NpRxwRQp0ahzuyLOiMZVYIeSSnKhQuC0HO68neWeKBGEIQrWYu/hY/3f8wbZW9Q46phSEt/7mt6iCnNo9DI4RnXiigNpnEpGMemoIw+dzsFOShzcn8je9ZVcnBnLUF/eKlvjV7F4HHJ5Iw1k9C8Akp+A8XroH1JcEkJAwpDJcWHzAHNmcPDQFBm9b4alixfi7NsA5nOQwyT/eHrUChJHTaGidfPIX3YCBSKrvX1vpLIXi/OrVtxFK/EvnIl/qqqDudpMjMxFxViLipCN2wY0lkqiQiCcOnMnz+fRYsWkZOTQ05ODvv376e5uRlJkiJKazscDv7jP/6DnTt38uMf//gyrbhjl/KMsztnlGvWrBFnlIIgXBJf/N8/UOxpIc3Qj5lJd0eMB+UgfnUt8aPUmGdMQRHVedsxQRCECwpo9+vXr/UQ8Z133uGdd965KIs6m2PHjrX+e2JiYqfz2o6dOHGi2wHtn/3sZzz99NP85Cc/wWw2s3//fv785z/z/e9/nxdeeIGlS5dGbAi7u7bjx4+fdQ0ejwdPm55czc3N3foMgiBc3WRZJlDbQEvpXqwllTQe92DEhFkVzVTzzdCV9oqKFjRmB5okNeq+SaiyMlH3iUOh7X0HkYIgXH0eeOABHnjggU7HJUlixowZPbgiQRCErnH6nLy/933e2vMWLpeT6bYx3ND4GAM8fSPmarNiMBWkosuO69LDg06bh70bQ9nYzbUtEeOpWdHkjE9igHkn6vIF8N5XEOig13OfMaEg9tDbwBT+8+vxBhcfri6l7Jti0urKSPNH/iyqSUojf/b15E2Zjt585ZXxPZeAw4lz3VrsK4pxrF5N0G7vcJ5+xAhMp4LY2szMHl6lIAgdmT17Nk899RR//etf2bZtW+vrDzzwAHPmzGn9/R/+8Af+8z//k2AwiCRJ3HbbbZdjuZ26lGec3b13Y2MjTqcTo7HjjMjOziiHDBly1jZBAKNGjeLzzz8Pe+3mm29m+/btZ/8QwE9+8hN+8pOftP7ebreTnZ19zusglJXftkT70qVL+e53v3vO60wmU2t2+2n/9m//xnvvvXfOa2+44QZefvnlsNfGjBlDVScPSrX13HPPcd9997X+ft++fRQVFZ3zOoCtW7eSmpra+vsFCxbw29/+9pzXDRo0iJUrV4a9dv/997N69epzXjtv3jx+/etfh72WlpbWpfUuXLiQadOmtf7+m2++OevPfW2dOBHeJuU3v/kNr7zyyjmvmzp1akTsorCwkP3795/z2l/96lfMnz+/9fdWq/WsVRXaKi4uZvDgwa2/f/fdd/n5z39+zutSUlLC/n4DeOKJJ1i2bNk5r7333nv505/+FPbakCFDcDgc57z2pZde4sYbb2z9/bfffsstt9xyzusg9JCO2WzGXnGIzf9YwpfbtvPuji87nBskgFINCp2WUWPG8Pn/iL8jzkX8HSH+jmirN/8dcdqf//xn/vznPxPsoKVTZy4ooA2hgEp3XUgmjb3ND5kdZUl3NNadQLBOp6OwsJC//OUvDBs27P9n787jo6rux/+/7myZzJJJQnZ2CJCEfd9kS1ARlMWlVlFQq1jbalu72vZntd/Pp/bTxY+fVmurVkVxaV0QBUQg7EvYd8ISCEv2PZl9u/f3x0CSySRkAoEQOM/Ho8XMPffOmSQMZ+77vN/v+sdHjhzJPffcw4wZM1i/fn19//CIiIad822dW2vzeumll3jxxRfDnrsgCDcu2eHFm38eb14+znM1OCs0KG4zagKZPQaSMFyiyqFf8aNobETEuDH2MKDr2wNtal/Uls7bz1AQhBvf5awzWyIyuQVBuBZq3bV8eOxDlhxdQrTVyP3V08mqHYtRjgwaJ0VqMI5MxDg2CW28odXryrLC+aNVHN1SxJmDFchy8Puj3qhlwLhEMnqXElv0LmxeBq7a0AvF9g0EsQffC136Bh1y+/ysOlDAmlXrUJ3cSXdnAYOaZHMrukj6jpvMhDvuIKF330733uotK8O2fgPW7LU4tuegXMiMbEzSajGMH4c5azqmaVPRJjQtrC4IwvXglVdeYfbs2axcuRKfz8eUKVNCAtYDBgzg4YcfBiAqKoqJEyd2xFRbdDXvcV7utVsKaLd0j7K4uLjVuXTvHrqZq7y8nMLCwlbPbfp6FUUJ6zwIlHRvzOl0hnVu45vtF1VXV4d1blVVVchjJSUlYZ3rcDiCvvb5fGG/1qatPW02W1jnNrc5oqKiIqxzL7bdbCzc+TbeHHHx63DPbW4e4ZzbXNXY0tLSsM5tGuTx+/1hz9fnC65s43A4Lvu1VlVVhXVudXV1yGNFRUVB7wstcTqDN0t6PJ6w55v3z89QCo3E6RJI041gpbyfElt5q+d1Lw8dI94jQon3CPEe0Zrr/T2i6T2+urq6Nr/WKw5oP/nkk4wbNy7s8du3bw9rR0RHSUpKqu9f05ROp+OVV15h6NCh5Obm8s4774S1a+dyPffcc0E7jOrq6ppdBAqCcONQfDLeUhvevHy8Z4rwlTlx1+pRfBcXSzoggZb2P8uKjNVbg9VXh8/gpt+YnsSOHICme/ew+i8KgiBcT9LS0khMTLzi65SWlnL8+PF2mJEgCELzqlxVLDm6hE+O/oehVan8puY7DHaE9mrVdjdjGpuMYWgckrb1ijjWKhe524rJ3VaErSo0y7pbWgwZg2X6eL9CffQTOFIQehFjPAy6F4bcBykjoEkQ+lhJHZ+s3snZ7RvoVXOM3rIr6LgCmPtkcMvMmQwYOwFNJ+sV7T59Gmt2oB+288CBZseozGZMU6Zgnp6F8ZZJqE2iZ6MgdAaZmZlkZma2eHzevHnXXVZ2Z9XSPcrk5ORWM7SbyxCPj4+na9eurT5vVFRwBRBJksI6DwL3cRuLjIwM61yTyRTyWExMTFjnNte/PSkpqdXzAAyG4A1uGo0m7NeqVgevKUwmU1jnNvdZKy4uLqxzmwt0hTvfxgliF78O99zm5hHOuXFxcSGPJSYmNht0a6rp74RarQ57vhpNcPjFYDCEdW5zvzexsbFhnRsTE1q2OyUlJazsy8jI4E2YOp2u5edUFGSXG9mjIKEisjAZU0TD77FJZyTR1AW/4kMTqUMd0fwaUrxHiPeIpsR7xA3yHtFE083QUVFRdO3aFVmWw9ogByApV5D6olKpWLJkSVCpg9Z88MEHLFiwIGRXSLi++uorZs+eDQTKQMyaNavZca+++mp935zDhw8zcODAy3q+5nTt2pWioiJmzZrF8uXL6x//yU9+wssvvwwEdmW0tKvx3nvv5bPPPiMuLo7yZnYgtaSurg6LxUJtbW3Im7UgCJ2LIiv4q114C6rwnj6Ht7Aab6WCz2kEwiv37fDVUeMpp9ZTQZ2nEoe3DnX/eOY++1MMxtDFlSAIwkWdYU1xOevMlixZsoSFCxde9vrzRtIZfvaC0JmUO8pZfGQx6w+vYVrFKG6vmUCMv8mNNa0Kw7AEjOOS0XVtfY3m98ucPVTJ0S1FnDtSSdNP7AaLjvQRJtKjtmHJXwJlR0IvojVC+p0w5FvQeyqog2+U2Nw+lu3IY/M3a4g6t5dETzOfS00xDJl2K2Nuux1LwpVvLrpWFFnGdfAg1uxsrGuz8eTnNztOk5SEOTMT8/QsDKNGIXWyQL0gXA8607qivLyc3NxcJk+e3NFTqXc173H+7W9/45lnnmn1nJ/+9Kf85S9/AS59L7OpzvSzFwSh/ShuJ46NmyjPqQFbAhpVaL6kzVtDof00FdHVzPntL9A3CYAJgiA01pY1xRVlaE+cOJGENpbf6tu3LwsWLLjs5+zRo0f9f18qGNz4WLi1+dsyh6KiIvKbfDBuOreWFoEX5yayrQXh5uC3efCW2PGeK8N7phhvmRNfXQSKrG00quWG1x7ZTa2njFpPeX0Au9ZbjuxzE+n1EpmRxuwf/pLoxOQWryEIgnAzkySpXcuXC4IglNhLeOfQ2+TvPcrtVRP4lu1XqJrU0NHER2Icl4xxRCKqyNY/eteWOzi6pZhj24tx1AWXQJQk6JEeRUbXU/SqfR9V7hZoUg4cSQ2pWYGS4gPuAF3w51FFUdhzppKlX2+iau8WetlO0U8J3uijqDTEDRrFlDtn0WvwUKRWsu6uF7LHgyMnB+vabKzr1+EvDy0ZCBDRv/+FftjT0Q/M6HQl0wVBuHyrV6++ogSbq+Fq3uNs67VjYmLCDmYLgnBzUbxePDu2ULWtEE9lEmrJgAYDjZe+Tp+N8/bjFDnyiZyWwT2P/LDjJiwIwg3rigLamzdvbvM548aNa1OJ8qbS09PRarV4vV7OnDnT4riLx3r27NlseYMr0dIN0cY9t8+cOUOvXr0uObfG4wVB6Pxkjx9fqQNvsQ3vmSK8RTV4q0D2NM72UAPNZ+b4FQWr30utp4Ia1xlqPIXUespx+hv6V6j9MhaXi+iePcn63s/oOjDj6r4oQRCEDrJ06VJGjRrVLteaOnUqS5cubZdrCYJwcztvPc8Hu9/Dv6+G26snkOSdFDxABZED4zCOSyaij6XVgKnfK3N6fzlHthRReDy0l5kpRkdGfytp0lLM55dClSf0It1GB4LYA+eBMbRUXqXNzWebDrF37RoSSg8S67PStNihOqE7Y2+/g+FTM9E3U0bxeuSvq8O2cRPW7GzsmzYhN+krCIBKReSI4ZizpmPOykTXKMAjCILQ0a7mPc6m9yhbu7a4RykIQmOK3493/06sW05gL05AhQnoibrR0tbjd1HgOMF52zEqpFLGff9pHhr9o46asiAIN4Er7qHdVjk5Obzxxhu8/fbbl3W+TqcjKyuLVatWsXv37hbH7dq1C6DFcj0tmTt3Lk888cQlzzt37hxASMB6woQJ9anxu3fvZurUqSHnlpWV1Z/f1rkJgnB9UPwKvkpnIOu6sDaQeV3mwm/XAI1vWjZftlBRFOwyWGWFOp9CrbeWavcJ6hwHkOWakPEqWSbW7kQVH8/YBU/RL3OqyCYRBOGGN3v27HZ7r+vatetl91sSBEEAOF1zihWbPifmsJr7rePRKtrgAVEaosZ2xTg6CXVU66Wrq4rtHN1SxPGcElx2b9AxlUqiVypkWLbQvfQtVGdrQi/QJTUQxB58L8T2CTnslxU25RazcsUavEdz6OY8T9OO3rIukl5jJzN51kwSe/dtdc7XA29xMdZ167BlZ2PfuQt8vpAxUkQExokTMWdlYZo2FU0zvQoFQegcvvnmG15//fWQ+3R9+oS+77XGbre359TaxdW8x9m7d2/S0tI4duwYu3fv5pFHHgkZ4/f72bdvX5uvLQjCDUpR8Obuw7HpAHVnY5GUWKBPUA0in+ylyJHHOXsuFdZ8fN2iuPePL9EtUXzeFgTh6rvmAe1Tp06xePHiyw5oAzz++OOsWrWK7OxsamtrQ3YnHjt2jNzcXCRJ4rHHHmvTtZctW0a3bt1aXMjt37+/vkF50zERERE8/PDDvPrqq3z22Wf89Kc/DTn/888/BwIN5e+88842zU0QhGtLURT8tR68pXZ8JXa8BdV4C2vw1iggNy2/qG32Gm5Zoc5/4X+yQp0frH4Fr78Sv+c4fk8uyLUh50myQhebA63BSMa8hxjyrXtRib5+giDcRBITE7nrrruYM2cOt912G3q9vqOnJAjCTehEyTFyVq+lz6k45rlDK42p+5qIntgD/YBYJPWlN+F4PX5O7Snj6JYiik+Frv8ssWoyUk6Q5ngLQ90xqGsywJgAg+4J9MVOGR6oQ95EQbWD/3yzg5Obs+lWlUuS7A46rgCRvTOYPGsW6eMmoNE2v4a9XiiKgvvkSWwX+mG7jjTTLxxQWyyYpk3DPD0L44QJqAyGazxTQRCuhocffpjKykq2bt0aVDb7UhnHl3I9bgy/mvc4H3/8cX7605/yxRdf8Ne//hVVkzYSa9aswWq1otfrefDBB6/4tQiC0Dn58o/hXL8T6+kIZF8KkBqUriMrfkqcZzhnO0qhPQ+V345qzHAe+9HHGHTic7ogCNeOpITZULCmpobo6OigxzZt2tTmJ1y9ejUvvfTSFfesmTp1Khs3buTHP/4xL7/8cv3jiqJwzz33sHTpUh555BHeeeedoPO++uorHnvsMRITE1m+fHlIlrUkSZhMJvbv30/fvsG71N1uN7fffjsbN24kNTWVQ4cOhdxcLS8vJyMjg4qKCpYtW8bs2bPrj9XV1TFkyBDOnj3Lu+++y8KFC9v0mtvSHF0QhLaRnb5AxnWpHW+xHW9hFd4yF4onvL6BsuLDJvuo9ukaBa8VPI3eYWV/DT7pCF77EdQ+W8g1JEWhi81JpKSiR+YsRj66EK3IKBEE4SroDGsKlUpVf9MxMjKS22+/nTlz5nDnnXcSK94bL1tn+NkLwvUgN/cAedn7GFDUFYMc/JnPo/NhGp1M7ISeaLpEtnqt8vNWjm4p4sTOUjzO4IxitUaiT7cqMlSf0dW+IjRGrTNB2p2BIHbvKaAO3ZPu9vn5Zk8+61euQnd6Nwme0P7RiimWjKnTueWOO4iKi2/9G9CBFL8f5759gX7Y2dl4z59vdpy2a1fM07MwZWVhGDECSXPN9+sLwk3vaq8rxo0bx86dOxkzZgw5OTn1j6tUKiZNmtSmTO3Tp0+zZcuW66qH9kVX6x6n2+1myJAhnDhxgv/7v//jmWeeqT/m9XqZOHEiu3bt4oUXXuC3v/1tm+Ys1pSC0Ln5i87gXL8F+wkZj6tXyIYfRVEod53nnP0o5+0n8PkcoPWSePf9PHDPY9flBiFBEDqntqwpwgpoP/nkk7z11ls88sgj/Otf/6p/vPGNxra60gVkRUUFmZmZHDp0iO9+97s89NBDeDweXnvtNT777DMyMzNZsWJFSMD5rrvuYvny5QD85S9/4dlnnw06HhUVhdVqJSYmhp/85CeMGTOG2NhYcnNzefnll9m3bx8DBgxg+fLlpKamNju3nJwcZs6cidvt5sUXX2TKlCkUFBTw4osvcuDAAZ577jl+//vft/k1i8WiIFw5xSfjLXMEgtclDnwlVrxFdfhtYe3tAfz4lRrsspcKn4Fyr4E6WcEhNz/a2MVNlXcnzrKD6J3u0AGKQqzdRbTLQ5dRtzD6iceJTO0cJR8FQei8OsOaYseOHSxdupRly5Zx/PhxILDxUK1WM3HiRObOncvcuXPp2bNnB8+0c+kMP3tB6CiKT+bY1j3UbDtH99qEkOM1cU5SpqQRM6wbkvbSmx49Th8ndpWSu7WIsrPWkOOxMR4yorYwwPkuelWT4yoN9M0KBLEHzARd89nGx4tr+fSr9ZTs3kS3ulNolODP2LJKQ8zAUWTOvpPeg4YgqcLbqNkRZJcL+7ZtWNdmY1u/Hn91aD9xgIiMdMxZWZinTyeif39xM1UQOtjVXlfU1taSnZ1NZmZmUJKNSqViyZIlbcoq/uCDD1iwYMF1GdC+Wvc4AfLy8sjMzKSoqIhf/vKX3HnnnVRXV/PHP/6RDRs2MH/+fN57772Q7O3WiDWlIHQ+cmUJznUbcOQ6cDv6AOqQMVXuYs7ZcjlnP4bTb0Xr8+GOiWDc937GpBG3XPtJC4Jww2v3gHZUVBQ2mw2TyURdXUPds7YuduqfVJLaZQHpdrt55ZVX+Oijj8jLy0OtVpOens7ChQt58sknm53fV199xaOPPkpiYiIrVqwI2b1ot9tZunQpq1atYs+ePZw/fx63201MTAxDhgzh7rvv5tFHHyUy8tI78YuKivjDH/7AihUrKCwsJCoqijFjxvD0009z++23X9brFYtFQQifIiv4q131gWtviR1vsRVfpQuU8G58qSlHoQy77KFCNnHek0SlR08LsWtUKon4nmaMiW5Olq6l8tQeomqbHx1tdxFvdWDuN5Bhjz5G9Pix1/VNRkEQbiydbU1x/PhxvvjiC7744gt27tyJoij1QYwhQ4Ywd+5c5syZw7Bhwzp2op1AZ/vZC8K14K10krduH6qDdoze4GCBS+WhKtVN+q1jMXfvcsnrKIpCaX4dR7cUcXJPGT538GdejUYhNe4kA33vkag+EpqN3W1MIIg9cB4Y45p9Drvbx7LNh9mxehXRBfuJ8jdT9Se+B6Nuu50xWVnojabWvwEdxFddjW3DRqzZa7Fv3YbidIYOUqsxjB4dCGJnTkPbVfRnFITrSUetKy43oP3www8jyy19ou9YV+Me50W1tbX88Y9/5PPPP+fMmTMYDAaGDh3KokWL+Pa3v31Z8xVrSkHoHBRrFa4N63EcqsZZ1wuICBlT56nkrP0o52y52HyBTYURXhe21K7c/7P/pnd8t2s7aUEQbirtHtB+4YUXePnll/nRj37E7373u/rHVSoVv/71r5k+fXrYk1u9ejV/+MMfrssdkdc7sVgUhOb5rYE+1/WB6xI7vlI7ije8rGsJG1rpDBrpHE7FRYXUhUK5JwW2RLy+lksXqrUqkvpEkZwaTUS8k5yjn1OwZzfRFT4kQoPmUQ43SbU2DAldyXjwIRJn3Cb6+wmC0CE685qipKSEZcuWsXTpUjZs2IDH46kPbvfo0aM+uD158uTL3nx5I+vMP3tBaE+KrOA8VknBhlz05xRUTdZuhZFluIdGMObWTPTGS6/XXHYvx3eUcHRLEVVF9pDj8VHVZGi+pJ9mNREqR/DBLv0CQezB90Js86VzFUVhz+kyvlr2DbZD20hxFISM8esMdB09iVtn30lCr96tvPqO4ykoqO+H7dizB5oJLEkGA6ZbbgmUE588GXWT1meCIFw/xLri5iV+9oJw/VKcNtyb1+HYV4KzugcKxpAxdp+dc7bDnLMfpcZTBgRaIaoVF76JY3jye89j0rXeWkcQBOFKtXtAuyU3Womf651YLAo3O9ntx1tqx1fiuBDADvxPtvtaPxkAD1rpPFrpLFrVGaCUamMPiqSBFDt7UVph5FJvTbpIDcmpFlJSo0npF40UZWfl2vfI276D6BJPyI1QAJPLQ3K1jagII73n3UfKPXPRJoaWsBQEQbiWbpQ1hdVqZeXKlfXVderq6uqD27Gxsdx5553Mnj2bGTNmtFpd52Zxo/zsBeFy+a0ebLuKqdp2Fq0teO3mxce+LieIGt+VyeNvQ6fWtXgdRVEoOlnD0S1FnNpbjt8XHJjVanz0N25noOYL4rWng082JcKge2DwfZAynNBU7YBKm5tPV+dwdMMaEsqPopc9wXNAQtcrnUkzZzFk4gTUGm0bvhPXhqIouHNzA/2w163DfexYs+PUXbpgzpyGKSsL4/jxqCJCs4cEQbj+dKZ1hdPppLy8nB49enT0VG4InelnLwg3A8XrwrN9A87dZ3GUpyAr0SFj3LKX8/YTnLXup8LdsEFS4/fj0fuIu+/bLLzrUbExXBCEa6ota4qWUw8b+eMf/8hzzz2HJEkcPXqU/v37A7Bw4UL69m1br9e+ffuyYMGCNp0jCMLNRfEr+CocDRnXpYE//VWuMK8go5ZKAoFr6Qxa1Rm0unK8cd0o0U2kyDWMooqpVJT6USpavoohSkfyheB1Sj8LsSkm6uxVrFjzHktf24q50IlakYgFaBTMNrg9JNfYifXIJN06kx7fvpeItDTR408QBKGdmc1m7r//fu6//368Xi/r1q1j6dKlfPXVVxQXF7N48WLee+899Ho9t956K3PmzOGuu+4iLq75Ur6CINyYFEXBk1+LdXsRziMVSLKEttHarVRbyY7ko6ROHs6cjMdRq0L7CV7kqPNwLKeY3K3F1JQ6Qo4nGc6SofmSVP1WtCp3wwGdCdLvCmRj95oM6uY/isuywoZDZ1jz5ddIJ3bQxVNJ09CL3xRL/0lZZN41i6gu19/7meL14tiz50IQOxtfUXGz47Q9e2CePh1z1nQihw5BUrf8fRcEQbhSn3/+uUiwEQThxuL34d27Gcf2EzhK4vDLCUBG0BCvIlPkLOFMXQ6lzlMojRop6rweahP1jP3uL7l1qOiPLQjC9S+sDO1bb72VzZs38+Mf/5hf/epXmM3mazE3oQmx+1G40SiKgr/W01Am/GLwuswB/vCKR6ioDgSspbP1mdeaKA+q5AFYo0ZR5B1IcXUCRedlqktCbzo2FhWnJ6VfdCCInRqNJSESSZKwOmpZte4DDm3egPGcDY0culNR7/GSXGMn0eokauR4ej14H6aJE5E0Ye0bEgRBuKZuhjXFjh07WLp0KcuWLeP48eMASJKEWq3G4/G0cvaN62b42QvCRbLLh2NPKbYdxfjKgvszy8jsMh3hYPczTJp8G5m9MlFJzWejKLLC+WNVHN1SRP6BCuQm69QIjZM03RrSI9fSRXu+4YBKA6nTA5nYA2aCruXS5QVVNj5Zto5zORtIrslDTXDGt1+lxZw+kulz7iJ1yJDrbqOkbLdj27IVa/ZabBs3IdfWNjtOP2RIoB92Via6vn2vu9chCELbdKZ1hagY2b46089eEG4osozvyE4cWw/iOG/G5w/tb+1XFEo8Ds7aDlFk3YZf8QYd1/mcVGV059tPv8iAhJ7XauaCIAjNavcM7WPHjvG9732Pl156KejxPn368MorrzB79uywJydK/AjCzUl2eOszrQP/C5QNV1zhfZiUcF4IWJ9FczHzWn0OdVwiJA1GSRxMTcQsztR1pei8j+IjtVjrM7ptzV4zNsUYyL5ODQSxTTENpQ2dbjvLVr/N/k3Z6PNr0PpVWABouNEZ4fWRXGMjucaGsU8a3b/3BJYZt6MWm34EQRA63NixYxk7dix/+MMfOH78OF988QVLly5l165dHT01QRCuMk+hDfuOYuz7ysAbHBiuUVv5Jnob+X0q+NbYB3mh61MtBlVt1W5ytxWRu7W40bqyQVfdYTIiv6GPfgcaqdGNwu5jA0HsgXeDsUvL8/TJrNp2iK1ff03k2X2Y/Xaa3pKU43owfPptTLr9NiIMl+7lfa35Kiqwrl+PLXsd9m3bUJrbLKTVYhw7NtAPe1qmaL0jCEKbZGZmttu1SktL2+1agiAI15Si4D+1H8fG3TjyI/D6egPpQUNkRaHcJ3PeUcj5us14fAVBx1WyjKx24poyge888hzRkaZr+AIEQRDaR1gB7fLycgYNGhTy+JkzZ7DZmg8UtUSU+BGEG5vilfGWBZcK95XY8deFmw3nRyMV1Gdba6VA9rVaZ0NKyoCkwZA0DTlhCJXenhSdcVGUV0PxjhqcVi9Q2OxVVSqJ+J7mC9nXFpJTo9Ebg/sMur0usrd8xp4N36A+VUGEV0UgNN0QxNb6/CTV2EipsWGO6kLCPQ/SZe4cdN26Xs63SxAEQWijxx57jCeffJKxY8eGfc6AAQP4xS9+wS9+8QtKSkqu4uwEQegoiteP42AF9pxiPOetIccPRZ5kRcxmXKkqvjPscZ5NHtdsIFv2y5w9XMnRLUWcPVxJ03pmkaoa0iPXkR65lmhNo1Lacf1h8Ldg8L0Q2/uScz1WUMkXS7+mat8WEu0FNA3x+nQGEkbcwh3zZpPUq1eY34Frw3PmDNbsdVizs3Hu20fINwhQGY2YpkzBPD0L46RJYrOnIAiXbcOGDUiSRBjFJS/p4jVEVQhBEDoTueA4zvXbcOTJuN19gbSQMZU+mQK3m/O2gzicO1GU4OqUWp8Pq9lHzH0PsGjGQjQttL0RBEHoDMJ6B9Pr9RQWNh8kEgTh5qTICv4qV0PG9cXgdaWTJhUSW6SmDK3qYp/rs2ikM2ilAiRTDCQNuRC8vh2ShuCP6k3peTtFJ2so3l5D8alavK5DLV9bqyKpT1R9D+yk3ha0EaF9+Xw+Lxt2LGPH+hVwvBS9R0Ug96UhiK3x+0mstZNSY8Miq4mZOZP4e+ahHzpUfCAWBEG4xt59911uvfXWNgW0G0tKSmrnGQmC0JF8FU5sO4px7ClFdviCjjlUTrItO1kRvYmufXqzaMgPGJk4stnr1FU4Obq1iGPbirHXNt2IKdNDt58Mwxp6RexCLV3YnG1KhEH3BvpiJw+FS6wL7W4vS1fncCB7NTElR4hQPCQGPYOEukcGE2fNZNQtE1FfJ21rFFnGdfhwfT9sT96pZsdpEhIwZWVizszCMHYMKp3uGs9UEIQb1YABA0hMTGx9YCtKS0vr29AIgiBcr+Sys7g2bMSR68Tl7Aekhoyp9SsUeGTOuyqxOXbj9xyh6c1Ync9NWVc9Y574JXcNnnpN5i4IgnC1hfUpOSMjg9dee405c+YwZMiQoGMimCMINzZFUZBt3oYy4SV2vKV2fKUOFG94kWsJa33QuiHz+iwqyQld+l4IXE+GpB8EAtnmRDwuHyWnawMB7NW1lOZvxe9r+fl0kRqSUy2kXAhgx/cwo9Y03wfRL/vZsvtrctYtw5NbiMGlQg80DmKr/TIJdYEgdheHh8iJk0i4dx6mKVPEDTpBEIQO9swzz7B7924ef/xx0tPTWz9BEIQbiuJXcOVWYttRjPtkTcjx0xEFLI/ZxIaoXYztOZ7fD/kzQ+KHhIzz+2TyD1RwdEsh549VQ5MEQJOqgrTIbNIN2USpywMP6kyQPhuG3Ae9p4AqdMNk/TwVhd3HzrPyixV4j24nxlNF0y01HmMX+kyYxh3z7iKqS8vlya8lxePBvmMn1nXZ2LLX4Ssra3acLrUv5qzpmLMy0Q8ahKRqfu0tCIJwJX7zm9/w4IMPXvF1lixZwsKFC9thRoIgCO1LqS3FtT4bx+FaXLa+KIRW+7H5FQq9MgVuP7WeM8jOnfj9TRIQFQWN4qB4cE8eeOI3DE0ODYYLgiB0ZmEFtOfPn8/TTz/N8OHDiY6OxmKx1B/70Y9+xK9//euwn9But7d9loIgXBOy2x8IVpc06nVdake2+1o/GQAPWulcfa/ri0FsFZVIWj0kXCwZnhUIXCdmQESgBKHT5qE4r5aiVTUU552j/LwNRW65rJghSleffZ3Sz0JsigmVquUNNrIss+NQNlvXLsVx+AxGhwoNoGkUxFbJMvF1DlJqbCTUOdCkZZCwcBFRM2eiiYkJ83sgCIIgXG1JSUm89tprvPLKK4wfP55FixZx3333ERkZ2dFTEwThKvLXubHvLMG+sySknY1X8rLJvJcVMZs5FpnP9F7TeW/IEtJiQ0szVpfYObq1mOM5xRda1jSQ8NMrYhcZhjX00O1HJcmg0kDqHYEgdv87QHfpXtZVViefLFvLqa3riavKw9QkY8an0hI5YCS3zr2LtKFDrotN4n6rFdumTdiy12HbtAm5udZikkTk8OGYs7IwZ2Wiu87KoQuCIFxKe5QuFwRBaC+KvRr35rU495fhqOmNQnege9AYp6xQ6JEp9CpU+zzIniMojhx8BJcVV/tl3BEOrNMm8MwDPyPBKO5hCoJwY5KUMFZzsixz99138+WXX7bPk0qS6KF9Gerq6rBYLNTW1hIVFdXR0xE6McUv46twNsm6duCvcoV5BRmNVHKhRHhD5rVGKkKSZIiMheSLJcMv/NmlHzTq02KtcgWyr/NqKDpZQ3WJ4xLPB1FxelJSo0nuF01KajSWhMhWb/4pisLe3C1sWvsJdQdOYbKFjpdkhXirg+QaGwl1djRxicTNm41lzhwi+vQJ8/shCILQuXTmNYVKpWLJkiXcdtttvPvuu7z99tscO3YMi8XC/PnzeeKJJxg6dGhHT/O61Zl/9sLNSVEU3KdqsecU4TxaGdLaplhbzoqYzayxbMemdXJH7zt4YvAT9I3uGzTO5/Fzam8ZR7cWU9RMVneUuoSMyDWkRa7HqK4OPNh9XCCInTEPjJfOnpZlhfU7j7BxxUo0p/Zg9Idu5PZ06cmQzFuZPvNWIgzGNn0frgZvaRm29euwrs3GvmMHeL0hYySdDuOECYFy4tOmoYmL64CZCoJwvbra64qzZ88SHx+PwXDpjUThcDgclJeX07Nnz3aYmSDWlILQdorbhnf7Why7C3BUdkNWQteXHlmhyBvIxq7wKSiyFZVnBx77YfyqpmXFvVTE+oi6+9s8fetCdBpRUVIQhM6nLWuKsDK0VSoVX3zxBatWrWLdunVUVlYiyzKLFy9m0qRJ9GlD0Of06dNs2bIl7PGCIFw+RVHw17obgtYlF7Kvyx3gD29nsorq+hLhgeD1GTTSeVSSOzAgpteFwPW0C38OhqiUoB6CiqJQU+qg6GRpIAv7ZA3WVoLnsSnGQPZ1ajTJqdGYYiLCft2H83azbs1HVO07jrk28JiJRsFsRSHO5iS5xkZirR2tLgLLjBlEz52LYfQoUS5REAThOjZlyhQSExOJi4vjpz/9KT/96U/ZvHkzb775Ju+88w6vv/46I0aMYNGiRTzwwAOYTKaOnrIgCJdBdnix7y3DvqMYX7kz6JgfmZ2mQ6yI2cxeYy5qlZq7+t7F44Mfp0dUj6CxFQU2jm4p4sTOEtxNemyr8NJHn0NG5Bq66Q4jSQrE9Ych34fB9wXWua0oKKvhs89WULJ7E3G2QixNjnu0RmKHTWDWvXPp1qtjgyiKouA5dQpr9jqs2dm4Dh5sdpzKYsE0ZTLmrOmYbpmIytjxwXdBEG5O7Rl8Li0tZfPmzSxYsKDdrikIgtAqnxvv7vU4duThLEnApyQDwYFsn6JQ4g30xS7zKSiAWlWCqm4dTl8xiiQ17pKI1ufkfC8Doxf+jB8Mzrouqv0IgiBcC2FlaLfkYoZMW3rZfPDBByxYsEBkaF8GsftRuBTZ4Q0ErkvtQZnXiju8v2sSjkC5cNXZoMxrtVQXGKDSQkJ6IOP6YvZ14kDQN71tF8hQqSywUXSyhqK8QBZ203KOQc+tkojvYb4QwLaQnBqN3qht0+s/ce4Qa775gPK9RzBXNfO2pijE2l0k19hIqrWjkxUM48cTM3cu5ulZqESZWkEQbiI36pqitraWJUuW8NZbb3HgwAGMRiPf/va3efzxxxk7dmxHT++6cKP+7IUbh6fAii2nGOeBchRvcBZKtaaOry1bWBWzlXJtNVqVlrv73c1jgx4jxZTScA2Xj7zdZRzZUkTZmbqQ54hRF5BhWMOAyPVEqqxgSoLB9waC2MlDgzZmNjtHn58Va3PYs2YVxsLD6JTgda6MCrl7OuNn3MHEqbeg1oS1j/yqUPx+nAcOYM3OxrY2G8/Zs82O06QkY87Mwjw9C8PIkUjatq3FBUG4OXWmdYW4H9m+OtPPXhCuOdmP7+AmHNuO4CyIxiuHbs6RFYVSX6CkeIlXIfDOJGOOOIatcB1OdXB7HUlWQGXnzPCePPTQLxjTLeOavBRBEISrrd0ztDds2MB7772HJEn8/ve/JzEx8YomKHrWCMLlU7wy3jJHfX/ri4FruUkfwZb50EiFjUqFB7Kv1VJZICsFAkHqpCGQNKmhZHhcf2ihdI3fK1N6tq6+fHjJqVo8rpY/JKq1KpL6RNX3wE7qbUEboW7jdwLOFJ3gm2/ep3jPQczlgeczNxkTfSGInVxjQ+/zo+nXj9jvzCPqzlloExLa/JyCIAjC9ctisfD973+f73//++zYsYMFCxbw9ttv8/bbbzNo0CCeeOIJHnroIaKjozt6qoIgNCJ7/DgPlGPbUYy3ILR380HDSZbHbGS7+QA+yY9erefhAQ/zyMBHSDAE1nOKolB21srRLUWc3FWKt8mmTg1u+uq3kWFYQ7I2FynCDBmzA0Hs3pNB1fpa9OipAr76/Cvsh7ZjcVfRtDuhy9iF7uOmcdc9dxHT5dIlyq8m2e3Gvn07tuxsrOvW46+sbHZcRFoa5sxMzNOziEhPF9k9giB0Wn6/n8rKSlyulivBVVRUXMMZCYJw01EU/Md34NyyB8eZSDy+fsDQJkMUKnwKBV6ZYq+C98JtWHOMjKZ2A1WleynXqKDRslTj92Mz2KnMnMiz835MN4u4lykIws0rrAzthQsX8v7779O9e3e2bt1Kt27drsXchCbE7sebiyIr+Kpc+C6UCveWBgLXvgonhLknRE1ZQ7lw1Rk00lm0UgGS1KjcoqVHQ6nwi5nXlu6XzEzxuHyUnK690AO7ltL8Ovw+ucXxukgNyakWUi4EsON7mFFrLq+sd2H5WVZ98x7nd+3BWOJFReg8oxzuQBC71obB40OK7ULM7LuwzJ2DPi3tsp5XEAThRnIjryny8/N56623ePfddykpKQGCN1Pq9XruuecefvCDH9yUWds38s9e6Hy85Q7sOcXY95ShuILLgbs1XlZFbWFF9GbORwT+Lhs0Br6d9m0WZCygS2QgYOx2eDmxs5QjW4qobCYYHqc5TYZhDf31m4jQeKDfbYEg9oA7QNt6hR6708PnX67l2Ka1WCryUDdp4u1VadH2G0HW7LsYOnJohwWF/bW12DZuxLo2G9uWLSgOR+gglQrDqFGYszIxZWWhE5/rBUG4Qh29rli1ahV/+tOf2LZtGx5PeJv8RYZ2++jon70gXBcUBfnsQZwbt+E4pcLtGUBQNPqCap9MgSfQF9t94aOpNkJNSlc7NUc/pcJWgl8dfJ9U5/NQmODFOPdb/GTaIxh0orKkIAg3pnbP0M7JySEzM5NVq1ahaVQu7Xe/+x133303gwYNurIZC8JNTFEUZJu3vsf1xbLhvlJHSJnFlkhYgzOuVWfQSudQSY1uZKk0EJ8GSfddCGAPgaRBENk0tySU0+ap731dnFdD+XkbitxyVN0QpavPvk7pZyE2xYRKdfk398qri1m5+j3O7NyJodCFSpEuZGI3XNPk8tRnYpvcXtBFEHXr7VjmzMY4YQJSB5Z6FARBENrPY489xpNPPhkUjPZ6vXz++ee89dZbrF+/HkVR6oPYFouF+fPn88QTT6DVann77bdZsmQJH374IXfffTfvvvsuRtEfVhCuGcUv4zxaiT2nGPep2pDjpVE1fGxYwXrLLtyqQHDCrDPzUPpDzE+fjyXCgqIoFJ2s4eiWIvL2luL3Bq9LtZKTfvpNDDSsIV5zCqnneBj8XzBwHhhiw5pnzt5csr/8CvnEbgx+B03Pcsb2JH3KdGbNnoHe0DE3GL1FRfX9sB27dkEzQRpJr8d4y8RAP+ypU9DEtL72FwRB6Az++7//m+eff75NVSBFJQpBENqDUnwS58YNOI97cDrTgNDYiE32c94NBV4ZR6Pbu0l9o4jhMGd3LuV4sS+QUNQomK2RHZxIjWTUfc/w++EzUUmXlxAkCIJwIworwlNcXMyzzz4bFMwGeOGFF0hNTW1TQHvt2rX8/ve/Z926dW2bqSDcAGS3ryHTuqShbLhs97V+MgButNL5+ozri3+qqApOqNaZIWlYcOZ1fBpoIsJ6FmuVqz54XXSyhuqSZjI8GomK05OSGk1yv2hSUqOxJERe8QfF6roKvs5+n7zt29Cfd6CWJUxA4yC2we2tD2KbXR4kIHL0aKLnzsF8222ozU0LkAuCIAid3bvvvsv06dMZO3Ysubm5vPXWW7z//vtUXiipe/Gm5i233MITTzzBfffdh16vrz//z3/+M7///e/517/+xc9//nOee+45/vrXv3bIa2krv9/PX/7yFxYvXoxarcbj8XDffffxm9/8hoiI8P6NF4SO4qt1Y99RjH1XKbI1OItO0cDh+Hz+FfEJx/Vn6pd7MRExLBi4gPsH3I9ZZ8Zp9bBv0zlytxRRXRq6Pk3UHicjcg2p+q3oEnrCkAcD2dgxoX0Lm1NeWcfnS1dQkLOBaGsh+ibHXVojUYMnMOve2fTp2/syvgtXRlEU3CdOYF27Fmt2Nu6juc2OU8fEYJo2DfP0LIzjx6OKFBk9giDcWHbs2MHzzz8PwLe//W3GjBmDRqPhmWee4ec//znp6ekA2Gw2du/ezZIlS+jfvz8///nPO3LagiB0YkrlOdybsnEcrsNpT0MhtAKkS/Fxzi1R4JGxNgpiGy06UodF4zm2lBPbt3JGqwEVXFz0qmQZr9bG8ZE9WXDv7/hhzxHX5kUJgiB0MmEFtL1eL263u12esLS0lI0bN7bLtQTheqX4ZXzlzqAe194SO/7qcP8eyWikYrTShTLhFzKvNVIxktQkazuqKyTNaAheJw2B6J6gCm8Hn6Io1JQ66suHF52swVrVct8pgNgUYyD7OjWa5NRoTDHtcxO9zl7DqvUfcHzbZnRn6tD4VQRy5hqC2HqPl+QaO8k1NixONxKg7dmT6LlziLprNrpuXdtlLoIgCML1a+XKlfz9739n+/btQEMQOy4ujgULFvD444+TdokWEzqdjqeeeoqKigreeOONThPQ/t73vsfnn3/Oli1bGDBgAAUFBUyePJlDhw7xxRdfdPT0BCGEIiu482qw5RTjOlZJk2rd+KIl1sXt4k3Vx9jUDQHquMg4Hhn4CPf1v49IdSQFx6vZtuUwp/eVITe5RoRko3/kBgZGrqFLjAcG3wtDfhtYE4exwVKWZdZs2EHO118Tcf4gWsVHdOPjqPB0TWf0bTPImj4J9TWu+qP4fDj27g30w16bjbewsNlx2u7dMWdlYZ6eReTw4Ujq1nuCC4IgdFavvfYakiSxfPlyZsyYAUBlZSXPPPMMt912G5mZmUHjH3nkEaZPn07XruJ+gSAI4VOsZXg2r8ZxoBxnbT9kUkPG+PBy3iNx3g3VfoWLfSJVaoneQ+Po0c1N/sq32PfpWTwaNWgb1pJan49Ki52SzPH8YuYz9IkV7WAEQRAuJaxP4927d+eLL77gmWeeudrzEYRORVEU/DXu4B7XJXa85U7wh1f2SiXVoJVOB7KtL5QN10jnUUlNgt+SCuIGNApcX/ifMa5Nc5ZlhcoCG0UnayjKC2RhO63eFsdLKon4HuYLAWwLyX2j0Zu0bXrOS3G4bXyz4WOObFmP5nQ1Wp8KA3BhqyIAEV4fSTU2UmpsRDsCQWxVVBSWeXdjmTMH/ZAhonSYIAjCTeSjjz4CAv8OS5LE9OnTeeKJJ5g7dy5abfj/RkVHR1NeXn61ptmuduzYwRtvvMH//M//MGDAAAC6devGCy+8wMKFC/nqq6+46667OniWghDgt3tx7CnFvqMYX2WTjZIqcPSW+LdxJZ94lqNIDWvmJGMSjw16jHmp8/DbJY6uLSZ38znqqkKrGaVoj5BhWENf8yE0g+6AIX+DXpNAFV4g98y5YpZ9uoya/VsxuasvVAJqYDfEkTR6CnPvvYuEhLatt6+U7HRi37o10A97wwb8NTXNjtMPHIh5ehamrCwi+vUT62FBEG4aW7du5e67764PZrdmypQpPPTQQ/zjH/9g+vTpV3l2giB0ZoqjGm/Oahx7CnFW9cKv9ASCq/3IeCmVId8hUeEDhYb1bJeuJtImJGGyHWT3J6+T67Yhq1SgaVijan0uTnfzYph5N7+Y8hgWvagwKQiCEI6wAtq33nor//jHPxg5ciRTp07FYrHUH/v888/Jy8sL+wkPHDjQ9lkKwnVAdngbelw3CmAr7tBedc2RJHcgYC3lB2Veq6W60MFaY3DJ8KTBkJAB2raXC/R7ZUrP1tWXDy85VYvH1fKc1VoVSX2i6ntgJ/W2oI1o3wwPt8/Fmk2fcGDzGqSTFUR4VQReWUMQW+vzk1RrI6XaRqzdFcjR1mgwTc/CMmcOpilTUOl07TovQRAEoXNQFIWUlBQeffRRvvOd79CrV682ne9yufjoo4/405/+RMxl9pOVZZnXX3+d5557DqvVSn5+fljzcLvdvPLKK3z88cfk5eWhVqtJT09n4cKFLFq0CFULFVY+/PBDgJAbt7fffjsAH3zwgQhoCx1KURQ8563Yc4pxHCwHX/DmTlWUjsoBbv4uLWGLdTt4qS/C083UjccHP86dve+i+Fgd6/5xmDNHalGU4ABtpKqWtMh1ZBg3EJ0+CIY8Cv1nhL1Gdrs9fLUim8Pr12AsO4kKJSiQ7VHpoM9wpt41i3Fjh1/TALGvqgrb+g1Ys7Oxb92K0lyFNI0G45jRmLKyMGdmok1OvmbzEwRBuJ4UFxczduzYoMcuvmfLTUt5XDB69Gheeumlqz43QRA6IY8D7+7VOHecxlGWjE/pBqQEDVHwUaPyc8Kqpsx7sfBQYL0bYdDQf3QiA0Z1oXTNx+z++9dUay6sIy9+vlMUVJKdg2l6Rt/5Xf48ci4a1bWt/CMIgtDZhfWu+dxzz/Hvf/+bffv2sX///qBjS5cuZenSpVdjboLQIRSvH2+Zs75M+MXgtVznaf1kAGQ0mhK08smGPtfSGdRSOZLUTNa2KbGhVPjFP2N7h51d0pTH5aPkdG19CfHS/Dr8vuY/0AHoIjUkp1pIuRDAju9hRq0Jr1x5W/h8XtbtWMqeDV8jHy9F71Zd6EvY8Fxqv5+kWjspNTa6WJ31R/RDh2CZM4eoO+5Ac5mBB0EQBOHG8fzzz/P888+3GPxtTWFhId/5zncAuO2229p8/pEjR3jiiSfqS56Hq6KigszMTA4dOsSiRYv429/+hsfj4dVXX+Wpp57ik08+YcWKFUE9vy/as2cPAKmpwWXuEhMTMZlM9ccF4VqTPX4c+8uw5xTjLbKHHNf1tXA6tYJX6l7jSM2RoGO9onqxaMgibomaxomthXz0z03Y7Rf/Xl8MJst01x0gw7CG3qkq1MPuhYwXwRAb9hwPHjrON0u/xHN8F3qfg6Y5MNaYnqTeksmcuXdgNhnCf/FXyHPuHNbsdViz1+Lcu4+QeuqAymDAOHky5qwsTFMmo46KumbzEwRBuJ6ZzcHv5hfXT4UttGZwOBydpjKPIAjXgM+D7+A6nNuO4iiKxSv3Bbo0GeTHoXVz0h5BgUPBh4qLQWwk6J4WQ/qEFJKS/Oz7x1/5/JP9OLQa0DRsilT7/TgibRwe3Z0Fd/yaH6WOF1V1BEEQLlNYAe1u3bqxY8cOfv3rX7Nu3ToqKyvrSzxe7FnYFuJNW7geKLKCr9KJr9TRKHjtwFfphDB/rdXaWrTko5VPNOpzXYgkhZZFBAm69AsErZMvBK8TB4M58Ypeh9Pmqe99XZxXQ/l5G4rc8gswROnqs69T+lmITTGhUl2dv5N+2c/m3SvZsf5LvLmFRDpVBHKqGwIQKlkm8UIQO87qRH3hPUWTkoxl9mwss+cQ0af3VZmfIAiC0Dn179//soPZAH379sXrDbTbaOt1fvvb3/KHP/yBMWPG8Mtf/pI//OEPYZ973333cejQIX74wx/yyiuv1D8+bdo05s2bx7Jly3jqqad45513Qs4tLy9HrVZjMIQG26KiosQNWuGa85baseUU49hbFlKxSIrUYBgRz56uJ3nt/MvknQuu6NUvph9PDFxEatUQjn1yjA/P7CAQwG74+2hUVZIemU16t3yiRt4Kg/8JMcHlHi+lrtbKF5+vIH/bekx1haiAxltFHFoThoHjuGPebDLS+rT9G3AZFEXBdeQo1uy12NZm4z55stlx6rg4zJmZmKdnYRg3TlQlEgRBaCI5OZlDhw4FPWYwGDCZTGzcuJGFCxeGnPPNN9+gE++ngnBzk/34j23GuWUfjrNGPP4BwOiQYd4IG+f8Bk5UyngULRfzsQGi4vSkjU8mbXwy7lMH2f7mL1lZVYJP3bQ/tpeiOCtFk8fyi9t+wK/i+16DFygIgnBjC7uuRd++ffn444+DHlOpVCxZsoQHH3ww7CdcsmRJswtLQbhaFEVBtnqDsq29JXZ8ZQ4Ub8uZy42pNG40miK0/mNolbwLweuzqCRnYEDTZGqNHhIHNsq8HgKJGaAzXvHrsVa56oPXRSdrqC5xXHJ8VJyelNRokvtFk5IajSUh8qpuKpFlmZyDa9m2binOw2cx2FVoAE2jG5SSIpNQ6yClxka81YHmQgBeZTRinnE7ltlzMIwehXQFwQpBEAThxpSfn09CQkJYY2fMmIFGo2HRokXMnj076JhafXmVUF555RX+93//l6eeeorFixeHfd5nn33Ghg0b0Ov1vPDCC0HHJEnipZdeYtmyZSxevJgf/OAHjBw5Muxri82iwrWi+GScRyqx5RTjya8NOa7tZiJybALrzbt4M/e/OXvobNDxgV0G8kjXRZgPRnD8r1ZOu49dOCJd+H8/PSP2kBG7h55jBqAa9r3AejrM33FFUdiyZQdbVqxEdeYgGsUXVFLcjwpHchrDsm5n1h1T0GqufplHxevFsWsX1rXZWNetw1dS0uw4Xe/emKdnYc7KQj9kiFgHC4IgXMKIESN49913+cEPfsCAAQPqHx85ciRLlizhtttu49vf/jYQ+Lfhd7/7HdnZ2YwaNaqjpiwIQkdRFORTO3Bu3oHztBqXdyAQ+l6gRFgp0Ro4XKrgqIkAGjZsqrUq+o6IJ31CCil9o8j//BO++t6/KZE9KJIEjT5bavxOjvZyY8ycza+mPk5cG6oKCYIgCJd2zRs15OfnX+unFG4istvX0OO6xF6ffS07msuYboZKRquvQstptJ5DgZ7XqjOoqA7cZmvu3rehS0O58OShgT9j+4L6yv96KYpCTamjvnx40ckarFWuS54Tm2KsLx+enBqNKSbiiucRzjz35m5m49pPsR08hdEqIQGGRkFsFIU4q4Ou1TYS6uxoL2aRq1QYJ92CZc4czFmZqCLb3idcEARBuHn06dOH999/P6wNlXl5eZw+fZqvv/6aL7/8klmzZl3x8x89epSuXbu2+by33noLgMzMTKKjo0OOp6enk56eTm5uLm+//XZIQDs+Pp4TJ07gcDhCsrRra2tJSkpq85wEIVy+ahf2nSXYd5Ug27xBxyStisih8USMiWeFcw1vH36OQltwudfhsSO5T74b306ZU2UAbqAhS86sLiXDtIW04XpMY2ZDr5+1qf1OcVEJyz5dRvmeLRhc1TTNv6uLjCdu5CTm3HMnPVLC2xBzJfw2O/Ytm7Guzca2cSOy1drsuMihQzFdCGJH9Lk2WeKCIAg3ghkzZvDZZ58xbtw4Hn30UX7/+9+j1+tZsGABGzduZP78+fzkJz+he/fu5OXlUV1djSRJ9UFuQRBucIqCUnAQ1+bNOI77cLkHojAiZJiks1Jj1nOkUkt5qZ7GmdgAib2jSJ+QTOqoRNQ+Jwf++Rqrtm2iVnvhfueFTZeSrCBrbOwepGVs1mP8ddS9RGiu/v1YQRCEm80VRdzeeecdJkyY0F5zEYSwKT4ZX4Wzvkx4IPPajr/aHd4FJAVNpAOtpgiN9yha35EL5cJLkC72rmvub0dsnwtZ14Mh6ULw2pwUdtZIa2RZobLA1pCBnVeD0+ptcbykkojvYQ6UD0+1kNw3Gr1J2y5zCcehkztZt+Zjag6cwFQTeMxI4++FQrTdRfcqK4m1dnT+hoVhxIABgb7Yd85CG2amnSAIgiC0pd3N4cOH2b9/P4888ggvvfRSuwS0LyeY7fF4yM7OBmD06NCSdheNHj2a3NxcVqxYwWuvvRZ0bOTIkWzdupW8vDyGDBlS/3hpaSk2m61NGd2CEA5FVnCdrMaeU4zrWFVISx5NfCTGscmohkbxRcGXvL3jbcocZUFjpugzmVo4kpqdXTjnD960qMJLb/1uBvaroduUiUgD/gza8Dc2+rwevvl6HfuzV6MrOYkKhcZbPdwqHd5ew7ll5kymTRx+RW0KwppPeTnWdeuxZq/FsT0HxRu6hpe0Wgzjx2HOmo5p2lSxBhYEQbhM9957Ly+++CJer5ePP/6YX/ziF+j1ehYuXMjixYvZtGkTxcXFlJSU1K8dx44dy9NPP93BMxcE4WpSyk7i3pSN46gNp2MgCkNDxqi0NlyxWk66zOSd1UMZQMO6LdKsZcDYJNImJNMlxYT1VB5bf/MsufkncWnVoG1YU2r8fmrMdewf05WHp/6En6RNE9WzBEEQrqIrCmi3tXS4z+fD7Q4z4CgIBG5a+6vdeEvtwZnXFU7wh3dDW6X3odVXBrKuXfvQysfRSueRZA94LgxqmgCi1kFCRqOS4YMhaRBEmNv19fm9MqVn6+rLh5ecqsXj8rc4Xq1VkdQnqr4HdlJvC9qIyyuZermOnz3I2tUfUr7vCObKwM+gcSlHBQWTy02vCitJtXYifI1K9MTHYbnzLixzZqNPS7um8xYEQRBuPnq9nnHjxvH000/z29/+tsPmkZubW9+zu1evXi2Ou3js7Nmz1NbWYrFY6o89+OCD/PWvf2X16tVBAe3Vq1cDMH/+/PafuHBT8ts8OPaUYttRgr9pZSCVROTALhjHJePrruE/J/7D4pWLqXJV1Q/R+HXMcNxO+tkMrNYUSptcP1pdSEbKSQZM7oNh5FPQxjKMx4+dYNVny7Af3UmEzxnUFxug2tKTnhMyuefu24mNMjV7jfbiPp0f6IedvQ7ngQPQzIYbldmMacoUzNOzMN4yCbXpylsQCYIg3OwsFgvnzp0LeVylUrFy5UpefPFFPv74Y0pKSkhOTub+++/n//v//j+02muXACAIwrWh1JzHs/kbnIcqcdSlIzMwZIxK7UBJhHOaeA4dl/GW+wF7/XFJJdFzUBfSJyTTc3AX1GoVxeuyWfqrtzlrq8avVoG24f6r1ucmP9lK4cRR/GLqU/w2OfQ5BUEQhPZ3TUqO79y5k/fee49///vfVFVVtX6CcFPy2wN9rn2N+lx7Sx0o7pYDvI1JWgWtyY5WU4TWewSNYzda6TRqrND4XlzT5Ax9NCQPaRS4Hgxx/UHd/h90PC4fJadr68uHl+bX4fe13MdbF6khOdVSX0I8vocZteba99PLLzrON6uXULLnIOaywM+jaWhf5/XQt6yOpFobkd6Gn5kUEYF5+nQsc+dgHD8e6Rr0KhQEQRCExiorK7Hb7a0PvEoa33CNj49vcVzjYwUFBUEB7bFjx/LEE0/wxz/+kdmzZ9O/f38KCwt54YUXmD17NnfddVez13S73UEbSuvq6gBIS0trNWN1xIgRfPnll0GPzZ49m717917yPIBnn32WZ599tv5rq9VKenp6q+cBLFu2LCjjfPny5Xz3u99t9TyTycSxY8eCHvvZz37GRx991Oq5s2bN4p///GfQY6NGjaKkhX7Hjf3xj38MKoF//PhxsrKyWj0PYNeuXSQnJ9d//cYbb/C73/2u1fP69+/PunXrgh6bP38+GzdubPXcJ554ImSDR7du3cCvIHv8KF45JBtbUoGkU/Peu+8x+tauvJv7IUs+X0Lh/kIK3igAQKWo0fsjUMla/sGbTZ5V4T8/eI6Bo4wkZ92BFPMwL774Im8+MITWTJkyhTdef50Vy77mxOZsImuLeH1DDhXWhr/TMhKSVoder0er3Q8rl/Hib+D5559n0aJF9eOKi4svWSWhsezs7KC+rB9++CE///nPUbxeFLcb2eUGf2hbozi1hqVjx2LOysI8PQvDqFF89+mnWfH4460+5wMPPMCf/vSnoMfS0tKw2WytnvuPf/yDO++8s/7rPXv2MGfOnFbPg8CmG7O5YXX/8ssv8/LLL7d6nniPuMneI8KwZMkSpk6dWv/1hg0beOihh8I6t6CgIOjrF198kTffbPpeEmrKlCl88MEHQY9lZmZy4sSJVs+9Gu8RrUlKSmL37t1Bjz355JOsWLGi1XOvx/cIWW75fkZHMRgM/M///A//8z//09FTEQTharGV493+NY59RTiq++JXBoQMkSQ32mQ3ZdFdOZinofqoE6gJGhOTZCBtQjIDxiZhtEQge70cf/ctdq9aTpnqwvubuuEzk0qxs7+fG+OEO/j15EV0NSdexRcpCIIgNHXVIkvnz5/n/fff5/333w/6IKEoiii9cZNTvP4LAeuGUuHeEgey1dP6yQAq0EQ1yrp27kHr2oOaciRn8LgQ0T2bZF0PBku3disZ3pTT5qkPXhfn1VB+3oYit5xZHhmluxC8tpDSL5rYFBMqVcf8fSkoP8Oqb96jYPdejMVeVEghQWyV7KV3mZXu1VYMnuAbeoYxYwJ9sW+/DbXp6mbHCIIgCDemjRs3Nnvz/fPPPycvL6/V871eL2fPnuWzzz6jTwf2p7U26p+r1zfNJ6XZYxcDz429/vrr9O3bl7lz56LVanG5XDzwwAP85je/afGaL730Ei+++GLI48XFxa3Ou3v37iGPlZeXU1hY2MzoYE3nryhKWOdBoER7Y06nM6xzG99sv6i6ujqsc5vbdFtSUhLWuQ6HI+hrn88X9mv1+4M3btpstrDObbzZ4aKKioqwzq2tra3/b9ntw7EvvJ8pwKf5n/ObT5/H5g0ETzRuLb7qi2tAHx5arsZ160vPBq25a2trw3re3dtzeHXRw2gUPxcLkttcbmqdTbLHnU7q6mqDHmoa5PH7/WG/Vp8v8LpkjwdHTg5FH30U1rnq2FhSN6wP+sxbVVUV1rnV1dUhjxUVFQW9h7TE6XQGfe3xeMJ+rU1bOdTV1YV1rniPuPHfIy4Kd75NK/K53e6wz21uHuGcW1FREfJYaWlpWOe2x3vERQ6H47Jf6436HiEIgtCunDX4dq/CsSsfR3l3fEpvoHfwGMlLRKIdW7ce5JbAmaNVKHLwv+FavZp+oxJJn5BMYu8oJEnCXVFOzot/5cCB3di06qB7yipZxh1hZdsQDeMmzOfvYx7AqBMVdwRBEDpCuwa07XY7n376aX2/mouL3saL37i4OCorK9vzaYUrpHhlHIfKcR2pxO/woTZo0A/sgmFwPJL28rOBFVnBV+msD1xfzLz2VTpDsj5aoo6SAlnX6kK03iNobdvQeE8guXzBWddNY74qLSSkBQeuEwdBZPRlv55wWKtcjfpf11JdfOlssKg4PSmp0ST3iyYlNRpLQmSHbvgoqypixZr3OLdzF4ZCFyrlYhC7YU4KPrpX2ulTXovJHdwbUNerF5a5c4i68y503dreY1QQBEEQGtuwYUOzmWhLly5l6dKlYV9HURQee+yx9pxah1Cr1fziF7/gF7/4RdjnPPfcc0FZkHV1dXTv3p3k5ORWM7SbyyaPj48Pq494VFRU0NeSJIXdf1yn0wV9HRkZGda5pmY20MXExIR1bmxsaNnrpKSkVs+DQCZYYxqNJuzXqlYHt44xmUxhnZuYGJoNEhcXF9a5FosFb4kdW04xjr1lKB4/SaZGP2sVqLRqJJ0KVBKyIuPwOXB4HawqWIXJZCLR1ouM0glwSsX7xj83eQYFjVpGG6FGpYtoeLjJGtdisTQ7X1mWcTmd+D1uJEXB6HehURqCetX6eEwJ3cBQi0Z96d/hpr8TarU6vJ+NouDctJmCt97CvnETssOBUldLYpNKQ5JWi6TXo4qIgAs/y6SkpJD1fGxsbFjPGxMTE/JYSkpKWNmXkZHB/cd1Ol3Yv4dN5xsVFRXWueI94sZ9j2gq3PlGRESEfB3uuc3NI5xz4+LiQh5LTExsNjDf1GW/RxD4OTZmMBjCOre535vO/B4hy3JYm+SuB8uWLePHP/4xp0+f7uipCIIQLo8D//5vcOw4jrM4Ho/cH2j63iUTEVeH3L8beQ4Dx/eU4TwWGntI6RdN+sRk+g5PqG/fWH3gADvfeI0TJefxaNRBZcU1fi9lsVZ2j05kwbjvs3TgDNSqa9v2URAEQQgmKU23WraRoiisXbuW9957jy+++KJ+93Hjy8bExDB//nwee+wxDh8+zMKFC0N2Ggutq6urw2KxUFtbG3ID4HI5j1ZS9ckJFKcvELNUqP9TitQQe19/IjO6XPIaiqIgWz1BPa69pQ68pQ64RDntxlSRarQxfrQRFWg4Fci6rt2MSml9pzERUaFZ1/FpoNG1fu4VUBSFmlLHhQB2IAvb2rTPYBOxKcb68uHJqdGYYiIuOf5aqKorZ+Xa9zmVs43I807UcmhA3afyk1jjIr24CrPLE7R/QG2xEDVrVqAv9pAhogKDIAhCJ3A11hRXw4svvthsdnG4DAYD/fv3Z+HChTzzzDPt/m/Uu+++y6OPPgpAfn5+i/2xv/rqK2bPng0ESuPOmjWr2XGvvvoqTz/9NACHDx9m4MD278XWWX72QvtTfDLOwxXYthfjORtaAUDXw4xxXHL9ptYSewnvHH6Hz05+htvvJsJroH/FaDJKxxPjTA45P8FcTsYoE/1mTkVnblvWis/rZdOa9exavQp18YmQvaouVQSO7kMZe/sMZk4d1Wog+3J4S0qwZmdjy16HfedO8IWWE5ciIjBOnIg5KwvTtKlomglyCoIg3Ew607rigw8+YMGCBeJ+ZDvpTD97oZPxeZCPZuPcdgDH+Sjc/gwgNJCss9SgG5xEYUQCR/eUU3YmdH1riokgbXwyaeOTsMQHNpgpisLZZUvZ9clHFHgcyE0qY2r8Lo71qKNo9FB+NvG73NJjZMh1BUEQhPbTljXFZWdoHz16lMWLF/Phhx9SVFQEhJYhkiSJ//qv/+LZZ5+t36l75MiRkHFCx3AeraTy/aMN2dJN/lScPirfP0qXhzPqg9qyy9fQ37okUCrcV2pHdoTe8GmWRoU2ToPWZEOrLghkXddtRWU9jBROe/Wobhf6XQ9u+F90z6tWMrwxWVaoLLA1ysCuwWn1tjheUknE9zCT0i+alFQLyX2j0Zvavy/35aiz1/D1+g84vm0TEWesaPwqAnvTG76PXrWfKJuXoQUVxDjcwTcWtVrMU6dgmTMH0+TJSLqru3lAEARBuDn99re/DenjqVKpWLJkSVA/0utdjx496v+7vLy8xXGNj4Xbr1QQWuOrcmHfUYx9dymyPXjtKulUGIYlYByXjC4lsBossBbwr93/4ou8L/D5faTUpZJeOoE+VUNRK8EfH3VqFwMGeMi4YzRx/TLbPLczJ07w9edfUnsoB63PFfThVAHKo3rSdewUHpw3g+Qu7XuzXFEU3CdPYsvOxpq9Dtfhw82OU1ssmKZNw5SViWniRFRNsm0FQRCEjlNaWsrKlSvJzc2lpqYmpBR8YyIzWxCuY7If+eRmXFt34jitw+UbAkwMGaY11hE5OIa6rn04cKiSU9+U4/eeChqj0kj0GRpP+oRkuqXH1rdy9DnsHHnzH+zbtI5KzYW7nBeOSYqCorKTk+7EMuI2fnXLE/SJ6YEgCIJwfWlTQLu8vJwPP/yQ9957j/3799c/3jhAPXDgQObPn8+tt97K6NGjGTt2bFDZqfnz5zN//vwrn7lwRRSvTNUnJ1ov/a1A5Ye5RPSJxlfmwF/Tcl+8IBJouujRRvvR6ivQKnlonHvQVG5CqqmBmtDxwV+rIX5AaOa14dplQfi9MqVn6wLB65M1lJyqxeNqeSevWqsiqXdUffnwxN5R6PRXrU19m9ldNr7Z+BFHtq5Hc6oGnU9FIHemIcPFo5bRu/0MPVdFktUW8mPRDx2CZc4cou64A00z5c4EQRAEQQiVnp6OVqvF6/Vy5syZFsddPNazZ89mS74KQrgUWcF1vAp7TjGuE9Uha35NggHTuGQMIxJQXViv5tfm89bBN1lxegU6j5FB5VNILxuPxRVaVjo53kbG1D70nZSOVte20otOq5XVX31N7sa1aGsCG6Mbb/ms05hR+o0ma/adTB7er10rKyh+P859+7Bmr8OanY333Llmx2m7dsWUlYk5azqGkSOQNNfPml4QBEEIeOGFF3jppZcuGcRuTFEUUVFOEK4nioJydieuzZtxnJRxeYahMD5kmFpvxZBuQh6aQd4pK7nbirGuOhoyLq67ifQJKfQfnRiUUGQ/d449r73CkZO5OLRq0DS8D6j9fqxGK5uGS4wbdj//Gr+AqAhRcUAQBOF6FdYn808++YT33nuP1atX1y8UGwexu3XrxgMPPMD8+fMZMmQIgOiTfZ1zHCoPlBkPh0/BfaK6xcOqKB3a+IhGWdeH0dZuRao8DDZP69fXmQL9rZMGN2Rfx6eDVh/mq2kfHpePktO19eXDS/Pr8F+iZLouUkNyqqW+hHh8DzNqTfuXP7wSbq+LNZs/4cDm1UgnK4nwqgjklAQHsSVZIaOgjtSKqpAgtjYlhag5s7HMnk1E797XcPaCIAiCEGr9+vWkp6d39DTaRKfTkZWVxapVq9i9e3eL43bt2gXQYklyQWiN3+rBvrsE+46S0I2oaonIQXGYxiaj6x1Vf1P/ZNUJ3tz5J74p2UHXmjSyyh6hZ/Ug1EpwoFqv8zBgpIWMWwcTmxLai/hSFFnm0O7drP9yOe68A6gVf1AQ2yepqYgbQNrkLL4zayrRxvZryyO7XNi3bQuUE1+/AX9V82WhIjLSMWdmYZ6eRcSAASLoIQiCcB375z//ye9+97v6ry0WC1FRUahULd+Tsdvt4l6lIHQ0RUEpPoR7yzqcuU6cziHIjA0ZptI6MPTTohs/mIJqHzu3lVCw4WDIJs0Ig4b+Y5NIH59MfA9z0LGyLVvY+e4bnKqpwKdWBfXH1vo9nE+oY9eIOOaP+BErh81Bq7o+qmoKgiAILQsroH3//fcjSVJIX+x7772XBx98kMmTJ4sP/J2M60glDQ2zwyNFqNEmGdDGglZ3Met6N+qKXVB4JryLmJMblQu/ELyO6Q2X+NBxtThtnvrgdXFeDeXnbShyyynrkVG6C8FrCyn9oolNMdWXrbmeeH0esnOWsm/jKuTjpejdKgJbA4KD2B6VRGqRi2FFRTT97quMRswzbscyZw6GUaOQOuDnIwiCIAjNmTJlSpvPyc/PZ/PmzSxYsOAqzCg8jz/+OKtWrSI7O5va2tqQDOxjx46Rm5uLJEk89thjHTRLoTNSFAVPfh22HcU4D1eAP3g9q46OwDg2CeOoJNTmhjYxR06v4c09/0tOtZW0snE8UPY8Zk9oNaRuPSUystLoMzwRtbZta8Lq0lK+Xvol53I2onXWBObT6HiFPgHDoAncOW8mw1NT2nTtS/FVV2PbsBHbumxsW7aiOJ2hg9RqDKNHY87MxJyVibZr13Z7fkEQBOHq+sc//gHA888/z3e/+12SkpJaPWfJkiUsXLjwak9NEIRmKBV5eLd+g+NQNQ7bIGRC+1JLaheG3gqRtwyhNiKSAzklnHw9F3fTNpcS9MiIJW18Mr2HxqFpFKiWfT5OffQBu5d/QZHiCbSoVDesX9WygwN9rZQOzeBHY3/LH3tPEDENQRCETiTs2mkXS/N06dKF//u//+Pee+9FqxU7lzorv91DW4LZuqhq4rv+C6n0EJSGsaNVUkGXfg3B6+QhkDgYTKElC68Va5Wrvnx4UV4t1cX2S46PitOTkhpdX0LckhB53S5y/LKfjbuWs3PDcny5hUQ6VQRuVzYs2nwqGatORbdyP5lnCtDLTRaEKhXGWyZimT0Hc1YmqsjIa/kSBEEQBOGq2bZtG48++miHBrTvuecepkyZwsaNG3nxxRd5+eWX648pisKvfvUrABYuXMjIkaE3eAShKdnlw7G3DNuOYnyljuCDEuj7x2Acl4x+QCzSxU2Y9gr27/o7b5xazvm6VNJL72B+TTqqJtsbDUaZ9IndSZ/UHUt823pG+zwedqzfQM6qVShFJ5AILinuVOmpSRnMqFtv53uZo4lsY8nylngKCur7YTv27AF/aKsgKTIS06RJmLMyMU2Zgjo6ul2eWxAEQbi2Tpw4wfz583nhhRfCPqdpoo4gCFdZbQHe7Stw7C/BWZuGTxkSMkSSvOi7ezBMHIjSM56Te8rJ/eQslYWh92yj4vSkT0hhwLgkzLHBVT091dUc+PvfOLAnh9qLGzAv3MOVZBmvzsamwU5i06fyq4lPkh6X2v6vVxAEQbjqwgpoL1++nMWLF/PVV19RUVHBk08+yapVq5g/fz7Tp0+/ZEkf4fqk9pUBOoJzJFriR207ipS/ofnDWgMkDgzOvE7IAF3bbn61J0VRqCl1XMi+rqUorwZrpeuS58SmGOvLhyenRmOKab9Sh1eDLMtsP7iGbdlf4DxyFqNdhRbQBgWxFaojVXSpVjHpVAkxntAFYURaWqAv9qyZaBMSruErEARBEITOp6ysjLKyMgAKCwvrHz9x4gQ2mw2A3r17YzQaQ8799NNPyczM5H//939xOp089NBDeDweXnvtNZYuXUpmZiavv/76tXkhQqflKbJhzynGsb8MxRPcHkdl1GAclYRxbDKaizf6PA6UYyvYfeBd3qmqxl03hQFlzzHQG1wlQJIUeqRbyJjck16Du6BSh/8ZT1EUCvJOsnrpl1QcyEHjC6y7L24FlZEoMfUkYdQk7p9zG/1SYi779Td+Tndubn0/bPexY82OU8fGYsqchjkrC+P48aj017atkSAIgtD+oqKiuOWWW9p0zvz585k/f/5VmpEgCADYK/Dt+grH7nM4K3vhVTKAjCaD/OiTHBjGD0A3pAcFebXs2lZM/ht5yE0qDWl0KlJHJJA2IZmU1OiGTZoX1OUeZdc/XiX3fD5urRoaVRPS+H1URltZP1xh3IC7WTzhUeIMXa7SCxcEQRCuhbAC2jNnzmTmzJnU1tby73//m/fee4/333+fJUuWEB8fz/3338+DDz7I2LGhPS+E65NevR0nmWGOVqNXbw/8pzG+oVT4xeB1l76gap/MisslywqVBbb68uFFeTU4rd4Wx0sqifgeZlL6RZOSaiG5bzR60/VfcUBRFHYf3cTm7E+xHjyNySqhAoyNgtiypFBmUmO06hiXV0pPa0XIddTxcVjuvAvLnNno09Ku4SsQBEEQhPC8++67vPLKK/zgBz/g8ccfr39cre7YNcff//53XnzxxZDHb7/99vr/Xr9+PVOnTg0ZExcXx65du3jllVf46KOPeP/991Gr1aSnp/P3v/+dJ598UmwUFZqleGUcB8ux7yjGc84aclzXKwrTuGQiB8UhaVTg90FeNsqBf7Pl9Do+949GX30nA2sHhJxrilaTMakHaeOTQ7JdWuO01rFx5TccXL8adXUxEPwBs1YThbv3SCbPuoMfjUlD24YgeXMUnw/H7j1Ys7OxZq/FV1Tc7Dhtzx6Ys6Zjnp5F5NChSB38viEIgiC0r1tuuYWqqqqOnoYgCACuWvz7VuLccRxHWTIeOQNomgEtExFnxzC6N5GjU6mzejmwrZhjn+/AUesJuWRSnyjSJ6SQOjIBXWRw+EJRFApXfc3uj94j31mHrAruj63xu8nrVseeIRa+Pegp1o68jwj19Z20JAiCIIRHUi6z3k5+fj6LFy9myZIlnD59GkmS6NOnT/2Ox9jYWOLj41m7di2ZmeEGToVLqaurw2KxUFtbS1RU1BVdS/nXbIpOfhcFI4R0UG5MRsJOSvc/IC34D5hb70t0Lfi9MqVn6y6UEK+l5FQNHldoWcGL1FoVSb2j6suHJ/aOQqcPu+J+hzuYt5N1qz+m9sAJTDWhx2UUSqNUSC4Tw8/UMrw8P2SMpNdjnj4dy5w5GMePQ9J0ntcvCIIgtK/2XFNcLdHR0VitVsxmMzU1NfWPX27AV5Ik/M2UIL7ZdIafvdDAV+nEtqMYx+5S5Cb9AyWdGsOIBEzjktEmGUFRoGgvHPwE5fBnfOM2s8kzg9iqcUT6TMEXlhR6DY1j0KRudE+PRaUKv62OLPs5vmcv67/8CvvJA6iU4L9XXklDSUx/+t6Syb0zJ5Mcc2VVm2S7HdvWrYFy4hs2ItfWNjtOP2RIoB/29Cx0fftet62CBEEQbiQdta44fPgwDzzwAFu2bMFisbR+AvDBBx+wYMECsR5sJ2JNeZPzOJAPf4Mz5yCOwhjc/iE0VwVUa7FiGNEVw/g0/Do1p/aWkbutmOK80PVcZJSOtLFJpE1IJjY5tNqV3+0m919vsH/dakrVTcIZioIkOdiVVkd5/348PeoJ7uo/DZUkNgsLgiBc79qyprjsiFbv3r154YUXeOGFF9iyZQvvvfcen376Kb/73e/4f//v/5GRkdFsf5qcnBzeeOMN3n777ct9aqEdSKYoYnWvUOn5NSDTfFA7UMIwVvcKUlyPDg1me1w+Sk7XBsqHn6yhNL8Ov09ucbwuUkNyqqW+hHh8DzNqTedaxBw7c4C1az6kYt9RzJWBv0dNbkVSEiXhlC2kn3Mz//Bx9P7QrHTDmDFY5szBfPttqE1NryAIgiAI16eJEyfy9ddfM3HixJBjd999N4MHDw77WgcPHuSLL75ox9kJwtWj+BVcx6qw5RThPlkTclybZMQ4LhnD8HhUERqoOg0bPoFD/8FVcY6v5KmccPyMaHsqXZucq4mWGTm1LxkTumKI0rVpXtUlxWR/uYLT29ajdgZuQjZeXZfqE9GkjWXG7Bnckt69TUHypnyVldjWr8e6Nhv7tm0ontDMHbRajGPGYJ6ehSkzE21i4mU/nyAIgtC5DBo0iNdff527776bRx99lJkzZxIbG9vR0xKEG5vPg3J8Hc5tu3CejcTpGw7NVP/UGG0YhsZhmDAQdZdIik/VsvOL0+TtKcPnDt5QolJJ9BzchfSJKfQYGIu6mWo+rqIi9rz2Vw7nHsCmVQfFzVWyjCPSyrphduJ6TeSXE77L8KSB7f3KBUEQhOvEZWdoN8ftdrNs2TIWL17MmjVr8Pl8mM1mHnjgAR5//HFGjRoldkRegXbd/XjgY1j6JE7/GKq8P0bBDPgJrAoCf0pYidX+L5HqnTDvDRh6/5W/iDA5bZ763tfFJ2soP29DkVv+VY2M0l0IXltI6RdNbIrpim6idZRThcdYvXoJJXsPElXWfMC+zAyVmlh6FUlMO5tLrLu5spO9sMydi+WuO9F2bXorUxAEQbjZdYaMCp/Px8GDBxk8eDBabUNbEJVKxZIlS3jwwQfDvpZYfzboDD/7m5W/zoN9Vwn2ncX4m5ZeVEsYBsdhHJeMrmcUkqMSDn8Oh/4DBbso8fbiG+9Mqu0T0fqDM6JllR9LmsS024bTbUBsmzKXvR43+zZuZNvXX+MvPBly3KHSU5Y4mKGZt3Lv9FFEG9oWJG/Mc+ZMfT9s5759gYzzJlRGI6YpkzFlZWGaPBm12XzZzycIgiBcuY5cV/j9fhYvXsz3v/99PB4P0dHRmM3mFqv52O12KioqxHqwnYg15U1C9qOc3oJ76xYceRJO70gUQqvvqCMcGAaaibxlCNpkI45aD8dyisndVkxtmTNkfEyykfQJyQwYm9TiJsvKXTvZ9dY/OFFRjFcTnP2t8XspiqtjwzCZsb3u4pe3PE6K6fqoKioIgiC0zTXJ0G5OREQE3/rWt/jWt75FWVkZH3zwAe+//z5vvPEGb775JoMHDyY1tWkPDaFDZMyFr39BpGsXKaoFOOSJuPzjkRUzKsmKXr0dg2orkuQDfTRkzLmq07FWuS6UD6+hKK+W6mL7JcdHxelJSY2uLyFuSYjstGUFC8ry+Xr1+xTu3oux2IsKiaZ/bStNCgWR8SSWRTLl4An61u0KuY7aYiFq1iwsc+egHzy4034/BEEQBAFAo9EwYsSIkMd79uyJqY0VR0wmEz169GivqQlCu1EUBffpWuw5xTiPVEKTDZzqWD2msUkYRiai1nnh+Nfw4b8hLxuPX8sx1yRy3H/B6+4DgLbRuXZzFX3HdWHmbVOINIcfaFYUheK8E6xdtpySfdtR+1xBx2UkCow9iRl+C3Pvms7Qnl0ua92pyDKuI0ewrg30w/bknWp2nCY+HlNWJuas6RjGjkGlu/yguSAIgnBjcLlczJs3j9WrV9dXhqyurqa6uvqS54n7JIIQBkVBOb8Lz7Z1OI55cLpGIDM5ZJhK6yKyvw7DpKHoelqQ/QpnDlaQ+/kpzh2pDNmbqNOr6Tc6kfQJKST0Mjf791Hx+znz6X/Y/cWnnPe5UFQSNApmq2UXR3rXcSDdxD0DvsP60Q9i0F5ZextBEASh82jXDO2WHDlyhHfffZePPvqIoqIi0cPwMrX77sfjX8NHD1z4orlfgwsLiwc+ggF3XPnzXXwmRaGm1FFfPrworwZrpeuS58SmGOvLhyenRmOKiWi3+XSEkupCvl79Hmd37sJY6EalhC7iagwKp81xmKpimXgun5HlJ1A1/euq1WKeOhXLnNmYJk9GEjf4BEEQhDCIjIqbl/jZXx9kpw/7nlLsO4rxlTfJWpFAnxaLcVwy+j5mpLMb4eB/IHc5isdOqbcfh5y3csI1CRR90KlelZuabueYmDWQrNET2tRz3lFXS87qNezL/gaqikOOV2ssWHsMZ/ztM5g9IQ2Dru17oxWPB/vOXViz12LLXoevrKzZcbq+fTFnZWGenoV+0CCkNrwOQRAE4drpqHXFSy+9xK9//WsA0tPTGTBgwCWzswFOnz7Nli1bxP3IdiLWlDcYRUEpOYR3+2ocR+pw2ofiJyFkmKT2ENlHwjBxMBH94pDUEpWFNnK3FnN8ZwkuW2grxK4DYkifkEyf4fFodaF9tgG8dVYO/+M1DuRsolIb/PdYUhT8GhtbBlqp7dWLJ4c9yrfSZ6JWNX8tQRAEoXNpy5rimgS0L5Jlmf/6r//ixRdfFAvIy3BVFovHVsIXT4GrBiQVKHLDn/pomPePKw5my7JCZYGNopM1gSzsvBqc1tAFzkWSSiK+h5mUftGkpFpI7huN3qRtcXxnUVlXxsq173MqZzuG807UcmgQu04vcyo6Dp+9K2PPFTK56CAGnztkXOTQoVjmzsE8YwaamJhrMX1BEAThBnKz3YDKz89n8+bNLFiwoKOn0uFutp/99cZTYMWWU4zzQDmKN7i9jMqkxTg6CeOYRDSOo4Eg9uHPwF6OSzZx3DmFI87pVPt6hVy33HgeV78S5s7IZFyv0WHPR5b95O3dw4avllN7fD8qJXhOXknD+eh+dB87jXtmTqJfYttLfPttNuybNmFdm41t0yZkmy10kCQROWxYfT/siN692/w8giAIwrXXUeuKgQMHcu7cOVauXMmkSZPCOke0oGlfYk15g6g8hXfHCpz7S3FYB+JTuoeOkXxEdvdhmJCBfmAyklaFy+7l5K5Sjm0vpuxsaCtEU0wEaROSSR+fTFRcZItPb8vLY/ff/8rRMydwaoM3S6r9fmrMVrKH24hLGcPPxi1iQrdRV/ySBUEQhOtLh5Ucb41KpaJv3760Vwzd7Xbzyiuv8PHHH5OXl4darSY9PZ2FCxeyaNGiNmUkXGS32/n888/56quv2L17N8XFxUiSRHJyMuPHj2fRokVMnhxaZuWiDRs2MG3atFaf55NPPuHee+9t8/zaXdpM+MlxOLoMjn0FzmqIjIG0uwJlxrX61q/RhN8rU3q27kIJ8VpKTtXgcbX8gUGtVZHUO6q+fHhi7yh0+mv6q3nV1NqrWbluCSe2b0F/xorGryJwG7AhmG2LkDkVHUO1ry/DCyp5/NA+Eh2hJcW1KSlEzZmNZfZscZNPEARBENpg27ZtPProoyKgLXQI2ePHebAcW04x3oLQYK6utwXTuGQiU+qQjvwb3v83VJ1CUaDIO5CjjvnkucYjE1yJx6N2cTJuN4bBHh6ech9D44eGPafqkiI2r1jJiS3rkRy1ADT+5FQckYTcbzRZM2/nJ8N6oFW37XOVt7QM2/p1WNdmY9+xA7yhm1klnQ7j+PGYpmdhnjYNTVxcm55DEARBuHmdOXOGH/zgB2EHs0G0oBGEerUF+HYvx7nnHI7qVLzK8GYGyeiT3USO60/ksG6oIjQoskLB8WpytxVzel85fl/wRki1RkWfYXGkT0iha1oMKlXzJf4VRaF03Vp2LXmX09ZqfGoVNApma/we8pPr2DTUy6iUO3hvwhP0ju7Znt8BQRAEoZO65lHDefPmkZ+ff8XXqaioIDMzk0OHDrFo0SL+9re/4fF4ePXVV3nqqaf45JNPWLFiBXp9+AHZPXv2cNttt1FVVcXAgQP5zW9+Q1paGoqisGbNGv70pz/xwQcf8L3vfY9XX331kr13jEbjJZ9Lo7l+ArY+tJxyTuZ0TQYuuxe9UUsfZxx90Yb1C+Jx+Sg5XVtfQrw0vy5kUdOYLlJDcqol0AM7NZqEnmbUmhunjKDNZeWbDR9xdOsGNKdr0PlUBDp9NrxGh07mdLSF8+o0BhS5mLdrL2nVe0OupTIaMd8xg+g5c4gcOVKUWxQEQRCEJux2O7W1tfh8vhbHVFRUXMMZCUKAt9yBfUcJ9t2lKK7g308pQo1xZCLGIXq0pStg57+hcDcADr+FY6655DqmU+PvGnLdElM+uYnb6TEsmqdHfIf0Lunhzcfl4tDWzWxbuRJ3wcnAPBodt6sjKewykIwp03l2+khSolvOpmlKURQ8p09f6IedjevgwWbHqaKiME2dgjlrOqZbJqJq5TOTIAiCIDQnNjaW/v37t+mcOXPmMGfOnKs0I0G4ztkr8O/7EufOPBzl3fAoA4GBIcN0cQ4Mo3sTOao3amOgWmZdhZPc1ec4tr0YW1VoFcn4HmbSJyTTb3QiemPLFTZlt5sT77/LvtUrKMIPkgSNNk1KONjb30puXz2z+8xn/ZgFWPSWK3/tgiAIwg3jmkdVDQYDPXte+a6q++67j0OHDvHDH/6QV155pf7xadOmMW/ePJYtW8ZTTz3FO++8E/Y1i4uLqaqqYtiwYeTk5BAR0dCneeLEiYwZM4ZZs2bx97//nd69e/PTn/60xWvZmiuldx3KP1BO9uJc3A5f4I6WAkhwel85m/9zkqxHMug9JDhbwmnzBILXeTUUn6yh/LwNRW456z4ySneh/7WFlH7RxKaYWtyl11m5vE5Wb/6Eg5vXoDpZSYRXhQFoHMR2aWXyo83kRWSQUqYl8/A+xpZ+gkZukr2uUmG8ZSKWOXMwZ2aiigz/ZqIgCIIg3AwKCwv57//+b7766iuKioo6ejqCUE/xyziPVmHfUYw7rybkuDbFiHFUFwz6XaiOvgyL14HiR1EkznuGctRxG/nu0cgE3wx0aeyciNvF8aQdjM0Yxh8G/5LUmNTW56MoFJ08xqblKynYsw1Vk1Y2MhLnjD2JHDiBO2dlckv/xLDX6Yrfj/PAwfp+2J4zZ5odp0lOru+HbRg5Eknb+VsJCYIgCB1r5syZHDt2rE3nlJeXk5ube8mqi4JwQ3HVIh9cgWvHYRzF8bjkYUC/kGFaiwPDyG5EjklFEx24F+7z+Dm+o4TcbcUUHq8OOUdv1DJgbBJpE5KJ62a65DTc5eXsf+3/OHRgD7U69YUdlYH1piTLuPU2Ngy1Yk9K4bHBT/HOoLlo1WK9KAiCIIS6pj2028tnn33Gvffei16vp7i4mOjo6KDjubm5ZGRkIEkSu3btYuTIkWFdd/ny5dx111189tln3H333c2OmTx5Mps3b6Zr164UFBSEHL9YcvxqfFvbuz9N/oFyVv7jUCCI3RIJpj2UhkarouhkDUV5tVQX2y953ag4fSD7+kIJcUtC5CWz2Tsrj8/Nupwv2Lvxa5TjZejdodnTHo3MmWgjJyLTiKhNILNgP9OK9mNyO0LGRqSnY5k9G8uds9DEx1+LlyAIgiDcpDpzz7v8/HzGjRtHRUVFm9ZbkiSJnol07p/99cxf68a2swT7rhLkOk/wQY2EYXAcxm6F6Io/Rjq+AryB9bTNH8sxZyZHndOx+hNDrlsYdYLcxO2c73KUO/rN4DuDvkMvS69W5+OorWH32jXsWfsNclVJyPFqbTTlyUMZPf027rklnRijrpmrhJLdbuzbt2PLzsa6bj3+yspmx0UMGFAfxI5IT78hPwsIgiAIHbeuKCgoYOrUqfznP/9hxIgRYZ0jemi3L7GmvE55HCi5q3Bt34PjvBmXfyQKodVLNQYnhmHxRI4fgDY+kJKjKAplZ6zkbivi5O4yPM4mFYYk6DGwC+kTkuk1JK7Vaps1+/ex642/c7y0ALdGHfz8fh+lsXVkj7ARFzOcH495gqxeE8WaURAE4SZ03fbQbi9vvfUWAJmZmSHBbID09HTS09PJzc3l7bffDjug3bdvX37yk58wderUFscMHTqUzZs3U1hYSGVlJV26dLmcl9DhfF4/2YtzLx3MBlBg/fuX3vUam2K8kIEdKCFuiom45PjOzOf3sWnPCnau/wpfbhGRThWBV9uwiPOqFc7G6DkZOQCbO5WpBYf4TcEmUqxlIddTx8dhuWs2ljmz0Q8YcM1ehyAIgiB0Vr/97W8pLy/HYrEwe/ZsMjIyiImJCaqs09T27dt58803r+EshZuBIiu4T9VgyynGlVsJTTruaLroMab5MSjLUR//GHLLAZAVFWfdoznqnM5Z9ygUgm8GOrR1HI/fybGEHBzGGualzuPVwb+nqym0/Hhjst/P6X272bRiJVW5+5CU4Al5JC35Uf1IHDWJu2+fyPAeMWHdNPTX1mLbuBHr2mxsW7agOEI3ZqJSYRg5EvP0LExZWei6dWv1uoIgCIJwuWRZ5u9//zvf+ta3mDp1KjNnzqRfv36YzWZULbRqEy1ohBuWz4Nych3u7dtw5GtwekejMCNkmDrCReQgC4bx6Wi7murXgY46Dyd2BrKxq4pCk5gsCZGkT0hmwNjkVu/5KrLM+WVfsPvTjzjrsSOrVNAomK2W3RzrUcf2DDfD46fz7oRFpMe1rX2AIAiCcPPqdAFtj8dDdnY2AKNHj25x3OjRo8nNzWXFihW89tprYV07PT2dP//5z5cco1YH/hFWqVREduJS0Kf2lAXKjLeRpJKI72EmJTVQPjy5bzR6041dBsYv+9l2YA3b13+B6/A5jHYVWkDb6OajT6VwPlrHCWN/SvyDGVdykicL9jCofGnI9SS9HvP06VjmzME4fhzSddRPXRAEQRCud9nZ2aSmprJt2zbi4uJaPwHQaDQioC20G9nhxb6nFPuOEnwVzuCDEuj76jFF7yai8C2kPXn1h+p8CRx1TueYazp2f0zQaQoy56OPkZuwnbMxh9FqtdzX/z4WDlxIkjHpkvOpKipkxzcrObpxHTitF6dRrygiCXuvUUydkcUzI3tjjGh97ektKsKavQ7rumwcO3dBM9lskl6P8ZaJgX7YU6egiYlp5kqCIAiC0P569epVH4zLz89vU7vB65Hb7eaVV17h448/Ji8vD7VaTXp6OgsXLmTRokUtBulbc+bMGXr37t3quD/96U+XbKsoXIdkP0r+Fjw563Ge8ONwj0bm1pBhKo2HyAF6DBMHoutlQbrQWkb2y5w5UsmxbcWcOViB3KSVpCZCTerIBNInJJPc19LqJki/zcaRt/7B/s3rKddcGHvx91ZRUFQOtg+s43R3Hbf3uJfscY8SZwjvs5wgCIIgXNTpImm5ubl4vV4gsIBtycVjZ8+epba2FovF0i7Pf/LkSQBGjhyJwWBocdxHH33E22+/zYkTJygvLycmJobhw4fzwAMP8O1vf7s+MN5RTh+oaOiZHYboJAOT7+9PYu8odPpO92vTZoqisDN3I1vWfIrtUD4mq4QaMDYKYsuSQkG0lpOmPpySRjOoooh5J/cwseRrtD5vyDUNY8cG+mLfditq06X7ywiCIAiC0LzKykp+9KMfhR3MBhgyZAjPP//8VZyVcKNTFAXPeSv2nGIcByvAF5z9rDJpMHYrxuh8D03BerjQmcivaMh3j+Go83bOuwcTHGoGm66aYwk7OJaQgy2imkhNJAvTFrIgYwFxkS3/jntcTnK3bmbb1ytxnM8LOW5TGzgbk0HfidP4btYI+iWaW3197hMnsK4N9MN2HT3a7Dh1dDSmzEzM07Mwjh+PqhNv8BUEQRA6t8tp9Xc9ljOuqKggMzOTQ4cOsWjRIv72t7/h8Xh49dVXeeqpp/jkk09YsWIFen1o2ehwGQyGS752nS681iNCB1MUKNiNN+cbHEdtOFwj8StZIcMklZfIvmoiJwxE3z8WSd1wL7O6xE7utmKO55TgaNomB0hOtZA+IZm+IxLCuv/rOHuGvX//K0dOHMWm04Cm4fdMJctYjVbWD7fijE3g4fQfsmTYfURqxPpREARBuDydLjJ57ty5+v+Ov0Sf4cbHCgoK2iWgXVFRwdq1awH4+c9/fsmxTz/9ND/5yU/47W9/i16v58CBA/zxj3/koYce4p///CdffPEFsbGxl7yG2+3G7XbXf11XV3fFr+Eil90bdjAbwBClo3v6ped7I9h/Mof1a/5N7YETmGsCizBToxuPMgrF0WpOmnpzUj2WZKudrNzdvFD8CmZH6M9H17s3ljlzsNx1J9quly4TKQiCIAhC65KSktoUzAYYPHgwgwcPvkozEm5kssePc385tpwivM2UYIxIdGPUrSGy/G2kMw03Bat9KRx13Mpxz204fcGbYBVJ5kz0EXITt3E+OhdFUjBrzTyZ/iQPpT9EtD662bkoikLRiWNs+3oFZ3dtQ/IF34T0o+KMoSfSgLHMvGMqzw1MQXeJ3oaKz4dj795AP+zsdXgLCpodp+3ePdAPOyuTyOHDRXUhQRAE4brw5JNPMm7cuLDHX68taO677z4OHTrED3/4Q1555ZX6x6dNm8a8efNYtmwZTz311BVloR85cuSSSUHCdUxRoPQIvp3LcRyswGEfhk+ZEjpO8qPvrmCYkIY+IwGVriGRyuP0kbenjNxtRZScDr13abDoSBuXTPqEZKITW07eaqx8yyZ2vfMmeTUVeDVq0DWsDzV+L+cT61g/zEYX00CeHfU4s1IzUUmXV2lAEARBEC7qdHcjrFZr/X9fandi42PtFQj+y1/+gsfjYd68edx7773NjomOjuaOO+7gjTfeoFuj3nGjRo3i3nvvZcKECWzevJn77ruvvnR6S1566SVefPHFdpl7U3qjNvwMbenC+BtU7pn9rFnzAZX7comqDDxmbpI9UxwlcdLcgxOa8eg9aqad2csPi9+ma1VhyPXU0dFEzZqFZe4c9IMGXZc7gAVBEAShs5o5cyb79u3j0UcfDfuc8vJycnNzmTx58lWcmXAj8ZY5sOcUY99biuIKLrct6RSMMbkYbf9EW3uq/nGfouOUazxHfXMpsvcKuabHaGNfl/Ucj9+JQxf4fBIdEc3DGQ/zQNoDmHXNZ1Hba6rZv24Nu9d8g6+qNDCHRscrtTEUJgxh2LRMfj0pg67RLWe9yE4n9q1bsWavw7Z+Pf6ammbH6QcODPTDzswion8/sZ4VBEEQrjuTJk3iwQcfDHv89diC5rPPPmPDhg3o9XpeeOGFoGOSJPHSSy+xbNkyFi9ezA9+8ANGjhzZMRMVrr3KU/h3f4ljbwHOujQ8ysRmBslEJPswjOtH5NAUVI0yqhVFoTivhtytxeTtLcPnaVJdSC3Re0gcaROS6ZERi0rderBZ8Xo5/dES9qxYRoHiRZGkoP7YKsXJgVQre/u5yYiZxFvjFzE8cchlfwsEQRAEoalOF9DuKJs3b+bPf/4z/fv351//+leL44YNG8bKlSubPWaxWHjppZeYM2cO69atY9WqVcyYMaPFaz333HM8++yz9V/X1dXRvXv3y38RjfQZGsfpfeXhDVagz7CWs+E7o1NFuXzzzRJK9x7CXOZHQiKqyZgyM+RFdeO4ZixeOZrxxYd5sWQpg4qOISnBC0G0WsxTp2KZOwfTpElIolyTIAiCIFwVv/rVr5g4cSLf+ta3uOWWW8I6Z/Xq1SxYsAB/M32ABeEixSfjPFqJPacY9+nakONaUw0m5VMifV+jqm2oolTh7clR/zxO2Cfg9gZvApXUUJ18js1RX1EYdRKkwG7SLvouPDLwEb414FsYtKGZMH6fj9P7drFt5UrKcw+ErD09kpY8cz8sQycy+9bxTOoXj1rVfNDZV1WFbf0GrOvWYd+6FcXlCh2k0WAcMxpTVhbmzEy0ycmtfr8EQRAEoaNMnDiRhISENp3Tt29fFixYcJVmdHneeustADIzM4mOjg45np6eTnp6Orm5ubz99tsioH2jqy1E3rcM5+48HFW9ccvDgVEhw3RdXBjG9CZyRA/U5uD7j7ZqF8e2l5C7vZi6cmfIuV26GkmfkEL/MYlEmsO7d+mtrOTA669ycE8O1Rczvy9sdpQUBY/WxubBVgqSNEzreierxj1Oijmlba9dEARBEMLQ6QLaZnND5oKruZsxzRyLimoaqmybY8eOcffdd9O1a1fWrl1LTEzMZV/r1ltvRa1W4/f7Wb58+SUD2hEREURERFz2c11K35EJbP7PSdwOX6tjIwwa+o7o/AHtc6Wn+Hr1+xTt2Y+p2IuqPojdcPOv0ggnLUmc0I6lTkpiUMVpvl+8kQmFB9G5QxeCkcOGYZk7h6gZM1A38+FDEARBEIT2Jcsy//znP3n44YeZNGkSs2fPZsCAAZjNZlSq5jMLKioqrvEshc7EV+PCvqME+64SZJs36Jik8hOp34nJ9290vgu9qiXwyHry/LdxxD+XsprQzwb6OImTSbvJ1n+GS9tQqjzBkMBjgx7jnn73oNeEVpuqLDjPnjWrOLxxHYrTevHp6hXoU6hKGcYtt05j0Zg+dDE1/1nBc/481rXZ2LKzcezdC7IcMkZlMGCcPBlzViamyZNRt0OLJkEQBEG4Fv77v/8bgE2bNpGUlET//v1bPWfcuHFtKlF+tXk8nvrKjaNHj25x3OjRo8nNzWXFihW89tpr12p6wrVir0A+uAzXzqM4SpNwySOB0FZJWouLyBHdMYzuhSY2eA3p98rkH6wgd1sR549W0bS9vC5SQ/8xiaRPSCa+hznsyjt1R46w+5+vcqwgH6dWA43KmKv9fiqj68geYcNriuH+/t/luyMexKQztflbIAiCIAjh6nQB7R49etT/d3l5yxnGjY81Lv3dVsePHyczMxOj0Uh2dvYVZ0hHRkYSHx9PSUkJ+fn5V3StK6HRqsl6JIOVrx+8dNlxCbIeyUCjVV9i0PWruKqAr9e8x9mduzAVelApoUHsGoPCSUsCx3VjqFb1oKu1jHvO7GNG0XuYa0NvgGu7dsUyZzaW2bPRiR5EgiAIgnBN9erVq/4mzAcffMAHH3zQwTMSOiNFVnCfrMaWU4zrWFXIelijLceoLMWozkYl20EVaGFYJqdzVLuQk5X98XqlJueoMKUpbIlazhb/6qBIdFdTV74z+DvM6TsHnTo4G8btcHBs2yZyvlmF7VxeyFxtaiN5lnS6j53CQ9OGMaJHdMiNSEVRcB05ijV7LbbsdbhPnGj2davj4jBnZmLOysQwbhyqq7R5VhAEQRCupqlTp9b/W7hw4ULefvvtDp5R2+Xm5uL1BjbSXaq/9cVjZ8+epba2FstlbEBbtWoVK1eu5PDhw5SWlmI2mxk0aBD33HMPjz766CVbOgpXgasW5cgKXDv24CiMweUfg0Lopgy1wY1hWAKGsX3RJhpDjpeft5K7rZgTO0tw25skLEnQbUAM6ROT6TM0Ho0uvPu6iqJQtHI5uz9eQr7Til+tAm1D+EAte8jrVsuWQQ5iIlP50fBfcveAO9CoOl2IQRAEQeiEOt2/Nunp6Wi1WrxeL2fOnGlx3MVjPXv2vKzFHsChQ4eYPn06ZrOZdevWBQXTr4TSdKtcB+k9JI6Z3x1M9uLcQKb2xZ7aF/6MMGjIeiSD3kPiOnimbVNZV8aKte9xOmc7hvMu1HJoELtOr3AqOo5jESOpkPpg9jqYdnY/c8qWk1J8OuSaKpMJ84zbiZ4zh8iRI5FayAATBEEQBOHqu5y1lOgBLAD47V4cu0uw7SjBX9W02pOfSFUORvUKIlQHL1ZSxC0bOWF8jCN1t1BZGVqaMa6bCXWGlc94i8PWAyBTv+zsFdWLxwc/zsw+M9GqGsqRK4pC4bEj7PpmFad3bQOfp8lMVJw29MLdZxS33TqZnwzvhiki+KOb4vXi2LULa/Y6rOvW4SsubvY163r1CvTDzsoicuhQsY4VBEEQbggRERH86le/Ys6cOR09lcty7ty5+v+Oj2+5KmLjYwUFBZd1j/OnP/0pP/zhD3n22Wcxm82cOHGCl19+me9973u89tprLF++/JJBdQC3243b3dBypa6urs3zuKl5HCgnvsG9fRvOs3qcvnHIzA0ZporwYBgUjWFcf7TdTCGfYVx2Lyd2lpK7rYiK87aQ881d9KRPSGbAuCSiukSGPT2/08nxf73JvvWrKVErgZLijftqSw52pdVxpKeHflFjeX3cIsaljBKfsQRBEIRrqtMFtHU6HVlZWaxatYrdu3e3OG7Xrl0AzJo167KeZ+/evdx2220kJCSwdu1aUlIaen/4fD4KCgpISkoK2sVYVlbGokWL+PWvf91iuSCHw1Ff9rK1xeK10HtoPI/8Tyyn9pZzen85LrsXvVFLn2Hx9B0R32kys2vt1axct4QT2zcTccaG1q8iUJy+YWFli5A5FR3LiYjhlKgGoJX9jC7J5bnKD0k7cwiVv8luRrUa4y0TiZ4zB1NmJiqxY1UQBEEQrgtPPvlkm0pGbt++nTfffPMqzki4nimKguecFXtOMY5D5eAL3hChlioxqr/GqF6NWqq6cA4UmWZxVL6HU+dj8ZUFn6ONUJM6OoG6PmdZXPYSebXBmdWp0aksGrKI/7+9+46Pqkr/OP69UzLpCZAQCKGGllClg6gYiogFLKwKKigqYl1l/bmWte2KuEXZRVBxbaArNoqgIlWK0nsJvUOAhJJMejJzf3+EBEISSCBkJuTzfr2yE+8999xnJmfDyXnuOadP/T6yWs70p50nkrTx13laPecXZZ84ViTWJHt17anRUrHdr9cz1zRXs1pBhc67UtOUtmSxnPPmK3XhQrlLGEz2a9Mmbz/sXj3laNSo9B8WAACVgM1m01NPPaWXX37Z06FcNKfTWfD9+WZIn32urElkX19fxcXF6d1331Xr1q0Ljrdv31533HGH+vbtqwULFqhfv35au3btebc9fOutt/T666+X6f5VXm62zF0LlLN8gdJ3SunZXeTWrUWKGbYc+Tfzl1/XZnI0CpVhKZwkdrtNHYw/ofjfE7R7faLc5/Zl7RZFXxWumG61VadptSLXn0/GwUNaN/7f2hS/QSk+ttOZgrzrLW630vxS9Wtbp45Vt6hbxA2a3vVhNQptWOaPAgCA8lDpEtqS9NBDD2nWrFmaN29escvtbN26VfHx8TIMQw8++GCZ61+2bJn69u2r+vXra+7cuUWelDx48KAaNmyoBQsWqEePHgXH09PTNX36dHXv3r3EhPbs2bPlcrkkXXyyvbzZ7FY161xLzTrX8nQoZeLMSNGsRV8pfsmvsu9Olk+uRXk7tZx5gjDDx61doSHa7ttGhywtJBlqfnK/hh2fqc5718ie5ixSryMmJm9J8Ztuku08T8kCAADPuOaaazRo0KBSl7fZbCS0qyB3lkvp644pbWmCco6kFTnvsKxRoPUn+VpWyDDy9pjOCIjRtoCHtCWhqU7uzH/Y8cygYUTDYDXrFqGdNdbo3W3/1N4dewvVGVM9RsPbDNf1da+Xxcjrk7pyc7R79UqtmD1LCZvXyjhnhYEsi4+2BTSRI7aLbunZSa+1qCWH7UwSPDcxUc75C+ScP0/pvy+VmVN4n29JMux2+XftoqC4ngqMu172mjUv5iMDAKBSiIiIKNW+2eVt4sSJFzXOmO+nn35Snz59yjGi86tVq1bBPt3n8vHx0ZgxY9SmTRvFx8fr008/1aOPPlpiXS+88IKeffbZgv9OSUm55G0Zr0hul7TvN+Us/0XpWzOUkdVZuWbR8V/DkivfaB/5d20m36bVZdiKrqCTnJiurUuPaOvSBKWezCpyvmaDYMV0q60mHWrK4W8vcv58ji9frlUff6Dtx48o22aVfM5aVtyVq4TwFM1vmyq3b7AGRA/VEx3uVzXfamW6BwAA5a1SJrTvuOMOXXfddVq4cKFef/11vfPOOwXnTNPUiy++KClvH5327dsXunbGjBl68MEHFRERUeySOosWLdLNN9+sZs2a6ZdfflH16tXLHN+YMWM0bNgwVatW+B/6U6dO6YUXXpCUNxDbr1+/Mtdd1WXkpOuXxV9r4+J5su48IUe2RXm7yJzp+GXa3doTGqTtfq10wNJapmFVzbQTeiRpkXofXK3AxKLLMdrCwxV86y0KubW/fJtV/B9FAACgdK6++mrVLGOyLjo6Wvfff/9ligjeJudImlKXJSh97TGZWa5C5yxKkb91rgKss2S3HJYkmY5qOlDrIW1JuUa7t7vldpmSzqzc4/C3qWnnWmraNVyLM+fquY0v69DuQ4XqbRPeRsNbD1f3Ot0Lll5MOrBP6+bN1saF8+VOz3uI8uz5Mgd86+hwzVbqHNdDf+vcSHWr+xecy9q9R6nz58k5d54y1q/PmzJ+DktQkAKvvVZBvXoq4JprZA0MvJSPDQCASuPaa69VfHx8ma6ZO3euRo0apfnz51/0fd1ud8EklYu9Pl9Q0JlVWDIzz90GRcWeCw4Ovuh7F6d169aKjIzU4cOHNXPmzPMmtB0Ox3lncFdppikdWq3clTOVsfGk0jPaKcfsW7Sc4ZJvXUP+XZrJt2W4LMXsa52T5dKutccU/1uCDu84VeS8X5BdTTvXUkzX2qpRp2x9P9Pl0r5vvtbq6d9pvytTbotFOushSouZqS0NnFoek65ge1093vqPGtRigHysRbfcAQDAEyplQluSvvvuu4JlczIyMnTvvfcqOztb48aN09SpUxUXF6f333+/yHUTJkxQUlKSkpKSNGXKlEJPFy5btkw33nij0tPTtWnTphL3zC5p30YfHx85HA4dOnRILVu21P/93/+pTZs2CggI0Nq1a/X3v/9du3btUpcuXfT999+XzwdRBWTnZmnu0ilau+gXmduOyS/LorzhvjNJ7GyrW3urBWi7Xwvts7aV27DLPydT/Y+t04Bj6xWxZ0uReg1fXwX17q2Q/v0V0LWLDGvlWF4dAICqbPHixWW+pkuXLmVaohyVj5nrVsamJKUuS1D23qLLcfoYWxVg+0n+liUyjGzJ6lBag3sUb96m+O1BSlmeKanwAHVkk1DFdo9UnVZBmr5vmt5Y/qmOph8tVKZjrY4a3nq4OtXqJMMwlJWepq2/LdLK2bOUvH9XkTic1kBtC26usHbddft1rXVtk3BZLYZMt1sZ69fLOXeenPPmKXv37mLfpy0iQkE94xTYs6cCOnaU4cMAIwCg6hk5cqT69u2rRx99VNHR0aW65ujRo1q4cOEl3Xfo0KEaOnToJdWR7+wxx8TExBLLnX0uKiqqXO59bhyHDx/Wnj17yr3uK5ppSkc3y7XmB2WsPaz01JbKNnsWV1COWi75dW4s/za1ZClmJrVpmjq6J0Xxvydox6qjysks3Cc1LIbqt6yhmK61Vb9VDVmLmc19PrnJydr0wTitX7ZYSflJdIul4H24bGn6raVTuyOzVT+grcZ0eljX17uG/bEBAF6n0ia0w8LCtHLlSo0ZM0ZfffWVJk2aJKvVqpiYGI0fP17Dhw+XxVL0H/hHHnlES5cuVUREhG6//fZC55YtW6b09HRJ5386siT5TzV+9913mj17tsaOHavDhw/L5XKpRo0aateunV599VXdc889stkq7UdfIXJdufp11Qyt/HWmcuMT5J9hUd6uQWd+pjlWU/tDfbXdv7n2WDrIZfGRxe1Sl+O7dPepjWq8fbWM7OzCFRuG/Dt1Ukj//grq00fWwICKfFsAAMADli1bpgkTJuiTTz7xdCgoZ7knMpW2IkFpK4/KnVZ4KW5DmfK3/qoA60/yseyWZMjd4DrtC71XWw420t6lKTLdpqQz/X6/ILuad6mt2O6R8qkufbPtG3024zMdzzxeqO6rI6/WI60fUbuIdjLdbh3cslFr5s7WzhW/SbmF43DJol0BjXQqqq3i4q7WEx3qKSzQIXd2ttLz98OeP1+5JQxmO5o0UWDPOAX17CXfli0YXAQAVHnt2rXTBx98oD59+ujpp5/WwIEDVbt2bU+HVSYxMTGy2+3KycnR3r17SyyXf65+/fpFtlwsDyVN2kEJju+Se+10ZazZpfRTTZTl7iap6AQZe40c+XdsKP92kbIGFz+zPS05S9uWH9HW3xN08kh6kfOhEf6K6VZbzbrUUkBI2WfHp27fptXvv6f4vTuU5mOTzpoRbnG7dCrIqflXOXUqyFCHsDiN7jpcMTWalfk+AABUFMOk51JppKSkKCQkRMnJyeW+zJA3cLld+m39bC2dP01Zmw8oIK3oAwkui6kDoT7aHtBUuyydlGvJS3M3TknQEOdmtd2+XLbkk0Wu82nUSCH9+yvklptlj4y87O8FAABvdqX3Kc715Zdf6v7777+kJSKvFFfCz950m8rcflJpyxKUue3E2VtcS5Jsxn4FWn+Sv3W+LEa6VKu1UhoNVnxKV21dnVp0D0JDqhtTXbFXR6phmzClu9P01davNGnLJJ3KOlWo6PV1r9cjrR9Ry7CWch5P0uaFc7V6zi/KPFE0GZ3oU0M7QmLVqOu1uuvqZmpfv5rcTqdSFy2Wc95cpS1aLHda0b29ZRjya9dOQT17KqhnnHzq17/ETwwAgMvDU/2KRo0aSZJOnDghpzNvW4+QkBAFBwcXO7lFktLS0pSUlORV/cEbb7xRs2bN0k033aSZM2cWWyY2Nlbx8fF67LHHNG7cuDLVP2DAAD388MO66aaiezjni4yMVEJCgvr166cff/yx1HVfCX3KUks+JHPDNGWs3KyMpHrKcHeUVHSVHFtwtvzb15V/+7qyhfkVW5XL5da+jccV/3uC9m06fvrhyjPsDquadKip5t0iVatRcJkfZDRNU0fnzNGqLz/TrtSTyrUVTrZb3TnaWztZC1unSfYA9at/u57uNFQ1/cu2pRMAAOWlLH0KpgnDo0zT1Iotv2rR3O+UvnGPAp0W2STZzpqJ7TZMHQy1a0dAtHbaOivbyJtVXT0jWfenb9A1e1fK/0DRpZGsoaEKvukmhQzoL9+WLZnNAgBAJXPq1CmFhoYWOrZo0aIy11PWPRbhnVyp2UpbeVRpyxPkOnVOUlo58rMsVaDtJ/kYm2SE1pOr5WPaZb9ZWzYa2j/1hGQWnmUdEOKjmKsjFdOttoLD/HQq85Te3zhe/4v/n5w5zoJyhgz1rt9bj7R+RNFBjbRr1XJ99f7LOry56N7WmRaHtgU2UW50B918fSe91Ka2fE8dl3P+LB14Y57SVqyQcnN1LsPhUEC3bgrq1VOBPXrIVqNGuX1uAABcaYqb0Xzq1CmdOnXqvNd527jQQw89pFmzZmnevHlKTk4uMgN769atio+Pl2EYevDBB8tc//Tp0xUVFVViQnvdunVKSEiQpPMmvauktCSZm6Yra+VapR8OU4a7q0y1LlLM6p8j/7YR8uvYQPZa/iW2sROH0xT/+2FtW35EGc6cIucjm4QqplttRberKbuj7FsiurOytPPzz7Rm9kwdtrhlGkah/bENZWhN0xStj85UoDVCj7R4TENa3Sl/u3+Z7wUAgKcwQ7sSuVKefjRNU+t2LNWvc79R8vodCjpVtLPnlqkjoTZtD2igHbYuyrTkvV9HbrbuyNilmxLWqvrWdZLbXeg6w25X4PXXK2RAfwV2786+ggAAFKMy9CmGDx+u//73vxo6dKg+/vjjguMWi+WiByO9aUaOp1SGn/3ZTNNU9t4UpS5LUMbGRKlw109WHVOA7WcFWOfI6m9ILW7TqTp3Kn5PTcUvO6qMlMLbzxiGVL9VmGK7R6p+i+qyWC1KykjSxM0TNXnbZGXkZpyp27CqX8N+eqjVQwpKNrRh/mxtXLhArozUwjFKOuAbpb01Wuqqa7rrrs4N1SjtmJzz5sk5d54yN20q9r1ZQ0IU2KOHAnv1VODVV8viz4AiAKBy8VS/wmKx6JprrimYqV0au3fv1pIlS7yuP9ijRw8tXLhQzzzzjN55552C46Zp6o477tDUqVM1dOhQffrpp0WunTFjhh588EFFRERo5syZatCgQaHzhmEoMDBQ69atK7LXeFZWlm644QYtXLhQjRs31saNG+Xr61vquCtbn7JUMlNkxs9U9oqlSt8fqAxXN7kVWqSYxSdHfi2ry79zI/nUCyrxb5OsjFztXHVU8b8n6OielCLnA0Idat6llpp3ra3QiIvrB2YdPaL148Zq44bVOuUoPG/NME1lOlK1sE2KDofnKtI3Rk+2H6YbG/WS1VL2pDkAAJcDM7ThlTbvXaN5s7/S8XXxCj49QSZIhTt9R0Ms2hZYV9ttXZVhqSZJMky34jIO6K6TG1Vv4zIpo+i+Mn5t2ypkQH8F9+0r6zkzuQAAQOXz1VdfyTRNffvtt4US2tLF7fXnbTNycH7uzFylrz2m1N8PKDcx+9yz8rWsUYD1J/n6bJLR/Ablxryv7c7W2rL0mA7NPCXpQKErgmr4Kvbq2mreNVKB1fL2IDyadlSfbf5M323/TpmuM/to2wybbm18q+5vNEjODbv065tjdHL/7iIxptiCFB/YTAEtu2jA1bG6Lueosn6dLef787R7//5i35c9MlKBvXoqqGcv+bdvJ8PGn2MAAFyM4cOHa9CgQaUu/+WXX2rJkiWXMaKL89133ykuLk7vvvuuMjIydO+99yo7O1vjxo3T1KlTFRcXp/fff7/YaydMmKCkpCQlJSVpypQpevbZZwudDwoKktPpVMeOHTVy5Eh16tRJ1atXV3x8vN555x2tXbtWzZo108yZM8uUzL6i5GTI3DZLOSt/VfpumzJyusmlPxQpZthy5dcsSP6do+WIDpVhLf5vC9Nt6tCOU4r//bB2r0lUbk7hpzEtVkMN24Qr5uraqhtTXRbLxf2NcmrtGq2aMF7bjh5Upt0mnZXMtrpzdbS6UwvaOpXmJ7Wqdo1Gd3lYV0W0vah7AQDgLRhBwWW149BmzZ79pY6u2ajgY24ZMnTuMxZJwYa2B9bRNnsXpVrCC463yD2poWlbFLv5d1mOHS1St71Onbx9sW+9RT7nPIUKAAAqt2effVbvvPOO/vjHPxY599JLL6lXr16lrmv27NkaPXp0OUaHyyX7cKrSft+v9HWJMnML74FpUbICrLMVYP1FtsbNpVZDdTy0l7asTNa2T48oK2174fKnBwxju9dW3ebVZZweMDyUekgfb/xY03ZOU477zJKPPhYf3d74NvWzdtOBpas0fdyfZeYWXhIy17Bql38jJUS0Uo+u7TTaPCLfFYuV+sRflXDiRLHvyRETk7cfdq+ecjRrxsMVAAB4QGBgoOrVq+fpMIoICwvTypUrNWbMGH311VeaNGmSrFarYmJiNH78eA0fPrzEfcEfeeQRLV26VBEREbr99tuLnE9ISNDUqVM1a9YsffHFF3rrrbeUlZWlatWqqXXr1ho3bpweeOAB+fkVv9/zFSs3W9q9QDmrZitjW7bSs7sq17yzaDmLS37RvvLvHC3fZjVk2Iv/OUiS80Smti5N0NalCUpJyixyvkZUoGK61VbTThHyC7y41SRNl0sHp0/V6u8ma292ulxWi2Q/M7RvcWdpW32nlsWmSVZfxdW5Q892HqaooKiLuh8AAN6GJccrkcqynM++ozs1a84XOrxyrQKP5MqiooN2JwKlHcG1tc3eScmWyILjEWaGHsrZpU47lstnR9H9Li2BgQq+sa9C+veXX7t2Mkro1AMAgJJVlj5FcSwWi7744osyz8i5//77vW6JSU/wxp+9meNW+vojSlu0XdnHii5/6GNsVqDtZ/nVSZHR+g7lNL1NO7cb2rLksI7sLrp8Y2iEv2KvjlSzLrXkH3xmwHBfyj59tOEj/bj7R+WaZ/ax9rP5aWDELboqsba2L/pNGScSi9R51CdcW4Nj1Kh5K91lS1SdzSuV/ttvMjMyipSV1Sr/Dh0U1LOnAuPi5BNV5yI/GQAAvJun+hUul0tWK0sme5I39inPy+2S9v0m16qZSt+SovTMTsoxmxRXUL71rPLr3Fh+LcJk8S15Llhujkt71iUp/vfDOrD1ZN4+NGdx+NvUtFMtxXSrrfB6QRcdeq4zVVs/el/rFi/QUZ9zxkFNU25rupbFOLW9Xpb8LNV1T/NBGtb2HgX7VIKfCwCgymPJcVS4wycO6KfZE3Vg5SoFHMqW1cyfiX0mmZ0SIG0Pqqltjo46YTnzVKyv6dJQy0H1PLhGgWuXS7m5hSu3WhXQ/WqF9u+vwLg4WarqMkgAAFQhf//73/XCCy/IMAxt2bJFTZs2lSQNGTKkyB6AFxIdHa3777//coSJs5jp6UqfPUeZ8afkyrbK6uOSb0yo/Pv0llHM/tC5SelKnbdO6RvT5c51SDozMG0oXf7WBQoIXSefdldLrf+uxIxIbV5yWDu+2anszMIPJ1htFkW3D1eL7pGq3Ti00CzonSd3asLGCfpl7y9ym2eWfQyyBGigcb3Cdrh17IcVWn/OKGSGxaFtgU2l6o30B4dTD+9aq9wPJkoul9LOeS+Gn58Cu3dXUK+eCrzuOrbAAQDgMiKZjVIxTenQarnWTFfG+iNKT79K2eZNkopOjvGpZcq/UyP5tYmQNcB+nipNJR1IVfxvh7V95VFlpZ8zhmlIdWOqK6ZbbTVsEyab/eLbavqevVo7/t/avGOLnA67dFYy2+J2KyXAqQVXOXU81KUwn0Z65aoHNaBpP9ktJccPAEBlRkIbSstwatqPE7R71Qq5M7Jl8fNRow6dNOCmRxTgV/IThEnJRzVz7kTtWb5MAQcyZXUXTWKn+pnaERqmrT7tlWQ0kvIHF01Tt/ue0oDE9aq5apHMlKKzaxyxMQrt31/BN90kW1hY+b5pAADg1ebMmSO73a5nnnlGtWvXLjj+6aeflrmuLl26qEuXLuUZHs6RMfsXnVjglmlWlxQiySpluJSxzKpTyxeqepxVfr37yHSZylyxUalL9ijrePXTVzsK6rEbexTgt1D+rWvI0u52ZYX9VZtWHdOWjw4rcf+hIvetUSdAsd0j1bRTLfmeM/gYfzxeEzZM0Nz9cwsdj0oP1Q3O1tKWRLkyNurYWedMSfv96uqUvZZ6W7I04MBGWRdPkySdM1wpa/XqCoy7XkE9eyqga1ceugQAwEM2bNiguXPnaufOnUpOTlZISIgaN26sXr16qXXr1p4ODxXt6Ga5105V5to9SnfGKtMdp+KGwO01XPLv2EB+bWvLFuooWs9ZMlKztX35UcUvTdDxg6lFzgeH+SqmW20161JbQdUvvk9omqaOL1qoVZ9/rB3JScq2WSXHmT6u1Z2jAzVTtLBtmrJ8TDUL6qRRnR9W18jObGsDALjikdCu4qb+/JG2fjlVPjkW+cqURYbcytaRPQv0n2nzFHPvHRrQd1hB+VNpJ/TjvEnasew3+e5Nld1lKZLETvc1tSu0uuJ9rtJRS9MzSWxJ3QKyda9zs6LXLpb7wH5JhVfksYWHK/jWWxRya3/5Nmt6ed88AADwWlu3btVjjz2mt956q9DxRo0aacyYMbr11ltLXVdGRoYSExO9ct/EK0HG7F90fP7ZA3fWQq+m6a/j8yS/9ZOUfTJULleopOpnlc+Rn22ZAqNPyafr9VL0eB3Zn6ktCw5p5+rflJvt1tlsDquadKip2O6RimgQXGTwbkPiBn244UMtOrio4JhPtkUtj4Wp9ZEI6ViKXNpX6JpkW5BOWGqqVVaWHtyxRY7jvxb7Xu316imoVy8F9eopvzZtZDBDDAAAj9mxY4ceeeQRLVq0qMQy1113nSZMmKDGjRtXYGS4aDmZ0pZp0taZUvpJyb+a1PxmKXaAZD9Povj4LpnrpypzTbzSTzRSpruzTF1XpJgtKFd+7aPk376O7OFFVxA6m9tt6sCWE4r//bD2rE+S21V4NR+b3aLodjUV0622IpuEyrBcfELZzM7Wnv99odU/TtNBueS2GJLt7NWLMrUhOkVrmmRIFpu617pJIzs9pOhqZVu5CgCAyoyEdhU29eePtOuzabKfTkZbznm15xja+ekUfZOTIcNu05bffpXP7hT55FoUdLpkvkwfU3uqhyrep7UOWWIl48y5JgHSMNcetYn/XVq/VpJ09rCk4eenoN69FHJrfwV07cLAIAAAUGJiolq2bFnk+N69e5WaWnRWxPlMmTKFPbQvEzM9XScW5Pfsii7feOa4qYykBoWOWo0jCgjfroBu0bK2fUKZuX7asPyItnyzTicOn7uot1SzfpBiu0eqSccI+RSzn+GqI6v04YYPtSxhmSTJMKXaSb5qkVBDkYftMtympDOrAuUaViUb1VUnJUNxCTvlm76u2Oh9W7VSUM+eCuoZJ5/GjZn9AgCAF1ixYoV69+6t1NRUmaZZYrmFCxeqQ4cOmjNnjjp27FiBEaLMtv4kc+pTSk9vqUxXV7nMQFmNVPlumix//5dl3D5WanbjmfIph2VunKKslWuVnhipDFc3mepcpFqrX6782kbIv0M92SMDLtiXO3U0XfFLE7Rt2RGlncoqcj6iYbBiutVW4w4Rcvhd2tB69vHj2jR+rDasXqbjDtvp7vSZ1S1zfNK0uFWK9tfKkY8RrLsbD9bwq+5VDb8al3RfAAAqIxLaVVRahlNbv5wquwwZKr4jZ8iQKVP7v/hZhgwFSjp7oDLLbupAjWBt9mmhA5bWMo0ziegwP6uG+R5T9z0rZf95scysczqAhiH/zp0V0r+/gnr3ljUwoPzfJAAAqLR8fX116FDRJabhXdJnzzm9zPiF5Pc33fL1266ANg75xvWWgu7Uoe2ntOXLA9q9NlGu3MKzsX38bGrWKUIx3SMVXrfoVjimaWppwlJ9uP5DrTm2RpIUmG5T44MBanooRP4Z+fc9M9CdIX/VSMlWp4N75J+zvWioNpsCOnfO2w87Lk72iIhSvD8AAFBRUlNT1b9/fzmdTlWrVk233XabOnbsqKioKPn5+SkjI0MHDx7UypUrNW3aNJ04cUIDBgzQtm3bFBgY6OnwUZytPynjyzE6kfMfmQqS5JJklUyXMtzddCrZqepfvCO/O1NkZqUqe9VSZRyqpnTXNXKrTZHqLD658mtZQ/4d6sunQfAFZ09nZ+Zq15pExf9+WAk7k4uc9wuyq1mX2orpWlvVIy99DNO5aaNWfzBO8Yf2Kt3HJjnODNFb3C4dD3Vq/lVOOQPcCrXV0XOth+oPMQPka2OLGwBA1UVCu4qa9uME+eSUNIvmjHOT3Tk2U4dqBGmTT3Pts7aV2zizj4u/3aJBNbLU9/AaBc+eL9fx45IKLynu06iRQvr3V8gtN8seGVku7wUAAFx5YmNjNW7cOPXv37/I3ofMkPUemfGnVLBn9gW55QjYp7C/PKz0lGytXZqgLUuWKTkxo0jJ2o1DFNs9UtHtasruU7Ru0zS16OAiTdgwQRuSNsjqMtTwiL+aHAxU5HG/IuVdplWhqblqffigQjKzi5y3BAQo8LprFdizpwKvvVbWoKLJcwAA4B3ee+89HT16VPfdd5/ee+89BZXw7/bw4cM1ZswYPfHEE5o4caLGjRun559/voKjxQXlZCrj2490POelsw6es4WNAnQ852X5ff27ss3GcplDilRjWF3yax4sv44N5NskVIb1/OOepmnqyK5kxS9N0M5Vx5STVXg1J8NiqEGrGorpVlv1WtaQ9QL1XYjpduvIjzO1avIX2p3lVK7VKvmcncjO1q4op35rkapcu9QgoI3+2nGYrq93nSzGpd0bAIArgWGeb10eeJWUlBSFhIQoOTlZwcHBl1TXX/98l3z3pBYsL34+pkylO0wtqnmV9lg6yGXxKThnsxi6KdKmO09tUe3l85WzY0eR663Vqin4ppsU0r+/fFu2YBAaAAAPK88+xeUybtw4PfnkkzIMQ6GhoQoJCZGUt+R4eHi4AgJKPzMiLS1NSUlJLDmu8v/ZH3v9C2Vn1C91edPnqDbVaaa965Pkdhf+M8Q3wK5mXWsp9upIVa9d/M/Xbbo1d99cTdgwQdtObFONZB81ORioRocD5JNbeKDPNKWg9Fw1TUxSzZQ0Wc75q8cWHq7AnnEK6tlT/p07y+LjIwAAUHqe6lN269ZN2dnZWrlyZanGmEzTVKdOnWSz2bR06dIKiPDKV54/e3PNZB3+JlimAlTyFjYlMNzyjfaTf6eG8m1eXZZiHoQ8V1pylrYtO6L43xN06mh6kfPVavkrplukmnaOUECIo2zxFMOVlqYdn/5Xa+fP1mGbpHParGmka2Vzp7Y0yJRkVaeacRrZ6SHFhsVe8r0BAPB2ZelTMEO7inJnZJUqmS3lzdJO9jW009at4NjVUQG6N2evmm5YrOxpyyS3WzlnX2O3K/D66xUyoL8Cu3eXwQAhAAAogxEjRmjOnDn64YcfdPLkSZ08ebLgXGJiohITE8tUHw/UXR5WH5fMDLeMUgw+mqaphNRw7V5b+GcX1byaYrtHqlGbcFntxdeT687VrL2z9NGGj3Qoca8aHQrQrQdrq7qzaB/Tke1S/eOnFHXCKd/cwg8x+ERHF+yH7duqlQwLs10AAKhstm3bphdffLHU/TvDMHT33Xdr1KhRlzkyXIz05dtkKq4MV7jlqGeXf8dG8msZJksp9rF25bq1d2OStv6eoH2bT8g858FKu69VTTpGKKZbbUU0CC6Xvx0yDxzQ+vFjtTF+vZIddsl+pk7DdCvdL00L26ToSI1c2eSvAQ0H6/H2Q1UroNYl3xsAgCsRCe0qKttml1s5pUpqu2Uqy2ZTbK1A3e9/Qh22LZXrk3lyp6fr3AUb/a66SiH9+yv4xr6ynp5JBQAAUFYWi0XTpk3TrFmzNH/+fB0/flxut1uff/65rrnmGjVq1KjUde3evVtLliy5jNFWXT7NQpWxonRJYcMwlJCTl2D2D/ZR8261FXt1bYWE+5d4TY47RzN3zdR/1/9Xrr3H1ORAoK4+GiWrWbgPa3G7VftUquqecKpaWuaZHq5hyK9tWwX1jFNgXE85GjW8mLcJAAC8SFpamqpXr16ma6pVq6b09KKzceF5mcfrqGDP7Atyyzdgt8Iee6BUdR8/lKr43xO0bfkRZabmFDlfp2moYrrVVqMStrm5GCd//12rPp2gbcePKMtukxxntmu0uHOVEObUgrZOZfqaCrTW1OMt7tN9LQcqwH7pe3MDAHAlI6FdRSXViFb1g5tKVdYiQ41T7Hp6+uvKTUjQud0/e1SUQm69VSG33iKfBg3KPVYAAFB19e3bV3379i34788//1zDhw/XoEGDSl3Hl19+SUL7Mjkc1lZ29z7ZjfPPgjdNUzmmlBnuqxtvbaz6rc6/D2GWK0vTdkzT/5Z9rJDtGep8KEABmRFFyoWmZaruiRTVOpUq++mZNoaPjwK6ds1bTvz662ULD7/0NwoAALxGeHi4Nm/eXKZrNm/erLCwsMsUES6FS0EqXTJbkiwyDb/zlshKz9GOlUcV/3uCju1zFjkfWM2h5l1rq3nX2goJP39dpWXm5Gj/t19r9fTvtM+dLbfFItnPDLsbZpY2N0zRqmbpclulSN9merLDMPVt2Fs2C8PzAACUBv9iVlGpQdfL5lqvXIulyN4thZimbC63em7Yotyztlu3BAYq+MYbFTKgv/zatWMZTwAAUK5+/fVXTZw4UYZhaNSoUYqIKJrMLAvTNC9cCGW2Oz5FaRm56uxvk2maxfYJ8z/7Nem5Co6upkZtS04wZ+Rm6NvNkzVn9leK2O3WtSd8JRVeVtwnJ1d1TqYq6kSKgrLyHrW0BAcrsMd1CorrqYDu3WUNZIYLAABXqi5duujjjz/WE088oQalmFixZ88effzxx+rTp8/lDw5lZg2tJqWWdoa2S5bQorPzTbepg9tPKv63BO1elyhXjrvQeYvNUKO24YrpVltRzavLYimfcczckye1+cPx2rBssY45Tg+z529pY5rKtafr99gU7a6TLclQmxrX6JmOD6ldxFWMpQIAUEYktKuojge2qs3+Y1rdoJZkmsUntU8PPrY5cExW05SsVgV27563L/b118vi61vBUQMAgKri008/1aRJk1S3bl29/vrrBcfdbvd5rire4MGDNXjw4PIMD6dlpuXoaI60Is2lq/yt8jFUkNjOf80xpTXpLh3NlSLTii71KEmp2an6cv772rRgjiIP2tQ2t3AS2zBNhaekq+6JFIWnpMsiyVqrloJ79lRQr57y79BBht1ebN0AAODK8sADD+j7779Xly5d9NZbb+kPf/iDAgKKPsyWnp6ur7/+Wi+++KKcTqeGDRvmgWhxIb6dY5VxcE8pS1vl2zm24L9SkjK0ddkRbf09Qc4TmUVKh9cLUky32mrSMUK+AeXXV0zbtlVr3h+rLXt3KtVhlxxnhtgtbrdOBjv1a1unTga7ZJGPbqh7h57uMEx1g+uWWwwAAFQ1JLSrqK4JmxSQkqH2e49ofd2ayrVZzyS2T7/aXG61OXBMNVPSlVmvoVr9b6JsLM8EAAAqwLJlyxQXF6dZs2bJZjvTZX3jjTd0++23q2XLlh6MDvl8A+ySIR3JNfVLSq4i7YZq2y2yG3lLjCfkuHQ4x5RbkgwVGUg8krhf30wdq+MrNirYaVODc2ZjB2RmK+qEU3VOOuWb65IR3UQ17u2lwJ495Rsby8wWAACqoH79+mnAgAGaNm2aHnroIY0YMULNmzdXnTp15Ofnp8zMTB08eFDbtm1Tdna2TNPUnXfeqRtuuMHToaMY/m0jdWrGbrmzJUPn2cJGpiw+kk9shLavOKL43xN0cOvJIuUcATY161RLzbvVVnjdoHKL0zRNHZv9i1Z/+Zl2piUrx2Y9Z3/sHO2tnaLFrVKV4yP5Warpweb36MHWgxTiCCm3OAAAqKpIaFdRNc1MZcpUREq6em7ZpyMhAToSEqAcq1V2l0u1ktNUKzktb2a2pNCaYSSzAQBAhUlISNCzzz5bKJktSa+99poaN25cpoT23LlzNWrUKM2fP7+8w6zyGrUJ0+61iZIkl5mrfanbtTtnp0wzU4bhK6u9sSw+TWUYNsmUGrUNl9vl0qaVizRv+udy7U6UIUPBZ/1ZYnW5VftUqqJOOBWSkaWc2NaKeuAGhfTuJZ+6zGoBAADSl19+qbvvvlszZsxQdna2Nm7cqI0bNxYqk7/tyYABAzRp0iRPhIlSMOwW5XSJknXhQZk6/xY2OwP99dPLS5WdkVu4DkOqG1tDMd1qq2HrMFntlnKLz52ZqV2ff6o1s3/UIasp0zAk29nLo2dobVOnNkRnyDSkcJ8GGnHVAxrQ5BbZrawgBABAeSGhXUXZq1VThmHIME1ZTVN1TqWqzqnUYsuahiF7tdCKDRAAAFRpOTk5ysrKKpe6jh49qoULF5ZLXSgsun1NLf5mh9JPbVNO+izJzJJkKG8OjSF3zk4pY4Hs/n3lCAjXrpWT9NN/Fsudm7d0/NmzcKqlZSjquFM1UrOUFnOVoh7opzr9estWrZpn3hwAAPBafn5+mj59uiZPnqyxY8dqxYoVcrlcBeetVqs6d+6sp59+WgMHDvRgpLiQ3ByX5s49qGrZpdjCJjml0LXB4X6K6VZbzbvUUmC18t0aMSvhiDaO/482blitE77206PoeX1XwzSV4Zumxa1SdKhm3pY6zYM76o+dHla3yC6sIgQAwGVAQruKCurVU845c0pV1jBNBfXudZkjAgAAOKNu3bqaNm2annrqKU+HgvOw2a2KjtymNYemn3XULPxqZiknbbpy0qT4Y4Wvd+Tkqs5Jp0Kd2TrVuJ2q3d1XbW67QbYA/4oIHwAAVHJ333237r77bqWmpmrPnj1yOp0KCgpSw4YNFRgY6OnwUAq7Vh9TVnqujkgX3sJGksVqqGmnCMV0i1TtxiHlnjxOXr1aqyeM19Zjh5ThY5N8z15W3KVj1Z1a0NapNH+3DNl0Xe2b9MeOD6lxtcblGgcAACiMhHYVFdS3ryxvjpLb6czbM7skhiFLUJCC2GcIAABUoN69e+uDDz5Q+/bt1aNHD4WEnNl3bsqUKdq5c2ep61q/fv3lCBGSsp1ObVg2VbJYdJ4tDwsxTFM1U9IUkJGlwxEt5LrvVrW5o5eqh5DEBgAAFycwMFCtWrXydBi4CLvXJ+Uv8CO3pIM5pg7muEosX69FDfUcEluuMZgulw5NmaLV33+lvbmZyrVaJJ8zw+YWM1vb6qZoWYt0uaymHEaQBjUZqIfb3qcwP7ZoBACgIpDQrqIsDociR4/Wwccfz9toprik9uknHCNHj5bF4ajgCAEAQFX2wgsv6Ouvv9batWu1bt26QuemTp2qqVOneiYwFLJqwri8Ab9SquZ0an/1QKXePFz9b+2rAXVDWZIRAAAUa//+/QoPD5efn5+nQ8FllJmWc2aBn1LIzsy9cKFSyk1J0baPPtS6xfN1xMeSNxZ6Vt/WZU3X8pgUba+bJRlSqD1SD7ceooHNb5OfjXYJAEBFIqFdhQXFXa+oce/p8J9fkDslJW9mjdtd8GoJClLk6NEKirve06ECAIAqJioqSsuXL9dLL72k+fPn6/jx44X20isrkqaXx+YVS/IejCzN52uaygoI1P99Ml3+PvwZAgAAzq9hw4aaNGmSBg0a5OlQcBn5BtgLZmhfkHG6/CXK2LVLa8eP1ead8UrxtUsO65lbuN1yBqbq1zZOJVXLS543DGylp9o/pLj6PWQxSv8wJwAAKD+MJFVxQXFxarJ4kZy//CLnnLlyJSfLGhKioN69FHTDDczMBgAAHhMdHa3JkycXOmaxWPTFF1+UaWDziy++0JAhQ8o7PEjKzsmW7D6lK2wYcudmk8wGAAClcjEPMaLyadQmTLvXJpausCk1aht+UfcxTVPHFyzQ6okfa0fKcWXZz90fO1cHIlK0qHWqshymJIs61+ypZzo+rBZhLS7qngAAoPwwmgRZHA6F3HqrQm691dOhAAAAlLs9e/Z4OoQrlmlxl2mGtmlxX/6gAADAFWPx4sXKzS2/Jabvv//+cqsL5SO6fU0t/maHstIv/HN2+NsU3a5sCW13Vpb2fvmF1vw0TQcMl9wWi2Q/e0g8UxuinVrXJF1ui2STn25rdJsevWqIIgMjy/huAADA5UJCGwAAAJXGp59+qm7dunk6DJx2LNyhkBOlXM7dMHSspu/lDQgAAFxRJkyYoA8//PCiri1uyxkS2t7HZreq59BY/fT+hvMvO25IPYfGyma3nqfQGTnHjmnT++O0Yc0yJfnaJasknV4u3DSV7ZOuJS1TtL9WtmRIgdYwDWl5nwbHDlSQT9Clvi0AAFDOSGgDAACg0ijr0uG5ubnKysq6TNHAelN/2T6bqlyL5fyztE1TNrdbtptur7jgAABApffiiy+qV69eZb4uNTVVzz33nLZu3VpwbPjw4eUZGspRw9Zh6vdoK837PD5vpnb+ntqnXx3+NvUcGquGrcMuWJdz/XqtmTBe8Yf2Ks1hP2dZcbeSQp36ta1TKYEuSVIdvyZ6ov0w3dCwj+yWS9+fGwAAXB4ktAEAAHDFWbFihSZOnKivv/5aJ06c8HQ4Fy0rK0tjxozR5MmTtXPnTlmtVsXExGjIkCF65JFHZLFYPBrfH3vdq5fnfKoGCdVLXnr89P6XO+uc0t96Dq7gCAEAQGUWExOj6667rkzXrFu3TsOHD9eOHTskSUFBQZowYYLuuuuuyxEiyknDNuEa+nZ17VqTqN3rEpWZliPfALsatQ1XdLvw887MNl0uHflxplZPnqTdWWnKsVklx1mJbDNHO+uk6PeWacq15WXK21a/Wk91HKYOER2Knc0PAAC8CwltAAAAXBEOHDigSZMmadKkSdq+fXvBcdM0K+UgVVJSkuLi4rRx40Y98sgjGjt2rLKzs/Xee+9pxIgR+vbbb/Xjjz/K19dzy3iH+Por+q7nteubN9X4YJhyrdYzie3Trza3WzuiktT4Dy8pxNffY7ECAIAr33/+8x89//zzys7Olmmaatu2rb755hs1btzY06GhFGx2q5p1rqVmnWuVqrwrNU07P/lIaxfM1mG7IdMwJNuZxLfbkqFVTVMU3zBTpiFZZFffejfr8XYPqkFIg8v0LgAAwOVAQhsAAACVVlpamr777jt9/vnnWrRokczTs4HzXyUpLCxMx48f91SIF23gwIHauHGjnn76aY0ZM6bg+PXXX6/bbrtN06dP14gRI/Tpp596LkhJf+w2QO+apiZtGKW4jYaijgXI4rbIbXHrYM00zW9l6t42L+mP3QZ4NE4AAFC5uN3uUpc9ceKEHnjgAc2cObOgHzh8+HCNGTNGDofjcoWIcpbtdGrDxx9q15oVyszOlq+Pj6LbdVLrYcPlE3RmX+vMffu0YfxYbYrfoJN+PpLPmVWLDNNUml+qFrV26khYjiTJzxKiQc3v0ZBWg1TNt1qFvy8AAHDpDPPs0T54tZSUFIWEhCg5OVnBwcGeDgcAAFRSlb1PYZqm5s6dq4kTJ2ratGlKT08vOJ6vWrVqGjx4sB588EFt2rRJQ4YMkcvl8lTIZfb999/rzjvvlK+vrxISEhQaGlrofHx8vGJjY2UYhlauXKn27duXqt7L+bNPzkzXu79/p18PzFeG2yk/S5B61I3TM93uZGY2AABXIG/pUy5atEiDBw/W4cOHZZqmgoKC9NFHH+kPf/iDx2K60l2On/3GTz7Sgp+mKsdqKbLij93l1vX9blNUsxit/mSCtp04pkyfwvO0LG6XDoelaGHbVGX45j0MEe6op0evelD9G98sh5UHGwAA8DZl6VMwQxsAAACVwpYtW/T555/rf//7nw4fPiypcBJbkgzD0N/+9jc9++yzBbNxNm/eXKSct/vvf/8rSYqLiyuSzJby9pOMiYlRfHy8Pvnkk1IntC+nEF9/vRZ3v6T7PR0KAACoAkzT1GuvvaZRo0bJ7XYXLDH+7bffKjo62tPhoQw2fvKRZs+aJllObxNkFH7NsRiaPWuaLD9Nldtqkc5KZhvK1uYGKVrdLE2u06uNNw9pr6c6DFP3Ot0r5dZDAACgKBLaAAAA8FqJiYn63//+p4kTJ2rdunUFx89OULdo0UKDBw9W79691bFjR3Xu3LnQ0pKDBw/W4MGDKzLsS5Kdna158+ZJkjp27FhiuY4dOyo+Pl4//vijxo0bV1HhAQAAeNzBgwc1ePBgLVmypKBf+Oijj2rMmDHy8fHxcHQoi2ynUwt+mpqXzC4p+Xz6uNt65nyOLV3LYlO0q06WZEiGrOpRp4+eaDdMzao3q4jQAQBABSKhDQAAAK/z7bffauLEiZo9e7Zyc3MlFU5iR0VF6Z577tHgwYPVunVrSaqU+2QXJz4+Xjk5efv9NWjQoMRy+ef27dun5ORkhYSEVEB0AAAAnjV9+nQNGzZMJ0+eZInxK8CGjz/MW2a81NI1vfsJnQzO207IxwjUnU0Haljre1XTv+blCRIAAHgcCW0AAAB4nbvuukuGYRTZF/vOO+/UoEGDdO21116xywfu37+/4Pvw8PASy5197uDBgyS0AQDAFS07O1sjR47U+PHjJYklxq8QO1avOLNn9oWYpnzcpk4GuxRqr6WHWw/Vnc1uk7/d//IHCgAAPIqENgAAALySaZoyDEM1atTQv//9b915552y2+2eDuuyczqdBd/7+vqWWO7scykpKcWWycrKUlZW1gXLAQAAeLNt27bp7rvv1oYNGwoeeBwxYoTeffddlhiv5FIyUqXSztA2DFncVr1z3TuKqxcnq8V6eYMDAABeoyzruQAAAAAVYubMmRo4cKAcDoeSkpI0fPhwPfTQQ5o9e7bcbrenw6s03nrrLYWEhBR81a1b19MhAQAAlMmnn36qDh06FCSzg4OD9fXXX2vcuHGlTmZv3LhRb7zxxmWOFBcjV7l5M7RLwzQli0W9G/QmmQ0AQBVDQhsAAABep1+/fvr666+VkJCgDz74QK1bt9akSZN04403KjIyUk8//bSWL1/u6TAvi6CgoILvMzMzSyx39rng4OBiy7zwwgtKTk4u+Dpw4ED5BQoAAHAZpaamatCgQXrooYeUlpYm0zR11VVXafXq1Ro4cGCZ6tqwYYNef/31yxQpLsXhMJVuuXHllTtU8o48AADgCkZCGwAAAF4rJCREjzzyiJYsWaJdu3bpL3/5iwIDAzV27Fh169ZNTZo00WuvvaYdO3Z4OtRyU69evYLvExMTSyx39rmoqKhiyzgcDgUHBxf6AgAAqAzatGmjr7/+umAbmscee0zLli1jv+wrzMp2EbK5XBeepW2asrlcWnVVRMUEBgAAvEql3kM7KytLY8aM0eTJk7Vz505ZrVbFxMRoyJAheuSRR2SxXHy+Pjk5WX//+981ZcoU7du3T/7+/mrdurUeeeQR3X333Re8/vDhw3r77bc1c+ZMHTp0SCEhIerYsaOefPJJ3XDDDRcdFwAAQFXVsGFDvfbaa3rttde0ZMkSTZw4Ud99953eeOMN/fWvf1VsbKwMwyjYVzHfsmXLNGHCBH3yySceirxsYmJiZLfblZOTo71795ZYLv9c/fr1FRISUjHBAQAAVJA9e/bIMAwZhqHg4GBt2bLlosfUjh49Ws7Robx0je6lnVFj1eBwRF5Su7jZ2qf79zujEtWt8T0VHCEAAPAGlXaGdlJSkjp27Kg///nP6tSpk37++WdNmTJFtWvX1ogRI9S7d+/zLtF4Pjt37lSrVq00evRo3XbbbZo/f74mTpwot9ute+65R/fee+95925ctmyZWrZsqY8++kiPPvqoFi1apPHjx+vAgQPq27evXnzxxYt92wAAAJDUvXt3TZgwQQkJCZo8ebL69u2rbdu2yTRN3X777Xr00Ue1atUqSdKuXbv0+eefezji0vPx8VHPnj0lqeA9FGflypWSpJtuuqlC4gIAAKhoNWrUUL169RQaGqo9e/Zc9Nf5Vr2BZz179UD92tqivZHHZMsfb81/QPX0q83t1p7Io/q1tUXPdLvTQ5ECAABPMsxzp7BUEtdff71+/fVXPf300xozZkzBcdM0ddttt2n69OkaOnSoPv300zLVm5WVpdatW2v79u1699139cc//rHgXHZ2tq6++mqtWrVKr732ml599dUi1ycmJio2NlZJSUmaOnWqBgwYUHAuOTlZrVq10oEDB/TZZ59pyJAhZYotJSVFISEhSk5OZrlIAABw0a7UPsWxY8f05ZdfatKkSVq3bp0Mw1CrVq3UuHFjTZ06VS6Xy9Mhltr333+vO++8U76+vjpy5EiRGdhbt25VTEyMDMPQypUr1b59+1LVe6X+7AEAQMW73P0Ki8WiL774QoMGDbrkur744gsNGTKkUvUHvVl5/+zH/D5N/93+ihxZpnqu91PdYwEy3BaZFrcO1EzTvDYZynIYeqjpG/pjtwGX/gYAAIBXKEufolLO0P7+++/166+/ytfXV6+99lqhc4Zh6K233pIkff7551q9enWZ6n7vvfe0fft2RUZG6sknnyx0zsfHR2+88YYk6e2339bhw4eLXP/GG28oKSlJnTt3LpTMlvL2gHzhhRckSc8//7wyMjLKFBsAAABKVrNmTT3zzDNas2aNNm7cqGeffVZJSUmaMmWKp0MrszvuuEPXXXedMjMz9frrrxc6Z5pmwYo/Q4YMKXUyGwAAoKoyilvGGl7jj90GaFiT15Vt99PPnTP04c3H9WH/Y/rw5uP6uXOGsu1+JLMBAKjiKmVC+7///a8kKS4uTqGhoUXOx8TEKCYmRqZplnmvxPy6BwwYIKvVWuR8nz59FBQUpIyMDH355ZeFzmVnZ2vSpEmS8gYhi5N//OjRo5o5c2aZYgMAAEDptGjRQv/4xz+0f//+Ig9AVhbfffedWrVqpXfffVcjRozQb7/9pgULFmjgwIGaOnWq4uLi9P7773s6TAAAgMtiyJAhio6OLpe6oqOjdf/995dLXbg8nrn6Ni0Z9KvuqPucwox28nc3VZjRTnfUfU5LBv1KMhsAgCqu0iW0s7OzNW/ePElSx44dSyyXf+7HH38sdd179uzR1q1bz1u31WrVVVddVWzdv/32m5KTk897fc2aNVWvXr0yxwYAAICys1gsio6OVmXcZScsLEwrV67U6NGjtXTpUt1www0aMGCADh48qPHjx2vOnDny9fX1dJgAAACXxaeffqrOnTuXS11dunQp87aEqHghvv56Le5+/TrkMy1/4Hv9OuQzvRZ3v0J8/T0dGgAA8DCbpwMoq/j4eOXk5EiSGjRoUGK5/HP79u1TcnJykX0Hi7Nhw4Yi15dU96JFiwqVL+v1+/fvL3I9AAAAyt9tt92mPXv2eDqMi+JwOPT888/r+eef93QoAAAAAAAAgEdUuhna+/fvL/g+PDy8xHJnnzt48OBlqfvkyZNKS0u76OsPHDhQqrgAAABw8fz9/VW/fn1PhwEAAAAAAADgIlS6GdpOp7Pg+/MtsXj2uZSUlMtad0BAwEVdf6G4srKylJWVVeheAAAAAAAAAAAAAFBVVLoZ2lXJW2+9pZCQkIKvunXrejokAAAAAAAAAAAAAKgwlS6hHRQUVPB9ZmZmieXOPhccHFwhdZf1+gvF9cILLyg5ObngiyXKAQAAAAAAAAAAAFQllS6hXa9evYLvExMTSyx39rmoqKjLUne1atUKlhu/mOsvNOPa4XAoODi40BcAAAAAAACAK4fb7da4ceMUHBwswzC0d+/ecqv78OHDevrppxUdHS1fX19FRETo5ptv1i+//FJu9wAAALjcKl1COyYmRna7XZLO27nLP1e/fn2FhISUqu7WrVsXuf58dZ9dvjyuBwAAAAAAAFB1bN68Wd27d9cTTzwhp9NZrnUvW7ZMLVu21EcffaRHH31UixYt0vjx43XgwAH17dtXL774YrneDwAA4HKpdAltHx8f9ezZU5K0atWqEsutXLlSknTTTTeVuu6GDRuqefPm563b5XJp7dq1xdbdrVu3guR5SdcfO3ZM+/fvL3NsAAAAAAAAAK4cr776qtq1ayer1ao///nP5Vp3YmKibrnlFp08eVL/+9//9Nxzz6lTp0664447tGjRItWtW1dvvfWWPv/883K9LwAAwOVQ6RLakvTQQw9JkubNm6fk5OQi57du3ar4+HgZhqEHH3zwouqeNm2a3G53kfNz5syR0+mUr6+vBg0aVOicw+HQfffdJ0n6/vvvi61/ypQpklSwvA8AAAAAAACAqmfMmDF69913tWjRIjVr1qxc637jjTeUlJSkzp07a8CAAYXOhYSE6IUXXpAkPf/888rIyCjXewMAAJS3SpnQvuOOO3TdddcpMzNTr7/+eqFzpmkWLJczZMgQtW/fvtD5GTNmKDw8XC1btix2WfAnnnhCTZs21aFDh/Tee+8VOpeTk6NXXnlFkvTnP/9ZderUKXL9K6+8orCwMC1btkw//PBDoXMpKSkaPXq0JOntt9+Wn59f2d44AAAAAAAAgCvCli1b9Nhjj8kwjHKtNzs7W5MmTZKUN45anPzjR48e1cyZM8v1/gAAAOWtUia0Jem7775Tq1at9O6772rEiBH67bfftGDBAg0cOFBTp05VXFyc3n///SLXTZgwQUlJSdq8eXPBbOmzORwO/fjjj6pbt66effZZvfzyy1q2bJl+/vln9enTRytXrtTgwYP1l7/8pdi4wsPDNWPGDFWrVk333HOP/vnPf2rlypWaOnWqrr32Wu3bt08vvPCChgwZUu6fCQAAAAAAAIDKobjJMuXht99+K1jVsmPHjsWWqVmzpurVqydJ+vHHHy9LHAAAAOWl0ia0w8LCtHLlSo0ePVpLly7VDTfcoAEDBujgwYMaP3685syZI19f3yLXPfLII6pRo4ZiY2N1++23F1t348aNtXHjRj3//PP6/vvvdf311+vee++VYRj66quv9MUXX8hiKfmj69KlizZt2qRhw4bp/fff1zXXXKPhw4crKipKs2bN0qhRo8rtcwAAAAAAAACAfBs2bCj4vkGDBiWWyz93dnkAAABvZPN0AJfC4XDo+eef1/PPP1/qa2655RYlJSVdsFxISIjefPNNvfnmmxcVW2RkpP7zn//oP//5z0VdDwAAAAAAAABltX///oLvw8PDSyyXf+7AgQPnrS8rK0tZWVkF/52SknKJEQIAAJRNpZ2hDQAAAAAAAAAozOl0Fnxf3AqW5567UIL6rbfeUkhISMFX3bp1yydQAACAUiKhDQAAAAAAAADnMXHiRNlstov+mj17tqffwkV74YUXlJycXPB1oRndAAAA5a1SLzkOAAAAAAAAAJeb2+2Wy+W6pOsrSlBQUMH3mZmZCggIKLZcZmamJCk4OPi89TkcDjkcjvILEAAAoIyYoQ0AAAAAAAAA5zF06FCZpnnRX3379q2wWOvVq1fwfWJiYonl8s+xhDgAAPB2JLQBAAAAAAAA4ArRunXrgu/37t1bYrn8c2eXBwAA8EYktAEAAAAAAADgCtGtWzeFhIRIklatWlVsmWPHjmn//v2SpJtuuqnCYgMAALgYJLQBAAAAAAAA4ArhcDh03333SZK+//77YstMmTJFkhQREaGbb765wmIDAAC4GCS0AQAAAAAAAKASmTBhgkJCQnT11Vfr1KlTRc6/8sorCgsL07Jly/TDDz8UOpeSkqLRo0dLkt5++235+flVRMgAAAAXjYQ2AAAAAAAAAFSwY8eOadOmTdq0aZMOHTpUcHz79u0Fx9PS0oq9duzYsUpJSdHvv/+u+fPnFzkfHh6uGTNmqFq1arrnnnv0z3/+UytXrtTUqVN17bXXat++fXrhhRc0ZMiQy/b+AAAAygsJbQAAAAAAAACoYOPHj1erVq3UqlUrvfzyywXHb7jhhoLjK1euLPbaJ554QsHBweratavi4uKKLdOlSxdt2rRJw4YN0/vvv69rrrlGw4cPV1RUlGbNmqVRo0ZdlvcFAABQ3gzTNE1PB4HSSUlJUUhIiJKTkxUcHOzpcAAAQCVFn6Lq4mcPAADKC/2KqoufPQAAKA9l6VMwQxsAAAAAAAAAAAAA4JVsng4ApZc/mT4lJcXDkQAAgMosvy/BQj1VD/1JAABQXuhTVl30KQEAQHkoS3+ShHYl4nQ6JUl169b1cCQAAOBK4HQ6FRIS4ukwUIHoTwIAgPJGn7LqoU8JAADKU2n6k+yhXYm43W4dPnxYQUFBMgyj3OtPSUlR3bp1deDAAfa/AQDAgy73v8mmacrpdCoyMlIWCzvQVCWXuz8p0acEAMAbVMS/x/Qpqy7GKAEAqBq8aYySGdqViMViUVRU1GW/T3BwMJ1FAAC8wOX8N5lZNFVTRfUnJfqUAAB4g8v97zF9yqqJMUoAAKoWbxij5PFJAAAAAAAAAAAAAIBXIqENAAAAAAAAAAAAAPBKJLRRwOFw6NVXX5XD4fB0KAAAVGn8m4zKjPYLAIDn8e8xKjPaLwAA3sGb/k02TNM0PR0EAAAAAAAAAAAAAADnYoY2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaENut1vjxo1TcHCwDMPQ3r17PR0SAABVSk5Ojr7//nvdf//9at68uQICAuTr66t69erpjjvu0IwZMzwdInBB9CkBAPAc+pO4EtCfBADAs7y5T2nz2J3hFTZv3qyHH35YS5cu9XQoAABUSQcPHlSXLl106NAh1atXT88995xat24th8OhJUuW6K233tKUKVM0YMAATZ48WQ6Hw9MhA0XQpwQAwHPoT+JKQH8SAADP8vY+JTO0q7BXX31V7dq1k9Vq1Z///GdPhwMAQJV06tQpHTp0SFFRUVq7dq2eeOIJXXvttercubNGjhyp+fPny2azadq0aRo5cqSnwwWKoE8JAIBn0Z9EZUd/EgAAz/P2PiUJ7SpszJgxevfdd7Vo0SI1a9bM0+EAAFClPfPMM6pevXqR461bt9Y999wjSfrvf/+r1NTUig4NOC/6lAAAeAf6k6is6E8CAOA9vLVPSUK7CtuyZYsee+wxGYbh6VAAAKiywsLCNHLkSPXv37/EMm3atJEkZWVladu2bRUVGlAq9CkBAPAs+pOo7OhPAgDged7ep2QP7SqsTp06ng4BAIAqr1atWvrnP/953jJWq7Xg+8DAwMsdElAm9CkBAPAs+pOo7OhPAgDged7ep2SGNgAAgJfbsWOHpLyOZePGjT0cDQAAACob+pMAAAC4VJ7sU5LQBgAA8GK5ubn6/vvvJUkjR44s9CQkAAAAcCH0JwEAAHCpPN2nJKENAADgxT7++GMdPXpUnTp10tNPP+3pcAAAAFDJ0J8EAADApfJ0n5KENgAAgJfavn27nnvuOdWsWVOTJ0+W3W73dEgAAACoROhPAgAA4FJ5Q5+ShDYAAIAXOnr0qG666SbZbDbNnj1bDRs29HRIAAAAqEToTwIAAOBSeUufkoQ2AACAlzly5Iji4uJ0/Phx/fLLL2rTpo2nQwIAAEAlQn8SAAAAl8qb+pQ2j90ZAAAARRw8eFA9e/bUyZMntWDBAgYfAQAAUCb0JwEAAHCpvK1PyQxtAAAAL7F3715de+21cjqd+vXXX4t0FPfu3avU1FQPRQcAAABvR38SAAAAl8ob+5QktAEAALzAjh07dO211yo3N1eLFi1SbGxskTINGzbUd99954HoAAAA4O3oTwIAAOBSeWufkoQ2AACAh23ZskXXXXed7Ha7Fi9erMaNG3s6JAAAAFQi9CcBAABwqby5T8ke2lXYsWPHdOzYMUnSoUOHCo5v3769YKmAhg0bKiAgwCPxAQBQFezatUs9evRQYmKifHx81KJFC0+HBJQJfUoAADyL/iQqO/qTAAB4nrf3KUloV2Hjx4/X66+/XuT4DTfcUPD9ggUL1KNHjwqMCgCAqmXjxo1KTEyUJGVnZys7O9vDEQFlQ58SAADPoj+Jyo7+JAAAnuftfUrDNE3T00EAAAAAAAAAAAAAAHAu9tAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAV7J5OgAAVVdubq5yc3M9HQYAAAAAAACAy8xischut8swDE+HAgCoZEhoA6hw6enpSkpKUlpamqdDAQAAAAAAAFBB7Ha7goKCFBYWJqvV6ulwAACVhGGapunpIABUHdnZ2dqzZ4/sdruqV68uh8PBU5kAAAAAAADAFcw0TblcLqWmpio5OVkOh0N169YlqQ0AKBUS2gAq1MGDB5WZmamGDRvSYQUAAAAAAACqmIyMDO3fv1+hoaGKiIjwdDgAgErA4ukAAFQdpmkqPT1dISEhJLMBAAAAAACAKsjPz0/BwcFyOp1ivh0AoDRIaAOoMDk5OXK5XPLz8/N0KAAAAAAAAAA8JCgoSDk5OcrJyfF0KACASoCENoAK43a7JYnZ2QAAAAAAAEAVlj8+mD9eCADA+ZDQBlDhDMPwdAgAAAAAAAAAPITxQQBAWZDQBgAAAAAAAAAAAAB4JRLaAAAAAAAAAAAAAACvREIbAAAAAAAAAAAAAOCVSGgDwBXks88+k2EYBV+vvfaap0MCLpsrub0fPHhQN954owzD0GeffebpcOAFruT2DpyL9o6qpiq0+R9++KHg/e3du9fT4cCDqkJ7B/LR3gEAKD8ktAHAi61atUqPPfaYWrRoodDQUPn4+CgiIkLXXnutnnvuOc2ZM0e5ubkF5e+66y4lJCRo5MiRHoy6/G3btk333nuvateuLV9fX0VHR+u5555TcnKyp0NDOaK95/nkk0/UsmVLzZo1y9Oh4DKq6u3d6XTqww8/VL9+/VSrVi3Z7XaFhoaqa9eueuedd5SZmenpEFGOqnp7T0tL07Rp0zRs2DDFxsbK399fPj4+ioqK0u233665c+d6OkSUs6re5s+VnJysESNGeDoMXCZVvb3v3bu3UMKyuK8xY8Z4OkyUk6re3vOZpqkvvvhCffr0Uc2aNeVwOBQVFaUePXro1VdfldPp9HSIAIArkM3TAQDA5ZSZ49JPGxM0e/NRnUrPVqi/j/q0iFC/VrXla7d6OrwSZWRk6NFHH9XEiRM1YMAAvf3222revLncbrf27dunqVOn6r333tM///lPhYeHa968eWrVqpX8/Pzk5+enwMBAT7+FcvPrr7+qX79+qlevnj777DM1bdpUv/76q5566ilNmTJFS5YsUe3atT0dpnfIyZS2TJO2zpTST0r+1aTmN0uxAyS7r6ejKxHtPU9OTo5uvfVWLVq0SKNGjdKUKVO0aNEiT4fltbJcWZq9d7bm75+vU1mnFOoIVVy9OPVp0EcOq8PT4ZWI9p6X3Ktfv75Onjypu+++W998842ioqK0b98+jR49WiNHjtRnn32muXPnqmbNmp4O1yu4s7LknDVLzrnz5Eo+JWtIqIJ69VRQ376yOGjv3u7VV1/Vv/71L3Xr1k3/+Mc/FBMTo/T0dC1YsEB/+ctfNHXqVP3rX//Ss88+6+lQvUZujku7Vh/T7vVJykzLkW+AXY3ahCm6fU3Z6MNXOn/6059kszH8VJLc7GxtX7ZEO1cuU0ZqivwCg9W4Yxc17dJdNh8fT4dXItp7Yc2aNSvxXPXq1SswEu9m5riVvjFRmZuPy5WeK6u/Tb4tasi/VbgMu/fOu6K9n5Genq4BAwZo06ZNeuWVV/Sf//xHPj4+Wr16tUaOHKmFCxfqvvvuU1BQkKdDBQBcYfiLAsAVa86Woxr57TqlZOTKYkhuU7IY0qzNR/TajM16Z2Bb9YqN8HSYReTk5Khv375atGiR3nvvPT3++OOFzjdt2lS9e/fWiBEj1L17dyUmJur48eMeivbyOnXqlAYOHCjTNPXTTz+pUaNGkqSGDRvK4XBo8ODBuv/++zVnzhwPR+oFtv4kTRshZZ6SDItkuvNe42dIPz8v3faB1OxGT0dZBO39jLS0NGVmZmrjxo1q1KiRpk6d6umQvNaC/Qv08m8vKyU7RRZZ5JZbFlk0d/9cjV4xWm92f1M96vbwdJhF0N7z5OTk6OTJk7r99tv11VdfFRxv1KiRrrvuOnXt2lUrVqzQM888oy+//NKDkXoH5/z5OvznF+ROSZEsFsntliwWOefMkeXNUYocPVpBcdd7OswiaO+F1axZU7Nnz1ZAQEDBsZYtWyooKEgPPPCAXnnlFT3++ONyePEDChVlz/pEzfs8XlnpuZIhyZRkSLvXJmrxNzvUc2isGrYO83SYRdDmi7dgwQJ9/PHH+umnn3Tjjd7XF/W0nauWa9b4d5WVlirDMGSapgzD0I4Vv2v+ZxN04+PPKLp9Z0+HWQTtvaitW7d6OgSvl7HluE58u11mRuHf7xmbj+vUjN2qPrCp/GJreDrMImjvhQ0ZMkTLly/XunXr1LBhw4LjjRo1Unh4uO6++24eYgIAXBbe++gbAFyCOVuO6pFJq+TMyFvqyW2q0KszI1cPT1qlOVuOeijCkr344otatGiRbr311iJ/KJ2tVatWV/z+S2PHjlVSUpL69+9fkMzOd/fddysyMlJz587Vb7/95qEIvcTWn6TJg6TM00uwm+7Cr5nJ0lf35JXzMrT3M0JCQjR//vwibR2FLdi/QE8veFrO7Lxl7NxyF3p1Zjv11PyntGD/Ao/FWBLae2HDhg0rcsxiseihhx6SJE2ZMkUul6uiw/IqzvnzdfDxJ+TOX7bR7S706nY6dfDxx+WcP99DEZaM9n7Gvffeq2+//bZQMjtf+/btJeU91JSWllbRoXmdPesT9dMHG/OS2VJesuOs16z0XP30/gbtWZ/okfjOhzZfVEZGhh5++GENHjxYffv29XQ4XmfnquWa/s+/Kev0//dN0yz0mpWWpmn/+Jt2rlrusRhLQntHWWVsOa7jk7bkJbOlIr/fzYxcHZ+0RRlbvC8RTHs/Y+7cufruu+/0+OOPF0pm5+vRo4eOHDmiBg0aVHxwAIArHgltAFeczByXRn67TjLP/I10LvP0//zp23XKzPGewfIjR47ovffekyQ9/fTTFyx/7733qkGDBvL1Lf1y0mvWrNH//d//qX379qpRo4Z8fX3VtGlTPfvss0pKSir2mvT0dP3rX//SVVddpdDQUPn5+alVq1b605/+pBUrVhQpP3fuXN14442Kiooq2CNy4MCB+vrrr5Wenl7qWL/99ltJUs+ePYucs1gsiouLkyR9/fXXpa7zipOTmTczW9IFWnxeuRzv2ZeW9l5Y/h57KFmWK0sv//ayJMksob3nH3/5t5eV5cqqsNguhPZ+RkhIiE6ePFliciMqKkqSlJmZWab/D11p3FlZOvznF/L+wyzh9/vp44f//ILcWbR3b2zvktS2bVtde+21xZ5btmyZJKldu3ZVfkna3ByX5n0eX3J3Jp8pzfs8Xrn04b22zef7y1/+opSUFPYPLkZudrZmjX/3zB+mxcr7g3bW+HeVm51dgdGdH+0dZWXmuHXi2+2l+v1+4tvtMnPcFRJXadDeC5swYYIkseIGAMAjSGgDuOL8tDFBKRm5pflbSckZufp5U0JFhFUq06dPV2Zmpnx8fEoc+DxbeHi49uzZoy5dupT6HoMGDdLHH3+sJ598UsuWLdO6dev00ksv6dtvv1WHDh107NixQuXdbrduuOEG/eUvf9GIESO0fPlyrV+/Xk8//bQ+++wzde5ceAm8CRMmqHfv3goLC9O0adO0Y8cOTZw4UYmJiQV7pZZGWlqaNm/eLElq3rx5sWXyj69cubLU7/+Ks2Va3jLjpWnxmaekLdMve0ilRXtHWc3eO1sp2SklJrPzmTKVkp2i2XtnV1BkF0Z7P8MwDIWGhspiKf5PkYSEvH+X69evX6X33nPOmpW3zHhJyex8pil3Soqcv/xSMYGVAu39/NxutxISEvTee+/pmWeeUZs2bTR58uSLru9KsWv1sTMzsy8gKz1Xu9Z4zyxt2nxRq1at0pgxY/Tvf/9bNWp43xLCnrZ92RJlpaWqNH34rLRUbV/uPStS0d6L9+mnn+q6665T3bp1VbNmTXXs2FGvvPKKEhO953eVp6RvTDwzM/sCzIxcpW8qPonrCbT3wubOnSspbxu49957T126dFFYWJiioqJ0880366efvG9VOADAlYMNLQB4lVvGLlGi89JmGJ1ML9vT63/+fqPe/nnbJd0zPMihGU92v6Q6pDOzdKKjoy/bnkN16tTRqFGjdPvttxcca968uRo3bqzu3bvrjTfeKHgCWZIWLVqkJUuW6PHHH9cjjzxScLxp06by8/PTvffeW6j+UaNGKSgoSJ9//nlBsqJ+/frq1KmT6tWrV+o49+zZI/fpJVVr1apVbJnatWtLknbt2lXqer3Kh9dJqccuXO58Mk6UrfyMp6S5r13aPSUpsKY0fOElVUF7r1rumnmXkjIubXAqOSu5TOVfX/q6xqwZc0n3lKQwvzB9ffOlrQRBey+9/IGw8y3p6O323HGnckuYUVNarlOnylQ+4S+v6Ni/3rmke0qSLSxMDb//7pLqoL2XbPz48Xr66aeVm5ur4OBgvfLKK3rmmWdkt9svuk5P+2bUSqWnXPrs0cy0nDKVX/DFVi2deml9QP9gH/3hxY6XVIdEmz9XTk6Ohg0bpr59++qee+65mLfrtb544Y9KO3XykuvJyN9KopRmfzhWi//32SXdMyC0mu59a8wl1SHR3kvy9ttv66WXXlLbtm2Vnp6uqVOnatSoUZowYYJ+/PHHgi0mKpOjY9fK7bz03++u9LL9fj/5/Xal/Lznku5pCfJRxJNXXVIdEu39bAcOHNDJk3m//wYPHqykpCS9+eabatq0qbZv364XX3xRN910k1544QWNGjXqoj4LAADOh4Q2AK+S6MzSkZSKXRI5K9dd4fcsydGjeXt6h4aGXrZ7zJs3r9jj+U8Q//jjj4X+WMp/onz//v1FrunXr5/Gjh1b6FhiYqJyc3N17NixQonowMBAffjhh2rVqlWp4kxJSSn43s/Pr9gy/v7+kqTk5LIlubxG6jHJebhi75mbWfH3LAHtvWpJykjSsfRLfICjjLJcWRV+z5LQ3ktn8+bN+uGHH3TVVVfpqaeeuuT6PCU3KUm5p3/mFcXMyqrwe5aE9l6ywYMHq3fv3kpMTNSsWbP02muv6csvv9TkyZMVExNzUXV6WnpKttJOVfyS964ct0fuWxzafGGjR4/Wnj17NHPmzFJfU1mknTqp1BMVv8evKyfbI/ctDu29sODgYP3f//2fXnrpJQUHBxcc79y5s2rWrKmRI0eqf//+2r59e8Hfr5WF25ktVzk8sFRmuaZn7lsM2nvhevKtWLFCu3fvLphkEBsbqy5duqh58+Z666231KNHD/Xp06dU9QIAUFoktAF4lfAgxyXXcTI9W1m5pd9zyWGzqJq/zyXdszzillQh++dmZWVp3LhxmjJlinbu3Km0tDSZZy1neujQoULlu3btKj8/P82YMUM33nijnnzySfXu3Vt2u13VqlXTE088Uah8z549NWPGDHXq1EnPPfec7rrrLtWsWVOSNHDgwMv+/iqVwJqXXkfGibwkdWnZfCW/ctijsxxip71XLWF+YZdcR3JWcpn2xXZYHQpxhFzyfcsjdtr7hWVkZOj+++9XaGiovvnmGzkc5fNvqyfYwi69zbhOnZJZhn2xDYdD1nIYbC2P2GnvJQsJCVFISIiaNGmibt26qWPHjrr11lvVtWtXrV+/XvXr17/ouj3FP/jS+tH5MtNy5CrDvqlWu0W+AZc2s728YqfNnxEfH68333xT77zzjurWrXsJ79g7BYRWK5d6MpxOuXJKn7Cz2n3kd4nbcJRX7LT3wqpXr66333672HOPPfaY3nrrLR06dEhffvmlHn744TLV7WmWoPL5HelKz5FyL7S8/llshqz+l/b7vbxip72fcfZe2wMHDixIZuerVauW7rrrLk2YMEFjx44loQ0AKHcktAF4lfJYtnvKmoN69pv1pS4/+o5Wuu2qqEu+b3mIiIiQJJ0q4zKjpZWenq4ePXpo5cqV6tevnyZOnKj69evLarVKkpo0aaKcnMLLgUVFRWnatGl66KGHNGvWLM2aNUshISG68cYb9dBDD6lnz56Fyn/88cd68MEHNXPmTD311FP64x//qM6dO+vee+/VfffdV+r9UM9+uj0jI6PE9yPlDQ5XSpe4ZLckaf1kaerw0pe/5T9Sm7su/b7lgPZetVzqkt2SNGPXDL245MVSl3+166u6JfqWS75veaC9n19ubq7+8Ic/aM+ePVqwYIEaN2580XV5g0tdsluSkqdP1+Hn/1zq8rX/+oZCbr31ku9bHmjvpXfLLbeoS5cuWrZsmd59912NGTOmXOqtSOWxZLckbVuWoLmfxZe6/PX3NlezzsVvS1PRaPN53G63hg0bpo4dO2rEiBHl9wF4kfJYsluStiyar5/HlX6biD7Dn1TsNdeXy70vFe299Hx9fdWiRQstXLhQv/32W6VLaJfHkt2SlLbmqE5+s73U5avd0VQBV5XDw9/lgPZ+xtkr58XGxhZbJn9p/RUrVpT6MwAAoLQsng4AAMpbv1a1Fexn04WeozUkhfjZdGPL2hcoWXG6du0qKW9P6Nzc3HKvf/z48Vq5cqVatGihH374QX369FGzZs3UuHHj8yYP+vTpoz179mjGjBkaPHiw3G63Jk+erF69emngwIFyuVwFZcPDwzVjxgzFx8frpZdeUuPGjbV06VI9/vjjatGihTZu3FiqWBs2bFjwNPSRI0eKLZOQkCApbz+rKit2gOQbKpWmxfuGSrH9L3tIpUV7R1n1adBHwT7BMi7Q3g0ZCvYJVp8G3jMrgPZespycHA0aNEgrVqzQggUL1KZNm4uq50oT1LevLMHB0oVmBhmGLMHBCrrhhooJrBRo72XTunVrSdLSpUvLrc7KKLp9TTn8S/fMvcPfpuh24Zc5otKjzec5cOCAli5dqhUrVigoKEiBgYGFvvK1aNGi4NjixYsv7cOppJp26S5HQKBK04d3BASqaeerKyKsUqG9l03+Es8nTpwotzorG/9W4TL8Svf73fCzyb/lpa8WU15o72ecPSO7evXiV33LT47n77UNAEB5IqEN4Irja7fqnYFtJaPk4QHj9P/8a2Bb+dqtFRfcBdx6663y8/NTdnZ2qQZ3duzYoc8++0xLliwpVf0LF+bNCI6Liyt44re0rFarbr75Zn3xxRc6duyYJkyYoMDAQH333Xf65JNPipRv3ry5/va3v2nbtm1aunSpOnXqpAMHDujRRx8t1f0CAgLUokULSdLWrVuLLZN/vGPH8pkZVCnZfaXbPjj9H+dt8Xnl7L4VEVWp0N5RVg6rQ292f1OSSkxq5x9/s/ubcli9Z8lq2nvxMjMzdfvtt+u3337TwoULSWafxeJwKHL06Lz/KCmpffp45OjRsnjREu2098I++OADHThwoMTzAQEBkqTsbO/YL9RTbHareg6NLdUzej2HxspGH75UKrLN16lTRzt27NDmzZu1bt26Il/5fvrpp4JjHTp0KNP7uVLYfHx04+PPnPnDtFh5f9De+PgzsvmUz/LJ5YH2Xtj8+fOL3cs4X/7D2ZdzD2ZvZ9gtqj6waal+v1cf2FSG3XuGq2nvZ0RGRhYsVZ6/t/i58o9Xq1Y+WxwAAHA27+khAEA56hUboQn3dVDw6aeALaf/cMp/Dfaz6aP7OqhXbISHIixeRESEnnnmGUnSv//97wuWf/LJJ/XAAw+U+MfEudzukvclPHdfpnxLlizRa6+9VuiYr6+vHn74YT3//POSpLVr1xacGzp0qA4ePFiofJcuXfT9998XKXsh+fs5zZs3r8g5t9ut+fPnFypXZTW7Ubr7f5Lv6aXXDUvhV98Q6Z6v8sp5Edo7LkaPuj307+v/rSCfvKf/Lae7s/mvQT5B+k/cf9Sjbg9PhVgs2ntR6enpuvnmm7Vx40YtXrxYzZs3L3S+b9++2rBhQ5nqvNIExV2vqHHvyZK/FKTFUujVEhSkqHHjFBTnHcvQ5qO9FzZixAj9/PPPJZ7fvHmzJFX6pfbLQ8PWYer3aKszM7Xzkx+nXx3+NvUb0VoNW3vP7D2JNp/PZrMVzCos7itf/fr1C46dvYRtVRPdvrP6/+llOU4/1JK/OlX+qyMgQAOee1nR7Tt7LMbi0N4Le/DBB4tNHkp5eyNv2bJF0pmZvlWVX2wN1bgv9sxM7XN+vxt+NtW4L1Z+sTU8El9JaO+FDRgwQJK0fn3x2/zl92m6detW6joBACgtEtoArli9YyO0/MVeeveuNuoTW0tdGlVXn9haeveuNlr+Yi+vS2bne/3119W7d29Nnz5d48aNK7HcuHHj9Msvv6hv37664447SlV3p06dJElz5swpslzWt99+W+w1O3fu1L/+9a9il0jL38upXr16Bcc+//zzYgdtiyt7IU8++aRq1Kih6dOna8+ePYXOTZ48WYcPH1ZcXJyuueaaUtd5xWreTxq5TbptgtT8JqlB97zX2ybkHfeyZHY+2jsuxvX1rtf8P8zXqO6jFFcvTh0iOiiuXpxGdR+l+X+Y73XJ7Hy09zNSUlJ0ww03aP/+/Vq8eLEaNWpUpMwvv/xSpZfnzBcUF6cmixcp8u9vK6hnT/l36qSgnj0V+fe31WTxIq9LZuejvRf23//+t9ilSn///XfNmTNHkjRkyJAy1XmlatgmXEPfvlq9HohVo7bhimwaqkZtw9XrgVgNfftqr0tm56PN42I07tBZj34wUTc+MVKNO3ZVVGwrNe7YVTc+MVKPfjDR65LZ+WjvhX399dfKysoqcvyDDz5QYmKiwsLCNHjw4DLVeSXyi62hyBc7q9pdzeQXW0OORiHyi62hanc1U+SLnb0umZ2P9n7Gn/70J/n4+Gj69OlFViZITEzU//73PxmGoWeffbbUdQIAUGomAFSQjIwMc8uWLWZGRoanQ/F66enp5tChQ01J5m233WbOmDHD3Llzp7lt2zbzxx9/NG+//XbTMAyzX79+ZkpKSqHrEhISzJEjR5qSzJEjR5oJCQmm0+k0TdM0k5KSzLp165qSzFtvvdVcunSpuXXrVvOdd94xQ0NDTUmmJDMhIcE8fvy4aZqm+emnn5qSzM6dO5szZ840d+3aZW7ZssUcO3as6e/vb0ZHR5snTpwoiEGSGRwcbP773/82N2zYYO7Zs8f86aefzA4dOphWq9WcMmVKmT6LefPmmb6+vmazZs3MX375xdy9e7f5ySefmIGBgWaDBg3MQ4cOlcMnDk+ivZ9x6tQpMyEhwUxISDC7du1qSjLHjBlTcCwrK6scPnF4Eu3dNFNSUsyOHTuaksxGjRqZ7du3L/ZLkrlgwYLy+/BR4WjveaxWqynJ7N69u/nDDz+Y27dvN9esWWP+4x//MAMDA01J5rPPPltOnzo8iTZf1Nl9m/w4V6xYUShWVE609zzR0dGmJLNr164Fn8GmTZvM1157zbTb7WZoaKi5aNGicvrU4Sm09zMmTpxoWiwWMyYmxvz555/Nffv2mXPnzjXbtm1rGoZh/vOf/yx1XYwTAgDKgoQ2gApDR7XsVqxYYT788MNmkyZNTH9/f9PHx8esV6+eeeedd5ozZswoUj7/D5tzv1599dWCMocOHTKHDh1qRkREmDabzaxZs6Z5++23m2vWrCl0zXXXXWeaZt4fYN9++635hz/8waxXr57p4+NjhoaGmm3atDH/+te/midPniwUw6pVq8znnnvObNOmjRkQEGA6HA4zOjraHDRokLlmzZqL+hzi4+PNe+65x4yIiDB9fHzMhg0bms8++2yRe6Nyo72b5pAhQ4p9T/lfJPeuHFW5va9du/a87Zw2f+Wpyu3dNE3zwIED5ujRo824uDizVq1apt1uNx0Oh9mgQQPz7rvvNufPn1/WjxRerqq3+bOdr2+THysqt6re3pOSksyxY8eaN954oxkZGWna7XbT39/fbNmypTly5Ejz4MGDZf1I4cWqenvPt3LlSvPOO+8sEvPixYvLVA/jhACAsjBM0zQFABUgMzNTe/bsUcOGDeXr6+vpcAAAAAAAAAB4AOOEAICyYA9tAAAAAAAAAAAAAIBXIqENAAAAAAAAAAAAAPBKJLQBAAAAAAAAAAAAAF6JhDYAAAAAAAAAAAAAwCuR0AYAAAAAAAAAAAAAeCUS2gAAAAAAAAAAAAAAr0RCGwAAAAAAAAAAAADglUhoAwAAAAAAAAAAAAC8EgltABXONE1PhwAAAAAAAADAQxgfBACUBQltABXGarVKknJycjwcCQAAAAAAAABPycrKkiTZbDYPRwIAqAxIaAOoMHa7XQ6HQ8nJyTyFCQAAAAAAAFRBLpdLJ06cUEBAAAltAECpGCZZJQAVKCUlRYcOHVJgYKBCQkJkt9tlGIanwwIAAAAAAABwmZimKZfLpYyMDCUnJ8vtdqtu3bry8/PzdGgAgEqAhDaACpeSkqKkpKSCpYUAAAAAAAAAXPmsVqv8/f1Vs2ZN+fj4eDocAEAlQUIbgMfk5OTI5XJ5OgwAAAAAAAAAl5nFYmG1RgDARSGhDQAAAAAAAAAAAADwShZPBwAAAAAAAAAAAAAAQHFIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHil/wdqmEXA3T2liAAAAABJRU5ErkJggg==", - "text/plain": [ - "

" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_97245/14240756.py:24: UserWarning: The figure layout has changed to tight\n", - " f.tight_layout()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7QAAAG+CAYAAAATGjtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1x8G8DdhhQ0KIshQnCjuPRGsW2vdW2xdta1126q1apfaWvWntc46au3SOlr33nsv3LJxoOwRCDm/P5ArkSQEDTJ8P8+jhHvOPfeb5Cb3cr/3nCMTQggQEREREREREREREREREREVMvKCDoCIiIiIiIiIiIiIiIiIiEgbJrSJiIiIiIiIiIiIiIiIiKhQYkKbiIiIiIiIiIiIiIiIiIgKJSa0iYiIiIiIiIiIiIiIiIioUGJCm4iIiIiIiIiIiIiIiIiICiUmtImIiIiIiIiIiIiIiIiIqFBiQpuIiIiIiIiIiIiIiIiIiAolJrSJiIiIiIiIiIiIiIiIiKhQYkKbiIiIiIiIiIiIiIiIiIgKJSa0iYiIiIqBtLQ0HDhwANOmTUO7du3g5eUFa2trmJubw8nJCY0aNcK4ceNw6dKlgg61wE2fPh329vbo0qULlEqlQevcuXMHo0aNQrVq1WBrawuFQgFPT080b94cM2bMwPXr1/M56uLJwcEBMpksxz+iooD7b/ESHBys9f1s2bJlQYdWbKWmpmLhwoXw8/ODk5MTzM3N4ezsjBo1amDYsGH4559/DGrn0qVLfO/eYh9++KHW9//QoUMFHVqxFxoail9++QWDBw9GnTp1ULJkSZiZmcHW1hbe3t7o2rUrVq1ahaSkpIIOlYiIiIoBmRBCFHQQRERERPTqJk+ejKVLlyI2NhYAYG5ujmrVqqFcuXIwMTHBrVu3cOXKFal+YGAgli5dCoVCUUARF5w7d+6gUqVK0u8rV67EkCFD9K6zefNm9OvXD6mpqVAoFGjUqBFcXFxw584dXLhwAUDma7pmzZr8DL1Y+uijj5CcnAwAWLt2rbScf6JQUcD9t3iJjo7GhAkTAAAPHz7E7t27AQB+fn5MjOWDJ0+eICAgANeuXQMA+Pr6okqVKkhMTMThw4eRkpICwLDPU2hoKL788ksAfO/eRmvXrsXBgwcBALt27cKjR48AAAcPHuRNDfnk6tWrGDp0KM6cOSMtK1OmDCpVqoTSpUvj2bNnOH36tPS3ibu7O1avXo133nmngCImIiKi4oAJbSIiIqIirlatWrh8+TIAoE+fPvj+++/h4eGhUefSpUvo378/bty4AQDo0KEDtm/f/sZjLWi3b99G5cqVpd+XLVuG4cOH66z/+PFjlC9fHomJiShVqhSOHz+OChUqSOULFy7E6NGjmdA2guw9W/knChU13H+Ll0OHDsHf3x8Ak6L5pVevXtiwYQOAzGPpqFGjpLLg4GDUrVsXz549y/Pnie/d261ly5Y4fPgwACa089OWLVvQtWtXAICTkxN++ukn9OrVS+NYmJqaiu+//x7Tp08HkHnD7f79+9GsWbMCiZmIiIiKPg45TkRERFRMtGzZEr/99luOZDaQmfTeuXOn1Ct7x44d2Lp165sOscBVqlQJkydPhq2tLdq1a4eBAwfqrb9x40YkJiYCAAYMGKCRzAaAIUOGoGPHjqhVq1Z+hUxERFSsxMfHY/PmzQAyk2Eff/yxRnnZsmUxduxYdOzYsSDCIyIDyWQy/PHHH+jdu3eOKTcUCgW+/PJLfPTRRwAyp0fKfuMKERERUV4xoU1ERERUTEyYMAEmJiY6yz09PTUuDv/7779vIqxC57vvvkN8fDx27twJS0tLvXWzerQD0BiqPIu1tTW2bduGMWPGGDtMIiKiYun27dtQqVQAgAoVKkAuz3lp6osvvsC2bdvedGhElAd169bNdRjxkSNHSo8vXbqEsLCw/A6LiIiIiinTgg6AiIiIiF5Pz5490ahRI/j5+eVat2LFitLj8PDw/AyrWEhKSpIeW1hYFGAkRERExQOPrURFW7ly5TBixAiDhnTP/rcHkPn3h7bRpIiIiIhyw4Q2ERERURE3depUg+umpqZKjx0cHPIhmuKFc+ESEREZF4+tREVbzZo1sXTpUoPqZv/bA+DfH0RERPTqOOQ4ERER0VvkzJkz0uNWrVq9VlsLFiyATCbL8e/QoUM56s6YMUNr3eDg4Bx133vvPb3tHjp0CD169ICHhwcsLCzg4uKCd999F/v27dMZ66FDh7S2OXjwYL2xrl27Vlr+/vvvG/RcASAmJgbff/89/P394ebmBgsLCzg5OaFu3br47LPPcPv2bZ2xXrp0SWusWb1gkpOTsXDhQjRr1gylS5eGiYmJxvPJbf3Y2Fh89dVX8PX1hbW1Nezt7eHn54c//vgjRyznzp1Dt27d4OHhAYVCAW9vb3z88ceIjIzUGb+xqNVqrF27Fi1btkSpUqWgUChQtmxZDBkyBHfu3NG6TtmyZbU+d137m679MmseSF3tAYBSqcSiRYvg7+8PV1dXWFhYoHTp0mjXrh1+//33PCVsQkJCMHXqVNSrVw9OTk4wNzeHi4sLmjZtiunTpyMiIkLnumPGjNEa45o1awAAQUFBGD16NHx8fGBnZ5fr/puUlIQ5c+agQYMGcHR0hKWlJby8vNCjRw9s2bIFQO6fp9fdh7NLTEzE33//jaFDh6JOnTpwcHCAmZkZSpQogdq1a+PTTz/F9evX9b6+ut7nrNfo4MGDGDRoEMqXLw8bGxvY2dmhZs2amDZtGqKjo3N7+7R6lf03v+j6rp4xYwYA4O7duxg1ahQqVqwIS0tLODo6olmzZli+fDkyMjK0trllyxa9r2l2a9asMfhYkdv+fOHCBfTr1w+enp4wNzeHu7s7Bg0ahKCgII120tPTsWLFCjRo0AD29vaws7NDo0aNsGTJEp3PKTeJiYmYN28eGjduDBcXFygUCnh5eWHAgAE4fvx4nto6ceIERo4cCR8fH9jb28PS0hLu7u7o2LEjFi9ejJSUFJ3r1qpVS+/32759+9CnTx+UK1cOCoUix3fX63idY1twcLAUh7+/v7T88OHDBh2bX0dcXBy+++471KpVC/b29rC2toavry+++OILxMbG6o1V27+yZcvmWKdly5Y6v/d0tZf1nRgVFYUvvvgCderUgZOTEywsLIrFvqVWq/H333+jV69eKFu2LCwtLWFra4sKFSpgwIAB2Lx5c56OlceOHcPAgQPh5eUFhUIBFxcXNG7cGPPmzUNiYmKeXqcs0dHRmDZtGmrWrAk7OztYW1vD29sbgwYNwsGDBwHo/g7L+g7V5nWO69lFRUXhq6++QrNmzeDk5AQzMzPY2trCx8cH/fr1wy+//IJHjx690nN/U7L/7eHm5oYqVaoUYDRERERUpAkiIiIieivs2LFDABAARKVKlURKSsprtbd7924RGBgoAgMDhYuLi9T2wYMHc9TdvHmzVNfa2lqq++DBgxx1//e//+lsd9q0acLExEQ0a9ZM9O3bV7Ro0UKYmJhIdebPn6811qCgIKnNpk2bSvUDAwP1xlq+fHmpbtOmTaXlWf+CgoJyrP/rr78KBwcHAUDI5XLRpEkT0adPH9GmTRthZWUlAAhTU1MxceJEkZGRkWP9kJAQqf22bdtK2/fz8xP3798X1apVE1ZWVqJNmzaiZ8+eGjEGBgbqXf/OnTuiQoUKwtvbW/Tq1Ut07NhR2NjYSHVGjx4txbFs2TJhZWUl2rVrJ/r06SN8fHykei4uLuLWrVu6do1XktU2AJGYmCjat28vrK2tRfv27UWfPn1EzZo1pXJra2tx9OjRHG2MHz9eBAYGCkdHR6luw4YNpdfjyZMnGvWz3utBgwYJuVwu5HK5GDRokLRfZLUXGBioEV9wcLDw8fERMplMNGjQQPTp00e0bdtWen+zXu+YmJhcn/c333wjLCwsBADpfe3bt69o3ry5MDMzEwCEQqEQP/74o9b1169fr3V/Xb16tVi7dq1QKBSibNmyonv37qJDhw4an7+XP6sXLlwQnp6eUnnp0qVFly5dRI8ePUTFihUFANGlSxexe/dujX0ha/srVqwQQrz+Ppzlv//+09g/XV1dRdu2bUWvXr1E48aNha2trQAgZDKZmDRpktbPU/b3+eXXaNWqVeLjjz8WAIS7u7vo2rWr6N69uyhXrpxUp2TJkmLv3r25vo/G2H/zS/bv6uxxTJ8+Xfz777/CxsZG+Pr6it69e4sOHTpovOZdu3YVarU6R5vnz5/Xud+97OjRowYfK/Ttz8uXLxcWFhaiefPmom/fvqJBgwZSuaWlpTh+/LgQQojk5GTxzjvvCC8vL9GzZ0/x7rvvSt/JAES3bt20PqfsDh48qLHf3rp1S1SuXFkoFArRqlUr0adPH9G0aVMhl8ulfXD06NG5tpuYmCh69+4ttV2qVCnRpUsX0atXL1GjRg2Nz97+/fu1tjFt2jStx9P79+9L+3OdOnVE7969RYsWLYRMJpPqvI7XPbY9efJE6/dC9u+Ql79LXoW2965ChQrC1dVVdO/eXfTo0UO4u7trnA89fPhQa6x9+/bV+Gx36dJFBAYGivHjx+fY7qxZs0RgYKBo37699H0VGBgoZs2apfO5+/n5iV27dglHR8dit2/dvn1b1KpVSyqvUqWK6NWrl+jatavw8PCQlterV0+EhITofW5qtVqMGjVK2l7W/te3b1/xzjvvCIVCISpVqiRu3rwp/Pz89H7HZLd7925RsmRJqX65cuVE9+7dRdeuXaV9ZOTIkWLVqlVSnfLly0uv0ebNm7W2+7rH9SwbN26UjnNmZmaiadOmomfPnqJdu3Yax2pTU1Mxbtw4vW0VlLS0NI3z7lWrVhV0SERERFSEMaFNREREVMwlJSWJRYsWSRcnK1euLO7du2fUbeTlAqKXl5dUV1tCW1e7Q4YMEV5eXuLKlSsadc6ePStd8DM1NdWaZM5u9erVWpNn2mRPZGpL1Lxs7ty5Uv1atWqJ27dva5THxsZqXCDv3r273ovU2S/MN2zYUNSsWVP06NFDI1GalpYmunTpovX5vLy+r6+vmDVrlsY2IyMjpWQlAPHXX3+JvXv3isaNG4uoqCiN9r799lupXsuWLXN9PfIie9JgyJAhonXr1uLp06cadbK/d+XKlRNpaWla25owYYJU791338112/v37xcARIcOHQyKr1q1aqJixYri8uXLGnViYmLEe++9J9Vr0KCBUCqVOtv88MMPNRIl0dHRGuWhoaGiefPmGglIfbLvr0OGDBGWlpY59tu7d+9Kn5fsn9Vbt25p3Ajw9ddfC5VKpbHuP//8I6ysrETVqlU1EjL6vM4+vGTJEil58fPPP4v09HSNtmNiYsSkSZOk9idPnqw3lpdfo2rVqgkTExOxePFijc+EWq0WK1euFKamplKy9MSJE3rbNeb+m5+mT58uxdCnTx/h6OgoNmzYoFHn0aNHGonvlStX6m0zL9+TeTlWZG/3/fffF25ubuLChQsadf7++28pyeXk5CSSkpLEwIEDxcyZMzXe02fPnmkkwNesWaN329n323r16gkfHx/RsWPHHDfF3LhxQ1SpUkWqm/2moJclJiaKevXqaXyeX96njx8/Ltzc3KQE1u7du/XGmf14Onz4cFGmTBlx6tSpHK+RrqSjofLz2Jbbd0heaTvuTZo0SeO1Tk9PF0OHDpXqDRgwQGd72d+zefPm5br9adOmCQDi+++/zzU+T09PYWNjU+z2rWvXrgknJycBQNjY2ORI/KrVarFixQopuevq6ioiIiJ0xpKVTAcgfHx8xI0bNzTKo6OjRadOnYSPj4/G66DvO+bo0aNS0tnU1FSsXLkyx3Hg559/FiYmJhrHvNzOG411XL948aJ0DGrRokWO87GMjAzx66+/Suf2xv4cGcPly5dFQECAdBz/6quvCjokIiIiKuKY0CYiIiIqZmJjY0VgYKDo1auXaNKkidRzqnr16mL+/PkiNTXV6Nt8EwltmUwmTp8+rbXelClTpHoTJkzQ22Z+JbQPHjwo9agqWbJkjh5fWVQqlcbz+u677/S2mT1RVq9evRwXqYUQ4tChQ7kmtAGInj17at3OX3/9JdVp0qSJqF+/voiMjMxRT61Wi0qVKkl1c7t5IC+yx1m6dGkRHx+vtV6LFi2ketu2bdNa5/bt21IdExMTER4ernfbWb3atm7dalB8CoVC500hSqVSozfctGnTtNZbs2aNVKd27do6k5vx8fFSbza5XC71QtXm5Z7kukYsGDx4sMZnVa1WiyZNmkjrffjhhzq3sX79eo1t5CWhndd9OCuhnVvPs6wEgomJibhz547eui+/Rt9++63OurNnz5bqVaxYUe+oFsbcf/NT9oQ2APHDDz9orbdnzx6N90yfN5HQBiC2b9+utV5Wj1gg82aC7t27a6137NgxjUSnPi/vt76+vjqPnffv3xeWlpZS3X379mmtl/W5AyA++eQTnds+f/68NPKIi4uL3pEesh9PTUxMxLlz57TWK1u2bI6ko6Hy+9iWnwltAKJjx45a6yUkJEjJQHNzc/Hs2TOt9ZYvX66RTNVHpVKJMmXKCHNzc/H48WOD4itu+1ZycrJGAnjjxo06t7FgwQKpXtu2bbXWyT4iiKWlpbh//77WeqmpqcLX11fjtdX1HZOcnKwxAsTs2bN1xpj9Rr7czhuNeVwfOHCg1NbLCfzssvZPfZ+jvXv3igoVKgh7e/t87cm9Zs0aMWDAANGpUyfh7e0tAAg7OzvRt29fcf78+XzbLhEREb09mNAmIiIiKmaioqI0Lr4BEA4ODqJr165i7dq1rz3UuDZvIqGtr0fw4cOHpXqNGjXS22Z+JbSz9wrSlyQTQjOxYmVllaMHT5aXL3zrSrjGx8eLdevW5ehF+vL6unqZxsTEaNQbOnSoztg/+eQTqd6yZcv0Ps+8yL79GTNm6Kz39ddfS/U+//xznfVatmwp1Zs5c6bOeo8fPxbm5uaiTJkyOXok64pv5MiRep/Lhg0bpLo2NjYiLi5Oo1ypVApXV1eDE5s//vijVLdTp04662XfX0uVKqU1cSxEZs+vdevWSYmp7MlLU1PTHD3BXpa912BeE9p52YfPnj0rpk+frjOBkeX48eNS+1988YXeutlfIwcHB703+KSkpGgMR/vLL7/orGvs/Te/ZE9oW1lZiaSkJK31lEql1HtRLpeL5ORknW2+iYR2pUqVdNabP3++xut/7NgxrfUyMjKEnZ2dQc/p5f32r7/+0htr9h6kzZs3z1F+5coVqVyhUOj8zs/SuXNnqf7cuXN11st+PO3atavOert27RLr1q3Tu01d8vvYlt8J7UOHDums26pVK6nerl27tNZJSEjQGIb/8OHDOtvbsmWLACB69+5tcHzFbd9auHChtF5uN8MolUqN71htSc/sN1t9/PHHetv7888/NV5bXd8x2W9ScHJy0ntenJKSojFlga7zRmMf17Mn52NjY3W28/Tp01w/R9mHeAd03xjxukaMGKGxHSBziPoJEyaIa9eu5cs2iYiI6O0iBxEREREVK6VLl4YQAiqVCk+ePMHevXvRqVMnbNmyBYGBgfDx8cGRI0cKOsw8a926tc6yChUqSI/v3r37JsLRcObMGZw7d076vUePHnrrN2nSBK6urgCA5ORkrF69OtdtmJmZoW3btlrLbG1tMWDAADRu3Fjn+lZWVmjYsKHWMgcHBzg4OEi/t2rVSmc73t7e0uM7d+7kEvWr0fdely9fXnqs770eNmyY9PiXX36BWq3WWm/NmjVIS0vDkCFDYGJiYlB87777rt7yDh06wMLCAgCQmJiIjRs3apRv2bIFUVFRAAA7Ozud72uW7O/Hjh07EBcXl2uM7dq1g6mpqdayWrVqYcCAAXBxcQEArF27Vipr3LgxSpcurbftLl265Lp9bfK6D9erVw8zZsxAuXLl9Lab9VkCgJMnTxocT9u2baX3SRuFQoH27dtLv69Zs8agdo2x/74JTZs2hZWVldYyc3NzeHp6AgDUajXu37//JkPLISAgQGdZ9v3DyspK5/egXC5H2bJlAeTtOZmYmKBjx45663Tt2lV6fPToUdy7d0+jfMmSJdJjf39/lCxZUm972T/zf/zxh0Fxdu7cWWdZ27ZtMWDAAIPaye5NHNvyk0KhQLNmzXSWG/J5tLGxQd++faXfly9frrO9rLIRI0YYFF9x3Leyx9OzZ0+97Zqbm6N58+bS77///rtG+d27d3HixAnp927duultr1OnTpDLc7/Mmf2Y1759eygUCp11FQpFrsdowPjH9ewx/f333zrbKVGiBB48eIA///wz1xjz29KlSyGEQGJiIm7evIlFixYhJiYGc+fORfXq1fHhhx9CqVQWdJhERERUhDGhTURERFRMmZiYwMnJCe+88w7WrVuHzZs3w8TEBMHBwWjdujUOHjxY0CHmSaVKlXSWOTo6So8NSfYZ2/79+6XHdnZ2emMFAJlMhrp162pdX5cKFSroTb7lxtvbW++FXltbW+lxxYoVddazs7OTHufXa63v9cueeNe3/e7du0sX9kNDQ7Fz584cdYQQWLFiBUxMTDB06FCD46tevbrecisrK1SuXFn6/dixYxrlBw4ckB7XqVNHZ+I5S/abCNRqNc6cOZNrjNWqVcu1jrb46tSpk2t9X19fg9vO7nX24bNnz2LhwoUYN24chg4disGDB0v/Jk6cKNV7+PChwW3m9j4Cmq/H2bNnkZ6enus6xth/34TcvqcK+ns1u+w3Lb0s+3dXbt9zr/L9Va5cOVhbW+ut8/Ln5vjx4xq/Z//M67qxKLvsn/nLly8jJSUl13Xy8pk31Js4tuWn8uXL671RydDP4/Dhw6XHGzduxLNnz3LUCQ0Nxa5du1CpUiX4+/sbFF9x27cePnyIoKCgV47n5RuSXj525nZ8sra2zvUGKKVSibNnzxrcJmDYMc/Yx/UmTZpIjz/++GNMnDgRYWFhWtsqW7as3hvRVq1ahQoVKsDOzg5jxozRe9OiMVhbW6Ny5cr45JNPcPnyZfj7+0MIgWXLlqFLly46bzAkIiIiyo3+MywiIiIiKja6dOmCCRMmYM6cOUhLS8OAAQNw7949jV4gZ86cwaBBg/S2s3//fpQpUya/w83B3t5eZ1n252BIwsnYrl+/Lj3O6gGYm+wXXbOvr0v25NKr0Pf6AdBIAumrmz05kJaW9lox6WLoe61v+xYWFhg0aBDmz58PILPn3Ms94Q4ePIg7d+6gU6dO8PDwMDg+JyenXOt4eXnhypUrAIBbt25plF27dk16HBISgsGDB+ttSwih8bshPUsN3V+USiVCQkKk3728vHJdJ7cegK8bU3Y7d+7E2LFjc7yGuiQlJRnctqHvY5bU1FQEBwfrveEDMM7++ybk9p1QVGI19LsLeLXvL0P2E0dHR9ja2iIhIQGA5mc+PT1d4/fdu3fjwYMHetvL6ukJACqVCqGhoRo3yeiKwdjexLEtPxlrH69Xrx5q166NixcvQqlUYu3atRg7dqxGnZUrV0KtVmskv3NT3Pat7Mc2APjf//6Xay/9ixcvSo9fPrZlf252dnYaNyDoUrJkyRy92LMLDg7WeK+Ndcwz9nF92rRp2LBhA6KiopCeno65c+di3rx5aNKkCd5991107twZVapUyTUuAHjnnXfybUSd3Nja2uKvv/6Ct7c3EhMTsXv3bixevBijRo0qkHiIiIioaGNCm4iIiOgt8umnn2LOnDkAgMjISGzYsAEDBw6UypOTk3NNHBVEwhjIHK5YF5lM9gYjyenp06fSYxsbG4PWyV4vOjo61/r6nr8hcust9Kp184Ox3uvhw4dLCe3t27cjIiJC42aMrOFh85KAAGBQL+Ps7+/Lvfmy7y8PHjzINQHxstjY2FzrGLq/xMTEaPxuyP5raWlpUNuvGlOWZcuWYeTIkRBCwNzcHBMmTEC/fv3g7e2tEUNwcLCURHs5SaBPXt9HIOd7qU1h/q7KLrf3ozDFauh3Un58dxk6qoCNjY2UdMy+n7y8z5w8eTJPQ+MDxv3M58WbOLblJ2Pu48OHD8fIkSMBACtWrNBIaGdkZGDVqlWwsLBAYGCgwW0Wt30r+/4CAJs3b36tWLIfnwzd/3I7PuXXMc/Yx3UnJyecOXMGY8aMwaZNmyCEgFqtxrFjx3Ds2DFMmjQJVapUwQcffIARI0ZojD5R2Dg7O6Nv375YsWIFAGDBggVMaBMREdEr4ZDjRERERG8RNzc3jV5Whw4dKrBYiPJblSpVpPk5MzIy8Msvv0hlT548webNm+Hu7o4OHToUVIjo378/hBB5+vfZZ58VWLxvyt27d/Hpp59KCeo1a9bg22+/RbVq1V45oU5UGKxYsSLPn3lDhm6m/NW/f39pePCgoCAcOXJEKtu2bRsiIiLQrVs3g3pd55fCtm/duXMnT7EYMvx5UWCs47q7uzs2btyIO3fu4KuvvsoxTcbNmzelxPbhw4ff1NN7JU2bNpUe379/X+fw6URERET6MKFNRERE9JbJPs9eZGSkRlnLli1zvehm6LCjuhT00LX5IftwlImJiQatk71eQV4AL+6y977+5ZdfpLkb16xZg7S0NAwdOlTvHKvaKJXKXOtkf39LlCihUZZ9f8nqdVdQXh5K1pD9900kHX799Vfpu8Lb2xt9+/Y1+jby+j4COd9Lypui+P1vyH4C6P7Mv7zPFPRnPi94bHvB1tYWffr0kX7PGuEj++MRI0bkqc3itm+9PDT368aT/fhk6P6X2/Epv455+XlcL1++PKZNm4YrV67g5s2bmDFjBjw9PaXyqKgodOrUyaDpSArKy3N8v/z3BxEREZEhmNAmIiIiKsJOnDiBuXPn4urVqwavk33IcHNzc6PEkX04ytwSFnFxcUbZZmHi6+srPQ4ODjZonewXHrOvT8bVo0cP6aJ/aGgodu7cCSEEVqxYARMTEwwZMiTPbb48rKo22feDl+e5zP5+53VYUmOzsLDQmPPWkP3XkOf/urLmHweAOnXq5Ms28vo+KhSK176hpzjKy/e/IcMbFzaG7CcxMTEaSazsn3kzMzONOYoL+jOfFzy2acp+g9TGjRvx7NkzhIaGYteuXahSpQr8/Pzy1F5x27defr9fNx4fHx/pcXx8fI7hwrXJ7TUtV66cxlDvxjrmvanjeuXKlTF9+nTcu3cPCxYskIbNT0xMxOLFi/Ntuy+bO3culi1bZnD9l6crMtbfH0RERPR2YUKbiIiIqAjbs2cPJk6ciF27dhlUX61W4969e9LvHh4eRokj+9x9+i44hoWFITk52SjbLEzeeecd6XF8fDxu376tt74QAhcuXJB+DwgIyLfY3nYKhUJjnvjly5fj4MGDuHPnDjp06AB3d/c8t5nbDSTJycka+0CzZs00yrPvLzdv3kR8fHyu2zxz5gx8fX1RvXp1RERE5DFi/bKGZQeAixcv5lr/2rVrRt2+NqmpqdLj3OZvNbTn3ssMuREo++vRoEGDfJmnuKgz9PtfpVIV6h6Euty/fz/X41b273NA/2f+9OnTBm138eLF8PX1RZs2bQyM1Ph4bNPUoEED1KxZE0Bm7+q1a9di5cqVUKvVGDZsWJ7bK277VunSpVGtWrU8xzN48GD4+vpi6tSpGstffq65HZ+Sk5NzTSabm5trDLNurGOesY/r69evx2+//aZzXVNTU4wePRrvv/++tOz69eu5btNYJk6ciAkTJkjTguTmzp07Gr+/yrkXERERERPaRERERMWAoXNh7927V6OHXNu2bY2y/QoVKkiPsyfMX7Z7926jbK+wqVevHho0aCD9vnHjRr31jx8/jqioKACAtbW1xgVJMr7sveq2b9+Or7/+GkDeh4fN8u+//+ot37FjhzSUrK2tLXr06KFR3qVLF+libnp6OjZs2JDrNletWoXr169DLpejTJkyrxS3LoGBgdLjkydP4uHDh3rr//fff0bdvjbZL3a/fCH8ZYYkJLTZvXu33h7Fqamp2Llzp/Q7P6faGfr9f+jQIYOHWC5MMjIysH37dr11Nm/eLD328/PTGPUAAEaOHCn1pDx79izu3r2rtz0hBBYvXozr169r9FJ903hsyyn78WT58uVYtWoVLCwsNL5HDVUc962PP/5Yevz3339DpVLprR8WFob169fj+vXrqFevnkaZt7e3xg1XmzZt0tvWtm3bpGlF9Mn+Xu3cuVPjBqqXKZVKg85djX1cnzp1KkaMGIGMjAy9bWR/zWxsbHLdpjElJibi3LlzBtXN/nrUqVMHzs7O+RUWERERFWNMaBMREREVAzt37sThw4f11klMTMS4ceOk32vUqIEOHToYZfstWrSQHu/Zs0drnfT0dMybN88o2yuMfvjhB2ku5nnz5uHRo0da62VkZGj0Qpo6dWqOeSfJuKpWrYqmTZsCyHz9Dx06BE9PT7Rv3/6V2lu9erXOXmBpaWn45ptvpN/Hjx8PW1tbjTpmZmaYM2eO9PuMGTPw7Nkznds7d+4cVq1aBQCYMmXKK8WsT0BAgDRUrkqlwsyZM3XW/fPPP3Hjxg2jx/Cy7O/N+fPncf78ea31VCoVFixY8ErbiImJwfz583WW/+9//5OGmq1cuXK+zOOtT2BgIGQyGWQyGWbPnv1Gt50X2b//9+3bpzOhlH2fL2q++eYbnTc/PHjwQPp8ymQyTJ8+PUedatWqYejQoQAyE4pjxozR27Nx4cKFCAoKgkKh0DhuFwQe2zQNGDAAVlZWADJ74kZERKBHjx6v/FyL2771/vvvo3r16gAyh/PWd96XFa9KpUK1atXQpUuXHHVmzJghJexXrVqlc4jwl4+9+vTr1w+VKlUCAERHR+N///ufzrrz5883aKqE/DiuJycn53rDQ/aRRrIn/7Pbt28fKlasCAcHB0yaNElve3k1derUXJPuq1atwsmTJ6XfJ0+ebNQYiIiI6O3BhDYRERFRMSCEwLvvvotffvlF64XR8+fPo3nz5lIiysnJCevXr5cuUr+uNm3aSL2GDh8+jNWrV2uUJyYmon///vD09ISnp6dRtlnYtGjRAnPnzgWQOd9iu3btcgzPGh8fj4EDB+LIkSMAgG7duuHzzz9/47G+jbL3qgOAoUOHQi5/tT+Hevbsifbt2+cYhjQ2NhZ9+vTB5cuXAQCNGjXSeaG6X79+GDNmDAAgPDwc77zzjtbhQv/77z+0b98e6enp6Nu3L3r37v1KMedm1apVcHJyAgAsXboU3377bY6L1Fu3bsXQoUMxaNCgfIkhu65du0o9z4QQ6NGjBy5duqRRJy4uDgMHDswxJK+h+vfvjy+//BLLli3LkQBatWoVvvjiCwCApaUl1q5dqzHv6puQfd7WwtybrVq1atINIw8ePMBXX32l8Xqmp6dj9OjRePz4scZQv0WFl5cXHjx4gJ49e+aYS/fmzZvo2LEjUlJSAABjx46Fv7+/1nYWLlyIxo0bA8gcKaJ///452ktLS8MPP/wgJRr/97//wcvLy9hPKU94bNNkZ2eX43v4VUf7qFevHtLT04vVvqVQKLBx40a4uLgAyExezpkzJ8ccytHR0RgwYAA2bdoEKysrrFu3TusxOSAgAGPHjgUApKSkoEOHDrh586ZGnWfPnqFXr14IDg426DkpFAr8+uuvsLS0BAB88cUXUnI5ixACy5cvx/Tp09G/f3+Dnnt+HNeHDBmitYe4SqXCqlWrsHLlSgCZvdmHDBmitY0PPvgAd+/eRVxcHH744QccOHDAoOdjiL179+Ldd9/VOpJKcnIyvvnmG43zrw8//DDHqDVEREREhpIJQyc8ISIiIqJC5+TJk5g8ebJG72wHBwfUq1cPpUqVglKpxI0bNxAUFCSVt2jRAitXrkTFihWNGsuxY8fQvn17aT7b6tWrw9fXF4mJiThy5AiqVauGrVu3ol69eggJCQEAdO/eHTY2NnBycpIumG/ZsgVbtmwBAOzatUvqDda2bVuULl0aVapUkS6Ur1y5EseOHQMArF27VoolazjJZs2aYejQobh586bUw/Hu3bs4fvw4AKB8+fLSHI3vvfce3nvvPY3tHzt2TBpCt2nTphpD637++eeoUqVKjtfht99+w6effoqYmBjI5XI0atQIXl5eePbsGY4ePYrk5GSYmppizJgxmD17ttabCgYPHgwAePjwoXQh08XFBe3atZPqzJ07V0pA5nX9rNizP9eNGzciKSkJwIv3JftrPWHCBERHR+t8/YYOHZpjvsvczJ49W7owre39y3pPsm9f13PKbfspKSlwc3NDbGwsTExMEBoaCjc3N4NjzeohBgBJSUno3bs3tm/fjgYNGsDb2xuxsbE4cuSI9Br6+/tj8+bNsLe319vujz/+iC+//BLJycmQyWSoU6cOKlSoAJVKhYsXL+L+/fuQyWQYMWIEFi1aBFNTU431jx07Jl3Q1rW/Zn8f9bly5Qq6dOki9YBzdXVFo0aNYGpqisuXL+POnTuYNm0a/P39pcSKn5+f1ikPXncfBoDIyEh07NhRSmTLZDI0aNAA5cuXR1xcHI4ePYqkpCQMHz4cS5YsAZA5zHHWxfLs+0/2uLL2tdWrV0OlUuHjjz+Gi4sL6tevD7lcjgsXLkhzPTs5OeGvv/7SOhdwfu+/derUkYZTP3PmDOrXr6/ztdIn+/ffpUuXpBsuatasiVq1agEA1qxZA0Bzf9L2/Zv9uzq7W7duwc/PT6pfoUIF1KlTB+np6Th+/DhKlCiBbdu2YciQIdLxKqtNXdvXtj9n376hr2n256/tOWVtPzo6GhMmTACgud/6+flh6tSp6N27N1JSUtC8eXM4OTkhLCwMJ06cgFqthkwmw5gxY/Djjz9qfFe8LCUlBR9++CHWrVsHIQTMzc3RpEkTuLm5IS4uDqdOncLTp09hbW2N+fPna52XOftxT9v3NqB9339dr3ts0/X6vvy9kHXczitDj3vZ49D1ecjtu+nkyZNo0qQJAMDHxydPo1YcOnRI4/tzxYoV6Ny5M0JCQorVvhUcHIw+ffpI82iXKFECjRs3hoODAyIjI3Hy5EmkpqbCy8sLf/zxh5SQ10YIgfHjx2PBggUQQkAul6Nx48bw9PREdHQ0jh07BoVCgT///BPfffed1u8Ybe/pgQMH0Lt3b0RHRwMAypUrh7p160KtVuPs2bN49OgRfvrpJ5iZmUnD5wcGBkrfV7q87nEdyBwJ4I8//pBGvChXrhxq1qwJKysrPH78GFevXpW+y2rXro3NmzfrTOZ7enoiLCxM+n3//v2vPb/9hAkTsGbNGunGCZlMhmrVqqFy5cpQKBR49OgRTp06Jf1NYG1tja+//hpjxozRux8TERER6SWIiIiIqMh78OCB+Omnn0Tv3r1F9erVhaOjozA1NRUKhUK4uLiIpk2bijFjxoiTJ0/maxx3794Vw4YNE+XKlRMWFhbC0dFRNGrUSPz8889CqVQKIYTw8vISADT+eXl5SW1Mnz49R3n2f35+flLdwMBAvXUDAwOFEEIcPHhQbz0AYvr06QZtP+vfwYMHdb4Oz549E3PmzBF+fn7CxcVFmJmZiRIlSohatWqJiRMnilu3bul9HQ3Z/oMHD155/azY8/Jaa3vfsv9bvXq13uekjZ+fn0HvibG2//HHHwsAokuXLnmONfu2hBBCrVaLP/74Q7Rv316UKVNGmJubi1KlSok2bdqI9evXC7VabXDbkZGRYubMmaJx48bC2dlZmJqaCjs7O1GzZk3x8ccfiwsXLuhcd/Xq1bm+39nfx9wkJSWJ77//XtSvX1/Y29sLS0tL4e3tLQYNGiROnDghhBBi3759Uttt27bN9fV6lX04S2pqqliyZInw9/cXJUuWFKampsLBwUHUqlVLjB07Vty+fVs8ePAg1/0nS/bvjKx95urVq+Kjjz4SlSpVEjY2NsLGxkZUr15dfPHFF+LJkyc6Y8vP/ffx48dCLpcLAMLV1VVkZGTk+lrpYsj3X5bc9qfs39Uvi4qKEuPGjROVK1cWlpaWws7OTtSuXVvMmTNHxMfH633NXmX7hr6mhj5/XftR1ucnKipKTJ06VdSuXVuUKFFCmJubCw8PD9G/f39x/PjxPL0n58+fF6NGjRLVqlUTDg4OwtTUVJQsWVI0bdpUzJw5U4SHh+tcN7fjnq593xhe59im6/V9+V/WcTuvcms367hnSByGfDdVq1ZNABDz58/PU5zZ98esfSshIUH8+OOPolGjRsLZ2blY7VtbtmwR/fv3F97e3sLKykqYm5sLNzc30b59e7F06VKRlJRkcFsnTpwQAwYMEB4eHsLc3FyUKFFC1K5dW0ydOlVERUUJIXR/x+h6T6Ojo8W0adNEjRo1pO//SpUqiY8++khcvXpVCCHEypUrpXZGjBhhUKyvc1zPEh4eLpYsWSJ69eolqlatKuzs7ISJiYmwtrYWFSpUEL169RJ///13rseHvXv3ivLlyws7Ozsxbtw4g+I3hFKpFLt37xbjxo0T/v7+wt3dXVhZWQkTExNhb28vKlasKHr06CGWLFkiYmJijLZdIiIienuxhzYREREREb0VevXqhQ0bNmDHjh15nj87e4+it/1PqM2bN6Nbt24AModYXb9+fQFHZLiXe2hn9eosbObOnYuJEycCyJx72tjznhLRq8vIyICHhwdiYmIQERGBEiVKGLzuyz20tY1wQYXL/PnzpaHap0yZgm+//baAIyIiIiJ6O3EObSIiIiIiKvaePn2KrVu3wsvLC23bti3ocIq07HNl1qhRowAjKZ7u37+PGTNmAMgcBjlrTlYiKhx27NiBqKgo9OzZM0/JbCqaeMwjIiIiKhyY0CYiIiIiomJv3bp1SEtLw7BhwyCX88+gly1ZsgSlS5eW5h7VZ9++fdLj7HPf0uu7c+cOAgICkJSUBA8PD/z7778wNzcv6LCIKJtffvkFADBixIgCjoRe1ZQpU1C6dGncv38/17pZxzxzc/PXnnuaiIiIiF4dr+QQEREREVGxMXnyZHTt2lVjmVqtxpIlS2BmZoYPPviggCIr3JKSkvDo0SOsWLFCb72TJ09i//79AIA2bdqgZs2abyK8t0ZiYiLi4+PRsGFDnDx5Ep6engUdEtFbq3379pg5c6bGspCQEGzbtg2+vr5o2rRpAUVGrys+Ph6PHj3CqlWr9Nb766+/pB7agwcPhrOz85sIj4iIiIi0YEKbiIiIiIiKjatXr2LLli04f/68tGzRokW4ffs2BgwYAFdX1wKMrvBbv349pk+fjuTk5BxlO3fuRJcuXaBWq+Hs7IyVK1cWQITFW+3atXHhwgUcO3YMZcqUKehwiN5qR48exbJly5CYmAgg8+aocePGISMjQ5rjnoq2WbNmYcmSJUhPT9dYrlarsW7dOukmuEqVKuH7778viBCJiIiI6DnTgg6AiIiIiIjI2Pz9/dG6dWs8ffoUhw8fhqurK2bNmpWnNiZMmIDo6OgcywcPHgwAcHJywty5c40RboFzcnKCXC6HWq3GV199hYULF6JmzZpwc3NDcnIyLl26hJCQEABA9erV8c8//8DDw6OAozbMli1bsGXLFgDAsWPHpOUrV67EoUOHAACff/45qlSpUgDR5VS2bNmCDoGInouKioKvry8aNmyIa9eu4caNG2jVqhUGDBhgcBvR0dGYMGECAODhw4fS8ps3b0rHk2bNmmHo0KFGjZ10y+pprVar8dFHH2HmzJnw9fWFi4sL4uPjce7cOem98vPzw19//QV7e/uCDJmIiIjorScTQoiCDoIMo1arERkZCVtbW8hksoIOh4iIiIooIQQSEhLg5ubGuYTfMm/D+eSyZcvw+++/48GDB0hOTkapUqXQsmVLfPbZZ/Dy8spTW9WrV0doaKjOck9PT1y9evV1Qy40wsPDsXPnThw7dgy3bt1CZGQkkpKSYGFhAScnJ9StWxedO3fGe++9V6S+O2bNmoXZs2frrbNt2zY0b978DUVEREXBqFGjcPLkSURFRUGlUsHd3R3dunXDmDFjYG1tbXA7ISEhqFGjht46/fr1w5IlS1435DeuKJ9T3rp1C//99x+OHTuGmzdvIioqCklJSbCysoKrqysaN26MPn36oF27dgUdaqH0NpxTEhERUf7Ly/kkE9pFSHh4eJHpBUFERESFX1hYGNzd3Qs6DHqDeD5JRERExsZzyrcPzymJiIjImAw5n+SQ40WIra0tgMw31s7OroCjISIioqIqPj4eHh4e0rkFvT14PklERFT8fH7kcxwJPwI11LnWlUOOFu4tMLuF/pErDMFzyrcXzymJiIjIGPJyPsmEdhGSNYSPnZ0dTxaJiIjotXF4wLcPzyeJiIiKnxTTFMgsZTCBicH1jXkewHPKtw/PKYmIiMiYDDmfLFoT3BAREREREREREZHEwcIBcgMv8ckhh4OFQ/4GRERERERkZExoExERERERERERFVFN3JoYNNw4AKihRoBnQD5HRERERERkXExoExERERERERERFUF3Y+5izfU1BtWVQQY7czu0Kdsmf4OiPFOr1Vi8eDHs7Owgk8kQHBxstLYjIyMxevRolC9fHgqFAi4uLujUqRN2795ttG0QERER5TcmtImIiIiIiIiIiIqYXQ92od+OfghNCM21rgyZ8xJ+2+xbWJhY5HdolAfXr19Hs2bN8MknnyAhIcGobZ86dQq+vr5YsWIFPvzwQxw5cgQ///wzwsLC0K5dO0yZMsWo2yMiIiLKL0xoExERERERERERFRHp6nTMOTMHE49MRIoqBQBQ2bEyvmz0JezM7QBAmlM766etuS0WBixES4+WBRIzaTd9+nTUqVMHJiYm+Pzzz43a9pMnT9C5c2fExMTg999/x8SJE9GgQQN0794dR44cgYeHB2bNmoW1a9cadbtERERE+cG0oAMgIiIiIiIiIiKi3D1JfoLxh8fj4uOL0rJ3y7+LLxp9AUtTS7xb4V3sCd6DA6EHEKuMhYOFAwI8A9CmbBv2zC6EFixYgPnz52PkyJFGTyx/9dVXiI6ORsOGDfHee+9plNnb22Py5Mn46KOP8Nlnn6FXr16wtLQ06vaJiIiIjIkJbSIiIiIiIiIiokLu3MNzmHB4Ap6mPgUAmMnN8HmDz9GzUk/IZJlDiluYWKBz+c7oXL5zQYZKBrpx4wbKlClj9HbT0tKwbt06AED37t211unevTs++ugjPHr0CNu2bUPPnj2NHgcRERGRsXDIcSIiIiIiIiIiokJKCIG119di6J6hUjK7tHVprG23Fr0q95KS2VT05EcyGwCOHz+OuLg4AED9+vW11ilVqhQ8PT0BANu3b8+XOIiIiIiMhT20iYiIiIiIiIiICqGk9CRMOz4Ne0P2SssauTbC9y2+h6PCsQAjo8LsypUr0uOyZcvqrFe2bFmEhoZq1CciIiIqjJjQJiIiIiIiIiIiKmTux97HmENj8CDugbRsWPVh+LjWxzCRmxRgZFTYhYaGSo+dnZ111ssqCwsL09ueUqmEUqmUfo+Pj3/NCImIiIjyhkOOExERERERERERFSK7g3ej7/a+UjLb1swWC/0X4tM6nzKZTblKSEiQHisUCp31sspyS1DPmjUL9vb20j8PDw/jBEpERERkICa0iYiIiIiIiIiICoF0dTq+P/s9JhyegGRVMgCgomNF/NnpT/h7+hdwdPS2mjx5MuLi4qR/ufXoJiIiIjI2DjlORERERERERERUwKJTojH+0HhceHxBWtbJuxO+bPwlLE0tCzAyKmpsbW2lx6mpqbC2ttZaLzU1FQBgZ2entz0LCwtYWFgYL0AiIiKiPCryPbTVajUWL14MOzs7yGQyBAcHG63tyMhIjB49GuXLl4dCoYCLiws6deqE3bt3G7T+rVu3MGTIEHh6ekKhUMDNzQ29e/fGmTNnjBYjEREREREREREVbRceXUDP/3pKyWxTuSmmNpyK75p9x2Q25Zmnp6f0+MmTJzrrZZVxCHEiIiIq7Ip0Qvv69eto1qwZPvnkE425YYzh1KlT8PX1xYoVK/Dhhx/iyJEj+PnnnxEWFoZ27dphypQpetffunUrateujX///RdTpkzB0aNHMWfOHJw5cwZNmjTBkiVLjBovEREREREREREVLUIIrLuxDkN2D0F0SjQAwMXKBWvarUGfKn0gk8kKOEIqimrUqCE91tf5J6sse30iIiKiwqjIJrSnT5+OOnXqwMTEBJ9//rlR237y5Ak6d+6MmJgY/P7775g4cSIaNGiA7t2748iRI/Dw8MCsWbOwdu1aresHBQWhb9++SEtLw86dO/Hhhx+ifv36GDhwIA4dOgQrKyt88sknOHDggFHjJiIiIiLSZvHixahatSrq169f0KEQERHRc8npyZh0ZBK+P/s9VEIFAGhYuiH+6vQXajrXLODoqChr0qQJ7O3tAQDnzp3TWufx48cIDQ0FAHTs2PGNxUZERET0KopsQnvBggWYP38+jhw5gsqVKxu17a+++grR0dFo2LAh3nvvPY0ye3t7TJ48GQDw2WefISUlJcf6kyZNQkpKCnr06IF69epplHl5eWHkyJFQq9UYO3asUeMmIiIiItLm448/xo0bN3D27NmCDoWIiIgA3I+7j77b+2JX8C5p2RDfIVjaeilKWpYswMioOLCwsMDAgQMBAP/884/WOps2bQIAaYpFIiIiosKsyCa0b9y4gY8++sjoQy+lpaVh3bp1AIDu3btrrZO1/NGjR9i2bZtGWVRUFHbs2GHQ+leuXOFFRSIiIiIiIiKit8jekL3ou60v7sfdBwDYmNlggf8CjKk7BqZy0wKOjoqK5cuXw97eHk2bNkVsbGyO8i+//BJOTk44deoU/v33X42y+Ph4zJ49GwAwZ84cWFpynnYiIiIq3IpsQrtMmTL50u7x48cRFxcHADqHZCxVqhQ8PT0BANu3b9co27VrF9Rqtd71a9WqBTMzM63rExERERERERFR8aNSq/DjuR8x7tA4JKuSAQAVHCrgz05/opVnqwKOjgrC48ePce3aNVy7dg0RERHS8tu3b0vLk5KStK67aNEixMfH48SJE1qnNXR2dsZ///0HR0dH9O3bF3PnzsXZs2exefNmtGjRAiEhIZg8eTICAwPz7fkRERERGUuRTWjnlytXrkiPy5Ytq7NeVln2+tl/NzExgYeHh9Z1zc3N4erqqnV9IiIiIiIiIiIqXqJTojFszzCsub5GWtahXAes77AeXnZeBRcYFaiff/4Z1atXR/Xq1fHFF19Iy9u2bSst1zW64yeffAI7Ozs0btwYAQEBWus0atQI165dw5AhQ7BkyRI0b94cI0aMgLu7O3bt2oXvvvsuX54XERERkbFxHKOXhIaGSo+dnZ111ssqCwsL07q+o6MjTExM9K4fGhqaY/3slEollEql9Ht8fLz+4ImIiIiIiIiIqFC59PgSxh8aj8cpjwEApjJTTKw/EX2r9DX6VHpUtMyYMQMzZsx4pXVHjBiBESNG5FrPzc0NCxcuxMKFC19pO0RERESFAXtovyQhIUF6rFAodNbLKns5yZy1vr519a2f3axZs2Bvby/909Xjm4iIiIiIiIiIChchBNYHrcf7u96XktmlLEthdbvV6OfTj8lsIiIiIiIDMaFdiE2ePBlxcXHSP329uYmIiIiIiIiIqHBITk/GZ0c/w+wzs6ESKgBA/dL18Vfnv1CrVK2CDY6IiIiIqIjhkOMvsbW1lR6npqbC2tpaa73U1FQAgJ2dndb1s8p10bV+dhYWFrCwsMg9aCIiIiIiIiIiKhSC44Ix9tBY3I29Ky17v9r7+LTOpzCV81IcEREREVFe8Sz6JZ6entLjJ0+e6ExoP3nyBAByDAOetX5MTAwyMjJ0zqOta30iIiIiIiIiIiqa9ofsx9TjU5GUngQAsDazxjdNv8E7Xu8UcGREREREREUXhxx/SY0aNaTHwcHBOutllWWvn/33jIwMnUOEp6WlISoqSuv6RERERERERERUtKjUKsw7Pw9jDo2Rktnl7cvjj45/MJlNRERERPSamNB+SZMmTWBvbw8AOHfunNY6jx8/RmhoKACgY8eOGmXt2rWDXC7Xu/6lS5eQnp6udX0iIiIiIiIiIio6nqY8xYi9I7D62mppWfuy7fF7x99Rzr5cAUZGRERERFQ8MKH9EgsLCwwcOBAA8M8//2its2nTJgCAi4sLOnXqpFHm6uqKDh06GLR+jRo1UL9+faPETURERPS2evjwIS5duoT4+PiCDoWIiIjeMpceX0Kvbb1w5uEZAICpzBSfN/gcc1rMgZWZVQFHR0RERERUPLyVCe3ly5fD3t4eTZs2RWxsbI7yL7/8Ek5OTjh16hT+/fdfjbL4+HjMnj0bADBnzhxYWlrmWP/777+HpaUlNmzYgAsXLmiUhYWFYcmSJZDL5Zg/f77xnhQRERHRWyQmJgZTp06Fl5cXypQpg7p162qMjuPt7Y0vvvgCMTExBRglERERFVdCCPwe9Dve3/0+Hic/BgA4WzpjVbtV6O/THzKZrIAjJCIiIiIqPkwLOoBX9fjxYzx+nPkHQ0REhLT89u3bSExMBACUK1cO1tbWOdZdtGgR4uPjceLECRw4cADdunXTKHd2dsZ///2HDh06oG/fvpg5cyb8/PwQHh6OmTNnIiQkBJMnT0ZgYKDW2Hx8fPD777+jX79+aNu2Lb755hvUrVsXt27dwrRp05CUlISffvoJAQEBxno5iIiIiN4aV69eRceOHREREQEhBADkuGgcHh6OWbNm4ddff8W2bdtQo0aNggiViIiIiqHk9GR8deorbL+/XVpW16Uu5vrNhZOlUwFGBqjSM3Dv/GPcvxyN1KR0KKzN4F3TCeXrloKpmUmBxvamxMbG4scff8Tly5dhZ2eHvn37cso/IiIioiJOJrKuAhYxM2bMwMyZM/XWOXjwIFq2bJlj+bJlyzBp0iRUq1YNO3bsgIODg9b1IyMjMXv2bGzfvh0RERGws7NDgwYNMGrUKLRt2zbXGG/duoU5c+Zg3759ePToEUqUKIHmzZtjwoQJaNCggSFPU0N8fDzs7e0RFxcHOzu7PK9PREREBBTtc4rk5GRUrVoVoaGhMDU1Ra1atVCqVCns3LkTe/fulW4YDA0NxbJly/D999+jdOnSuH79epF7rvmhKL/3REREhUFIfAjGHhqLOzF3pGWBVQMxuu5omMnNCjAy4MHlJ9i/NgjKZBUgAyAg/bSwMkWrwVVRrobxEu4FdV6RlJQEV1dXJCUlAQB27tyJNm3aAMi8qbFRo0aIiorSWGfixInSiIv0+nhOSURERMaQl3OKIpvQfhvxZJGIiIiMoSifU8ybNw8TJkxA586dsXTpUri6uiI6OhqlSpXCvn37coyAs3PnTnTs2BHffvstJk+eXEBRFx5F+b0nIiIqaAdCD2DqsalITM8cGdDK1ApfN/0abcq2KeDIMpPZO5ZezUxi6yIDOnxYHeVqOhtlmwV1XvHbb79h0KBBUCgU6Nq1K7766iuUL18eANCrVy9s3LgRAFC6dGk4Ozvjxo0bUKvVOHLkCJo2bfrG4izOeE5JRERExpCXc4q3cg5tIiIiIiqa/v33X1StWhWbNm2Cq6srgJzDjWfXvn17dO3aFVu3bn1TIRIREVExo1KrsOD8Aow+OFpKZnvbe+OPTn8UimS2Kj0D+9cG6U9mA4AA9q8Ngio9443ElV927doFCwsLnDhxAuvXr5eS2REREdi0aRNkMhm6deuGkJAQXL58GceOHYNCocDy5csLOHIiIiIielVMaBMRERFRkXHjxg30798fJiaGzwHZtGlT3Lp1Kx+jIiIiouLqWeozfLjvQ/xy7RdpWRuvNvi94+/wtvcuwMheuHf+ceYw4wZQJqtw78KTfI4of509exYDBw5ErVq1NJZv2rQJarUapqamWLRoEczMMoeAb9iwIfr27YsTJ04UQLREREREZAxMaBMRERFRkREXFwc3N7c8rWNra4uUlJR8ioiIiIiKqytPrqDXf71wOuo0AMBEZoKJ9SZirt9cWJtZF3B0L9y/HJ05V7YhZMD9S0U7oR0eHo7atWvnWP7ff/9BJpOhQ4cO0kg+WWrWrImIiIg3FSIRERERGZlpQQdARERERGQoR0dHhIWF5WmdS5cuoWTJkvkUERERERU3Qgj8fetvzD47Gyp1Zs9nJ0snzPWbi7oudQs4upxSk9JzH248i3hevwhTq9U5lsXGxuLw4cMAgN69e+coVygUWtcjIiIioqKBCW0iIiIiKjJq166NNWvWYPz48bC0tMy1/r179/Drr78iICDgDURHRERERV2KKgXfnPoG/977V1pWp1QdzPWbC2cr5wKMTDeFtVlmD21Dktqy5/WLMFdXV1y7dk1j2bp165Ceng6FQoFOnTrlWCc0NBSOjo5vKkQiIiKiIk2Vlobbp47h7tlTSEmMh6WNHSrUb4RKjZrB1Ny8QGLikONEREREVGT0798f9+/fR7t27XD79m2d9dRqNTZu3IgWLVogOTkZAwcOfINREhERUVEUFh+GATsGaCSzB1YdiJVtVxbaZDYAePg45qmHtnetwvtcDNGkSROsX78e586dAwAEBQXh22+/hUwmQ8eOHWFjY6NRX61W46+//kLlypULIlwiIiKiIuXuudNY+uEg7Fw8D3fPnkT4jWu4e/Ykdi6eh6UfDsK986cLJC720CYiIiKiIqN///5YunQpjh49iqpVq6JWrVqoWrUqAGDJkiXYsGEDQkJCcPbsWTx79gxCCPj7+6NHjx4FHDkREREVZofCDmHK0SlISE8AAFiaWuKrpl+hXdl2BRtYLmIfJ+Py/hfTscgBuJnJ4Gomh7kMSBNAVLoakekCagAWVqYoX6doJ7RHjRqFP/74Aw0bNkTJkiXx7NkzqNVqyGQyjB07VqqXkZGBmzdvYtq0abh3757WociJiIiI6IW7505j69xvpJslhRAaP5VJSdjywzfoMuELVKjX8I3GxoQ2ERERERUZMpkM//77L9q3b4+zZ8/i4sWLuHjxImQyGTZt2iTVyzrRbtSoEf7555+CCpeIiIgKuQx1BhZfWowVV1dIy8rZl8P8lvNR3qF8AUaWu4hbMdi5/CqUSZnzfJc2laG2lQnM5TIIISCTZf50MzdFdbXAhZQM1B1cFaZmJgUc+etp2LAh5s6di0mTJiE6OhpA5jnilClT0KRJE6nejBkz8N1330mvRffu3QsqZCIiIqJCT5WWhl0/z3+ezNY1/I8AhAy7fp6PD5f++kaHH2dCm4iIiIiKlBIlSuDYsWOYP38+Fi1ahIiIiBx13N3d8emnn2LMmDEwNeUpLxEREeUUkxqDz458hpNRJ6Vlrb1a4+umX8PazLoAI8vdjeOROLz+FtTqzIuN5UtZolqaCnh+U59MJtP4aSYDGlqbwslUVjABG9nYsWPRqVMn7N69GyqVCi1atECdOnU06gQEBEjngba2tqhVq1YBREpERERUNNw+dQzKpEQDagookxJx+/RxVG3un+9xZeHVPSIiIiIqcszMzDBp0iRMmjQJN2/exJ07d5CQkABbW1tUrFgRVapUKegQiYiIqBC7Fn0N4w6NQ1RSFADARGaCsXXHYlDVQVISuDBSqwVObLqLy/teDDPuVdUR1Z+lZPaj0RF71nN6tuE23KY0hMxM/gaizV8VK1ZExYoVdZb7+/vD3//NXWQlIiIiKsrunj0ljfCTG5lMhrtnTjKhTURERERkqCpVqjCBTURERAYRQmDD7Q2YfWY20tXpAICSipL4we8H1C9dv4Cj0y8tRYU9q64j5OpTaVmNAHfU9rZD7MY7BrUhUlRIvhYN69ql8ivMQunJkycICgpCixYtCjoUIiIiokIpJTHeoGQ2kHlOnZKYkM8RaSr6t2MSEREREelx9epVfPXVVwUdBhERERWwVFUqph2fhq9PfS0ls2s518Lfnf8u9Mns+OgU/PPDeSmZLZfL4NevMpr3qgRl0DPA0E7lMiD1WnT+BVpI7dmzh721iYiIiIxEJpPB0sb2jW6TCW0iIiIiKtauXLmCmTNnFnQYREREVIDCEsIwcOdAbL23VVrW36c/VrVdhVJWhbu3ctTdWGyccw7PIpMAABZWpuj8aU34tigDAMhITgcM60wDCECdosqnSImIiIioqBFC4Pz2LYgIup6ndSo0aJyPUeXEIceJiIiIqEhSKpW4e/cu4uLioFLpvjAbFBT0BqMiIiKiwuZI+BF8fvRzJKRlDotoaWqJGY1noIN3hwKOLHe3TkXhwG83oVZlZqztS1mi08c14eBiBaFSI+nCI6RHJBreoAyQWxaPy4FXr17FggULcPjwYURGRkKpVBZ0SERERERFijI5CbuX/A93zpx4sVBA/+g/AjC3sEClhk3zOzwNxeMMloiIiIjeGpcuXcKUKVOwb98+ZGRkFHQ4REREVEhlqDOw5PISLLuyTFpW1q4s5recjwqOFQowstwJtcCpf+/jwq4QaVmZyo5oN9wX5iYyxB8KQ+LxCKgT0vPYMKDwdTJytG/e2rVrMXz4cKhUKoPnepTJDB2XnYiIiKj4exx8H//Nn4XYh1HSMkelOWIs0vSvKAPKPjWH3MBzMGNhQpuIiIiIiozLly+jefPmSE5ONvjiJcALmERERG+b2NRYfH70cxyPPC4ta+XZCt80/QY25jYFGFnu0pUZ2LfmBu5ffCItq9bcDU06lEXKkXA8PRUFoXzppj45AHXubcssTWFVxBPaN27cwPDhw5Geno5GjRqhQYMGsLCwwA8//ICBAwfC29sbAJCYmIhz587h8OHDqFSpEvr27VvAkRMREREVDlcP7sGBX5ZClZ6ZvLawtkaz2k1x+lI5mIlIpCfvAYQSmV21xYufMguYWbVFpI0rYnfsRomu776xmJnQJiIiIqIiY+bMmUhKSkL58uXRr18/VK1aFY6OjrCwsNC5zp49ezB79uw3GCUREREVpOvR1zHu0DhEJkUCAOQyOcbUGYPB1QYX+pvcEmNSsf3nK4gOyxxGXCYDmncoizJpKjyeew7IyHZDnwyw9HWCbQt3ZCSk4em6G/rn0pYBJXpWgsxMnr9PIp8tXLgQ6enpWLp0KYYPHw4AePr0KX744QcEBgYiICBAo/5vv/2G999/Hx06FP4h5omIiIjyU7oyFft/WYrrh/dJy1y8K6Dz2M9xY+Y6qMysYYKKkJuVgzrtNjLS70KIVMhkCpiYVYDcvBJkMlOoANzadw6NmdAmIiIiIsrp2LFjqFOnDo4dOwaFQmHQOuHh4XnqzU1ERERF1z+3/8G3p79FujpzKO4SihL4ocUPaODaoIAjy92j4HjsWHIFyXGZPWWcLE3QpKI9ZCcikJz9VMZEBuu6LrBpXgZmzlbS4pIDq+LZhtsQKaqcnWksTVGiZyVYVi35Jp9Svjh8+DDatGkjJbNzM2DAAGzZsgULFy7EunXr8jk6IiIiosLpWWQE/ps/C9GhwdKymq07oOWgoTA1N0eEsiRgogZkcshkpjCxqAoTi6raGxNqRCjf7Kg/TGgTERERUZGRkJCAQYMGGZzMBoAmTZpg9erV+RgVERERFbRUVSq+O/0dNt/dLC2r6VwTP/r9CBdrlwKMzDB3zj3C/rVByEhXw9lUhiq2pighAIQmSHVkFiawaeQKm6ZlYGJnnqMNy6ol4TalIZKvRSP1WjTUKSrILU2h8HWCla9Tke+ZnSUsLAyBgYEay7J63uu6ibFFixaYP39+vsdGREREVBjdOnkMe5b9D2kpKQAAUwsLtBk+Cj7NWkp1ktXmgKmB54syOZJllvkQqW5MaBMRERFRkeHu7g5ra+s8rVOuXDmUK1cunyIiIiKighaeEI5xh8Yh6FmQtKxvlb6YWG8izEzMCjCy3AkhcG5HMM7+9wCuZjJUtDGFg6lMY+hwua0ZbJqWgU0jV8gV+i/lyczksK5dCta1S+Vz5AVHpVLByUmzR1DW9DMPHz7Uuo4QQmcZERERUXGVoUrHkd9W48LOf6VlJcp44N1xk1HS3RMAINLS8OjnJchIdwLMROacN7kRasRZGN7ZxBiKx62ZRERERPRW6NatG44dO5andR48eIBff/01nyIiIiKignQ0/Ch6b+stJbMtTS0xq/ksTGk4pdAns1VpGdi34hoe7w5BK1tT1Ld+nsx+zrSkAg7dKsB1UgPYtfTINZn9tihVqhRu376tscza2hoKhQJnzpzRus6RI0dgYmLyJsIjIiIiKhTiox/jrxmfaySzqzT1Q//v5knJ7NRbt3Cl30jsOWuHZGtXw5LZACCT466rY36ErRPPhImIiIioyJgyZQoaNmyIP//8E3369DFonRMnTuD999/HoEGD8jk6IiIielPUQo2ll5di6eWlEM+7M3vaemK+/3xUcqxUwNHlLuFREq4uuYJyyelQWGkmWs3cbWDr5w7Lak6QyQ28qPicKiketzf/hLvnzyIlNQ2WCnNUqFsflbp+AlNrO2M+hQJTs2ZNrF69GhMnToSzs7O0vFatWli5ciV69+6NJk2aSMvXrl2LzZs3o3r16gURLhEREdEb9+DSeez46UekJsQDAExMTeE/eDhqvNMeMpkMQqXCk19W48LmG7jv2QtC/vxG0KzpW/QltoUaKnkqUsuUyOdnoYkJbSIiIiIqMi5fvoyvvvoKEyZMwOLFi9GlSxdUrlwZtra2kMu1Dz4UFBSkdTkREREVTXHKOHx+9HMci3gxaou/hz++bfYtbM1tCzCy3GXEKfF45wMoLz2BJwBkS1hbVHSArZ8HLMrbS3NC58XdLYux6+//oMwwhQwCAjLIkIY7kSdwYMcRtO/9Lsp3+ch4T6aAtGnTBtu3b0f9+vUxbtw4jBw5EmZmZujVqxdOnToFPz8/NGjQAB4eHrh58yauXr0KmUyGrl27FnToRERERPlKrc7AyY1/4NSmv6TktJ2zC94dNxku3hUAAMoHD3BnymxcRH3El+0srZsgS8BVr31oHNIFMiEAmZbrbEINIQP2VvoN9Tw7AGiSs04+kQkhRO7VqDCIj4+Hvb094uLiYGdXPO6qJSIiojevKJ9TyOXyV7rACwAZGRlGjqboKcrvPREREQDceHoD4w6NQ0RiBABALpNjVO1R+MD3A8i1XXQrJNIfJyPhSDiSLjyCTP1iuQBgUtEBTu3KwbyMzSu3f3fLYmz9Y8fz37SdK2Ve/uvStwMqvPfxK28nu4I6r3j06BHc3d2RkZEBmUyGsLAwuLm5QalUol69erh+/brG+aIQAhUqVMD58+dha1u4b3goKnhOSUREVPgkx8Vi+8IfEHrtsrTMu24DtP9oHBQ2NhBqNZ799jvOrz+De54doDYxB5B5rnTeXImzVZYD1vdQNsYXAXf7wyLDChDqzMT2859Kk2QcqPAbQhxvwN8zAAsDFrxWzHk5p2APbSIiIiIqUl7lfsxXTYITERFR4bH5zmZ8c+obpKnTAAAlFCUwp8UcNHJtVMCR6aYMjUfC4XCk3ngKiBep5gwhEG1hioofVINdWfvX2oYqKR67/v4PgAm0J7PxfLnArr//w4etBxbp4cddXFyQlJQknRNaWFhIP/fv349Ro0Zhy5YtSE9Ph7m5Obp06YIFCxYwmU1ERETFVvjN69i+YA4SY54BAGRyOZr1GYT6nbtBJpcjPSIC1z/7FtfTayC23HvSekmyJOwsewjPSh+DTJYMAAgpcQ2/1psG76e1UO5ZDViorKA0TcaDEldwv+QlZMhVAICEtLg3+hyZ0CYiIiKiImXq1Kl45513DK6/Z88ezJ49Ox8jIiIiovykzFBi1ulZ+OfOP9KyGk418GPLH1HaunQBRqadEAKpt2OQcCgcaQ80L/SlC4EHSjWET0n4fVAVpmYmOlox3O3NP0GZYcglPhmUGaa4vWUxqvaf/NrbLUjm5uZal5cqVQp//fUXlEolnj17hpIlS+qsS0RERFTUCSFwfttmHPl9DYQ6cxggawdHdBr9Gdyr+kIIgYvLfsWjjScR7NUZGTYKad0bTkdxwvtfqEzScrSbIVfhjvM53HE+p3W7csjhYOGQL89JFya0iYiIiKhI8fHxgZ+fn8H1w8PD8zEaIiIiyk+RiZEYe2gsbjy9IS3rXbk3JtWfBHOTwpWoFBkCKVefIOFwONKjkjTKUtQC95RqhCjVqNO5HOp1KGu0EWTunj8rzZmdGxkE7p47g6r9jbLpQsvCwgKurq4FHQYRERFRvklNSsTuJQtw9+wpaZlHtRro+OlEKOwcsPfoNcTNnod06zp4Vr7ni/Xkz7Cnyu+ItL8jLbMxs0F5+/K4HH0ZhlBDjQDPAOM9GQMwoU1ERERERUb//v3h7e2dp3Vq1KiBL7/8Mp8iIiIiovxyPOI4Pjv6GeKUmb2cFSYKfNn4S3Qu37mAI9OkTstA8rlHSDgajowYpUZZEoDbySqEpwnIzeRoNcwXFeqWMur2k1PSDEpmA4CADCkpOXvhFHdbt27F2LFjcf/+/YIOhYiIiOi1PXpwD//Nn4W4Rw+lZQ279kKtLr2x8WIkLv72A1rfeoSn5bpBZWol1bld8gSOem9BuqkSzpbO8PfwRyvPVqhfun5mkvrvACSkJUBA93R/Mshga26LNmXb5OtzfBkT2kRERERUZKxbty7P61SvXh3Vq1fPh2iIiIgoP6iFGsuvLMfPl36WLqZ52Hpgfsv5qFyicgFH94I6OR2JJ6OQeCIC6iSVRplwssSFyCSEJ2cAAKzszdHxoxoo5WX8uatN5BnQP3/2CzIIwPT1hzkvahITExESElLQYRARERG9FiEErh7YjQOrlyEjPR0AoLC2QaMPPsFfsU8w6adP8f6JG2hs0h3BFV9M15cmj8XeSn/CxCsFAz37I8AzANWdqkMuk2u0/22zb/HpgU8hez7+z8tkz883v232LSxMLPLxmebEhDYRERERFWv79u3Dd999hwMHDhR0KERERJSLOGUcphybgiPhR6RlLd1b4tvm38LO3PjJ4FehilUi8VgEks5EQaSpNcosKjnisa0FDh8Ig3h+DdDZ0xYdRtaAjaORL/o9uQX17i9growF4GTQKgIyPCtZwbhx5JOEhATs378f/v7+sLe3l5Z/9dVXeW7r8mXDhs8kIiIiKqzSU1Ox75efcePIi+tbZm6lsL+qOZbcmoi6D+Ix9VQtRHhNRLSZjVTnqcstlO5ojp8qzUY5+3J6p71p6dES//P/H744/gXi0+IhhxxqqKWftua2+LbZt2jp0TI/n6pWTGgTERERUbH26NEjHD58uKDDICIiolzcfHYTYw+ORXhiOABALpPjk1qfYEj1ITl6jxSE9EdJSDgcjuRLTwB1th4rcsCyhjOsm5XBycMRuLE/TCryru2MdwZXhZmFEXtFJz4BDs1C8un12BFRASFJhiWzAQFzeQZOunTESONFk2/atm2L06dPo379+jh16sXckDNmzDDa/ONERERERcGzyHD8++N3eBoeKi276ZWEM1XOwkIlMHKPJUqlD0ZwhbpSudw0DfX7l0O9xnmb69rf0x8HyhzAnuA9OBB6ALHKWDhYOCDAMwBtyrZ54z2zszChTURERESFTkZGBq5evQpfX1+Ymr44Zf3111/z3NaJEyeMGRoRERHlgy13t+CbU99AmZE5B7WjhSPmtJiDxm6NCzgyQBkSj4RDYUgNeqZZYCqHdX0X2DZ3h8rCBLuWX0XErVipuG57LzTs7A2Z3EjJ1/RU4NTPwNF5CI+VYXtEDSSqsl9QzEqya9teZtk9Fx9Y2ToYJ558dufOHQghcO/evRxlQuie11EXJsGJiIioKDpzcBuOrVoJkZY5xU26iRrHqz9FsFsyqgWrMeBYNUR59MPjbKMZlatqB//3a8DS1vyVtmlhYoHO5Tujc/nORnkOxsCENhEREREVOt26dcO2bdvQrl07bN++XVo+ePBgXowkIiIqRtIy0jD7zGxsuL1BWuZb0hfzWs6Dq41rgcUl1AKpt54h4XA40oLjNcpklqawaewKmyZuMLExR+yjZGxbcBFxj1MAAHJTGQIG+qByw9JGCkYA1/4B9s2EiA3FuWdlcPRxOYjnietkE0vscm6N+ghC+cdBSFObPp/1UCb9NJdn4G4pH2xVvIP5vi7GiSufrVmzBsuWLcOwYcNylP3222/o16+fwW399ttvCAwMNGZ4RERERPkmOC4Y++7vwZ0tu1DqZpq0PMYmDYfqPEGKRToG77ZG2eQuCCnfSCo3N1XDb5AvKtZ3KXbXz5jQJiIiIqJC5/DhwxBC4Pjx4znK2COHiIioeIhKjMK4Q+Nw7ek1aVnPSj3xeYPPYW7yar1JXpfIUCP58hMkHA6H6lGyRpmJvTlsmrnDukFpyJ8PIR528xl2L78GZXJmjxlLWzN0GFkDpb3tc7T9SkJPAbunABHnkZphip2RVXE/saRUHKZwwx7n1kg2tUIEysDKowneS9mPsskhkGVkQJiYINjKC1ssWyFFbgV7S1O09y24GwXyomPHjujYsaNR2pLJZK90DklERET0JgghcP3pdRwIPYD9ofvx6GEIWl5wRqm4F6Px3C2TiBOVM+B1vwqGXzDDQ/cueGjnKJV7VrRGwNBasLYvmCHB8xsT2kRERERU6MydOxcLFy7EJ598kqNswYIF6NKli8Ftbd68GePHjzdmeERERPSaTkSewGdHPkOsMhZA5rCG0xpNQ5cKhh/jjUmdloGkMw+ReCwCGbFKjTLTUlaw9XOHVU1nyExfzOV97UgEjvx5G+L5fNoly1ijw0c1YFfS8vUDenYf2DsdCPoXAPAwxQb/RfggPl0hVTnjUBdnHOpBYW6G3rXc8Pe5MKTIrfC7dWfAWrM52fP/fuxZCwozI87nXQBWr16NJk2a5GmdJk2aYPXq1fkUEREREVHepavTcf7ReewP2Y+DYQfxKPkRAKDMYwXevewKi/TMczaVXOC4ZyncNG2Pz0+GwjHGGiHlm0ntmJmo0byfD6o0cSvWHTqY0CYiIiKiQmfo0KEYOnSo1jInJyd4eXkZ3Jazs7OxwiIiIqLXpBZq/HL1Fyy6uAji+bzO7jbumO8/H1VKVHnj8WQkpSPxRCSSTkZC/byXdRZzLzvY+rlDUaWExjzY6gw1jm+8iysHw6VlZauXROsh1WCueM1LbSkxwOEfgDPLAXU6hAAuxbji8OPyyBCZMaTIFdjj3AqhVp5oVsEJs7pVh0cJK7zj44IJGy4hLkUFuQxQC0g/7SxN8WPPWninatEYblyfVxk6vFy5cihXrlw+RGMcSqUSCxYswJ9//om7d+/CxMQEPj4+CAwMxPDhwyGXy3Nv5CXBwcEGPecffvgBEyZMeJWwiYiIKI+S05NxIvIEDoQewOHww4hPezG1jUwN1LrjgJr3Xoz0E2dmjX0uHdHF3QGfH9iJIDt/RLo6SeVlyirQangd2JZQoLhjQpuIiIiIiozp06ejRo0aeVqnRo0a+PLLL/MpIiIiIjJUfFo8ph6dikPhh6RlLdxb4Ltm38HewkhDdBtIFZOKxKMRSDr7ECJdrVGmqFICti3dYVE2Z0zKFBX2rLiG0BvPpGW1WnuicdfykMtfo0eMKg049wtwaDaQGgsASMswwZ4nvrgVYydVi7Jwwa5SbSC3ccD3naqiZ113qSdO66ouOD3lHey8FoXd1x4hNiUNDpbmaOvrgva+rkW+Z7Y+jx49woMHD5CQkABbW1uUK1cOLi5FI3kfHR2NgIAAXL16FcOHD8eiRYuQlpaGn376CSNHjsSGDRuwfft2KBSvdqHayspKb28tc/OCGd6fiIjobRGTGoPD4YexP3Q/TkaehDJDmaOOZao5mp8vA7e4F+elobbe8OwUiHX3T+Lanru4WKanVGYqV6NJz0rwbemRP72y01OBG1uAm9uA5BjAyhGo0gmo+h5gVjDJc5ngBDJFRnx8POzt7REXFwc7O7vcVyAiIiLSgucUby++90REVFBuPbuFsYfGIiwhDAAggwwf1/oYw2oMg1yW996nryr9YRISDocj+fJjIHseWw5Y1SwFWz93mJW21rpu3JNkbF98BTEPM+fWlstl8OtfGVWbur16QEJkXijc+2XmMOPPPUl3xH9P6iEmLlVadtGuJk6UaIjWvm74uosvStkVbE+cgj6vUCqV+N///oeVK1fi3r17OcorVKiAYcOGYdSoUbCwKLxzSfr7++PQoUMYPXo0FixYIC0XQqBr167YunUrBg8enOch07N6aD948ABly5Y1aswF/d4TEREVdpGJkTgQegAHwg7g/KPzUAt1jjpmMkuok6rANtQNrUPuwTojBQCghgx2zd9D73ea4f7Mn3DJrAlSrF7cqFe6jDne+bAu7J2NMM2NNjd3AFtGZt5kKZMDQv3ip8IB6LoUqNzeKJvKyzkFE9pFCE8WiYiIyBjetnOKU6dOYfny5Vi1alVBh1Lg3rb3noiICod/7/2Lr09+jdSMzOSsvYU95jSfg6Zlmr6R7QshkBYcj4RDYUi9FaNRJjOTw7p+adg0LwNTR90J4sg7Mdi59BpSk9IBABbWpmg/ojrKVHJ89cAiLgB7vgBCjmssvmbTGfsuJiFDlbktpdwc+5z8Ee/ig6+7VEP76q6vvk0jKsjzivv376Njx464ffs2gMz3+GVZvZUqV66M7du3F8ohx//55x/06NEDCoUCUVFRcHBw0CgPCgpC1apVIZPJcPbsWdStW9fgtpnQJiIienOEELgbexf7Q/fjQOgBBD0L0lrP0aIkHERt3A32QnJcWdSJvYbGMachfz4Vj6mtA94b+xmszlzA6U13EOLWMjOZDEAuU6PRe+VRq3VZjelwjOrmDuDPflnPSkuF59vt8ztQpcNrby4v5xQccpyIiIiokFClpeH2qWO4e/YUUhLjYWljhwr1G6FSo2Yw5VCAr+zevXtYu3YtE9pERERvWFpGGr4/+z3+uvWXtKxayWqY13Ie3Gxeo1ezgYRaIDXoGRIOhyEtNEGjTG5lCpsmbrBu7AYTazO97QSdiMSh9begzsi8qOdY2godP64Be2erVwssNgzY/xVw9W+NxenuzbAvti5unL0gLXts7oSdpdqgdcNqmNbJBw5WPCeMj4+Hv78/wsPDIYSAra0tfH19UaZMGSgUCqSmpiIiIgLXrl1DQkICbt68CX9/f1y5cqXQJV9XrlwJAAgICMiRzAYAHx8f+Pj4ICgoCKtWrcpTQpuIiIjyV4Y6A1eir+BA6AHsD90vjUT0Mk9bT/g6NkVkRAUcv2yJUCGHRYYSHaP3wjs55EU935po3aM/QmavwEF1PSSVCZDKnEuZovVHdeGoYyQho0hPzeyZDUB7MjtruSyz3vhbb3T4cSa0iYiIiAqBu+dOY9fP86FMSoRMJoMQAjKZDHfOnMCBNcvR/uOxKF+3YUGH+cYcOXLEaG0FBWm/K5aIiIjyz8Okhxh/aDyuRF+RlnWv2B2TG06GhUn+Dv8sVGokX3qChCNhUD1O0SgzcbCATfMysK5fGnJz/XNKq9UCJzffw6W9odIyj6ol0HZoNVhY6U+Ca6VMAI7NB04uBlQvhhJHifJ4VnscNv5zHAlRL5LZV22r4p73O1jUozb8KjnnfXvF1OzZsxEWFgZvb2/88MMP6Ny5M0xNc17iVKlU+PfffzFp0iQ8ePAAc+bMwbffflsAEWuXlpaG/fv3AwDq16+vs179+vURFBSE7du3Y/HixW8qPCIiItIiLSMNp6NOY3/ofhwKO4SnqU+11qtasioCPAJgpaqFf89m4K8zL0YJclY+QcfHu2Gren7DpUyGhl17oZLaDCcmrUOwWwcIWeZ5qgxqNOhYFnU6eENuks/T9NzYkjnMeK5EZr0bW4GavfM3pmyKdEJbqVRiwYIF+PPPP3H37l2YmJjAx8cHgYGBGD58OOTyvL+5eZ08/eUhjQ4dOgR/f/9c19uwYQN69OiRp20RERFR8XT33GlsnfuNdPNj1vlF1k9lUhK2/PANukz4AhXqvR1J7ZYtW+b5vIyIiIgKh1NRpzDp8CTEKDMv3JnLzfFFoy/QtWLXfN2uWqlC0pmHSDwWgYy4NI0yUxcr2Lb0gFUNJ8gMuBiYlqrC3lU3EHwlWlpWvaU7mvWskPeLiRkq4OKvwMHvgKQnL5ZbOgJ+n+OasiJ2L/sZSFdmbltmikNOfmjcpg0Wt60Ma4siffnO6DZv3gxXV1ecOnUKTk5OOuuZmpqiW7duaN68OWrVqoV//vmnUCW0g4KCkJ6eOay8viHBs8pCQkIQFxcHe3v7PG1n165d2LFjB65du4ZHjx5JPdq7d++O999/HwpFwc7FTkREVNglpiXiaMRRHAg9gKMRR5GUnpSjjonMBPVc6sHf0x9NXf1w4pYaK/fex/3oF+eSEAKN0m6h/sMjgDoDAKCwtUOb/h9A+ftu7EyuhsQyraXqJUrI0ebjBihZxibfnyMA4Oa2F3Nl50YmB27+x4S2IaKjoxEQEICrV69i+PDhWLRoEdLS0vDTTz9h5MiR2LBhA7Zv3/5KJ2UWFhZa7+zMolarkZKSonfuHWtr/d3+9bVPREREbw9VWhp2/Tz/eTJbz3A+QoZdP8/Hh0t/fWuGH9c2F+KrYnKciIgo/wkh8Mu1X7Do4iKon18IK2NTBvNazkPVklXzbbsZiWlIPBGJxBNREKkqjTLzsnawbekBRWVHg88H4p+mYMfPV/E0IhEAIJPL0LxXRVRv6Z734O7sy5wn+0m2EWPkZkDDEVA1Ho1/Vv+B8BPzpaKnZo64VuU9fDvAH/XKlsj79t4CISEhmDhxot5kdnbOzs4YMmQI5s6dm8+R5U1o6Iue/87OunvgZy8LDw/Pc0J7woQJGD16NMaNGwdbW1vcvn0b8+bNw0cffYTFixdj27Ztuc6xrVQqoVQqpd/j4+PzFAMREVFRE50SjYNhB7E/dD9OR52GSq3KUUdhokATtyZo5dUKLcq0QIbKEutOhaD7xiA8TdK8ubJSCTO8l3wSKcFnpWWuFSujedX6uD5vD+67toawzcwbyqBGndbuqP9eJZjkZ69sVRrw6CoQdhYIPwvc3mNYMhvIrJcSk3s9IyqyWdWePXvi6tWrGD16NBYsWCAt9/f3R9euXbF161aMHDkSq1evznPbS5cuxeDBg3WWr1y5EsOGDcPHH3+ss05iYmKet0tERERvn9unjkGZZMh5g4AyKRG3Tx9H1ea5jwZTHEydOhXvvPPOa7ezZ88ezJ492wgRERERkS4JaQmYemwqDoYdlJY1K9MMs5vPhr1F3hJwhlI9TUHC0QgknXsEqDQvvimqloStnzssvPI2Z/LD+3HYseQKUhIye86aW5qi3TBfeFTNY3L50fXMRPa9A5rLq74HvDMDj5It8OvnX0L+NFwqumVTCZW6DsbfbatBYaZ/OPS3mY2NTa4J2JeVK1cOlpaW+RPQK0pIeDGvu74OOdnL8pJIVigUCAgIwPz581GjRg1ped26ddG9e3e0a9cOBw8eRIcOHXDx4kVYWOieCmDWrFmYOXOmwdsmIiIqikLiQ6T5sK88uQKhpeOJvYU9/Nz9EOAZgCZuTWBpaon7TxLx/c4H+Od8OJQvnZM28i6BQT4KPNq8HM8iXsyxXcu/DUpfi8KhbUmIL9NOWu5gD7T+qAFK5fEc1iBxEZmJ66x/kZeADGWuq2klk2eONvQGFcmE9j///INDhw5BoVBgxowZGmUymQyzZs3C1q1bsXbtWnzyySeoW7euUbe/aNEiWFlZYciQIUZtl4iIiN4+d8+ekubMzo1MJsPdMyffmoS2j48P/Pz8Xrud8PDw3CsRERHRK7sdcxtjD45FaEJmj1MZZBhZcyRG1BwBucz4vUrSIhORcDgcKVeeaA5wI5fBqnYp2LYoAzMX/SPnaXP7zEMc+PUmMp5fiLR3tkTHj2vAsXQe2kp4BBz8Brj4m2YPlzL1gLbfAp6NsG3bXlz9fSnMn19AVMlMcLd8a4z+aAB8yzjkOe63ja+vr0bvZkOEhoaicuXK+RRR4VS6dGlpju6XmZubY8GCBahZsyaCgoKwevVqfPjhhzrbmjx5MsaNGyf9Hh8fDw8PD6PHTERE9CYJIXDj2Q3sD9mPg2EHcTf2rtZ6pa1LI8AjAK08W6GOSx2Yyk0hhMC5kBgsP3Id+4IeIftlPRO5DB2ru2JYc2+YBl/E3uU/Il2ZCgAwt7RE8yYBeLLtPo64tILaLmsURoGaLVzQqKcPTI1xY2N6ChB1OTNxHXYGCD8HJETqX0duBqjTDWtfqIEqnV8/zjwokgntlStXAgACAgLg4OCQo9zHxwc+Pj4ICgrCqlWr8pTQvnr1KtzddQ8hdeTIEVy5cgUjRozQum0iIiKivEhJjDd4aG0hBFISE3KvWAwEBgaifPnyRmmrfPnyGDRokFHaIiIiIk3b7m/DzBMzkZqReZHOztwOc1rMQbMyzYy6HSEElPfjkHA4HMrbmsMbyszlsG7gCpvmZWBqr7uXqc621QJntj3AuR3B0rIylRzQbnh1KGzMDGskLRk4+RNwbAGQfV5Fe0/gnemAb3fEJKbip+lzYHXzKLIuXcaZ2cPlveFY0rU5TPNzSMliZNiwYZgyZQomTpwIKyurXOsnJSVhzZo1GD9+/BuIznC2trbS49TUVJ31spfZ2Rmvt1aNGjXg5uaGyMhIbNu2TW9C28LCQm8PbiIioqJCpVbh/KPzOBB6AAfCDuBh0kOt9So4VIC/hz9aebVC1RJVpalrVBlqbL8SheVH7+NyWKzGOtbmJujTwBPvNy2L0jZmOLR2BS7v3SGVO5XxQA21A64fkCPWrb203NZaoM3H9VDa+xVHNRICiAnOTFqHnwXCzwAPrwJahknXUKI84F4fcK+X+bNkeWC+L5AaB93TIgKADFDYA1W7vFq8r6jIJbTT0tKkuwvr16+vs179+vURFBSE7du3Y/HixQa37+vrq7d80aJFAIBRo0YZ3CYRERGRLiYmhp+OyWQyWNrY5l6xGHiVaWN0adSoERo1amS09oiIiAhIz0jHD+d+wB83/5CW+ZTwwbyW8+Bu+wpzTesg1AKpN54i/nA40sM0b+yTW5vBpokbbBq7Qm5lYOL5JelpGdi/5gbuXXgiLava1BUt+laGiakBCWa1GrjyF7D/K81eLxZ2QPPxQMMPATMFdpy6iSPL58E56UWdZ85VMGjSJFT2LPVKsb+t+vbtiyNHjsDPzw9LlixBvXr1dNa9cOECPvroI5QvXx4fffTRG4wyd56entLjJ0+e6KyXvUxfJ5xXjSEyMhIPHjwwartERESFSYoqBSciT+BA6AEcDj+MOGVcjjoyyFDDuQZaebZCgGcAvOy8NMqTlCpsOBeGX44/QNizFI2y0nYKvN+0LPo08IS9pRniHj/Cn1/OxqP7d6Q6lXyqw/JSKk47t0CGw4ubxHwblUSTfr4wM89Dr2xlIhB54Xny+nkSO0n3uQQAwNwWKFMH8GiQmbwuUw+wLpmzXtelwB99AcigPakte1HPTPeUKfmhyCW0g4KCkJ6e2eVd33w5WWUhISGIi4uDvf3rz9cUFhaGLVu2ICAgANWqVdNb948//sCqVatw+/ZtPHnyBI6Ojqhduzb69u2LPn36wMSEcyERERG9zdTqDJz7bzNCb1w1eB0hBCo0aJyPURVNDx8+xMOHD+Ht7W3UXitERESk3cOkh5hweAIuP7ksLetWsRumNJwCCxPj9OIUKjWSLzxGwpFwqKI1LxqaOFrAtoU7rOq6QJ6Xi38vSYxRYseSK3gSmpkol8mAJt0roGYrD6kXjl4PjgJ7pmYO55hFZgLUex9oORmwdkJ0ohKzF/8Nh9N/w1md2dM2A3LYt+yGMcMHwYS9snX64IMP9JaHhYWhYcOG8PLyQvXq1eHg4AATExNkZGQgNjYW165dQ3BwMExNTdGzZ08MGzYMv/zyyxuKPnc+Pj4wMzNDeno6goODddbLKvPy8jLK9c3sDB0pioiIqKiJU8bhcPhh7A/ZjxORJ6TRhLIzlZuioWtDBHgEwN/DH85WzjnqPI5PxZoTwVh/OhRxKZrDcVcpbYvhLbzRqYYbzJ/fCHnv/BnsWjwPqUmJAAATMzPUKOmFhzfcEVraR1rXWqHGOyPrwL1yCf1PRK0Gnt3THDr88XXNqW20ca7yvOf18wS2c2VAbsB5c+X2QJ/fgS0jgdTYzLmyhfrFT4V9ZjK7cvtcmzK2IpfQzj5HjrNzzp1LW1l4eLhRTviWLFkClUplUO/sUaNGYfz48Zg+fToUCgUuX76M77//HgMGDMCyZcuwZcsWlCihf0dVKpVQKl9MyB4fH//az4GIiIgK3tPwMOxesgBRd2/laT0LaxtUatg0n6IqWmJiYjB37lz89ttv0hzZe/fuRUBAAADA29sb/fr1w/jx4+Ho6FiQoRIRERUrZ6LOYOKRiXiW+gwAYC43x5SGU9C9UnejtK9OVSHp9EMkHIuAOiFNo8zM1Rq2fu6wrO4MmYkBCWc9HofEY8fPV5AUl7kNM4UJ2gyphrLVnXJfOfoOsPdL4NYOzeWV2gGtvwKcK0MIgc3nQ7Fl9RrUeHImqy8L0hT26DjmM9SoXeO14n8brFmzJtcbC4QQCA4ORkhIiNYyAFCpVPjjj8yRBApTQtvc3BytWrXCrl27cO7cOZ31zp49CwDo2LFjntp/7733MGzYML3rZV1n1ddpiIiIqKh4mPQQ+0P342DoQZx7dA4ZIiNHHStTKzR3b45Wnq3QrEwz2JprHwnx9qMErDhyH1svRSItQzN53KKSM4Y390bTCiWlcxV1RgaO/7UOZ7ZulOrZOZSA+xNb3Fa0RkYJS2l5lToOaD6oBswVWlK0KbFAxPnnPa+fJ7BTY/U/cYXD86HDnw8fXqYuYOmgfx19qnQAxt8CbmwFbv4HpMQAlo6Zc2ZX7fLGe2ZnKXIJ7YSEF8NLKRS6X7TsZcZIBKempmLFihXw8vJC5866Jzp3cHBA+/btsXz5co1hgOrVq4cePXqgSZMmOHr0KHr27CkNna7LrFmzMHPmzNeOnYiIiAoHdUYGzm3bjBMb1iPj+YgzMpkcXl7lEPzgLp4vyLni84txLZu1gqm5ec7yt8zVq1fRsWNHRERESBcqX77YGR4ejlmzZuHXX3/Ftm3bUKMGLxoTERG9DiEEVl9fjf9d+B/Uz3uEuFm7YZ7/PFQrqX8UO0NkJKQh8XgEEk9FQaRqXny08LaHrZ87LCo5GtZzOhd3zz/G/jU3oErPfB62JRXo+FENlCxjo3/FpKfA4dnAuVWacxKWrg60+Rbw9gMARMam4Ms/T8H65F+omRouVbMq74uRn0+GlZ1xe9kWZyVLloS1tfVrt5OUlISnT58aISLjGjp0KHbt2oX9+/drHWHy5s2bCAoKgkwmy7XH+su2bt0Kd3d3nQntS5cuISoqCkDek+VERESFgRAC92Lv4UDYAewP3Y8bT29orVdCUQL+Hv4I8AxAI9dGMDfRfm1NCIET955i+ZH7OHxbcwhvMxMZ3q1ZBkObl4OPq+bogIkxz7B94fcIv3FNWuZm7wzxrBrul6ojLbM0z0Cr4bXh5fv8Bkp1BvDk5vOhw88CYWeB6Fw6v8jkQKlqgEf9F0nskhW0X098HWYKoGbvzH+FRJFLaBeUP//8E9HR0Zg0aZLe4cJr1aqFHTt2aC2zt7fHrFmz0KVLFxw4cAC7du1Cu3btdLY1efJkjBs3Tvo9Pj4eHh4er/4kiIiIqMA8DQ/DriXz8fDubWmZo5s72gz5CEkfDENJWQYuuztDZWqSmcCWyaSfphlq1Ax7ArOlK6HuPwhyC+MM5VkUJScno3PnzggPD4epqSlq1aqFUqVKYefOnRr17t69i2XLluH7779Hx44dcf36dQ5HTkRE9IoS0xIx7fg07AvdJy1r6tYUs5vPhoPC4bXaVkWnIOFoOJLOPwJU2YY/lgGWVUvCtqUHzD2095zJKyEEzu8Mxul/X8wX7FreHu1GVIeVnZ6bBlVK4PRS4MiPQPY5F21KA62mATX7AnITqNUC60+HYPU/B+AXuRs2GUmZ24UMdbv1Q8uevSGTc4jxvFiwYAH69ev32u389ttvCAwMNEJExtW9e3f4+fnh8OHDmDlzJubNmyeVCSEwZcoUAEBgYCDq1q2rse5///2HDz74AC4uLti2bZvWXtZr167F2LFjUb58eY3lSqUSY8aMAQBUqFAhz8lyIiKigqIWalx5cgUHQg/gQNgBhMTnHKUFANxt3NHKsxVaebVCDacaMNEz3HZ6hhrbrkRixZEHuBGl2UHWTmGK/o28MLhJWbjY5exkG3rtCrYv/B7JcbEAALlcDndVSTxVvYeMki/OYSv62sCvT1lYPD0H7H+ewI64AKQl5GhTg7Vztt7X9QG32oBFLjdhFlNFLqFta/tiB0hNzTnmvbYyY1y8XLRoEaysrDBkyJDXaqd169bSfD7btm3Tm9C2sLCAxVt8wZqIiKg40NUru26n99CkV38k79yFhPh4uABoFZ+Mh/bWeGhvjXQTE5hlZKB0XBJKxyXBRAioASTs3g37d98t0OdUkJYuXYrQ0FB07twZS5cuhaurK6Kjo1GqVCmNep6envj222/RrFkzdOzYEYsXL8bkyZMLKGoiIqKi627MXYw9NBbB8cHSsg9rfogPa3yo98JgbtLCE5BwOBwp16KB7NP4mshgVbsUbP3cYeZs9eqBv0SVnoEDv97EnbOPpGWVG5WGf/8qMDHTkWQWAri+Gdg3A4jNdrHUzApoOhpoMgowz+w9fP9JIj7feAWqywfQPuY05M+flKmNPbqN/xweVasb7blQ3slkskI7X/TGjRsREBCA+fPnIyUlBQMGDEBaWhoWL16MzZs3IyAgAEuWLMmx3vLlyxEdHY3o6Ghs2rRJo1MMkHkNNSEhAfXr18f48ePRoEEDlChRAkFBQZg3bx4uXryIypUrY9u2bXpHwSQiIipo6RnpOP3wNA6EHsDBsIOITonWWs+nhA8CPAMQ4BmAig4Vcx3ZJz41HX+eCcXq48GIitPMN7o7WmJIs3LoVc8D1hY5U6lCrcaZrRtx/K/fIJ6PXmRproBtSlU8dmop1VPIU+Bf/Sy807cCP93X/0TlpkDpGi+S1x71AQcv4/e+LqKKXELb09NTevzkyROd9bKXZR/6+1WcOHECFy5cwLBhw3Kd9zo3lpaWcHZ2xsOHD/HgwYPcVyAiIqIi62l4KHYtWZCjV3a7kaPhVskHAJCwbz8glwNqNUyEQJnYRJSJTdTeoFyOhL373uqE9r///ouqVati06ZN0qg5+v5Aad++Pbp27YqtW7cyoU1ERJRHO+7vwIyTM5CiSgEA2JrbYnbz2Wjh3uKV2hNCQHk3FgmHw6G8G6tRJrMwgXVDV9g2c4OJnXFv7k+OT8OOJVfw6MGLHjeN3vNGnbZeus8jws4Au6dmzl34Ikqgdn/A/wvAzhUAoMpQY8XRB/h59xW0eLgP3skvEt9uVavj3dGTYO3gaNTn87Y4ePAgfHx8jNJW69atcfDgQaO0ZWxOTk44e/YsFixYgD/++APr1q2DiYkJfHx88PPPP2PEiBGQa+nZP3z4cJw8eRIuLi7o1q1bjvKoqChs3rwZu3btwm+//YZZs2ZBqVTC0dERNWrUwOLFi/H+++/D0tIyx7pEREQFLSk9CUcjjuJAyAEcjTiKxPSc18rkMjnqutRFgEdmEtvNxs2gtiNjU7D6+AP8cSYMiUqVRllNd3sMa+GNdtVKw9RE+02PKYkJ2PnTj3hw8Zy0zAFWSDftingnF2lZOflx+Dstg+UjHb2wbd00hw53rQmY8bisS5FLaPv4+MDMzAzp6ekIDg7WWS+rzMvLK8f8M3m1cOFCAMCoUaNeq50shfWOUCIiIjIOqVf2378hQ5V5Ypy9V7aZ+YuLtBlxsYBabWDDamTExeVerxi7ceMGxo4dq3cKmJc1bdoUX3/9dT5GRUREVLykZ6Tjx/M/Yn3QemlZlRJVMK/lPHjY5n0qNKEWSLkWjYTD4UiP0LwYKbcxg03TMrBp5Aq5pfEvU0WHJ2L7z5eR+EwJADA1l6P1+9XgXdtZ+woxwZk9sq9v1lzu3RJo803mfNnPXY+Mw2f/XMHj+3fR7fEe2KmeX6yUydCoW2807tEX8tfoxf628/PzM1pbpUqVyjGiT2FiYWGBzz77DJ999pnB63Tu3BnR0dp7qAGAtbU1BgwYgAEDBhgjRCIionwXnRKNQ2GHcCD0AE5FnUK6Oj1HHQsTCzR2a4xWnq3g5+4HR4XhNw5ei4jDiqP3se1KFDLUmnm6d3xcMKx5OTQoV0Jvx4mHd2/jv/mzEB/9olOtg8oTKU7dIJNlJsDN1Qloab8UFa1PvFjRxAJwq6U5fLh9GYNjpyKY0DY3N0erVq2wa9cunDt3Tme9s2fPAgA6duz4WtuLjIzEpk2b4Ofnh+rV9Q8P9fjxYwwfPhxTp05F/fr1tdZJTk6WTja1zW1DRERERZvuXtlj4FapSs4Vsp0/Z8hN8di5DqKdaiDd1BpmqiQ4RV9BqScXYKJWAXI5TF7zRr2iLi4uDm5uht1xm8XW1hYpKSn5FBEREVHx8jj5McYfGo9LTy5Jy7qU74IvGn0BhWnehiUW6WokXXiExCPhUD3VHMbRpKQCti3cYV3HBTJdQ36/pgdXorHnl+tQKTMAADaOFugwsgacPbXMyZ0SCxz9MXOu7Iy0F8udKmcmsiu2loZ7TE3PwKIDd7D00D1Ui7uKHk9PwASZNygqbGzRYdQElKtVN+c2iIiIiEhDWHwYDoQdwP7Q/bj0+BIEcnYItTW3RUv3lgjwDEATtyawMjN8Whq1WuDw7SdYcfQ+Ttx7qlFmbipH9zruGNKsHCqU0jEvtRBAXDhE2Glc2rcHh05HQC0yzwlN1YC5ZVukOlZDVgrcU3YWAS4/w7qkPeDeA/BoALjXA1yqA6bmBsdNORW5hDYADB06FLt27cL+/fsRFxeXowf2zZs3ERQUBJlMhg8++OC1trV06VKkp6fj008/zbVucnIytm7dimbNmulMaO/ZswcZGZl/SL1usp2IiIgKD3VGBs7+twknN6zPtVc2ACjv3MHj+QuQ/PwmvCclqyOoykCozKwBoQZkckCo8cS5Nu5U6IGqN3+F09NrsG39zht/boWJo6MjwsLC8rTOpUuXULJkyXyKiIiIqPg4+/AsJh6eiKepmRf7zORmmNxwMnpU7JHrHITZqVNVSDwVhcRjEVAnavasMStjA1s/d1j6OkEmz5/5AIUQuLQ3DCc235VuHizlZYsOH9WAtf1Lw5lnpAPnVgOHZgEpz14st3IC/CcDdQYDJi8un50LfoZJ/1xB2KMYtI4+hIpJ96Qyt0o+6Dh6EuycdPT+JiIiInrLCSFw89lN7A/djwNhB3An5o7WeqWsSiHAIwCtvFqhrktdmMnN8rQdpSoDWy9GYsXR+7jzWHOEoBLW5hjYyAsDG3vByealc8O0ZCDqUub0M+FngfBzSIt7gj0PK+BWfCngeeraQm0DOPaFWp55o6SZSEHzOg9QpYUvZB5nAZvCOzJMUVUkE9rdu3eHn58fDh8+jJkzZ2LevHlSmRACU6ZMAQAEBgaibl3NO2L/++8/fPDBB3BxccG2bdv09pJOS0vD8uXL4enpiS5duhgc34IFCzBkyBA4OmoOdRAbGyvN3di8eXN06NDB4DaJiIio8HoaHopdP8/Hw3svTsJLuLmjrZZe2elRUXjy00+I27xFGmr8ScnquOo7/EWl50MUZf1UmVriiu8I1Lz/Gyq3bZuvz6Wwq127NtasWYPx48cbNN/fvXv38OuvvyIgIOANREdERFQ0CSHw641fMf/8fGSIzJvwXa1dMa/lPPg6+RrcTka8EgnHIpF0Ogriea/oLBYVHGDr5w6LCg55So7nVYZKjUO/38LNE1HSsgr1SqHVIB+Ymmcb/lsI4NZOYO+XwNNsF1JNLIDGHwHNxgKKFx0okpQq/LD7FtaeDEYJ5VP0frQbjqoXU8HU7dQVzfsGwsS0SF5qIyIiIso3KrUKFx9fxIHQAzgQegCRSZFa63nbe6OVZysEeAagWslqr3TOGJOUhvWnQ7DmRAiiE5UaZeWcrDGkWTl0r+MOS3OTzPPBp/eA8HNA+PME9sNrgHhxHhuttMK/4bUQk/aiV7i5aTXA5h3IZJnnlm5ucrQe1Qo2jnkbzYjypsieZW/cuBEBAQGYP38+UlJSMGDAAKSlpWHx4sXYvHkzAgICsGTJkhzrLV++HNHR0YiOjsamTZswbtw4ndv4+++/8ejRI8yePdugeRrNzc1hYWGBiIgI+Pr6YtKkSahZsyasra1x8eJFfP/997h37x4aNWqEf/7557WePxERERU8Xb2y63XuiiY9+8PU/MVQQhmxsYhesQIxv62HUL44oZaVdsNNn6GAGi8S2S973ls7qMogNJKbIn8G5Swa+vfvj0GDBqFdu3ZYsWIFKlWqpLWeWq3Gpk2bMHr0aCQnJ2PgwIFvOFIiIqKiISk9CdOOT8PekL3SssaujTGnxRyD5yRMf5KMxCMR/2fvvuOjKtYGjv/OtvTeQxJC70V6DwQEpEmxolQFLAiCvir3evXqtTewFxBQsIuAFBEkEHrvnUBCeu9t63n/WNjNkoQkhDSYrx8+MXPKzkkgmZ1nnmcoOJICxhJlIiVwaO+NS1gQmqAyynzfYkX5OjZ9fYrEi9mWtu4jQ+k+qonthGjScfj73xCz0/YGHe6Hwa+Ae4hNc+SFNP71x0kSsotok3eWgRk7UV2d6LRzdGLYU8/SonvvmnosQRAEQRCEBqfYUMzexL1sjd1KZHwk2drsMs/r6NOR8OBwwkPCaeLW5KZf70pGAUt3RfProXiK9LYLK7uHejCjf1OGNHVAkXQU9v16NYh9EAozyrkjnMnxZUtycwwmc3xQIStROo9AoWkBgEoy0HdCC9oNDq3RBZuCmSTLcumC9A2EVqtl0aJF/PTTT0RFRaFUKmnTpg1Tpkxh1qxZKBSlp3vXrVvHtGnT8PPzY8OGDTfM0O7ZsycnTpwgPj6+0mUqMzMz+f3339m8eTPHjh0jMTERo9GIl5cXXbp04cEHH+Thhx9GdRMrdnNzc3FzcyMnJwdXV9cqXy8IgiAIwq1T2axsU3ExWStXkv7NYky5uZZ2hasr3jNnkNpqKBE/RFX6dYdMa0urnv7V6ntDHlPIskz//v3Zs2cPCoWCzp0707ZtW1auXMmECRPw9vbmypUrHDx4kMzMTGRZZtCgQWzdurWuu14vNOTvvSAIgnDrXcq+xLPbniUmN8bSNrPjTJ7q9BRKRcUL+3VxeeRtj6PoTAY22x0qJZy6+uE8IAi1d8UVVW6FzMQCNnxxnNx0817dSrWCwZPb0KK7n/Wk3ETY+j84/hM2HQ7uBcPegiDbKn/ZhTr+t/4sq47EozLpCcvYSdv885bjvk2aMXreAtz9qjc2a6jEuOLOJb73giAIQllytDnsiN9BRGwEuxN3U2QoKnWOSlLRI6AHg0MGMzB4IL6O1SvNfSQ2i8U7LvP36WRMJYZ3SsnElJZ6pgSn0bjwtDmAnXoGytij20oC3zYYArqw7aySE8cvl7ifB0qXsSiU5gWffr4SQ+f0wrWWxrq3q6qMKaoV0J4+fTqzZs2iZ8+eN3sLoQrEYFEQBEEQ6l5ls7Jlg4GctWtJ++RTDCkplusljQaPSY/iPWMGSnd3/vr6JJePpd14PG25GJp29uGeWR2q9QwNfUyRmZnJPffcw8GDB8tdAXttiNurVy82btyIu7t7Lfaw/mro33tBEATh1tkUs4lXdr9imWh0UbvwVv+3GBg88IbXybKM9mI2edvj0F7OsTkm2Slx7h2Ac99GKF005dzh1rtyOoPNi0+hKzZn4zi6ahjxZEf8mlz9XafNh90fw55PoeTEqkcTuPs1aDMGrhtTbDyZxCtrT5Ger8NDl8Xw1M146617bHe6+x4GTp5hU5HnTiPGFXcu8b0XBEEQrkkuSGZb3Da2xm7lUPIhy/Y1JTmoHOjXqB+DQwbTP6g/rprq/e4wmmT+OZvC4h2XOXQlCwA38umsuEQPVRTD3OJoqj2HQpd74xs5eEJQ96t/ukGjrmTnFLLuo7dJjblkOU2paYfKMRxJUqPESK8xoXQa3hxJIbKyq6sqY4pqlRxfvnw5d999twhoC4IgCIJwR0iPu8LfXy4qlZU9/Kl5BLRoBZgnefO3bSP1o4/QRVkHvygUuI0di88zs1EHBFiaiwv0lQtmA8hXz7/DeXp6smvXLhYuXMinn35KQkJCqXOCgoKYM2cOzz777E1VxhEEQRCE25XepOejQx+x8uxKS1srj1YsHLiQYNfgcq+TjTJFp9LI2x6PPqnA5pjCRYNLv0CcegagsK+937uyLHNyezy7fr3ItXQN72BnRjzZERdPezAZ4ehK2PYm5FsXGGLvBmEvQvcZoLINSKfmFvOftaf4+7T5/Bb5FxmcEYnaZB6Dqe3suXvmbNr0G1gbjygIgiAIglCvyLJMdE40W2O3EhEbwamMU2We52nvycDggYQHh9MrsBd2Srtqv3aRzsjvR+JZvuMimqwL3KWI4iH1Re6SLtJMkWQ9Ma+MiyUl+LWD4B7WILZnU5tFjVEH97Hpi4VoC6+NdZWoHIegsmsHgLenzLC5fXH3cyzjBYSaVu13GXPmzOHQoUM8/vjjtGnT5lb0SRAEQRAEoV4xGY0c/HMVe3//8YZZ2YVHjpD6wYcUHTlic73zoEH4zHsW+zL2e1aoFMjISFS8qtOEjMZBBGcB1Go1L7zwAi+88ALnzp3j4sWL5OXl4eLiQosWLWjdunXFNxEEQRCEO0xaYRrPRz7PkVTrWGVMszG83OtlHFRll0uU9UYKDqWQtzMBY2axzTGVtwMuA4Jw7OKLpCq97VtNMhpN7PrlIqd2WBe2Nenkzd3T26G2U8KlCPj7ZUg9bb1IoTIHscNeAEdPm/vJssxvh+N5Y/0ZcosNKGQj/TN20zHPer1XUAij5y3AK6j8wL8gCIIgCMLtxiSbOJl+kojYCCJiI2y2qympkXMjBocMJjwknM4+nSu1hU1lpKfEs2vbX2Sc200b43n+VFzCyU5744ucfG2D14GdQeNU5qlGg4FdP3/PoXV/WNokhTtq59EolD4oMNJ9WBBd7m2NQmRl15lqz4j6+/vz+eefs2jRInr37s3MmTO5//77cXAQdeMFQRAEQWj40uOusOmLRaRcLj8rWxsVRerCReRft0+zQ+fO+D7/HI7dupW6r8lo4uT2BOLPZ1UqmA2gQCLbUwS0r9e6dWsRwBYEQRCEChxOOczzkc+TXpQOgEqhYkGPBdzf8v4yt/AwFerJ35dE/u5ETNdViFEHOeMSFoxDO686KbVYXKDn78WniD+XZWnrMrwxvcY0RUo/B5v/A1FbbC9qPQrufh28mpW6X1xmIQv+OMmuKPPXxlWfy6iMLXgVpVrOaTsgnCGPPYXa3r5mHkqoUampqZw6dYrw8PC67oogCIIgNAh6o56DyQfZGruVbXHbSCtKK/O81p6tCQ8OJzwknJYeLcvdGq7SDDpIOQnxh8iL2ovuyn68dYmMvXa8rBi5Qg0Bnaylw4N7gFtwqS1lypKfmcH6j98l4dyZErdridrpbiTJDk9XI3fP6YV3kEv1nkuotmrPiC5YsIChQ4eyfPlyli5dytSpU5k7dy6PPPIIM2bMoFOnTrein4IgCIIgCLWq3KzsMePpc99EVBoN+uRk0j77jJw/VoPJZLlW07QpvvPn4Tx4cJkD+eTLOWz/8TwZ8fmWtoqytGVktBLsKi7kkVv4nIIgCIIg3N5kWWbFmRV8dPgjy56Gfo5+fDTwIzr6dCx1viFHS/7OBAoOJCPrbPdAtGvpgUtYEHZN3ao/WXmTslMK2fDFCbJTCgFQqCQGPdqa1u2VsGEeHPkOZOu4jMC7YOibENq31L2MJpnv9sTw/t/nKdKbn7VJQTQjsraj0Juz0VVqDeHTn6D9oLvr7JmF6tuyZQuTJ0/GaCy9r6cgCIIgCGaF+kJ2JuwkIjaCnfE7ydOXrt2tkBTc5XsXg0MGMyh4EEEuQdV70dxEiD8IcQcg/hBy0jEkg3kcVl4IWecUiCa0pzX72r8jqKu+6PDKyWNs/PQDCnOyr7YoUDkMQGl3Fwpkugz0ofv97VAqa7cSkVC2agW0w8LC8PPzw9vbm+eff57nn3+enTt3snjxYpYtW8aXX35Jly5dmDlzJg8//DDOzs63qt+CIAiCIAg1psys7EbBDH/yWQJatMKYk0Pqp5+S+f0KZK21xJHK1xfvZ2bjPm4cUhn7Nhfl69j7xyXO7kmyaY9WGQk1lF96XL66yfZGRx0+WrGHdnJyMjqdDgA/Pz/s7Kz7MF26dIn//ve/HD9+HFdXVx5++GGeeuopMQEtCIIg3JEK9AW8uudV/o7529LWM6An7w14D09725Lb+tRC8iLjKTyWCkbZekACh44+uAwIQtOobud14s9nsenrk2gLzYsN7Z3V3PN4SwJTV8Ani0BXYtLVNQiGvArt7wNF6UnIiyl5vLDqBEdjswFQyEbuLjhMy7TDlnPc/QMYPW8BvqFNa/KxBEEQBEEQ6kxGUQaR8ZFsjd3KvsR96Ey6UudoFBr6BPYhPCScsOCwUuPIStMXQ9JxcwA73hzAJjfB5pTrZ2+KZTWnaYYuoCutuoXj2bIPGtfAm3v9q2STif2rf2XPbz8iX1sIKbmgcR6JQhWIm5OBoXN64dvYtVqvI9xa1Qpob9u2rVRb//796d+/P59++ikrV65kyZIlzJo1i/nz5/PQQw/x+OOP07Nnz+q8rCAIgiAIQo2oKCtbIctkfLuU9G++wZSTY7lO4eKC14wZeE56FEUZ267IJpkzuxPZu+YS2gKDpd3F35FVFHK8WEczvYIRhRrsZfNe2Qoky0etZA5mR2tMtHDQ1PwXoh7LzMykSZMmloD2X3/9xdChQwE4e/YsvXr1Ij8/H1k2T8Tv3buXvXv3snLlyjrrsyAIgiDUhcvZl5m3fR6Xcy5b2h7v8DizO8+22c9QeyWXvMh4is9k2N5ApcCpmx8u/Ruh8qr7beVO70xgx08XMJnMv+M9AxwZGR6H68YnIDfeeqLGGfrPh15Pgbp0v3UGE19FXuKziCh0RvMEppMhn8nFO1ClXbGc17JnX4Y+MRc7R8eafTChXE2b3rqFBAUFBbfsXoIgCILQ0MXnxbM1disRsREcSzuGqWR1m6tc1C4MCB7A4JDB9A3si6O6imMiWYbsK+agdfxB85+kE2C6caJGjMmPo3JzjphaEOfYjn59w3igV1Nc7dVVe/1yFOXl8tdnHxJ9zLqIUaFqjNppBJJkR+c+HvR6uBNK9Z2dlS3rTRSeTKP4dAbGQgNKRxX27bxw7OCDVEdfmxrbhNHNzY2nn36ap59+mv379zN58mSWLl3K0qVLad++PTNmzODRRx/F3d29progCIIgCIJQaemxMWz68uMys7L9mzYnZ+2fpH36KYYka3a1pNHg8eijeM14HJWHR5n3Tb2SS+RPF0iNybW0KTUKYgLV/JKVgXx16ekltYkv3PJoo0ymhU6NvUlFscLARY2es0Z/jKhBhmHt/WrmC9BA/P7772i1Wry9vZkxYwbt27e3HJs7dy55eebMrK5duxIYGMiOHTv46aefmDhxIiNGjKirbguCIAhCrdocs5n/7P4PhQZzWW5ntTNv9nuT8BDz/sGyLFN8Pou8yDh00bk210r2Kpx7B+DcNxClc90vpDOZZPb8HsXxiDhLW+NmCoY6v4Jm637riZICukyBQf8CZ98y73U8LpsXV53gXLI1k7uHOo2+qX9jKDC3KZQqwiY9xl3DR4kKL3UsJiamwnMkSbIsZKzouPh+CoIgCHcqWZY5n3WeiNgItsZu5ULWhTLP83XwZVDIIMJDwunu1x21sgpBZF0BJBy5Gry+GsQuSL3hJVqFI0dNTTlkaMZRU3OOmlqQiSttA1yZOaApr3QMQH0Ly30nXTzPuoVvk5eRbmlT2fdBad8TVwcDQ2d3xb952fN7d5KiMxlk/nYBuchgTpmXAQmKTmeQve4ynve3xKGtV633q8YC2gDR0dEsWbKE5cuXk5ycDJj/4Zw8eZI5c+bwwgsvMGHCBGbPni2ytgVBEARBqBPlZWV3HzOeXhMepnj3HqLnP4/2YpT1IknCbexYfJ6ZjTqw7DJH2kI9+9de5uSOBCgxx5bkrmC1qYCCbGzqKCmdz+AQ+BtXlEXEyBKSJCNf/ehgdKA48X6cjB25p33Arf8iNCCbN2/G1dWVI0eOEBRk3acpKiqKf/75B0mSmDVrFl988QVgLkHevXt3li1bJgLagiAIwm3PYDKw6PAivjvznaWthUcLFg5cSGPXxshGE4Un0smPjEOfXGhzrdJVg3O/Rjj19EdhV6PTRZWmKzLw95LTxJ62Zo93CjpFn/xXURSUyCRqfjcM/R/4tinzPkU6Iwv/ucCSnZe5muCNSpKZ5XoJxfF/MFwNeLp4+zD62ZcIaNGqxp5JqJr+/fuXm6n9119/kZqaSkhICO3bt8fDwwOVSoXRaCQrK4tTp05x5coV1Go19913HxpN3S/QEARBEITaYjQZOZp6lK2xW9kWt42E/IQyzwt1DWVwyGAGhwymnXc7FFIlAsiyDBmXSpQOPwgpZ0A23vg675Zke3Vmc24w38f6cMYYhAnr6w1s5cPM/k3p3czrli5Ek2WZo5vWEbniW0zGq32UHFA7jUCpCqF9N1f6TumCSqO88Y3uAEVnMshYccY6l3ndR7nIQMaKM3hNalvrQe1qvUOZPn06s2bNsglG6/V6/vjjD5YsWcK2bduQZdmyEtLNzY1HHnmEGTNmoFarWbp0KStXruTHH39k/PjxLF++HCcnp+o9kSAIgiAIQiWZs7IXkXLZGqz2bBTM8KeexS23kITpj1F0+LDNNc4DB+Izbx72rVqWeU9Zljm/P5k9q6IoyrOWUcrRwF9qLXGYuDZWD3SzZ3q/JmRylO8vreDa6FCSbD+iKMI+aAXTWryGvfrOHlwfOXKEqVOn2gSzAVatWgWAg4MDb731lqW9WbNmPPLII/z555+12k9BEARBqG3pRek8H/k8h1OsY5dRTUfxn17/wV62I393Ank7EzBma22uU/k44BIWhGNnXyRV/SmtmJtexIYvTpCZaC4VrZBMDHBdTDvDJuuiQN92MOwNaBZe7n32XspgwR8niMmwBvA7eym5N2cbmcdOW9qadunO8Kfn4+DsUiPPI9ycWbNmMXHixDLbg4KCWLt27Q2TZA4cOMDs2bNJTk5my5YtNdlVQRAEQahzxYZi9iXtIyI2gu1x28nSZpV5XgfvDoSHhBMeEk5Tt0ps8VGcAwmHzZnXcQcg4RAUlX1vC3s3aNQNgnsgN+rGPm0oX+zPYOfxdJvTNEoFY+8K5PH+TWnpd+vHYdrCQjZ/9TEX9u+2tEmqRmicRuBsZ8fdT3WiURvvW/66DZGsN5H52wWbxJyyT4TM3y4Q+K+etVp+vFoB7eXLlzNkyBB69uzJ2bNnWbJkCStWrCAjw7xy9logu1+/fsyYMYP7778fe3t7y/UffPABb731Ft9++y0vvPACCxYs4JNPPqlOlwRBEARBECp0o6zsLl16kbnoU678s9XmGodOnfB9/jkcu3cv974ZCflE/nSepCjr/tp6SWaPnYFDdgZMVydfW/u7MCusKaM6BmJCT/ivk7jRwtNrx36L/YAne43ATml3cw9+G0hKSqJt27al2tevX48kSYwdO7bUljZt2rRhyZIltdRDQRAEQah9R1KO8Hzk86QVpQGgUqh4ofsL3B80gcLIJJL3JGIqNNhcowlxwSUsCPs2XkiK+lWKOTEqm7++OklxvnlxoJ0in+Fu7xJkd8p8grMfhL8MnR8BRdmL/XKL9bzz1zl+3B9radOoFDzTRoF6xw9kZmcC5jFg34cm0WPMBCRF/QnoC2BnZ4dSWfr7++OPP7JlyxZOnjxZYWJMjx49iIiIoGPHjnz++ec888wzNdVdQRAEQagTubpcdsTvICI2gl0JuygyFJU6RyWp6ObfjcEhgxkYPBB/J//yb2gyQdo5677X8Qch7Tw3jHJKCvBtC0HdIKgHBHUHr+boTLDueCKLN1zmXPJ5m0vcHNQ82iuEKb1D8XW1L+fG1ZMWG8Pad18jJz3N0qa064rKoR9tOjjT//HuaOzrR2Wi2iCbZDCakPUmZEPpj0VnM8xlxitzryIDhafScbqr7K1+akK1v1MbN27kiy++YO/evYA1iO3t7c3kyZN5/PHHad26dbnXazQannzySdLT0/nmm29EQFsQBEEQhBpVXlb2kIcmo1q3kdg33jcP3q/SNGmCz/x5uAwZUm65I12xgYProzkeEW8eHF51Xm1km4OePIW5rU8zL2aFNWNAC2/LvdZd2kyuLrfM+9qSydXlsjlmM6Objb6JJ789KBQKdDqdTVtKSoplLPrggw+WuqasidA7zeeff87nn3+O0VhB+S9BEAShQZFlmR/O/sCHhz7EIJsnn3wdfVnU5QOCz7iS8sNBZL3J5hr7Vh64hAWjaeJaL/cUPrc3iW0/nMNkMI+f3JUJjPR4E3dVEqgcoM8z0Hcu2DmXe4+tZ1P49+pTJOcWW9q6hbjzmFsMZ9f/gu7qWM/Jw5ORc/6P4LYdavahhJtSVFR6Qh7gm2++YerUqZWu8ujs7My0adP48ccfRUBbEARBuC2kFKSwLW4bEbERHEw+aBkHluSgcqBfo34MCh7EgKABuNm5lX2zwkzb4HXCEdBWME/l6HU1cN3NHLxu1AXsrNnVOUV6ftoZzbLd0aTk2lYHCvZ04PF+Tbm/WxCOmpoLJp/atoV/vvkMo+laiXE71I7DcHYMYfCMjjTu5Fdjr30jsklGNpjAUHZQ2fb/ZdCbkPVGZINc+vh1H8u957XjxopSr6tAguKGFtD+6aefAPObKEmSGDJkCDNmzGDs2LGo1ZXfMN7d3Z20tLSKTxQEQRAEQbgJJqORA2t/Z+/vP2EyWrOyuw4fRcu0HHJmPImstQ6yVT4+eD8zG/fx45FUZQ+ZZFkm6nAqu3+7SEGONciapTDxj4OeGLUJhQSjOgQwa0AzOgSVfvMQERuBAgUmTKWOXU+BgojYiDs6oB0UFMShQ4ds2pYsWYLJZMLFxYVhw4aVuuby5ct4edXuvj71zdNPP83TTz9Nbm4ubm7lvIkVBEEQGpRCfSH/3fNf/or5y9I2ynkoc7RTMH6bS74p33qyAhw7+uAcFowmoH5u9SabZPatvcSRv60Z1UGaYwxz/wB7RSF0mmjOynZrVO49MvK1vLbuDH8eT7S0OWmU/N+gYFwP/M6ZyIOW9pD2HRnxzP/h5O5RMw8k1JjTp08zZcqUKl0TFBTE+fPnKz5REARBEOqpyzmXiYiNICI2gpPpJ8s8x93OnYHBAxkcMpheAb2wV12X+Ww0QOppc9nw+EPmAHbmpRu/sEIFfu0h+GrmdVA38GhCWaUG4zILWbY7hl8OxlKgs11Q3znYnZkDmjKsnT/KGqwOpNdp+efTjzhzoESJcaUvaqdRtGrjS9iTvdDYKTHpjBUGgK8FlWW90RxYvhZULiv4XDKofKPjtzKoXJdkMFUym/tWqXZAW5ZlAgMDmTZtGo899hihoaFVur64uJiffvqJ999/Hw8P8SZCEARBEIRbr+ys7CD6BLeAL5eSnWMtEa5wdsZrxgw8J09C4eBQ7j2zUwqJ/Pk88WetewYZkNlnb+CAnQG1RsGUbo15rF9TQrwcy7yHzqgjKjuqUsFsABMmsrXZlTr3dhUWFsaKFSsYNWoUI0aMYMeOHbz77rtIksT48ePRaDQ25xcXF7Ny5UratWtXRz0WBEEQhFsvOieaedvmcSnHPAHZrrAZ83WPEXjWHSPWcY2kVuDYzQ+X/kGoPGumlOOtoCs28M83h4k+U2Bpa+/4F/1cvkXZpA8MfQMCO5d7vSzL/Hk8kf/+eZqsQr2lPaylD/M723Ng6YdEp6WaGyWJXuMfpPd9D6Mop1x5Q2bSasnbtIm8f7ZizMlG6eaOy5DBuAwfjsLu9ti2pqCggOjo6Cpdc/nyZYqLiys+URAEQRDqCZNs4nT6abbGbiUiLoLonLJ/9wU6BVr2w77L9y5UihJhv7wU2+zrxKOgL7zxCzv7Q3B3a+nwgE6gKXte65oT8dl8s+Myf51KxliicqEkwd1t/Jg5oCldG3vYVAeqMFP5JoLKuvwCUs6ex88YQmBAUxSSEqXCCbXSEXsHNYocSHtj3+0TVC6PSkJSKax/1KU/Usbx4vOZGNLKrpBTigQKh9ot117tV3vllVd45ZVXUNzkPkMJCQk89thjAAwdOrS63REEQRAEQbAwGgxX98q2zcru0LoDwZF7MW2MtJwrqdV4PPIIXrNmorrBIju9zsjBjdEc3RwHJQbpl1RGtjroUbqqmdO7JZN6N8bTSVPmPfJ1+fx24TdWnllJalFqpZ9HgQJ3O/dKn387mjdvHt99951NaXFZllGpVDz//POWtvT0dPbv38/rr79OcnIyTz/9dF10VxAEQRBuuX+u/MPLu1+mUFdIz/wOPJR5D60LQ23OUTiqcOodiHPvAJTOZY9H6ou8pHQ2fryH9GxzCXEJI/1cvqVjyEW4eyW0uqfMDKBrknKKeHn1Kbaes46p3B3V/GdkG5qkHiXig6WWcaCDiysjZj9HaOeuNftQdSQvIoLElxZgys0FhcK8jY5CQd6WLSjefIvAd97BJXxQXXez2kJDQ1m8eDGzZ8/G17fiMpcpKSksXry4ykk4giAIQtXJehOFJ9MoPp2BsdCA0lGFfTsvHDv4mINowg3pTXoOJh8kIjaCbXHbSC0se86opUdLwkPCGRwymFYercyBYoMWEo9Zg9dxByEntszrr5EVdsj+XSGgB7LfXci+nZDtfaxBY50J+VIRsqHAmmF8Nahs0hmJSc3n1JUsMnO1dAC6YY8GsJckgpzt8He2wy5LQl51meRaylT21gSXfUBrvNEu4LdeyaCyuuzgMhUcL9mGpU1CUiuvHrv6Gmrl1XYFKBVIN5kBXxDoRNavFyp3sgz27b1v6nVuVrUD2i1btrzpYDZAs2bN0OvNq2ercx9BEARBEISS0mJj2PTFQlKjraWTPDy86JSUiePPf1gHsZKE25gx+Mx5BnWj8ktYApw7nELEj+eRC6wldXIkExGOenS+djwf1pL7ugThoCk72ye9KJ2VZ1by6/lfydPnVfmZTJgIDwmv8nW3kzZt2rBy5Uoee+wx8vPNpVTt7e1ZtGiRTRb2xx9/zJtvvgmAJEk88MADddJfQRAEQbhVDCYDnxz5hBWnvmdgTjfuy7ibxrpAm3OUbnY492+EU3d/FHb1PPvYaCDl75/YuMGJQqM7ABqpgGG+XxMyYgx0WwHK8reyM5lkfjoYy9sbz5GvtY7NRnYM4F9DmnDkh6/Ztm+XpT2wZRtGPfsiLl61O/FWW/IiIoh/era14eo+4dc+mvLyiH/6aYI+/wyX8IY9nhw/fjxvvfUWPXr04N1332Xs2LHYlZF9XlxczJo1a1iwYAFpaWnMnDmzDnorCIJw5yg6k0HmbxeQiwwgATIgQdHpDLLXXcbz/pY4tL2ztwMrS4G2gL1xe9h1ZQcHEw6i12pRy2rcTPb4yM1QyyrsTBpaubako0cH2rq2wUPlhpyShXwmhtzsfcg5acgFOciyAlnWINMamY7IsgZQI6Mx/5EckBWO5v83KcEEXL76B4D4q38qxwsIA+C6BZQykGeEvEL0pa6qPbICFBpl9YPKVz9SZsD5ugBzNYPKdcmxgw/Z6y6b/w1XQHJQ4VjLAW1JluWbXpRw5coVfH19cbhBOc5rhg8fjkqlYubMmYwZM+ZmX/KOdm3Pw5ycHFxdXeu6O4IgCIJQL5WdlS3RUrIj9NgZlCWGPk5hA/CdPx/7Vq1ueM+YKzn8uew0ymRrmUIjMgftDOQ3c+Txgc0Z3r78PYCu5F5h+enl/Bn1JzqTda9tCYmw4DAOJh2k0FCIfIO1ohISLhoXIh6IwE5ZvXKRt8OYIicnh507d2IwGOjZsycBAQE2x48dO8bx48cBcHFxYfz48XXRzXrndvjeC4Ig3InSi9J5OeJf+FywZ3zGEHwMttVkVH6OuAwIwrGzD5KynicLyDJc3MzFX39ja/wEjJjHNa7KZEYOuoLnyCfBwf2Gt4hOL+ClVSfYH51pafNxseONse25y6mQ9YveISvJuo9211Hj6P/wFJSq2i2LWFtMWi0X+w/AlJdn/vqWR5JQuLjQYueOW1J+vK7GFfn5+XTo0IErV64gSRJ2dna0bt2awMBA7O3tKS4uJjExkXPnzqHVapFlmaZNm3L8+HGcnOrnHvINjRhTCoJwvaIzGWSsOMMNU2Al8JrUtl4Gta+Vv5b1ZZTAvvb/NiWwS5yrt5bEtpTHvq509vX7Khv1Bow6PRhklHI9X4RYXZYs4hIB47KCyjc4Xl5QOT81ia2LvyRXn4NRNmCUDcjKJgQ3CWPIc+E4ud0e263Uptr+t1yVMUW1AtpKpZIVK1YwceLECs9t3rw5ly9fRpIk/vzzT0aOHHmzL3vHEoNFQRAEQbixsrKyXZVq2p+Nxr1Ia2mz79gR3+eew6lnjxve71JyHr+uPI1jVAEqrMHqKyojuW1dmDKsBb2aetrsAVTSqfRTLD21lH+u/GMTrFYpVIxpNoap7abSxK0J2+O2MydiDkCZQW3p6mt/Ev4JA4MHVvh1qIgYU9y5xPdeEASh4Tkec4SdazYyOLUbLibbYJymsSsuYUHYt/ZsGFkgySeR/36ZAyf8OVRg3T4k0D2F4bN74BDU7IaXG4wmvt0VzUdbLqA1mCztD3YLZsE9rYnbv52IpV9h0JsXENo5OjH8qXk0796rZp6nnshZu5bEF1+q9PmB772L2y1INqnLcUVMTAyjRo3izJkzAGWOx69NebZr147169fTuHHjWu3j7UyMKQVBKEnWm0h8a3+lszoD/9WzzPLjNR1UtpbLLn3vO2NPZSWS+sZlsCmjLVtn4EBcNgfjsykwmdAhowO0QFN/Z0Z2bkTXZl4o7ZQlAtLmrGWUUo2NUU8uW8Y/m/7EZMkBV2Dn0I9Bk8bTNrxZuXN1QsXKq7aAbP43fCurLVRlTFGtpalViYWfOnWKY8eOMXXqVN5++20R0BYEQRAE4ZYxGgwcXPs7e1f9bM3KBpqmZdM8KQPl1SGLJjQUn3nzcBl69w0Htkdjs/hh7XnczubjaVJcvRvkSzIFbZ2Zdl9r2gS4lXmtLMvsSdzD0lNLOZB8wOaYk9qJB1o+wKNtH8XX0brf38DggXw86GNe3v0yubpcFCgwYbJ8dNG48Ga/N29JMPtOFB0dzc6dO5k8eXJdd0UQBEEQKk2fWcSRP7fhfd6OsXKYzTH7Np64hAVhF1r2eKTeyU2CbW9gOPIbW3NmE1Xcz3KoTScVYTMeRKm6cWb5mcRcXlx1gpMJOZa2YE8H3hnfkR5Bzmxd+jmnI7dajvk1bc6oZ1/C3c//1j9PPZP3z1brntkVUSjI2/LPLQlo16XQ0FCOHj3KF198wdKlSzl16pTNPKUkSXTs2JHHHnuMJ554ArW6/PL1giAIQvUUnkyrVDAbQC4ykPzBISS14o4LKuskPVpJj17So1Po0UkGdJIOWQXOag3uCnA35KMoTkMy5iGhs/6R9Lafq5VIXsHg0xTJrwWSf2skF4+yg9Q3GVQ+fCWTb3ZcZvOZFJsCMAoJRnQIYH7/pnQKdr91X6BK0ufmsu75fxGdE1OiUy4ENhrBqH/fj4uHfa336Xbj0NaLwH/1pPBUOsWn0jEVGVA4qLBv741je+8yF6TUhlqrtWRvb0+vXr145plnePXVV2vrZQVBEARBuM2VlZXtrNXT8UqKJStb5eOD9+zZuI8fh1TOZJbJJLPtfCrL/rmEx4V8WutVgHmAZkJG19SJhya3o7G/S5nXG0wGNsdsZtnpZZzLPGdzzMvei0fbPsoDrR7AVVP2asNBIYOIaBTB5pjNRMRGkK3Nxt3OnfCQcIaGDq12mfE72Z49e5g2bZoIaAuCIAgNgi6pgOxtMRSfTKeRbB13GCUT6o4e+Axqhtq/gZRN1hXAnk9h98cUFNuxMft/pOpbXD0o02dCczoPCbnhQkOtwchnEVF8uf0SBpN5NlWSYHrfJjw3tCVFaUn88O9XyIiPtVzTaehIBk56DJVGU95tbyvGnOzKBbMBTCaMOTkVn9cAqNVq5s6dy9y5c8nJySEmJob8/HycnZ0JDQ3Fza2BLPgQBEFo4IpPZ1izOCvBmKOt+KSaYgn23rgMNqX2SS7x+XVB45J7MMtKmXO5F9iTupcdSTuIKYpFJ+kxSEZkyfoFaqzxIFzhwuDsdDokX0BRXOL3uIJr01FWPq0hqLv1j08rUNz6UuVGk8zm08l8s/MyR2OzbY45apQ82D2Y6X2bEOzpeMtfuzKSNm9lzbfLKSTL0qZUNab/hOl0GddFZGXfQpJagdNdvjjd5VvxybWk1jcPysjIoKCgoLZfVhAEQRCE20yZWdmyTNPUbJqnZKKUQeHsjNfjj+M5eRIKx7IH2zqDibXHElgceQm3OC19ilVoSg6RvO0YPa0doc3cy7y+yFDEmqg1fHf6OxLyE2yOhbiEMLX9VMY0G1OpgLSd0o7RzUYzutnoyn0RBIxGIxkZGRQXF5d7Tnp6ei32SBAEQRCqTpZldNE55EXGU3zePEGnuDqTWSxpiW2WRd/xI7DzbCCBbJMRjv8EEW9AXhJp+iZsyPoXBSZvANR2Cu5+rD1NOnrf8DaHr2Tx4qoTRKXmW9pa+Drz7n0d6RLiwdndkWz5+lP02uKr97Xn7lnP0KZvWHm3vO2YtFqM2VUIUCsUKG/DQK+bmxudOnWq624IgiDccWRZRp9ZXOlg9jWSvcocVFYrzeWpyyiDXWZQ+Ub7Kt/guPkcqUYCnlqjlv1J+4mIjWBb3DYyizOtB0vEnNthx+DcHMJzM2mqj6Xcnti7m4PWwT0gqBsEdgEH91ve75IKdQZ+PxzPkp3RxGYW2hzzdbFjWt8mTOwRgptj3VQ8MRUVsfuV9zkYewqZa/2TcPfoxYTX5+Lu61wn/RJqV6UD2pGRkURGRpZq/+OPP4iKiqrwer1ez5UrV1i1ahVNmzatWi8FQRAEQRBKKDMru0hHx7hU3Iu0SGo1HhMn4vXELFQeHmXeI7dYz0/7Y1m6Oxp1pp4hhWp8TNaBuWSvpP99zWnfJ7DM0kw52hx+OvcTP579kSxtls2xdl7tmN5+OoNDBqOsgRWzAmzatIn333+fPXv2oNPp6ro7giAIgnBTZJNM8ZkM8iLj0cXl2RzLUebzl/duuowII7zV/XXUw5twORI2/xuSTwJwqbgX/+TMxSCbyz86e9ox8qlOeAeVP/FYoDXwwebzLN8TYylxqVJIPDWoOU8PaobSZOSfJV9wfMtGyzVeQSGMnr8Ar0bBNfds9YhsMJCzZg1pn32OITm58heaTLjcPaTmOiYIgiDcEUw6I4VHU8nfk4ghpbDiC66RzOWMvSa1rbnO1YI8XR4743eyNXYruxJ2UWgo/TVQytCtuJjwgkLCC4vwNxpL30hSgF+7q5nXPcwfvZqZy9HUgtS8Yr7fc4WV+6+QXai3Odba34XH+zdlTKdANBVsDVOTcg8eYe2Hy0mVYwBzJrskOdJ54EQGzby3xvboFuqfSge0t2/fzuuvv16qffXq1axevbrSLyjLMtOnT6/0+YIgCIIgCNdUmJWNhNu9Y/B+Zg6aoEZl3iM5p5hlu6P5cX8sxiIDA4vUtNPbZk+37R9I77HNsHcqvfI0uSCZ705/x6qLqygyFNkc6xvYl+ntp9Pdv7soc1SD3nzzTV555RWbfRIrIr4fgiAIQn0iG0wUHk0lb0c8hjTb8USKOoNVnv9wMSSZ94a8TxO3JnXUyypKuwBb/gMXNgEgy3CkYDz78idZTvFv6so9T3TE0bX8UuA7L6ax4I+TxGdZvy6dgtx4976OtPZ3JTslmXUL37ZZ2Nh2QDhDHnsKtf3tv2eiLMvk/b2ZtI8/RhcdXbWLJQmFiwsuw4bVTOfqwJYtW1i5ciX79+8nOTmZ1atXM2jQIACmTZvGI488wpAhIoAvCIJwqxgyi8nfm0jBwRTk4srtm21DBvv2N67QUl+lFqayPW47EbER7E/ej8FU+vntTSb6FhUzuLCQAYXFuF2/JYiTz9XAdTdz8DrwLrCr/eziiyl5LNkZzeqjCeiMtn3s38KbGf2b0r+Fd53OpZh0Ok6/8zXbzp5BL8dZ2jV2gUz4938IbHVnLGIUrKpUcrysScPKTiQ6OjrSsmVLpkyZwpw5c6rysoIgCIIgCKRdiWbTl4vKzcp2GtAf3/nzsW/duszrL6Tk8c2Oy6w9loDBINNZp6RfkT32JYo8+TZ2YcDDrfALLb3PdVRWFMtOL2Pj5Y0YZOubFoWkYFjoMKa3n05rz7JfW7h19u/fzyuvvALAQw89RI8ePVCpVMyZM4cXXniBNm3aAJCfn8+hQ4dYuXIlLVu25IUXXqjLbguCIAgCACatgYL9yeTtSsCUa1thJNougd+8NrPD9TB3NxnKd32+x1FdN/sTVklBOmx/Gw4tA9mceWSUVWzT/Zvz+Z0tp7Xs4cegSa1RqcuuXpNTqOeNDWf47XC8pc1ereC5u1sxvV8TlAqJqIP72PTFQrSF5q3sVGoN4Y89QfuBd9/2i9dkWaZg9x7SFi6k+PRpm2POgwbh1KcPKW+9de3k0je4+vUJfOcdFHYVb4VT3+Xk5DBx4kQ2bbq2gEJGkiSbecqVK1fy/fffM3z4cH788Uexp7YgCMJNkmUZbVQ2+XsSKT6XWaq8uDrYGUNyIbLeVPYNSpAcVDg2oIB2TE4MW2O3EhG7lRPpJ8s8x81oJKywiMGFRfQuKsbh2u8ihQoCO18tHd7dHMR2b1xr2dfXk2WZvZczWLzjMtvOp9kcUykkxnQK5PH+TWkbWHpOrLYVnDrLlrd/5LIpGtmUbWkPbtGf8a8+h0pd67spC/VApb/rr776Kq+++qpNm0KhYOXKlUycOPGWd0wQBEEQBAHMWdkH1v7GvlU/Y7panqlkVrZT+w74PvccTr16lrpWlmUORGfyzY7LbD2XCkCAQWJIkR3+Rmu5JDtHFb3GNqNtv0AU15UqOpJyhKWnlhIZb7v1ip3SjnHNxzGl3RSCXIJu9WML5fj888+RJIn169czfPhwADIyMpgzZw5Dhw4lPDzc5vypU6cyZMgQGjUqO2NfEARBEGqDMU9H/p5E8vcmlcpmOuccww8e6znkdAaVQsXz3f6PR9o8Uv8DtPpi2P8V7PwQtLmW5kKHlvxV+D+Ss6xZ2D3vbUrX4Y3LfaZNp5L4z9rTpOVpLW29mnryzviOhHo7YTQY2P7Ddxxeb60Q6BEQyKhnX8I39Pbf1q7o+HFSP1pI4f79Nu2O3brhM38+jl3uAkDdKJDElxZgys0FhQJMJstHhYsLge+8g0v4oLp4hFtKlmXGjx/P9u3bLYFsNzc3cnNzbc5bunQp33zzDX/99RejR48mMjKy/v+7EgRBqEdMWiOFR1LI35uIIdW2ogxKCcdOPjj3CUQT5ELRmQwyVpy58V7aEnje3xJJXXflqysiyzKnM04TcfFPtsb+w+XitDLPCzAYCC8oIrywkC7FWnOgzbURtOlmLR0e0BHUDrXa/7LojSY2nkxi8c7LnEqw/V3pYq9iYs8QpvYJJcCt7vsqGwxEfbKCiEOx5BtPAFfnASU7wqfOpvPwhj+OEW6eWMYgCIIgCEK9lXYlmr8+eZ+0+FhL27WsbF9ff3wWvoLLsKGlJqaMJpktZ5L5KvIyx+KyAbA3wYBiNR11SqQSWdmte/vTe1xzm9KXJtnE9rjtLDu1jGNpx2zu7apx5eHWDzOxzUQ87T1v+TMLN7Z7927Gjx9vCWZXJCwsjEcffZSvvvpKlJsUBEEQap0ho4i8nQkUHEoGg+0Mb0ZIEW8rv+S0fRQAPg4+fBD2AV38utRFVytPluHUKvjnNcixjtFQO5HRfgEb9t9FXqY5+1ylVjBkWluadfEt81apecW8uvY0f52y7gHtYqfiXyPb8FD3YCRJIi8jnfWL3iXxwlnLOS179WPorDnYOTaADPZq0F68SOrHH5P/z1abdrs2bfCdPw+nfv1sxsEu4eG02LmDvL//Jm/LPxhzclC6ueFy9xBchg27LTKzAX777Te2bdtGaGgo7777Lvfccw/FxcX4+tr+PZs0aRKTJk3i5Zdf5u2332blypVMmjSpnLsKgiAI1xjSi8xlxQ+lIGtt931Wumpw6hWAUw9/lM7WeZRr+2Jn/nYBucgAEubg9tWPkoMKz/tb4tDWq1afpTL02nwOn/udrdGb2JZ7gRRZX+Z5zXU6wguKGFxYSBujAinwLmjVzZyB3agbuNWvhfR5xXp+ORjH0l3RJOYU2xxr5O7A9H5NeLB7MM529SNMWHTxEpGv/8I5ORuj8Yyl3ck1gAdffw2PgMA67J1QH1Trb+q2bdssZR0FQRAEQRBuFaPBwP5ff2D/n79julqq6VpWdiuDAv8XX8J9wgQkte0e18V6I78fjmfJzsvEZBSaG2XooFMyUKvG3mSd8PNq5MSAh1sR2Nzd0qY36ll/eT3LTy/ncs5lm3v7O/kzue1kJrSY0DDKf96mkpKS6NnTNhv/2kSu6fq9qa7q3r07b7/9do33TRAEQRCu0SXkkxcZR9HJdNtMJaWEXSdPljn/wYq0XyzNXf268kHYB3g71PMSnLH74e9/QcIha5ukgLseJcZ/Dpt/SESvNQezndw0jHiqI76NS5etlGWZ3w/H88aGs+QUWSeNh7Tx5Y2xHfB3M++FHXP8CBs//YCiPHM2kUKpYuDkx+g8bNRtnWmri08g/dNPyfnzT5vy4erGIfjMmYPrPfcgKcrOblPY2eE2ZgxuY8bUVndr3Y8//oi3tzd79+7Fz88PAK1WW+75b7zxBps3bxYBbUEQhBuQTTLai1nmsuIXskplWmtCXXHuE4hDOy8kZdm/gxzaehH4r54Unkqn+FQ6piIDCgcV9u29cWzvXT8ys2UZsmMpvLKbPdF/E5F1mkiKyC3jmSRZppNWx+CCQsLVnoQE9oeOV0uH+3UAlaaMF6h7idlFLN8Tw0/7Y8nT2lYG6tDIjRkDmjKivT+qcr6PtU02mYj5+ie27cokW76AbEy3HGvZM5x7Zs9GpamfX2uhdlUroB0WFlbla6Kjo9m5cyeTJ0+uzksLgiAIgnCbSom6wMZ3XyczN9vS5lykpXN6Hs0mT8Vz8mQU12XjZBfqWLH3Csv3xJBRYN2P0tcgMdpoj2eJylhqOyU9Rjeh46AgFFcH7wX6An6/8Dvfn/me1MJUm3s3d2/OtPbTuKfJPagVtgF0oW64uLjYfG5vb570TkhIKPP8wsJC0tLKLhMmCIIgCLeKLMtoL+WQFxmH9mK2zTFJo8Sppz+5nWDWkee5mHbRcmxy28k82/XZ+j3OyIyGf16FM2tt25sOQh76BsdPubJ7WZRl8tsnxIWRT3XEyb10RnBcZiH/Wn2SnRetk5VeThr+O6YdozoGIEkSJpORvb//xL4/frEEdF19fBn17IsENG9VY49Z1wwZGaR/9TVZP/8MemugX+Xri/fTT+M+flypBZ13okOHDjF9+nRLMLsy7r33Xj755JMa7JUgCELDZCo2UHg4hfy9SRjSrysrrlLg2PlqWfFA50rdT1IrcLrLF6e7yq7OUut0BZB4FOIPkhW3j8j042xV6tnrYI9WoQAlgDWwq5ZlehbrGWzvz8CAPng37m8OYDvXk+e5gdOJOSzZGc2644kYTLYrEga39mXGgKb0bOJZrxYFFsfGsee/P3JadkJn2AaY5/QUSjVDZ82hXZgoMS5Y1XotgT179jBt2jQR0BYEQRAEwYZBq2XX+29x5MQh5KuDa0mWaZqeS4/Bw/F98klUnrYlvuMyC/l2VzS/HIyjSG8tg6WR4X47FwJzDDarilt086XvfS0sk6vpRen8ePZHfj7/M3m6PJt7d/HtwvT20+kf1B+FVD9WrQoQEBDAyZMnbdocHR1xdnYmMjKSKVOmlLrm77//RiNW8wqCIAg1RDbJFJ1OJy8yHn18vs0xhZMa576BOPcKIDJ9F//e8W/y9OYxh6PKkdf7vs6w0GF10e3KKcqCHR/AgW/AaF00iE9rGPoGxtBwdvx8gTO7oyyHmnXxYfDUtqg1SptbmUwy3++N4b2/z1Oos47bxnYO5JXR7fB0Mv+uLsjOYuOn7xN76oTlnKZdujP86fk4ONsuartdGPPyyFy2jIzl3yEXFlraFW5ueM+cgccjj6C4uoBPgPT0dFq1qtrChoCAALKzs2umQ4IgCA2QPq2Q/D2JFB5ORdZdV1bczQ6n3gE4dfdH6dSAFlLJMmRehrgDEH8Q4g+SmH6OCEc7IhwdOGxvh8lVDdg+k5MMA9TehPv3oF+r8TgHdAVl/SjDXRFZlom8kMaSndHsikq3OaZRKhjfpRGP929Cc9/6NYaSZZnY71axY3M2Gap8jNqdlmOuPgGMf+kVvIKC67CHQn3UMP5VCoIgCIJw25JlmdjVq9jy03JyFMDVYLZzkY4+TVrR6qMX0QQF2VxzKiGHb3ZcZsPJJIwlVp0qgIf9vQiN16FLtZZVcvdzZMDDLQlubQ6Ix+XGsfz0ctZErUFn0tnce2DwQB5r/xidfTvXyPMK1dOlSxeWL1/O7NmzbSYyu3btysqVKxk6dCgPPfQQYP679frrr7N161a6detWV10WBEEQblOywUTBkRTydySUymhSetrjMqARTl39MCnhs2Ofs/jkYsvxJm5NWDRwEU3dm9Z2tyvHqIeD30LkO+ag9jVOPjDoX3DXZIqLZDZ9epyEC9mWw91GhNJjVBMkhW3mT1RqHi+uOsnhK9Z7BbjZ8+a49oS3tmbZxp85xfpP3qMgKxMASaGg30OT6T56fLklthsyU3ExWT/8SMY332DMybG0Sw4OeE6ZjNf06ShdS5dsv9M5OjqSm5tbpWuio6NLVfkRBEG408gmmeIL5rLi2gtZpY7bNXXDuU8g9m28kJT1J4u3XMW5kHAY4g9BvDmILRdlEaVWs9XJgQhHR84G+5d5qZfCnkE+dzG45Th6NB6MRtmwFsFrDUb+PJbIkp3RnE+xTdBwd1QzuVdjJvUOxceldLWcuqZLSmHvq99zyhiKlv3I2iTLsVZ9whg6azYae4c67KFQX1UqoL18+XIWLVrE7Nmzefzxxy3tSqXyBlcJgiAIgiDcWP7Ro+x8/y3OGgqRFdas7NZ2LoS9/G+cOnSwnCvLMrui0vlmx2WbEpUA9moFE1sF0DLBQMa5XK6FqFVqBd1GhtJ5cAhKtYIzGWdYemopW65swSRb91tWKVSMbDKSae2n0cy9WY0/t3Dzhg8fzqpVq+jVqxfTpk3jrbfewt7ensmTJxMZGckjjzzCc889R3BwMFFRUWRlZSFJkiXILQiCIAjVZSo2kL8vifzdCZjy9DbH1AFOuAwMwqG9D5JSIrM4kxe3vci+pH2Wc4Y2HsrrfV/HSe1U212vmCzDuQ2w5RXIvGRtV9lD76eh77Ng70pWcgHrPz9Bbpo5kK9UKQif3JqWPWwnjfVGE19HXuKTrVHojNax16O9QnhxeGtc7M0ZUrLJxIE/V7H75xXIV8doTh6ejJrzAkFt29fsM9cB2WAg+48/SP/8CwwpKdYDajUeDzyA9xOzUPn41F0H67mWLVuyatUq5s6dW6nzCwsLWbFiBW3btq3hngmCINRPpmIDBYdSKNibiCGj2OaYpFbgeJcvzn0CUfvXw7HJNSYTpJ+3ZF4TdxDSzgEyRuCEnYYIR0e2egUQV872HCGO/gwOHU5448F09OnYIKvx5RTqWbnfvOVeWp7W5liolyOP9WvChK5BOGrqXy6rLMsk/rqRyD8TSbf3RF/wC8jmv48KpYrwaTPpOOSeelUSXahfJFmW5YpOcnd3Jy8vDxcXF5vyPIqbXB0rSRJGo7HiEwUbubm5uLm5kZOTg6tYoSsIgiA0YNroaC68/x774qPIdbCuFnWVJe5+ZDqh946ztBmMJjacTOLryMucSbLNxPB00jClewgdcuB8ZCKmEtnaTTp50+/+Frh42bMvaR9LTy21mUwGc6nP+1rex6S2k/B3KnvV7u2oIY8pcnJy6NChA3q9HkmSOHr0KH5+fphMJsLDw9mxYwdgHm9eG+b27NmTHTt2oBZ7Tjbo770gCEJdM+bqyN+dQP6+JGSt7ZyGXVM3XAYGY9fC3TIJdzLtJPMj55NckAyAUlIyr+s8JredXD8n6hKPwt8vw5Vdtu0dH4Tw/4C7uexj3JlMNi0+ha7IXA3HwVXDiCc64N/Uzeayk/E5vLDqBGdLjN+aeDvxzvgO9GzqZWkrystl0xcLuXzkoKUtpH0nRjzzPE7uHrf6KeuUbDKR9/ffpH38CbqYGOsBScJtzGi8n3mmVGWi+qyuxhXvvPMO//73v5k3bx7vvvsuSqWSjIwMfHx8+OeffwgPD7ecm5CQwKOPPsqOHTv48MMPefbZZ2utn7czMaYUhIZBn1JA/t4kCo+kIOtMNseUHnY49w7EqZsfCsdb+F5ZXwxn1sC59VCYBY4e0HoUtB0L6ipsn1GYeTXz+moAO+EwaK1jCh2w38GerY6ObHd0IENVdvJlW6+2hAeHMzhkMM3cm9XPMVglXNty79dDcTZbtwB0bezBjP5NubutH0pF/Xw+fUYG+1/9jpNFLdEajmIs3m855urty5jn/oVf0+Z12EOhrlRlTFGpZRp9+/blr7/+om/fvqWOjR8/ng4lsqcqcuLECdasWVPp8wVBEARBuH3oU1NJ/fwzDkduJcrXHflqMFuSZTp37k7/5/+F+upexwVaA78cjOPbXdEkZNuW8QzxdOTx/k3orrLnwB+XOJtlXZXq6m1P/wdbEtzOgy2xW1i2bxlnMs7YXO9p78kjbR7hwVYP4mZnO/kq1G9ubm7ExsaWalcoFGzcuJHXXnuNn3/+meTkZAICAnjwwQf5z3/+I4LZgiAIwk3TpxeRvyOegsMpYCyREyCBQzsvXMKC0QRbSxnLssxvF37jnQPvoDeZM7i9Hbx5f8D7dPOvh1tg5MTD1v/BiZ9t20P6wLA3oVEXS9PJ7fHs/PUi8tVFhF5Bzox8qiMuntYJ6mK9kYX/XGDJzmjL1jBKhcSM/k15dkgL7NXWCeeki+dZt+gd8tLTzA2SRK/xD9H7vodQKG6fqoCyLFOwazepCz9Ce+aszTHnwYPxmTsH+5Yt66h3Dc8zzzzDp59+ysKFC/ntt9944IEHaN7cPAm+Z88e0tLSuHLlCnv27GHz5s1otVpCQkJ44okn6rjngiAINU82yRSfyzSXFY/KLnXcrrm7uax4a89SW4RU27mNsOZJKM4GSQGyyfzx7Dr460UY9xW0uqf0dUYDpJ65Wjb8ahA7I6rUafmSxE5HByIcHdjp6EBBGQmXSklJV7+uhIeEEx4cToBzwK19xlp2LC6bxTsu89epJEwlh6ESDG/nz+P9m9K1cf1eAJiyPoJtP10k3akl+uKNmAzWOZ2mXXtwz1PzsXd2rsMeCg1FpTK0DQYDJ06coEOHDjaTgQqFgpUrVzJx4sRKv+APP/zA5MmTRYb2TRCrHwVBEISGypifT8a33xLz4w8c93Ozycr2cHVjxP/9B/+WrQFIz9fy3Z4Yvt97hZwi2zKenYLcmBXWjF4+ruz+7SKxpzMtxxQqiS7DGtNusB8b4zaw/PRy4vLibK4Pcg5iarup3Nv8XuxVVVgZfJsRY4o7l/jeC4IgVJ4uPo+8yHiKTqVDyZkTpYRTFz+cBzRC7eNoc02RoYg39r3Bn5f+tLR18e3CB2Ef4ONYz0pIa/Ng1yLY+xkYSpQf9WwKd79uzqa6msVkMprY9etFTkYmWE4L7ejN3dPborG35krsv5zBS3+cJDq9wNLWJsCV9yZ0pEOQdRGhLMsc3bSOyBVLMRmvZnq7uDLimecJ7WQNoN8OCo8eJe2jhRQePGjT7ti9Oz7z5+F411111LPqq8txxZEjRxg8eDA5OTk3zLaTZRlPT0+2bdtWpYQc4cbEmFIQ6h9ToZ6CQynk70vCmFlGWfEuV8uK+9VQWfFzG+Hna3GiskJOV39WP/QjBHW7Wjb8agA78QjoC8u8bbpSwTZHB7a6erBfo8RQxr3tlHb0CezD4JDBhAWF4W7vfkseqa6YTDJbz6WyeMdlDsRk2hyzVyt4oFsw0/s2IdS7HpeIBww5ORx67TuO5zRFJ2Why18PsnmMKCkU9HtoMt1Hj0e6yUrQwu3hlmdoq1QqunQp/YaicePGOFdx5YSzszMhISFVukYQBEEQhIbJpNOR/fPPpH75FRc0ENXYB/nqhJOERI9R4+j10CRUajXR6QUs3nmZ3w/HozPYlsIa1MqHmQOa0S3IjaObY/n16/MYS5wT0taTzuMC2JT1Jy+sW0lmse2Av41nG6Z3mM7dIXejvI2yfQRBEARBuLVkWUYblU1eZHyprCbJTolTrwBc+gaidLUrdW1cbhzzts/jfNZ5S9ujbR5lfrf5qBX1qFKI0QBHV8C2t6Ag1dpu7w4DX4Juj4FKY2nWFur5e8lp4s5Yx1d33R1Cr3HNUFzN7Mor1vPupnOs3GfNuNEoFcwZ3JxZYc1QKxUl7lfI5q8/4cI+a2nzwFZtGTX3BVy8vGvggetG8YULpC36mPyICJt2+7Zt8Zk3D6d+fRts2dP6oEuXLhw7downn3ySTZs2lXveiBEj+OKLL8RcpCAIty19cgH5exIpPJqKrL+urLinvbWsuEMN7qmsLzZnZgNlB7NLtP8yESrIsYzV2LPVrwkRDhqO67NK3NH6f64aVwYGDyQ8OJzegb1xVDuWdasGpVhvZNWReL7dGc3lEosDAbyd7ZjSuzGP9mqMh5OmnDvUH+lbdxOx9ASpzu0wGg9jKNrJte+fk7sHo+a+SFDb9nXbSaHBqdZPsejo6Cpfc++993LvvfdW52UFQRAEQajnZJOJ3PXrSfv4EzIy0jgR4muTle3VKJh7Zj+HX9PmHI3N4uvIy/x9JtnmPY1KIXFv50bMHNCUVv4uxJxM5+f/HSA33brS2NnDjvZjfNmmXMsbO36j0GC7ordXQC+mt59Or4BeYsJQEARBEIRyyUaZolPp5EXGoU+0nUBUOKtx7tcI554B5U4GR8ZFsmDnAvL0eQA4qBx4vc/rDG8yvMb7XiVR/8Dm/5jLel6jUEPPWTDgeXCwLVmZnVrIxi9OkJVsHmMplBIDH2lFmz6BlnO2nUvlX6tPkpRjHaN1CXHnvfs60tzXxeZ+qTGXWbfwbbKTkyxt3UaPp99Dk1GqanCivRbp4uNJ//RTcv5cZzNhrwkNxefZubgMHSoykW6Rxo0bs3HjRqKiovjnn3+4ePEieXl5uLi40KJFC4YMGWIpRS4IgnA7kY0yxWczzGXFL+eUOm7Xwh3nvo2wb+lx68uKl+XMGnOZcUArwWYnRyIcHclWKHA3mQgvLGRoQSF2MmUGs2W3YM4EtiHC0YkIbTJRBQlAAehtx2R+jn6Eh5j3w+7i16V+LRishox8Ld/vvcKKfVfILNDZHGvu68yM/k24t3Mjm21b6itTYSFH/reMI6nB6Jwaoy/4E5P+kuV4cLuOjJzzfzi51+8y6UL9VOvvFqKjo9m5cyeTJ0+u7ZcWBEEQBKGGmfcH3EXqhx9RdP4cl3w9iGoZZM3KVijoOfZ+eox7kB2Xsnjmq72lyic526mY2DOEaX1DCXBzIC+zmL++OsnlY2mWcxQKicb9XNgXuJ5FUWsxmAzWY5KCuxvfzbT202jn1a52HlyocytXruTXX3/l0qVLqFQqQkNDGTlyJNOmTRP7ZwuCIAjlkvVGCg6nkrcjvlR5TpWXPc4DgnDq4oekLjsAaTQZ+eL4F3xz4htLW6hrKIsGLaKZe7Ma7XuVpJyBzS/Dpa227W3GwN2vmcuMXyfhQhZ/fX0SbYF5nGXvpOaeJzoQ2MIdgMwCHa+vO82aY4mWaxw1Sl4Y1opJvUNRlphAl2WZU9u2ELH0Kwx680StnZMTw5+cR/PuvW7xw9YNQ3o66V9+Rdavv4Leum2Oys8P79lP4z5uHNJtErSvb5o3by4C14Ig3BGMBXoKDiZTsC8JY7bW5pikUeLY9WpZcZ9azlY+tx4kBdsc7HjZ25NcpRKFLGOSJBSyzD9OjrzjaeTNtEwGFhWBgyeGzhM57O5DhC6diJT9JBecg+LSt27m1swSxG7r1fa2Sla4lJbPt7uiWXU4Hu11lQp7N/Vi5oCmhLX0sVTEqe8y9xxi2xf7SHZui0lKRZ+3DtlkXXDRc9wD9Ln/ERTK+h+YF+qnWh9J79mzh2nTpomAtiAIgiDcZopOniT1gw8p3L+fXHsNx1sEkVciK9s7JJTwmXPYm+PAiM/2cjE13+Z6Xxc7pvVtwsSeIbg5qDEaTBzeFMOhjTEYdNaBvWuoimOtNvFF7jq4Yr1eo9AwtvlYprSbQoirKCl4u9i5cyeLFy/m5MmTaLVaWrVqxZw5cxg0aBAAer2esWPHlio1eerUKdavX8/HH3/M5s2badSoUV10XxAEQainTEUG8vclkr87EVO+3uaYupEzLmFBOLT3vmFWU1ZxFi/tfIk9iXssbUNChvC/vv/DWVO17dlqTF4KbHvTXGJcLjFR2qgrDH0TGvcu87IzuxOJ/OE8JpM5i8ojwImRT3XEzccBWZZZdyKJ//552iaLqH8Lb94a14FgT9tJdH1xMf98+wVndlhLb/s1bc7oeS/h5ut/Cx+2bhhzc8lYupTM775HLiqytCvd3PCaOROPRyaisLevwx4KgiAIDZ0uMd9cVvxYGlwX+FR5O+DUOwCnrn4o7Oto4VROAtsc7Jjra906xHQ18HztY55CwRw/bx7LySXVzY/IrEhykktnlwN08ulEeEg44cHhhLqF1nj3a5MsyxyMyeKbHZfZei7FJmFdqZAY2SGAGf2b0iHIre46WUUmrZYT73zPwRhvtE5tMGpPYCjcBhgBsHdy5p7Zz9G0S/e67ajQ4N3Sn3AFBQXk5ORgMBjKPSc9Pf1WvqQgCIIgCHVMFxND6qKPydu0CZMEl/w8iPLzsMnK7jx6Ahf8e3Hfb7Gk5NquIm7m48SsAc24965A7FTmVZrx57PY8dN5S3lLAJUTnG+1gy2aVZBrvd5F48JDrR5iYpuJeDvcPvsuCvDee++xYMECm7bz58+zbt06fvzxRx544AFefvll/vrrr3Lvce7cOe677z727t1b090VBEEQGgBjjpa83QkU7EtG1hltjtk1d8dlYBB2zdwrzP45nX6aedvnkVRgLp2tlJQ82+VZprSbUj8yh3SFsO9z2LUIdCUWEboFw5D/QrvxUEbZa5NJZu8fURz7J87SFtLOk6GPt8fOQUVyTjEvrznFP2dTrLd0UPOfUW2Z0KVRqWfPiI9j3cK3yYi37q3daehIBk5+HFUDr6BiKi4m64cfSP9mMaYc64S85OiI19QpeE6bhtLF5QZ3EGqKwWDgu+++4/jx47i6unL//ffTqVOnuu6WIAhClchGmaLT6eTvSUQXk1vquH0rD5z7BGLXopbKipfqoAxX9sCeT9AmHeHlYPMicrmccZAsSSDLLHF3AwqgxNSQSqGip39PwkPCGRQ8CB9Hn1p4gNplMJr4+3QK3+y8zPG4bJtjTholD/cIYVq/JjRyd6ibDt6knCMn2bZwOwlO7ZA1evSFf2PSWbe28W/WgtHzFuDq41uHvRRuF5Isl7FpQRUkJCTw5ptvsm7dOhITEyu+4Cqj0VjxSYKN3Nxc3NzcyMnJwdXVta67IwiCINzhDGlppH3xBdm//Q4GgzkrO8TXJivbvVEIaXeNY2WUiXyt7YK37qEezBrQjPDWvpbySQU5Wnb/HsXFg9ZJUiSZ2JAT/OP7EzqVNevF19GXyW0nc1/L+3BSO9Xsw95mGsKY4vDhw/Ts2RNZlilruOrl5cWJEydo3rw5xcXFjBs3jhEjRhAcHIzRaCQmJoY1a9awefNmJEli3bp1jBgxog6epH5pCN97QRCEmqBPLSRvRzyFR1PBWOL3igQOHbxxGRCEJqji4KMsy6y6uIq39r+F3mTO7Pa09+SDsA/o7l8Psk5MJjj5K2x9HXITrO0aF+g/H3o9CeqyJ0p1xQa2fHuamJMZlraO4UH0ndAcSSHx88E43tpwlrwSY7oRHfz575h2+LqUzkA+u2s7W775DL3WXD9Ube/A0Jmzad037BY9bN2Q9Xqy/1hN+uefY0hNtR5Qq/F46CG8Z81E5X1nLLKsq3GFTqejW7du5OebF2t899139O/fH4Ds7GwGDhzIyZMnLecrFAoWLVrE008/XWt9vN2JMaUg1Bxjvs5aVjzHdj9lyU6JUzc/nHoHovauo8CnyWguMb77E0g4BMA6Z0f+5VO1332OKkf6B/UnPDic/kH9cdHcnovACrQGfj0Ux9Ld0cRlFtkc83e1Z1rfUB7qYa5U2JDIej2nPviB/Rdc0Np5YDJmos9fh2yyjiM7DxtF2KTHGvwiRqFmVWVMUa0M7ejoaHr16kV6enqZE43lqRerlQVBEARBuCnG/Hwyly4lY9ly5KIiTBJE+Xlw6bqs7NxWYXyja4n2tPUNmCTB0LZ+zBzQjK6NPSztJqOJk9sT2L/uMvpi66K3TNcEtob+QIaTdUK2iVsTprWbxqimo1Arb7NBsb4YzqwxvzkszAJHD2g9CtqOBfWdVaryq6++wmQy4e7uzuzZs+nZsydqtZrz58/z5Zdfcv78eV599VWKi4v55ZdfuO+++0rd44knnuDTTz9l7ty5/PHHHyKgLQiCcAfSxuaSFxlP8ZkMKDltoZJw6uqHS/8gVJWcEC42FPPm/jdZE7XG0tbZpzMfhH2An5Pfre34zYjZBX//G5KOWdskJXSdCgMXgHP52U656UVs+OIEmYkF5ssUEgMeakn7AY2ISS9gwR8n2XvZOkHp7WzHG2PbMbx9QKl7GXQ6tn+/mONbrBVUvIMbM3r+AjwDg6r9mHVFNpnI/esv0j75BP0Va8Y5CgVuY8bgPXs2miCxxUlt2LBhA6dOnUKSJHr16oWHh/V9xYsvvsiJEycAUKlUODk5kZOTw7x58xgwYAAdOnSoq24LgiDckC4+z1xW/EQaGGxjLSofB5z7BOLYxReFXR2VFdcXwbEfYe9nkHnZ5lCEq5dlz+wKyTKdfTqxZPhS7JR2FZ/fQKXmFrN8Twwr910ht9g2waNNgCszBzRhZIdANKrSFXPqu/wzF9j27iZiHdqDHRh159EXbAbMiz3V9g4MnfUMrfsMqNuOCredav30e/XVV0lLS8PNzY0xY8bQtm1bPDw8sLMr/wfR3r17Wbx4cXVe1kKr1bJo0SJ+/vlnoqKiUCqVtGnThilTpjBz5kwUZZTPqkhMTAxNmjSp8Lz333+f559/vtzjiYmJvPvuu6xfv56EhATc3Nzo3r07zzzzDMOGDatyvwRBEAShrpl0OrJ//oX0L7/EmJUFQK69hhOh/uTaWQPLxS6+rHEZQFqxddJUo1IwoUsQM/o3oamP7Z6SSVHZRP50gYwEazlMraqQvSFrOee7HyTzG7nOPp2Z3n46YcFhKKSGN+Cv0LmNsOZJKM4GSWHe51JSwNl18NeLMO4raHVPXfey1uzatQsHBwd27dpF27ZtLe1Dhw7l8ccfp3fv3qxcuZJ77723zGD2Nc888ww//PADR44cqY1uC4IgCPWALMsUX8gib3s8umjbvRkleyXOvQJx7huI0kVT6XvG5cXx3PbnOJt51tL2SJtHeK7rc3W/wC49Cra8Auc32La3GAZD/wc+rW54edKlHP766gRFeeZJSDtHFcNmtiewpQeLd1zmwy3nKdZb9+u8v2sQL49si5tj6efOTklm3cK3SY2+ZGlrFzaYwY89idquYS7Ok2WZgp07SV24CO3ZszbHnIcMxnfuXOxatKij3t2ZNmzYgFKp5M8//+See6zj48zMTL777jskSaJ///6sXr0aDw8PVq1axcSJE/nyyy/54osv6rDn5auJOc5rcnJyeO+99/jjjz+4cuUKjo6OdOzYkZkzZ/LQQw/dwqcQBKGqZKOJolPp5O9JQnflurLiEti39jSXFW9e8XYoNaYwEw5+C/u/gsLrtpP1aw9955IR/yemtOOVu58koVJqbttg9vnkPBbvvMzaYwnojbYLE8Ja+jCjf1P6NvdqkEmfstHIuU9/Yc8xNcUO7ZFlA4aiHRi1xyzneAWFMHr+ArwaBdddR4XbVrUC2lu3bqV58+bs2bMH70qWU1KpVLckoJ2enk54eDgnT55k5syZfPrpp+h0Oj777DOefPJJfvvtNzZs2IC9/c29YXJ0dLzhDxWNpvw3vvv27WPEiBEUFxfz2muvERYWRlxcHK+//jrDhw9nwYIFvPXWWzfVL0EQBEGobbLJRO6GjaR9/DH6+HgAc1Z2gDeXfNyRr6Y7mSQFh9zu4qB7V0ySeS9sV3sVk3uHMqVPKD4utm9WivJ07Fl9iXN7kmzaz/juYX/IOrRq8/7ZYUFhTG8/nS5+XWr6UevOuY3w80Tr57LJ9mNxDvz0MDz0I7S+M7KM4+PjGT9+vE0w+xoHBweef/55Jk+ebDOJWZ4RI0bwySef1EQ3BUEQhHpENsoUnUwjLzIefVKBzTGFiwaX/o1w6uGPwr5qUyE74newYOcCcnXmiWYHlQP/7f1fRjSt49/JhZkQ+S4cXAKmEpk/fh1g2BvQdGCFtzi/P5mIFWcxXc0Ec/N1YNTTnUiWDYz/YjfH460LAoI8HHh7fAf6tyg70/vigT38/eXHaAvNX3uVWkP4Y0/QYdDQm3/GOlZ45ChpH31E4aFDNu2OPXviO+9ZHDp3rpuO3eH279/PAw88UGocuHr1anQ6HQqFgsWLF1sytydMmMC4cePYvn17HfS2YjU5xxkVFUV4eDgJCQm8+OKLjBkzhszMTN577z0efvhh1q9fz/fff1+tgLkgCFVnzNNRcCCZ/H1JmPKuKytur8Spuz/OvQJQedXhfspZV2DfF3Dke9AX2h5rEgZ955IS0I4VZ1ZyIv1UpW+rQIG7nfut7Wsdk2WZ3VEZLN55mcgLaTbH1EqJezs34vH+TWjt33C3aCi8FMP2N/8kWt0W7BXIxlz0BeswGa1bBrbtP4ghjz+N+iZjcoJQkWoFtDMyMnj22WcrHcwG6NixI6+88kp1XhaA+++/n5MnTzJ37lwWLVpkaR80aBDjxo1j7dq1PPnkkyxbtuym7n/69GlCQ0OrfF1aWhqjR48mKyuL1atXM3bsWAB69OjBkCFD6NChA2+//TatWrViypQpN9U3QRAEQagNsixTsHsPqR9+aJONkmuv4VT75mTrtVyr3Zmu8WKL9yDS7cwTnI3cHZjerwkPdg/G+bpyWCaTzJldiexbcwltoXXyNc0pjp1NfiPV5QoqScWYpmOY2m4qLTxu84wXfbE5MxuwrYVakgxI5vOeO39HlB8vKCigR48e5R7v2bMnAEFBFZcuDQ4OtuyxKAiCINx+TDojhYdSyNsZjzFLa3NM5eOAy4AgHO/yRapiSUejychXJ77i6+NfWxbwNXZtzMKBC+t2fGLQwoFvYMf75kVv1zj7w+D/QKeHQaG84S1kk8z+Py9zeNMVS1ujVh4Mmt6Gbw/E8sW2KAwm8zNLEkztE8rzQ1vhVEaZU6PBwM4fl3N4wxpLm0dAIKPnLcCnccUV8Oqj4vPnSVu4iPzrAqD27drhM38eTn36NMjMqttFTEwMM2bMKNW+bt06wDw32OK6rPlevXqxfv36WulfVdXUHKdWq2XkyJHExcWxcOFCnn32WcuxIUOG0LdvX3744QdatGjBq6++eoueRhCEG9HFlSgrfl32rsrP0VxW/C5fFJob/x6vUUnHzftjn14NsnVLOCQFtBsHfeZwxdmDZaeW8efe/0Nv0lfp9iZMhIeE3+JO1w290cT6E4l8syOas0m2Gfau9ioe7dWYKX1C8XNtuHM4siwT9c0qdu0xUOjQHgCjPhpjwUZMsnncrVSrCZ82iw7hw8T4SKhR1Qpo+/v7VymYDdChQ4dq71ezatUqtm/fjr29Pf/9739tjkmSxNtvv83atWv57rvvmD17Nl27dq3W61XF66+/Tnp6Oj179rQEs69xc3NjwYIFPPXUU7z44os88MADODjU4SorQRAEQShH0clTpH70IYV791naTBLEdu3IWWMRst48aDWi4LC7NSu7TYArswY0ZWTHANTK0pPGqVdyifzxPKlX8ixtWmUhB4I3csZ/F/Zqex5t8SiT204mwLn0noy3pTNrzGXGKySbzzuzFjo9WLN9qidK7odY3rEbbXVzjUajQa+v2ptsQRAEof4zFerJ35tE/p4ETAW2exOqg11wDQvCvq0XkqLqE2vZxdm8tOsldifstrQNDhnM//r+DxeNS7X7flNk2Txu+Oe/kBVjbVc7Qp850OcZsHMu52IrvdbIP8vPcPmoNYOobf9AXPv4cv/S/VxIsS4Ca+7rzLsTOtK1cdm/k3PT01j/8bskXThnaWvZqx9DZ83BztGxqk9Y53RxcaR98im569ebv95XaZo0wWfuXFyGDRUTtfWATqcrNZ9WWFjIli1bkCSJhx9+uNQ1Li4u9XI8WJNznJ999hkXLlwgMDCQZ555xuaYRqPh9ddfZ8SIEbz77rvMmDGDwMDAW/FIgiBcRzaYKDqZTv6eRHRxebYHJbBv42UuK97Mre5+x8gyXN4Guz+Gy9ttj6kcoMtk6P0UZ01FLDm5hC1XtlgW+wGoJTVIYDAZbNqvJyHhonFhaGjDrd4CkFus5+cDsSzbHUNSTrHNsSAPBx7r14QHugWXuRCwISmOTyTytVVEKdqAgwJZNmEs2oVBa61c4+bnz+h5C/Br0qwOeyrcKar1L2rEiBEcPXqUadOmVfqatLQ0zp49y4ABN78h/JIlSwAIDw/H3d291PE2bdrQpk0bzp49y9KlS2stoK3T6VixYgVgLmdUlgkTJvDUU0+RkpLC+vXruf/++2ulb4IgCIJQGborV0j7+GNyN/5l017ctjWH/dzJybROfJbMyu7b3ItZA5rRv4V3mW/Aigv07Ft7idM7EgDr8fPeB9jX+E/sXVQ81eYpHm79MG52bjX2fPVGcQ4kHoX4Q3CgCluxSAo4t+6OCWjfqPShmEwWBEG4cxmyteTvSqDgQBKyzmRzzK6lBy5hQdg1vflJ4dMZp5m/bT6JBYkAKCQFc7vMZVq7aXX3+yfuIGz+N8TtL9EoQedHIPzf4Fq5QFR+VjEbvzxJWqx5Ql2SoPu4ZmzS5rP0m72WGK5KIfHUwGY8Hd4cO1XZWWIxxw6z4bMPKc4zZyQplCoGTn6MzsNGNbjf0/rUVDK++oqsX38Dg3VxhMrfH5/ZT+M2diySqmFPSt9OfH19OX/+vE3b77//TlFRESqVqlSCCUBCQgKurvWv1GtNznFeu/fYsWNRKkv/Ox46dCguLi7k5eXxww8/8H//93839xCCIJTJmKsjf38SBfuTMOXbLqiRHFQ49fDHuWcAKs86zN416uH0GtjzMSSftD3m6AU9ZiF3e4xD+dF8e+gddifutjnFWe3Mg60e5NG2j3Iq/RRzIuYgIZUZ1JauzgW92e/NBrt/dkJ2Ect2RfPzwTjytbaLKTsFuTFjQFOGt/NHVUaCR0MiyzLRK9azY2seBQ7tzG2mAuTCPzHordsGNu/ei2FPPou9U8ULKgXhVqjWaPxf//oXffv25YEHHqBfv36Vumbz5s1MnjwZo9FY8cll0Ol0bN26FYDu3buXe1737t05e/YsGzZs4PPPP7+p16qq3bt3k5OTc8O++fr6EhISQmxsLBs2bBABbUEQBKFeMKSnk/7FF6Um8ZTBwZzp1Z2oiyeRrgazr2VlH/boyj2dgpk1oCntG5UdhJZlmVN74tn5+3nkIgXXgtmZDknsbPIbikbFzGv3DGObj8VBdZtWLTFoIeUUJByBhMPmP+kXbu5esgmKsm5t/wRBEAShgdCnFJAXGU/hsTQwlZgolcChow8uYUFoAqs3ofbHxT94c9+b6Ezm/Sw97T15b8B79AzoWa373rSsK+aM7NN/2LY3CYOhb0BAx0rfKiUml41fnqAwx/xsanslwSOCmX/sEnGZRZbzOjRy490JHWkbWHbwz2Qysve3H9m3+ldLFrOrjy+jn30J/+Ytq/Z8dcyYm0vGkm/JXLECucj6NVC6u+M1axYeEx9GUYlqMELt6t69OytWrGDOnDmEhISQmprK66+/jiRJDB48GE9Pz1LXrF27tlQZ8rpWk3Oc0dHRnDt37ob3ViqV3HXXXezYsYMNGzaIgLYg3AKyLKOLNZcVLzqZbjteAdT+Tjj3CcShs0/dlhXX5sPRFbD3c8iJsz3mEQp9nsHU8SEiUw6yZMdcTqSdsDnF096TSW0n8WCrBy2VawYGD+TjQR/z8u6XydXlokCBCZPlo4vGhTf7vcnA4IG184y30KmEHL7ZcZkNJ5MwXvc9HdLGj5kDmtI91KPBLegrizY1nZ3//YULhpbIDk4AmPSxyLq/0OsLAJAUCgZMnErXUeNui2cWGo5qBbRNJhNff/01kyZNon///owZM4ZWrVrh4uJSbkZNenp6dV6Ss2fPWkoE3WiP62vHrly5Qk5ODm5uVcv22rRpExs3buTUqVOkpKTg4uJC+/btmTBhAtOmTcO+jI3tT5yw/mCvqG+xsbE25wuCIAhCXTDmF5C5dCkZy5cjFxZa2pWeniSMvJfdl8/hcOG4Jac6XePFTv8hDOnfhQ/6NSHYs/xSkrExKaz/7hBykgNgHhfoFVoOBf+Ftk0yz3acydDQoagUt1G2i8kEmZch4ZA1eJ18Eoy6W3N/SQEO5Zfhvt1U5o2RePMkCIJw+9NeySVvexzFZzNtD6gUOHX3w6V/ULWzm7RGLW/tf4s/LloDxx19OvJh2If4O/lX6943pTgHdn4I+74CY4l9wb1bmgPZLYaa06sr6eKhFLZ+dxaj3pzR7uxpz8WW9rwVcdZyjp1Kwfy7W/JYvyblZhYVZGex4ZP3iTttnc9o2qU7w5+ej4NzHZVivwmmoiIyV64kY/ESTLnWPS8Vjo54Tp2K5/RpKJ1FtlF9NXPmTNasWUPbtm1p27YtFy5cIDc3F0mSSpXWzs/P59///jfHjh1j3rx5ddTjstXkHGdV5ih37Ngh5igFoZpkg4nC42nk70lEn5Bve1ABDu28ce4diKaJa92+h81Phf1fw8Elpbc+C+wCfeeibzWcTVe2sHTTJKKyo2xOaeTciGntpnFv83uxV5Ueew0KGUREowg2x2wmIjaCbG027nbuhIeEMzR0aIPKzDaZZCIvpPHNjsvsvZxhc8xOpWBC1yAe69eEZj63z3jhym+biVyXQp5jG1CYF2iodbsoKD6MbLo6hvTwZOSzLxLUul0d91a4E1VrBjk0NNTyA/iHH37ghx9+uCWdupHY2FjL//v4+JR7Xslj8fHxVQ5oP//888ydO5f58+fj4uLChQsX+Oijj3jqqaf4/PPPWb9+fakBYVX7FhcXV+45AFqtFq3W+sY1t8SbLEEQBEGoDlmnI+uXX0n/8kuMmdbJYcnBgZQRE/ijwEijE7twwDxgNaLgtE83uoy5n3V9m+HhpCn33gmZSfz+YySKU14osGZdX/I8SmGPaJ7s/jB9AvvcHoHIvBRr4DrhMCQeMU9A34hCDf4doFFX85/8FPjn1cq9nmyC1qOr3+8G4tFHH+XRRx8t97gkSQwZMqQWeyQIgiDUFtkkU3w+k7zIeHQxtu+FJQcVzr0DcO4TiNK5/DFJZSXkJzBv2zzOZlqDuw+1eogXur+AWqmu9v2rxKiHw8th+9tQWGLy1NELBi6ArlOhCn2SZZlDG2M4sC7a0mYf4MASqYC4c9aqLz2aePLuhI408XYq915xZ06y4eP3KMg2XycpFPR/eArdRo1DusE2IfWJrNeTvWoV6Z9/gSHNupWOpFbj/vBDeM+ahcrLqw57KFTG8OHDmTNnDp988gmHDln38Xz00UcZMWKE5fN33nmHl19+GZPJhCRJjBs3ri66W66anOOs6r2zsrIoKCjAyansnwHlzVG2bt36htsEAXTp0oU///zTpm3MmDEcOXLkxg8BzJ8/n/nz51s+z8vLo02bNhVeB+as/JIl2tevX88TTzxR4XXOzs6W7PZr/u///o+ffvqpwmtHjhzJ119/bdPWrVs3kpOTK7z2vffeY+LEiZbPz58/z+DBgyu8DuDgwYMEBARYPv/mm294/fXXK7yuZcuWRERE2LQ98sgjREZGVnjtjBkzePVV2/exQUFBlervypUrGThwoOXz7du33/B9X0nx8fE2n7/22mssXlzxNl5hYWGlYhfh4eFcuFBx9bRXXnmFmTNnWj5PSkqyVj6QQdYZMemMYLruQgWs+/AnOt/XD5W7OZD7448/8sILL1T4mv7+/jY/3wBmzZrFhg0bKrz24Ycf5v3337dpa92iGflZKaAvslRXsVDZg50zsvICD/97FyfPfmnZdqUopogrH19BpVDhpHYiS5nFc1f/u97Zs2dxcXHBTmnH6Gajubj2Ir999BsAv/Fbuf2tbz8jZKBYb6RAa8BgtP1aKRQSHq4uHDp7Fm9na3C+wf+MMMlocwsxlAwXyjL+7g483q+TpSmkfSd+P3mB/w0ZVuFrip8R5VdeKWnr1q20atXK8nmd/Yxo3Zr8/PxyrrD66quvGDVqlOXzw4cPc++991Z4HVh/Rlzz0Ucf8dFHH2EyXf/Ds3zVTomSr/8BWAnVmcDOy8uz/H9ZWdJlHatKINje3p7w8HAWLlxIx47W0l1du3ZlwoQJDB8+nG3btln2D7crUXqqqn2rqF9vv/02r732WqX7LgiCIAgVkU0mcjf+RdrHH6MvubBKpSJpwD185dKSZrE7CdFZJ1BzHHxoMv4xvr6nN/bq8ktiXc6+zM8bNqLa3wgnna/1evs0CnpeZvrdo2nv3b5GnqtWaPMh6Zg5cB1/yFxCPDe+wsvwamENXjfqCv7tQVViVbK+GHYtvBoIv9G4SgJ7N2hbuYHi7eBmxpnluS0WUAiCINwBZKM5wykvMh5DSqHNMaWrBuf+QTj18ENhd2sqvOxK2MVLO18iR2tekGavtOfVPq8yqumoCq68xWQZLvwNW/5juzWJ0g56PQn955vHAVVg0BmJ+P4sFw+lWtqyfdUsLczEePXXorOdigUjWvNw9xAUirJ/V8omEwfW/s7uX1YiyyWyc+a+QFCbhjG2s4yBP/kEfYlAHwoFbmPH4vP0U6gbNaq7DgpVtmjRIsaMGcPGjRsxGAyEhYWVCli3atWKSZMmAeDq6krfvn3roqvlqsk5zpu9d3kB7fLmKJOSkso421ZwcHCptrS0NBISEiq89vrnlWW5UteBuaR7SUVFRZW6tuRk+zVZWVmVujYzM7NUW3JycqWuLSy0/Z1nMBgq/azXb+2Zn59fqWvLWhyRnp5eqWuvbbtZUmX7W3JxxLXPK3ttWf2ozLVlVY1NSUmp1LXXB3mq8r1x6O1vCWaD+ft8s8+amZlZqWuzskpsUxZ3EPZ8TGLsZfLKLRxXdPUP/HrqV9x6WP9eNHduzqWsSxgwUEzxDV/3+vfvubm5lepvffkZkZaVV+G1RqBI1toEs+H2/Rlhp7qafS5J9Br/IL3ve5gl94wQPyOuc/3PCKPRWOn+Ggy2e7HX+s+IqxITE23GDuUpKrFFD5j/HVW2vzf7M6Kkar8DnDVrFr169ar0+Xv37q3Uioi64u/vb9m/5noajYZFixbRqVMnzp49y7Jlyyq1su9mLViwwGaFUW5ubpk/4AVBEAShMvJ37yb1ww/Rnjlr057QpT/vB/TDPf8S3WL+RHl1WbFJUuDbbyTPzJyGRlN+9tOJtBOs2PMLqj1BBOW0tbQbFHq0HRN48L6BNPN+sGYeqqYY9ZB6pkT29RFIO2fOkL4RJ18I6gaNupiD14F3VVwiXG0P476Cnx7GvMd4WUHcqxPM474yn3+HaN26NX5+ftW+T0pKCufPn78FPRIEQRBqiklnpOBAMvm7EjBm205iqXwdcBkQjGNnHyTVrckENskmvj7xNV8e+xL56u/eEJcQFg5aSEuPWt4HOukEbP43RO+wbW8/AQa/Ch6Nq3zLghwtf311kpRo60TvfhcjO7RFlmFFeGtf3hzXngA3h3LuAkV5ufz1+UdEH7VmgIS078TIOf+Ho5t7lftV22RZpmDHDlIXLkJ7Xcaly9134zN3DnbNm9dR74TqCg8PJzw8vNzj48aNq3dZ2Q1VeXOUAQEBFWZol5Uh7uPjQ6NKLCJxdXW1+VySpEpdB5R6D+vg4FCpa53L2G7Aw8OjUteWtX+7v3/ltq1wdLTdzkulUlX6WZVK24Xnzs7Olbq2rPda3t7elbq2rGB4ZftbMkHs2ueVvbasflTmWm9v71Jtfn5+ZQbdrnft74SsN1J4LI2sv87g73zd32sJJJUChZ0SlNYFYiqVbfjF0dGxUv0t6++Np6dnpa71cHeH83/B7k8gdg8AgS4K8nWyebsSjRNonDAhUWgopFBfaBkLSRpz3/s16sfjHR6HeDjV6FSFrwmlF5G7urpWqr91/TPiSkYB3+6KZtmGCyidbau0aFQKnOxU2JUYf942PyMCA9HlFqI3KW22sVFIeoxXt7txtrfD3sWVEbOfo0lncza7+BlR2vV/J5RKZaX7Wyc/IzxKz1MGBgZWKkPbwcH2fYNGo6n0s5b3M8JkMlVqgRyAJFcj9UWhULBy5UqbUgcV+eGHH5g8eXKpVSGVtW7dOsaMGQOYy0CMHDmyzPM+++wzy745p06dol27W1fTv1GjRiQmJjJy5EjWr19vaX/uuef46KOPAPOqjPJWNd53332sWrUKb29v0kqUuKpIbm4ubm5u5OTklPphLQiCIAjlKTp1mrSPPqRgz16b9qRmHXg/dAhpGg13p2/Du0RWtlNACOPmPodfk2Zl3lOWZXYl7GL5se/gqDedEsNRytZBmCk4l1GTu9MkuAFkusgyZMVYA9cJhyDpOBhuvPoYjbM5YH0teN2oK7g2qtJ+ljbObYQ1T5r3sZIU5uD5tY/27uZgdqt7bu7e12kIY4qbGWeWZ+XKlUyZMuWmx5+3k4bwvRcE4c5iLNCTvyeRgr2JmAptMxQ0IS64hAVj38YTqZzs4ZuRo81hwc4F7EzYaWkbFDyIN/u9iYumFveBzk2EiDfg2I/YLGgL7gnD3jIvkrsJ6fF5bPj8BPlZ5slIowL+dNASpTYvzPNwVPPfMe0Y0ynwhhVMki6eZ92id8hLvzpvIUn0nvAQvSY8hEJRftWe+qLw8GFSP1pI0eHDNu2OvXvhO28eDiWq8gk3pyGNK9LS0jh79iwDBgyo665Y1OQc56effsqcOXMqvOb555/nww8/BG48l3m9hvS9F4TqMmQXU7AviYIDyaXGKgonNU49/XHuGYDSrY73hzZo4cSvsOdTSL9uQbezv7niS7dpxOlyWXZ6GWuj1qIzWbOUFZKCYY2HMb3DdFp7tq7lzte+w1eyWLLzMptOJ9tUYVdIcE/7AB7v34S7QipIUGigUiL2s/W7M2Q5WBdNOpoycA44Rew567gpoEUrRj37Eq7e5W9dIQjVVZUxRbUytPv27Yuvr2/FJ5bQrFkzJk+efNOvGRISYvn/GwWDSx6rbG3+qvQhMTGR6OjoUu0lX7+8QeC1volsa0EQBKEm6WJjSVv0MbkbN9q0p/o15uPmwzjm3Yzu2YcJTz+C4tpqXIWSXuMfoOe4B1CqSu/PaDAZ2BSziWWnlqG9pKFfzHhctNYVrJKLgbAHW9O2a3D9LfFckH41cF1i7+ui0mWfbEhK8GtnWzrcpxXcysnc1iPgufNwZi2cWwdFWebs7tajzWXG76DM7FtNkqRbWr5cEARBqD5DVjH5OxMoOJiMrLetgGLf2hOXsCA0oa63fDxxNuMs87bPIyHfXN5OISl45q5nmN5+OgqplvaB1ubDnk/ME876EuUjPUJhyGvm3/s3+dyXj6WxZdkZDFrzIq48hcwfjlpSVebfg/d2DuSVUW3xci5/0l2WZY7+9SeRK5dhMpon7h1cXBnxzPOEdupyU/2qTcXnzpG2cBH51+0Ba9++Pb7z5+HUp08d9UyoS5s3b65Wgk1NqMk5zqre28PDo9LBbEG4E8iyjC46h/zdiRSdyShVSE0d5Ixzn0AcO9666jE3rTgHDi2DfV9C/nV7MXu3gj7PQMcHOJ8bw7f73+TvK39jKlF9Tq1QM7b5WKa2m0qIawi3M6NJZsuZFBbvvMzhK7Zllx01Sh7oFsz0vk0I8XIs5w4Nm7GoiANv/MTx1ACMJYLZIV4JpBXuJvacdVu9LveMYcCj08qcGxSEulKtgPbOnTsrPuk6vXr1qlKJ8uu1adMGtVqNXq8nJiam3POuHWvcuHGZ5Q2qo7wJ0ZJ7bsfExBAaGnrDvnUUq4EFQRCEGmDIyCD9iy/J+uUXKLEXS6arN9+0HMaORp3w1mXwYMLveOutgVyfxk0Y/tQ8fEOblrpnob6Q1VGr+f709+RlFNM3ZgKhWSX2TFTIdL47mB4jm6HW1KOMHV0hJJ+wDV5nxVR8nUeT6/a97gCaWnhDo7aHTg+a/9zhVq9eTbduN5eZdr2BAweyevXqW3IvQRAEoXr0yQXkRcZTeDwVSsaxFeDYyReXsCDU/jUTVFl9cTVv7n8T7dUyih52HrwX9h69Am5+jqJKTEZzNnbEG7YTzvZuMOAF6DEDVDeX3SXLMkc3x7J3zSXLpHui0sQaJy0FCvB3teeNse0Z0vbGW3loCwv4+6uPubh/j6UtsFVbRj37Ai6epUsx1ie62FjSPvmU3A0bKJlqpWnaFJ9n5+Jy9931d8GlcEeqyTnO6+coK7q3mKMUBDOTzkjhsVQK9iSiT7bdsxilhEMHb5z7BKIJdqn73yk5CbD/Szi0HHTX7X0b0gf6zoEWwzicdpQl259lV8Ium1McVY482OpBJrWdhI/j7Z2BW6Qz8vvhOL7dFU1Mhu331cfFjql9QnmkZwjujuVvt9fQpe05xtavj5DhEApXp+0cTHk071HAsR1r0WvNVQo1Dg4MnTWXVr371V1nBaEc1d5Du6r27dvHN998w9KlS2/qeo1Gw+DBg9m0aROHDh0q97yDBw8ClFuupzxjx45lxowZN7wuNjYWoFTAuk+fPpbU+EOHDjFw4MBS16amplqur2rfBEEQBOFGjPkFZC5fTubSpZgKrQP0PHtnVrYYwsYmvTBJEj2yD9Et25qVrVAq6TnuQXqOu7/Uysvs4mx+OvcTP577kdyiPDonDmZE/N2oZOsgP6i1BwMeaolHDU0+V5rJaN7numTwOuUMyBVkYTh62QavA7uAk9eNrxFq3JgxR3q7jwABAABJREFUY27ZBEGjRo1uer8lQRAEofpkWUYXk0ve9jiKz9tmw0hqBU7d/XHu3wiVR81UI9Eatbxz4B1+v/C7pa2Ddwc+GvgR/k6V27ew2i5tg80vQ0qJfSgVKuj+OIS9CI6l91SsLKPexPYfz3FurzVIfkZt4G9HPQYJJvYM4aV7WuNqf+MMm9SYy6xb+DbZydY97LqNHk+/hyajVNX69FGl6VNTSf/yS7J/+91mMacqIACf2bNxu3cMUj3uv1C+v//+my+//LLUPF3TpqUX4FakoKDgVnbtlqjJOc4mTZrQunVrzp07x6FDh5g6dWqpc4xGI0ePHq3yvQXhdmTILCZ/X5K5ckzRdWXFXdQ49wzAqUcAStd6EPBMOWOu8nLyNzDpSxyQoM0o6DMXOagbO+J38O3fUzmaetTmcg87Dx5t+ygPtnoQN7tbmwhY36TlaVmxN4YV+66QVai3OdbSz5kZ/ZsypnMgdqp6lJhxi5m0Wg6/+wtHYj0xOIRa2kO9slEFJ3Bwy9+WNu+QUEbPW4BnoJg/EeqnWh/RX7p0ie++++6mA9oAjz/+OJs2bWLr1q3k5OSUWp147tw5zp49iyRJTJ8+vUr3Xrt2LUFBQeUO5I4dO2bZoPz6c+zs7Jg0aRKfffYZq1at4vnnny91/R9//AGYN5QfNWpUlfomCIIgCGWRdTqyfvuN9C++xJhh3Qe7WKVhVbMw/mgeRqHaHh9tGiOytuNalG45p7ys7MT8RL4/8z1/XPyDIkMRQdmtGB79NO7F1q1GnNw09L2/Bc27+tb+ymRZhpz4EsHrI5B4FPQVTFSpHCCgk3lPymt7X7s3vvl9r4Ua4+fnx+jRo7n33nsZOnQo9vai5LogCEJDI5tkis9mkhcZhy7WNnNI4ajCqXcgzn0CUTrVXCnDxPxE5m+fz+mM05a2B1s9yAvdX0CjrIVJ6dRzsOU/cHGzbXvrUeby4t7Nq3X7ojwdf319kqSoHEvbLns9e+0MNPZ25J3xHend7MYL9WRZ5mTEZiKWfYVRb57stXNyYvhT82nerWe1+leTjDk5ZCxZQuaKlcjFxZZ2pYcH3k/Mwv2hh1DY1fF+pkK1TJo0iYyMDHbv3m1TNvtGGcc3UufZlGWoyTnOxx9/nOeff541a9bwySefoFDYlkXesmULeXl52NvbM3HixGo/iyA0NLIso72UTf6eJIrPli4rrglxwblPIA7tveu+rLgsw5XdsPvj0mMKpR10fhh6P4PBM5RNMZtYum4CF7Mu2pwW4BTA1HZTGddiHA4qh1rsfO2LSs3n212XWXUkAZ3Bdmubvs29mNG/KWEtferl74VbKfPoWbZ+sodUuyaWSKC9MZ/uw904cWgnKdusf0fahQ1h8GNPoLYTcy9C/SXJldxQMDs7G3d3d5u2HTt2VPkFN2/ezNtvv13tPWsGDhxIZGQk8+bN46OPPrK0y7LMhAkTWL16NVOnTmXZsmU2161bt47p06fj5+fH+vXrS2VZS5KEs7Mzx44do1mzZjbHtFotw4YNIzIykubNm3Py5MlSk6tpaWm0bduW9PR01q5dy5gxYyzHcnNz6dixI1euXGH58uVMmTKlSs9clc3RBUEQhNufbDKRt2kTqYs+Rn+1+geAQVKwMbQXP7W6m2x7FxSykbHyaRrF7oWr+ySVl5V9PvM8y04vY1P0JoyyESetG31ixtEs8y7LOZJComN4ED1GNUFjX0tr44qyzAHr+BLZ1wWpN75GUoBPG2vgulFX8G0DSrH/T0MYUygUCsubSwcHB4YNG8a9997LqFGj8PS8+Sy2O11D+N4LgtDwyQYThcfSyNsRhyG1yOaY0s0O5wGNcOruj6KGtynZk7CHF3e+SLY2GwB7pT2v9H6F0c1G1+jrApCfBtvfgsPf2VaLCegMw96E0OqXccxIzGfD5yfIyzAHc/XI/OWo56KdkRn9m/LskJY4VPA11hcX88+Szzmzc5ulza9pC0bPexE331rKXq8iU2EhmStWkvHtt5hycy3tCkdHPKdPx3PqVJTOYi/g2lDT44pevXpx4MABevTowb59+yztCoWC/v37VylT+/Lly+zatate7aF9TU3NcWq1Wjp27MiFCxf4+OOPmTNnjuWYXq+nb9++HDx4kP/+97+8+uqrVeqzGFMKDZlJZ6TwSCr5exMxpJQuK+7Y0cdSVrzOmYxwdp05kJ14xPaYvbu50kvPWRTbu7Imag3LTy8nIT/B5rRmbs14rMNjDG8yHLXi9p0PkWWZ/dGZLN5xma3nbOeLVAqJ0Z0Cebx/E9oF3t5Z6QCy0cixD3/lwHlnDGrrmKixezbNRvoQsexzigvyAVCpNYQ/9gQdBg2tq+4Kd7iqjCkqFdCeNWsWS5YsYerUqXz77beW9pITjVVV3QFkeno64eHhnDx5kieeeIJHH30UnU7H559/zqpVqwgPD2fDhg2lAs6jR49m/fr1AHz44YfMnz/f5rirqyt5eXl4eHjw3HPP0aNHDzw9PTl79iwfffQRR48epVWrVqxfv57mzcteSb1v3z5GjBiBVqvltddeIywsjPj4eF577TWOHz/OggULeOutt6r8zGKwKAiCIFxTsHcvqR98SPHp0zbtkY06812b4SQ5eyNJMKaRiTYXN1KQHGc55/qsbFmWOZRyiKWnllr2VFKYFHRIDqNb3D2oTdbMloDmboQ93AqvRs4193D6YnM5zpKlwzOiKr7OLfhq8LqbOXgd0AnsarCfDVhDGFPs37+f1atXs3btWs6fPw+YFx4qlUr69u3L2LFjGTt2LI0bN67jnjYsDeF7LwhCw2XSGig4kEz+rgSMOTqbYyo/R1zCgnDs5IOkrNksJ5NsYvGJxXx+7HPkq+lWwS7BLBy4kFaerWr0tdEXw74vYOdHtvtZujaCwa9Ch/tBUf3nv3Iqg43fnMSkMy9WzJdkVjtpcQ9y5r37OtIxyL3Ce2TEx7Fu4dtkxFsXRnYeNpKwSY+jUte/CW9ZpyPr999J//JLjGnWikOSWo3HxIl4zZqJSix6q1U1Pa7Iyclh69athIeH2yTZKBQKVq5cWaWs4h9++IHJkyfXy4B2Tc1xAkRFRREeHk5iYiIvvfQSo0aNIisri/fee4/t27fzyCOP8P3335fK3q6IGFMKDZEho4j8vUkUHEpGLrb9WaBw1ZjLivf0R+lcD8qK64vg2A+w5zPIirY95hYMvZ+GuyaRJ8n8cv4XVp5ZSUZxhs1pHb078liHxxgYPBCFVMcZ5jXIYDSx8VQyi3dc5mRCjs0xZzsVE3uGMLVPKIHut3dW+jW5Zy7xzwcRJGmsyZoaYwF9R/qRUXiGA2utW/C4+wUwev6CUlUbBaE23fKAtqurK/n5+Tg7O5NbcvXrTb4JkyTplgwgtVotixYt4qeffiIqKgqlUkmbNm2YMmUKs2bNKrN/69atY9q0afj5+bFhw4ZSqxcLCgpYvXo1mzZt4vDhw8TFxaHVavHw8KBjx46MHz+eadOm4eBw4x+AiYmJvPPOO2zYsIGEhARcXV3p0aMHzzzzDMOGDbup5xWDRUEQBKHo9GnSPvyIgj17bNqPeTdnabuRXPQIRqNSMKGTP33zj3Bh81pk0/VZ2Q+gVKkwySa2xW5j6amlnEg/YblXQE4zwmIexL3Qz9Lm4KKmz/jmtOrlf2tLMplM5mB1wiFr8Dr51HX7QJXB3q30vtcufje+RrBoaGOK8+fPs2bNGtasWcOBAweQZdny97Bjx46MHTuWe++9l86dO9dtRxuAhva9FwShYTDm68jfk0j+niTkYtt9JzWhrrgMDMa+lUetlHXM0ebw713/JjI+0tI2MGggb/Z/E1dNDf7cM5ng1CrY+hrkWBcSonGGfvPME8/q6k+kyrLMwc2xHFh9iWtfzRSliXUuOqbd3YInwpqhqURZ1LO7trPlm8/Qa83Z3Wp7B4bOeobWfQZUu4+3mmwykbthA2mffIo+rsTXVqHAbdxYfJ5+GnVgYN118A5WV+OKmw1oT5o0CZPJVPHJdaAm5jivycnJ4b333uOPP/4gJiYGR0dHOnXqxMyZM3nooYduqr9iTCk0FLIso72YTf6eRIrPZ5YuK97Y9WpZca8aX3BXKYWZcGAxHPgGCtNtj/l1gL5zod1Y0nU5rDyzkl/O/0K+Pt/mtL6BfXmsw2N08+t2W5fUztca+OVg3P+zd97xUVbp376eKSmT3istQAIhiUDoTUBABEGpKigoIIoFRX11dV3X9be2dVewN0CqDREQRJDee0ujhYSS3nuZ9rx/TJjJkEKAVDjX5xNCTnvOZDIz5znfc39vFu9NJDnP2hHI38WOGQPa8VDPVjjZNb9Deg2BbDQS/dlvHDylRmdjcRcIdMih77O92bH8C5LiYszlHXv14945L2CrEa42gqal3gXtt99+m48//pgXX3yRd955x1yuUCj4+9//zrBhw+o8ub/++osPPvigWZ6IbO6IxaJAIBDcuWivXCFzwScU/PGHVfkFF38WdxnNca9gXDQ2PNanDff7Gzi09Auyrlwyt/NqG8TIOS/i3TYIrUHLhoQNfB/zPRcLLprb2GudGJr8MK3SwiwXkCBsYAC9HwjCrj7yWxakWkdep5yA8oLa+yhtwDfCIl4H9gD3IJH3+hZoyWuKtLQ01q1bx5o1a9i5cydardZ8k966dWuzuD1o0KCbPnx5O9OSn3uBQND80GeXUrgnmeKj6XBNfkK7zu44DW6FbZvGe685m3OWF3e8SFJREgASEs91e45Z4bMaNjLp0gHY/Ia1FaikgO7TYMjfwdG7Xi5jMBj56etT5EXnmsvOqQ0khdjzwaS76OhzfWtUvVbLjqXfErV1k7nMs3Vbxsz7G+7+gfUyz/pClmWKdu4kc/4Cys+ds6pzGjECrxfmYntNqjhB4yLWFXcu4rkXNHeM5XpKjlXYimdai52oJDR3eZtsxRvSfe5GyL0IB76EE8tBd40NetBg6DcX2g8lqSiZJbFLWHN+DVqjxQ1HQmJ4m+HMDJ9JqEdoo069sUnLL+P7/Yn8cOgyhdccpOzi78zsQUGMCvdD3RwOKDQSRQlX2Pb+JpKUlnWR2lBKvxEeuIRq2PDJfyjJzwNMwS6Dps6g+6ixt/WBB0HLod4F7Zq43Sx+mjtisSgQCAR3HvrsbLK++prcn34CvWWhnqZxY2nn+9gV2BV/NwdmDmjHxK6+RP/xK4fWrrKKyu4z/mF6PTiJUmMZq86tYkXcCjJKLfmEJFlicME4OsUPQtZaFrPebZy4e0oI3je7EV1WAKknIelq9PVxKEy5fj/PkArxuiL3tU8YqJqB5ddtxO2ypigsLGTjxo1md52CggLzDZm7uzv3338/Y8eOZeTIkdd117lTuF2ee4FA0DDIOiMl0ZmUxWZjKNGj1Kiw6+KBJtwLSW3ZFNSmFFG4K4nSqEzrSCeFhKarF053B6L2adxoj98v/M47B96h3FAOgKutKx8O+pB+/v0a7qLZF2DrP025LSvTYRgM/z/wqb8N5bTMYpb/7xiaPMt68KjGwIBx7Xm8fzuUiutvSOalpbJ+/gdkXLxgLusyeBj3zHgata1dLT0bn5KjR8n438eUnjhhVe7Qry9e8+ZhHx7eRDMTVKYlrStKS0vJzMykdevWTT2V24KW9NwL7ix0WaUU70+h+Fg6crm1/qB0scGhjz8OvXxR1seB/fog5STs/xRi14Bc6XCgpIQu46D/XPC7i3O551gcs5hNiZswyJbHpVKoeKD9AzwR9gRtnG/vdFynUwv4bk8Cv59MQW+0lrSGhHjx5KAg+gZ53FEirSzLnP52PfsPGSi3seQG97PNZvirQ4k7vI19P69ArvjbcvTw5P4XXiMgpHNTTVkgqMKNrClUdRnwP//5D6+//jqSJBEXF0dwcDAA06dPp/0NnoZt374906ZNu6E+AoFAIBDcaRiLi8lesoTsRYuRSyync/NtHPghZBh/tu1Lh0B3FtxtOnmacymBNW+/Um1UtsLHmc9Ofc4vZ3+hUFdodZ271SPpdu4+ytIs+9G2GhV9HmxP6AB/FHXYHAVAr4WMWItwnXwMMs9Sxc/rWhx9TRHXZuvwriY7cYGgDjg5OfHQQw/x0EMPodPp2L59O2vWrGH9+vWkpqaydOlSli1bhp2dHcOHD+eBBx5gzJgxeHp6NvXUBQKBoNlRGpdNzqpzyKV6kDB9hEtQGptN3voE3CZ1RGGronBXEuXncq36SjYKHHr54TggAJWrbaPOW2vQ8uHhD/nl3C/msi4eXZg/eD5+jn4Nc9GSHNj9X5MdaOU0Kd6hMOLf0OGeeruULMus3XOJ0z9fwMVgWpfpkUlsZ8c7T3ajlbumTuOcP7yfzV99QnlJMQAqtQ33zJxD2JDh9TbX+qDs9Gky5s+nePceq3K7iAi8X5qHQ58+TTQzQUvnt99+EwE2AsFtimyUKTufS/H+FMrO5lapt2nnjGO/AOxDPZCUzUDslGW4sA32fQqJu6zr1BqTw0ufZ8CtDScyTrBo23NWqVQA7FX2TA6ezGOhj+HjcPumX5NlmT3ns/huTwJ7zltbsNsoFTzYzZ9ZA4MIroNLze1GSVIa2/+9gUsEQUUMiMpQRu8BjgSPv5fNX84n4fgRc/s2Ed0Y9fwraJzFnpug5VKnCO3hw4ezZ88e5s2bxxtvvIGT0533BtEcEKcfBQKB4PZH1unIXbWKjM++QM7NMZeXKdX81uFuVncYTPfOgcweFMTAjp4Y9HoOrv6Jw+uqRmX7Du3NsrPL+T3+9ypWVMN87qV/0oOkHS23un6nfn70G9cee6daIqJlGXISKoTriujr1CgwlNfcB8DGCQK6Wee+dhb5DpuCO2FNcejQIdasWcO6des4e/YsAJIkoVQq0Wq11+l9+3InPPcCgeDGKY3LJnt53HXPoV2LwkGFY78AHPv6odA0fqRTWnEaL+18ieisaHPZpOBJ/K3X37BRNoC7i14LRxbCrg+hLM9S7uANQ/8O3R4DhbLeLpdeUMYHS04SeLoYO9m0AV+qkPEb3YopozrWKQLJoNex54clHPtjnbnMzS+AMfP+hlebdvU211tFe+kSmZ98SsHGjVblNu3b4/XiCzgNG3ZHRVy1FFrSukI4RtYvLem5F9y+GMv0FB9Np/hgKvqsa23FFTh088ahrx82/s3EVtygM0Vi7/sU0qOt6zSe0Psp6DkL2d6Nvcl7WRi9kOMZx62audq6MrXzVB7p9AgutrevMKnVG/n9VAoL9yRwJs06MMPFXs1jfdowrV8bvJ2al8NMY3Fu+Wb2bC+kzNbdXOatymbEq0Mo1eawfsEHFGRWODNKEn0nPEKfCQ+hqMd1qkBQX9R7hPaZM2d45plneP/9963Kg4KCWLBgAWPHjq3z5ITFj0AgEAgEVZGNRgo3bybpvx8jJSeZyw2Sgj/b9uanziPo3zOEXwYFERZgumlJT4hn05fzq0Rld3jkflblbWLr+veRK+1MqxQqxgaN5Z6SCZzflE9asUWA9ghw5O5HgvHr4Fp1ckWZ1nmvk49Zb+JWh0JlsgqvnPfaoyOInMaCRqJ379707t2bDz74gLNnz7J27VrWrFnDkSNHrt9ZIBAI7iBknZGcVeduSMxWutniNCgQTaQPCpum2Rg7kHKA13a/Rm65KRLLVmnLm33e5MEOD9b/xWQZzmyALW+ZDvVdRWUP/Z6D/i+Abf0d/JdlmV+OXmH1qrMMLFCgoELM1iiY8EJX2rVxrdM4BVmZbPjkQ1LPnTGXBfcdyIjZz2OrqVtkd0OjS88g68svyVu92iq9jsrfD6/nnsflgbFISrH5eqcydOjQehsrPT293sYSCARNiy6jhKIDKZQcy0DWXmMr7mqLY18/ND2aka14eREcXwYHv4T8K9Z17kHQ9znoOgW9Us2WS1tYFL2Is7lnrZr5aHx4vMvjjO84Ho26eXyGNwT5pTp+OHSZJfsTSS+wDppo7a5h5oB2TOoRiMamTrLWbUdZRg473llDgr4dVIjZSkM5PXuq6TZrAqe2bGTXsoUYKtZU9k7OjJr7/2gb0a0ppy0Q1Bt1euVnZmYSFhZWpfzixYsUFRXd0AWFxY9AIBAIBNYUHThAwrv/QR1/hspxJ7v9I/g5YjSDhkaydkA7s6WkXqerJipbhf/wvvzle5aPTr1sNb6D2oHJwZO532UCUb9lEp1osWlS2ynpPSaI8MEBKJQK0BZD6imLcJ10DPIvX/9BuLe3jrz2DQf1nXlSVtCwzJgxg6eeeorevXvXuU9ISAivvfYar732GmlpaQ04O4FAIGh5lERnmmzG64hDH19cx3RoMstOo2xkUfQiPj/5OcaKfIABjgEsGLKATu6d6v+Cycdh89/h8n7r8rsegaH/AJeAer3c5ewS/rb6FHYxhdyttWzZ2Ld1ZNYL3bC1r9vmfOKJo2z84mPKCgsA01px8PRZdB0xullEOhvy8sheuJCc5SuQyy0b1kp3dzyffhrXhx9CYdMAUfaCFsXOnTuRJIk6mEvWytUxmsPfvkAguDlko0zZ2RyK9qdQfj6vSr1texcc+/lj19kDqa6p0xqawnQ4/I3J3aUs37ouINJ0IK7T/ZTLetbFr2NJ7BKuFFoL3u1c2jEjbAaj241GrWwmAn0DcCWnhMX7EvnlyBWKrzmk0K21K7MHBjGiiy/K5vLcNgEXft3B7j8yKbG1OOx4SFmMeG0gjgEubPzsv5zdv9tc5x/cmftffA0nD5FyTXD7UCdB287OjuTk5Iaei0AgEAgEdxRFMbGceecDHKKOUvm25JRne1ZHPsjAsXezuk8b3Bwsm3lpF86z+asFVlHZtv6eHOlWyGJ5BWRYxvGw8+DR0Ed5sPV44jZlsXXnBSrvBXXs4UX/QQYcCrfBHxW5rzPioGJzuEY0npXyXncH/+6gca+9j0BQTyxZsoThw4ffkKBdGV9f33qekUAgELRsymKzLTmzr4cExkJdk4nZBdoC/r737+y8stNcNihwEO8NeK/+bTfzrsC2dyD6F+vyNgPg3n+Df/1GuhiMMt/vS+TTTWcZnq8iSG/Zruk8OIDBk4NR1GET12g0sP+XHzi05mdzmbOXD2NefA3fDsH1OuebwVhSQs6y5WQvWoSx0GIhqnBwwH3mDNynTUfp6NCEMxQ0N0JCQvDxufX8sOnp6eY0NAKBoOVgLNVTfDSNogOpGHLKrOoktQJNd28c+/qj9m1Gnx1Z52H/Z3Dqp6qp2TreaxKy2/SjSFfML3FLWR63nKxS6/zQYR5hzAqfxZDWQ1BILcvprkxnYGN0Kn/FppNXosVVY8OILj6MCvfDTm3tuhKVlMe3uxPYGJ2KsdJaVJJgRKgPswcFEdnmzt5vKs8tYNc7qzlf0gpsTeK0wqijW5hMr2cnkpNyhRVvvERuisXtMXL0gwyc8jhK1Z0ZyS64fanTX3RoaChffPEFDzzwABEREVZ14nSjQCAQCAQ3Rv6Fi5x65z94HdpB5VuuBGc/NvQdT/+H72d5j1ZWC31TVPaPHF73qzkqG6WC+E469rU6ZiVUt3ZqzeNhjzMmaAyXjuXx+7txlBZYcga7ORYzKHADgem/ww8ltU9WrTFt2AZ0t0Rfu7Qy3V0IBE3E3LlzOXr0KLNmzaJz585NPR2BQCBokRjyyymJyaIsPq/uduOyaWO5KTibc5Z5O+eZI5ckJJ7p+gyzI2bX70ZvWQHsnW+yBdVX2jj36ADD34GQUfW+DjqbVshrq6NIvJjPhGIbPI0Vj0cBQ6Z2IrS/f53GKc7L5Y9PP+JKbJS5LCiyF/c98xJ2jk2bP1TWasn9ZRVZX3+NIcuyaS/Z2OA2dSoes59E5ebWhDMUNFfefPNNpkyZcsvjrFixgunTp9fDjAQCQWOgSy+maH8KJcczkHXWh+6V7nY49vXDIdIHhaYZRS1fOQz7PoEzf2C1uFKoIWIy9HsevDuTXZrNyhOf8dPZnyjUWueH7uPXh1nhs+jl26tF6i5b4tJ5edVJCkr1KCQwyqCQYFNsGm+vj+XjSV0Z2smb7Wcy+G5PAocSc6z626oUTOoRyMwBQbTzbEaHFJqISxv2s2P1FYpt23DV0tFNzmL4C33w6tKauN3b2bLwC/QVbjc29hpGznmRjr37NeGsBYKGo06C9tSpU3n++efp1q0brq6uuLhYTj6/+OKL/P3vf6/zBYuLi298lgKBQCAQ3AakX07l2Lsf02rPn3gZLRZKaRo3dvYfT59Zj/B5uH8VC6XqorLzXAzsCk8h11lnLuvi0YUZYTO4p/U95F9MZ9OH+0i+YhlLJZXRw2EVXR1+R5lXzWa0pADvLtbitVcnUIoTnYLmha+vL1988QULFiygb9++zJ49m0mTJmFvb9/UUxMIBIJmjaFAS2lMFiVRmWgvFdxQ3mwAJFDYN/66YP2F9bxz4B3KDCaB2cXWhQ8Hfkj/gP71dxGDHk4sgx3vQXGmpdzeHQb/DXrMgHq2+tTqjXy5M54vdsTjUy7xaLEtGtm0drPVqLjv6XACgusm8l6JjeKPTz+iOM+UU1xSKBj4yHR6jBnfpBvissFAwYYNZH72ObokS+QQCgWuE8bj+cwzqP38mmx+gjuH+rAuFwgEDYtslCk7nUPR/mTKL+RXqbft6IpjX3/sOrk3H1txoxHObTIJ2VcOWtfZOEGPJ6DPHHD2J6UohSWH3mPN+TXmNQ2YDukNazOMGWEzCPOsmva1pbAlLp3Zy4+a15fGa74Xlup5ctlRvJ1tq+TH9nCwYXq/tjzapw3uDiLliK6wmD3/t5oz+X7Itl4ASEY9ER3K6fvSBGSjgS3ffk7Utk3mPl5t2jHmpddx863bQUiBoCUiyXVYzRmNRsaPH8/vv/9ePxeVJJFD+yYoKCjAxcWF/Px8nJ2dm3o6AoFAIKgjFy5ncug/XxCycy0avWXRnm+j4ejAcfScO5Newb5VNhuri8o2SDKnOuQT3T4fuSJ4p79fH2b4DqRncRG6y1EcjfLiVPZAjJXOrbWzPcgA58U4Kytt0Lq2hoAeFvHaLwJsxAnYO4GWvKZQKBSsWLGCESNGsGTJEhYvXsyZM2dwcXFh6tSpPPnkk9x1111NPc1mS0t+7gUCwc1hKLwqYmehvZh/4yL2Nbg9FIJDN+/6mdx10Bl0fHjkQ34+a7HPDvUI5ePBHxPgWE+5q2UZ4rfCX29C5hlLudIGej8FA18Be9f6uVYlTl7J47VfozibXkhYuZIRpWqUFaE3br4aRj0Tgau35vrTNxo5vO5X9v28ArkibYyjmzujX3yNwE5d6n3edUWWZYp27CBz/gLKz5+3qnMaORKvuXOxDWpXQ29BS6Gh1xWXLl3Cy8sLjeb6r4XrUVJSQmZmJm3atKmHmQnEmlJQnxhLdBQfSafoYAqGXGuhU7JRoIn0MdmK1+FzsdHQl0PUzyZr8axz1nVOfiYRO/JxsHMhPjeexTGL2Zi4EYNs0URUChVjgsbweNjjBLkENe7865kynYFe722lsFR/Q0vNIC8HnhwYxLhuAVXsyO9UkrcdZduK8xTaWtJtOBuyGT6nO77d25OXnsb6j98n4+IFc33YkBEMnfEUahvbppiyQHBL3Miaok5HqxUKBWvXrmXTpk1s376d7OxsjEYjS5cuZeDAgQQF1f0NNyEhgb1799a5vUAgEAgELZXjCZkc+HQRXXf8Rrdyi41UmdKG0wNGE/nq8zzXvvqIlLQL59n05Xyyky6by7Kdy9kbkU2usw4FEiNtvJlRWEKng78hG34hobwPewtmUmT0NPdxVqYx0Pk72romWoTrgEhT3mtHr4Z78AJBA3H33Xfj4+ODp6cnr7zyCq+88gp79uzhu+++4/vvv+err76ie/fuzJ49m0ceeQTHJrZYFQgEgqbAUKSlNCab0qhMyhOrF7FV3vbYh3thH+pO5sIY5DpYiUv2KjRhntdtVx+kFafx8q6Xicq02GdP6DiB13u/jq2ynjbr0mJMQnbCDuvy0Adh2NvgXv+Ca6nWwMdbzrJobyKyEe4uU9Gr3BL53SrUnXtndcG2DhaqpYUF/Pn5/0g8ecxc1jq8K6OffwWNi2u9z72uFB8+TObH8yk9edKq3KF/f7zmzcM+rOmEdkHLoj7F5/T0dPbs2cO0adPqbUyBQHBr6NIqbMVPVLUVV3nY4dDXH4cePijsmpFrXGkeHF0Mh76BojTrOq9OJlvx8EmgsuVU5ikW7l/Izis7rZrZq+yZ0HEC07tMx9fBt7Fm3qBsjE6l4AbS0rT3cuCNUZ0ZEuKNorlE2zcx+tJy9r37K7EZXsgVYrZkNNCldRH9XxuHSq0i/shBNn05n/ISkwuyysaWe2bOIWzwsKacukDQaNQpQrsmrkbI3Egum5UrVzJt2jQRoX0TiNOPAoFA0PwxGmW2n05n76Kf6b/rVwKLLTkCDZKCy32H0/XvL+PfvlW1/a8XlW0jyYwrLGJ6fgGBetNnaZ7ejz0Fs7is7W4eRynp6R58ie6D3VC16Q5u7UTea4GZ23VNkZ+fz4oVK1i4cCGnTp3CwcGBhx9+mFmzZtG7d++mnl6z4HZ97gUCQYWIHZtNaXQW5RfyqhexveyxD/dEE+GFykdjdocpjcsme3lc7dHbEng8Fop9qEeDzL8yh1IP8eruV8kpM+VVtFHY8GafNxnXcVz9XKAwDbb/G06uBLnSBnpgTxjxLrRumM+M/Rey+NvqaC7nlKCWYXSxDR31lmik8MGBDJjUAYXy+jnBU86dYcOCDynMrnDfkST6TniEPhMeQqFomgin0thYMucvoPiaIAa7uyLwnvcSDn3EZ/HtRktaV4j9yPqlJT33guaFbJApjcumaH8K2sRqbMWD3XDs749dR7fmYysOkJ8MB7+EY0tAW2Rd16Y/9JsLHUcgSxL7U/azKGYRR9KOWDVzsXVhSqcpTOk0BVc710abemPw9PJj/BWXZrYXrw1JgntDffn6sciGn1gLIW1/NFsXRpNvYzng4KjPYdiMLgT064xBr2fvT8s4uv43c72bnz9jXnoDr9Ztm2DGAkH9Ue8R2jt37mTZsmVIksR7772Hj4/P9TvVgshZIxAIBILbjXK9gXUnUtjx85/cu/dXHsq7YlWf2b0/Xf75GmEhHWscIyXuGGs+/w9l2cXmsqtR2QaHMmbnFzGloBD3CqFbL9twrGg8x0smYJQtH+mtQ90Y+HAIrt4j6vlRCgTNGxcXF5599lmeffZZDh06xLRp01i8eDGLFy8mLCyMJ598kkcffRRXV9emnqpAIBDUC4ZiHWWx2ZREZ5pEbGPVNipPk4htH+GF2ldTbT5l+1APPB4LJWfVOVOktoRJ3K74LtmrcJ8U3OBitizLLI5ZzKcnPsVYITQHOAbw8eCPCfUIvfULaIth/+emPJc6y3oL19amiOwu4xvkAGBBmY73N57mx8Om9aGTUWJCsQ1eBpNwLSkkBk7uSPjgwOuOJcsyxzf+zu6VizFWCHP2zi6Mev4V2kZ0q/e514XyxEQyP/2Uwj83WZXbdGiP97x5OA4d2qR5vAW3PwaDgezsbMrKympsk5WVVWOdQCBoeAzFOoqPpFF8IBVD/jW24rZKHCJ9cOjrh9qrGdmKA6THmmzFo1eBsXIEsgSdx0D/FyCwBwajga2Xt7AoehGnc05bDeGt8WZ66HQmBk9Eo25mj68e0BuMJGYX10nMBlO2l7xSbcNOqoVg1Oo48MFvRF1xwXhVzJaNdPbJZdDrD6Cyt6EoJ5sNn3xI8pk4c7/gPgMY8dRcbOshJYdA0JKoU4T29OnTWb58Oa1atWLfvn0EBl7/JktQ/4jTjwKBQND8KCjT8cOhy2z5fQ8PHFlLz4yzVvVFnSIIfutvuHS/ZoNRXw7pMZB8nNJLh/nhyDlyLzsiyabNPoMkc6pjPpmts3mssJAJhUVoZBmcAyAgkovyYPacaEdBpQPNjm62DJjckaCuXmLTUFArt/OaIjExkYULF7JkyRLS0kwWcJWXu3Z2dkyYMIHnnnvujozavp2fe4HgTsFYoqM0NpuS6CzK43OrFbGVHnZowr2wj/BE7edQ53WBrDNSEpNFWUwWxlI9CnsVdmGeaMI8kdTXjxq+FQq1hby59022X9luLusf0J8PB36Ii63LrQ1uNELUT7Dt/6AwxVJu6wyDXoFeT4Ha7tauUQNb4tJ5c2006QWmzXs/vcTkMjtsKvbEbexVjHwyjFah7tcdq7ykmM1ffcL5w/vNZQGdQhn9wqs4uTeOFXxldGlpZH3xJXm//QaVol7VAQF4Pv8cLmPGIClFPszbmaZeV2zatImPPvqI/fv3o9XWTRwREdr1Q1M/94KWgza5yGQrfioD9NYyhMrLHse+/mgivVHYNiNbcVmGi3tg36cQv8W6TmkLXaeYrMU92qM1aFl/YT3fx37PpYJLVk3bOrdlRtgMRgeNxkZp04gPoHE4l17Ir8eSWHMimczC8ut3qEAhwQgRoU3msXNs+fIIuWpLKkIHfS5Dp3Sg9dC7ALgUfZKNn/2Xkvw8ABRKFXc/NoNuI8eIfT/BbUO9R2gfPHiQoUOHsmnTJlQqS5d33nmH8ePHExYWdmszFggEAoGghZGaX8r3+y6yZfsJJpz8g3eSTqCo5NOpaxNE29dfxenuQUiyDFnxkHwUko+ZvtKiKTbq+FHyIuliO5yKnbi6FM1yLudy5zQeUpRwn00X1Hf1MOe9LtC5sveX8ySeskQYKBQSXYe3oseodqhtxaah4PZmxowZPPXUU1ZitE6n47fffmPhwoXs2LEDWZbNIraLiwtTp07lySefRK1Ws3jxYlasWMEPP/zA+PHjWbJkCQ4ODk31cAQCgaBOGEt0lMblUBqdSdn5PKoLgVG626G5GontX3cRuzKSWoFDN28cunnXw6zrzvnc88zbOc+8ESwh8fRdT/P0XU+jkG5RSE/cDZv/DmmWXNxISugxAwb/DRwaRgjOKirn7d9j2RCVai7ralQzvERtfv6cvey5/9kI3Hyv/zmUnniBDfM/IC/dMl7PsRPo/9BjKFWNKwLoc3PJ/m4huStXIpdbNrCVHh54Pv00rg9NRmFz+23cC5oX7777Lm+99dYNuUCKzX+BoHGQDUZKYytsxS8WWFdKYBfijmM/f2w7uDYvW3GjAU7/bnJySTlhXWfnCr2ehF6zwdGbYl0xv8YuZVnsMjJKM6yahnqEMjNsJve0vgdlE6UBaShyi7X8fiqF1ceTiEqqahlfF4wy3Bt2aw7ALRmjwcCR/63lxHkNhkpidkfXTO5+cyy2jvbIRiOH1vzC/lU/IFe4Fjl5eHH/i6/hH9ypqaYuEDQ5dbrrSU1N5aWXXrISswHefvttOnTocEOC9tatW3nvvffYvn379RsLBAKBQNDMOJtWyLe7E9hx6CwTz2zlk8T9qI2WU/5Gbx8Cn52Jc5gbUtpuWD4fUo5DmWWhn6VQsNLJmZj0VgRfdMGpUlR2Zkg5owYP5O6wh1F4dASFaRPXoDdycutljv5xCL3OEooVEOzKoIdDcPcXgpzgzmDJkiUMGzaM3r17c/r0aRYuXMjy5cvJzs4GLNHYAwYM4Mknn2TSpEnY2Vmi7v773//y3nvvsWjRIl599VVef/11Pv300yZ5LAKBQFAbxjK9OSd22flcMFQjYrvaYh/hhSbCE3WAY4sUa/5I+IN/HfgXpfpSAJxtnPlg4AcMDBx4awNnnYe//gHn/rQuD74Phr8DXsG3Nn4NyLLMupMp/Gt9LLkluopCmOLoTECyjquJygOCXRk5Oxw7R/V1x4vetpntS77BoDONZ+vgwMhnXqJDj8Z1GjEWF5OzbBnZixZjLLLkD1U4OuIxcwbu06ahEIfEBI3AoUOHeOuttwB4+OGH6dWrFyqVirlz5/Lqq6/SuXNnAIqKijh69CgrVqwgODiYV199tSmnLRDc9hiKtBQfSqP4UCqGAmvXBMlOiUMPXxz7+qHysG+iGdaAtgROroQDn0PuRes6l9bQ91no9ijYOpJblsvKE5/z45kfKdBai/W9fXszI3wGff36tsg1WU3oDEZ2nc1k9fEktp5OR3fNmlStlBgc7M2+C1mUag3UdsxIApztVdwX5ldLq9uXnNiLbFmwlyylP1ScdbDX5TF4fCBBo4cCUFpYwJ+f/4/Ek8fM/dre1Z37nnsZjfMtuhYJBC2cOgnaOp2O8vK620bURnp6Ort27aqXsQT1g6wzUhKdSVlsNoYSPUqNCrsuHmjCvRrcVk4gEAhaArIscygxh292XWB/bBLjLuzhu/M70Ogtn42SxhavgV64BSSjOP0cnK46zhWViiUuTuwxuNEr2otORZbIlXJPGwY9OZsBXUdW7Xcmh90/niMvvcRcZu9sw4CJHejY0+e2ulESCOrCxo0b+fLLLzlw4ABgEbE9PT2ZNm0as2bNolOnmk8t29jYMGfOHLKysvj222+FoC0QCJoNxjI9padzKI3KpOxcDSK2iy32EZ5oIrxQB7ZMERtAZ9Dx36P/5YczP5jLOrt35uPBHxPodAtpzoqzYdcHcHSxda5L33AY8S4E3X0Ls66dlLxS/r4mmh1nM81lnnZq5mhcKUuwCMCh/f0Y9EgISlXt99u6sjK2LPyC03t2mMt8gjoyZt7fcPFuvMgmo1ZL3s+/kPX11xgqDpABSLa2uD06FY9Zs1C5uTXafASCL774AkmS2LBhAyNHmu6fsrOzmTt3LiNGjGDo0KFW7R9//HGGDRtGQEBAU0xXILjt0SYVVtiKZ1ZZu6i8NTj280fTzRtFc3OUK86GI9/B4W+hJNu6zjcc+r8IoQ+CUkVqUSpLT33O6nOrKTOUWTUd2mooM8NnEuEV0WhTbwxOpxaw+lgSa08mk1VUNa1DeIALE7oHMLZrAO4ONmyNS+fJ5UeRZKoVtaWKf/43qSt26mb2t9DAGI1Gjn+2gaPRSgwqf3N5O4c0hr45Fjs3RwBSz59l/fwPKMw2rSUlSUG/SVPoPW4ykkLoNAJBnQTtVq1asXbtWubOndvQ8xE0MqVx2eSsOodcqjd9qsiABKWx2eStT8B9UjD2oR5NPU2BQCBoEgxGmc2xaXyz6wIxl3O479JBlp3ZjHO5RViWlDLuIUV4dEpFaZMIJVXHiXPxYbGnF9t0hUTEuzA8wRlFRVS2rJAIHTOKeyc/WcUusjivnH2/nuf8UYt9lSRB+OBAeo0Nwta+GeWYEggakR9//BEwCdmSJDFs2DCefPJJHnzwQdTq2iPdKuPq6kpmZub1GwoEAkEDYizXU3Y6h5KoLMrO5VTJLwmgdLHBviIntk2gU/Oy57wJ0ovTeXnXy5zKPGUuG9dhHG/0fgM71U3mstaVweFvYPf/oLySBaaTHwz9B9z1MDSQ7afRKLPy8GU+2HiaYq3FuefBEB96JRvIvSpmS9B/QgfuuqfVdQ8iZCddZv38D8hOumwu63rv/dz92ExUN/BZdyvIBgP569eT9eln6FIq5R5XKnGdMAHPZ59B7XPnWoYKmo59+/Yxfvx4s5h9Pe6++24effRRvv76a4YNG9bAsxMI7gxkvZHSmCyTrfjlQutKCew6e+DYzw/b9q7N7/BdTiIc+AJOrIAKhxgzQUOg/wsQNBgkiYS8BBbHLOaPhD/Qy5aDcipJxaigUcwMm0mQa1Djzr8BySnWsu5kMr8eSyI2paBKvaejLeO6+TMhMpBOvta5boeF+vDtYz14ZdVJ8kv1KCSTvfjV7872Kv43qSvDQu+stUN+fDJbPtpOuhRgVuNsdQUMGuVF8IQpgGlv48SmDexavgijwfR3pnFxZdTzr9AmvGsTzVwgaH7UaSd8+PDhfP3110RGRjJ48GBcXCzWBr/99hvx8fF1vuCpU6eu30jQKJTGZZO9PM5yZOqa73KpnuzlcXg8FipEbYFAcEdRpjOw6ugV/th9AK+8aB5PPU5w7GUUhZU2mCUZ16ASPMMKUdtbLMCxcQT/bsj+3Tjo5Mri3FMczDyBR04Zo6N8casUle3epjX3P/cqXq3bWl3faDASvTOZQ+sT0JVZNkV9g5wZ9EgIXq2cGuqhCwQtAlmW8ff354knnmDmzJm0bdv2hvqXlZXx448/8tFHH+EmIsoEAkETYCw3UHYm2yRin80FvbFKG4WzjTkntk2rli9iX+VI2hFe2fUKOWU5ANgobHij9xtMCJ5wcwPKMsT+BlvfhjyL+IvawbQh3e85sGk4G+yEzCL+tjqawxdzzGU+zrb8vW97cjYlk5tvimhS2yoZMasLbcOvn7P79J4d/PXd5+grnPLUdvaMeOp5OvUb1DAP4hpkWaZo2zYyP/mE8vPW+z1O943Ea+5cbNu1a5S5CATVkZqaSu/e1pb7VwUzo7Hq+ylAz549ef/99xt8bgLB7Y6hUEvxoVSKDqViLNRZ1Un2Khx6+uDYxx+V+00eUGtIUk7Avk8hbi3Ild4rJCWEjYd+z4PfXQDEZMWwMHoh2y9vR64Ub2yntGNC8ASmh07Hz/H2sM3WGYzsOJPBr8eS2HE2o4qluI1SwbBQbyZGBjKooxcqZc2RwsNDfTj0xjD+jEllc0w6eaVaXO1tuDfMh/vC/O6oyGyj0UjUwr84dFiPXmVxCGltm8I974xG423aiygvKeGvbz7l3MG95jYBnUK5/4XXcHQXmoxAUJk6Cdqvv/46P//8MydOnODkyZNWdWvWrGHNmjUNMTdBAyLrjOSsOle9/4dVQ8hZdQ7/N3oL+3GBQHB7U5xFYcIhYg/vQH/lKKPl84zP0JJxypmyHBurpk6BpXhFFGLrIoNPGAREmr4Ce2Bwb8+WpO18H/M9cefiUBig+3lXwhKcUZgMllAolfSdOIWeYydUicpOjc9j14/nyE622FLaOajpO749nfv63Tab2QLBrfDWW2/x1ltvobhJy63k5GRmzpwJwIgRI+pzagKBQFAjRq2BsjM5ppzYZ3KQddWI2E5qNFcjsVs731af+7IssyR2CZ8c/wSDbDqw5+/gz8eDP6aLZ5ebG/TKYdj8d0g6XKlQMuW5HPomOPne+sRrQG8w8t2eROZvPYe20oGER3q14hE/Tw78cA59xXPs5G7H6Gcj8AhwrH1MrZYdS74latsmc5ln67aMmfc67v6NY5VcfPAQGfM/puxUlFW5w8CBeL34AvZdbvK5EgjqGScn60O+dnYm8Sw5Obna9iUlJcKZRyC4BcovF1C8P4WS6KwqtuJqXw0O/fzRdPVGYdPMBEtZhvhtsP8TSNxtXafWQPfp0GcOuLVBlmUOphxgUfQiDqUdsmrqZOPElE5TmNJ5Cu527o34ABqO2JR8fj2WxO8nU8gurmopflegCxMjAxlzlz+uGptqRqgeO7WScd0CGdftFlLItHAKr2Sw5f2/SDX6g8r0u7PRFdJ/iBOhjz5qbpd5+SLrP36f3FTLZ1ePMeMZ8PC0KvuFAoGgjoJ2YGAghw4d4u9//zvbt28nOzvbbPF4NWfhjdDsbEbuQEqiM00243VALtVTEpOFQzfvBp6VQCAQNBLaEkiLguRjkHwM/eWjqAou4QT0AcryVGScciY91do+SeMn4T02DPs+g00Ctl8EqO0BKNOX8fuF31my92WuFF4BwCPPhgFRHlZR2d7t2jPymXlVorJLCrQcWBPPmQNplkIJQgf40/eB9tg5No61pEDQEggODr5pMRugffv26HSmaIJbGUcgEAiuh1FroOxsLqXRmZSdrkHEdlRjH+6JJtwLm7a3l4h9lSJtEf/Y9w+2Xt5qLuvv358PBn6Aq53rjQ+Ye9EUkR17zeH6oCEw4t/gG3Yr070usSn5vLY6iphkixVna3cN748Lw/Z8MXuWnjGX+wa5cN/T4Wica98IzktL5ff575N5McFcFjZkOEOfeAq1bcNHuZXGxJI5fz7F+/ZZldt37YrXS/Nw6NWrwecgENQVPz8/oqOjrco0Gg2Ojo7s2rWL6dOnV+mzefNmbGzqLsgIBAKTrXhJVCZF+1PQJRVZV0pgH+qBY39/bNq5NL/9foMOYlabIrIzYq3rHLyg91PQYyZo3DHKRrZd2sKi6EXEZlu39bL3YlroNCaFTMJB3XCOL41FVlE5a08ks/p4MqdTq1qKezvZMq57ABO7B9LRR7gD3gwxy7azf3cRukq5sgOUyQx7cySOgV7msthd29i68Ev0WpMjj63GgZHPzKNDzz6NPmeBoKVQ52Me7du356effrIqUygUrFixgilTptT5gitWrKh2YSloXMpisy05s+tA3przFO64gqSUQKVAUkqmL5UClJafUSqQVBKSUgEV383lV9tc7a9SgPKaNlf7VtTX1BeF1PwWSgKBoHliNEDmGbN4TfIxSI8D2WLlffXDUFukJCvGifyL9oDlPca2rT/e8+bhMGJ0lfee/PJ8fjn7CytOrzBbZyoNcNd5V8ITXZAq3mcVShV9Jz5SJSrbaJSJ25PMwXUJlJdYDhp5tXZi0CPB+LZzQSAQWEhMTMTbu26H7EaOHIlKpWL27NmMHTvWqk6pbGaRAwKB4LZB1plE7JLoLMpOZyNrqxGxHUwitn24J7btXG5LEfsq8bnxzNs5j4sFF81lT0U8xZy75qC80ZzWpXmw579w6BswVIok8gyBe9+FDsOgAe8Ty3QGPtt+nq93JWAwmhZ5CglmDmjH3MEdOfjzOU4eTje3D+nty5BHO6G8jtvZ+UP72fTVArSlJQCobGy5Z+YcwgY3fK7f8oREMj/5hMLNm63KbTt2xGveizgOGSLuvQXNju7du7NkyRKee+45QkJCzOWRkZGsWLGCESNG8PDDDwMmd4h33nmHbdu20aNHj6aaskDQojAUlFN0MJXiw2kYi6xtxRUaFQ49fXHo44fKrRnaipcXwvFlcOBLKEiyrnNvb0pFctcjoLZHZ9Cx4fwaFscstlqnALR2as0TYU8wtv1YbJQt+zCMVm9k+5l0fj2WzM6zGeiN11iKqxSMCPVhQmQgAzt41mopLqiZkvRctr67kStaP1CZXHnU+mL69FYT8eRj5nY6bTk7vv+G6O1/mcu827ZnzEuv4+rTcO5CAsHtQKP7FiQmJjb2JQXVYCjR11nMBpC1RvQZJQ03oRtFoqoYXlkkN4vhNyOYm9rdUN/K16tcdxtvTAmaH7LOSEl0JmWx2RhK9Cg1Kuy6eKAJ97pzUgbIMuQnVRKvj5tyJOmKa+1WVGbLhThfVPF6FJUW9ip/P7zmzsVlzBika8Sv9OJ0lsctZ9W5VZToLe+Pnnk2DI9rhW2eRZz2CerAyDkv4nlNVHbGpQJ2/XCWjEuF5jIbexV9Hgiiy6AAFOI9RCCoQlBQEMuXL6/Tgcr4+HgSEhL4888/+f333xk9enQjzFAgENyJyDojZedyTWuxuBxkraFKG4WDCvswT+zDvUwitvL2/5zflLiJt/a/Ram+FDDZdX4w8AMGBd5gLmiDDo4uhp0fQKklVzUaTxjyhskuVNmw2xtHL+bw2uooLmRa1pUhPk58ODGCYBcNf35xirQES6RTnweD6H5vm1rFYINex+6VSzi+cZ25zM0vgDEvvV7Fzae+0aWmkvnFF+SvWQsGy9+rOiAArxfm4jx6dJX1r0DQXBg5ciSrV6+mT58+PPHEE7z33nvY2dkxbdo0du3axdSpU3n55Zdp1aoV8fHx5ObmIkmSWeQWCARVkWUZ7eVCivYlUxqTDdeInmo/Bxz7+aPp6oXUHPMgF6bDoa/h6CIoy7euC+gB/V+ATqNBoaREV8KvsctYGreUjJIMq6ad3DsxM3wmw1sPv/GDd80IWZaJSS5g9fEk1p1MJrdEV6VNt9auTOgeyJgIf1w0whXwVji7ai97NmdTrrLkVfeVkxn2xj24BFkitXPTUlg//wMrR56Ie0Yy5PHZqISLiEBwXW7pju/777+nX79+9TUXQSOi1KhuKEL7qlAr641V8qQ0CTKgl5H1hhvR5RsfCSsx/NoId1NdNeK7uc21ke5SJcH9GpH9ZvsqJCG83waUxmWTs+qcKZXA1de2BKWx2eStT8B9UjD2oR5NPc36pzTXJFgnVYq+Ls6otYsBBeeMAZwytidW1wbX84UMPn8Sja7M3Ebp4oLH00/jNuURFLa2Vv0T8hL4PvZ7NiRsQG+0iNYqo4IH0+/C8WQuyKbymqKyy4p1HFyXQOyeZKv34ZA+vvQb3+G6lpQCwZ3MjaS7iYmJ4eTJkzz++OO8//77QtAWCAT1iqw3idil0VmUxmUjl1cjYmtU2HfxxD7CE9sg1ztCxAbQGXV8fPRjVpxeYS4LcQth/pD5tHJqVfeBZBnO/glb/gHZ8ZZypS30fRYGzAM755r71wPF5Xo+2nyWpQcucvUjSK2UeHZIB54Z3IGCtBJWfXCEohyTXaTKRsGwJ0Jpf52UXQVZGWxY8CGp58+ay0L6DmTEU89jY69psMejz80l+5tvyf3hB2StJcpd6emJ55yncZs0CUlsqAqaORMnTuRf//oXOp2On376iddeew07OzumT5/O0qVL2b17N6mpqaSlpZnXjr179+b5559v4pkLBM0PWWek5FQmRQdS0CVfYyuuAPsuniZb8TbOzdOxI+s87P8UTv1k7d4CEHwf9J8LrfuCJJFXlsePZ35k5ZmV5Jdbi949fHowK3wW/fz7Nc/HWUcyCstYdyKFX48lcTa9sEq9r7Md47oHMKF7IB28HZtghrcXZTkFbPv3H1ws8QGVyaJdpS+l511Guj471SrFWRVHHltbhs96ltBBQ5tk7gJBS+SWBO0btQ7X6/WUl5ffyiUF9YRdFw9KY7Pr3N5tYrA5h7Ysy2CUkQ0y6I3Ihsr/N/2MQTb9Xy9DRdlVMdzcplLfynU19TWNe+31KvroK41baQ5NjoxpnnqQqbrB1WxQ1GQZX4tgXsUy/qpgfjWKvWrfyn2qHb8Wu3qUwma+JkrjssleHmcRRq/5LpfqyV4eh8djoS1b1NaVQXqMtXV45Y3NGjC6tOKibSc25vizu7g1MXI7yoxq7r18hGnntuBaYrmJkezscJ82DY9ZM1E6W2+Onsw4yaKYRey8stOq3EZhw3jHYXjvyqEgNdVcXl1UtmyUOXMwjQNr4ikttJyOdfd34O5HgvHv6HZjvxOBQFArdnZ29OnTh+eff55//vOfTT0dgUBwGyDrjZTF51EalUlpbPUitmSvwr6LB5oIL2zbu5jWt3cQmSWZvLzrZU5knDCXjW0/ln/0+Qd2qhuwJk05CX+9CRf3WJeHT4Z73gLXGxDGb5Jd5zJ547dokvNKzWV3tXLlPxMiCPF1IjEqiy2LYtFV/B04uNoy+pkIvFrXnnMy8cRRNn7+P8qKTBvNSpWKwdOe5K4RoxrsnsdQVEzO0iXkLP4eY7Elylzh5ITHzJm4T3sMhabhhHSBoD5xcXHh8uXLVcoVCgUbN27kX//6Fz/99BNpaWn4+fnx0EMP8Y9//AO1WkQgCgRX0eeXU3wwleLDqRiL9VZ1Cgc1Dr0qbMVdbGsYoYm5fAj2fQJnN2IVKaBQQ8RD0O958O4EQFpxGsvilvHruV/NrjFXGdxqMDPDZtLVu2vjzb2eKdcb2HY6g1+PJbHrXKY5LcpVbFUK7u3iy8TIQPp38EQpApvqhfj1h9m1LpkylY+5zMuQzPCXB+LWua25zKDXs+eHJRz7Y625zM0/kLEvvY5nqzaNOGOBoOXTKJbjhw8fZtmyZfz888/k5ORcv4OgwdGEe5G3PsEUzXkdJHsVmjBPy8/SVfESsGm+1iuyfK2wfo3ora9ZDLcS6GvrW53Ybhbnaxhfby3cUzWlXuNjlJGNMuiMzTvi3SrK/MYs4VFWEtCrjZhXVD/+tX0rj19NXxQ0qvAu64zkrDp3fbcFGXJWncP/jd4tw37caDSJ1cnHIPmo6XtaDBirWiRZYecCAZEQEEm+ewQrr3jwzfFi8ksr+sky/VJjePrcJrzyLPkNUShwnTABz+eeRe1jWYgaZSN7kvawOGYxxzOOW13KycaJh9pPotNpW2J/3kSBbHoxK5Qq+k2aQs+xE1BUsmnMSipi949nSb1gEdDVtkp63t+OiKGBKO+wzW6BoDHJzs6muLj21AMCgUBQE7LeSNmFPEqjskwidlnVeyjJTmmOxLZr72paQ96BHE07yiu7XiG7zHR4Wq1Q87def2NS8KS6r5Hzk2H7/5kirSovclv3g3v/bVrrNTB5JVr+b8NpVh+35N60Uyt4ZUQIT/Rvh0KCE39dZv+aePMUvds4MeqZCBxq2fg3GgzsX7WSQ2t+MZc5e/kwZt7f8G3fsUEei1GrJe+nn8j6+hsMlfZjJFtb3B97FI9Zs1C6ujbItQWCpkCj0fDhhx/y4YcfNvVUBIJmhyzLaC8WULQ/hdLYrCp7kuoAR5OteEQzTV1nNMK5P01C9pVD1nW2ztDjCej9NDibLJ4T8xP5PuZ71iest3LYU0pKRrUbxRNhT9DRrWE+fxsaWZaJSsrn12NJ/H4qxbLvVYnINm5MjAxkdIQfznbiQE99UV5Qwo53f+dCvjeoXABQGsroHlxGj5emWO0FFmZnsWHBh6ScO20uC+k3iBGzn2tQRx6B4HalwQTtK1eusHz5cpYvX865c+fM5bIsiyjLZoCkVuA+Kdg6qrPahuA+Kbh5LmKugyRJJuFSpYBmepgQTBGbFuH9GjH8WsFcX10Uu+X/VnWVo9ivjY6vSwT9NWM2C6XbICMbDMja6zdtMirnd1dVEtWrE9utotjrJphbC/cS2kuFdTqYAqZI7ZKYLLPbQrOiINU68jrlBJQX1N5HaQO+ERDYwyxi4x5EQlYx3+1JZPX2JLT6PHPz8KwLvJjwF/4pF6yGcRo+DK9587ANCjKX6Yw6/kz8k+9jvic+zzoK3FvjzbTQaQxUdmXXt18Tk3zFXFddVLa2VM/hDYlE7Ugyvd4raN/dmwGTOuDodgORSgLBHcauXbvYtWtXlfLffvuN+PjrOzTodDouXbrE6tWrCar0GhcIBILrIRuMlF/Ip+RqJHY16y3JVol9Fw/sI7yw63Dnithgus9fFreM+cfmY5BN0cq+Dr7MHzyfMM+wug1SXgT7FsD+z6Fy9JRbOxj+DnQeA42wl/BndCr/WBdLVpHFXa5few8+GB9Baw8NBr2RHT+c5fR+izNPh0hv7pneGVUtB76LcnPY+OlHXImLNpe179GbkXPmYedY/5afssFA/rrfyfz8M/QplrmiVOI6cSKez8yxOsgpEAgEgtsXWWeg5GQmRftT0KVec9BXIWEf7oljP39sWjs1z317XRlE/Qz7P4Ps89Z1Tn7Q5xmIfNychiQ2O5ZF0YvYemkrcqUNTVulLeM6jOPxsMcJcAxoxAdQf6QXlLHmRDK/HksiPqOoSr2/ix3juwcyvnsAQV7CUry+ubjlBDt+TqREZdlb9dAlM+z53nh2DbZuG3WCjZ9+RGmhaX9ToVQxePosuo4Y3TxfZwJBC6BeBe3i4mJ+/fVXc76aq3lqKuc69PT0JDu77lbXgobDPtQDj8dCq827i2yKzL5t8+42IySFZLL8bsaHBkw289yYYF4R4W76fy1ie5Uo9tqi3qvpe834TU7l/O7NMMNC7m/nKdp1BclGiWSrRFHxXbJRoqj4Ltle838bBZKtCslGYSm3Ud587vWyAkg9CUkVkdfJx6Ew5fr9PEMqhOvupu8+YaCy5Pc7dimXbzce46+4dCqn2O1YlMr/u7ydVudOWA1n3yMS75dfRtOtm7msRFfC6vOrWRa3jLTiNKv27Vza8USXJxgZOIIja1ax9vd/IFdEZStVKvpOtI7KlmWZ+KMZ7P31PCX5llMYLt72DHo4mNbivVUguC47d+7knXfeqVK+Zs0a1qxZU+dxZFlmxowZ9Tk1gUBwGyIbZMoTrkZiZ2EsqUHEDvXAPtwTu2C3O1rEvkqxrph/7PsHWy5tMZf19evLh4M+xM2uDulUjAY4sQK2/xuKMyzldq5w92vQc5bVmq+hyCgo4611sWyKtawBnexUvDm6M5N7tEKSJEqLtGz6JoaU83nmNj1Ht6Xn/e1q3Zi8EhvFhk/+Q0m+qZ+kUDBwyuP0uH9cvW9oyrJM4datZC74BO0F64OczqNG4TX3eWzatq3XawoELYF169Yxb948EhISmnoqAkGjoc8to+hgKiVH0qqsaxSOahx6++HY2xelczONBCrNhaOL4dA3UJRuXefV2ZQfO2wiqGyQZZnDqYdYFL2IA6kHrJo6qZ14uNPDTO08FQ/7lrcXU6YzsCUunV+PJbHnfCbXOIpjp1ZwX5gfEyMD6RvkgUJYitc7upJydr73O+cy3UDlCoDCoOWuNvn0ee0RFGqLzGY0Gji4+mcOrP6RqxuUTp5ejJn3N/w6hDTF9AWC24ZbFrRlWWbr1q0sW7aMtWvXUlJSYi6/ipubG1OnTmXGjBnExMTccO5tQcNhH+qB/xu9KYnJoiwmC2OpHoW9CrswTzRhns1aZBU0HiabeZCUzddiHirbzFe2j68kmFcrrFeNhq82Cr6yQF9dBH11fSuNXzkavsrKszHRGdGlldTLUJJaYRLDrwrj14rhNgoUapB02UglV1AUXkTKP4tUkIBCKkWiFAWlSFIpEnZIlCNJFb8bJz9L1HVAJPh3NdmJX4PRKLP9TAbf7L7AkYu5VnVt9QW8nrab1sd2UVnhtu3YEa+X5uE4eLB5AzGnLIcfTv/Aj2d+pEBrHRne1asrM8JmcHeru0mPP89Pf3+FHKuo7I6MnPOCVVR2bloxu386R9IZy5yUagU97mtDt+FtUIr3VoGgzlReU9ZWVh0ajYbg4GCmT5/O3Llz63tqAoHgNkA2yJQnVhKxi6sRsW2U2IW6own3MonY4nPcTEJeAi/ufJHE/ERz2ZPhT/Js12dRKupw7xC/Df76B2TEWsoUaug1Gwa9Ahr3Bpi1NbIss+pYEv/eEEdBJTv54aE+/PvBMHycTW46OSnF/PHlKQqyygDT2u6eaZ3p2LPmKGfZaOTwul/Z9/MK80FIR3cP7n/hNQI6hdb7Yyk+eJCMj+dTFhVlVe4waCDeL76IXWj9X1MgaCkUFRVx6dKlpp6GQNDgyLJMeUI+RftTKIvLruK4aNPKCcd+/tiHezbfg3l5V+DgV3B8KWiviUJuM8AkZHcYDgoFRtnIjkvbWBSziOisaKumHnYeTOsyjcnBk3G0aVnRyrIsc+JKHr8eS2LDqRSrNcpVerV1Z2JkIPeF++IkLMUbjKQ9sWxbepoilYcpEBBw1aYybHZXfPqMtGpbUpDPxs/+y6UoS1BNu249uO/Zl7B3cm7MaQsEtyU3LWjHxcWxdOlSfvjhB1JSTJF1124uSpLEv//9b1566SVsbU0nvWJjY+u8CSloHCS1Aodu3s3ThlgguAEsNvMAzVd8l40mUdtK6LYS268K8dfmdK8qthcfSUOffgMCtVJCUkjIultP3i7rjKZxinQYrtvap+Krd20jIqlAslWhMKqRMpRIeUoU8UokmxQk23RzRLlRJRGdUcS2hCwuFZYhIROOklJkPNV6ZucdxW/3Bii3/G5Ufn54zZ2Ly9gx5sMZSYVJLI1dytr4tZQZyqxmc3fg3cwIm0F3n+7otVr2/rCUo+vX1BqVrSs3cPTPi5zcchljJceAthGeDJzcEWdP+7r9cgUCAQD//Oc/+ec//2lVplAoWLFiBVOmTGmiWQkEgpaObJQpT8ynNCqT0phsjMVVcw5KNgrsOnugCffELsQNSd1815ZNxeaLm3lr31uU6E3rLSe1E+8NfI/BrQZfv3PGafjrTYjfal3eeQwM+xd4tK//CVfDlZwSXv8tmr3xWeYyDwcb/vVAF0aH+5kPP16OzWbzdzFoy0yrXo2zDffNCce3XdUDl1cpLSzgz8//R+LJY+ayNhHdGPX8K2ica+53M5RGR5M5fz7F+60j0uy7dcP7pXloevas1+sJBM2F9PR0Nm7cyOnTp8nLy0Ovrzkdl4jMFtzuGLUGSk5kULQ/peo+kVJCE+FlshVv5dQ0E6wLaTEmW/GYX8FY+fUsQehY6PcCBEYCplRxG+PXszhmMQn51q/vQMdAngh7ggc6PICtsplGn9dAan4pvx1PZvXxJBIyi6vUB7jaMyEykAndA2jj4dAEM7xz0Jfr2PPhBk4nOyKrTIcsJaOecN9M+r0xEaWd9d9W8tnTbFjwAUU5JndiSVLQ/6FH6fXARCRFMz08IhC0MG5I0M7MzOSHH35g2bJlnDx50lxeWaDu0qULU6dOZfjw4fTs2ZPevXubxWyAqVOnMnXq1FufuUAgELRQzDbz9ZDfXaFRkfvLuTq3d5sYjEM3b5M4rjMglxswlhuQtZbvcrkBo9aAXG6sWn71/1oDxlItcmmpqVwvgXyrph8Ssh5kvQFj8fUl8iAgCAWgsa7QAQ7D4L5hJvHZUI5kq0bp6kh5korMhbGUSKUklCaSWHoJZ4WOSdIwyhTllCt1BPt2YkDbQQS4ByKVKUk5FMuun78nO/USEhIyVaOyZVkm8VQWe345R1GOxWveyd2OgQ91pN1dXrf4uxEIBAKBQHAryEYZ7cUCU07smCyMRdWI2GoFdp3dsQ/3wi7EDUUt+ZDvZHRGHfOPzWd53HJzWbBbMPMHz6e1c+vaOxdlwI73TBFXcqUDlv7d4d53oU2/Bpq1NQajzNL9F/lo81lKdZZ15/huAfzj/lDcHCwW51E7ktj7yzmz4Y9nK0dGzYnAyd2uxvFTzp1mw4L/UJidaSqQJPpNnELv8ZNR1CVyvY6UJySQueATCv/6y6rcNjgYr3kvWjkSCQS3G2+//Tbvv/9+rSJ2ZWRZFq8HwW2JPqeMogMpFB9JR74milfhZINjHz8cevmidGr49B03hSxD4m7Y/2nVg24qO+g6Ffo+az7sVqov5bfzv7EkdkmVVHHBbsHMCp/F8DbDUSnqNdNqg1KqNfBXXBq/Hktib3wW18YC2quVjAr3Y0JkAH3aCUvxxiD1aDxbvzlBgdISle1cnsY90zvhP3iEVVtZljm+8Xd2r1yM0VBx+NHFldFzX6V1WERjT10guK2p0zv7qlWrWLZsGX/99Zd5oVhZxA4MDOSRRx5h6tSpRESYXqQiT7ZAIBA0PJpwL/LWJyCXXv8mXrJXoQnzNP1fKSEpVWCnqlssu7YYUk9V5Lw+BknHoPCyqU5p+pJlJTJ2GLFHlu2Q0WB0CkJ2C0V2Ccbo2BbZ3g9ZL1UI5lfFcyNyub7ieyVxvdxwy/bskqQAlT0YwJBdZo4kVwHBBBBMQNVOacDJPLLIMxcNtHkA2pj+LyOjsFWhW5lOmk0WRoVEfl45RUU6QmTQ2ysxSOAV5Ix/qAeqUh3FJzJMucir2LJX/L+52nwJBM2QHTt20Llz56aehkAgaAHIRhnt5QJKo7Ioic7CWKit0kZSK7Dr5G7Kid3JXYjY1yGrNIuXd77M8Yzj5rIxQWP4R99/YK+qxYlGVwoHvoC9862tQ11awT3/hLAJ0EiRK+fTC3l1dRQnLueZy/xd7Hh3fDhDQiyuZQaDkb2/nCdmV7K5rN1dngx7IhQbu+q3Uqrb0LR3dmH08/+PNhFd6+0x6FJSyPziC/LXrAWj5WCAulUrvOY+j/Po0SISSHBb88033/DOO++Yf3ZxccHZ2RlFLX/3xcXFYq9ScNsgyzLl8XkmW/EzOVVtxds449jPD/suzdhW3KCH0+tg36eQetK6zt4Nej5pSkHiaAoQyC/P56czP7Hy9Epyy61TznX37s7M8JkMDBjYYg6uyLLMsUu5rD6exIZTqRSWV93X6xPkzoTugdwX7oejbcsR6FsyBr2B/f/bSPQFW2SlKd+6ZDTQ2S2VAW9NRO1gHVRTXlLM5q8/4fyh/eaywM5hjH7hVRzdGj51jkBwp1Gnd8KHHnoISZKq5MWeOHEiU6ZMYdCgQS3mw0IgEAhuJyS1AvdJwWQvj6tyA2PdENwnBdct56NBD5mnLeJ18nHIiLOOoqnuEo7uSAGRKAJ6QEB38O92y3kPzybns3RXArui07CRwR4JDaBBoneAC/eQi92RwxgKipFUtqC0Q1LboW7VFnVAG0CJsdxAWUkxujIttgY1ylu0o5eQkMsMGMos0TxOgNO1v9ukIoqSrsn1VBNKySRuVwjeprzkCovgbVtJ/LaplLfcqlxhsmu3qchtrmymN60CwS1y991333CfxMRE9uzZw7Rp0xpgRgKBoDkhG2W0Vwopjco0idgFVUVsVArsQ9ywj/Ayidi2QsS+SrmhnL8u/sX2y9vJK8/D1daVoa2HMqLtCGKzYnl518tklZrsuVUKFX/r+Tcmh0yueT/AaIToVbDtHShIspTbOMHAedDnGVA3TkoWrd7I17su8Pn2eLQGy7p2Wt82vDqyk9VGcVmxjs3fxZB0xrJh3v3eNvR5IMjktlQN5SXFbP7qE84ftmxoBnQKZfQLr+Lk7lkvj0Gfk0P2N9+Q+8OPyDqLy4DSyxPPOXNwmzgRyaaZRuAJBPXI119/DcBbb73F008/ja+v73X7rFixgunTpzf01ASCBsVYbqDkeDpFB1LQZ5RaVyolNHdV2IoHNmNbcW0JnFxpshbPuyavvWtr6PscdHsUbEx22hklGSyPW84vZ38xpzm5yqDAQcwMm0l3n+6NNftbJjmvlDXHk1h9PJnErKqW4q3c7ZnQPZAJ3QNp5a6pZgRBQ5ERfYktnx0mT+EBFVtqjuUZDJnchtb3Vd1LyLiYwPr575OXlmou6/nARAY89Jg5NaFAIKhf6ny056o1j4eHB5988gkTJ05ErVY35NwEAoFAUAfsQz3wGFJCzg4jsuwIGDCFTZu+S1IR7kOV2Id6VO0sy5B32Vq8Tj0Juuvk5VZrTIJ1QHcIiDR9ubSCejjcJMsyBxNy+Hb3BXaczbSqs1EpmBgZyEznfJTfLqD01Ckq38I5DrsH73nzsG3fnnJDOb9f+J2lsUu5VFBxkySDWlYRZN+WKe0fYbjfPdgY1GZLdX1JORcOHiQ55jQqSY1KoUattMW3TUfcPP2RtSYbdm2hFm2BFoUso4JbP9RlkJFL9RjqEGlfZ1SSSfSuKSr8qhheIYRLtopq25vbqpVISnF4TdAy2b9/P0888YQQtAWC2xRZvipiZ1EanYkhvzoRW8Iu2B1NhCd2nd1RiCiXKuy4vIM3971JgbYABQqMGFGgYOvlrfzrwL/QGXQYMQnBPhofPh78MRFetdgoXtwHf/0dUk5YyiQFRD4Og98wR1w1BlFJebz6axRn0grNZUGeDnwwIYJe7awPYOall/DHl1HkVeQfVSglhjzaiU59/WocPz3xAuvnv09+usX6tD43NA1FxeQsWULO4sUYSyzrdIWzMx6zZuH+6FQUGrHpLbhzOHfuHFOnTuXtt9+uc59rA3UEgpaEPqvUZCt+LB25zDpFm9LZBoe+fjj09EXp2IwPNRVnweHv4PC3UJpjXecbAf1fgNAHQWlao10uuMzimMX8fuF3dEbLIS6FpGBk25HMCJtBiHtIIz6Am6dEq2dzrMlSfP+F7CqW4g42JkvxiZGB9GzrLizFGxmDwcjhzzZzMk6BUVGxdyobCXG4wqAPJmLjWvWASPSOv9i+6Gv0OtN9h62DA/c9+zLtI3s15tQFgjuOOt3Fb9iwgaVLl7J+/XqysrJ46qmn2LRpE1OnTmXYsGG1WvoIBAKBoIE5sxH7/VPwt1FTYuxHmaEvRtkJhVSInfIAGsV+pH06aPUDtO5jEq3NAvYxKMmqfXxJCd6hFvE6sAd4hphvMuoLg1Fmc2wa3+y6wKmkfKs6F3s10/q2YYqXHv03n1O0c6dVvX1kJN4vv4ymezcKtYUsj17IytMrzRFEVwlxD2FG2AxGtB1RJZ9S6vmzbFo0n5wUS/SQT1BHRj7zIp6tTH7jhTll7Ft1nguXLdE6kkKi690BdL+nFSoJs4W6rDWardNlreEam/Xq8pIbMZbrzbnLbxm9jFGvh5L6FMkVZoHbykLdKrK8GhHdtpJwbqOwFsnFjZoVss5ISXQmZbHZGEr0KDUq7Lp4oAn3qpvDgkAgENwhyLKMLqnIlBM7OgtDXnnVRkoJu2BTJLZ9Z3cUNdhEC0xi9gs7XjD/fFW4vvq93GD5/fb27c1/7v4P7nY1OPFkX4Atb8GZDdblHUfA8P8D7071O/laKNUaWLD1HN/tSTBnslEqJGYPCuKFezpip7YWm5PO5rLpm2jKK9ZPdo5q7ns6HP8OrtWOL8syUVs3sWPptxgqIqbtHBwZ+ew82kf2vuX5G8vLyfvpJ7K+/gZDbqX1p50d7o89hsesmShdXG75OgJBS8PZ2ZkBAwbcUJ+pU6cyderUBpqRQFD/yMYKW/F9yZSdy61qK97WGcd+/th38WjeDm05Caa0IydWgL7Muq79UJOQ3e5uc4DE6ezTLIpZxJZLWzBWcgq0UdgwruM4pneZTiunVo35CG4KWZY5cjGXX49d4Y+oVIqr2efp196DiZGBjAzzRWMj1qlNQfa5FP6av48c2RKVrSnPYvAYH9qNf6JKe115GdsWf03sTku+d5+gDoyZ9zdcvK/vFiIQCG6NOr1Tjho1ilGjRpGfn8/PP//MsmXLWL58OStWrMDLy4uHHnqIKVOm0Lv3rd+wCQQCgeAG0JXB2jkASJIWB+VOHJQ7q2/789Tr2oYD4NrGEnUdEAl+EWarp4agTGdg1bEkFu5J4FK2dWR4gKs9swa2Y3yAiuJvviJv7VoqH2W16dAe75dexnHIYDJLM/n66Mf8cu4XinXWtk29fHsxI2wG/fz7VYmm1mu17PtlBcc2rEWu+P0oVSr6TppKzzHjUSiVGAxGTm27wpE/LqIvt9yE+HVw4e5HQvAIcKzX34lslJH1xioCuJVAflUIrxDAjVXKrUV0WVeH5/566I0Y9UYo1lEPkjtgss2vVQy3UaCoiCCvasteNeJcUitarEheGpdNzqpzyKV6kDBtWEhQGptN3voE3CcFV++0cJuyZMkSFixYwHPPPcesWbPM5Uph3SUQ3LHIsowuuYiSqCxKozJrFrE7umEf7ol9qAcKe7E5eD3KDeW8ue9NAORac9iYNpM/GfoJDupq1oYlObDrP3DkOzBWOlDnEwYj/g3th9TntK/LgQvZvP5bFBcrrS9D/Zz5z8QIwgKqisCxe5LZ/eM5jBXKt7u/A6OficDZs3pLdG1ZKVu/+4LTe3eay3zbd+T+F/+Gi7fPLc1d1uvJX7eOzM+/QJ9qsbFEpcJ10kQ858xB7e1d8wACwW3OgAEDyMnJuX5DgaAFYizTU3IsnaIDqeizrrEVVynQdK2wFfev332Ieif5mCk/9unfrfeiJCWETYB+z5v2mzCt8Y6mHWFR9CL2peyzGsZR7chDIQ/xaOijeNrXTwqPhuRKTgm/HU9m9fEkLudUdT9s46FhYvdAxnUPINBNuKs0FbJR5sg32zh2Qm8Vld3e5hJD/m8ctl5VD27mpiaz/uP3ybx80Vx214jRDJ42C5VwMhYIGgVJvkm/ncTERJYuXcqKFStISEhAkiSCgoLMJx7d3d3x8vJi69atDB06tL7nfUdSUFCAi4sL+fn5ODs7N/V0BAJBc+DkD2ZB+6awd7MWrwMiwaFxbhByi7UsO3CJZQcukl1sbQ0a6ufMU3cHMbKVPXkLF5K7ciWy1tJG5euL1/PP4/LgA1wsusyS2CWsv7DeyoZKQmJYm2HMCJtBmGdYtXNIOXeGzV8tsIrK9m3fkXvnWKKyk8/lsuvHc+SmWkRyeyc1/SZ0IKS3763bjTcSslFG1pkEcGNFBLmV6H2tYF4lorxq+3oRyesbCVPk91UL9dryj1uJ6BXCeTW5yyW1osGf59K4bLKXx1U5dX/tY/N4LLReRO2WsKZwdXWlsLAQJycn8vLyzOU36wwkSRIGQ30dxWi5tITnXiCojCzL6FKKzTmxDTllVRspJOw6umIf7oV9qDsKjdhQuhHWX1jPG3vfqHP79wa8x5j2YywF+nKTheju/0BZJZcdRx8Y+g/oOgUUjXcYqaBMxwd/nuGHQ5fNZTYqBS/c05HZg4JQXxPFZjTK7P81nlPbr5jL2oR5MGJmF2xqOBCRnXSZ3z9+n5xkS59uI8cw6NEZt7ShKcsyhX9tIfOTT9AmJFgqJAnn0aPxmvs8Nq1b3/T4AkF901TripiYGB555BH27t2LSx1dClauXMm0adPEerCeEGvK+keXWULxgVSTrXj5NbbirrY49KmwFXdoxuscWYb4rbDvE7i4x7pO7QCR06HPHFOubMAoG9l1ZReLYhZxKvOUVXN3O3ceC32Mh0IewsmmGecEB4rL9fwZk8avx65wMKHqYRtHWxWjw/2Y2COQHm3cWsw+0u1K3sUMNn+0iyyDZW/FvjyHgfc40/HREdX2OXdwL5u//gRtqemQidrWjuGzn6PzgMGNMWWB4LbmRtYUN31cvV27drz99tu8/fbb7N27l2XLlvHrr7/yzjvv8H//93+EhoZWm5/m4MGDfPvttyxevPhmLy0QCAR3BrJs2hTMTzJ9FSRZ/m/+unL9cSpj7wZ3PVIhXncHt3b1kvf6RriSU8LCPQn8cjSJUp31TdrAjp7MHhREvwAHcles5OKT32EstOQ6VLi44Dl7Nm5TpxBTeI7Fu19m++XtVtFEaoWase3H8niXx2nr0rbaOdQlKrs4v5z9v8Vz7lC6paME4YMC6P1AELYtbLNcUkhItiqwBSX1k1dLNlwVyS1Ct8VC/apAbqw5cryacvS3mNdOxnJ9dNdvXxckqorhZpG8khB+jXhuJaJfI6ijksw3sbLOSM6qc7WL2RWPLWfVOfzf6H1H2I/379+fP//8k/79+1epGz9+POHh4XUeKyoqirVr19bj7AQCQUMiyzK61GJKo7Ioic7EkF2diA22HdzQhHti38VDiNi3wLbL25CQrhudDaBAwfbL202CtixD3DrY+k/IvWhppLKH/nOh31ywbdzosW2n0/n7mhjSCix/Mz3auPHBhAg6eFedi7ZUz1+LYrkUk20uu2toK/pN7FBj/sq43dvZsvAL9OUmhwAbe3tGPDWXkL4Db2nuxfv3kzF/AWXR0Vbljnffjde8F7Hr1HhW7QJBcycsLIyvvvqK8ePH88QTTzBq1Cjc3WtIgyAQNGNko0zZuVyK9qdQfi63Sr1tkAuO/fyx6+yBpGzGIqheCzGrYf+nkBFnXefgBb2fhh4zQGN6neqMOjYlbmJxzGLi8+Ktmgc4BvB4l8d5sMOD2KnsGusR3DBGo8yhxBxWH09iY3QqJddYiksS9G/vycTIQO7t4ou9jXAaa2pkWebEkt0c3l+CQWkRs9tKFxj677HYB1R12DHodexe8T3H//zdXOYe0IqxL72BR2Dzt74XCG436sV/bcCAAQwYMIDPPvuMdevWsXTpUrZs2YIsy4wfP55HHnmEWbNm0aNHDy5cuMDSpUuFoC0QCAR6LRQk1yJYJ4O28Prj3Ag+XWDk+/U7Zh2JTsrnm90X2Bidas5hCKY8hvdH+PHkwCC6+DiQt2YNCTM/R5+RYW4j2driPu0x3GfO5EBRNIt3zuFo+lGr8R3VjkwOmcyjnR/FS+NV4zyuF5VtNBiJ2nGFQ+sS0JZZbki82zpz9yPBeLcRp8+vIiklJKUK7FTU162ZbLgaCW6sJs94bVHkxir1V3/GUA8i+dXr1M/DBAVm0Vs2yiab8bpMpVRPSUwWDt1uf5vRdevWERUVVa1wPX78eKZMmVLnsVauXCkEbYGgmSPLMrq0EkorcmJXsdgEk4jd3hVNuBd2XTyad4RSM8YoGzmfe57DaYc5nHqYPcl76iRmgymndl55HiQdg81vwJWDlWolUzT20DfB2b9B5l4T2UXl/Gt9HL+fSjGXOdgoee2+Tjzau0214nRBVil/fBlFTorJhUehkBj0SDBdBgZUew29Vsv2Jd8QvW2zucyrdVvun/c67v7V96kLpVFRZHw8n5KDB63K7SMj8X5pHprIyJseWyC4nenbty9Tp07lySefRKvV4urqipOTU41uPsXFxdWWCwRNgbFMT/HRdIoPpKC/5uCepFag6eaNYz9/1L4Nl/6tXigrgONL4eBXpv2tynh0gL7PmYIq1CZhukxfxpr4NSyJWUJKcYpV8w6uHZgZPpORbUeiUjTflDGXs0tYfTyJ1ceTSMqtul5t5+nAxMhAxnULwN+1+rQlgsanMCWXzR9sI13rDkpbAGzL8+jfX02nmbOqjZovyMpkw4IPSD1/1lzWecBghj35LDZ24rkVCJqCev10sLW1ZfLkyUyePJmMjAxWrlzJ8uXL+fbbb/nuu+8IDw+nQ4cO9XlJgUAgaJ7IMhRnmSKozYJ1svXPRRlcPySzFuzdTfkJywvq1l5SmCK0GxFZltl9Potvd19gX3y2VZ29WsnDvVoxo387At3sKdq2jYQn51vbKyoUuIwfh9szT7Ot7CTf757JudxzVuN42XvxaOijTAqeVKsNlU5bzv5fVlaJyu43+VF63D8OhVJJWkI+u348S9aVInM/W42KvuPaE9rfv8XmZm5JSEoFkkaBoh5TScn62vKMG6u3XK8xotyIrNVzy8q2EeQyA4ayG7Q8lKDsDhG0VSoV3bt3r1Lepk0bHB1vLOLP0dGR1sKiVSBodsiyjD69hJKrInZmNSK2ZBKx7SsisZWO9eMycichyzKJ+YkmATvtMEfSjphE6ZtAgYRr1gVYeE1asXaDTHmy/e669QnfALIs8/upFP61Po6cSilsBgV78d64sBpzU6bG57Hx62jKikxuLrYaFSOfCicwpPq1cm5aCuvnf0DmRcs6NWzICIbOeAq1je1Nzb08Pp7MTz6hcMtWq3LbkBC8X5qHw6BBwpJUIKiBsrIyxo0bx19//WV2hszNzSU3t2qEa2XEa0rQ1OjSiyk6kErJ8XRkrfVNpdLNFse+/jj08Gn+zjOFaSYR++j3UJ5vXRfYE/q/ACGjzClHCrQF/HzmZ1acXkFOmbUld1evrswKn8XAwIEopObpRFZUrmdjdCq/HkvicGJVS3EnWxX33+XPxMhAurd2Fe81zQhZlon56QD7t+ehV1qcPFoZ4rnnrVE4tAustt/Fk8f44/P/UVZo2nNVqlQMeXw2EcPuE8+vQNCENNhxJ29vb+bNm8e8efOIjY1lyZIl/Pjjj0RFRYkXvUAgaPloi00R1FcFanOk9RVLdLWh/ObHV9qCSyC4BIBLq4r/V3w5V5TbOMCpn2DNU3UbUzZCpzHXb1cP6AxGNkSl8O3uRE6nWgvuHg42PN6vLY/2aYObgw0lx45x6Zn/UnrypFU7x3vuwen5p/lDPsWy/TOrnN5t69yWJ8Ke4P6g+7FR1r65nXLuDJu+WkDuNVHZI5+Zh0dga0qLtBxYc47T+1Kt+nXu50ffce2xdxKb5y0ZSaVAUinqbVNAlmXQyzVbp1cbUW6s0ZbdWKit+9kWGYx1jOa+XUlMTLzhPg888AAPPPBAA8xGIBDcDLr0YkqisiiNzkSfUYOI3c4F+wgv7MOEiH2jyLJMUmESh9MOcyjtEEfSjpBVmlVjewe1A8W6ukUuGpEZmnreUuDREUb8HwSPbPQ0Nqn5pby5JoZtZyyuPq4aNf8YHcr47gE17jucOZjKjhVnMFakOXH10TD6mQhcfaoXv88d2sfmrz5BW1oCgMrGlmGznqHL3ffc1Lx1yclkfv4F+evWgdEiZqhbt8Zr7lycR92HVEOEqUAgMDF//nw2bza5JXTu3JmQkJBao7MBEhIS2Lt3b2NNUSAwIxtlys7kmGzF4/Oq1Nt2cDXZindyb/6H6DPPmWzFo34Gg9a6Lvg+k5Dduo95TZBVmsWyuGX8cvaXKmuNAQEDmBk2k0ifyGapFRiNMgcTsvn1WBJ/xqRVSZmnkGBARy8mRgYyItQHO7WwFG9uFGUVsuW9v0gpcQOlySXARltA3+4Gujz7ZLV/d0ajgQO//sjB3342BSsBzl4+jH3pdXyCRKCmQNDUNIp/R5cuXfjoo4/48MMP+fe//82//vWvxrisQCAQ3BxGg+m0aWWB+lrBurT2k9/XxdG3esHaueJnB8+6bQqGPgh/vmbKtV2rIiaBnQuENqygU1yu56cjV1i0J4GUfGvbrLYeGp4cFMSE7oHYqZWUnz/PlY/nU7Rjh1U7+27d0Mx9itX2cfxwck6VCKIIzwhmhM1gSOsh1z29e72obElSELsnmQNrL1BebBEJPQIdufuREPzau9zCb0NwuyJJEqgllGoF1IPdbfbyOErjsusmakugsG++9mvNlcTERPbs2cO0adOaeioCwR2LLsNkJ14SnYU+vaRqAwls2rqgifDEPswTpThMdkOkFaeZLcQPpx0mtTi1xrZONk709OlJL79e9PLtRSunVtzz0yAK9SXItaw/JVnGyWhkREkJaDxg8OsQ+TgoGzeKzGiU+fHIZd7feIaicsv6bXS4H2+P7YKXU/UR07JR5uC6BI5vvmQuC+zkxr1PhmFXzed5dTkT3fwDGTPvb3i1bnvD89ZnZ5P1zTfk/fgTsk5nLld5eeH57DO4TpiApG7mEXkCQTNhxYoVODg4sHHjRgYOrFv++pUrVwpBW9CoGEt0FB9Np+hgKoaca2zFbRRouvvg2NcPtU8ztxUHuHwQ9n0CZzdalyttIGIy9JsLXiHm4isFV/g+9nvWxa9Da7QI3wpJwb1t7mVG+Aw6uXdqrNnfEBezill9PInfjieTnFf14GV7LwcmRrZiXLcAfF2ab47vO524NUfZuzENndLivuOvi+eeV4fh3Cmo2j4l+Xn88elHXI45ZS4LiuzFfc+8hN0NusQJBIKGoVF3RBUKBe3btzfbAd0q5eXlLFiwgJ9++on4+HiUSiWdO3dm+vTpzJ49u9aTmTVRXFzMb7/9xvr16zl69CipqalIkoSfnx99+/Zl9uzZDBo0qMb+O3fuZMiQIde9zqpVq5g4ceINz08gENwisgxleRXR1dUJ1klQkALyDdoAV8bGsZJIHVDxvZVFsHb2B9XNWRNWQW0H476GHx8BJKpXxCo2Jsd9bc5bVN9kFJaxdP9Flh+4REGZdfRo11auPH13EMNDfVEqJHSpqaR89jn5a9daRaXYtG+P6pnH+dHzPL/F/z9K9dY3DgMCBjAjbAY9fHrU6fRutVHZHYIZOedFPAJbk3m5kF0/niU90RJBrrZT0ntsEOF3B6BQisgYQeNg18WD0tjs6zcEkMEuzLNhJ3Qbsn//fp544gkhaAsEjYwus4TS6CxKo7LQpVUTASyBTRtnNBFeJhHbWYjYdSWrNIsjaUfMIvblwss1ttWoNET6RNLLtxe9/HoR4haCUlEpikhXxruZ2cx1s0eS5WpFbaniHv7dzBxs+zwLd79mOizZyCRmFfO31VEcqmT36eVky/89EMbIMN8a+2nL9Gz9Po7EU5ZI9bBBAQx4qCPKatZ8BVkZbJj/IanxlpyJIf0GMWL2c9jY31heFENRETmLvydnyRKMJZbDHApnZzyenIX7o4+isBd5GAWCG+HixYs899xzdRazQaSgETQeurRiivanUHIiA1l3ja24hx2OfSpsxZv7QWWjEc7+Afs+haTD1nW2LtDjCej9NDj7mYvP5pxlUcwiNl/cjFGu5EKiUPNAhwd4ossTtHZufq/DgjIdG6NMluJHL1UNYHG2UzG2qz8TugfStZWwFG/OlOYWs/X9zVwucAWlac2m1hXRq1Mxd700E0lZfSR90plY/ljwIUW5pjWmpFAw4OFp9BwzXjjnCATNiEb/5Bw3btxNWUVeS1ZWFkOHDiU6OprZs2fz2WefodVq+fzzz5kzZw6rVq3ijz/+wM6u7uLNsWPHGDFiBDk5OXTp0oU333yTTp06IcsyW7Zs4aOPPmLlypU888wzfP7557V+eDk41H66TqVq5osWgaCloi83CdJXxen8JChIsv5ZW3T9cWpCUlZEUVcWqysE66vldi6Na7kYch88/AOsnWMS6yWFyV786nc7F5OYHXJfvV/6QmYRC/cksPp4Mlq99Y3aPZ28eeru9vRs64YkSRjy8kj/7jtyl69A1lpO6Kp8fDDMnMTC1pf48/K/MWRZDhMoJSUj243kiS5PEOIeQl24XlS2rtzI7p/OEbMricrnqzr29KH/xA44uNTTYQOBoI5owr3IW5+AXAcrcclehUYI2lYUFxeTn5+PXl/z7y8rq2arXYFAUL/os0opic6iNCoTXWr1NtY2bZyxj/BEE+aJUnzu1on88nwrAftC/oUa29oqbenm3c0sYId6hKJW1BL5G7eWwflZfKKz501PdwqUShSyjFGSzN+djEbezcxhcGkp+N7V6GK23mBk0d5EPt5yjvJKa86HerTijVGdcaklrUhhThkbv4oi64rpHkCSYMDkYMIHV29LnnDiCH9+/jFlRYWAaR05ePps7hp+YzkTjeXl5K78gexvv8WQl2cul+ztcX/sMTxmzkDpItyABIKbwd3dneDg4BvqI1LQCBoS2SBTdjrbZCuekF+l3jbYzWQrHuzW/G3FdWUQ9RPs/wyy463rnPyh7zPQfTrYOZuLj6cfZ2H0QvYk77FqrlFpeCjkIR4LfQwvjVdjzL7OGIwy+y9k8euxJDbHplF2zeEDhQR3B3sxITKQYZ2FpXhL4NymU+xefZlypau5zKfsAsPmDcT1ruodAWRZ5tiGNez+YQlyRdCNg6sb97/wGoGhYY0xbYFAcAM0uqqq0Who06bNLY8zadIkoqOjeeGFF1iwYIG5fMiQIYwbN45169YxZ84cvv/++zqPmZqaSk5ODl27duXgwYPY2lo2V/r370+vXr0YPXo0X375Je3ateOVV16pcayiolsQzAQCQfXIMhRnWovT1wrWRem3dg1790oR1dUI1k6+oGiGi9hOo+DlsxC3Ds6sN1mi27uZcmaHPlDvkdnHLuXyza4LbDmdbiUKq5USD3YNYPagIDr6OAFgLCsjZ8UKsr79DmOBJRpa4exM6SP38UVICrsyvwaL+yN2SjvGdxzPtC7TCHAMqPO8Us6dZtNXn1Qble0e0Ipzh9PZtzqe0gKLoO7mq2HQIyEEhrhVN6RA0OBIagXuk4LJXh533cwB7pOCkdTidHBycjLvvvsu69evJyUlpamnIxDc8eizK0Ts6Cx0ydXfB9m0dqrIie2JylWI2NejSFvE8YzjHEo9xOG0w5zNOYtcw4eESqEiwjOC3n696eXbiwivCGyU14l2N+ghIw6SjsDe+QAMKSll+5Vk/tJo2O6gIU+hwNVoZGhxCSNKSrCVMR2YPLMe7nqonh9xzcSlFPDa6iiiky0CQSt3e94fF8GAjrUf8kpPLGDjV1GUVKz9bOyU3PtkGK27eFRpazQY2PfLCg6vXWUuc/byYcy8v+HbvmOd5yvr9eSvXUvm51+gT0uzVKhUuE2ejOecp1F5Na9NfYGgpTFq1CjOnDlzQ30yMzM5ffp0ra6LAsGNYijWUXwkjeKDqRjyyq3qJBslmkhvHPv5o/a6MXePJqE0F44sgkPfQHGGdZ13qMlWPGwCqExrDFmW2ZO8h4XRCzmRccKquZutG4+GPspDIQ/hYtu8Dm9dyCxi9bEk1pxIJvWaVHkAHb0dmRgZyLhuAXg7C0vxlkBZUTnb399EYrYTKE1BhipdCZFtc+j+2nQUNtWvi8uKi9j81QLijxw0l7XqEsHouf8PB1exRygQNEckub78vxuR1atXM3HiROzs7EhNTcXV1dWq/vTp04SGhiJJEkeOHCEyMrJO427YsIExY8awevVqxo8fX22bQYMGsWfPHgICAkhKSqpSf9VyvCF+rQUFBbi4uJCfn4+zs/P1OwgELQ1tcYUV+JUaBOtkMJRff5yaUNpaC9RVBGt/sGkBuYuaCKNRZtuZDL7ZdaGKBZOTrYopvVvzRP925hxCsl5P/rp1ZH76Gfp0y0EDycaGwgcG8XVEBodL4qzGcbF1YUqnKTzS6RHc7Oq+eLxeVHZueim7fzxHyvk8cx+VjYKeo9tx1z2tUKqEQChoekrjsslZdc4UqX01g0DFd8lehfukYOxDq27A3wwteU2RmJhInz59yMrKuqH1liRJGAy3kE7iNqElP/eC5oU+p4zS6CxKojPRJdUgYrdywj7CE/twT1SuYkOwNkp0JZzMOGmKwE47TFx2HIYaUuAoJSVdPLrQy68XPX170s27G/aq61hWF6ZB0lGTgJ10FFKOg66aXOZ1oe0AePyPm+t7A5TrDXy+PZ6vdl5AbzS930sSPNGvHa/cG4zGpvbz+eePpLNt2WkMFRFXzp52jH7mLtz9q673i3Jz+OPT/5AUF2Mua9+jDyPnvFjnnImyLFO4+S8yP/kEbWVXOknCecz9eD3/PDatWtVpLIGgpdBU64qkpCQGDx7ML7/8Qvfu3evUZ+XKlUybNk2sB+uJO31NqU0pMtmKn8yEa9zqVJ72OPb1QxPpg8KuBTh05l2Bg1/CsaWgu8Zdp+1A6P8CdBhmdiLUG/VsvriZRTGLOJ973qq5n4Mfj3d5nHEdx11/bdKI5Jfq2BCVwupjSRy/nFel3lWjZuxd/kyMDCQ8wEVYircgEneeZvsP5ylTWNZrXqUJ3DOnFx59Imrsl554gfXz3yc/3XL4sPe4yfSbNBVFDbbkAoGgYbiRNUUL+FStysKFCwEYOnRoFTEboHPnznTu3JnTp0+zePHiOgva7du35+WXX2bw4ME1trnrrrvYs2cPycnJZGdn4+FRPxvLAsFtj0EPRWlVBeuCSj+XVs1TU3ckcPSpJFBf+9UKNB6NawV+m1CuN7D2RDLf7k7gQqb1zY2Psy0z+rfjkd6tcbYzWT3KskzRjh1kfPwx2vhKdpgKBXn3dOOL7lmcUuyESnuofg5+TO8ynXEdxqFR39jJ5dqisp08/TmwNpGobVcwGi3CV1A3LwZM6oiTu9hcFzQf7EM98H+jNyUxWZTFZGEs1aOwV2EXZrLlFZHZJv75z3+SmZmJi4sLY8eOJTQ0FDc3NytnnWs5cOAA3333XSPOUiC4PdHnXhWxs9BdKay2jTrQ0ZwTWyU+Z2tEa9ByKvOU2UI8KisKvbH61AkSEp3cO5ktxLt7d8fRphaRVVcGaVEV4vURSDoG+TXn2L4hJIXJBaiBOXYpl9dWRxGfYTks0dHbkQ8nRtC9de3Xl2WZIxsSOfLHRXOZf0dXRj4Vhr1j1QidyzFR/PHpfyjJzwNMORMHTXmcyPvH1WlDW5ZlivftJ3P+fMpiY63qHIcMwevFF7ELuTFrZIFAUDtGo5Evv/ySyZMnM3jwYEaNGkXHjh1xcnJCUUOuU5GCRnCryAaZ0tgsivanoL1YUKXeLsRkK27bsQXYigOkRZvyY8eshsqH6CQFdB4L/edCgGVPvdxQztrza/k+9nuSi5Kthmrv0p4Z4TO4r919tac5aUQMRpk95zNZfTyZzbFpVdLkKRUSg4O9mBgZyNDO3tiqhIjZktCWaNnx0WbiUx2gQsxW6kvp6ptOzzcfRVlDGlpZlonevpnt33+DQacDwM7Bkfuee5mg7j0bbf4CgeDmaHGCtlarZdu2bQD07Fnzm0zPnj05ffo0f/zxB1988UWdxu7cuTP//e9/a22jrDiho1AosLdvPifNBIImRZZNuZuvRlFXEayTTHmta4gyqRM2TtcI1AEVUdYVPzv5m22PBPVDfqmOHw5d5vt9iWQUWkfGd/R2ZPagIB7oGoBNpejmkuPHyfjv/yg9ftyqfU6PDnzZJ58op1PW47h1ZEbYDO5te+8N3/TotOXs+3kFx/5Yy1Xfc6VaTb9JU4kc/SCJp3LY8MUhinItc3f2smfQQ8G0CROHkQTNE0mtwKGbNw7dvJt6Ks2Wbdu20aFDB/bv34+nZ93yiatUKiFoCwQ3iT6vnNLoLEqjM9FerkHEDnBEE+FpErE9xD1SdeiMOmKzYs0R2CczTlJei/NQB9cOJgHbtxc9fHvUbNcpy5B3qVL09RFIjQKjrvYJubaGgB4Q2BNK82D3h3V7ILLRlNKmgSgu1/Pfv86yZP9Fc1oblULimSEdeHZI++tuNuu1BrYtPU38MYtVaqd+fgyeElLFkUc2Gjm05hf2r/rB7PDj6O7B/S+8RkCn0DrNt/TUKTI+nk/JoUNW5fY9IvF+6WU03bvVaRyBQHBjtG3b1nzgJDEx8YbSDTZHysvLWbBgAT/99BPx8fEolUo6d+7M9OnTmT17do0i/fW4ePEi7dq1u267jz76qNa0inc6hiKtxVY8X2tVJ9kqcejhg2Nff1SeLWANJMuQuAv2fQIXtlvXqeyg26PQ91lwDzIXF2oL+fnsz6yIW0F2WbZVlwjPCGaGz2Rwq8EopOZxADs+o5BfjyWz5kQS6QVV11qdfJ2YGBnIA10D8HISaXBaIpcPxLNtSSwlkpO5zL3kIvfMCMd78Oga++nKyti66Evidlv+9n3bd2TMvNdx9hJ7MAJBS6DFCdqnT59GV3F6pm3btjW2u1p36dIl8vPzcXGpn3wd58+brFQiIyPRaGqOIvzxxx9ZvHgx586dIzMzEzc3N7p168YjjzzCww8/bBbGBYIWgb68QphOrmQFfsUiVucngfYW8sZLSlN+6toEa7vmlXPndiY1v5TFexP58fAVisqtI4V6tXPn6buDGBzsjaLSiePy+HgyPp5P0XbrG6Lcjj583b+EE34Xrcp7+PRgRtgMBgQMuCkrp+Szp9n81QJyUy2ngk1R2fNQqj3448sYrsTlmOuUKgXdR7ah+72tUanF+69A0JLJzs7mxRdfrLOYDRAREcFbb73VgLMSCG4vDPnl5pzY2ktVI5AA1H4O2Ed4oQn3bBkbuI2MwWjgTO4ZDqeaBOzj6ccp0dds8d3GuQ09fXvS27c3PXx74Glfw3tceSGknLBYhycdgeLM2iej1pgirAIrBOyAHuDkY6nXlcHhb6AsH2rI021CMq3JQx+o/Xo3yZ7zmbz+WzRJuaXmsohAFz6cEEFnv+vb2Rbnl7PxyygyLhWap9tvXAe6Dm9VZb1ZUpDPn198zMWTx8xlbSK6Mer5V9A4X/++o/z8eTI++YSirdusym07d8Z73os4DBwo7EoFggbmZlL9NcfXZVZWFkOHDiU6OprZs2fz2WefodVq+fzzz5kzZw6rVq3ijz/+wK6GaMO6oNFoan3sNjXkl73T0SZX2IqfygC99d+bytsex77+aLr7oLBtAXsMBj3ErYX9n0KqdaAB9u7Qazb0ehIcLOuPrNIsVp5eyU9nfqJIZ73n18+/H7PCZ9HDp0ezeF3ll+j4PSqFX48lcepKXpV6N42aB7oGMDEykC7+zs1izoIbR1euZ/fHWzhzUQ0VYrbCUE642xX6fjQFpVPNDkY5KUn8/r/3yE6yuBZ1vfd+7n5sJip183AVEAgE16fFCdqXL1vedLy8vGpsV7kuKSmpXgTtrKwstm7dCsCrr75aa9vnn3+el19+mX/+85/Y2dlx6tQp/vOf//Doo4/yzTffsHbtWtzd3Wsdo7y8nPJyy0mygoLqN5MEgltClk2bYPlXahasi9KvP05t2LtXylsdWCl3dcXPjj6gaAE3ALc5Z9IK+HZ3Ar+fTDHnKQSTS/vILr7MHhREt2ssHnVpaWR+9hn5a9aC0WLfVODnzML+ZRzskGW2eZeQGNp6KDPCZhDhVXMem9qoLSq764ixnNiSxPG/DmGsdLPZuosHgx7uiIvXjVmZCwSC5omvr+8NidkA4eHhhIeHN9CMBILbA0NBudlOvDobTQC1r4M5J7ZafK5aYZSNxOfFmwXso+lHKdRWH9EOpnQrvXx70duvNz19e+Lr4FvNoEbIOmcSrZOPmgTsjDhTlHRteAabhOurArZXZ1DWcuuvtoNxX8OPjwAS1YvaFRu/4742ta9H8kt0/PuPOFYds6SPsVUpeGVECE/0b4tKef2Ir8zLhfzxZRTFeab7Z5WtkhEzQml3V9U9g5Rzp1m/4EOKsivshyWJfpOm0HvcZBTXuSfRJiWT9dln5P/+u3ktCqBu0xqvuXNxvu8+pJuMpBQIBDfGU089RZ8+fercvrmmoJk0aRLR0dG88MILLFiwwFw+ZMgQxo0bx7p165gzZ84tRaHHxsbWGhQksCAbjJTGZJtsxa891CeBXSd3k614B9eWIYpqi+HECjjwOeRdk37EtQ30fQ66TQUbB3NxUmESS2KXsDZ+rZWbjITE8DbDmRk+k1CPujmZNCR6g5E957P49VgSW+LS0RquyWWukBjSyZuJkYEMCfG2chcUtDySj19i67cnKcLJvCx1LbnMkEc64H/f7Fr7ntm/m7+++QxdmenQpNrOnhFPPU+nfoMaetoCgaCeaXGCdmGhZVOgttOJlevqSwj+3//+h1arZdy4cUycOLHaNq6urtx33318++23BAYGmst79OjBxIkT6devH3v27GHSpElm6/SaeP/99/nXv/5VL3MX3MGUF1XKU12dYJ0MtdgdXheVXaXo6moEa+cAsBEbns0VWZY5mJDDN7svsPOsdXSPjUrBpMhAZg0Mop2ng1WdIT+f7O++I2f5CuRKB2+KXWxZ3l/PzvBijAoJkFApVIxtP5bHuzxOO5fr253VRHVR2X4dQrh3zosU5tjz87tHKcgqM9c5utkycHIw7bp6towbTYFAUCdGjRrFiRMneOKJJ+rcJzMzk9OnTzNoUMu+YTUYDPzvf/9j6dKlKJVKtFotkyZN4s0336w1h7hAUBOGQi2lMVmURGWaROxqdEyVj8aUEzvcE7W3WNNdRZZlLhZc5EjaEQ6lHuJo+lFyynJqbO9l72WKwK4QsAMdA6uuT0pyrK3Dk49DeX7tE7FztQjXgT1Mkdg3k+M65D54+AdYO8eUSkhSmITzq9/tXExidsh9Nz52LWyKSeUf62LJrJTepk+QOx+Mj6DtNevPmkg4kcmW72PRa6/ahtsy+pm78Ay0jtKRZZnjG9exe+X3GA2mVEgaF1dGPf8KbcK71noNfVYWWV9/Q+7PP4POYueu8vbG89lncR0/DklE9wgEjcrAgQOZMmVKnds3xxQ0q1evZufOndjZ2fH2229b1UmSxPvvv8+6detYunQpzz33HJGRkdUPJLhlDIVaig+nUXQoFWPBNbbidiocevrg2Mev5aRWKc6Cw9+avkpzrev8upryY3d+wOrA2/nc8yyKWcSmxE0YKqUMVClUPND+AR7v8jhtXdo2zvxr4WxaIauPJ7HmRLLV+uEqoX7OTIwMZGxXfzwdxT1SS8egM7L3s23EnJUsUdlGHaGaBPp9MAW1a81BjHqdjl3LF3Fy8wZzmUdga8a+/Abu/oE19hMIBM2XFidoNxV79uzhv//9L8HBwSxatKjGdl27dmXjxo3V1rm4uPD+++/zwAMPsH37djZt2sTIkSNrHOv111/npZdeMv9cUFBAq1atbv5BCG4/DHooSqskUl/zVZBUdeF6Q0im6GkrK/DKX61A42GOwBW0HAxGmU0xaXy7+wKnkqw3Sl3s1Uzv24Zp/dpWWfwby8rIXbmSrG++xVjpsFCZvZLVvWX+7KFHqzb9PTioHZgcPJlHQx/FW3PzuWh02nL2/bScYxvXWUVl95/8KB373Mu+XxO4GHXe3F6hlOg6rDU9RrVF3RKsvwQCwQ3xxhtv0L9/fyZPnsyAAQPq1Oevv/5i2rRpGAyG6zduxjzzzDP89ttv7N27l5CQEJKSkhg0aBDR0dGsXbu2qacnaCEYCrWUxmZRGpVFeWJ+9SK2t71FxPapm6h4J5BUmGQSsNMOcST1CBmlGTW2dbV1NVuI9/TrSTvndtYCtkEH6bHW1uE5F2qfgKQEny4V4nXFl0f7+luLdxoFL5+FuHVwZr3pPsLezZQzO/SBeo3Mzigs45/rYvkzJs1c5mSr4o3RnXmoRyur1DY1Icsyxzdf4uDaBHOZTztnRs2JQONsbZ9bVlzE5q8+If7IAXNZQKcu3P/Cqzi6e9R4DUNhIdmLF5OzdBlyicUyXuHigufsJ3GbOhXFLdgACwSCm6N///54e9/YPWb79u2ZNm1aA83o5li4cCEAQ4cOxdXVtUp9586d6dy5M6dPn2bx4sVC0G4AtFcKTbbiUZlguMZW3EeDYz9/NN28Udi0kL2F7Atw4As4uRL0ZdZ17e+B/i9Au0FWa4eTGSdZGL2QXUm7rJrbq+yZHDyZx0Ifw8fBh6Ykt1jL76dMluLRyVUP+3k42PBgtwAmdA8k1P/6aUoELYP0uBT++uwwBbKzOSrbuSSJwQ/602r8nFr7FmRmsH7BB6TFnzOXhQ4cwrBZz6IWazeBoMXS4gRtJycn8//LyspqbFe5ztn51j7Izpw5w/jx4wkICGDr1q24ud3EifcKhg8fjlKpxGAwsGHDhloFbVtbWxFtcycjy6boiBrF6mQoSAH5FjbnbZxqEasDwckfVCKXUkuhTGdgY3Qqf8Wmk1eixVVjw4guPowK98OuIm90mc7AqmNJLNyTwKVs6zyOAa72zBrYjsk9WuFga/3xIBsM5K9dR+Znn6FPs2w86lQSf0bCmr5QbG+yb/Kw8+DR0EeZHDIZZ5tbe/+tKSp7+JNzuXRa5uf/O4peZ7GVCghxZdDDIbj7ic13geB2xWg08s033/DYY48xcOBAxo4dS0hICE5OTihqsHnNyspq5FnWP4cOHeLbb7/lww8/JCQkBIDAwEDefvttpk+fzvr16xkzZkwTz1LQXDEUaSmNzaY0KpPyhBpEbC97U07sCCFiXyW9OJ3DaSYL8SNpR0guSq6xrZPaiUjfSHr59qKXby86unVEIVV6TypIsUReJx2FlJOgL61xPMB0sLSyeO3f1coStEFQ28FdD5m+GgBZlll9PJn/2xBHfqkl0nlYZ2/+/WA4vi5122A06IzsWHmGswct69LgXj4MeawTKrW16JCeEM/6BR+Qn25p2/OBiQx46DEUyuoFCtMhzh/I/vZbDPmWjXPJ3h736dPwmDED5S3uMwgEgpvn3XffBWD37t34+voSHBx83T59+vS5IYvyhkar1ZqdG3v27Flju549e3L69Gn++OMPvvjii8aa3m2NrDdSGp1lshW/ck16EAnsQj1MtuJBLi3H7S3pGOz/BOJ+x2qhp1BB2ATo9zz4WlIwybLM3uS9LIpZxLH0Y1ZDudq6MqXzFKZ0moKL7a2n8LxZdAYju85m8uuxJLadSUd3zYEDtVLink4+TIgMZHCIF+o6pCgRtAwMBiMHv97FqSg9smRab0lGPSGqcwz83yPYeNV8GBEg8cRRNn7+P8qKTK9vpVrN0CeeInzovS3nNS0QCKqlxQnarVu3Nv8/MzOzxnaV6ypbf98oZ8+eZejQoTg4OLBt27ZbjpC2t7fHy8uLtLQ0EhMTb2ms+kKvM3DhWAYJp7IoK9Zh56Am6C5P2kd6V9kMENQj+nJLjur8pAo78CvWgrW26ObHV6hMgnRtgrVd0y1MBfXLlrh0Xl51koJSPQoJjDIoJNgUm8bb62P519gwLmeXsPTARXKKre2zuvg7M3tQEKPD/arkKJRlmaIdO8mc/zHl5+PN5UYJdoVJ/DJQQbaLaTHY2qk1j4c9ztj2Y7FV3tphnNqisr3b381f38eTl24R5DXONvSf1IGOPXzE4lQguM1p27at+XW+cuVKVq5c2STzMBqNfPXVV7z++usUFhaSmJhYp9yE5eXlLFiwgJ9++on4+HiUSiWdO3dm+vTpzJ49u0ZR/ocffgCochjy3nvvBUy/CyFoCypjKNZZIrET8qCatMsqT3vsIzzRRHih8tHc8Z+h2aXZHEk/wuFUk4B9seBijW3tVfZ09+luyoPt25tO7p1QXs2/rCuFK4etBeyCmsVwAJS2JsE6oIfFQtwl8LZyQrqSU8Iba6LZc95yyMjdwYa3x3ZhTIRfnf/+Sgq0bPommtQLFqG599ggIu9rYzWGLMtEbd3EjqXfYqiwCbdzcGTksy/RPrJXtWPLej15v/1G1hdfok9Pt1So1bhNnozn00+h8qqal1sgEDQugwcPNr/ep0+fzuLFi5t4RjfO6dOn0VW8N9W2hrxad+nSJfLz83FxufF9nE2bNrFx40ZiYmJIT0/HycmJsLAwJkyYwBNPPFFrSsfbCUOBlqJDqRQfSsVYpLOqU2hUaHr6mmzF3VrI70OW4fwW2PcJXNprXad2gMjHoc8ccLXsZRuMBrZc2sKimEWcyTlj1cVH48PjXR5nfMfxaNRNl2bmdGoBvx5LYt3JZLKKtFXqwwNcmNA9gLFdA3B3EEE4txuZ8Zn8tWAfeXpnkzsR4FiSyt33utJmyrO1rheNRgP7f/mBQ2t+Npe5+PgyZt7r+LRr3+BzFwgEDU+LE7Q7d+6MWq1Gp9Nx8eLFGttdrWvTps1NLfYAoqOjGTZsGE5OTmzfvt1KTL8VZLmakIgmIvFUJtuWnqa8RG+y7pAByZSHbM8v57nn8VDaRXg29TRbHkYjlGRVEqiTLXmrrwrWxTVbFNYJjUdF7upWlUTqSj87+oBCHEi4E9gSl87s5UfNh3CN13wv+P/snXd8XMW99r/nbG/qzWquuHfjAqaa3oshAUyH2JACgdxcAjc3Ae69QMgbMAkthAC2gYSAAYMB03swboA7xlWWLMnq2tXWU94/drVFWkkrWbYla76fz/EpM2d2Viuv5swzv+fnU7jtpW/b3Xf8UTksOGE4s0dkJx0Qetd9w/4//Qnf2sTVumtHSLx4oszevPA947LHcf346zml9JTYRO4BULF1M+8++Ui7qOzj5/2Uzf/2sert9dHrkgQTTi5mxnnDsNj63Z80gUDQQ3oylupNoW7Tpk385Cc/4auvvuq6chy1tbXMmTOHDRs2MH/+fP7yl78QDAZ59NFHufnmm3n55Zd56623kk4qro18F48YMSLhen5+Pk6nM1ouGNho3hC+TXV419cQ2NGYVMQ2ZFtjduKDHANaxG4KNLGmek00D/b2xu0d1jXLZqbkTYnmwR6XMw6TbApPJjfsgo1LYwJ21QbQlM5fPHNIXPT10ZA/4Yh1RtI0ncVf7ebBd7/HG4y5S104uZDfnTeuW5PRdRUe3np8Pe66sCOb0SRzyrVjGTEt0Xo46Pfx/lOPsvXLmH1qwfCjOPeXvyE9r71tqq5puN99l5qFjxDcsydWIEmkn38eOb/4BeYDWCgvEAh6H4vFwl133cUFF1xwuLvSI8rKyqLHuZ0slIkvKy8v79Ec53/8x39w6623cvvtt+Nyudi2bRsPPfQQP/3pT3nsscdYvnx5lwszA4EAgUAsX3FzXAqyvoyu6wTLwrbivg21sYmSCKYCB87Zhdgm5fYfW3ElCBtfgS//DDVbEssceTDrJjj6+nDakAgBNcAbO97g2Y3Pste9N+GWoelDuX789Zwz9BxMBtOheAftqPMEWPbtPpauK2fTvva/WzlOCxdNKWTutGJGFwiHlCMRTdNZ9cyXrFvlRZcjUdm6ygh9KyfcfwnWokGd3t/S2MDbf/kjZRtjc4Yjps/ijJt/idXhPKh9FwgEh45+N/tvNps55ZRTWLFiBWvWrOmw3urVqwE455xzevQ669at4/TTTycvL48PPviAwsLCaJmiKJSXl1NQUJAw4bh//37mz5/Pf/3Xf3VoF+T1eqO2l6lE8RxMdn1Xw9tPbog50bTZB7wKbz+xnrNvmsDQSWIVegIBTyS6ugPBunkfqIGu2+kIozUsSnckWKcVgfnwrZYU9B38IZVfvfwt6EndQ9shS3DepELmnzCMcYXJH4QDO3aw/+GH8XzwYcL1bYXwwskGtpSGJ75nF87m+vHXM71geq9MhocCfr586fl2UdnHXDIPs/1o3vnrHkKB2CRowbB0TrxiJDnFro6aFAgERygLFizolmXkV199xd/+9rdeee3f//73PPDAA8yYMYPf/OY3PPDAAynfe+mll7JhwwZuvfVWFi5cGL1+8sknc9FFF7Fs2TJuvvlmnn322Xb31tTUYDAYsNvb//1PS0vr1LlIcGSjeUP4NtfhXV9LYHtju4laAEOWFfvEHGwTcjEVDlwRuyXUwtrqtVEBe2v9VvQORlBGyciE3AlRC/FJeZPCDjT+JqhYB1sWhsXrijXgrev8hc1OKJoaE7CLjgbnwHi+2r7fzR1LN7B2T0P02qB0K/930XjmjO5ePs7dG2p57+lN0fGgI93M2T+dSN7gxInt2r17ePOh+6nfVx69NuXM8zjxqusxGBMn6nVdp+WLL9n/8EMENieKAs5TTiH31luwpmBlLBAIDi1Go5FbbrmF3/72t4e7Kz3G7Y5ZXXcWIR1f1l0R2Wq1MmfOHB5++GEmTpwYvT5t2jTmzp3LmWeeyccff8zZZ5/NN99802naw/vvv5977rmnW69/ONEVDe93NXi+2keovI37oQy2cTk4jynEPDSt/4yL/M2w9jlY+QS49yWWZY+AY2+BiT8Opw+J0BJq4V/f/4slm5dQ40t8XhifPZ4bJ9zIyaUnJ6ZJOUQEFY2Pv9/P0rXlfLR1P0qbMazZIHPq2DwumVbMCUfltnMUFBw51Jc18O7/+4z6oCvsOArYfdUcf5yF4Tf+vMv/o+WbN7L8zw/S0lAPgCTLnHDFtUw796L+8/9bIBCkRL8TtAFuvPFGVqxYwYcffpjUbmfr1q1s2bIFSZK4/vrru93+ypUrOfPMMxk8eDAffPBBu5WS5eXlDB06lI8//piTTjopet3r9bJs2TKOO+64DgXt9957D1UNP4D3VGzvDZSQyoeLtnStgOnw4aItXPuHrIFjP64q4KmKswLfGydYR879jQfwAhK4CuIE6+I40ToiWNuzjyh7QcHB47VvKmj2dREBFMd/nTOGG44blrQsVF1N7aOP0rj01bDLQISKLHjxJJnVIyVk2cBZQ87g+vHXMzpr9AH3P/oaWzfz7pMLaaiMPZQNOmoUU8+5gW8/cFNXsTN63eo0ccxFwxlzzCAkWfw/EQgGIscffzxXXHFFyvWNRmOvCdoLFy7k4Ycf5uabb2bRokUp37d06VI++eQTrFYrd999d0KZJEncf//9LFu2jEWLFvHzn/+cadOmpdy2eEgfeGg+Bd/mcE5s//ZGUJOI2JmWcE7sCTmYipwD8vfEp/j4dv+3YQG76ms21W5C1dWkdWVJZmzWWGYMCgvYU/KmYDdYoOb7sHC9anHYOrxmK50/REmQOzpmG158dPh8gDknhVSNpz7bySMf/EBQjY0rr5xVyh1njsZlTT0CTNd1vvtwL/9eur11zSO5pS7OvnkizsxE8WXzZx/x/tOPoUSiCM02G6cvuJVRxxzXrl3vN99Q89DDeCOL4VuxT59O7u23YZ8yJeU+CgSCQ0t+fn5KebN7m8WLF/donrGVt99+m9NPP70Xe9Q5BQUF0TzdbTGbzSxcuJBJkyaxZcsWnn32WW666aYO27rzzju5/fbbo+fNzc0HnJbxYKA2BSK24lVoLW1sxR1GHDMG4Zg5CGPGgaVJO6Q0V8LXT8CaZyHQZlFD8QyYfSuMOhviUhfV++t5fvPz/PP7f+IOJuYJnzVoFjdMuIGZBTMPy/hw076miKX4vnYp8QAmFadzybRizptUSIb9yHSvEYTRNZ21L3zN6s+b0GRX60WGhTZx4t0XYh86uPP7dZ3Vbyzli38uRo/MYzozszjnl3dQPHrcwe6+QCA4DPRLQXvu3LmceOKJfPrpp9xzzz089NBD0TJd17nrrruAcB6dtpOBb775Jtdffz35+flJLXU+++wzzj33XEaNGsW7775LVlZWt/u3cOFCbrjhBjIzMxOuNzY2cueddwLhidizzz672233FjvW7g/bjKdAwKuwY10No2YWHOReHQJ0PSxGR8XpJJu7EjqY6EoJsyucnyYqVrcK1pFzV+ERayco6F1UTafGHaCi0ce+uK2i0R8+bvLR6A113VAEWYLVuxq4oc18ntrcTN3fnqZ+8WL0OAuxeie8fLzMxxMlTCYrl424iGvGXUOxq/fsFsNR2UtY+/YbCVHZMy64HK9nLB8uqopVlmDccYXMunA4VsfhscESCASHn9mzZ5OXl9d1xTiGDx/O1Vdf3Suvv3nzZoqKirp939NPPw3AnDlzyMjIaFc+ZswYxowZw5YtW3jmmWfajWFzc3PZtm0bXq+3XZR2U1MTBQVHwDhN0Cmav1XErsX/Q0NyETvDEs6JPSEXU/HAE7FDaoj1tetZVbmKVVWr+K7mO0Jax2OlUZmjogL2tPxpuIL+cMT11o/ggz+EI7HbTAK3w5aVaB1eNBWsPUt5daSwobyJ/1y6ni2VsUn3oTkO7r94ArOGZXerLVXR+Oyf29j8RWzR4/CpuZxy7VhMcdawoWCAj5/9Kxs+ei96Lbd0COfedidZhYnf2f5t26hZ+Aiejz5KuG4dO5bc227DcdzsAfd/RyDob5xwwgls2bKl64pxfPDBB9x333181Ob/fnfQNC0apNLT+1txuWJOY36/v8N74svS0nrXannixIkUFhayb98+li9f3qmgbbFYOo3gPpzouk5wT3PYVnxjXXtb8SInzmMKsU/KRTL1oyjf/Vvh33+B9S9B2/HMqHNg9i1Qmuhatc+zj+c2PcdrP7yGX4397khInDr4VK4ffz3jc8Yfit4nUOsJ8Po3FbyytpytVe3HVnkuCxdNLeKSqcUclS9c+AYCTZXNvPvgJ9T4nCCH5/hsvhqOPVpl1M9+gSR3/n/V7/Gw4omH2bHm6+i10vGTOOeWX2NPzziYXRcIBIeRfiloA7zyyitR2xyfz8eVV15JMBjkscce47XXXmPOnDk88cQT7e576qmnqK2tpba2lldffTVhdeHKlSs566yz8Hq9bNy4scOc2R3lbTSbzVgsFioqKhg/fjz/+Z//yaRJk3A4HHzzzTc8+OCD7Nixg1mzZrF06dLe+UH0kJ3f1cZyZqfAFy//QPnWetJybLiyraRlW3Fl23BkWJD7UoSkEohYgXciWIdaet6+bIS0wpjtdzLBeoBPYAlSpyWgRARqH/taRerW8yYfVU1+Qkkmq3uKpkOjL7b6VQsEaHjhRWr/+iRaU2zCscUCrx8j887RElZHOj8ZfTlXjLmCLGv3F/h0RkdR2cOmXc7Gz70EvLE887mlLk68fBT5Q0WuJIFgoPP55593+55Zs2Z1y6K8M3oiZgeDwWh0TEcuPq1lW7Zs4a233uKxxx5LKJs2bRpffvkl27dvT7CMrK6uxuPxdCuiW9B/0AIK/i31eNfX4v++PrmInW7GNiEX28QczCWuASXEKZrC5rrNrKpaxarKVXyz/5uEydu2DEsfFrYQHzSDo7MnktlUHo66XvU8lN8KDbs7f0HZCPnjEwXsrGHCWSmCP6Sy8IMf+NvnO1EjYoIswU9OGMZtp47E2k3HL78nxIqnNlCxrTF67eizhzDj3KEJLj0NlRW8+fAD1OzZFb02Yc7pnHzdAkzmmPgSLC+n9i9/oemNN6MLKQHMgweT+8tbcZ1xRpeTpwKBoG/wq1/9ijPPPJObbrqJ4cOHp3RPdXU1n3766QG97rXXXsu11157QG20Ej/n2FnqmPiy4uLeW1we3499+/axa9eurisfAvSQhndDDf5NdaheBYPdiHVcNvYJ7cVoPaSGbcW/3Eeoss1cnyxhG5+Nc3YR5tJ+ND7SdSj7Cr58BLatSCwzmGHSZXDMLyA30aFgR+MOntn4DG/vfBtFjwUwGSUj5w4/l+vGX8ew9ORufQeLoKLx0dZqXllbwSffJ7EUN8qcPjafudOKOX5EjrAUP4IIenxsWvwRuzY0EFQkzEadoRMyGXf1HEwOK9+9so6V79egyrHc1oN9GzjpN2fjHHNUl+1X79zOmw/fT9P+6vAFSWLWxT/mmEsuRx5grkgCwUCj3wraOTk5rF69moULF/KPf/yDJUuWYDAYGDNmDI8//jgLFixATvIwOn/+fL766ivy8/O5+OKLE8pWrlyJ1+sFOl8d2RGtqxpfeeUV3nvvPf7yl7+wb98+VFUlOzubqVOn8vvf/57LL78co/Hw/uj9LaGUxWwITyZs/aqq3XVZlnBmWXBFBO60OLHblW3tXcFb06ClBpo7Eatb9nfdTmfYsyNW4MVxYnWcYO3MH3B2gYKekSy6uqJNhHWTL/Xo6rYYZYlBGVY8foWGFKO0ZQkybGZ0VaVp2RvU/PnPKFWx/9chA6yYJvHaMTLO3EH8cuzVzD1qLnZT7+Zr7ygqe9Jpl7K/fDhr342J62abkVkXDGPcCUV9a/GMQCDoV6xcuZKnnnqKZ5555rC8/pYtWwiFwt/Vbd2B4mkt27NnT7u0OldccQV//vOfee+99xIE7ffeC0cjzps3r/c7LjgsaAEV/9a6mIittB+0y2lm7BNysE3MDYvYA+RvpKZrfF//fVjArlrF2uq1tHSyWLXEVRLJgT2d6Y4Scmt3hAXsTX+Efd+CGujwXiC8gDVqHT4dBk0Ck61339QRwtc76/jNqxvYVRv7PEYXuHjwkolMLM7odnsNVS289dh6mmp8ABiMMnOuHs3IGYluFNu+/pJ3n1hI0BeuZzRbOPXGnzLuxFOidZTaWmqfeJKGf/0LQrFxszE/n5yf/ZSMiy5CMgn3H4GgPzF16lSefPJJTj/9dG699VYuvfRSBg0adLi71S3GjBmDyWQiFAqxe/fuDuu1lg0ePLhdysXeoKOgncOBb3Md9S9vQ/cpsSAcCXyb6mh8cydZl47ENjYbpdFPy8pKWlZVobVxn5SdJhwzCnDOHIQhvW9GlCdFU2HrW/DvP4dTncRjSYfp18PMm8IpDONYX7Oepzc8zcd7P064bjPamHvUXK4Zdw0FjkPn5KTrOhsrmlm6rpxl31Ykna+aUprB3KnFnDexkHS7+Pt7pLF5yUd8/qkXxWgH3QIGGTSNyvUyq375EQ5ziCYtDeSwe6nFX88xY1sYe/vPkLrQS3RdZ/0H7/Dxc0+hKuH/+1ZXGmf//FcMnSwWeAsEAwFJ70sjF0GnNDc3k56eTlNT0wHbDL3z1w3s/LamW6J2T4gJ3hGxOycmdqdlW7GnxwneAU8kunpvnEgdd95cAWr73CopY7TGBOp2gnUkn7W5d4U7wZGLJyG6unXzR8+rmvztVp92hwy7icJ0G4UZNooyrBRmRI4zbRRl2MhxWjDIEq+uK+f2f30HgEnzclLdOxxTuRlXIIjbYuarQWP5JPssQrIddJ2nRvoZ9tqzhLbHclJrwGcTJP51vEzG4KO4bvx1nDX0LExy7z9YJIvKzh8+kpzSC9nxnZLwnTR6VgHHXDwCe5qw6BcIepveHFP0B1544QWuvvrqA7KITMZzzz3HddddB8CuXbs6FKvffPNNzj//fACWL1/OOeeck7Teo48+yi9+8QsANm7cyLhxiXm/5s+fz+uvv84XX3zByJEjqaio4IQTTmD8+PEsW7YsaZuBQIBAXDqJ1nyHgwYNSrr4M56pU6fyxhtvJFw7//zzWbduXaf3Adx+++0JTkhut5sxY8Z0eR/AsmXLEiLOu7LAbMXpdLJ169aEa7/+9a/5xz/+0eW955xzDn/9618Trh199NFUVbVf0NmWBx98MCGn+/fff88pp5zSyR0xVq9ezaBBg9CCKv6t9Ty58DH++MrjycfoMsgmGclkYOSYUe0sU+fNm5dS5NlPfvITfv/73ydcSzXi6/nnn+ekk06Knn/yySdceeWVKd1bXl6ecH7PPfeklNt+6jFT+fG9P2Z11WpWV62mOdjMrj/sIlDVXow2SAbMBjNm2YQZibuvnsP8qSaoWAvuSirdGtP/1oEALklgMIWjnwxmPlz+KqOOPiFa/OKLL/Kf//mfXfa3oKCANWvWJFxbsGABb731Vpf3Xn755fzxj39MuDZ69Gg8Hk+X9z755JOce+650fO1a9dywQUXdHkfhBfdxFvfPvTQQwlpvTpi6tSpvPCvpfxhxVaeX1kGwP6l9xKq3oHTYsRh6XhSsrPvCFXR8Lco0YWPkiRhdZqQDeHnxmXLljF50kQ+e/5Z1r3zBpv3VbN07UZkgwGr04VsiCxA1nW0lhY0rxd0Hbss89bQYRjS08meP5/MeVdwx3//d7/4jmjlqaee4t577+3yvpEjRw6Y74gTTzyRF154IeHanDlz2LZtW5f3/u53v2P+/PnR88rKyk6dVOL58MMPGTVqVPR8oH5HaJpGZWXlIR9TDhsWjjStr6/H7Q7bF6enp5OWltbh+KalpYXa2tpeHw8eCGeddRYrVqzgnHPOYfny5UnrjB07li1btvDTn/60nYNPV1x44YX85Cc/6XDsCeHgnMrKSs4+++yUfg9b6e3nCd/mOuqWbO5yntJc6iK4192unqnYifPYQuwTc5GM/SjSN+SD7/4B/34U6ncklqUVwayfwrRrwBL7P6jrOl/t+4qnNz7N6qpE8TvNnMa8MfO4YvQVZFgzDsEbCLPf7WfZN/t4ZW0531e3txQvSLNy0dQi5k4tZkSeM0kLgiOBzUs+4uMvIqkVpCT/D3U9wdmouGUDJ99+CmlTurbBD/p9fPC3x9jyxSfRa4OOGsW5v/wNaTm5B9p1gUBwGOnOmKLfRmgLDoxhk3LY+U3HlkZtOfGKURQMS6O51o+7Lrw11/lw1/tprvUT9CXPx61pOs214ToVScplScVpaiRNrsIl7SPNsB+XYX9075AbkKRUREEpvEoxXpxOL0kUrO3Zwg5QkBKqprPf7U/MV30QoqsL02MCdVSwzrAyKN3W6QRgPGdPGMTdb25i/L7l3LbyA5wB0CSQddAkH8fs/Ir5lq/419jpHFO+n5Jle4jv+drhEi+eJJM7fhp3j7+e44uPR0426DxAkkdlmzlq1vlU7hrKjm9j3yFZhQ5OvHwUhUdl9Ho/BAJB/6KxsbFdvunPPvus2+10N8dib9M60QpgtVo7rBdf1tzc3K78iSeeYPjw4Vx44YWYTCb8fj+XX345v/3tbzts8/777+eee+5pd72ysrLLfpeUlLS7VlNTQ0VFslFdIm37r+t6SvdB2KI9Hp/Pl9K98ZPtrTQ0NKR0b319fbtrVVVVKd3b6vDUiqIoKb9Xz8b91H3UiH9rPXpIo3F3LVXursfo6VkZ7a7V1tam9LpNTU3trqXa3/jFEa3nqd6brB8p9XdrE7tWJdqgKk0KSkP75w8FhQCxPnq+ewPssegsVYcKd0fPFjoQiGyg2BJzPXu93h6/1/r6+pTubWhoaHdt3759Cd8hHeGLRCi3EgwGU+5v2zXuzc3NKd2bnlPA6Q9/RmVTzN3Mqrbgc9fR6IbGTu7t9ndEnF7XsL+Kl37/IpXbvwcgpGo0+SJ98HQcse+QZXJ+ejNZ112HIfJ90de/I9oKbx6PJ7XPJkkU55H6HVFbW9vuWnV1dUr3thWCVVVNub+KkvgdJL4jDi3JIpobGxtpbGzs9L6+Zjt94403smLFCj788MN27jwAW7duZcuWLUiSxPXXX9/t9pctW0ZxcXGHgva3334bHRN2JnofbPSQRv3L21IKugmWxf2+GyRsE3JwHluIpbSfLdL11sOav8PXfw27UcaTNxZm3wrj54YX20VQNZUPyj7g7xv+zpb6xOebPHse14y9hktGXtLrLnsdEVBUPtyyn1fWlvPptppoupFWLEaZM8YVcMm0YmaPyMEwQByFBipBj4/PP/WCwZpczIbYvLyucUz+Dib/9mZkc9dBLHXle3njofuor9gbvTb1rPM54crrMBhFlL9AMJAQgvYAZfi0PD7/x2YCAR3oTLzSsFgkRh9TgNFkIKe4/UQhuk6gvobmsgrc+/bj3t9Ec50fd5NOs8eMO5BGUEtuzafpBpqD2TSTDYxrVy4TwmWowWWqJ83uw+XSSMs04sp1kjYoB/ugQUgZxeAqBKOI4hSkRofR1Q3ha9XNBxZdnWk3xQnUNgrjI6zjoqt7A6vJwB05a5n8jw+i12Q9ce8IwPXfJK7a3VYIL5xsIH/2ydw3/gYm503ulf4ko3zrJt578pGEqOzcwUdhdp7J7o0mIDxRZ7IYmHHeUCacXIxB5E4SCAY8CxYs4Omnn+baa6/l73//e/T6SSed1OcmIw8VBoOBO+64gzvuuCPle+68886EKMjuRGjn5rZf6Z6bm5tSHvG2q2olSUo5/7i5zaSGzWZL6V6ns320R2ZmZkr3ZmVltbtWUJCaPaPdnjhpaDQaO31NPaSFN0WjedlObM6caJnDbKMgLZwjUjIakIzJf9fz8/PbXcvJyUnpvSYTulL9bCwWS7vznuSVb+1HUVERqq4SUkMEtSBBNYiqJwp4Bmcs3U+6JZ3pOZPR8j3UBeswqiFQQ6BrSV/DaY78/CxpUDQNg200RS/+PTw53MUCvrYpoux2e0rvNdnvTVZWVkr3ZmZmtrtWWFiYUvSlzZb4vGU2m1P+bNp+p6alpXV6r6aD2x9iV4uBvIiYbTcb+M8zRrF00zC+CTZ2+ZptvyN0TSc3K59QIPb5G0wyVrspbDsbQQ2FeP/JP5NnDU9eGoxGjj7zPD4qC+dQ1Hw+NI8nnK4qDtluJy0vj9xbbkm43he/I+IxGBLTXTmdzpTuPZK+I7oiJyen3bX8/Pykwnxb2v7dMBgMKfdXfEeE722N0D4cHH/88dFI7VTYuXMnX3zxxUHsUfeZO3cuJ554Ip9++in33HNPgjuGruvcddddAFxzzTUJ7jWtvPnmm1x//fXk5+ezfPnypG5BixYt4rbbbmuXazwQCPDLX/4SgBEjRvRIMO8tvBtqwjbjKSJZDbiOK8IxcxAGVz+bC2wsg68eh3WLoW3alCHHw+xfwohTEgJygmqQN3e8ybObnmVP857EW9KGcN346zh32LmYDQf/Z6HrOuvLm3hlbTlvfLcvabDHtMGZXDKtmHMmDiLNKsTGgYCm6Xzz94/DNuOpIMlIg0pSErO3fPEJ7z/1KKFAeMxpttk4fcGtjDrmuAPpskAg6KcIy/F+RK/a+YT87PqfH/H2/tYH+mQTOuFJgLPz/szQnz0A3to4K/C9ETvwyHknuet0HQK6A7eah1vNozlhn0uzmk9I79nqQdko4cqK5e0OW5pbSYvYmttd5gGTU1AQJj66urwhLFS3zWHd7E/9QaktJoPEoPSYSN02uroww4bdfOjWCvm8zWw6dhY2v97p0pRW9mXCS3NM5J15HtdNuJ7hGcO7vqmHhAJ+vvjnEta9kxiVXTT6TPZXDAc99n9zxNF5zJ57FM7MfpTjSiDox/QHy/G0tDQ8Hg9OpzMhkq8rEbYjJEnq95bjvUF/+OyPNPSQhn9bfTgn9pY69GB78VV2GLGNz8E2IRfL0HQkw5E7fq3x1kRzYK+qXEW5p7zDug6Tg6MzRjJddjGzxc3Iys3ItT908QpSOLIpPvd1zkjo4XfHQMMfUnl7QyXvbaqm0Rskw27m9HH5nD1hEBajzPL1ldz9xibqWmJOCscflcN9F02gJKtnz3QBb4h3n97E3s2xKOgpp5Uy66Lh0fRUmqry5b+eZ9XrL0frpOflc95td5I3ZBjN77xDzZ//TGhPWaxhWSb9/PPJ+fnPMRf3TFQVCASdc7jGFbIs8/zzzyfY+XfFwUpBc6DU1tYyZ84cNmzYwE033cSVV15JMBjkscceY+nSpcyZM4e33norqcvPeeedF7Uq/9Of/pSwiBHC42m3201mZia/+tWvmDFjBllZWWzZsoWHHnqIb775hlGjRrF8+XJGjBjRrX735mdft2Qzvs11KadFtI7NJufqsQf0moecyvXh/NgbX4X4xXuSDGMvgGNvgaKpCbd4Q15e3vYyizctZr9vf0LZmKwx3DjhRk4pPQWDnLj46WBQ3ezntW8qeGVtOdv3t19EU5hu5eKpxVw8tYhhucJS/EhAVTX87hDe5iBedxBfczDxuCmAt96L1x0k4NfR6cbzi64xSK7i4ic6TkuihEJ8suhvfPf+29FrOaVDOO+2O8kqFOM6geBIQliOC7pm8+sMlT/l7AwvHzbdQkB3Eo6SNET3FsnLKemPMFReA08c0+OXkhzZWNOLsaaXkBu1Ay+OWoLrjlwCfj1mY17nD0d41/lx1/lorvUnrNSPR1N0mvb7aNrvA9rbbxmMMq5sa3RLixO7XdlW7GnmARvl1V9x+0NRkTpZ/uqqZn87m6Pu0Da6OiZYW6PR1fJhXCSh6zqarqHoCqqm8vmiByj1p/5+N54zintve5ICR2oRJT0lWVR2ZuFwNGkO+8tjTg8Z+XZOuGwkJWPaR70IBIKBze23385DDz0UjRyJ57/+67849dRTU27rvffe44EHHujF3nWP0tLS6HFNTcd20vFlqeYrFfRNdEXDv60B3/oafFvq0ZOMZWV7q4idg2VYxhErYjf4G1hdtToqYu9q2tVhXavBwlRnKdN1CzObahmzaxPGUBcpA+w5EeE6ImAXTU3IMylInfc3V/Orl7+l2acgS+FIbFmCFZuq+P0bmxiW4+S78sZo/TSrkf8+dyyXTCvu8TNV434vbz++noaqsC23bJA4ad4oxhxbGK3jaajnrT8/SPnmjdFrw4+exRk33Yr6zTfs+tV/EmiTWsJ56ink3XorlqOO6lG/BALBkYfT6UwYk/UVcnJyWL16NQsXLuQf//gHS5YswWAwMGbMGB5//HEWLFjQ4YLO+fPn89VXX5Gfn8/FF1/crryyspLXXnuNFStW8Pzzz3P//fcTCATIzMxk4sSJPPbYY1x33XXtIvgPNapXSVnMBtAPIEjhkKLrsPMT+PIR2PlxYpnRBlOuhGN+BllDE4oa/A28uPVFXtzyIs3BxBQdMwpmcMOEGzhm0DEHfT7TH1J5f3M1r6wt5/Mfamg71WY1yZw1fhCXTCvmmGHZh3WuTJAaakjD6w4L076IOB1/3Cpa+9wh/C3dSbXYzc9ekgkqHd/TtL+aNx9+gOqdsYWs4046lVOuvwmTpeMUXgKB4MhHCNoDla3LQZIZal3N5dbreVM/iT2+mWiaE1n2MNj2NedJn+Cgiz9eRmtinuq0uOP0EkgrBHPnK/UlwOoAq8NEbmn7ySdd1wm0KMnF7si50oHgrSoajdVeGqu9ScsNJjkuwttKWo4tTvy2YXOZhOB9CFFUjf3uQJxYnRhdXdHow93lg4se3iQV0EBSkSQNJA2jQSMvzUR+mokcl4lcl4Fsp4ksp4EMu4FMhwGDQUfVVBStCUWvQ9EUFE1hV0Dlh0olet4qKLceK1rkXI+roymouhrdh7RQQr2298fXVzQFgy+Iw63gbA7hdCu4PAppHpVMD6R7IKNFp7g2/I5T+S3VJDhqY+NBFbOTR2WbyBh0Cp7m0UgRe0+jSWba2UOYcmopBpOImBIIBO25++67ufvuu5OWjRkzhhNPPDHltsrLO44APRSMGTMGk8lEKBRKmvOxldaywYMHJ7V8FfRtdEXD/0MDvvW1+DbXJRWxJZsR27hs7BNzsQxPRzoCU2w0B5tZW7U2KmBva9jWYV2TZGSyNY/pCsys28eEuh8w0UkEtmyCQRNjkdfFR0PG4ARbTkHPeH9zNfOXrIkKClqbvduvJIjZZ40v4J4LxpHn6vmkYsW2Bt756wYCLeHxvdVh4qybxlN4VMxWuWzjd7z15z/ibQq/tmwwcPwV1zJmUCnVN9+Mb83ahDbtM2eSd9svsU2e3ON+CQSCvk8oFGpnyd8VF1xwARdccMFB6tGBYbFYup1WBsIR2snyyLficDi48sorufLKjqMg+wIGuzE8qZGKqC2BbOvj09mqAptfhy8XQtWGxDJbFsxcANN/Ao7shKKqlioWbVrE0h+W4lMS897PKZnDDRNuYGLuxIPadV3X+WZvI6+sLWf5d/uSOhzOGJLFJdOKOWtCAS5hKX7YCQXUiAgdiaCOO44K1ZFI62A3rP1TQdJCmINuzEE3AUsGQXNaauNyXcNsTP4ffsfaVax47CH8LWEnAKPJzJwbbmLCyaf3ZtcFAkE/pY+PAAQHDW8D6Bof2238NieLZsP3yPpWNElC1nU0SeIvah7/V1PPST5fOPJh8uXtBWt71kGfQJIkCavThNVpIm9we8sBXdfxt4TCYndtnNhd749c86EksXaE8Mq0zgRvoyk+wtsWE74jUd79VfCOF1RDWigmukYE1pAeih7HC6wJwm38eXydtsJsnFjrC4Vo8vlp9gdoDgTwBAK0BIN4g0F8oRB+JZQgRCNpSK3nNhXsGo64sta6UrRu67WOaY5sPwSAANDxs99BQdZ00ryQ6YEMj052C2S0hI9b95me8DVrdxZDpvLaOhg8vq4r9pDyrZt494mFNFbFcqi5socQUk+mxZ0Z/aoYMjGH4390FGk5h3cVuEAg6Ns8+OCD3HnnnUiSxObNmxk5ciQQziHYNgdgVwwfPpyrr776YHQzJcxmM6eccgorVqxgzZo1HdZbvXo1QIeW5IK+h65o+Lc3hiOxN9eh+5OI2NZWETsHy4iMI07E9oa8rNu/LmohvqV+C1oHOa2NyIwzpjEjEGRGbTmTfS1Y9Z0dN55ekmgdXjARTCIqo7fxh1R+9fK3oHetJUjAI5dN5vzJB2b1uPnLfXz64vdoavgVMwvsnPOzSaTnhseHuqax8rWX+Orlf6BHfp+cWdmcftHlGF9dRtknnyS0Zx03jtzbb8Nx7LH98vlMIBB0j+6K2YK+jXVcNr5NdalV1sE6PufgdqinBFtg3RJY+Vg4V3Y8mUPgmJ/D5HntAn92Nu3kmQ3P8NbOt1D0mOBolIycPexsbhh/A8MyUs8X3xMqm3y8uq6CpevK2VnTPq1kUYaNudOKmTu1iMHZjoPal4GOrusE/WrM4jteoG6z97pDHQZ59RRZDURE6mbMIU94H3RjDoWvmYJurEYFR0E69qICLKNKMJWUsH1TI6uqU1yULckMnZjo1KipKl++tIRVy16JXssoGBRNLyMQCAQgBO2Biz2Tj+12bs2LrQbUIg/+rXu3LHNLfg6P7K/j5MHHwOn/e1i62hWSJGFzmrE5zR0L3p5QNLK7NdI7Fu3dseCthDQaqrxRC7y2yCawZhiwZMiY0sGUAaZ0HTlNQ05T0a0Kqp6a4NtZtG6rAB3SUhCau4gQVjUVvTteTocCY3jrt19Iuo4tCBke2ojSrSJ15NgDad7kGet7gipLqLKOSUk9Qlt19r6InCwqWzaasKYfT1CdGI3KdmVbOf7HIxk6sY8+fAoEgj7F+++/j8lk4rbbbmPQoEHR688++2y325o1axazZs3qze51mxtvvJEVK1bw4Ycf0tTU1C4Ce+vWrWzZsgVJkrj++usPUy8FqaCrGoHtjXjX1+LbVJfU9lKyGrCNzcY2MRfriAwk45EjYvsVP9/VfBcVsDfWbkyYfI1HAsZINmZ63Ex31zPVH8ChdzAONdmhcGpEwD4aio6GtEHJ6wp6lbc3VNKcYsSODqgdfYYpoGk6X726nW8/2Bu9Vjo2i9N/Mh5LJOLO29zEO4/+id3frYvVGTWWqR4F/623R8ebAOahQ8m99VZcZ5wuhGyBYACzfv16PvjgA7Zv3x4dZ40YMYJTTz2ViRMPbkSr4MCxT8il8c2d6Cn8LZJsRux9TdD21MCqv8Lqp8HXJh3ioMkw+1YYcz4YEme9NtZu5O8b/s6HZR8mzNNZDVYuPupirhl3DYXOQg4WvqDKe5ureGVtOV9sr6Xtn3ebycDZEwYxd1oRs4YKS/EDodV9NCEHddt99DiEqiSfp+4pBsWXIEq3RlWbQ81R8doUKTeqgfA9OTmYS0owDy/FVDoEc2kp5pISTKWlGDIz2427Jnl8rPvlhygGazg3fIc/DA2j6mfcVadELyVLL3PUzGM546ZbsdjFAgqBQBCj3+pHggMjMPJMftsSniDQO3jw1yUJSdf5bU4mH408C0tcmaqpSSNwu4zcTcFmuauo4ATr5jaCb8qCsVlByVdQ81QUVcEQsGD3p2H1peHwZeAKZOEKZOGM7E2aOenPSAuBt0bFW5NsNZxESNZwWxpxW+rDm7Uudmypx29s6XaakYGILBkwyUYMkgGjbAxvUnhvkMPXDJIBk2yKHseXtdY1JmkjWie+zUgdkyZhbQ5gbfJhbvJhaWjB1NiCubEFQ4MHY0Mzhno3ckMzUiDYe+83LQ1jTg7G3NzwPicHY2743JCTgzEnF2NeLob0dD79+73k/+ml1NrVwXbKyb3WT4DyLRt598lHEqKyra5SNGkOmpaFJIFslJh6+mCmnjkYk1mspBcIBKmxdetWfvrTn3L//fcnXB82bBgLFy7k/PPPT7ktn89HTU3NYc2bOHfuXE488UQ+/fRT7rnnHh566KFoma7r3HXXXUA4An3atGmHq5uCDtBVjcCOJrzra/BvrkPzJhGxLa0idg7WozKPGBE7pIbYULshaiH+3f7vCGodj3uO0mRmepqY7vMzze8nvW3CxVayj0rMfZ03tt1Er6D38QVVyuq97K5roawuvF+xsSrl+2UJ3t1YzUVTirv92kG/wvt/38TuDbEovIknFzP7khHIEeeCiu+3sHzhA3jqw3UkSWJCbiFFr75DUImLWisoIPfnPyP9wguRjOL3RiAYqPzwww/Mnz+fzz77rMM6J554Ik899RQjRow4hD0TdAfJJJN16Ujqlmzu3CpEgqxLRyL1lbRldTvgq0fh2xdB8SeWjTg1LGQPOT7B2VLXdVZWruTvG//O15VfJ9ziMru4fPTlzBszjyxrYvRqb6HrOmv3NLB0XTnLv6vEHWg/pp01LIu5U4s5a8IgnBbxN7YjNC0cQJU0grpNfmqfO4TW0Zi4h5ikEBbVi8nfiMlTGxdVHROtW0Vqg5bEAlKWMRUWYh5ZgqlkNObSsFhtLi3FXFyM7OiekGx22jj+JDsff66BriUXtSOuO8efZMccCbjZu2k9yx95MCG9zAnzrmfq2eeLxYoCgaAd4q/SAOU9h53miEWTQYXBVQ5Kq2xYQgYCJpWyAh97ClpQDRLNBgPHbXoYafMjUbG4z0X4HigS1NmqIVnwqg62kCsqcrfb/FkY9eSCt0mzkOUbRJYveXRJSA7ECdx1NFtjx25LPQGjNyXBOyrgpiD4xteJlmFA0WSCCgRDEoEQ+II6viB4Azotfp2gCrpuAF0ObxjQdRl0AxDeR891GZCj9Y2ykRyHjRynjVynnTyXnYK08DYo3UlhmgOHxZy030bJ2KsDGF3X0ZqbUWprUWpqUfbXhI9ra1Brq1FqasLXa2tRGxq6bjBVTKb2InVODsa8eNE6LFjLFkvX7UWYOe92Nj32L2x+vdPIbw3wWSVmzbvtgN8KRKKy/7GYdSvejEVlG0wYrbPRDZORIwPXkrFZnPDjkWTk2ztrTiAQCNpRU1PD+PHj213fvXs3Ho+nW229+uqrXH311ajqgdux7d+/n/379wNQUVERvb5t27Zov4YOHYojyQTAK6+8wpw5c3j44Yfx+XxceeWVBINBHnvsMV577TXmzJnDE088ccB9FPQOuqoT2NmIb0Mtvo21yUVsswHb2KxwJPZRmX1ngvUAUDSFrfVb+brya1ZVreKb/d+0y+MYz5CQygyflxk+P9P9AbK0JBEl1vRwxHWrdXjR1HDqIsFBockXiorVZfVedte2sKfey566FqqbAwfUtqZDo6/7Czmb63y8/fh66irCNqaSLHHCZSMZf0LYulzXddYuf43P/7EILfJdbTWamLSrkuxvt0fbMWRkkL1gAZlXXN6tMbNAIDjyWLVqFaeddhoejwe9E+eITz/9lKOPPpr333+f6dOnH8IeCrqDbWw22VeNpf7lbeFI7dac2pG9ZDOSdelIbGOzu2jpEFC+Br58BLa8SYICLxth/CVw7C+gIPE5RtM1Pir7iKc3PM2muk0JZbm2XK4eezWXjroUh+ngRKNWNPp4bV05S9dVsKu2vaV4SZaNuVOLmTu1mJKsgTt/o6oa/ki+6faR04mitd8TahfVfkBIYLUbsJp1rHIQc8iDydeIqakaQ10FxobKsEgdCkdXy3rXz7aSxYJpWCnm0sGR6OqSWKR1YSGSOfl8dk8Ze+Uc0D/i80+9KEZ7TNiO7I2qn+NPsjP2yjnomsaqZa/w5UvPx9LLZOdw7q13UDRqTK/2SyAQHDkIQXuA8lHF58hIFFVbOe67bCyKAQ0dGQkNnSHVDgKbMvl8Uh3l+T786oFNfBxuOhJ846Nz2wq+nUXuGuUARrkGXWqgRdqNKWDF2GLH6LEht1iQ3BYkjwm92YTuNoKaXJDtSvA2mCXsWSbsmSacWWZcOVZcWVbSc+yk59iwO62Y5K7zeDf7Q1Q0+NjXGN4qGv3sizuvavZzIAsFsx1mCjNsFGZYKcywUZRhi5yHr+U4LAfdmkgLBlFrayNCdUyUVmpbj2tQI9f0YO9FUxvS08PR0q2R062CdW5OgoAtp6cflJWFNnsawbtuwva7J9BIbmfeOq0cvOsmbPb2tvzdpXzLRt594hEaq2NR2SZrMZL5VGRDeHLakWHhuEuPYvjUXLGiUiAQ9Air1ZogGPcVHn/8ce655552188444zo8ccff8xJJ53Urk5OTg6rV69m4cKF/OMf/2DJkiUYDAbGjBnD448/zoIFC5Dl/i+I9md0TSewqymcE3tjHVpL+2gGySxjHRPOiW0dmYlk6t/uI5qu8UPDD3xd+TWrq1azpnoNnlDHi0aKQgoz/H5m+PzM8AfIa7tQRJIhf1yceH00ZI8A8bvda+i6Tq0nSFl9C7trvVGxek9deN/gTRKF00vIEmTYujf5WbmjiXeeXI/PHe6XxW7kjJ+Mp2RMeNzob/Hw7hML2b56ZfSeLF+QyTt3Y1XCv1+y3U7WtdeSdf11GJzOXno3AoGgv+LxeLjgggtwu91kZmZy0UUXMX36dIqLi7HZbPh8PsrLy1m9ejWvv/469fX1XHjhhXz//fc4xXdIn8U2NpvCu2bi3ViLf2Mtmk9Bthmxjs/BPj7n8C4c1DT44T34959hz5eJZWYnTLsWZt0M6YkOJiE1xPKdy3lm4zPsbt6dUFbqKuW68ddx/vDzMRt6V1gE8AYV3t0UthT/9466duKrwxy2FL9kWjHTh2QdsZbiakhLiJZuexwvWgdaUkvBkiqSLGFzmbCnmbG7zNicRiyGUFiYbqnH0FSFsWYvcsUu2PMDeLu3cBtATk8PW4OXlmAqiURYR6Ktjbm5SId4DD72qjmMuMjHpiUfs2t9PUFFwmzUGToxi3FXnYLZacPncbPisYfYuW519L7BE6dw9i/+A3tainm4BQLBgEQI2gOUxkAjRdVW5qzNjV6TI6HArXuzInPK2lw+mlZDTaFOsau4G4JvEtE4PvI2zgI6wSK61epZNkXrJbWNbtNGV5HJcme5Ow4yuqbjdQcT8ne35vNuvaYpydVkNajjrgrirgpSTfsVlCarAVeWFXO6Gc1uIGCWaJJ19msKFcEQe91+9jX5k1oIpYrZIEeF6tatKMNKUYadwgwrg9Jt2A6SjbSu66iNjWGhuqYmFlXdehwnWGtNTb32upLZHBWiDbnxUdW5UetvY04Ohuxs5F5ezdgTjv3RLfxb1zHf/1ccfh1NCtuLt+59VongXTdx7I9uOaDXSRaVLclGDJbZyJYpSJKMLEtMPKWE6ecMwWwVf2IEAkHPGTt2LI899hgXXHBBu9yHh3OhzN13383dd9/d4/stFgt33HEHd9xxR+91SnBA6JpOcHdTOCf2xlo0TxIR2yRjHZOFfWIulpGZyP04hYau6+xq2sXXVWEBe3XVahoDjR3Wz1MUZvgDEQHbT5HSRsB25EHJjJh1+KDJYBFiwYGiaTpVzX52R4XqRNG6Jdh9x4kcp5nB2Q4GZ9nD+2w7g7PtbKxo4r+Xbeq6AcIR2meMz0/5Nb//uoqPlmyJPu+k59k456cTySwIR6BV79zOmw/fT9P+6ug9w6obGFlVjwxIJhMZl19GzoIFGLP7QFSeQCDoEzz66KNUV1dz1VVX8eijj+JyuZLWW7BgAQsXLuTnP/85ixcv5rHHHhNjsD6OZJJxTMnDMSXvcHcljBKEDS+HheyarYllznyYeRMcfT3YMhKKvCEvS39YyqJNi6j2VieUjc4azQ0TbuC00tMwyL07ptR1ndW7G3hl7V7eWl+ZdLxw7PBsLplWzJnjC7Cb++e8TSigJkRLJ7P79kUirYMp5GbvDrJRwu4yY08zY0szY3OZ485NWC0SZm8dhoYqpKo9KHv3Ety9l1BZGcGKClC63x9jfn40f3VYuC4JR12XlmBI73sCsGw2YBlnxegtI+RpxuhMwzKuENlsoGr7Nt5c+ADNNWHXMySJY+Zezqy5P0bu5f8PAoHgyEPSO/PlEfQpmpubSU9Pp6mpibS0A4uyvO39W8l97gfMioTUiae1jk7QqFNz7VE8fNojB/SaguTomo63ORgRuX1xYnfsWFN79t80gE6THNuaZS2yD58H5HB0dVGmjcL0WER1fIR1tsPc66s0Nb8fpbYOpWZ/2Nq7XVR15LyuDkK9F2FiyMpKsPc25uYkRlZHoqpll6tfRhX7vM2sfOFhfB9+jMHjQ3XasJ1yMrPm3XbAkdnJorJlUyFG2xnIhkwACo/K4ITLR5JdKCaxBYK+Tm+OKQ4Wjz32GL/4xS+QJImMjAzSIw/qu3fvJjc3N6mld0e0tLRQW1vbK5bj/Z3+8NkfCnRNJ7inGe/6mrCI7e5AxB6dhW1CDtbRWf1WxNZ1nXJ3OV9XhS3EV1etptZX22H9LFVleiT6eobPz2BFiT0tGMwwaFJi7uv0koTckILUCakaFQ2+9qJ1vZeyei9BJYl9eydIEgxKs8aJ1THRenC2o8M8mP6Qyoz7PsDtU7pKXUqazcjXd52KtQtnAl3T+fqNnaxdsSd6rWhUBmfOn4DVYULXddZ/8A4fP/cUamRi16SoTCrbT57bC7JM+oUXkvuzn2IqKurWz0EgEBw6Dte44thjjyUYDLJ69eqUnt11XWfGjBkYjUa++uqrQ9DDI58jfkzpb4K1z8HKJ8BdmViWfRTMvgUm/hiMiekvmgJNvLjlRV7Y+gJNgcTAi6Pzj+aGCTcwu3B2r8857a338uq6CpauK6es3tuufHC2nUumFnPR1CKKM/uepbiu6wT9aixaOl6sdrfmoW49D6EEeve5zmiSsaVFROmIOJ14bIoem21GtOZmgmV7Ce0tI1hWFj4uKyO4dy9KdXXXL9iuA0ZMRYWYIxHWCdbgJSXIVmuvvt+DyfY1X7Pi8YcJtHiQJAld16N7o9mCpoTQIimKbK40zr7l1wyZOOUw91ogEBxOujOm6J/LsAQHzNFNpVQpO7qsJyFhUSSObio9BL0aeIRUjepmP/sa/VQ0e9nX4qfC72NfyMc+zcc+yY/HqeDQIUOTSdMk0jUpum89NnSwKMGCRJ4mkdfBXJjZZsDltJFmsJJmseGyW3G5rKRlWnFl27DYUv+K0DUNtaEhFkVdW4NSUxMRq+NE6tpaNLe7Jz+upEhWa5zNd8zu2xA9jwjVWVlIJlOvvW5fxGZP4+Sf/B5+8vteazPk9/P5PxfxzYrl0ahsJCNG62wMkahsm8vE7LkjGDmzoF8uBBAIBH2Tm2++mffff5833niDhoYGGhoaomU1NTXU1NR0qz3x/STQNZ1gWTO+9bV4N9SiuZOkIDHK2EZlhnNij85CtvRPEbuqpYpVVauiNuKVLZUd1nWpGtP9/oiNeIARoVBsZJkxOFG8LpjQbuJW0Dn+kBrNY11W700QrysafajdzPtjlCWKM22UZjsY0ipaZ9kZkmOnONPepdCcDKvJwEOXTuYnS9Yg6SQVtaXIP3+6dHKXrxEKqHzw3GZ2fhP7nh57fCEnXDYSg0Em6Pfx/lOPsvXLT6Pl6S1+pu6pxhZScJ12Grm33oJlxIhuvxeBQDAw+P7777nrrrtSHt9JksRll13Gfffdd5B7Juj3NO8Li9hrnoVgm7mrklkw+1YYeWa7VCrVLdUs3ryYl7e9jE/xJZSdVHwSN0y4gcl5k3u1qy0BhXc2VvHK2r2s3FnfrtxpMXLuxLCl+LTBmYf8eUjXdQItSvIc1O3yU4dQu7mQrytMVkNCJLXdZY6K1rHjsFDd1mFQ1zSUmpqwSL17L8G9ZXjL9tIYEa174hIp2e1trMFLIuJ1KaaCAiRj/5dptq/5mmX/73+jg8nWOMrWvRKMpTQtHDmGc395B67snEPeT4FA0H/p/9+Ugh5h3+1FR+80OrsVHZ2a17/gmS+2YbbZsdhtmG326GaxR46tNsyRY4stUsduxxKpZzB1nev5SELXdZp9ChWRPNX7mnyRY380d3V1KrmrJWiRoEXWaJtJNMdppjDdQqnNSqHJRLYk41IlzH4NvAq+xiCe+o4jvIM+lbpyD3XlyXO0WOxGXJlmHA4Jp0XBJnmxhZqw+mqxNFci11XH7L/r6qC3It8kCUN2dqJIHRdVbcxpFazzkB32AfV7dShJFpUtGQoxOcJR2ZIE408sZub5Q7HYj+zFAgKB4NAjyzKvv/46K1as4KOPPqKurg5N01i0aBHHH388w4YNS7mtnTt38sUXXxzE3gr6KrqmE9zrDufE3lCL2pxMxJawjswK58Qek4XcQRRrX6bWV8vqqtVRAbvMXdZhXbumMS3OQnxUMIQBwOSAolmx3NfFR4Ozj9h99nGa/SHK6uLF6hZ213kpq/NS1ezvdnsWo8zgbDulWRHROiciWmc7KMywYjT0fjqlU8fm89RVR/MfL39Lk09BlsL24q37NJuRP106mVPHdm437mkI8PYT66kpC4sAkgSzLzmKiXOKkSSJ2rLdLLv/bhrrYy4BQ2oaGV1Zh3PWLPJuuw1bmzQTAoFA0JaWlhaysrK6dU9mZiZeb/vIVYEAgP1b4N9/gfX/Ai3euUeC0efAsbdA6cx2t+1u2s2zm57ljR1voGgxK2mDZOCsoWdx/fjrOSrzqF7rpqbpfL2rnqXrynl7QyXeNpbikgTHjcjhkmnFnD62oNdTBGqajt8TamPtnTw/tc8dQuvmwr2usNiNCZHTrUJ1omhtwu4yY+ziveuhEKF9+whu3YunbA+hsr0E90airveWo/u7P4YzZGZGReqwRXgs0tqQk3NEz18qwSArHn84ImZ3/rkbjCYuvvMeLPa+5xYgEAj6Nv1vtkbQKwRbWlISsyEcpa2GQjRUtpVTu4dsMEYEblt7MTxyzRIRwaPHNjtme2KZyWLtEwOAkKpR1eSPitX7Gv0x8brRR0WDr0e57VoxG+WI9beVwnRb2BY8wxa1Ax+Ubk0pAkPTdLxNAZprYzbmzbU+mqvduOv8eJpVOko8EPAqBLwKsekmA5AV2UZiVFqw2uqw5dZjddVh9ddh89dh9ddj9ddhVAMJ7cl2e1xO6vZR1a3nhszMI2JlYn8laVQ2Roy2WFR23pA0TrpiFLmlyXOVCQQCQW9x5plncuaZZ0bPFy1axIIFC7jiiitSbuOFF14QgvYAQtdbRezasIjdFGhfySBhHZmJfWJuWMS29q9xR6O/kTXVayIC9ip2NO3ssK5F05gSCDDDF2CG38/YQBATQM4oGBYXfZ03BkTeuqTouk5dS7BdHus99eFI6/qWJAslusBlMTI4x87grERb8CHZDvJcll5P+ZMKp43N5+u7TuWdjZW8u7GaRl+QDJuZM8bnc9b4QV0+e+zf08xbj6/H2xT+eZisBs64cTyDx4dzX3/7z+f55LWXUCOTnEZVY8Le/QwtGUre/z6I49hjD+4bFAgERwy5ubls2rSpW/ds2rSJnBwRCSiIQ9dhz7/hy0fgh3cTywxmmHQ5HPsLyGkvSG+q28TfN/ydD/Z8gB4n3lkMFi4acRHXjr+WImfvpcwoq/OydF05S9eVU97ga1c+LMfB3GnFXDSliMIMW7faVlUNX3Oog8jpRPtvvyfU4Rxij5DA5ozZebe1+7a5TAnnBmP3FvVpXi/BvXsJlpWFBeuysohN+F5ClZXdD8yRJIyDCiLW4JGc1nHHBufASsGnqSr+Fg9+j4ctX3xCoCV5wFRbVCXEjrVfM/b4kw9yDwUCwZFG/5q5EfQaNmdaNH9FKhjNZgwmE0GvD13vmQWMpir43c343c09ur8VSZKjArjZZkuIAu80grw1cjxORJc7mLRLGl3d4IsTrP1Uu/0HNIjLcZoTclWHxWprQu7q7gj3uq6jtXhRI1bfShKrb1NtLem1NTjr6imM5CvRkQhY0vFZc/Bbs/Bbs/Fbs/FFjgPWTHQp+c9JMTnwmBx4XMkt6c0mHVe6AVe2jfQCF2kFaaRlW3FFtraWPoLDT/nmjbz7ZMdR2RaHkWMuHM7Y2YVIh2GiVSAQDBw++eQTFi9ejCRJ3HfffeTndx4V2BWpjnkE/RNd1wmVe/BuqMG3vha1sQMR+6hMbBNzsI3N7lcitifoYW31Wr6u+prV+77i+8YdCZOn8Rh1nYmBADMjAvZEfwCzLROKZ8Uirwungi3j0L6JPo6m6VQ1+9uI1TF7cE9A6bqRNmQ7zElzWQ/JdpBp75vuVVaTgYumFHPRlOJu3bd97X4+eG4zaij8jJGWY+Xsn04ku9CJd/sPvPt/d7PTG7PndPkCzFTNDP2f+3Cddlqf/FkIBIK+y6xZs/j73//Oz3/+c4YMGdJl/V27dvH3v/+d008//eB3TtD30VTYujwsZFesTSyzpsP0G2HGAnAlPn/ous7qqtU8veFpvqpMzMXuMrm4bPRlXDHmCnJsvbNwwhNQeHtDJa+sLWfVrvaW4i6rkXMnFnLJtGKmlmYk/C1VQio+dyhp5HRb0TrQ0v0xTmdIshQToiPW3jZXayS1KSFXtc1pQj4A5xld11EbGwnt2ZMoXEeO1drarhtp23+TCVNJSSTCOj7SejCm4iJks7nH/e2rxIRpNz63G7+ndfPgb0l+ze9xE2hp6dHrSZLE9lVfCUFbIBB0m/4ziyPoVUZMn8UPq/6dcv3T5v+CscefjK7rKIEAAZ+XoM9L0OuNHft8BLytx3HXonV9BH2x+moo1PULJ0HXNQLeFgLenv3RjEc2W5DMVjSjhaBkwi+Z8OpGmlUDXkwEJTNB2UxQNkX2ZoKSGUU24Wo9l81obQRfSzS6OhJhndGz6GoAXVFQ6uojonQkJ3VtLcr+iGhdGxOtdV/7VZpdIaFjDTRiDTRCXAoY2eXCmJODnJOLkl1EIL0Qny0HnyENr27HGzTiaQFPU5CO1jgEQxJ1tRp1tS3wfQtQlVBudZhwZVvDIneOLUHsdmUJwftQEo3KfufNuKsGjLbjolHZY2YP4piLhmNzHnmDd4FA0Pd49tlnWbJkCSUlJdxzzz3R65rW/YV18+bNY968eb3ZPUEfQNd1QhUevBtq8a2vQW1IImLLEtajMrBNzA2L2Lb+Mbbwhrx8u/9bVu37ilXln7G5eVc0qrUtBl1nXCDIDL+f6b4AU4IKtvxxcNT0mH141rCwB+UAJ6Rq7Gv0sbttpHWdlz31XoI9yN04KN0aFqqzHO0irl3WIz8li67rrHl7N6ve3BW9NmhEOmctmIDR28j3d/0vn25ah9saGz+W+hROnvcTsudeLFyZBAJBj7juuutYunQps2bN4v777+dHP/oRDoejXT2v18tLL73EXXfdhdvt5oYbbjgMvRX0GUI++PZF+OpRqG/jbpNWDMf8FKZeDZZEJzpN1/h478c8s+EZ1teuTyjLtmZz9biruXTkpbjMB+5gp2k6K3fW8cract7ZWIUvFIsgNung1CWOKcrkhMFZjE63E/IqeP69n3dXlMdEa3eIoK93RWrZKMWsvV1trb5NCfmprXZTrwZA6JqGUlVFsCycyzpUVhZ3vBfNk1pUcML7cTrDInVJacQivCQaaW3Mz0cy9E/XIlUJhQVnT1icThSjPTFRusWDz90cvRb0Hdp0DLqu4/O4u64oEAgEbRBPjwOUkbOO46PnnoqspOosYknC4nAwcubs8JkkYbJaMVmtkNm9fEVtUUKhqOjdXhz3RsRxX5vzyHHcPaFA93OatKIFAxAMT36aIpsL6HYMmGzEYLVittmx2R3YrHYsqh2z144FO+aAHXOzHXONHa/dTpnVhkmSMPj8GLw+ZI8HudkN9fWotXUJUdVqQwO95udjNMbyUcflpDYknOdizM5GtqVmUaSpGp7GAO5aP811YVtzd13rsR9PQ8eR7P6WEP6WUDTHXlusTlNU5E7LtkXF7tZjk6V/DjD7Gl1FZeeUODnx8lEUDEs/jL0UCAQDjZUrVzJnzhxWrFiBMU7wuPfee7n44osZP378Yeyd4HCh6zqhfS34NtTgXV+LWp9kHChLWEZkYG+NxLb3fVExoAZYX7OeVbs/ZFXFF6z3lKF0MEaXdJ3RwRAz/H5m+PxMNWXiLJoRE68HTQbzwM1H5w+p7K33JojWu+taKKv3Ut7gQ+1mLkeDLFGcaQtHWWfFR1nbKcmyp7xI9UhECap8tGQrP6yujl4bPauA488bRONTf2HTa6+wviATJSJmGzSdYyfP4Oj/+A2yxXK4ui0QCI4Azj77bC688EJef/11brzxRm6++WZGjx5NUVERNpsNv99PeXk533//PcFgEF3XueSSSzjjjDMOd9cFhwNvPax+Gr7+K3jbROzmjYPZt8L4i8GQOGYMaSHe2fUOz2x4hh1NOxLKip3FXDf+Oi4YcQEWQ8/+pum6TtCv4msOsnNvE59uqOa7H+oJtYRw6BJnaAbsugGHLuHUZYytQ5hmH3VbKviyR68aw2iSE6Kl7e2OY1bgZpvxoLqpaMEgofLyNhHW4bzWofJy9B4ERRlyc8IidVyEddQaPCOjT7vDKKFQXER0ohjta3ctFkUd8nc/0Km7SJKMxenE5nRidbiwOp1YXWns27aFpuqqrhsgrC/YnCKFoUAg6D5C0B6gGM1mzvrZbbz+x/8FXSK5qC2BBGf97DaMB8FOxWgyYTSlY0/rnkgWVDSqm2P5qivqPVTWNlNd10RdQxONTW60gB+zFsSsBzFrofBx66a3OddCkXrBFLOKJ0FTUL0efF4PvrqeNgLoOkZVw6hpGNEwZVkxpheEz1UtVtZmb7bZsaRnYM3MxJqTizU3D3NebjQ/taE1N3V6OpLccyufZMgGmbRsG2nZNpJlB1JVjZaGQFTsbhW6w6K3j5aGQMeCtyeE3xNi/57kgrfNZcKVZcWVbSMtJxLpHSd8m8wDd4IxFUJ+P5//YxHfrEgelW2xmZhx/jAmnFh0QBZQAoFA0BMqKyu5/fbbE8RsgLvvvpsRI0Z0S9D+4IMPuO+++/joo496u5uCQ4Cu64QqW/BFIrGVumQiNliGZ4RzYo/NxuDo2yJ2SAuxqXItq3YsZ1XVar71VRLoZJHpiGAwnAM7pHJ0xmjSB8cJ2Om9l5+xv+D2h6JW4LvrWiiLE60rm7q/2NVslCNidTi6eki2ndKIaF2YYcMkxkHtaGkK8M6TG6jeFUknJcGsc0opLf+IHWf9nU1OE3uKsqP1020Ozr/zbvJGjTlMPRYIBEcaL7zwApdddhlvvvkmwWCQDRs2sGHDhoQ6rSlnLrzwQpYsWXI4uinoJkpIZcfa/ez8rhZ/Swirw8SwSTkMn5aHsbuLyBr2wMrHYd1iCLWJQB16QljIHn5KOxcbn+Lj1R9eZdGmRVS2VCaUjcwcyQ3jb+D0IadjlNtPq+u6TqBFaZeD2usO56GOP/c2B9GU2PjPDEwHwuE2PcNkNcRFTpsTIqdjx2Gh2mQxHFJRV/V4ItHVkRzWe2OR1kplVfeDeQwGTIMGJURYh4XrUszFxchJXBsONUowmCBK+zzNiZHSkeO2IvWBBG+liiTLWJ2uyObE5nRhdTjD5y5XtMzWei1y3WKzJ51b3vzZR7zz2EMpvbau64yYcUxvvyWBQDAAEIL2AGb4tJlc8B+/ZcXjDxFoaUFHQkKP7i0OO2f97HaGT5t5yPqk6zpNvhAVjeGc1eH81f643NU+9rs7FkDBBgYbdBKUkuuyRPNVZ6TH5bBOt5JnA4esEvL7ohHjAa+XQH0tvtpa/PX1BBobCLibCbS0hKPEAwFCSoiQqqJIEJJl9J5a60gSitGAQg+F2EADVDRAxTZMFms0X7jFZkuaU9xss7XJMW5PyDFusdsxGA9sQthgkEnLsZGWYwMy25VHBe/a9mK3u86PpzHQoYmAzx3C5+5C8M4OW5mn5cTE7rSIpblxAAveezdv4N0nH0lYPRkflT1yRj7Hzh2BI11EzwgEgsNDKBQiEEhiId0Dqqur+fTTT3ulLcGhQdd1lGov3vXhnNhKbZJoAyksYtsm5mAbl9OnRWxVVdi6+0NW7XybVTXrWRusxdfJcHFwKMR0n5+ZhjSOzp1CzujZ4dzX+ePBeOSn/tB1nfqWYLs81q3idV1LsNttOi3GNnms7ZRmORiSYyffZUXuRWvMI53acjdvPbYeT8Tm32iWOWZEHdY//J69jY2sG5xPk8MarT9q+jGc/vPbMVtTc4ASCASCVLDZbCxbtox//vOf/OUvf2HVqlWoasye2WAwMHPmTG699VYuvfTSw9hTQars+q6GDxdtIeBVoDX2RoKd39Tw+b9+4JRrxzJ0Ygr5qSu/gy//DJteAz32O4Ekw9gLYfYtUDil3W1NgSb+ufWfvLDlBRoCDbHbdInp6cfwo9IrGGMbj68mxIYd+2ICdVx+ap87hNZNN5iusNiNCZHTCXbfLlPC+eGc59J1HbW2Ni6XdaI1uNrQ0HUjbZCsVswlxZhaI60Hl0atwU2FhUimQzP+DwX87YRoX0IEdbIoag9KsHeeZztDNhjCYrMjHCkdFaejEdQxgTp63enCbLX1atBTT91gBQKBoDsIQXuAs8s+hKdLria/bhvDW3Zi0QIEZAs7HMOozh7JaNsQhvfi6wUVjao2AvW+Jh8Vjf7ouTeodt1QB1hNcixXdXosh3U0d3WGFYsxPLjTAoFYPuqqHSgba1FqavHE2X0rtTVoNbUYQyFchO3IU0GVQJFlFENkk2N7zelAc7lQHTZUqwXVZA6L2LJESNcIqQrBYIhgwIdyABP5oYCfUMBPS0N9j9sAMJhMMbHbZsdst7U5bz22tTmPF9BtGM2WpCs/EwXv9qiKhqchkBDd3Sp2pyx4725OWm5LM7ezNE+Ly+F9JAreyaOyjZGo7MlkFbo48bKRFI1qv/hAIBAIDiUlJSW8/vrr3HLLLYe7K4JDSKi6Be/6SCR2TQci9rD0cE7scdkYnH1T3NW89Wz/4S1WlX3EqoatrFHduOMF0zZDokGKwoyAykxHMdMHzaJg8AlhAduRwqRtP0XTdKrd/sQ81nGitTvQ/dyPWQ5zJJ91LNq6VbzOcpj7tLVkf2HXdzW898xmlED4mc1u1Zj0wzOY3ltLpcvOdyOLCUWet2SDkTnXzWfiqWeJn71AIDhoXHbZZVx22WV4PB527dqF2+3G5XIxdOhQnE7n4e6eIEV2fVfD209uiM3vtNkHvApvP7Ges2+awNBJue0b0HXY8RH8+8+w85PEMqMNpl4Fs34KWUOBcHCFrzmEzx1kX81+Pvr+MzaUbcYYsDIldC72kAtbyEW6moUxaAUdtqOyne8O+L3q6Hgl8Eo6XlmnRdIxO02MLE1n6shs8vMcCfbfBmPfcYrRFYVQZWVYsN67NxZpvaeMYHk5urf7uZgN6emYSuOswUtKMQ8uxVRSijEvt9fGELquowQCSYXozsRpv8eDEur+YsruIhuM2FyxiOlY9HSiEG11hAXq1msmq61PjLP6ghusQCA48hGC9gDm/c3VzF+yBnRodI7ke+fIhHIpAD9Zsoanrjqa08Z2nVVa13UavaE2YnWcNXiDjxpPZ9HVXRMfXd0qWBdl2qKCdYbVgNbcHBaka2pQa3eh7AkL1UpNDVWtAnZNDVpzcpGzJ0gWS9TeO5qTuvU8J5yn2pibizErC6kbf7A1VY3mEQ9EcoZHj1vP/ZFyb1y+8Wjd2L09/cGroRC+UBO+5qYe3d+KJMttIsDjIsftcRHi8dHkNlu0LC3HTm5pOiZrPrIcE5rDgnckZ3dtotjdXOenpakTwTuygjZqldgGe5o5JnLn2BLEb2eWpft2VwcZJRhk28ov2L56JT5PMzZnGiOmz2LkrOMwms2dRmWbbdlMP2cok04p6VMPSwKBYOBy2mmn8eSTTzJt2jROOukk0tNjKUpeffVVtm/fnnJb33134BNPgq7RQxreDTX4N9WhehUMdiPWcdnYJ+QimTr+2xLa78W3vgbvhlqU6iSTYBKYh6SHc2KPz8Hg6mOTH5qKXr2Z3TvfY1X5F6xy72K1HKTBEDdOaBP9m6uoTMfCzLThTC85geKhpyLljgK5b40tDhRF1djX6Gd3XUtcPmsvZfXh44CidbvNgjRrQqR12CLcQWm2nTRr343S7y8EPT42Lf6IXRsaCCoSZqPO0AmZjL3qZDb9u4avXt8RHVunB6sY/+9HMAWb2VqQxc782ILI9Lx8zrvtTvKHjThM70QgEAw0nE4nEyZMONzdEPQAJaTy4aItnQd1Aujw4aItXPuHrNh8jBqCTa/Dl4+gVG3Fp6Xj1UbgUzPwGovwDjoVX8ZkvPtkfM814G2uxusOEmhJXDhnZjDTGNzj9yDJEjaXKRZJ7TIj2w3scvtZW93E5voWWmQ9LGJLYb0vw27igkmFXDmtmAlF6X1ClATQ/P6wWL13L8E9ZQnW4KGKfaB0f9GhMT+/fYR1ZG+Ie85LBV3XCfl9bYRoD/6InXf7HNOxTe1B37uLwWjE6kqLCM5txGmHE1skitraptxksfaZ34GeEnODfZhAiwdJktB1Pbq3OByc9bPbDqkbrEAgOLKQdP1A5EXBoaS5uZn09HSamppIS0s7oLb8IZUZ932A26dgVEMcX7GeYyo3khZsodns4KtB4/m8aCKKwUSazcjXd52KLEntoqsrIlv43I8vdGDR1a3CdOu+NcK60CaRE/Qg19ej1NZERWm1NiJWt0ZV19X1aGCVFEnCkJUVEaUjW15iTupWsVp2Ovv0oEPXNELBQNRGPSyG+9qJ49HjViHc640TyX0EvS1oas8/497CZLV1IIaHI8jjI8SNZiuqakIJGgj4JAItMl43eJvBUx+kpannqyzt6eZo3u62kd6uLCuGTibve5vta75mxWMPEfC2kODNhY7F7qBo9Fh2rlsdd0csKnvE1HxmX3oUrixr0rYFAsGRR2+OKQ4W5eXlTJ48mfr6+oS/sa0PxD1B7QN/ww43B+uz922uo/7lbeg+pe2fISSbkaxLR2IbG8unG6rx4ltfi29DDaGqDkTswWnYJ+aGRey0PiRie/ZD+RrKd3/CqqqvWeWrZJXZQI2x47XCGZrOdEMaM7PGMn3IqQwdfhaSrXuTd30Vf0ilvMHL7tpYHuvddV7K6loob/ChdNN20yBLFGXYoqL1kGwHpVl2huSE99Y+tqDwSGLzko/4/FMvitEOuha2Zo3sJU1Bj8sVmle9hjHfP09I1vh2cD71zpjb0ojpszjj5l9idYjISIHgSOdgjynLysrIzc3FZhMpC/oavfnZf7+ykg+e25Jy/WFTcrE7JHx7d+Ddvx9v0IZPSyeo927OZNkohfNOJ7P6TjMl5Ke22k1IsoSq6Xz+Qw1L11Xw7qYqgm0W7xlkiZNH5TJ3ajFzxuRFXSQPNWpjY8waPCJct1qDK/v3d79BkwlzYWFipHXp4LBwXVyMbG0/36TrOkGfrxMhOv56YsS0ph58YdpotsQJz05szuRCtC0uktrqdHboUDmQUIJBtn39JdtXfYXP48bmdDFixjGMnDlbRGYLBIJ2dGdMIQTtfkRvDhZfXVfO7f/6jpmVm/jVun/iCvlQkTCgR/duk40/Tb2MrweNI81qxB1QDii6Oi8aXR0RqdPMFMtBBqlesgNubJ7GiDgdJ1RHrL81j+eA3m88ks0WFz0dEaZzY8eG1qjqrMxDloulv6DrOmoolCRi3JdEFG89j0WOx0Ry3yHJI9MVRpMZk82GyWLDYLQiyWZ0zOiaCVUxEgoaUAJGkMxIkhkimyRZEq9hTDpYdaSbY3m7c+LE7mwrrszeE7y3r/maZX/8X7pezhxGMhZhsp9ORkEhJ1w2ksHjsru+SSAQHFH0B0EbYMeOHfzXf/0XH330EXV1dQmru7uLJElC0ObgfPa+zXXULdncVao00i8Yge4L4VtfS6iyJWk18+A0bBNzsI/PwZBu6ZX+HRBKAKo2QPlqqsu+ZFXtd6zSPKy2WqkwdSxgu3SJaZZcZuROZsaIcziq9MQEh5n+hiegxEVYhy3BW/eVzf5uPyOYjXJYpI7LYx0+d1CUacNkEG4xh5rNSz7i4y8ik+5S5z//obuWM2TPO9Q5bXw3rJBAZBgsGwwcf8W1TDvnwgE/kSsQDBQO9pjSYDCwZMkSrrjiil5vW3Bg9OZn/85fN7Dz25pUpzQOCM2g4DE24TO58Zrc+ExuFKufscUjOeGoY8nPyY4K2GZb8rmeZGzf7+aVtRW89k051c3t57tGF7i4ZFoxF0wuItd18Me4uqah1NQQ3LMn0Rq8LCxi98S1UrLbMbe1Bi8twVhcgpaRRsDna5NDuuPc0q3nutZ9t57uYrJY20RKJxei4+29LU4nJnMfeBYRCASCAUB3xhTCcnyA8t6mao6p2sRvv36O1hGjoc3eEfLxu6+f496Z1/L1oHGdtmczGcIidYaNwTaJwZKPIt1HbshNls+NvaURvb4OpSwSWV1Ti1JfD5GJ5cbI1mNkGUN2VszeOye3XVR1OLI6F4Ozd1dsDiQkScJoNmM0m7GnZxxQW6nYqSeI4W0iyKP3+H09tlNXQkGUUBAfB2anDnIbgTt8HPRYaNxnjiuLE8JlMzanE1eWC1dOGhn5GWTkp5OWYyct24oz05qS9bcSDPL2X/5Eqk9+BuvxWJwzOPrsIUw5vbTP2aYLBAJBPMOHD+ef//xnwjVZlnn++ee7NbH5/PPPc8011/R29wSEbcbrX96WkkVk0+vJbeLNpa5wTuwJORgPp4it69C0F8pXQ/ka6sq/ZnXTD6wyG1httbLbbAIHQPuoUxsyU+1FzCiYwcyjzmN03mQM/UjA1nWdBm8oIZf1nrqWaMR1raf7jjYOsyGcvzonIlpn2ymNRFwXpFmRZSF49hWCHh+ff+oFg7VzMVvXkbUgJXvfZ9fo4WyN++/qzM7h3FvvoGjUmIPfYYFAMGAQMTgDA39L6IDEbJMhGM45nZUejaKORk67jGzzbebV8n+xzrOakBwIuwgBWdYsrhp7FT8a9SPSzN0X5Zu8Id5Yv49X1pbz3d7GduVZDjPnTyrkkmnFjCtM6/XFXnowSGjfvlikdVmcNfjecvRA9wJJdEDLyYaiQrT8fLScLNT0NBS7nZDZRFBT8bdExOimKvwV2/F94Cbg8aDrh0CYttqSREonCtHJLL5FRLBAIBAcOQhBe4Dibm7htrX/BHQ6mrKQAQ2dX637J9ef9Vum5FgYJgcolXwUhDxkBd2k+Zqxu5uQGsK232pNLZo30TYyGNl6guxwxCKn44Xq+KjqnBwMWVlIhv4zaSgIR3CEB5kHZkWoaxqhgD8icLe3UY+d+7qMIO+5nboGuh9d98f6lcJdITc0V7a9GhPADSYrRkvYXt3icGBLc+JId+LMTMOV7cLqcLDvh22E/EmsWjsgtySfc2+dSXquPeV7BAKBoL+za9euw92FIxbvhpqwzXg3MZe4sE3MCYvYGYcp5UWwBfZ9ExWwmypWs0ZtZpXVyiqbhe1mM+RkJL3VjMwU1xCmFx/PzCGnMi5nHCa5bzv7aJrOfncgJlrXt7A7IlzvqfPi9nf/c8y0m6J5rAdnh0Xr1uNsh1lE6fYDNE1n/bMfhW3Gu0KSUCWVVdOn0eivjV4eMmkqZ/38V9jTjgwbfYFA0Lf4/PPPUXox7+3VV1/da20JegerLTwDSYczlPFo5Ju2cVz6IuxjZ2M/4XqMxePb1VI0hXd2vcMzG59he2NkUWVk2rDIWcS1467lwhEXYjV2bxyqqBqf/1DLK2vLeX9zNUE1Ucg1yhInj87jkmnFnDwqD3MKgQqdobW0JFqDl+0lWLaHUNleQpWVkCTCWQdCBjksQhtlQgZD+NxoIGg0oLpcKC4HisVCyCgT1HUCSohANGDEC9W7wttBwGyzpyRGJ15zYjD27bG2QCAQCA4+QtAeoEzf8w2ukK/LejLgCvl46Y3/6nBY6e/geocYDBizs6O234Y4u+9YhHV4k+1CdBN0jiTL0XzZZPW8HV3XUULBqAge9PkScohHo8IPup16EPQguh52OVUC4O++E1QHSKDvFGK2QCDo1zz77LMce+yxh7sbggj+TXWxnNkpYMy3k3PNOIxZh1jE1jSo2x4Rr8MCdkvNZtZaTKyyWVlltbI124wu5SbvNzITMkYwo+REZgyaxaS8SVgMfc+GUFE19jX6o2J1WV1MtC6r9+IPdT96Jj/NEhatI3msB2fbGZzloDTbTrpNTCz2Fpqmo4Y01JCGElJRghqqokX24XMlWq6hhlSUyLHiDxHyBlB8QRR/EMUfQgkoKAElVl/RUdWwQZaqS6i6jKrL6JIBiOWm1XUFLbgNNbQdXfcjSVYMphHI5pHoajVBz1sE9HA6KEmSOfbSK5h50Y+QZGETLxAIDg5PPfUUf/3rX3t0b7KFVULQ7nsMy97NTlKNkJaZMLScghuWQnpxu1K/4ue17a+xaNMiKjwVCWUjMkZww4QbOHPImRjl7k2Jf1/lZum6cl77poIad/s5n7GD0iKW4oVkO1MfI+q6jtrQEImuLkuwBvfv3Yu/oZ6QMSJIGwxhAbpVoB6URTDueshgIGiQUVLJy60GwHtgqQAtdgdWlwuro60Q7cSaJN+0zenC4nBiMAo5QiAQCAQ9Q/wFGaAcU7kxmis7FVKZnpBdrja5qdvkpI5EVRsyMsSEh6DPIUkSJrMFk9mCIyPzgNpSFYWg35fURj1BGPd68XtaaGn24HN7CHi8BP1eQgEfasiPrvXU26AjdJprG3q5TYFAIDi0dNc6XFEUAt202xOkjupVumURaXCYDo2Y7a2HinUxAbtiDb5AM99azFEBe1NpIWoHEcQyEmMzRzGj6FhmFMxgSt4U7Ka+sSDMH1Ipb/BG8lnHROuyei97670oWvc8O2UJijJtDMl2RPNYt1qDl2bZsZkHlgtSq7CshNTwvhvCcvRaUEVRkt8bPldRgmq4XkRsPjgpJA1Ew9GS0ebXXw3uIORdAXqA1pUqOhJaaDt4PwBiEZL29AzOueXXlI6fdBD6LRAIBDHuuusuTj311G7f5/F4+PWvf83WrVuj1xYsWNCbXRP0EsOV1/hcmktAt6PrWocLqyRJxiJ5GV5Q0U7Mbg4289LWl3h+y/PU++sTyiblTuLGCTdyQvEJyJ2l1mhDQ0uQN74LW4pvqGifqi7bYebCKUXMnVrM2MKOBXklEKBl107cO3bg2bObln0VeKur8NXX429uIqCpsQjqOIFaKUqHooPsfiJJWO2OWCS0Kw2ro6047YoTriP1HE5k4ZQpEAgEgkOMELQHKHm6H383Zh8lux3HzJkxwTo3B0NODqbcXAw5uRhzspGth8kuUiDoYxiMRmwRe6QDQdc0WppbaNjXQENVA037m2iua8ZT34y3yYPX7SHQ/C26Vt91YwBIINm6riYQCARHAKtWrWLx4sW89NJL1Nen+j0p6C4GuzH1CG0JZNtBePxQFdi/KSJerw3v634gCKy3WlhttfB1hpX11mJCnVhgj8ocxYxBM5hRMINp+dNwmQ/s7/iB0BJQ4vJYeymrb2F3bVi03tfko7spRc0GmZIsW6JYHdkXZdgO2A7zYNA9YVmNisndE5YT71VDGpp6ZOZrlbQQsqZg0ELIWghZjey1ED5bLn6qCbW8EXeH3mYfE7Otxlyu+sOfcGYegD2SQCAQpMiYMWM48cQTu3XPt99+y4IFC/jhhx8AcLlcPPXUU/z4xz8+GF0UHCDGQC2npD/Cm/t/RMj7XvKFVb6PMdnP4JS8lzAGY/OPtb5almxewr++/xeekCeh3eOKjuOG8TcwLX9aymlQQqrGp9/X8Mracj7cWk0oblwg6ypOgpw02MGcYS7GZBkItVTgXbuVzz9qxFtdjbeuBl9jI/6WFgIBP0FNQenotY1A1oGl4WtFkmQsTmdYgG4TMd1OnG4VqJ0uLHY7siyEaYFAIBD0D4SgPUAxZWbikySkFGbDdEnCNXs2xX/58yHomUAgaEWSZZwZLpwZLkrGliat8+LvF1G59eUUW9TJGNQ+t5RAIBAcKezdu5clS5awZMkStm3bFr2u67rI5XuQsI7LxrepLrXKOljH5xz4i7qrEqzD2fcNhLwowCaLmdVWK18X5PKtxYK/E1egYenDmFEwgxmDZnB0/tFkWg/MoaU76LpOozfEnvqIaF0bzmkdFrG91Hq67ypgNxuieaxbxerBWXYG5zgoSLNikHv2f0DT9HA0casgHEouJKcsLHcY2TyQheVg4rW4snbXtBAGGYwmGYPZgNFixGgxYLSaMVnNGO0WTHYLRocVk8OGyWXD6HJgdNqRHZnIDgcGhwPZ6UR2OJCsVtY+9gaffvFuiu/AwPRZFwgxWyAQ9Fn+/Oc/c8cddxAMBtF1ncmTJ/Ovf/2LESNGHO6uCTrCnomqfBVZWNU6XmmzsEoPEGpZhqrsBtsx7HXv5bmNz/H69tcJxrnbyZLM6YNP54YJNzA6a3TSl1NCIfzuZvweN36PB1+Lm13lNazdVsH2vdVofi8W1c85WgCrFsCi+nHoAQxaKNzAbtjxKexI5b118xlEkiQsNju2tDSsaenhPNKOROtuqysNmyNRsLbY7cINUyAQCARHPELQHqC4Tj0F9/vvp1RX0nVcp3Xf3kkgEBx8Jp92MpXfvxFZwdwFkoVJp5588DslEAgEh5CWlhZeeeUVFi1axGeffYYeWaynxy3ay8nJoa4uRdFV0C3sE3JpfHMnmk9p616cgE44OtveXUE75Ieq9YkCdtNeAFTge7OJ1TYrX2flss5qoaWTibwSV0lYwC6YwfSC6eTak+fL7i10XWe/OxCxBm+hLLJvjbxu9itdNxKHpEO2zcSQTDulaTZK0q0MclopcJrJtVtwmmTUUFxUs09D2e2lcpuH8ojNdVKxeQALy4aIuCyrYUG5O8JyskjnhOutwrUaRJY0jBGx2ei0I9sdyA4HsiuyT9jSInt7WHyOCM/RzW5HSjH3pK7r6JqGGgqhKCHUUIhgKISqKKheD2pTA2oohMdVk9pYEgAV62jh+CMQCA4NWjfyMdTX13PdddexfPny6DhwwYIFLFy4EIsl9ZzGgkOPMuIsVrxek1Ldt/cdRbkpxLuvnYuk6FhCMvagCYdq5rjsmRyXNQt7o4n9K1ZS5nkfv9sdEa7d+Fo8+D1ulA7SEZmBsb30niRdx6SomDQdi9GExWrD5nJhy8zEnpOHvbAQR2ERtvQMbK5Yvmmz1SaEaYFAIBAIOkAI2gMU15lnIhPCxXYAAEdXSURBVP/ffWhuN516FkoSssuF64wzDl3nBAJByoycWcSnL5yDt/7VLuvaM89h5IzCQ9ArgUAgOLjous4HH3zA4sWLef311/F6vdHrrWRmZjJv3jyuv/56Nm7c2O3c24LUkEwyoen5GD4tR4ekkfCtn0toej6SqZMJOl2Hht1h0TqS95rK9RCJhtGBHSYTX6c5WWW1ssZqobmT3H0FjoKogD2jYAaDnIMO4J3GiI9YDvpV9tV7Ka/1UlHnpbrBx/4GP7VNfhrcQTRFwwgYdQkjYNAhG8jTJYyYMOpgRIrsw/WssoRVljFLEgYdZA1QNXQNaAKqgkAQaKIO6O9LNaSEaOVOhGU1mWDcTWE57lzqwidfstuRHXYM9mSic0biudOBZLOhW61gtaCZzegWM7rZjG4yoUkSqqKgRURlRVFQQyE0pVVoDp+rSmQLuFFb6mPXQkpk31onUr9VnI62G0KLK1OUUOfPej37xNi9fi0TTxPPhwKBoO/w2WefMW/ePPbt24eu67hcLv72t7/xox/96HB3TZAC25pzCGimFGpKhFQj6UubuUIrwqi1HVfuYG1qcdMpI2k6ZlXFpGphgVrVMKkqZiW8N6kaVrMFW04u9oJBOIqLcQ4ZimPYMMylgzHm5QqnKIFAIBAIegkhaA9QZIuFwgceoPxnPwvb3ySb6IgMuAofeABZrGYVCPokRpOBM28+nzcfUQm1rEjINRXdSxZMjjM58+bzMZpEbiSBQNB/2bx5M4sWLeLFF19k3759QKKIDWFB9X//93+5/fbbo9E4mzZtaldP0DsoIZUPPignM6gwxW7ELMUs3lv3IR3WeRUaPyjn2tMGx/4WBdxQsS4WeV2+Gry10bZ1oMxo5GuHk9VWC6tsVurjBGxJlzGqRoyaCYNmIseUy6TMyYzPnMCotLFkm7JRFR2lQaVxv0ZtsDwuj3I4YjkxUrkDy+ygSjBSVwtpneYLd0a2YUCPH7XU1nevR38OhwJZ1jFIOgZZw4CGjBoWgvWIWKwGkJQgcsiPHPQjBX3h406E5a4jnbsWltuiA5okhTdZih2bTWCzgsOObrOC1YZuzUCxWMLCsiUiLpuM6EYjutGAZjCgyTKaLKFLMpoU/vFruhYRiuOE5FZRWWlCra1DrYoTm0MhdD31KML+jY7P4z7cnRAIBAIgPOa4++67ue+++9A0LWox/vLLLzN8+PDD3T1Biny/dlUkW3Zqwq9V6f68hgRhMTqkYFHUsBitaEkFanOccG3QdCTAWFCAuaQEU2kJ5pJSzINLMZWUYi4twZCW1u3+CAQCgUAg6D5C0B7AuOacTPFjj7LvN3eiNTeDLIOmRfeyy0XhAw/gmiMsigWCvszQiTmcd8uFfPDccHyNm1FD29F1P5JkxWAagS1jLKdeN5GhE3shb6lAIBAcYmpqanjxxRdZvHgx3377bfR6vEA9btw45s2bx2mnncb06dOZOXNmgrXkvHnzmDdv3qHs9oBhx9r9BLwKFcEdlNW9T4ltCEWOkVhkKwHNT0XLNvb6dmOwnYZBGc5nj75NrnE7Sv0+VHc9im5G1U0olKDqw3BjoVa20ihZcUsWNN2Mod5IhmbiLM0UFq/1sIBt0JNPZtYDX1EBVBzSn0VvYTDKGExyOEeyScZolDAYwCDryJKOQVIx6CqyriDrkchjNYisBJEUP1IwIjgHvMgBL5LPg+TzgNeN5PWEo59TEJbbC8cdCMltrimShN56boy7L3qPCU0yh0VkozEsMBuMYXHZIKNHBGZNAg1QdR0tsqmamuLiFB3wgd8H/oPwIfUhZIMRg8kU3oxGDMbwsdFoRG49NoWvy3Fl8ffsXLeGhsrU/r9IkoTN6TrI70ogEAi6pry8nHnz5vHFF19E/zbcdNNNLFy4ELPZfJh7J+gOlfv3pCxmA+gyZBcUYTWaMelgDikYfX4MbjeG+gbkxqYEUdqsaMi63vkrmEyYCwsxDS4NC9alJVHB2lRcjGy1HvD7FAgEAoFAcGAIQXuA45ozh6M+/wz3u+/ifv8D1KYmDOnpuE47FdcZZ4jIbIGgnzB0Ui7XPXgiO9aNZee3NfhbQlgdJoZNzmX41FwRmS0QCPodL7/8MosXL+a9995DUcK5huOFrOLiYi6//HLmzZvHxIkTAUSe7MPAzm+qUYM/EGp5E4A9LZvZ07K5XT2tZRlwAVu+H84WJgGTOm3XGtkOJwo6CqBIoEjhY1WKXJdAlyXMFgM2qxGH3YjLbibdaSbDaSLDKmPQlZiNthIIb62RzUEvBLxIvhbwudFb3OheN1pLM6rXi+Lzofh9KD4fmqaGLavjheKokAxKW3G5I7HZJqHZW9swo0oWtKRtSpGI5UNtj6mBroVDpNVD/NIpIBsMUbG4rXhsMEbOTUnOjXH1I+dGkwk5cr+xo/ZMbc+TtGkw9Eqezbwhw3nnsYdSqqvrOiNmHHPArykQCAQHwrJly7jhhhtoaGgQFuNHAIHGmrBzZCpjD10nv9HL0d981u3X8RotVDmy0QcVUTB2BEMnjMQ6ZDCmklJMgwqQOkllIxAIBAKB4PAjBG0BssVC+vnnk37++Ye7KwKB4AAwmgyMmlnAqJkFh7srAoFAcMD8+Mc/jtpWt5KZmckll1zCFVdcwQknnCDy0fUBvNXlhLzvpVQ35F2BbFqAJHXzEcSgYTQZMJtNGM0yBqOM0WyI7OOimY0yIcCrqrhDKk1BhYaAQr0vSI03iDukoKKho6DpKhoqOgq6rmLQgphVP2bFj1n1Y1X9WNUAaZJCllEj06DikFRsKFj0EAZVQVIV1FAwIa9xSFWp1jQqI2JzZ5HMrZsut/k9tgE2C2ABMrr3szoCkGQ5EkUcFm1lozEs+vZQPG4nFreLZI6IyyZT9HWirxnXfm8Ix32VkbOO46PnniLQ0kLnJvcSFoeDkTNnH6quCQQCQQLBYJBf/epXPP744wDCYvwIIaexmf2SI7XKksSgBk+HxU1WJxX2bCrt2VQ6sql05LDPmU3OyGGcddwYzp1YRLo9lXzdAoFAIBAI+hpC0BYIBAKBQCAQ9ElaczBnZ2fzyCOPcMkll2AyiQmovkSgfjXogdQq6wGatI/YVlQRFpIJoaOio4KuIEswyJ5HsWsQxY5B5NlykHQdLSIWq0oIJRjC7fXjafHR0uTF7/UR9PtRgkG0UDCS81lD1jVkNJxouNAZgk43nCzbvEnwEd6SIgNmGfqZvakky0kigbsn/HZ1T7cimSN1ZVlERx1qjGYzZ/3sNl7/4/+CLpFc1JZAgrN+dhvGfva7LhAIjgy+//57LrvsMtavXx9d8HjzzTfz8MMPC4vxfk6BL0i92YpikDuP0tZ1jKpGTosX+6xZqIOK2Cq5+NhtYW3ITqUjG58p5vFTkGbl4qlF/Ne0YobnOg/BOxEIBAKBQHAwEYK2QCAQCAQCgaDPsXz5chYtWsSbb75JbW0tCxYsYMWKFcybN49TTz0V+QiOluxPNPi3EFaKU8lrDNbmjUxsTlbS+nnWEqKWXWxgV4p9MEe2BPpQ8L4EyLKMLMsYZENE4I0Tec1mjGZLeG+1YjCbI0JvRGyOCr8x8TlsWR0+j0Uyt82NnEw8jrUphGNBPMOnzeSC//gtKx5/mECLJ+qQ0bq3OByc9bPbGD5t5uHuqkAgGIA8++yz3HLLLXi9XnRdJy0tjb/97W9ceumlKbexYcMGXnvtNX73u98dxJ4KekJGbiETN+5k3ZCCjq3HI4sYJu7dT+34o/jzST/l0201qJoOccHdFqPMmeMLmDu1mNkjcjC0dcIRCAQCgUDQbxGCtkAgEAgEAoGgz3H22Wdz9tln09TUxEsvvcTixYtZsmQJzz//PLm5ufz4xz/miiuuYOZMIa4cTgL+JqCPRM3rOnLrphE7jl6LO5bkcE5kQ7zAbMZoNmGIF5etNoxWK0abDaPdjslux+hwhDenC5PThdHhSMiNHLXJbhWaRT5GQT9hxNEzuenJxWz7+ku2r/oKn8eNzelixIxjGDlztojMFggEhxyPx8P8+fN56aWXolHZU6ZM4V//+le3LcbXr1/PPffcIwTtPsjQ8y6j5t+/ZdruKr4ryUMxGmLCdmRvVDUm7d1PfrOXB+VJfLx1f0IbRw/OZO60Ys6ZOIg0ax8ZmwoEAoFAIOhVhKAtEAgEAoFAIOizpKenM3/+fObPn8+uXbtYtGgRzz//PH/5y1949NFHGTZsGPPmzWPevHlkZWUd7u4OOOw+hRbJlFpEtA62YIg8tzdRXG4rNrc5l/TwXGZINqOZTOhmKwabDbPdgdXlwpmRRlpWGkanC4PTieywIzscyA4Hhsg+YbPbkYziMUggSIbRbGbs8Scz9viTD3dXBAKBgEmTJrF79+6oY0SrxbhIQXNkYT/tLDy/v5fcZi+nbN5DVbqDqnQHIYMBk6pS0NRCQVMLkq7jNpv5onAKAIXpVi6eWszcacUMzUkxB7dAIBAIBIJ+S7+eyQkEAixcuJB//vOfbN++HYPBwJgxY7jmmmuYP3/+AVlRNjU18eCDD/Lqq6+yZ88e7HY7EydOZP78+Vx22WVd3r9v3z7+8Ic/sHz5cioqKkhPT2f69On84he/4IwzzuhxvwQCgUAgEAgGKkOHDuXuu+/m7rvv5osvvmDx4sW88sor3HvvvfzP//wPY8eOjdrjxrNy5UqeeuopnnnmmcPU855zMMe7vUF6IESLzZZaZQlK6hrZaxmO12LBZwxvXqM1eozdTkZOOlm5WeTmZTJoUBbFRTkMLsggL82K1FleRYFAIBAIBEcUu3btQpIkJEkiLS2NzZs393hOrbq6upd7J+gtVmyr56Up8/jd188i6TpFjR6KGj0JdbTI/k9T5jFxWB63nzaSY4ZlIwtLcYFAIBAIBgyS3nbGr59QW1vLnDlz2LBhA/Pnz+eqq64iGAzy6KOP8tprrzFnzhzeeustrFZrt9vevn07c+bMoaKigjvuuIPzzz+f+vp6HnzwQT799FPmzZvH4sWLO5xAXLlyJWeffTZ+v5977rmHE088kb1793Lvvfeyfv167rzzTu67775u96u5uZn09HSamppIS0vr9v0CgUAgEAgEcGSNKQKBAMuWLWPRokW8//77KIqCy+Xi8ssv58Ybb+Too4/mhRde4Oqrr0ZV1cPd3W5xMMa7vf3Z/+uCs6k06igGOXm+w1Z0HaOq4XCrPHnCfzIk287gbAeDs+2RzcGQbDsZdmFpLBAIBAJBf+FgjyllWSYnJweH48Cjb1taWqirq+t348G+Sm9+9jctWct7m6uYvm8Tv1r3T1whHypggOjebbLxp6mXsbpwHKePLeDJq6b1wrsQCAQCgUBwuOnOmKLfCtonn3wyn3zyCbfeeisLFy6MXtd1nYsuuohly5Zx7bXX8uyzz3ar3UAgwMSJE9m2bRsPP/wwv/zlL6NlwWCQ2bNns2bNGu6++25+//vft7u/pqaGsWPHUltby2uvvcaFF14YLWtqamLChAns3buX5557jmuuuaZbfTuSJp8FAoFAIBAcPo7UMcX+/ft54YUXWLJkCd9++y2SJDFhwgRGjBjBa6+91u8mMA/GeLe3P/v/vfVBjvvqJdYOKQhfSCZqRx43pu2u4rNjfszvHvnPA35dgUAgEAgEh59DIWg///zzXHHFFQfc1vPPP88111zT78aDfZXe/Owv++tXrNxVD4BJDXHcvvUcu28jrpAXt8nOvwvH80XhREKGsNX8rGFZ/HP+MQf8HgQCgUAgEBx+ujOmOLwehT1k6dKlfPLJJ1itVu6+++6EMkmSuP/++wFYtGgRa9eu7Vbbjz76KNu2baOwsJBf/OIXCWVms5l7770XgD/84Q/s27ev3f333nsvtbW1zJw5M0HMhnAOyDvvvBOAO+64A5/P162+CQQCgUAgEAg6Ji8vj9tuu41169axYcMGbr/9dmpra3n11VcPd9e6zcEc7/YmlZOPx+FXmLq7CqMaMYNsXS8b2RtVjam7q7D7FaonH3+YeioQCAQCgWAgI9KW9F0y7GZancNDBhMfl0zj/2Zew2+Ou5n/m3kNH5dMi4rZsgQZNuHoIxAIBALBQKRfCtpPP/00AHPmzCEjI6Nd+ZgxYxgzZgy6rnc7V2Jr2xdeeCEGg6Fd+emnn47L5cLn8/HCCy8klAWDQZYsWQLA3Llzk7bfer26uprly5d3q28CgUAgEAgEgtQYN24cf/zjHykrK2snCPcHDuZ4tzc5ZVIJ/2/KPPKavZy8eQ+T9lST39RClttHflMLk/ZUc/LmPeQ1e/nTlHmcOrnksPVVIBAIBAJB/+Kaa65h+PDhvdLW8OHDufrqq3ulLUHvcvq4fLQU/UM1Hc4Yn39wOyQQCAQCgaBP0u8E7WAwyIcffgjA9OnTO6zXWvbWW2+l3PauXbvYunVrp20bDAamTJmStO0vv/ySpqamTu/Py8ujtLS0230TCAQCgUAgEHQfWZYZPnw4/SnLzsEc7/Y2Z08YxJZhk/ifmdfhN1opavQweU81s3buY/KeaooaPfiNVu6deR1bh03irPGDDltfBQKBQCAQ9C+effZZZs6c2SttzZo1q9tpCQWHhrMnDCLNZqSrGHoJSLcZxXhSIBAIBIIBivFwd6C7bNmyhVAoBMCQIUM6rNdatmfPHpqamkhPT++y7fXr17e7v6O2P/vss4T63b2/rKys3f0CgUAgEAgEgt7noosuYteuXYe7GylzMMe7vY3VZOChSyfzkyUKV+b9jtlJch5+WTiRkNHE3y6djNXU3gFJIBAIBAKBQDBwiY0n1yDpkGwZqhT5509iPCkQCAQCwYCl3wnaZWVl0ePc3NwO68WXlZeXpzTB1922GxoaaGlpweFw9Oj+vXv3dtkngUAgEAgEAsGBYbfbGTx48OHuRsr05ng3EAgQCASi583Nzb3Uyxinjs3nqauO5j9e/paPS6bxaek0ND2c41DTw5E0j186mVPHCntIgUAgEAgEAkF74seTTT4lOo5s3afZjPxJjCcFAoFAIBjQ9DtB2+12R4+tVmuH9eLLUp2462nbrYJ2d+/vql+HYgJSIBAIBAKBQNC36M3x7v33388999zTe53rgNPG5vP1XafyzsZK3t1YTaMvSIbNzBnj8zlr/CARSSMQCAQCgUAg6BQxnhQIBAKBQNAZ/U7QHkgcqglIgUAgEAgEAsGRyZ133sntt98ePW9ubqakpOSgvJbVZOCiKcVcNKX4oLQvEAgEAoFAIDiyEeNJgUAgEAgEHSEf7g50F5fLFT32+/0d1osvS0tLOyRtd/f+rvp155130tTUFN2ERblAIBAIBALBkU9vjnctFgtpaWkJm0AgEAgEAoFAIBAIBAKBQNCf6HeCdmlpafS4pqamw3rxZcXFqa3q627bmZmZUbvxntzfVXSMmIAUCAQCgUAgGHgczPGuQCAQCAQCgaDvoWkajz32GGlpaUiSxO7du3ut7X379nHrrbcyfPhwrFYr+fn5nHvuubz77ru99hoCgUAgEAgEB5t+J2iPGTMGk8kE0OngrrVs8ODBpKenp9T2xIkT293fWdvx9XvjfoFAIBAIBAKB4GCOdwUCgUAgEAgEfYtNmzZx3HHH8fOf/xy3292rba9cuZLx48fzt7/9jZtuuonPPvuMxx9/nL1793LmmWdy11139errCQQCgUAgEBws+p2gbTabOeWUUwBYs2ZNh/VWr14NwDnnnJNy20OHDmX06NGdtq2qKt98803Sto899tjoZGJH9+/fv5+ysrJu900gEAgEAoFAMDA4mONdgUAgEAgEAkHf4fe//z1Tp07FYDDwm9/8plfbrqmp4bzzzqOhoYEXX3yRX//618yYMYO5c+fy2WefUVJSwv3338+iRYt69XUFAoFAIBAIDgb9TtAGuPHGGwH48MMPaWpqale+detWtmzZgiRJXH/99T1q+/XXX0fTtHbl77//Pm63G6vVyhVXXJFQZrFYuOqqqwBYunRp0vZfffVVgKi9j0AgEAgEAoFA0JaDOd4VCAQCgUAgEPQNFi5cyMMPP8xnn33GqFGjerXte++9l9raWmbOnMmFF16YUJaens6dd94JwB133IHP5+vV1xYIBAKBQCDobfqloD137lxOPPFE/H4/99xzT0KZrutRu5xrrrmGadOmJZS/+eab5ObmMn78+KQWjj//+c8ZOXIkFRUVPProowlloVCI3/3udwD85je/oaioqN39v/vd78jJyWHlypW88cYbCWXNzc088MADAPzhD3/AZrN1740LBAKBQCAQCAYEBzLeFQgEAoFAIBD0DzZv3sxPf/pTJEnq1XaDwSBLliwBwuPKZLRer66uZvny5b36+gKBQCAQCAS9Tb8UtAFeeeUVJkyYwMMPP8zNN9/Ml19+yccff8yll17Ka6+9xpw5c3jiiSfa3ffUU09RW1vLpk2botHS8VgsFt566y1KSkq4/fbb+e1vf8vKlSt55513OP3001m9ejXz5s3jv//7v5P2Kzc3lzfffJPMzEwuv/xy/t//+3+sXr2a1157jRNOOIE9e/Zw5513cs011/T6z0QgEAgEAoFAcOTQ0/GuQCAQCAQCgaB/kCxYpjf48ssvoy4/06dPT1onLy+P0tJSAN56662D0g+BQCAQCASC3qLfCto5OTmsXr2aBx54gK+++oozzjiDCy+8kPLych5//HHef/99rFZru/vmz59PdnY2Y8eO5eKLL07a9ogRI9iwYQN33HEHS5cu5eSTT+bKK69EkiT+8Y9/8PzzzyPLHf/oZs2axcaNG7nhhht44oknOP7441mwYAHFxcWsWLGC++67r9d+DgKBQCAQCASCI5OejncFAoFAIBAIBAOb9evXR4+HDBnSYb3Wsvj6AoFAIBAIBH0RSdd1/XB3QpAazc3NpKen09TURFpa2uHujkAgEAgEgn6KGFMMXMRnLxAIBAKBoLcQ44re5bnnnuO6664DYNeuXZ0K0V3xq1/9ioceeggAj8eDw+FIWu+SSy5h6dKl5OTkUFNT02F7gUCAQCAQPW9ubqakpER89gKBQCAQCA6I7own+22EtkAgEAgEAoFAIBAIBAKBQCAQCBJxu93R484cfVrLmpubO23v/vvvJz09PbqVlJT0TkcFAoFAIBAIUkQI2gKBQCAQCAQCgUAgEAgEAoFA0AmLFy/GaDT2eHvvvfcO91voMXfeeSdNTU3Rbe/evYe7SwKBQCAQCAYYxsPdAYFAIBAIBAKBQCAQCAQCgUAg6Mtomoaqqgd0/6HC5XJFj/1+f4eW436/H6BLi0+LxYLFYum9DgoEAoFAIBB0ExGhLRAIBAKBQCAQCAQCgUAgEAgEnXDttdei63qPtzPPPPOQ9bW0tDR63Flu7NYyYSEuEAgEAoGgryMEbYFAIBAIBAKBQCAQCAQCgUAgOEKYOHFi9Hj37t0d1msti68vEAgEAoFA0BcRgrZAIBAIBAKBQCAQCAQCgUAgEBwhHHvssaSnpwOwZs2apHX2799PWVkZAOecc84h65tAIBAIBAJBTxCCtkAgEAgEAoFAIBAIBAKBQCAQHCFYLBauuuoqAJYuXZq0zquvvgpAfn4+55577iHrm0AgEAgEAkFPEIK2QCAQCAQCgUAgEAgEAoFAIBD0I5566inS09OZPXs2jY2N7cp/97vfkZOTw8qVK3njjTcSypqbm3ng/7d35+FNlen/xz/pli50YS1gCxQQahHQL2sdBKYIAqOIKKKCigujDKJCZWZc0RlF+I0iDssoMyhuIwqCUERklW1AUBRZFBCLQK1QtrZ0o23O74+SQm0LKQ05J+n7dV01ePL0nDvhTriT+5znmThRkjRp0iSFhIR4ImQAAICLRkMbAAAAAAAAADzsyJEj2rFjh3bs2KG0tLTS7Xv27CndnpOTU+HvTp06VVlZWfrf//6nVatWlbu/fv36SklJUe3atXXHHXfo5Zdf1pYtW7RgwQJ1795dP//8s5544gndc889l+zxAQAAuAsNbQAAAAAAAADwsBkzZqht27Zq27atnn766dLt119/fen2LVu2VPi7Dz/8sCIiIpSYmKikpKQKx3Tt2lU7duzQ/fffr3/961+69tpr9eCDDyomJkZLly7VhAkTLsnjAgAAcDebYRiG2UHANVlZWYqMjFRmZqYiIiLMDgcAAHgpaoqai797AADgLtQVNRd/9wAAwB2qUlNwhTYAAAAAAAAAAAAAwJICzA4ArnNeTJ+VlWVyJAAAwJs5awkm6ql5qCcBAIC7UFPWXNSUAADAHapST9LQ9iLZ2dmSpNjYWJMjAQAAviA7O1uRkZFmhwEPop4EAADuRk1Z81BTAgAAd3KlnmQNbS/icDj0yy+/KDw8XDabze37z8rKUmxsrA4ePMj6N4AX47UMeL9L/To2DEPZ2dlq3Lix/PxYgaYmudT1pMS/Q4Av4HUMeD9PvI6pKWsuvqMEcCG8jgHfYKXvKLlC24v4+fkpJibmkh8nIiKCf2QAH8BrGfB+l/J1zFU0NZOn6kmJf4cAX8DrGPB+l/p1TE1ZM/EdJQBX8ToGfIMVvqPk9EkAAAAAAAAAAAAAgCXR0AYAAAAAAAAAAAAAWBINbZSy2+0aP3687Ha72aEAqAZey4D343UMb0b+At6P1zHg/Xgdw5uRv4D343UM+AYrvZZthmEYZgcBAAAAAAAAAAAAAMBvcYU2AAAAAAAAAAAAAMCSaGgDAAAAAAAAAAAAACyJhjYAAAAAAAAAAAAAwJJoaAMAAAAAAAAAAAAALImGNuRwODR9+nRFRETIZrNp//79ZocEwEWFhYX6+OOPdffddys+Pl5hYWEKDg5WkyZNdMsttyglJcXsEAG4oKCgQIsXL9Zjjz2mxMRE1a1bVwEBAQoPD1e7du302GOPad++fWaHCZwXNSXgvagpAe9HPQlfQD0JeC/qScA3WLmmtBmGYZhyZFjCzp07NWLECG3cuLF0W2pqqpo1a2ZeUABccujQIXXt2lVpaWlq0qSJxo0bp3bt2slut2v9+vV66aWXdOzYMQ0cOFBz5syR3W43O2QAlbjvvvv01ltvKSIiQqNHj1aPHj0UFRWlAwcOaObMmVq2bJnsdrvmzJmjgQMHmh0uUA41JeC9qCkB30A9CW9HPQl4L+pJwHdYuaakoV2DjR8/XhMnTlTnzp3VrVs3TZw4URLFIuAtduzYobZt2yomJkbbtm1TnTp1ytz/3XffqUOHDioqKtKoUaM0bdo0kyIFcCHDhw/X22+/rTVr1qh79+7l7r/xxhu1ePFiRUVF6ZdfflFISIgJUQIVo6YEvBs1JeAbqCfhzagnAe9GPQn4DivXlEw5XoNNmTJFr776qtauXavWrVubHQ6AizRmzJhyhaIktWvXTnfccYck6T//+Y9OnTrl6dAAuCgmJkY33nhjhYWiJA0bNkySdPLkSe3YscOToQEXRE0J+AZqSsC7UU/Cm1FPAr6BehLwflauKQM8ejRYyq5du3TZZZeZHQaAi1SvXj0lJyfrpptuqnRM+/bt9e6776qgoEC7d+9Whw4dPBghAFe98MIL573/3Om4wsPDL3U4QJVQUwLejZoS8A3Uk/Bm1JOAd6OeBHyHlWtKGto1GIUi4N0aNmyol19++bxj/P39S/9cq1atSx0SgEvkgw8+kCT97ne/U3x8vMnRAGVRUwLejZoSqBmoJ2Fl1JOAd6OeBGoOM2tKphwHAB+2d+9eSSWFZcuWLU2OBkBVnDp1Shs2bNCQIUP00Ucf6eabb9aCBQvMDgsAUANRUwLeiXoSAGAV1JOA97JKTckV2gDgo4qKivTxxx9LkpKTk8ucCQnAuvbt26dWrVrJ4XBIklq2bKl58+bplltuMTkyAEBNRE0JeB/qSQCAlVBPAt7JajUlV2gDgI+aNWuWDh8+rM6dO+vRRx81OxwALoqNjdW2bdu0efNmvfvuu2rUqJFuvfVW9e7dWwcOHDA7PABADUNNCXgf6kkAgJVQTwLeyWo1pc0wDMPjR4XlzJ49W/fee68kKTU1Vc2aNTM3IADVsmfPHnXs2FEhISHatGmT4uLizA4JwEUyDEMjRozQrFmzFBsbq6+//lr169c3OyygQtSUgG+hpgR8A/UkvAn1JOBbqCcB32F2TckV2gDgYw4fPqw//OEPCggI0LJlyygUAS9ns9k0efJkhYWF6eDBg3rhhRfMDgkAUANQUwK+g3oSAGAG6knAt5hdU9LQBgAf8uuvvyopKUnHjh3T559/rvbt25sdEgA3iIiIUNeuXSVJixYtMjkaAICvo6YEfA/1JADAk6gnAd9kZk0Z4NGjAQAumUOHDqlXr146ceKEVq9eTaEI+Jjo6GhJUlpamsmRAAB8GTUl4LuoJwEAnkA9Cfg2s2pKrtAGAB+wf/9+de/eXdnZ2friiy/KFYr79+/XqVOnTIoOwPmkpaUpPj5e69evP++4zMxMSVJkZKQnwgIA1EDUlIB3op4EAFgF9STgvaxeU9LQBgAvt3fvXnXv3l1FRUVau3atEhISyo2Ji4vTvHnzTIgOwIUUFhZq9+7d2rRpU6Vj8vLytHHjRklSYmKip0IDANQg1JSA96KeBABYAfUk4N2sXlPS0AYAL7Zr1y716NFDgYGBWrdunVq2bGl2SAAu0muvvabDhw9XeN8TTzyh48ePy2azady4cR6ODADg66gpAd9APQkAMAv1JOA7rFpTsoZ2DXbkyBEdOXJEUtm57vfs2VM67UdcXJzCwsJMiQ/A+e3bt089e/ZURkaGgoKC1KZNG7NDAnARgoKCZLfbdejQISUkJOixxx5Tp06dFB0drf379+vf//63PvvsM9ntdk2fPl3XXnut2SEDZVBTAt6NmhLwftST8HbUk4B3o54EfIPVa0oa2jXYjBkz9Pzzz5fbfv3115f+efXq1erZs6cHowLgqu3btysjI0OSdPr0aZ0+fdrkiABcjMaNGystLU3z5s3T8uXL9e6772rixIkqKChQeHi4WrZsqXHjxunBBx9UixYtzA4XKIeaEvBu1JSA96OehLejngS8G/Uk4BusXlPaDMMwPH5UAAAAAAAAAAAAAAAugDW0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWFGB2AABqrqKiIhUVFZkdBgAAAAAAAIBLzM/PT4GBgbLZbGaHAgDwMjS0AXhcbm6ujh49qpycHLNDAQAAAAAAAOAhgYGBCg8PV7169eTv7292OAAAL2EzDMMwOwgANcfp06eVmpqqwMBA1alTR3a7nbMyAQAAAAAAAB9mGIaKi4t16tQpZWZmym63KzY2lqY2AMAlNLQBeNShQ4eUn5+vuLg4ClYAAAAAAACghsnLy9OBAwcUFRWl6Ohos8MBAHgBP7MDAFBzGIah3NxcRUZG0swGAAAAAAAAaqCQkBBFREQoOztbXG8HAHAFDW0AHlNYWKji4mKFhISYHQoAAAAAAAAAk4SHh6uwsFCFhYVmhwIA8AI0tAF4jMPhkCSuzgYAAAAAAABqMOf3g87vCwEAOB8a2gA8zmazmR0CAAAAAAAAAJPw/SAAoCpoaAMAAAAAAAAAAAAALImGNgAAAAAAAAAAAADAkmhoAwAAAAAAAAAAAAAsiYY2APiQ2bNny2azlf4899xzZocEXDK+nO+HDh1Sv379ZLPZNHv2bLPDgQX4cr4Dv0W+o6apCTm/aNGi0se3f/9+s8OBiWpCvgNO5DsAAO5DQxsALOyrr77Sn/70J7Vp00ZRUVEKCgpSdHS0unfvrnHjxmn58uUqKioqHT9kyBClp6crOTnZxKjdb/fu3Ro2bJgaNWqk4OBgtWjRQuPGjVNmZqbZocGNyPcSb775pq688kotXbrU7FBwCdX0fM/OztYbb7yh/v37q2HDhgoMDFRUVJQSExM1efJk5efnmx0i3Kim53tOTo4++eQT3X///UpISFBoaKiCgoIUExOjQYMGacWKFWaHCDer6Tn/W5mZmRo5cqTZYeASqen5vn///jINy4p+pkyZYnaYcJOanu9OhmHovffeU58+fdSgQQPZ7XbFxMSoZ8+eGj9+vLKzs80OEQDggwLMDgAALqX8wmIt2Z6uZTsP62TuaUWFBqlPm2j1b9tIwYH+ZodXqby8PD300EN65513NHDgQE2aNEnx8fFyOBz6+eeftWDBAk2bNk0vv/yy6tevr5UrV6pt27YKCQlRSEiIatWqZfZDcJsvvvhC/fv3V5MmTTR79my1atVKX3zxhR555BHNnz9f69evV6NGjcwO0xoK86Vdn0g/LJZyT0ihtaX4G6SEgVJgsNnRVYp8L1FYWKgBAwZo7dq1mjBhgubPn6+1a9eaHZZlFRQXaNn+ZVp1YJVOFpxUlD1KSU2S1KdZH9n97WaHVynyvaS517RpU504cUK33367PvroI8XExOjnn3/WxIkTlZycrNmzZ2vFihVq0KCB2eFagqOgQNlLlyp7xUoVZ56Uf2SUwq/rpfC+feVnJ9+tbvz48XrllVd0zTXX6B//+IeuuOIK5ebmavXq1XrmmWe0YMECvfLKKxo7dqzZoVpGUWGx9n19RD9tO6r8nEIFhwWqeft6atGhgQKo4b3O448/roAAvn6qTNHp09qzab1+3LJJeaeyFFIrQi07dVWrrt0UEBRkdniVIt/Lat26daX31alTx4ORWJtR6FDu9gzl7zym4twi+YcGKLhNXYW2rS9boHWvuyLfz8rNzdXAgQO1Y8cOPfvss/rnP/+poKAgff3110pOTtaaNWt01113KTw83OxQAQA+hk8UAHzW8l2HlTz3W2XlFcnPJjkMyc8mLd35q55L2anJg6/SdQnRZodZTmFhofr27au1a9dq2rRpGjVqVJn7W7Vqpd69e2vkyJHq1q2bMjIydOzYMZOivbROnjypwYMHyzAMLVmyRM2bN5ckxcXFyW63a+jQobr77ru1fPlykyO1gB+WSJ+MlPJPSjY/yXCU3H6fIn32F+nm16XW/cyOshzy/aycnBzl5+dr+/btat68uRYsWGB2SJa1+sBqPb3haWWdzpKf/OSQQ37y04oDKzRx80S92O1F9YztaXaY5ZDvJQoLC3XixAkNGjRIH3zwQen25s2bq0ePHkpMTNTmzZs1ZswYvf/++yZGag3Zq1bpl78+IUdWluTnJzkckp+fspcvl9+LE9R44kSFJ/3e7DDLId/LatCggZYtW6awsLDSbVdeeaXCw8N177336tlnn9WoUaNkt/AJCp6Sui1DK9/+XgW5RZJNkiHJJv30TYbWfbRXvYYnKK5dPbPDLIecr9jq1as1a9YsLVmyRP36Wa8WNduPX32ppTNeVUHOKdlsNhmGIZvNpr2b/6dVs2eq36gxatGhi9lhlkO+l/fDDz+YHYLl5e06puNz98jIK/v+nrfzmE6m/KQ6g1spJKGu2WGWQ76Xdc899+jLL7/Ut99+q7i4uNLtzZs3V/369XX77bdzEhMA4JKw7qlvAFANy3cd1h/f/UrZeSVTPTkMlbnNzivSiHe/0vJdh02KsHJPPvmk1q5dqwEDBpT7oHSutm3b+vz6S1OnTtXRo0d10003lTaznW6//XY1btxYK1as0IYNG0yK0CJ+WCLNuVPKPzMFu+Eoe5ufKX1wR8k4iyHfz4qMjNSqVavK5TrKWn1gtR5d/aiyT5dMY+eQo8xt9ulsPbLqEa0+sNq0GCtDvpd1//33l9vm5+enBx54QJI0f/58FRcXezosS8letUqHRj0sh3PaRoejzK0jO1uHRo1S9qpVJkVYOfL9rGHDhmnu3LllmtlOHTp0kFRyUlNOTo6nQ7Oc1G0ZWvL69pJmtlTS7DjntiC3SEv+9Z1St2WYEt/5kPPl5eXlacSIERo6dKj69u1rdjiW8+NXX2rhyy+o4Mxr3zCMMrcFOTn65B8v6MevvjQtxsqQ76iqvF3HdOzdXSXNbKnc+7uRV6Rj7+5S3i7rNYLJ97NWrFihefPmadSoUWWa2U49e/bUr7/+qmbNmnk+OACAz6OhDcDn5BcWK3nut5Jx9jPSbxln/vP43G+VX2idL8t//fVXTZs2TZL06KOPXnD8sGHD1KxZMwUHuz6d9NatW/XnP/9ZHTp0UN26dRUcHKxWrVpp7NixOnr0aIW/k5ubq1deeUVXX321oqKiFBISorZt2+rxxx/X5s2by41fsWKF+vXrp5iYmNI1IgcPHqwPP/xQubm5Lsc6d+5cSVKvXr3K3efn56ekpCRJ0ocffujyPn1OYX7JldmSLpDxJeMKrbMuLflelnONPVSuoLhAT294WpJkVJLvzu1Pb3haBcUFHovtQsj3syIjI3XixIlKmxsxMTGSpPz8/Cq9hnyNo6BAv/z1iZL/MSp5fz+z/Ze/PiFHAfluxXyXpKuuukrdu3ev8L5NmzZJkv7v//6vxk9JW1RYrJVvf195OeNkSCvf/l5F1PCWzXmnZ555RllZWawfXIGi06e1dMarZz+YVqjkA+3SGa+q6PRpD0Z3fuQ7qsoodOj43D0uvb8fn7tHRqHDI3G5gnwva+bMmZLEjBsAAFPQ0Abgc5ZsT1dWXpErn5WUmVekz3akeyIslyxcuFD5+fkKCgqq9IvPc9WvX1+pqanq2rWry8e48847NWvWLI0ePVqbNm3St99+q6eeekpz585Vx44ddeTIkTLjHQ6Hrr/+ej3zzDMaOXKkvvzyS23btk2PPvqoZs+erS5dyk6BN3PmTPXu3Vv16tXTJ598or179+qdd95RRkZG6VqprsjJydHOnTslSfHx8RWOcW7fsmWLy4/f5+z6pGSacVcyPv+ktGvhJQ/JVeQ7qmrZ/mXKOp1VaTPbyZChrNNZWrZ/mYciuzDy/SybzaaoqCj5+VX8USQ9veTf5aZNm9botfeyly4tmWa8sma2k2HIkZWl7M8/90xgLiDfz8/hcCg9PV3Tpk3TmDFj1L59e82ZM+ei9+cr9n195OyV2RdQkFukfVutc5U2OV/eV199pSlTpui1115T3brWm0LYbHs2rVdBzim5UsMX5JzSni+tMyMV+V6xt956Sz169FBsbKwaNGigTp066dlnn1VGhnXeq8ySuz3j7JXZF2DkFSl3R8VNXDOQ72WtWLFCUskycNOmTVPXrl1Vr149xcTE6IYbbtCSJdabFQ4A4DtY0AKApdw4db0ysqt3hdGJ3Kqdvf7Xj7dr0me7q3XM+uF2pYzuVq19SGev0mnRosUlW3Posssu04QJEzRo0KDSbfHx8WrZsqW6deumv/3tb6VnIEvS2rVrtX79eo0aNUp//OMfS7e3atVKISEhGjZsWJn9T5gwQeHh4Xr77bdLmxVNmzZV586d1aRJE5fjTE1NlePMlKoNGzascEyjRo0kSfv27XN5v5byRg/p1JELjzufvONVG5/yiLTiueodU5JqNZAeXFOtXZDvNcuQxUN0NK96X05lFmRWafzzG5/XlK1TqnVMSaoXUk8f3lC9mSDId9c5vwg735SOVpd6y60qquSKGlcVnzxZpfHpzzyrI69MrtYxJSmgXj3FfTyvWvsg3ys3Y8YMPfrooyoqKlJERISeffZZjRkzRoGBgRe9T7N9NGGLcrOqf/Vofk5hlcavfu8HbVxQvRowNCJItz3ZqVr7kMj53yosLNT999+vvn376o477riYh2tZ7z3xmHJOnqj2fvKcS0m4aNkbU7Xuv7OrdcywqNoa9tKUau1DIt8rM2nSJD311FO66qqrlJubqwULFmjChAmaOXOmPv3009IlJrzJ4anfyJFd/ff34tyqvb+f+HiPsj5LrdYx/cKDFD366mrtQyLfz3Xw4EGdOFHy/jd06FAdPXpUL774olq1aqU9e/boySef1B/+8Ac98cQTmjBhwkU9FwAAnA8NbQCWkpFdoF+zPDslckGRw+PHrMzhwyVrekdFRV2yY6xcubLC7c4ziD/99NMyH5acZ5QfOHCg3O/0799fU6dOLbMtIyNDRUVFOnLkSJlGdK1atfTGG2+obdu2LsWZlZVV+ueQkJAKx4SGhkqSMjOr1uSyjFNHpOxfPHvMonzPH7MS5HvNcjTvqI7kVvMEjioqKC7w+DErQ767ZufOnVq0aJGuvvpqPfLII9Xen1mKjh5V0Zm/c08xCgo8fszKkO+VGzp0qHr37q2MjAwtXbpUzz33nN5//33NmTNHV1xxxUXt02y5WaeVc9LzU94XFzpMOW5FyPmyJk6cqNTUVC1evNjl3/EWOSdP6NRxz6/xW1x42pTjVoR8LysiIkJ//vOf9dRTTykiIqJ0e5cuXdSgQQMlJyfrpptu0p49e0o/v3oLR/ZpFbvhhKUqKzLMOW4FyPey+3HavHmzfvrpp9KLDBISEtS1a1fFx8frpZdeUs+ePdWnTx+X9gsAgKtoaAOwlPrh9mrv40TuaRUUub7mkj3AT7VDg6p1THfELckj6+cWFBRo+vTpmj9/vn788Ufl5OTIOGc607S0tDLjExMTFRISopSUFPXr10+jR49W7969FRgYqNq1a+vhhx8uM75Xr15KSUlR586dNW7cOA0ZMkQNGjSQJA0ePPiSPz6vUqtB9feRd7ykSe2qgGApxA1rdLohdvK9ZqkXUq/a+8gsyKzSuth2f7si7ZHVPq47YiffLywvL0933323oqKi9NFHH8lud8+/rWYIqFf9nCk+eVJGFdbFttnt8nfDl63uiJ18r1xkZKQiIyN1+eWX65prrlGnTp00YMAAJSYmatu2bWratOlF79ssoRHVq6Od8nMKVVyFdVP9A/0UHFa9K9vdFTs5f9b333+vF198UZMnT1ZsbGw1HrE1hUXVdst+8rKzVVzoesPOPzBIIdVchsNdsZPvZdWpU0eTJk2q8L4//elPeumll5SWlqb3339fI0aMqNK+zeYX7p73yOLcQqnoQtPrnyPAJv/Q6r2/uyt28v2sc9faHjx4cGkz26lhw4YaMmSIZs6cqalTp9LQBgC4HQ1tAJbijmm75289pLEfbXN5/MRb2urmq2OqfVx3iI6OliSdrOI0o67Kzc1Vz549tWXLFvXv31/vvPOOmjZtKn9/f0nS5ZdfrsLCstOBxcTE6JNPPtEDDzygpUuXaunSpYqMjFS/fv30wAMPqFevXmXGz5o1S/fdd58WL16sRx55RI899pi6dOmiYcOG6a677nJ5PdRzz27Py8ur9PFIJV8Oe6VqTtktSdo2R1rwoOvjb/yn1H5I9Y/rBuR7zVLdKbslKWVfip5c/6TL48cnjteNLW6s9nHdgXw/v6KiIt12221KTU3V6tWr1bJly4velxVUd8puScpcuFC//OWvLo9v9Pe/KXLAgGof1x3Id9fdeOON6tq1qzZt2qRXX31VU6ZMcct+PckdU3ZL0u5N6Vox+3uXx/9+WLxad6l4WRpPI+dLOBwO3X///erUqZNGjhzpvifAQtwxZbck7Vq7Sp9Nd32ZiD4PjlbCtb93y7Gri3x3XXBwsNq0aaM1a9Zow4YNXtfQdseU3ZKUs/WwTny0x+XxtW9ppbCr3XDytxuQ72edO3NeQkJChWOcU+tv3rzZ5ecAAABX+ZkdAAC4W/+2jRQREqALnUdrkxQZEqB+Vza6wEjPSUxMlFSyJnRRUZHb9z9jxgxt2bJFbdq00aJFi9SnTx+1bt1aLVu2PG/zoE+fPkpNTVVKSoqGDh0qh8OhOXPm6LrrrtPgwYNVXFxcOrZ+/fpKSUnR999/r6eeekotW7bUxo0bNWrUKLVp00bbt293Kda4uLjSs6F//fXXCsekp6dLKlnPqsZKGCgFR0muZHxwlJRw0yUPyVXkO6qqT7M+igiKkO0C+W6TTRFBEerTzDpXBZDvlSssLNSdd96pzZs3a/Xq1Wrfvv1F7cfXhPftK7+ICOlCVwbZbPKLiFD49dd7JjAXkO9V065dO0nSxo0b3bZPb9SiQwPZQ107594eGqAW/1f/EkfkOnK+xMGDB7Vx40Zt3rxZ4eHhqlWrVpkfpzZt2pRuW7duXfWeHC/Vqms32cNqyZUa3h5WS626/M4TYbmEfK8a5xTPx48fd9s+vU1o2/qyhbj2/m4LCVDoldWfLcZdyPezzr0iu06dimd9czbHnWttAwDgTjS0Afic4EB/TR58lWSr/OsB25n/vDL4KgUH+nsuuAsYMGCAQkJCdPr0aZe+3Nm7d69mz56t9evXu7T/NWtKrghOSkoqPePXVf7+/rrhhhv03nvv6ciRI5o5c6Zq1aqlefPm6c033yw3Pj4+Xi+88IJ2796tjRs3qnPnzjp48KAeeughl44XFhamNm3aSJJ++OGHCsc4t3fq5J4rg7xSYLB08+tn/ue8GV8yLjDYE1G5hHxHVdn97Xqx24uSVGlT27n9xW4vyu5vnSmryfeK5efna9CgQdqwYYPWrFlDM/scfna7Gk+cWPI/lTW1z2xvPHGi/Cw0RTv5Xtbrr7+ugwcPVnp/WFiYJOn0aWusF2qWgEB/9Rqe4NI5er2GJyiAGt4lnsz5yy67THv37tXOnTv17bfflvtxWrJkSem2jh07Vunx+IqAoCD1GzXm7AfTCpV8oO03aowCgtwzfbI7kO9lrVq1qsK1jJ2cJ2dfyjWYrc4W6Kc6g1u59P5eZ3Ar2QKt83U1+X5W48aNS6cqd64t/lvO7bVru2eJAwAAzmWdCgEA3Oi6hGjNvKujIs6cBex35oOT8zYiJED/vqujrkuINinCikVHR2vMmDGSpNdee+2C40ePHq1777230g8Tv+VwVL4u4W/XZXJav369nnvuuTLbgoODNWLECP3lL3+RJH3zzTel9w0fPlyHDh0qM75r1676+OOPy429EOd6TitXrix3n8Ph0KpVq8qMq7Fa95Nu/68UfGbqdZtf2dvgSOmOD0rGWQj5jovRM7anXvv9awoPKjn73+9MOeu8DQ8K1z+T/qmesT3NCrFC5Ht5ubm5uuGGG7R9+3atW7dO8fHxZe7v27evvvvuuyrt09eEJ/1eMdOnyc85FaSfX5lbv/BwxUyfrvAka0xD60S+lzVy5Eh99tlnld6/c+dOSfL6qfbdIa5dPfV/qO3ZK7WdzY8zt/bQAPUf2U5x7axz9Z5EzjsFBASUXlVY0Y9T06ZNS7edO4VtTdOiQxfd9PjTsp85qcU5O5Xz1h4WpoHjnlaLDl1Mi7Ei5HtZ9913X4XNQ6lkbeRdu3ZJOnulb00VklBXde9KOHul9m/e320hAap7V4JCEuqaEl9lyPeyBg4cKEnatq3iZf6cNc0111zj8j4BAHAVDW0APqt3QrS+fPI6vTqkvfokNFTX5nXUJ6GhXh3SXl8+eZ3lmtlOzz//vHr37q2FCxdq+vTplY6bPn26Pv/8c/Xt21e33HKLS/vu3LmzJGn58uXlpsuaO3duhb/z448/6pVXXqlwijTnWk5NmjQp3fb2229X+KVtRWMvZPTo0apbt64WLlyo1NTUMvfNmTNHv/zyi5KSknTttde6vE+fFd9fSt4t3TxTiv+D1Kxbye3NM0u2W6yZ7US+42L8vsnvteq2VZrQbYKSmiSpY3RHJTVJ0oRuE7TqtlWWa2Y7ke9nZWVl6frrr9eBAwe0bt06NW/evNyYzz//vEZPz+kUnpSky9etVeP/N0nhvXoptHNnhffqpcb/b5IuX7fWcs1sJ/K9rP/85z8VTlX6v//9T8uXL5ck3XPPPVXap6+Ka19fwyf9Ttfdm6DmV9VX41ZRan5VfV13b4KGT/qd5ZrZTuQ8LkbLjl300OvvqN/DyWrZKVExCW3VslOi+j2crIdef8dyzWwn8r2sDz/8UAUFBeW2v/7668rIyFC9evU0dOjQKu3TF4Uk1FXjJ7uo9pDWCkmoK3vzSIUk1FXtIa3V+MkulmtmO5HvZz3++OMKCgrSwoULy81MkJGRof/+97+y2WwaO3asy/sEAMBlBgB4SF5enrFr1y4jLy/P7FAsLzc31xg+fLghybj55puNlJQU48cffzR2795tfPrpp8agQYMMm81m9O/f38jKyirze+np6UZycrIhyUhOTjbS09ON7OxswzAM4+jRo0ZsbKwhyRgwYICxceNG44cffjAmT55sREVFGZIMSUZ6erpx7NgxwzAM46233jIkGV26dDEWL15s7Nu3z9i1a5cxdepUIzQ01GjRooVx/Pjx0hgkGREREcZrr71mfPfdd0ZqaqqxZMkSo2PHjoa/v78xf/78Kj0XK1euNIKDg43WrVsbn3/+ufHTTz8Zb775plGrVi2jWbNmRlpamhuecZiJfD/r5MmTRnp6upGenm4kJiYakowpU6aUbisoKHDDMw4zke+GkZWVZXTq1MmQZDRv3tzo0KFDhT+SjNWrV7vvyYfHke8l/P39DUlGt27djEWLFhl79uwxtm7davzjH/8watWqZUgyxo4d66ZnHWYi58s7t7Zxxrl58+YyscI7ke8lWrRoYUgyEhMTS5+DHTt2GM8995wRGBhoREVFGWvXrnXTsw6zkO9nvfPOO4afn59xxRVXGJ999pnx888/GytWrDCuuuoqw2azGS+//LLL++J7QgBAVdDQBuAxFKpVt3nzZmPEiBHG5ZdfboSGhhpBQUFGkyZNjFtvvdVISUkpN975wea3P+PHjy8dk5aWZgwfPtyIjo42AgICjAYNGhiDBg0ytm7dWuZ3evToYRhGyQewuXPnGrfddpvRpEkTIygoyIiKijLat29v/P3vfzdOnDhRJoavvvrKGDdunNG+fXsjLCzMsNvtRosWLYw777zT2Lp160U9D99//71xxx13GNHR0UZQUJARFxdnjB07ttyx4d3Id8O45557KnxMzh+ae76jJuf7N998c948J+d9T03Od8MwjIMHDxoTJ040kpKSjIYNGxqBgYGG3W43mjVrZtx+++3GqlWrqvqUwuJqes6f63y1jTNWeLeanu9Hjx41pk6davTr189o3LixERgYaISGhhpXXnmlkZycbBw6dKiqTyksrKbnu9OWLVuMW2+9tVzM69atq9J++J4QAFAVNsMwDAGAB+Tn5ys1NVVxcXEKDg42OxwAAAAAAAAAJuB7QgBAVbCGNgAAAAAAAAAAAADAkmhoAwAAAAAAAAAAAAAsiYY2AAAAAAAAAAAAAMCSaGgDAAAAAAAAAAAAACyJhjYAAAAAAAAAAAAAwJJoaAMAAAAAAAAAAAAALImGNgAAAAAAAAAAAADAkmhoAwAAAAAAAAAAAAAsiYY2AI8zDMPsEAAAAAAAAACYhO8HAQBVQUMbgMf4+/tLkgoLC02OBAAAAAAAAIBZCgoKJEkBAQEmRwIA8AY0tAF4TGBgoOx2uzIzMzkLEwAAAAAAAKiBiouLdfz4cYWFhdHQBgC4xGbQVQLgQVlZWUpLS1OtWrUUGRmpwMBA2Ww2s8MCAAAAAAAAcIkYhqHi4mLl5eUpMzNTDodDsbGxCgkJMTs0AIAXoKENwOOysrJ09OjR0qmFAAAAAAAAAPg+f39/hYaGqkGDBgoKCjI7HACAl6ChDcA0hYWFKi4uNjsMAAAAAAAAAJeYn58fszUCAC4KDW0AAAAAAAAAAAAAgCX5mR0AAAAAAAAAAAAAAAAVoaENAAAAAAAAAAAAALAkGtoAAAAAAAAAAAAAAEuioQ0AAAAAAAAAAAAAsCQa2gAAAAAAAAAAAAAAS6KhDQAAAAAAAAAAAACwJBraAAAAAAAAAAAAAABL+v9cZr9ityBQowAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_97245/14240756.py:24: UserWarning: The figure layout has changed to tight\n", - " f.tight_layout()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7QAAAG+CAYAAAATGjtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT1/sH8E/CCHsvURkuBFHce+Kuddtla7V1W6211latrdpvW0f9qR3WXbe2de+9t7hRcbMRkL0DSe7vD8qVCIEAYfp5v16W5J5zz32Se5N7e5+ccySCIAggIiIiIiIiIiIiIiIiIiKqYKTlHQAREREREREREREREREREVF+mNAmIiIiIiIiIiIiIiIiIqIKiQltIiIiIiIiIiIiIiIiIiKqkJjQJiIiIiIiIiIiIiIiIiKiCokJbSIiIiIiIiIiIiIiIiIiqpCY0CYiIiIiIiIiIiIiIiIiogqJCW0iIiIiIiIiIiIiIiIiIqqQmNAmIiIiIiIiIiIiIiIiIqIKiQltIiIiIiIiIiIiIiIiIiKqkJjQJiIiIqri3n//fUgkEkgkEri5uZV3OOVKEASMGjUKFhYWGDNmjNbr3bhxA59++inq1asHU1NTmJiYwN3dHd26dcOCBQsQFBRUekFXUQkJCeJxmfvfm36MUuXA47fqOXPmTL77dMSIEeUdWpWVkJCAH3/8Ea1bt4a1tTUMDQ3h5OSEpk2b4vPPP8fx48e1amfPnj3cd2+wXr165bv/eW1Wfo4cOaK2L86cOVPeIREREVEVoF/eARARERFR6Tl8+DD++eef8g6jwjh58iTWrl0LAFi9ejXee+89dO3atcB1/vjjD3zxxRdQKpWwsLBA27ZtYWNjA39/f5w8eRInT55Eeno65syZUwavoOowNDTE8OHDAQApKSnYuXNnOUdEpD0ev1WPk5OTuE+fPn2KixcvlnNEVduTJ0/g6+uLsLAwAEDz5s1Rq1YtxMbG4uzZs7h16xb27dunVVLSxcWF++4N1r17dzg5OQEAduzYgdTU1HKO6M2WlpaG8ePHl3cYREREVAUxoU1ERERURaWlpWHChAnlHUaFolKp1J4rlcoC69+7dw+TJ0+GSqWCl5cXTp48Kd40BYCpU6di8eLFpRJrVWdiYoL169cDAIKCgpgQpEqFx2/VU79+fXGfrl+/nknRUvbRRx+Jyey9e/eiX79+Ytn169fRtm1brdtq2rQp990bbOrUqeLjM2fOMKFdzubMmcPe8URERFQqmNAmIiIiqqJmz56NoKAgyGQyyOXy8g6nQujevTuGDx+OnTt3YtCgQejevXuB9Tdu3CgmwceNG6eWzAaAzz77DI8ePUK9evVKLWYiIqKq5MGDB7h27RqA7GR07mQ2kN1be9y4cUxMElUyd+7cwZIlS/j/HkRERFQqOIc2ERERURV0584dLF26FDKZTK3nyptOIpFg/fr1SE5OxoYNGyCRSAqs/+DBA/FxfknrWrVq4cCBAxg6dKjOYyUiIqqKCju3AsBvv/0mThFCRBWfSqXCmDFjoFAoMHPmzPIOh4iIiKogJrSJiIiIqpjXbyjVrVu3vEOqtHL3DpPJZOUYCRERUdXAcytR1fPnn3/i2rVr8PDwwPTp08s7HCIiIqqCmNAmIiIiqmKWLVvGG0o6IghCeYdARERUpfDcSlS1hIeH49tvvwUArFy5EoaGhuUcEREREVVFTGgTERERVSFhYWFldkPpiy++gEQiyfMvKCgoT90RI0bkWzc/jRs3LrDdPXv2oHfv3nB2doZMJkP16tXx/vvv48aNGxpjXb9+fb5tzpkzp8BYz549Ky7v0qWLVq8VyL6xN2fOHLRp0waOjo4wNDSEo6Mj2rZti7lz5yIiIkJjrHv27Mk31hEjRgAAYmNjMW/ePDRv3hx2dnZ5Xk9h60dERGDatGmoV68ejIyMYGtri969e+PIkSN5Yjl+/Dh69uwJJycnmJiYwNPTEzNmzEBCQoLG+HVFLpfj999/R+vWrWFjYwNjY2PUq1cPkydPxosXL/JdJ7/XXdDxpum4dHNz09heTllSUhLmzZsn7uOcY3HgwIE4ePBgkV7rvXv38OWXX6JRo0awsbGBTCaDs7MzfH19sXDhQsTHx2tcd8CAAfnGeebMGQDAtWvXMGrUKNStWxempqaFHr8xMTH47rvv4OPjAwsLC5iamqJWrVr4+OOPcfr0aQCFf55KegznFhcXhw0bNmDYsGHw9vaGpaUlDAwMYGdnh9atW2P69OkIDg4u8P3VtJ9z3qM9e/ZgyJAhcHV1hbGxMaytrdGyZUssWLCg2HP4Fuf4LS2avqvXr18PALh16xZGjBgBd3d38Tuhe/fu2L59u8Y2ly5dWuB7mtucOXO0PlcUdjyfPn0a/fr1g7OzMwwNDeHu7o4JEyYgLCxMrZ20tDT88ssvaNy4MczMzGBtbY3OnTvj77//Lu7biJcvX+J///sfmjZtCjs7OxgbG6N27doYO3Ys/P39i9TW4cOHMXz4cNSpUwdmZmYwNTWFm5sbBg8ejA0bNkChUGhc18rKqsDvt507d6Jfv35wcXGBoaFhnu+ukijJue3MmTNiLJ988om4PGf6j8LOzSXx4sULzJgxA15eXjAzM4OFhQWaN2+OX375BRkZGQXGmt+/zp0751nHzc1N4/eepvZyvhOfPHmCL7/8Et7e3rC2tq4yx1ZmZibWrFmDvn37ombNmjAyMoKVlRXq16+P0aNH4+TJk0V6bQcPHsSgQYNQvXp18TzZpUsXrF69GllZWUVqK0dQUBC+/PJLeHp6wtTUFBYWFvDw8MC4ceNw8+ZNAJq/w3K+Q/NTkvN6bs+ePcPXX3+Nli1bwtraGgYGBrC0tISPjw8++eQTbN26FYmJicV67bo0adIkJCUlYcSIEejUqVN5h0NERERVlH55B0BEREREujNp0iQkJyeXyQ2lli1bYvjw4QCAHTt2FJj4ad++vfh4w4YNBbbbr18/NG7cOE+7KpUKn376KbZs2YIOHTqgc+fOePbsGfz8/PDPP/9g586d2LZtG4YMGZKnzTp16oix3r59G3fu3NEq1iNHjiAqKgoAxMRubmZmZnnW/+WXXzB79mykp6fDwMAA7dq1g5OTEyIjI3Hx4kVcvnwZCxcuxA8//JDv/OYuLi5irE+fPsXFixfFshs3bmDAgAFISUlB+/bt4ebmhsuXL6slEQpa/+rVq+jXrx8cHBzQrFkzuLm54ezZszhy5AiOHDmCxYsXY8qUKQCAWbNm4Y8//kDHjh3RqVMnXLt2DQ8fPsT8+fOxa9cuXLhwAfb29hrfx5KIiopC37598fTpU3Ts2BGurq64desWnjx5gidPnuCff/7B2bNn4eHhobZezuveunWreHO7a9euqFGjRr7bydnXaWlp2L59O8zNzTFo0CDY2dmptZeSkoKdO3eK6926dQv9+vVDZGQk2rRpg65duyIqKgrnz5/Hnj17sGfPHrz77rvYuHFjgcPpKhQKfPnll1i2bBlUKhUsLS3Rvn17mJub4/nz5zh79ixOnz6Nn3/+GX/++We+c7X7+vrCysoKgPrxCgDz5s3DrFmz4OHhgaZNm8Ld3R1nzpzReOP/2LFjGDp0KGJjYwEA7u7uaNq0KVQqFU6fPo1NmzZh/PjxaNGihbhO7dq1xfcx53Nb0mM4x6pVqzBp0iRkZmYCyE4YtW/fHqampggKCsKdO3dw9epVLF68GAsXLsQXX3yR7+vS9JnOzMzEwIEDsWfPHtStWxctW7ZEVlYWrl27Bj8/P/j5+WH58uXYu3cvfHx88m07P8U9fktL7u/qCxcu4NmzZ2LZqlWrMHHiRPj4+KB169aIiYnB+fPnceLECZw4cQKTJ0/G0qVL87Tp5eUltvn6cfe6xo0ba32uKOh4nj17NubPny9+J92/fx/+/v5Yvnw5duzYgQsXLqBevXqIjY2Fr68vMjMz4ePjA2dnZ5w9e1b8d/XqVSxZskTr9w8Arly5gkGDBonHrYeHB548eYIbN25g1apV+Ouvv/Dzzz9j2rRpBbYTHR2NDz74AKdOnQKQ/Vnp1asXJBIJ7t69i127dmHXrl348ccfsWPHjnyPu6FDhyItLQ2A+vk0IyMDH374Ifbs2YPWrVujbdu2eP78Ofz8/Ir0WjUp6bnNyckp3++F3N8hOXK+S3ThypUr6N+/P8zMzNCsWTN4eHjgwoULuHHjBm7cuIHdu3fjxIkTMDExyRNrXFwc9u/fLy7/8MMPoa+vj/r16+fZzpAhQxATE4Pnz5/j/PnzqFu3Ltq2bYv27dtrfO0AsHHjRowbNw76+vpo3749GjZsWCWOratXr2Lo0KF4/vw5gOx92r59e6SmpuLKlStYs2YN1qxZg549e2Lbtm2wtrbW2JZcLsdHH32EHTt2AAAMDAzQvn17ODo6Ijw8HBMmTMDatWuxd+/eAt+j123atAnjxo0TX7OXlxe8vb2RkZGBnTt3Ys2aNfjhhx/U1vHx8RGPzzp16uRpUxfn9Rx//PEHpk6diszMTJiYmKBly5ZwdHREbGws/P39sX79eqxfvx7Gxsb48ccf8eWXXxbp9evKvn37sHv3btja2mLRokXlEgMRERG9IQQiIiIiqhL27NkjABBsbW2Fly9fisvXrVsnABAACK6urqWybVdXV3EbgYGBBdbNqafNpWjudkeOHCk0adJECA4OVqtz4MABQV9fXwAgWFlZCTExMQW2OXv2bLHN2bNnF1i3U6dOYt3Tp08XGu/EiRPF+l27dhUiIiLUyiMiIoSuXbuKdaZMmVJge7n3XZ8+fYTq1asLEydOFNLT08U6KSkpQosWLfJ9Pa+vX6NGDWHTpk1qdQICAgQ7OzsBgCCRSIQrV64Ia9euFfr27SskJiaK9RQKhTBu3DixvREjRhT6fmgrMDBQbNfFxUXo3r278NFHHwmpqaliHZVKJcydO1es1759e43tDRkyRKz3+eefF7r9tWvXCgCECRMmFBqftbW1UK1aNaFVq1Z5jvWwsDChXbt2Yt0BAwZo3KZSqRT69Okj1h0zZoza6xUEQbh//77g5eUl7pu//vqrwNeR+3gdO3asYGFhIRw8eFCtzuXLlwU9Pb08n9Xz588LMplMACDo6+sLa9asEVQqlViuUqmEP//8U9DT0xNjAiAMHz68wJhKcgx/8803AgDB2NhY2LFjh1o8gpD9eRoxYoTY/sqVKwuM5fX3qEGDBoKJiYmwY8cOtToKhUL43//+J9aztbUVnj59qrFNXR+/pWn48OFiDJ988olga2srnD17Vq3Os2fPhBo1aoj1Tpw4UWCbRfmeLMq5Ine7I0eOFOrXry88f/5crc6iRYvEOl5eXoJKpRI6d+4srF27Vq1eSEiIUKtWLa3jzH3c9ujRQ3B0dBQ+/fRTISUlRa3epUuXhGrVqol1lyxZorHNFy9eCO7u7uJnbMWKFXmO6b179woWFhYCAMHc3Fy4c+dOgXHmPp+OGTNGaNCggfDw4UO1OgsXLizx+b80z22FfYcUVe6233rrLaFatWrCb7/9plYnJSVF7ft31qxZ+baVlZWltn937dpV6PaHDRsmABD+/fffQuPz8PAQ9PX1q9yxderUKcHExEQAIDg6Ogrnz59XK8/MzFT7jm3QoEGe159DpVIJb7/9tli3Xbt2QlhYmFqdoKAgoVWrVkLnzp3VvrsK+o75559/BIlEIr4f+/btyxPjrFmzxO8Wba4bdXle379/v9jOO++8I8THx6uVy+VyYfHixeL5XNefI20lJycLNWvWFAAI69atUyvLfQxpcw1NREREVBgmtImIiIiqgKSkJPEm3us3lKpKQtvY2FgICQnJt97QoUPFen/88UeBbZZWQnvjxo1qN6lfv4mZIyUlRfDw8BDrbt26VWObufddQQnS9evX5/t6Xl9/2rRp+a6/YMECsU7//v2Fpk2b5ht/amqqYGlpKQAQZDKZkJCQoDH2osidEAQg+Pj4CFlZWXnqKZVKwc3NTax37969fNs7duyYWMfa2loteZqfVq1aCQA03uB/PT5HR0chLi4u37pxcXFqSYjXE2s55syZI9bp27evxthCQkIEc3NzAYBgYmIiPHv2TGPd3McrAGH37t351uvcubPaZzUtLU2oXbu2uN78+fM1buOnn35S20ZREtpFPYZzEtqvJ6Ne16tXLwGAYGFhkeem/+tef4+2bNmisW7uH3B06NBBYz1dH7+lKXdCG4Cwffv2fOutWrVKrDNkyJAC2yyLhLZUKhX8/f3zrZc72TRq1Cjhyy+/zLfe5s2bxXrvvfdegdt+/bjt2bNnngRhjkuXLomJMZlMJjx48CBPHZVKJfj6+ortLVq0SOO2c36clpPoUygUGuvmjtHMzEwIDQ3NUycrK0swMDAo9vm/tM9tpZnQBiB89tln+dZ7/vy52ne6UqnMt97MmTPFer169Spw23FxcYKRkZHg6OgoZGZmahVfVTu2oqKiBEdHRwGAoKenJ1y9elXjNr744gtxG2PHjs23zsqVK8U61apVK/Dc6+DgoBa3pu+YyMhIwdraWqz3999/a4xx9OjRam0WdN2oy/N6hw4dxPcwOTlZY1s5x2dBn6MtW7YI1atXF2xtbYX/+7//01ivOCZPniwAEDp37pynLPf7xoQ2ERER6QIT2kRERERVwOeffy4AEDp16pSnrKoktAvqEbxhwwax3vvvv19gm6WR0JbL5YKzs7NWSTJBUE+s1KhRQ+sb35oSrhEREcKmTZvylOdeXyKRCOHh4fmuf+vWLbXt/Pjjjxpjz91T6ujRowW+Tm29nhBcv369xrojR44U661YsSLfOiqVSq035oYNGzS2d+fOHQGA0KpVK63jW7BgQYGv55dffhHrurm55UmUREdHC0ZGRlonNidNmiTWnThxosZ6uY/XJk2aaKx34cIFYdOmTWKPuNzJSzs7uwJ/AJCeni5YWVlpnYwqyTF8/PhxYfbs2RoTGDm2bNkitr9mzZoC6+Z+jzw9PQus++LFC7H3GwDh5MmT+dbT9fFbmnIntN3d3TXWCw4OFus5OTkV2GZZJLR79OihsV5OQiXnX36JN0EQhJiYGLXEWEFeP24LSsoJgqDWK3PYsGF5yvft26e2bU3f+TkaNmwo1n99BIHccsdYUK/onTt3avyBS0HK4txW2gntgo6z3D/keb33cY7nz5+LSWWpVFpge0uXLhUACN98843W8VW1Y+vLL78U1yvsxzCRkZHiCDsGBgbCixcv1MoVCoXY+xeA8MsvvxTY3vz587Xa97l/pODt7V1gm+Hh4YJUKi30ulHX53UzMzMByP5RXkFu3LhR4OcoLS1NMDQ0VHtfnjx5UmCb2vLz8xP09PQEQ0PDfD8/ubfJhDYRERHpghREREREVKldv34df/zxBwwNDbFixYryDqfUdO/eXWNZ7nkMnz59WhbhqNmzZ484B7ChoSH69etXYP1+/frB0NAQABAWFqbVvI8uLi5o1KhRvmXVqlXDRx99pLEcADw8PODs7Jxvmbu7u9rzrl27amynVq1a4uMnT54UFHKxFbSva9euLT7WtK8lEglGjhwpPl+1apXG9lauXAkAGDt2rNbxFbZ/Bw4cKD4OCgrCmTNn1MrXrVuHjIwMAICnpycaNGhQYHu598e2bdu0irFv374ay9q1a4ePPvoIpqamANTnSu3duzeMjIw0rmtkZISePXtqFcPrinoMd+vWDXPmzClwbtWcdXNcvnxZ63gK249OTk5o06aN+Hz9+vVatVvS47esdOvWTWNZzZo1xe+oyMjIAue9Lgu+vr4ay3J/f3l4eKBGjRr51rO1tYWFhQUA4MWLF1q/JicnJ7Rs2bLAOrk/8//++684J2+O5cuXi48HDBgAAwODAtvT9Wd+0KBBGDBggFbt5FYW57bSVLduXbi5uWks1+bz6O7uLn5WVCoV1qxZo7G91atXQyKRYPTo0VrFV9WOLYVCofb+vPPOOwW26+joCG9vbwBAVlaWOEd2jtOnTyM0NFRtWwXp379/geU5cp/zcr+/+XF2dkaLFi0KbVPX5/Wc83B8fDyOHz+usZ1GjRohMDCwwLmrJRJJgbEUh1KpxJgxY6BUKjF9+nR4eHjofBtEREREr2NCm4iIiKgSy7mhpFKp8M0336B+/frlHVKpqVevnsay3AmvxMTEsghHzcmTJ8XHHh4eMDMzK7C+ubm52uvJvb4mhd0cLUzupH9+8eRWt25djXVzEkJA6bzXpqamGhPvAGBlZaXV9j/99FPo6+sDAC5evIj79+/nqZOWloYtW7bA0tIS7733nlbxyWSyAo9FIDtJkvt9unDhglr5qVOnxMetWrUqdJu5f0QQGxur1Q8JtD1e5HI5/Pz8xOdNmzYtdJ2cBERRFfcYVqlUOHfuHP7v//4PU6ZMwciRIzFixAjx34IFC8S6kZGRWrfbsGHDQuvkfj9e34/50dXxWxYKOo4lEkmFilXb76+CvruA4n1/aXO85z5O5HI5rl+/Lj5XKBQ4f/68+Lyon3ltf6RR0nNEfsri3FaaCvuu1vYYHzNmjPj4r7/+gkKhyFMn5zzTrVs3tUR5QarasXX9+nUkJSXpLJ7c37mWlpZqdfNTt25d8QcVmgQFBSE8PFx8rqtznq7P623bthUfDxo0CD/99BNiYmLytKOvrw83NzfY2dnlux1jY2P89ddfcHZ2ho2NDRYuXFjg96m2fv31V9y6dQt169bFzJkzS9weERERkTb0yzsAIiIiIiq+pUuXijeUvv322xK3t3v3bsyYMaPAOg8fPizxdorD0tJSY1nuHqWZmZllEY6a3MnS13s7a+Lu7o579+7lWV+TwnqpFqag908qVf+da0F19fT0xMel8V4XtG1A+33t5OSEvn37Yvfu3QCye2n/+uuvanX+/vtvJCYmYuLEiTAxMdEqPmtr6zzvV35cXV3h7+8PAHj06JFaWc5+B4AbN25gxIgRBbaVnJys9vz58+eFJu60PV6CgoLU3kdXV9dC17G1tdWq7eLGlNumTZswc+ZMhIWFaVW/KD2JNSUAcsv9fgQGBiIrK6vAHpC6On7LQlWJNffnsbDXVJzvr6IeJ0D2Z75jx44Asj9jKSkpYtmWLVtw+vTpAtvLndyKiIiAXC6HTCYrcJ2SniPyUxbnttKkq2O8f//+cHR0RFRUFF68eIH9+/fn6dlbnNE+qtqxlfvcBgDfffddoefL27dvi4+fP3+uVpb73KnNuUlPTw9WVlaIjo7WWOf187Guznm6Pq8vXLgQp06dQkpKClJSUjBr1izMmTMHvr6+6NevH95++22tYgeAoUOHYujQoVrV1UZwcDC+//57ANkjBBR2/BARERHpChPaRERERJVUcHAwZs+eDUB3N5QSExPz3OyrKApKIpXGcIpFERsbKz4urAdbfvXy63XzusKGES1MTm9lXdfVtcJeZ1H29ZgxY8SE9qZNm7BgwQK1BEbOUOS5e98VRtvPWe79GxcXp1aW+3jx9/cXE9/aSkhIKLSOtsdLfHy82nNtjl9jY2Ot2i5uTDlmzJiB+fPnA8ju+fndd99hwIABcHV1VeuFd+bMGXTp0gUAIAiC1u1rsy9ffz/i4uLg6Oiosb4uj9/SVpli1fY7qTS+u4p7nOTI/XkHUODwwZokJCQUeNwBJT9H5Kcszm2lSVfHuIGBgdpoEKtWrVJLaMfHx2P79u1wdHQsdFj23KrasfV6PJs2bSpyLLnlPj9pe/wVdn4qrXOers/rHh4euHr1KiZNmiT2/lYoFDh27BiOHTuGiRMnolmzZhg9ejRGjBhRpknlzz77DKmpqfjoo48KnKKGiIiISNc45DgRERFRJcUbSkQF69Gjhzh/anx8PP7991+x7O7du7h69SratGmj1dDTpeXbb7+FIAhF+qft8OiV2fnz58VktkQiweHDhzFt2jSthpQlqsiOHz9e5M98YQlHKn2jR48WE+DHjh1DUFCQWLZx40ZkZGTg008/LZUfFmiroh1bWVlZRYolICCg1GIpS7o6r3t5eeHkyZO4c+cOpk+fnmco+xs3bmDcuHFo2LBhnt7xpWXHjh04ePAgbGxssHjx4jLZJhEREVEOJrSJiIiIKqmDBw8CADZv3gyJRKLx3yeffCKuExwcnKd8zpw5YvmIESMKvelWEuU9bG1pyT0cZe7hPwuSu542w45S0UmlUowcOVJ8ntMjGyje8LBA9hym2si9f21sbNTKch8vrw87WtZeH0pWm+M3PT29tMIRrV69WnzcpUsXtGvXTufb0GZfvv5+vL4vqWgq4zmgpMfJ68MVl/dnvih4bnuldu3a8PX1BQCoVCqsWbNGLFu9ejUkEglGjx5dpDar2rGl63hyn5+0Pf4KOz+V1jmvNM/rjRo1wrx58/D06VPcvHkTX331Fezt7cXyJ0+eoEePHlqN3lJSBw4cAJA9UoCDg0OB//+RW5cuXdTKcn5sSERERFQUHHKciIiIqJIaPny4VvWePn2KixcvAgBMTU0xZMgQtfLGjRuXOJbcPZIKSliUxc228uDt7S2+x4GBgVqtk3uuSG9v71KJi4BPP/0Uc+fOhUKhwMWLF3H//n24u7tjy5YtsLKywrvvvluk9uLj46FSqQqdFzQ4OFh8XL9+fbUyb29vhIeHA9D+eCkt7u7ukMlkYmIld69DTV4fVrY03L17V3zctGnTUtmGNq8j9/tRq1atcu19WVFp+/0PZE9rUdkU9TgB1D/zbm5uMDMzExNn5f2ZLwqe29SNGTMGJ0+eBAD89ddfmDNnDq5evYr79++jZ8+eWs8znqOqHVuv7+/AwMASze3u6ekpPs59TtVEpVIVep2Zu00g+/1t0qRJgetos5/K6rzepEkTNGnSBD/88APmzp0rDoP/4sULbNq0CZMmTSq1bQNA+/btta67YcMG8XHPnj3h5OQkPq9KP3YhIiKissOENhEREVEltX79eq3r5dyQtrOz03q9orCwsBAfvz4/YW4VdX7ukurWrZvY4/fRo0dISUkpcF7G5ORkPH78WHye0+uLdM/Z2Rl9+vTB3r17AWT30vbx8UFiYiImTZpU5Pmg5XI5njx5Ag8PD411nj17hqSkJPH56zeAu3XrhqNHjwIA/Pz8IAhCoXO57tmzB7NmzYJMJsOlS5d0Nl+moaEhWrVqhXPnzgEAbt26Veg6ZTG0aUZGhvi4sCSytj33XqfNHKe534+i3Mh/k2j7/R8aGoq0tLSyCEmninqcGBkZoXnz5uJzfX19dOrUSRxV5erVq1pt99tvv8XevXvRvHnzUjlva4PnNnUDBgyAvb09Xr58iRcvXmD//v3YvXs3gOxkd1FVtWOrefPmsLS0FH+4cvXqVa1+kNSjRw9ERERg/Pjx+Oyzz8TlHTp0EB8nJibi+fPnqFWrlsZ2Hj9+XOiPalxcXODi4oKQkBAA2e9v7vnQ86PNOU/X5/UVK1agWrVq6N+/f77rGhsbY/78+fDz8xPn2L5//36hcZbUqFGjMGrUKK3q5k5oT58+HZ07dy6lqIiIiOhNwSHHiYiIiKjE6tSpIz5+9uyZxno5N/uqmv79+6NGjRoAsnso7tu3r8D6e/fuRVZWFgCgZs2aGm9Ykm7kTjRs2rQJy5YtA1D04cZzFLZ/cxIcQHYP6E6dOqmVjxgxAiYmJgCAyMhI8WZ0QVasWIH79++jRo0aOktm58g92sPhw4fVksmvk8vlZfI5zvk8AdnDqRZEmyR8fvbv319geWRkJC5fviw+zz19A71S1b//IyMj4efnV2Cd3J/59957L88PZXIn6Q4dOlRoT/XU1FTxM+/j41OMqHWD5zZ1hoaGGDFihPh80aJF2LFjB6pVq4Z+/foVub2qdmzp6+urnVe3bt1a6DpXrlzB8ePHcf/+fbRt21atrFOnTmpDU+/atavAtgo7PnPkPuflfn/z8+LFi0L3EaD78/r48ePx9ddfF9pG7h84FPRjEyIiIqKqgAltIiIiIiqxjh07io+PHTuWb52EhASxp1dVY2BgIA77CAA//PCDxp6Iqamp+N///ic+X7BgAYcxLmW9evWCi4sLgOwepDdv3kS7du3QoEGDYrW3ePFijcOaxsfHY/HixeLz2bNn5xme3M7ODt9++634/Ouvvy4wibx3714cPXoUEokEM2bMKFbMBRk6dCjq1asHAIiJicGvv/6qse6SJUvKZOqA3r17i48PHjwoDuX6uqSkJLW50Yvi/v37+OeffzSWz507F0qlEgDQuXPnMu9d1qlTJ3G+0b///rtMt10U2nz/Z2VlqX0uKpvZs2dDEIR8y65cuYJDhw4BAGQyWb6f0d69e6NHjx4AskcUKOxzPGvWLMTFxcHe3r7I8zLrEs9teY0ePVrseXvp0iWkp6fj008/hb5+8QZArGrH1rRp0+Ds7AwAuHDhAv7991+NdTMzM/HFF18AyD5Pvz70t1Qqxffffy8+X7x4scZRIBISErBkyRKtYpw0aZI45PW9e/cKPQ+oVKpC2yyN8/rjx49x586dArebu5d/7h7tuW3duhU1atSAnZ1dged3IiIiooqOCW0iIiIiKrH3338flpaWALJvnL3eEy86Ohr9+/fHoEGDyiO8MjF06FDxxuyjR4/Qr18/vHjxQq1OZGQk+vfvLw7JOmXKFHzwwQdlHeobRyqVYuTIkWrLits7u0aNGvD09MRbb72VZ07PiIgItf0+ePBgjXPdz5gxQ/w83Lx5E2+//bY4BGoOlUqF9evXi8fI9OnT0bp162LFXRAjIyNs3LhR7Pk3a9Ys/PXXX2p1BEHAqlWrMHv2bHz44Yc6j+F1Y8eOFX+EkJ6ejr59++aZlzQyMhIDBgxAWFhYsbbx8ccfY+TIkXl66CmVSvz0009YsWIFgOxExdq1a4u1jZLIPW+rvb19mW9fWz169BDnDj579izWrVunVp6SkoIPP/xQHOq3sqlfvz6OHz+OsWPHIjU1Va3sypUrGDx4sJiQ/OWXXzROR7B582bxhyPLly/HlClT8rSXkpKCqVOnYunSpdDT08P69evLvdclz23q6tatq/bjFqlUWuzEcI8ePXDz5s0qdWzZ2dnh33//FdsePnw41q1blydpHxISgrfffhtXr16Fg4MDVq9enW97n3zyiXiufPHiBfr165fnB04hISHo06cPpFIpbGxsCo3R3t4eq1evFn9sNnr0aBw4cECtjkKhwNy5c7Fp0yYMHjxYq9deGuf1QYMG5dtDPD09HfPmzcPhw4cBAG3atMHbb7+db71PPvkE4eHhiI2NxZQpUwocSYOIiIioIpMImn4KSkRERESV0sOHDzF//nzx+dOnT8U5tE1NTTFkyBCxzM7ODosWLdLJdnfs2IEPPvgACoUCEokELVu2RK1atRAXF4dz586hR48e2LZtmzgkI/Bq2Mf69etj+vTpAIA1a9bgwoULYps5N2UHDx4MMzMztG/fXpy/b/78+Xj48CFSUlKwc+fOPK9xwIABGDBgAC5cuIA1a9YAAG7fvi32ePHx8UHjxo0BZM8L2L59e7XtHzlyBFFRUQCAnj17wsnJSYx90aJFYg+f3BYtWoTvv/8e6enpMDAwQPv27eHk5ISoqCicP38eWVlZMDY2xg8//ICvvvoqz/oxMTHi8tz7rnbt2mpz+Gqa91Kb9XNiz/1ac891mLNfcr/XOcOsanr/pk+fjvr16+cbkyZfffUVYmJiNO6/nH2Se/uaXlNh2w8LC4ObmxuUSiWsra0REREBIyMjreIMCgoSE3aurq64du0a+vfvj+vXr6Nt27aoXr06oqOjcf78eXH+zvfeew8bN26EoaGhxnaVSiVmzJiBJUuWQKFQQE9PD61atYKrqyvS09Nx7do1REREwMDAALNmzVLrqZZjz5492LNnDwDNx2vu/ViQU6dO4b333kNMTAyA7OHSmzVrBpVKBT8/P0RFReGPP/6AgYGBOPz28OHD8xyLJT2Gc9y/fx9vv/02goKCAGT3Fm3Tpg1q1qyJ6Oho8dgdOnSomHB2dHREr169AKgfPzk6d+6Ms2fPAgBOnz6Ns2fPYu7cuahbty58fHygUChw5coVMWHn5uaGvXv3olGjRnniK+3j19bWFnFxcQCAqKgoODg4FPh+aZL7++/ChQtiMqNdu3aoU6eO2nkg9/GU3/dv7u/q17fRu3dvcT7zhg0bwtvbGykpKTh37hwaNGggztmb80OQnDY1bT+/4zn39rV9T3O//vxeU872c587c7c5fPhwdOvWDWPGjBG/0y0sLPD06VNcv34dQPaxOW/ePEydOrXAfREbG4thw4aJSShTU1O0a9dOnJf58uXLSE5OFn9Ekd8w1jnnPSD/720g/2O/pEp6btP0/r7+vZBz3i6Kopz3cseR3+cBKPy7adu2bRg6dCiA7J7FOftTG+vXr1f7/hw/fjwGDhyI1NTUKnVs3bp1C0OHDhXbq1atGlq0aAEzMzMEBwfj6tWrUCgU8Pb2xo4dOzQm64HsntzDhw8XR6owNDREhw4d4ODggIiICFy8eBFOTk7Yt28fBg4cmOc7Bsh/n27btg2jR48WvxMaNGgAb29vZGRk4NKlS5DL5di8eTNu3LiBuXPnAsjuUT9nzhyNserivA5kj3xx/vx58bmnpye8vLxgaGiIyMhI3L59W+yt3rVrV/z777/5JvPT0tJgbW2tNrf406dPUbt2bY2vobhyzok5ch9Dr19DF+eakYiIiAgCEREREVUpp0+fFgBo9c/V1VWn275586YwdOhQoUaNGoKhoaFgb28vdOnSRdi8ebOgUqkEQRDyjaNTp05iG8OHDy8w5uHDh4t1O3XqVGDd2bNnC4IgCOvWrSv0vVi3bp1W28/5FxgYqPF9CA8PF2bPni20atVKsLOzE/T19QU7OzuhVatWwuzZs4WwsDCN6wYGBmq1/ZKsnxN7Ud7rwto8ffq0xpg0cXV11Wqf6Gr7ffr0EQAIkydPLlKcud/TnM9MZmamsHLlSqFz586Ck5OTYGhoKFSrVk0YMGCAcPDgwSK1//jxY+Hrr78WmjZtKtjY2Aj6+vqClZWV0Lx5c+Hrr78WHj9+rHHd2bNnF/re5N6PhYmJiRG+++47oVGjRoKZmZlgZmYm1KtXT5gwYYLg7+8vCIIgrFmzRmx77NixBb5fxTmGc0tKShIWLlwotGnTRrCyshL09fUFGxsboVWrVsKsWbOE8PBwjd95uY+fHLm/M3KOmUuXLgkff/yxUKtWLcHY2FiwtLQUWrRoISxYsEBISUnRGFtpHr/Xr18Xy1q1aqXVe6VJYd9/uc8DhR1Pub+rX/f06VNh9OjRgru7uyCTyQRra2uhdevWwp9//inI5XKN71lxt6/te6rt69d0HOV8fp48eSJ88cUXQoMGDQRLS0tBJpMJ7u7uwpgxY8TPhrZOnz4tjBo1SqhXr55gbm4uGBgYCA4ODkKXLl2ERYsWCbGxsRrXLey8p+nY14WSnNu0vTbJOW8XRVHOe9rEUZiMjAzBxsZGACDs3r27SLHmPh5zjq3o6Ghh7ty5QpMmTQQbG5sqc2wpFAph06ZNwqBBgwQXFxfByMhIMDIyElxcXIQBAwYIW7ZsEbKysrRu79ChQ8LAgQOFatWqCQYGBoK9vb3QunVr4eeffxYSExMFQdD8vaxJcHCw8OWXXwr169cXTExMBAsLC6FBgwbCtGnTxGNm1qxZYjvz5s3TKtaSnNdzPHnyRFi8eLEwYMAAoW7duoK5ubmgp6cnmJmZCZ6ensLw4cOFI0eOFNrOli1bBGdnZ8HW1lb4v//7P63iL47CzokFnfOIiIiItMEe2kRERERE9EZo2bIl/Pz8cP/+fXh5eWm93us9tHN6DL+plixZgi+//BIAMHPmTPz000/lHJH2Xu+hXdbzYmtr4sSJWLZsGQDgn3/+wbvvvlvOERFRjri4ODg7O8PW1hbBwcFFmj/79R7ahfUGp/I3efJk/PbbbwCAVatWleu89kRERERvMs6hTUREREREVZ6/vz/8/PzQoUOHIiWzKa8nT56Ij/MbiptK5vLly1i+fDkAoHfv3kxmE1UwW7ZsgVwux8iRI4uUzKbKiec8IiIiooqBCW0iIiIiIqrycuZYHjt2bDlHUjHNnDkTTk5OeP78eaF1T5w4ASB7HlNfX9/SDu2NcuXKFfTp0wcqlQo+Pj7YunVreYdERK9Zu3YtpFIpRo0aVd6hUDENGzYMrq6u4vzZmqSnp4tzstvb26NZs2ZlER4RERER5YMJbSIiIiIiqjI++eQTjB8/Xm1ZcnIyNm7cCDs7OwwZMqScIqvYkpKSEBUVhb/++qvAev/884/YW23EiBGwt7cvi/DeGImJiUhLS0OfPn1w9uxZWFlZlXdIRG+kxMREdO7cGStXrlRbfuHCBdy5cwdvvfUWXFxcyik6Kqn4+HiEhIRg27ZtBdb77bffkJSUBACYMmUKe+QTERERlSMmtImIiIiIqMrw8/PD+vXrERYWJi77/vvvER8fj0mTJkEmk5VjdBXfvHnzsHz5cmRlZaktV6lU2LRpEz799FMAQL169bBw4cLyCLFK69mzJ+7du4cDBw7A0tKyvMMhemNlZWXh7NmzWLFiBZRKJQBALpfjq6++AgBMmzatPMMjHfn888+xY8cOCIKgtjwrKwuLFy/Gt99+CwBo3769uO+JiIiIqHzwp4VERERERFSlZGRkoFmzZujUqRMCAwNx/fp1NGjQoMg3o0eMGAEASElJEZfFxMSIy+vXr4/p06frKuxyldPTWqVSYcKECZg7dy68vb3h6OiIpKQkXL9+HZGRkQCATp064Z9//qk0Cdc1a9bgwoULAICHDx+Ky+fPn4/169cDABYtWgQ7O7vyCC+POnXqlHcIRPSf27dvw9vbG40aNcK1a9cQFBSETz75BB07dtS6jYcPH2L+/PkAgKdPn4rLL1y4IJ5PBgwYgAEDBugydCqAg4MDgOwhxd955x24uLigfv36sLOzQ2xsLK5du4b4+HgAwJAhQ7Bu3ToYGBiUZ8hEREREbzyJ8PrPEKnCUqlUiIiIgLm5OSQSSXmHQ0RERJWUIAhITk6Gs7MzpFIO2PMmeROuJ//3v//h8OHDCA0NRUZGBqpVq4bevXtj2rRpRU5YFpawbd++PQ4ePFiScCuUJ0+e4PDhw7hy5QoeP36MqKgopKamwsTEBI6OjmjZsiUGDx6Mbt26lXeoRTJ+/PhC56K+e/cuXF1dyygiIqro0tLSMGHCBNy6dQvR0dGQSCRwdXXFhx9+iHHjxhVp6Onz58/j7bffLrDO9OnTMWPGjJKGXeYq8zXlzZs3cejQIVy6dAmPHj1CdHQ00tPTYWZmhho1aqB9+/YYPnw42rRpU96hVkhvwjUlERERlb6iXE8yoV2JhIWFoWbNmuUdBhEREVURoaGhqFGjRnmHQWWI15NERESka7ymfPPwmpKIiIh0SZvrSQ45XomYm5sDyN6xFhYW5RwNERERVVZJSUmoWbOmeG1Bbw5eTxIREVU9089Nx7mwc1BBVWhdKaToWKMj5necX+Lt8pryzcVrSiIiItKFolxPMqFdieQM4WNhYcGLRSIiIioxDg/45uH1JBERUdWTrp8OibEEetDTur4urwN4Tfnm4TUlERER6ZI215OVa4IbIiIiIiIiIiIiElnJrCDV8hafFFJYyaxKNyAiIiIiIh1jQpuIiIiIiIiIiKiS8nXx1Wq4cQBQQQVfF99SjoiIiIiISLeY0CYiIiIiIiIiIqqkHE0ctaongQQWhhbo4dajlCOiolKpVFi2bBksLCwgkUgQFBSks7YjIiIwefJk1K5dG0ZGRnB0dMTbb7+No0eP6mwbRERERKWNCW0iIiIiIiIiIqJKyP+lPyafnlxoPQmy5yX8qf1PkOnJSjssKoL79++jffv2mDhxIpKTk3Xa9pUrV+Dt7Y3Vq1dj3LhxOHfuHP7880+EhoaiV69emDlzpk63R0RERFRamNAmIiIiIiIiIiKqZB7EPsDYE2ORkpUCAPCw9oC5oTkAiHNq5/w1NzTHb76/oXPNzuUSK+Vv9uzZaNq0KfT09DB9+nSdtv3y5Uv07dsX8fHx2Lp1K6ZNm4aWLVti8ODBOHfuHGrWrIl58+Zhw4YNOt0uERERUWlgQpuIiIiIiIiIiKgSeRT3CGOOj0FyZnaP3hZOLbDprU04/e5p/Nz+Z/i6+KK5Y3P4uvji5/Y/49S7p5jMroCWLl2KJUuW4Ny5c/Dw8NBp2z/88ANiYmLQqlUrDBgwQK3M0tISM2bMAAB88803SE9P1+m2iYiIiHRNv7wDICIiIiIiIiIiIu08S3iGMcfHIFGeCABo4tAEf/j+AWN9YwBA39p90bd23/IMkbT04MEDVK9eXeftZmZmYtOmTQCAwYMH51tn8ODBmDBhAqKionDgwAG88847Oo+DiIiISFfYQ5uIiIiIiIiIiKgSCEwMxMijIxGXEQcAaGTXCH92/RMmBiblHBkVR2kkswHg4sWLSEzM/sFDixYt8q3j4OAAFxcXAMDBgwdLJQ4iIiIiXWFCm4iIiIiIiIiIqIILTQrFqKOjEJsRCwDwsvXC8u7LYWZoVs6RUUVz9+5d8bGbm5vGejlluesTERERVUQccpyIiIiIiIiIiKgCC08Jx8hjIxGdHg0A8LD2wKruq2BhaFHOkVFFFBISIj62t7fXWC+nLDQ0tMD25HI55HK5+DwpKamEERIREREVDXtoExERERERERERVVCRqZEYeXQkXqS+AADUsaqDVT1WwVJmWc6RUUWVnJwsPjYyMtJYL6essAT1vHnzYGlpKf6rWbOmbgIlIiIi0hIT2kRERERERERERBVQdFo0Rh4difCUcACAm4UbVvdYDRsjm3KOjN4kM2bMQGJiovivsB7dRERERLrGIceJiIiIiIiIiIgqmJj0GIw6NgohydnDR7uYu2Btz7WwM7Yr58ioojM3NxcfZ2RkwNTUNN96GRkZAAALi4KHrpfJZJDJZLoLkIiIiKiIKn0PbZVKhWXLlsHCwgISiQRBQUE6azsiIgKTJ09G7dq1YWRkBEdHR7z99ts4evSoVus/evQII0eOhIuLC4yMjODs7Iz33nsP165d01mMRERERERERERUtcRnxGP0sdEITAwEAFQ3q461PdfCwcShnCOjysDFxUV8/PLlS431cso4hDgRERFVdJU6oX3//n20b98eEydOVJsbRheuXLkCb29vrF69GuPGjcO5c+fw559/IjQ0FL169cLMmTMLXH/v3r1o0qQJ9u3bh5kzZ+L8+fNYsGABrl27hrZt22L58uU6jZeIiIiIiIiIiCq/RHkixhwfg6cJTwEATqZOWNtzLZxMnco5MqosGjVqJD4uqPNPTlnu+kREREQVUaVNaM+ePRtNmzaFnp4epk+frtO2X758ib59+yI+Ph5bt27FtGnT0LJlSwwePBjnzp1DzZo1MW/ePGzYsCHf9QMCAvDBBx8gMzMThw8fxrhx49CiRQsMGzYMZ86cgYmJCSZOnIhTp07pNG4iIiIiIiIiIqq8kjKTMOb4GDyMewgAcDB2wNoea1HdrHo5R0aVSdu2bWFpaQkAuH79er51oqOjERKSPZx9nz59yiw2IiIiouKotAntpUuXYsmSJTh37hw8PDx02vYPP/yAmJgYtGrVCgMGDFArs7S0xIwZMwAA33zzDdLT0/Os//XXXyM9PR1DhgxB8+bN1cpcXV0xfvx4qFQqTJkyRadxExERERERERFR5ZSalYrxJ8bjQewDAICtkS3W9FwDFwuXQtYkUieTyTBs2DAAwM6dO/Ots2vXLgAQp1gkIiIiqsgqbUL7wYMHmDBhAiQSiU7bzczMxKZNmwAAgwcPzrdOzvKoqCgcOHBArezFixc4dOiQVuvfvXsXfn5+OombiIiIiIiIiIgqp7SsNEw4MQF3X94FAFjLrLGmxxq4W7qXc2RUUa1atQqWlpZo164dEhIS8pR///33sLOzw5UrV7Bv3z61sqSkJMyfPx8AsGDBAhgbG5dFyERERETFVmkT2tWrl85QSxcvXkRiYiIAoEWLFvnWcXBwgItL9q9jDx48qFZ25MgRqFSqAtdv3LgxDAwM8l2fiIiIiIiIiIjeHOmKdEw6NQk3o28CACxllljdYzXqWNcp58iotEVHR+PevXu4d+8ewsPDxeWPHz8Wl6empua77u+//46kpCRcunQp32kN7e3tsX//flhbW+ODDz7AokWL4Ofnh927d6Njx44IDg7GjBkzMHz48FJ7fURERES6UmkT2qXl7t274mM3NzeN9XLKctfP/VxPTw81a9bMd11DQ0NUq1Yt3/WJiIiIiIiIiOjNIFfKMfnUZFyLvAYAMDc0x6ruq+Bho9vp9ahi+vPPP9GwYUM0bNgQs2bNEpf37NlTXK5pdMeJEyfCwsICbdq0ga+vb751WrdujXv37mHkyJFYvnw5OnTogLFjx6JGjRo4cuQIfv7551J5XURERES6pl/eAVQ0ISEh4mN7e3uN9XLKQkND813f2toaenp6Ba4fEhKSZ/3c5HI55HK5+DwpKang4ImIiIiIiIiIqFLIVGZiyukpuPziMgDA1MAUK7uthJetVzlHRmVlzpw5mDNnTrHWHTt2LMaOHVtoPWdnZ/z222/47bffirUdIiIiooqAPbRfk5ycLD42MjLSWC+n7PUkc876Ba1b0Pq5zZs3D5aWluI/TT2+iYiIiIiIiIio8shSZeGrs1/hfPh5AICxvjGWd1uOhvYNyzkyIiIiIqKKhwntCmzGjBlITEwU/xXUm5uIiIiIiIiIiCo+hUqBb859g9OhpwEARnpGWNZ1GZo4NCnnyIiIiIiIKiYOOf4ac3Nz8XFGRgZMTU3zrZeRkQEAsLCwyHf9nHJNNK2fm0wmg0wmKzxoIiIiIqICLFu2DMuWLYNSqSzvUIiIiN5oSpUS3174FseDjwMADKWG+M33N7RwalHOkRERERERVVzsof0aFxcX8fHLly811sspe30Y8Jz14+PjC7xhqGl9IiIiIiJd++yzz/DgwQP4+fmVdyhERERvLJWgwveXvsehwEMAAAOpAX71/RVtnNuUc2RERERERBUbE9qvadSokfg4KChIY72cstz1cz9XKpUahwjPzMzEixcv8l2fiIiIiIiIiIiqFpWgwg+Xf8C+Z/sAAPoSfSzuvBjtq7cv58iIiIiIiCo+JrRf07ZtW1haWgIArl+/nm+d6OhohISEAAD69OmjVtarVy9IpdIC1799+zaysrLyXZ+IiIiIiIiIiKoOQRAw7+o87HyyEwCgJ9HDwk4L0blm5/INjIiIiIiokmBC+zUymQzDhg0DAOzcuTPfOrt27QIAODo64u2331Yrq1atGt566y2t1m/UqBFatOAcSUREREQlERkZidu3byMpKam8QyEiIiJSIwgCFvotxN+P/gYASCVSzOswD91du5dzZERERERElccbmdBetWoVLC0t0a5dOyQkJOQp//7772FnZ4crV65g3759amVJSUmYP38+AGDBggUwNjbOs/7ChQthbGyM7du34+bNm2ploaGhWL58OaRSKZYsWaK7F0VERET0BomPj8e3334LV1dXVK9eHc2aNVMbHadWrVqYNWsW4uPjyzFKIiIiepMJgoClN5dic8BmAIAEEvzY7kf0du9dzpEREREREVUulTahHR0djXv37uHevXsIDw8Xlz9+/Fhcnpqamu+6v//+O5KSknDp0iWcOnUqT7m9vT32798Pa2trfPDBB1i0aBH8/Pywe/dudOzYEcHBwZgxYwaGDx+eb/uenp7YunUrDA0N0bNnT6xcuRLXr1/Hli1b0KlTJ6SmpuKPP/6Ar6+vbt4MIiIiojeIv78/fHx8MH/+fISGhkIQhDx1wsLCMG/ePPj4+ODu3bvlECURERG96f688yf+uveX+HxO2znoW7tvOUb0ZkhISMB3332Hfv364aOPPsLBgwfLOyQiIiIiKiGJkN8dwEpgzpw5mDt3boF1Tp8+jc6dO+dZvnLlSnz99ddo0KABDh06BCsrq3zXj4iIwPz583Hw4EGEh4fDwsICLVu2xKRJk9CzZ89CY3z06BEWLFiAEydOICoqCjY2NujQoQO++uortGzZUpuXqSYpKQmWlpZITEyEhYVFkdcnIiIiAir3NUVaWhq8vLwQEhICfX19NG7cGA4ODjh8+DCOHz8u/mAwJCQEK1euxMKFC+Hk5IT79+9XutdaGirzviciIqpMVt1dhd9v/S4+/671d3jX491yjEj3yuu6IjU1FdWqVRM7shw+fBg9evQAkP2jxtatW+PFixdq60ybNk0ccZFKjteUREREpAtFuaaotAntNxEvFomIiEgXKvM1xeLFi/HVV1+hb9++WLFiBapVq4aYmBg4ODjgxIkTeUbAOXz4MPr06YOffvoJM2bMKKeoK47KvO+JiIgqi3X31mHxjcXi8+ktp+NDzw/LMaLSUV7XFZs3b8bHH38MIyMjDBw4ED/88ANq164NAHj33XexY8cOAICTkxPs7e3x4MEDqFQqnDt3Du3atSuzOKsyXlMSERGRLhTlmqLSDjlORERERG+effv2wcvLC7t27UK1atUAABKJRGP93r17Y+DAgdi7d29ZhUhERERvsM0PNqsls6c2m1olk9nl6ciRI5DJZLh06RK2bNkiJrPDw8Oxa9cuSCQSDBo0CMHBwbhz5w4uXLgAIyMjrFq1qpwjJyIiIqLi0i/vAIiIiIiItPXgwQNMmTIFenp6Wq/Trl07/O9//yvFqIiIiIiAfx7+gwV+C8Tnnzf5HCO8R5RpDIosJZ7diMbzOzHISM2CkakBavnYoXYzB+gbaH/9VJH5+flh2LBhaNy4sdryXbt2QaVSwcDAAL///jsMDAwAAK1atcIHH3yAs2fPlkO0RERERKQLTGgTERERUaWRmJgIZ2fnIq1jbm6O9PT0UoqIiIiICNj1ZBd+vPqj+HyczziMbjS6TGMIvPMSpzcEwDZLiWqGUhgCyATw8F4MLv77BF1GeMG9kV2ZxlQawsLC0KRJkzzL9+/fD4lEgrfeekscySeHj48Ptm7dWlYhEhEREZGOMaFNRERERJWGtbU1QkNDi7TO7du3YWtrW0oRERER0Ztu37N9mHNpjvh8pPdITPCZUKYxBN55iZtr7qGzsR4MDfUhCAIkEgkEQYCzgT4yVQJurPYHRnnD3ce+TGPTNZVKlWdZQkKC2AP7vffey1NuZGSU73pEREREVDlwDm0iIiIiqjSaNGmC9evXa93j+tmzZ9i4cSOaN29eypERERHRm+hw4GF8d/E7CBAAAMO8hmFy08mQSCRlFoMiS4m7GwPQ0kQPBv9tNmf7OX8NJEArEz3c3RgARZayzGIrDdWqVcO9e/fUlm3atAlZWVmQyWR4++2386wTEhICa2vrsgqRiIiIiHSMCW0iIiIiqjQ+/PBDPH/+HL169cLjx4811lOpVNixYwc6duyItLQ0DBs2rAyjJCIiojfB8eDjmHF+BlRCds/f9z3ex7Tm08o0mQ0Az65FouF/02Nr2nbO8oZ6wDO/qLIKrVS0bdsWW7ZswfXr1wEAAQEB+OmnnyCRSNCnTx+YmZmp1VepVPjnn3/g4eFRHuESERERkQ5wyHEiIiIiqjQ+/PBDrFixAufPn4eXlxcaN24MLy8vAMDy5cuxfft2BAcHw8/PD3FxcRAEAV26dMGQIUPKOXIiIiKqSk6HnMbXZ7+GUsju7Tyk3hDMaDWjzJPZABB3ORI1pYVvVyKRwFACRF1+AbR1LoPISsekSZOwbds2tGrVCra2toiLi4NKpYJEIsGUKVPEekqlEg8fPsR3332HZ8+e5TsUORERERFVDkxoExEREVGlIZFIsG/fPvTu3Rt+fn64desWbt26BYlEgl27don1BCF72M/WrVtj586d5RUuERERVUHnw87jy7NfQiEoAAD9a/fHd62/g1RSPgMhmibLxTmzCyMIAkyT5GUQVelp1aoVFi1ahK+//hoxMTEAsq8RZ86cibZt24r15syZg59//ll8bwYPHlxeIRMRERFRCTGhTURERESVio2NDS5cuIAlS5bg999/R3h4eJ46NWrUwOeff44vvvgC+vq85CUiIiLduBxxGV+c/gIKVXYy+y33tzC37dxyS2YDgKFE81Djr8vppV3ZTZkyBW+//TaOHj0KhUKBjh07omnTpmp1fH19xetAc3NzNG7cuBwiJSIiIqp8FFlKPLsRjed3YpCRmgUjUwPU8rFD7WYO0DfQK5eYJEJO9xWq8JKSkmBpaYnExERYWFiUdzhERERUSVW1a4qHDx/iyZMnSE5Ohrm5OerWrYv69euXd1gVUlXb90RERGXJL9IPE05MQIYyAwDQw7UHFnRcAH1p+f54LmjpDei9SNW6h7ayuhncPm9aaN3C8LrizcV9T0REVHUF3nmJkxsCIE9TABIAAsS/MhN9dB3hBfdGdjrZVlGuKdhdhYiIiIgqtfr16zOBTURERKXqVvQtfHbyMzGZ7VvTF/M7zi/XZLagFJB2IwoGCXIIReihbdum8s6fXVwvX75EQEAAOnbsWN6hEBEREVVYgXde4tAK/+wkNpDnrzxNgUPL7+KtcQ3h7mNfprGV33hIRERERERlwN/fHz/88EN5h0FERESV1N2XdzH+xHikK9IBAB1rdMQvnX6BgdSgXOIRBAHp92MQtfQG4nc9gZChFJcXtp5gKIVZY4eyCLNCOXbsGLp06VLeYRARERFVWIosJU5uCHiVxNZEAE5uCIAiS1kmceVgQpuIiIiIqrS7d+9i7ty55R0GERERVUL3Y+9j3PFxSM1KBQC0dW6LxZ0Xw1DPsFzikQcm4uXyO4jdFADFy3RxeZxCBUBzUlsQBEAigd379SEx4O1AIiIiIlL37EZ09jDjWpCnKfDs5stSjkgdhxwnIiIiokpJLpfj6dOnSExMhEKh+YI7ICCgDKMiIiKiquJR3COMOTYGyVnJAICWTi3xa5dfIdOTlXksWZGpSDwahIyAOLXlsQoVHqSrkCAB3urjDv2rERAylLmnOoQEgNRYHzbvesDYy7bMYy8t/v7+WLp0Kc6ePYuIiAjI5fLyDomIiIio0np+J+bVBWRhJMDz2y/h0cqptMMSMaFNRERERJXK7du3MXPmTJw4cQJKZdkOb0RERERvhqfxTzH62GgkZSYBAJo6NMXvvr/DSN+oTONQJMiRdDwYaTej1G4uymV6uB0rR6RCgFQqQa8x3nD1sYfQzQVp92KQcS8GqnQFpMb6MPK2g4m3XZXqmb1hwwaMGTMGCoWi0KHWc0i0nGeciIiI6E2UkZqlXTIbAIT/6pchJrSJiIiIqNK4c+cOOnTogLS0NK1vXgK8gUlERETaC0wMxKhjoxAvjwcA+Nj74M9uf8LEwKTMYlClZSHpTBhSLoUDilfXPFILQ0RZGeHy3djs3tdSCbqPbAB3H3sAgMRACtMmDjBtUnXnyX7w4AHGjBmDrKwstG7dGi1btoRMJsMvv/yCYcOGoVatWgCAlJQUXL9+HWfPnkW9evXwwQcflHPkRERERBVTQlQaEiLTtF9BAhiZGpReQPlgQpuIiIiIKo25c+ciNTUVtWvXxtChQ+Hl5QVra2vIZJqH/jx27Bjmz59fhlESERFRZRWSFIJRR0chNiMWANDAtgGWd1sOUwPTMtm+kKVE8sUIJJ8Jg5DxakoViZE+zLvUwP3oDNw8GfrfQqDbCE/UaVZ1k9f5+e2335CVlYUVK1ZgzJgxAIDY2Fj88ssvGD58OHx9fdXqb968GZ988gneeuut8giXiIiIqMLKSM3C9YNB8D8TBpVK+44jEIBaje1LL7B8MKFNRERERJXGhQsX0LRpU1y4cAFGRtoN+RkWFlak3txERET0ZgpLDsPIYyMRnR4NAKhvUx8ru6+EuaF5qW9bUApIuxmFpOPBUCZlvirQl8CsXXVYdKoBvxOhr5LZAHyHeaJey7Kbt7CiOHv2LHr06CEmswvz0UcfYc+ePfjtt9+wadOmUo6OiIiIqOJTKlW4fy4c1w4EQp766keUwn9jjkugeaRDASpk6stRw8ey1OPMjQltIiIiIqo0kpOT8fHHH2udzAaAtm3bYt26daUYFREREVV2L1JeYNSxUYhMjQQA1LGqg1XdV8FSVro36gRBQMaDOCQeDYQiOv1VgQQwaeYIi26u0LeS4fqhQFw/FCQWd/7QA55tq5VqbBVVaGgohg8frrYsZ3oZTT9i7NixI5YsWVLqsRERERFVZIIgIPheLC7tfIr4XEOM6xtIYdI8AztiNqP7kxEQIEACad71oQIAnKq9CXXDVehbu2+Zxc6ENhERERFVGjVq1ICpadGG/HR3d4e7u3spRURERESVXVRqFEYeG4nwlHAAgLulO1b3WA1rI+tS3a48KBGJh4OQGZykttzI0waWvdxg4Jh9zXPzWDCu7gsUyzu8VxcNOlQv1dgqMoVCATs7O7VlOdPPREZG5ruOIAgay4iIiIjeBLHhKbiw/QnCHsarLa/XyhGt+9fG93dmIAj+OCJdiy5PP4SR0gQqqCCFVPwr18vA6TqbEWoTgFMhp5jQJiIiIiLKz6BBg3DhwgWMHDlS63UCAwNx/vx5fPzxx6UYGREREVVGMekxGHVsFEKTs4fydrVwxdoea2FnbFfImsWXFZWKxCNByAiIU1tu6GoBy95ukLm96hV+51QoLu96Jj5vO6gOGnWpWWqxVQYODg54/Pix2jJTU1MYGRnh2rVr+PDDD/Osc+7cOejp6ZVViEREREQVRlpSJq7uf46ACxHIPZiNUy1LtH+nLhzdLSAIAkKSQ6CCCsE297Cp+XeoFdsY7nGNIFOYQK6fhkCbu3huextKafYQ5QnyhDJ9HUxoExEREVGlMXPmTLRq1Qp///033n//fa3WuXTpEj755BMmtImIiEhNXEYcRh0dhaCkIABAdbPqWNNjDexN7Etle4oEOZJOBCPtRhSQ62aivoMxLHu6w8jLRhw6GwDunQvHhX+fiM9b9auFJj1cSiW2ysTHxwfr1q3DtGnTYG//al81btwYa9aswXvvvYe2bduKyzds2IDdu3ejYcOG5REuERERUblQZClx91QYrh8OQlaGUlxubmuENgNro04zBwDA5YjLWH5nOR7Hv/rBoFKqwBP763hifz3ftqWQwkpmVarxv44JbSIiIiKqNO7cuYMffvgBX331FZYtW4b+/fvDw8MD5ubmkErzzu0DAAEBAWUcJREREVV0CRkJGH1sNJ4lZvd+rmZaDWt7roWTqZPOt6VKy0LSmTCkXIoAFCpxuZ6FISy6u8KkqSMkehK1dQIuReDs1kfi8+ZvuaH5W246j60y6tGjBw4ePIgWLVrgyy+/xPjx42FgYIB3330XV65cQadOndCyZUvUrFkTDx8+hL+/PyQSCQYOHFjeoRMRERGVOkEQ8OzmS1za9RTJsRnicgMjPTTr5QqfrjWhpy/FlRdXsPzOctyKvlXkbaiggq+Lry7DLpREEHJ3MKeKLCkpCZaWlkhMTISFhUV5h0NERESVVGW+ppBKpWo9l4pCqVQWXqmKq8z7noiISFeSMpMw6ugoBMRl/+jNwcQB63uuR00L3Q7lLWQpkXIpAkmnwyBkKMTlEiN9WHSpAbO2zpAY5B0G+9HVSJxY/0Dsxd2khwvaDKxd7Gug0lJe1xVRUVGoUaMGlEolJBIJQkND4ezsDLlcjubNm+P+/ftq75UgCKhTpw5u3LgBc3PzMouzKuM1JRERUcUUFZSEizue4MXTRHGZRAJ4tndGq761YGxugMsvLmP57eW4/fK22rpuFm6ISotChiIDAjSnjiWQwNzQHKfePQWZnqxE8RblmoI9tImIiIioUinO7zEr2g1gIiIiKh8pmSkYd3ycmMy2M7bD2h5rdZrMFpQC0m5GIel4MJRJma8K9CUwa1sdFp1rQGpikO+6T29E42SuZHYj3xoVMpldnhwdHZGamipeE8pkMvHvyZMnMWnSJOzZswdZWVkwNDRE//79sXTpUiaziYiIqMpKic/AlT3P8ehqpNryGvWt0f6durBxNs1OZF/Im8iubVkb43zGobtrd5wPP4/PT30OCST5JrUlyL4m/an9TyVOZhcVE9pEREREVKl8++236Natm9b1jx07hvnz55diRERERFQZpGWlYcLJCfCP8QcA2BjZYE2PNXCzdNNJ+4IgICMgDolHgqCITntVIAFMmjrCorsr9K003/h7fvsljq+9j5zf7nl3rI7279RlMjsfhoaG+S53cHDAP//8A7lcjri4ONja2mqsS0RERFTZZcmVuHksGLePhUCR9WpqGytHE7QbXAcu3ja4EnkFyw8XnMjWk2aPGtS5Zmf82uVXzLo4C0mZSZBCChVU4l9zQ3P81P4ndK7ZuQxfZTYmtImIiIioUvH09ESnTp20rh8WFlaK0RAREVFlkK5Ix2cnPxPnCLSSWWF1j9WobVVbJ+3LgxKReDgImcFJasuNPG1g2dMNBk6mBa4f5B+Do6vvQaXKzmZ7tq2Gju/XYzK7mGQyGapVq1beYRARERGVCkEl4NHVSFzZ8wypia9GBJKZ6qPl2+7w6uCMa9FX8d0RDYnsxuPQw7UHpBJpnra7uHTBqeqncCzoGE6FnEKCPAFWMiv4uviih1uPMu+ZnYMJbSIiIiKqND788EPUqlWrSOs0atQI33//fSlFRERERBWdXCnH56c+x/Wo6wAAc0NzrOq+CvWs65W47ayoVCQeDUbGg1i15YYu5rDs7Q6Zu2WhbYQGxOHIyntQKbOT2fVaOaLzR/UhkTKZrSt79+7FlClT8Pz58/IOhYiIiKhEIp7E48L2p3gZkiwuk0olaNi5Bpq95Ypbidcx4tgM3Hl5R229whLZucn0ZOhbuy/61u5bKq+hOJjQJiIiIqJKY9OmTUVep2HDhmjYsGEpRENEREQVXaYyE1+c/gJXXlwBAJgZmGFV91XwtPUsUbuKRDmSjgcj7UYUck8vqG9vDMte7jDystGqd3X443gc+vMulIrsISJrN3VA1489IWUyW6dSUlIQHBxc3mEQERERFVviyzRc2vUMz2+9VFvu1sgObQfVRoDyDkafm1uiRHYOlVyO5CNHkHziJJSJCdCztIJ5t64w79ULUhl7aBMRERER6dyJEyfw888/49SpU+UdChEREZWhLGUWpp6ZigvhFwAAJvomWN5tObztvIvdpiotC0lnw5ByMQJQvJqnUGphCMvurjBp6giJnnbJ6BfPEnFg2V1xvkN3Hzt0H+kFqZ52NxqruuTkZJw8eRJdunSBpeWrnu4//PBDkdu6c+dO4ZWIiIiIKiB5ugLXDwXh7ulQqBSvfklpW90M7YbURqjFI0y6OVYniWwASD51ChHTZ0CVlARIpYBKBUilSD5+HNKffobz/Pkw9+2is9enLSa0iYiIiKhKi4qKwtmzZ8s7DCIiIipDCpUC35z/BmfCzgAAjPWNsazrMjR2aFys9oQsJVIuvUDS6VAIGQpxucRID+ada8KsrTOkhnpatxcVlIQDv9+GQq4EALh626LnKG/oMZkt6tmzJ65evYoWLVrgypUr4vI5c+ZwbnEiIiKq8lRKFR5ciMDV/YHISMkSlxtbGKJVX3ckuAVhhv/kPInsOlZ1MM5nHLq7di9SIhvITmaHfTYRSokEkdZmiLQwRZaeHgyUSjglpcIpMQVhn32GGsv+gLmvr05ep7aY0CYiIiKiCkepVMLf3x/e3t7Q1391ybpx48Yit3Xp0iVdhkZEREQVnFKlxMzzM3E8+DiA7DkAf/P9Dc2dmhe5LUElIO1mFJKOB0OZmPmqQF8Cs7bOsOhcE1ITgyK1+TIkGft/u43MjOxkdk1Pa/Qa6w09Ayazc3vy5AkEQcCzZ8/ylAmCkM8aBWMSnIiIiCqLkPuxuLjzKeIiUsVlevpS+HStgSyfSPz88GvcPXVXbZ2SJLKB7GHGI6bPQJSFCe7UsIdCXw8QBEAiAQQBUVZmuK9Qwif0JaTTZ6Du+XNlOvw4E9pEREREVOEMGjQIBw4cQK9evXDw4EFx+YgRI3gzkoiIiDRSCSp8f+l7HA46DAAwkBrg1y6/onW11kVqRxAEZATEIfFoEBRRaa8KJIBJU0dYdHeBvpVRkeOLDU/Bvl9vQ56W3cvbua4Veo9vBH0D7Xt3vynWr1+PlStXYvTo0XnKNm/ejKFDh2rd1ubNmzF8+HBdhkdERESkc3ERqbi48ylC7seqLa/T3AGGbRLwR/Bs3D2v20R2juQjR/ACCtxwdXq1MOce3H9/FXpS3HBzRLOgSDgdPQrLfv2Kvb2iYkKbiIiIiCqcs2fPQhAEXLx4MU8Ze+QQERFRflSCCj9c/gH7nu0DAOhL9bGk8xK0q96uSO3Ig5OQeDgQmUFJasuNPG1g2dMNBk6mxYovPjIVe5feQkZq9pCRTrUs0eezRjAowlDlb5I+ffqgT58+OmlLIpEU6xqSiIiIqCykp2Ti2v5A3D8fAUH16prF0c0CFl3SsSF2Hu5eL51Edo6E48dxp6ZD9hNN99H+6619p6YD3I8dY0KbiIiIiN5sixYtwm+//YaJEyfmKVu6dCn69++vdVu7d+/G1KlTdRkeERERVTCCIODnqz9j55OdAAA9iR4WdVyETjU7ad1GVlQqEo8GI+OBeo8YQxdzWPZ2h8zdstjxJUSnYc+SW0hPzk5mO7ia4+1JPjA04q25olq3bh3atm1bpHXatm2LdevWlVJERERERMWjVKhw93QYrh8KQma6QlxuZi2DbScltimX4O7DvIns8T7j0c21m04S2YIgIP3GDTx9eB8KWy1+uCmRQKGvh+D4GLiWeOva41UzEREREVU4o0aNwqhRo/Its7Ozg6ur9pfM9vb2ugqLiIiIKiBBELDQbyH+efQPAEAqkWJ+x/no6tpVq/UViXIkHQ9G2o0oIFcnXn17Y1j2coORl22JRntJiknH3iW3kPbfHNx2Nc3Q9/PGkBnztlxxFGfocHd3d7i7u5dCNLohl8uxdOlS/P3333j69Cn09PTg6emJ4cOHY8yYMZBKi36zOigoSKvX/Msvv+Crr74qTthERERUTIIgIPB2DC7ueoqkl+nicn2ZHuzaAHuMV+J21C21dXSdyFampCJp/z7Eb90G+ZMneOHq+GrO7MJfAF7oqUocQ1HwypmIiIiIKo3Zs2ejUaNGRVqnUaNG+P7770spIiIiIipPgiBgyY0l2BywGQAggQQ/tvsRvdx6FbquKi0LyWfDkHwxAlC8uiEntTCEZTdXmDRzhESvZNOWJMdlYM+SW0iJlwMAbKubot/kxjAyNShRuxplZQAP9gAPDwBp8YCJNVD/bcBrAGBQ9Dm/K4uoqCgEBgYiOTkZ5ubmcHd3h6OjY3mHpZWYmBj4+vrC398fY8aMwe+//47MzEz88ccfGD9+PLZv346DBw/CyKh4+8/ExKTAH2QYGhoWN3QiIiIqhpchybiw/QkiniS8WigBbHykOGq/CTdSrgLyV0W6TmRnPH6MhL//RuKevVClpQEAsqQSJBsZapfMBgCJBErL4o9eVBxMaBMRERFRpTF79uwir9OwYUM0bNiwFKIhIiKi8vbH7T+w7v6roaTntp2LvrX7FriOkKVCyuUIJJ0OhZBraEeJkR7MO9eEWVtnSHUwr3Vqghx7l9xCcmwGAMDayQT9JjeBsVkpJRAfHgL2jAcyEgCJFBBU2X8D9gOHvwEGrgA8epfOtsuBXC7Hr7/+ijVr1uDZs2d5yuvUqYPRo0dj0qRJkMlk5RChdt555x34+/tj8uTJWLp0qbi8S5cuGDhwIPbu3Yvx48cXe8j0+/fvw83NTTfBEhERUbGlJshxZe8zPLwSqTYqkKmrBJdcd+Ny1mkg5dVyXSayhcxMJB0/jvht25B+/Ub2MgBxpkYIs7FApI05lEVqUICpi0uJYioqiSAIQuHVqCJISkqCpaUlEhMTYWFhUd7hEBERUSX1pl1TXLlyBatWrcJff/1V3qGUuzdt3xMRUdW24s4KLLu9THz+Xevv8K7HuxrrCyoBaTejkXQ8GMrEXN1e9CQwa+sM8841oaejntNpSZnYs/gm4iOze71Y2htj4NSmMLUqpcTqw0PA30OhUEnwONkOT5Ntka7Uh7GeAnXMY1HPPAb6UgF4fytQ/y2dbLI8ryueP3+OPn364PHjxwCye+q/LqdXsoeHBw4ePFghhxzfuXMnhgwZAiMjI7x48QJWVlZq5QEBAfDy8oJEIoGfnx+aNWumdds5Q44HBgbqPKHNa0oiIiLtZWUqcft4CG4eC4FC/iptbGgD3K11Amf09wO5OkbXta6L8T7j0dWla4kT2VkREYj/918kbN8BZWwsACDdQB9h1uYIt7VAmmHx+z33njgVXh26lCi+olxTsIc2EREREVVpz549w4YNG5jQJiIiqkLW+q9VS2ZPbzldYzJbEARkPIxD4pEgKKLSXhVIAJMmDrDo7gp9a90Nx52ekom9S2+JyWxzWyP0n9Kk9JLZWRnAnvF4mmyDIxF1IVcZQAIBAiSQQMCTZDucktZCb+cnqL1nPDD1UaUefjwpKQldunRBWFgYBEGAubk5vL29Ub16dRgZGSEjIwPh4eG4d+8ekpOT8fDhQ3Tp0gV3796tcMnXNWvWAAB8fX3zJLMBwNPTE56enggICMBff/1VpIQ2ERERlS9BJeCxXxSu7HkmTj8DAFIZ8Kz2FRw3/xcq6asEt64S2YJKhdSLlxC/bRtSzpwBVCooJRJEWZkhzMYcMWYmagl0AJCZmKJ2y3a4fe40DFRZrxertw8gUyqDS9PWxY6xOJjQJiIiIqIK59y5czprKyAgQGdtERERUfnbeH8jlt5cKj7/qvlX+NDzw3zryoOTkHg4EJlBSWrLjerbwLKXGwycTHUaW0ZqFvb9ehtxEakAADNrGQZMaQJzm1JMID/Yg6cvpdgb5ikuEv67DZnzV67Sx54wT/THA9R5sBfwea/04ill8+fPR2hoKGrVqoVffvkFffv2hb5+3lucCoUC+/btw9dff43AwEAsWLAAP/30UzlEnL/MzEycPHkSANCiRQuN9Vq0aIGAgAAcPHgQy5Yt01iPiIiIKo4XzxJxYfsTROe+BpUAEa73ccxuCzIMUsXFukpkK+Ljkbh7D+L//htZISEQACQZGyLUxgIR1mZQ6L02pY5EAteGjdGgczfUadEa+++9xNEAPbwddRgC8uS8AbwaKf2YvS88H8diYJMaxY63qCp1Qlsul2Pp0qX4+++/8fTpU+jp6cHT0xPDhw/HmDFjIJUWfcdLtJ3w/D+vD2l05swZdOlSeBf77du3Y8iQIUXaFhEREdGbonPnzkW+LiMiIqKqb9vDbfjl+i/i88lNJ2N4g+F56mVFpyHxSBAyHsSqLTd0MYdlL3fIalnqPLbMdAX2/34HMaHZkx+aWBqi/5QmsLAz1vm2clPc348jEfX+e6bp+kkCQMCRiHoYd38f9CtxQnv37t2oVq0arly5Ajs7O4319PX1MWjQIHTo0AGNGzfGzp07K1RCOyAgAFlZWQBQ4JDgOWXBwcFITEyEpWXRjt0jR47g0KFDuHfvHqKiosQe7YMHD8Ynn3wCI6PK21ufiIiookmKScfl3c/w9Ea02vI4hxAcq7YZCSZR4jJdJbLT/f0Rv3Ubkg4dgiCXQ64nRYSdJcJszJFsnHeEIEsHRzTo1A0NOnWFhb0DACBVrsCmy8EIMnHDQYde6BZzGkYqOVQApID4Vy6V4bi9L0JM3XD0XhQT2tqIiYmBr68v/P39MWbMGPz+++/IzMzEH3/8gfHjx2P79u04ePBgsS7KZDJZvr/szKFSqZCenl7g3DumpgX/wreg9omIiIgo/7kQi4vJcSIiospvx+Md+Pnqz+LzCT4TMKrhKLU6ykQ5kk6EIPV65KsuJAD07Y1h2dMNRg1sS+W6IDMjO5md0wvH2NwAA6Y0gZWDic639bqHz+MhV2kz97cEcpUBHj6Ph3epR1V6goODMW3atAKT2bnZ29tj5MiRWLRoUSlHVjQhISHiY3t7e431cpeFhYUVOaH91VdfYfLkyfjyyy9hbm6Ox48fY/HixZgwYQKWLVuGAwcOFDrHtlwuh1z+aqjUpKSkAmoTERG9eTLTFbhxJBh3ToZCqVCJy1PN43C6xt8Is3okLqtnXQ/jfcbD18W32IlsVXo6kg4dQvzWbci4fx8qADHmJgh1ckS0hSkEqfr1rr6hDPVatUWDzt1R08sbEqkUYfFp2H0pCCcfRuPKs1hkKrPjDjR1x1/GNVEn7TlqpT6HkUqODKkMz01r4alJLSil+oAAJKRnFiv24qq0WdV33nkH/v7+mDx5MpYuXSou79KlCwYOHIi9e/di/PjxWLduXZHbXrFiBUaMGKGxfM2aNRg9ejQ+++wzjXVSUlKKvF0iIiIieuXbb79Ft27dStzOsWPHMH/+fB1EREREROVlz9M9+OHyD+Lz0Q1HY5zPOPG5Kl2B5LOhSL4QAeS6iSg1N4RFdxeYNnOCRK90fuCWlanEoT/vIvJ5IgDAyNQA/b9oAmsdD2eer5eP8CQkBRKYi8OLF0QCAfcj9St1QtvMzKzQBOzr3N3dYWxcuj3liyo5OVl8XFCHnNxlRUkkGxkZwdfXF0uWLEGjRo3E5c2aNcPgwYPRq1cvnD59Gm+99RZu3boFmUzzHO/z5s3D3Llztd42ERHRm0KlEhBwMQJX9z1HenKWuDzTMB1Xqu9HgONlCJLsa1NdJLLlgYFI+PsfJOzeDVVSElJkBgirZoNwa3PIDfKmfKvV9YB3l+7waNMB+kYmuB2agH+OP8bJgGg8jEzOZwvZlFJ9PDKrh0dm9fItl0oAK2PDYr2G4qqUCe2dO3fizJkzMDIywpw5c9TKJBIJ5s2bh71792LDhg2YOHEimjVrptPt//777zAxMcHIkSN12i4RERERveLp6YlOnTqVuJ2wsDAdRENERETl5eDzg/j+4vcQ/utyPdxrOCY1mQSJRAIhS4WUyxFIOh0KIV0hriOR6cG8c02YtXOG1FBPU9MlpshS4vDyuwh/nAAAkJnoo9/kxrCtblZq2wQApMYCZ+cDfmuRmeWlVTIbyJ5TOzKzlGMrZd7e3mq9m7UREhICDw+PUoqoYnJychLn6H6doaEhli5dCh8fHwQEBGDdunUYN25cvnUBYMaMGfjyyy/F50lJSahZs6bOYyYiIqpMQh/G4eL2p4gNf9XBVSVV4q7TGdysfgyZ+hkASp7IFhQKpJw5g/it25B66RIUUgleWJkhrI4z4k3z/mDPxNIKXh194d25O2T21XD+8UtsOPAUZx5FIzY1/17V1SyN4G5nikvPYvMtf51KAHp6Oxb5tZREpUxor1mzBgDg6+sLKyurPOWenp7w9PREQEAA/vrrryIltP39/VGjhuYx38+dO4e7d+9i7Nix+W6biIiIiEpu+PDhqF27tk7aql27Nj7++GOdtEVERERl62jQUXx74VsxmT20/lBMbT4VEIDUm1FIOhYMZeKroZChJ4FZG2eYd6kJPVNthuEuPmWWCkdW3kNoQDwAwNBID30/bwx7F/PS26giE7i2Cji3EMjI7hFurKeABIKWSW0BMYZle/NR10aPHo2ZM2di2rRpMDEpfEj31NRUrF+/HlOnTi2D6LRnbv7qOMnIyNBYL3eZhYWFzrbfqFEjODs7IyIiAgcOHCgwoS2TyQrswU1ERPQmSYhKw8WdTxF0N0Zt+TOb27jiug/JRtlJ4ZImsrOio5GwYwcS/t2OrMhIxJsaIbSmPSItzaDUU29PqqeHWk1bwLtLd+i7eOL041isORqBK8/9kaXMf0o/n5pW6FbfAV09HeFZzRxyhQotfz6B5HQFCpoEUALAwlgfvb2rFfk1lUSlS2hnZmaKvy5s0aKFxnotWrRAQEAADh48iGXLlmndvrd3wYMu/f777wCASZMmad0mERERERVNcaaN0aR169Zo3bq1ztojIiKisnEy5CSmn5sOpaAEALxT7x180+IbZDyKR+LhQCii0l5VlgAmTRxg0d0V+taah2/WFaVShaNr7iH4XvYNS32ZHt6e1BiObrpLOKoRBODhAeDYd0B84KvlBiaIs6kHITlOy4YkyKjesFRCLCsffPABzp07h06dOmH58uVo3ry5xro3b97EhAkTULt2bUyYMKEMoyyci4uL+Pjly5ca6+UuK6gTTnFjiIiIQGBgYOGViYiI3nAZqVnwOxiIe2fCoVK9SvlGm4bgkttuRFo8B5CdyJ7gMwFdXLoUOZEtCALS/PwQv20bko+fQLpEQLi1OcLquyBNlvfHmrY1XNCgc3coajXBudAM/HkuGo+izufbtrGBHjrUtUM3T0d0rm8PB3P1a2YjAz0sfqcxRm+6DomAfJPakv/+83/vNIaRQemNgpSfSpfQDggIQFZW9jj0Bc2Xk1MWHByMxMREWFpalnjboaGh2LNnD3x9fdGgQYMC627btg1//fUXHj9+jJcvX8La2hpNmjTBBx98gPfffx96emW7o4mIiIiqqsjISERGRqJWrVo67bVCRERE5edc2Dl8dfYrKITsYcQH1BmAr50nI2a1PzID1ecRNvKwhkUvdxhWK4M5qwGolCocX/sAgXeye+XoG0jx9meNUK12ye895SviNnD0WyD4Qq6FEgg+Q3EkrRWi9u/S6gafAEAulaF1ty6lE6eOffrppwWWh4aGolWrVnB1dUXDhg1hZWUFPT09KJVKJCQk4N69ewgKCoK+vj7eeecdjB49GmvXri2j6Avn6ekJAwMDZGVlISgoSGO9nDJXV1ed3N/MTRAK6n9FREREQPYPGe+dCYffwUDI015NcZNqkICrrgfw2O46IBFKlMhWJicjce8+xP+9DenPniPawgShNe0RY24MSNRH4ZGZmKJWq/ZId2+GiwnG+O12DOIu3s+3XWdLI3T1dERXTwe0rmVbaBK6m5cjVg1rjq+230ZiugJSSfbw4jl/LYz18X/vNEY3r7If8afSJbRzz5Fjb2+vsV7usrCwMJ1c8C1fvhwKhUKr3tmTJk3C1KlTMXv2bBgZGeHOnTtYuHAhPvroI6xcuRJ79uyBjY1NgW3I5XLI5a+GzUpKSiqgNhEREVV2iiwlnt2IxvM7MchIzYKRqQFq+dihdjMH6Jfxrx4ruvj4eCxatAibN28W58g+fvw4fH19AQC1atXC0KFDMXXqVFhbW5dnqERERFREl8IvYcrpKVCosm8YfuTwHj59NhAx+++q1TOoaQ7LXm4wqm1VZrGpVAJObgzAs5vRAAA9fSnemtAI1euVwvVG0gvg1P+A21uh1kfGtT3iW0/Hqr8OQj9ku3hzL6dGfgOP55Rdqt4dUxu75FOj4lm/fj0kkoKHURcEAUFBQQgODs63DAAUCgW2bdsGABUqoW1oaIiuXbviyJEjuH79usZ6fn5+AIA+ffoUqf0BAwZg9OjRBa6Xc5+1oE5DREREbypBEBDkH4tLO58iIdfIQFnSTNxxPonbzqeg0MuEh7UHxvuML1YiO+PhQ8Rv+xuJ+/cjQVAgzMYCEV6uyNLPex/QwaMhUt2a4mJWNfwakoSsoHgA8Wp1JBLAp4YVunlmDyVe38m80Oup13X3csTVmd1w+N4LHL0XhYT0TFgZG6KntyN6e1cr857ZOSpdQjs5OVl8bGSkeQip3GW6SARnZGRg9erVcHV1Rd++fTXWs7KyQu/evbFq1Sq1YYCaN2+OIUOGoG3btjh//jzeeecdceh0TebNm4e5c+eWOHYiIiKq+ALvvMTJDQHZv/SUIPuuowR4fuslzv/7BF1HeMG9kV15h1kh+Pv7o0+fPggPDxdvVL5+cR4WFoZ58+Zh48aNOHDgABo1alQeoRIREVERXXtxDZ+f/hyZqkzYZFliunwsGj5yg1z1akhtfTvj7ER2A9si36ArCUEl4Mzmh3h8NQoAINWToNdYb9T0LLjDQpFlpgGXfgcuLgWycg2rblML6P4/HAw2x62flsE4K0UsCrJriACJE7rEnoORSg4VACkg/pVLZThh74tvPx1Ybjchi8PW1hampiXveZ+amorY2FgdRKRbo0aNwpEjR3Dy5Ml8R5h8+PAhAgICIJFICu2x/rq9e/eiRo0aGhPat2/fxosXLwAUPVlORERU1cWEpeDijicIe6ieMH5kfw3Xah5Aqiyx2IlsVWYmko8eQ/y2bUi8cxsR1uYIrWGDZGNZnroyazukuTbFBbjhbqIe8BgAEtXqmBjqoWNde/h6OqCLhwPszfO2U1RGBnoY2KQGBjbR7XQnJVHpEtrl5e+//0ZMTAy+/vrrAocLb9y4MQ4dOpRvmaWlJebNm4f+/fvj1KlTOHLkCHr16qWxrRkzZuDLL78UnyclJaFmzZrFfxFERERUIQXeeYlDK/xfdZ157a88TYFDy+/irXEN4e6jeYSaN0FaWhr69u2LsLAw6Ovro3HjxnBwcMDhw4fV6j19+hQrV67EwoUL0adPH9y/f5/DkRMREVVwN6JuYOKpidDPlOL92H4YHN8NBqpXt66k5oaw6OYC0+ZOkOiVXSIbyO6hc+7vxwi4lJ0AlEol6DnaG24NdfiDQ5UK8P8XODEXSI54tdzIEuj0DeLqf4Q/lqyAyaPzMP6vKEMqg1WPD7Hk4wE4/eglvv6nDhxiH6N26nPIVHLIpTI8M62FaNt6+OW95uUyPGRJLF26FEOHDi1xO5s3b8bw4cN1EJFuDR48GJ06dcLZs2cxd+5cLF68WCwTBAEzZ84EAAwfPhzNmjVTW3f//v349NNP4ejoiAMHDuTby3rDhg2YMmUKateurbZcLpfjiy++AADUqVOnyMlyIiKiqiotKRNX9z1HwMUI5J6Z44X5M1xy242XZqHZiezGc9GlZtES2Zlh4Uj45x/E7dyJqKwMhNmYI8rLDYJU/bpWom+A1GpeuCithYcSRyAx73VvdStjdP2vF3brWjaQ5dOju6qpdAltc3Nz8XFGRobGernLdHHz8vfff4eJiQlGjhxZona6d+8uzudz4MCBAhPaMpkMMlnJf0lBREREFZciS4mTGwLURpHMlwCc3BCAEQts3ujhx1esWIGQkBD07dsXK1asQLVq1RATEwMHBwe1ei4uLvjpp5/Qvn179OnTB8uWLcOMGTPKKWoiIiIqzO3o25h87HP0etkG78f2goXSTCyTyPRg3rkGzNpVh9Sw7K+DBEHAhe1PcO9ceHY8EqD7yAao1ViHPzQMvgQcnQlE3Hq1TKIHtBgFdJ6OvddCcG3KFNikR4vFidZueP+rb+BVJ7vzQ3cvR1ye1QuH7/ng6L0ovPhveMhx5Tw8ZEUgkUgq7HzRO3bsgK+vL5YsWYL09HR89NFHyMzMxLJly7B79274+vpi+fLledZbtWoVYmJiEBMTg127dql1igGy76EmJyejRYsWmDp1Klq2bAkbGxsEBARg8eLFuHXrFjw8PHDgwIECR8EkIiJ6EyiylLhzMhQ3DgcjS64UlyfJYnDFdR+e29yBh40Hvm28tEiJbEGlQuqFC4jfug2Rly8h3NoMYU7mkBvkna4m1cIZ1w3r4qFJbWTqqecGJRKgSU0rcT5sD8eiDyVe2VW6hLaLy6t5fl6+fKmxXu6y3EN/F8elS5dw8+ZNjB49utB5rwtjbGwMe3t7REZGIjAwsERtERERUeX37EZ09jDjWpCnKfDs5kt4tHIq5agqrn379sHLywu7du0SR80p6AK+d+/eGDhwIPbu3cuENhERUQV1P/oetm1fjV9fTIOjwvZVgZ4EZm2cYd6lJvRMDcolNkEQcHn3M9w9FZa9QAJ0+8QLdZo5FLyituICgePfAwH71JfX7Qn0+BFRsppYvHQjrO8eho2Qfc2ohBRWHfvji7EjoPdab5yKODxkcZ0+fRqenp46aat79+44ffq0TtrSNTs7O/j5+WHp0qXYtm0bNm3aBD09PXh6euLPP//E2LFjIZXmvWk+ZswYXL58GY6Ojhg0aFCe8hcvXmD37t04cuQINm/ejHnz5kEul8Pa2hqNGjXCsmXL8Mknn8DY2DjPukREVH6ELBXS/F8i434slGkK6Jnow6iBLUwa2kNiULT5malwgiDg6Y1oXN71DMlxrzrKZupl4Gb1o/Cvdg517epgqU/REtmK+Hgk7tqF6L//QWhqAsKszRFfP+8IzHJ9E9w3qYsA8/qIM1TPP5oa6qFjPXv41ndAl/oOsDN7szvAVrqEtqenJwwMDJCVlYWgoCCN9XLKXF1d88w/U1S//fYbAGDSpEklaidHRf1FKBEREZW953diXs2ZXRgJ8Pz2m53QfvDgAaZMmVLgFDCva9euHf73v/+VYlRERERUHIIg4On1u0g4+AiTMt5/VSABTBo7wKK7K/Rtyrfn6LX9gbh1LER87jusPuq11MG1WEYicG4RcHUFoMx8tdyhAdDzRwi1uuDfi49wcf10uCY/E4vlprbo/8XXaNCoQcljqOA6deqks7YcHBzyjOhTkchkMnzzzTf45ptvtF6nb9++iImJ0VhuamqKjz76CB999JEuQiQiojKQ/iAWcdsfQ0hXvLpXJAHS78ciYf9z2LxTD8ZetoU1Q1qKCkzChe2PEfk8SVymggoBjpfhV/MQ3Bxr4P98FsG3pq9WvaEFQUDGnTuI27oNwWdPIdTCGC8szaC0Ub8GUUGCIBNXPDCrj2ATF6gkr+5x1bA2RjdPR/jWd0CrN2QocW1VuoS2oaEhunbtiiNHjuD69esa6/n5+QEA+vTpU6LtRUREYNeuXejUqRMaNmxYYN3o6GiMGTMG3377LVq0aJFvnbS0NPFiM7+5bYiIiOjNkpGapV0yGwCE/+q/wRITE+Hs7FykdczNzZGenl5KEREREVFxyEOSELn/AYxDs+CKauJyg7oWsO5dG4bOZgWsXTauHwrC9UNB4vNOQz3g2bZo1yF5KBXAzfXA6Z+BtNhXy03tAd9ZQJNhCE2Q4+df/oHT7d1wVaaKVSyadMTwLybB0Ig9aomIiKqa9AexiN304NU9otf+CukKxG56ANthXkxql1ByXAYu73mGJ9ei1JaHWj7EZdc9cKhpiQU+P6FLzS5aJbJVaWlIPHgQEdu24nlMJMJszJHm5pinXpyBNR6Y18cj03pI0zcBkD2UeDMX6+z5sOs7op6j2Rs3lLi2Kl1CGwBGjRqFI0eO4OTJk0hMTMzTA/vhw4cICAiARCLBp59+WqJtrVixAllZWfj8888LrZuWloa9e/eiffv2GhPax44dg1KZPf5+SZPtREREVPkZmRoUqYe2UTkNt1lRWFtbIzQ0tEjr3L59G7a2b/b/7C1btgzLli0Tr0OJiIjKS9bLNCQdDUL6vVjk7m8SYh4Fr3faw6pexRiJ5tbxEFzd91x83v7duvDuWL1kjT45ARz7Fnj58NUyPRnQ5jOg/RSoDM2x4cJTnNm6EQ3jbyHnVqbS0ATdRk9E044dS7Z9IiIiqpCELBXitj8u/N6QAMRtfwznma04/HgxZGYocPNoMG4eD4aQa/a/eONIXHbdC5NaKsxuPF3rRLb8eSBitm7B4xNHEWqsj5fmJkA19ftPWRJ9PDSrhwCz+oiSOQASCcxk+nirnh261ndEZw972L7hQ4lrq1ImtAcPHoxOnTrh7NmzmDt3LhYvXiyWCYKAmTNnAgCGDx+OZs2aqa27f/9+fPrpp3B0dMSBAwcK7CWdmZmJVatWwcXFBf3799c6vqVLl2LkyJGwtlaf1D0hIUGcu7FDhw546623tG6TiIiIqqZaPnZ4fuuldpUFoFZj+9INqIJr0qQJ1q9fj6lTp2o139+zZ8+wceNG+Pr6lkF0Fddnn32Gzz77DElJSSWejoeIiKg4lElyJJ0IQer1SED1anmYYRRO1bqFiR98AwuZRfkFmMvd06G4tPOp+LzNoNrw8c0756HWogOAY7OApyfUl3sPBrrOBqxd8TQ6GXM27kf1O7vQKPPVMNJmtbzw4bRvYGbzZv84j4iIqCpL83+ZPcy4FoR0BdLuxcC0ScWdSqOiEVQCAi6/wPndD6FIebU8Qz8VfjUOQ+UZi6lNxmqVyBayspB86jQCt2zCk7BARFibI8sx732WcJkz7lt44pmJOxRSA9S0McaI+o7o5umIlu42MNTnDxKKqlImtAFgx44d8PX1xZIlS5Ceno6PPvoImZmZWLZsGXbv3g1fX18sX748z3qrVq1CTEwMYmJisGvXLnz55Zcat/Hvv/8iKioK8+fP12qeRkNDQ8hkMoSHh8Pb2xtff/01fHx8YGpqilu3bmHhwoV49uwZWrdujZ07d5bo9RMREVHVYGii/eWYzEQftZu+2QntDz/8EB9//DF69eqF1atXo169evnWU6lU2LVrFyZPnoy0tDQMGzasjCMlIiIiAFBlKJB8NgwpF8IhZL3KZMfpJWKz/UGEuMdjZa+VFSaZff98OM7/80R83qqfO5r2cC1eY6kx2UOL31gPCLlGSaneHOg1D6jZEllKFVacfIwTu/ehTcwFGPzXXUiQ6qHNu8PQtv8gSKS84UlERFRVCUoVUq9HFV4xl/h/HyH5RDCkFobQM//vn4Xsv+cG0LOQQc/cEBIjvTd++OqwR3E4uvU2MnK9xUqJAvecziOlYSDGNh+JzjU7F/o+ZUVFI3LrFjw4ehAhBhIkmcgAeyu1OukSY9y1bICHZh5IMbRAUxdrTPV0RDdPB9Rx4FDiJSURBEHbWRsrHLlcjqVLl2Lbtm14+vQp9PT04OnpieHDh2Ps2LGQ5nPBv3//fnzyySdwdHTEwYMHC+yh3apVK9y9exdhYWFaD1MZFxeHHTt24NixY7h9+zYiIiKgVCpha2uLpk2b4r333sMHH3wAff2i/5Ygp0dNYmIiLCwqxv/oERERUfGF3I/FoeX+UCpUhVeWAG+NbwT3RnYl3m5lvqYQBAEdOnTApUuXIJVK0bhxY3h5eWHz5s0YPHgw7OzsEBwcDD8/P8TFxUEQBHTp0gUnT54s79ArhMq874mIqHIRFCqkXH6B5NMhUKW96nGULpXjX9uj2G1zCi62rljbYy2sjawLaKnsBFx6gVMbA8Tnzd9yQ6t+tYrekEIOXF0BnFsEyJNeLbeoAXSfm90zWyKBf1giZm67gpoPDqB2WqBYzdi+GgZPnQ5H99oleTmljtcVby7ueyKi4hOUKmSGpUAemAj580RkBiVCyNTivlBx6Euhl5P0/u+vehLcEFJzQ0hN9KtcsjUhKhX7tlxF8mP15YHWd/HS5z5GtB1aaCJbEASkXL6CgA1/4UnQU0RbmEAlVa+vEiQINHGDv6U34i1d0cnDAV09HdDZwwE2poal8dLKRlYG8GAP8PAAkBYPmFgD9d8GvAYABkY620xRrilKlND+9NNPMXbsWLRq1aq4TVAR8GKRiIio6gi+F4vDK14lsx1rWSD+RSoy05UQIEACifjX0FgP3T5poJNkNlD5ryni4uLQu3dv+Pn5afwfj5xL3NatW+PQoUOwsrIqwwgrrsq+74mIqOITVALSbkcj6VgwlAnyVwVS4Lj9Nayx2I4k/VTUsqyFv3r+BVvjijGU9uNrkTi+7oE4d2WT7i5oM6h20W7uCgLwYC9w/HsgIfjVckMzoP2U7LmyDYyRkaXEkhOPcfjIOXR9eQpmylSxaoOuvdB1+CgYyHR3o7C08LrizcV9T0SkPUGhQmZ4CuTPE7IT2MFJJU5gSwylgEQCQa4svLI29CRqCW69fJLeehaGkJoYQCKt2InvjNRM7P73AmKuKSEVXo28HGMShvCGN/FB1/6FJrKVSUl4smEj7h89iEgDARmGeTuoJkstcN3KB2k1G6FTQxd083REC7cqMpT4w0PAnvFARgIgkQKC6tVfIytg4ArAo7dONlWUa4oSDTm+fv16dO/enQltIiIioiII8o/B4ZX+UCmy75jWbmIPwx4v8eulubB/UQu14hrBUGGCTP00PLe5i5fVnqOu9Vy4o3P5Bl5B2NjY4MKFC1iyZAl+//13hIeH56lTo0YNfP755/jiiy+KNTIOERERFY0gCMh4HI+kw0HIinyVoIUEkHpbYKb0F9zIvAMAcLVwxZoeaypMMvvpjWicWB8gJrMbdalR9GR2+A3g6LdAyOVcCyVA02FAl1mAuSMA4MrzWMzcfhPVnp1B/8Q7Yk0DEzO8NeEL1GnRWgeviIiIiMqLoFAhMywZ8ueJrxLYWZoT2FJzQ+hZyZAVmqz1NqwG1oVpEweoMpVQJWdCmZQJZa6/qteeFzo/t1KAMkGu/mPEfIOVQM/c4L8Etyx7eHO14c7/S3ybln3iW6lQYs++swg9nQ6DLGNIkZ3MTjVIRJjnTQx4qwu6uA4r8Pru4ZlLuLduDRJjQ5BgagSYqk9FrBKkeGJaF/IGHdGmhTeWejqgtn0VG0r84SHg76Gvngsq9b8ZicC2D4D3twL13yrT0ErUQ1sqlcLW1hYff/wxRo0aBU9PT13GRq/hrx+JiIgqv6C7MTi8Klcyu6kDDLtH44tzXwAABOS9NJMg+8L41y6/ootLlxLHUNWuKR4+fIgnT54gOTkZ5ubmqFu3LurXr1/eYVVIVW3fExFRxZAZmozEw4GQP09UW27kYQ2hszVG3ZmA54nPAQA1zGpgXa91cDJ1Ko9Q8wi88xJHVt6DSpV9DdaggzM6DfXQ/sZkYjhw8gfg7t/qy907Aj1/BpwaAgCSMrIw//BDHD5/Bz1enoBDZoxYtWbDxnhrwhSY2VSMBL+2eF3x5uK+JyJ6RVCokBn6XwI7UIsEtoUhZLUs//tnBX1bI0AhIOLnq4UnngFIjPXhPLMVJAba9wQWslTZCe7/ktyqJDmUyVn/PZdnJ8WTM6FKLXz7WpEAUjNDteHO1Xp+5wx/bmYIiV7JksGCIGD/mdN4eDAOpik24nKFJBPhtf3Rc0Bz+NbOv0d2llIFv0cv8GDDeuDBJaTIBCj1XntfBQEp+rZIa9INrbp0RBdPZ1hX5qHEC5KVAfyfR3bSOp/7k69IACNLYOqjEg8/XmY9tAHAyckJy5Ytw9KlS9GmTRuMGTMG77zzDoyNjUvaNBEREVGVEng3BkdW+kOlzL4orNPcAR0/roNuO8cCyD+ZnbNcAglmXZyFU9VPQaYnK7OYK4P69eszgU1ERFQOsl6mIeloENLvxaotN6hhBsve7sioDnx67FMxme1s6oy1PddWmGR28P1YHFn9Kpldv201dPpAy2R2Zipw8Vfg4m+AIv3Vcts6QI8fgXq9gP/aORkQhW93+cM2/Cbei7sEAyH7ZrFUXx8dPhiOZm/1h0RaBYanrMCio6Nx7949+Pr6lncoRERUyQkKFTJDkrOHEA9MhDw4GVBoTmDrWRpCVssKMvfsJLaerVHeaw0DCWzeqYfYTQ8KzSPavFOvSMlsAJAYSKFvYwR9m4KTj4JCBWVKTtI7Uz0JnrsHeGpWwXEKgCo5e52sAgMDpKYGGoc7l1r899zMEJLXhvIWBAFHbp7G9T0hsHnpAlO8SmZHOT9B+0H18HmDr/K81wlpmTj7+CWunb4Cywu7YaqMQYZMHzCRZAeUE5qgD9RtiaZD3kW7RrVg8Hqiu6pRZALX12YPM14oIbveg72Az3ulHNgrJU5oz5gxAz169MD69evx119/YcSIEZg8eTI+/PBDjB49Gj4+PrqIk4iIiKhSe377JY6uvicms+s2d0C3T7xwMOggkjKTCl1fgICkzCQcCzqGvrX7lna4RERERBopkzKRdDIYqX6RQK77t/p2xrDo6QpjbzskZSZhzLHReBL/BADgaOKINT3XwNnMuZyiVhf6MA6Hl78aNadeS0d0+ah+4cNjqlTAnW3ZvbJTIl8tN7ICOs8AWowE9AwAALEpcszd/wDHbj5D15gzqJUWJFa3ca6BPpO/hoNbLR2/MsrP8ePH8fHHH0Op1NFco0RE9MYQslTIDE0ShxCXhxSWwJbl6oFtCT2bfBLY+TD2soXtMC/EbX+c3VNbguyk8X9/Jcb6sHmnHoy9Sm9EF4m+FPpWRtC3KiTxrVRBlZKlNqz560lvZVImVCmZhSe+U7KgSslC1ovUAioCUlP97CS3uSGiVHF4HvoSegk2aCC4IkMPkAsCoi0i0XBANUxoNUZ8zwVBwLOXqTj1MAqn/MNhdeUgvP6fvfuOj6pYGzj+O1vTe6EESEJC70iT3ptUOyqI0hEsFwvqa7tXRb0qFpArWJBiBUR671Wkd0ISAoT03rad8/6xYTdLekKAwHw/H4w758w5cxLYzM4z80zGaXz0Mmgk8gpsU6eSFdx869Di8dG069oRVXWfcKjkB54z4yHrhj83luWmlu/akgrOrqo+Ae3u3bsTGBiIn58fM2bMYMaMGezatYv58+fzww8/8M0339CmTRsmTJjA448/jpub281qtyAIgiAIQrUReSQ/mJ2/+ie8XSB9nm6MSq1ia8xWVKiQKf7D0HUqrOff6wHtuLg4jEYjAIGBgej19hXrFy9e5J133uHYsWN4eHjw+OOPM2XKlLtrPyNBEARBuE3kPDOZO66QtfuqQypNlZsWjz71cG0XiKRWkWnMZNKmSZxJOQOAv7M/3/X/jjrudW5X0x3EXkhl7ZzjWPIHo+u3CaD3mMaoSgtmR++G9TMh7ri9TKWB9hOg28vgYl0ZpCgKfx2L5Z2/TuGWHMXjiVtws+TYqrTsO4juTz2DVl+5FI2CIAiCINx8ismCIabAHtiXM8BcfFRW7aV3SCGu9tZXeAzCuYkvtV7vQM7JJPJOJiHnmlE5a3Bq5odLM79yr8yuKpJahdpTj9qz5AyCiqwgZ5sc9/bOMOSv/DYVSHduArnk3ZHlbLM1JXpcDl6oaEMguNx4Vh2kDRri9v5DlkbFVZOJM5l5pKXHE5R6igfM18hScshzVluDvfk81Xqa9epPmyefQudUDbJPm42QnVBKoDrB+tVSyr7oFaXI5Q+CV1KlAtrbtm0rVNa1a1e6du3KV199xeLFi1mwYAETJ07kpZde4rHHHmPcuHF06NChMrcVBEEQBEGoNi4eSWDj/FO2YHaDDoH0HtPENmCaZkgrUzAbQEYmzZBWVU2tFlJSUggJCbEFtNetW0e/fv0AOHPmDB07diQrKwsl/4PJvn372LdvH4sXL75tbRYEQRCE6k4xy2Ttv0bm1hjkHPveipJejXu3INy61EalVwOQbcpmyuYpnEw+CYCPkw8L+i2gnke929L2G8VFprP66+OY8wPyIS396PtsE1QlpZFMvgib3oKzqx3LGw6Gvu+BX5it6Fp6Lm+uOMm2M9folHKANhnHbMec3T3oN+l5wu4T42JlERp681avZ2eXvOpLEARBuHcpJguGS/YU4saYTLCUEMD21ltTiId6og/xLDWNd3lJWhWurQNwbR1wU697O0gqyZY+vCSKrCDnmAqv8s7//9SkRAzJebibnFGXMllAyTVjyTXjDIQBYahAXxNq1HQ4z2TJQ1YZca7pg76GN2p3HYa/kzG7F0h97qFDpa90ouuyub6a+nog2haYjitclpty8+6rcQK3QHCvAWmXIDOu9DpgXaHt7H3z2lEGVfaT8PT0ZOrUqUydOpUDBw4wevRovv/+e77//nuaNWvG+PHjefLJJ/Hy8qqqJgiCIAiCINxWEf8ksPG7Uyj5weyGHWrQ64bVP156LySkYvfPLkiFCi+9V1U1t1r4448/MBgM+Pn5MX78eJo1a2Y79vzzz5OZmQlA27ZtqVWrFjt37uTnn39m1KhRDBo06HY1WxAEQRCqJUVWyDmWSMaGaCxpBVZ3qCXcOtbEvWcd1G72AcocUw5Tt0zlaOJRwNrPWdBvAaFed0Za7fjoDFZ9eRSTwZp2um5TX/qPa4a6uGB2birs/C8c+B/IBXaADGwO/d+H0O62IllWWHowhlnrzqLNTOSRxM34G5Nsx+u1aM2AKS/i5u2DUDbR0dGlniNJkm0iY2nHRcYeQRAEAUA2WjDGZBRYgV1KANvHybb/tT7UE423yLBys0kqCbWbzqFfqSgKWy9vZfHOP6gV25pamWGAGa0Eegn8wyTqN6pLTFwmSdeyMGca8VUkaigWfFCjUZUc/tSqnQAn5DgzuXGJxbdNp0LtoUflfn2vb719f+8Ce35LTuqi+xpmI2Qn2gPTmQUC1Deuqr6Zq6ld/KyBarcAa7DaLQDcahR4nX9M7wHX233sF1gxsWzXV2RodGszSFbp1IKoqCgWLFjAjz/+SFycNaqvKAonTpxg+vTpvPLKKzz44IM899xzYtW2IAiCIAh3lQuH4tn0/WlbMLtRpxr0fKpwKsumfk3ZHLO5TNeUkelVt9dNb2t1snHjRjw8PDh8+DBBQUG28oiICDZv3owkSUycOJG5c+cC1hTk7dq144cffhABbUEQBEEoI0VRMJxPJX19tON+hhK4tArAo2+9QquR8sx5TN82nX/i/wHAQ+fB/H7zCfcOv5VNL1bi5UxWfXkUY541mB3UyJuBE5uhLip1p8UEh36A7R86roBxC4Re/wetRoFKbSuOSsrm1WXHORiZTNPM03RN2YtWsa5kV2s0dB31NG0GDkWq7vsw3gZdu3YtdqX2unXrSEhIoG7dujRr1gxvb280Gg0Wi4XU1FROnjzJpUuX0Gq1PPTQQ+h0Ja8OEwRBEO5OstGC8VKBAPaVUgLYvjcEsEvZT1q4ua4Hsr8/sAjf4w1pm/ggEvY+lKmGhfj6fnx/LY1LO88C4GFKp2PyPzTIvsAZlTULj1alx0nthrPaDR/FiaAa9anZrD1qjas9/XmmEcVYctZExShjTsqFpNwSz5PUMiptHmpNFmpVKmo5EZUlFrX5CmpSUEupqKVkJLKo8Bw7tR7cA4sOTBcsc/UHtbb8128yHNa9CnnplLz5uQROntBkWAUfpGIqFdB+5plnmDhxokMw2mQysXz5chYsWMC2bdtQFMU2E9LT05MnnniC8ePHo9Vq+f7771m8eDFLly5l5MiR/Pjjj7i6ulbuiQRBEARBEG6zC3/Hs+kHezC78f016flkI6QbgtlHEo7w/Ynvy3RNCQl3nTv9gvvd9PZWJ4cPH+bpp592CGYDLFu2DABnZ2c++OADW3n9+vV54okn+Ouvv25pOwVBEAShujJeziR9XRSGyHSHcn0DbzwHBKOr5VaojsFi4IVtL3Dg2gEA3LRufNv3Wxr5NLolbS5N8tUs/vriKIb8dOm1wr0YNKUFGp3a8URFgQsbYeObkHTeXq5xgvunQecXQG9/frNFZsHuKD7fdB7JkM3gpO2E5kTbjvvUrsPg6S8TEHxnrFCvjiZOnMioUaOKLA8KCmLlypUlLpI5ePAgzz33HHFxcWzatKkqmyoIgiDcIWRDgQB2VP4K7BL2Z9b4OtlSiOtCPdGUsi+0UDWuB7K/PbwA55NBtIt9FK1s/1nkOJnYoYeTOWY4GYtGNtEkK4L2KYdxVzKsJxWYOygZcwjUWGjepzvBj41C5VT0xATZYLamOM8wIqfnYklKwZKagSU9DznThCUHLHkaFEvJAWLFosJiccGCCxAANCzmTCNqUlFLKailFFRSKmpdLmpnBbWbGpWHHrWXKyofXyT3wPyAdaA1kF1wNXVV0DrBiHnw8+Moio4cuTN5lo5YFHfUUiZO6v24qPYgSSbredpbO9mjUgHtH3/8kT59+tChQwfOnDnDggULWLRoEcnJyQC2QHaXLl0YP348Dz/8ME4F/tL897//5YMPPuC7777jlVdeYebMmXz55ZeVaZIgCIIgCMJtdf5gHJt/OM31zIdNOtekxxOFg9lbYrbw6s5XMRRIJ1Rc6nEJa933u7yPXn1vf7C6du0aTZo0KVS+evVqJEli+PDhhba0ady4MQsWLLhFLRQEQRCE6smUmEPGxkvknkhyKNcGueE5IASnMK+i61lM/Gv7v9gTuwcAF40L8/rOo6lf06pucpmkxmWz8ouj5GVZU4bXCPVg8NQWaG8MZsefgg1vQOQ2x/Lmj0Dvt8CrjkPx6dgMXll2jJNXM6iTe5m+iVtxteTYjrfsN5juT45FqxeruipKr9ejVqsLlS9dupRNmzZx4sSJUhfGtG/fnq1bt9KiRQvmzJnDtGnTqqq5giAIwm1iD2Cn5a/Azio5gO3nbFt9rQ/xRC0C2LfV9UD2vKPzsJx3o0PMw7gZvWzH8yQze/UyR/QWZBRqGOJpnXac+jmRSJJy48UIyM6jYXgTmjwzDrcWLa0TFg0ZkHQ5P923Y6pvVVY8qqwEtFlxkJNcdCO1IGv0yIoPFnywKD5YFG8sik+BMm8sii8KhSd/OtJhIRCLEmhfBJ2b/6fg1tj5+49bU5ubUbsnoPZIL5TuXOWqLTTmWCkNB5J7/6+kbJNRFDfAAqhBsZArdyZNmohPLzXODW/9gptKpxxfu3Ytc+fOZd++fYA9iO3n58fo0aMZN24cjRoVPyNXp9MxefJkkpKS+Pbbb0VAWxAEQRCEauvcgTi2/FggmN2lFj1GNSzUsfz9/O/8Z/9/kBVrWqNONTsxInwE/9n/HzKMGahQISPbvrrr3Hm/y/v0qNPjFj/RnUelUmE0Gh3K4uPjbX3RRx99tFCdogZCBUEQBEGwsmQYydhyiey/46BAxkWNrxMe/YNxbu5X7N7DJtnEyztfZseVHQA4a5yZ22cuLf1b3oqmlyotIYeVnx8hN8Padwio584D01qhcyowHJaVANveh8M/WfcCvK5OB+j/AQTd53DNPJOFr7dGMG/HRWSLmS4pB2idccx23Nndg/6Tn6d+W7G1XmXl5had2vPbb7/l6aefLnOWRzc3N8aOHcvSpUtFQFsQBOEuIBvMGKIzMF5PIX4106EPcyONv7MteK0P9UTtIQLYdwJZkdkWs41vjn1D+iUT90cPJyC7nv04Ckd0ZvY6mVHJ2bRKP0fb9JM4yfnb4RTonrrmGQk2m2nWsjY1W3ujllPg4AzYGm/t65lLThdeFirJgEq6hsbZAG4yuKvBzRnczOAmgbsTuLmi6P2tAW6DHkuWPbW5pcBXOdOInJ85qIRvEJZ0A5Z0A6YSGwYqt/wA9/Ugd4G9va9/VbnpkNSlB75zTyeTvM2lQMZxtcNXRXEjeSv41k7GuYlvqde7mSod0P75558BayBbkiT69OnD+PHjGT58OFpt2XO0e3l5kZhY/MbrgiAIgiAId7Jz+6+xZeEZWzC7addadH/cMZitKArzjs1j7rG5trLBoYP59/3/RqvW0qtuLzZGb2RrzFbSDGl46b3oVbcX/YL73fMrs68LCgri0KFDDmULFixAlmXc3d3p379/oTqRkZH4+t7aTrYgCIIg3OnkPDOZO6+Qtesqisk+Cqxy0+LRpy6u7WogqYvf89ksm3l91+tsidkCgF6t56teX9E2sG2Vt70sMpJyWfn5EbLTrcFsvzpuDJneCr1z/lCYKQ/2z4Vdn4Ex017Rqy70eReajiiU0vFQdAqvLjvOxcRsvI2p9E/cjL/RvqK9XovWDJjyIm7ePlX+fPeyU6dOMWbMmHLVCQoK4ty5c1XUIkEQBKEqyXnWAPb1FOKmsgawQ72sK7A9dLeusUKprgeyvzoyl4T4JDrGDKV+cmuHc65ps7nqFEmA4TyTkhOwZBUOSKstMrXSMmmgSSKsXhKuNYxI0j9wqgKNUutu2Je6wJ7U19N9uwWCawBoSv77JGENvJYWfFXMsjXAnVk46C0X/P9sU8nbWcsgZ1ivUWLgWwKVq7Zw0Pt6wNtdh8pFS8pv50q+H4ACKb+fp9brHZC0xX9euNkqHdBWFIVatWoxduxYnn32WYKDg8tVPy8vj59//plPPvkEb2/vyjZHEARBEAThlju77xpbfjpj6/A161abbo81cAhmm2Uz7x94nz/O/2Ere7rp07zY9kVUkrXzp1frGVJ/CEPqD7ml7a9OunfvzqJFi3jggQcYNGgQO3fu5KOPPkKSJEaOHIlO5/jBIi8vj8WLF9O06Z2R9lQQBEEQbjfFLJO1/xqZ22KQs+0rQySdGvfuQbh1qY1KX3J2E4ts4f/2/B/ro9cDoFVp+bLnl3SoeWesSs5MyWPl7CNkpVq3dvGp5crQ51vh5Kq1pp08tRw2vQPpMfZKOnfo9i/oMLnQfoDZBjOfbDjHwn3RKLJCs8xTdE3Zi0axAKDWaOg6aixtBg5BUt26Qb17VXZ2NlFRUeWqExkZSV5eXhW1SBAEQbiZ7AFsawpx09WsEgNsmgAXxxTi7iKAfcexmLFkxfHb8ZX8EL2MJGMGba72o9e1iagVe5jSSxNDC/2PJOWkc/pyAHmKFssNl/LJyqVeZhqN/BPxb5OJ1qWE2Q3O3kUEqgMLlzl5Ve3e1EWQNCo03k5ovEvenkaxyFiyTCUGvS0ZRuQsY8mBaAXkLBNylgnTtexKt1/JNZNzMgnX1gGVvlZZVTqg/dZbb/HWW2+hqmCH/erVqzz77LMA9Ot363OuC4IgCIIgVMaZvdfYusgezG7evTZdH2vgkJozz5zHKztfYdtl+56MM+6bwZim5VtZIsCLL77IwoULHVKLK4qCRqNhxowZtrKkpCQOHDjAe++9R1xcHFOnTr0dzRUEQRCEO4YiK+QcSyRjYzSW/EAvAGoJt441ce9ZB7Vb6QPAsiLz7r53WR25GgCNSsPsnrO5v/b9VdX0cslON7By9hEykqzBS69AF4a90BpnNx1cOQTrZ8KVg/YKkgrajIGer1sHNG+w43wiry8/wdW0XJwsufRO2k5oTrTtuG9QXQZNm0FAcGhVP5qQLzg4mPnz5/Pcc88REFD6IGp8fDzz588v9yIcQRAE4daQc80Yoqyrrw2R6ZhiSwlgB7rYU4jfjQFsUx6c/hPOroacVHDxhkYPQJPhhSbd3VaKAsYsyLy+J3WcNb13Zv7XrHjkzDiMGXHsUuUyz8uDCzonGiV0pF/MIJzN7rZL6UmglvQryRkpbDS4ww37UDsZzQSlZhAmJVMnLAv3hl5InuH5wekbV1Xnl7kFgKb6ZzuU1Co0nnooZa93RVaQs0z5AW5D0Su/M4xYsowlZjgoe8Mgr7oFtBs0aFDhYDZA/fr1MZmsC+Ercx1BEARBEIRb7fSeWLYtPmsPZvcMousj4Q7B7HRDOs9teY6jiUcB66Dvfzr/h8Ghg29Di6u/xo0bs3jxYp599lmysrIAcHJyYvbs2Q6rsL/44gvef/99ACRJ4pFHHrkt7RUEQRCE201RFAznU0lfH11oNYZLK388+tZD4+tc5mv9Z/9/WBGxAgCNpOG/3f9Lt6BuN73dFZGTYWTl50dIT7CmpfTwd2bYC61xkeNh2btw4nfHCqE9of/7EFg4k0tajpH3Vp9m+eGrANTJuUy/pK24WHJs57TsN5juTz2DVlf9B0urk5EjR/LBBx/Qvn17PvroI4YPH45eX/hnkJeXx59//snMmTNJTExkwoQJt6G1giAIwo3kHJNjCvGyBrBDvdCHeJRpAl61dXYt/DkZ8tKsk+4U2fr1zCpY9yqMmAcNB1ZtGyxmyEkqEJiOyw9YJ9xQlgCmnGIvIwNbXZz5xseT83pXgtIa8tCZ4fjm1gKs/UrMkbhbNpOam8kZVIA9yK2SZQLTs6mbnUfo/a3xffhB9M3aWldd3+LV1NWBpJJsKcSp7VbseYqsIOeYHIPc+f+fczwRpbS9vW0Xsk5GuZUkRVFKy4ZerEuXLhEQEICzc+kffAYMGIBGo2HChAkMHTq0ore8p2VkZODp6Ul6ejoeHh63uzmCIAiCcE87vTs/mJ2vRa8gujzsGMyOy45j0qZJXEy/CICLxoXZPWfTqVanW97egu6GPkV6ejq7du3CbDbToUMHatas6XD86NGjHDt2DAB3d3dGjhx5O5p5x7kbfvaCIAhC2RkvZ5K+LgpDZLpDub6BN579g9GVMNh1I0VRmHVwFkvPLgVAJan4uNvH9A/uf1PbXFF5WSb+/PwwyVetQXt3XydGPNcA99PfwL6vwVwg3bRfA+j3PoT3LTQgqigK607G8dbKkyRlGVEpFu5P2U/rjOO2c5zdPeg/+QXqt21/S57tTnW7+hVZWVk0b96cS5cuIUkSer2eRo0aUatWLZycnMjLyyM2NpazZ89iMBhQFIXQ0FCOHTuGq6vrLWvn3Uz0KQVBKA85x4QhqkAK8bjsEgPY2hquthTiuhBP1K7aW9fY2+nsWvhlVP6Lor5B+X2Wx5ZCo0Hlv74hs0BQOt4xMF0wUJ2dVMz9y8YWyPby5Lxeh1duAJ2ih1MvzTqBULakYTGeQiWfxmTMLFTfI8dAUEoGIf41CRw1Cs/Bg1GJ39+3RPKi0+SeTi7bj18C5ya++D7VpFL3LE+folIBbbVazaJFixg1alSp54aFhREZGYkkSfz1118MHixWJZWX6CwKgiAIwp3h1K6rbF9yzva6Ze86dH4ozCGYfSH1ApM2TyIhJwEAXydf5vaZSxPfynX0bgbRp7h3iZ+9IAjCvcGUlEvGhmhyTyQ5lGtru+E5MBinMO9yXU9RFD499CkLTy8EQELiw64f3jEZZww5JlbOPkpijHVQ1M1Lz4gB0Xgcetc6YHuds481tXjbp0FdeHA8ISOP/1t5kg2nrHW8jSkMStqCj8H+fQxu2YYBU17E1at838O70e3sV0RHR/PAAw9w+vRpAId++HXXhzybNm3K6tWrqVev3i1t491M9CkFQSiJJduEsWAK8dIC2DVdbSnE76kAdkGmPPi0IeSlU3I0UQInT/jXOWv6cdkC2Yk3rKCOt/+xpQNPAFPl902+TnHyIkfnS7zsRUSuK5cMbsQrnpx2zeOC70XynNLQm1y478oAmsR3QSXLyMYLWIwnkc1XCl1Pa7ZQOzWTOhm51O7VG+/HH8e5Vasif78LVSf7cDypv50v8/nejzasdMrx8vQpKpVyvDyx8JMnT3L06FGefvppPvzwQxHQFgRBEAShWjq58yo7ltqD2a361OH+Bx2D2YfiDjF923Qy82ea1nWvy7y+86jjXueWt1eAqKgodu3axejRo293UwRBEAShSlkyjWRsiSH7YBzI9jEbta8Tnv2DcW7mh6Qq38Cgoih8eeRLWzAb4L3O790xwWxjrpm/vjxmC2a7uMKwGh/hsX2H/SSVFjpMhG4vg7NXoWsoisLvh67w7zWnycwzg6LQPPMU3VL3oZKtqRTVGg1dR42lzcAhSGLLvNsuODiYI0eOMHfuXL7//ntOnjzpME4pSRItWrTg2WefZdKkSWi192BwRBAE4RaxBbAjCwSwiyMVXIFtTSGuchHv0Zz+05pmvFSK9byv24LZaE0NrtyMDZEBlSZ//+n8P+6BDq/T1N7sjtOwPkpm28V0stMs+RVlNO6n0PltQe0Uh0pW0yK2B20u90NnTMdi2IrJeA4w3vAoCv6ZOQSlZBLk5oXP42PwevBBND4+N+d5hHJzae5P2qpIlDKkEpecNbg087sFrbKr9B7aZeXk5ETHjh2ZNm0ab7/99q26rSAIgiAIwk1zYvsVdv5in6nYum9dOo2s7xDM3nxpM6/ufBWjbO2oN/Vtypzec/B19r3l7RWs9u7dy9ixY0VAWxAEQbhryXlmMndeIWvXVRSTfVBT5abFo3ddXNvXQFJXLAg779g8FpxYYHv9Vqe3GB42vLJNvimMeWZWf32MhOgMAJy1OQxzfhWvtAIrfxoPgT7vgm/9Iq8Rk5zDzBXH2RORDICTJZeBqTsIyoyyneMbVJfB01/Gv15I1T2MUG5arZbnn3+e559/nvT0dKKjo8nKysLNzY3g4GA8PT1vdxMFQRDuSpYso0MKcXN88fsoI4G2lhv6EGsKcX2wCGAX6exq+57ZZZFeeJVzsZw8bwhU1wC3gMJlTl5QYNKeoiicjctky5l4tvydwNHLaTiucbUGsvX+W1Dp40CB4JRmdIzsh1tmAhbD7xjllELNcc0zEpSaSe3ULPzu74z3a4/j2qULklpd9mcSqoSkVeHzcAOSF50uNVGAz8MNkLS3dpLnLQtoX5ecnEx29s1LbSAIgiAIgnArHN92hV2/2oPZbfrXpeNwx2D2r2d/5f0D76Pk9/o61+rMZz0+w0Xrcsvbe6+wWCwkJyeTl5dX7DlJSUnFHhMEQRCE6kwxy2QduEbm1hjkbPtKCkmnxr1bbdy6BqHSV3xwcMGJBcw9Ntf2+vUOr/Nwg4cr1eabxWS0sHbuca5dtO4P7qTKYJjH/+GjyR/grdkS+n8AwV2KrG+RFX7YE8WnG8+Ta7KuMKqTc5kh6dtR52XZzmvV/wG6PTkWrU5ftQ8kVIqnpyctW7a83c0QBEG4K1kD2PYV2GUKYOenENeHeKJyvuVhqOonO7n8K609aucHpgsEqG2rqq+XBYDWucyXzDNZ2B+ZzJYzCWw9m8DVtNwizpLx8juHc8BWspTLAPhl1qbb2Y54paUgm5ZjviEaqrbI1EzLIiglEz+9M94PPYTXo4+iCwoq3zMLVe76vtgpv5+3rtSWsAa3879Kzhp8Hm6Ac5Nbv3CnzO8kO3bsYMeOHYXKly9fTkRERKn1TSYTly5dYtmyZYSGhpavlYIgCIIgCLfRsa2X2f3bBdvrNgPq0XFYqC2YrSgKc47O4X/H/2c7Z0joEN7t/C5alZh5XBXWr1/PJ598wt69ezEajaVXEARBEIS7iCIr5B5LJH3TJSwpBSZ1qSXcOtTEvVcd1G66St1j4amFfHH4C9vrl+97mccbPV6pa94sZpOFdXOPcfV8GgB6KYuh3u/iq40B95rQ+y1o8ZjDKqOCzsVl8uqy4xy9bK2vUiz0yz5EeOJh2znOHp4MmPwCoW3aVfXjCIIgCMIdxZJ5QwA7oZQAdm03ewrxYA9UTiKAXWapl+DQ93Dl77LXkVTQcDA8tvimNCEx08C2swlsORvPrgtJ5BgtRZ4XHuhCg5BLRJpXcCU7kiwFaqR40elcIzzT0kA5xI0heZ+sXIJSMqmRnoV7i5Z4T38c9/79UenFRME7mXMTX2q93oGck0nknUxCzjWjctbg1MwPl2Z+t3xl9nVlfmfZvn077733XqHyFStWsGLFijLfUFEUnnnmmTKfLwiCIAiCcDsd23KZ3b/bg9ltB9ajw1B7MNssm/n3/n+z/MJy2zljm43lxTYvOqzeFm6e999/n7feesthn8TSiJ+FIAiCcDdQFAXDhTTS10VhuuaY/c65pT+e/eqh8S37KpziLDmzhP8e+q/t9QttXmB00ztj6w6LycL6z7ZyOcq68lwr5TDE+z38na9B59eg83TQuRZZ12iWmbs9gjnbIjBZrP0Ib2MKj2fvQJ0WZzsvuFVbBkx+AVcv76p/IKFSNm3axOLFizlw4ABxcXGsWLGCnj17AjB27FieeOIJ+vTpc5tbKQiCcGezZBrzg9f5KcQTi1qVm08F2trujinERQC7fGQZIrfB3wvg/Pryr8xWZOuWKhWkKApnrllTiW8+m8Cx/Al+N9KqJTqG+tKroR9OXqf57eKX7EyLQGeSaHTVkxZRgbjkGoBrjvUsEnWTUghKycBNrcVzyBC8H38Mp8aNK9xm4daTtCpcWwfg2jrgdjfFplzvNEUNGpZ1INHFxYUGDRowZswYpk+fXp7bCoIgCIIg3BZHN8ew5w97Jpr7BgXTfkiILTiaa87l5R0vs+OKPYvNK+1e4akmT1XofrLBQOb69WRu3oIlPQ21pxfufXrjPmCAmL2a78CBA7z11lsAPPbYY7Rv3x6NRsP06dN55ZVXaJz/ASkrK4tDhw6xePFiGjRowCuvvHI7my0IgiAIlWa8kkn6uigM+Sm2r9OHe+E5IARdbbebcp/fzv3GrIOzbK+ntprKs82fvSnXrizLlWNsnLufSynhAGikXIZ4/5vAdvdB77/Ao1axdY9eTuPVP45zLj7TWqAo9FQu0CJ+J7LZBIBaq6XbE2Np3f8BpGJWdwt3hvT0dEaNGsX69esB6/ikJEkO45SLFy/mp59+YsCAASxdulTsqS0IgpDPkmHEEJVmX4FdSgBbV9sdfagnulBP9PVEALvCctPg2M/WQHbyDVmPJQ1IEshmSt282MkTmgwr163zTBb2RSaz5Uw8W88kEJte9LZtvq46ejYKoHejADqH+7I/bjvfHJtFREQENZOd6HrZj+A4V9QKgKFATRUeBifCr0YRkJmFPjQU72cn4zl8GGp393K1VRCKU+Z3nrfffpu3337boUylUrF48WJGjRp10xsmCIIgCIJwOx3ZFMPeZfYPGO0GB9N+iH3blLS8NJ7b+hzHEo8BoFFp+KDLBwwMGVih+2Vu3UrsazORMzKs6TFlGVQqMjdtQvX+B9SaNQv3Xj0r91B3gTlz5iBJEqtXr2bAgAEAJCcnM336dPr160evXr0czn/66afp06cPtWvXvh3NFQRBEIRKMyflkr4xmtzjSQ7l2tpueA4Ixin85q0iXnFhBf/e/2/b6/HNxzOp5aSbdv0Ky4xD3vw+m3f4E5ln3RNbg4EHGq6k5sPfQO02xVbNNVr4dOM5vt8ThZw/Puyq5DHWsh/p8hlbakzfoLoMfv4V/OsGV+2zCJWmKAojR45k+/bttkC2p6cnGRkZDud9//33fPvtt6xbt44hQ4awY8cOkbVHEIR7kiXd4JhCPKmkALaELsieQlxXzx2VXgSwKyX+FBycD8d/BdMN6dvda8F9z0Cb0RB7GH5+HPumxTfK/x02Yh5onUq9bUJmHtvOJrD5TAK7LySRayo6lXijGu70ahRA78aBtKrjhSQpbL60mTEbviEuNoqwK248dLU2brmF/x5Ian98c51pEnUIN3Mu7r174/3447h0aC9+5wo3nXgnEgRBEARBuMHhjZfYt/yi7XW7B0Jo/0CI7XVsViyTNk8iKj0KAFetK1/0/IIONTtU6H6ZW7dyZepz9gJZdvgqZ2ZyZepUguZ8jfsNAdt7zZ49exg5cqQtmF2a7t278+STTzJv3jyRblIQBEGoViyZRjK2xJB9MA5bJBZQ+zrh2S8Y5+Z+SKqbN1C46uIq3t5rX8gwtulYprWedtOuXyGmXNj3NfLO2WxNeoaI/GC2WjIxaJiF2v3/Z13NVIy9EUm8tvwEMSn2weOuzkm0v7wRY6Z9pXur/g/Q7cmxaHUiI0518Pvvv7Nt2zaCg4P56KOPGDhwIHl5eQQEOKbEfOqpp3jqqad48803+fDDD1m8eDFPPVWxTEqCIAjViTndgDEy3ZZG3Jxc9GpcwBrArmNPIa6r54FKr751jb1bWUxwZpV1NfalPYWPB3eF9uOh4SBQa61lDQfCY0tR/pyMlJeGjIQKxfZVcfJEGjHPel4RFEXh9LUMtpxJYMuZeI5dSS/yPJ1aRcf6vvRuFECvRgHU8XEBQFZkNl/axP/+mYv5XBxhV1zpkhxU+AKSE2pdY3zynGl8djNebha8xo/B66GH0QbeOemphbtPpQLa27Zts6V1FARBEARBuBv8sz6a/X9G2l53GBrCfYPswezzqeeZvGkyCbkJAPg5+/FNn29o5NOoQveTDQZiX5tpfVHcVi6KApJE7GszCd+1855OP37t2jU6dHCcOHB91q8sF73vVLt27fjwww+rvG2CIAiCcDPIeWYyd10la9cVFKP9d5vKTYtH77q4tquBpLm56bDXR6/nzT1vouSvBnqy8ZO82PbF27eyRlHgxB+w+R2U9Ktsz5jMuTxrphqVSmbAxBbUaVmz2OrpuSY+XHuGX/6+bCtzVslMcj2L+fgOjNfLPDwZMPkFQtu0q8qnEW6ypUuX4ufnx759+wgMDATAYDAUe/5//vMfNm7cKALagiDctcxp+SuwL6ZhiErHUlIAWy2hC3LPX4GdH8DWiQD2TZMZB//8CId+gKw4x2M6N2j5GLQbBwFFx9U2yW2Zmfc1XYx7GaD+G0+ySMeN9ZZ27OZ+ZlnaUHCqfp7Jwr6LyWw+E8/WswlcKyaVuJ+bjp4NA+jdOIAu4f64FVh1LysyG6M3smTrNzifSeO+a67ozH43XEFCpamHWt8MN6MLDSJWUqehB96zXsO9Z08krbb83ytBKKdKBbS7d+9e7jpRUVHs2rWL0aNHV+bWgiAIgiAIN92hddEcWFkgmD0slPsGBtte/x33N89vfZ5Mk3XvxXoe9ZjXZx5B7kXMWC2jzPXrrWnGS6MoyBkZZG7YgOfQoRW+393A/Yb9l5ycrKm2rl69WuT5OTk5JCYmVnm7BEEQBKEyFLNM9oFrZGy9jJxtspVLOjXu3Wrj1rV2laT83HJpC6/tfA1ZsQbPH234KK+0e+X2BbNjDsCG1+HqIRQFdmZM4ExuX8C6K0v/CS0JbulfbPWNp+J488+TJGTaA5zd/S10ubqejIsxtrKQVm3pP/kFXL1uXsp24dY4dOgQzzzzjC2YXRbDhg3jyy+/rMJWCYIg3DrmtDwMF/NXYEelY0kpJYBdp0AAu64IYN90igIx+6xpxc/8lb8PdgF+DaDdeGsw28mj2MtsOh3PhEWHQFHxJ134U+7icFzKg/GLDvHJgy0wyQpbziSwJ6LkVOJ9GgfSq3EArYK8UN2Q2UdWZNadXMm6NT/gdSGPVlk6wHG8RVJ5odY1Q61vjM4iEXptM0271MTnvf+iDw1BEG6lW55yfO/evYwdO1YEtAVBEARBuKMcWhvFgb+ibK87Dg+l7YBg2+uN0Rt5bddrmGTrAHMz32bM6TMHHyefSt03c/MW+57ZpVGpyNy0+Z4OaNesWZMTJ044lLm4uODm5saOHTsYM2ZMoTobNmxAp9PdqiYKgiAIQrkoskLu8UTSN15yHJBWSbh2qIFHr7qo3avm99iOyzuYsXMGFsU6EDoyfCSvd3j99gSzUy/B5nfg1HLAOja8J3MsJ3OtaTUlCfo805TQVkUHsxMzDbyz6hRrjl+zlbnp1EyrlUDu7j/JMFnXZau1Wro9MZbWA4aIvR2rqaSkJBo2bFiuOjVr1iQtLa1qGiQIglDFzCl5BfbATsOSWnxWCtQSurrXU4h7oavrLgLYVcWYDcd/s6YVjz/peExSWdOJtx8PId1L3CIFrCut//X7UVCK3j0b8ssVmPHH8SKP69QqOtX3pU/jAHo2CiDI26XI80wmI39u/I4jW9fifVUmRJGAgn1NNWpdI9T6ZkjqWqgUC8F5J7hvYDB+w2ahcin6uoJQ1cQe2oIgCIIg3PP+XhPFwVX2YHanEfVp07+e7fXPZ3/mwwMf2tJwdqndhU+7f4qLtvKdeHNyctmC2QCyjCW96D2Q7hVt2rThxx9/5LnnnnMYyGzbti2LFy+mX79+PPbYY4B1/6j33nuPLVu2cN99992uJguCIAhCsfIupJK+LgpTbLZDuXNLfzz71UPj61xl995zdQ8vbn8Rc/4qoiGhQ3i709uopJubzrxUeRmw+zPYNxcs1gF6RYH98gscy8nPDChB76ebEH5f4RW5iqKw4shV3lt9mrQc+8r2PsEu9E7aRuy2w7Yy36C6DH7+FfzrBlfpIwlVy8XFhYyyZDgqICoqqlCWH0EQhDuRoihYUg0YItPyA9jpWNJKCGBrJHR1PGwrsPV13ZG0IoBdpZIvWoPYR5aA4YYxGhc/aDsG2o4FrzplvuTaE9fIyDWXfuIN/Nz09GrkT+/GgXQJ88O1hGw+CTHRrP3rO679fQRdHvgCYA+06xRPZNcOqHUNkCRrgLumJp7OjzQkoOtLYiKgcNuVKaD9448/Mnv2bJ577jnGjRtnK1erxRujIAiCIAjV28FVkfy9Jtr2+v6RYbTuVxewfpD86shXzD8x33Z8WP1hvH3/22hVldsfSM7OJmXxEnKP22fWWiSJOC9X4jxcManVaC0WamRkUyMtG7WigEqF2tOzUvet7gYMGMCyZcvo2LEjY8eO5YMPPsDJyYnRo0ezY8cOnnjiCf71r39Rp04dIiIiSE1NRZIkW5BbEARBEO4ExiuZpK+PxhCR5lCuD/fCc0AIutpuVXr//df28/y2522ZZwYGD+Tfnf99a4PZsgUO/wTb3ofsAluDuPjxt+fHHD5iTwXe88lGNOxQo9AlrqTm8MaKk+w4b6/v7aLl5aYK6Ru+IzY9zVbeesAQuj7xNFqdvkoeR7h1GjRowLJly3j++efLdH5OTg6LFi2iSZMmVdwyQRCE8lMUBUtKni14bYgqPYCtr2sPYOvqeCBpb/FktHuRbIELG61pxS9uKXy89n3QfgI0HQ6a8vc1Np6KRyWBXNzy7BvU93fl00da0aK2Z6FU4gUZcrI5s2cHezcsI/dyPOC4FltnsuCq1CTHpz+S1p/rf5O8XQx0eaIpddv2KvezCEJVKVNA+4UXXiAzM5MZM2Y4BLQVpYz/um4gZnIIgiAIgnC7KYrCwdVRHCoQzO78UBit+liD2SbZxHv73uPPiD9tx8c1H8f01tMr1ZeRc3NJXfozyQsWYElNtZXHe7hwrE4AZo3auixJkkBRiPdy41QtCy0vJxCYkYN73z4Vvvfd4KGHHuLdd9/FZDLxyy+/8Oqrr+Lk5MSYMWNYuHAhO3fu5Nq1a8TFxdn6qh06dGDatGm3ueWCIAjCvUAxyeScSCTvVDKWHDNqFw1OTX1xae6PpFVhTsolfWM0uceTHOppa7vhOSAYp/Cq38/5UNwhpm+djiF/NXTfen15v+v7qFW3cNHCxa2w4U1IOGUvU+ug42T+yRvF32tibcXdH29Ak861HKrLssLiA5f4aN1Zso32fSOHNvNnQO4/nPltja3MxdOL/pOfJ7R1u6p7HuGWGj58OG+88QYzZszgo48+KnHBzdWrV3nyySe5fPkyL7zwwq1rpCAIQjEKBbAj07CkG4uvoFGhr1cghXgddxHAvpVyUqwT8A59B2kxjsfUemj+MLQfB7VaV+o2iVmGMgezAfzd9bSq41XkMUWWuXz6BCe2beTc/t0oZsc9tiVFISA9B2epLom1RpCr87Ct03Z2go4PN6RRp1olBsoF4XYoU0C7c+fOrFu3js6dOxc6NnLkSJo3b17mGx4/fpw///yzzOcLgiAIgiDcbIqicHBVFIfWRtvKujwcTsve1nRQOaYcZuyYwa6ruwCQkHi1/as80fiJCt9TNhhI+/U3kuZ/iyWxwCC2JBHv5c4/dfwcygp+NatV/BNcg/sSMmjYv3+F23A38PT0JCYmplC5SqVi7dq1vPvuu/zyyy/ExcVRs2ZNHn30Uf7v//4PrbZyK+oFQRAEoTS5p5NJ+f08Sq7Zmr1RASTIPZVM2l8X0dXzwHAhzWHpjdrHCc/+9XBu7o90CwYNjyYcZcqWKeSacwHoEdSDj7p+VOnMM2WWeA42vmld4VRQk+HQ912O/qNi/5oIW3GXh8Np1j3I4dSIhCxeW3acQ5fsEwNreDjxxv1epKz5gTMx0bbykFZt6T/5BVy9qn6iwJ1CNhjIXL+ezM1bsKSnofb0wr1Pb9wHDEClvztWp0+bNo2vvvqKzz//nN9//51HHnmEsLAwAPbu3UtiYiKXLl1i7969bNy4EYPBQN26dZk0adJtbrkgCPciRVEwJ+dhiEzDeD2FeEbxAWxJq0JXzyM/gO1pDWBrRAD7lrt62JpW/MQfti1RbLzqQbtnofVT4OJTqdtEJWXz3e5IjsSkln5yPpUEXs66QuUZiQmc3L6ZUzs2k5GYUOi4W56BOsmZOFGbSyFPkO5qz36j1ki07leP1v3qonMSOxULdyZJKcMya7PZzPHjx2nevLnDYKBKpWLx4sWMGjWqzDdcsmQJo0ePxmKxlH6y4CAjIwNPT0/S09Px8PC43c0RBEEQhGpJURQOrIzkn/WXbGVdHgmnZS9rMDs1L5XntjzH8SRrKnCtSsuHXT+kf3DFAsmK0Uja8uUkfTMPc3y8/YAk4TFoEF4TxvP9f17HaMizB7KLbjg6vROTv/sZja7wB5fyEH2Ke5f42QuCIFSN3NPJJC86bQ1il4HKVYtH77q4tq9xywapTyadZPzG8WSZsgDoXLszX/b8Ep26cv2KMslOhh2z4O/vQCkwHlSrNfT/EOp14vi2K+z69bztUKcR9WnTv57ttcki8+3OSL7YfAGjRbaVj2pfhyHaKA78+iMWkzWFulqrpdsTz9B6wAP3VJbAzK1biX1tJnJGBqhUIMu2ryoPD2rNmoV7r5437X63s19x+PBhevfuTXp6eok/Y0VR8PHxYdu2beVakCOUTPQphbtZadlWSq2vKJiTch1SiMtlCWBfTyEeJALYt40pD07/CQe/hav/FD4e1gfajYfwvlCJzDaKonAwKoX5u6LYcjaeGyN0atlMWPZFQnOicJIN5Kn0RLqEEOFaH4vKGmz+/NGWjGgdhMloIOLgPk5u20TMqePceDGVbKFOciZBqZmoVb5cqP8gqT6NHc5p0D6QjsPr4+7jVOFnEoSKKk+fokxTLTQaDW3atClUXq9ePdzcyrevk5ubG3Xr1i1XHUEQBEEQhJtBURT2/xnJ4Q32YHbXRxvQoqd15c/VrKtM2jSJ6IxoANy0bnzZ60va1Sh/ikrFZCJ95UqS5n6DKTbW4Zh7v374PTcVpwYNOL1zK0ajoeRgNoAkYTQaOH9gD0263ryBSEEQBEEQKkcxyaT8fr7MwWy3HnXw6BmESn/rVr+cST7DhE0TbMHsjjU7MrvH7KoPZpuN1kHhnR9DXrq93KM29H7bmqZTpeLUrqsOwez2Q0Icgtknr6bzyh/HOX0tw1ZWz9eF9/oFk7xuIXuPHLKV+9Wpx+DpL+NXN7hKH+1Ok7l1K1emPmcvkGWHr3JmJlemTiVozte496r++2G2adOGo0ePMnnyZNavX1/seYMGDWLu3LliLFIQhDIpMdvKqkh8Hm6AcxNfhzqFAtiRaciZpmLvIWlV6IKvB7C90NV2EwHs2y3tMhz6Hg4vhJxkx2NOntDqSeuKbN/6lbqNySKz7mQcC3ZFcvxKusMxZ60Kiwy1My7SJ2kbTrIBGVABMhCWE0W3lD1s9u9Fik992jhnsXnBHM7u2YkhJ9vhWgoK3tm5hCRmEJCRg0XjSmTISGJrdgbJ/netRqgnnR8Oo0aIZ6WeSxBulUp9eoqKiip3nWHDhjFs2LDK3FYQBEEQBKHcFEVh3/KLHNlkT1fd7bEGNO9hDWafSznHpM2TSMq1pgP3d/bnmz7f0NCnYfnuY7GQsXo1iXPmYrohNbZbz574T3sOpyZNbGURf+9HkiTKkDQHSZKIOLhPBLQFQRAE4Q6ScyLROvBdRtpAl1sazD6Xco7xm8aTacwE4L7A+/iy15c4aapwFY6iwNnVsPH/ILXA2JHWBbq8CJ2eA50LAGf3XWP70nO2U9oOrEe7wSEA5JksfLHlAt/ujMSSn6pdJcH4rqGM8M9k25z/Iyc9zVa39cAhdBs1ttLZbKob2WAg9rWZ1hfF9SkVBSSJ2NdmEr5r512RfrxevXqsXbuWiIgINm/ezIULF8jMzMTd3Z3w8HD69OljS0UuCIJQmkLZVm74quSaSV50Gp8nG6P1d8EQmWYLYstZJQSwdSp0wdbV1/oQT3RBbkhqEcC+7RQFIrdb04qfWwuK7Hg8sLl1b+zmD4POtVK3ysgz8evBy/y4N5qrabkOx2p4OPF052Aeb1eXzRu2EvWLfZKW6oavetnA4Ph16HJ9+OPtlEL3UcsmQuMzCErNxNlkQZY0XA7qzaWQQZhV9t/77j5OdBpZn7C2AfdUJhuh+rvlyfCjoqLYtWsXo0ePvtW3FgRBEAThHqUoCnuXRXB082VbWfdRDWnWrTYAB68d5Pltz9tWLQV7BDOv7zxqu9Uu+z1kmcz160n8eg7GyEiHY65du+I/7TmcW7QoVC83K6NMwezrz5GblVnmNt1LFi9ezG+//cbFixfRaDQEBwczePBgxo4dK/bPFgRBEKpU3qlk+yqu0kiQdzIJ19YBVd0sAC6mXWTCpgmkG6yrgFoHtGZO7zk4a5yr7qaxR2HDG3Bpd4FCCVo9Ab3eBI+attLzf8ex9acztu9dqz516DA0FICDUSm8tuw4kUn2VUeNarjz4bBGpO5YwZqFq2zlLp5eDJj8AiGt76u657qDZa5fb00zXhpFQc7IIHPDBjyHDq36ht0iYWFhInAtCEKllDnbigIpi86UeIqkUxdYge1pXYEtAth3jrwMOPazNZCddN7xmEoDTYZZ04rX7Vh6Jr1SXEnN4Yc90fz692WyDI6TH5vU9GB8txAGN6+FTqPCbDRybdUPlHTH68dMGfZgtoKMb1YWDeIy8c7Os3VJEwLbEtnkUXIUezBeq1fTdmA9Wvaug0Zb8ZTpgnC73PKA9t69exk7dqwIaAuCIAiCcEsoisKePyI4tsUezO7xREOadrUGq9dHr+f1Xa9jkq0zqlv4teDr3l/j7eRd5utnbtpE0ldfY7hwweGYS8eO+E+fhksRW7cAZCYnkXottshjRZEkCWc39zKffzfYtWsX8+fP58SJExgMBho2bMj06dPp2dO6St1kMjF8+PBCqSZPnjzJ6tWr+eKLL9i4cSO1a5d9coIgCIIglIcl01jmdOMoIJdjNXdlRKdHM27jOFLyrIOeLfxaMLf3XFy0LlVzw4xrsPXfcHQpDt+Q4K7Q/32o2dLh9IuHE9j8wxnbguLmPYO4/8EwsgxmPlp/lsX77ZludGoV03qF8VCoho1z3iXpsn37mJDW99F/0vO4epWt73Y3yty8xb5ndmlUKjI3bb6rAtqCIAiVVd5sKwVJejX6AinEtbXckNRi1esdJ+EMHJwPx34Bk2OKbtxqwH3PQNsx4F6j0rc6ejmNBbsiWXcyzpZh5rpejQIY1zWETqG+Dqujz+/fjSE7q8z3kBQjja6mUSc1C02Be2QHt+Zi01EkZbvYumOSBI0716LD0FBcPO6tLDbC3eWmBrSzs7NJT0/HbC7+zT8pKelm3lIQBEEQBKFYiqKw+/cLHN96xVbW88lGNOlSC4AlZ5bw0cGPUPJ7+d2CuvFJt0/KNNCrKApZ27eT+NVXGE47ztB2btsW/+nTce3Qvsi6ssXCkfWr2fPbYkx5uUWeU9w9w9p3KvP51d3HH3/MzJkzHcrOnTvHqlWrWLp0KY888ghvvvkm69atK/YaZ8+e5aGHHmLfvn1V3VxBEAThHiMbLWTtvILxcjmyp0igcq76tQWXMy7z7MZnbVupNPZpzDd9v8FN53bzb2bMgb1fwZ7ZYMqxl/uEQt9/Q6PBhVY4RR1PYuOCUyj5A7BNutai6yPhbD+XyOsrTnAtPc92bpu6Xswa2ZysIzv49f++x2KyTkJUa7V0f/IZWvV/4J5Pl2lJTytbMBtAlrGkp5d+XjVmNptZuHAhx44dw8PDg4cffpiWLVuWXlEQhHtWubKtACo3Le7dgtCHeIoA9p3MYoKza6yrsaN3FT5er4s1rXijB0BducxuFllh85l4FuyK5O/oVIdjeo2KkW2CeLZLCGEBRffFzh3cg4KCVOIa7XyKQkC6kZBkex9Uur83UWEjiIyRoEC8PqiRN50fCscvqAr6gIJwi1X6U9TVq1d5//33WbVqFbGxZV9hJAiCIAiCUJUURWHXbxc4sS0/mC3lB7M710JRFL44/AXfnfzOdv6IsBG81ektNKqSu0eKopC9Zy+JX31J3rHjDsecWrSwBrI731/swOq1C+fYtGAOidEF05KX5ZOzhN7VlQYdOpdy3t3hn3/+4fXXXwcolJJdURSmTp1K165d+frrr5EkiREjRjBo0CDq1KmDxWIhOjqaP//8k40bN3Lw4EHWrl3LoEGDbsejCIIgCHcZRVbIOZpAxvpoLBnGclYGp2Z+VdOwfLFZsTy78VkSchIAaODdgG/7fouHzuPm3kiW4cRvsPldyCwwHuTkCd1fg3bjQFN4FdClU8ms//YEcn4wu1GnGrQYGsKLvx7lz6P26zhr1bwyoCEPNvZk87efEXXkkO2YX91gBk+bgV/d4Jv7TNWUyt3DOmmgLNvYqFSoPT2rvlFVyGg0ct9995GVZV3JtnDhQrp27QpAWloaPXr04MSJE7bzP/roI2bPns3UqVNvS3sFQbjzWXLMZc+2AmgDXHDvFlR1DRIqJzMeDi+EQ99D5jXHY1pXaPmotZ8S2LTSt8oxmvnjnyt8vzuK6OQch2O+rjqe6lSPpzrWw9dNX8wVrK4lXCpbMBtAkjCp1chuLniOfJTLdfpw/GAG5hj75DavQBfufzCM4Oa+9/zEP+HuUamAdlRUFB07diQpKanMez8C4h+QIAiCIAhVSlEUdv1ynhM7rloLJOj1VCMa318Lk2zinb3v8NfFv2znj28+nmmtp5XaR8nef4DEr74i959/HMr1TRrjP20abj16FHuNvOwsdv/8E8c2r7MPNkoSLfsMoHajZqz9+r/5H6CL6lNJIMHAqS+i0d0b6aHmzZuHLMt4eXnx3HPP0aFDB7RaLefOneObb77h3LlzvP322+Tl5fHrr7/y0EMPFbrGpEmT+Oqrr3j++edZvny5CGgLgiAIlWaITidtdSSmKwVSQkqASgJL6eMikrMGlyoMaMdlx/HMhme4lm0dvK3vWZ/5/ebj5eR1c290aS9seB1ij9jLJLV1cLjHa+DiU2S1y2dTWDfvBLLZ+r0KbxdIVgtP+s7eSUq2fXJA13A/PhjRHNOlUyx57f/ISU+zHWszcChdRz19z/SJSqIoCpkbNpB7+HDZgtkAsox73z5V27AqtmbNGk6ePIkkSXTs2BFvb3u6+VdffZXjx62TTjUaDa6urqSnp/Piiy/SrVs3mjdvfruaLQjCHUzlUo4wyS3KtiKUk6LA5QNw8Fs4/Rfkbytn4xtm3Ru71ePWyXeVlJCRx8J90Sw5EENajuO9wgLcGNclhOGta+NUyl7ViqIQcXAfuZfjyn5zRSHPS4fqtRVsXhNDdkya7ZDeRUO7wSE0614btUbs3S7cXSr1zvv222+TmJiIp6cnQ4cOpUmTJnh7e6PXFz/bZN++fcyfP78yt7UxGAzMnj2bX375hYiICNRqNY0bN2bMmDFMmDABlar8/2Cjo6MJCQkp9bxPPvmEGTNmFHs8NjaWjz76iNWrV3P16lU8PT1p164d06ZNo3///uVulyAIgiAIZaPICjt/Oc/JnfZgdu/RjWnUqSY5phxe2vESe67uyT8k8XqH13ms0WMlXjPn8GESv/iSnAMHHMr14eH4TZ+Ge58+xQayFUXh7J4dbP9pgcNgrH+9EPqMm0qtBo0AOJWYx/nfvkUvG5ABFdi+GlQ6Gj4ygfptO1TgO1I97d69G2dnZ3bv3k2TJk1s5f369WPcuHF06tSJxYsXM2zYsCKD2ddNmzaNJUuWcPjw4VvRbEEQBOEuZU7JI319FLnHHbdRc2rkg+fgEMyJuSQvOl3y6i4JfB5ugKStmsHFxJxExm0cx9Usax8o2COYBf0X4ONUdHC5QlKiYNNbcOYvx/IGA6zpxf0bFFs19kIaa+cex2Kyrh6q3dyH39TZbP412naOp7OW/3ugCcOa+bNr6Y8cWb/KdszF04sBk18gpPV9N+95qrHcEyeJnzWr0ETLEkkSKnd33Kv5uNSaNWtQq9X89ddfDBw40FaekpLCwoULkSSJrl27smLFCry9vVm2bBmjRo3im2++Ye7cubex5cWrijHO69LT0/n4449Zvnw5ly5dwsXFhRYtWjBhwgQee6zkz0GCcC+wZBkxJ+SUfuJ1tyDbilAOxhw48bt1f+z4E47HJBU0GGhNKx7SAyrxXnrdmWsZLNgVxV/HrmK6YTJj5zBfxnUNpXu4PypV0WNEJtnEpfRLXEi7wLljB8jZcgJ9gqF8jZAkZO39bF0aYStSqSSa9ahNu8EhOLlWLn26INypKhXQ3rJlC2FhYezduxc/v7K9iWs0mpsS0E5KSqJXr16cOHGCCRMm8NVXX2E0Gvn666+ZPHkyv//+O2vWrMHJyalC13dxcSlxlZauhJnA+/fvZ9CgQeTl5fHuu+/SvXt3Ll++zHvvvceAAQOYOXMmH3zwQYXaJQiCIAhC8RRZYccv5zlVIJjdZ0xjGnasSUpeClM3T+Vk8kkAdCods7rNom+9vsVeL/f4cRK//Irs3bsdynWhofg/NxX3AQOQSvhAlBJ7lS3fzSXm5DFbmVbvROdHn6T1gCGo1NaZuptOx/PyQTPqOqOpnxNJaHYkTrKBPJWeSNdQLrqEYjloxqNhPH2bBFb021OtXLlyhZEjRzoEs69zdnZmxowZjB492mEQsziDBg3iyy+/rIpmCoIgCHc5Oc9M5vbLZO6+Cmb7oKW2hgueg0NxCreuDNX6u+D7VBNSfj+Pkmu27yaS/1Vy1uDzcAOcm/hWSTuTcpN4duOzXMq4BEAd9zos6LcAP+ebNOCelw47/wsH5oGlQJr1wGbQ7z9Qv2eJ1eMi01n99THMRmswW1vHlbfj40k3mm3nDGpeg3eGNkVKjWPpGy+RdPmS7Vhom3b0n/Q8Lp5eN+d5qjFTfDyJn31O+sqVDuX6Rg0xnDtvfVHUau38Ma5as2ahKmEhSnVw4MABHnnkkUL9wBUrVmA0GlGpVMyfP9+2cvvBBx9kxIgRbN++/Ta0tnRVOcYZERFBr169uHr1Kq+++ipDhw4lJSWFjz/+mMcff5zVq1fz008/VSpgLgjVmfFKJsmLzmBJL3tAsaqzrQhllHzRmlL8yCJrP6UgF19oMxruewa86lb6VoqisON8Igt2RbE7wnFyo1YtMaRlLZ7tEkLTWp4OdWKzY4lIjeBC2gXOp54nIi2CqPQoPNIk2pzzJijRGYffyNf7jqWR9ChOHWynBrfw4/6R9fGu4VrJJxWEO1ulAtrJycm88MILZQ5mA7Ro0YK33nqrMrcF4OGHH+bEiRM8//zzzJ4921bes2dPRowYwcqVK5k8eTI//PBDha5/6tQpgoODy10vMTGRIUOGkJqayooVKxg+fDgA7du3p0+fPjRv3pwPP/yQhg0bMmbMmAq1TRAEQRCEwhRZYfvP5zi9y7r3oiRB76eb0LBDDS5nXmby5sm2QV53rTtf9PqCdjXaFXmtvDNnSPzyK7K2bXMo19ari//UqXgMHoykLj5tlNlo5ODK3zn45+9YzPaB2vD299NjzHg8/Pzt9zJZ+NfvR0EBs0rDObcGnHMrvLpJUmDG70c58HqfUlNW3Q2ys7Np3759scc7dLCuVg8KKn3fsjp16tj2WBQEQRCEslBkhexDcWRsvIScZU8jqXLV4tGvHq7taiDdsPLGuYkvtV7vQM7JJPJOJiHnmlE5a3Bq5odLM78qW5mdmpfK+I3jiUqPAqC2W22+6/cdga43YRKcxQyHf4RtH0BOsr3cNQB6vQmtnwRVyf2ShEsZrPryKCaDBYAUDxU/ZiRhyf/2+bnp+c/wpvRvWoMj61exc8kPWEzW77lGq6PbU8/Qqt/ge377Ojk3l+Tvvyd5wXcoubm2cl1wMAGvvoJbjx5kbdtG7GszkTMyrKvQZNn2VeXuTq1Zs3DvVfLkg+ogOjqa8ePHFypftcq6or9nz56Eh4c7HOvYsSOrV6++Je0rr6oa4zQYDAwePJjLly/z+eef88ILL9iO9enTh86dO7NkyRLCw8N5++23b9LTCEL1kX04ntTlEWC2TraSnNUouZaSK1VxthWhFLIFIjZbV2NHbCp8vHZba1rxpiNAW7GFjgXlmSysPHqVBbuiuJDgOKbg4aThiY71GNMpGL0+lwup51hy5gIXUi9wIe0CF9Mukm3KdqjjlqOh03kv6sc6Bp7T3c00jc0k0e8xDIYNpbZL6zIASdLgW9uNzg+FUafxTczGIwh3sEoFtGvUqFGuYDZA8+bNK71fzbJly9i+fTtOTk688847DsckSeLDDz9k5cqVLFy4kOeee462bdtW6n7l8d5775GUlESHDh1swezrPD09mTlzJlOmTOHVV1/lkUcewdnZ+Za1TRAEQRDuVoqssH3JWU7vse4XKUnQ55kmNGhXgzPJZ5i8eTLJedZB2ADnAL7p+w0NvAsHjfPOnyfpq6/J3OT4wUhbqxZ+U6fgOWwYkqbk7lP08SNs+W4uaXHXbGUe/gH0GjuJ+m0LB2jXnrhGRq65UHmhZwTSc82sO3mNEa1LD+LeDQruh1jcsZK2urlOp9NhMplKPU8QBEEQAPIiUklfHYUprsAgpFrCvUtt3HvWQeVUfF9A0qpwbR2Aa+uAW9BSSDekM2HTBCLSrCknA10CWdBvATXdalb+4hc2w8Y3IPGsvUyth05ToetLoHcv9RJJVzL564ujGPOsAYIYrcwyKdcWzH64bRBvDm6CxpjFilnvEHXUnj7br24wg6e/jF+depV/lmpMkWUyVq8m4bPPMcfZ99dUeXjgP3UK3o8/jpSfRdC9Vy/Cd+0kc8MGMjdtxpKejtrTE/e+fXDv37/ar8y+zmg0FhpPy8nJYdOmTUiSxOOPP16ojru7+x3ZH6zKMc6vv/6a8+fPU6tWLaZNm+ZwTKfT8d577zFo0CA++ugjxo8fT61atW7GIwnCHU+xyKSvjSJrT6ytTFfXHd8nG2O8knXbsq0IJchJgSOL4e8FkHbJ8ZhaD80etKYVr31z4kAp2UYW77/ET/uiScoqkJlGMlLLP537G5vw9komIvMPHlt/wTbeVBwng4qWEZ40iHFHrdgn6Om83Gk5cCDBu44RcSGJpLpN0WqcMOWsB8VA4b+EerQuA1Dr6hNS28CAN3oWm9pcEO5GlQpoDxo0iCNHjjB27Ngy10lMTOTMmTN069atwvddsGABAL169cLLy6vQ8caNG9O4cWPOnDnD999/f8sC2kajkUWLFgHWdEZFefDBB5kyZQrx8fGsXr2ahx9++Ja0TRAEQRDuVoqssHXxWc7uzQ9mqyT6PtOE8PsC2X9tPy9se8E2KzbEM4T/9flfoUFeQ2QUSV9/Tca6dQ4pGjWBgfhNnoTXyJG2gcLiZKelsv2nBZzds8NWplKrue+BEXQc+RjaYlIEbjwVj0oCuaQ9N69fT4INJ+PvmYB2SakP7/VVWoIgCMLNZ0rMIX1tFHlnUhzKnZv74TkgGI3vnTUhPdOYycRNEzmbYg04+zv7833/7wlyr2Q/IeEMbHzTugKqoGYPQp93ypy6Mzk2i5Wzj2LIsU7cu6y2sNzFiFmCIG9nPhzZnK7h/kQe/pv138wmN8OeLrTNoGF0fXwMmlL6X3e7nCNHiP9wFnnHj9sL1Wq8H38cv6lT0BQx+U+l1+M5dCieQ4fewpbeWgEBAZw7d86h7I8//iA3NxeNRlNogQnA1atX8fDwuEUtLLuqHOO8fu3hw4ejLiK7VL9+/XB3dyczM5MlS5bw8ssvV+whBKEasWQZSVl6FkOk/XeOa/saeA2tj6RR4dxEf1uyrQjFiD0Kf8+HE3+AOc/xmGddaPcMtB4NrjdnksHFxCy+2x3Fsn8uYVIloNLHofOPR6WPw8U1AbMqmUwUNiQACSVfq7ZbbcJdQgk5r4FDMSgFtllxcveg44hHqO/iSeLb75CdkEBS03GgyKh19VFpJyIbz2MxRaAoeUiSE2ptGCpdAyRJA4oMvrVEMFu451QqoP3666/TuXNnHnnkEbp06VKmOhs3bmT06NFYLKWk7yiG0Whky5YtALRrV3Sa0OvHzpw5w5o1a5gzZ06F7lVee/bsIT09vcS2BQQEULduXWJiYlizZo0IaAuCIAhCJciywrZFZzi7z7papWAwe13UOl7f/Tpm2fqhoaV/S77u9TVeTl62+saYGJLmzCV91SprSsZ8aj8//CZMwOvRR0pdySLLFo5vWs/uX37CkGNfyVW7URP6jJta4qois0UmIiGrTMFssAa903KNpZ8oCIIgCEKZyTkmMrbEkLXvmsMMM21tN7weCEUf4llC7dsj25TNpM2TOJV8CgBfJ18W9F9AXY9K7BOZnWRNLf7Pj6AUGLMJagf9P4A6xW8FcqPUuGxWfn6EvPx07VfVFpa5GTGr4Jn7Q/hXvwboJAtbvp/H0Q32NNAunl4MmPIiIa1uXaa9O5Hp6lUSPv2MjLVrHcpdu3cj8JVX0Nevf5tadmdo164dixYtYvr06dStW5eEhATee+89JEmid+/e+PgUTr26cuXKQmnIb7eqHOOMiori7NmzJV5brVbTunVrdu7cyZo1a0RAW7jrFdovWy3hNbQ+bh0cJ7zf6mwrwg3MBji90ppW/MrBwsfr94L2EyC8X6nbnpRGURRis2JZffYIK08fIjL9Iip9HNr6iehUjvGr4nJ8eOu9CfcOJ9w7nDCvMMK9wwl2qcvFHTvZv+xXcjMzbOdq9HruGzycNr0GkPb1HK79+qv9+k6eIFknTEiSBrW+CWp9k6JvKqkw5FUsviYI1VmlAtqyLPO///2Pp556iq5duzJ06FAaNmyIu7t7sStqkpKSKnNLzpw5Y0sRVNIe19ePXbp0ifT0dDw9y/cBdP369axdu5aTJ08SHx+Pu7s7zZo148EHH2Ts2LE4FbHK6niBGbOltS0mJsbhfEEQBEEQykeWFbb+dIZz++3B7H7PNiWsbQCLTi/i478/tp3bo04PPu72Mc4a68oq09WrJH7zDekr/oQCk+zU3t74jh+P9+OPoSrDtiDxkRFsXjCHuIsXbGVO7h50f2IsTbv3RiqmP2QwW1j2z1Xm7bhITEpOmZ9ZJYGX872zUqksq7DFSm1BEAShohSLTPb+a2RsiUHOsa+aUXno8OwfjEvrgEL7ZN8Jckw5TNk8heOJ1jEFb7038/vNJ9QztGIXNBvgwDzY+V8w2Add8axjXZHd7EHrfi5llJ6Yw+//PYwpP5h9TS3zh5uR4EA3Zj3Ygrb1vEmMieb3Lz4m+UqMrV5om3b0n/Q8Lp5eFXuOu4CcnU3S/Pmk/PAjisFgK9eF1Sfw1ddw61q2xSR3uwkTJvDnn3/SpEkTmjRpwvnz58nIyECSpEKptbOysnjjjTc4evQoL7744m1qcdGqcoyzPGOUO3fuFGOUwl3vxv2yVe46fJ9sjL7enZe54Z6VfgUO/QCHF0J2ouMxvSe0GgXtxoFfWIUun5qXSkRaBOdTz1u/plzgXMoFDLJ9TEZbwturs8aZMK8wW9D6+ldfJ1/buIQsWzi7ewe//fYlGYnxtroqtZrmvQfQ6cHHkCIucvXxUZiuXEEBMjxCSGw5jHRtKMjF3PxGEji5aivwXRCE6q1SAe3g4GDbP9YlS5awZMmSm9KoksTE2D/s+Pv7F3tewWNXrlwpd0B7xowZPP/887z00ku4u7tz/vx5PvvsM6ZMmcKcOXNYvXp1oQ5hedt2+fLlEttgMBgwFPgAk5GRUcLZgiAIgnDvkGWFLQtPc/6A9QOCSiXRb1xTQlr78dmhz/jh1A+2cx8Mf5A3O76JRqXBFB9P0rx5pP2xDArsoafy9MT3mWfwefIJVK6upd7fkJPD3t8Wc2T9ahTF/omjWc++dB31NC4eRfc7sg1mfj4Yw/xdkcRnGIo8p8TnVqB/s8By16uunnzySZ588slij0uSRJ8+fW5hiwRBEIS7gaIo5J1LJX1NJObEXFu5pFXh1i0I9+5BqHSVW/FTVXLNuUzbOo3DCYcB8NB5ML/ffMK9K7DyVFGsK6A2veW4H6XOzbpHdscpoC1fmvX4a1n8+vEh1LnW/lG8WmaFu5FJvcOZ2rM+OrWKw2tXsnPpj1jy+2IarY7uTz1Ly36D7tmJaoosk77iTxJmf44l0b4QRO3lhf/z0/F6+GEkTaWG8O4qAwYMYPr06Xz55ZccOnTIVv7kk08yaNAg2+tZs2bx5ptvIssykiQxYsSI29HcYlXlGGd5r52amkp2djauxXwWKm6MslGjRiVuEwTQpk0b/vrrL4eyoUOHcvjw4ZIfAnjppZd46aWXbK8zMzNp3LhxqfXAuiq/YIr21atXM2nSpFLrubm52Va3X/fyyy/z888/l1p38ODB/O9//3Mou++++4iLiyu17scff8yoUaNsr8+dO0fv3r1LrQfw999/U7OmfZXxt99+y3vvvVdqvQYNGrB161aHsieeeIIdO3YUU8Nu/PjxvP322w5lQUFl2/Ji8eLF9OjRw/Z6+/btJX7uK+jKlSsOr999913mz59fYh0lz0z7wOZ8NeQtwL5fdt/hAzl//nyp93zrrbeYMGGC7fW1a9dKzKpQ0JYtW2jYsKHt9dKlS3nllVdKrVejRg2H9zeAiRMnsmbNmlLrPv7443zyyScOZY0aNSIrK6vUuvPmzeOBBx6wvf7nn38YNmxYqfXAOknH3d3d9vqzzz7js88+K7Vem0b1+Gt8CJxda8sQM/TnHA5fs4BaCzpX0FqAxfl/7Ip6j2jUuBFm2Wz9o5ixyBZMsglZcYwW13u+Hs7B9n5OxtEMYhfGAhIaSY1GpXH4o5bUxBLLYbfDhd4jZsyYwZJFizDkZCPfkJlYo9Ohc3FBtfMfen27kJkZGeTpPImr259rNTvxztq3yDz9Zqnfp2EdJtAuPP89QQG808v8b068R5T8HgHQvXv3QvHNXr16ifeIG1TFe4Qsl3UmRyUD2mD9IFhelfmAkpmZafv/olZJF3WsPIFgJycnevXqxeeff06LFi1s5W3btuXBBx9kwIABbNu2zbZ/uL5AGtLytq20dn344Ye8++67ZW67IAiCINwLZIvM5h/PcOFvezC7//hm1GnpxRu732B1pD1t5aSWk5jScgqWpCTi5s8n7ZdfUYz2lN0qNzd8nn4anzGjURfoVBVHURQuHNjDth+/JSvVvr+mb1Bd+oybQlDjZkXWS8sx8uPeaH7cG01ajmOiqvtDfTl2JY0co4WSelUS4OGsYWCzmiWcdXepSD+zOPfqALkgCILgyBSXTdqaSAwX0hzKXVoH4DEgGI1nyVuN3E4Gi4EXtr3AwThr+k13rTvf9vuWhj4NS6lZhKv/wIY3IGZfgUIJ2jwFPd8E9/JPoNvyTyyHfjiLW/5i90SVzKlwPX882p7GNT3ITktl9TeziT76j62Of91gBk1/ucQtWu522QcPEj9rFobTZ+yFWi0+Tz6J3+RJqO/AfZ/vBLNnz2bo0KGsXbsWs9lM9+7dCwWsGzZsyFNPPQWAh4cHnTt3vh1NLVZVjnFW9NrFBbSLG6O8du1aqW2pU6dOobLExESuXr1aat0bn1dRlDLVA2tK94Jyc3PLVNe9iM+FqampZaqbkpJSqCwuLq5MdXNyHDN3mc3mMj/rjVt7ZmVllaluUZMjkpKSylT3+rabBZW1vQUnR1x/Xda6RbWjTD8bd+uWHAX3y46Pjy9T3RuDPBaLpcztNZvNDq9zcnIq/KwpKSllqpuamlqoLDY21uF9oTi5ubkOr41GY5nbe+Pn94yMjDLVrSPFwZmT9gKVhkTFm6uZiYAx/0/hZwK4lHCJ9dHriUiN4ELqBU7Hnib2amzZ2mtWkI1eyIYa+Ojq0sTDyG+pXwNgLjbBeOH3iNjzZzm8dRNxCcVsqp2bB+nW97JLBjVHer5CqndDW3rxzNwU0rJLz2psKrCHuN5FQ60GHuI9ogzK+h5RVGZp8R5R2O14jyio0gHtiRMn0rFjxzKfv2/fvjLNiLhdatSoYdu/5kY6nY7Zs2fTsmVLzpw5ww8//FCmmX0VNXPmTIcZRhkZGUV2AgVBEAThXlEomK22BrNrNHVl2pZp7IndYy2XVLzR4Q1G+vch4b//JXXJUpQ8e+df5eKC9+in8B07FnUZs7ikxcex9ftviCowCKvR6en00OO0HTwMtaZwuqeEjDwW7I5iyf5LZBsdP0D0bxrIlB5htKzjxebT8YxfdAhJocigtpT/n08fboWT9s5cMVYVGjVqRGBg5Vekx8fHc+7cuZvQIkEQBKG6smQZydh0ieyDcQ6/bHX1PPB6IBRdndIntt1OJouJl7a/xN7YvQC4al2Z13ceTX2blu9C6Vdhy3tw/BfH8pDu0P99qNG83G1LyzHy4fJTuO1Nxke2Ds6mqmVqDa3Lm33C0KhVRB7+m/XfzCY3wz642XbwMLo8NgaN7t7ZTqUgY0wMCZ/8l8xNmxzK3fr0JnDGDHQlpIkWrHr16kWvXr2KPT5ixIg7blV2dVXcGGXNmjVLXaFd1Apxf39/ateuXep9PW6Y0CFJUpnqgXUctyBnZ+cy1XVzcytU5u3tXaa6Re3fXqNGjVLrAbi4uDi81mg0ZX5WtdrxM6Kbm1uZ6hb1WcvPz69MdYsKdJW1vQUXiF1/Xda6RbWjyLoWBTnHxPVFuT6uXniNCHPYLzswMLDIoNuNbvw7oVary9xezQ3ZNVxcXMpUt6i/Nz4+PmWq6+3tXaisVq1aZVp96XzD1ms6na7Mz3rjJHIPD4/CdWUzGLPBlGPNFAP4u+TXcwuEtmOh7dP4H5pI7Rx7FgdZkW2rrk2KCYtswSyb+e3Sb2zdYV9BbMm1oPEuHPKSUKEoKlDUtq85VybSM6wn43qH0iHEhzVr1rCn9opSn/P634fkK5fZ/ctCIv7ej5yThaezdYKQSqNB7+yCWmsdIzJn5mAyWpBVWiz+zUn1ccwy4evtj95Fi0arwmKWycsuOpiu1Thdfxh6P90Eoz5ZvEeUQbHvETfw8/MrVCbeIwqrivcIWZbLNEEOQFIqsfRFpVKxePFih3QopVmyZAmjR48uNCukrFatWsXQoUMBa6qYwYMHF3ne119/bds35+TJkzRtWs4PeSWoXbs2sbGxDB48mNWr7avA/vWvf9nSaGRlZRU7q/Ghhx5i2bJl+Pn5kZiYWOQ5RcnIyMDT05P09PRCHTpBEARBuNvJFplNP5wm4pB11qtKLTFgQjM8GqiYumUqp5JPAaBT6fik1ds02xxJ6qJFyAVmuktOTng/MQrfcePQFNGBK4rFbOLQqhXsX/YLZpN9ln9om3b0GjsJz4DCHfyY5Bzm7bzIH4euYLTYU+eoVRLDWtVicvf6hAc6DpxvOh3PjN+Pkp5rRiVZ04tf/+rprOHTh1vRp8nNSTdeHfoUFelnFmfx4sWMGTOmwv3Pu0l1+NkLgiDcTIpZJmtPLBlbY1AM9t8Dai89noNCcG7ud8dn8TDJJmZsn8HWy9YBW2eNM/P6zKNNYJuyX8SYDXu+gD1fgrnAygrfcOj3H2jQv1z7ZF+37sQ1/rP8FP3iwS8/mJ2rl3jg+VY0CvXGZDSwc/H3HN1gT3/o4unFwCkvEtyqbXGXvatZMjNJmjeP1J8WoRTYAkffqBGBr72Ga8cOt7F15VOd+hWJiYmcOXOGbt263e6m2FTlGOdXX33F9OnTS60zY8YMPv30U6DkscwbVaefvXDvEftl32EsZji3Fg5+C9G7Ch+vez+0HweNhpBmzuFC2gUupF4gIi3C9jXLVHqgDax9pPqe9anvFYZsCORwhBPnYtxQLG7kLxVAr1HxUNsgnukSQn3/whNYSpORlMi+P5ZyavsWhy3ovGvWovOjo2nQsTNZqQZOrz3F6R2XyFF7FbqGh58TjTrVpGGHGnj4OQYIo44lsmXhGQw5ZmuTFWxf9S4aej/dhJAWhYOvglBdladPUakV2p07dyYgIKBcderXr8/o0aMrfM+6deva/r+kYHDBY2XNzV+eNsTGxhIVFVVi24rrBF5vm1htLQiCIAhlY7HIbPruNBcP5wezNRIDJzRHHZzLU+smcjnzMgABshufx/VC/8W/SS4ws1DS6fB67FH8xo9HU8Iecje6fPoEmxfMJeXqZVuZm68fvZ6eQFi7ToUGwM/FZfLN9gj+OhaLXHD1l0bFo/fVYUK3UOr4OM68v65vk0AOvN6HdSevseFkPGm5RrycdfRvFsjAZjXvqZXZN5skSTc1fbkgCIJw51MUhdyTyaSvi8KSYs/SIunUuPeqg3vn2kjaklcV3gnMspnXdr5mC2Y7qZ2Y03tO2YPZsgzHfrauys4qsIerszf0mAn3PWPdn7KcEjLyeGvlKbafiOPRLL0tmK1y0zBhZjs8fJ1JvBTFmi8/IfmKfS/f0Dbt6D/5BVw8ypYh526imM2k/fEHiV9+haVAWmK1nx8BLzyP54gRSGrR36sqGzdurNQCm6pQlWOc5b22t7d3mYPZgnCnUiwy6WujyNpjTzl9fb9stcedu6XIXSsrAQ4vhEM/QIZjWuFcnQuRjQdwoe59XJBziLi2kQun55CYW7bFf2pJTT2PeoR7hxPmFUa4dzgNvBrgpQtk2T9X+X5PNDEpjmn8/dx0jO4UzJMd6+HjWv7sMLlZmRz883eOrF+FpcCENFdvHzo9+DgNO/ci5mQqf31xlCtnUwAJCgSzNZKFsPY1adylNjXreyGpip5IGNLSn6c/8uHi4UQijyaSl23CyVVLaCt/6rfxRyPGhoR7WKUC2rt2FTGjphQdO3YsV4ryGzVu3BitVovJZCI6OrrY864fq1evXpHpDSqjuAHRgntuR0dHE1xMeqjrbSt4viAIgiAIRbMGs09x8bD1g41KIzFwYnOya8UzZd0UUvJS0BsVHj7mwtADZshcjm2OrFaL10MP4jdxItoypnoDyMlIZ+fi7zm1w74NiaRS0WbgUO5/eBQ6Z8eg9JGYVOZsu8jmM/EO5W56DU92rMczXYIJcC9+77rrnLRqRrQOYkTrmzsZrzpasWIF99133025Vo8ePVixovTUYYIgCMLdwXglk7Q1kRijCuy9KoHrfTXw6FcPtXv1SHFtkS28sfsNNl7aCFiz0HzR6wva1WhXtgtE74b1MyHuuL1MpYH2E6Dby+BSODVuaRRF4fd/rvCf1acx5Jh5JFtPQH4w29lTx4Mz2uLurefw2pXsXPqjbcBXo9XRffQ4WvYdeMeviK8KWXv2kDDrIwwXLtjKJJ0On6efxnfCBNRuIpB4L6rKMc4bxyhLu7YYoxSqO0uWkZSlZzFE2tMDF9wvW7hFFAWu/A0H58OpFZhlEzFaDRdcnInQ6bjg5kWEiwcxpgyUjENw8lCpl6zpWtMhcB3uFU6IZwg6tb0/F5eex8K90SzZv42MPMc9iRsEujGuSyhDW9Wq0EIBkyGPw2v/4u+/lmHIybaV611caTf0QWo16kHEPyksen0/xrzrk6bsfR2fvBiaDm5KoyGt0TmVLRyn0app2KEGDTuUfRxLEO4Fld5Du7z279/Pt99+y/fff1+h+jqdjt69e7N+/XoOHSr+De/vv/8GKDZdT3GGDx/O+PHjS6wXE2OdXXxjwPr++++3LY0/dOgQPXr0KFQ3ISHBVr+8bRMEQRCEe43FLLPxu1NEHrEGs9UaFQMnN+eq9zleXP8i5txshhxWGHFAwi07015RrcZr5Aj8Jk1CW459dhRZ5sS2Texa8gN52fYV3jXDGtJn/FQCgkPt5yoKeyKSmbs9gr0Xkx2u4+2i5ZnOIYzuFIynS/lXPQkwdOjQmzbgXbt27QrvtyQIgiBUH5YMA+nro8k5kuCwT7a+vieeg0PR1Sp/WsnbRVZk3t77Nmuj1gKgUWn4vOfn3F/r/tIrJ1+ETW/B2dWO5Q0HQ9/3wC+sQm26nJLD6ytOsOtCEjoFHs7WU8NiDRK4eOgY8VIbNNo8ls/6kOhj9n0v/euFMHj6y/gG1S3u0nctQ2QUCR9/TNb27Q7l7gMHEPCvGeiCRP+kJBs2bOCbb74pNE4XGhpaQq2iZWdnl37SLVaVY5whISE0atSIs2fPcujQIZ5++ulC51gsFo4cOVLuawvCncZ4JZPkRWewpBusBWoJr6H1HfbLFqqWYswh/vAPXDi+iAvZV7ig0xFRw5dIrRajw0pkBUxF70nsqfck3CvcFrxu4N2A+l71cde5F3k+wKnYdL7bFcWq47GYLI6LELuG+zGuayjdwiu2vYzFbObktk3sW/Yz2akFMqtotTTtPhA3v/u5cCSTQxtOFqrrlJtIzbgDNOoSRPDLU1A5lb7AQRCE0t3ygPbFixdZuHBhhQPaAOPGjWP9+vVs2bKF9PT0QrMTz549y5kzZ5AkiWeeeaZc1165ciVBQUHFduSOHj1q26D8xnP0ej1PPfUUX3/9NcuWLWPGjBmF6i9fvhywbij/wAMPlKttgiAIgnAvsZhlNsw/SdSxJMAazB40uTnHnffx3vo36XHYxPB9Mt4Fx6ZUKjyHDMFv6hR0dcs3aJoYE83m+XOIPX/GVqZ3daXr40/Tond/JJV1wFaWFTadiWfutgiOXXH8IFbDw4kJ3UJ5rH0dXHS3vJt1VwkMDGTIkCEMGzaMfv364SQ+AAqCIAjFkI0WsnZeIXPHFRSTfS9DjZ8znoNCcGrsU61WBSuKwr/3/5uVF1cCoJE0fNr9U7oFlbL3b24q7PwvHPgfyPZUmNRoDv0/gJCK7R1skRUW7o3mkw3nyDVZ0CrwYJaOWvnBbGd3LcNeaE3ylZNsmPcFuRn2/lHbwcPo8vjTaLT31gQ/S1oaiXPnkrr0ZzDbV4o5NWtG4MzXcGl7b+4fXl5PPfUUycnJ7NmzxyFtdkkrjktyJ74PVOUY57hx45gxYwZ//vknX375JSqV4yrVTZs2kZmZiZOTE6NGjar0swjC7ZD9TzypKy6A2RrMFPtlV710QzoXUi9wIe0CEXGHuRB7kAhDMpkqCfSA3rvE+k5qJ+p71XdYcR3uHY6fc9kCz7KssON8IvN3RRZaXKBVSwxrVZtnu4TQuGbF/g4oisKFA3vY/csiUq/ZU6VLkoqgpvej1nfk/GEZlASHempzHgGJh6kZtx8/tzxqffABrh3aV6gNgiAUTVLKuKFgWloaXl5eDmU7d+4s9w03btzIhx9+WOk9a3r06MGOHTt48cUX+eyzz2zliqLw4IMPsmLFCp5++ml++OEHh3qrVq3imWeeITAwkNWrVxdaZS1JEm5ubhw9epT69es7HDMYDPTv358dO3YQFhbGiRMnCg2uJiYm0qRJE5KSkli5ciVDhw61HcvIyKBFixZcunSJH3/8kTFjxpTrmcuzObogCIIgVGcWs8z6b08SfTw/mK21BrO3G1dy9IdPGblXxrfAgmwkCY9Bg/CbOgV9OVdsmPLy2PvHUv5Z8yeKbB8Eb9y1J92ffAZXL+uHMbNFZtXxWOZuu8iFhCyHawT7ujC5R32Gt66NXnPn72dUHfoUKpXK9mHW2dmZ/v37M2zYMB544AF8fMqfIlWwqg4/e0EQhLJSZIXcY4mkr4/Ckm60lUtOGjz61MWtY81ql2ZUURQ+PPghP5/9GbDuEflJ90/oW69v8ZUsJuv+lNs/hFz7CiLcAqH3W9DycVBVrH9yIT6TV5Yd50hMGgAaBR7Pc6KGwfo7Wu+q4YHnmnFq268c3bDGVs/Vy5sBU14kuGUZ9/q+SygmE6m//ErS119jSbcH9jUBAfi/9CKeQ4faJkneDaq6X9GxY0cOHjxI+/bt2b9/v61cpVLRtWvXcq3UjoyMZPfu3XfUHtrXVdUYp8FgoEWLFpw/f54vvviC6dOn246ZTCY6d+7M33//zTvvvMPbb79drjaLPqVwuykWmfQ1UWTtLbBfdj0PfJ9ojNqjemwtcqfLM+dxMf0iEakRXEi9QESa9WtCbkLplbH2Yep61LUFrK9/re1WG3UF+iV5Jgt/HrnKgt1RRNwwJuPprOXJjnUZ0ymYAI+KT4aPOXmMXUt/JO7iBYdyz8CmmCztkS2Fg/XemRepcWU3AYlHUctGvB5+iIBXXxPbiQhCGZWnT1GmgPbEiRNZsGABTz/9NN99952tvOBAY3lVtgOZlJREr169OHHiBJMmTeLJJ5/EaDQyZ84cli1bRq9evVizZk2hgPOQIUNYvdqaduvTTz/lpZdecjju4eFBZmYm3t7e/Otf/6J9+/b4+Phw5swZPvvsM44cOULDhg1ZvXo1YWFFp+nav38/gwYNwmAw8O6779K9e3euXLnCu+++y7Fjx5g5cyYffPBBuZ9ZdBYFQRCEe4HFJLN+vmMwe+CExuxb/yY1/9hNwA3Zqdz79cPvuak4NWhQ7ntFHDrA1h/mkZlkX/HhXbM2fcZNoW6zloD1Q9Pv/1zhfzsuciU116F+45oeTOlRn0HNa6JW3XkrPopTHfoUBw4cYMWKFaxcuZJz584B1omHarWazp07M3z4cIYPH069evVuc0url+rwsxcEQSgLw6UM0lZHYrpcYIabCtw61sK9d13UrtVvRbCiKHxy6BMWnV4EgEpS8WGXDxkUOqi4CnBhI2x8E5LO28s1TnD/dOj8POgrlmbdaJaZt+MiX2+NwGixTvhTKzBV44k+2Tp5QOesodujPuz7fS7JV2JsdUPbtqf/pOdx8SjbXr93A0VRyNqxg4SPP8EYGWkrl5yc8H32WXyffQaVi8ttbGHVqOp+RXp6Olu2bKFXr14Oi2xUKhWLFy8u16riJUuWMHr06DsyoF1VY5wAERER9OrVi9jYWF577TUeeOABUlNT+fjjj9m+fTtPPPEEP/30U6HV26URfUrhdrJkGUlechZjVIH9sjvUwGuI2C+7IsyymcuZlx2C1hFpEcRkxiArcukXAGqYLYTrfQkLup/wOl0I97buc61X6yvdvuQsA4v2X2LRvkskZxsdjgX7uvBslxAebBtUqSx58VEX2bX0Ry4dP+JQrnWui6S5H5WmlkO5h4+OWhnH8d69BOc862RCtb8fNf/9b9yL2IZWEITi3fSAtoeHB1lZWbi5uZGRkWErL29nx3ZTSbopHUiDwcDs2bP5+eefiYiIQK1W07hxY8aMGcPEiROLbN+qVasYO3YsgYGBrFmzptDsxezsbFasWMH69ev5559/uHz5MgaDAW9vb1q0aMHIkSMZO3Yszs7OJbYtNjaWWbNmsWbNGq5evYqHhwft27dn2rRp9O/fv0LPKzqLgiAIwt3OYpJZ9+0JLp2wpo3SaFV0aZlB1sJ38UjMcTjXrWdP/Kc9h1OTJuW+T0ZSAlt/+JaLh+wrPdRaLR1GPEK7oQ+h0WrJzDOx5EAM3+2OIjHT4FD/vnreTO0ZRo+G/ndk6sLSVLc+xblz5/jzzz/5888/OXjwIIqi2L7vLVq0YPjw4QwbNoxWrVrd3oZWA9XtZy8IgnAjc2oe6euiyM2f+HadU0NvPAeHog2onkFDRVH44vAXfHfSuohAQuLfnf/NsLBhRVeIPwUb3oDIbY7lzR+BPm+DZ1CF23LschqvLjvO2Tj7ZIH6vi6MxZ30i9YxIY1eRYO2cRzb8AuW/JTaGq2O7qPH0bLvwGrZP6oow4ULxM/6iOw9exzKPYYOIeDFF9HWvHv3cL1d/YqKBrSfeuopZLlswZlbrSrGOK9LT0/n448/Zvny5URHR+Pi4kLLli2ZMGECjz32WIXaK/qUwu1S5H7Zw+rj1v7ufa+9WRRFIT4n3ha0vh64vph2EaNsLP0CgIfFQrjRRLjJZP2q8yasxRO43zceXP1uansjErL4bnckyw5fxWh2fO9uH+zDs11D6NM4sFKLC9LirrH710Wc2+uYiVhS+6Fx7oJKE2Lr02j1asLaBlDX6RqWL99GTrL3RT0GDSTw//4PjXfJ6dYFQSjspge033nnHT777DNeeOEF3nvvPVu5SqXijTfeoE+fPmVu3MaNG5k1a9YdOSPyTic6i4IgCMLdzGyysP5/J7l00hrMVqsVWl/9FY+zuxzOy2wdRvOZ7+PcokW572Exmzm8diV7/1iK2WAPUtdr0Zrez07Gu0YtUrKN/Lgnih/3RpORZ3ao372BP1N7htE+pHqnvK7OfYq4uDhWrlzJihUr2L59O0aj0fYBs27durbgdrdu3So8+fJuNGfOHObMmYPFYuH8+fPV8mcvCMK9TTaYydx2hczdV2z7ZAJoAl3wGhyKU4PqPYA49+hcvjn2je31O53e4cEGDxY+MSsBtr0Ph3+Cgqum6nS07pMdVPG9mXONFj7ffJ4FuyKR87/FapXExC4hNL1kIvqYdeBWpcnFw2s3cRdO2Or61wth8PRX8A2qU+H7VzfmlBQSv/qKtF9/gwJBUudWrQh8fWaF+qrVTXXuUwqVI372wu0g9ssuu3RDusNq6+t7XmcaM0uvDOjVeurrfQjLSqNBaizhJhNhRhP+FgsSQGgPaD8BGgyo8LYmRVEUhX0Xk1mwO4qtZ2/Yo1olMbBZDcZ1DaVVHa9K3Sc7LZV9y37hxJb1yAXjVCoPtE73o9I1QpKs4wm1G3rTuFMN6oW7kPLZx6QvW25vk6cnNd5+C49BxWTTEQShVDc9oF2cuy3Fz51OdBYFQRCEu5XZZGHdvBPEnMpP1SSbaHF8Dt5p9n2LTgWrCHz+BboOHF+he1w9d4bNC+aQFBNtK3P18qbHmPE07NSV+AwD83dFsvRADLkmez9FkmBgsxpM6RFGs9p3R+rMu6VPkZmZydq1a23ZdTIyMmzBbR8fHx544AGGDh3KgAEDSs2uc6+4W372giDcOxRZIedQPOkbo5GzTLZylasGj77BuLargaSu3quBvz3+LV8d+cr2+o0Ob/BYoxtWTZryYP9c2PUZFByM9qoLfd+DJsOtnZYK2nsxiZnLT3Ap2Z4Rp0lNDz4a2ZxrG65w4ZB1UFmRo8C0GUOOvQ1tBw+ny+Nj0GirX5r3ilCMRlIWLyHpm2+QM+3fB02tmgTOmIH7wHtnhXp16lfk5uaSmJhI3bp1b3dT7grV6WcvVH9iv+zi5ZnziEyPdAhaX0i9QEJO2fa5Vkkq6nnUI8wrzLrPtc6X8JjDBB1fhjr7hmvoPaDVKGg3DvzCb+pzGM0ya07EMn9nFKevZTgcc9NreKxdHZ7uHEyQd+Uy8Rhycji0ahmH1qzEbMizH5Cc0Th1QK1vgSRp8PBzolGnmjTsWAMPX2ey9x8g9vWZmGOv2dvVvTs1/v0e2oCASrVJEO515elTlGljgY8//piZM2ciSRKnT5+mQf4elWPGjKF+/frlalz9+vUZPXp0ueoIgiAIgnD3MhstrP3mOJfPpAKgthhocXwu3ukRAJwJgtW93Zn27P9oHdC63NfPzcpk19IfObFlg71QkmjVbzBdHnuK2ByYufwEyw5fwWQpsOJLJTGidW0mdq9PWEDF9p8Uqpa7uzuPPvoojz76KCaTia1bt7JixQpWrVrFtWvXWLhwIT/99BNOTk707duXYcOGMWTIEPz8bm4qNEEQBKFq5F1MI311JKZr2fZCtYRb59p49KqDyqnieyXeKX48+aNDMPuVdq84BrMVBU4th03vQLp9n2p07tDtX9BhMmgd99Utj4w8Ex+uPcvPB+3X1mlUvNAnnHGdQ9i55BwXDiWgKCYseTsx5x2znefq5c2AKS8S3LJNhe9fnSiKQtaWLcR//AmmGPv3S3JxwW/CBHyeHoPKqeI/C6FqLV++XCywEYRqSOyXbWWRLdZ9rtMuEJEaYQtcl2ef60CXQGvQ2iuccO9wwrzCCPUKRa/SQfRuOPgtnF0Dyg3vk/6Nof14aPEo6G/u2Eh6jomlB2NYuDeauIw8h2O1PJ0Y2zmER9vXwcOpcpPmzCYTh9et5sDyXzHmZhU4okXt1BaNU1t0Ti6EtQ2gUaea1AzzRJIk5Nxc4t7/gNRFi2w1VC4uBL4+E88HH7xnJrAJwp2iTJ/+Nm3ahFar5cUXX6Rmgb1/fvjhh3LfsGPHjnTs2LHc9QRBEARBuPuYDGZWzdrFtWvWQLLanEfLE3PxSr/IhZrwazcVCJxf2wABAABJREFUCc1qMq/v/6jvVb5JdIqicHrnVnYs+o7cTPsM34CQ+vQd/xwpzoH8689zrD1xzZZWE8BJq+KxdnUZ3y2U2l5iVW91odVq6d+/P/3792fevHkcOHCAFStWsHLlSs6dO8dff/3FqlWrUKvVGI1l2x9MEARBuD1MSbmkr40i73SyQ7lzM188B4ag8b07fj8vObOET//51Pb6pbYv8VSTp+wnXDkE62fClYP2MkkFbZ+GHq+Dm3+l7r/pdDxv/nmC+Az7Niztgr2Z9WALQn1d2b7kLOf2xyGbEzHlrEGxpNjOq39fB/pNnI6Lx92RvaY0eWfOEP/hLHIOFvxZSHiOHIH/88+L1VmCIAhV4F7cL1tRFBJyEgqtuI5Mj8RgMZR+AcBd524LWtuC195heOhuWPloyITDi+DgAkg843hMUkPjB6xpxet1rlQWmKLEJOfw/Z4ofjt0mRyjYwC9RZAn47qGMrBZDbTqyk1asFjM7F++jsNrfsOYm1rgiAq1vgUapw7UaRJEo041CW3lj1ZvT5+ee+wYsa++hjE62lbm0q4dNT/8EF1Q7Uq1SxCEiilTQPvs2bNMmTKFDz/80KE8NDSU2bNnM3To0DLfUKT4EQRBEAQBIH33ftb9GEGyphaQH8w+Poc0l2jm9VVxOEwizDucRX2+oYZrjXJdO/nKZTZ/N4crp0/aynTOznR+dDRyo068viOKrWfPO9Rx12sYfX89xnYOwc9NX/kHFG6rDh060KFDB2bNmsW5c+f4888/WbFiBX///fftbpogCIJQDDnHRMbWy2Tti4UCWVO0td3wGhyCPtTr9jXuJvv17K/MOjjL9vq5Vs8xttlY64u0y7DlXTjxu2Ol+r2g3/sQ2KRS907KMvDOX6dYfdyeNtNVp+a1gY14okM9JAl2/nKeU7tjsRgOY87dDVgHmzU6PT1GP0uLPvdGWm1zYiIJX3xh3S+zwI59Lu3aETjzNZyaVO5nIZSsV69eN+1a8fHxN+1agiBUvXthv+wMYwYRqRFEpEVwPvW8bb/rDGNG6ZWx7nMd6hlaaNV1gEtAyb+jE8/D3wvg6FLHbUwAXAPgvrHWyXMetSr+cMX451IqC3ZFsuFUnMPCAkmCPo0DGd81lHbB3pXuY2Qk57Lvj82c3b0cszHR4ZhK1wjvWr1o1r0xDTpYU4oXpBiNJM6dS/K380G2rn6X9HoCXnoR76eeQlLdO5kBBOFOU6aAdmJiIs2aNStUHh0dTVZWVhE1iidS/AiCIAjCvS3n8GGufTGX/XltSfNuCIDanEuThF/4vu9l9odLIEm0CWjDl72+xFNf9pU/JkMeB1b8xt9/LUe2mG3lDTp2wanrSD76J5kDOw441PF11fFMlxCe6lSv0mmshKr3zDPPMHHiRDp06FDmOg0bNuTVV1/l1VdfJS4urgpbJwiCIFSEYlHIPniNjE2XkHPsv79V7jo8+wfj0iYASXX3BE+XX1jOfw78x/Z6YouJTGw50bpSavds2Pc1mAuk3fRrCP3fh7A+lVohpSgKK4/G8u6qU6Tm2Pcj79HQn/dHNKe2lzOKorDnjwhObDuHKXsDsvmS7Tz/4FAGT3sZ36A6FW5DdSEbDKT8uJDk//0POce+r7i2Th0CXp6Be9++90RA/3bbvn07kiShFJhMUBHXryF+ZoJw57sT9ss2WAxsjN7I1pitpBnS8NJ70atuL/oF90OvLv/kd4PFQGRa4X2u43PKNtFGJamo617XFrgO8w4j3CucOu51UKvUpV8AwGKG8+utacWjdhQ+XqejNa1446GgubnfZ4ussOFUHPN3RXIkJs3hmJNWxcNt6zC2czCh/pVLZ24yWog8ksiRjQeIPbsWxXzV4bhaF0xYh+G0GXAfNet7Fvk7Ie/ceWJfew3DGfuKdafmzan10Sz0oaGVap8gCJVXpoC2k5MTV69eLf1EQRAEQRCEYuQeP07il1+Rsfcgx5pPJs27AQAa2YBPk6M81+UIiiQBEn3q9mFWt1nl+rAYdfQftnw3l/QE+4dCz4AaePZ+lP9dduLkHxcczq/l6cTE7vV55L46OOvK+CFQuO1+/PFH+vbtW66AdkE1apRvtb8gCIJQtXLPpZC+JhJzQq69UKPCvVtt3LvXQaW/u35Hr7q4inf2vmN7/UyzZ5jaYhIc/gm2/geyCgxuO/tAz9etq6TUlZt0F5uWyxsrTrDtnH2VkreLlreGNGF4q9q2gN/+lZEcXrcdU85GUOw/k7YPjKDLY6PRaO/uyX+KopC5bh0J//0UU6w9mKJyc8Nv8mS8n3oSle7WBFQEq4YNGxIYGFjp68THx3Pu3Lmb0CJBEKrKnbBf9raYbby5500yjBmoUCEjo0LF5pjNzDo4i/e7vE+POj2Kbr9s4UrWFYegdURaBDEZMVhu3Je6GAEuAQ4rrsO9wgnxDMFJ41SxB8pKhMML4dAPkHHF8ZjGGVo8Au3GQc0WFbt+Sbc2mPnt78v8sDeKyym5Dsf83fWM6VSPJzrUw9u14r9XFUXh2sV0zu67xrn9p8lL34lsuuhwjt4tiNYDHqP90K4OKcUdrmOxkPzd9yR+9RWY8if9aTT4TZmM34QJSJoyhdEEQahiZfqX2KRJE+bMmcOwYcNo0cLxzU3MbhQEQRAEoSR5p0+T+OVXZG3fjlmt53iLKaR5hQOg1Sik97/A1ym/ANY+xaMNH2Vm+5llnmmcmZLE9oULOL9/t61Mpdbg1r4vv5gaELHfCNj3TA71d2Vy9/oMa1Ub3S36UCzcXNOnT+fQoUOMGzeOxo0b3+7mCIIgCBVgis8mbU0UhvOpDuUurfzxGBCCxuvu2/5jXdQ63tzzJgrW1aZPNn6SF7xaI33bA+JP2E9UaaHjJOg6A5y9KnVPWVZYcuASs9adJbvAHpUPtKjJO0ObOmyzsn/leQ4s/wmL4ZitzNXbhwFTXiS4RetKtaM6yD1xgvgPZ5F7+LC9UKXC65GH8Z82DY2v7+1r3D3szTffZNSoUZW+zuLFixkzZsxNaJEgCFXhTtgve1vMNp7f9rzttYzs8DXTmMn0rdOZ3XM2zfyaEZEaYQtcX0i7QGRaJHmWvCKvfaMb97kO8w4jzCusXBnqiqUocPUf62rsUyvAYnQ87h1iXY3dahQ4e1f+fje4lp7Lj3ujWXoghsw8s8OxhoHujOsawtBWtdBrKj5pMTMlj3P7r3FmXxzp8fGYc/dhMZ4G7Bk9nD0C6PzoaFr07l5iDMsYHU3sazPJPXrUVqYPD6PmrFk4N21a4TYKgnDzlSmg/cQTTzBt2jRat26Nl5cXnp72N9YXXniBN954o8w3zM7OLn8rBUEQBKGKKSaZnBOJ5J1KxpJjRu2iwampLy7N/ZG0IuhZEXnnz5P01ddkbtoEgFmt51jzKaR7hQGgc1JzqdtuVqb8YqszrfU0xjcfX6YJc7LFwtGNa9jz6yKMufbZvtqgcNa4d+ZcnDMFA9nNanswtUcY/ZrWQH0XpS29F9WoUYM5c+Ywe/ZsOnXqxIQJE3j44YdxdnYuvbIgCIJwW1myjGRsjiH74DXyx4cB0NV1x/OBUPR17569MQvadGkTM3fNRFasD/1ovQG8EnEEae0Hjic2HgJ93wOfyqe1vJiYxcxlJzgYnWIrC/TQ8+9hzejX1DFjyfYluzm8+lsU2X5u/fs60m/iNFw8bsLg+h3MFBdH4uefk77yL4dy1/vvJ+DVV3Fq2OA2tUy4mW5G6nJBEKpGkftlP9X4lvYJDBYDb+55E8A28exG18sLBr1Lo1PpqO9V37a/9fWvgS6BN3+hoCkXTi63BrKvHb3hoAQN+kO78VC/F1TBPtAnr6azYFckq49fwyw7fg+7NfBnXJcQuob7Vfi5TQYLkUcTObvvGlfOpaJYcjHnHcRiOArYJ+05u3vT+bEnaN6zLyp18UFzRZZJ/flnEv77Kcr1MSVJwvfZZ/CbPl1kZBGEO5CklKE3J8syI0eO5K+//irt1LLdVJLEHtoVkJGRgaenJ+np6Xh43J0f8gVBEG6H3NPJpPx+HiXXbF0krGD7Kjlr8Hm4Ac5NxIqMsjJERpH09ddkrFtnnRmMNZh9vO0LpLnUBUDnrOb4/7N33uFRVnkbvt8pmUnvnQQSakLvXYqKiCiChaaACvayllV0d9Xdb21rWXetq4g0AUUEBAGRDtKlk4SWUNL7pE5/vz8mmcmQ3iCBc1+XV8w5bzmThJnznuf8nmfgL2w3bABAKSl5ffDrTOo4qU73SD93ht/mfUZmUgUrKa0HewOGcEgV7ZQvOSDKj6dGdeCmRjw4XW+05jmFQqFgyZIljBkzhgULFjB//nwSEhLw9vZm+vTpzJkzh549e17rYbZYWvPvXiAQtG5ks5WiPakUbL2ErHesByh9NHjf3g7XHoHXxee0Qa9j095/sTV5B/kWPT5KLaF+nVmafQhLmYJ/jzaC10/vR2GtULUU2gtuexvaDW30GEwWK1/vSuTjzWcxmh27BqYOiGDu7TF4uzpsw2WrlbUfL+Ts/tWULwYrlGpGP/QoPW4Ze138TqrDWlpKzjfzyZk3D1nvqKhzadeOoLmv4DGi5oouQfPPKy5evEhgYCBubm6NvlZJSQlZWVm0bdu2CUYmEHNKQVPQEvKyy1l7fi2v7X6tweeX51xXFK07+tpyrlWKZrarzrsAB7+BI4uh1Nn5Bldf6P0g9HsY/KKa/NZWq8y205l8vSuRfYm5Tn0uSgUTeoUxe3g0nUM8G3T9ipbi5/7IxKS3IMsmLPrDmPUHqVjEoHFzZ8Dd99F77HjUmpot2k1paaT95S8U79lrb1NHRhL27ju49enToLEKBIKGUZ85RZ3eTRUKBatXr2bjxo1s3bqVnJwcrFYrCxcuZPjw4URH133ncGJiIrt37679QIFAIBAIrgKlcTnkLI5zuBJd8VUuNZOzOA7/B2OFqF0LxkuXyP7sc3Rr14LVsXgqB4UTN/BF8gttlpYurkr29F3OIYNtPqBVavlgxAeMiBhR6z30xUXsXr6YY7+tt4vlAKd9urLDawAGpeOhZXSXIJ4c2Z5+7fya6iUKWgAjRowgODiYgIAAXnrpJV566SV27drF119/zbfffssXX3xBnz59ePTRR5k6dSoeHh7XesgCgUBwQyPLMvpTOeRvSMKS4xANJRclnqPa4DksHEl9feRkb9v7AX9NWECBQkIhy1glCcmiR84+YD/mrhIjryf9jr0uyjMUbn4Dekxukmqpkyk6Xll5nFOpBfa2SD833p3UnSEdApyOLcrL5cd/vkNOcry9zcOvDff+5S/4t4lo9FhaKrLVSsG6dWR++BHmDEdmucLbm8CnnsR36lSk6zwrvLXQlOJzRkYGu3btYsaMGU12TYFA0HBaQl52RbZe2mrPzK4L/lp/xkePt1mG+3Yk2ju64TnXDcFqhcStcOBrOPMrXFlVHtoTBjwK3e4BddM7melNFn46nMI3uxM5n+XsyOvrpuaBQW15cHBbgjwb9jMpyCnl9L50EvalU5Blq56WZQsW40nMpftAdtxTpXah9+13MmDCfWhref6XZRndmjVkvPU21sJCe7vP1CkEv/QSCnf3Bo1XIBBcHepUoV0d5RUy9cmy+e6775gxY4ao0G4AYvejQCAQNC2yyUrq2/ttldm1ILmqCHttoLAfrwJTSgpZX3yBbtVqqPD5rvT1xevhR9mdE0vGhSIA1G4KNnefT7ziCADeGm8+Hf0pvYJ61XgPWZY5vWcn2xfNozjfseM4x8Wfrf43ka612WYqJBjXPZQnRrana9j1bY/ZGK7XOYVOp2PJkiXMmzePY8eO4e7uzpQpU5g9ezYDBw681sNrEVyvv3uBQNAyMaYUkb8u0WmxGgnc+gbjfVs7lJ7Xj5Xjtr0f8NzpBQDI1VX1yjIfZ2Zzc0kpqFxh6HMw9Flwafziqd5k4b9bzvK/nYlYymw+FRI8MiyKF27tjKuL86aBc4f2s/6TjzDpHQvCbWJv5p7XnkZ1HYu5JYePkPHOO+hPVMgsV6nwnTqVwKeeROnjc83G1hppTfMKsR7ZtLSm372g5VFVXrbvhA64Dwip+cRmZMq6KZzKOVXn4/sF9+Pbsd8244iqoTQfji6Fg19DbqJzn9IFuk602Yq36efkXNdUZBcZWLT3Ikv2XSS32DmbOyrAnUeGRXFPnzaV5h11wWSwkHgkk/i96aScdqz7yLKM1XQGs34PssXRLkkKuo26hcH3TsPTP6CqSzphzskh7Y03KNq8xd6mCg4m9K238BjWeIccgUDQMJq8Qnv79u0sWrQISZJ4++23CQ4ObtQARWaNQCAQCFoCJSey6iRmg61Su+RkNu69g5p5VK0HU0YG2V9+Sf6PK8FksrcrvL3xf/hh3O+ZzC/fnCXjgq1CSOUqsS7mc5IUtiqgUPdQvrz1S6K9a3Z6yUtLYcv8L7l4/Ijj3pKK/b79OebVHaukRK2UuKdPGx4b0Z6oALGj9kbF29ubp556iqeeeor9+/czY8YM5s+fz/z58+nWrRtz5szhgQcewEcsVgsEAkGzYikwovv1AiWHM5wKhjTR3niPj8Yl7PpyzzDodfw1YQFINYjZ2BJtXg/wY5jXEDRj/gFeYU1y/4MXcnnlx+MkZjvE6S4hnrx3Tw96Rvg4HWsy6Nmx+BuO/bahwsDciR05k7GP3X7dWmybUlLI/PBDCtZvcGr3GDGCoFdeRlMP50FBy8NisZCTk4O+gnX8lWRnZ1/FEQkEgupoCXnZFdEZdHx29LN6idkKFPhofJpvUFWRfsJWjX1iBZhKnPu82kC/h6DPTPAIbJbbn80oZN6uJFYdTXGKMwFbzNuc4dHc3CUIhaJ+8whZlkk7V8FS3OC86chivojCuhdTcapTe8cBQxg65UH8w+vmKFPw22+kv/EmllyHLbr3hLsIfu01lN6iGEIgaC3USdD+9ttvWbx4MREREfz973+3t1utdbPgqMj06dOZPn16vc8TCAQCgaCpKT1Zj0UNyXa8ELTBnJVF9tdfk7/8e2SjY0euwsMDv1mz8Js5A7NSy8//PUZmmZitdIWfunxMqottB3FH3458ecuXBLlV//M0m0wcXPMj+1f/gKWCYH7eLYqd/kMpUnniqlYydUAkc26KItS76W20BK2PpKQk5s2bx4IFC0hPTwdsD8knTpzg2Wef5eWXX+aee+7h6aefFlXbAoFA0MTIJguFO1Mo3HEZ2ehYL1D5a/EeF4021u+6FEw37f0XBXVYwJUliQKlkk3+IdzZBGJ2kcHMvzYmsGjvRXubWinxzOiOPD6iPS5XWLZmJJ1n/X/fJzc12d6mULen1+2zGDmt13X5u7EUFZPz9dfkfvut07xV07EDQa/MFRVZrZyNGzfy/vvvs2fPHoxGY+0nCASCa0ZLyssGsFgtrDy7kk+OfEK+Ib9e51qxMjpydPMMrCJmI8T/DAfnwaW9lfujRsCAOdDpdlA2fU63LMvsOZ/D17sS2X46y6lPqZC4o3sos4dH0aONT72vXZWleEXcPPOxmn4nP+20U3ub2G4MnzqLsE5d6nQfS0EB6f/8JwU/r3WM3deXkL+/ideYMfUet0AguLbU6Z1u3759jB49mo0bN6JSOU75xz/+waRJk+jWrVuzDVAgEAgEgqbAarBgSivClFKEMbUYU0ohpvSS2k8sRwZ9XA6Znx9FHe6BS5gH6nAP1MFuSMobw4bcnJtLzrxvyFu6FLlC9YPk5obfgw/i/9AslD4+6ItNrP3PUTIv2vKIFK5Wfuj0IVla2+Jpv+B+/Gf0f/ByqX4H9sUTR9nyzRfkpaXY2wqUHuz0H0aSexReWhXPDmnHrKFR+LlfP3algtp5+OGHeeyxx5zEaJPJxE8//cS8efPYtm0bsizbHYG8vb2ZPn06c+bMQa1WM3/+fJYsWcLSpUuZNGkSCxYswF3kZAkEAkGjkGWZ0mNZ6DZccNiHApJWidfNkXgMDrsmeZhXi63JO5Bkucbq7HIUsszW5O3c2ch7bjudyV9+OkGqzjEn6x3pw3v39KBTsKfTsbLVyh+/rGbXskVYLeXuRCpUbiPpNeZ2bprS6boTs2WLBd3q1WR+/DGWLMcmVqWvL4HPPYvPvfciqZp+8V9w9Xjrrbd4/fXX6+UCeb39nQsErYWWlpd9KP0Q7x54l9N5DrFUq9QiI2O0GJGvzKOugISEp4snY9o1oxhakAZ/fAt/LICiDOc+F0/oNRX6z4bAzs1ye6PZytpjqczbnUR8WoFTn6dGxdSBkcwc0o5wn/oVFVRnKV6OWqskorNEUc4OLp3Y79QX2DaK4VNn0q5X3zq/lxft/p20v/wFc4bjZ+hx882E/v1NVAG1W5QLBIKWR51m72lpabzwwgtOYjbAm2++SYcOHeolaG/evJm3336brVu31m+kAoFAIBDUEavejCm1CGNKuYBdhDmrlBqeSeqGDMZLhRgvFWI3dFRJqEPccQn3QB3mYfsa4n5dLdpa8vPJ+XYBuYsXI5c4NgFIWi2+06fh/8gjqPz8ANAXm/j5P0fJumQTs3G1sKzT++S5pQFwa9tbeWf4O2iUmirvVZyfx/ZF80j4fYfj/ig46t2DAz798PHyYO7wKKYPjMRTe/3mOwqqZ8GCBdxyyy0MHDiQ+Ph45s2bx+LFi8nJyQEc0TbDhg1jzpw53HfffWi1Wvv5H3zwAW+//TbffPMNL7/8Mq+++ir//e9/r8lrEQgEgusBw6UCdOsSMZZ/9gMowH1gKF63tEXpfv1+XsuyzJHMIxyyFNRJzAawShL5luptkWsjr9jI/62L46cjjk1/rmolf76tMzOHtEN5RaV4UW4OGz7/N5dOHLW3Scog1O7j6DaiGzdNvv7E7OL9B8h4910M8fGORrUavwcfJODxx1CKvN9Wz/79+3n99dcBmDJlCgMGDEClUtndeGJiYgAoKiri0KFDLFmyhE6dOvHyyy9fy2ELBDckLSkvO704nQ8PfcjGCxud2u+IvoPn+zxPfG48z259FgmpSlFbwvZ5+dawt6pd02gwsgwX98CBryBhHViviMcL7GITsXtOAY1n1ddoJPklRr7bf4mFey6QWWhw6gv3ceWhoe2Y3D+iXmsxtVmKI0Gbzr606+5KxrnNnNrxG1aL4xjvoGCG3v8AXYaOQFLUbZ3NWlJCxvvvk79sub1N4eFB8F//gveECdfdvEcguJGok6BtMpkwGAy1H1gHMjIy2LFjR+0HCgQCgUBQB6wlJptwXUHANufUYZFQAUpPFyy6ulvTSR5q5CKTc6NZxpRchCm5qMK1JdTBbrZK7vCySu4QdxQuyjrfqyVgKSwkd+EichcswFrkeH2Siws+UyYTMGcOqkBHPtOVYrZVa2JFpw/Ic7PZPk/pPIW5A+aiVFT+OchWK0d+28CO7xZgNTjsplI1IWwPuAnX4Da8MaI99/Vtg1bdun6OgqZn/fr1fP755+zda7NdKxexAwICmDFjBrNnz6ZLl+otyFxcXHjiiSfIzs7mq6++EoK2QCAQNABzvh7dhguUHnO2oNR29sV7XBTq4OvX/cJkNbEp6VcWH/mcU8WXoR7rogpZxkeprf3AK5BlmV9OpPHGmlPkFDvmr8M6BPDOpO5E+LlVOufcwX38+r//oi90VFcpNf1QuQ4hZnAbRk7rjFTPrMuWjPHSJTLff5/C3zY7tXveegtBL72ES9u212hkgqbms88+Q5Ik1q1bx9ixYwHIycnh2WefZcyYMYwe7WwFPGvWLG655RbCw8OvxXAFghuWlpKXrTfr+fbUt8w/MR99hU1lMX4xvDrwVXoH9QYg2D2Y/4z6D3/9/a8UGAtQoMCK1f7V08WTt4a9xciIkU03OEMRHP/eZiueGefcJymhyx02W/F2w6GZhNiLOcXM353ED4eSKTU5C849I3yYMzyKsV1DUNXDndBuKb43jYLsymt03oGudBkcSlRPT+J3/cL2hWswV9CfXL28GTRpCj1vHYtSVXcBveTwYVLnvorp0iV7m/uQwYS+9Rbq0NA6X0cgELRM6iRoR0REsHr1ap599tnmHo9AIBAIBNViKTLaK65Nybavlrw6bLhSVl1FDZD69n7kUnMtFwDJVUXYKwOQTRaMacW2cZQJ6ebsK6q/rTKmtGJMacWUHCqzNlKAKtDNMYY2HqhDPVBoWp44ay0uJnfJd+TMn49V57AEQ63G5957CHjsMdQhzrup9UUm1vznCNmXbcK3WWtgZecPyXOzvf7n+jzHI90eqXInbMq5c/z06ccY0y7Y20oVGvb4DcYY3Y+/jOrAnT3DUN8g1u6C2lm2bBlgW9yXJIlbbrmFOXPmcPfdd6NW1/1h18fHh6ysrNoPFAgEAoEdq8FC4fbLFO5KAXOFnOwgN3zGR6Pt5HsNR9e86Aw6ViR8z7JTC8g0FdZ+QhVYJYnRbUbW65yMAj1/XX2S3+IclpleWhV/HR/LfX3bVJpfmQx6ti+ax/HNjgo0SeGBym0sSnUkHfsHM2pGzHUjZlsKC8n+4ktyFy8Gk2PzqSYmhuC5c3EfOOAajk7QHPz+++9MmjTJLmbXxogRI3jggQf48ssvueWWW5p5dAKBoKXkZcuyzOZLm/ng4AekFjvG4qvx5bk+z3F3h7srbbgfFTmKreFb2XRhE1svbSXfkI+PxofRkaMZ025M01VmZ5+1idhHl4LB2dYb90DoOwv6PgTezbMRR5Zl/riYx9e7EtkUl0HF9AZJgjGxwcweHk2/tr51rmiui6V4x75BdBkcSkCEK8d+W8/y139AX1RY4RhX+o2fSL/xd+PiWnmzXnVYDQayP/mEnG/mU/5iJK2WoD+/hO/UqXWu7hYIBC2bOgnat956K19++SV9+/Zl5MiReHt72/t++uknzp07V+cbHjt2rP6jFAgEAsENhSzLWAuNDsvwMuG4TtXUKgUuoe6O6uiwspzraizA/e7rRM7iuJrtyCXbcZJagaRWoG3vg7a9j73bajBjSi12qhQ3Z5ZcIXKDOaMEc0YJHM60X1cV4OqUye0S5oHC9drk+VlLS8lbuoycefOw5FV4+FAq8Zk0kYDHH0ddRVVDaZGRNR8fJaesSt2kKWVl53+T75aBUlLy5pA3ubvD3ZXOy9cVsuTzr9Af3Y5U4YcV59EZXdfbeO62HtwaE4ziOllsFTQdsiwTFhbGQw89xCOPPEK7du3qdb5er2fZsmW8//77+Ppev8KLQCAQNCWyVabkjwx0my5gLXSIhgo3FV5j2uLePxRJeX1+ZifpklhyciE/n1+DXnbeCNnFYGSKVcuHGjNFklSj9bgky3jKMGbwn+t0X1mW+f7gZd5aH0+h3nHfsV1D+MeErgR5Va70zkg6zy//fZ+81GR7m1LTAZX2ViSFK+17B3LLrJjrYn4lm83k//gjWf/9BEturr1dGRBA0PN/wvvuu5GULW/zqKDxpKWlMXDgQKe2csHFarVWdQr9+/fnnXfeafaxCQQ3Ora87HiMSQ6R9lrkZZ/NO8t7B95jf7oji1kpKZnaZSpP9HoCL5fqq8Q1Sg13tr+TO9vf2bSDslrgzK82W/HEbZX7IwZC/zkQexeomtjSvAyzxcrGU+nM25XE0cv5Tn2uaiX392vDQ0OjaBdQN6cdm6V4PvF70zlfjaV4RBdfOg8KJbp3IEoVxO3cxtqPvqMwx7G5XKFU0XPM7QyaOBk3b596vSZ9XBypr7yC4axDo3Lt1Yuwd9/BpZ5rBQKBoGVTpxXzV199le+//54jR45w9OhRp75Vq1axatWq5hibQCAQCG4AZFnGojPYK67LBWzrldbeVSC5KFCHOmy9XcI9UAW61Wsx1TXWH/8HY8ldccZWqS1hE6LLvkquKvzu64RrrH+111BoVGiivNFEOTZ8WY0WTOkVKrlTijBllIC1gsotgzmrFHNWKaVHHRN5pb/WIXCXifLNmT9pNRjI//4Hsr/+CktWdoUXpsD7zjsJeOpJXCIjqzy3tMjImn8fJSfFJmYbNMWsivmYfNdMtEotH478kJva3OR0Tn6xkYVLf0a3fQXu5mK7S2eu2pesHuN5aOLNDO3gL3KNBNXy+uuv8/rrr6No4C7rlJQUHnnkEQDGjBnTlEMTCASC6xL9+Xx06xIxpRU7GpUSHkPC8Bodec024zUnsiyzL20fi09+y660vU59kiwzsqSUB9Wh9Bv2MlKX8fgf+DfPJnyLJMtVitpSWbXQWzEPodF6V+q/kos5xcxdeYK9iTn2tgAPDf83oSu3d69smSlbrRz6ZTW7ly3CarGJ30q1BpXbCJC6IkkS7XoEcOsjXVFcB643Rbt/J/O9d50WryUXF/weegj/OXNQely/lvcCG56ezhmyWq1tg0dKSkpVh1NSUiKceQSCZsaWlx3nKEa4BnnZOoOOz45+xg+nf8AiO8TVwaGDeWXAK7T3aX/VxmKnOAcOL4RD34LuknOfyhW632uzFQ/t2WxDKDKYWX7gEt/+foGU/FKnviBPDTOHtGP6wEh83OpWQV+QXcrp/TVYigfZLMU7DwzB00+LLMuc/+MAu5ctJCe5ws9AkogZNpKh90/HO6h+fyey2UzO11+T9dnnYLbNfSS1moBnn8H/4YfFpjaB4DqkTk+dbdq0Yf/+/fzlL39h69at5OTk2C0eZbmmkraqEQvUAoFAcGMiyzKWXH2lzGtrSR0svzVKZ8vwcA9UAa5NYpXoGutP2GsDKTmZjf5kNtZSMwpXFdpuAbh1C0BS13/RT+GiRBPp5ZQNJZusmDKKHZXnqUW2hWGL82epJUdPaY6e0hMOcVnpo3FUcrexfVV6Ns6qSzYayV+5kuwv/4c5w2FhiSThNW4cAU89iSY6utrzSwuNrPn4CDkptsXtUk0hq2P+g841Cx+ND5/d/Bk9AnvYj88qNPDNhkOkb1xKRPFFypcZzZKS3I4jue+hB+gXHVjFnQQCZzp16tRgMRugffv2mMosSRtzHYFAILjeMWeXkr8hCf2pHKd2bVd/fG6PQhXgeo1G1nwYLAbWJ65n8clvOVuQ5NTnarUysbCY6d5dibz9Fac8y5GDXuQ/ssxfExZQINmysq2SZP/qKdvE7JGDXqzx/harzPzdSXz422n0Jkel6b192/DXO2KqXGguys1hw+f/5tKJo/Y2v/B2GEw3YzHZxPPIWD/GzumG8ipWxzUHhsREMt/7F0U7dji1e427ncAXXsSljchIvhEIDQ3lxIkTTm1ubm54eHiwY8cOZs6cWemcX3/9FReXq2d1LBDcaFTKy/Zywf+Bq5eXbbFaWHl2JZ8c+YR8Q769vY1HG/7c/8+Mihh19TWJlD/gwNdw8iewXBGX59sO+s+GXtPBza/ZhpCaX8qCPRdYtv8ShYYrXGZCPJkzPJo7e4bhUof5gclg4fyRTBL2ppFyOr9Sv4tWSYd+wXQZHEpItJf9552ccIpdSxeSeto5IzyqV1+GTZ1JULvq152qw5CYSOorc9FX+CzQdOlC2Hvvoe3cqd7XEwgErYM6b6Nu3749y5cvd2pTKBQsWbKEadOm1fmGS5YsqXJiKRAIBILrC9kqY84pdapQNqYWIesttZ4ruaqcqq5dwjxQ+mmbNedPUitw7x2Ee++gZr2HSxtPXNo4qglkixVTRolD4E6xidyyydkqz5JvwJJvcFpQVni5OIn8LuEeKLxcan1Ik00mdGvWkP35F5hSU536PMeMIeDpp9B2qvkBoKTAJmbnptrE7BIXHWtiPkHnmkW4Rzhf3PIFUd5RAFzOLeGrbWc4s2UdvXMPEVHBqrM0uCPjHn2SPt061ni/GwaTHuJWQ8I6KMkDN1/oMh5i7wZ1ZVvRG5GkpCSCgur273Ts2LGoVCoeffRR7rrrLqc+pditLRAIBNViLTVTsPWSLfuywsY7dZg73ndEO0WvXC9kl2bzw+kf+D5+GbnGfKe+ULOZaboiJoXfhNdtL0FY7yqvMWrwS2ztPYdNe99na/J28i16fJRaRrcZyZjBf661MjshvYBXfjzOsWSdvS3cx5V3JnXnpk5Vb/o7e3Avm778ryN/UpLoNnI8l850wmKy/e7CO/ty++PdUTZgk2ZLwZKfT9Znn5O3bJm9CgtA2707wa/Oxa1Pn2s4OsHVpk+fPixYsICnn36azp0729v79u3LkiVLGDNmDFOmTAFsm6r/8Y9/sGXLFvr163ethiwQXLdUm5f9QEyjN+HXlUPph3j3wLuczjttb3NVuTKn+xxmdJ3RdLnXdcGkh1M/2YTs1MNXdErQ8VabrXiHW6AZN1efSNbx9a5EfjmRhsXqXEQxsnMgs4dF18kZr66W4l0GhxLVKxC1i+M5O/vSBXYtW0ji4YNOp4R26Mzw6bOIiO1e79clW63kLV5M5kf/RjaUbRJQKPB/dA6BTz6JJDYuCQTXNVfdFywpKan2gwQCgUDQqpAtMuasEufK69RiZGPt4rXCXe0QrsvttX01N4ybh6RU4BJmE+3LK5Zli4w5uwRjcs0/T2uBEX1BLvp4R2agwkPtJHBX/HnKFgsF69aR9dnnmC4521x5jBpF4DNPo42NrXXMJQVGVv/7CHlltqPFLvmsif2EAtdsOvt25otbviDQLZCzGYV8seM8B/Ye4qasHQwwOXK5ra5eDHlgNkNuvga7pFsqCeth9ROgzwdJAbLV9jV+LWx4BSZ+CZ1vv9ajvOZER0ezePHiOm2oPHfuHImJiWzYsIGff/6ZO+644yqMUCAQCFovskWm+EAaBZsvYi12iIYKTzXet7XDrU9ws24wvBaczj3N4rjFrE/8BdMV+dg99QYeLCzh5o4TUE14HgI61Ho9jdabO0f9k/qkbhrMFj7bdp7Pt53DXLboLEkwc3A7/nxbZ9w1lZduTHo92xfN4/iWjfY2D18/hk59iv1rjRhLbE4koR28uePJHqhcWudGLtlkIm/ZcrI++wyrziH0q4KDCXrxBbzGj0cSbis3HGPHjmXlypUMGjSIhx56iLfffhutVsuMGTPYsWMH06dP58UXXyQiIoJz586Rl5eHJEl2kVsgEDQNVeZlDwrFZ3z0VcnLTi9O58NDH7Lxwkan9nFR43i+7/OEuF89q3PyLsKh+XB4EZTmOvdpfaD3A9D/EfCrfzVyXbFaZbYkZDJvVyL7k5zH4KJUMLF3OI8Mj6JTsGc1V3BQX0txp3OzMvn9hyXE7doGFdx9/cLaMGzqDDr0H9ygdSBjcgppr71GyYEDjtfVrh1h772La8/ms2sXCAQtB0luiGd4GQsXLmTEiBG0a9euzuf83//9H2+++SYWS+0ih8CZgoICvL290el0eHldHbsWgUAguBLZbMWUWeKovE6tuqK4KhpaUSxofMW7QqPHcOYgposnsORfRC7OBmTchw0j8NlncO3Ro9brABTrDKz59xHy0ksAKHLJ4+eun1CgzWFAyAA+HvUxiRkWPt9+jh3HLzA0dx+xRQmO1yFJxNw8jlsfmImLq1uDfhbXJQnrYXm5QFvV1Kzs38iUpdBlXKNv15rnFPVxCNLr9Rw9epRZs2YREBDA7t27r8IIWzat+XcvEAiaF/3pXPJ/ScKcWeJoVCnwHB6O58gIFJrWKYhWhVW2sit5F4vjFrM/fb9Tn1KWubW4hAdLzPTo8SAMfgq8wpptLIcv5fHKj8c5m1lkb2sf6M6/7u1B37ZVW5BmJJ7jl08+IC812d7Wof9gBk6azYYvz1JSYMsuDY7y4q7neuGibX0Z57IsU7RjB5nv/QtjhcIISavFf/Zs/B9+CIWbmEtea67VvEKn09G9e3dMJhOSJHHkyBGCg4OxWq2MHj2anTt3AjhFJQ4cOJCdO3eiVquv2jivZ8ScUlBlXvbdHXDv3/wist6sZ8GpBXxz4hv0FofYGuMXw6sDX6V3UNVOKnWmrs5pViskboOD8+DMRtum9IqEdIcBj0K3e8Gl+T6zSo0WVh5OZv7uJBKzi536/NxdeGBQWx4c1JZAz5or1RtqKV5OSYGO/at+4NimX7BUcFPx8PNnyH3T6TriZhQNcEqTZRndypVkvPMu1mLH6/N98EGCXngehev1F4EjENxI1GdO0ainmvpah5vNZgwGQ+0HCgQCgaBFUNfM56pojsznGxlJIaEOdEMd6IZbL5vdcl0zyeVSM5ZSFaqgwaiCBtvarEbUwVq0nUORLR6YMktqzSS/UswudMnl566fUqjN4ba2t3FX+Is8uTiOXWeyiC1K4IHcvbhaHZ/7AVEdGPvYMwRHtW/qH0/rxqS3VWYDVYvZ5e2S7bgXTwv78Tqi1WoZNGgQzzzzDG+88ca1Ho5AIBC0SEyZJeh+SUR/Os+p3bVnIN63t0Plc/185pSYSvj5/M98F7+ECwUXnfo8LVbuLSxiqklFaP8nbFVUzZhpWWI08+GmM8z/PclevKRSSDw5sj1Pje6ARlV5wVe2Wjm0bhW7ly/GarHN91QaDaNmPkpk92Gs/uioXcwOjPTkzmd6tkoxW3/mDJnvvkfxnj1O7d4T7iLw+edRh1zFijtBi8Tb25tLVzhOgW3j4/r16/n73//O8uXLSU9PJzQ0lMmTJ/O3v/1NiNkCQRNxrfKyZVlmy6UtfHDoA1KKUuztvhpfnu3zLBM7TESpaOQGvLo4p7UdAkeX2oTsnHPO5yvU0PVum614xACb5UozkVmoZ/HeiyzZd5G8MmeWcqID3XlkWBT39GmDVl39z0S2yqSdr8VSPMaPLoNDiO4ZWKXji1Ffyh+/rObQ2p8wlpba27XuHgy4+z56jR2P2qVhtu+mzEzS//Y6RTt22NtUYaGEvf027oMGNeiaAoGg9XJVnmwOHDjAokWL+P7778nNza39BIFAIBBcdaxGC6a0Yidh1JRRAtY6iNf+WptwXdHm2l0sFjQ3kiSh8ndF5e8KPWy5irIsY87XU/jrfgq3HEQ2uaPwiURxRWajpHDBnGWlKMvxECi5KFCHejjll6sC3ZCUEsX5Blb/+wj5GWVitiaHn2M/pVCby/CgiZyLu5UZGw/jZ8zhnuydhBnS7dd1cXNj+NRZ9LjlNhSNfbi8HolbbXtYrhXZdlzcGug5uXnHdJ2Rk5NDcXFx7QcKBALBDYSl2ETB5osU70+DCgVFLhGeeN8Z3eyL0leT9OJ0liYs5cczP1JoLHTqizSZeEBXyASFL25DXrNZgrq4V3OlpmH32WxeXXWcy7mORd/u4d78694exIRW/XMvzM1m42f/5tLJY/a24OgOjHvmJVQaf1Z9eJjifNtGQv9wD+56rhcat9Y1Hzfn5pL13/+S/8MKW9VbGa69exP86tw6OwoJbmzc3Nx47733eO+99671UASC645rmZd9Nu8s7x14z8lZRSkpmdplKk/0egIvlyaYtzg5p+GouC7/qtfBsimg1IDliqI9zzDo9zD0nQkeQY0fSw2cTi/km92JrD6SitHiXBU+ONqf2cOjGNU5CEUNBQu1WYr7BLvRZXAInQZUthQvx2I2c2LLr+xduYwSXb69XeWioc/td9J/wr1o3T0a9iKBgg0bSH/z71gqRI54T5pE8KtzUXrWbpsuEAiuP5pN0L58+TKLFy9m8eLFnDlzxt4uy7KwlhUIBIJrjNVgxpTqXHltziypvji0HAlUAa6OyuuyrwrX1lf5cT0iyzLFv+8h65P/oj923KlP23swPvc+jMI7wrZZIbXIYQ1Wfr7RivFiAcaLjvwrVAqUga5cyijBq8iErIRUlUPM9iq5m/U7BqCy5jAk/xC9dMdRVlgV7zJ0BCNnzMbdx7dZX3urRF8A+Rdtu7qRqP0fILad4QlrbxhBe8eOHeyosBO7nJ9++olz585VcYYzJpOJixcvsnLlSqKjmy+rTCAQCFoTstlK0d5UCrZccoouUXpr8L69Ha49A6+bZ/YTWSdYHLeYTRc3YZGdK44GlOp5UFfITR6RKG5+A7rfC8rGC8B6k4X1J9LYdCqD/BIjPm4ujOkazLjuoRhMVt5aH8cPhxxW4RqVghfHdOLhoVGolFXnjZ49sIdN//sEfVGZGC9J9L9zEkMnP0BpoZVVH/5BUa5tYd031J0Jf+qFthVtLrUajeQtXkL2F19gLXJYr6vDwgj680t4jh173fxNCgQCQWvlWuVl6ww6Pjv6GT+c/sHps3xw6GBeGfAK7X2ayAGuzs5pOIvZ7YbbbMU7jwNl862NybLM7nPZfL0riZ1nspz6VAqJ8T1CmT08mm7h3tVcAYx6M4lHsmyW4mfyK/W7aJV06B9MzOBQgqMqW4rbx2K1cnrvLn7/fgn5GWn2dkmhoPuoMQy+dyoefv4Ne6GAOS+PjP/7JwXr19vblAEBhP7jH3iOHtXg6woEgtZPk77LFhcX8+OPP7Jw4UJ27txpz6mpGNMdEBBATk5OU95WIBAIBDVgLTVXsqQ255TWTbwOcnOq1lWHuqPQCPG6JVK8bz9Zn3xC6R9/OLVrYmMIfOYZPEaOrPQwYikyOqzky7K5LXlX7DI2W7GkFRMOhLvZfvdmAuif+igJVhUJJl8665Npl7UVd3O+/TTf0DBufvhJ2vbo1QyvtpVgLIb8S7b/8i7axOv8i47v61SVfQWyFUrzaj/uOmH79u384x//qNS+atUqVq1aVefryLLMww8/3JRDEwgEglaHLMvo43LQrU/CnOOoxJFcFHiOjMBzeDhSDZaUrQWz1czWS1tZHLeYo1lHnfrUssztRcU8WFBIl6BeMOEF6DQWFE2zEP9bXAYvrjhKQakZhWQzOlJIsPFUOn9dfRKVUqKg1BENMzDKj/fu6UG7gKorwk16PdsWfc2JLb/a2zz8/Ln9qReI7NbTFgfz8RF7ZZVPsBsT/tQL11YS8yPLMoWbN5P5/geYKthHK9zc8H/sMfxmzkChvX4s7wXXljVr1vD888+TmJh4rYciELQ6rkVetsVqYeXZlXxy5BPyDfn29nCPcF7u/zKjIkY17WanOjunlRE1Am5/D4Jimm4MVWAwW/j5aCrf7E4iId3ZZcZTq2LagEhmDW1HqHfVOdKyVSb1XD4Je9M4dzgLcwMsxe3XkmUuHj/CrqULybxw3qmv08ChDJ3yIH5hbRr2Qsso2rGD1L/+FUtWtr3N87bbCHnzDVS+olBCILjRabQqIcsymzdvZtGiRaxevZqSkhJ7ezm+vr5Mnz6dhx9+mJMnT9Y7e1sgEAgEdcNSbKosUOZWtg6qhEJCHezmEK7DPVCHuKOoYSIraBmUHD5M1n/+S8n+/U7tmo4dCXj2GTxvuaXahzylhwvKzn5oOzvyIa0lJvvfT0lSAbqEXNyuOE+Fio6GSDoCdwJoO2Jt054CYzb55ky8uoTT4bahaCN9mvKltjxMetAlQ/6FK0Trsv8vya71EvVGUoDrjfUQV3FOWVNbVbi5udGpUydmzpzJs88+29RDEwgEglaDMbUI3bpEDIkOy0YkcOsTjPdt7VB6tQ4BtCYKjYX8dPYnlsYvJbU41anPz2Lh/oIiJhcWEhA1GsY/D22HNmmu5W9xGTy6+JB906j1iq8lRscCsqdGxavjYpjSP6JaO9CMxHP88skH5KU6qrk7DhjCrY8+jaunF6WFRtZ8fNQeB+MVoGXCn3rj7t2wjMqrjT4ujox336PkwAFHoyThfc8kgp57DlVg4LUbnOC6pKioiIsXL17rYQgErY5rkZd9KP0Q7x54l9N5p+1tripX5nSfw4yuM9Aom+GzLmGdIzO7NiQFaL2aVczOKzby3f6LLNx7kaxC58KDNr6uPDw0ivv7R+BRTdFJQXYpCfvSOb2vZkvxzgND8PCtffNY+rkz7Fq2gEsnnd0AI7r2YPi0mYR26FyPV1cZS1Exme+9S/6KH+1tCm9vQv72N7zuGCecWgQCAdAIQTsuLo6FCxeydOlSUlNtD4tXLi5KksQ///lPXnjhBTQa2wfNqVOn6rwIKRAIBILqsRQaHZbh5RbS+YbaT1RJqEPc7VnXLmXidXNaRAmantLjx8n67ycU797t1O4SHU3g00/ZrBkbUG2kcFOj7eCLyc+VTb9dpiDfhApQuepIC91PhCmU9kWxRFo1KCo8UCgkBT6aIHw0QXAZcufF2ar8A92c/9bC3FFoW0mVv8VUJlhXEKnzLzm+L0yr/RpVISnBOxx82tr+MxRA/M91O1e2Qpc7G3bfVsgbb7zBG2+84dSmUChYsmQJ06ZNq+YsgUAgEJRjKTSi+/UCJX9kOLnzuER54zM+GpfwhucathQuF1zmu4TvWHV2FSXmEqe+DkYjD+oKuaOkFE3M3TDsTxDas8nHoDdZeHHFUZBrN0FSKSTWPjuUdv5V/+xlq5WDa3/i9++XYLXYqrlVGg2jZz1Gt1G3IkkS+mITa/5zlLy0YgA8/DRMeL43Hr4tX8w2ZWaS9Z//oPtpFVRYG3IbMIDgV+eijWneSjfB9UVGRgbr168nPj6e/Px8zGZztceKymyBoH5ci7zs9OJ0Pjz0IRsvbHRqHxc1juf7Pk+IezNUhOdftlVnn99WNzEbmtU5LSm7mPm7k1jxx2X0Jufx9I70Yc7waMbEBlcZU9JUluIVyU1N4ffliziz/3en9sB20dw0dSZte/ZptNhcfOAAaa++hiklxd7mPnw4of/8J+rg5s0jFwgErYt6rShnZWWxdOlSFi1axNGjR+3tFQXqrl27Mn36dG699Vb69+/PwIED7WI2wPTp05k+fXrjRy4QCAQ3CLIsYykwYkp2rry2FhprPVdSK1CHujsqr8M8UAe7IVWTzydo+ejj4sj67ycUbd/u1K6OjCTwqSfxGj8eSdm4yvqCnFJ++vAwxWVZjDnaLH6O+YRCSYnX6Qncmb8c96JcfFyC8NUEE+ARSXhAJ5TFElR83pLBnFliy2c/kmlvds5hd7flsLtdg5xHqwUKUp1F6oqidUFK3R9onZDAKwx8IstE60jwbev43ivcOVvLpIcPd4JeR83L4BJovSF2QgPGJBAIBIIbCdlkoXB3CoXbkpErVAYr/bX43B6Ftqt/q650kWWZPzL+YHHcYrZd3oZ8xefnsJJSHtQVMthkReo1DYY8C/5NlLFZBetPpDlZideE2Spz5FJ+lYJ2YW42Gz/7yKn6KTi6A+Oe+TN+YeEAGEpM/Pyfo+Qk27Km3X003P18H7z8q7YabSlY9XpyFywk56uvsJY4Nh6oIyMJfvnPeNx8c6v+mxRcfd58803eeeedGkXsisiyLP7GBII6Yik0krP06uVl6816FpxawDcnvkFvcVQTx/jF8OrAV+kd1Ltpb5h/GeLWwKlVkHKo/uc3sXOaLMscvJDH17sS2RyfUXG/FwoJbusawuzhUfRt61f53Ca0FK9IUW4Oe39cxoltm5CtjnUR7+AQhk5+kC6DhzeoiKIiVr2erH9/TO6iRfZNbpKbG8GvvILP/feJ92yBQFCJOgnaK1asYNGiRWzatMk+UawoYrdp04apU6cyffp0evToASBysgUCgaAByLKMJc9QKfPaWmyq9VzJRYk6zN0p81oV6IZUjY2hoHWhP3OG7E8+pfC335za1WFhBDz5BN4TJiCpGy8KJ5zL5dfPjqMqtT2w5GszWRv7KQajO/de7ovX5a0AmIFsYyrhI3rRZ8oUtO4eyCYLpvQSjCmFmFKKbRsw0ovB4rzIbM4uxZxdSumxLHub0k+LS1j55gtP1GHuKD0auevbaoWijAqC9UVnwVqXDNa6LYBVwj3IWaSu+P/ebUBVjwoptRYmfgnLpgISVYvaZf+OJ35pO/4GZtu2bcSI6i2BQCCoElmWKT2ehW7DBSfnHkmjxOvmSDyGhLVqVx6TxcTGCxtZHLeY+Nx4pz6t1cpdRcVMLygkWnKF/o/BoCfBs/nyPcvZdCrDnpldGwoJfj2ZwcTezhmTZw/sYdP/PkFfVJaPKUn0v+seht4/HaXKNscz6s2s/eQYWZdsx7h6uXD3873xDmy5YrYsyxRu2EDmBx9iSnVU+Sk8PAh48kl8H5iOwqX1W94Lri7/+9//+Mc//mH/3tvbGy8vLxQ1iCvFxcVirVIgqAPGy4XkLLk6edmyLLPl0hY+OPQBKUWO6lxfjS/P9nmWiR0molQ0URSeLtkhYicfbNy1msg5zWyxsv5kOvN2JXI8WefU5+ai5P5+ETw8NIpI/yuD4JreUrwcfXERB39eyeH1P2M2OuaSbt4+DLpnCj1uvs0+L2kMpSdOkPrKXIwV3DNc+/Ul7J13cImIaPT1BQLB9UmdBO3JkycjSVKlXOx7772XadOmcdNNN4kdMwKBQFBPZKuMOVfvZBluTClCrkN1h6RV4RLuXqHK1QOVv6sQr69DDIlJZH/6KQUbNjjZMqqCgwl44nF8Jk1CaoJFwNPphXy94TR+B/PxttoWgvK1Gfwc+ymdckMZcFaNschRLRTYLppb5zzllJMkqZW4RHjiEuFpb5PNVkwZJWV/54UYU4sxpRXZ87fKseTqKc3VU3rSscik9HZBHe7pJHQ7ZXzKMpTkVMiuvrLK+hJY6mDDXxWufs4itU8k+LazffWOAJfKD5SNovPtMGUprH4C9PmO7K7yr1pvm5jd+famvW8rZMSIEfU+JykpiV27djFjxoxmGJFAIBC0DAyXCtCtS8RYJnYCIIH7wFC8bols/Eaxa0iePo8VZ1awPGE5WaVZTn1BZjNTC4q4t7AIH60fDH8V+s8GV59mH5fFKrP7XDYHknLrJGaDTfTOL3U4LZn0erYt/IoTWzfZ2zz8/Ln9qReJ7NbDcZzBwrpPj5FRVi2n9VAz4U+98Alu4jlJE1J6/DgZ77xL6ZEjjkaFAp/J9xP4zDOo/CpXmgkEdeHLL78E4PXXX+fxxx8nJKR2oW3JkiXMnDmzuYcmELRqig9lkLf66uRln807y3sH3mN/+n57m1JSMrXLVB7v+TjeGu/G38QuYq+G5ANVHxPcDbreDZ3GwYJxV8U5rUBv4oeDl/n29wuk5Jc6D8dLw6whUUwbEIn3FU52tVqKu6ro2C+ILvWwFC/HZDRw9NdfOLDqB/TFRRWu6Uq/OyfR9467cdE2fgOdbDSS/eWXZP/vK7DYqsklFxcC//Qn/GbOaLTjoEAguL6ps+V4uTWPv78///nPf7j33ntRN0ElmEAgENwIyFYZc1aJTcyrIGDLV1oBVYHCTeWwDC8TsJV+WrGR6DrHeOkS2Z99jm7tWlulcRnKgAACHn0Un8n3o9A0Pifx8KU8Pt92noMnM5lc5IK3bBOz87QZbG/3OXfFh6NNLcGIbcevWuvKsMkP0Ou28Sjq8KAhqRS4lP39umNbaJItVkyZpZgqOhGkFiFfkQ9l0Rmx6HLQxzlEboWLHhdNOmrpLC7Go6jlOJRkUe9/DhqvypXVFa3BNZ61X6Op6TIOXjxte+BOWGvL5HL1te38jp1ww1dmN4Y9e/bw0EMPCUFbIBBcl5jzDeg2JlF61Fno1XTyxeeOKNTB7tdoZI0nMT+RxfGLWXt+LYYrNqnFGgw8qCvktuIS1N6RMPZ16P0AqJu/Wjklv5QVhy6z4lBypYXo2lBI4ONq21yQkXiOX/77Pnlpjqq0jgOHcOujz+Dq4ZiLmI0Wfvn8OGnnbNVbGjcVE/7UC/+wlpmBbkpPJ/Ojjyj4ea1Tu/vQoQS98jLaTp2u0cgE1wtnzpxh+vTpvPnmm3U+58pCHYFA4EC2WMlfl0jx3jR7W3PlZesMOj4/+jnfn/4ei+xYExsUOoi5A+bS3qeRESG6FNszddxquLy/6mOCukLXiTYhO6Cjo72ZndNS8kv5dncSyw9epsjgXMwSG+rFnJuiuKN7GC4V3HTqYikeGeNHl8GhRPUMqLOleDlWi4VTO7ewZ8VSinKy7e1KlYqeY+5g4MT7cfNqgs0F2JwHU+fOxRDncNnRdu1K2HvvounQoUnuIRAIrm/qJGivW7eOhQsXsnbtWrKzs3nsscfYuHEj06dP55ZbbqnR0kcgEAhuNCqKdcaUQkypxVWKdVWh8FTb7ZbLBWylt0aI1zcQppQUsr74At2q1fbdqgBKX1/858zBd+oUFK6NW6iVZZnfz+Xw+fZz7Dmfg49FYkqRC152MTuZRO1Cxu73QbI6Mg47DRzKyFlz8PQLaNT9JaUCl1B3XELdweAG+XrkHB3mlHRMqcUYsyWMBZ6YDKHIOL9Wq1GL3tgOPe2AWwFQoEOtOI+LdB614hwu0jmULoVIvhVF6isE6ybMu2pS1FroOdn2n0AgEAgENWA1WCjccZnCnSlgdswzVUGueN8RjWvn1ln9Kssye1L3sDh+Mb+n/O7UJ8kyo8vysfsYDEiBMTDmeeg2CZTNu+HeaLayJT6D5Qcvs/NsFg3VxawyjOkayIE1P/L790uwWmwL2iqNhtGzHqPbqFud5v4Wk5UN/ztByuk8wFZ9dddzvQhocw0239WCtaSEnG/mk/PNN8h6h/2pS1QUwXNfwV24+wmaCC8vL4YNG1avc6ZPn8706dObaUQCQevFUmgk57t4jBeaNy/bYrWw8uxKPjnyCfmGfHt7uEc4f+7/Z0ZHjG74Z0RBqsNOvEYR+26IvRsCq9lY1UzOaccu5/P1rkQ2nEzHcoWly6jOgcwZHs3g9v5Or78gu5SEvWkk7EunMKfpLMXLkWWZc4f2sXvZInJTLjs6JInY4aMYct90vIOC633dKu9lsZC7YAFZH/8H2VQWqahUEvDEEwQ89miTxOcJBIIbgzoJ2uPGjWPcuHHodDq+//57Fi1axOLFi1myZAmBgYFMnjyZadOmMXDgwOYer0AgELQoyu2UbZnBRWV2ysVOi4rVofTWlFVcu6Nu42mrvPZqvVaQgsZhysgg+8svyf9xJZgcmekKb2/8H34Yvwemo3BvXIWV1SrzW3wGn287x7GyfCYfi8TkCmJ2vnQYS/4Wupa6Ur4j2TsomNEPP0507/71v6mxBHSXq7cFL80FbPuc1WX/uZU1yBoJsxyKSW6P0doek9wBo7U9Ms4LuFa8MVj7YKAPlO0BkBRKXFw8UPsKW/7WyoIFC/j44495+umnmT17tr1dKSzIBALBDY5slSk5nInu1wtYCx3W1Qo3FV63tsV9QAiSsvVtOteb9axLXMeSuCWc15136nO3WplYWMS0gkIizBaIGAjDXoCOY6CZN9ifzyrih4OXWXk4mewio1OfQoKRnYOY1Cec1346QaHeXJtJKSEqPca1X7Ar7oS9PTi6I+OeeQm/sHCn4y1mKxu/PsmlU7b5klqj5M5nehLUtumtXxuDbLVSsHYtmR/9G3NGhr1d4e1N4NNP4ztlslisFjQpw4YNIzc391oPQyBo9VytvOw/Mv7g3QPvkpCbYG9zVbkyp/scZnSdgUbZAPe5glSI+7lMxN5X9TFBsbZK7JpE7CtpIuc0i1Vmc3wG3+xK4sAF5/crF5WCe/qE88iwKDoEOdY3jHoz5w/bLMVTz+ZXumZjLMUrkhx3kp3LFpB2JsGpPbpPf4ZNnUlgZLsGXbcqjJcukfrqa5T+8Ye9zaVDe8LefQ/Xbl2b7D4CgeDGQJIb6LeTlJTEwoULWbJkCYmJiUiSRHR0tH3Ho5+fH4GBgWzevJnRo0c39bhvSAoKCvD29kan0+Hl1bIeYAWCGwHZZMGYZqu2NqUU20TsjBKw1P42qvTTluUAe9oqr8PcW3WOoaDpMGdlkf311+Qv/x7ZWGFR2sMDv1mz8Js5A6Vn4ypwTBYra4+l8sX285zNdGQh+VgkppdocLNIyNYiig0bUekvOcagVNH/rkkMnHg/ak01D21mgy2XKv9ihezqCqJ1cWbDBq1QgXebKyqr2yJ7R2JRhGPM02BKK7HZlacUYi2uQ/a8i9LJ/cAl3ANVoNsNKXK3hjmFj48PhYWFeHp6kp+fb29vqDOQJElYLLXHPFzvtIbfvUAgqB5Doo78XxIxpTg+z1FKeAwOw2t0BAq31icaZpVksfz0clacXkGeIc+pL9xkZlpBIRMLi/CUZZuAPex5aDukWcdUarSw/kQa3x+8XGkRGiDcx5XJ/SO4t28bwnxsbjKb4zKYs/gQSouZ9sXniS5JQms1oFdoSHSL4rx7e9rqL3GnbhcWfZkDjiQx4K57GHL/dJQq59+d1WJl07xTnD9is5JXuSi489lehHXwadbXXl9KDh8m45130Z9wCPSoVPhOm0rgk0+i9PG5ZmMTND/Xal5x8uRJpk6dyu7du/H2rpsV7nfffceMGTPEfLCJEHPK1s/VyMtOL07nw0MfsvHCRqf2cVHjeL7v84S411M4L0hz2Ilf2lv1MYExDjvxwM4NGndjKDGaWflHMt/sTuJCTolTn7+7Cw8ObssDg9oS4GET8WWrTOrZMkvxI01vKV6RrItJ7Fq2kKQjh5zaQzt14aZps2gT063B174SWZbJX76cjH+9j1xaFs8iSfjNmkXgn55rkgg9gUBwfVCfOUWdM7SvJCoqijfffJM333yT3bt3s2jRIn788Uf+8Y9/8H//93/ExsZWmU+zb98+vvrqK+bPn9/QWwsEAkGzYzVYMKUVOeVdmzJLoPbCa1QBrvasa3W4Oy5hHq1ycVHQvJhzc8mZ9w15S5c6WTJKbm74Pfgg/g/NavQCoN5kYcUfyfxvx3mS85zzHfv5eTI63YLVbMFsOIpJvxuV7KgMbxPTjVtmP4l/aBgUpEBqNYJ1YRpVZ0vVgqQAr/DKVuDl33uFgaLyg5qEbfKiigB62NpkWcZSYMSUXIQx1fHvtmLVGoBstGC8UOBkpSapFahD3R059WEeqIPdWmVl2/XG0KFD2bBhA0OHDq3UN2nSJLp3717nax0/fpzVq1c34egEAoHg6mLOKUW3PonSUzlO7dpYf7zHRaEOaP7c6KYmITeBxXGLWZ+0HrPVeWNab72eB3WFjCopRSUpoOs9MOxPEFL39/6GcDJFx/cHL7P6aAqFeucxqZUSY7qGMKV/BEPbB6C4YkPcLbHBvD9AxZkf5qOxGrACCmyPDx1KkrDkbEcpW8vNZPDw82fc0y8S0bVHpXFYrTKbv42zi9lKtYI7nuzRosRsY3IKmR9+QOEGZ5HCY+RIgl5+GU101DUameBGoFu3bnzxxRdMmjSJhx56iHHjxuHn1zpjFgSCq83VyMvWm/UsOLWAb058g97iWO+I8Yth7oC59AnuU/eLFaRB/M9wanWZiF3F+kNgF0cldlCXxg6/QWQW6Fm49wLf7b9EfonJqa99oDuzh0czsXc4WrVtnUOXVcrpfc1nKV4RXWYGv/+whPjd26mYmeLfJpJhU2bQvt/AJo0EMaWnk/aXv1L8uyM6Rt2mDWHvvI1b/wY4/wkEAkEZDa7QrgqDwcCaNWtYuHAhv/32G2azGU9PT6ZOncrs2bPp16+f2BHZCMTuR4GgebDqzZhSy4TrFJsgZs4qrV2jk0AV6GYXwcorrxXaBu8VEtwAWPLzyfl2AbmLFyOXOHbrSlotvtOn4f/II6gauRhTqDfx3f5LzNuVRHaRwamvX1tfZveMIHlVIqV5KZhKtiBbHNaQrloVI3p6E+ubg6S7CLoUkBv4me0Z6ixSVxStvds0e9alpcDoJHCbUouw5BtqP1EloQ5xd/63HeLepPlh15rWMKcwm80cP36c7t27o65gU6pQKFiyZAnTpk2r87XE/NNBa/jdCwQCB1a9mYKtlyj6PdXJFUgd6o73+Gi07X2u3eAagMVqYWfyThbHL+Zg+kGnPpUsc2txCTN0hXQzGkGpgd4PwJBnwK/5xNECvYk1R1P5/uAlTqYUVOrvEOTBlP4RTOwdjr9H9dVE5w7tZ80H/yx7hqj5QaLTwKHc8ujTuHpUduGRrTJbF8WTsC8dAIVK4o4nehDZ1b9er6u5sBQVk/PVV+QuWODkLqTp2JGgua/gUcVGNMH1y7WcV1gsFhYuXMhTTz2F0WjEx8cHT0/Pat18iouLyc7OFvPBJkLMKVsnzZ2XLcsyWy5t4YNDH5BSlGJv99X48myfZ5nYYSLKKjauV6Iw3WEnXp2IHdDZUYkdFNPosVdEb7I5tWw6lUF+iREfNxfGdA1mXPdQuyBdTnxaAfN2JfHzsRRMVzg4Dmnvz5zh0YzoFIhCIV01S/FySgp07P/pe45uWo/V4tio5+kfyJD7phE7YjSKuvw+6ogsyxSsXUv6P9/CWuD4G/O5/36CXn4ZpUfjYvQEAsH1yVWp0K4KjUbD/fffz/33309mZibfffcdixcv5quvvuLrr7+me/fudOjQoSlvKRAIBPXCWmKyC1vlAra5ip2QlVCAOqhCFWe4B+pQdxSNsPoR3FhYCgvJXbiI3AULsBY5bEIlFxd8pkwmYM4cVIGBjbpHbrGRBb8nsWDPBQrsVUUygei4s62JaZ3AvySRH5amUVpwBIvhqNP53X3SGB54AdcCM1Rez62MW4CzSG3//3Y2wbqO2VLNhdLLBVcvP1y7ODYIWIpN9o0r5UK3JfeK9wCzjCm5CFNyBTtXhYQ62M35PSBEvAc0JyqVij59Ku/cb9u2LR4eHvW6loeHB5GRkU01NIFAIGh2ZItM8cF0Cn67iLXYUeWj8FDjfVs73PoGt6rIjBJTCavOreK7+O+4XHjZqc/LYuG+wiKmFBQRYrGAxguGPQUDnwDP4GYZjyzLHLqYx7IDl1h/Ig29ydmGyVWtZHyPUKYMiKBPpG+tC8pmo5GNn/+7TmK2ykXD2KdeQF2F1aYsy2xfetohZiskxj7avUWI2bLFgm7VKjI//g+W7Gx7u9LPj8Bnn8Xn3nuQVGJjr+DqoNfrmThxIps2bbI7Q+bl5ZGXl1fjeU1ZgSgQtDaaOy/7bN5Z3jvwHvvT99vblJKSqV2m8njPx/HW1BIPUJhRVom9Ci7uoWoRu1OZiD2xyUXscn6Ly+DFFUcpKDWjkMAqg0KCjafSeXPtKT66rxc3xwSx82w283YlsutsttP5KoXEXT3DeGR4FF3DvGu1FJckiGgiS/FyjPpS/li3mkPrfsJY6nDr03p4MvDu++h123hULk0bg2jOzSX9jTcp/O03e5sqMJDQt/6Jx003Nem9BALBjUuTVmhXx6lTp1iwYAHLli0jNTVVZBg2ELH7UXA9I5uslJzIQn8qB0uJGaWbCm1Xf9y6ByKpG7ZL1FJkdFRmlglYlrw6VGcqq6nObOA4BDc21uJicpd8R878+Vh1OkeHWo3PvfcQ8NhjqEMa8QApy6RnpLB2+35OnTpOkDWDCCmLNlIWEVIWkcpsXGTbA2uOqQ3LMh7CUHQQ5GL7JXw0xYwNOUe42xUqttbnCivwiqJ1JLhcH7trrSUmjGnFTpXc5uw6uDQornBpaOOBOtQDhabhD6DN8V5YFWJOceMifvcCQctHfyaP/F8SMWdUyF1USXgOb4PnyDYoNK1HNEwrSmNpwlJWnllJoanQqa+d0cQDBYXcWVSMmyyDeyAMehL6PwLaumXi1pfsIgM/HU5m+cHLJGYVV+rv2cabyf0jubNnKJ7aujvJxO3cyobPPqrz8bc//SKxw0c5tcmyzK7vz3JiezIAkkLitjldad87qM7XbS6K9x8g4913McTHOxrVavxmPEjA44+j9KxcaS64MbhW84p33nmHv/zlLwDExMTQuXPnGquzARITE9m9e7dYj2wixJyyddGcedk6g47Pj37O96e/x1LB3W1Q6CDmDphLe5/21Z9sF7FXw8XfqVHEjr3bJmI348aU3+IyeHTxIZCrXg4ov3Oot5ZUnfPGeC+tiumD2jJzcDtCvLV1shSPGRJKpwEhePg2TZ60xWzi+OaN7Pvpe0p0+fZ2lYuGvndMoN+dk9C6129zeF0o3LKFtNffwJLjiMbxGj+ekL/+pdFRegKB4PqnPnOKqyJol2O1WvnnP//J3//+dzGBbABisii4XimNyyF3xRnkUrNtdihj/yq5qvC7rxOusdVXJciyjLXQiDHZufLaUmCs9hw7KgUu5fm5YWVVl8Fu15W1sODaYC0tJW/pMnLmzcNSsVJAqcRn0kQCHn8cdXh43S6m11WZX23MTkLOv4jGWlrrJZKKo1idNhCryWH7ZVVYGdKulEHdglH6ta1sDd5Mi8mtAavBjCm12DmKILOkblEEAa5O7ykuYR4oXGsXHxr7XlgfbrQ5RVJSErt27WLGjBnXeijXnBvtdy8QtCZMmSXofklEf9q5wtC1RwDeY6NQ+V1b55P6cCzrGIvjFrP54manxW2AgaV6ZugKGFaqRwG2+cfQ56DXNFA3fRa4xSqz62wW3x+8zG9xGZitzh/mXloVE3uHM7l/JLFhDXtf/PnDtzl7cK9TLmV1SJJEh/6DuevF1+xtsiyzZ+U5jm6+XHYM3PpwVzr2b54K9bpivHiRjPffp2jzFqd2z1tvJejPL+Ei3E9ueK7VvKJr165cunSJ9evXM3z48DqdIyJomhYxp2wdNGdetsVqYeXZlXxy5BPyDfn29nCPcP7c/8+MjhhdtStCUSbErbH9d2E3VT5k+3esYCce26widjl6k4UBb2+msNRc62N/RSL93Hh4aDvu6xeBWqZ2S/H+wXQZHEJwu8ZbipcjW60k7NnJ7z8sQZeRbm+XFAp63Hwbg+6Ziodv46LtqsJSWEjGW2+jW73a3qb08SHkzTfxGntbk99PIBBcn1wzy/HaUCgUtG/fnqbS0A0GAx9//DHLly/n3LlzKJVKYmJimDlzJo8++miNOzOro7i4mJ9++om1a9dy6NAh0tLSkCSJ0NBQBg8ezKOPPspNNdhkbN++nVGjRlXbX86KFSu499576z0+geB6ozQuh5zFcY756xVf5VIzOYvj8H8wFtdYf2RZxpJvqGQZbC0yVXV5JyQXBepQh12wS7gHqkA3JKWwHRMAJj3ErYaEdVCSB26+0GW8bRdwPayzrQYD+d//QPbXX2HJqmA9pVDgfeedBDz1ZOXFP0NRmVhdUbC+4Pher6Mqan38VLli9opkR2o0Ry+VAg4x2xjhyaMvvo9/aJs6v7YbCYVGhSbKG02UQ9S3Gi2Y0oqdNs6YMkpsHmTlyGDOKsWcVUrp0Sx7s9Jf6xC4yyq6le6Oyq/6vhcK6seePXt46KGHhKAtEAhaJJZiEwWbL1K8Pw0qOF+rIzzxGR+Npm3rEArMVjObL25mcdxijmcfd+pzkWXuKCrmAV0hnUxl8/bgbjDsedtcS9n0SxMp+aWsOHSZFYeSScmvvPlvULQfU/pHMrZbSKU8zLpSWlhAwp6dXDx+pE5iNtjE69KiQqfv969JtIvZSDB6Zsw1FbMtBQVkf/EluUuWgMnxnKWJjSF47lzcBwy4ZmMTCAAuXLjA008/XWcxG0QEjeDGoznzsv/I+IN3D7xLQm6Cvc1V5crs7rOZ2XUmGuUVFcdFmc6V2LJz1AcA/h0cldjBXa+KiF2R9SfSKCi1RbcpZehsUtLRpERrBb0CzqotnFZbsJQNq52/G3Nv78ItXYJJP69j77IznD+cidno/NokCSJiyyzFezSNpXg5sixz4dhhdi1bSNaFRKe+ToOHM2zyA/iG1rGQop4U791L6mt/wZzm2CzhMWoUof/4e6Pj9AQCgaA6rrpX2cSJE0lKSmr0dbKzsxk9ejQnTpzg0Ucf5ZNPPsFoNPLpp5/yxBNPsGLFCn755Re02rqLEH/88QdjxowhNzeXrl278te//pUuXbogyzK//fYb77//Pt999x1PPvkkn376aY27qNzda7ZhVYlsKYEA2WQld8WZ2iseZchZGo9LWy/MacVYS8y1nACSRulsGR7ugSrAtVVlDQquIgnrYfUToM8HSWF7uJIUEL8WNrwCE7+EzrfXeAnZaCR/5Uqyv/wf5owMR4ck4TX2NgIeuAuNlwUyfoPTjipr8i9CSU71F64Bg6wiRQ4gXQrCPTiaDp274h4UbbcGv5SUyq//+4yCLMcDhlXpimJsR1558J8oJOFEUB8ULko0bb2chAXZZMWU4VzJbUorBovzG5slR09pjp7SExUyJ300Za4Q7hTtTq7Te2HuijOEvTZQRCBUoLi4GJ1Oh9lc/WdDdnZ2tX0CgUBwrZDNVor2plGw5RKy3vEepvR2wXtsFK49A1vF3LXAWMDKMytZmrCU9OJ0pz4/i5UpBQXcX1CEv7VsgTdyiE3I7nhrky9WG81WtsRnsPzgZXaezaqkMQd4aLi3bxsm948gKqBh0Slmk4mkwweJ27WVxMOHsFpqfzapiCRJuHo4LLoPrb/AHxsv2r8fNb0LXQaFNmhsjUU2m8lfsYKs/37i5DCkDAwg6E/P4333BCRl0y3ECwQNxc/Pj06dOtXrnAkTJjBhwoRmGpFA0LIwXi4kZ3Gcw7mwifKy04vT+ejQR2y4sMGpfVzUOJ7v+zwh7hWuX5RVIRO7GhHbr70jE/saiNgV2XQqA4UEUUYF40pc0MoSVmQUSFgtMp1MSm6WZNa7GUlUW+nh7Y5vUilLl+6jMLeypbhviBtdBjetpXhF0s6eZtfSBVyOO+HUHtm9F8OnziSkfccmvyeAtaSEzA8+JG/pUnubwt2d4Ndew3vSxCarOhcIBIKquOqqqpubG23btm30de677z5OnDjBc889x8cff2xvHzVqFBMnTmTNmjU88cQTfPvtt3W+ZlpaGrm5ufTq1Yt9+/ah0Tg+bIYOHcqAAQO44447+Pzzz4mKiuKll16q9lpFRUUNel0CwY1EyYksm7VuXTDLGM9XXaUquaqcqq5dwjxQ+mlbxQKgoAWQsB6WT3N8X/6QVf5Vr4NlU2HKUugyrtLpssmE7qeVZH/xBab0TKc+z46uBHQvRusyH9bOr//YJCWydzj5mjCOFnhxuMCLZDmQy3Igl+UgLG5BPDS8PQ8ObotXhZzH4vw8diyYT/yubRUvhsGjA6FzuvHQoEfqPxZBlUhqBS5tPHFp41iYls1WTJklTpncprRiZJPzA7wl34Al34D+VN03NMilZkpOZuPeAvI0ryUpKSm89dZbrF27ltTU1Gs9HIFAIKgXsiyjj89Ftz4Jc7ajclhSK/AcGYHH8HAUTVi901xcKrjEkvglrD63mlKzcwV0R6OZB3U6xhUXoykXlTuNtQnZkYOafCzns4r44eBlVh5OJrvIOXZIIcHIzkFM7h/B6C5BqJX13xQmyzJpZxOI27mN03t2oi9u+PO+LMt0GDAYgMO/XuTAWseG/5umdCJ2WFiDr90Yinb/TuZ772I4e87eJmk0+D00C//Zc1B6NGwDgEDQHIwbN46EhITaD6xAVlYW8fHxNbouCgTXA8WH0slbfc6el630csH/wVhcIjxrObN69GY9C08t5JuT3zh95sf4xTB3wFz6BPcpu3m2Q8S+sLsWEftum1tLCxBAdSUmzmQUEmVUMLHY4YWnKEvNLv+qkWFisQvZCiuBh4s4hPN8oLksxSuSk3KZ35cv5uyBPU7tQVHtGT5tFu169G7ye5ZTcuQIqXPnYrp4yd7mNnAgYW+/VfdIPYFAIGgErbJMeOXKlWzfvh2tVsubb77p1CdJEu+88w5r1qxh4cKFPP300/Tt27de1//b3/7mJGaXM27cOIYPH86uXbv4+OOPaxS0BQJB7ZSeynHkxNYRhbvaIVyX2/b6asQOQEHDMOltldlA9X+IZUHGqx6D+xZCYRrkX0LOvUDBnjiydmVjKnA+wyNMT2D3ArS+tW3YkMArzJZXXVZVXf7/Vu8INl1W8unOC5y86HyDMG8tT45oz/39InCtsOAtW60c3/Iru5YtwFBc7LiLMpTCgK70eaIjd8bcUacfjaDhSCoFLmG2zTXu/W1tskXGnFViF7jLv8rGKh7wa7w46G9wQTspKYlBgwaRnZ1drxgb8TkhEAhaAsbUInS/JGK4YqOmW99gvG9ri9Kr6St4mhJZljmYfpDFcYvZkbwD+Yr504gSPQ/qdAzQG2xLv5ISut8Dw/5kq7xqQkqNFtafSOP7g5c5cCG3Un8bX1cm94vg3n5tCPVuWDa3LjOduF3biNu5lfz0tEr97r5+xAwbSefBw/nxrb+Vzb9q+myS0Li702ngUI5uvsTeVeftPUPv7UD3kVc/CsaQmEjGe+9RvGOnU7vXuHEEvfiCWKAWtEj+9re/MXLkSKZOnUqfPn3qdM6mTZtEhrbguqbKvOx2XvhPb3hetizLbLm0hQ8OfUBKkSPCzFfjy7N9nmVih4koS/Pg0HybnfiFXdWI2NEOO/GQ7i1CxC4ymNkcl8G646nsOJOF1SzzZInN6VWi6vGVtwdaHeswTpbiPQNQNTDGpDYKc7PZu2IpJ7dvRrY6fsY+IaEMnfwgnQcNQ2pA/GpdsBqNZH/yKTnffANl95Y0GoJeegnf6dOa7b4CgUBwJa1S0J43bx4Ao0ePxsfHp1J/TEwMMTExxMfHM3/+/DoL2u3bt+fFF19k5MiR1R7Ts2dPdu3aRUpKCjk5Ofj7ixxLgaA+yCYL+vM69Am56BNy6yVmu0R6EvhETyFKCJqOkyttNuOA1QKFl1wpTNFiMShQaqx4huvxjCxFoZTBUABLJiLLUHBJS/ZJT4yFaqfLuYfoCexeiKt/hUx3j2CHYO0T6SRa490GVM4L1yaLldVHUvjip/MkZhU79UUHuvPEiPZM6BWOyxWZV5kXEtk87zPSzp52NEoaVK7DyfX34tanujAsakjjf2aCBiEpJdQh7qhD3KGvLRNTtsqYc0rJWRSHOatytmeVyGCtq7PFdcobb7xBVlYW3t7e3HXXXcTGxuLr61vlZsRy9u7dy9dff30VRykQCATOWAqNFGy6SPGhdKf5r0s7L3zGRzs5fbREjBYjG5I2sCR+iVNeJoArCu4q0PGArpB25fEPKi30fhCGPA2+7Zp0LCdTdCw/eIk1R1IpNDh/JqqVEmO6hjClfwRD2wegaIBjk6GkmNN7dxO3cyspCacq9as0GjoOGELs8FFEdu+JQmFbuL79qedZ/f4/Qa5ux64Eku24+D2Z/P6joxJ60N3R9Lrl6mb7mvPyyP7sc/KWLYMKAp+2Rw+C587FrU/zVXgJBI3FarXy+eefc//99zNy5EjGjRtHx44d8fT0RFGNsCIiaATXM82Rl3027yzvHXiP/en77W1KScnULlN5vOP9eJ/fDosnllViV7FRxDfKUYkd0qNFiNilRgvbTmey9lgqWxMyMZgdwnCsSYlWrvsYFW5KBt7WrtksxcvRFxVx4OcfObL+Z8wmhwuNm7cPg++dRvfRY1A2Y7SpPiGB1FfmYjjtWGvS9uxB2DvvoomOarb7CgQCQVW0OkHbaDSyZcsWAPr371/tcf379yc+Pp5ffvmFzz77rE7XjomJ4YMPPqjxGGVZXpRCocDVtWG7vAWCGw1zvr5MwM5Dfy4fzPWsSASQQOnpIsRsQfWYjVCaa8ujLin7av8+74rvy9oMtuqowhQNqft8sZoU2CuykSlMdkVx2JuwQXl4hBkoTLYJ2Qads5DtFuFC4Jho3Hp2KxOt25UJ2BGgrttnhd5k4fuDl/lqZyIp+c7iZrdwL54a2YExXUNQXrEwa9SXsueH7zi84WenXboKl1jUrjeR45PDPc/1pUd4t/r+RAXNjKSQUAe6oQ5ys1nO1mWDjwQK11Y3fWtStmzZQocOHdizZw8BAQF1OkelUglBWyAQXBNkk5XC3SkUbruMbHQs9ir9tHjfHoVrN/8WPb/N1efyw+kf+P7092SXOotBQSiZlpvNvYXFeJfPQTTeMGA2DHwcPJrOTaRAb2LN0VS+P3iJkykFlfo7BHkwpX8Ek/q0wc+9/lVoFrOZi8ePELdzK+cP7XdaMAZAkojs2p3Ym26m44DBuLi6VbpG+74DmfDSX9n4+b8xFBchSRKyLNu/atzduf2p5zHoI9i53LEpoP8d7eg7tl29x9xQZJOJvGXLyPrsc6w6h1OAKiSEoBdfwOuOO0SllaDF065dO/t7Z1JSUr3iBlsiBoOBjz/+mOXLl3Pu3DmUSiUxMTHMnDmTRx99tFqRvjYuXLhAVFTtgtP7778vXChbMU2dl60z6Pj86Od8f/p7LBWE6kFBfXnFqxsdEnbBhvdqELHvtgnZLUTENpgt7DyTzbrjqfwWl0GJsfK4g7003GxwxVqit9uL14SMTERHX/rc1vhY1eowGQ0c2bCWA2tWODnwubi60f+ue+g7bgJqrbbZ7i+bzeTM+4aszz4DU1nRhlpN4FNP4T/7EaRmFNEFAoGgOlrdO098fDymsjfRdu3aVXtced/FixfR6XR4e3s3yf3Pnj0LQN++fXFzq/wQW86yZcuYP38+Z86cISsrC19fX3r37s3UqVOZMmWKXRgXCK5HZKuM8VKBTcBOyMGUXlL1gfWxG5dB261uwoXgOsCkv0KALheo86oXrI2FDbpVYYqG5F1+FVokp69Wk0TyLj9U7mbMxc5CtmvvngT+6QXcBw5o0L3BtkC7eO9Fvv09qVLm44AoP54a1YGbOgZUWuyWZZlzB/eydcFXFOVUWGBW+qB2vQWlOpJcnxRmvDiSqMDme8gSNB5tV39bBENdEO+F5OTk8Kc//anOYjZAjx49eP3115txVAKBQOCMLMuUHs9GtyEJS77B3i5plHiNjsRjaFiDK6auBmfzzrIkfgnrzq/DaHWen3S3qngwO51bikuwz4w8gmHQk9DvYdB6NckYZFnm4IU8lh+8xPoTaehNzptiXdVKxvcIZcqACPpE+tZ7Y4Asy2ReSCRu51YSft9BiS6/0jF+4RHE3jSamGEj8QoIrPWaHfoN5PEvF3Fm/++cO7CX0qJCXD086TBgMJ0GDuX84Ry2LYm3H9/ntrb0H391qptkWaZo+3Yy//U+xiRHbrfk6or/7Efwf/hhFGLTvqAVUZ/omXJa4gai7OxsRo8ezYkTJ3j00Uf55JNPMBqNfPrppzzxxBOsWLGCX375BW0jhCs3N7caX7uLS8PsqAXXnqbMy7ZYLaw8u5JPjnxCviHf3h6u9ubPJldGH/gZSV5V+UTfdjYr8a4TIbRnixCxTRYrv5/LZt3xNH49lU6hvrLLmb+7C+O6hzKuazBBhTLbl55GXwcxG2zW46Zmck6zWiyc3L6ZvT8upSjXsU6gVKnoddt4Btx9H25eTaNzVIchKYnUuXPRHztub9N06kTYv95D26VLs95bIBAIaqLVCdqXLl2y/39gYPUPlBX7kpOTm0TQzs7OZvPmzQC8/PLLNR77zDPP8OKLL/LGG2+g1Wo5duwY//rXv3jggQf43//+x+rVq/Hz86vxGgaDAYPBsfhRUFB5J7pA0FKwlpjQn81DH5+L/kwe1pKqJ3YKTxdcu/ih7eKLS1tv0j88hFyHSaDkqsLtBhdxWi3GkirE6dxqqqnL/jMV137dxuDqC65+WAtzSd1Xbg1V3YOLrb2imK3t0YPAZ5/FfeiQBi+KZBcZ+Pb3JBbtuVjJLnN0lyCeHNmefu2q/pzQZWaw9dsvSTx80DFKpRJZ0weNy2AkSYXOL405f76NEN8bN2u5teDWPZD8tYnivbCOhISE1EvMBujevTvdu3dvphEJBAKBM8bLheSvS8R4scLzmwTuA0LwurUtSo+WKRxYZSu/p/zO4rjF7E3b69SnQOJmk8SMrFR6GoyOWZNvFAx9DnpOBXXTVAllFxn46XAyyw9erhS/AtCzjTeT+0dyZ89QPLXqKq5QM4W52cTv2k7czq3kJF+q1O/q6UWXYSOIHT6a4OgO9Z7rqVxciB0+itjho5zazx7KYMvCePuG3p43RzDo7uirIrDpz5wh8933KN6zx6nde8IEAl94HnVwcLOPQSBoah577DEGDRpU5+NbagTNfffdx4kTJ3juuef4+OOP7e2jRo1i4sSJrFmzhieeeKJRVeinTp2qsShI0Ppo6rzsPzL+4N0D7zrFirgiMTsvn5m6S2iu3D/i09ZhJx7aq0WI2BarzP6kHNYeS2PjyTTySkyVjvF2VTO2awjje4QSrVBz7mAGcV8mcLi48rE1IoHWvf5zkJqQZZlzB/aye/kiclOTK9xLoutNoxly33S8Apt3fUe2Wsn7bimZH36IrNfbGhUK/B95hIBnnkYhNr8IBIJrTKsTtAsLHRV4Ne1OrNjXVELwhx9+iNFoZOLEidx7771VHuPj48Ptt9/OV199RZs2bezt/fr1495772XIkCHs2rWL++67z26dXh3vvPMOf//735tk7AJBUyPLMubMEvQJuZQm5NoW7KpxEldHeOLa2RdtjD/qUHekCpbJfvd1ImdxXM2V2pLtOEndcqtYbghkGYzFVVt51yRYm/XNNyZJYRencfMHNz/bf07f+1f43h9cfaAs67Dwk1exmlbX+XaqAG9C/u8dPEaObPDiY0p+KV/vTGT5wUtOlUYKCcZ1D+WJke3pGlb1JiyL2cwfv6xm74/LMBsdG55cIsIxFo1Ai81SrCggk6fm3oW3R8vO4xTYkNQK8V5YD8aNG8eRI0d46KGH6nxOVlYW8fHx3HTTTc04MoFAcKNj1hko2HiBkiOZTu2ajj743BGNOsT9Go2sZkrNpaw9v5Yl8UtI0iU59XkoXJhUrGdadhrh5goWnSHdYdjzEDMBlI1fVrBYZXadzeL7g5f5LS4Ds9X5A9FLq2JSnzbc3y+C2LD6V4Ab9aWcO7CXuF3buHjiqG1eWwGlSkX7vgOJHTGadj37NiqL0myycP6PTBKPZaMvNqF1V+Pho+H49mT753z3EeEMvbf+Ynm9x5KTQ9Z/PyF/xQqoEE3j2qcPwa/OxVVs9hK0YoYPH860adPqfHxLjKBZuXIl27dvR6vV8uabbzr1SZLEO++8w5o1a1i4cCFPP/00ffv2vTYDFbQomjIvO704nY8OfcSGCxuc2scVFfN8bj4hlgqf/T6RNhE79m4I690iRGyrVebwpTzWHU/jlxNpZBUaKh3joVExJjaY8T1D6enrQdIfmZz+7jzHM6pxk6wLMkT3qt25pa5cPnWcXUsXknbutFN7+34DGTb5QQIi2zXZvarDlJJC6l/+Ssm+ffY2ddtIwt55F7c+vZv9/gKBQFAXWp2gfa3YtWsXH3zwAZ06deKbb76p9rhevXqxfv36Kvu8vb155513mDBhAlu3bmXjxo2MHTu22mu9+uqrvPDCC/bvCwoKiIiIaPiLEAgaiWyyYkjMpzQhF31CLpa8yhNFsFkpajv6oO3ij7azb427Q11j/fF/MJbcFWds1YnlNuRlXyVXFX73dcI11r9ZXtMNiyyDoaCWaukqxGmLsfZrNxRJWYUYfaUgXfF7P9D6QCMy/gpPF+D4g6sNGW3PvniOGlX7oVVwPquIL7efZ9WRFKdFWrVS4p4+bXhsRHuiAqpf6E5OOMXmrz9zqiRy9/XD0LMDxhN90GKLwTAE5/LM3Ltxc22+LCVB0yPeC+vOa6+9xtChQ7n//vsZNmxYnc7ZtGkTM2bMwFJxQUYgEAiaCKvRQuGOZIp2JiNX2KymCnTF+45otJ3rb4d9NcgozmD56eWsOLMCnUHn1NdG5cEDudncnXsZ94rib9thNiG7w81NspCdkl/KDwcvs+LQZVJ1lTdBDor2Y0r/SMZ2C0Grrl9sl9Vq4fLJE8Tt2srZ/XswGSpfP6xzLF1vGk2nQcPQeng0+HWUk3Qsiy0L4zGUVPgsv4LYoaEMn9ypWf8mrEYjeYsXk/3Fl1iLiuzt6rAwgl7+M5633dYi/yYFgroydOhQgoLqV6nYvn17ZsyY0Uwjahjz5s0DYPTo0fj4+FTqj4mJISYmhvj4eObPny8EbUGT5WXrzXoWHv2Sb+IWUSo7qpNjDEbm5uTRp9wx1DvSkYndQkRsWZY5kaJj7bFUfjmeVuX8QatWcHNMMHf2CGNIpC/Jx3M4/UsKy8/mVzpWqVYQ3SuQDn2D2LowHkMdnNM0bira92m8oJ15IZFdyxZy4egfTu3hXWIZPnUW4V1iG32P2pBlGd1Pq8h4+22sFbK6fadPJ+jFF1DUELkqEAgEV5tWJ2h7ejqqzfT66qv+KvZ5eTUuwyshIYFJkyYRHh7O5s2b8fX1bfC1br31VpRKJRaLhXXr1tUoaGs0GjQaTbX9AsHVwKIzUHo6F318LoZz+U6LdBVRBbii7eKHtosfmnZe9doV6hrrT9hrAyk5mY3+ZDbWUjMKVxXabgG4dQu44asRa8VqBYOu7uJ0eZu1efJ+AFCoK4vP1YrTvravGq9GidN1QZZlTMnJlB47TumxYxTt3U/dxGwACWthUe2HXcHJFB2fbz/HhpPpTsVArmolUwdEMuemKEK9q88rLCnQsWvpAk5u+80xEklBz9vGscdTh8e27mitNvHaGlrI06/cjYu21X28CxDvhXXFarXyv//9jwcffJDhw4dz11130blzZzw9PVFU8x6SnZ1dZbtAIBA0BtkqU3IkE92vF7AWODb9KdxUeN0cifugUCRly3vvPpVzisVxi/k16VfMsvN8sK/ajwfTLjCy8BJO8nHncTYhO2JAo+9vNFvZEp/B8oOX2Xk268piaQI8NNzXz1aNXdNmv+rIvnyRuF3biN+1zSl7shzv4BBih48mdvgofEJCG/oyKpF0LIv1X55wiNjVuK607R7g5FjVlMiyTOFvv5H5/geYLl+2tyvc3PB//HH8Zs5AIdYYBNcBb731FgA7d+4kJCSETp061XrOoEGD6mVR3twYjUa7c2P//v2rPa5///7Ex8fzyy+/8Nlnn12t4QlaIE2Rly2X5LL1wMe8f3EtKTjmAL4WC8/k5TOpsBildyT0nVAmYvdpMSJ2Qnoh646nsvZYGpdyK1dXuygVjOwcyPieYYzqGEDO+QJO701n6f8SsFSxlhneyYfOg0Jo3zsIF1fbGoqkkFj/xfFandNunhWLqp4b7SqSn5HO798vJuH3HU7t/m0iGT5tJtF9BlyVjWfmrCzSXn+Dom3b7G2qkBDC3n4L9yFDmv3+AoFAUF9a3Yp3ZGSk/f+zsrKqPa5iX0Xr7/py+vRpRo8ejbu7O1u2bGl0hbSrqyuBgYGkp6eTlJRU+wkCwVVGtsoYkwvRl1Vhm1KryTJWSmiivO0itjqgekGuLkhqBe69g3DvfYPn/VqtoM93CM+VBOkcKM2r/L3cjFWHSpcKdt2+1Vh5XyFYazxbxEOPpbCQ0uPH0R8/bhOxjx/HkpvbsIspFCi9q7YCr4oDSbl8tu0cO844f1Z5aVXMGtKOWUOj8HOv3r1AlmVObd/Mju++RV/osBILju7I8Icf4dPDPxC2dRAuZWK2so2eR18ej9ql4Q9VgmuPeC+snXbt2tkf7r/77ju+++67azwigUBwI2JI0pH/SyKm5Aqb3RQSHoND8bo5EoVb0+YqNhaL1cL2y9tZFLeIw5mHnfpUkpKxKn8euHSKrvoKmdKSEnrcb8vIDopp9BjOZRbxw6HLrPwjmZxiZ9cfhQQjOwcxuX8Eo7sEoa7nRoASXT4Jv+/g1M6tZCadr9SvcXen8+DhxA4fTVjnmCZfJDabLE752DWxdVE8kV39GrUQXhX6uDgy3nmXkoMHHY2ShM+99xD47LOoApvOGlUguNaMrBABNXPmTObPn3+NR1R/4uPjMZlslbE15VuX9128eBGdTod3PZ5Jy9m4cSPr16/n5MmTZGRk4OnpSbdu3bjnnnt46KGHaox0FFx7Gp2XXZoHCb9w7uT3vFt8mv2ujo1NSllmakEhj1s98e7+MMROhPCWIWKDbe6w7ngq646ncS6zcoGBSiExrGMAd/YI45bYIAyZek7vT2fFkvOUFlbOxfYNcaPTwBA6DQjGy7/yOmZUjwDGPd69sttK2VeNm4qbZ8US1SOgQa+nRJfP3pXLOb55I1aLY0OBZ0AgQ+9/gJjhI1Eors6aTsHGX0l/800s+fn2Nu+77yb4tVdRNrI4UCAQCJqLVidox8TEoFarMZlMXLhwodrjyvvatm3boMkewIkTJ7jlllvw9PRk69atTmJ6Y5Cv3IIuEFxjrHoz+jN5NhH7dB7W4sqTPgCFhxptZ5uAre3og6Ipq0BNeohbDQnrbLnMbr7QZbwtm0fdSh+uLOYycboOVt7l/fp8kKsJI28KVNoaBOlqqqld3FvMw0xNyGYzhrNn7dXXpcePY0xMrJSR2GCsVjxvvaXmMcgy209n8dm2cxy6mOfUF+ChYfbwKKYPjMRTW/Mid/bli2ye9zkpCafsbS6ubgybOoO2w4fwl5Vv0WnvzXYx27WtlQdfvE2I2YIbhobMpYS1qkAgaArMuXp0G5IoPeHs/KCN8cN7XBTqwJZly1hsKmbV2VV8F/8dyUXJTn3eanfut7ozJekIQZYKm61VrtBnBgx52paX2QhKjRbWn0jj+4OXOXCh8qbCNr6uTO4Xwb392tToWFMVZqOR83/sJ27nVpKO/oFsdZ5DK5RK2vXqS9ebRhPdZwAqlzos+jeQ839k2ha+64ChxMz5w1l0Hlg/e9jqMGVmkvXxf9CtWuU073UbOJDgua+gjWn8ZgSBoCWi0Wh47bXXmDBhwrUeSoO4dMmxgSiwhg0nFfuSk5MbtMb50ksv8dxzz/HCCy/g6enJmTNn+Oijj3jyySf57LPPWLduXY2iOoDBYMBgcMTOFRQU1HC0oKlocF52aR4krIdTq9Bd2MEXXu4s9/LAUkHMHmSUeSV0FB1umQnhfVvMus/l3BLWllVix6dV/jtTSDC4vT/je4QxtmsIKoOVMwfS+eVfR8hLq1yUo/VQ07F/MJ0HhhDU1rPW58KonoHMes+P84ezSDyahb7YhNZdTXSvQNr3CWzQhjRjaQmH1q3i0NpVThEoWk8vBk28n563jmvWeUpFLPn5pP/zLQrWrbO3Kf39Cf37m3jeUvOal0AgEFxrWp2g7eLiws0338zGjRs5dOhQtccdLNuVfMcddzToPocPH2bMmDEEBQWxefNmwsLC7H1ms5nk5GRCQkKcdjFmZmby6KOP8pe//KVau6CSkhK77WVtk0WBoLmQZRlzdqlNwI7PxXChAKxViwPqcA+0Xfxw7eKHOtyjeezxEtbD6idsYq6ksAm6kgLi18KGV2Dil9D59qa/b32wmKqojK7Gyru8TZ/fvGNSu5eJ0b41W3k7idMta5G1MZgyMmzC9bFj6I8dp/TUKeTS0hrPUXh749qjB649e+LasweaTp1IvPMurIWFNQvfkoTC0xPP226rsttilVl/Io3Pt5+v9MDVxteVx0a0576+bWrNfjQZ9OxbuZxD61ZhrZD123nITYycMZsCtZ4/LX+NPocmoLbaHkS92iuZ+twIVELMFtxAPPbYY/WyjNy7dy9ff/11M45IIBBc71j1Zgq2XaZodwpYHHMGdYg73uOj0HZoeCxVc5BSlMLS+KX8dPYnikzOFU3RrsE8UGpm/NmjuFac/2i9YcCjMPBxcG9Y5VE5J1N0LD94iTVHUik0OAu9aqXEmK4hTO0fyZD2/ijq8XwhyzIpp+OI27mVM3t3YyipvHAdHN2R2JtG02XoTbh5NWxze10p1hlIPZPP/rX1cF+TIPFo4wVtq15P7oIFZH/1NXKJw3pV3TaS4JdfxmP0aLGZS3DdolKpePbZZ/nrX/96rYfSYAoLC+3/X1OFdMW++orIWq2W0aNH8+9//5sePXrY2/v27cs999zD2LFj2bZtG+PGjePIkSM1xh6+8847/P3vf6/X/QWNo9552aX5cNomYnN+GxariZWeHnwSFki+0rFeEK5048+xDzO61xykZo59qytpulJ+OZ7G2uNpHLucX+Ux/dv5cmfPMG7vFoq3WknikSx2fHWKlDN5lRxSlCoF7XoE0HlQCJFd/VDW0/lFpVbSeWBIoz+rzSYTxzdvYN9P31NaoHNcX6Oh3x130+/OSWjc6h+v0lCKdu4k7a9/w5yZaW/zvPVWQv7+Jio/v6s2DoFAIGgorU7QBpg9ezYbN25ky5YtVdrtJCQkEB8fjyRJPPzww/W+/r59+xg7dixt27Zl8+bNlXZKJicnExUVxbZt2xg5cqS9vaSkhDVr1jBs2LBqBe1NmzZhKRMpGiq2CwQNQTZbMSTp7Fbi5pyqM+glFwWaDr64xvih7eyL0quZM9YS1sPyaRUGanX+qtfBsqkwZSl0Gdc09zQbasiarkqczrNlVDcnLp415Ez7Vfje3/F9a61cbwDWkhL0p05RWm4dfuwY5oyMmk9SqdB27mwXr1179kTdtm2lhb2wd98l+amnbLuRqxK1y44Pe/fdSpmDRrOVVUeS+XJHIknZzguqHYI8eHJke+7sGVYn28zEwwfZMv9LCrIcr8snOJSbH3mCdj37cCbvDH/77h0GH7vfLmb7d9Jw7zODmtyyUiBo6QwfPpxp06bVfmAZKpVKCNoCgaBByBaZ4kPpFGy66ORipPBQ4zWmLe79QpotD7m+yLLM0ayjLI5bzJZLW7Be4fozxKsDD2anMyTpIE4zE48QGPwU9HvIFhvTQHSlJn4+msLyg5c5lVpZdOkY5MHk/hFM6tOmxtiVqshLTyVu5zbid21Fl1l5DujhH0Ds8FHEDh+Nf5vGxYTVRLmAnXImj5Qz+eRnVM7wrBUZ9NU4YtXpdFmmYP16Mj/8EHOqw35W4elJwJNP4jd9GtJVqvISCK4VwcHBdcrNbmoWLVrUoHXGctavX8+YMWOacEQ1ExISYs/pvhIXFxc+/vhjevbsSXx8PN9++y2PP/54tdd69dVXeeGFF+zfFxQUNDqWUVA9xQfL8rItteRll+bD6Q1lIvZWsNo+X/7QaHjXP4QEjePzwFXhwuwejzKz2yw0ymZe66sDWYUGNpxMY+2xVA5eyKvymJ4RPtzZI5Rx3UMJ8dKSHJ/L0RXnSDyShbmKXOzQDt50HhhCh75BaK5h/ItstRL/+w5+/36J0xqPQqmk+81jGXzPFNx9rt5mSGtxMRnv/Yv8H35wjMXTk5C//RWvO+8UG+AEAkGroVUK2vfccw8jRoxgx44d/P3vf+ejjz6y98myzGuvvQbYcnT69u3rdO7atWt5+OGHCQ4OrtJSZ+fOnYwfP57OnTvz66+/4teA3Ukff/wxjzzyCL6+zh9M+fn5vPrqq4BtIXbcuCYS5wSCarAUGu0Ctv5sPrKx6pxlpZ8W17IsbE20d822RU2JSW+rzAaqD5wrC6tZ/QS8eLqyiGvS1zFnukK/sXLuTpOi8XYWp6uz8q4oTqvEolM5stWKMSnJyTrccOYMWGrOCVeHhaHt2QPXHj1x7dkTbWwMijpkgXmOHkWbzz4lde6rWAsKsEoSClm2f1V4ehL27rt4jh5lP6fEaGb5gct8vSuRNJ3z5pCebbx5clQHbo0JrlPFUWFONtsWfMXZA3vsbUqViv4T7mPA3feidtFwMP0gb/30MSNPPmAXs4O6uDHxqf5CzBbccAwdOpSgoPpljLdv354ZM2Y004gEAsH1iv5sHvnrEjFXFC1VEp7DwvEcGdG08TuNwGQ18duF31gct5iTOSed+lwULtzp3YUHLsfRIWmr84l+7W352D2ngKphC9uyLHPwQh7LD15i/Yk09FcsLruqldzZM5TJ/SPpE+lTrwXT0qJCzuzdRdzObaSeia/Ur9a60mngEGJvGk1EbPdmqTJrEgH7SiTQujdskb30+HEy3nmX0iNHHI1KJb6T7yfg6adFdZXghuGmm24iPr7y+0JNbN68mbfffputW7fWfnA1WK1We5FKQ88vx9PTIUzq9VUXHFzZ59XEubY9evQgLCyM1NRU1q1bV6OgrdFoaqzgFjQNsrksL3tfDXnZep2tOCRuNZzbYhexAdKVSj7y82GDh3PV7+1Rt/NC3xcIcW+auIuGkldsZOOpdNYdT2Xv+ZwqzSJjQ70Y3zOU8d3DiPR3Izu5iNObk/n1YAYlOmOl470DXek8KIROA0LwDqxffElTI8sySUcPsXvpQrIuXXDq6zx4OEOnPIhvSFjVJzcTJYcOkTr3VUzJjugZ96FDCX3rn6hDru3fg0AgENSXlvEE3gB+/PFHu21OaWkpDzzwAEajkc8++4xVq1YxevRovvjii0rnffXVV2RnZ5Odnc1PP/3ktLtw37593H777ZSUlHDy5MlqM7Ory210cXFBo9GQkpJCt27dePnll+nZsyfu7u4cOXKEf/3rX5w/f55BgwaxcuXKpvlBNAXXY3bxDYpslTGlFqFPyKU0IRdTcjXCrQI07bxtWdhd/FAFul6b3XinVtXRllu2HbdwPLh4OAvWpiZYVKoJV9+6WXnbxWlfUF67XaCtEXNenrN1+IkTNgvwGlC4uaHt3t1Rfd2jB6oacsdqY19IV+aO/Rs9zh9maNpJPIwlFLm48XtoN46378N7IbHcAuhKTCzae4H5vyeRV+JcWTOkvT9PjuzA0A7+dfr3ZLVYOLJxLb//8B0mvcMqPbJbD25+5En8wtoAsOnCJv6zdh63xj+M2mp7gA2L9eKuJ/qgVLcMezCB4Gqya9euep8zaNCgelmUCwSCGxtTVgm6X5LQJzhnPrv2CMB7bBQqv5bxjKQz6PjxzI8sS1hGRolz1XKA1p8p7tHcd2YvfufXOZ8Y2hOGPQ8xd4GiYRvjsgoN/HQ4me8PXiYxu7Ltd8823kzuH8mdPUPx1NZ9bmwxm0g68gdxu7aS+McBLGZnu3JJUhDZvSddbxpNh/6DUddh82J9KNYZSD2bT8rp2gVshUIiqJ0X4Z18sFpkjvx2qdpjnZAhulf95q2mtDQyP/o3BWvXOrW7DxtG8Csvo+nYsV7XEwhaOy+++CJjx47l8ccfp3379nU6JyMjgx07djTqvrNmzWLWrFmNukY5Fdccs7Kyqj2uYl+bNm2a5N5XjiM1NZWkpHpEJwiahSrzsgeH4nNHNJK5EI795KjEtjgLuwYJFgSG8427C6U4Nl108evC3AFz6RvsXPB1NSnQm/jtVAZrj6ey+2w25ipU7A5BHtzZI4zxPUNpH+hBsc7AmQMZ7NmXTk5K5bVNjZuKjv2C6TwohOAorxZRYZx6JoFdSxeQHO+8ubBtj94MnzqT4OgOV3U8VoOBrI//Q+6CBXY3QsnVleBXXsZn8uQW8TMTCASC+tJqBe2AgAAOHjzIxx9/zLJly1i8eDFKpZKYmBg+//xzHnvsMRRV7NB+9NFH2bt3L8HBwUyaNMmpb9++fZSUZU/VtDuyOsp3Nf74449s2rSJTz75hNTUVCwWC/7+/vTp04c33niDqVOnolK1kB99a8guFtSI1WDGcDaf0oRc9KdzsRZWbV+ncFOibe+Otr0WbaQShdoC5lwwZsAlg20ybDbavloMtsxoc1l7+X9V9pvKvq/YX358Lf2WyjsrayT5YMN/UJKiCnHar7JYXVGgdvVp8CKfoGqsRiOG+Hhb9fVxWwW26fLlmk+SJDQdO+LaswfasvxrTfv2SMqm+d38FpfBo4sPgSyxLaIv2yKcH/QkI8xZdIgxXYP5/VwORVfkQN4SE8yTo9rTJ7LudlFpZ0/z29efknXRsWjg5u3DyAcfocuwkfYHi2UJy1i06UduS5hjF7Mjuvlwx2O9hJgtENSDffv28dVXXzF//vxrPRSBQNCCsZaYKNh8iaJ9aVQsGVK38cBnfDSads2bx1xXknRJfBf/HT+f/5lSc6lTXxefDjyo8Gfsqd9w0R9xPrHdcBj+AkSPskeq1AeLVWbX2Sy+P3iZ3+IyKi1Ie2lVTOrThvv7RRAbVvcqQlmWyTh/llM7t5KwZyf6wsp25QERbYkdcTMxQ0fg4edf77FXh13APpNP6pk88tJrE7A9CevkS5tOvoS090atsc1HzSYLcb+nYigxV3t+ORo3Fe371E3QtpaUkDPvG3Lmz0eusEbhEh1N8NxX8LjppjpdRyC43ujTpw9ffvklY8aM4bnnnuO+++4jNDT0Wg+rXsTExKBWqzGZTFy4cKHa48r72rZtWylysSmormhHcHWpMi97fBvc3fbDD3+F81uqXEOTPUPZ2n4Q7xsukKLPgTIx21fjyzN9nmFSh0kor8G6VonRzOb4TNYdS2X76SyMlsr24G393RjfI5Q7e4bROdgTs9FK4tEs1i47x+X43EqJcAqlRNtu/nQZFErbbv4tZk0kJ/kyu5cv4tzBvU7twdEdGT5tJm2797rqYyo9cZLUuXMxnj9vb3Pt04ewd9/BpZoCPoFAIGgNSLKYubQaCgoK8Pb2RqfTNY3NkFN2cVV/BmWLHE2ZXXw9IstgtTRc1G1Av7nUjdKCSPSF0RhK21Ld3hS1lIhWcQCt8hAu0hkkqfIEslUiKa+ojq4ue7pCv9YHmsGGUFA9sixjSk6uYB1+DENcPLKp5sxAZWCA3TbctUcPtN26obzCLqup0JssDHh7M4Wl5mpN76tCIcGdPcN4YmR7uoTU/f1YX1TE7uULObZ5oyOvW5LoectYhk2ZidbDA7D97D458gkbdu1kbMJsVLJNzG7bw4/b5/RoMQ9ugtZLk88pWjjfffcdM2bMaJRF5PXCjfa7FwjqgmyxUrQ3jYItl5BLHYKk0ssFr9ujcOsZeM1zsmVZZn/6fhbHLWZn8k6nPgmJESEDmaGX6XdiHdIVIjddxtsqstv0a9C9k/NKWHEomRWHLpOqq7zxe1C0H1MHRHJb1xC09YhCKcjOJH7Xdk7t3EpeanKlfjdvH2KGjSD2ppsJbBvVJJVEDRWwwzv5EBLtjUsNNvNJx7NZ/8Xx6pOUACQY90QPonoE1DhO2WpF9/PPZH30b8yZmfZ2pbc3Ac88g+/k+5HUwhVKcO25VvOK6OhoAHJzcyksc/fy9vbGy8uryuIWgOLiYrKzs1vUfPD2229n48aN3HHHHaxbt67KY2JjY4mPj+fJJ5/ks88+q9f17777bubMmcMdd9xR7TFhYWGkpaUxbtw4fvnllzpfW8wpm45KedmuFvzbrMIldWnVhSCeoRA7gXPtBvDupQ3sT99v71JKSqZ0mcITPZ/AW3N1N+LpTRa2n85i7fFUtsZnUmqq/G8tzFvL+J5hjO8RSvdwb5Ah5Uwep/elc/5IFiZD5XOCo7zoPDCEjv2C0Xpcnc8+s9HImX27OXdwH6VFBbh6eNGh/yA6DRqGysW2PlOQncXeH5dxavtmZNmx3uobGsbQyTPoNGjoVa+Clk0msr/8H9lffmmP7ZPUagL/9Bx+s2Y1WWGIQCAQNCX1mVO0kDJhwVWnKbKLryayXEHUrapyuAlF44ZUIddLCmvIy1disMaitw5Ab+2HWY6o8jgJPRrFMbSKg2iVh1BJ2c06rlqRFKDUgNLFlhGt1NjsuFW2r8aci6iNBXUqELHIEtlBgwl+eBlovIQ43QKxFBaiP3GizD7cVoFtyc2t8RxJo0EbG+tsHR4WdtUm/etPpFFQWnslTTlKSWLygAgeuymatv51F9llWSZh93a2L/6GEl2+vT2wbRS3zH6KsE5d7G0mq4l/7P0Hhw4lMDZhDirZ9sAW1TOA2+Z0Q3m1Mu4FghZAfn4+Pj4+Tm07d+6s+uAaqG/GokAguDGQZRl9fC669UmYsx0isKRW4DmiDR43tUHhcm0X/gwWA+sT17Mkfgln8s449bmqXLk7fAQP5GQRuf8nsFaY0yhU0GOyLSM7sHO972s0W9kSn8Hyg5fZeTarUpVUgIeG+/rZqrGjAuo+JzKUlHB2/+/E7drG5VPHK/Wr1C607z+IrjeNpm2P3igaufDanAL2lUT1CGDc493ZsjDeVqktYX+kRrZVZt88K7ZWMbvk8GEy3n4H/ckKlqUqFX7TpxHw5JMom6FCUyBobVRV0Zyfn09+fn6N57U0i93Zs2ezceNGtmzZgk6nq1SBnZCQQHx8PJIk8fDDD9f7+mvWrKFNmzbVCtpHjx4lLc2W1VyT6C1oHqrMy1bE4W99G+XlfOeDPUIgdgJ0nYguKIYvTnzJ8oP/h0V2CMADQwcyt/9cOvhePWtro9nK7nNZrDuWxqa4jEqOdgCBnhru6B7KnT1D6R3hi0IhkZNaxL7V5zlzIIOiPEOlczz9tXQeGELngSH4BLtdjZdi59yh/Wz8/N8YiouQJAlZlpEkibMH9rB1wVfc/PDjZF5I5MjGtVgqFGy4+/ox+J6pdBt1K8pr4MxqOHeO1Ffmoj91yt6miY0h7N130XbqdNXHIxAIBM2BqNBuRTTp7sdjy2HVY3U/fvTfbNZ0NdpRV/j+WltTXwdYZG/01r7oLf3RW/sgU/VCkVLKRKs6glZzHK3mPJJK4SQaOwvKFf5z6i8/von7a7A1yi8x8t1X7/FU/gd1/pm8YHqSX5Uj6v2zFDQ9CquFSF06HXMv0jHnIh1zLxJekImils0dKZ6BnPNry1m/tpzxb8tFnzAs19DWXW+ylG+CrhMjOwey4KEB9bpHbmoyW775nEsnHYu2ao2WoZMfoPfYO50WaktMJby04yUunMzittOz7WJ2dK9AxszuKsRsQZPRGioqHnvsMebNm8esWbP45ptv7O0KhaLBi5EtqSLnWtEafvcCwdXAmFaM7pdEDOfyndrd+gThfVs7lN6aazOwMrJLs/nh9A98f/p7cvXOGwRD3UOZFjqcSRdP4nVmo/OJajfoMxMGPwU+VW+CrYlzmUX8cOgyK/9IJqfY+RlMIcGozkFM7h/BqC5BqJV1m5dYLRYunTjKqZ1bOXdwH2Zj5YXrNrHdiL1pNJ0GDkXj1nBnnpICIyln8kg9k09KLQK2pJAIautJeCdfwjvXX8CuDrPJwvnDWSQezUJfbELrria6VyDt+wSiqqGC3ZicQuaHH1C4wfl36jFqFEEv/xlNVFSjxyYQNDXXal6hUCgYPny4vVK7LiQmJrJ79+4WNx8cOXIkO3bs4Pnnn+ejjz6yt8uyzD333MOqVauYNWsW3377baVz165dy8MPP0xwcDDr1q2jXbt2Tv2SJOHh4cHRo0crZY0bDAZuu+02duzYQYcOHThx4gRabd0LWcScsnFYcnLJWXAEY5aLvc1duQ4f1TwkqUwUtovYd0PEICzI/HTuJ/57+L/kG/Lt54V7hPPnfv/P3nnHt1Xd/f99r7ZkWd527MRZznISJ07IYBOzKXuUESidAQotLS0Po/210KeFQPsAT4HSh04Is7QQRkoKIUBYGZA9HSd2hveSJWvr3vv7Q7JsWbItJ84+77yUK52lr4Z1zz2f8/1+76aiuOKwbNoIKyord7fx9oY6lm5poMOXGIUv02rgwqnDuLhsGHNGZ6OTJbyuIDvXNLJjVQPNe90JfYwWPSUzcpkwdxjDxjqOSHScqi9X8ebvfh31W0ptschktTHr0quYcdGlGEyH3xlMUxTannue5ieeQAt2hazXkXPLAnJuvRXJaOx/AIFAIDjCCA9twcBsf6c7Z3YqLP/vyO1E5YBFYWOSvvFeyl31ms5IqMOMv9aMf7+OYFMfEzcJjCNsmCdmYpmUi77AhiRddXjfjxRxeoNUt3ioafVQ0+KNHFu91LR46PCFMDGF+SYb6Xjob56qauDCxhJlNoGj7OLzRCHb18GE9r1MbN/DxLa9jHPuw6z0HzrcbbCwPbOY7Vkj2ZFZzI7MYjqNvXbWhqErx9OxgD9JyKy+CAeDrFr8GmvefA0l3L1LedzsUzjr5u+RnhOfO7Hd384dH9yBc2eYC3Z8D50WOUWPLc/l3O9ORpfiorFAcLzw8ssvo2kar732WpygDQeW6+9o88gRCARDjxZS8W5qxr+lFcUbRmfVY56cjXVqLlI0XYfiDuJ6fw+eNQ1x65TGUelkXDwG43D7EbI+QmV7JYu2LmLJ7iWE1Pi5VllOGTdlT+ec7R+hf7/XplBzBsy5FWYvANvgckz7ggpLNtXz6pq9rKlpT6gfnmnh2pNGcM1JIyhwpL5Q27ynOpIX+9OP8DgTx80cVkTpGRVMOu0sHHn5g7K5iwMWsMdnUDB2aATs3ugNuphXWSoonZ20/t+ztD33XPdCNGAaP578e+/BdsopQ26jQHA8cMstt3DDDTcM3DDKiy++yKeffnoILTow/vnPf1JRUcHjjz+Oz+fjxhtvJBgM8vTTT/PGG29QUVHBM888k7Tvs88+S0tLCy0tLbz++uvcddddcfV2ux23282sWbP4yU9+wuzZs8nKymLbtm089thjrFu3jgkTJvDOO+8MSswWHCABN1T+h+Dqz2itOhNF6zpfh8jUP41NvwzS8iMidunlUDw35iiytnEtC1cvZFtbd+Qpi97Cd6d+l5sn34xJd2g34qmqxpqaNt7ZWM+/N9UnbHoDsJv1nD+5gEumFXLK2GwMOplwUGH32iZ2rGpg75Y2NDX+Ok6SJUZOzmL8nAJGl+WgP4KRccLBIEv/8HjKYras1zPjwkuZfdnVWOxHZlNHcN8+6u67D9+XX8XKjGPGUPjIQixTpx4RmwQCgeBQIgTtExVve+pi9uFA0qUk+vYvKB+iellPSjGxDwA1qBCocuLf3oZ/exuKK7knumTRY56QiWViFubxmcjWoydfWrsnGBWqk4vW/RHAyE9Ct/Inw2OompZU1I7MdSV+EroVg8nCyAzLIXkdgm4MoSAjWvYwqrGakU3VjGyqIdOTuAjZE0WWqc0aTk3+aPbkjWZP/mia0/Pi/nYKD7XhB0Cd00dnkhxNyZAlyLCktrO1ZsNaPvjrMzgbukOHpefmUfGtWxk7M9HDu7azllvfvxV1j5Xzd3ynW8yekce53ykVYrbghOSuu+7iscce40c/+lFC3c9+9jPOOeeclMd67733WLhw4RBaJxAIjjZ8W1tpe60ykgO7R6hn35ZWnG/vJvPKcYRbfbg/3IfW49yvyzLjuHAUlik5R2zji6qpfFr7Kc9vfZ5V9avi6nSSjnOKz+YmczHT1v8T1vTKsWovhFPuiHhlm9IG9bybazt4Zc1e3lxXh7tXiFCjTua8yflcN6uYU8ZmI6foJdXZ3sb2Tz9i6ycf0rynOqHenGZnwilnMPmMCgpKxg/6PT8aBewDRVMUnK+/TvP//h6lpTtVlC4ri9w77yTj6qtErkuBYAhJS0ujuLj4SJuRQE5ODmvWrOGJJ57g5ZdfZtGiReh0OiZNmsQf/vAHbrnllj7zgi9YsIAvvviC/Px8rrzyyoT6+vp63njjDZYuXcoLL7zAww8/TCAQIDMzk7KyMp5++mm+9a1vYbGIdZZDRqATKpfCljegahke/+m0h78PRNb1dLSQnf4MxmllMPnfcSI2QIOngce+eox3q9+NG/bC0Rdy18y7KLCltnnqQNA0jfX7nLy9ISJiN7j8CW2sRh3nluZzcVkhZ4zPwaTXoaka9bucbF/ZwK6vmgj6E9dccovtTJgbyYttTT86PIgrV35KwNOZcvsz5n+LmRdddggt6htN03D+4zUaH3kEzds9F8q6+Rvk/vjHyGKDikAgOE4RIcePIYY0nM+rN8L2JaCphFWJSncuVe5sfIoeiy5Mib2V8fZm9HL065ExEsZfMIjQ0/15LPcWrI39hqY+3gi3+fFvb8O3vY3AbieEk/8J6vOtWCZlYZ6YhXFEOpLuyCywaZqG0xuiutXDnlYP1S1e9rR6qGmJCNcDida9kSQodFgYlWNFVeGL3a2cI3/F7wx/JEPyoGgSOkmLHZ2ajZ+EbuUDdSaPXzuNK8qHH6JXemKiqSrB6upozutI7utAZSUM4AlvKCzEPK0MS9k0LNOmYS6ddExOmF9fu5+7/rEh5fYDfQc729v46Pk/s+Pz7hy/sk7HSRdfwdyrrksafmpH2w5uXXYrttp8zqv8dkzMLjkpj3O/VYosxGzBIeBYDhEoyzIvvPDCoD1yvvGNbxx1ISaPBMfyZy8Q9IVvayuti7amGhkSAMmkI71iBGmnFMW8tw833pCXt3a9xYvbXqTGVRNXZzfYubrkcq5XzAxb8zdo2x3fObsETv0RlH09ck2VIh2+EG+tr+WVNfvYUudKqB+Xl8a1s0Zw5YzhZNlSW2AOBfxUfbmKrSuWs2fDOrReG6dlnZ4xM2ZRemYFY8pPQqdPfXOu1xWM5sBup7bSSXu9p8+2R4uArQYCuJcuxb3sA5QOJzpHBvZzzsZ+wQXIpshn5Vm5isaFCwls395tv8FA1s3fIPuWW9DZj2ykAIEgVY7UvEJRFHRiw8cRRcwp+6FLxN66GHa+D2E/mqbHGf4uHuXiWDNjegvZl+egm3hKwrpoQAnw981/5y+b/4Iv7IuVT8yayL2z72Vm/sxDYrqmaWypc/H2xjqWbKxnf7svoY1JL1MxMY9LphUyb0IelqhXtbPRy45VDexY2YC7LVH8Tss0MX52JIJJVuGBpxcZClRVweNsx93SjKulGXdLMxvef5eOpoaU+kuSRMmsk7n0J/cfYksTCTU2Uf//fo5nxSexMkNREcMeegjbnMGlyBMIBIKjARFyXDAwEy+GbW9T5c5iad14AqoBCQ0NCQmNne4clstjuLCwkrH2Npj3M5h27ZG2+phEUzSCe1z4drTh39ZGuKkPLwK9hHlsBuaJERFbn3n4xMGeonWXUF3T0iVge3D5wwMP0oOeovWobFvklmNjVLaVEVlWzNHccf6QwuyHlvGBbyZzAk9zobya83VryKATJ2n8R5nFu+psghhxWPRcOGXYoXj5JxTh9nZ8Gzbg27AB/4aN+DZtQnUn5i7qiWy1Yp46Fcu0aVimlWEpK0Ofm9tvn2OFi6YO44G3t+D2hftdA5eA9H6+g6qqsOH9d/n05ecJ+rr/xosmlnLOd28nZ8TIpP1W16/mzg/vJLtxFOdVfismZo87KY9zhJgtOMF59NFHue+++5Akia1btzJ+/HgAbr755oQcgAMxduxYvvGNbxwKMwUCwRFGC6m0vVY5KDHbNruA9HNHorMfGY+gBk8DL29/mX9W/hNXMF5ULrYXM3/cVVzubMO64k/Q2Wthddh0OP2uyPVcipuCNU1jTU07r6zZy7831eMPxQvOFoOOS6YN49pZxcwozkjJa1pTVfZv28yWFcvZueozgr7EBe9h4yZQesbZTDj5tJRDcR6YgJ1B4fhMhh0FHtju5cupu/c+VJcLZBlUFWQZ9/vvI//mIfJ+chedn3xC57IP4vrZzzuPvLt/inHE4POeCwQnIkLMFhx1BDph538inthREbsLRcugNXgfQW1yrMw2t4CMi09F0sdf82uaxvK9y/ntl7+ltrM2Vp5hyuCHM37IlSVXojsETkGVjW7e2VDH2xvrqW5JPPcadBJnjs/l4rJCzinNJ80UOd/6OoNs+rye7SsbaKpJ3ChnMOkYG82LXTQu47DlxQ54PTGh2tXSjLs1/n5nWyvqQWx21jQNX2f/a2lDjaZpuN5ZQsOvf43a0RErz7jmavLuuRdd2pHdJCAQCASHAyFon6iUXk7VK7/mzf3dIouGFHcMqHoW7y/lsjF7KCk9MiFUjlUUT4hAZTu+7W34d7Sj9SEI6xzGmIBtGpuBfAhzxWiaRrs3FA0NPvSi9egcGyOzbYzOsTI8s1u07g+zQcdj10zne4u+JKgZWayexmL1tPjnif73P9dMT2lMQTdqMEhg+3Z86zfg27gR38aNhPbu7b+TJGEaNw7LtDLMZWVYpk3DNHbscRvusOd3UNKSr4UP9B1s3F3F+396msbdO7vHtadz5vxvMfnMs5H6CA+3tGYp939yP0UtEzm38pvdYvasfM755iQhZgtOeN5//30MBgM//vGPGTasezPJ3/72t0GPNXfuXObOnTuU5gkEgqME76bmSJjxFEk/fyTp845MyNnNLZt5fuvzvF/zPmEt3uZZBbO4afSlnLl3I/KSB8DfEd959JkRIXv0mSmnQ2p2B3h97X5eXbOP3UkWp6cNd3Dd7GIuLhuG3Zya13Rr7T62ffIhWz/5EHdLc0J9em4epafPY9LpFWQVFg043rEuYPfEvXw5+2+/o7tAVeOOqstFwy8fiOtjKp1EwX33YZ016zBZKRAcn2zcuJFly5ZRVVVFR0cHDoeDkpISzjnnHMrKyo60eYLjlaAHKnuK2ImbuwLGObT5f4qiRcO66yUyLx+H7aT8hLZV7VUsXLMwLv2ITtJx3cTruG3abThMjiE1v7rFwzsb6nhnYz07GhPFWZ0sccrYbC6ZVsj5pQU4oukPlZDKrmhe7D2bWlF758WWYERpFhPmFDB6ei6GIV7rVMIhOttacbe04IoJ1U09BOuWOEeDQ4EkSVjSDl80lXB7Ow0PPIj7P/+Jlelycxj23/+N/ayzDpsdAoFAcKQ5eq7+BIeVsCaztG4C4Ccq1yQhknxuad0EbtVk8WXpB03TCDd68W2L5MIO7nX1qYwZR9gxT8rCPCELwzDbkObq6xKtq6NCdUy4jt4/UNE6IlZbD0i0HohzSvN59qaT+Olr6+nwhZGlSN7srmO6Rc//XDOdc0oTJ/uCbjRNI1RbGxWvIx7Yga3b0EL9h4TX5ebEwoZbysowT5lywu3qPNDvYMDr5bN/LGL90iVxoTWnzDuX02/4Jtb0vi82X9z2Io+sfoSRrVM5d+c30WmRv6Xxc/I5++bSlPNUCgTHM9u3b+f73/8+Dz/8cFz5mDFjeOKJJ7j00ktTHsvn89Hc3HxU5k0UCAQHh39La3fO7IGQILQ/9dyIQ0FYDbN873IWbV3E+ub1cXV6Wc9Foy/ipuHnMHHrv+Eft/ZaDJdg0iVw2o+gKLXQooqq8cnOZl5ds4/3tzYS7rXInG7Wc+WM4Xz9pBGUFqbqNd3Bjs9XsPWTD2moqkyoN1osjJ97OpPPqKBoYmmfm/kiY0UE7LrKdmp3OmmrO3YF7J6ogQB1994XeZBCVjc5J5v8u36C4/LL+n2/BAJB/+zcuZMFCxawYsWKPtuceeaZPPvss5SUlBxGywTHLUEP7HwvImJXvpdUxMaaA6WX4pEvp/0zHSiR84Iu3Uj2TaUYR8QLoR2BDp7Z8AyvbH8FRev2Gp4zbA73zrqXksyh++7ub/eyZGM9b2+sY3Ntoke1JMGc0VlcXFbIhVMKyE6LpMrQNI36XR3sWFlP1VdNBLyJ64vZw9OYOLeAcbPysTlST4fSE03T8LldEXE6zqu6BXdUtO50tqd0ru0Lc5ode04u6Tm52LO7jjm07N/HqtdfSdnOktknH7ANg8G9/EPqf/ELlJaWWFn6RReS///+H/rMzMNig0AgEBwtHJ1Xg4JDTuXKTwn4A/QtZnchEfAHWPbnpxleOhW90YjeaIoejegNxqRlOoNhSIXaoxEtpODf1YF/eySUuNIRSNpOMuswj8+MeGKPz0SXdnChDTVNo80TjPewbvXGPK3dByBaF2VYomHBe4YIj4QHN+kPvWfuuaX5fHjXqfzfa+/iqupEH9YTNoRJH5fGLddcSJY97ZDbcKyhuN34N22KeF5HPbCVtrZ++0gmE+bS0vjQ4YWFx/3faiqcW5rPqvvP4d3N9fxncyNOX5AMi5Hzp+Rz4ZRhcZs3NE2jcuVnfPjcs3jau9/z7OHFnPPd7zN80pQ+n0fTNP537f/yl81/YXTrNM7ZeXNMzJ4wp4CKmycJMVsgiNLc3MyUKYl/TzU1NXR2Dk6Qev3110UObYHgOEJTNUK1nfh3tuPf5Uw93LgG6iC8uQ8Gd9DN6ztf56VtL1HnqYuryzRl8vUJX+e67BnkfPl3+OAq6LGAjWyIpHs69UeQMy6l59vf7uW1L/fz2pf7qOtIzFt58phsrps9gvMnF6S0KTUcClG9dg1bViynet2ahLCckiwzatoMSk+fx9hZczEYky9c+9xBaitTF7BziyMCdlGXgG05NpYs3EuXRsKMp0jenXeSceUVh9AigeD4Z/Xq1Zx77rl0dnai9SNuffzxx5x00km8//77zBLREAQHQkzEXhw5hpJ4/1pzIpvQJl+BVnQyznf34llZT9ckxTgqnez5k+LSnSiqwutVr/Pk2idpD7THyovSirj7pLupKK4YkvWaRpefJRvreWdjHWv3OpO2mVGcwSXTCrlo6jDy07tTIHY0e9mxqpEdqxpwNSeK91aHMZYXO2f4wGt3oWAAd0sL7mjob1fPY1S4DgeTr6+mgk6vjxOr7T1F65xc0rNzMZiTp3gMB4Os/887BDwe+p9cSphsNsbPOfWA7UwFpbOTxocepuP112NlOoeDgl/+gvSLLjqkzy0QCARHK8fG1aFgyKlasxJJkvqd9Pdky8cfsOXjDwZu2IUkdYvdBkO84G00oetd1ocw3rNP0nGMPcoMxkMuzIWdgYiAvb2NwC4nWq/8c13o8yyYJ2ZhmZiFcWQ60iBDB/clWkc8rodStLYxIstyWETr/nhr2XJ2vuHG5m3EFKoCzQ+SGX19CX/76gPGX5nOJWfPO6I2Hkm0cJhAVVWP0OEbCO7aPeCOVOOoUT1Ch0/HPGE8kiG1cJInInpNYYK7El3TSnydLixp6ZS456LX8oDI34izoZ4P/vZHatZ/1d3PaOLkq69n5tcuQ6fv+/0NqSEe+PwB3tr1FmNap3NO5TeQo+NOnFvAvG8IMVsg6InZbKa2tnbghicQiqLwP//zPzz33HPodDqCwSDXXHMNP//5zzGZDswLQiA4Vgi3+vDvdBKoase/q2NQYcZjSCAfYoF0n3sfL217iTeq3sATihdvSzJKuHHSjXzNmI/586eg8mfxnQ02OOlbMPf74Bg4XHcwrLJsWyOvrNnHJzubE6aGuXYTV88czrUnjWBUzsAReDRNo37ndrauWM6Ozz/B70ncPJQ7agyTz6hg4qlnYstI9AoalIAtQe7I9GNSwO6Na+l/Ii8oletrWcaz4hMyr7nm0BsmEByndHZ2ctlll+F2u8nMzOSKK65g1qxZDB8+HIvFgs/nY//+/axZs4bFixfT1tbG5Zdfzo4dO0hLExvmBSkQ9EbE662LI2HFk4rY2TERm5GngU6P4g7S+rdtBHvkk7adPIyMi8fErQ2ubVzLwtUL2da2LVZm0Vv4zpTvcPPkmzHrk4uuqdLaGeDdzQ28vaGO1TVtSU9PU4scXFw2jK+VDWN4pjVW7veEqPqqicpVDdTv6kjopzfKjCnPZcKcAoZPzIqtY2iqiqfD2e1V3dIU9bJuiYnWPlfieIPBlpGJPTunh2idF/OwtufkYk13HHDkE73RyIW3/5jFv/01aH2F/5FAggtv/zF648E5LPWHZ+VK6u6/n3Bdfaws7cwzKfjvX2HIyztkzysQCARHO8fm1aLgoPF1ulIWsw8ITSMcDBzUrroDISKUG+NE7jhR3GhEZzBiMBpTE9j1RvQuHXK9CvtDaK19hG/WSZjGOLBE82Hrsy0D2totWnuoaYmGBT8I0VqWoDCjOzz40SZa98Vby5ZT/dJO8L5HSOuKGqABEqFQFfhM7H7xfN7SNC49p+IIW3t4CDU24tuwAX+X9/WWLWi+JGGseiA7HFiiOa8t08qwTJ2KLiPj8Bh8HFD15SqW/uFxAp7O2GYfSZLYufpzlv/9Wc675Ye01e5j1euvEg4FY/3GzJhFxbduxZHXf0h8b8jLXR/fxWe1nzG2pZyzd97ULWafMox5N04UYrZA0IvS0lKefvppLrvssoTchydqZInvf//7vP7663z66adMmDCB/fv3c8YZZ7Bp0yYWL158pM0TCIYU1RvCv8tJYKcTf5UTpS3R63jQaGCeknPw4/QeVtNY27SWRVsXsXzvcrReC6CnFZ3GTZNu5GSPB+mzJ2DPZ/EDWLJgzq0w+3tgzRrw+aqaOvnHl/v411f7afUE4+pkCeZNyOPaWSOYNzEPQwobazuaGti64kO2frIcZ0N9Qr0tM4tJp51F6RkV5BaPiqvzubtyYEfyYJ8IAnYs1c/atXjXrsW3bj2BHTtSH0BVUToObkFfIDjReeqpp2hsbOSmm27iqaeewm5Pnsv2lltu4YknnuCOO+7g+eef5+mnn+aee+45zNYKjhmCXqh6PxpOvA8R25IFpZdC6eUw6nTQdZ/HAntdtL2wDcUVPTcnyZfd4Gngsa8e493qd+OGvXDUhdx10l0U2AoO2PwOb4j/bGng7Y11fL6rFUVNXPedWGDn4rJhXFxWGLfZTQmr7N3Syo6VDVRvakEN9+orQWGJleET9DhyFXyuvezduJYty5tiocHdra2oyoFHwjGYzN1CdVSkTs/Ji3lYp2XnoD/EThpjZ87hsp/+POn6kKZpmGw2Lrz9x4ydOeeQPL/q89H02OO0L1oUK5OtVvLvvw/HVVedsNfBAoFA0IWkHVJVUzCUuFwuHA4HHR0dpKenlu+sL976n4eoWvNFaqK2JJE3aixTK86LitRBlFCQUDBIOBgkHAyghEKxuq6ycO+yUOR4MHlODgcG2USBZQyF1rEMs4zGpLMmbecLu6nz7aYxUEOr2oBkkNAlEdBVWUdA0+FVZDyKREdQwxmENr+GR5FQZD1hSUdY0qNI3ffDki7yWNbHHmuyntzMNEbn2hmVHZ/X+mgWrfvC4/fxxx/8BVxLB26cfgG3PvkdbOaBNwscS6g+H/4tW/Bt2IhvQ8QDO9zQ0H8nvR7zhAkx8dpcVoZx1CgxsT1Aqr5cxZu/+3V0821qv09p2TlUfHMBJbNOHvB9b/O3cfuy29ncupmSlhlU7LwJmcji8qRThzFv/kQkIWYLDjNDOac4VDz99NP84Ac/QJIkMjIycDgieelramrIzc3FZhvY27ALj8dDS0vLMR1yfNWqVcydO5dHHnmE//qv/4qVP//889x888289dZbXHLJJQOOcyx89oITEy2sEtjjIlDlxL+znVBtZ5+nZcmix1ySgakkA9NoB03PbEjJY1uy6Cm8fw6SYWhyFoeUEEtrlvLCthfY2ro1rs6sM3PJ2Eu4ccJ1jKndCJ8+AY2b4gdIL4JTfgAzvgHG/n/TfEGFJZvqeXXNXtbUtCfUj8iycO1JI7h65ggKHAN7dQW8HnZ88SlbVyyndvuWhHq9ycS42adQevo8iqdOQ5Yj1xmDFrCL7RSNz6RwfAaFJRnHpoAdDOLftg3vunX41q7Du24tSnPLwB37Qpaxn302w5/8/dAZKRAcIY7UvOKUU04hGAyyZs2alK6DNU1j9uzZ6PV6vvjii8Ng4fHPcTOnDPlgZ08RO8l5zZIV9cS+HEadESdid+FZ00D74qo+82UHlADPbXmOP2/6M74eebcnZk3k3tn3MjN/5gGZ3xkIs2xrI29vqGPFzmZCSuLkaUyOjYunFXJJ2TDG5Xdv/tA0jaYaNztWNVC5ug6/24mmudFUF5rqRlPd6A1e9AYvoYCToLfvc/5ASJJMWlZ2D6E6NyE0uNmWdtSsa4WDQSpXfUbV6i/wdbqxpNkpmX0y4+ecesg8s30bNlB3z70Ea2piZdZZsxj28MMYhw8cuUcgEAiOVQYzpzj2riYFQ0LJrLnsXP15ao01jZlfu4zS0w8+5LOmaSjhcJww3iV4h4IBlGCIcKiXMB6MCuM92nbXRYRyJU5ID3b3iZZrWvLQ4F2kG7KjAvZYcszDkaXERS5N02gL1FPn20W9dxftwcYDeg8c0dvIA+oN1ICs06M3GggZTew2Gtlr6A7BboiFaDeiM/YO297zcd+e7DqDAUOv8O6y7uDEck3T8Ct+OgIdsdvH73+F7P4wtQHcH/Lmu8XccMWlB2XHkURTVYI1NdHQ4RHxOrCjEgYQWAyFhZinlWEpm4Zl2jTMpZOQ+8j5Ixgc4WCQpX94PHUxW5KYedFlnHLNDRgtyTe79GSfex+3LbuNPa49lDTPpKLqxpiYXXpaIWfdMEGI2QJBH9x22228//77vPXWW7S3t9Pe3i3gNDc309zcPKjxhnpxRFVVnnnmGe677z7cbjfV1dWMGjVqwH6BQIAnnniCV155haqqKnQ6HZMmTeLmm29mwYIFyH2EyHvppZcAuOCCC+LKzz//fABefPHFlARtgeBoQdM0wo3eSB7snU6C1R19pvNBJ2EamY5pXAbmkkwMRWlx58+sa8bTumjrQOkOybpm/JCI2U6/k9cqX+OV7a/Q5GuKq8u15HL9xOu5ZswlZGz/Nyy6Btpr4gfImQCn/QimXA36/hdFN9d28PLqvby1vg53IF60N+pkzpucz3WzijllbPaA0V6UcJg9G9exZcVydn25EiXUK/qUJFE8uYzSMyoYN/tkjBYrvs4g1etbTygBW3E6Y+K1b906fJs2oQX6iTwmy+gLCgjX1fXdpieqiv3cc4bGWIHgBGXHjh3cf//9Kc/vJEniuuuu46GHHjrElgmOCbpE7K2LYcfSPkTszO5w4qNOB11yz2AtrOJ8Z3c0X3aEnvmyNU1j+d7l/PbL31Lb2Z1OKcOUwQ9n/JArS65EJw9uvc0XVFi+vYl3NtaxfHsTgXDi/Gl4poWLywq5ZNowJhXYCXg9uFuaqfpyK817atm3dS/Ne+oIeJ1oqgu05HmjlQCkEnvTbEuLhf225+T18rLOJS0z+6DXFQ8neqOR0tPnDcla+EBowSDNT/+B1j/9CdTIZymZTOTd9WMyb7rpgEOoCwQCwfHIsXd1KRgSxs89jeV/f5aAJ/mEpRsJk83G+DmnDsnzSpIUyYVtMEDqjlUHhaZpqEo4TuQOef2E9nSi1HjR9gaQPMnfA1VW8aZ5cVs7aJZaaPW56PT48Hiz8PutBAOR8WQ1jE4No9fC6DUFnaago38R/WBQlTBBX5jgAGGohxJJlnuEZTeATodk0KHpZTQdKDoIyyohWSEoKQSkEEFFIRQGJSyjhmVkxYJRtWFU0jAp6Vg8HjQtxbD0WoB9/97AD7avRO/QsGbpyci2kZORRa41lzxLHrmWHLLNOeiT7JY9EigdHfg3b8a/dSv+LVvxb9mC2pmYi5AeoSBliwVTaSnm0lIsU6dgLi1Fl50d19wfDMBhDud/vLLji08IJMkP2Renfv1G5l55bUptt7Vu47Zlt9Hqb2Vc80lUVM1HiorZk08v5MzrhZgtEPSHLMssXryYpUuXsnz5clpbW1FVleeee47TTz+dMWPGpDzW7t27+fTTT4fMti1btvC9731v0B4+LS0tVFRUsGnTJhYsWMCTTz5JMBjkqaee4rbbbuO1115jyZIlmJNsWvrqq68AKCkpiSvPz88nLS0tVi8QHM0orkA0D7YTf1U7qruPdD6AocCKqSQT07iIF7Zs7HsR1FKaTfZNpbS9Vhnx1O7OYANaxDM765rxWEqz+xwjFXZ37OaFrS/w9q638SvxIdAnZU3iptKbuKDgFAzrnodnTgdPvNhN0Uw47S6YcBH0szjZ4Qvx1vpaXlmzjy11roT6cXlpXDe7mCvKi8iy9S+Ia5pGU/Uutq5YzrbPPk6auzKraASlZ1Qw6bSzMJgd1O10svKt/dRVttNam7qAPawkA9MxJmBrmkawugbfuojntW/tOoK7d/fbR7bZsEyfjqW8HOuMcsxl05AMenaefgaq291/RDJJQrbbsUc3IwkEggPD4/GQlTVwioaeZGZm4vUmCSEtODEI+aBqGWxZDJVLIZhkHcCSCRMvjojYo8/oU8TuQnEHaX2x73zZu5y7WLh6ISvrV8bqdZKO6yZex23TbsNhcqRsfiCssKKyhbc31LFsWyPeYLdjhE4Nk6Z4GGEKcEq+jolpCrawG/faD1n9XjMftLYQChx46hZZp8eek0N6dpdIndvLwzonpQ3/gkT8O3ZQd8+9BLZvj5WZp06l8JGFmAZxvSsQCAQnCsfW1aZgyNAbjVx4+49Z/Ntfg9a14tMbCSS48PYfH7JwKocDSZLQ6Q3gUQlV+gltayNQ5Yx5gPSWk8IOI015ZrbbZNaEg1S3y+xpkXEHeuRkMkRvydM0AaBDpdhhYJTDSHGGkSK7nsI0HflWHVlmCUkNJ/dEj4Vnj3qsx5X18lDvVXYwuWoGQlNVQn4fIf/AIroxekvEGT/mIG3Qu1Yxan18WVv0NoisdUeOUblA7sDtAm2w7tPITXDUIEkSTdW7Umq7sn4lP/rwR3hCHsY3z2Je1Xyk6K/NlDOKOOO68ULMFghS5IILLojzSn7uuee45ZZbuOGGG1Ie48UXXxwyQfuXv/wlCxcuZPbs2dx7770sXLgw5b7XXHMNmzZt4s477+SJJ56Ilc+bN48rrriCN998k9tuu42//e1vCX2bm5vR6XRYrYmLRenp6YP2WBcIDgdqQCFQ3UEg6oUdbupbSJDtRszjMjCNy8RckoHOPrjrD0tpNoX3z8G7uQX/5hZUXxjZosc8JQfrlJwD9szWNI0v6r5g0bZFfFob/zsiIVFRXMFNpTcxwzocadUf4R+3Q6CXaDy2Ak77ccTDqw9vQk3TWF3dxqtr9rFkU32Ct5XFoOOSacO4dlYxM4ozBvRKdLe2sO3Tj9i6Yjmt+/cm1Fvs6Uw87UzGnnQGoWAWdTs7+Pczu1MSsAvHZ1J0jArYaiCAf/PmWO5r37p1KO2JIdx7YigqwjJjBtYZ5VjKyzGNG4eUxMuscOFC9t9+e+SNSiZqRz+zwoULkU2mIXk9AsGJSm5uLlu2JKZL6I8tW7aQk5NziCwSHJWE/FER+42+RWxzRnc48dFnDihid9FfvuyOQAfPfPUMr2x/BUXrFp7nDJvDvbPupSSzpI9Re5mvqHxa2cS7X+5i9eZd6LxO7OFOZoQ7sUdv6WonlnCP+dUuqE5p9G6MFjsZBfmk5/QSqqPitc2RIbyEhxhNUWj9y19pfvJJ6IqYo9eT8/3byFmwAEl/bM2vBAKB4HAhfh1PYMbOnMNlP/05S//wOAFPJ5IkoWla7Giy2bjw9h8zduacI23qAaGpGsH9bvzb2/BvbyPUR3g8RYJKA3ysBPlICbK/Q4VEx4WkyBIMz7TG5bIenWON5LTOtGLUH54JX0gJ0RHswOlrp72zFaenFWdnG25fBy6vk06vC4/PjdfXiS/gwR/wEPD7UENhdKqEXpHQqRI6RcIQ1mEOmzCGDBgVA4awDr2iQ69IyCrIKkiaAiighSNHgeAEQNM0fJ3uAdu9W/0u9396P2E1zPimWczb1S1mTz2ziNOvG3/U5IUSCI5mPvroI55//nkkSeKhhx4iPz//oMbT+vOYGwRPPPEEjz/+OLfddhvPPfdcyv3+9a9/8dFHH2E2m3nggQfi6iRJ4uGHH+bNN9/kueee44477mDmzNTz6InfFMHRQtf8O7Az4oEd3OuO5ZLsjWSUMY12RATscRno86wH/V2WDDK28jxs5XkHNQ6AP+xnye4lvLDtBaqcVXF1Vr2VK8ddyQ2TbmBEWIHPfg/rXojE5ey2Bkovi4QWLyzv83ma3QFeX7ufV9fsY3dL4vXKtBEZXDdrBBeXDcNu7n+RPej3UbX6C7asWM7ezRsSRFWdXs+o6bPJGXkSYWUEDVUutq2sB+qTjnc8CNjhlpbu8OFr1+LburV74TgZej3m0lKs5dOxlM/AUl6OIT+175O9Yh7Dn36KunvvQ3W5Il74qho7ynY7hQsXYq849OFLBYLjnblz5/KXv/yFO+64I6WUL9XV1fzlL3/hvPPOO/TGCY4sIT/s+iAiYu9YCsEk1/DmDJh0MZReAWNSF7G76Ctftq7IymuVr/Hk2idpD3RvlipKK+Luk+6morgiYa4T9Ptwt7TgbmnC1dqMq6WZ3TX7qd1fT8DZijXoJh+VA08spEeS7UhyevRox5qRw6iyUUw8eRwFJUUYjGKT1eEkWFND3b334Vu/PlZmGlfCsIULsUyefOQMEwgEgmOAY+tqVDDklJw0h1v/+DyVqz6javUX+DrdWNLslMw+mfFzTj3mPLNVfxh/ZTvOzS2EKtvR+ZOLrW2ofEGYzwmzRgvjDfY9ZpdoPSrHxqhsK6OybYzKiRyHD7FoHVbDuIIunAEnrkDk2JVv2hlwxup65qHuCHbgSZbvpzcamLCSJmVgkzOw6UeSpmZgUxzYQhnYgg7SghmYlB6eXxLd3uh9DatpQDgqbofRtDA6o4I5TcJik7HYdBgtYDBpGIwaeoOGzqACCqvefQfF7Uz5/ZFMVvKGjyMYCBMMhAgFFJSQGnnqBF/7gVGkMGE5GLnpQoTkIIocJKQLokhhZFnCpDNhxog9IGHxa5i8IfSeAFJoAG94nYycZkeXno4uPR053S7yXh+FNOyuwuvs3yunC0mSsKT1E5YBWLR1EY+ueRSACU1zOGvX9d1i9rzhnP71cUJ4EghS5G9/+xuLFi1ixIgRPPjgg7FyVR18So/58+czf/78IbFr69atFBUVDbrfn//8ZwAqKirIyMhIqJ80aRKTJk1i27Zt/PWvf00QtHNzc6msrMTr9SZ4aXd0dFBQUDBomwSCoSDc6ouEEd/Zjn9XB5q/jzmSBMbh9lgebGOxHekwbf4cDC2+Fl7Z/gr/2PGPuMVogEJbITdMuoErx12JvX0vvPcgbH4denhfIRtg+vVwyp2Qk9wDS1E1Vuxs5tXV+1i2rZGwGi88p5v1XDljONfOGsGkYen92quqCvs2b2Lrig/YufqLpCFFs4aPIz13OgH/KGp3KdTugmQi9rEuYGuqSqCqKpb72rtuHaG9id7pPZEdDqzTp2OZMQNL+XQsU6ciWywHbIO9ooJxn6zA/Z//4H5/GUpHBzqHA/u552A//3zhmS0QDBHf+ta3+Ne//sXcuXN5+OGH+frXv47NlpjXzuv18uqrr3L//ffjdrv5zne+cwSsFQyKkD+S23r7O+BtB2s0DHjp5WDoY00lJmIvhh3v9iFiO2DiJd3hxPWDX+/sL1/2Bu9mFi5ZyLa2bbE6q2zhm6Nu4ILsswjs72DN+n/hjorW7tYW3C3N+PvYNN935MMeSBJpmVnYc3KxpmcR9FvoaNHjc5tiAjaSGUmSMNsMjJuVz4Q5BeSNsot1iSOApqq0v/wyTb/7H7SuFJKSRPZ3vk3OD3+IfIytwQsEAsGR4Ni5OhUcMvRGI6Wnz6P09GNnp7imaTR3BtjT4qG+pgOqnGQ1+BjhUekK/tY7CNx2FD4nzOeE2IEaF+46mWgd8bi2HpBoragKrqArTojuuh8rC7giXtU9BOrOUOq5fHsiaTLWoB1bMANbMIO0YESgtgUd2ALd9/XaQU6OJLCmG0nLMGHLMEWOmV1Hc6zcYOo7x2FPzBkZLH/2qZSfft7N36H87MR8c0pYxd3qx9Xiw9Xio6PFj7PJQ3uzh86WAEpwkF55CqiEkJU2rN4WMlwtWH0tWPwtWHwuzP5W9Ep8DuvWXBNtY7LxTRiBXDqBtNIp5DkKybfmk2fNw6gTE9Ojka0rlvPu04+l1FbTNEpmn5y0TtVUnvjqCf62JRImeGLjXM7cfV1MzC6rGM5p1wgxWyAYDCtXrqSiooKlS5ei7xFy7Ve/+hVXXnklU6ZMOSJ2HYiYHQwG+eCDDwCYNWtWn+1mzZrFtm3bWLJkCU8//XRc3cyZM/nss8+oqqqirKwsVt7Y2EhnZ+egPLoFgoNB9YbwV3XlwXaitPWdk1GXbcZckoF5XCamMQ5k6+A8oA4n29u2s2jrIt6tfpeQGu/BW55Xzk2lNzFvxDz0+9bAa9+Bnf+JH8CYBjO/CSffDumFSZ9jf7uX177cz2tf7qOuI/F9O3lMNtfNHsH5kwswG/qfT7fs28PWTz5k2ycf0tnWmlBvsmVjtE0h4B+L15OB1wO9IytJEuSMsFM0PoOi8ZkMK3FgOoo/o96oXi++jZvwrVuLd+06fOvXR3JY94Nx1Cgs5eVYZpRjnTED4+jRQx5GVTaZcFx6KY5LLx3ScQUCQTcXXXQRl19+OYsXL+a73/0ut912GxMnTqSoqAiLxYLf72f//v3s2LGDYDCIpmlcffXVnC/y1x/dbP83LL4N/E6QZNDUyHHb2/DuPXDFH2HChZG2IT/sWh4Vv//dj4jdlRP7zAMSsbtQ3EFaX9hGcE93vmzzrFyaJ7n4/Rt3sr1mPTafntP9OaT5dOSE7Oi9Cl51Ga+z7ICeMyAbkWwZZOXnM3JkEZm5eXGhwI1WB3s2t7NjZQP7d7TH8vp1LT/JeonRU3OYMLeA4snZ6I7CjYQnCqH6eup/9jM8n38RKzMUF1O48GGsM2YcQcsEAoHg2EII2oKjli7RuqbFS02rh5oWD3tavext9uBo8TEjLHMyemYkSNcRvGh8SZjPCLOSME4ZhmdaGJmdzpxsazQ8eP+itaqpuINuGry9xOheAnVPb2lnwIk72UT6ANErhqhQ7YgJ1ragA3swA3soG1vQgSlgReLgJqayXuoWqjPN3YJ1hom0zMjR6jCi0w3dBHjq6RV89Pc/oQYDA7aVjSam9rHpQqeXyci3kpGfmFdU0zT8nSE6omK3qzkieEeOPjztyZ9bxgC6fLz2fLxJnHIlxUVQbsVpbqE+o5XWtFY6zC24TVV4nGvhi3gRPcucFRO386355Nt63I8+thkSd5QLDi3j557G8r8/S8Djof+s7hImm43xc05NqAmpIX7x2S94Z/c7AExqPJkzd18Xq59WMYJTrykRYrZAMEjq6+u566674sRsgAceeICSkpJBCdrLli3joYceYvny5UNtZkps27aNUDTEbX9hMbvq9uzZQ0dHBw6HI1Z3ww038Pvf/5733nsvTtB+7733APr0QA8EAgQC3ec6lyuyCDdx4kTkAUScGTNm8NZbb8WVXXrppaxdu7bffgB33XUXd911V+yx2+1m0qRJA/YDePPNN+ME+nfeeYdbb711wH5paWls3749ruzuu+/m5ZdfHrDv1772Nf7v//4vruykk06ioaFhwL6PPvpoXE73HTt2cPbZZw/YD2DNmjUMGzYs9vjZZ5/lV7/61YD9xo8fn/B9nj9/Ph9//PGAfb/3ve/xy1/+Mq5s+PDh/fbRwhqEVZ6c/ytmWyfGTplf7F3HD9/+dXdDGSSdjKSXkfRSZNdolP3798eN+eCDD/KnP/1pQHvPPPNMXnzxxbiyiooKKisrB+z7i1/8ggULFsQe19fXJ2wqCSgBvGEvQSU+ZFPJPSVccvIl3DTpJqbmTOGlx+5j1G8ugXCv0E6SHBGzjRpIz1FQ8B++/PLLWHUwrHLZ9Tez4oP/RPJi95puyLKExaDDatQxfP4NXLbgt3H1EydOpLMzsulV0zTCgQChgB9ViRenr5o5hcnDRyLrx6MzTWJvWyd/+scvEt4TWSej00vo9HJkYVuK/EbZ7d0T3scee4zHHht4w99h/41QVbRgkL9+/VrGNzbi374dFIWPOjt5sDHZ36qEZNAjGY1IBgP2jAy2L303roX4jUjkQH4junjhhRc466yzYo8/+ugjbrzxxpT6Hq2/EX3xwQcfMGHChNjjl156if/6r/8asF9BQUHcbwTALbfcwpIlSwbse/311/Pb3/b9G9Eff/zjH7n44otjj7/66isuu+yyAftB/78RBxI5Z6h48cUXue6663j77bcJBoNs2rSJTZs2xbXpSjlz+eWXs2jRoiNhpiBVtv8bXrmBsCpR6c6jyp2NT9Fj0YUpsbcyXm1B//L1cPpPoGNfxBM74Eocx+SIhhO/HMacdcAithIO4W5txd3ajLeqBfMaCV0osv6oaArrXMvZ9Y/I+S4TOJnsXiOE+l1hUJFx62106tNw6+y49Wl06tPwmexMKinmnJMmcF75KKzG+GshVdXYv72N1Usa2L1uG+Fg4t/gsLEOxs8poGRmHmbbsbNR7XhE0zQ6Fr9J429+g9rjtzrj+uvI/+lPkZNElhAIBAJB3whBW0BACfBezXss37scZ8BJhimDiuIKzht1HibdoQ2J1pdoXd3iYU+rB08wslCThcTJ6DkZPXeix0ryMHC1qGwyQ322CXW4jeK8NK7OtnFXtoUMm4I37KYj2BXCew/1gQ6213bQUd0R5zntDDjpCHbgCrjQ+p2CHsyLB1PYij2USZ5aRJaShyOcgz2UiTmQhsFnRec1QSA1b+f+MFr0MVG6t0jddTTbDIddcNMbjVz6o/9i8aP/PWDbS3/0XwcUAl+SJCx2Ixa7kbwCI/4t+/HVb8S3dyO+DRsINLXgN2Xhs+Tit+TgM2fjs+TgM+fgs+Sg9vE3oOnSMZBObmA0uY1AY3ddWArhNrfiMrXiMrfgMrfiMrXQYG5lp6mKsC553r40Q1pM5M6z5pFvy48TvPOt+WSYMoQwOoTojUYuvP3HLP7tr0GTSC5qSyDBhbf/OOE76A15ueuju/is7jMAJjeeyum7vx6rn37OCE65SojZAsGBEAqF4oTYg6GxsTGlRfxDxd4eIW9zc3P7bNezbv/+/XGC9pw5c/je977Ho48+yqWXXsr48eOpra3lgQce4NJLL+WSS5Jn1nv44YfjQrZ3UV+fPGduT0aMGJFQ1tzcTG1t7YB9u4TzLjRNS6kfRDzae+Lz+VLq23OxvYv29vaU+ra1tSWUNTQ0pNTX6/XGPQ6Hwym/VqWXKNnZ2ZlS357fjS5aWlpS6tvR0ZFQlqq93noXjOl+HNBCNHQ2p9Q3mR2pPG9LS0tCWWNjY0p9X1z/IsN2DYtd1yiKkvJr/WPFHzlzxqmRHJyv3YL343XUJt0IqQAd0Vs3VU2dvLpmL6+vrWX7pmq87cnfJwUIAS4i39fe1NXV4R7A6xhA1U/HmH4NkhS5xFfULTg9ie9dMrReubZdLldK79OR+o1oW7IEf4+w4H5NpTHcR6j7cAiiYT3tSc4p4jcikYP5jeh93g4EAin3TWbHof6N6C0ED+Y3ItzrO+f1eg/4tba1taXU92B+I3xd4W2jBIPBlO090N+IQ43FYuHNN9/klVde4cknn2T16tVxfzM6nY45c+Zw5513cs011xxBSwUDEvLD4tuocmextG4cAdWAhIaGhITGTncOy+UxXFhYydhPfpfY3+SAiV+DyZfDmHkDitiapuFzu3C3NONqaYoeu8OAu1qb8TjbQdMYnVbGzJxz0UmRtTlv2MVnjW/QFux/Q5PFno49J5f0nFwUawY1fgNrW2GnR0+n3o5XZ0GTIptL9bLE6eNyuKaskHMn55NuThShW2s72b6ygZ2rG/B0JOZNTM8xM2HuMCbMyceRm+jsITj8hFtbqf/lL+lc9kGsTJ+fz7Df/Ia00xKdJQQCgUAwMELQPsH5cO+H/OzTn+EOuYnkINYAiWV7l/Hwqod56PSHOGvEWQf1HJqm0ewOUNPqpabFExGuWz3UtHjjROueSMB4ZE7ByCkYmNSHF7aKRl2Gn7p8N/VFrbjS23GHuj2lv2xy0bEv8ljVDu3OYQmJdFM6GaYMHPoMsrV8MpUc7KFsrAE7Rr8NvdcCXj2KWyboUlHDBymWS2C1G+PF6kxTgqd1qiHAjwRjZ87hsrv/H+8+/RhBb2IucKPVxkV33MXYmXMGNa6mqgRravBt2Ihvw3p8GzcS2FEJvRaFdIDN14TN1wSAobAQ8/gyLGWZmMvy0YpLcLu07nDmzd2e3skuIgD0moFMXwGZvuT5TD2GjpjI7TJHRG+3qRWXuZXdwd3s7tjd5+syykbyrHkxwbvAWhC73yWG51hy0Mvi5z1Vxs6cw2U//TlL//A4AU8nkiShaVrsaLLZuPD2Hyd8B1t9rdz+we1sad0CQFnjmZyy+8pYffm5xZx85VghZgsEB8iIESNYvHgxP/zhD4+0KQdNz4Vms7mP3H+96nqLPQDPPPMMY8eO5fLLL8dgMOD3+7n++uv5+c9/3ueY9913X5wXpMvlYsSIEQwbNmxAD+1k4ntubm5KYdfT0+Pz/kqSlHK4dmOvzUMWiyWlvmlpaQllmZmZKfXNyspKKEs1L3nvnOZ6vT7l16rTxc/R0tLSUuqbn5+fUJaTk5NS32RCV1FhEVpYjd3oY9ps0hswFFgxlWRiHpdB4d4gRZ8MPgx/lx2p2JuTk5NQlp+fnyC6BZQArqALVVOjy98au3y7uP/T+1m4eiG/Oe03ZAQycOQ58IV9CdcGekmP1WDFrDcjAQU1K+CzO8AZ2ZBiNUgU2SXQ6cFoB0PiBlsNMKVncc0fP2dNTbfwJJvt6NKy0ckSVqMOi1GHnGR+kJmZGRlHVandsZWtK5ZjkUC2JPvdkEEyRAVsCZN5FJKsJ3eEncLxGYwIa7y6pghSmIb0nqukp6en9NkM5W+E2tlJYW4uWjCIFgqhhUKgJb9WMkTtNY0rwVI+g2FKmKK//hV0/V/ziN+Ig/iNSNFeU68c4SaT6YBSdXTZMZS/Ecno/Z3Q6XQp29s7gozVak2pb7LvTVZWVkp9u34jelJYWJiSh7alV254o9GY8mvt7zdCVdWUNskdSq677jquu+46Ojs7qa6uxu12Y7fbGT16dNK/e8FRyNbFVDXLvLm/O1KHFj2BdR0Dqp7F+0u5bPhWSuxtYEqPiNill8PYeaDv/v0JBfy4W1uiInVzt2Ade9xCOJR8PacLGZny7HMoSe8OB93k28vnTW/ioROPVcFjCeO1qIwePpGzJl9AXkFxJCR4dg71nSpvb6zjpY31bNvbY14fPaXLEpwyNptLygo5f3IBmbZEEd7TEWDnmka2r2ygdX/i37nJqqdkZh4T5g6jYEy6WHs4inC99x4Nv3wApcdGpPRLL6HgZz9Dl+Q8KxAIBILUkLTeWy0FRy0ulwuHw0FHR0fCAsCB8OHeD7nzwzsju22TzXm0yIXL/877X+YV959fu0u0ru7ysG6NeFhXR0Vrb4JorYEcRJK9SHovkuzFKgc5SbVwspLJnFAe2WpyL+wOnZs1aVtZnbaJtbZteHS+pO0OFAkJu9GOw+Qgw5RBuikdhzFy32FykC5HQn+b/REvatlrRPXIBF0aHmcQT7sfryvY1/pLysSFAO+Vo/pQhQA/UriXL2ffffdRJ6k0ZKQRkmUMqkqBs5NCTWbEwwuxV/T/HQy3t+PbsAH/xo0REXvTJtQkYkBPZKsV89SpWMrKsEyfhqWsDH0/nnMJzxlUcLX4o3m7IyJ3Vw5vV4sPJTT4TRRhOZjg2d0terehyH14n/R8XZJMjjknPqx5j/sF1gLybHmHPALDsUY4GKRy1WdUrf4CX6cbS5qdktknM37OqQme2ftc+7hl2S3sc+8DYGbzOcyq6vaOnHF+MXMvF2K24OhlqOcUh4Lbb7+dP/7xj0yfPp2zzjortsD+wAMPcOWVV8aF3R6IDRs2sHjx4gRPt4Pl73//O9/61rcAqK6u7jOc+EsvvRQLCb5s2bI+Q83++c9/5nvf+x4An3/+OSeffPKQ2gvHxmcvOPSoAYXA7mge7J1Owk3ePtvK6cbuPNglGejsB55/8lDRdV0D9BtdSUZG7aXWzxk2h2+UfoPTik5D9rvgy7/AymfA08ujevgsOO0uGH8B9NoMsml/B6+s2ctb6+twB+LnakadzHmT87luVjGnjM1GlvueG7TX17Lxg2Vs/eQjvM4kHt1SGjpTKTrjJGRdNkjEBOyi8ZkUHiM5sDVNI1Rbi2/tWrzr1uFbu45AZWWfAjaAZDZH5uzR3NeWadPEgrBAcBQg5hUnLkP52Ydfms8f324hoEY2afWNhkkOc+PJKt5zH8PtdMaE6p7itc/d/1rQQGRlFTHbcSGOHmHEd2TvZqHpD7Sb/QSMKkiROcQ9s+5hXOY4AOo7fCzZWM/bG+rYsD/5pprZo7K4eNowLpwyjFx74ppMKKhQvb6ZHasa2Le1LeHUKMsSI6dmM2FOAaOm5qAzHPtrgscTistFw69/jeutt2NlusxMCh58gPTzzjuClgkEAsHRy2DmFMKF7wQloAS4Z8X9qJpGn3qLBKqmcc+K+/nk+o8wysYE0bqmpZPdrU72OVvwq24knTd683Xfz/Zi7l2m8yFJCsOCuczunMLszilM7ZyGoY+v5C7TPlanbWZ12mYqLTWoUmpqsd1g7/aaNjkiN6MjJlbHykwO0g3pWBU7kseAzxWms92PxxnAUx+g0xnA4wzQ2R6gwxuOBhRUgAPLlW206OPDfvcOA55hwpx2+EOAHwncy5ez//Y7kIAiTaPI2WvXqSSx//bbGf70U9grKgDQgkH827dHhOuNkdDhoR7hXJMiSZhKSrBMn4a5rAxL2TRMJWORBvDk6A+9UUdWoY2swsScN5qq4XUFY0J3dw5vPx0tPnyuPry7VSNZvmFk+YYlrfebO+kwNdNubIqI3j3Eb7++M/p3q9Lka6Ip6nXeFxmmjATBu8BaEBfyPM2QdkJ8DyESfrz09HmU9pGrvYutrVu5bdlttPkjoSfntl7E9KrzY/UzLhjJ3MvGnDDvm0BwqLjvvvt49dVXWbduHevXr4+re+ONN3jjjTeOjGEHQM9Q2H6/v892PevEorBgKNEUjWCtm8BOJ/6d7QT3ukFNPp+WjDKmMRmYSjIwj8tAn2c9qs9pASXAzz+LRCkYKFVQl5htkA18bczXuHHSjUzImgDuRlj2IHz518R8nCXnwGk/hpGn0vPCqcMX4q31tbyyZh9b6hIXzsflpXHd7GKuKC8iK4nXVRfOxja+WrKMqjUr6GyrSdLCgGwch85YimwYQV5xekzAHjbWcUzkxuyau3vXrsW3dh2+desIN/cfql6fnx8Rr8vLsZTPwDxxApLh6H+tAoFgaNm7dy+5ubkJHuaC44vK3U4Caiq/8RIB1cBfPgM+u++AnstgtkS8qHNySc/OjYUF7zoaPUbaX96JGl2zUXUazxb+izfTlsfGKEor4u6T7qaiuILmzgDPfV7DOxvr4qKz9GTaiAwuKRvG18qGMcyRJMKLqlG708mOlfXsWttMKJC4CTd/dDoT5hRQclIelrSjb3OhADo//Yz6n/2McGN3TsK0s89m2IMPoE8STUQgEAgEg0cI2icoS3Ytxad0IklgCGvM3aYxe6dGmk+j0yKxepzEykkSIb2ET+nk1L/ejM9vQ5E6keRewnRGGF0GJEp6ieg0mcnekpiIPSKYPEybXwqy3rad1WmbWJO2BZ81FPGWNqYz2zQnNYHamB4Lu6yqGt6OIJ3OqEgdFac9zgCt7QH2Or10OtsPyKM2jmgI8GQ5qrtEa1uGCaNZ/OkBqIEAdfdGL0L68sjQNJAkan/yUxxXXkFg8xb827ahBfsPD6XLycEyLeJ1bZk2DfOUKejSUvmWDg2SLMU+78KSjIT6UECJD2He4u++3+rrMxy92Z+G2Z9GPqMT6jS9QtDWidvcRpuxgUb9/piHt9vUhirHXxQ5A06cASeV7ZV9vg6L3hKXwzsmdvcQwbPMWcjSibEr+PO6z/nxhz/GG454sp3VfiUTK8+M1c+8cCRzLhVitkAwFAwfPpxVq1bxs5/9jOXLl9Pa2hqXDmCwHMm/y+Li4tj95n5EnJ51w4cPP6Q2CY5vNE1DafXjr2rHv9NJYJcTzd9HhAIJjCPsEQG7JBNjsR1Jf+yc19+reQ9XMHVPrLOLz+bnc39OjiUH2nbD2z+C9S+B0iP3ryRHQpie9iMYNi1WrGkaq6vbeHXNPpZsqicQjr92sBh0XDJtGNfNLqZ8REbS3x2/J8T+7S1s/eQL9m/5HJ9rJ5GNsj2RkPXF6Eyl5I6exoiJ+RSNz2BYScYxIWArTmfE83rdenxr1+LbvBmtn808yDKmCRMi4vWMGVjLp6MvLBTzKYFAwOjRo1m0aBE33HDDkTZFcAipajUiEYyFFz9QJFkmLSs7Gva7S6jOw56dExOtTVZbn+cXz5oGWhdvBSVyrdFudPNA4R+otOwBwKwz892p3+Wy0dfz4XYn899bxcrdrUn3CJYOS+fiacO4eGohxdnJc1q31XvYsaqBylUNdLYHEurtWWYmzC1g/Ox8MgsO33qWYHCoHg+Nv/sdzpdfiZXJaWnk//xnOC67TMxnBAKBYAgRqtoJyitb3kXTJE6qUrj9HZU0P6gSyBqoksacHRrfWgZPXyzz1TiZgHELshEOZGnLEU5jVudkZnVOYaanFFsfocR9thDukQqh0QaMYzKZYbuQs0zX4jA5MMh9L9yEg0rEg7o9QGddgHZngH3OFjzO2pho7e0IDH0I8B45qo+3EOCHC/fSpQOGBQdA09B8PpwvvpS0WjKZMJeWRgTsaWWR0OFH+SKYwaQjuyiN7KLEnF6aquHpCCQXu1t8+NyhpGNKYR2mDgemDgc5jGZ8/KhIdoVwmg+vxYnT1ESTvpZ90m7ajY0E9N6kkb18YR81rhpqXDV9vha9rI8TunsK3l0ieI41p9+/42OBd3a/w//79P8R1iKhRC9038jI7bNi9SddNIrZl4w+qr93AsGxxtixY3nllVfiymRZ5oUXXhjUwuYLL7zAzTffPNTmpcykSZMwGAyEQiFqamr6bNdVN3LkyKQ5TAWC/lA8IQK7usKIt6MkWRjtQp9txjQuE3NJBqaxGciWY+OyUNM0Wv2t7Hbuprqjmt0du1laszTl/jIyEhI5zjpY8l+w5Q3omUtbZ4Tp8+GUH0D22FhxszvA62v38+qafexu8SSMO21EBtfNGsHFZcOwm+PnO35PiLqdTmp3tFOzcQut+75CCW4HLVHglXTZpOeVM2bGaYyeNvKYELA1TSNYU4Nv7Tq869biW7ee4K5d/faRbTYs06djKS/HOqMcc9m0w7rxVCAQHDuILIknBj59Jhr9R5jridliYuIZ58SJ1uk5udgyM5HlwUfh08Iqznd241nZnQ9+k3UnDxX9Gac+EpnxnOLzmWKezydrQ/z21U8JJ1GxS/LSuKSskIunDWNsbvL87V5XkJ1fNlK5qoGmPYlRH41mHWNn5jFxbgHDxmYg9ZOqRHDk8X71FXX33R8XNdJ2yskM+81vMAxLHnlRIBAIBAfOsbFyIRhyal0tnFSlcPc/VRRZT33+DFpyygjpbRjCHnJaNpLTvJa7/xnmt1fDV+PiRVq9ZCLNkE6GyUGONZNMc0bMWzrDmMGwzizy6u049hoxNKjJ91hKYByZjnliFpZJWQnhDDVNI+AN46oP0NnuinhVOwN42v10OoN4nH46nQECnoFzCg+E0ayL5qg2xueqzjBhyzw6Q4BrqooWDkMohBYOd99CYQiH4h5r4RD0ahNXFuqqS16mhaLloR5jhPsoi3vcV1nEbtV3YPnPjSNHxoUON08Yj2Q8fkIuSbJEWqaZtEwzReMzE+qDvjCu1mj48h5Cd0ezD3erHzVpCFEJza1H57YT+TeCEcxkZrRWZ5IwZGio9gB+qwuXuZUWQx21cg171Cq8auLibRdhNUxtZy21nbV9vyYksi3ZfQreedY88qx5WA3Jdy4fDgJKgPdq3mP53uU4A04yTBlUFFdw3qjzeGX7K/zuy9/F2l7p/S55m6fGHs/62ihmXzLmSJgtEAhSoLq6+og+v9Fo5Oyzz2bp0qV8+eWXfbZbs2YNAF/72tcOl2mCYxgtrBKocRGIemGH6jrpK+K2bNVjGpuBaVzEC1ufZT68xg4SRVWo7axld0e3cN113x08sJQ/EAk57tz7GXz81/gKox1mfRvmfh/sBVEbNFbsbObV1ftYtq0xYeHaYTFwRXkR184awaRh3SkC/J4Q9VVOanc4qd3ZTvOeOpTANpTgVjQ1MRSprLeRN3oWpWfMY+IpU4/6MKJqIIB/82Z869bhjYYPV9qTh1jtwlBUFPG8nlGOpbwc07hxB5X2RyAQnFh88sknhMMHv+7TxTe+8Y0hG0swNFjyR8PeRvrPn92Fxogp0zn727cNyXMr7iCtL2wjuKfb2eLNzA/5U/6/UCSVAvMYsvxfZ8myLN5Q6hL6j8y2xkTsCfn2pOuG4ZBCzcZWdqysZ++WtoQ1G0mWKJ6cxYQ5BYwuy0FvFOfIox01EKD597+n7a9/i0WclMxm8u7+KZnXX48kC2cngUAgOBQIQfsERRcwc/s7Ki3ZU9k+8SbCBlvEO0GSQVNpzi1HX3I1E7c/z+3vbObH3x/HX695NBbW26QzxY2nBpWIN8j2Nvzb21Bi+YHjw/BJFj3mCZmYJmSh5tvwBRSanX48W9vwfF4f86juOoaHIAS4xW6MF6jT9djseqxpOmxpMlaLhEGn9hKFfRB2oQXDaLVhlJownVGROE7wDYX6F4ZTEYATyqKCdO+yLuE6ekQ9yPfmGMQ0fjwjn38OXUbGkTbliGK06MkZbidnuD2hTlU1Otv9uFr8vXJ3R+73tQFECWgojUCjCZlcMsglg4mUEA2fnmnEmAFSephgWiceSzutxkYa5L00hGtp9DbiDDj7tFlDo8XXQouvhS2tW/psl25Mj+Xv7hK7e+b0zrfmk25MH/LNJR/u/ZCff/ZzXEEXMjIqKjIyy/Yu44HPHyCodoe4vyl4J7YN3eL1rItHM/vixBDwAoHg0PC3v/2NU0455UibMWi++93vsnTpUj744AM6OjoSPLC3b9/Otm3bkCSJb3/720fISsHRjKZphBq8BHa2469yEqzuQOtrrqyTMI1Kj3lhGwrTjkoPH3/YT42rJuJx7apmtzMiXO9x7SGkJo9IczDImkaGt7W7wJoDc2+DWd8FSwYA+9u9/OPL/bz25T7qOxK9qE8ek811s0dw/uQCzAYdfk+I6g3N1FY6qa1sp2V/J5oaQAnuRA1uRQ3vTxhDkg0UTZjB9PPPZdzsWchHsbgbbmmJCx/u37Ilstm1L/R6zKWlWMunYymfgaW8HEN+3uEzWCAQHHc8++yz/N///d8B9U123SgE7aOPMTNms3PNqhRbS4ydMWdInjew10XrC9ti+bKDUognC15mWcZK9KShNJ3HztaTiMSr7J5zFTrMXDytkEvKCplSlHx9QlM16nd1sGNlPVVrmwn6EtdicovtTJhTwLhZ+VjTj+4NbScaaiCAe+lS3Ms+QOlwonNkYD/nbOwXXEBw1y7q7rmHwM6qWHvL9OkULnwY46hRR85ogUAgOAEQgvYJyjk7HfhsU9k8ZQEyMNwgMcxgwChBUNNRH1Kp0yxsnnILUzc/y/mVOZSYR0QEVZeXUKgDpc2Hf5ebQI2XUF0gMfVblKBexa1XaFFVmr0+vF904v+o9qBz48iagknzYlY6MStuzCEXppALU6ADU9CJ0d+OyduGFA52i8JKt5He6E1wiJBlJL0eSa8HgyF2v7tMT7ihEbWzM+XxjCNHnvBi9kDIskR6toX0bAtMSPTuDnhDCSHMu+672wJoSby7NVWjszUAsfVfC2Ahk0IyKWe6VU96joW0bCO6DJVwmhef1YXT1EyzVEuTv4lGbyON3kZafC2oWt+bMVxBF66giypnVZ9tzDpzLH93MsE735pPljkLXYqhxj7c+yF3fnhn7LEavVDtOvYUs2/Tfo72VW7s8exLRjPra0LMFggOJ4MNHR4OhwkE+g69fLi46qqrOPPMM/n444958MEHeeyxx2J1mqZx//33A5HXN3PmzL6GEZxgKB0B/Dud+KvaCVQ5UTv7FhINBbaIB/a4TIyj0pGPIu8ep98Z52XddazrrEPry608CcNswxjtGM0YxxhGO0Yz2jGaqtZtPPTlb1Pqr0oSFR4vOIrh1B9C+Y1gsBAMqyzbVM8ra/bxyc7mhFRFuXYT18wcztdPGkGBxUh9lZMvF++OCdhooGkqangPSnAbarAKSFy4LpwwmSnzzmb8nFMxWY++ENuaqhLctSvieb12Ld716wjt2dtvH9nhwDp9OpYZM7CUT8cydSqyJXmKKYFAIDgQ7r//fs4555xB9+vs7OTuu+9m+/btsbJbbrllKE0TDBHDnJ3owwphnQz9bV7XNPSKin3Jf2ira46sLxmia0x6PZLegKTXxT829FiH6lHm3+6h48NmpOjyRIu+jd8UPss2yz5Cbafgbj4H1O4Icrl2E1+bOoxLpg2jfEQmch8bBZ2NXnasamDHqgbcrYkb49IyTYyfnc/4OQVkFyYPSy44sriXL6fu3vsiKRJlOeJQJMu4338f6Re/jGzsizoZSQYDOT/8Adnf/raIPiMQCASHASFon6Cc0xBk08SbKDDIlFv1GGUJTdOQpMix0KhnqkXHWm+YbRNv4op/38/2JSdBbinysBkY8yZhtGUnHVvRNJrDGo0hjcaQii+2ICSTahZuXdiHKeCM3cwBJ6agM67MEPIgDbAAptFn5MWjE0nqVwCOTLwNycu7ygw9J/J9lCVM+JOUdU36o8+X/GIg/nGc7SmE1+l4803q7rk3tfdGVbGfO/iLWEE8JquB3GIDucVJvLsVFXdbIEHo7hLAk+0oBgh4wzTvddMct95pAoaTIY9geLYZR64lInrnG5HSQwRsnbjMrbQqTTR6GmnwNtDkjdxv9Db265XlV/zsce1hj2tPn230kp4ca05ciPMCW0Fcnu88ax4aGj//7OcAAy6oz6q7AG1Pt5g957IxnHThqH77CASCI8fq1at5/vnnefXVV2lraxuycZuammhqiuT4q63tTrVQWVlJZ3ST1ujRo7HZEsWqf/7zn1RUVPD444/j8/m48cYbCQaDPP3007zxxhtUVFTwzDPPDJmtgmMPNRAmsLuDQFTEDjf1nZ5Fl27szoNdkoHOfmQ9e1RNpcHTEBGue3hcV3dU0x7oPyR1T/SynpH2kTHBekxGVLxOH52YmkTTKNvzFU8pCm5ZRutnEVzSNOyqynkTvw4X/Q50Bqqa3Ly6Ziv/WltLmycY116WoGJiHleXFVEi6WnY2cGq/9sSE7BjrzvcjBLcGs2LnZiiJXNYEaVnVDDptLNw5OWn/D4cDlSvF9/GTfjWr8O7di2+9Rsii7f9YBw1Ckt5OZYZ5VhnzMA4erQIqykQCA4pkyZN4swzzxxUn/Xr13PLLbewc+dOAOx2O88++yzXXnvtoTBRcJD4PvyYafub+WpkfiR8c7LzeXS32bR9TXi21OBZ8u8DezJJh2nqtRjHnBVzswm3VGJe83/8KhBJaxKWPiUsf4Eq69Dp9RhMRoxmI9KHkXWvGkN0PSy6DhbS26g3jWW/bgztUk7CU+okheHmFortbeSleZGr9aj79LQMuFanS23tTqfrf43uKEqfeLTjXr6c/bff0V3QFR0zetR6bJQ2TZxI4SOPYJ4w/nCaKBAIBCc0QtA+QVF1ReRY0pht69491jXB6ToaJJhj07NLb8d73uPkGI0Y+9iB6FM1GkIqjSGNlrDWl7M2AMagK06YjrtFRWu9MkhPqiQCsGQwJIq9ByoADyQKGwz97vyMK+stSPdsc4Lt5rNfcAHybx5CdbtJcIXpiSQh2+3Yzz//8Bl3AiLrZBy5Fhy5iV41sZz2PYXuZh8d0dDmne3+pB+hqmq4miNtE9FhthUzIncCU3LMpOdYSC+wkJ5jhvQQbkMbzf5mGjwNNHob4wTvJm8TnaG+vfvDWpgGTwMNnoZ+X7PNYMMT6js/eBcz9p/LzH0Xxh7PvXwMMy8YNWA/gUBweNm3bx+LFi1i0aJFVFZWxsq7Nu0NBX/4wx948MEHE8rP73GO+vDDDznrrLMS2uTk5LBmzRqeeOIJXn75ZRYtWoROp2PSpEn84Q9/4JZbbkEWwtAJhaZoBPe7u8OI73VDkmgpAJJRh2mMI+aFrc+1HJEFyqASZI9rT1xu65qOGmpcNfjCfQvwvbEZbHGe1l33h6cVYQh0gqcZOpugsxGaVkDnP8HTFC1ritWb1BC/sVj4YX4OekXH6LZyRreVYQpbCei9VGdtpDprHYoc5jct7egsLfxzfSOvrN7Ll3sShfYxDgtXjshhvGTAuaeTXSu3s6vXR6KpnSjB7ZG82EpLwhjmNDsTTjmDyWdUUFAy/qhZSA41NkY8r6O5r/3btsVFsOqNZDRinjIllvvaUl6OPivrMFosEAgEg+f3v/8999xzD8FgEE3TmD59Ov/4xz8oKSk50qYJ+kDpcJLf4WFmTQMbRuQR1uu6he3oUa+oTNvXRL7rwGMtSqZ0zLNvRZ/d/V0I7vqAwOZ/gtZ9PtRrKnpFBSUEIcCXGHdFlfS0Zk+mPv8kWu1T0OReS+yaSlb7dgoaVpPbsgFdNPJb6lv8hpCo4N29VtmHA42+95pmCmukusGsrep6jNuPw4xOd9AONAeCGghQd+99kQf9rVESmSONXPQ8Onuis4hAIBAIDh2Spg3wCy04anC5XDgcDjo6OkhPTz+osd647QWm2YsxSMlzCnXR1wKwpmm0KxoNUS9slwoSKhZdEIs+hNUQxmJUsJgUrGYNmxmsVgmLTUJvTNEzOEVRGJ3uqFkkEgwe9/IP2X/77ZEHyX6Oop/t8Kefxl4x7zBaJhgMSljF3RYRt10tUaG7S/xu9hEK9LfNJTmyPho+PceMI8dCetTLO3IzE9IFIqHMe4jcjZ7oMRrivM2fulemTtUzpnV6wiJ4uj+HWfu7xeyTrxjLjPNHDvr1CARHE0M5pzjSeDwe/vnPf/Lcc8+xYsUKuqa2Pae4OTk5tLa2ovQj3JwoHE+f/bGIpmmEW/0RAXunk8BuJ5q/j++lBMYRdkwl0TDixXYk3eHb8OAOuuNDhDurqXZVs9+9H0VL/W8p15LLGMdoRtkKGWPKZozOxmj05AV8SJ7mqEjdHBGuu0TsA8if/ZZ2KlUt38ekWFFRkZFjx4DOy7icP3CJ9BmrtVK+Hvh5rJ9JhVGantMcaRSFZHxNvqQhnjQthBqqQpYqCXTupncjWadnzIxZlJ5ZwZjyk9DpDYN+DUOJFg4TqKyM5L9euw7vurWE6+r77aPLyop4XpfPwDKjHPPkychGkdNTIBD0zdE0r2hra+Nb3/oW77zzTmweeMstt/DEE09gMpmOqG3HI0P52e//wQ9xf/ABqCqKJNHgsNHgsBHS6TAoCgUdHgo6POii4rZ5yhSybroRLRSOphgMQTTVYKxMCUM4jBoK0dzuobbFx9jMs7DoHQAoaojtdS/S1LgTfSiTXLOeHIuOdIOE1DVWuMf4oTBqOIzTXER9xjQas6YRNiRGZErr3E9B42ryG7/EFOw4qPdF0AfRFIcHJM734+gU3LsP72efpWxG4aOP4Lj00kP4QgUCgeDEYDBzCuGhfYKSkTEMozawCNxTKA4DLrOeQJYZrdCGNc/GuAwT5RkmbBkmLGkGpD48uAWCvrBXzGP4008lzU+DqiLb7RQuXCjE7KMcnV4mI89KRp41oU7TNPyeUA/Pbj8dUQ9vV4uPTmcg6cKxGtZwNnpxNibfgW2xG0jPseDITWdYTj4Tciyx0OY2hxFJlggqwZjA3dPDu+u2vXU7QTXIyLYpzKuaj7nXIviYtmlxz7lv8lfcfn7FkLxnAoHgwNE0jWXLlvH888+zePFivF5vrLyLzMxM5s+fz7e//W02b9486NzbAsFQoXhCBHY5I2HEd7ajOPuORKTPsUQF7AxMYzKQLYf2ck3TNJq8TQm5ras7qmn2Nac8jozECFMmow3pjMbEGEVjTDDIKG8H6a0NsGMTKMGBB0oVSQZrDqTlo7kbqG4bxT7nXXTJFXI0zVHX0aSY2dt4F7scIZr0RsaGZEaEZcZhIKPr43AH6O1frmka9swWUHfgrN9IOJiYC3PYuAmUnnE2E04+DYv9yIk5SmcnvvUb8K1di2/9ukj4cG//XmymcSVYymdgKS/HOqMcQ3Gx2CgsEAiOSVasWMH8+fOpq6uL/Hbb7fzpT3/i61//+pE2TZAC9nPOxv3++wDoNI0iZydFzj4ismkaWTfd2K+QqGkaW+pcvL2xjrc3b2NOxlZ+KM/DoEU2mzXr23kgazk5Zddy1bSpzJuQh8XYd8TEjmYflasb2LGygY4k0ees6QbGlWczbloG2XllaOHz0MLhbpE9JrSH+i5TlNjjWN8egn1cmaJ09wslCu+xx0o4/nGyNtFbl12xENtHM6qKFgxCMHjk0kzKMu73lwlBWyAQCA4zQtA+QckzW9G8oZQWLDRNw2PWM+EXcw+rV4jgxMFeUcG4T1bg/s9/cL+/DKWjA53Dgf3cc7Cffz6y2E19TCNJEpY0I5Y0IwWjHQn14ZCCu9WPq6dXd4883uFg8gsqnzuEzx2isTox16POIJOebY55dTty8piYO5LZOWbSx1swRC9Wf/zhj9m1vpHzdnw71rf3IngX23NXop+S+uK+QCAYerZu3cpzzz3HSy+9RF1dHRAvYkPkN+fXv/41d911V8wbZ8uWLQntBIJDhRZSCezpyoPtJFTXmXTjFoBs1UcE7JJMTOMy0GeaD4lNYTXMPve+OMG6K891Kqk3ujAjMVqVGR0KM9rXyZiAnzGhMMWhEEb2HJyRMZE6L3Kz5UFabvSYH3/fmgVy5Fy++vVn2PR+UXSQvq5VZEDjPx3/hYrMlfR9DZRdlEbWsACBzi3U7VhFS3XiuT89N4/S0+cx6fQKsgqLkoxyaNE0jVBtLb510dzXa9cRqKzsNzymZDZjKSuL5b62TJuGzpE4LxMIBIJjCU3TeOCBB3jooYdQVTUWYvy1115j7NixR9o8QYoMVTq6ykY372yo4+2N9VS3OrFmfsoPlWwu7ujOwb7Fupfdp2bz4mm/I83U97J4wBui6qsmdqxqoL4q0dNab5AZU57LhDkFDJ+YiXycrJdqqhoRtkOheNE7FIaosN4lvsce9xDn44T8ULenfILwnrRMGbhNzANf6Vuc72H7IRPoVRWlQ3jgCwQCweFGCNonKGlWPZKvdwaY5EiShMVuFGK24JAim0w4Lr1U7G48AdEbdGQW2MgsSAzXpWkaPncoSe7uyNHTkdzbSwmptDd4aW9I7plkdRhx5FiYariAUZUAElI/i9saGqPayhhXKAQxgeBw09zczEsvvcTzzz/P+vXrY+U9BerJkyczf/58zj33XGbNmsWcOXPiQkvOnz+f+fPnH06zBScQmqoRavAQqIp4YAdrXGihPhbP9BKmUY6oiJ2BoTBtSCMceUNeql1RsbpLuO7YzV73XsJqanN/gExFYXQoxJhgiNGhMGNCIcaEQhSElT4l46T0FKltub2E6Z7CdR5Ys2MidRf+kEKzO0BzZyBybA7Q7G6nubOBlmi5rrqYeZolFWPQ0CWc7bOL0igan0HOcD3ulk3sXPU2m97fmdDbaLEyfu5pTD6jgqKJpYcsf2MytFAI/7ZtEfF63Xp8a9cSbu5/k50+Pz8aPrwcS/kMzBMnIBmObBh0gUAgGEr279/P/Pnz+fTTT2PzwltvvZUnnngCo0iXcEwhm0wULlwYSUfXlTe7N1GHnMKFC+OcHqpbPLyzoY53Ntazo9ENaOjTtjKi+GN+3nQNk33dGxv2TXBz9o1f5/w+zoeKorJ3Sxs7VtZTs7EVJdxrPidB0fhMJs4tYEx5Lkbz8besLskyktEIx8nfkKaq8V7xvcX5HmVNjz6Kd82aAfNnAyDLYmOgQCAQHAGOvzOvICWs+Vb8Lb6UPbSteaksEgkEAsHQIkkS1nQj1nQjBWOSeHcHFVyt/m6ROyZ4R7y9lT4EBW9HEG9HEDCkdCKUkDArVsa0jTu4FyQQCFLmtdde4/nnn+e9994jHI4IcT1F7OHDh3P99dczf/58ysrKAGhtbT0itgpOPMIdgUge7CongSonamffOZ8Nw2yYxkW8sI2j0pH7CWmZCpqm0eZrZXfzJqpbtlDdXslu9152extpCPcRnjMJkqZRGI4K16FQVMAOMzoUIrNfbxYJbJFw3xGRupcwHROuk4vUIUWlzROMCNTuAM37AjR3umh2N8eE65ZondsfxqRBmiaRpkrYuo6qRJoGE1WJPMWMhoaEhKaFUYOVKKEqNM2PJJnRGUqQjeORpMgZPyzDjDOHUzQ+k/xRNmor17F1xT/48s01qEp8bnBJlhk1bQalZ1Qw9qQ5GIyHJ2qQ4nTiXb8e39p1kRDimzej+RPDnceQZUwTJkTE6xkzsJZPR19YKMKHCwSC45Y333yT73znO7S3t4sQ48cJ9op5tNzza8z/82vSQj4UJHRosWOn3kzgp/+PSRXz2N/uZcnGet7eWMfm2u6IbbKxEVP+20zRhfnZ/lvJCWcAoMgqtsuKOXnO6ITn1TSNpj1udqxqYOeaRvxJ5nSZBVYmzC1g/OwC7FmHJpqO4NAgyTIYjRGRfgAyrroS7+rVqQ2sqtjPPecgrRMIBALBYBGC9gmKdUoOga1tKbWVJAnr1NxDbJFAIBAMHr1RR9YwG1nDknh3qxpeVzAmdPfM4e1q8eF1DTKXpwT7NjqZcvKIIbJeIBD0x7XXXoskSQl5sa+++mpuuOEGzjjjDCHWCA4baiBMYFdHzAs7nCR/Yhe6dCOmcZmRPNhjM9DZU/Rw0TTwd4CnGTqbUNz11EU9rXd766j2t7Fb6WQ3IVyD8Oo2aBojo97WY0LhmIA9MhTGEvv7iorUjp6e0z2E6ZhwnZ9UpFZVDacv1C1S1/tpdrtpdrfQ0tlDvO4M0OYJggbmqFAdEaejR1WiQJMYq0KapsOm6jH0E0GlJ0pwFyHvUtACkdcTlbnVUBX4PsRgvQCdcSx+m8yY6QrbPvkH7z75CX5P4iaAvFFjKT2jgomnnoEtIzPl9/pA0DSNYE1NRLxevw7v2nUEd+3qt49ss2GZPj2W+9pcNg1dWuJcSCAQCI43gsEgP/nJT/jDH/4AIEKMH0e8v7WRBTtMGC74BafWbeSUus3YQ17cBiufF07hs8IygtsMjPndR+xu6ZUuRfZhyl2GMfMLznfO5fb918byZat2mWE3T8c43B7Xxd3mZ8eqBipXNSSN7GaxGxg3K58JcwrILbaL644TgKEKfS8QCASCQ4cQtE9QrFNzcb69G9UX7neJSANkix7rlJzDZZpAIBAMCZIsYcswYcswUViSkVAfCii88dhamve4UxtQA7+nbw88gUAw9GiahiRJZGdn87//+79cffXVGETIXMFhQFM0gvvdMS/s4F43qMkXtiSjDtNYB+aSDEzjMtHnWroXPbtE6s6myM3TBJ3N0NkYu+/vbGCPv4XqUAe7dRK7DXqqDQb2GPQEeoe1loE+Zu92Re32tA6FGB0MM8Zgp8icgy4tD7Lz44Xprvu2qCe1Lv7SUNM0OgPhbjG6KUDzLg/N7jZaOgNxocBbO4OEVS1OqO72pI7cn6BJzFTBpplIUyX0KQrVAyJBOFBF2PNWT+vjj1qAkOdNlOAEjN4mXvlFe8IwaZlZTDztLErPqCC3eNTQ2JYENRDAv2ULvrVr8a5dh2/dOpT2RHt6YigqinhezyjHUl6Oadw4JN3BefoLBALBscaOHTu47rrr2LhxY2zD42233cbjjz8uQowf4/hDCj95bT1oENQZ+HDETD4cMTNp23gxW2XUqC14bG8TVjzc2vB1vuY8I1ZrHJ1O9vxJ6NIi34+gL8yudU3sWNlAbaUzYWydXmb0tBwmzC1gRGkWOpF68YTiYELfCwQCgeDwIATtExTJIJN1zXhaF23tXu9J1k6CrGvGIxnEJE4gEBxfGEw67Flmmve6+/0djCGB2SaENIHgcPHOO+/w3HPP8fbbb9PS0sItt9zC0qVLmT9/Pueccw7yYcxfKzj+0TSNcIsv6oHtJLDLiRZQkjeWwVhoxTRCxpzvxWhrRPJujgjUKxsjgrWnqVvEVgIAdMhyTKzebTSw22Cg2qCn1qhHM0lARkq25isqozEwRmdjjCmL0dZCxjhGkZ0+Esme369IDb3yUrcGaK7x0+zenSBSN7sDBLpyR2pg6elRHRWq81WJsZpEmmrEpoJNGzqh2mTTY3OYsDmMWB0mbA4TVoexV5mRzV/s54Nnnk5pTDW0I+6x3mRi3OxTKD2jguIpZcjy0IvE4dbWuNzX/i1b0EL9bJDT6zFPmoxrHbcAAErCSURBVBQVr2dgKS/HkJ835HYJBALBscTf/vY3fvjDH+L1etE0jfT0dP70pz9xzTXXpDzGpk2beOONN/jFL35xCC0VHAj/3lSPyxdOuf0wh5mzp3vY5H+O3a5KMgPp/Kz2R3H5stNOKcTxtdFowJ7NrexY1UD1+mbCSdKSFY7LYMLcAsbOyMNkEUvlJzL2inkMf/op6u69D9XlAlkGVY0dZbudwoULsVfMO9KmCgQCwQmJOEufwFhKs8m+qZS21yrRfOGuyHyxo2TRk3XNeCyl2UfYUoFAIDg0jJmWw+51zak11mDMdJF+QSA4XFx00UVcdNFFdHR08Oqrr/L888+zaNEiXnjhBXJzc7n22mu54YYbmDNnzpE2VXCMonhCsRDigSonijPQZ1u9sR2TuRKztB5T6FPklnZoSWynAQ06HbuNhohwnWFlt8FBtdFA2yA8avVIjDCkM9qSz5j0YsZkjmN09mRG50/HZnYktA8pKk1deamdXXmpa+IE6lhe6kCPBWMNrBrx+ak1iYmqxEmaPipeR4Rq3RAJ1WabAVtGtyDddYwI1l1lRvSGyPulqgpKKEQ4FEIJBgmHQoSDHfjdITpbgzj3royGGU+d4inTKD2jgnGzT8ZosQ7J6wLQVJXgrl0Rz+u1a/GuX0doz95++8gOB9Zo+HDLjHIsU6ciWyxDZpNAIBAcy3R2drJgwQJeffXVmFd2eXk5//jHPwYdYnzjxo08+OCDQtA+CnlvSyOyFA2GI4XQ2zeht29B0nnRFCth92TC7qmgGZANHZgLF/Nm00oAJvpG8bP9C2L5stFLZFxegi/fxmev76JyTSO+JOnGMvKtTJiTz/jZBaTniPOuoBt7RQXjPlmB+z//wf3+MpSODnQOB/Zzz8F+/vnCM1sgEAiOIELQPsGxlGZTeP8cvJtb8G9uQfWFkS16zFNysE7JEZ7ZAoHguGbszDw++cdOAt6Bd4ObrHrGzhCCtkBwuHE4HCxYsIAFCxZQXV3Nc889xwsvvMCTTz7JU089xZgxY5g/fz7z588nKyvrSJt7QhP2uKh84ymqvlqDzx/EYjZSMnMW46+4A70t/fAbpGkQcMdCfWsdTQT2egjsB3+znZAng77Cd8t0YJI3YJbXYdKtRy81Q4+10BCw16CPell3e1zXGPT4BhE9wKq3MDp9NKMzxjDGEbmNdoxmRPoIdOjj8lLvbPPzxZ5WmjvrusOARwXrdm8wLiqiFBWqe+anztckxqoSNtUYLUtNqI4ICCoaYdAU0MLd9wlHHysYzWC0SBjNGgYTGAwaeqOGrFfR6TVkWUGSVJRwRJRWAkHa9wdpqQ4RDgW7xepQkHAwiBIKEg6GUJXUPbZSYdT0mVx134NDMpbq9eLbuCma+3otvvUbIt48/WAcORLLjBlYZpRjLS/HOGYMkog4IRAIBEmZNm0aNTU1sTQ0XSHGRQqa4wunN4iqgS5tK5bC15B0PjRNQpI0NE3CkL4FTXmLsHsi+vQttBCJdHJ++ync0Xgdei2yvC3ZjbROyOSTf++hrc6T8Dwmm57xJ+Uzfm4B+aPSRV5sQZ/IJhOOSy/FcemlR9oUgUAgEPRA0rRkCSGODQKBAE888QSvvPIKVVVV6HQ6Jk2axM0338yCBQsOKhRlR0cHjz76KK+//jp79uzBarVSVlbGggULuO666wbsX1dXxyOPPMI777xDbW0tDoeDWbNm8YMf/IDzzz//gGxyuVw4HA46OjpITz8Ci4ICgUBwHFK9sYV/P7Ox/7DjElx0Wxmjy3IOm10CwaHkeJhTfPrppzz//PP885//xOl0IkkSpaWlbN26lffee4+zzz471nblypU8++yz/PWvfz2CFh8dHKrPvmrx0yx99W0Cqj4iJHflnZMkTHKYC6+7lLGXff/gn6hLpPY0R0N6N/Zxvwmts5lQqICAWo5fnU5AnQz05VERxCRvxSSvwyyvxyDtRpI0OiUpJlhXGwzsNlupNhrYJ2v0EZA8KdnmbMZkjGFU+iiKbKPI1A/HIg0jHEyntTMYF+Y7IS81IGkqOk3BoCqkqWHsqkqaqpCmqNg0BauiYlUVzJqCWVUwaWEkTQGUmOCMFqanAI3WLUprMXG663E47vHxxPDSqVz7y4cPqG+osTEu97V/2zZQ+v4mSAYD5qlTsZRPxzojEj5cLzbeCASC44hDPaeUZTkmOqanp1NeXn7AYzU2NrJ9+3aUfn63BakzlJ/9rYu+4oO9yzEVLUKn6hjbNp3RbWWYwlYCei/VWRvZlbUeVReZk+g1HT9svpFzW7sjNbmNMp+2BAj2iigu6yVGTc1hwpwCRk7JRqcXm8gEAoFAIDiaGMyc4pgVtFtaWqioqGDTpk0sWLCAm266iWAwyFNPPcUbb7xBRUUFS5YswWw2D3rsqqoqKioqqK2t5Z577uHSSy+lra2NRx99lI8//pj58+fz/PPP9ymYr1y5kosuugi/38+DDz7ImWeeyb59+/jVr37Fxo0bue+++3jooYcGbdfxsPgsEAgERyPVG5r54LltEU/tXukXTFY9Z3+zVIjZguOK42lOEQgEePPNN3nuued4//33CYfD2O12rr/+er773e9y0kkn8eKLL/KNb3xDLGByaD77qsVP8+bL/47+dibxdNE0kOCy6y+i5PLbk9f3FKl75p9Odj/s79OWsJZNQOkSsKej9pOX2iDtwiSvx2TdhTujjeo0K7uNJqp1ErsJUh1y0RTujNoIsgo6Veq+KfH3DaqOTF0W6XI2Ns2BIWyHoBXVbybgV/H7/QQDQVDC6LQwek1BF73p1TBGTcGghTH0KJe1MLKmIJGY7/F4Q280oTcY0BmNkaPBiN5gRGc0YDAaux8bDOhjjw3sXreG9rralJ5DkiRKZp3MpT+5f8C2mqIQ2LED77p1+Nauw7tuLeG6+n776LKyop7XEfHaPGUystGYkm0CgUBwLHI4BO2cnBxsNttBj+XxeGhtbRXzwSFiKD/7V7/czX9vvI5RzrHM2zUfs2JFRUVGjh39Oi8flryAy76PhY3/RbG7e4PYroDCFp8at0e9YIyDCXMLKJmZh9kmPPoFAoFAIDhaOSEE7Xnz5vHRRx9x55138sQTT8TKNU3jiiuu4M033+Sb3/wmf/vb3wY1biAQoKysjMrKSh5//HF+9KMfxeqCwSCnnnoqX375JQ888AC//OUvE/o3NzdTWlpKS0sLb7zxBpdffnmsrqOjg6lTp7Jv3z7+/ve/c/PNNw/KtuNp8VkgEAiONsIhhV1rm9m9vhm/J4TZZmDM9FzGzsiN5fEUCI4Xjtc5RVNTEy+++CKLFi1i/fr1SJLE1KlTKSkp4Y033hALmAz9Zx/2uHjmO9cSVOXkYnYXmoZRVrjtm3PQh5zQ2Rz1qG6K3A/7BnwuVQNFkwmrMmFNRtFkQqqNsDYFhTI0piJJhX3bKntx6hto0NWxR9tLa8iJN+jDH/CihRX0St9itU6VkIYoh/TRiqzTozd2C8l6oyEqKCcXkrvE5pgQ3aNfVxud0YghyRi9x9Pp9Qcc9nPriuW8+/RjKbe/8I6fUHr6vIRypbMT3/oN+Natw7cuGj7c6+13LNO4EizTy7HMmIF1RjmG4mIRvlQgEJxQHA5B+4UXXuCGG2446LFeeOEFbr75ZjEfHCKG8rN/vfJN/rrkFS7Y8R1koMigY5hBxihBUIP6kEptSMGhk5lp10gjsllM0TQ2eBX2hSJL2+k5ZibMKWD8nAIy8qwH+xIFAoFAIBAcBo57Qftf//oXV199NWazmfr6ejIyMuLqt23bRmlpKZIksWbNGmbOnJny2P/zP//DT3/6UwoLC9m7dy86XbyI8e6773LRRRdhsVioqqqisDB+0ewHP/gBTz31FHPmzGHlypUJ4z/zzDN8//vfJz8/n+rqaiwWS8q2Ha+LzwKBQCAQCA4vJ8KcYsuWLfz973/n5Zdfpq6uDkmSxAImQ//Zb/77f/Ofd1el3H60tZUMkz8iTEfF6WT3FU2KE67DqoyKjIRElqmQAsso8i2jyDYVIkvJoyaF1ABNvr00+Gpo9NfgDrUd9Os99OhB0gM6JEkffRy5L+ujYrDRiNFkwmAxYbKYMFnNmNPMmNMsmNPMMW9mg7GXkGwwRgXkHvdj3tAGZPnY3LwVDgZ55jvXEwz4B95UYTJz219eRmcwEKqtw7dubST39br1BCorQe3bE14ym7GUlcVyX1umT0fncByCVyQQCATHDseSoC0i9gwtQ/nZ37XsJwx/Yx7FkpUZVj1GWYrlTe86hjUNGZCj53qvqrHaE8Zv0jN2Zh4T5xRQMNYhNpYJBAKBQHCMMZg5hf4w2TSk/PnPfwagoqIiQcwGmDRpEpMmTWLbtm389a9/HZSg3TX25ZdfniBmA5x33nnY7Xbcbjcvvvgid999d6wuGAyyaNEiAK666qqk41911VV8//vfp7GxkXfeeYdrrrkmZdsEAoFAIBAIBKkxefJkfvvb3/LII4/w61//mgcffPBIm3RcsmPFyr5DjSeh2psN/Tu9JmA3ZFFsG0W+ZSR5lpEY5eR5sFVNpS1QFxGwfTW0BurRBhmqW5EkFEmHih5N0qOhR5J0SOiRJD06um9Ey5F09BSeu0RpCV1MnI5/HK2XdMiyAYvDgi3dii3Tgi3DjM1hxOYwYY0ebRkmzGkGZFks0CZD1jSm7W1iTX56d/723kT3cJftrqP+rp/g37CBcHNzv+Pq8/JinteW8hmYJ05AMoiQpQKBQHA4ufnmmxk7duyQjDV27Fi+8Y1vDMlYgqFF2u1gpGRjtq17HbZLmO466nuc35vDKk0jHcw9pZBRZdkioppAIBAIBCcIx5ygHQwG+eCDDwCYNWtWn+1mzZrFtm3bWLJkCU8//XRKY1dXV7N9+/Z+x9bpdJSXl7NixQqWLFkSJ2h/9tlndHR09Ns/Ly+P4uJi9u7dy5IlS4SgLRAIBAKBQHAIkWWZsWPHcgwGJTom8LiCoEsuMB8QmoZFslBgGUm+ZRR51tFYDH17wXoCzbS7q2h37aTDvQtV8SGhYUKjSNOQNA0JDU2S0aQ0FJ0dVU5H0aWj6dJRDBmRMkM6isEBhoPP0QkgoWLGj1nyY5ICmCU/FtmLWQpglgOYdUEschCjFEKSZfBI4AWpXgakiCgrS4QlCZck4ZKiId0lCUmWerSRo3cl6GojR9v1LJOIPI8U7ZusX9fYvdpEyuPtkqLt+x5/gDY9blLX66CXDbG+dLeJjt+zTeeKT8htbGGmz8uGEXmE9bpuYTt61Csq0/Y1kefy0rlsWeIHJsuYJkyIeF6Xl2OdUY6+sFB4eQkEAsERZrBpBPtj7ty5zJ07d8jGEwwdBY1jKbdGROmBzr2KprHcVsdPfnDm4TBNIBAIBALBUcQxJ2hv27aNUCgEwKhRo/ps11W3Z88eOjo6cKQQDm7jxo0J/fsae8WKFXHtB9t/7969Cf0FAoFAIBAIBEPPFVdcQXV19ZE247jEoGggR0RDWdIxwjaRIus4TLKZgOqn1ruTfZ7tqJoCmkaWx8/EulZkTUNWNXSahowOU+YYjDmT0OeVosso7vP51IAbpXkb4aZtkWPAjdGYTobRgdVUQMDoIGByEDSmEzA6CJocBIzphA1pQ/J6JTWEKejCGOjAFOzAGHRhCnRgDHZg6lFmCHmQ6H8ThT96EwwN+S4vZ2/dQ4PDRoPDRkinw6AoFHR4KOjwoOuxqUW22bBMmxbzwDaXlaFLG5rviEAgEAgEgsExWSnAmGIkGp0kMVHKO8QWCQQCgUAgOBo55gTtvXv3xu7n5ub22a5n3f79+1MStAc7dnt7Ox6PB5vNdkD99+3bN6BNAoFAIBAIBIKDw2q1MnLkyCNtxgERCAR44okneOWVV6iqqkKn0zFp0iRuvvlmFixYgCwnzx99uMjUGamTJAqtJczJuQijzoKqqciSjKqpjLBNYEbW2axqXkKdbxcFHR5azA6saTmkZ43FkjEOW/oYZJ0x6fiqGqbT04DT00Kb302HIhM2pBMaNo9w8eUoeuuQvA5ZDfUpUhuDHZiiZfqwB+Gze/Si0zSKnJ0UOTv7bGOeMplRr76KlCS9lEAgEAgEgsNPsWxF00IpRUbRNI2R8tDM/wQCgUAgEBxbHHOCttvtjt03m819tutZ53K5DunYXYL2YPsPZFcgECAQCMQ9l0AgEAgEAoHgxKClpYWKigo2bdrEggULePLJJwkGgzz11FPcdtttvPbaayxZsqTfeeeh5sviUYxtt3Ja3qWxMlmS444G2cxp+Vex07WecLFGsWE8DrVvb9h2RaElBM1hjdawhko+mPPhAF6mziD3yEltitzPiOanTjdhzYjUmazRyyJN676pasTHOnq/q1zr3abL87dnG1UDtLi+mgZoPduoRJ+gRxstzoZYG03r1Td+/Ei/3uNH6+nZZuDxNU2DHuP32yZaFhu7x3MO2C/WJmq7qkbK4sbuOX6P95ju19f58ceEUt0oLMsYhhUKMVsgEAgEgqMIu0WP5A2n1FaSJOxWwyG2SCAQCAQCwdHIMSdon0g8/PDDPPjgg0faDIFAIBAIBALBEeCaa65h06ZN3HnnnTzxxBOx8nnz5nHFFVfw5ptvcttttw1pfsnBsisnnxv0kRyGfXnVdJWPd5RHCtT4eq+q0RzSaA6rNIc1gimkO9cbZKwZpphYHRGsjdgcxkh5uglbhhGjRT+4PMi92gpv7KOfjqlTqLvn3tQaqyr2c885tAYJBAKBQCAYFNZ8K/4WX8oe2tY8y2GwSiAQCAQCwdHGMSdo2+322H2/v++scz3r0tPTD8vYvft3eW731X8gu+677z7uuuuu2GOXy8WIESP67SMQCAQCgUAgOPb517/+xUcffYTZbOaBBx6Iq5MkiYcffpg333yT5557jjvuuIOZM2ceETtPd0/EKA/O2zWkabSEu0Xszh4Ct96kwxETqY1YY0J1T+9qE0azbnBCteC4xX7BBci/eQjV7Y56b/eBJCHb7djPP//wGScQCAQCgWBArFNyCGxtS6mtJElYp/ad5lEgEAgEAsHxyzEnaBcXF8fuNzc399muZ93w4cMPydiZmZlxonXv/n0J2l39BxKnTSYTJpNpYMMFAoFAIBAIBMcVf/7znwGoqKggIyMjoX7SpElMmjSJbdu28de//vWICdoTtEw0TUvZo6ZZUWmZmIM1w8Qwh4mSWDjwiFhtNB9zlyeCI4xsMlG4cCH7b7894mGfTNSOfj8LFy5EFtdXAoFAIDgKUVWVZ555hvvuuw+32011dTWjRo0akrHr6up45JFHeOedd6itrcXhcDBr1ix+8IMfcP5RsNHLOjUX59u7UX3hfqPjaIBs0WOdknO4TBMIBAKBQHAUIR9pAwbLpEmTMBgiuVJqamr6bNdVN3LkSBwOR0pjl5WVJfTvb+ye7Yeiv0AgEAgEAoFAEAwG+eCDDwCYNWtWn+266pYsWXJY7EpGmt6Ysqe0JEnozHDed6dw2tXjKD+3mPGzCyiakElmgU2I2YIDxl4xj+FPP4XcFTFLluOOst3O8Kefxl4x7whZKBAIBAJB32zZsoXTTjuNO+64A7fbPaRjr1y5kilTpvCnP/2JW2+9lRUrVvCHP/yBffv2ccEFF3D//fcP6fMdCJJBJuua8b0zvyS2k4i0Mxxzy9kCgUAgEAiGgGNuBmA0Gjn77LMB+PLLL/tst2bNGgC+9rWvpTz26NGjmThxYr9jK4rCunXrko59yimnxMTzvvo3NTWxd+/eQdsmEAgEAoFAIDgx2LZtG6FQCKBfz5yuuj179tDR0XEYLEvEnmtH6y/Mcw80TcOeax+4oUBwANgrKhj3yQoKH30E+9lnY509G/vZZ1P46COM+2SFELMFAoFAcFTyy1/+khkzZqDT6bj33nuHdOzm5mYuueQS2tvbeemll7j77ruZPXs2V111FStWrGDEiBE8/PDDPPfcc0P6vAeCpTSb7JtKkSzRDY5d4nb0KFn0ZN9UiqU0+4jYJxAIBAKB4MhzzAnaAN/97ncB+OCDD5Iu3m3fvp1t27YhSRLf/va3D2jsxYsXo6pqQv3777+P2+3GbDZzww03xNWZTCZuuukmIJL3MBmvv/46APn5+Vx88cWDsk0gEAgEAoFAcPzTtfkRIDe37xyBPev279+ftE0gEMDlcsXdhpLcUwoH5aGde0rRkD6/QNAT2WTCcemlDH/y94x8/jmGP/l7HJdeKsKMCwQCgeCo5YknnuDxxx9nxYoVTJgwYUjH/tWvfkVLSwtz5szh8ssvj6tzOBzcd999ANxzzz34fL4hfe4DwVKaTeH9c8i8dgKW0mxMYxxYSrPJvHYChffPEWK2QCAQCAQnOMekoH3VVVdx5pln4vf7efDBB+PqNE2Lhcu5+eabE/IJvv322+Tm5jJlypSkYcHvuOMOxo8fT21tLU899VRcXSgU4he/+AUA9957L0VFiQtyv/jFL8jJyWHlypW89dZbcXUul4uFCxcC8Mgjj2CxWAb3wgUCgUAgEAgExz09Q02azeY+2/Ws60uofvjhh3E4HLHbiBEjhs5QIG16PppBHtBLW9M0NKNM2vS8IX1+gUAgEAgEgmOZrVu38v3vfz/lDYKpEgwGWbRoERBZR01GV3ljYyPvvPPOkD7/gSIZZGzleWTfVErugjKybyrFVp4nwoz///buPLypMv3/+Cfd0lK6AGURy46AZdMvsikKFllVRBQRQWFERhlEhMowKArOCMJvVFAWHUYUUUeUfUdWZRmQoiOyCYhFFhFalrZ0o23O74+aQm0LKU1zTpv367piyjlPT+6E23An9znPAwAASmdDW5IWLFigpk2basqUKRoyZIi2bdumTZs2qXfv3lq8eLGio6P17rvv5vu9WbNmKSEhQfv27cu9WvpKdrtdK1euVI0aNTRy5EiNHTtWO3bs0OrVq9W5c2fFxsaqX79+evnllwuMq3Llylq+fLkqVKigvn376o033lBsbKwWL16su+66S7/88ovGjBmjAQMGuP01AQAAAK40ZswYJSYm5t6OHz/u1uPb/H0U0beRZLMV2tQ2DEOy2RTxaCO+jAQAALhCQRfLuMO2bdtyZ7Vs2bJlgWOqVKmimjVrSpJWrlxZInEAAAC4S6n9RikiIkKxsbGaNGmStm/fri5duqhnz546ceKEZs6cqXXr1hV4Rcuf//xnVapUSVFRUerVq1eBx65fv7727Nmj0aNHa+HChbr77rvVv39/2Ww2ffbZZ/rkk0/k41P4S9emTRvt3btXgwYN0rvvvqs777xTTz/9tCIjI7VmzRpNnDjRba8DAAAAypaQkMvrTKenpxc67sp9oaGhBY6x2+0KDQ3Nc3O3oKhKingiSj6/r3nobGs7732C/BTxBGseAgAAeMoPP/yQ+3Pt2rULHefcd+V4AAAAK/IzO4DisNvtGj16tEaPHu3y79x///1KSEi45riwsDBNmDBBEyZMuK7YqlevrnfeeUfvvPPOdf0+AAAAvJPzShlJio+PL3TclfsiIyNLNKZrCYqqpOovtVHq3gSl702QIy1LPkF+CmwSoXJNIrgyGwAAwIOOHTuW+3PlypULHefcd61ZfDIyMpSRkZH758KWuwEAACgppbqhDQAAAJQ1N998s/z9/ZWZmamjR48WOs65r1atWgoLC/NMcFfhXPMw+FbWyQYAADBTcnJy7s8FzWD5x33XalC//vrrevXVV90THAAAwHXgUgkAAADAQgICAtSxY0dJ0q5duwodFxsbK0m69957PRIXAACAN5s7d678/Pyu+7Z27Vqzn8J1GzNmjBITE3Nv17qiGwAAwN1oaAMAAAAW89RTT0mSNmzYoMTExHz7f/zxRx04cEA2m01PPvmkp8MDAADwOg6HQ9nZ2dd9czgcHos1JCQk9+f09PRCxzn3hYaGXvV4drtdoaGheW4AAACeREMbAAAAsJiHHnpI7du3V3p6er7pHQ3D0IsvvihJGjBggFq0aGFGiAAAAF5l4MCBMgzjum9du3b1WKw1a9bM/Tk+Pr7Qcc59NWrUKPGYAAAAioM1tAEAAAALWrBggaKjozVlyhSlpaWpf//+unTpkmbMmKHFixcrOjpa7777rtlhAgAAwGKaNWuW+/PRo0dVu3btAscdPXo033gAAAAr4gptAAAAwIIiIiIUGxurSZMmafv27erSpYt69uypEydOaObMmVq3bp0CAwPNDhMAAAAWc/vttyssLEyStGvXrgLHnDlzRseOHZMk3XvvvR6LDQAA4HrQ0AYAAAAsym63a/To0fr+++918eJFJSYmaseOHRoyZIh8fCjlAQAAkJ/dbtfjjz8uSVq4cGGBYxYtWiRJqlq1qu677z6PxQYAAHA9+BYMAAAAAAAAAEqRWbNmKSwsTHfccYcuXLiQb/8rr7yiiIgI7dixQ8uWLcuzLykpSZMmTZIkTZ48WUFBQZ4IGQAA4LrR0AYAAAAAAAAADztz5oz27t2rvXv36uTJk7nbDx06lLs9JSWlwN+dNm2akpKS9N///lcbN27Mt79y5cpavny5KlSooL59++qNN95QbGysFi9erLvuuku//PKLxowZowEDBpTY8wMAAHAXGtoAAAAAAAAA4GEzZ85U06ZN1bRpU40dOzZ3e5cuXXK3x8bGFvi7zz77rEJDQ9W2bVtFR0cXOKZNmzbau3evBg0apHfffVd33nmnnn76aUVGRmrNmjWaOHFiiTwvAAAAd7MZhmGYHQRck5SUpLCwMCUmJio0NNTscAAAQClFTeG9+LsHAADuQl3hvfi7BwAA7lCUmoIrtAEAAAAAAAAAAAAAluRndgBwnfNi+qSkJJMjAQAApZmzlmCiHu9DPQkAANyFmtJ7UVMCAAB3KEo9SUO7FElOTpYk1ahRw+RIAABAWZCcnKywsDCzw4AHUU8CAAB3o6b0PtSUAADAnVypJ1lDuxRxOBz69ddfFRISIpvN5vbjJyUlqUaNGjp+/Djr38A05CHMRg7CCko6Dw3DUHJysqpXry4fH1ag8SYlXU9KvI/CfOQgrIA8hNk8kYPUlN6L7yjhDchDmI0chBVY6TtKrtAuRXx8fBQZGVnijxMaGsobJExHHsJs5CCsoCTzkKtovJOn6kmJ91GYjxyEFZCHMFtJ5yA1pXfiO0p4E/IQZiMHYQVW+I6S0ycBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tJHLbrdr3LhxstvtZocCL0YewmzkIKyAPERpRv7CbOQgrIA8hNnIQZRm5C+sgDyE2chBWIGV8tBmGIZhdhAAAAAAAAAAAAAAAPwRV2gDAAAAAAAAAAAAACyJhjYAAAAAAAAAAAAAwJJoaAMAAAAAAAAAAAAALImGNgAAAAAAAAAAAADAkmhoQw6HQzNmzFBoaKhsNpuOHj1qdkjwIpmZmVq4cKGeeOIJNWrUSMHBwQoMDFTNmjX10EMPafny5WaHiDIuIyNDK1as0PPPP6+2bduqUqVK8vPzU0hIiJo1a6bnn39eR44cMTtMeKmHH35YNpuNf59RKlBTwizUk7ACakpYFfUkShPqSZiFehJWQD0JK7NCTWkzDMMw5ZFhCfv27dPgwYO1ffv23G1xcXGqXbu2eUHBa5w4cUJt2rTRyZMnVbNmTY0aNUrNmjWT3W7X1q1b9frrr+vs2bPq2bOn5s2bJ7vdbnbIKIOefPJJffjhhwoNDdWwYcPUvn17hYeH69ixY5o1a5bWrl0ru92uefPmqWfPnmaHCy8yf/58PfLII7l/5t9nWBk1JcxCPQmroKaEFVFPojShnoRZqCdhFdSTsCqr1JQ0tL3YuHHjNGnSJLVq1Urt2rXTpEmTJFEswnP27t2rpk2bKjIyUrt371bFihXz7P/hhx/UokULZWVlaejQoZo+fbpJkaIsGzhwoD766CN9/fXXuuuuu/Ltv//++7VixQqFh4fr119/VVBQkAlRwtskJCSocePGSk1N1cWLFyXx7zOsi5oSZqKehFVQU8JqqCdRmlBPwkzUk7AK6klYkZVqSqYc92JTp07VlClTtHnzZjVs2NDscODFRowYka9YlKRmzZqpb9++kqT3338/9w0TcKfIyEjdf//9BRaKktS/f39J0oULF7R3715PhgYvNmzYMGVkZGjMmDFmhwJcEzUlrIB6EmajpoTVUE+iNKGehBVQT8Js1JOwIivVlH5mBwDz7N+/XzfeeKPZYcCLRUREKCYmRg888EChY5o3b66PP/5YGRkZOnjwoFq0aOHBCOENXnvttavuv3IqqZCQkJIOB9CSJUs0b948vf/++/L19TU7HOCaqClhJupJWAU1JayEehKlDfUkzEQ9CaugnoTVWK2m5AptL0ahCLNVq1ZNb7zxhurVq1fomCvfKMuXL++JsIA8PvvsM0nSHXfcoUaNGpkcDcq68+fPa8iQIerUqZMGDRpkdjiAS6gpYSbqSZQW1JTwFOpJlEbUkzAT9SRKC+pJeJIVa0oa2gAs7fDhw5Jyisv69eubHA28xcWLF7Vt2zb16dNHX3zxhR588EEtXrzY7LDgBYYPH66LFy/q3//+t9mhAECZQT0Js1BTwgzUkwDgftSTMAv1JMxixZqSKccBWFZWVpYWLlwoSYqJibHEtBYo244cOaIGDRrI4XBIkurXr68FCxbooYceMjkyeIOVK1fq448/1rRp01SrVi2zwwGAMoF6EmagpoRZqCcBwP2oJ2EG6kmYyao1JVdoA7Cs2bNn6/Tp02rVqpWGDx9udjjwAjVq1NDu3bu1c+dOffzxx7rhhhv08MMPq1OnTjp27JjZ4aEMS0xM1NNPP60777xTQ4cONTscACgzqCdhBmpKmIF6EgBKBvUkzEA9CbNYuabkCm0AlnTo0CGNGjVKVapU0bx58+Tv7292SPACAQEBatKkiSSpZcuW6tevnwYPHqzZs2erXbt2+vbbb1W5cmWTo0RZFBMTo7Nnz2rjxo2y2WxmhwMAZQL1JMxCTQkzUE8CgPtRT8Is1JMwi5VrSq7QBmA5p0+f1r333is/Pz+tXbtWderUMTskeCmbzaa33npLwcHBOn78uF577TWzQ0IZtHbtWs2ePVt///vf1aBBA7PDAYAygXoSVkJNiZJGPQkA7kc9CSuhnoQnWL2mpKENwFJ+++03RUdH6+zZs/ryyy/VvHlzs0OClwsNDVWbNm0kScuWLTM5GpQ1ycnJGjx4sFq2bKmRI0eaHQ4AlAnUk7AiakqUFOpJAHA/6klYEfUkSlJpqCmZchyAZZw4cUIdO3bU+fPntWnTJopFWEbVqlUlSSdPnjQ5EpQ13377rY4dO6YTJ07Ibrfn228YRu7P9evXz/15wIABmj17tkdiBIDShHoSVkZNiZJAPQkA7kU9CSujnkRJKQ01JQ1tAJZw9OhRRUdHKz09XV999ZWioqLy7Y+IiFD58uVNihBl0cmTJ9WxY0e9//77ateuXaHjEhMTJUlhYWGeCg1eomXLltqzZ0+h+5cuXaqxY8dKklatWqXq1atLkipUqOCR+ACgNKGehFmoKWEm6kkAcB/qSZiFehJmKw01JQ1tAKY7fPiwOnbsKEnavHlznjN8nOrUqaMPP/xQAwcO9HB0KMsyMzN18OBB7dixo9BiMS0tTdu3b5cktW3b1pPhwQsEBwerSZMmhe7ftWtX7s8NGjRQ7dq1PRAVAJQ+1JMwEzUlzEQ9CQDuQT0JM1FPwmyloaZkDW0Aptq/f7/at28vf39/bdmypcBiEShpb7/9tk6fPl3gvjFjxujcuXOy2WwaNWqUhyMDAADXQj0Jq6CmBACgdKKehFVQTwKF4wptL3bmzBmdOXNGUt41Fw4dOqSLFy9KyjnrLDg42JT4UPYdOXJEHTp0UHx8vAICAtS4cWOzQ4KXCQgIkN1u14kTJxQVFaXnn39eLVu2VNWqVXX06FH9+9//1urVq2W32zVjxgzdeeedZocML5CSkqK4uDhJhf/7fLUzJgFPo6aEmagnYQXUlLAa6kmUNtSTMBP1JKyAehJWZLWa0mZcuZI3vMr48eP16quvXnXMpk2b1KFDB88EBK+zZMkSPfjggy6PZ0oflISzZ89qwYIFWrdunX744QedPHlSGRkZCgkJUf369XX33Xfr6aefVr169cwOFV7iq6++0t13333VMZRvsBJqSpiJehJWQU0JK6GeRGlDPQkzUU/CKqgnYTVWqylpaAMAAAAAAAAAAAAALIk1tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAluRndgAAvFdWVpaysrLMDgMAAAAAAABACfPx8ZG/v79sNpvZoQAAShka2gA8LjU1VQkJCUpJSTE7FAAAAAAAAAAe4u/vr5CQEEVERMjX19fscAAApYTNMAzD7CAAeI9Lly4pLi5O/v7+qlixoux2O2dlAgAAAAAAAGWYYRjKzs7WxYsXlZiYKLvdrho1atDUBgC4hIY2AI86ceKE0tPTVadOHQpWAAAAAAAAwMukpaXp2LFjCg8PV9WqVc0OBwBQCviYHQAA72EYhlJTUxUWFkYzGwAAAAAAAPBCQUFBCg0NVXJysrjeDgDgChraADwmMzNT2dnZCgoKMjsUAAAAAAAAACYJCQlRZmamMjMzzQ4FAFAK0NAG4DEOh0OSuDobAAAAAAAA8GLO7wed3xcCAHA1NLQBeJzNZjM7BAAAAAAAAAAm4ftBAEBR0NAGAAAAAAAAAAAAAFgSDW0AAAAAAAAAAAAAgCXR0AYAAAAAAAAAAAAAWBINbQAoQ+bMmSObzZZ7Gz9+vNkhASWmLOf7iRMn1K1bN9lsNs2ZM8fscGABZTnfgT8i3+FtvCHnly1blvv8jh49anY4MJE35DvgRL4DAOA+NLQBwMJ27dqlv/zlL2rcuLHCw8MVEBCgqlWr6q677tKoUaO0bt06ZWVl5Y7v06ePTp06pZiYGBOjdr+DBw+qf//+uuGGGxQYGKh69epp1KhRSkxMNDs0uBH5nuODDz5QkyZNtGbNGrNDQQny9nxPTk7Wv/71L3Xv3l3VqlWTv7+/wsPD1bZtW7311ltKT083O0S4kbfne0pKipYsWaJBgwYpKipK5cqVU0BAgCIjI9WrVy+tX7/e7BDhZt6e83+UmJioIUOGmB0GSoi35/vRo0fzNCwLuk2dOtXsMOEm3p7vToZh6JNPPlHnzp1VpUoV2e12RUZGqkOHDho3bpySk5PNDhEAUAb5mR0AAJSk9MxsrdpzSmv3ndaF1EsKLxegzo2rqnvTGxTo72t2eIVKS0vTM888o7lz56pnz56aPHmyGjVqJIfDoV9++UWLFy/W9OnT9cYbb6hy5crasGGDmjZtqqCgIAUFBal8+fJmPwW3+eqrr9S9e3fVrFlTc+bMUYMGDfTVV1/pueee06JFi7R161bdcMMNZodpDZnp0v4l0o8rpNTzUrkKUqP7pKiekn+g2dEVinzPkZmZqR49emjz5s2aOHGiFi1apM2bN5sdlmVlZGdo7dG12nhsoy5kXFC4PVzRNaPVuXZn2X3tZodXKPI9p7lXq1YtnT9/Xo8++qi++OILRUZG6pdfftGkSZMUExOjOXPmaP369apSpYrZ4VqCIyNDyWvWKHn9BmUnXpBvWLhC7umokK5d5WMn361u3LhxevPNN3X77bfrn//8p26++WalpqZq06ZNevnll7V48WK9+eabGjlypNmhWkZWZraOfHtGP+9OUHpKpgKD/VW3eYTqtagiP2r4UueFF16Qnx9fPxUm69IlHdqxVT/F7lDaxSQFlQ9V/ZZt1KBNO/kFBJgdXqHI97waNmxY6L6KFSt6MBJrMzIdSt0Tr/R9Z5WdmiXfcn4KbFxJ5ZpWls3futddke+XpaamqmfPntq7d69eeeUVvfPOOwoICNC3336rmJgYff3113r88ccVEhJidqgAgDKGTxQAyqx1+08rZv73SkrLko9NchiSj01as+83jV++T2/1vkX3RFU1O8x8MjMz1bVrV23evFnTp0/X0KFD8+xv0KCBOnXqpCFDhqhdu3aKj4/X2bNnTYq2ZF24cEG9e/eWYRhatWqV6tatK0mqU6eO7Ha7+vXrpyeeeELr1q0zOVIL+HGVtGSIlH5BsvlIhiPn/sByafVo6cH3pIbdzI4yH/L9spSUFKWnp2vPnj2qW7euFi9ebHZIlrXp2CaN3TZWSZeS5CMfOeSQj3y0/th6Tdo5SRPaTVCHGh3MDjMf8j1HZmamzp8/r169eumzzz7L3V63bl21b99ebdu21c6dOzVixAh9+umnJkZqDckbN+rXv42RIylJ8vGRHA7Jx0fJ69bJZ8JEVZ80SSHRd5sdZj7ke15VqlTR2rVrFRwcnLutSZMmCgkJ0Z/+9Ce98sorGjp0qOwWPkHBU+J2x2vDRweUkZol2SQZkmzSz/+L15YvDqvjwCjVaRZhdpj5kPMF27Rpk2bPnq1Vq1apWzfr1aJm+2nXN1ozc4oyUi7KZrPJMAzZbDYd3vlfbZwzS92GjlC9Fq3NDjMf8j2/H3/80ewQLC9t/1mdm39IRlre9/e0fWd1YfnPqti7gYKiKpkdZj7ke14DBgzQN998o++//1516tTJ3V63bl1VrlxZjz76KCcxAQBKhHVPfQOAYli3/7T+/PEuJaflTPXkMJTnPjktS4M/3qV1+0+bFGHhXnzxRW3evFk9evTI90HpSk2bNi3z6y9NmzZNCQkJeuCBB3Kb2U6PPvqoqlevrvXr12vbtm0mRWgRP66S5j0mpf8+BbvhyHufnih91jdnnMWQ75eFhYVp48aN+XIdeW06tknDNw1X8qWcaewccuS5T76UrOc2PqdNxzaZFmNhyPe8Bg0alG+bj4+PnnrqKUnSokWLlJ2d7emwLCV540adGPqsHM5pGx2OPPeO5GSdGDpUyRs3mhRh4cj3y/r376/58+fnaWY7tWjRQlLOSU0pKSmeDs1y4nbHa9V7e3Ka2VJOs+OK+4zULK169wfF7Y43Jb6rIefzS0tL0+DBg9WvXz917drV7HAs56dd32jpG68p4/f/9w3DyHOfkZKiJf98TT/t+sa0GAtDvqOo0vaf1dmP9+c0s6V87+9GWpbOfrxfafut1wgm3y9bv369FixYoKFDh+ZpZjt16NBBv/32m2rXru354AAAZR4NbQBlTnpmtmLmfy8Zlz8j/ZHx+39emP+90jOt82X5b7/9punTp0uShg8ffs3x/fv3V+3atRUY6Pp00t99953++te/qkWLFqpUqZICAwPVoEEDjRw5UgkJCQX+Tmpqqt58803deuutCg8PV1BQkJo2baoXXnhBO3fuzDd+/fr16tatmyIjI3PXiOzdu7c+//xzpaamuhzr/PnzJUkdO3bMt8/Hx0fR0dGSpM8//9zlY5Y5mek5V2ZLukbG54zLtM66tOR7Xs419lC4jOwMjd02VpJkFJLvzu1jt41VRnaGx2K7FvL9srCwMJ0/f77Q5kZkZKQkKT09vUj/D5U1jowM/fq3MTl/MAp5f/99+69/GyNHBvluxXyXpFtuuUV33XVXgft27NghSfq///s/r5+SNiszWxs+OlB4OeNkSBs+OqAsanjL5rzTyy+/rKSkJNYPLkDWpUtaM3PK5Q+mBcr5QLtm5hRlXbrkweiujnxHURmZDp2bf8il9/dz8w/JyHR4JC5XkO95zZo1S5KYcQMAYAoa2gDKnFV7TikpLcuVz0pKTMvS6r2nPBGWS5YuXar09HQFBAQU+sXnlSpXrqy4uDi1adPG5cd47LHHNHv2bA0bNkw7duzQ999/r5deeknz58/XbbfdpjNnzuQZ73A41KVLF7388ssaMmSIvvnmG+3evVvDhw/XnDlz1Lp13inwZs2apU6dOikiIkJLlizR4cOHNXfuXMXHx+euleqKlJQU7du3T5LUqFGjAsc4t8fGxrr8/Muc/Utyphl3JePTL0j7l5Z4SK4i31FUa4+uVdKlpEKb2U6GDCVdStLao2s9FNm1ke+X2Ww2hYeHy8en4I8ip07l/Ltcq1Ytr157L3nNmpxpxgtrZjsZhhxJSUr+8kvPBOYC8v3qHA6HTp06penTp2vEiBFq3ry55s2bd93HKyuOfHvm8pXZ15CRmqUj31nnKm1yPr9du3Zp6tSpevvtt1WpkvWmEDbboR1blZFyUa7U8BkpF3XoG+vMSEW+F+zDDz9U+/btVaNGDVWpUkUtW7bUK6+8ovh467xXmSV1T/zlK7OvwUjLUuregpu4ZiDf81q/fr2knGXgpk+frjZt2igiIkKRkZG67777tGqV9WaFAwCUHSxoAcBS7p+2VfHJxbvC6Hxq0c5e/9vCPZq8+mCxHrNyiF3Lh7Ur1jGky1fp1KtXr8TWHLrxxhs1ceJE9erVK3dbo0aNVL9+fbVr105///vfc89AlqTNmzdr69atGjp0qP785z/nbm/QoIGCgoLUv3//PMefOHGiQkJC9NFHH+U2K2rVqqVWrVqpZs2aLscZFxcnx+9TqlarVq3AMTfccIMk6ciRIy4f11L+1V66eOba464m7VzRxi9/Tlo/vniPKUnlq0hPf12sQ5Dv3qXPij5KSCvel1OJGYlFGv/q9lc19bupxXpMSYoIitDn9xVvJgjy3XXOL8KuNqWj1cU99LCyCrmixlXZFy4Uafypl1/RmTffKtZjSpJfRITqLFxQrGOQ74WbOXOmhg8frqysLIWGhuqVV17RiBEj5O/vf93HNNsXE2OVmlT8q0fTUzKLNH7TJz9q++Li1YDlQgP0yIsti3UMiZz/o8zMTA0aNEhdu3ZV3759r+fpWtYnY55XyoXzxT5OmnMpCRet/dc0bfnPnGI9ZnB4BfV/fWqxjiGR74WZPHmyXnrpJd1yyy1KTU3V4sWLNXHiRM2aNUsrV67MXWKiNDk97X9yJBf//T07tWjv7+cXHlLS6rhiPaZPSICqDru1WMeQyPcrHT9+XOfP57z/9evXTwkJCZowYYIaNGigQ4cO6cUXX9S9996rMWPGaOLEidf1WgAAcDU0tAFYSnxyhn5L8uyUyBlZDo8/ZmFOn85Z0zs8PLzEHmPDhg0FbneeQbxy5co8H5acZ5QfO3Ys3+90795d06ZNy7MtPj5eWVlZOnPmTJ5GdPny5fWvf/1LTZs2dSnOpKSk3J+DgoIKHFOuXDlJUmJi0ZpclnHxjJT8q2cfMyvd849ZCPLduySkJehMajFP4CiijOwMjz9mYch31+zbt0/Lli3Trbfequeee67YxzNLVkKCsn7/O/cUIyPD449ZGPK9cP369VOnTp0UHx+vNWvWaPz48fr00081b9483Xzzzdd1TLOlJl1SygXPT3mfnekw5XELQs7nNWnSJMXFxWnFihUu/05pkXLhvC6e8/wav9mZl0x53IKQ73mFhobqr3/9q1566SWFhobmbm/durWqVKmimJgYPfDAAzp06FDu59fSwpF8SdluOGGpyLIMcx63AOR73uM47dy5Uz///HPuRQZRUVFq06aNGjVqpNdff10dOnRQ586dXTouAACuoqENwFIqh9iLfYzzqZeUkeX6mkt2Px9VKBdQrMd0R9ySPLJ+bkZGhmbMmKFFixbpp59+UkpKiowrpjM9efJknvFt27ZVUFCQli9frm7dumnYsGHq1KmT/P39VaFCBT377LN5xnfs2FHLly9Xq1atNGrUKPXp00dVqlSRJPXu3bvEn1+pUr5K8Y+Rdi6nSe0qv0ApyA1rdLohdvLdu0QERRT7GIkZiUVaF9vua1eYPazYj+uO2Mn3a0tLS9MTTzyh8PBwffHFF7Lb3fNvqxn8IoqfM9kXLsgowrrYNrtdvm74stUdsZPvhQsLC1NYWJhuuukm3X777WrZsqV69Oihtm3bavfu3apVq9Z1H9ss5UKLV0c7padkKrsI66b6+vsoMLh4V7a7K3Zy/rIDBw5owoQJeuutt1SjRo1iPGNrCg6v4JbjpCUnKzvT9Yadr3+Agoq5DIe7Yiff86pYsaImT55c4L6//OUvev3113Xy5El9+umnGjx4cJGObTafEPe8R2anZkpZ15pe/wp+NvmWK977u7tiJ98vu3Kt7d69e+c2s52qVaumPn36aNasWZo2bRoNbQCA29HQBmAp7pi2e9F3JzTyi90uj5/0UFM9eGtksR/XHapWrSpJulDEaUZdlZqaqg4dOig2Nlbdu3fX3LlzVatWLfn6+kqSbrrpJmVm5p0OLDIyUkuWLNFTTz2lNWvWaM2aNQoLC1O3bt301FNPqWPHjnnGz549W08++aRWrFih5557Ts8//7xat26t/v376/HHH3d5PdQrz25PS0sr9PlIOV8Ol0rFnLJbkrR7nrT4adfH3/+O1LxP8R/XDch371LcKbslafmR5Xpx64sujx/Xdpzur3d/sR/XHcj3q8vKytIjjzyiuLg4bdq0SfXr17/uY1lBcafslqTEpUv16+i/uTz+hn/8XWE9ehT7cd2BfHfd/fffrzZt2mjHjh2aMmWKpk6d6pbjepI7puyWpIM7Tmn9nAMuj7+7fyM1bF3wsjSeRs7ncDgcGjRokFq2bKkhQ4a47wWwEHdM2S1J+zdv1OoZri8T0fnpYYq68263PHZxke+uCwwMVOPGjfX1119r27Ztpa6h7Y4puyUp5bvTOv/FIZfHV3iogYJvdcPJ325Avl925cx5UVFRBY5xTq2/c+dOl18DAABc5WN2AADgbt2b3qDQID9d6zxam6SwID91a3LDNUZ6Ttu2bSXlrAmdlZXl9uPPnDlTsbGxaty4sZYtW6bOnTurYcOGql+//lWbB507d1ZcXJyWL1+ufv36yeFwaN68ebrnnnvUu3dvZWdn546tXLmyli9frgMHDuill15S/fr1tX37dg0dOlSNGzfWnj17XIq1Tp06uWdD//bbbwWOOXXqlKSc9ay8VlRPKTBcciXjA8OlqAdKPCRXke8oqs61Oys0IFS2a+S7TTaFBoSqc23rXBVAvhcuMzNTjz32mHbu3KlNmzapefPm13Wcsiaka1f5hIZK17oyyGaTT2ioQrp08UxgLiDfi6ZZs2aSpO3bt7vtmKVRvRZVZC/n2jn39nJ+qvd/lUs4IteR8zmOHz+u7du3a+fOnQoJCVH58uXz3JwaN26cu23Lli3Fe3FKqQZt2skeXF6u1PD24PJq0PoOT4TlEvK9aJxTPJ87d85txyxtyjWtLFuQa+/vtiA/lWtS/Nli3IV8v+zKK7IrVix41jdnc9y51jYAAO5EQxtAmRPo76u3et8i2Qr/esD2+3/e7H2LAv19PRfcNfTo0UNBQUG6dOmSS1/uHD58WHPmzNHWrVtdOv7XX+dcERwdHZ17xq+rfH19dd999+mTTz7RmTNnNGvWLJUvX14LFizQBx98kG98o0aN9Nprr+ngwYPavn27WrVqpePHj+uZZ55x6fGCg4PVuHFjSdKPP/5Y4Bjn9pYt3XNlUKnkHyg9+N7vf7hqxueM8w/0RFQuId9RVHZfuya0myBJhTa1ndsntJsgu691pqwm3wuWnp6uXr16adu2bfr6669pZl/Bx25X9UmTcv5QWFP79+3VJ02Sj4WmaCff83rvvfd0/PjxQvcHBwdLki5dssZ6oWbx8/dVx4FRLp2j13FglPyo4V3iyZy/8cYbdfjwYe3bt0/ff/99vpvTqlWrcrfddtttRXo+ZYVfQIC6DR1x+YNpgXI+0HYbOkJ+Ae6ZPtkdyPe8Nm7cWOBaxk7Ok7NLcg1mq7P5+6hi7wYuvb9X7N1ANn/rfF1Nvl9WvXr13KnKnWuL/5Fze4UK7lniAACAK1mnQgAAN7onqqpmPX6bQn8/C9jn9w9OzvvQID/9+/HbdE9UVZMiLFjVqlU1YsQISdLbb799zfHDhg3Tn/70p0I/TPyRw1H4uoR/XJfJaevWrRo/fnyebYGBgRo8eLBGjx4tSfrf//6Xu2/gwIE6ceJEnvFt2rTRwoUL8429Fud6Ths2bMi3z+FwaOPGjXnGea2G3aRH/yMF/j71us0n731gmNT3s5xxFkK+43p0qNFBb9/9tkICcs7+9/m9nHXehwSE6J3od9ShRgezQiwQ+Z5famqq7rvvPu3Zs0dbtmxRo0aN8uzv2rWrfvjhhyIds6wJib5bkTOmy8c5FaSPT557n5AQRc6YoZBoa0xD60S+5zVkyBCtXr260P379u2TpFI/1b471GkWoe7PNL18pbaz+fH7vb2cn7oPaaY6zaxz9Z5Ezjv5+fnlXlVY0M2pVq1auduunMLW29Rr0VoPvDBW9t9PanHOTuW8twcHq+eosarXorVpMRaEfM/rySefLLB5KOWsjbx//35Jl6/09VZBUZVU6fGoy1dq/+H93Rbkp0qPRykoqpIp8RWGfM+rZ8+ekqTduwte5s9Z09x+++0uHxMAAFfR0AZQZnWKqqpvXrxHU/o0V+eoampTt6I6R1XTlD7N9c2L91iume306quvqlOnTlq6dKlmzJhR6LgZM2boyy+/VNeuXfXQQw+5dOxWrVpJktatW5dvuqz58+cX+Ds//fST3nzzzQKnSHOu5VSzZs3cbR999FGBX9oWNPZahg0bpkqVKmnp0qWKi4vLs2/evHn69ddfFR0drTvvvNPlY5ZZjbpLMQelB2dJje6VarfLuX9wVs52izWznch3XI+7a96tjY9s1MR2ExVdM1q3Vb1N0TWjNbHdRG18ZKPlmtlO5PtlSUlJ6tKli44dO6YtW7aobt26+cZ8+eWXXj09p1NIdLRu2rJZ1f/fZIV07KhyrVoppGNHVf9/k3XTls2Wa2Y7ke95vf/++wVOVfrf//5X69atkyQNGDCgSMcsq+o0r6yBk+/QPX+KUt1bKqt6g3DVvaWy7vlTlAZOvsNyzWwnch7Xo/5trfXMe3PV7dkY1W/ZVpFRTVW/ZVt1ezZGz7w313LNbCfyPa/PP/9cGRkZ+ba/9957io+PV0REhPr161ekY5ZFQVGVVP3F1qrQp6GCoirJXjdMQVGVVKFPQ1V/sbXlmtlO5PtlL7zwggICArR06dJ8MxPEx8frP//5j2w2m0aOHOnyMQEAcJkBAB6SlpZm7N+/30hLSzM7FMtLTU01Bg4caEgyHnzwQWP58uXGTz/9ZBw8eNBYuXKl0atXL8Nmsxndu3c3kpKS8vzeqVOnjJiYGEOSERMTY5w6dcpITk42DMMwEhISjBo1ahiSjB49ehjbt283fvzxR+Ott94ywsPDDUmGJOPUqVPG2bNnDcMwjA8//NCQZLRu3dpYsWKFceTIEWP//v3GtGnTjHLlyhn16tUzzp07lxuDJCM0NNR4++23jR9++MGIi4szVq1aZdx2222Gr6+vsWjRoiK9Fhs2bDACAwONhg0bGl9++aXx888/Gx988IFRvnx5o3bt2sbJkyfd8IrDTOT7ZRcuXDBOnTplnDp1ymjbtq0hyZg6dWrutoyMDDe84jAT+W4YSUlJRsuWLQ1JRt26dY0WLVoUeJNkbNq0yX0vPjyOfM/h6+trSDLatWtnLFu2zDh06JDx3XffGf/85z+N8uXLG5KMkSNHuulVh5nI+fyurG2cce7cuTNPrCidyPcc9erVMyQZbdu2zX0N9u7da4wfP97w9/c3wsPDjc2bN7vpVYdZyPfL5s6da/j4+Bg333yzsXr1auOXX34x1q9fb9xyyy2GzWYz3njjDZePxfeEAICioKENwGMoVItu586dxuDBg42bbrrJKFeunBEQEGDUrFnTePjhh43ly5fnG+/8YPPH27hx43LHnDx50hg4cKBRtWpVw8/Pz6hSpYrRq1cv47vvvsvzO+3btzcMI+cD2Pz5841HHnnEqFmzphEQEGCEh4cbzZs3N/7xj38Y58+fzxPDrl27jFGjRhnNmzc3goODDbvdbtSrV8947LHHjO++++66XocDBw4Yffv2NapWrWoEBAQYderUMUaOHJnvsVG6ke+GMWDAgAKfk/NGc6/s8OZ8/9///nfVPCfnyx5vznfDMIzjx48bkyZNMqKjo41q1aoZ/v7+ht1uN2rXrm08+uijxsaNG4v6ksLivD3nr3S12sYZK0o3b8/3hIQEY9q0aUa3bt2M6tWrG/7+/ka5cuWMJk2aGDExMcaJEyeK+pLCwrw9351iY2ONhx9+OF/MW7ZsKdJx+J4QAFAUNsMwDAGAB6SnpysuLk516tRRYGCg2eEAAAAAAAAAMAHfEwIAioI1tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AXicYRhmhwAAAAAAAADAJHw/CAAoChraADzG19dXkpSZmWlyJAAAAAAAAADMkpGRIUny8/MzORIAQGlAQxuAx/j7+8tutysxMZGzMAEAAAAAAAAvlJ2drXPnzik4OJiGNgDAJTaDrhIAD0pKStLJkydVvnx5hYWFyd/fXzabzeywAAAAAAAAAJQQwzCUnZ2ttLQ0JSYmyuFwqEaNGgoKCjI7NABAKUBDG4DHJSUlKSEhIXdqIQAAAAAAAABln6+vr8qVK6cqVaooICDA7HAAAKUEDW0ApsnMzFR2drbZYQAAAAAAAAAoYT4+PszWCAC4LjS0AQAAAAAAAAAAAACW5GN2AAAAAAAAAAAAAAAAFISGNgAAAAAAAAAAAADAkmhoAwAAAAAAAAAAAAAsiYY2AAAAAAAAAAAAAMCSaGgDAAAAAAAAAAAAACyJhjYAAAAAAAAAAAAAwJJoaAMAAAAAAAAAAAAALOn/A+guRss+4oSqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_97245/14240756.py:24: UserWarning: The figure layout has changed to tight\n", - " f.tight_layout()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7QAAAG+CAYAAAATGjtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT1fsH8E/Ske49KKNlU0rZe0NBZIhM9YtMQTaIIiIgCrgA5ScoG5SNi60skb2hIKOUQlktLYXuPdPk/P4IvTS0SdOSLvi8X6/S5N5zz3mS3OZe7nPPOTIhhAAREREREREREREREREREVEZIy/tAIiIiIiIiIiIiIiIiIiIiPLDhDYREREREREREREREREREZVJTGgTEREREREREREREREREVGZxIQ2ERERERERERERERERERGVSUxoExERERERERERERERERFRmcSENhERERERERERERERERERlUlMaBMRERERERERERERERERUZnEhDYREREREREREREREREREZVJTGgTEREREREREREREREREVGZxIQ2ERERUTknk8kK9ePt7V3aIZeatWvXwsnJCR06dEBsbKxB20RERGDGjBlo0qQJ7O3tYW5ujkqVKqFly5b49NNPceHChWKO+uXUqFGjfPfPkJCQ0g6NqEDcf18++X2eVatWLe2wXloqlQobNmzA66+/Dnd3d5ibm8PJyQk+Pj4YMmQItmzZgqysrALrSUhI4Gf3CluwYEG+n/+GDRtKO7SX2oYNGwr9/48FCxaUdthERERUzpmWdgBERERERCUhLS0NkyZNQlZWFk6dOoUlS5bgq6++0rvN2bNn0atXLyQkJMDExAStW7dGpUqVEB4ejrNnz+LixYu4cOECjh8/XjIv4iXy5ptvolGjRgCA7du3IzU1tXQDIioE7r8vn+HDhwMAUlJSsGPHjlKO5uWWlpaGXr16ScfOmjVrom3btlAqlTh9+jS2bt2KrVu3ol27dgUmps3NzfnZvcLq168vff6nT5/GvXv3SjkiIiIiIiouTGgTERERvQQsLS3h6elpUNnq1asXczRlkxACQgjpuUql0ls+MzMT//vf/5CQkAALCwucOHECLVq0kNb/9ddf6NOnT7HF+7L78ssvpcfHjx9nQpDKFe6/L5+cHp0hISFMihazuXPnSsnsadOmYeHChZDLNQMIxsXFoUWLFgYnJq2srPjZvcJ69eqFXr16AQBGjBjBhHYJq1ChAuzt7Q0q6+zsXMzREBER0cuOCW0iIiKil0CLFi3YS7gA1tbWWLJkCT777DN4e3tjypQpessfOXIEYWFhAICePXtqJbMBTQ/Nt99++5W9QYCIiKiwhBDYuHEjAM0w77Nnz5aS2QDg5OSETz/9FHv27IGVlVVphUlEBpg/fz5GjBhR2mEQERHRK4IJbSIiIiJ6ZUyYMAETJkwwqOzNmzelx7Vr1863zB9//GGUuIiIiF4FsbGxiIqKAgC4u7vn27tz9OjRGD16dEmHRkREREREZZi84CJERERERK+e3EMIKxSKUoyEiIjo5cBjKxERERERFQUT2kRERERE+cg93zYRERG9OB5biYiIiIioKJjQJiIiIqJC2717N2QyWZ6fDRs25Cm7YcOGfMvmN+f3hx9+qLfeK1euYMSIEahWrRosLCzg7OyM1157Ddu2bdMZa0hISL51durUSW+s8+bNk5bPmzfPoNcKAOnp6VixYgV69OiBypUrw8LCAo6Ojqhfvz4++OADXL58WWesCQkJ+cZatWpVAEB2djbWr1+Prl27olKlSjA1NdV6PQVtn5GRgSVLlqBp06aws7ODjY0NWrRogRUrVkClUmnFcvv2bQwbNgzVq1eHhYUFqlSpguHDhyM4OFhn/Ma0e/du9OjRAxUrVoRCoUClSpXwv//9T+f716lTp3xfu679Tdd+KZPJEBISorO+kJAQqNVqbNy4ET179pQ+YxcXF3To0AErV66EUqk0+HVGR0fjm2++Qbt27eDu7g5zc3O4urqiWbNmmD59ut73e8mSJfnGOHfuXABAWFgYPvvsMzRo0ACOjo4F7r9KpRIrV65Ex44d4eLiAgsLC1SuXBk9e/bExo0boVarC/x7etF9OLesrCz8/fffmDRpElq2bAlnZ2eYmZnBwcEB9erVw+jRo3Hu3Dm976+uzznnPfrvv/8wbtw41KlTB3Z2drC2toa3tzemTp2KkJAQAz7B/BV2/y0uur6rc+Y8ffz4MWbOnAkfHx/Y2NjAzs4OzZo1w/fff4+MjIx867x69are9zS348ePG3ysKGh/vnPnDsaOHYvq1atDoVDA3d0dAwYMwPnz57XqEUJg27Zt6NChA5ydnWFjY4NGjRph/vz5Ol9TQZRKJdauXQs/Pz+tz7Rfv37Yt29foeq6ceMGpk6digYNGsDJyQkKhQIVK1aEn58fvvvuO8THx+vctm/fvnq/3y5evIj3338ftWrVgrW1dZ7vrhfxIsc2AFIc1apVk5aFhoYadGx+EZmZmVi6dClatWoFJycnWFpaonbt2pgyZQoeP36sN1ZdP88bMWKE3u89feuSkpIwf/58tG7dGu7u7i/VvnXgwAEMHz4cNWvWhI2NDaytrVG1alUMGDAAGzduRHZ2tsGvLSAgAGPHjkWNGjVgaWkJZ2dnNGnSBF999RWio6ML8zZJUlNTsXDhQrRo0QKOjo6wtLSEl5cXBg4ciN27dwPQ/R2mb97oFzmu55aQkID/+7//g5+fn1SPtbU1atasiQEDBmDZsmUIDQ0t0msnIiIiKo84hzYRERHRS0KtVuP06dM4e/YswsLCkJ2dDScnJ9SqVQudO3fWuoj8ojw9PTF8+HAAwOnTp3Hv3j2dZWvWrCmVPXjwICIjI3WWbdGihc5616xZg0mTJqFhw4Zo1aoVYmJicOrUKRw+fBiHDx/GlClTsGTJkjx12tjYSHU+efIE//zzj0GxXr16FdeuXQMANGzYEI0aNcpT9nn//PMPRo4ciYiICABAkyZN0K5dO6SkpODMmTNYunQpli1bhqFDh2LVqlWwtLTU2t7c3FxqPyUlBTt27JDWxcbGol+/frhw4QLatm2L9u3bIzAwEDdu3DBo+6ioKLzxxhsIDw9HmzZt4OnpiZMnT8Lf3x/+/v44cuQI/vzzT5iYmGDfvn1455130KJFC7Rq1QrBwcG4fPkyNm3ahB07duDQoUNo06aNzvfxRajVaowcORJbt25F+/bt0alTJ9y/fx8XL17EH3/8gR07duC3337DwIEDtbbr3r07qlatiqNHjyIsLAwAUK9ePTRr1gwAUKFCBa3yuT/rnTt3Ijk5GW+99RasrKxgY2Mj1QcA27dvl4bJTUhIwODBg3H27FnUr18fbdu2RVpaGs6cOYNTp07h1KlTWLlyJfbu3QtPT0+9r/WXX37B1KlTkZSUBDMzM7Rp0wYVK1ZEVFQUzp49i8uXL+OHH37ARx99hIULF0Iu174f2cfHJ9/9FdDsi4MGDYJCoUCrVq1QvXp1nDp1CnFxcfnGEhoaijfeeEPanxwcHPDaa6/BysoKt27dwogRI7BmzRosW7ZM2sba2lr6HLy9vQG8+D6c4/Lly3j99dcRGxsLAHByckLjxo3h4uKCiIgIBAYG4ueff8bPP/+MoUOHYs2aNbCwsMhTj66/aQCYP38+Pv/8czg6OqJ169Zo1KgRbty4gZs3b+L27dtYs2YNVq9ejcGDB+f7nuWnqPtvccn9XX337l2cOXNGWnf+/Hn06dMHNjY2aNq0KWrXro3Tp0/j8uXLuHz5Mnbt2oXDhw/DyspKq04nJyed7+nzKlSoYPCxQt/+vHfvXgwaNAh169ZFq1at8OjRI5w5cwY7d+7E7t278eeff2LAgAFQq9UYMWIE/vnnH7Rr1w6dO3fG6dOnce3aNVy7dg179+7F4cOH83z36hMZGYk+ffrg8uXLaN26NTp16oTIyEicOnUKu3fvxu7du/H2229j06ZNeofQzs7OxtSpU7F8+XKo1WrY29ujXbt2sLW1xf3793HixAkcO3YM3377LVasWIF33303Tx1+fn5wcHAAkPd4On/+fMyePRt16tRBkyZNUK1aNRw/frxQN9jo8qLHNgD5fi/k/g7JkfNdYgyRkZHo3bs37t69iw4dOsDLywtXrlzBnTt3cOfOHfzxxx84ceIE6tSpk2+sv/76q/T+denSBZUrV863nXbt2gEA0tLSsG3bNtja2qJ///5wcXHRqu/578QrV67gzTffxJMnT9C6dWt06dLlpdi3oqKiMGjQIBw9ehSA5nuoe/fukMlkuH79Onbu3ImdO3fi66+/xvbt29GwYUOdrw0AFi5ciNmzZ0sJ8KZNm6JWrVpITEzEokWLsHLlSq331RBXrlxB37598fDhQwCa76qOHTvCzMwM165dQ79+/dCnTx9MmDBB2sbd3R3du3cH8Owzf96LHtdznD59GgMGDEBUVBRkMhmaNWuG9u3bIysrC7du3ZLeww8++AADBw7En3/+WajXb0yJiYk4cOAArl27htjYWCgUCimB36FDB9jY2JRabERERPSSEURERERUrgEQXl5ewtvbWwDQ+dOjRw9x/fp1o7c/fPhwqY3169frLduxY0ep7LFjxwyu97333hPOzs7ixIkTWmXu3bsnKleuLJU7fPiw3jqPHTsmle3YsaPesnPmzJHKzpkzR29ZIYT4/fffhampqQAgqlatKi5evKi1PiMjQ3z00UdSnW3atBHp6ek663vw4IFU1tPTU3Tv3l106NBBhIeHS2XUarWYOHFivq/n+e1fe+01MXHiRJGVlSWVSUxMFG3atJHKLVy4UNy8eVP4+vqK4OBgrfq2bNkilatZs6ZQKpUFvieG8vLykuoeNWqUaNy4sQgNDdUqc+jQIWFubi4ACAcHBxETE5NvXcuWLZPqatiwYYFt3717V8hkMuHj42NQfPXq1RNubm7i+PHjWmXS09PFuHHjpHLVq1cXsbGxOutcsGCB1r7w/OuNiYkRAwYMkMoMHz5c7+vIvb++++67wtbWVnz77bciOztbKhMdHS08PT3z/K1GR0eLqlWrStuPGzcuz7554sQJ4ebmJnx8fKRyXl5eemN6kX34wIED0raff/65SEtL06o7LS1NfP/999Lf3KBBg/TG8vx7lPM6Zs+erfU3IYQQf/31l7C1tRUAhFwuFzt27NBbrzH33+K0fv16Kc6ePXsKDw8P8dNPP2mVSU5OFq+99ppUbvbs2XrrLMz3ZGGOFbnrHTRokHBzcxP//vuvVplTp04JCwsLAUAoFArx8OFD8fnnn4vRo0eLzMxMqVxaWpp48803pfrmzp2rt+3c+23lypVF586dRcuWLcWDBw+0yoWHh4u2bdtKZfv27auzTpVKJXr16iWVHTNmjEhNTdUqExgYKO2XMplMrFu3Tm+cuY+nY8eOFXZ2dmLfvn1aZc6dOydMTEwEgDzxG6o4j20FfYcUVn7HvSFDhmi912q1WsybN08q165dO531DRw4UCr3wQcfFNj+L7/8IgCICRMmFBifo6Oj8PDweOn2rcePH4tq1aoJAMLU1FSsWrVKqNVqrW337Nkj7OzsBABha2srrl27pjOW77//XorFw8NDnD17Vmt9SkqKGDVqlHBzcxPdunUz6Dvm9u3bwtHRUSr71VdfaR0rhRBix44dwsrKSuuYV9B5o7GO648ePZLeH29vb3H37t08Zfbu3Svc3d2L5e/IEDnHk/bt2wsrKyud//ewtbUVM2bMyHMMJyIiIioKJrSJiIiIyrmci0bW1tbiiy++EAEBASI1NVUkJSWJc+fOiZEjRwqZTCYACEtLS7Ft2zajtl8SCW0AOuNes2aNVGbgwIF66yyuhHZQUJCwtrYWAIS5ubm4efOmzrKDBw/WuvCsS+4L3wBElSpVRFJSUp5yISEh+b6e57dv2bJlnovKQghx4cIFreRCt27dxNWrV/ONqWvXrlLZAwcO6Iy9sHInBC0tLcXDhw/zLTds2DCp3LJly/Itk5CQoHVx9fz583rb/vTTTwUA8eOPPxoUn0wmE6dPn863nFqtFj169JDKDh06NN9yR48eFXK5XEqYJSQk5FsuOztbNG3aVKrvt99+0xlj7v0VgJgyZUq+5ebOnZvnb3XQoEHSdj169Mh3PxFCiNOnT2u1UZiEdmH34ZyEdv/+/fW2kTuBcPToUb1ln3+PRo8erbPs77//LpVzdnYWkZGROssac/8tTrkT2gDExIkT8y0XHBwslXF3dxcqlUpnnSWR0AYgli9fnm+58ePHS2WGDBki2rVrl2+8YWFh0nHQw8ND72t6fr91d3cXcXFx+ZaNi4sTHh4eUtlffvkl33I5f3cARO/evXW2/fDhQ+lmCisrK3Hv3j2dZXMfTwGIXbt25VuuU6dOeZKOhiruY1txJrQBzU1N+d18pVKptG7iuXHjRr71HTp0SCrj6OioN1EvhBAtW7YUAHQmaF/2fUutVgs/Pz9pu0WLFulsY/fu3VK5evXq5UkoCyFEQECAdCOQTCYT586dy7cutVqtlczW9x2jVqu1buQbN26czhi3bt2qVae+80ZjHtc///xzaf3+/ft1tpmzf+r7O7py5Ypo2LChsLGxEUOGDMlzA1dR5T6eNGjQQGzevFmEh4eLzMxM8eTJE/HHH3+IBg0aaP0tPnr0yChtExER0auLCW0iIiKicg6AqFixYp4etblt2rRJuqhkbm6u86JgUZREQrtatWo6y4WGhkrlKlSooLfO4kpo5+5xoy9JlhNvzkVPmUwmAgMD8y33/IVvXQlXlUolNm/eLA4dOqR3+19//TXf7dVqtXBwcJDKde3aVWfsixYtksrNnDlT7+ssjNwJwREjRugst3nzZqnc//73P53lRowYIZV77733dJbLysoSbm5uwsLCQmdS4fn4evToofe1+Pv7S2VlMpm4c+dOnjK5L2YXlNjcsWOHVLZ+/fo6y+XeX83MzHT2AL5z547YvHmzlMy4ffu2lOgDIPz9/fXG0717d4OTUS+yD9+5c0fMmTNH/Pfff3rbePTokVZCU5/c75FcLhcRERF6y/v6+krlP//8c53ljL3/FpfnE9r6Epw5PSwBiFu3buksVxIJbVtbW5GRkZFvuV27dmm9pi1btuisM/fnefv2bZ3lnt9vFy5cqDfW3D1Iq1atmidZHhUVJfUk15c8zTF58mSp7KRJk3SWy308bdy4sc5yp0+fFps3bxYpKSl6281PcR/bijuhvWHDBp1lR40aJZVbtWpVvmXUarWoXr26VG7jxo0667t27ZoANDePGRrfy7Zv/fXXX9J2Hh4eBSZP69evL5Xfvn17nvXvvvuutL5Xr1566zp//rzWe6vrOyb3TQqmpqbi8ePHeuvNPfqRvvNGYx7X33jjDWm9rhsMhdDsn/b29nr/jtq3b6/1vvz88896YzNUzvFk8ODBOj/nzMxMrZv8mjdvrvO7nIiIiMgQ+U/WQkRERETlRkBAAK5du4ZatWrpLDN06FBpzsSsrCxMnDixpMIziq5du+pcV6VKFZibmwPQzJGdM9dxSXny5Al27dolPS9oblxPT0+0aNECACCEwIoVKwxqp3fv3vkul8vlGDJkCF577TW92/v5+eW7XCaTSXNFA5p5QnWpXr269PjOnTt62ysqfa+jRo0a0uO7d+/qLDd69Gjp8R9//IHExMR8y+3evRtRUVF4++234ejoaFB8b775pt71zZo1Q5UqVQBoPt9NmzZprb948SIuX74MQPPeF7S/5P7cAgIC8p1v+nmtW7eGs7Nzvutq1qyJIUOGSJ/lpk2bIIQAoPlbyplzXJc+ffoU2L4uhdmHa9asiblz56Jx48Z66/Tw8JAenzt3zuBYmjdvrrVtfvr27Ss93rBhg0H1GmP/LQm1atXS+rt/Xs2aNaXHpR1r27Ztdc4fXK1aNa3nxfH9VdDffL9+/aTHISEhOH78uNb69evXIyMjAwBQt25d1KtXT299uV/Db7/9ZlCMuv62AM37N2TIEFhbWxtUV46SOrYVpxf9e5TJZBg1apT0fM2aNTrrW716NQBg7NixBsf3su1bK1eulNb17dsXZmZmRY4nNTUV27dvl573799fb10tW7aEu7u73jIAsHHjRulx69atUaFCBb3lDTnmGfu4bmFhIT3WNze2TCbDjRs3cPr06QJjNLa+ffsiICAAGzZs0Pk5m5ubY+PGjbC3twcA+Pv7S38nREREREXBhDYRERFROefr6wsXF5cCy33wwQfS4//++w+nTp0qzrCMqnbt2jrXyWQyODg4SM91JS+Ly7Fjx6BWq6XnBSUEny9z5MiRAstbWVnlSdwUho2Njd4Lvba2ttJjfTdG2NnZSY+L633W91kb+jm3adMGvr6+AIC0tDRs2bIl33I5yYnCJCDq169fYJncSdjnLzQfPXpUeuzl5VXgBXgHBwc4OTlJzw1J2haU1Mgtd3xNmjQpsHzO+1pYL7IP37hxA6tXr8a0adMwevRojBgxQvp57733pHJPnjwxuE5DPsfc70dYWBgePnxY4DbG2H9Lgr44AWjd4FHaseZOrj8v93eXjY2N3uRUUb6/FApFge9VjRo1tOrW9zffsmXLAtvMnXiPjY01KPlemL95Q5XEsa04WVtbo2LFijrXG/r3OHLkSJiamgIAzpw5g8DAwDxl0tLSsHXrVtjb2+Odd94xKL6Xbd/Kzs7WOq8sbDzPH9v8/f2RlZUlPTfW8ak4jnnGPq63adNGejx//nyMGjUKt27dyreuypUro3Llyjrb+umnn9CgQQNYW1tj0KBBGDp0qN7YDOXg4ABfX1/pb0MXV1dXDBo0SHr+448/GqV9IiIiejXpP/MgIiIiopdG8+bNYW1tLfVg/vfff9G+fXtp/aNHj/T2bgM0vTlzemCVpJzeHbrk7s2S+wJoSch9cdvOzk7rIqUuuRN7t2/fhkqlgomJic7yuS+8F0VB759c/uw+V31lc8dYXO+zvvYL8zmPHj0aU6ZMAQCsXbs2z6gE9+7dw5EjR+Dr66t18bgghtw84uXlJT2+ffu21rrcPbFSU1MxYsSIAuvL6YEHAPfv3y+wvKG9zZ+PL3fcuujq+V2QouzDFy5cwOTJk+Hv729Q+cKMzlDYzxHQvFeenp56tzHW/lvcyvJ36vP0xWrodxdQtO8vR0dHrTZ08fLyQkBAAAD9f/OXL18u8G8+OTlZ6/n9+/f13miUE6exlcSxrTgZax+vUKECevfuLfVWX7NmTZ6k3O+//47ExERMmjQJVlZWBsX3su1bISEhSElJkZ5v3boVx44d07tN7oR6REQEMjMzpdEYnn+txjg+ZWZmIjQ01Kh1AsY/rk+YMAHr1q3DjRs3IITAunXrsG7dOjRu3Bh9+vRB7969DUrGA0CjRo1w7do1g8oWl86dO2PVqlUANK/1/v37WjczEBERERmKCW0iIiKiV4RcLkeNGjVw/fp1AEBwcLDWeqVSmecC4vPS0tKKLT59Chq2UiaTlVAkecXGxkqPbWxsDNomdzkhBGJjY+Hm5qazfEGvvyAF9aApatnioO+1FuZzHjp0KD799FNkZGTg2rVruHDhglaPsbVr10IIgTFjxhQqPl1DH+eW+/ONi4vTWpd7f4mOjtYa/tQQCQkJBZYpzP4SHx8vPTZk/7W0tDS47qLGBAB79+5F//79oVQqIZPJMG7cOIwaNQre3t55hk4uyt9/YT9HIO9nmR9j7b/FrSx/pz7P0O+k4vjuMmQ/AQz/mw8ICJCSk4Yy9t+8oUri2FacjLmPjxkzRkpob968GQsXLtRKiOeM9lGY48nLtm/ljgXQ3DRZWAkJCVLv5tzHJsA4x6fiqBMw/nFdoVDg5MmTmD59OjZs2IDs7GwAwJUrV3DlyhXMnTsXnp6eGDZsGCZPnlxqf2OGev6mieDgYCa0iYiIqEg45DgRERHRKyT38KyGJGeIyitHR0e89dZb0vPc8zYqlUqsX78elpaWRht+syjatm0LIUShfnLPUfqySkhIwIgRI6BUKgEA33zzDVasWIGmTZsWeh5gorLks88+K/TfvKFDWFPx6datmzTnfHx8vNa8xtevX8eFCxfQunVrg6YyKC5lbd/6999/Cx2PIXNgl3XGOq47Ojpi7dq1CA0Nxf/93/+hZcuWWjdhPHz4EF9//TVq166Nbdu2leRLLLTc//cA+P8PIiIiKjomtImIiIheIbmHOHw+MVS1atUCL7p16tTphdov7aFri0Pu4ShzD7epT+5yMpmsyMM4k365e8v98ccf0jypu3fvRlRUFN55551CD4WdmZlZYJncn+/zw/Tm/qyfH/61NOQeTtaQ/Tc9Pb04wwEA7Ny5U+rxZmVlhY8++sjobRT2cwTyfpZUOOXx+9+Q/QQoX3/zhuKx7Rm5XI5Ro0ZJz3N6ZAPPbpYaO3Zsoep82fat5z/rF43n+aHOjXF8Ko46geL9HCpWrIipU6fi/PnzCA0Nxffff4+6detK6xMTEzFo0CCcPXvWqO0aU+7/ewB5//9BREREZCgmtImIiIjKqcTERHz99deFGtowIiJCelyxYkWjxJF7OMqCEhaGDG9Z3vj6+kqPk5KSDOp5knu+RG9v71KbY/Rl165dO/j4+ADQDJe/ZcsWAM+SEYVNQAB5h1XNT0hIiPTY29tba13u/SV3udKS+8K4IfEY8vpfVM60CADg4+OjNbSvsRT2cwTyfpb08n//x8fHQ61WF1gu97y8+v7mHzx4YLzgihmPbdpGjhwpDWt/5swZBAYGIi0tDVu3boWDgwPefvvtQtX3su1bVatW1RrC+0XjyX1sAoxzfFIoFFrzvBvrmFdSx/UqVapg2rRpCAwMxK+//iodG1UqFf7v//6v2Np93smTJ/H111/j6tWrBpXP/X8PwHj//yAiIqJXDxPaREREROVUfHw8Pv/8c3z33XcGlQ8PD8fjx4+l5+3btzdKHHZ2dlox6ZKdna11sftl0blzZ62L9pcuXSpwm8uXL0uP/fz8iiUu0hg9erT0eO3atbh37x6OHDmCBg0aoFWrVoWuz5A5SnNf5G3Xrp3Wuq5du0qPk5KSEBQUVGB9jx49gq+vL3x9fXHx4kXDgzVA7u+BK1euFFj+xo0bRm0/P7l7cxU0f6uhPUefZ8jnmPv98PT0RJUqVYrU1svM0O9/ALh9+3Zxh2N0mZmZuHPnjt4y9+7dQ1JSkvRc39+8v78/hBAFtrt79274+vqiadOmBvfkNTYe27RVrFgRvXr1kp6vWbMGv//+OxITEzF06FCD5lrO7WXbt0xNTdGxY0fp+YULFwza7rPPPoOvry9GjBihtbxZs2ZaNzMZcnwKDAwssExxHPOMfVz/66+/sGrVKp2fp0wmw6BBgzBr1ixpmSGv3ViOHj2Kzz//3OB50nO/PhsbGzRq1KiYIiMiIqKXHRPaREREROXcrVu3EBUVVWC5TZs2SY8dHBzQo0cPo7Rfs2ZN6fG9e/d0ljt+/HipXZgvTu7u7hgwYID0fPv27XrLP3z4ULq4J5PJMHHixGKN71U3bNgw6aL4tWvXMHbsWAghtIYjL4y//vpL7/pLly4hLCwMgGaY2uHDh2utb9asGVq0aCE9//XXXwtsc/PmzQgMDERkZCQaN25chKh1GzZsmDQvZ1hYWIFJq4JevzFUrlxZenz37l29SRpDEhL58ff3x5MnT/SW2b17t/T4vffeK1I7LztDv//v3r1bbm9oKmif37Vrl/S4WrVqWkk9ABgxYgSsrKwAAE+ePMHRo0cLbHPVqlUIDAxE5cqVoVAoihD1i+OxLa/cx43Nmzdj+fLlAIo22gfw8u1buT/z/fv3S9N86JKamirF07BhQ611VlZWeOutt6TnO3fu1FvXxYsXC/xOB6B1TD537lyB2/z9998F1mns4/oPP/yA8ePHFxhbs2bNpMe5e8eXlBMnThRYRq1WS6PjAMDAgQMLvFGNiIiISBcmtImIiIjKObVajTlz5ugtc//+fSxYsEB6PmPGDNjb2xul/Q4dOkiPDx8+rHMIzYULFxqlvbLoq6++ki4mbty4UW/vnFmzZknv0ejRo/MMq0nG5eTkpJWUOXLkCKysrDBkyJAi1XfgwAGcO3cu33VCCHzxxRfS82HDhqF69ep5yn3//fdSz8clS5boTfSFhoZKfzvTpk0z+oXgGjVqYOjQodLz3PE/79y5czh48KBR289P7pttoqOjtZI6z1u0aFGR2lCpVJg3b57O9X/88YfUM8/FxQWTJk0qUjtFNWfOHMhkMshkMowbN65E2y6MVq1aSfvkuXPndPaYz338KW9++OEHncOlx8fH44cffpCez5kzB3K59mUWFxcXfPbZZ9Lz6dOn55lTNrc9e/bgn3/+gUwmw8yZM18s+BfEY5u27t27w9PTE4Dms//vv//Qtm1b1KtXr0j1vWz7Vo8ePdCtWzcAmtEzCmpj9uzZiIuLg6urq9ZoKjlmzZolJd3379+P8+fP51uPEKLA8+Acfn5+0o0B2dnZeo8Dv//+O27evGlQvcVxXN+2bZveNnOPNKJr1KWrV6+iUaNGsLW1xfDhw6FUKvXWWRj6zody/PDDD9LoHNbW1vj888+N1j4RERG9epjQJiIiInoJrFq1CpMmTcp3jsujR4+iU6dOSE5OBqDpHTF9+nSjtV2vXj20bdsWgGbOxC+//FKrR6VSqcSUKVMQFRWFli1bGq3dsqR27dpYv349TE1NkZWVhZ49e+YZQjIzMxMff/wxtm7dCgBo3bo1fvzxx9II95XzfG/s//3vf0W+oWPo0KHo168fTp06pbU8IyMDEydOxIEDBwBoEsW5kxG5dejQQZrvMiUlBV27dsWZM2fylDtz5gw6d+6MhIQEtG/fHh9//HGRYi7IkiVLUKNGDQCaC9QTJkzIkxQ5ffo0+vfvr5X8Li5NmzZFv379pOejR4/GkSNHtMpkZGRg6tSpRe4xPmDAAGzatAlz585Fdna21rq9e/dKyRW5XI61a9fCxcWlSO0UVe55W11dXUu07cJwdHSU5g5OSUnBhx9+qJUwEULgu+++w4EDB7SGay4vnJycIJfL0bNnT625jAHNvLBvvvmmNJXHgAED8ozIkGPmzJno378/AOC///7DG2+8gYcPH2qVUavV2LBhAwYNGgRAc+NZUaZFMCYe27TJ5XKMGjVKa1lRe2dXrlwZdevWfen2rS1btqB27doAgJUrV+Kjjz5CamqqVpmUlBR8/PHHWLJkCUxMTLBhw4Z8exh7e3vj+++/B6D5LhkwYECeBGpaWhrGjRuHw4cP55ljXJd169ZJ3+mrVq3CN998A5VKpVVmz549eP/99zFs2DCD6iyO4/qMGTPw66+/5rlRVAiBPXv24JtvvgGg+R6eNm1avnV88MEHuHbtGlJSUrBp0yZs3rzZoNdjCLVajTfeeAN//vlnnpFUMjIy8OWXX0r/3zA1NcWWLVvyvcmPiIiIyFAyYcgkO0RERERU5qSmpuLjjz/Gr7/+KiWrLSws0KJFC1SqVAkZGRm4fv26NAysQqHAjBkz8MUXX+Tp5fOibt++jY4dOyIyMhKAZhjaJk2aQKlU4syZM3BycsLevXsxatQoaYjC119/HRUqVAAAbNiwAYAmafbzzz9Lj3Nib9u2LWrWrAkXFxepR+bu3bulIYG3b98uXTAdMGAAbGxs4O3tjRkzZiAmJka60PfkyRP8888/ADTDqXbv3h2AZl7K999/X6v9q1ev4tq1awCAhg0bas359/777+eZyxIA/v33X4wYMQIREREANIm5WrVqISUlBWfOnEF8fDxkMhmGDBmC1atX5zvn5rRp0xATE4OUlBTs2LEDgKZXy8CBA6UyM2bM0HnhtqDtc2LP/VoPHjwofXY5n0vu93rBggW4deuWzvevb9++6Nu3b77x6PLzzz/j9OnTAPL//HI+k9zt63pNhrTv7e0t9RI6f/58oW6uqFq1qpRwuHfvHubPn4+ff/4ZDRs2hLe3N9LS0nD69GlpDuEGDRpg7969Bc65vHXrVkyePFnazsfHBz4+PpDL5QgMDJTmxOzfvz82btyY54L/rVu3pJ6vuvbX3J+jPuHh4XjjjTekOhwdHdGuXTtYWVnh9u3buHr1KkaNGoVZs2ZJyW8vLy+EhITkqetF92EASE5ORr9+/bQS2Q0bNoSPjw/S09Nx5swZREdHY9KkSVi2bJlUJifpk3v/yTF37lypN96cOXPQrFkzDB48GAqFAm3atIGFhQVu3Lghve/W1tZYu3atlATKrbj33/79+0s90//880+toXcLI/f33927d6UES40aNaTvsEWLFsHFxUVrf8rv+xd49l2dW1RUFDp06CD9fVWqVAmtW7cGoBkGODs7G3v27MGyZcuwcePGPHXm176u/TmnfUPf09yvX9drymk/Zw7f3HV6eXlh9+7dUnKxTZs2qFSpEqKionDq1ClkZWUBAN555x1s2rQJ5ubmOj8LlUqFmTNnYvHixcjOzoaJiQlatmwJLy8vpKen4+LFi4iIiICZmRlmz56d72gJuY97+X1vA/nv+y/KGMe2/N7f578Xco7bhWXocS93HLr+Hgr6bgoPD0fVqlWhUqng6OiIiIgIrbme9QkJCUG1atUAaPatixcvok+fPrh06dJLtW/FxsZi6NCh0g1e1tbWaNu2LVxdXREdHY1z584hOTkZLi4u+OWXX/Dmm2/qre///u//MHPmTOlmmWbNmqFmzZpISkrC6dOnoVQqsXr1ahw5ciTf75j8PtPr16+jT58+0jHMw8MDrVq1gqmpKa5du4Y7d+7g888/R+fOndG5c2cAQMeOHXH8+HG9sb7ocT0n3sWLF0v7gIeHB5o2bQp7e3vExMQgKChIummhevXq2L59u87pSDp06KB1A94vv/yCkSNH6n0NBTl37hxmzZqFEydOSIns52M8e/as9H+TatWqYePGjTp7kRMREREZTBARERFRuZaamir27NkjJkyYIFq3bi3c3NyEubm5sLS0FJUqVRLdunUT3377rXj8+HGxxvH48WMxdepUUadOHWFpaSns7OxE48aNxcKFC0VSUpIQQoiOHTsKAHl+cqxfvz7f9Tk/Xl5eUtk5c+boLduxY0chhBAPHjzQWw6AGD58uEHt5/ysX79e5/uQlpYmli9fLrp37y4qVqwozM3Nhb29vahXr56YNGmS8Pf31/s+enl5Fdj+sWPHirx9TuyFea91fW45P3PmzNH7mvIzfPhwgz4TY7X//fffCwCiYcOGhY4193v64MEDIYQQBw4cEAMHDhReXl5CoVAIJycn0b59e7FixQqRlZVlcN3x8fHi+++/F506dRIVKlQQZmZmwsbGRnh7e4uRI0eK48eP69z22LFjBe4ruT/HgiiVSrFy5UrRoUMH4ezsLBQKhfD09BQDBgwQBw4cEEIIcffuXanuOnXqFPh+FWUfzqFSqcSvv/4qevToIdzc3ISpqamwtbUVPj4+YuzYseLy5ctCCFHg/pMj93dGzj7z4MED8cknn4h69eoJe3t7YWlpKerUqSM++ugjERISojO24tx/lUqlcHR0FACEQqEQCQkJBb5Xuhjy/ZezTxuyP+mSkJAg5syZIxo0aCCsra2FtbW18PHxEbNnzxaRkZF637OitG/oe1qY16/v7ycxMVF8++23olWrVsLV1VWYmZkJDw8P0bdvX7Fv375CfSbBwcFi+vTpokmTJsLJyUmYmpoKBwcH0axZMzF9+nQRHBysc9uCjnu69n1jeNFjW0FxA8+O24Vl6HHPkDgM+W7q1auXACCmTJlSqDhz7485+1ZWVpZYvXq1dAwwNzd/afatY8eOiffff1/Url1b2NraCjMzM+Hm5iY6d+4sFi1aJGJjYw2u68aNG2Ls2LGievXqwsLCQtjb2wsfHx/x4Ycfijt37gghdH/H6PpMU1NTxXfffSeaN28uff9Xr15dDBs2TJw9e1YIIcThw4elel5//XWDYn2R43qOmJgYsWHDBjF06FDRsGFD4ejoKExNTYWlpaXw8vISb775pli3bp3IyMjQW8+VK1ek7+XBgwcX6vykICEhIWL58uXi7bffFj4+PsLe3l6YmJgIe3t7Ubt2bTFkyBDx+++/C6VSabQ2iYiI6NXGHtpERERERPTSmz59Or7//nusWLEC48ePL9S2uXtoP3jwAFWrVi2GCMuHK1euoEmTJgCANm3a5Dukaln1fA/tuXPnlm5AOmzfvl3qkT1+/HisWLGilCMiotxatGgBf39/BAYGwsfHx+Dtnu+hnd8IF1S27Nq1SxrS/d1335WG1iciIiKiksc5tImIiIiI6KWWnZ2NTZs2wdraGoMHDy7tcMq1O3fuSI8bNGhQipG8nOLj4zFlyhQAQMWKFfH111+XckRElFtAQAD8/f3Rvn37QiWzqXziMY+IiIio7GBCm4iIiIiIXmp79+5FZGQkBg0aBDs7u9IOp8zZu3cvKlSogC1bthRY9vDhw9LjnDnUyTiioqLg5+eHiIgIODg4YO/evXBycirtsIgol19++QUAMHbs2FKOhIpq5cqVqFChAk6cOFFgWR7ziIiIiMoOJrSJiIiIiOil8OOPP6Jz587IyMjQWr5s2TIAwLhx40ojrDIvIyMDkZGRWLNmDfTNSPXgwQNpuFVvb2/07t27pEJ8JaSnpyM+Ph61a9fGmTNn0Lhx49IOieiV9d577+WZniI5ORmbNm2Ci4sLBg4cWEqR0YtKTU1FZGQk1q5dq7fcuXPncOTIEQBAt27d0LBhw5IIj4iIiIh0YEKbiIiIiIheCnfu3MHx48exb98+admePXtw5MgRdO7cGU2bNi3F6Mq+U6dOYezYsYiLi8uz7vz583jttdeQlpYGS0tL/Prrr5DL+d9JY/Ly8sLZs2dx5coVDmVMVMr8/f2xYcMGhIeHS8u++OILxMfHY/LkyVAoFKUYHRnD1q1bMWfOHKSlpeVZd+DAAfTp0wdqtRqurq74+eefSyFCIiIiIsrNtLQDICIiIiIiMqZ3330Xr7/+OpRKJQ4dOgQbGxupl7ahFixYgFu3bgEAYmJipOXTpk2DjY0NAGDDhg1Gi7k0OTg4wMzMDEqlEmvXrsXWrVvRpEkTVKpUCUqlEoGBgbh9+zYAwNPTE9u2bSs3vYdPnz4tJSKuXr0qLd+9ezdCQkIAAO+//z7atWtXCtHlVbFixdIOgYieysjIQNOmTdGxY0c8ePAAly5dQr169TBt2rRC1TNixAgAQEpKirQsJiZGWu7t7Y0ZM2YYK2wqgIuLC+RyOdRqNb788kv89NNPaNiwISpWrIi0tDRcvXoVoaGhAID69etjx44dqFKlSilHTUREREQyoW9MOSpT1Go1IiIiYGtrC5lMVtrhEBERUTklhEBycjIqVqzIHpavmJf9fHL79u1Ys2YN7ty5g+TkZDg7O6N58+aYMWMGfH19C1VXr169cPr0ab1lEhMTXyTcMiU2Nhb79u3D6dOncfPmTYSHhyMlJQWmpqZwdnZGw4YN0b17d7zzzjvlqmfi1q1bMWHCBL1lVqxYgcGDB5dQRERUHnz11Vc4cOAAwsLCkJGRAQ8PD/To0QOffPIJXFxcClWXvb293vXt2rXTGlmkPCmv55RhYWH466+/cOLECdy8eROPHj1CSkoKFAoF3Nzc0KJFC/Tv3x8DBw4sV6+rJL3s55RERERUMgpzPsmEdjkSHh7Ou0KJiIjIaMLCwlC5cuXSDoNKEM8niYiIyNh4Tvnq4TklERERGZMh55MccrwcsbW1BaD5YO3s7Eo5GiIiIiqvkpKSUKVKFencgl4dPJ8kIiJ6+cw4OQMnw09CDXWBZeWQo0PlDljQYcELt8tzylcXzymJiIjIGApzPsmEdjmSM4SPnZ0dTxaJiIjohXF4wFcPzyeJiIhePumm6ZBZymACE4PLG/M8gOeUrx6eUxIREZExGXI+yYlgiIiIiIiIiIiIyikHhQNkMCypLIccDgqH4g2IiIiIiMjImNAmIiIiIiIiIiIqp6rZV4OAMKisGmr4efoVc0RERERERMbFhDYREREREREREVE5tO/+Pqy/sd6gsjLIYGduh25VuxVzVFRYarUay5cvh52dHWQyGUJCQoxWd0REBKZMmYIaNWrAwsIC7u7ueOONN/DPP/8YrQ0iIiKi4saENhERERERERERUTkihMDqa6sx49QMZItsabmuocdzln/T7hsoTBQlEiMZJjAwEO3atcOkSZOQnJxs1LrPnz8PX19frF27FuPGjcPJkyexYsUKhIWFoXv37pg1a5ZR2yMiIiIqLkxoExERERERERERlRNKtRJfnP0Cy64uk5YNrD0Qizsthq25LQDNXNm5f9ua2+Inv5/QqUqnEo+XdJszZw6aNGkCExMTzJgxw6h1R0dHo3fv3oiPj8evv/6KTz75BC1atMCAAQNw8uRJVKlSBfPnz8fGjRuN2i4RERFRcTAt7QCIiIiIiIiIiIioYElZSZh6fCouPL4gLfuo6Ud4r957kMlkaF+5PQ6FHMLRh0eRkJkAB4UD/Dz90K1qN/bMLoOWLFmCxYsXY/z48UZPLH/55ZeIiYlBy5Yt0bdvX6119vb2mDlzJiZMmIBPP/0Ub7/9NiwtLY3aPhEREZExMaFNRERERERERERUxkWkRGDikYm4m3AXAGAuN8c37b9B96rdpTIKEwV61+iN3jV6l1aYVAg3b95EpUqVjF5vVlYWNm/eDAAYMGBAvmUGDBiACRMmIDIyEnv37sVbb71l9DiIiIiIjIVDjhMREREREREREZVhgTGBGLx/sJTMdlA44JfXf9FKZlP5UxzJbAA4c+YMEhMTAQDNmzfPt4ybmxs8PT0BAPv27SuWOIiIiIiMhQltIiIiIiIiIiKiMup42HG89897iEmPAQB42Xlha8+taOTWqFTjorLr+vXr0uOqVavqLJezLnd5IiIiorKIQ44TERERERERERGVQVuDtuI7/++gFmoAQBO3Jvix849wsHAo3cCoTHv48KH02NXVVWe5nHVhYWF668vMzERmZqb0PCkp6QUjJCIiIioc9tAmIiIiIiIiIiIqQ1RqFRZeXIgFFxdIyeweVXtgTbc1TGZTgZKTk6XHFhYWOsvlrCsoQT1//nzY29tLP1WqVDFOoEREREQGYkKbiIiIiIiIiIiojEhTpuGj4x9hS9AWadno+qOxoMMCKEwUpRgZvapmzpyJxMRE6aegHt1ERERExsYhx4mIiIiIiIiIiMqAmPQYTDoyCYGxgQAAE5kJvmj9BfrX6l/KkVF5YmtrKz3OyMiAtbV1vuUyMjIAAHZ2dnrrUygUUCh4MwURERGVnnLfQ1utVmP58uWws7ODTCZDSEiI0eqOiIjAlClTUKNGDVhYWMDd3R1vvPEG/vnnH4O2v337NkaNGgVPT09YWFigYsWKeOedd3Dx4kWjxUhEREREREREROXfvYR7GLxvsJTMtjGzwYquK5jMpkLz9PSUHkdHR+ssl7OOQ4gTERFRWVeuE9qBgYFo164dJk2apDU3jDGcP38evr6+WLt2LcaNG4eTJ09ixYoVCAsLQ/fu3TFr1iy92+/ZsweNGzfGX3/9hVmzZuHUqVNYuHAhLl68iDZt2mDlypVGjZeIiIiIiIiIiMqnC48vYOj+oYhIjQAAVLCugI09NqJNxTalHBmVRw0aNJAe6+v8k7Mud3kiIiKisqjcJrTnzJmDJk2awMTEBDNmzDBq3dHR0ejduzfi4+Px66+/4pNPPkGLFi0wYMAAnDx5ElWqVMH8+fOxcePGfLcPCgrCoEGDkJWVhQMHDmDcuHFo3rw5hg4diuPHj8PKygqTJk3C0aNHjRo3ERERERERERGVL3vu7sG4f8chWanprFHXqS629tyK2o61SzkyKq/atGkDe3t7AMClS5fyLRMVFYWHDx8CAHr16lVisREREREVRblNaC9ZsgSLFy/GyZMnUadOHaPW/eWXXyImJgYtW7ZE3759tdbZ29tj5syZAIBPP/0U6enpebafPn060tPTMXDgQDRr1kxrnZeXF8aPHw+1Wo2PPvrIqHETEREREREREVH5IITA8qvLMfvMbGSLbABAh8odsKH7BrhZuZVydFSeKRQKDB06FACwY8eOfMvs3LkTAKQpFomIiIjKsnKb0L558yYmTJgAmUxm1HqzsrKwefNmAMCAAQPyLZOzPDIyEnv37tVa9/jxY+zfv9+g7a9fvw5/f3+jxE1EREREREREROVDlioLn53+DKuurZKW/a/O//Bj5x9hZWZVipFRebFmzRrY29ujbdu2SEhIyLP+iy++gIuLC86fP4+//vpLa11SUhIWLFgAAFi4cCEsLS1LImQiIiKiIiu3Ce1KlSoVS71nzpxBYmIiAKB58+b5lnFzc4OnpycAYN++fVrrDh48CLVarXf7Ro0awczMLN/tiYiIiIiIiIjo5ZWYmYix/47F3/f/BgDIIMMnzT7BrJazYCo3LeXoqCRFRUXhxo0buHHjBh49eiQtDw4Olpanpqbmu+3SpUuRlJSEs2fP5jutoaurK/7++284Ojpi0KBBWLRoEfz9/bFr1y506NABoaGhmDlzJoYPH15sr4+IiIjIWHiW/Jzr169Lj6tWraqzXNWqVfHw4UOt8rm3NzExQZUqVfLd1tzcHB4eHvluT0REREREREREL6ew5DBMODwBIUkhAAALEwssaL8AXby6lG5gVCpWrFiBefPm5Vn++uuvS4+PHTuGTp065SkzadIkTJ8+HfXq1YOfn1++9bdq1Qo3btzAggULsHLlSsyePRt2dnZo0aIFFi5cqNUOERERUY4MpQr7Ax7jUGAkEtKy4GBljm713NGzvgcszExKJSYmtJ/z8OFD6bGrq6vOcjnrwsLC8t3e0dERJia6P1RXV1c8fPgwz/a5ZWZmIjMzU3qelJSkP3giIiIiIiIiIiqTrkdfx+SjkxGXEQcAcLJwwjK/ZajvWr+UI6PSMnfuXMydO7dI244dOxZjx44tsFzFihXx008/4aeffipSO0RERPRq+fdmJD7edhVJ6dmQywC1AOQy4GDgE8z9OxA/vNUIXX3cSzyucjvkeHFJTk6WHltYWOgsl7Pu+SRzzvb6ttW3fW7z58+Hvb299KOrxzcRERERkT7Lly+Hj4+PzilxiIiIqHgdDj2Mkf+MlJLZ1eyrYWvPrUxmExEREVGZ8e/NSIzZfAnJ6dkANMns3L+T07MxevMl/HszssRjY0K7DJs5cyYSExOlH329uYmIiIiIdJk4cSJu3rwJf3//0g6FiIjolSKEwMbAjZh6fCoyVZpR+JpXaI7NPTajsm3lUo6OiIiIiEgjQ6nCx9uuAgIQOsqIp/9M23YVGUpVyQUHDjmeh62trfQ4IyMD1tbW+ZbLyMgAANjZ2eW7fc56XXRtn5tCoYBCoSg4aCIiIiIiIiIiKlOy1dlYcHEB/rj9h7Ssd/XemNdmHsxMzIqlTaFUIy0gGhmBsVClZcPEyhQW9ZxhVd8VMjP2ayEiIiKi/O0PeIykpz2z9REAEtOzceDGY/RrXHI3aDKh/RxPT0/pcXR0tM6EdnR0NADkGQY8Z/v4+HioVCqd82jr2p6IiIiIiIiIiMq3NGUaPjn5CU6Gn5SWjW84HuMbjodMJiuWNtNvxiJuWzBEejYgg+ZqowxID4xFwt/34fRWbVj6OBdL20RERERUvh0KjJTmzC6IXAb8cyOyRBPavDXzOQ0aNJAeh4SE6CyXsy53+dzPVSqVziHCs7Ky8Pjx43y3JyIiIiIiIiKi8isqLQojDo6QktmmclN83fZrTGg0oViT2bGbb2qS2cCzcSKf/hbp2YjdfBPpN2OLpX0iIiIiKt8S0rIMSmYDmqR3QnpW8Qb0HCa0n9OmTRvY29sDAC5dupRvmaioKDx8+BAA0KtXL6113bt3h1wu17v91atXoVQq892eiIiIiIiIiIjKp+D4YLy7710ExQUBAGzNbLG662r0qdmn2NoUSjXitgXrnuxQKghND26luthiISIiIqLyycHKHHID772UywAHS/PiDej5Nku0tXJAoVBg6NChAIAdO3bkW2bnzp0AAHd3d7zxxhta6zw8PNCzZ0+Dtm/QoAGaN29ulLiJiIiIXlVPnjzB1atXkZSUVNqhEBER0Svs7KOzGHZgGCLTIgEAlWwqYUvPLWjh0aJY200LiH7WM7sAIj0baTdiijUeIiIiIip/utVzL1QP7dd93Ys3oOe8kgntNWvWwN7eHm3btkVCQkKe9V988QVcXFxw/vx5/PXXX1rrkpKSsGDBAgDAwoULYWlpmWf77777DpaWlti2bRv+++8/rXVhYWFYuXIl5HI5Fi9ebLwXRURERPQKiY+Px2effQYvLy9UqlQJTZs21Rodp3r16pg9ezbi4+NLMUoiIiJ6VewI3oEJRyYgVZkKAPB19sWWnltQ3aF6sbedERirmTPbEDIggwltIiIiInpOz/oesLM0LbCcDIC9pSl6+HoUf1C5lNuEdlRUFG7cuIEbN27g0aNH0vLg4GBpeWpqar7bLl26FElJSTh79iyOHj2aZ72rqyv+/vtvODo6YtCgQVi0aBH8/f2xa9cudOjQAaGhoZg5cyaGDx+eb/1169bFr7/+CnNzc7z++utYvXo1Ll26hK1bt6Jjx45ITU3FsmXL4OfnZ5w3g4iIiOgVEhAQgIYNG2LBggUICwuDEHlvHw0PD8f8+fPRsGFDXL9+vRSiJCIioleBWqjx438/Yu65uVAJFQDAr4of1nVfBxdLlxKJQZWWXfBw4zkEoDawN3d5lZCQgM8//xxvvvkmhgwZgn379pV2SERERERlnoWZCeb3q6+3jOzpP//3ViNYmJmUSFw5Ck61l1ErVqzAvHnz8ix//fXXpcfHjh1Dp06d8pSZNGkSpk+fjnr16ulMKrdq1Qo3btzAggULsHLlSsyePRt2dnZo0aIFFi5cqNVOfvr27YsrV65g4cKF+OabbxAZGQknJye0b98ev//+O1q0KN7hpoiIiIheRmlpaejduzfCw8NhamqKRo0awc3NDQcOHNAqd/fuXaxevRrfffcdevXqhcDAQNjZ2ZVS1ERERPQyylRlYvbp2TgYclBaNqTuEExrNg0m8pK7wGdiVYjLezJAbkDPm7IsNTUVHh4eUkeWAwcOoFu3bgA0NzW2atUKjx8/lsr/9ttv+OSTT6QRF4mIiIgofxEJGVrP5TLN8OI5v+0sTfF/bzVCV5+SHW4cAGQivy4tVCYlJSXB3t4eiYmJvCBLRERERVaezyl++OEHTJs2Db1798aqVavg4eGBmJgYuLm54fDhw3luVjxw4AB69eqFb775BjNnziylqMuO8vzZExERlSXxGfGYcmwKrkRdAQDIZXJ82vxTvFv33RKNQ52lQswvAcgKTTZ4G8d36sC6sdsLt11a5xVbtmzBsGHDYGFhgX79+uHLL79EjRo1AABvv/02tm/fDgCoUKECXF1dcfPmTajVapw8eRJt27YtsThfZjynJCIievmkZ6nQ/rujiEnJAgB82r0OroUlIiE9Cw6W5njd1x09fD2M2jO7MOcU5fuWTCIiIiJ6pfz111/w8fHBzp07YWKiOYGWyXRPGtmjRw/069cPe/bsYUKbiIiIjOJh0kNMODIBoUmhAABLU0t81+E7dKrSqUTjUEamInbrLWRHpRm8jczSFFa+JTMUenE5ePAgFAoFzp49i0aNGknLHz16hJ07d0Imk6Ffv3747bffYGZmhgsXLsDPzw9r1qxhQpuIiIhIh18vPpSS2b0aeGB8p5qlHJG2cjuHNhERERG9em7evInBgwdLyWxDtG3bFrdv3y7GqIiIiOhVcTXqKgbvHywls10sXbC++/oST2anXo5E1LKrz5LZpgZc4pMBTm/VhsysfF8O9Pf3x9ChQ7WS2QCwc+dOqNVqmJqaYunSpTAzMwMAtGzZEoMGDcLZs2dLIVoiIiKisi9DqcKqE/ek55P9ylYyG2BCm4iIiIjKkcTERFSsWLFQ29ja2iI9Pb2YIiIiIqJXxcGQgxj1zygkZCYAAGo61MSvPX9FPed6JRaDOkuFuG3BiN8WDKFUAwDMKljBfUpjOA/zgcxCc9NfzvyCOb9lFiZwHuoDSx/nEou1uISHh6Nx48Z5lv/999+QyWTo2bMnPDw8tNY1bNgQjx49KqkQiYiIiMqV3y8+RHRyJgCgh28FeFcoe1OKcMhxIiIiIio3HB0dERYWVqhtrl69Cmfn8n/xloiIiEqHEALrbqzDkv+WSMtaebTCD51+gK25bYnFoYxKQ+zWIGRHPhti3Lp5BTi8WR0yMxOER6TiWFI2nJUqeJjLYQZACeBxlhqxWQKdswWqlVi0xUetVudZlpCQgBMnTgAA3nnnnTzrLSws8t2OiIiI6FWXoVRhpVbv7FqlGI1u7KFNREREROVG48aNsWHDBoN7XN+7dw+bNm1Cs2bNijkyIiIiehkp1UrMOzdPK5ndr2Y/rOi6okST2alXohC17IqUzJaZy+H4Th04DqgFmZkJHlyLxv5VAUhPy0a4UsA/VYWzqSr4p6oQrhRIT8vG/pXX8eBadInFXFw8PDxw48YNrWWbN2+GUqmEQqHAG2+8kWebhw8fwtHRsaRCJCIiIio3tl0KQ2SSpnd2Nx93+FQse72zASa0iYiIiKgcGTx4MO7fv4/u3bsjODhYZzm1Wo3t27ejQ4cOSEtLw9ChQ0swSiIiInoZpGSlYPKRydhxZ4e0bHLjyZjXZh7M5GYlEoNQqhC3PRjxf9yGyNL0MDZ1t4LbpMawbuwGAMhWqnBkY9Cz8cV1VgYc2RiEbKWqmKMuXm3atMHWrVtx6dIlAEBQUBC++eYbyGQy9OrVCzY2Nlrl1Wo1/vjjD9SpU6c0wiUiIiIqszKzVVhx/Fnv7A+6lM3e2QCHHCciIiKicmTw4MFYtWoVTp06BR8fHzRq1Ag+Pj4AgJUrV2Lbtm0IDQ2Fv78/4uLiIIRA586dMXDgwFKOnIiIiMqTJ6lPMOHIBNyJvwMAMJOb4eu2X6Nn9Z4lFoMyOg1xW4OgfPJsiHGrZu5weLMG5OYm0rJ7l6OQmZZtUJ2Zadm491806rSsYPR4S8rkyZPx22+/oWXLlnB2dkZcXBzUajVkMhk++ugjqZxKpcKtW7fw+eef4969e/kORU5ERET0Ktt+ORyPEzMAAF3rusG3kn0pR6QbE9pEREREVG7IZDL89ddf6NGjB/z9/XHlyhVcuXIFMpkMO3fulMoJoemi1KpVK+zYsUNXdURERER53Iq7hYmHJyIqPQoAYK+wx4+df0RT96YlFkPa1SjE77wj9cqWmcnh0LcmrJu65yl7/1oMIEPBPbQBQAbcv1q+E9otW7bEokWLMH36dMTExADQnCPOmjULbdq0kcrNnTsX3377LYQQkMlkGDBgQGmFTERERFTmZGWrseJY+eidDTChTURERETljJOTE06fPo3Fixdj6dKlePToUZ4ylStXxgcffIAPP/wQpqY85SUiIiLDnAw/iU9OfIK0bE2v6Mo2lbGi6wpUs69WIu0LpQoJf99H6sUn0jJTNys4D/aGmbt1vttkpCoNS2YDgHhavpz76KOP8MYbb+Cff/5BdnY2OnTogCZNmmiV8fPzk84DbW1t0ahRo1KIlIiIiKhs2vlfOB4lpAMAOtdxRYPKDqUbUAF4dY+IiIiIyh0zMzNMnz4d06dPx61bt3Dnzh0kJyfD1tYWtWrVgre3d2mHSEREROXMH7f+wLcXv4VaaHpFN3BtgKV+S+Fk4VQi7Suj0xD36y0oH6dKy6yauMGhb02tIcafZ2FtVqge2hbWJTP/d3GrVasWatXS3ZOoc+fO6Ny5cwlGRERERFQ+KFVqLDt2V3pe1ntnA0xoExEREZUZGUoV9gc8xqHASCSkZcHByhzd6rmjZ30PWJjpvoj5qvP29mYCm4iIiIpMLdRYfHkxNgRukJa95vUavm33LSxMLUokhrRr0YjfcQciSwXg6RDjfWrCulneIcaf51nPGfevRBvWkACqN3J9kVDLpejoaAQFBaFDhw6lHQoRERFRqdt15RHC4zW9szvUdkVjT8dSjqhgTGgTERERlQH/3ozEx9uuIik9G3IZoBaAXAYcDHyCuX8H4oe3GqGrT8EXNCmvgIAA7Nq1C1988UVph0JERERlTEZ2BmadnoV/Q/+Vlr3n+x4+bPIh5DJ5sbcvlGok7L2H1Au5hhh3tYTz4Lowq5D/EOO5pcRn4saJcIPbU1iZokaTVy+hfejQIQwbNgwqlaq0QyEiIiIqVdkqNZbn6p09pRz0zgaA4j8zJyIiIiK9/r0ZiTGbLyE5PRuAJpmd+3dyejZGb76Ef29GllKE5dv169cxb9680g6DiIiIypjY9FiMOjRKSmabyEzweavPMbXp1BJJZmfHpCNqxVWtZLZVYze4TWpsUDI7+mEyti/wR0xYimENyoAuI3xgypF/iIiIiF5Ze65GIDQ2DQDQrqYLmnqV/d7ZAHtoExEREZWqDKUKH2+7Cgjd0x4KADIBTNt2FRdmdeXw409lZmbi7t27SExMRHZ2ts5yQUFBJRgVERERlQcPEh9gwuEJCE/R9G62MrXCoo6L0L5y+xJpP+360yHGM5/2GDaVw7FPDVg1c4dMJitw+/tXovHv+kBkZ2nm+7Z1skCjrlVwce8DZKZlP5tT++lvhZUpuozwQbUGLsX2mkpaQEAAlixZghMnTiAiIgKZmZmlHRIRERFRmZb93NzZU7qWj97ZABPaRERERKVqf8BjJKXrTsbmEAAS07Nx4MZj9GtcufgDK8OuXr2KWbNm4fDhwxw2koiIiArt0pNLmHJsCpKykgAAblZuWNFlBeo41Sn2tkW2Ggn77iP13GNpWWGGGBdC4Mqhhzi36560rEJ1O/QY1wBWdubwaV8R9/6Lxv2r0chIVcLC2gzVG7miRhPXl6pn9saNGzFmzBhkZ2dDCF23hWoz5EYBIiIiopfZ3uuP8SAmFQDQurozmld1KuWIDMeENhEREVEpOhQYKc2ZXRC5DPjnRuQrndC+du0a2rdvj7S0NIMvXgK8gElEREQae+/vxRdnvoBSrQQA1HasjeVdlqOCdYVibzs7Nh2xv96C8tGzIcItG7nCsV9NyBUFX6JTZatxfOst3Dr3bIjyWs3d4TfMW0pWm5qZoE7LCqjTsvhfT2m5efMmxowZA6VSiVatWqFFixZQKBT4/vvvMXToUFSvXh0AkJKSgkuXLuHEiROoXbs2Bg0aVMqRExEREZUelVrgp6N3pOflqXc2wIQ2ERERUalKSMsyKJkNaJLeCelZxRtQGTdv3jykpqaiRo0aePfdd+Hj4wNHR0coFAqd2xw6dAgLFiwowSiJiIiorBFCYM31NVh2dZm0rG2ltljUYRFszG2Kvf20gBjEbw/ONcS4DA5v1oB18woG3XiXnpKFg6tvIOJOgrSs5ZvV0LRH1Vfuxr2ffvoJSqUSq1atwpgxYwAAsbGx+P777zF8+HD4+flpld+yZQvee+899OzZszTCJSIiIioT9gU8xv1oTe/sFtWc0Kq6cylHVDhMaBMRERGVIgcr80L10HawNC/+oMqw06dPo0mTJjh9+jQsLCwM2iY8PLxQvbmJiIjo5aJUK/HluS+x++5uadlbtd/CrJazYCov3ktjIluNxP0PkHI2Qlpm6mIJp3e9YV7RsER6/JNU7F1+HUnR6QAAEzM5ugyvi1rN3Isl5rLuxIkT6Natm5TMLsiQIUOwe/du/PTTT9i8eXMxR0dERERU9qjVAkuPPOud/WGX8tU7G2BCm4iIiKhUdavnjoOBTwouCE3S+3XfV/PCZY7k5GQMGzbM4GQ2ALRp0wbr168vxqiIiIiorErKSsLU41Nx4fEFadnUplMxot6IYu/ZnB2Xgdhfg6AMzzXEeENXOPY3bIhxAAgLisPBNTeQlZ6t2d7OHL3GN4B7Nbtiibk8CAsLw/Dhw7WW5XyWum5i7NChAxYvXlzssRERERGVRQduPMGdKM05aTMvR7SuUb56ZwNMaBMRERGVqp71PTD370AkPb1IqYsMgJ2lKXr4epRMYGVU5cqVYW1tXahtqlWrhmrVqhVTRERERFRWRaREYOKRibibcBcAYC43x7ftv8XrVV8v9rbTb8QgbnswREauIcZ714B1C8OGGAeAGycf4eTvwRBPh/JxrmSDXhMbwNbJ8Bv7XkbZ2dlwcXHRWpYz/cyTJ/nfKCqE0LmOiIiI6GWmVgv8dER77uyCzkfVmZlIPngQyYePQJWYABN7B9h27QLb7t0h1zPtX3GSl0qrRERERAQAsDAzwWc9ffSWkT395//eagQLM5MSiaus6t+/P06fPl2obR48eIBNmzYVU0RERERUFgXGBGLw/sFSMttR4YhfXv+l2JPZIluNhL/vIXZLkJTMNnW2gNv4RrBp6WFQMlutFjj1ZzBO/HpbSmZXbeCC/p80eeWT2QDg5uaG4OBgrWXW1tawsLDAxYsX893m5MmTMDF5tc+jiYiI6NX0T+AT3I5MBgA09nRAu5ouessnHz2KO+07IOLTGUg+cgRpF/2RfOQIIj6dgTvtOyD56LGSCDsPJrSJiIiIStnpuzFaz+Uy7d92lqZYO7QZuvq82sONA8CsWbNw7tw5/P777wZvc/bsWbz33nvFGBURERGVJcceHsN7/7yHmHTNOZaXnRe29NyCRm6NirXd7LgMRK2+jpQzz+bLtqzvArfJjWFeybD5srPSs7F/xXVcPxouLWvUtQp6jKsPcwsOtAgADRs2xPr16xEdHa21vFGjRvj5559x9uxZreUbN27Erl27UKNGjZIMk4iIiKjUqdUCP+bund1Ff+/s5KNHET5xEtTJyTkVaP1WJycjfOJEJB89Wmwx68IzYSIiIqJSdDk0Dn9f01z0dLA0xSfdvXEqOAYJ6VlwsDTH677u6OHr8cr3zM5x7do1fPnll5g2bRqWL1+OPn36oE6dOrC1tYVcnv+9mkFBQSUcJREREZWWrUFbsfDiQghoejY3cWuCHzv/CAcLh2JtNz0wFnHbgiEynk4jYyKDQ+/qsDawVzYAJMWkY9+K64iLSAUAyOUydBhUG/XaVyqusMulbt26Yd++fWjevDmmTp2K8ePHw8zMDG+//TbOnz+Pjh07okWLFqhSpQpu3bqFgIAAyGQy9OvXr7RDJyIiIipR/wZF4tYTTXK6YWV7dKztqrOsOjMTETNmap4IkX8hIQCZDBEzZqLWqZMlOvy4TAhdUVFZk5SUBHt7eyQmJsLOzq60wyEiIqIXpFYL9F1xBtfDEwEAX/X1xdBWXsXebnk+p5DL5QZfFH6eSqUycjTlT3n+7ImIiPRRqVVYdGkRtgRtkZb1qNYDX7X9CgqT4rvQJrLVSDwYgpTTj6RlJk4WcB5c1+Be2QDw5H4i9q+8jvRkJQBAYWWK7mN8UdnbyegxG0tpnVdERkaicuXKUKlUkMlkCAsLQ8WKFZGZmYlmzZohMDBQ63xRCIGaNWvi8uXLsLW1LbE4X2Y8pyQiIir7hBB4Y+lpBEYkAQDWjWgGP2/doz8m7tmDiE9nGFx/xe8Wwv7NN18oxsKcU7CHNhEREVEp2XnlkZTMruNui0HNq5RyROVDUe7HLGoSnIiIiMq+NGUaZpyagWNhz+bzG11/NCY1ngS5rPhm28uOz0Dcr7eQFZYsLbP0dYbjwNqQF2J48GD/Jzi68RZU2ZqhHO3dLPHGxIZwcLcqdEwZShX2BzzGocBIJKRlwcHKHN3quaNn/ZdnxB93d3ekpqZK54SKpz2DFAoFjhw5gsmTJ2P37t1QKpUwNzdHnz59sGTJEiaziYiI6JVyJChKSmbXr2SPznXc9JZPPnwEkMsBtRoquSmiXJsgxqUBlKbWMMtOhUvMdbhF/wcTdTYglyP538MvnNAuDCa0iYiIiEpBamY2vjt4S3r+RW8fmJoU3wXXl8lnn32Grl27Glz+0KFDWLBgQTFGRERERKUlJj0Gk45MQmBsIADAVGaKL1p/gX61ind46fSgWMT9GQyRnmuI8V7VYd3a8CHGhRDw3/sA/vtCpGWV6jig+5j6sLA2K3RM/96MxMfbriIpPRtyGaAWgFwGHAx8grl/B+KHtxqhq4/uXjnlibm5eb7L3dzc8McffyAzMxNxcXFwdnbWWZaIiIjoZSWEwE9Hn82d/UEBc2cDgCoxAVCrEe1cH0HeQ5FtZg0INSCTA0KNaNfGuFNzIHxubYJL7A2oEhOL+VVoY0KbiIiIqBSsOH4XUcmZAIDXfNzRtqZLKUdUftStWxcdO3Y0uHx4eHgxRkNERESl5V7CPUw4PAERqREAABszG/xfp/9Dm4ptiq1NoVIj8Z8QpJx8bojxd71hXtnwHsDZWSoc3RSEO5eipGV123qg46A6MDEt/E2O/96MxJjNl/B06nCon/udnJ6N0ZsvYc3QZnjtJUlq66NQKODh4VHaYRARERGViuO3o6VRIX087NC1rv7e2UKthio5BdHO9RHgO+bZipzRjp7+zja1xHXfsagfuBbV7e2LJXZd2A2IiIiIqISFxaVh7akHAAAzExk+61m3lCMqPwYPHozq1asXapsGDRrgiy++KKaIiIiIqDRceHwBQ/cPlZLZFawrYGOPjcWazM5OyET06utayWyLes5wn9y4UMns1MRM7F585VkyWwa0GVATnYd4FymZnaFU4eNtVwEh5bPzEE//mbbtKjKUqkK3Ud7t2bOn0OeQREREROWREAI/HjG8d3bmnTsIHTIUabfvIMh7qGahrml7ni4PqjMEVn6Gj55oDOyhTURERFTCFhy4hayncyS+17YaqrpYl3JE5cfmzZsLvU39+vVRv379YoiGiIiISsOeu3sw9+xcZAvNcN91nepiWZdlcLPS3/PkRaTfikP8n7ehTns2xLh9j2qwaVvR4CHGASAmPAX7ll9DSrxmpB5ThQm6jfRBtYauRY5tf8BjJOUMfa6HAJCYno0DNx6jX+PKRW6vPEpJSUFoaGhph0FERERU7E7eicHVsAQAgHcFW3TTMTqPOjMTMStXIvaXdYBSiSj3FpphxgsikyPbzBpRrrXgZMS4C8KENhEREVEJunA/FvsCHgMAnK3NMcmvZilH9PI7fPgwvv32Wxw9erS0QyEiIqIXIITAimsrsOraKmlZx8od8V2H72BlZlU8barUSDoUiuQTz6YwMXFUwPndujCvYnivbAAIuR6DQ78EQpmp6SFt46hAzwkN4FrIep53KDBSmjO7IHIZ8M+NyHKR0E5OTsaRI0fQuXNn2Oca0vLLL78sdF3Xrl0zZmhEREREZZIQAj8eDpaef9ClFuTyvDdfpp47h8dz50IZ+lBaFuvZCppbIA27WfNBYAK821V50ZANxoQ2ERERUQlRqQW+3HtTej7t9TqwszArxYheDZGRkThx4kRph0FEREQvIEuVhbln5+Lv+39LywZ5D8KnzT+FidykWNrMTsxE3K+3kBWaJC2z8HGG08BakFsZfg4nhMC1I2E4s+OuNCa4m5ctek5oAGt7xQvHmZCWJSWzFchCT/kFdDO5BAekIAE2OKRqhv3qlsiEOdQCSEjPeuE2S8Lrr7+OCxcuoHnz5jh//ry0fO7cuYXqFU9ERET0qjhzNxb/PUwAANR2t0H3ehW01mfHxSFq4XdI3LPn2UIzMziNGgVVUmMgIs3gtjJSlcYI2WBMaBMRERGVkO2XwxAYobkgWtfDDm83K7m7GMsblUqFgIAA+Pr6wtT02Snrpk2bCl3X2bNnjRkaERERlbDEzER8eOxDXIq8BACQQYZPmn+CIXWHFFtiM/12HOL/yDXEuPzpEOPtCjfEuEqlxsnfg3HzVIS0rEYTN3QZURdm5sZJxDtYmUMuA/xkl7HIbBUcZKlQCRlMZAIqIUMPE3/MEZvwsXIcjommcLA0N0q7xe3OnTsQQuDevXt51glhQHf05zAJTkRERC8zzdzZz3pnT/Z71jtbCIHEXbsR9d13UCUkSGXMmrRAcv8PceRGJuKfGJ7MhgywsC7ZTjpMaBMRERGVgOQMJb7/59lJ5Rdv+MAknyF/SKN///7Yu3cvunfvjn379knLR4wYwYuRREREr5Cw5DBMODwBIUkhAAALEwssaL8AXby6FEt7QiWQ9G8oko+HSctMHBRwetcbCk+7QtWVkarEwTU38Oh2vLSsWc+qaPFGNciMeB7YrZ47soP2YY3ZD8jpAm4i0/5th1SsNfsBY5RT8brvSKO1XZw2bNiA1atXY/To0XnWbdmyBe+++67BdW3ZsgXDhw83ZnhEREREZcq5+7HwD9Gcd9Z0s0HP+h4AgMwHD/BkzlykXbwolc1w8UJcj8m4H2ODrMPxeeoSIhvqrGColHchRAZkMguYmNWE3Lw2ZDJTQADVG7mWzAt7igltIiIiohKw/Ng9xKRkAgC616uA1jWcSzmisu3EiRMQQuDMmTN51rFHDhER0avhevR1TD46GXEZcQAAJwsnLPNbhvqu9YulPVViJmJ/u4WskFxDjNd1gtNbtQs1xDgAJESmYd+K60iI1PR0kZvK4De0Luq0rFDAloXXs64jupivAoSArjy5Zo5tgf8zXwWF98dGj6E49OrVC7169TJKXTKZrEjnkERERETlxU9H7kiPJ/vVhCxbiei1axG7ajWEUgkBIN6xDp40eRtP1BWAMABQSdt41LBHdFgyMlPuQJl2EBCZ0MynLSAgg1p5F0g/BjOr7rByqIMaTZjQJiIiInqphMamYt3pBwAAcxM5ZvWsW8oRlX2LFi3CTz/9hEmTJuVZt2TJEvTp08fgunbt2oWPPy4fF26JiIhI49/QfzHz1ExkqjQ3BFazr4YVXVagsm3lYmkvIzgecX/cgjo11xDj3avCpn2lQt8Y9+h2PA6sDkDm0+HKLW3N0GNsfXjUdDBy1BoWwX/DAqma6416yGWAPVKB4L1Aw3eKJZaSsH79erRp06ZQ27Rp0wbr168vpoiIiIiISteF+7E4f19zE2h1F2v4ZUXgQd8xyLp/Hyq5OZ5UbIdwr65IVbjmzmHDxFSO2i3cUb9zZbhWscWZ7f/i/LZc82tDaP8WmVCm7kHdnlNgamac6XMMxYQ2ERERUTH7dn8QslRqAMCo9tXg6WxVyhGVfe+//z7ef//9fNe5uLjAy8vL4LpcXUv2jlEiIiIqOiEENt3chP+79H8QTy+cNa/QHIs7LYa9wt747akEkg4/HWL86XU6E/unQ4x7FW6IcQC4eSYCJ7behlqtqczRwxpvTGwAOxdLY4at7dZeqCGHHOqCy8rkwK2/y3VCuyhDh1erVg3VqlUrhmiMIzMzE0uWLMHvv/+Ou3fvwsTEBHXr1sXw4cMxZswYyOXyQtcZEhJi0Gv+/vvvMW3atKKETURERGXET0c1vbNtstLwzd3DCP/5INItnBFeox8eV2iDbDPta5E2jgr4dqwEn3YVYWljDgDIzsrClf2/GNTelf2/oOWbHWFqbm7cF6IHE9pERERExejsvRj8ExgJAHC1VWBi55qlHFH5NmfOHDRo0KBQ2zRo0ABffPFFMUVERERExpKtzsaCiwvwx+0/pGW9q/fGvDbzYGZSuCG/DaFKytIMMf4gUVpmUccRjm/XgYl14dpTqwXO77qHK/8+lJZ51nNCt/d9obAs3stvmUkxUBiSzAYAoQbS886TWN5FRkbiwYMHSE5Ohq2tLapVqwZ3d/fSDssgMTEx8PPzQ0BAAMaMGYOlS5ciKysLy5Ytw/jx47Ft2zbs27cPFhYWRarfyspK7ygD5iV4IZqIiIiM71JIHM7ciUHn8CsYF/gXsi0q4rrvGMQ419fczJiLR017NOhcBdUaucDERHtd8PnTyExNMajNzNQUBF84A5/2nY32OgrChDYRERFRMVGpBb78+6b0/JPX68BGwdOvFzFnzpxCb1O/fn3Ur188c20SERGRcaQp0/DJyU9wMvyktGxCwwkY13BcoYf8NkTGnXjE/XEb6hSlZoEcsH+9mmaIcV0TUeuQlZGNw+tv4sG1GGlZ/c6V0W5gTchNCt+ztrCCEs1QX8hgIhPIVssQnOyKu8nOSFeZwtIkGzVtY1HbNhqmcqG5qGnpWOwxlYTMzEz8+OOP+Pnnn3Hv3r0862vWrInRo0dj8uTJUCgUpRChYd566y0EBARgypQpWLJkibS8c+fO6NevH/bs2YPx48cXecj0wMBAVK1a1TjBEhERUZmzcfsZfHV+AzzkTgiqPwWp1hW11puYylGrhTsadKoMV09baXlGagqSoqM0PzFRuHLwb4PblMlkuHvxHBPaRERERC+DP/zDcOtJMgDAt5IdBjYpnjkfSb/z589jzZo1WLduXWmHQkRERPmISovCpCOTEBQXBAAwlZtiXpt5eLPGm0ZvS6ifDjF+LNcQ43bmmiHGqxZ+SPOU+AzsW3EdMWGa3iwyuQzt366F+p1K5rzv4oM4/Bbng8XmJ3E32QkHI2ojU20GGQQEZJBB4E6yC47Kq6NHxWDUsI0DvHuXSGzF6f79++jVqxeCg4MBaIaqf97du3fx6aefYt26ddi3b1+ZHHJ8x44dOH78OCwsLDB37lytdTKZDPPnz8eePXuwceNGTJo0CU2bNi2dQImIiKjMEUol/L9bC7+zjxBV8z3czjWsuBACVnYC1Roq4FpZIDP1NgKOnnyWwI6OQmZaatHbFgLpKcnGeBkGY0KbiIiIqBgkZSjxf4duS8+/eKMe5IXs7UPGce/ePWzcuJEJbSIiojIoOD4YEw5PQGSaZooWWzNbLOm8BC08Whi9LVVyFuJ+u4XM+8+GGFfUdoTTO4UfYhwAokKTsG/FdaQlZgEAzC1M8PoYX3j6OBstZn1UaoGFey5ivMkF3E12wp5wH2mdgEzrd6baFLvDfdCneihq+vQpkfiKS1JSEjp37ozw8HAIIWBrawtfX19UqlQJFhYWyMjIwKNHj3Djxg0kJyfj1q1b6Ny5M65fvw47u8LPi16cfv75ZwCAn58fHBwc8qyvW7cu6tati6CgIKxbt44JbSIiIoIQAvf2XsTlbRcRZeYI4S6HUN2EUCZCqJNhYpoCdXYi4hMyEf+w4PqKRCaDpY1tweWMiAltIiIiomKw9MgdxKZqLm72auCBFtWcSjmi8uXkyZMFFzJQUFCQ0eoqr5YvX47ly5dDpVKVdihERESSs4/OYuqJqUhVanqHVLKphBVdVqC6Q3Wjt5VxNx5xv2sPMW7XrSpsO1Qu9BDjAHD3chSObLiJbKVm7mo7Fwv0mtAQThWtjRm2XgeOHMaiuA9QRRaFVREtny7V9VpkAAQORtTBOCEv1xcEFyxYgLCwMFSvXh3ff/89evfuDVPTvK8oOzsbf/31F6ZPn44HDx5g4cKF+Oabb0oh4vxlZWXhyJEjAIDmzZvrLNe8eXMEBQVh3759WL58eUmFR0RERKVICIG0xAQkRkUiKUbTozrhyRM8Dg5F/OPHUKlSAGQDmXm3VSv11y03MYWdiyvsXF1h5+oOO1c32Lm4IfpRKC7v2WlogKjarFmhX9eLKM/nr8jMzMSSJUvw+++/4+7duzAxMUHdunUxfPhwjBkzBnJ54ecpKuy8TM8PaXT8+HF07lzwmPHbtm3DwIEDC9UWERERlQ8PYlKx4WwIAEBhKsfMHt6lG1A51KlTp2KZL/NVNXHiREycOBFJSUmwty/8cKpERETGtiN4B746/xVUQnOzla+zL5Z2WQoXSxejtiPUAslHHyLpyENpiHG5nTmcB3lDUa3wx0QhBC4fDMWFPfelZR417dFjbH1Y2pobK+wCpV76DV3OTIGlPBM3E92QqTakh7kMmRmZCL5wpkTnOzS2Xbt2wcPDA+fPn4eLi+79xdTUFP3790f79u3RqFEj7Nixo0wltIOCgqBUaq4465vjOmddaGgoEhMTC30ud/DgQezfvx83btxAZGSk1KN9wIABeO+992BhYVHUl0BERERFJNRqpCTEISk6GknRkdIw4IlPHyfHRCNbmVWkuk3MzGDn4qZJVLu6wd7V/WkC2x12bm6wdnCEXG6SZ7s9t3Yhc58K5tlyyHTeJAkICGSZqvHAPRUNihRh0ZTbhHZMTAz8/PwQEBCAMWPGYOnSpcjKysKyZcswfvx4bNu2Dfv27SvSSZlCocj3zs4carUa6enpeufesbbWf0euvvqJiIiofPtmXxCUKs0V0zEdqqOyo1UBW1B+8psLsaiYHCciIiob1EKNpVeW4ueAn6VlXTy7YH77+bA0tTRqW6rkLMT9cRuZdxOkZYrajnB6uzZMbAqffFYp1Ti25RZuX3giLavTqgI6D/aGiVnhO1UUSXYWcGg2rC+ulhZdT/WCTCYz6NxJJpPh7sVz5TqhHRoaik8++URvMjs3V1dXjBo1CosWLSrmyArn4cNnY4C6urrqLJd7XXh4eKET2tOmTcOUKVMwdepU2NraIjg4GD/88AMmTJiA5cuXY+/evXoT6oCmU1Fm5rMuYElJSYWKgYiI6FWjVquQEhf7XKL6afI6RpOwVmVnF7F2U5jAAhlQINjGDWpbJ0wb0BpO7hVg5+oGa3sHyIrQ4ff445MIbhiHzpddICDyTWqLp3eInmkYh+jHJ9HHu18RX0Phldus6ltvvYWAgABMmTIFS5YskZZ37twZ/fr1w549ezB+/HisX7++0HWvWrUKI0aM0Ln+559/xujRozFx4kSdZVJSUgrdLhEREZV/p+/E4HCQZg5IN1sFxnWsUcoRlV+fffYZunbt+sL1HDp0CAsWLDBCRERERPQiMlWZmH16Ng6GHJSWDfUZio+bfgyTfHqJvIiMewmI+/0W1MlPx1yUAXavecG2U5UiDTGenpyFA6sC8Pjes/m3W/Wtjiave5XcjXNJj4Ftw4GwC9KiXaIjlG61IRJvGVSFEALpKcnFFWGJsLGxKTAB+7xq1arB0tK4N0y8qOTkZ5+Dvg45udcVJpFsYWEBPz8/LF68GA0aPOs/1bRpUwwYMADdu3fHsWPH0LNnT1y5cgUKhUJnXfPnz8e8efMMbpuIiOhlp1apkBwbg6ToSCQ+TVprfp4mrGNjoC7itG8mZgrI5HZQq20gk9s9/bGHHJZwi3sAb/dMbPDtiJ2PNPV/1dcXvq28ivY6hBp34u/A/4k/LkVeQoJ7Go42jUa7a85QZJtADQE5ZNLvLFM1TjWMRbh7OtwyE4rUZlGVy4T2jh07cPz4cVhYWGDu3Lla62QyGebPn489e/Zg48aNmDRpEpo2bWrU9pcuXQorKyuMGjXKqPUSERFR+ZatUuPLvYHS80+7e8NaUS5Pt8qEunXromPHji9cT3h4uBGiISIiohcRnxGPKcem4ErUFQCAXCbHjBYzMMh7kFHbEWqB5GNhSDoc+myIcVtzOA+qA0V1hyLVGReRin0rriEpJgMAYGomR9f3fFCjiZuRojZAyGlg23tAahQAIFOYYm72cFTuMh5Ox9YYXI1MJoOljW1xRVkifH19tXo3G+Lhw4eoU6dOMUVUNlWoUEGao/t55ubmWLJkCRo2bIigoCCsX78e48aN01nXzJkzMXXqVOl5UlISqlSpYvSYiYiIygpVthLJMTGantVP57BOiopEUkw0EqMjkRIbCyHURarb3NIK9q5usHNzl4YGN7NwRGSIQEhAFrIyTLVumDTPTEClR6fgmXkLnjM/QphvC+xcegYAUMHOAm83q2xw2zkJ7EuRl6QkdmJmolaZMPd0/NklHF5PrOH5xBIKpQkyzVR4WCEdoRVSoTIB5JDDQeFQpNdfVOXyCuvPP2uGpfLz84ODg0Oe9XXr1kXdunURFBSEdevWFSqhHRAQgMqVdX/4J0+exPXr1zF27Nh82yYiIqJX128XHyI4UjNKS8MqDujXuFIpR1R+DR8+HDVqGKd3e40aNTBs2DCj1EVERESFF5oUigmHJ+BhsiYJaWlqie87fI+OVV78xrXcVClPhxi/kyAtU9RygNM7dYo0xDgAPAyMxT9rbyArQ9MDxsreHL0mNICbl50xQi6YEMC5ZcC/c4Cn840/Es4Yn/Uhsqy90OLyH7gfHFSI6gRqtmhdXNGWiNGjR2PWrFn45JNPYGVV8NQ+qamp2LBhAz7++OMSiM5wtrbPbizIyMjQWS73Ojs74+13DRo0QMWKFREREYG9e/fqTWgrFAq9PbiJiIjKm+ysLCTFPBsCPCk6ColPE9ZJ0ZFIiY/TnIcVgYW1jWa+alfNvNX2rm6wzZnL2tUNFtY2ADTnZRHBCbh+PBwPrkY/bc4MOblsu8T7qPLoOFxjrsL5f+/A9aM/YWJri582X5LaGt+pBhSmukc6Ugs17ibc1SSvn1zS9MI2oGe1ygS4XykV9yul5l8v1PDz9DP0LTGKcpfQzsrKku4ubN68uc5yzZs3R1BQEPbt24fly5cbXL+vr6/e9UuXLgUATJ482eA6iYiI6OWXmKbED/8GS8+/eMMH8iIMZ0kaRZk2RpdWrVqhVatWRquPiIiIDHcl6go+OPqBdOHMxdIFy7osQz3nekZtJ/N+AmJ/uw11cpZmgQyw6+oF285FG2IcAAKOh+PUH8HStUyXKjboNaEBbBx1Dw9tVJnJwJ6JwM090qKLsoYYlz4WVRMfoHPYRtxXZhWiQhkU1tao3bKt8WMtQYMGDcLJkyfRsWNHrFy5Es2aNdNZ9r///sOECRNQo0YNTJgwoQSjLJinp6f0ODo6Wme53Ov0dcIpagwRERF48OCBUeslIiIqbcrMDM2c1TFRzw0LHomk6CikJsQXuW5LWzvYubo9/dH0srZ3e/ZYUcANd8osFe5cjMT1Y2GIfaSdMJaps+EedQmVH52AXfJDKGrXhsdPW2DZqBEAIOhxEv4JfDbV4TvNtUdMEUI8S2BHXsKlJ5cQn6n7tdor7NHMvRmaV2iOBi4NMPbwWKRkpUhzZedHBhlszW3RrWo3va/T2MpdQjsoKAhKpWb+I33z5eSsCw0NRWJiIuzt7V+47bCwMOzevRt+fn6oV0//f7x+++03rFu3DsHBwYiOjoajoyMaN26MQYMG4X//+x9MTIw7NxQRERGVrh+P3EF8muYcpU+jimjq5VjKEb06njx5gidPnqB69epG7bVCREREL+bgg4P47PRnyFJrkq41HWpiRZcV8LDxMFobQi2QfCIMSYdyDzFuBqf/ecOihkOR6lSr1Di97S4Cjj+btqRaQxe8NrIezBQldD0n+jbwxxAg5tkNk+crj8THAd7oHnsQzsp45AxyaWXvAO92nfDf/j1P34P8LkDKABnQY+JHMDUvWm/1kjZy5Ei968PCwtCyZUt4eXmhfv36cHBwgImJCVQqFRISEnDjxg2EhITA1NQUb731FkaPHo1ffvmlhKIvWN26dWFmZgalUomQkBCd5XLWeXl5GeX6Zm6iiD3PiIjo1ZadlYXg86dx1/880lOSYGljh5rNW6F2q3Yldp6RlZGuNQS49hzW0UhLTChy3Vb2DlKy2t7VTTMsuJumh7WtiyvMLSyLVG9yXAZunAhH4OkIZKZma61TIB0VHxxGpYgzMFcmQ2ZhAddpH8Np+HDIzMykckuP3pEej+tYAwpTOe4l3MPFJxfh/8QflyMvIy4jTmcMduZ2UgK7eYXmqOVYC3KZXFr/bbtv8cHRDyCDLN+ktgyaG0W/afcNFCYlO3pLuUto554jx9XVVWe53OvCw8ONcsK3cuVKZGdnG9Q7e/Lkyfj4448xZ84cWFhY4Nq1a/juu+8wZMgQrF69Grt374aTk5PeOjIzM5GZmSk9T0pKeuHXQERERMZ3NyoFm86FAAAszOT4tLt36Qb0CoiPj8eiRYuwZcsWaY7sf//9F35+muGOqlevjnfffRcff/wxHB15cwEREVFJEkJg3Y11WPLfEmlZK49W+KHTD7A1N978zaqULMT9GYzM4Ge9ThQ1nw4xblu0i6mZ6dk4tPYGHt58diGwyeueaNWnRpF7ehda4C5gzyQgSzOVDRR2eNhmIdZtvoz+yX8/KyeToVG3nmj7zlBYWNugik99HFyxGJmpKZDJZBBCSL8V1tboMfEj1GjasmRegxFs2LBBa/7I/AghEBISgtDQ0HzXAUB2djZ+++03AChTCW1zc3N06dIFBw8exKVLl3SW8/f3BwD06tWrUPX37dsXo0eP1rtdznVWfZ2GiIiIcrt76UK+5xt3Lp7F0Q1rjHa+kZmWqhkGPFevas1zTcI6I7no+TJrRyfY5QwB7qI9LLidiyvMFMYbjUcIgcd3E3D9aDjuS8OKP+NsmwWPq9vhEn4e8qfTy1i3a4cKc76AeRXt3te3nyRjf8BjyM2jYe8UigDlEXT6U38C29bcViuBXduxtlYC+3mdqnTCj51/xOwzs5GUlQQ55FBDLf22NbfFN+2+QacqnYr8nhRVuUtoJycnS48tLHTvVLnXGSMRnJGRgbVr18LLywu9e/fWWc7BwQE9evTAmjVrtIYBatasGQYOHIg2bdrg1KlTeOutt6Sh03WZP38+5s2b98KxExERUfH6Zt9NZKs1Z6RjO9RARYei3alJhgkICECvXr3w6NEj6ULl8xc7w8PDMX/+fGzatAl79+5FgwYNSiNUIiKiV45SrcQ357/Bjjs7pGX9a/XH7FazYSY307Nl4WQ+SETsb7egTso1xHgXT9j6eRY58ZwUk469y68j/rFm6Ee5iQydBtdB3TYVjRW2fqps4PAczZzZT6ld6+F6xbE4tHYn6iifzaXsXr0Wur4/ARVq1JKW1WzWEuNWbULwhTO4e/Ec0lOSYWlji5otWqN2y7blpmd2bs7OzrC2tn7helJTUxEbG2uEiIzr/fffx8GDB3HkyJF8R5i8desWgoKCIJPJCuyx/rw9e/agcuXKOhPaV69exePHjwEUPllORESvpruXLmDPoq+lwWByrsnk/M5MTcXu779Gn2mzUbOZ7qS2EAIZqSlaQ4BLyeunQ4RnpuY/d3OBZDLYODk/61n9dN5qTQLbDbbOriVyTpSdpUKwfySuHw1H7KMUrXVyExmq17KA24WtsDj+LE9o4uwM91kzYdezp3SdSwiBB0kP4P/YH6svHoJ1rZuQm6YgG8Dhh8jD1swWTSs0RXP3ZwlsE3nhRhjq7NkZRysdxaGQQzj68CgSMhPgoHCAn6cfulXtVuI9s3OUu4R2afn9998RExOD6dOn6x0uvFGjRti/f3++6+zt7TF//nz06dMHR48excGDB9G9e3eddc2cORNTp06VniclJaHKc3dkEBERUek6fjsKx25r5rXzsLfAuI41Sjmil1taWhp69+6N8PBwmJqaolGjRnBzc8OBAwe0yt29exerV6/Gd999h169eiEwMJDDkRMRERWzlKwUTDsxDWcizkjLPmj8Ad6v/36BPW0NJdQCySfDkXQoBDljbsttzOD0vzqwqFn0UVke303A/lUByEjRTCGjsDZFj7H1Ual2CY30khwJbH8PCH323j2p3A+H79oh8uQ25FyJypIr4Dd0BJp37wl5PhcnTc3N4dO+M3zady6ZuIvZkiVL8O67775wPVu2bMHw4cONEJFxDRgwAB07dsSJEycwb948/PDDD9I6IQRmzZoFABg+fDiaNm2qte3ff/+NkSNHwt3dHXv37s23l/XGjRvx0UcfoUYN7f+jZGZm4sMPPwQA1KxZs9DJciIievVkZ2Xh4IrFeqY3ebpcyHBwxWIM+34p0hISpIR1Yq7hwJOiI5GVnl6kOGRyOWydXTRJapdcw4I/HSLc1tkZJqbGu4mysDTDij9C4OlHeYYVt7IzR73WbnAP2oe0tb8AKpW0zuGtt+A27WPI7ewQkhQC/yf+0k9sxrOb8uTPZXVtzGzQ1L2p1AO7jmOdQiew86MwUaB3jd7oXUN3B9+SVu4S2ra2z4amysjI0Fku9zpjXLxcunQprKysMGrUqBeq57XXXpPm89m7d6/ehLZCoYBCUTp3OhAREVHBlCo1vtp7U3o+o4c3LM1LaF7FV9SqVavw8OFD9O7dG6tWrYKHhwdiYmLg5uamVc7T0xPffPMN2rVrh169emH58uWYOXNmKUVNRET08nuS+gQTjkzAnXjNvH5mcjN83fZr9Kze02htqFKViP/zNjJu5xpivLo9nP7nDRO7ove0uX3hCY5uDoI6W3Nx1sHdCr0mNoCDm9ULx2yQh+eBP4cDKU8AABnCAqcVb+Ha4VBAxEjFgmzqoOuwkWjZsV7JxPUSyRkStSzavn07/Pz8sHjxYqSnp2PIkCHIysrC8uXLsWvXLvj5+WHlypV5tluzZg1iYmIQExODnTt3anWKATTXUJOTk9G8eXN8/PHHaNGiBZycnBAUFIQffvgBV65cQZ06dbB37169o2ASEREBQPD508hMTSm4IAQyU1OwdsJ7RWpHbmICWxfXp8nqp8OCuz57bOPkDLmeTqelQRpW/Fg47l+NgVBrn3O4V7NDg86V4Z56G9FfT0Dao0fSOvMa1YFPxuOURxouXf0G/pH+iEmPeb6JZ22pFKhqUx9v1euEZhWawdvR2ygJ7PKg3CW0PT09pcfR0dE6y+Vel3vo76I4e/Ys/vvvP4wePbrAea8LYmlpCVdXVzx58gQPHjx4obqIiIiodG09H4p70ZohkBp7OuDNhiU0HOUr7K+//oKPjw927twpjZqjr8dXjx490K9fP+zZs4cJbSIiomISFBuESUcmISo9CgBgr7DHj51/RFP3pgVsabjMkETE/XYLqsRnQ4zb+nnCrkvRhxgXaoELf9/H5QPP5l+u7O2I10f7wsK6BHr2CAFcWA0c+gxQZ0MIICirNk5EVUdaSohULNbMEcedO8C1tg/ebu9T/HGVEceOHUPdunWNUtdrr72GY8eOGaUuY3NxcYG/vz+WLFmC3377DZs3b4aJiQnq1q2LFStWYOzYsZDL8851OWbMGJw7dw7u7u7o379/nvWPHz/Grl27cPDgQWzZsgXz589HZmYmHB0d0aBBAyxfvhzvvfceLC05XRIRERXsrv95o9wgZmJqCjtXN9i6uD3tWa2dsLZ2dMx3FJqySBpW/Fg4YsPzDites5kbGnSqAmebTETOn4+I/c9GF1SbmeJqzxrY0DART0JnAqHP165hbWYNb4eGOBvogOzU6rA38cKfn3aFlXm5S+++sHL3iuvWrQszMzMolUqEhIToLJezzsvLK8/8M4X1008/AQAmT578QvXkKKt3hBIREZHh4lOzsPjwHen5nN71jDaUJul28+ZNfPTRR3qngHle27Zt8dVXXxVjVERERK+uk+EnMe3ENKRna4aNrGJbBSu6rEBV+6pGqV+oBVJOhSPxn5BnQ4xbPx1ivFbRhwNXZqlwZMNN3PvvWYeIeu0rov3/asPEJG/y0OiyUoG/PgBubAcAxGZa4XBCU4THAYDmhklTcwXOOTTDRat6UMtMsOLNepAXMXlfHnXs2NFodbm5ueUZ0acsUSgU+PTTT/Hpp58avE3v3r0RE6O7B5e1tTWGDBmCIUOGGCNEIiJ6xaWnJBUqt6WwtkGd1u00Pa3d3KU5ra0dHCHL50at8iQ5LgM3Tj7CzVMRyEhVaq2ztDOHb4dKqNe+IqxszRD/55+4s2gRkPJsTvAALxl+fl3gsfM9QHtzWJlaoYl7E7So0ALNKzSHt5M3pm+7gaxYTa/uMd1rvZLJbKAcJrTNzc3RpUsXHDx4EJcuXdJZzt/fHwDQq1evF2ovIiICO3fuRMeOHVG/fn29ZaOiojBmzBh89tlnaN68eb5l0tLSpJPN/Oa2ISIiovJhyeFgJKZrzjr7N66ERlUcSjegV0RiYiIqVixcT3hbW1ukF3FuJiIiItLtj1t/4NuL30ItNJnmhq4N8ZPfT3CyeLHR7XKoUpWI3xaMjFtx0jLzanZwHuQNE7uiT9GWmpiJ/SuuIyo0GQAgkwFtB9ZCA7/KJXODYsxd4M+hQNRNKNVynIvxxOW4Ksg9OmWtFm1wwb0dzt/QxPhW08o83yQiIqJSY2ljZ3APbZlMBs96DfDa6EklEFnJ0Awrnvh0WPHoPMOKu1XVDCteo4krHqdH4NjFdbBdvAVu956dxyZZApu6yHHSV6Y5AQVgaWqJJu5N0Ny9OVpUaIG6znVhmmui7JCYVOy+qklmO1iZYWhrrxJ4tWVTuUtoA8D777+PgwcP4siRI0hMTMzTA/vWrVsICgqCTCbDyJEjX6itVatWQalU4oMPPiiwbFpaGvbs2YN27drpTGgfOnQIqqcTvb9osp2IiIhKR3BkMrZceAgAsDQzwfTu3qUc0avD0dERYWFhhdrm6tWrcHZ2LqaIiIiIXj1qocbiy4uxIXCDtKybVzd80+4bWJgaZy7ezNAkxP16C6rETM0CGWDbqQrsunpBZlL0pHN0WDL2r7iOlHhNvWYKE3R7vx6q1ncxRtgFC9oL7B4PkZGEuynOOBZZE8nKZ/N/27tXgN97Y5HmVhtTlp0GANgqTHm+SURERKWqZvNWuHPxrEFlhRCo2aJ1MUdUMrKVKtx5Oqx4TFjeYcVrNHVDhZbmuGd+Axue7MDVbRfR7vBjvHlewFT9rOzx+jJs9pMj284Kbd2aoFmFZlIC20yue6qbZcfuSjc9jm5fHTaKcpnWNYpy+coHDBiAjh074sSJE5g3bx5++OEHaZ0QArNmzQIADB8+HE2bas/X9Pfff2PkyJFwd3fH3r179faSzsrKwpo1a+Dp6Yk+ffoYHN+SJUswatQoODpqD32VkJAgzd3Yvn179OzZ0+A6iYiIqGwQQuCrvTeheno2OaFTDVSwN86FWypY48aNsWHDBnz88ccGzfd37949bNq0CX5+fiUQHRER0csvIzsDs07Pwr+h/0rLRvqOxJQmUyCXvfjwkUIIpJx6hMSDIci5eie3NoXTO96wqF30IcYB4P7VaPy7/iayMzUdDWycFHhjYkM4V7J50bALpsoGjn4FnFmChCwLHIv0wf2UZzfcmZiaonmft9Ci70CYmplj4KpzyOkA9UGXWnC1LXqPdCIiIqIXVbtVOxz+eQWUmRkFlJRBYW2N2i3blkhcxSUlPgM3TjxC4OkIZKRojwuusDGBWf1U3PG4iJ1JZ/Dk0hMAQP0Hanzyjxoe8c/KPnGS4fTg+vDo8BpWVmgOH2cfvQns3B7GpmHXFU3vbHtLMwx7hXtnA+U0oQ0A27dvh5+fHxYvXoz09HQMGTIEWVlZWL58OXbt2gU/Pz+sXLkyz3Zr1qxBTEwMYmJisHPnTkydOlVnG3/++SciIyOxYMECg+ZpNDc3h0KhwKNHj+Dr64vp06ejYcOGsLa2xpUrV/Ddd9/h3r17aNWqFXbs2PFCr5+IiIhKx7HbUTh1RzN9SCUHS4zuUL2UI3q1DB48GMOGDUP37t2xdu1a1K5dO99yarUaO3fuxJQpU5CWloahQ4eWcKREREQvn9j0WHxw7ANcj74OADCRmWBWy1l4u87bRqlfnaZE3LZgZATlGmK86tMhxu2LntAVQuDqv2E4u+su8DRJ7F7NDj3HN4CVnbn+jY0hJRrYMRLZ907hUlwVXIipgmzx7DqTV4PG6DJyHBw9KgEAdl95hMuhmiuh1V2tMbxN1eKPkYiIiEgPVbYSJmZmBSS0ZYAM6DHxI5ial8A5lpEJIfD4XiKuH81/WPEs50QEVDiJyzbHoIYKeKxZbpsmMPywGh0Cn5VXm8ihHtIXbT6cic6WRbt5cvmxu1KHmlHtqsHWwrBE+Muq3Ca0XVxc4O/vjyVLluC3337D5s2bYWJigrp162LFihUYO3Ys5PlMLD9mzBicO3cO7u7u6N+/v942li5dCgsLC7z//vsGxVSxYkVERERg+/btOHToEJYuXYqIiAioVCo4OzujSZMmmDNnDgYNGgRT03L71hMREb2ysrLV+HpvkPR8Rg9vWJgVfNMbGc/gwYOxatUqnDp1Cj4+PmjUqBF8fHwAACtXrsS2bdsQGhoKf39/xMXFQQiBzp07Y+DAgaUcORERUfl2P/E+JhyegEcpml4iVqZWWNRxEdpXbm+U+jMfPh1iPCFTWmbbqQrsXnuxIcZV2Wqc+O02gs48lpbVauYGv2F1YWpeAudx4ZeAP4ch9HEqjjxpgvgsK2mVjaMTOg0fg9qt2kpzd6dkZuPb/c/ON794wwfmpi/e852IiIjoRZzYsg4ZKckAALmJCdQqlTSnds5vhbU1ekz8CDWatizlaAtHM6x4FK4fC8szrLhapsI95ysIqHASUbah2hsKgddumGLIURUs054lsy2bNoXHvLlQ1KxZ5JjC4tKw479wAICthSlvcAQgE4bM4K7DyJEjMXbsWLRsWb52zvIqKSkJ9vb2SExMhJ2dXWmHQ0RE9Mr5+dR9fL1Pc4GxeVVH/Dm2tXTxsTwp7+cUcXFx6NGjB/z9/XW+/zmnuK1atcL+/fvh4OBQghGWXeX9syciotJx6cklTDk2BUlZSQAANys3rOiyAnWc6rxw3UIIpJyJQOKBB4Dq6RDjVqZwfKcOLOs4vVDdGalKHFwdgEfBCdKy5m9UQ/NeVYv/HE4I4NI6pPw1G8efeOJ2kqu0SiaXo0mP3mg9cDAUVlZamy08eAsrj98DAHSt646fhzcr3jhfAM8rXl387ImIXi2hAVex/evZAAAzC0sMWbAET+4G4+7Fc0hPSYaljS1qtmiN2i3blque2SnxmbhxMhwBJ8ORlarSWpdmloyb7mdw0/0M0syTpOUKEwUauTVCB1UNNNnoD5Orz25ElNvZwe2TaXAYMACyfDrcFsbMnQH47eJDAMCULrXw0Wv5j1BY3hXmnOKFuglv2LABr/0/e/cdHkXVPXD8O1uSTdn0HkpoAUJHmiLFgHQRu6I0FVERsGDBhvB7LYhdsaAiKKjvawGkSO/SpZNACKGl955snd8fEzYJaZtOuZ/n4Unm7pS7BJLJPXPOuf12EdAWBEEQBOG6l5Zr4NPNZwCQJHhzVIdrMph9PfDy8mLXrl18/PHHfP7558TFxZXZp0mTJkyfPp1nn31WVMYRBEEQhFpYHbOaN/95E5NV6R3Y1rMtXwz6ggCXgFqf25pvIv33MxRGpNnGHJq74TW2HZpalBgHyEzKZ/WCo2QlFwCg1qgYNKE9bXr61+q8djHmY131HEe27+CflC4YrcX3IkGh7Rn02FP4hZRtW3M+NY/vd54DwEGt4o1R7et/roIgCIIgCJUwFhawceHntu3+D0/CKzAYr8Bgwvrd1ogzqxlZljl58hwHNkWTd1qNJJde20t2ucjxwO2c9T6MVWXBUe1Ib9/e9AjoQc+AnnR0a0v290tI++YbZFNxb223UaPwf+VlND4+tZ5jXGYBv/97CQC9o4ZH+7ao9TmrzVQIESvg1GrIzwBnT2g3CsLGgFbX8POhDkqOT58+nYMHD/L444/Tvr240RYEQRAE4fr08aYocgrNANzbvQmdmrg38oxubFqtlpdeeomXXnqJU6dOcebMGXJyctDr9bRp04Z27do19hQFQRAE4ZomyzILjy3kiyNf2Mb6BvflwwEf4qJ1qfX5jZdySPs5EktGcYlx1wFNcB/SHEldu4yWS6fSWb/wBIZ85d7NSa9lxFOdCWjZAPdv6THEL5zEpgiJFEMr27DOVU//RybRccDgCjN2/rMmAqPFCsDk/i1o7l37v2dBEARBEITa2PXrj2QlJwHQpH1Hugwe1sgzqr7EvET2xx7g5P5LyMc8cM8JADRcDmVbJAsxXkc4EbiDDLd4uvp35cmAKfT070kn3044qpUHLfP27yd29v0Yz52znVvbpAkBs2fj2u/WOpvvV9uiMRVVLprYNwR35wbunX1qLax4CgozQVKBbFU+Rq6Cv1+Gu76GtsMbdk7UQUA7ICCABQsW8Mknn3DzzTfzxBNPcN999+Hk5FQX8xMEQRAEQWh0pxKz+XmfUubHxUHNi8NqX15TqDvt2rUTAWxBEARBqEMmi4k5e+aw8uxK29j9ofczq/csNKraLSXJskzu7niy1l5RYvz+tji1q12JcYCTO+PY8UsUVqtybu9gF0Y83Rk37/pfpyo4vJyd377P8TTvUuOdBg2l30MTcNJXXEZx6+lkNkUmA+Dv5sjTA2vec1EoKzk5mRMnThAeHt7YUxEEQbiuySYr+cdTKDyZhiXfjNpZg66DN86dfJG0tXtgTWh4caciOLxuNQAaB0eGPDm91qW0G0JSXhIHkg5wMPEgx85H4nE2hLCkW3Azl147KtDkcCpgL+qO2XQN6cjDAW/S2bezLYB9mSUzk6T588n648/iQY0G70mT8Hn6KVR1GA9NyCrgfweU3tkuDuqGz84+tRZ+HVu8LVtLfyzMgl8eggd/hnYjGnRqtQ5oz5o1iyFDhrB48WIWLVrExIkTmTFjBg8//DCTJ0+mS5cudTFPQRAEQRCERiHLMv+3OoKiNVGmhrfGT984pXUEQRAEQRDqW7Yxm+e3Ps++xH22sedvep6JHSbWut2KtcBMxu9RFJwsUWK8mV4pMe5Ru/srq1Vm95/RHN10yTbWvJM3Qx7rgIOuftuPyGYTJxa+wI5dpym0FAezfYMDGfzk8wSFVl7R0Gi28n+rImzbr45oj4ujaJlSlzZu3Mj48eOxWCxV7ywIgiDUSEFEGum/RSEXmEECZECCgpNpZK6Kweu+UJzCvKs6jXCVMBuNrP/mM5CVBbG+9z+MZ0BQI8+qfMn5yRxIPMCBxAMcTDrIhawL+OeG0ClhAAPTH0ctq0vtn+eRhks3A/36hjIt8K0yAezLZFkme/Vqkt59D0t6um3cqUsXAubORde27vtaf73trK1iz4RbQvB0acCe5KZCJTMbUP4Dl6foP/aKp+CF0w1afrxWd8cDBgzA398fHx8fZs6cycyZM9m5cyfffvstP/zwA1999RXdu3fniSee4KGHHsLV1bWu5i0IgiAIgtAgNkYk8U+0suja1MupcfrWCKUkJiZiNBoB8Pf3x9Gx+BePs2fP8tZbb3H06FHc3Nx46KGHePrpp0W/c0EQBEGwQ3xuPE9vepqzWWcBcFA58E6/dxgaMrTW5zbG5pD28yks6YW2Mdf+wbgPDal1iXFjoZmN35/k/PHiQHmXQU255Z7WqFT1ew+QfOoImz55g4QMGVDKQTpooO8D4+k68h5UanXlJwAW7z5HTGoeAD2aezK6y9W5WCwIgiAIFSmISCPtp4jiGNgVH+UCM2k/ReA9LkwEta8Re37/mYx4JVM4oHUo3Ufe2cgzKpaSn6IEsIuysM9nnwdAZVXTOq07dyfci19es9IHqWS8wrTcMqQdzdr4VrlOZLx4kcS35pC3e3fxKVxd8X3+OTwfeADJjnu86krKLuSXA8rDmc4Oah7v17LOr1GpiBVKmfEqycp+ESuhywP1O6cSahXQ3rp1a5mxfv360a9fPz7//HOWLl3Kd999x5QpU3j++ed58MEHefzxx+ndu3dtLisIgiAIgtAgDGYLb6+NtG2/Orw9Om3d37AK9ktPT6dFixa2gPbff//NkCFDAIiMjKRPnz7k5uYiFz1BvGfPHvbs2cPSpUsbbc6CIAiCcLUwWAxsOL+BLRe3kGnIxMPRg/Bm4QwJGUJ0RjRTN08lrVAJCns6evJZ+Gd09etaq2vKskzengQy18TYSoxLTpo6y9LKSS9kzYJjpMXlKudWSfR/MJSO/YNrfe7KGPLz2f3DxxzesRuZ4gXRtqH+DHx2Hq7ePnadJzm7kE83nQFAkuCt0R3Eg3hFWrasu0XcvLy8OjuXIAiCUJpsspL+W1TFCZ22HSH9tyiCXu0tyo9f5ZJiojmwSimvrdZoGPrkDFSqxlsPS8lP4WDSQVsW9uUA9mXORjfCEvsSltwXZ5O+1Gs6Vw0d+zehQ79gXD3Lz8QuSTYaSfthMalffolsMNjG9UOH4v/qq2j9/erkPZXn6+1nMZqV7OxxNzfHq6Gys435kHAE/vnU/mMkFZxade0EtCvj7u7O1KlTmTp1Kvv27WP8+PEsWrSIRYsW0bFjRyZPnswjjzyCh4dHfU1BEARBEAShVpbsPs+FtHwAerfwYljHgEaekfD7779jMBjw8fFh8uTJdOzY0fbajBkzyMnJAeCmm24iKCiIHTt28MsvvzB27FhGjGjY3j6CIAiCcDXZenErr//zOtnGbFSosGJFhYpNFzfxf3v/D4vVgtGqPDAW4hbCl4O+pKlb01pd01poJuOPMxQcT7WNOTQtKjHuWfvyhInnslj71XEKspV5OzprGDq5I03b174Xd0VkWSZq7y62ffcZubkFUBTM9nQ0MOiRR2g+ZEK1zjdv3WnyjEoZ7Id6NaNjsHtdT/madf78+Sr3kSTJ9iBjVa+LBwUEQRDqR/7xFKXMuB3kAjP5J1Jx6VZ/QUGhdixmE+u/+gTZqgRW+9z9ID5NmzfoHFILUjmYeNCWhX0u61zZnWTwzw2hc+JAWqR1QSWXfkjCt5mezrc1oXUPPzR2JqfkHzpM4uzZGM6csY1pggIJeOMN9LfdVqv3VJXknEJ+3ncRACetmsn1lZ0ty5B2FmIPQNxB5WPiCZAtV+ymJd96K4WWPlhkPWopB516L86qXUiSSempXZBRP3OsQL025Dl37hzfffcdixcvJjExEVBu/I8fP8706dN56aWXuOeee3jmmWdE1rYgCIIgCFeV1FwDn2+OBpRsmTfvCBOLYFeBDRs24ObmxqFDh2jSpIltPDo6mk2bNiFJElOmTOHLL78ElBLkPXv25IcffhABbUEQBOGGtfXiVmZsnWHbtmIt9bHAXGB7rbtfdz697VM8dB61uqYxLpe0nyOxpJUoMX5rMO7DQpA0tc/KOnMwic1LIrGYlPfg5uvEqKmd8QxwqfW5K5IeH8eW7xdw4cQx25hGstC7pZUez3+LxiekWuc7fDGDPw4ppTzddBpmDmlbl9O9LvTr16/CTO2///6b5ORkmjVrRseOHfH09ESj0WCxWMjIyODEiRNcuHABrVbLvffei4NDA/agFARBuIEUnkwr7plth8wV0eQfSkKtd0Ctd0Cld0DtVuJzvQMqR1Edr7HsX/E7KRfPA+Ab0pKed95b79dMK0izlQ8/kHiAmKyYCvd1kB3pbxhFq9geSCnOpV6TVBKtuvvS+bamBLR0s3sdz5KdTfJHH5H563+LB1UqvMaNw3f6NFQu9Xd/ednC7TEYirKzH+nTDB/XqrPJ7VKQAXH/QuxB5U/cwSoD0QWWXqSbnkNGD1gANcgWCqx9yeQJvLQf46Q5CE6edTNHO9UqoP3oo48yZcqUUsFok8nEn3/+yXfffcfWrVuRZdn2JKS7uzsPP/wwkydPRqvVsmjRIpYuXcrPP//M3XffzeLFi3FpgH8YgiAIgiAIVflww2lyDMoTxg/2bEqHoPrPlrEaDOSsW0fOps1YsjJRu3ugHzwI/bBhqBzr6Eb2Gnfo0CEmTpxYKpgN8McffwDg5OTEO++8Yxtv1aoVDz/8MH/99VeDzlMQBEEQrhYGi4HX/3kdALmKlWaNSsMXg75A76CvdL/KyLJM3t4EMleXKDGuKyox3qH2JcZlWebg2vPsX1WcqRPUxoPhUzqhc9XW+vzlMRkN7F/xGwdW/o7FXJyB1tI1jfDbe+J+7wegqV6w1GqVeeuvk7bt528PbbiykteQKVOmMHbs2HLHmzRpwsqVKytNktm/fz/PPPMMiYmJbNy4sT6nKgiCcMOy5JvtDmYDyAYLhjOZle4jOahRuzmg0mtLB76vCH6rnDUi+aAOpV48z94/laCupFIx9MkZqDVlw4iVtbFxVFe9fpVWkGYrIX4w8SBns85WuK9G0tDBpwM93W6mycWOZB5WUZhjKrWPzlVLh35BdOwfjGs1qgDJskzOunUkvvMOlpTiikK6Dh0ImDsHpw4d7D5XbaTkGFi67wIAjhoVk/vXMDvbYobkCCXr+nLwOjWqioMk8GsPwTeBLFPwbxRpptdLvK4u9VHGhTTT63jzH5za3VGzedZQrQLaixcvZvDgwfTu3ZvIyEi+++47fvrpJ9LSlH5LlwPZt956K5MnT+a+++5Dpyv+x/TBBx/wzjvv8P333/PSSy8xa9YsPvvss9pMSRAEQRAEodZOxmfx64FLALg6anj+9vrPlsnZsoX4V2Zhzc4GlQqsVlCpyNm4EdXb7xD03nvow+u3vNG1ICEhgbCwsDLjq1evRpIkxowZU6alTfv27fnuu+8aaIaCIAiCcHXZcH4D2cZsu/Y1W81su7SNO1rVbHHKWmgm488zFBwrXhDUNnHFe2x7NF61LzFuNlnY8uMpzhxIso21vyWQAWPboq6DrO/yxBw+wJZFX5OVXHxNvaaQ8OBYWo2djdT1oRqd9/dDsRyNzQIg1N+VR/o0bCnPa4GjoyNqddkMvZ9//pmNGzdy/PjxKhNjevXqxZYtW+jcuTMLFixg2rRp9TVdQRCEG5baWVOtDG17yEYL5tQCSC2ofEe1hNrVAZWbA2pXbZlMb7W++DVJLfp2V8ZqsbD+60+xWpSH93rdeS/+LVqV2a+yNjbv7X+Pt299m4FNB5Y6Jr0w3ZZ9fTDpINGZ0RXOQy2plQC2f096+vckOL81UTtTObs6mUSrBSVjWOHT1JXOtzWlTU/7y4pfZoyNI/H/5pK3fYdtTHJ2xm/GdDwffhipnEB+ffluZwyFRVWHHu7dHD+9nffN2QnFZcNjD0L8YTDlV36Msw806QlNeih/grqDzg0AOT+f9H3bi3as6P+LCrCSbn6eoDYDaMjHSWr9FVm7di1ffvkle/bsAYqD2D4+PowfP57HH3+cdu3aVXi8g4MDTz31FKmpqSxcuFAEtAVBEARBaFSyLDN3VQSXW/FNC2+Nr75+s6NztmwhduozxQNFfYouf7Tm5BA7dSpNFnyBPjy8XudytVOpVBiNxlJjSUlJtnvRBx54oMwx5S2ECoIgCMKNYsvFLbbFxqqoULHl4pYaBbSN8bmkL4vEXLLEeN8g3Ie3qJMS4/nZRv7++hiJMUXBeQluvqsV3W5vVi+ZWdmpyWxd/C3RB/bYxlRY6eEdR5/WKrRjf4eAjjU7d6GJ99edsm2/dUcHNGKRvYyCgvKDGAsXLmTixIl2V3l0dXVl0qRJ/PzzzyKgLQiCUA90HbwpOJlm9/6e94fi1M4LS46x6I8Ja7bRtm29PJ5tRDZYKj+ZRcaSZcCSZcBU2X4SqJy1RcFurS3Tu2Tg+3LwW+VwY64h/LtmBYlnld7RXkFN6HP3g2X2qaqNTY4xh+lbpvP2rW+j0+iUHtiJB6oOYHt3oEdAD3oF9KKrX1d0OBF9KJljP13iyIWTpfaXVBKtuvnS6bYmBLZyr/Z9oGw2k77kR1K++AK5xL2Ga3g4AW+8jjYwsFrnq620XAM/7lGysx00KqYMqCA721QACceKgtdFAezs2MpPrtJCYOeiAHZPJQvbM0TprViO/FM5yLKrHbNWIcuu5J/OxaWbc9W715FaB7R/+eUXQFn8lSSJwYMHM3nyZMaMGYNWa3+pJw8PD1JSUmo7HUEQBEEQhFpZfzKRfefSAWju7czEviH1ej2rwUD8K7OUDbmCx5llGSSJ+Fdm0Wbnjhu6/HiTJk04ePBgqbHvvvsOq9WKXq9n6NChZY6JiYnB27v2JU4FQRAE4VqUaci0K5gNymJkpiGzWueXZZm8/YlkrjoL5sslxtV43RuKU0ef6k63XGlxuaxZcIycdCVYrnFQcfujHWjZ1bdOzl+SxWzm3zUr2PPHL5gNBtt4U+dMBgWcxbvTALjra3DyqPE1Ptt0htRc5QG9EZ0CuKV13fw93ShOnjzJhAkTqnVMkyZNOH36dD3NSBAE4cYlyzKmxCoyQkuQnDQ4d/JF0qpQOWvR+lf+cJLVaCkOcOcYiwLfpjLBb2ueqfIMcRmseSZlv8Qq5uioLh34Lif4fb2VO0+Pj2P3/5YpG5LE0KdmoHEo3QrFnjY2l8df3fVqhddSSSpbALunf0+6+3fHRav8O8jLMnByXRwndsZTkF06mUHnUlRWfED1yoqXVHD8OAlvzsYQGWkb0/j54f/6a+hvv71Rvp7f7TpHgUl5cGNsr2b4u+mUdcD0mKLe10UB7MTjYDVXfjL3ZkWZ10oAW/bpgNWiwVpgRi60YE0zY41NVT4vNGMtMGMtNNu2DRfsq+oEgASFJ1Jx6eZXi3dfPbUOaMuyTFBQEJMmTeKxxx4jJCSkWscXFhbyyy+/MH/+fDw9G7aBuCAIgiAIQkmFJgtvry2+qX1tRHscNfX7ZG7OunVKmfGqyDLW7Gxy1q/HffToep3T1WzAgAH89NNPjBo1ihEjRrBjxw7mzZuHJEncfffdOFzxC1dhYSFLly6lQwP1PRIEQRCEq42Ho0e1MrQ9HD3sPrfVYCbjz2gKjhYnKGiDXfEe2w6Nt1NNplvG+eOpbPj+JKZCZaHPxcORkU93xrdZzft8VyQ24gSbvv+StNiLtjFntZEB/jG0d0tFGvQa3PqC0h6mhqKTc1i8+zyg9Eh8dUT72k77hpOXl8e5c+eq3rGEmJgYCgsLq95REARBsJtslclcGU3evioixJdJ4HVfKJLW/p+jKgc1Km+nKu8rZIuMNU/J6i4V/M41Yck2lgqKY6m8NrpssGA2VLPcud4BtV5bfq9vVwck9dUb+JatVjZ88ylmkxJA7j58NEGhZe9PqtPGpiSVpCLMK4yeAT3pEdCD7n7dcXUonQWceC6LY1tiOXsoGesVXx+lrHgT2vTwR1PD7HlLbh4pn35KxrJlxVURJQnPsWPxfXYGan3d31faIyPPyI+7z6Mnn5s0MbygOwrL5kDsAeT8dGR0WHFBll2w0gar7IKMC1bZBavKE6trC2Snpli1flhV7sgmNdaLZqxRZqwFRjD/W3+Tl8FaUEWAvY7VOqD95ptv8uabb6Kq4c18XFwcjz32GABDhgyp7XQEQRAEQRBqbNE/57iUrvzC0re1N7eH+df7NXM2bS7umV0VlYqcjZtu6ID2c889x5IlS0qVFpdlGY1Gw8yZM21jqamp7Nu3j7lz55KYmMjUqVMbY7qCIAiC0Oi6+HVh08VNdu1rxUp4M/vamxgT8pQS4yUWe11vCcJ9RN2UGJdlmWNbY/nntzO2Ija+zfSMfLozLh51W60mPyuT7UsXEbFjS8kZ0NUzgb6+59G5usM9f0DrQbW6jizLzFkVgdmqvKEnB7SiiWfDlWm8XoSEhPDtt9/yzDPP4OdXdVZQUlIS3377bbWTcARBEISKyWYr6f87TcGxVNuYS68A8o+nIheYi3tqF32UnDR43ReKU1j9VE+T1BJqN0fUbpXfI8iyjFxgtpU0L87yNtnGLge/66XcuVvJLG9t6cC3vnHKnR/ZuJa4UxEAuPsHcOsD42yvWWUrF7IvEJEWwddHv67WeZvrm/NSr5fo5tcNvUPZgLHFbCX632SObY0l+XzpQLmkkmjZ1ZfOtzUhsHX1y4qXlLNpE4n/9x/MSUm2Mce2bQmcOwenLl1qfN6qyBYZ2XA5C9pSlAltxppvwpoSh5waS9rFONaYc3FVgWx1IX+rC7m0RpYnYMUFqOLfQ3rJDfsrJdQJCVRODddnHOogoB0aGlrjYDZAq1atMJmU/+61OY8gCIIgCEJtJGcXsmCL0tNHJcEbo8IapNSQJSvTvmA2gNWKJSurXudztWvfvj1Lly7lscceIzc3FwCdTscnn3xSKgv7008/5e233wZAkiTuv//+RpmvIAiCIDSmjRc28vUR+xYfJST0DnqGhFSebCDLMnkHEsn8KwbMyj2M5KjG8942OHeqmxLgFouVnf89w8kdcbaxVt18GTQpDG0dLvRarRaObVrPrl+XYMjLs40H6HIYHBCNv1MuBHWD+38Ej2a1vt6myGR2nlEW/oM9nHhyQKtan/NGdPfdd/POO+/Qq1cv5s2bx5gxY3AspyVPYWEhK1asYNasWaSkpPDEE080wmwFQRCuP1ajhbSlkRiiMpQBFXjd1xbnbn543NGK/BOpFJ5IxVpgRuWkQdfRB+eOPtXKzK4vkiQhOWurX+48+4rAty0DvLrlzvMq2bFkufPiQLdary2T9S051U2586zkJHYuW2zb7vzw/WyM38LJtJNEpEUQmR5JnqnsnLVWDf1yunNzThfcLC5kq/PYoz/KTv0hTCola9fX2Zf+TfqXOTYvy8DJnfGc3BFHfjllxcP6BdGxfzB6r5qVFb/MlJhI4n/+Q+6mzbYxSafDd9ozeI0fj1RFy2TZZFXKcheV5i5Zprv050UBa1v5bjPWAguysYoHIvBGh/KAR13WkJEc1ah0GlROaiSdpuhzDZJOXe7nKl3RtpOGwsh0Mv44Y9+FZNDVUXshe9UqoH3u3Dm7noQEGDZsGBqNhieeeILRV2QVqdUN/9SJIAiCIAhCSfPXnyav6GbzoV7NaBfg1iDXVbt7VCtDW+3uXu9zutrdd999DBkyhJ07d2I2m+nduzeBgYGl9rnnnnto3bo1AHq93va5IAiCINwIjBYjHxz8gF9O/WLX/hLKgujbt76No7rizCarwULm8jPkH6m/EuOGfBPrvz3BpcgM29hNw5rTe3RLJFXdPWyYePYMm777kqSY4kU7R41MP59oOnkkopKAmybCsHmgrd2CKiitbf5vdYRt+7WR7XFqhCys68Err7zCsmXLuHDhAmPHjsXR0ZF27doRFBSETqejsLCQ+Ph4Tp06hcFgQJZlWrZsycsvv9zYUxcEQbjmWfNNpC6JwHi5165GhffD7XBqrwTmJK0Kl25+DdpXt77YX+7cijW3OMPbknu513dxANxaH+XOS/TzVrs5oHbVlsoAV7s5oHIpv9y5VbZyIesC6z+dh8mghFPPhhSy+NQLcKryS/fO6cQL8ePRW12wYEWNCgtWbs3pxpOq+/gw6EcO6E+WaWOTdC6bY1svEf1v2bLi3k2UsuKhPWteVvwy2WIhfenPpH7xFbIZVG7BSFondF164HHPA6ic3MjZmVDcO7ooEG0ttCDbPjeDufKvVb2QZFQ6NZKTQ1GwWQk8S0WBZ+W1y58XB6Jtr+k0tbpfdu7qR+bac0qVhaqm6qTB+VoKaLds2ZKffvqJsWPHVrlvdHQ0MTEx/P333/z111+MHDmyNpcWBEEQBEGoM8djs/j9UCwAep2G528PbbBruw4aRM7GjfbtbLWiv31w/U7oGuHu7s6oUaMqfL1r16507dq14SYkCIIgCFeJS9mXmLljJhFpxcHT4SHDua3pbfxn33/INmbbempf/qh30PP2rW8zsOnACs9rSswjbVkk5pTiBVaXmwPxGNGyzjKuslLyWbPgGBmJSslElUYi/JF2tO0TWMWR9ivMy2XXrz9xdONabLXMgQ7emfT3OoWzxgRqRxj5IXQfV8mZquf7Xee4mK68r5tbejO8Y0CdnftG4+rqytatWxk1ahQREREUFhZy9OhRjh49Wmo/uejr26FDB1avXo2LS+WZeIIgCELlLDlGUr8/gakoy1hyVOMzoQOOLW/sB+8ltQq1uyNq96rLnVvzzaX6eVtzruj7XRQAt6vceaYBS6ahismBykWLxRlyHQtIUaUTKydwxnwO0rMJuaQCjTtpmiz2tkkuc7i/sz9h3mF08O5AjjGHU/sO8WbsFNvralSlPrpYnXgzdgpzm3xDeLNwLGYrZw8pZcWTzl1RVlyClt186Xxb0zJlxWWLXCLbuSjYXHhF+e6Sgeii1yw5BViy8kHVDJdB88q8n+yNKUBKmfG6IlGIRB4qKQ8VeUhFH1VSPipylW2dA1avAP5K0HDY5EuEFMi3T/UjKECPpFU1SLXICuevVeF1XyhpP0VUXnVAAq/7Qhu86kKtAtqybP8TCidOnODIkSNMnDiRd999VwS0BUEQBEG4KsiyzNzVJ23rmTMGtcHbtW77MlZ27YJjx+zbWZJQ6fXohw6t30ldh86dO8fOnTsZP358Y09FEARBEOrV+vPreWv3W+SalLYcDioHXun9Cve2uRdJkghvHs6G8xvYcnELmYZMPBw9CG8WzpCQIRVmZsuyTP7BJDL/OotsKlFi/J42OHeumxLjAPFnMvj76xMU5ilt6XSuWoY/2Ymg1h51cn5ZloncuZXtSxeRn5VpG/f2cmGwfi9NnIvGPJrB/T9BUNc6uS5AQlYBXxS1tlGrJGaPbpjWNtezkJAQDh8+zJdffsmiRYs4ceJEqXVKSZLo3Lkzjz32GE8++STaKsqKCoIgCJUzpxeS8v1xLGlKNq/KVYvPpI44BLs28syuHZIkoXbRonbRog2wo9x5iUD3lcHvy4Fva16l3buVcue5JqRc0KNBjx8t8aM/Rb2jg4p3vS+mkAKdEdlVjc7dGXdvb1w93ZWsbxctZi+ZuPjOgISK8u9jlIclZV6Mn0jmoab88c0/mPPMaCUI1kpoJAknRxWBTfT4+DuhlkHeFUvKpgulSnbLRjtb85VDUtewso5Uslx3OWW5tRZUhgRUeeeRsk+jSj+OyhBfInCdjyRdkdmsdVba1zTpAU1uh+Ae4BbIp5vO8PHFKAAe7NGUJs08avx+65pTmDfe48JI/y1KydSWUILbRR8lJw1e94XiFObd4HNrsI7dOp2OPn36MG3aNGbPnt1QlxUEQRAEQajUmuMJHDivlLRs6ePC+JtDGuS6siyT/N48Mn/+2TZmUWlI9u1Oqk9nTBoXtOY8fFKP4ZdyGLVsJui991CV0x9QqNzu3buZNGmSCGgLgiAI1y2DxcD8A/P57+n/2sZC3EL4YMAHtPVqaxtzVDtyR6s7uKPVHXad12q0kLk8mvzDxRk72kAXvB5uj9anbkqMA0TuTmDbslO28pOeAc6MnNoFd9+6uUZa7EU2ff8lsREnbGMaB0duaSPR3bIetVQUCG09GO7+Fpy96uS6l7279hQFJiXTalyf5g3W2uZ6p9VqmTFjBjNmzCArK4vz58+Tm5uLq6srISEhuItWPYIgCHXClJhHyvcnsOYo/Y7VHo74PN6pTu8FhNJUDmpUPk5oKvk7lmWZS5kXiYo9xcWEc6SkJJCbnoWzwREvszueZje8zG62z7VVhAOdrTqc83WQDySD5Uw6WaSX2seFqr/mKiRcrE64/JtKsArQl3PdhFyMCblVnqs6ZKsZ2ZQPpgJQWXAIaYLW30sJUldUsttJ6TWt0mmQHNTF5bqtFkg5DXEHIfYAxB6E5EjKpC1fmaDs3Qaa9CwKYPcEvzBQl37/2YUmvt8VAygPOk697eprkecU5k3Qq73JP5FK4YlUrAVmVE4adB19cO7o0+CZ2Zc1WED7srS0NPLyKm98LwiCIAiC0BAKTRbeXVvcHOi1ke1x0NT/TZksyyR/8AHpS5YoA5JEwT3TOJDYFLPGGWQrSCqQraT4duNMm/voN9AZffht9T63a43FYiEtLY3CwsIK90lNTW3AGQmCIAhCw7qYfZGZ22cSmR5pGxveYjizb56Ni7bmJZZNSUUlxpNLlBjvHYDHqFZ1toglW2X2rozh0PoLtrGmYV4MndwRR6faL1mZCgvZ8+ev/Lt6OVZLcenONl06MlC7Cbe8M0q2CRIMeFn5o6rbe8ED59P562g8AJ7OWp4b3HCtbW4k7u7udOnSpbGnIQiCcN0xXMwm9YeTtp66Gj8nfB7rhKaK8tpC3ZJlmUs5l4hIiyAiLYKTaSeJTIskx5RTesdynpnzc/YjzCuMrvpOhDm2wzkqn+h1W9GpXdE7e9Ouez8osCpZ39lGZGMV5c7rieSgqrRftMpJ6RF9+TVLQQ4ZS74jd8tGJZBtNSE5OODz9FN4P/ookoOD/RfPTYELB5XAdewBiDsExpzKj9F5lAhe94Dgm8DJs8pL/bj7PNmFyv+nu7sF09TL2f55NiBJq8Klmx8u3fwaeyo2dv92sH37drZv315m/M8//yQ6OrrK400mExcuXOCPP/6gZcuW1ZulIAiCIAhCPfh2Rwxxmcoibb82PoS3q/+bNFmWSfn4E9K/X2Qbs0x/lz3H9MV3ZpKq1Eezxpmt/4BTpxRadKm70p7XsnXr1jF//nx2796N0Whs7OkIgiAIQqNYd24db+15izyTkjjgqHbklV6vcE+be2pV0jrvYBKZK6OLS4w7qPG8pzXOXeruXslksLDphwhijhT3Mew0IJhb72+DSl27oLIsy0Qf3MvWxQvJSS0+v7t/AOG3daRlxDzIU/pZo3OHu7+D0CG1umZ5LFaZ2StP2rZnDm2Lu7MofS0IgiBcGwrPZJD2U4St/LO2iSs+kzqidhE/y+qTLMvE5sRyMv0kEalKADsiPYKcqgKsgJ+TH2HeYYT5KH2vw7zD8HHysb2en53F4s+foiBX6Wc9+rFX8evdqdQ5rAZLqT7flmyl3HnW3gRUVfX2LsGkAuf23jh6OBYHoi9nQ9tKeRcHqSW1ffeustVK5v/+R/KHH2HNKf47ce7Th8C3ZuMQElL5CcxGSDxeFLguCmBnnK/8GEkNAR2VkuFNeip/vFspjcCrIddg5rtd5wAlO/uZ8KsvO/tqZndAe9u2bcydO7fM+PLly1m+fLndF5RlmUcffdTu/QVBEARBEOpDUnYhX247Cyg3kW+Oaphehqmff07awoW2bd8357DioCfI5kqOAmTYvCSSifO80GjV9TzLq9vbb7/Nm2++WapPYlVEn0pBEAThemKwGHh///v8L+p/trHySoxXl9VoIXNFNPmHSpQYD3DB6+F2aH3rLnskN8PA2q+OkXJRWYSUJLj1/lA639ak1ufOTEpk6+JviDl0wDam1mjoecfd9HI5jvbfEm3wAjop/bK9WtT6uuX59cBFIhKUBeOwQDce7NmsXq5zI9u4cSNLly5l3759JCYmsnz5cm67TalqNGnSJB5++GEGDx7cyLMUBEG49uQfTyH919NQ1A7EsZU73uPDUDk2eNHf61qp4HVahBLArm7w2juMDj5lg9fl2bLoawpylHuT0N59adP7ljL7qBzVqByVcueFuSYyE/JIt4LRaMVXlu1aX5FlmXydAy3GhVW5b3UURkWROPstCg4fto2pPT3xf+Vl3EaPLjs3WYasS8Vlw2MPQsJRsBgqv5A+sHTp8MCu4FD7e+Ef95wnM1/pe35n1yCae9e8mtKNqFrffcpbNLR3IdHZ2ZnQ0FAmTJjA9OnTq3NZQRAEQRCEOjdvXXEvw0d6N6ONv77er5myYAGpX35l2/Z/8w1SWvbDsCOykqOKGfLNnD2UQtveAfU1xavevn37ePPNNwF48MEH6dWrFxqNhunTp/PSSy/Rvn17AHJzczl48CBLly4lNDSUl156qTGnLQiCIAh15nzWeWZun8npjNO2sVEtR/FGnzdw1la+0CabrOQfT6HwZBqWfDNqZw26Dt44d/LFnF5A2rJTmJPzbfu79ArA446WSHX4MF3yhWzWfnmMvCylwopWp2bo5I407+Bdq/OaTSYO/vUH+5b/D7OpuHpL887dGHT/PXjueBlO7S0+oMtYGPURaOun/2dmvpEP1hd/jebc2QG1SjxgV1eysrIYO3Ys69atA5T1SUmSSq1TLl26lB9//JFhw4bx888/i57agiAIdsrbn0jG8jO2dsG6Dt54P9iu0frmXi9kWSY2N9ZWMjwiLYLItEiyjdlVHuvr5KsErouyrsO8w/B1rl4FvzMH9nB6z04AdK56wh990vZaQY6R9Pg80hPyyEhQPqYn5FGQY7Lt00Qr4ediX0hRkiTS6rCln7WwkNQvvyJt0SIwFyeEuN91F34vvYjGs6jUtyEX4g8XB7DjDkJuUuUn1+ggqFtx8Dq4B7gH19ncL8szmPl2h9I7WyXBM1dh7+yrnd0B7dmzZzN79uxSYyqViqVLlzJ27Ng6n5ggCIIgCEJ9OXIpkz8PxQHg7qTl2QboZZj69dekfv6Fbdv/tdfwGjuWfd8cV3o32vOMoAQxR27sgPaCBQuQJInVq1czbNgwANLS0pg+fTpDhgwhPDy81P4TJ05k8ODBBAfX/S8jgiAIgtDQ1sasZc6eOeSblaCzo9qR13q/xpjWY6rMlimISCP9tyilB+blew8JCk6mkbk8Gtkq27KwJAcVnne1wbmOe+adPZzMph8iMBeVLtV76xg5tTPeQa61Ou+FY0fYvOgrMhLibGOunl4MnPAEoQEg/X4f5BVlnasdYPg8uGlStctEVsfHG6PIKJGB0zPEq96udaORZZm7776bbdu22QLZ7u7uZGeXDggsWrSIhQsX8vfff3PHHXewfft2UbVHEAShCjnbL5H193nbtvNN/nje3cbuctCComTwumTPa3uC1z5OPrbA9eWP1Q1eX6kwN5fN331p227d614OrE0mI+Ec6Ql5FOaaKjlaEW+S6WSV0UqVV8GTZRmTDPmeulrN+bLcf/4h8a05mC5dso05hIQQ8NZsXFp5wvk1sKsogJ0cAbK18hN6tSqdfe3fAdT1X0Z/6d4LtnvD0V2CaOlbu/vfG5GoDyEIgiAIwg1FlmXmriruZfjs4DZ4ujjU6zVTF35Lyief2rb9XnkZr3GPAFCYZ7IvmA0gF+1/A/vnn3+4++67bcHsqgwYMIBHHnmEr7/+WpSbFARBEK5ZheZC5h2Yx+9Rv9vGWri34MMBH9LGs02VxxdEpJH2U0TxPccVHy/3ygbQ+Dvj/XB7tH51V2JclmUOrb/A3hUxtrGAlu6MeKoTTvqa34flpqex7cfvbNlGAJJKRffhd3DzPWNxPPoD/PgmyEX9Ht2awAM/QvBNNb6mPU4lZvPT3gsAODuomTW8fb1e70bz22+/sXXrVkJCQpg3bx7Dhw+nsLAQP7/SD2CMGzeOcePG8frrr/Puu++ydOlSxo0b10izFgRBuLrJskz2uvPkbI+1jbn2C8Z9RAvxMFAVZFkmLjfOlnV9+Y+9wesrM6/9nGv3QKEsy+RnGW1Z1ukJeUTtXkZeZgYAKm0LzhzyQJLiKj2Pk16LV5ALXgEueAa6kJtp4NCmi/R2UdseKCvv2gCH8i106l6792FOSyPpvXlkr1pVPKhR4zMkDO+Ohai23g/rsio/ic5due+73Pc6+CZwbviHDPONZhYWZWdLEjwTXvX9u1BWrQLaW7dutZV1FARBEARBuBb8dTSeQxczAWjt58ojfZrX6/XSvl9Eykcf2bb9XnwR74kTbds652o8BSqBzqX+nxq9miUkJNC7d+9SY5d/ibJay38Kt2fPnrz77rv1PjdBEARBqA/nss4xc/tMojKibGOjW43mtd6vVVliHJRgdfpvUfY9QKeW8H2iM+o6vN+wmKxsW3aKU3sTbWOhvf257ZF2aGpYytxqsXBk/Wr++d9SjAUFtvGg0PYMeuwp/AJ9YeXTELGi+KCWA+GeReBSu9LmVZFlmTl/RWAt+vueeltrAtzrJkNJUPz888/4+PiwZ88e/P39ATAYKu6F+Z///IcNGzaIgLYgCEIFZKtM5vJo8g4U/6x2GxqCfmCT6gezTYXKz99TqyE/A5w9od0oCBsD2mv/5+Hl4HWpzOv0SLIMVQRWKQ5elwxg1yZ4LcsyeZkGJWgdf7lUeD4ZiXkY8ovLcltM5zHlXu457YDWeXCpr6uzuwNegUrQ2qvoj2egM06upR86NJssnNwRx/48C92c1ThIpVt+SJKESVaC2ZkOalp1r1lWuSzLZP3+G8nvz8eSk2sbd/I1ENgjC0e3S3CxnAMllZJtHdyjOIDt3RpUjV8q/+d9F0nLU1rijOocRGs/kZ1dE7UKaA8YMKDax5w7d46dO3cyfvz42lxaEARBEASh2gqMFt77+5Rt+/WR7dGq6+/GNm3xYpLnz7dt+77wPN6PPWrbLswzkZ1aUN6h5ZOhZdfalZm6Huj1pfud63TKL8VxceU/XZyfn09KSkq9z0sQBEEQ6trqmNXM3TOXArNyv6BT63itj1Ji3F75x1OUMuP2sMgURmXgUkelxgtyjfz99XESoosXeXuPbslNw5vXONsrPiqSTd99ScqFc7Yxnd6N/g9PpOOAwUhpZ+DbcEgtfgCAfi/Aba+Bqu56gVfk7xOJ7IlJA6CZlzOP3dqi3q95ozl48CCPPvqoLZhtjzvvvJPPPvusHmclCIJwbZLNVtL/e5qC46nKgAQed7bGtU9g9U92ai2seAoKM5XgomxVPkaugr9fhru+hrbD63T+9UmWZeLz4jmZWiLzOj3CruC1t86bDj5FWddexZnXNbn/kWWZ3AxDmR7XGQl5GAstVRxrxJS/0bbt12o4LbqG4RnobAti25s4odGqGTQxjLVfHWN9tpkgrUSgVoVWUkqMJ5gsxJtkrBKMmBhm/4OLsgzZcRB7AMO/W0n8cQf5scUPqqkcrPh3yca9ZX7pbjGu/qVLhwd2BcerL1BcYLTw9fbi7Oxp4aJ3dk01eMnx3bt3M2nSJBHQFgRBEAShwX2z4ywJWYUA3NbWl4Ft67YvZEnpPy0l+b15tm3fZ2fgM3mybTs1Noe/vz5Odmqh3ed0dNbU+AnX60VgYCDHjx8vNebs7Iyrqyvbt29nwoQJZY5Zv349Dg71W1ZeEARBEOpSobmQ9/a/xx9n/rCNtXRvyYcDPqS1Z/UWwQpPphX3zK6KBIUnUuskoJ2ekMeaBUdt9zpqrYrBE8NofVPNzl2Qk83OnxdzfMuGUuOdBg2l30MTcNK7wckVsHIqGIuyeRzdlMXzdiNr81bsn6PRwttrIm3bb4wKQ1fDLHShYqmpqbRt27ZaxwQGBpKZmVk/ExIEQbhGWQ0W0pZGYDiTqQyoJLweaItzlxqsO5xaC7+OLd6+3Mf48sfCLPjlIXjwZ2g3olbzrg+Xg9e2zOvUk9UKXpeXeV3d4LVslclJL7SVCc+4nHmdmI/JUHnguiRXT0clWB3kQsKplVw8ngNAs45duPf1x2tVQr5FZx9GjDKyeY2JWJMLsSYjoAYsgBpHVR6DRjnQorNPxScx5kH8EYg9AHEHIfYg1swE0iL0pEW6IluL5+fWPB//btloXLQQ1Lu4bHiTnuDeBK6Bcvi/7L9Iaq4SoB/RMZBQf30VRwgVET20BUEQBEG4IcRnFvD19rMAaFQSr40Mq7drpf/8M0lvv23b9nnmGXyefNK2fWpvAtuWncZS1K9S66iu+pcTCQZV5wnX61T37t1ZvHgxzzzzTKmFzJtuuomlS5cyZMgQHnzwQaCoX/rcuWzevJkePXo01pQFQRAEoVpismKYuX0mZzLO2MbubHUnr/Z+1a4S41ey5BjtC2YDyGC1N5u7Epci0ln37QmMRedydnNgxNOd8Q9xq/a5ZKuVE9s2sePnxRTmFPei9A1pyeDHniYotB1YzLD+NdjzRfGBfmHwwFLwblXr92Ovr7efJS5TyabvH+rL4Pb19/DkjczZ2Zns7Kr7kpZ07ty5MlV+BEEQbmTWfBOpP5zEeEkJdkpaFd6PtEfXtgb9hU2FSmY2UPFNhwxIyn4vnG7U8uOyLJOQl1Cm53WmIbPKY710XqX6XYd5h+Hv7F+tILFslclOK1DKgxcFrdMT8shIzMNsLL+VWnn0Xjq8gi6XCnfGK9AVzwBnHJyUsF9sxAn2/bYNAI2jI0OmTKt9P/RTa2lxYCwTfbWcLbyZmMLeFMqu6KRcWur20Uq3B81+E7QsenDBaoX0s0rwOvYAxB6EpJMgF6+B5SU5kHjQD2NOcbhS6wYBd3fA9bYh0OQm8O8EmmsvUaHQZLGtRQJMGySys2vDroD24sWL+eSTT3jmmWd4/PHHbeNq9Y29oCoIgiAIwrVj3rpTFBYFkMfd3Lze+tVk/Pd/JM39P9u2z9NP4fvMVEDpIbnrtzOc2FFcGtuvuZ6hT3QkLTaXzUsilT5Hl7Ooij46OmsYNDGs8idcbxDDhg3jjz/+oE+fPkyaNIl33nkHnU7H+PHj2b59Ow8//DAvvPACTZs2JTo6moyMDCRJsgW5BUEQBOFqtursKv5v7//ZSow7aZx4rfdr3Nn6zmqfy5SUR86OOIwXc+w/SAKVU+1yH05sj2XHf88gFzWR9m7iysinO6P3qv7CdfL5GDZ9/yUJUcUtYxycnOj7wDi6DhmJSq2G3GT4bRJc2FV8YKf74Y5PwMGlVu+lOi6l55d6ePLNUWG1XzQWyhUaGsoff/zBjBkz7No/Pz+fn376ibCw+nugVRAE4VpiyTaQ8v0JzEn5AEg6DT4Tw3AMca/ZCSNWKGXGqyQr+0WshC4P1Oxa1XQ5eF2y53V1gtdXZl5XJ3httcpkpxSUzrhOyCMzMR+zyc7AtQRu3rrSPa6DXPDwd8ZBV/E9m8lQyPpvPrVt93toAu5+AfZds8KTFj+4oJGMtHXaTlun7eVP+vdJ0LQPJByp8N+G2SCRfMSdrHMlHthUq/Ae9xA+M15A5eRUu/leBf574BLJOUp29rAOAbQLqP7DnUIxu35LefbZZ8nJyWHmzJmlAtqybO8jvqWJG3pBEARBEBrSvxcyWHkkHgBPZy3PDgqtl+tk/v47ibNn27a9n3gCn2nTAMhJL2TdwhMkny/OJgnrF0S/+9ug0apx83Zi4jwvzh5KIeZICoV5JnQuWlp29aVVd98bPjP7snvvvZc5c+ZgMpn49ddfefnll9HpdEyYMIElS5awY8cOEhISSExMtN2r9u7dm2lFXwdBEARBuBoVmAt4d9+7LI9ebhtr7dGaDwZ8QCsP+zOMZVnGcDaL3J2xFJ7OqP5EZNB1rNkDdFaLlX9+j+bY1ljbWEhnH25/NKzSBdfyGPLz2f3bMg6vW4VsLV7wbdd3AAPGPYarZ1H22MV98NsEyElQtlUaGPYe9Hy8wUtQvrM2EoNZmeukviH19vCkAGPGjOG1115j5syZzJs3r9KEm7i4OB555BEuXbrEs88+23CTFARBuEqZUwtI+f44lgwlyKZy1eLzWCccAmvxENip1cU9s+3x1zOw/lXlGEml/My+/DlSie0rx0vuL5UZlyVIlOCkZCZCMil/MJIhVT0vL9SEqZwJU7kQpnKhg9oFf5UOKcsM2SfgfESF17XKKrIKXMnI0ZOe40p6rp70HBcyc5yxWO1dy5Fx1xvxdDfg5WHAy8OIl4cRD3czWgeK3zcSpKggtfK/n382HSAzUbk/CmrqT7dmEpxaU87+UqXnKTUevdH+BxfMhXBuW9mXJBWyb3uyk4NJ2nQWS06B7SWnrl0JmDMHXdv6WbNraAazha+2iezsumTXbxR9+/bl77//pm/fvmVeu/vuu+nUqZPdFzx27BgrVqywe39BEARBEITasFpl5q6OsG0/f3so7s7aOr9O5p/LSXjjTdu212OP4vvcs0iSxKVT6Wz47iSFuSYA1BoVA8aG0v6WoFLn0GjVtO0dQNvetXxq9jrm7u7OxYsXy4yrVCrWrl3LnDlz+PXXX0lMTCQwMJAHHniAN954A6227r/mgiAIglAXzmaeZeb2mURnRtvG7mp9F7N6z8JJY19mimyxUnA8lZydcZjicku/6KgCiwzmqpMSJCcNzjUIaBsLzKz/7iQXT6bZxrre3oyb72qFSlWNEpyyTNTeXWxb8i25Gem2cc/AYAY99hTNO3W9vCPsX6gshluLSqTrA+G+JdCsd7XnX1u7o1P5+0QiAD6uDkwb1KbB53AjmTZtGp9//jkff/wxv/32G/fffz+tWyuLxLt37yYlJYULFy6we/duNmzYgMFgoFmzZjxZogWQIAjCjciYkEfq98exXl6b8NLh+1hHNN61zITNz7A/mA1gMUJ+aq0uKQOJajURjg6cdHQgwsGBCEcHMuyoKuxlsdDeYCTMaKSDQfnjb7FQ1R2LRVaTZQkk3dyUDHNT0s1NSDc3I9MchBX71hwkLLirE/HUXMKr6I+n5hKemng0khHMQGrRnxpKKNBz6HwXQEItWRmiXYP02+81P2FtuPgq/a6b9IAmPTGafUh89wPydu+x7aJydcXvhefxeOABJJWqceZZD/53MJbE7EIAbg/zp0NQDSsgCDZ2BbRXrlzJsWPHyg1c33333YwdO9buCy5btkwEtAVBEARBaDArjsRx9FImAG399TzUq1mdXyNr5UoSXntNWVwFvCZMwG/mTAD+XXeefStjLr+E3lvH8Cmd8G0mevjVNWdnZ+bNm8e8efMaeypXnQULFrBgwQIslip6tQuCIAgN6q+zf/Gfvf8pVWL8jT5vcEerO+w63mowk7c/idx/4rBkGkq9pvZwxPXWYFx6+mM4m0XaTxGV99KWwOu+UCRt9RYSs1MLWPPlMdLj8wBQqSQGPNyWsL5BVRxZWnp8HFt++JoLxw7bxjRaB3rf/QA97rgbzeWH04x5sGoGHP+t+ODmt8J9P4Brw/esNlusvLXqpG37pWHtcNM13oN0VoOBnHXryNm0GUtWJmp3D/SDB6EfNgyVo2Ojzasuubi4sGrVKgYNGsSlS5f46KOPAKUi5OwS1ZJAeUjCy8uLv/76C52u8fq1CoIgNDbD+SxSF59ELlR+J9T4O+P7WEfUbrX82SDLpfohGyTY4OLMFmdnMlUqPKxWwvPzGZKXj+Pl+xCts/IzW7Yq9yaytSggLhd/Lhd/LssyiWqI0Kg4qVUTodUQ4aAhQ131PYunxUJYieB1mMFIQBXBa4usIdMcRLq5iRK4tjQl3dyULHMQVvtCakhY8FAn4KW5iKcmtih4fREPTTxqyWzXOWrCbJVYH98Guegd3uxzAW/HgiqOqifBPeDxTSBJyEYjaYsWkfrlV8hGo20X/bBh+L86C61fw9/D1SeD2cJXW4sfVp0hHnasE3b979NoNHTv3r3MePPmzXF1rV4JJVdXV5o1q/uFZEEQBEEQhCvlGczMW1fcc/H1Ue3R2PELT3VkrVpN/KxXbcFsz3Hj8HvlZYyFFjYvjuDc0eLHapt18Ob2R8PQuZS/yGk2Gonau4voA3spyM3GydWN1j37ENrnVjQODnU6b+HGMnXqVKZOnUp2djbu7uKpYEEQhMaWb8rnnX3vsPLsSttYa4/WfDjwQ1q6t6zyeEuWgZzd8eTtS7AtTF+mDXZF3z8Yp46+SGplMdMpzBvvcWGk/xaFXGAGCWUBueij5KTB675QnMK8q/U+EmOyWPvVMQpylEwvR2cNw6d0Iritp93nMBkN7F/xGwdW/o7FXLzA27J7T8InTSnd7zHtLPz3EUgurr7DLdNg0Fugrl3v75pauvcCUUlKVnyXJu7c271Jo8wDIGfLFuJfmYU1OxtUKrBaQaUiZ+NGVG+/Q9B776EPv63R5leXunfvzpEjR3jqqadYt25dhfuNGDGCL7/8UqxFCoJwQys8nU7a0kjkor7NDs30+EzsgKo21etkGWK2wfb34aKSbbvV2YnXfbzIVqtRyTJWSUIly2xyceY9Lwtvp6QzsKAARn1SYQ9tWZZJyk/iZNpJTqaeJCI9gsi0SNIL08vdvyRPR0/CvNsT5hVGB692hHm1I8DJVwntlgmay1hMFjKSCshIKiQ9qZD0xEIykoxkphntTjhXqcDDW42njwovHxWeviq8fMDDE9SqNiC3qiBYL1caxC85z/LHy9tfZt+uCNKMZwDw93Oj5/2TQSXVzbXPrIeM8/b9xUgqcAsESSL/0CESZ8/GcKY4wKsJCiTgzTfRDxxo3/muMb//G0t8lpKdPaidHx2DxTpMXZDkmjbCFhrc5QXIrKws3NxE83hBEARBqMqHG07z+Rblhnlwez++m9CzTs+fvXYtcTNfVBYLAc+xD+H/xhukx+fx9zfHyUouegpWgp4jW9BzRAhSBWU3ow/uY92XH2PIy0WSJGRZtn10dHFl+NTnaHVT3ZTQFPcUNy7xtRcEQWh80RnRzNw+k7NZxT317mlzDy/3ernKEuOmxDxydsSSfzRFKSNegq6tJ679m+DY0h2pgv7RsslK/olUCk+kYi0wo3LSoOvog3NHn2pnZkftT2TLj6ewFPWN9vB3ZuTTnfHwd7b7HDGHD7Bl0ddkJSfZxvQ+voRPnEKrHr1Lv49Ta2D5k2DIVrYdXOHOBdBhTLXmXZfScg3c9sE2sguVQPzyp2+hWzP7g/l1KWfLFmKnPqNslLfUV/R32WTBF+jDw+vkmlfLfUV0dDSbNm3izJkz5OTkoNfradOmDYMHD7aVIhfq1tXytRcEoWr5R5NJ/28UWJWfDY5tPPAeF4bKwd7ezleQZYjeDNvnQex+2/BWZydm+CltS+Ry7kOkop9Nn2YUcNszJ0GrKxW8jkiLsP2xJ3jt4ehBB+8OhHmHEeYdRgfvDgS4BJR7D2Q2WshIyicjIY/0+DzSE/LISMwnKzm/3B+Z5VFpJDz9nfEMdMGr6I9noAvufk6o6zhxoqaSz8ew7NXnsFosqNRqHn7nY/xCqn5Q0m5Hf4XlU+ze3TLkU5LXnyfzv/8tHlSp8JowAd9npqJyqUXf9quY0Wzltg+2EZeprAmunNqXLk09GndSV7Hq3FM0+OOr586dY+fOnYwfP76hLy0IgiAIwg0kNiOfhTtiANCqJV4bGVan589ev4G4F1+yBbM9HngA/9df58yBJLYuPYXZqIw7Omu4/dEONO9YccZT9MF9rPzgP7YyoJefN7z80ZCXx4r5/+HOma/TukfD94W8FixdupT//e9/nD17Fo1GQ0hICCNHjmTSpEmif7YgCIJw1VgRvYK3975NoUXJ2HDSOPHmzW8yquWoCo+RZRlDdCY5O+MwRGWUflEt4dzND32/YLT+VS8KSloVLt38cOlW87KOsiyzf/U5Dq45bxsLbuvBsCc6VViF5krZqclsXfwt0QdK9E9Uq+kx6i763P0g2pKloa0W2PIf2PVR8ZhPW3hgKfiG1vh91IUPNkTZgtn33tSk0YLZVoOB+FdmKRsVrczLMkgS8a/Mos3OHddN+XGA1q1bi8C1IAhCOXL3JpC5Mtq21uDUyQevB9oiaWoQgJVliFqnBLLjD5d6yeATyutuFrAayw1mgxLklmSZl308eOjYV0RlRFUreH05aH05gB3oElgmeG0yWshMzCc9Ppf0hHwlcJ2QR3Zqgd2Ba7VGhUeAsy1orQSunXH3dUJ1lQSuy2Mxm1n/1adYi9qM9Rpzf90GswHCxsDfL0NhFlaLTM5FJ3LidFgMKtSOVvTBheibFSCpJHISvUh88TssaWm2w3UdOxI4dw66sLpdn7va/Hko1hbMHtjWVwSz61CDB7R3797NpEmTREBbEARBEIR69d7fpzAUZQxNvCWEFj519+Rn9saNxL3wAhT9ouBx3734vvY6O3+L5vjWWNt+Pk1dGT6lE24+FWdbmY1G1n35cdEvmBX9hiWDLLHuy4958usfb6jy4zt37uTbb7/l+PHjGAwG2rZty/Tp07ntNqVcpslkYsyYMWVKTZ44cYLVq1fz6aefsmHDBoKDgxtj+oIgCIIAKCXG3973Nn+d/cs21sazDR8O+JAW7i3KPUa2WCk4lkrOjlhMCXmlXpOcNLj2CcT15iDUbg13X2A2Wtj8YyTRB5NtY2G3BtH/oVC7spMsZjP/rlnBnj9+wWwo7vndNKwTgx57Cu8mV5SFzkuF3x+Fc9uLxzrcBaO/AMfqtcCrayfisvj1wEUAXB01vDSsbaPNJWfdOqXMeFVkGWt2Njnr1+M+enT9T0wQBEFoFLIsk7PtEtnrL9jGXHoF4DGmdYVV4ypktcLpNUpp8cRjpV/zC4P+L7JBpyb7n9dBklBbNbRM60qL9M44mp0xaPI553WMGO8jWFRmCqxGFp1YVOHl3B3dy2ReXxm8NhaaSbmYU5xtnaB8zE4rrHhZ5QpqrQrPAGe8goqC1gEueAW54ObjhKq6f0dXgYOr/iT5vFL9x7tJM/rcfX/dX0Srg7u+JueDicTv9cBqUlGyh01OrBOqQ+5oXc0YMhwAJZitcnbG99ln8Xx4LJK6hpUBrhEmi5UF24pLq08XvbPrVJ0GtPPy8sjKysJsrripfWpqaoWvCYIgCIIg1IUD59NZfSwBAG8XB6bV4Q1kzpYtxD33PBTd77jfdReuz73Kyk+OkBhTvJDY/pZA+j8YiqaKMl5Re3dhyMu148oyhrxcovb9Q1i/66P3YVXef/99Zs2aVWrs9OnTrFq1ip9//pn777+f119/nb///rvCc5w6dYp7772XPXv2VLiPIAiCINSnMxlneGH7C5zLOmcbuzf0Xl7u+TI6ja7M/tZCM3n7E8n9Jw5LlrHUa2pPR/S3BuPcIwCVY8MuCOZlGVj71XGSzxfd70jQ957WdBnUtMIS5yXFRpxg0/dfkhZ70Tbm7O7BwHGP0e7WgWXPEfsv/G8cZMcVXU8NQ/4P+jxtK5/dWGRZ5q2/TtqyvaYPao2fvuzXsqHkbNpc3DO7KioVORs3XdcBbbPZzJIlSzh69Chubm7cd999dOnSpbGnJQiC0CBkWSZrzTlyd8XZxvQDm+A2NMSun9c2VitEroTt8yH5ZOnX/DvBgJeg3ShQqdiy9TlUqGiaHsZt0Q+jszhjxYoKFVastEzvQt9z97C19VIueBWfy93RXel37VMcwA5yCbLN01hoJj0hj1PHEkhPKC4ZnpNeaPfb0DiobOXBS37Ue+uuycB1edJiL7Hnj18AkCQVQ5+agVpTP5XqcuIcid3lTXGTcanUR6tJKgpmK1wHDSLg9dfQBgbWy3yuNssPx3EpXcnO7tfGh+6NVL3nelXrgHZcXBxvv/02q1atIj4+vi7mJAiCIAiCUGNWq8zcVRG27ReGtMVNVzc38jnbthE749niYPado7GOf4Hf3j1IQY4JUPoqDXiwLWG3BlV6roKcbBKjo9i34je7ry9JEtH799wQAe1///2XV199FSguvX6ZLMtMnTqVfv368cUXXyBJEnfddRcjRoygadOmWCwWzp8/z4oVK9iwYQP79+9n7dq1jBgxojHeiiAIgnCDkmWZ5dHLeXffu7YS484aZ2bfPJsRLcv+TDJnGcj9J468fYnIBkup17RNXNH3b4JTBx8kdcMvvqbG5rBmwTFyM5Ssao2jmiGPdaBFZ58qj83PymT70kVE7NhSPChJdB0ygr4PjEPnckWmtSzDwUWw7hWwFAX0XfzgvsUQ0reO3lHt/HU0noMXlPLvLX1cmHhL+Vn2DcWSlWlfMBvAasWSlVWv86lvRqORHj16kJurPBS6ZMkS+vXrB0BmZiYDBw7k+PHjtv3nzZvHJ598wtSpUxtlvoIgCA1Ftshk/HmG/H+TbGPuw1ugH9DE/pNYLXByOeyYDymnSr8W2BUGvAxth5d6uCzTkEnT9DCGnX7MNqZCVeqjo0XHsNOPs67t92haFLBg8AJb8NpQYFaC1UfzOJcQTUZR5vXl+w57aB3VRcHq0n2u9V666melX0OsVgvrv/kUi0lZk7pp1BgCW9dP1ZhSLU6o6O+0aFySCPrwA9xvoHUYs8XKgq3F2dnPDhbZ2XWtVgHtc+fO0adPH1JTU8ssNFamWk8CCYIgCIIgVMPvh2I5Hqcs0rUL0PNAz6Z1ct7cnTuJmzYdin5J0I8cRWL4U+z9/BiyVbkPcvVyZNgTnfAPcSt1rNloJPl8DInRp0mIjiIxOorMpIRqz0GWZQpyc2r/Zq4BX3/9NVarFQ8PD5555hl69+6NVqvl9OnTfPXVV5w+fZrZs2dTWFjIf//7X+69994y53jyySf5/PPPmTFjBn/++acIaAuCIAgNJt+Uz//t/T9Wx6y2jbX1bMsHAz4gxD2k1L7G+Fxyd8aRfzQFrKXXVnTtvdD3a4JDC7dGW0s5dyyVDd+fxFwUZHf1dGTk1M74NNFXepzVauHYpvXs+nUJhrzikukBrdow+PGp+Lcsp+exqQBWPw9Hfy4ea9pHCWa7XR2ZPXkGM++sjbRtv3lHGA416UVah1Ru7tXYWYXavRr7X4XWrFnDiRMnkCSJPn364OlZnP308ssvc+yYUhJXo9Hg4uJCVlYWzz33HP3796dTp06NNW1BEIR6JZuspP1yisKIop7FEnje1QaXXgH2ncBihhO/w44PIO1M6deCeyiB7Da3l1slxVPjRafo24ouW/7PRAkVMlYGnRlHpksUMWvz+DfhCOkJ+eRl2h+4dtCpiwPWQcUZ166ejjdk3OnIutUkRCkPHngGBnHL/Q/X27XsbnECygOKlVRyvh6tPBLPhbR8AG5t7cNNzb0aeUbXn1oFtGfPnk1KSgru7u6MHj2asLAwPD09cXR0rPCYPXv28O2339bmsjYGg4FPPvmEX3/9lejoaNRqNe3bt2fChAk88cQTqFTV/4Xi/PnztGhR9ZO18+fPZ+bMmRW+Hh8fz7x581i9ejVxcXG4u7vTs2dPpk2bxtChQ6s9L0EQBEEQqpZrMDN//Wnb9pt3hKGugydxc//5h9ipzyAXBbOdho/ieJtxxCyPse3TNMyL2x8NQ+esIS3uEonRUUXB69OkXDiH1WKp6PR2kyQJJ9fKF4+vF7t27cLJyYldu3YRFhZmGx8yZAiPP/44N998M0uXLuXOO+8sN5h92bRp01i2bBmHDh1qiGkLgiAIAlEZUbyw7QXOZ5+3jd0fej8v9XoJR7WyXiLLMoYzmeTsjMVwJrP0CdQSLt39ce0XjNbPueEmfgVZljm6+RL//BFt60fpF+LGiKc64eJe8boPQOLZM2z67kuSYooXxB1dXOj30AQ6DRqKSlVOufT0c0qJ8cTizFp6P6WUGVfXT9nMmliwNZqkbGXhfXB7Pwa29WvU+ZiSkjCcja56x8usVvS3D66/CTWANWvWoFar+euvvxg+fLhtPD09nSVLliBJEv369WP58uV4enryxx9/MHbsWL766iu+/PLLRpx5xepjjfOyrKws3n//ff78808uXLiAs7MznTt35oknnuDBBx+sw3chCEJjsRrMpP0YgeFsUQUOtYTXg+1w7lR1JRUsJjj2XyWQnXGu9GtNeyuB7Fbhlbb76JY7gGxL1fcsEiocrDr8DnXmGLGV7uvgpLEFrZVS4c54Bbrg4nFjBq7Lk5mYwM5ffrRtD5kyHa1D5fdotSFanFTMYpX5YqvonV3fahXQ3rx5M61bt2b37t34+NjxzRHl6ci6CGinpqYSHh7O8ePHeeKJJ/j8888xGo188cUXPPXUU/z222+sWbMGna5mPYycnZ0r/cbo4OBQ4Wt79+5lxIgRFBYWMmfOHAYMGMClS5eYO3cuw4YNY9asWbzzzjs1mpcgCIIgCBX7cms0KTnKAuPQDv7c0sq++5PK5O3dS+zTU5GNSslL+fZ7+MdtJJlHUpVtax4tu1jQe11i9ce/kXj2DMaC/ErPqdE64NeiFQGtQ7GYTBzduNauuciyTOteN9fuDV0jYmNjufvuu0sFsy9zcnJi5syZjB8/vtQiZkVGjBjBZ599Vh/TFARBEAQbWZb548wfvLf/PQwW5X7ERevCWze/xbAWw5R9zFbyj6WQuyMOU2JeqeNVzhpc+gTienMQan3Faw4NwWKxsuOXKCJ2FbeWa32TH4MmtEfjUHHv7sK8XHb9+pNyb1Oikl+HAYPo//AknN09yj8wagP8+TgUFi3Ea51h9OfQqeKH1hrD+dQ8vtupLPY7qFW8PrLsfUpDyt25i/iXXsKSkWHfAZKESq9Hf40nWuzbt4/777+/zH3g8uXLMRqNqFQqvv32W1vm9j333MNdd93Ftm3bGmG2VavPNc7o6GjCw8OJi4vj5ZdfZvTo0aSnp/P+++/z0EMPsXr1an788cdaBcwFQWhcljwTqT+cwBSrtGGQHFR4jwtD16aK3r1mIxz9BXZ+CJkXSr/W/FalR3aL/pUGsgESchOIPpyED8628uLV4eiisZUHL5l57ezmIALXlZBlmQ0LP8dsVO45uw4dSZP2Hev1mjdai5PqWHU0nnOpyr39zS296dVCZGfXh1oFtNPS0nj22WftDmYDdO7cmTfffLM2lwXgvvvu4/jx48yYMYNPPvnENn7bbbdx1113sXLlSp566il++OGHGp3/5MmThISEVPu4lJQU7rjjDjIyMli+fDljxowBoFevXgwePJhOnTrx7rvv0rZtWyZMmFCjuQmCIAiCUNal9Hy+21W8wPjaiNovMObt28+lJ59CNii/IGSEP8IRUzNMF3ZgNSciWxORLTlE7qjkJJKEd3BTAlqFEtA6lMDWofg0C0GtUW7DzEYjp3bvKCrFWVkLFwlHFxdCe18dvSPrW15eHr169arw9d69ewPQpEnVvcCaNm1q67EoCIIgCPUhz5TH3D1zWXuu+CG19l7t+WDABzRza4a10EzevkRy/4nDkm0sdazaS4f+1mCce/ijqiRY3FAK80ysW3iCuNPFQdIeI0PoNbJFhT0oZVkmcudWti9dRH5Wpm3cu0kzBj/2NE3CKlhgtVpg+zzlj+2g1vDAUvBrXxdvp079Z00ERouykPt4vxaE+Lg0yjxks5mUL74g7ZuFtgcHVJ6eWDMzi3Yo556yKCgQ9N57qCqprHgtOH/+PJMnTy4zvmrVKkBZG2zTpnRmVJ8+fVi9enWZY64G9bXGaTAYGDlyJJcuXeLjjz/m2Weftb02ePBg+vbty7Jly2jTpg2zZ8+uo3cjCEJDMmcaSP3+OOaUAgAkJw0+kzrg2MytkoMMcHgp7PoYsi6Vfq3FACWQHXKrXdc/knyEGVtn0LdgbLWC2e6+Tgx8pB1egS446bUicF0Dxzev59JJpcWGm68f/R6q/1iTyrka9z3XQYsTe1msMp9vKa5KJLKz60+tAtoBAQHVCmYDdOrUqdb9av744w+2bduGTqfjrbfeKvWaJEm8++67rFy5kiVLlvDMM89w00031ep61TF37lxSU1Pp3bu3LZh9mbu7O7NmzeLpp5/m5Zdf5v7778fJyanB5iYIgiAI17N31kZiNCsLjI/e2oJm3rUr0Zm7fx8R06eR4awl09eNFN8gDGl7gT2VHufi6UVg61ACWoUS2KYt/i1b41jJTb/GwYHhU59jxfz/Q5ZlJMr+IicjI0kwfOpzaCqpEnO9KdkPsaLXKmt1c5mDgwOmonLxgiAIglDXTqefZub2maVKjD/Q9gFe7Pki6hyZzNUx5B1IRDaUbj+ibapH3z8Ypw4+FQaKG1pmUj5rvjxGZpJSbUatUXHbuHa07V1x/8202Its+v5LYiNO2Ma0jjpuvm8s3YePtj3EV0Z+OvzxOJzdXDzWbhSM+Qp0lSzEN5Jtp5PZFJkMgL+bI1NvK6cHeAMwJScT/8JM8g8csI25DOhP0HvvUXD4MPGvzFL6W14uCVr0UaXXE/Tee+jDb2uUedclo9FYZj0tPz+fjRs3IkkSDz30UJlj9Hr9VXk/WJ9rnF988QVRUVEEBQUxbdq0Uq85ODgwd+5cRowYwbx585g8eTJBQUF18ZYEQWggppR8Ur8/gaWo/7TKzQHfxzqi9a9g/cFUCId+VALZOfGlX2s1SAlkN+tj9/VXRq9kzp45mKwmDJp8ZKwV9s8uRQLvJq40aVtFBrlQoezUFLYv/d62ffvkZ3Bwqt82NQVHj1Jw5Ij9B1wHLU7steZ4AmdTlOzsXi28uLmVdyPP6PpVq4D2iBEjOHz4MJMmTbL7mJSUFCIjI+nfv3+Nr/vdd98BEB4ejoeHR5nX27dvT/v27YmMjGTRokUNFtA2Go389NNPgFLOqDz33HMPTz/9NElJSaxevZr77ruvQeYmCIIgCNezvTFp/H0iEQAfV0em3taqWsfLskxOaorS8/psFHGH/yX54jksISV6Ilpyyhyn1TkR0LJ1UeZ1WwJah6L3rn6Z84u++WzpnkLfo144mtVYkVEh2T4aNVZ2dUmnu28+1Xtn17bKSh+KJ7gFQRCExibLMr9F/ca8/fMwWpWsaxetC3NumcNt2r7k/naO/GMpULIyowS69t7o+wfj0NytwX+emU0Wzv6bTMzRVArzTOhctLTs4kOrm/xIisnm72+OY8g3A+Ck1zL8yc4Etio/u8ZUWMieP3/l39XLsVqKg/Vtet/CwPGTcfPxrXgi8Yfhv+Mh66KyLalg0GzoO6PK0qaNwWi2Mnd1hG171vD2uDjWakmtRvJ27ybuxZewpKUpA2o1fs89i9ejjyKpVOjDw2mzcwc569eTs3ETlqws1O7u6G8fjH7o0Gs+M/syPz8/Tp8+XWrs999/p6CgAI1GUybBBCAuLg43t6vvQYn6XOO8fO4xY8agVpet/jBkyBD0ej05OTksW7aMF198sWZvQhCEBmeMyyV10QmsecqDOmpvHb6PdULjVU5rAmM+/LsY/vkUchNLv9ZmqBLIbtLD7mtbrBY+/vdjlkQssY2pWuQhpduZoS1Dy66V3CMIlZJlmU3fLcBYoGTld7ztdkK6dK+/61mtpC9eQvJHH4HZbN9B10mLE3tYrTKfby7Ozp4hsrPrVa3uvl999VX69u3L/fffz6232leGYsOGDYwfPx6LxVL1zuUwGo1s3qw8vduzZ88K9+vZsyeRkZGsWbOGBQsW1Oha1fXPP/+QVdQXoKK5+fn50axZMy5evMiaNWtEQFsQBEEQaslilZmzqniB8cWhoeh12kqPKczLJfHsGRKjo0iIPk1idFSp8piAks1SioSk9iG4bTvC+nUjsHUoXk2aolLVrjSowWLg9X9eJ8e/gP8NiqV5ogvNEp1wNKkxaC1cDCjgQkAeVrXE6/+8zpbgLTiqr4/FSEEQBEG4VuUac5mzZw7rzq+zjbX3bM+HTf8P3SYjydGHSx+gkXDp7o9rv2C0vvWbQVORc0dT2LwkUglYSyidTiSIOZzCtp9PYzFZbZWqvYJcGPl0Z9x8ylaVk2WZ6IN72bp4ITmpKbZxd/8ABk16khbdqlgUP/QTrHkBivqM4+wD9y6ClgPq5o3WgyW7zxNTlHlzU3NP7uzasJmsssVC6oIvSf3qK1s5cY2/P8EffYjzFQFOlaMj7qNH4z56dIPOsSH17NmTn376ienTp9OsWTOSk5OZO3cukiQxaNAgvLzK9q1cuXJlmTLkja0+1zjPnTvHqVOnKj23Wq2mW7du7NixgzVr1oiAtiBcIwwxWaQuOWmr/KINcMHnsY6o9VdUczPkwsHvYffnkJdS+rW2I2HAixDUrVrXzjHm8PKOl9kZt9M29kDbB3i+60yWHNmD1VJZGzWFo7OGVt1FQLumIndu5dzhg4BSIXDAuMfq7VrmjAwSXplF7vbttjGHli0xnlPa/V3vLU7s8feJRM4kKy3uejT35BaRnV2vahXQtlqtfPPNN4wbN45+/foxevRo2rZti16vrzCjJjU1tTaXJDIy0lYiqLIe15dfu3DhAllZWbhXs17/unXrWLt2LSdOnCApKQm9Xk/Hjh255557mDRpEjpd2aedjh07Vub6Fc3t4sWLpfYXBEEQBKFmfjt4iciEbAA6BLlx701NS71uMZtIOX+OhLNRJJ45TcLZM2TEx1Z5Xq1FjVXXEkkThEoTgN67KcOe7EZAi7rtAbTh/Aayjcr8LWqICc4jJjivnD1lso3ZbDi/gTta3VGnc7ha2ZO1JjK1BUEQhIYWmRbJzO0zuZijZBdrZDWvOE+j/9kuWHYnYyixr8pZg8vNQbjeHIjatfHahpw7msLar48rQWwo89FsLE4jb9bBm6GPd8DBqeySUWZSIlsXf0PMoeJy12qNhp533kevMfeidahk4dJUCH+/BIeKM7oI7gH3/wjuwTV8Z/UvOaeQT4sybyQJ5ozu0KD3H+aUFOJefIn8vXttYy79+hE07z005QRubwRPPPEEK1asICwsjLCwMKKiosjOzkaSpDKltXNzc3nttdc4cuQIzz33XCPNuHz1ucZZnTXKHTt2iDVKQbhGFESmkbbsFBS1W3No7obPxA6oSv7MLsyGA9/C7i+gIL30CdqPhv4vQmDnal/7YvZFpm2ZRkxWDAAaScMrvV7hgXYPsG9VjF3BbCQYNDEMjbZ2iQE3qrzMDLYuXmjbHvz4VHQurvVyrfyDB4l7YSbmpCTbmPcTT+A77Rlyd+68IVqcVMVaTu9ssUZVv2oV0A4JCbF9gZYtW8ayZcvqZFKVuXjxou1zX9+Kn+Qp+VpsbGy1A9ozZ85kxowZPP/88+j1eqKiovjoo494+umnWbBgAatXry5zQ1jduV26dKnSORgMBgyG4l+Fs7Ozq/UeBEEQBOF6l1No4oMNxeUG3xwVRnZSfFHmdRSJ0VEknz+LpYqySI4uLvj5B6H79wiu2QUkB40ize8WLv+KFdzWkyGPdcDZre4Xordc3IIKFdZS9UjLp0LFlotbbpiA9iOPPMIjjzxS4euSJDF48I3Rk0kQBEFofLIs87/T/+P9A+9jtBpxsTgxJnsQD+QMR5snYaHAtq/aW4e+XzDO3f1ROTTuoq3ZZGHzksjiIHYl1BqJoZPDcNCVXi4ym0wc/OsP9i3/H2aT0TbevHM3Bj36JJ6BVQSkMy/Cf8dBwpHisZ6Pw9B3QHN1Z++8v+40uQblXvLBns3oGFy3DzdWJm/vXuJmvojlcnKIWo3vjBl4P/4YUiWtWa53w4YNY/r06Xz22WccPHjQNv7II48wYsQI2/Z7773H66+/jtVqRZIk7rrrrsaYboXqc42zuufOyMggLy8PF5fye+9WtEbZrl27StsEAXTv3p2//vqr1Njo0aM5dOhQ5W8CeP7553n++edt2zk5ObRv377K40DJyi9Zon316tU8+eSTVR7n6upqy26/7MUXX+SXX36p8tiRI0fyzTfflBrr0aMHiYmJFRxR7P3332fs2LG27dOnTzNo0KAqjwM4cOAAgYGBtu2FCxcyd+7cKo8LDQ1ly5YtpcYefvhhtpfIxqzI5MmTmT17dqmxJk2a2DXfpUuXMnDgQNv2tm3bKv29r6TY2NIPp8+ZM4dvv/22yuMGDBhQJnYRHh5OVFRUlce++eabPPHEE7bthISESqsqlLR582batm1r2/7555956aWXqjwuICCg1Pc3gMfuGc/ajetsP88lrYTKWQtvF+0gy2DM5aH2MvPDSwbVJNp9K5MrO4FqK7C1wut+/fXXjBo1yrb977//cuedd2K0GskyZGGVlXULlaTC3dGdF1QvMMP4LIZ8M6/f/wM6B2c0DirMRiubj/3G1mO/l5iGhM5Zw7urSn/PEN8j7P8e4Zp4nsI8JRvYpVV7Bo4pv+3tlar7PcKal4c1N5cQBwd+aNoMtZcXQfPm4drv1lLfI+TCQqyFhcq/PUlCpdMh5ebA+HE3xPeIQpOVzHwj7n0fov/oB+nXRmlB2FjfI6ZMmcKaNWuqPPahhx5i/vz5pcbatWtHbm5ulcdW9D3CHpGRkej1etv2Rx99xEcffYTVWvV66GW1bvgjl1dWoAq1eUohJ6e4f2V5WdLlvVadQLBOpyM8PJyPP/6Yzp2Ln1S66aabuOeeexg2bBhbt2619Q93LFE2obpzq2pe7777LnPmzLF77oIgCIJwo/li7RFck8/QypBER20WB//zE7vyKr8BU2s0+Ia0tPW8Dmwdii49k4uPPkaO0ZETHaeR51J8o999aHN6j26BSl0/i4aZhky7gtkAVqxkGjLrZR5Xo5rcZ1ZEPCUrCIIg1EaOMYc5e+aw/vx6/ExejEm/jeFZ/dBZSj/s5tBMj75/E3Rh3kiqq+Nnz9l/k219satiMcucO5pG294BtrELx46wedFXZCTE2cZcPb0YOOEJQvv0rfpnbPRm+OMxKMhQtjVOcMcn0OXB6r6VBnf4Yga//6ssjOp1GmYOCW2Q68oWC6lff03qgi+VrCdA4+enlBjvYX+f0+vZJ598wujRo1m7di1ms5kBAwaUCVi3bduWcePGAeDm5kbfvn0bY6oVqs81zpqeu6KAdkVrlAkJCVXOpWnTpmXGUlJSiIuLK2fv0q58v7Is23UcKCXdSyooKLDr2JKL7ZdlZGTYdWx6enqZscTERLuOzc/PL7VtNpvtfq9XtvbMzc2169jyHo5ITU2169jLbTdLsne+JR+OuLxt77HlzcOeY8urGpuUlGTXsVcGeSwWi93zNV/xcH1+fn6N3mvuP3EknbxEYs4VpcMzyu6bkasFnEBSQcd7of9M4j/qSU5OUtmdr1BQUFBqu7KvTQql5yIjc+t9bejQP4izh1LY/X+QmXfF33s5yzXie4R93yPOnTiK7uxJAJz0bvS48x7i3v2gyuOg5t8jXFUqnHv1Imj+fLT+fkAV3yPyiqsN3kjfI2RjQans7Mb4HgHKvy97js3IKPuNIz4+vtS9Q0Wu/B5hNBrtnu+Va3zZ2dnVfq+1DmhPmTKFPn362L3/nj177HoiorEEBATY+tdcycHBgU8++YQuXboQGRnJDz/8YNdTOzU1a9asUk8YZWdnl/sNXhAEQRBuBCZDIcnnYmw9ry9FncYhLZmSucqF5RznGRhMYOvQouB1W3yat0CjLe6xXXjqFBcffYxEbQsiOz2CRaP0inTQqRk0MYyWXeuvt9PF7Isk5FW9CHSZChUejh71Np+rTbt27fD396/1eZKSkjh9+nTVOwqCIAhCOSLSIpi5fSYOyfBS+iT6Z3dHTYmsawl0Yd7o+zfBsblb4020AjFHU4t7ZldFgpgjKbTtHUBuehrbfvyO03uK+2RKKhXdh4/mlvvG4uBURS9wqxV2fghb3y6+uGcIPLAUAjrV8N00HKtV5q1VEbbt528Pxdu1/rPJzWlpxL/4Inm799jGXPr2Jej9eWi8RV/GksLDwwkPD6/w9bvuuuuqy8q+VlW0RhkYGFhlhnZ5GeK+vr4EB1fdasDNrfT3VEmS7DoOlHXckpycnOw61tW1bPleT09Pu44tr397QEBAOXuW5exc+nuqRqOx+72q1aUrgbi6utp1bHm/a/n4+Nh1bHnBcHvn63hFX11HR0e7jy1vHvYc6+PjU2bM39+/3KDbla78N6FWq+2er0ZTOvzi7Oxs17GX/93IskzO5otkb7qIh05PgKsvkqMKlU4DshWMeWDMLdXL2NNJBV3GQr8XwKc1AEFBQXZlXzo5Odk+N1lN/Hj6RzSexe/BUe2Iu6M7EhJWi0xBTnFQuMttTegySIldtO0dwE3hbdh+pOr3Kr5HVP09QpZlzu7dRQdfTwDCH30SycO+a4J93yNkoxFLVpbtQTqAwObNafbDIqQSx4vvEQqD2UpGnvLvv6m/FwNDi/8dN+T3iJK8vLzsOtbT07PMWE2+R4Dy/8je93rlQ7Bubm4EBwdjtVrtekAOQJJrkfqiUqlYunRpqXIoVVm2bBnjx48v81SIvVatWsXo0aMBpQzEyJEjy93viy++sPXNOXHiBB06dKjR9coTHBxMfHw8I0eOZPXq1bbxF154gY8++ghQnnKp6KnGe++9lz/++AMfHx9SUlLK3ac82dnZuLu7k5WVVeabtSAIgiBcT6xWC+lxsbbgdUJ0FKkXzyNXUYbG2d1DCVy3CiWgTVsCWrZBV84vG5cVno7i/IRJnPHqz8Vmt9vGvYJcGD6lEx7+VSzU1tCxlGMsPrmYTRc2Idu1ulzsnVvfqXXJ8WvhnqIm95kVWbp0KRMmTKjx/ef15Fr42guCIFwtZFnm11O/smXrGu5MHUjX/Lald9CocLnJD9dbg9H61s89Q11Y/tEh4qMy7d4/sI2ekPbx/PO/pRhLZGEEhbZn8ONP49u8RdUnKciE5VMgal3xWOgwuOtrcCq7iHY1+u3gJV78XekrHOrvyprp/dDWU8Wey/L27yf+hZmYL68VqVT4Tp+G9xNPXJUlxq+l+4qUlBQiIyPp379/Y0/Fpj7XOD///HOmT59e5TEzZ87kww8/BCpfy7zStfS1F4RrlWyVyVodQ+7ueNuYPrwpbjc7I+1dAPu/BVNxRiwqDXR5CPo9D14ta3XtjMIMnt/2PAeTiksaT+o4iRndZqBWqclMyueP+f9SmGsCoE0PP25/tMNVU53mevP3Fx8SsVMpFd+qRx/unPlanVWhky0WUr/8itQvv7Q9GKH29SF4/nxcqpHIeiORZZk7vtjFiTilQsD3E3owqH3tkzFuVNW5p6hVhnbfvn3x8/Or1jGtWrVi/PjxNb5ms2bNbJ9XFgwu+Zq9tfmrM4f4+HjOnTtX6dwqugm8PDeRbS0IgiAIipz0VBLPRJFwVul7nRRzptQCanlMkoZkB19y9IFMe3AQIe3ao/fxtfum3hAdzZnJz3Cs+TgyPYvLR7bp6c9tj7RD61i3/S6tspWdsTv54eQP/Jv0b7WPl5DQO+gZEjKkTud1I5AkqU7LlwuCIAjXv+z8LH77czHtogKYbZxS6jWViwbXm4Nw6ROI2tWhgjNcPRydipd+ZNmM1RiFxRSNLBciSTrU2taoHEKRJA1WczzxEds5t784S0Knd2PAw5PoMGCQfUHVxONKv+yMy2smEoS/Bre+AFdhULY82YUm5q0rru4y+44O9RrMlq1W0hYuJOWzz22ZUWpfH4I/+BCX3r3q7bo3kg0bNtQqwaY+1OcaZ3XP7enpaXcwWxCE+idbrGT8fob8w8m2MffbfdGbv4XPFoGpRIl6lRa6PQK3PgeezWt97eiMaJ7Z8gxxuUopYK1Ky5xb5tgerM/PNrLq8yO2YHZwqAeDJoSJYHY9iTl0wBbMdnRxYfBjT9VZMNuUlEz8iy+Sv3+/bczllluUqjDlZCwLii2nkm3B7I7BboS3q16MVKi5WgW0d+7cWfVOV+jTp0+1SpRfqX379mi1WkwmE+fPn69wv8uvNW/evNzyBrVR0YJoyZ7b58+fJyQkpNK5ldxfEARBEG4Uhvx8kmLOkBCtBK8To0+Tm1G2j1BJkqTCu2kzAlqF4t+qDf/Zn8e/2Y7IkooP7utC55uq9/CaISaGo0+9wdFWT2IsKuGtUkn0va81nQY2qdN+y0aLkTUxa1h8cjExWTGlXvNx8uHh9g8T6BLIrJ2zAMrN2JZQ5vP2rW/jqK7/UpdXg+XLl9OjjnpEDhw4kOXLl9fJuQRBEITrmzXfRMzWoxTuTWGoqXup19TeOvT9m+DS3Q9JW7cPvtWXSxHpJMYopRItxrOY8teBbOByDXIZCaspGvK3otL4YzVfLHV850HDuPWh8Tjp7czAPPorrHoWzEUPJjp5wj3fQ+tBdfaeGsLnm8+Qmqv0bxzeMYC+retvUdecnk78Sy+Tt2uXbcz55j4Ez58vFpOvc/W5xnnlGmVV5xZrlIJw9ZBNFtJ+PkVhZNE6iQSeoUdw2fMfMJdotKZ2gO4T4NZnwb1uEvq2XdrGyzteJt+sBMy9dd58Gv4pXXy7AGAsNLNmwVGyU5V5eAW5MPzJTqi118YDa9caQ34eG7/9wrY9cNzjuHrVTfuR3J27iH/5ZSyX+3qr1fhOn4735MevyqowVwtZlvls8xnb9vTwNnW6hihUrtY9tKtr7969LFy4kEWLFtXoeAcHBwYNGsS6des4ePBghfsdOHAAoMJyPRUZM2YMkydPrvS4ixeVX/CuDFjfcsstttT4gwcPMnDgwDLHJicn246v7twEQRAE4VpjMZtJvXiexLNRtgB2WtylUv2dyqP39iWgdRsCW7cloHUo/i1b46BT+rQs3XuBgzknQILOTdy5u1v1+ugUno1h1/MLiGoxCVml3Ao5u2kZ9kQnAlt71Oh9lifHmMNvUb+xNGIpKQWlsyJC3EKY1HESo1qOwkGtZHY5a5x5/Z/XyTZmo0KFFavto95Bz9u3vs3ApgPrbH5Xu9GjR9fZLwXBwcE17rckCIIg3BjM6YXk7Iole38cOrMKHcUtS/IDrDS9vSO69l7XTPZRXpaBf36P5syBJKAomJ23ssQe8hUfDaWC2b4hLRn82NMEhbaz74JmA6ybBQe/Lx4L6gb3/wgezSo+7ioUnZzLD/+cB8BRo+LVEe3r7Vr5Bw8S9/wLmJOLMvAkCZ9npuLz5JOl+lXeqNavX89XX31VZp2uZcvql9LNy8ureqcGVp9rnC1atKBdu3acOnWKgwcPMnHixDL7WCwWDh8+XO1zC4JQf6yFZlKXnMR4Tsn+RLLg7TAfpwvFDz2h0cFNk6DvdHALqpPryrLMohOL+PTQp7aH7Nt7teez8M8IcFF69VosVtZ/e5LkCzkAuHo6cse0Ljg6a+tkDkJZO5b+QG56GgDNO3ejw8DBtT6nbDaT8ulnpH37rW1M4+9P8Ecf4nzTTbU+//VuW1QKR2OVh0XbB7pxe5goNd6QGjygffbsWZYsWVLjgDbA448/zrp169i8eTNZWVllnk48deoUkZGRSJLEo48+Wq1zr1y5kiZNmlR4I3fkyBFbg/Ir93F0dGTcuHF88cUX/PHHH8ycObPM8X/++SegNJQfNWpUteYmCIIgCFczWZbJTkki4cxpJYB9Jorkc2cxm4yVHufg5ExAqzYEtmlLQKtQAlqH4urpVe6+WQUmPtoYZdt+c1QYqmosLOedOcf6N/4iIbD4Z3hgC1eGPtkFF/e6yXxOzEtkWeQyfov6jTxT6YWzbn7dmNRhEgOaDkAllX7i9bZmt7EleAsbzm9gy8UtZBoy8XD0ILxZOENChtwwmdmX+fv7c8cdd3DnnXcyZMgQdDpdY09JEARBuA4ZY3PI2RFLwfFUkEGN8vPZipWT3ufodEc/Qtu1auRZ2s9qlTm5I469K85iLFRKK8uyGXPBervP0f+RR7lpxJ2o7A2oZsXB/8ZDXImAXPcJMPx90F5bP79lWWbu6gjMVmUxf8qAVjT1qvv+6LLVStp335Py6adQVAJb7eND8AeiX2VJ48aNIy0tjX/++adU2ezKMo4rczVmUNXnGufjjz/OzJkzWbFiBZ999hmqKzLuNm7cSE5ODjqdjrFjx9b6vQiCUDuWXCOpi05gilfWESQK8NbMRScdV3bQOEHPx+CW6aCvuyCawWLgrd1vsTpmtW1saMhQ/q/v/+GkURILZFlm+7LTXDypBFcdnTWMmtYFV89r6+f8teTiiaMc27wOAK3OiSFPTKv1zzFTQgJxL8yk4NAh25jrgAEEvvcuGk/PWp37RiDLMp9uKs7OnjGo9VV5b3E9szugnZmZiYeHR6mxHTt2VPuCkZGR1T7mSvfccw8DBgxg+/btzJkzh48++sj2mizLvPrqqwBMmDCBm654qmTVqlU8+uij+Pv7s3r16nLLgi9ZsoTnnnuOVq1K/9JqMBh49tlnAWjdunW5N5Jvvvkmv/76K3v37uWvv/5i9OjRtteys7N57733AJg3bx5OTk41ev+CIAiCcDUoyM0pKhkeRUL0aRKjoyjIya70GJVajW/zFgS0bktgayV47RUYbHc5o882nyE9TwmQ39EliB4h5Qe+y5NyJJq1nxwk16O4nF7nfn70fTAMVR30RDyTcYbFJxezNmYtZtlsG5eQCG8WzsQOE+nq17XScziqHbmj1R223lQ3stTUVBYvXszixYtxcnJi6NCh3HnnnYwaNQovL/u/7oIgCIJwJdkqU3g6nZwdcRjPZZV6rVAyssFjN6peHjzW/0m06msn6yjlYg7blp2yZU4B6Fy0NA/L4OiGwkqOLM3Fw9P+YHbMdvj9UchPVbbVjjDyA+g+vjpTv2psjkxmR5QSOA1y1/HUgLp/mMGckUH8yy+Tt6O4jZ9z794EfzAfja9vnV/vWtayZUtSU1PLrM8B9OvXr1qZ2jExMewqUdb9alGfa5zPK4dFZQABAABJREFUPPMMCxcuJCoqii+++ILp06fbXjOZTLz55psAvPLKK6KakSA0MnNGIakLD2POUNYSVGTh4zAbB1U0aF2g12S4+RlwrdufEyn5KczYOoPjqcdtY1O7TmVK5ymlAnX7V58jcreS5KfSSAx/shPeQa5lzifUDVNhIRu++cy23X/sRNx8a9enOWfrVhJemYUlq+jeV6PB7/nn8Zo4QZQYt9POM6kcuZQJQLsAPUPCAhp3QjcguwLaU6ZM4bvvvmPixIl8/31x+aiBAwc22hMIv//+O+Hh4Xz88ccUFBTwyCOPYDQaWbBgAcuXLyc8PJyvvvqqzHELFy4kNTWV1NRU/vzzT55//vlSr+v1enJycujZsycvvPACvXr1wsvLi8jISD766CMOHz5M27ZtWb16dbmZQr6+vqxatYoRI0bw0EMPMWfOHAYMGEBsbCxz5szhwoULzJo1iwkTJtTb340gCIIg1DWz0Ujy+ZiizGslAzszMaHK4zz8AwloHVoUvG6LX0hLNA4ONZpDTEouS3afB0CnVfHKcDtLYAJRm0+x9dcYzDrlFwC11Uj4I6GE9q9+ucKSZFnmYNJBFp1YxK640gtkDioHRrcezYSwCYS4h9TqOjeiPXv2sHz5clauXMnp06dZvnw5K1asQK1W07dvX8aMGcOYMWNo3rx5Y09VEARBuEbIJiv5h5PJ2RmLOaWg1GuZ6hz+8tzGDv/DvDzgVW5rdlsjzbL6jIVm9v91jmNbL5Xq6tLulkBuubsVG7/5AEmSkKto+QJKBmv0/j2E9avi/csy/PMpbJ4DslUZ82imlBgP6laLd9N4Ck0W5q6OsG2/NjIMJ4e6Lfudf+iQUmI8MVEZkCR8nnoKn6lPixLj5Vi/fj2bN28mPDy8zGtTpkypVlbxsmXLrsqANtTfGqejoyNr1qwhPDyc559/nuTkZEaNGkVGRgbvv/8+Bw4c4OGHH+aNN95oqLcqCEI5TKcjSV12AYvRBQA1Kfg4vIFWlwW9Z0Kfp8Glbvoml3Qy9STTt04nOV9pe+GkceKdW99hcPPSZa1P7ozj4JrzyoYEgyeGERwqsnnr065ffyQrWWkb06R9R7rcPrzG55KNRpI/+pj0xYttY9qgIII/+hCnrl1rOdMbhyzLfFqid/a08DbVqhgp1A1JtuM3Gjc3N3Jzc3F1dSU7uzjz6spSNXZfVJKwFJVUqg2DwcAnn3zCL7/8QnR0NGq1mvbt2zNhwgSmTJlS7vxWrVrFpEmT8Pf3Z82aNWWeXszLy2P58uWsW7eOf//9l0uXLmEwGPD09KRz587cfffdTJo0qcrs6vj4eN577z3WrFlDXFwcbm5u9OrVi2nTpjF06NAavd/s7Gxbj243N7canUMQBEEQqiJbraQnxBVlXisZ2CkXzmG1mCs9Tqd3UwLXrUKLyoe3wUlfdz+vHlt8gM2nlF+0pg9qw/O3h1Z5jNUqs2fZUY78k24bczGlMfLFW/BtV/MsBIvVwqaLm/jhxA+cTDtZ6jU3BzceaPsAY9uPxcfJp8bXqE/X2j3F6dOnWbFiBStWrGD//v3Ismx7qLJz586MGTOGO++8k67il7EqXWtfe0EQhLpgyTORty+B3N3xWHNNpV675JDIn16b2eK+n3b+7Znffz5BrnXTj7K+ybJMzOEUdv7vDHmZBtu4Z4AzAx9uS1AbZbH5v3NeITbihN3nbRLWiQdmv1vxDoXZsOIpOFVcmpTWg+Hub8H52q2ismBrNPPXnwagT0svfpncp86SOGSrlfRFi0j++JPiEuNeXgTNfx/Xvn3r5BqNobHuK1QqFUuXLq12QHvcuHFYrdZ6nFnN1cca52VZWVm8//77/Pnnn5w/fx5nZ2e6dOnCE088wYMPPlij+Yp7SkGoAymnMf79A6kR/bCi/D/SSLH4uL6P5pb7ofeUevu5uu7cOl7/53UMFuX+IdAlkM/CP6OdV+nEgfPHUln71THbA3O33teGLoOa1sucBEXc6Uh+nf0SyDIarQPj53+OZ2DN1q+MsbHEPf8ChceO2cb0tw8m8D//QX1Fiwuhcv9Ep/Lwd/sAaOPnyvpn+4uAdh2pzj2FXQHtt956i48++ohnn32WuXPn2sZVKhWvvfYagwfb34x+w4YNvPfee3US0L7RiJtFQRAEoT7kZWYUBa5PkxAdRdLZMxjy8yo9RqN1wK9Fq1LZ1+5+/vVWuWVHVArjF+0HIMBNx5aZA3B2qLzQTEGOkfVfHSYupvi9BOSdZvh7d+McXLN+UwXmAlZGr2TJySXE5saWei3QJZDxYeO5u83dOGvrvtdiXbqW7ykSExNZuXIly5cvZ9u2bRiNRtu/u2bNmtmC2/3796/xw5fXs2v5ay8IglBd5rQCcnbFkX8wCdlUOogV5XqRnz3WsN/1BLIkM7HDRKZ3n45WdW2UGM9OLWDHr1FcOJFmG9NoVfQYGULXwc1Qa4p/Bv714TtEH9hjd4Z26543M/qFV8vfITkS/vsIpEUXjw14BQa8BKprN8M4IauA8A+2U2CyoJJg7Yx+tAuom5+T5owMEl6ZRe727bYx5x49CPrwQ7T+tSsf2tjEfcWNS3ztBaEWkiJgx3wKj0WTZnodGWX9QKs+j8+AVNT9HwVd/QQbrbKVBUcWsPDYQttYN79ufDzwY7ydSmeBJ57LYuVHhzEX3UN1HdyUvve2qZd5CQqz0ciPL08nI15Zb+r/yKP0vOPuGp0re8MGEl57HWuO0opG0mrxe/llPB8eK/o+V5MsyzzwzV72n1eSZT57qBuju1wbD8BeC6pzT2FXyfG33nqLt956q9zX2rdvz4ABA+yeXGxsbNU7CYIgCIJQhtloJGrvLqIP7KUgNxsnVzda9+xDaJ9b7S7jbSwsIDnmLAlno0g8c5qEs1HkpKZUfpAk4R3ctCjzWsnA9mkWglpj121ErZktVv6vRPnHl4e3rTKYnXQum7+/PkpelpKFJckW2mZsp9/n03Dwr34wO6Mwg19P/covp34hw5BR6rV2Xu2Y2GEiQ0KGXDOL4NeygIAApkyZwpQpU8jJyWHt2rW26joXLlzgs88+47PPPsPLy4tRo0YxevRohg0bVmV1HUEQBOH6YbyUQ86OWApOpELJGK4ESc1yeV/6hginswC4O7rzzq3v0L9J/8aZbDVZzFaObLrIwTXnbQvMAM06eDPgoVDcfMr+vGt5Uy/O7N9t1/llWaZ1r5vLf/H47/DXNDDlK9s6dyUrO7RmVeiuJu/9fYoCk5J4Ma5P8zoLZhccOULsc89jTihu1eP95BR8n3kGqYHupQVFQUEBKSkpNGvWrLGnIgjCjSrhGOyYD5F/UWDpQ5rpLUBZy3HwysbniVGoPOqvlHe+KZ9Xd73K5oubbWNjWo/hjT5v4KAuvaaUmZTPmgXHbPcabXr4ccvdrettboJizx+/2ILZAa1DuWnkndU+h9VgIPn9+WQsW2Yb0zZrRvBHH+HUsUOdzfVGsjcm3RbMbuXrwshOgY08oxuXXXfP77//PrNmzUKSJCIiIggNVUp8TpgwgVatWlXrgq1atWL8+PHVn6kgCIIg3MCiD+5j3ZcfY8jLtfVAlCSJM/t3s2XxQoZPfY5WN/UudYzVYiEt9iIJ0adJLCodnnrpIrJceZk9F08vW9Z1YOtQ/Fu2xtHZpT7fXqWW7bvImeRcALo29eDOLhWXWpJlmZM749n53yisFmUF28GQRZf01XRb+A7aagazL2VfYknEElZGr6TQUljqtZsDb2Zix4ncHHizeLq1kej1eh544AEeeOABTCYTW7ZsYfny5axatYqEhASWLFnCjz/+iE6n4/bbb+fOO+/kjjvuwMfn6iwFLwiCINScbJUpPJVOzo5YjOezS70maVVounvyufZHVqatsY139e3K/AHzCXAJaOjp1kj8mQy2/RxFRkJx9RkXdwf6PRBKy26+5d6PWC0WYg4dsPMKEo4uLoT2vqIEtsUEG96AfSV6+Pp3ggd+Aq8WNXgnV5eD59NZeSQeAE9nLc/Z0damKrIsk/7DYpI/+gjMStsetacnQe+/j2u/W2t9fqH6/vzzT8aPHy8qRgqC0PDiD8P2+XBauQfJMw8iwzwdUCqb6ELd8B53C5K2/iqdxOfGM23LNKIyogBQSSpeuOkFxoWNK3P/kJ9tZNXnRygsatMS3NaDQRPCkER55XqVFBPNgb/+AECl1jD0yRmoqln9xnjhArHPPYchItI25jZiOAFz56J2da3T+d5IPt0cZft8Wngb1OL/QqOxK6C9ceNGtFotzz33HIGBxU8f/PDDD9W+YJ8+fejTp0+1jxMEQRCEG1X0wX2s/OA/tgyjy+UiL3805OWxYv5/GPLEMzg6u9j6XifGnMFsMFR0WgC0OicCWrYmoE1bAluFEtA6FL331RPsy8w38vGm4hvH2XeEVdijxmy0sP3n05zam2gbc8+Mplvm34Qu/qpawewTqSf44cQPbLq4CWuJBwDUkpqhIUOZ2GEi7b3b1+AdCfVFq9UydOhQhg4dytdff82+fftYvnw5K1eu5PTp0/z111+sWrUKtVqN0Whs7OkKgiAIdUQ2Wcg7lEzuzjjMqQWlXlO5anG9JYjzrdOZuf9ZErKLs2QndZzEtG7TronqKgW5Rnb/eZZTu4vnL0nQ+bam9LqjBQ5O5S/tWMxm1n7+AWf2/WPHVSSQYPjU50pX/slJhP9NgEt7i8e6jIVRH4H22q9+YrHKzP7rpG37hSFt8XC2r/JRhefMyiJ+1qvkbtliG3O66SaCP/wAbcC18fCEIAiCUAdiD8L29+HMettQjvlOssyTbdvO3fzwvLcNkrr+2mUdSjrEc9ueI71QyTB11boyf8B8bg0u+4CVsdDMmgVHyU5VHuj3DnZh+JROqLWinVd9sphNrP/qE2Srsv7U554H8GnavFrnyFqzhsQ3Z2PNUx58lBwc8H/tNTzuv08kYdTCvpg09sYo/3da+rhwhyg13qjsCmifOnWKp59+mnfffbfUeMuWLfnkk08YPXq03RcUJX4EQRAEwX5mo5F1X35cFMyuqO+hDDJs+ObzSs8lqVT4NAspyr4OJbBVKF5Nmlb7ic+G9MmmM2TmK08F39UtmG7Nyi+/lZVSwLqFx0m9lGsba3ppC+0K99Pip8V2LR7KsszOuJ0sPrmYA4mlM5mcNE7c0+YexoWNI8hV3LxeC3r37k3v3r157733OH36NCtWrGD58uUcOGBvlpogCIJwNbPkmcjbm0Du7niseaZSr2l8ndD3b4JTF19+OrOUT7Z9gllWsmQ9HD14+9a3r4kS47JVJnJPArv/jMaQZ7aN+zXXM/Dhdvg201d4rMVsZu1n84kqCmarNRp6jr6Xw+tXl6n4I8syji4uZSv+nP8HfpsIecnKttoBhs+DmyYpEfXrwH8PXOJkvJLR3z7QjYd61W6tquDYMeKefQ5TfLxtzHvyZHxnTBclxmsgPDy8zs6VlJRUZ+cSBEGo1MV9sH0enC0u7S3LkK1+ihzzSNuY6y1BuI9qWa+Zz3+e+ZP/2/t/mK3KfUQzfTM+H/Q5Ld1bltnXYrGy/tuTJF9Qei67ev4/e+cdHkXVxeF3Wza994QOAULvSO8foqIgoIiiKKIooICCFQUVBAtYUGxItaECUkRAegepKfRASO91s9k23x8TNgkkkEoSct/n4Qlz7sydsym7d+4553e03D+pDVr76p/8V9M5sv53EiOvAOBVrwGdHxxZ4mstej3xH8wlbc0aq82mQQMCFi3EtmnTina11vH5jgvW/0/q11hUZ1cxJVpNJyYm0rJly5vsV65cISsrq4grikdI/AgEAoFAUHLOH9pHbnbpPmuv4+zlYw1e+zYOwqdBIzRa2wr2sPK4mJDJykNXAbDTqJgxuOiF+JUzSWz/MYxcXZ6cozmXZudWE6COod6KlWj8bx2ANpqNbI7YzLLQZVxMu1hozN3WnTHNx/BI00dw0bpUwKsSlJenn36a5557ji5dutz+5DyaNm3KzJkzmTlzJnFxcbe/QCAQCATVFlNSDpn7otH9F49kLNxGxaaBC069A7ENciPdkM7MvS+xO2q3dbyddzsW9FpQIyTGk2Oy2P3TOWIvplttNrYquj7UiBa9AopVrAE5mL3p8wVcOCz3zVap1Qx95U0atutEl2GjOH94PxePHCQnKxM7Rycad76HoC7d8yuzJQkOfSXLjEt5ezfOgTBqBQR2qLTXfKdJ1xn56J+z1uPZQ1uUeZNSkiRSV6wg/uNPwCgnWKhcXfFfMB/HXtU/eaK6smvXLmvSRXkomMAhEAgElcaV/XIgO2J3IbPkXJc0x7lkX3a12pwH1MWpf91Ke18yWUx8cuwTVoWvstq6+nXl494fF7m3IUkSu1afIzI0GQCtvZr7J7fB0a3m7CHVVJIir3Doj18BuRDlf8+/hKqESXC5ly4R/fJUci/kB11dHhyK76xZKB2qrnXg3cKxKynsvyj/TdT3sGeoqM6uckr0l2Fra0t0dHRl+yIQCAQCgeAGLh49VKpNHHf/QHo9/jR+jYOwd3GtXOcqmfc2hmO2yK/7+d6N8HMpLGtpsUgc3RjBsc1XrDZ7XTwtQ77D1QXqLV+OTWDx/bazDFn8fv53VoavJEGXUGisvnN9xrYYy9BGQ9GqtBX3ogTlZtmyZQwcOLBUAe2C+AqpT4FAIKiR5EZmkLU7ipyw5MKiNQqwa+WJU89AbOrIFcsnE07y6p5XicvOT2Ia32o8L7Z9EbWyelfJGg1mjm26wsltkVgs+S+0SUdvuo9sgoPLrdclZpORjYsWcPHoQQBUGg0PvvIWDdrKgWi1jQ3BPfsS3LNv0RPkZsFfkyB0bb6tQW8YsRQcqk9bmopg4fbzpOYpAQ1t40/nBu5lmseckUHsm2+SuW271WbXrh0Bn36CpkDbPkHZaNq0KT6laB1UHPHx8Zw7d64CPBIIBIICSBJE7JGlxa/uKzzmWhep+yuknO9EzpnkfPPQRjh2q7zAWIYhgxm7Z7A/Jr/lyJjmY3il4yvFroOObIywtjZRqhXc+3wrPPxFz+XKxmI288+Sz7CY5QKNTkMfxqdh4xJdm7Z2HXFz5iDlyC13FHZ2+L79Nq7Dh1Wav7WNz/7NTxR4sW9j1JXYGkBQMkr0JBccHMzixYt58MEHad26daExkd0oEAgEAkHlkZOVUaqKBHtXNxp16FyJHt0Zdp5NYPf5RAD8XWyZ0KuwHJY+y8i2paFEhqVYbV6JJ2h+dhW2ni7UW7Ycmzp1ipw7QZfAqvBVrDm3hixj4er3Nl5tGNdyHH3r9EWpEAvV6sqUKVM4duwY48ePp3lz0ctcIBAI7lYki4Q+PJnMPdEYrmYUGlPYKHHo5Itj9wDU7nL1kEWysDx0OZ8d/wxzXmWxm9aNuT3nFtknsrpx5UwSe345T2ay3mpz9rKj9+gg6gZ73PZ6OZg9n4tH5X7XKo2Gh155i/ptC1RVG/UQtg7ObgRdKti7QbP7IfghSIuEXx+HpAJBvx7ToN9bUI1b1JSFc3GFlYBeH9KsTPPknAkheupUjFFRVpv7M0/j/fLLKDRCorUieOutt3jsscfKPc+qVat48sknK8AjgUAgQA5kX9ohB7KvHSo85tYAer2CpdkIUn65iP5cXjBbCe4jm2LfzrvS3LqSfoXJOyZzJeMKAGqFmje7vsmIoBHFXhO6N5pjm+TzUcCAp4IJCCq63ZugYvlv83riLslBU3f/QO55ePRtr7HodMTNeY/0deusNm2TxgQsXIi2ccmC4YLbczwylb0XkgCo427HQ+2KL5gR3DlKFNAeM2YMkydPpl27dri6uuLiki9L8fLLL/Pmm2+W+IbZeU3pBQKBQCAQ3B6tfcklghQKBXaOxfdSrCkYzRbe2xRmPX5tSHPsbPI3UROuZrDlmxAyU/I2eyULjS6vp+617Wi8vKi77Eds6tW7ad5LaZdYFrqMjZc3WvtHXadvnb6MazmOdt7tKudFCSoUX19fFi9ezKJFi7jnnnuYMGECI0eOxM7O7vYXCwQCgaDaIxnNZP+XQNa+aExJOYXGlE4aHLsF4NjFF2WBno6p+lTe3Pcme6P3Wm3tvduzoNcCfBzKX91ZmWSl6tn72wUun0i02pRqBe3/V48Og+uh1tw+mGw2GdmwcD6Xjsmb6mqNDQ+++hb127TPP+nsZlg3EfRpoFCCZJG/hm+AjVPlY1Pe+krrDMOWQLP7br5ZDUeSJGZvCLUqAb3Y92YloJLMkbpqNfELFlglxpUuLvh/OA+nvsVUvwuqlIqQLhcIBAIkCS5sk6XFo48VHvNoDL1ehZYjsBggaVlofkKeWonHmGbYNb99glpZORB9gFf2vEKmQe6B7aZ149M+n9LRt2Ox11w5ncTun/IT2XqMaEKTjtV73XS3kBobzYFf8yThFQoGPf9SfvuXYtCfO0/01KkYLl+22lxHjsDnjTdQiv2QCuXzAtXZk/o2RiOqs6sFJQpoT5w4kW3btvHXX3+RmppKamqqdSwxMZHExMRbXH0zoqpbIBAIBILbk52WSlLk1RKfL0kSjTvfU4ke3RlWHrzK5UQ5Aa5jPTceaJ0v1Ri2L4Y9v5zHbJJ7ZtpYcmhx+hvc0i6g8vSk7vJlaBs0sJ4vSRL/xf/HstBlhXpoAmiUGoY2GsrYFmNp6FK4AlxQvXn99dcZNGgQy5YtY+nSpTz11FO89NJLjBkzhmeffZY2bdpUtYsCgUAgKAPmLAPZh2LJOhiDJbtw8pna2x6nXgHYt/VGoS68oXQi4QSv7n6VeF08AAoUjG81nhfavlCtJcYtZgtndkVz+K/LGHPNVntAUzd6jw7CzbdkiY0mo5ENC+dx+b8jgBzMfmjGLOq1bpt/0tnN8EuBKlfJUvirUZc/5h0Mj6wCj0ZleVnVni0hcRy4JFfL1XG3Y3zP0q0DzZmZxL71Npn//GO12bVpQ8DCT9H4i96KFUlERAReXl4VMtewYcOIiIiokLkEAkEtRJLg3N9yIDv2ZOExz6bQewa0GAZKFeZMA0lLQzDGyvsaCq0KzydboG14c+/qinFNYnX4aj469hGWvM/1xq6N+aLfFwQ6BRZ7XVxEOv98F8L1XJ+2A+rQpn/RSneCikWyWPhnyeeYjAYA2g9+gICmxavPSZJE2po1xH8wFyk3FwClvT2+s2fj8sD9d8Tn2sSpa2nsOifHPANc7RjWrvi/I8GdpURPdkqlknXr1rFlyxZ27NhBcnIyFouF5cuX07NnTxo2LPni//Lly+zbt+/2JwoEAoFAUItJirzC2gVzyEhMuP3JACjQOjgQ1KV7pfpV2aRkG1i0/bz1eNYDwSgUCkxGM3t+OU/4/ljrmKspnuCjn2Obm4bKw4N6y35Em7cmMVvM7Li2g2UhyziddLrQPZw0TjzS7BEea/YYXvYVs0EmuHP07t0bHx8fPD09eeWVV3jllVfYu3cv3333HT/++CNff/017du3Z8KECYwePRpHR9H3SyAQCKo7xqQcsvZGkf1fAuQlrV1H28gFx16B2Aa53ZQcb5EsLA1ZypcnvrRKjLvbujOvxzy6BXS7Y/6XhfiIDHb9dJaka/ntT+ycNHQf0YSgzj4lLgQwGY1s+HQul48fBUBto+WhGW9Tr1Xb/JOMerkyGyjcgLwIVBp4aiPYV14FWVWSYzDz/qZw6/Hb9wVjW4IKeOv1oaFET52GMTLSanN/6im8p01FcZuqKkHpqVeE6lJZiY+PZ+/evYwdO7bC5hQIBLUAi0Vu07F7AcSfKTzm3QJ6vwrNHwSlnGxnStGT+MMZzHntQ5QOGjyfbolNQOU8lxrNRj44/AF/XPjDautTpw8f9vwQB03xiXFp8To2LT6NySivu5p09KbbcCFXfac4te1vos+GAuDi7UOPR4v/bDJnZRE36x0yNm+22rTNmxPw6SeFCjoEFcfnN/TOtlGL6uzqQqlSlQcPHszgwYOtx8uXL+e5554rVS+b1atXi4C2QCAQCAS3IOLkf2xc9CGGHFli09bJCX1WVt7+Y1GbkApQwL0vTr2tPFF1Z+G282To5Yqsh9sH0jrQlYykHLZ8G0JiZKb1vHq5oTQ49A1KyYzKzY26Py5F27gxepOevy79xfLQ5URmRhaa29fBlyeaP8HDQQ/f8sFOUL3ZuXPnTbaePXvSs2dPvvjiC1atWsX333/Pc889x7Rp03j00UcZP348Xbp0qQJvBQKBQHArcq9mkLknCn1YcuEljhLsWnnh1DMAm8Ci26mk6FN4Y98b7I/eb7V19OnI/F7z8bavvN6U5SVXZ+TQusuE7I0u9Jpb9PSn60ONsHUoed9lk8HAX5/OJeKELHmqttEybOYs6ra8QakkbJ0sM14SzEa4sB3aPFJiP2oS3+y5RHSavMbu2cSTgcElk1WVJInUn38mYd6HSNclxp2d8Z83F6f+/SvNX0HFceDAAcaNGycC2gKBoGRYzBC2HvZ8BAlhhcd8W0HvmdD0PmsgG8AYn03iDyFYMuSqW5WrFs9nWqLxsq8UF1P0KUzdOZXjCcettvGtxjO53WSUiuIDcLoMAxu+OIk+S/48C2jqSv8ng1EoharunSAjMYE9Py2zHg96bgoaW9siz9WHhRE1dSrGq/n7W26PjcZ75kyUWm1lu1orCYlO59+zcnGRv4stIzqI6uzqRIkC2rt27WLFihUoFArmzp2Lj0/5+iiInjUCgUAgEBTNyX82sePHb5DyZKJ8GjbmoRmziLt0gS1fLSQ3O8va/+36V62DA/e+OJVGHWp2wO5cXCarD8sS6/Y2KmYMbsrV0GS2LQ0lN092VK1R0jJjB+6H1wCgcnWl7rIf0df1ZtmpJfx89mdS9CmF5g1yC+KpFk8xuMFgNMqSbxILah4uLi68+OKLvPjiixw+fJixY8eydOlSli5dSsuWLXn22Wd5/PHHcXV1rWpXBQKBoNYiWST0Yclk7onCUCBZDUBho8Khsy+O3f1RuxW9sQfwX/x/zNgzgwSdvNmkQMGzrZ9lYpuJ1VZiXJIkLhyLZ9+ai+TkbXQDeAQ40mdMU3xLKUNqMhj465MPiDj5HwBqrZbhM9+hTovWN598dmN+z+zboVDC2Q13ZUA7KlXH17suAaBWKngnTwnodpizsoh9+20y/95itdm2bk3Ap59iExhQaf4KSo7ZbCY5ORm9Xl/sOUlJSXfQI4FAUGOxmCHkTzmQnXSu8Jh/OzmQHTQYbvj8yI3MIHlZKBZd3t6Flx2e41uhdqmcoOO5lHNM2TGFmOwYAGyUNszpPof7Gt53y+sMehMbvzxFRpL8fukR4MC9z7VCpREVqHcCSZLY+u0XGPVycl3r/oNvTkTMOy/1p59I+HB+fiKdoyN+77+P8+D/3VGfaxufFajOniiqs6sdJXrS+/HHH1m5ciV16tRh9uzZVrvFUoKHoRsYM2YMY8aMKfV1AoFAIBDczVgsZnav+IHjf/9ltTXudA9DJk1HY2tL445deH7JCs4f3s/FIwfJycrEztGJxp3vIahL9xpfmS1JEu9tDMOSl/P2Yp9GRO6N5cjGCGv1kounLW0if0V9ZCsAShcXtF/OY2Han6w9tpYcU06hObv4dWFci3F08+9WYtlOQc0nIiKC77//nmXLlhEXFwfIv19nzpxhypQpzJgxg4cffphJkyaJqm2BQCC4g1gMZnT/xZO5L9oqw3kdpZMNjt39cezih9Ku+G2K4iTGP+z5Iff431Op/peHtHgdu38+R9TZVKtNrVXR+f4GtOkXiFJVuo0yk8HA+k8+4ErBYPZr71InuNXNJ2clQHxoyYLZIJ+Xk3r782ogczeHk5snaf9Ut/o09i66+r8g+vBwol5+uXBl1Ngn8HnlFSExXg3YsmULH330EQcOHMBgMNz+AoFAICgOswnOrIG9H0PyxcJjAR2hz2vQeMBNgWwA/YVUkleGIRnkzxhNoCOe41qiKoXqSmnYEbmD1/a+Zt0D8bLz4rO+n9HKq4h1QAHMZgv/fBdqVb9zdNNy/6Q2aO1F4v+dInTXdq6ePgGAo4cnvR4fd9M55owMYt98i8xt26w225YtCVj4KTZ1RI/zyiQ0Jp1tYfEA+DrbMqqjqM6ubpQooH3o0CH69evHli1bUKvzL5kzZw7Dhw+nZcuWleagQCAQCAR3O4YcHZs+/8ja+xCg09CH6Tn6SRQF5KvUNjYE9+xLcM++VeFmpfJveAL7LspVEw2c7agTms2R0PxK6/ot3Wh69CuMR+S2JZKTA2sntebnsJewFNigVSqU/K/e/3iq5VMEewTf2RchuCM8/fTTPPfcc4WC0UajkT///JPvv/+enTt3IkmSVRHIxcWFMWPG8Oyzz6LRaFi6dCmrVq3ip59+Yvjw4SxbtgwHByFBLxAIBJWFOctA1oEYsg/FWquWrqP2scepVyD2bbxQ3Kb6ITknmTf3vcn+mHyJ8U6+nZjfcz5e9l6V4nt5MRst/PfPVY5vuYq5QG/wBm086flIEE7uxVehF4fRkMv6j963boZqtLYMf+1dAoML7MvoM+DsJjjzG1zeVfJgNsgV2nZupfarunPgUhKbz8iJbp6ONkwZ0OSW50uSRNqvvxE/dy5SXqBU6eSE39wPcB44sNL9FdyeDz74gFmzZpVKBVIkuQoEgpswG+HUL3IgO/VK4bG690DvGdCwb5GBbADdmURSfjkHZvm9SNvIBY+xwSi1Fa8YI0kS3535ji9OfGG1tfBowWd9P8PH4daKupIksWv1OSJDk2U/7dXcP7kNjrdQxBFULFkpyexa8b31eOCzL6K1L7wXkXP6NNFTp2GMjrba3J8ci/f06SKR7g7wxb/5ySwT+zRCq1ZVoTeCoijRO2tsbCzTpk0rFMwGePfdd2ncuHGpAtrbt29n7ty57Nixo3SeCgQCgUBwF5KRlMi6+bNJjLwCgFKlYsD4F2nVb1DVOnYHMZgsfLA5HABvk4JH0zRci5SD2QoFdB5SF6+1c9EdPgiA3k7F7OF6LlkOWuewU9sxrPEwngh+gkAnkUF5N7Ns2TIGDBhAly5dCA8P5/vvv2flypUkJ8sP5tc3NXv06MGzzz7LyJEjsS3Qj+rjjz9m7ty5/PDDD8yYMYPXX3+dzz//vEpei0AgENzNGBN1ZO2NJvt4PJgKB5y0jV1x6hWItolriQJMR+OOMnPPTBJzEgFZYvz5Ns/zXOvnUCmr50bTtbMp7Pn5PGnxOqvN0V1Lr0eCaNCmbAH4IoPZr79LYPOWYDLAxW1yddm5v8FUvPTyLZEs0OyBsl1bTTGZLcz+K7//6Yz/NcPZtvhqNHNWNnHvvEPGpk1Wm22LFgQsWigqo6oJhw8fZtasWQA8+uijdO7cGbVabVXjad68OQBZWVkcO3aMVatWERQUxIwZM6rSbYFAUJ0wGeDkatj3KaRFFh6r31MOZNfvWWwgGyD7SBypay9YVeVsgz3wGN0MRSXId+tNembtn8XfV/622u5tcC9zus3BVn37oPSRjRGcPRALgFKtYMjEVnj4O1a4n4KikSSJ7T98Ra4uG4Dgnn1p2K5TofGUZctJ+OQTMMkJoEoXF/znzcWpX78q8bm2cTYugy2hcvKjt5OWRzqJNV91pEQBbaPRSG5uboXcMD4+nt27d1fIXAKBQCAQ1GTiLl1g3YI5ZKfJso5aBweGTnuTui2L6H14F7P8wBUikrJpkavif3obTJLcH8jWUcPAsUFIn7+B7oAcvNbZwPsj4ZK//FDpbuvO6GajebTpo7jaulbVSxDcYTZv3sxXX33FwYPy78X1ILanpydjx45l/PjxNGvWrNjrbWxsmDhxIklJSXz77bcioC0QCAQVhCRJGK5kkLknCn14SuFBJdi39sKxZyA2ASXbQLVIFr4/8z2LTy62KrJ42HrwYa8P6erXtaLdrxB0GQb2/36B80firTaFUkHb/nXodH8DNNqyBeCNuXrWffQ+kWdOAqCxtWP4zHcItEuDv6ZA2HrQp918oWs9aDEMjv0AuVlYd92LRAG2LhD8YJl8rK6sPhzJuXhZXrV1oAsjOhSf/Kg/d47ol17GcOWK1eY2ZgzeM2egFJVR1YbFixejUCjYuHEjgwcPBiA5OZkpU6YwaNAg+t2w+f/UU08xYMAAAgJEz3OBoNZj1MOJlbBvEWREFR5r2Ad6zYD63W87Tebua6T/fcV6bN/BB7fhTVCoKl4JIj47npd2vkRocqjV9lL7l3im5TMlSgwM3RvNsU15vipg4LgW+De5+9RYqjPnDuzh0rHDANi7uNLnyWetY6bUVGJff4OsXbusNru2bQn49BM0/v532tVaS8Hq7Od7N8JWUz2TZms7JQpo16lTh3Xr1jFlypTK9kcgEAgEglrBhcMH2PzlJ5gMcsKYq48fw157B3f/2lVdnJSVy5fbLzBQp6GtIX9Z4l3PiZ5P1CVixjO4Hr8EQI4NzH1ExcUABXWd6vJkiycZ2mhoibKRBXcXP//8MyAHThQKBQMGDODZZ5/loYceQqMpef8vV1dXEhMTK8tNgUAgqDVIFomc0CSy9kRjuJZZaEyhVeHQ2RfH7v6oXUv+mZ2ck8zre1/nYGy+IksX3y582OtDPO08K8z3ikKySITui+HQukvkFpBW923oQp8xTfEoYRC/KIy5etYteI/IkFMA2Gi1DB8QSMCWUZARffMF9h7QYji0Ggl1OsvVZXW7ws+jAQVFB7XzNsSHLQHN3bO2Ssk28MnWc9bjd4e2QKm8efNfkiTSfv+d+Pc/QMor6FA6OuL3/vs4D/7fHfNXUDL279/P8OHDrcHs29G7d28ef/xxlixZwoABAyrZO4FAUC0x5sB/y2H/IsiMLTzWeIAcyK7bpchLCyJJEhlbrpC5Oz8Y7tgjAJchDVAU8flSXs4knuGlnS9ZVWrs1HZ82PND+tUtWdXuldNJ7P4p/3Owx4gmNO7gXeF+CopHl5HOjh+/sR73f2Yidk7O8tjx40RPfwVTbP7vpMez4/GaMgVFKfY2BOXjfHwmm0Pkn4Gno5bHutStYo8ExVGigPbAgQNZsmQJHTp0oE+fPri4uFjH/vzzTy5evHiLqwtz6tSp0nspEAgEAsFdgiRJHP3rD/b+tMxqC2jWgqHT38De2aX4C+9SPvsrnAeSVfiZ8yW5GnVz51zjHex8YRltz8vV2noNzB2lwrZtGxa2HEffOn2rrcSooPKRJAl/f3/GjRvHM888Q/369Ut1vV6v5+eff+ajjz7CzU1kpgsEAkFZsRjM6I7Fk7kvGnNKYYlrlbMNjj0CcOjsi9K2dH0ki5IYn9h2IhNaTaiWn/9JUZnsWn2O+IgMq01rr6bb8MY07+ZXrg1uo17P2gVzuBZ6GgAblYWHfQ/jf2l74RM1DtDsPmg9Sq4wU92wCdr0Xnj0J1g3Ua7kVihlefHrX21d5GB203vL7Gt15OOt58jQywkGD7cPpH3dmz/3LdnZxM6eTcZfG6w2bXBzAhcuxKZevTvmq6DkxMbG0qVL4cDT9SpFi6XonvGdOnVi3rx5le6bQCCoZhiy4diPsP8zyE4oPBY0WA5kB3Yo0VSSRSJt3UWyj8RZbc7/q4dTnzolqpQuLZsub2LW/lkYLAYAAhwD+Lzf5wS5BZXo+riIdP75LoQ8QTPaDqhDm/5CRvlOs+PHb8jJlNeITbp0I6hLdySLheTvfyDxs8/AbAZA5eaG/4L5OPbsWZXu1kq+2HHR+nfyfO+Gojq7GlOip8rXX3+dX3/9lRMnTnDy5MlCY2vXrmXt2rWV4ZtAIBAIBHcVZpOR7d9/RcjObVZbcM++DHxuCupamHm5f38ULnuTsZPkYLZCDemdz/K25TsmfZhL2/PyalKvgc0vtuf1YdNo792+Uh4UBTWLWbNmMWvWLJTKsvUmi46O5plnngFg0KDa069eIBAIbodktKA7k4g+NBmzzoTKXo1tCw/sW3kV6gdpzjSQdTCG7EOxWApUIwNofB1w7BWAfWsvFOrSvU+bLWa+PfMtS04tsUqMe9p5Mr/nfDr7dS7/C6xgDHoTRzZGcHpHFJIlv+q5WVdfuj3cGDun8klUG1OiWTv3Ta5dSwLARmni4Toh+NvlVcEr1XJVWauRciDaxuHWEzYbAtPPyfLkZzdATirYuck9s4MfvKsqswFCotP5+YjcF9VRq2bm4KY3naM/f57ol6diuHzZanMd/Sg+r72GUqu9Y74KSo+Tk1OhY1tb+fc3OroI1QJAp9MJZR6BoDaRmwVHv4cDX4AuqfBYs/uh16vg37bE00kmCym/niPnTN5cCnB9sDGOXf0qzuc8LJKFz49/zg8hP1ht7b3bs7DvQtxt3Us0R1q8jk2LT2MyyuupJh296Ta8cYX7Krg1F48e4tyBPQDYOjrR/+mJmJKTiZn5Gtn79lnPs+/YEf9PPkbj41NVrtZaLiZksfF0DAAeDjaiOruaU6KAdmBgIIcPH+bNN99kx44dJCcnWyUer/csLA1iI1ogEAgEtQ19VhZ/fTrXWl0D0H3U43QZ/kit+1yULBL/bbnCib8isMuTt9TZZrIp6GvSTFG8tN5C57xgtslGhePC93iz/7CqdFlQzQgKCipzMBugUaNGGI1y9X955hEIBIK7iZywZFLWnEfKMeWrUisgJzSZtA2XcR8ZhNrTjqy90WSfiAdT4b0AbRNXnHoFom3sWqa1TVJOEq/tfY3DsYettq5+XZnXc161kxiXJImIU0ns/fU8Wam5Vrurjz19HmtKQNNyqH/kZsG5zRiO/8ra3QlE6WQFHxuliRF1Q/Czy4S698hB7OCHwMGjdPNrbKHNI/K/uxhJkpi9IdRabTO5X2O8nQsH7NP++JO4995D0svqAkoHB/zem4PzkCF32l1BKfHz8+PMmTOFbPb29jg6OrJ7926efPLJm675559/sBF90AWCux99Bhz5Fg4uhpyUwmPBD8qBbN9WpZrSkmsmeVUYuRfSZINSgfsjTbFv41UxPhcg25jNa3tfY9e1XVbbw00e5s0ub6K5UX2lGHQZBjZ8cRJ9lvzMG9DUlf5PBleKJLqgePTZWWz/4Svrcd8nn4VzF4h45RVM1xOsFAo8J07E84WJKNSlUzQSVAxf7rhgXS9O6NUQexvxc6jOlPin06hRI3755ZdCNqVSyapVq3jsscdKfMNVq1YVubAUCAQCgeBuJTUuhrUfziY1Vq4WUGk0DH5hKs269apiz+48uToj25eFc+V00vVOjVx1DeXfJisxKXVM+ctC13N5K0mtDQ2//hqHbt2qzF9B9SMiIgJv75L1/Bo8eDBqtZoJEyYwdOjQQmMqlZCQEggEguvkhCWTvDIsv7XyDV+lHBPJK8JuvlCpwL6NF449A7DxL3uP6MOxh5m5ZybJ+uS8aZW80OYFxrcaX+0kxjOSc9j76wWunM6v9lJplHS8tz7tBtZFpSlDopTZCBf/hTNr5GB2rp4/I1sSnSMHs7VKEw+3ycav+zRoNQJcReXI7fjrVAxHr6QC0NDTgXHdG1jHLDodcXPeI33dOqtN27w5gQs/xaaUbUwEVUP79u1ZtmwZkyZNomnT/Mr7Dh06sGrVKgYNGsSjjz4KyMkNc+bM4d9//6Vjx45V5bJAIKhsctLg8DdwaDHo0wsMKKDlcOj5CvgEl3pai85I0rJQDJGyOopCo8Tj8ebYNi1ZpXRpiMqMYvKOyVxMk9u7KhVKZnSawWPNHitxsqBBb2Ljl6fISJKTtTwCHLj3+dZlW58IysXulT+QnSonVTRo2wHPU2FEfv015LXGUHl6EvDRAhzuuacq3azVXE7M4q9TcnW2u4MNj3cVrWaqO3c83SAiIuJO31IgEAgEgiojKjyE9R9/gD5Lfvixd3HlwVfewj+oWRV7dudJisri7yWnrQ9WEhaO1vmb4wHbUEgWXt1sQ8fwHAAUNjYELv5KBLMFN9GwYUNWrlxZooTKixcvcvnyZf7++2/++usv7rvvvjvgoUAgENQsJKOFlDXn84PYJUChVeHQxQ/H7v6oXcouy2y2mPnm9DcsObUEKc8BLzsv5veaTyffTmWetzIwmy2c2n6No5siMBnye/TWDXan1+ggXLzsSzehxQLXDstB7NC11ioyg1nFn9cKBLNtVIyYPAnfzoMr7LXc7WTnmpi3+az1+O0HgrHJk7/PvXiRqJdfxnDxknXc9ZFH8HnjdSExXoMYPHgwf/zxB127dmXcuHHMnTsXW1tbxo4dy+7duxkzZgzTp0+nTp06XLx4kdTUVBQKhTXILRAI7iJ0KXDoazi8BHIz8u0Kpaxm0vMV8CpZz+kbMWfkkvhDCKZ4nTylrRrPp4LR1nepCM8LcTTuKNN2TSMtNw0AJxsnPu79Md38S74nYjZb+Oe7UBLzgu+Oblrun9QWrZ2oOL3TXDl13NpuUGNrS/PwCJKP/GYdd+h2D/4LFqD2rF4qRLWNL3de5HrXoPE9G+CgFX8r1Z1y/YR+/PFHuomNZoFAIBAIiiRszw7+WfI5FrPcW9IjsC7DZr6Di3ft64lzYt9lDvxyGUzyZqJenc32JiuIcj1LE+dGzNxqj/OZEwAoNBoCv/gcxx7dq9JlQTWlNO1uQkJCOHnyJE899RTz5s0TAW2BQCAoAt2ZRFlmvITYtfHCbVhjlLbl2/BJykli5p6ZHIk7YrXd43cP83rOw8OulDLalUzsxTR2/XSOlJhsq83exYYeI5vQuIN36STW48PgzG9w5g9Ijyw0ZDCr+CO6DTE5ci9srYMDI958H99GTSrkddQWvtp1kbgMOYGyfzNv+jaVlV3S1q0jbvYcpBw5gVJpb4/vnDm43C/WBzWNESNGMHv2bIxGI7/88gszZ87E1taWJ598kuXLl7Nnzx5iY2OJi4uzrh27dOnC5MmTq9hzgUBQYWQnw8EvZXlxQ1a+XaGCNo9Cz+ng0ajM05uSc0j8IQRzSl5bCkcNns+0wsbPobye38Sa82uYe2guJklej9V3rs8X/b6gvkv9Es8hSRK7Vp8jMlRWu9Haq7l/chsc3USy1p3GkKNj23dfWo+bx6ZAZKh8oFTiNWUyHs8+i0KoxlUpV5KyWX9Srs52tdcw9p76VeuQoESU6wm0tNLhJpOJ3Nzc258oEAgEglIjGS3oziSiD03GrDOhsldj28ID+1ZeKIS00B1FsljY/9tqDq/91Wqr17odD0x9Da19xT/8VGei0qJZs3wPNuE+gPx7mOhwja1BS0kzu/JWmwX0/mUPGTvXyRdoNAR89hmOvXtXmc+CuwdbW1u6du3K5MmTeeedd6raHYFAIKiW6EOT83tm3w4FYLKUO5h9MOYgr+19jRS9XJWsVCiZ1HYSz7R6BqWi+qxb9VlGDq69SNj+2HyjAlr1CaTL0IYlr3hKuwYhv8PpNZAQevO42o7cRoP58z81MdlxANg6ODLirffxadi4Al5J7eFqcjbf7ZGVAW1USt6+PxhLTg5x779P+h9/Ws/TBgURsGgR2oYNiptKUI1xcXEhMjLyJrtSqWTz5s3Mnj2bX375hbi4OPz8/HjkkUd4++230WhK1n9WIBBUY7IS4MAXcPQHMOYnmqFUQ9vHoMc0cC/fe7shNpukpWewZMo9qFXutng90xK1h1255r0Rk8XEgqML+Pnsz1Zbd//uLOi9AGcb51LNdWRDBGcPyOsVpVrBkImt8ChHOxhB2dn783IyEhMA8MjMISBS/rmovb0J+ORj7DtVLxWi2srinRcx55Vnj+/RAEdRnV0juCM/pSNHjrBixQp+/fVXUlJS7sQtBQKBoFaRE5ZMyprzcnXN9Q1JBeSEJpO24TLuI4OwC65elS53K0ZDLlu+WsT5g3uttjYDh9Bv3HMoa1H25dmUs6w48hPq7fXxyapvtYd7H2Snx1lyYkfzaKt76PP7mvz+hWo1gYsW4tSvb5X4XC0w6iFsHZzdCLpUsHeDZvdD8EOgsa1q72osycnJZGdn3/5EgUAgqIWYdaaSy41LYClFNfdN97KY+frU13x7+lurxLi3nTfze82no2/16W0rSRLnDsWx/4+L6LOMVrtXXSf6jGmKd70SbDLrUmQp8TO/Q+SBm8cVKmjUF1qNIrdeX/74ZAGx12SZbFtHJzmY3aDslWW1lfc2hmMwy5LwT/dogF9GPFfGvUzuhQvWc1xHjsDnzTdR2oq11d2Ivb098+fPZ/78+VXtikAgqEgy42D/53BsKZhy8u1KDbR/AnpMBde65b5N7tUMkn4MRdLL6x21jz1ez7RE5Vyxlc7puelM3z2dw7GHrbYngp9gWodpqJWlC9mE7o3m2OYr8oECBo5rgX8Ttwr0VlBSosJCOPnPJgBUZgutohJQAA69euL/4Yeo3Su+97qg9EQm6/jzRDQAzrZqxnarX7UOCUpMpQW0r127xsqVK1m5ciXnz5+32iVJKp0cl0AgEAhuSU5YMskrw/I3Im/4KuWYSF4ZhscTwSKoXclkp6Wy/qP3ib14TjYoFPQdO5529w6tFZ99kiRxMPYgP4b8SOTZJAZceAp7oxMAZoWRlPaX2XytDpbYtjjbKHn22BrS1/4hX6xSEfDpJzj171+Fr6CKObsZ1k0EfZrc70uyyF/DN8DfM2HYEmh6b1V7eUfZvXs3u3fvvsn+559/cvHixdtebzQauXr1Kn/88QcNGzasDBdrDIsXL2bx4sWYzeaqdkUgEFQzFKpSrFEUoCxjH8YEXQIz98zkWPwxq627f3fm9pyLu2312dxLic1m90/niLmQZrVpbFV0fbARLXsHoFTe4vtl0MG5zXJf7IvbwVJE8D+ws9zTs8UwcPQiV5fNH3NnEXtBXj/aOjox8u0P8K5fuz+3ysLu84lsD48HwNtJy7ics0SMeA9Jl9f71M4Ov9nv4jJ0aFW6KRAIBILSkB4N+z+D/5aBuYDyq0oLHZ6E7i+BS2CF3Ep/LoXkVeFIRjkxyqauE55PtUBpX7HqDpfTLzP538lEZspKE2qlmlldZzGsybBSzxVxOondP52zHvcYIbdDEdx5jLl6/l70ofU4KC4Fewt4v/oK7uPGoVBWHxWi2s5Xu/Krs5/p0RBnW6HgUlOo0IB2dnY2v//+u7VfzfU+NQV7HXp6epKcnFyRtxUIBIJai2S0kLLm/O2raiRIWXMe/ze6CPnxSiIp8gprF8yxygpptLbc99KrNOrQpYo9q3yMFiNbr2xlWegyziafpW1MP+6PfBFlnsQ4jkaGTGjBGzudsRhSQJJYFL8d/e7N8rhKRcAnH+M8aFDVvYiq5uxm+OWx/GPJUvirPh1+Hg2P/gTNhtx5/6qIXbt2MWfOnJvsa9euZe3atSWeR5Iknn766Yp0rcbx4osv8uKLL5KRkYGLi0tVuyMQCKoBkkUia180uZfTSnER2Lb0LPW9DkQf4PV9r1slxlUKFZPaTeLplk9XG4lxk8HMsb+vcGJrJBZz/uK6cQdveoxsgoNrMZVZZhNc3iX3xQ7fWFj+9DqeTaH1SGg5opAMqj47iz/mziLuolwEYOvkzMi33hfB7DJgMFmYvUGWc7cxG/ksegcpKzdbx7VNGssS441E1XttZf369UydOpXLly9XtSsCQe2mpKpkaddg30I4sRLMhny72hY6Pg3dpoCzX4W5pTuVSMpv5yBvDaBt4orH48EotRWrtLc3ai8z9swgyyj3/Xa3dWdhn4W092lf6rniItLZ+l0I10MvbQfWpU3/OhXprqCESEYj2159mYz0NABcs/U0trEncOXX2LdrV7XOCQpxLUXH7/9FAeBkq+ap7vWr1iFBqSh3QFuSJLZv386KFStYt24durzM14JBbDc3N8aMGcPTTz9NSEhIqXtvCwQCgaBodGcSZZnxEiDlmNCFJOHQTmRqVjRXTv7HhkUfYsiRZa8cPTwZNmPWXb8ZqTPq+PPCn6wIW0Fsdiwak5ZBl56mYUob6zkBzV0Y/ExrdkQkcSRCDmbPuLAJv7Bd8glKJf4L5uM8eHDVvIjqgFEvV2YDxWen5PURWDcRpp+rVfLjBdeUt7IVhb29PUFBQTz55JNMmTKlol0TCASCGosxUUfq7xcwXM0o1XUKOzX2pQhomywmvjr5Fd+f+T5fYtzem496fVSmjdvK4mpoMnt+PkdGkt5qc/a0pdfoptRrUYTCkSRB1FG5EjvkT9Al3XyOkz+0ehhajQLfVnCDWo8+O4s/PnibuEuyFLadkzMj3/4Ar3qip3NZWHHwCpcTswnITOD9k6txTY62jrkMH47v22+htKvY3qeCmkVWVhZXr16tajcEgtpNSVTJvJvD3k/h5E9gyW/7gcYeOj0D90wGJ58KdSvrUCxp6y9aH8ftWnni/khTFOqKS7qTJIkVYSv49L9PseQlrjd1a8rn/T7H39G/1POlxevYtPg0prxq8iYdvek2TCRtVQWGqGjOTH+JcCkHFAqUFgtdAxrSaP4CVK6uVe2e4Aa+3n0JU1519rjuDXCxE9XZNYkyB7TDwsJYvnw5P/30EzExMcDNm4sKhYL333+fadOmodXK2cyhoaEl3oQUCAQCwa3Rhybn98y+HQrQi4B2hXNy62Z2/LgEySI/RPg0bMxDr76No/vdK++elJPET+E/8eu5X8kwyBvhbjpf/nfuaVz1+Q+WHe+rT6f7GmAwW5i7ORwkiQkhf9H3Ul5/cYUC//kf4nLffVXxMqoPYevkB/rbIsnnha2HNo9Urk/VhHfeeYd33nmnkE2pVLJq1Soee+yxYq4SCAQCQXFIFomsAzGkb7kCpjwVEAXYNnNHH55y64sV4D4yqMRqP/HZ8czcO5P/4v+z2noE9GBuj7m42VaPvo7Zabns/e0Cl44nWG1KlYJ2g+rS8d76qG1uqMpKPAenf5MD2WlFBMZsXeQKs1YjoV53KEZaUp+Vxe8fvE385QLB7Flz8apbv4JeWe0iIVPPou0X6B11giknf8feJEvSKmxt8X3nHVyHPVS1Dgoqjfj4eDZv3kx4eDhpaWmYTMUne4vKbIGgiimRKtmjgBKw5J9n4widn4V7JoFD6VViboUkSWTuukbGP/mf6Q6dfHEd1hjFrVqMlBKD2cCcg3NYf2m91da/bn/m9piLvca+1PPpMgxs+OIk+iw54B/Q1JX+TwZXqM+CkpGxbRtRb77FMV8XsLMBoF3zNgTPnlsrWg/WNKLTclhz7BoAjlo1z3QXiaQ1jVIFtBMTE/npp59YsWIFJ0+etNoLBqhbtGjBmDFjGDhwIJ06daJLly7WYDbAmDFjGDNmTPk9FwgEAgGmtNySBbNBjoVdTCNtwyVs6jphU8cZlZtWLLDKiMViZveKHzj+919WW+NO9zBk0nQ0tndn9WxEegTLQ5ez4dIGDJZ8ya9GSe3of/lxlGZ5WaG1VzNgXDD1W8kPmz/sjiAqRcf40I0MKxDM9ps7F5cHHrjjr6PacXZjfnb67VAo4eyGWhPQFggEAkHFYUrKIeX38xiu5FdlqzxscR8ZhLa+CzlhyaSsOS+r/1xPmMz7qrBT4z4yCLvgkiXs7Y/ez+t7Xyc1N1W+j0LFlPZTeKrFU9VCYtxikQjZHcWh9Zcx6s1Wu38TV3o/1hR3P4f8k9OjIeQPWVI87szNk6ltIWgwtB4FjQeAuhhp8jzkYPZbxF++CICdswuj3v4ATxHMLjOfbjjDU4d/4b4rh6w2m0aNCFy0EG2TJlXomaAyeffdd5k3b94tg9gFkSRJPPsKBFVFiVXJwBrM1jpDl+eg6wtg717hLkmSRPqmCLL25St6OPUOxHlw/Qp9r0jKSWLqzqmcTDxptT3X+jleaPtCmdZEBr2JjV+esqrKeAQ4cO/zrVGJ9oJ3FIvBQMKCj0hdtYoLPm5k5QWzvXwD6DnrPfF5U01ZsusSxry2Ak91q4+LvajOrmmUKKC9Zs0aVqxYwdatW60LxYJB7MDAQEaPHs2YMWNo3bo1gOiTLRAIBJWEZJHQn0sha38Mxuis0l2bayZrfwzsl4+Vjhps6jrnBbidsAl0qvD+QHcjhhwdmz7/iMvHj1ptnYY+TM/RT6IophKnJnMy4SQ/hvzIzms7rXKhABpseCR1Mo4X6lptHoGO3PtcK1y8ZEnH+Aw9i3dcYFzYZh6+uNt6nt/774lqmevokksWzAb5vJzUyvWnmrNz506aN29e1W4IBAJBjUGySGQflKuyJWP+541jN3+cB9dHmVeFbBfsgf8bXdCFJKEPScKSY0Jpp8a2pSf2LT1LVJltsphYfHIx35/53mrzsffho94f0c67evQPTLiawa7V50iMzLTabB01dB/RmKZdfOUNyJxUCPtLrsS+so+bNt8VSmjYR67EbnY/2DqX6N45WZn8/v5bJERcAsDexZWRb3+AZ516FfTqah+nDp6hx6LXaJQRY7W5PPggvu/MQmlf+qo3Qc3gm2++Yc6cOdZjFxcXnJ2dUd7iWSw7O1vsVQoEVUWJVcnyaPYAPPgF2FWOootklkj98wK6/+KtNpd76+PUu2L7T59NOcvkHZOJy44DwFZly3vd32Nwg7K1XDObLfzzXYh1DePopuX+SW3R2pW7q6ygFBiuXiV66jT0YWFk2NpwyUf+PVWqVAyeOhOVWvw8qiOx6Tn8elSuznawUfFMD1GdXRMp0V/XI488gkKhuKkv9ogRI3jsscfo1auXyDoRCASCSsaSa0b3XzxZB2IwJeVUzJxZRvRhyejD8h7sFaDxdZCD23WdsKnrjNrTTsgWFSAjKZF182eTGHkFkBesA8a/SKt+g6rWsQrGIlnYfW03P4b+yImEE4XGHDQOjAwcTcDBziRH5P8uNuvqS+/HmhaS5/xoy1lGnNrEqAs7rTbfObNxffjhyn8R1Z3E83BiBUQdK/k1CmWlPdTXFHr37l3qayIiIti7dy9jx46tBI8EAoGg+mJKziHl9wsYItKtNpW7Le4jmqBt6HrT+QqNEod23mVqUROXHcfMPTM5nnDcausV2IsPun+Aq+3N97rT5OaYOLz+Mmd2RxWKTwf38OeehxphqzXJG+5nfocLW8FsuHmSgA5yELvF8FL378zJzGDN+2+ReEWWPbZ3cWXUrLl4BNa9zZWC4kjbtBnLa2/SyChXqVk0NgS8OwuX4cPFHtVdzpIlSwCYNWsWzz//PL6+vre9ZtWqVTz55JOV7ZpAICiK0qqSKai8YLbRQvLPZwvtg7kNa4JD59u/j5SGbVe38ea+N8kxyXsm3vbefN7vc1p4tCjTfJIksWv1OSJD5RYxWns1909ug6PbrZVhBBVLxt9/E/vW21iys7EAp+v6IOWtOTo/NBLv+g2r1kFBsXyz+zIGs/weNLZbfdwcbKrYI0FZKHG6yHVpHg8PDz777DNGjBiBRiNK8gUCgaCyMaXoyToYQ/bROKQCkogASnctUqaxULVNcSjs1Pi83B5jXDaGyEwMkRkYrmUWnlMCY2w2xthsso/IGaQKW1VegFuu5NbWcUJZSyVZ4i5dYN2COWSnyRWyWgcHhk57g7ot21SxZxWHwWxg4+WNLAtdRkR6RKExbztvxgSPoZdyMHuWXSY5Q34wU6oV9BwVRIue/oU2D09HpaFdvZTR5/+12nzffQe3UaPuzIupjuRmQehaOLESrh0u/fWSRc5WF5SKAwcOMG7cOBHQFggEtQbJIpF9JJb0zRFIhvx1osM9frgMblDhijx7o/byxr43SMtNA0CtUPNS+5cY22JslUuMS5LExf8S2PfbBXQZ+UFqd38H+jzaGD/VKdj2GYRvAEPmzRN4NIZWo6DVCPBoVCYfig5mz8MjsGIrwWoLltxcEubPJ/Wnn7ne6CfexYeOy5bg2LxZlfomuDOcP3+eMWPG8O6775b4mhsLdQQCwR1El1otVMksuSaSV4SReykv0U+lwP3Rpti38qqwe0iSxJLTS/jq5FdWW2vP1izquwgv+7Lf58iGCM4eiAXkPZghE1vh4e9Ybn8FJcOi1xM/70PSfv3Vaots2oAMW3md6xFYly7DRGu46kp8hp6fjkQCYG+j4tmeIvGgplKigPbGjRtZvnw5GzZsICkpieeee44tW7YwZswYBgwYcEtJH4FAIBCUHkmSMFzJIGtfNDlhyTepHGobueDYPQDbZu7oz6aQvDLs1r20FeA+Mgi1ixa1ixa7pnL/IckiYUrKkQPc1zIwRGZijMsuNJekN5N7IY3cC2lWm9rTLq+CW+7FrfF1QKG6u6sgLhw+wOYvP8FkyAXA1cePh2bOwiPg7tiITM9NZ835NawOX01STlKhsUYujXiyxZMMaTCE8F3xbP3zHJJF/iVxdNMyeEIrfBoUltqUJIk9b83n8XPbrDaft9/C7dFHK//FVDckCaKOwvEVcjDbcEOrAIUaFAqwmLjtH7KtCwQ/WJneCgQCgaCGY0rVk/rHBXIvplltKlctbiOCsG3sWqH3MlqMfHniS5aGLLXafB18+ajXR7T1bluh9yoL6Yk69vx8nsiwFKtNbaOkU08b2tivQ7X+d8hOuPlCR19o+TC0Hgl+beXP6TKiy0jn9/ffIvGqnCjo4OrGyFlz75o15J3GEBlJ9MtT0YeFWW07AtvT5tN5ODYX1e61BWdnZ3r06FGqa8aMGcOYMWMqySOBQFAsKZch7WrJz68kVTJztpGkH0MwRsnP4wobJR5PBGPbpOLulWPK4a19b7H16lar7YGGD/BOt3fQqspeSR26N5pjm6/IBwoYOK4F/hXot+DW5F6+TPTUaeSeO5dvHDyIc4mRYDKiUCj53/MvoRbFn9WWb3ZfxmCSk2qe6FoPd1GdXWMpUUB7yJAhDBkyhPT0dH799VdWrFjBypUrWbVqFV5eXjzyyCM89thjdOnSpbL9FQgEgrsayWRBdzqx6P7YagX2bb1x7B6AjZ+D1WwX7IHHE8GkrDmPlGOSpZkkrF8VdmrcRwZhF+xx0/0USgUab3s03vY4dJRlEy25ZgxRmRiuZVoruS1ZxkLXmZJyMCXloDsubwAqNEo0AY7Y1HVGmxfoVjnfHbJHkiRx9K8/2PvTMqstoFkwQ6e/ib2zS9U5VkHEZsWyMnwlf5z/A51JV2isg08Hnm75ND0CemDKtbBj6VkuHc/f9A1s5sagZ1pg53TzQnDf7E/of2id9djztddwr20bSFmJcPoXOL4Sks7dPO4dDO2egNaPQNQR+Hk0+X/AN5K3kT5sCWhsixi/+1i2bBmLFi1i0qRJjB8/3mpXqSq2qlAgEAjuFiRJIvtIHOmbIpAM+Qo8Dl18cRnSAKW2Yvv5xWXH8eruVzmZeNJq6xPYh/d7vI+LtmrXSGajhRPbrnLs76uYCygZ1fdPpaf9VziHFtHuQ+sMwUNlSfH6PUFZ/s8bXUY6a957k6S8VjUObu6MmjUXd//Acs9dG8n4Zyuxb76JJUt+TjIo1Xzd+iEY8iAvthbB7NpEjx49SElJuf2JAoGg6ki9Ans+gpM/g2S+7elWKkGVzJSeS9IPZzAlyCpzCjs1nuNaoK3rfJsrS05cdhxTdkwhPCVcvgcKXu7wMuNajCtXG4yI00ns/il/P6HHiCY07lD61jCCspG+fj2xs+cg6eT9MoWtLd5vvsGWU4cxx8p7pR3ufwi/Jk2r0k3BLUjI1LP6sJxUY6tR8mwvUZ1dk1FIZdTbiYiIYPny5axatYrLly+jUCho2LChNePR3d0dLy8vtm/fTr9+/Sra71pJRkYGLi4upKen4+xccR+4AoGg6jFnGcg+FEvW4VgsmYWDx0onDY5d/XHo4ovKsfgMMsloQReShD4kCUuOCaWdGtuWnti39EShKbuShiRJmFNzrRXchmuZGKKzwHzrjw+Viza/iruuMzb+juXyoyowm4xs//5rQnbmZ9c279mXQc9NqfGZl+dSzrEsdBlbIrZgkkxWuwIFA+oN4KkWT9HaqzUAqXHZ/L3kDKlx+QHvDoPr0XloQ5RF9FeP++Y7Uhd+aj3OGPcCXWZOrsRXU42wmOHiv3Jv7HN/51VdF8DGCVo9DO3GQkD7whVfZzfDuomgT8vvL3b9q62rHMxuem+FuFkT1hSurq5kZmbi5OREWlqa1V5WZSCFQoHZXIqNlLuUmvCzFwgEpceUlkvqH+cLKeqoXLS4PdwE26CKr+DZE7WHN/a9QXquLNmpVqh5ucPLjA0eW+W9i6PPpbL753OF1i2OmnR6OnxFA+2RwsXWKhsI+p8cxG7yvwpNGtOlp8nB7GvyBpqjmzsjZ83D3T+gwu5RW7AYDCQs+IjUVaustihHL+Z2eoIYj0C2T+tNHXf7KvSw9lJV64qQkBBGjx7Nvn37cHEpWQLN6tWrGTt2rFgPVhBiTSkolrRI2PMxnFx9w/NwccnbFD7H1gWmn6uwz2Rjoo6kH0Iwp8lqe0pnG7yeaYnGx+E2V5acU4mneGnHSyTr5b7c9mp7FvRaQO86vcs1b9zldNYvPIEpLzmv7cC6dH+4cbn9Fdwei05H3Hvvk752rdVm07gRgQsXEnohjJ3LvwPA1dePsQu+QKOtHYUHNZEPNoXx3V5ZKWl8jwa8dX9wFXskuJHSrCnKnKLdoEED3n33Xd5991327dvHihUr+P3335kzZw7vvfcewcHBRfanOXToEN9++y1Lly4tZmaBQCCoPRhissjaH4PuVAKYCr9fagIccewRgH0rTxTq2wdwFBolDu28cWhXsZmaCoUCtbstandb7NvIc0smC4aYrPwAd2QG5tTcQteZ03PJOZNLzpk8+WqVAo2fA9q6znk9uZ1QudtW+aZnceizsvjr07lcCz1ttXUf9Thdhj9SbX2+HZIkcTjuMMtClrE/Zn+hMa1Ky0ONH2Js8FjqOudXuFz8L4EdK8Ix5sobPza2Kvo/FUzDtkX3fkr+cVmhYPbO3qN4oTYEs1Mi4MQqOPkTZMbcPF63G7R/QpYLtynmwbnZEKQp4ei2bkcfnorZoEJlY8a2uRv2gwagsK9dG7Xdu3fn77//pnv37jeNDR8+nFatWpV4rtOnT7Nu3boK9E4gEAiqB5IkoTsWT9rGy0i5BaqyO/nicl8DlLYVW5VttBj54vgX/Bj6o9Xm7+DPgt4LaOPVpkLvVVp0GQYO/HmRc4firDYFZtrYb6CT46/YKPVWKw16yn2xmz8Adq4V70t6Gr/NeYPkKLlXn6O7B6NmzcXNTwSzS4shKkqWGA8JsdrCmnXhrUYPkKOxZUqvhiKYXQtp2bIlX3/9NcOHD2fcuHEMGTIEd3f3qnZLIKjdpEfB3k9khTJLgUINrQvc8yJ4NII/ritv3RlVMkN0FklLQ7Bky/6oPGzxeqYVaveKCz7+dekv3j3wLsa81xzoGMgX/b6gsVv5As9p8To2fXXaGsxu0tGbbsMaldtfwe3JvXCBqKlTMVy8ZLW5PDwc37feIiMjnb2/rLDa//fcSyKYXY1Jyspl5SE5uVSrVjKht6jOrulUyNNtjx496NGjB1988QXr169n+fLlbNu2DUmSGD58OKNHj2b8+PF07NiRS5cusXz5chHQFggEtRbJIqE/m0LWvmhyL6cXHlSAXUtPHLv7Y1PPudoGThVqJdq6zoXkmcyZhkK9uA1RmUiGfIlHzBLGqCxrvyIApYMamzrO+ZXcgU4VvvFaFlLjYlg7fw6pMVEAqDQaBr8wlWbdelWxZ2XDZDGx7eo2fgz50Sp/dR0XrQujm43m0aaP4mGXL0tvMVs4uPYSJ7dfs9o8AhwYPKEVrj5FbxqmrFhJwvz51uPlLYYw/r1XKvjVVCOMORC+Qe6NfWXvzeOOPtBmtCwr7nn7h9mcsOS81gFuoHCTn/H1kHMI0k6dKrZ1wN3K+vXrOX36dJGB6+HDh/PYY4+VeK7Vq1eLgLZAILjrMKXnyr2yz6dabSpnG1wfboJd07IFdnLNuWy9spUdkTtIy03DVetKv7r9GFR/ECk5Kby651VOJZ6ynt+3Tl/e6/5elUqMSxaJsD2RHFx7kdzc/LWzj+YcfZyX4Km5Ihv82sqV2C0fBme/SvMnOy2VNe+9mR/M9vCUg9m+/pV2z7uVjG3biH3jTSyZmQAobGxIfXoS02P9QKHA38WWiX1EpVpt5Z577mHMmDE8++yzGAwGXF1dcXJyKlbNJzs7+w57KBDUEjJiYO+ncHw5mA35dq0zdJ0IXV/ITx7T2N9ClcylQlXJciPSSVoWak340/g64PlMS1RFtEwrC2aLmc+Of1Yoya+Tbyc+6f0JbrblU8fRZRjY8MVJ9Hnt/wKautL/yWAURSjkCSoOSZJI/+MP4t7/AEkvJ0Iq7O3xe/cdXIYORZIktn38HqZcuaCnzaD7CAxuWZUuC27Dd3svo89LCnmsS128nUTyQU2nQqMGWq2WUaNGMWrUKBISEli9ejUrV67k22+/5bvvvqNVq1Y0biweNgQCQe3EojeRfSyerAMxmFP0hcYUtiocOvvieI8/area+eGqcrLBroUHdi3kgJtkljAm6DBEZlgD3df7FV3Hkm1CfzYF/dm8/mcKUHvby1XceUFutZf9HV20R4WHsP6TuegzMwCwc3bhoVffwj+o+R3zoaLQGXWsvbiWlWEric6KLjQW4BjA2OCxPNT4Iew1hQPU2em5bP0+lJgCsqVBnX3oM6YZGm3R/SRTVq8mfu5c6/GKZv/D9smnaeztVHEvqLoQcxJOrITTayD3xqQUlSxd2u4JaDIQVCWTps8JSyZ5ZVh+ovoNX6UcE8krw/B4IrjWBLXVajXt27e/yV6vXj0cHR1LNZejoyN164remgKB4O5AkiR0xxNI23AJSZ9flW3fwQfX+xuitCvbY/7OyJ28tf8tMgwZKFFiwYISJdsjt/PeofcAyDHJazm1Us20DtN4vPnjVZeAaTGTfHQvu9YmEJfmyfXKLq0ii65OK2lhtw2Fe31oPRNajgCvoEp3KTstld/mvEFKtJwQ6OjhySOz5uHqW3kB9LsRyWAg4ZNPSFmeXwGlqVcX748/4bktiaCQ5eTfuK85djbl73UuqHno9XqGDRvG1q1brcqQqamppKam3vK66powLhDUSDLjYN9COPYjmAso9tk4Qpfn5aps+xsS7JoNkeXEw9bD2Q2Qkwp2bnLP7OAHK6wyO+dsCsmrwsEkB7Js6jnj+VSLMq+RbiTLkMXMvTPZE7XHahsVNIrXuryGRlm+9nQGvYmNX54iI0neN/QIcODe51ujqmEt/Goa5qxs4mbPJmPDBqtN27QpAQsXom3YAIAzO/4hMkRWcXTy9KLXY09Wia+CkpGSbWDlQbk620at5PneQuHgbqDSyuC8vb2ZOnUqU6dOJTQ0lGXLlvHzzz9z+vRpsYAUCAS1ClNyDlkHYsg+Fl9IChJA7WmHY3d/7Nv7oCwmUFhTUagU2Pg5YOPnAF3kTTxLjskqUW64lkluZCZSToGeShKY4nWY4nVkH5XlIhValSxRnidTblPH6Za9xMtD2J4d/LPkcyxm2SePwLoMmzkLF2/fSrlfablV1ZRWpbWel5yTzM9nf+aXc79Ye1teJ9gjmHEtxjGg3gDUypuXAbEX09jyXQi6dDmzWqlS0GNkE1r2Dij28zv1l1+If+996/HqpgP5u/0Qdg1oUhEvu3qgS4Eza+RAdtyZm8fdG8mS4m1Gg1Ppfl8ko4WUNedv305MgpQ15/F/o0uN60dfkURERJT6mgcffJAHH3ywErwRCASCO4s5I5fUPy/mJwMCSicb3IY3xq552ROedkbu5KWdL1mPLVgKfb0eyAY5Ke6jXh/RyqvkrR8qDEmC2FMYT/zB0X0mTqb2Q8LTOhxku4vuPhuwbzsIWm2HgA5wh/YfslJTWDPnDVLyFH6cPLwYNWuuCGaXEkNUNNHTpqE/nd/2x2nwYPzef49vjsVxNVkOZndp4M59rcT3traycOFC/vnnHwCaN29O06ZNb1mdDXD58mX27dt3p1wUCO5eshJg3yI49gOYChRraBygywS4ZzI43GJNorGFNo/I/yoB3YkE+fnaIj9g2zZ1w31Mc5QVlAAVmRHJ5B2TuZx+GQCVQsVrnV/j0WaPlntus9nCP9+FkBgpK5M4umm5f1JbtBUUiBcUjT48nOiXp2K4etVqc330EXxeew2lrZxkkZmcxO6VP1jHB02YjI2daHlSnfl+72V0BnkffnSnOvg418wCMkFh7si7YYsWLfjoo4+YP38+77//PrNnz74TtxUIBIIqQ5IkDBHpZO6LQR+efFOgStvEFcfuAdgGudUqySClnRrbIDdsg2T5JUmSMCXl5AW55X7cxtgsKKBULuWayb2YRu7FNKtN5WGLto4TNnmV3BpfhxL1GS8OyWLhwJrVHPrzV6utXut2PDD1NbT2xfQ7vsPcqmrqwyMf8kGPD2jo0pDloctZf2k9uebCPc27B3RnXItxdPbtXGRgWpIkzuyKYv+ai1jyHvwcXGwY/FwrfBsWLyOaumYNce/mf67/EtSfVc0GMXtAEK72lZN4cMewWCBitxzEDt9YOOscZLm04IfkQHbde8q8Ya47k1g4seMWSDkmdCFJOLTzLtO9aisRERHs3buXsWPHVrUrAoFAUCYkSSLnZCKpf10q9Jlh384b1wcaorQvezVQrjmXt/a/Jd/nNtlVaoWaFfeuwNv+Dn8OpVyGM7/D6d+IiHZlT8Z4siz5PriqY+nd9hyBfXpDg1mgurMbv1mpKfw25w1ruxonTy9GzZqHq0/1SIqsKWTu2EHMa69jyZCVkhQaDd6vv4bb6NHEZ+Ty5Y6LACgV8O7QFqJYohazatUqHBwc2Lx5Mz179izRNatXrxYBbYGgPGQnwf5FcOR7KJDohsYeOo2H7i+Bg2exl98Jsg7EkPZXft9juzZeuI8MKtd+UUEOxx5m+u7p1sIBZxtnPu3zKV38upR7bkmS2LX6HJGhctKi1l7N/ZPb4Oimvc2VgrIiSRKpP/9MwofzkQx5RR2Ojvi9Nwfne+8tdN62777EkCP/3rfoM4D6bW5WkxNUH1KzDSw/cAUAG5WS5/uI6uy7hTv6lKdUKmnUqJFVDqi85ObmsmjRIn755RcuXryISqWiefPmPPnkk0yYMOGWmZnFkZ2dzZ9//smGDRs4duwYsbGxKBQK/Pz8uOeee5gwYQK9ehXfQ3XXrl307dv3tvdZs2YNI0aMKLV/AoGgeiMZLehOJZK1Pxpj7A09utRKHNp749jdH41P9QiSVjUKhQKNlz0aL3sc2vsAYDGYMUZnyQHuyAxyIzOxZBoKXWdO1qNL1qM7mSgb1EpsAhzze3HXdUbtUrJFv9GQyz9fLeLcwfweyG0G3ku/cc+jVFWPqvnbVU1lGDKYvGPyTdepFWrubXAvT7Z4kqbuTYud35hrZueqs1w4Gm+1BQS5Mmh8S+ydiw9Kp/3xJ3Gz3rEe/9akL8ubD6aJjxNjutRgeef0KDixGk6ugrTIm8cDOsiS4i0fBlvnm8dvg2SRsGQZMKcbMKfnkrknquQXK0AvAtql5sCBA4wbN04EtAUCQY3EnGkgde1F9GHJVpvSUYPbsCbWVi/lYeuVrWQYMkp0rkkycTj2MA80eqDc970tWQkQ8qeskBJ9jEyzJ3szxhORm79prFKY6NDJSPtHH0JVRUmIWSnJcjA7Vm7v4uzlzahZc6uNwk9NQDIaSfh0ISk/5vch1dSpQ8DChdi1bAHAh3+HW6tsHu9aj+Z+pV+DCe4erly5wqRJk0oczAbRgkYgKDO6FDjwORz+FowF9rnUtvmBbMeqfT6VJInMfyPJ2J7//O7Q1Q/XoY0qrIjkl7O/8OGRDzFL8mdRQ5eGfNHvC+o6V8z7ypENEZw9EAuAUq1gyMRWePiXrtWWoOSYMzOJfettMvPUPgBsW7QgYOGn2NzwWRG+bxcRJ44B4ODqRp8nxt9RXwWlZ+n+CLLz1o2jOgXi52JXxR4JKoo7rlcxbNiwMklF3khSUhL9+vXjzJkzTJgwgS+++AKDwcCXX37JxIkTWbNmDZs2bcLWtuRSAv/99x+DBg0iJSWFFi1a8NZbb9GsWTM5C2fbNj766CNWr17NCy+8wJdffnnLbGAHh1s/TKvVQipEILibMGcayDoUS/bhWCxZxkJjSmcbHO/xx6GzLyqH8vXSqQ0obVRoG7igbSBXBUuShDndUKAXdyaG6EwwFUiOMlkwXM3AcDV/M1bpbFO4ijvA8SaJqey0VNZ//D6xF87JBoWCPk+Mp/2QodWm4qM0VVPXsVfbMyJoBE8EP4Gvw603U9Pidfz9zRlSYvIfTNsNqkvXBxuiVBWfGJa2bh2xb70lS38CW4L78WOTe0Gh4O37g1Hf4tpqiSkXzm2G4yvh0g5uklWwc4c2j8qBbJ/gYqeRzBbMGXKg2pxuwJyRaw1cW22ZuYVUCEqFJEv3C/LJzs4mPT0dk6n470tSUtId9EggEAgqBkmSyDmdSNr6S1h0+e9xdm28cB3aqMLWlTsid1jVX26HEiU7IndUXkBbnwFnN8GZ3+DyLpAsmCUVp3VDOZL1KCYpfzOqTpATvca0wNWn6uQeM1OSWDPnDVJjYwBw9vLJC2b7VJlPNQ1jTAzRU6eRc+qU1eY0aBB+H7yPyskJgGNXUlh3Uv4eu9prmDaw8vuhC6o37u7uBAWV7vdAtKARCEqJLgUOLobDS8CQlW9XaaHj09Dj5VK326oMJItE+sbLZB2Isdqc+tXBeWC9CtnXMVqMzD8yn1/P5Sv69Qzoyfxe83GycSr3/AAhe6I5tvmKfKCAgeNa4N/ErULmFtxMzpkzRE+dhjEqv7jAbewTeL/yCkqbwkUd2Wmp7Fz2rfV4wPgXsXUUiQbVmXSdkWX7rwCgUSmY2Kdx1TokqFDueFTV3t6eevXqlXuekSNHcubMGV566SUWLVpktfft25dhw4axfv16Jk6cyI8FMnxvR2xsLCkpKbRt25ZDhw6h1eZX93Xv3p3OnTtz33338dVXX9GgQQNeeeWVYufKysoqdkwgENw9GKKzyNofje5UIpgLB8A0dZxw6u6PXStPFDUtuFeNUCgUqF21qF29sG/tBYBksmCMy86v4r6WiTlZX+g6S4aBnNBkckLzqpmUoPFztPbiztZksv6buWQkJgCg0dpy30uv0qhD+aWiKpLSVE0B/K/e/5jVbRbONrevWrl8IpF/l4dh0MtZixpbFf3HNqdR+1tnV6dv2EDs629Yg9lX+jzAZy69QKGgfzNvegV5ldjfKic+TJYUP/0r6JJvGFRAo36ypHjTIUiSRg5QX07DnG7AVDBInSH/35JlvH0v7PKgkKX7azvR0dF88MEHbNiwgZiYmNtfIBAIBDUMc5aBtHUXyQkpUJXtoMFtWGPsWlasnGdablqJgtkgq8Ok5aZV6P0xGeDiNrkS+9zfhfpxxhmasivjOZJNDaw2O2cbeo5sQuOO3lWagJiZnMRvc14nLU6upnL28uGRd+bh7CVUVEpK5s6dssR4uizdikaDz4wZuD0+xvqzNVsk3t0Qar1m+qCmNb+tjaDcDBkyhLNnz5bqmsTERMLDw2+puigQCICcNDj0FRz6GnIL7EWobKDDU9BjKjj7V5V3hZDMFlJ/v4DuRILV5nJfQ5x6BlTI/Gn6NKbvns6RuCNW21MtnuLl9i+jUlaMol/E6ST2/HzOetxjRBMadxBricpAkiRSV6wg/uNPwCgXIymdnfGf+wFOAwYUec2OpUvQZ8k9zZve05PGnbreMX8FZWPp/ggyc+Vk4BEd6hDgKqqz7yZq5I7oH3/8wa5du7C1teXdd98tNKZQKJg3bx7r169n+fLlTJo0iQ4dOpRq/rfffrtQMPs6Q4YMoWfPnuzdu5dFixbdMqAtEAjuXiSLhD4smcz90Rgibgg0KsGupSeOPQLQ1hUyeJWFQq3EJtAJm0An6CY/SJmzDIV6cRuuZSLlmvMvsoAxOgtjdBbZh+SNx352j5LsE0OmMo0WDw/CO7j6VXuUtmrKLJlvG8y2mC0c/usyx//Jl+Ny83Pg3uda4uZ7a4WR9E2biJn5mjWYrRnxCC9LncEsoVYqePO+5iV4VVWMPgNC/5SrsaNl2SiLZItZCsAseWK2C8Ls0wezY0vMORrM23Mx/3kcS3b5K6OVjhpULlpUzjbyVxctplQ9uiNxJZtAAtsKDmTUNCIiIujatStJSUmlamNTXVQXBAKB4HboTieStv5ioc8du9aeclW2Y8UG8rIMWSTllFzFQokSV61r+W9ssUDkATj9G4StB31aoWG9xYGDhhcIS+uWb1RAy14BdH2wIdpy9AyvCDKTk/ht9uukxctrShdvH0a9Mw9nT7EBXRIko5GERYtI+WGp1aYJCCBg0ULsWrUqdO5vx64REi0/czX3c+axzkIyWiDv2/Xp04fRo0fTvn3J+phu3bqVsWPHYjabb3+yQFAb0afDoSVyVXZej2gAlBo5ybvndHAJrDr/bkAymkn+6Sz6cLnnNApwezgIh44Vo5JyKe0Sk/6dRFSWXMWrUWp45553eLBxxSk9xF1OZ+t3Ide3V2g7sC5t+tepsPkF+ZjT0oh5402yduyw2uzatCHg00/QBBSdAHH+8H7OH94vn+vkTL+nn78jvgrKTnqOkaX7ZXVotVLBC6J39l1HjQxof//99wD069cPV1fXm8abN29O8+bNCQ8PZ+nSpSUOaDdq1Ijp06fTp0+fYs9p06YNe/fuJTo6muTkZDw8yt+zTCAQ1AwsehPZR+PJOhCNOTW30JjCTo1jZ18c7vFH7Vqy3s2CikXlaINdcw/smsvvy5JFwpSgwxCZSW5kBoZrmZgSdIWqZ7UqO/zt5cWNaVMyMZsOova2w6aOs7UXt8bHvsJ6LpWGVH0qO6/t5EjckQqtmtJlGNj6QyjR51KttsYdven7eDNsbG+9LMjYsoWYGTPlTWjAdfSjzG3yALmn5c3cJ7vVp6FX9ZJekiQJSW/GnKbHfPEU5vCDmKOuYja7YJLuxyw9hVnyRKKA30YgAyCz5DdSgNJJDlKrCwSrVS4F/u9sg0J9s1qDZLSQcyYJqQRS4go7Nfa1PKD9zjvvkJiYiIuLC0OHDiU4OBg3N7cikxGvc/DgQb777rs76KVAIBCUHnO2kbT1F8k5nR9gVtqrcX2osVWlpqIwmo38dv43vjn1Dam5qbe/IA8LFvrV7Ve2m0oSxIfIQeyQPyAj+uZT7Dw47zqJ/efakaPLX7R51nGkz2PN8GlQ9QmjGUmJrJnzRn4w28eXUbPm4exZgxRqqhBjbCzR06aTc+KE1eY4oD/+H3yAysWl0LnpOiMf/ZNftfbuA8GoqmBdLqh+WCwWvvrqK0aNGkWfPn0YMmQITZo0wcnJCaWyaHU00YJGICiG3ExZVvzAl4UTzJRqaDsGer0CrtUrmciiN5G0PDS/yESlwOOxZti1qJhn5T1Re5ixZwbZeT3DPWw9WNR3EW2921bI/CC3f9v01WlMRnl/pUknH7oNE8G3ykB3/ATR06djio212tyfeRrvl19GoSk6STInM4N/f/jaetxv3HPYO7sUea6g+rBs/xUy9fLe2sPtA6njXnWtiQSVQ40LaBsMBv79918AOnXqVOx5nTp1Ijw8nE2bNrF48eISzd28eXM+/vjjW56jUslyIkqlEjs7IVcgENQGTEk5ZB2IIftYPJKhcDa32ssOx+4B2Lf3vqk/s6BqUSgVaHwd0Pg64NDZF4vFzN4ffyRyzwk8tP542Prj7VAXjVS40smUkIMpIQfdf/HyPDYqbAIdrb24beo4oXKqHJnD5Jxk/o38l21Xt3E07ihmqXTVA7ermoqLSOefb0PIykvIUCoVdHu4Ma37Bd62ejVj61aip78CeRUNriNHEjP2RTZ8cxgAdwcbpvRvUip/y4skSVh0psL9qa///3of6zQ9krFgFW+XvH+lQKkoUFFtg8q5iGC1k6bMrQUUGiXuI4NIXhl2a7lyBbiPDEKhqd0tDP79918aN27MgQMH8PQs2YaFWq0WAW2BQFCtyQlJInXdRbl1RR62LTxwe6hxha47JEnin6v/8Pnxz7mWea1U1ypQ4GTjxKD6g0p309QrcOZ3WVI8sQiJYI0DNLuP1MBR7N7vTvSJdK5/IGq0KroMbUirPgEoq0ELn4ykBH6b8wbp8bKyiquPH6PemYeTR+1ONispWXv2EDNjJua0NNmgVuPz6iu4jR1b5Fp04fbzpGQbAHigjT9dGoqCAoFM/fr1rb8zERERpWo3WB3Jzc1l0aJF/PLLL1y8eBGVSkXz5s158sknmTBhQrFB+ttx5coVGjRocNvzPvroI6FCWRvJzYIj38KBzyGnQHKbQgVtR0OvV8GtfpW5VxzmLANJS0MwxsjBZoWNCo+xwdg2di333JIksSx0GQv/W4iUtxZp7t6cz/t9jq9DxfUL12UY2PDFSfR5676Apq70H9u8Soop7mYki4WUpUtJWLjIupelcnXFf/6HOPbufctrdy3/Dl16GgCNOnahaTfRrqK6k6k38sO+ywColApe7Ct6Z9+N1LiAdnh4OMa8Hgf169cv9rzrY1evXiU9PR0Xl4rJoLlw4QIAHTp0wN6++AyPn3/+maVLl3L+/HkSExNxc3OjXbt2jB49mkcffdQaGBcIBNUTSZLIvZRO1v5o9GdTbgoyaYPccOoRgLaxq1hw1gAMOTo2ff4Rl48fBSBBf5VOvR+m3qN9sKQZClVxG2OywZL/A5cMZnIvp5N7OV9yS+VuK/fizuvHbePvWGTlbUlI0CVYg9j/xf+HRSpZNXZRFFc1JUkSoXui2fvbBSx5vd7tnW3434SW+JfgoS/z33+Jnjbd+gDg8vBwvN95h+eWHLSeM21gEC52FSf/KVkkLNnGIoPVpgI9qzGVs2G1WpFXPa1F7VJ0ZbXSQVPpf+d2wR54PBFMyprzcqW2Avl9J++rwk6N+8gg7ILFRm5ycjIvv/xyiYPZAK1bt2bWrFmV6JVAIBCUDXO2kbQNl8g5mWi1Ke3VuA5thF0brwptl3A07igL/1vImaQzhez3NriXzr6dmXNwDoB1A7cgCmQ/PujxAVpVCdSIspMgdK0cxL52+OZxpRoaD4BWIzE1+B//7Ujk+MqrWEz5661G7bzoMSoIR7fqoX6UkZjAb3NeJz1BTnp09c0LZruLYPbtkEwmEj/7nOQCyWVqfz8CFy7Erk2bIq85F5fJykNXAbDTqHj93mZ3xFdBzaE0rWeuUx1b0CQlJdGvXz/OnDnDhAkT+OKLLzAYDHz55ZdMnDiRNWvWsGnTJmxtbct8D3t7+1u+dhsb0Ze+VmHIhqPfw/7PQJecb1coofWj0PtVcG9Ydf7dAlOanqTvQzAl5QDymslzXEts6jiVe+5ccy6zD8xmw+UNVtugeoN4r/t72GsqrsrToDex8ctTZCTpAfAIcODe51ujquWJ6xWNKSWFmNdeI3vPXqvNrmMHAj7+GI3vrZMTLp84StjenQBo7R0Y8MwL1fLzQ1CY5QeukJFXnT2sXQB1PUR19t1IjQtoR0bm9/v08ipe0qvgWFRUVIUEtJOSkti+fTsAM2bMuOW5kydPZvr06bzzzjvY2tpy6tQpFixYwOOPP84333zDunXrcHd3v+Ucubm55ObmyxpnZGTc4myB4BYY9RC2Ds5uBF0q2LtBs/sh+CHQlP2h6G5EMlrQnUwga380xjhdoTGFRol9e28cuweg8RYfijWFjKRE1i2YQ+JVuYeKUqWi/zMv0Lr//+RjDzvUHnbYt5N7HkpGM4aYbAyRGXI/7shMOXBaAHOKnpwUPTmn8jafVQpsAhzzAtxyJbfKVVvsgjcuO45tV7ex7eo2TiacLHLjONAxkIH1B9InsA+Td0wm05BZ5HnXKa5qymgws3v1Oc4dzu/R7NfYhf892xIHl9tvEGfu3EnUy1PBJC8KXR56CL/33uOPEzGcjpI3nZv5OvFop5L3eZLMEubMIqqpCwauMwyFEgvKgoIcVIokVIpkVCShcrNH1SAYVdMOqDyc5WC1vbraPJjYBXvg/0YXdCFJ6EOSsOSYUNqpsW3piX1Lz1pfmX0dX1/fUgWzAVq1akWrG3pyCgQCQVWTE5ZM6toLWDILVGU3d8dteJMKrcq+mHqRRccXsTtqdyF7Z9/OTOswjRaeLQBZTvOt/W+RYchAiRILFutXJxsnPujxAX3q9Cn+RrlZcG6zHMS++C8UpTRT9x5oNVJ+DnHwIDIsmd3zQ8hIzLGe4uRhS69Hg6jfqvoEitMT4vltzhtkJMrBbDc/f0bOmiuC2SXAGB9P9PTp5Bz7z2pz7NsX/3lzURXRQg7kQOXsDaGY89aCL/RphL+rUMgTFOa5556ja9euJT6/uragGTlyJGfOnOGll15i0aJFVnvfvn0ZNmwY69evZ+LEieWqQg8NDb1lUZCglmDQwbGlsH8RZOcn0qFQyp/NvWaAZ/WtaDQm6Ej64QzmdFm5Q+Vig+czrSpkfy5Rl8jLO1/mdNJpq+2Fti/wfOvnK3S/wGy28M93ISRGyu3NHN203D+pLVq7Gheiqdbojh4levormBISZINCgcfzz+H14oso1Lf+XufqdGz7Ll/tt/fYZ3B0F4UF1Z2sXBPf78vb91XAJFGdfddS494tMzPz+1neKjux4FhFBYI/+eQTDAYDw4YNY8SIEUWe4+rqyr333su3335LYGCg1d6xY0dGjBhBt27d2Lt3LyNHjrRKpxfHvHnzmD17doX4LqjFnN0M6ybKfXAUSpAs8tfwDfD3TBi2BJreW9VeVjnmDANZh2LIPhyLJbtwH1uViw2O3fxx6OSL0r7iKlAFlU/85YusXTCH7NQUQM6sfGDa69Rr1bbYaxQaFdp6zmjr5fdoNKfnYriWSW5kJobIDIzRWUjGApXUZska/GZ/DABKJ421F7e2rhOJLhlsj93BtqvbCj0kFaSecz0G1RvEwHoDaebezPrg9EGPD5iyYwoKFKWqmkpP1PH3khCSo7Ostjb963DP8EaoSiDbmbVnD9FTXoI8ZRTnoQ/g98H76IwWFmzJlwyddX8w6rz5JJOl6AB1ei6mPLsl03Brae0SoLBVy1XUTmrUlhhU6SdQpR+Xg9eKZFSKJBRko3D2g7aPQdux4FH9+1EpNEoc2nnjkJdgIbiZIUOGcOLECcaNG1fiaxITEwkPD6dXLyETJhAIqh6LzkjahsvoTiRYbQpbNa4PNsK+bcVVZcdnx/PVqa9Yd3FdIQWYxq6NmdZhGj0CehS6V9+6fdnhvZmtBxewI2o3aWY9ripb+gX2ZtA9M9DaFpEkbjbCpR1yX+xzm8Gou/kc72B5o7zVCGsPzuz0XPZ/H8KFY/nfA6VSQdtBdek4pD6aatTKRw5mv05Gouyrm18Ao2bNFZubJSBr7z5iZszAnJonZatW4z1tGu7jnrrl7/k/oXEcuCRXDdZxt+PZXtWzUlBQtfTs2ZPHHnusxOdXxxY0f/zxB7t27cLW1pZ333230JhCoWDevHmsX7+e5cuXM2nSJDp06FA1jgpqNsYc+G8Z7FsIWfEFBhTQ8mHoPRO8gqrKuxJhiMok6ccQ636d2tMOz/EtUbuWv0gnNDmUKTumkKCTP+ft1HZ80OMDBtYbWO65CyJJErtWnSUy9Pr+lJr7J7epNko0dwOS2Uzyt9+S+MWXYJHXvioPD/wXzMexe/cSzbFn9VKykpMAqNe6HS37VOzvgaByWHHwCmk6ee/yobYB1Pd0qGKPBJVFjQtoVxV79+7l448/JigoiB9++KHY89q2bcvmzZuLHHNxcWHevHk8+OCD7Nixgy1btjB48OBi53r99deZNm2a9TgjI4M6dUpeAScQcHYz/FLgAe/6Rtb1r/p0+Hk0PPoTNBty5/2rBhiiMsnaH4PudCKYC0fYbOo64dgjALsWHmXujSuoOi4cOcDmLz7BZJCrq118fBk28x08Akr/Pqpy0WLnosWupVyFI5ktGON0GK7lV3Ffl7y6jiXTiD4sGX2YvBlnxkIDrQ297FrgbWfPWbsIom0SaOTWiAH1BjCw3kCauDYpcnOvT50+fNb3M2bvfZc2yY3pltkWJ7M9mSodB5xOcsrjIu/2ml2oairidBLbfwzDkJP3wKdV0e+JZjTp6FOi15y1bz9RkyYjXQ9m33cfvrPfx5Rq4PftF2iXacELGzq4ORC0P574v6/JweoCvT/LitJBXXSf6uv/d7JBmXwKjq+EkD8gNy9x7fqqRqmGoMHQfiw06g8qsdy5m3jjjTfo3r07o0aNokePHiW6ZuvWrYwdOxazuXR96QUCgaCiyTmbQuqfF7BkGKw222buuA1vjMq5YjY0Mw2Z/BjyIyvDVqI36612H3sfJrWbxAMNH0ClLCJgfHYz2nUTeUCfxgMFE2EvnYHDq/ITYS0WWUb8zBpZVjwn5ea5XOrIm+StR4FPC6vZYpHboBxadwmDPv892a+xC70fa4qHv2OFfA8qivSEOH6d/TqZSXIlm5t/oBzMdru12lptRzKZSPzyS5K/+RbyZKHVfn4EfPoJ9u3a3fJavdHMexvDrcdv3ReMrab6JDgIqgfdu3fH27t0CaCNGjVi7NixleRR2fj+++8B6NevH65FKBY0b96c5s2bEx4eztKlS0VAW1A6jHo4vgL2fgJZcYXHWgyD3q+Bd/Vv56C/lEby8jAkg7xu0Pg74Pl0S1SO5Vez2XJlC2/ve9u6XvJ18OWLfl/QzL3ivy9HNkRw9qD8c1CqFQyZ2KrarXtqMqbERKJnzEB38JDVZt+1K/4L5qMp4edFZMhpTm/fAoBGa8vAZydVG0U/QfFk55r4fm+B6ux+ojr7bqbG7fA6OeX3xNDr9cWeV3DM2dm52PNKwtmzZxk+fDgBAQFs374dNze3Ms81cOBAVCoVZrOZjRs33jKgrdVq0WpFlpagjBj1cmU2UHwpZF6D1nUTYfq5WiM/LpklcsKSyNofg+HKDQoOSgV2rTxx7O6Ptm753jsEVYMkSRzb8Cd7flpm3UALaBbM0OlvYu9c/vYTAAqVUpYYD3CEPJU7c7YRQ1QmCecjSb4Ui2OiBntz/nu4CiWNcuvQKLcO96X1lH3VKrC1uGJj74TWzglJa0JRjApA16zWrL4wD0lvxoKEEgUWJLpntkWRosK9XVNA3ig+suEy//191Xqtm689gye0wt2/+AxFi95krazW/RdK6m8bsGk+CqWdG2rvOuDgSexsuQdmf6A/ebKPqWb0qUVsZBf5jQOlo8bas/p6gFpdMFjtbIOiuE1LXQqcXi4HshNCbx73DIJ2T0CbR8FRVDjfrVgsFr755hueeOIJevbsydChQ2natClOTk4olUUnHyUlJd1hLwUCgaAwlhwTaRsvo/svvzJKoVXh+kAj7Dt4V8hmmdFs5Lfzv/HNqW9IzU212h01joxvNZ4xzcdgqy5mvV/SRNjmD0DMSUiPvGkK7NzkDfJWI6FOV7jhPTkxMpNdq8+ScLWA6pqDhm4PN6LZPX7VbsMwLT6O32a/TmayHMx29w9k1DvzcHAt+35AbcCYkEDM9FfQHT1qtTn27o3fh/NQl2Av5Zvdl4lOkxNFezbxZFBwyZIxBbWLDz74AIA9e/bg6+tLUNDtq0u7du1aKonyysZgMFiVGzt16lTseZ06dSI8PJxNmzaxePHiYs8TCKyYcuHEStj7KWREFx5rPhT6vFYo2aw6kxOaTPLP4WCS93ZsGjjj+WQLlLblC2lYJAtfnfyKb05/Y7W18WrDor6L8LSr+HYiIXuiObb5inyggIHjWuDfRKwnKorsAweInjET8/XnfqUSz0kv4vnccyhUJUuKM+r1bP32c+txzzFP4eIt1iA1gVWHrpKSLScLD23jT0MvkShyN1PjAtp169a1/j8xMbHY8wqOFZT+Li3nzp2jX79+ODg48O+//5a7QtrOzg4vLy/i4uKIiIgo11wCwS0JWyfLjN8WST7v2PfQ9nHQOt+0+XS3YMkxkX00jqwDMZjTCvdEVtqrcejih2NXP1Ql6CssqJ6YTSb+/eErzuzYarU179mXQc9NQa2pHLl4SZK4kHZB7ol9ZRuX0i+BGyhcFQQafGiWU59mOQ1oa2iOX44HCil/s1aRK5F7PpXc86lc39pVe9kV6sWt8XFAfy6F5JVh1twUZZ7E+PWvkt5M8sownEYGsXtvDNfC8zexG7XzpM/IJihzLeScTSksBZ6R/38pt3Dlqjbo/sKvM6ewFP9NKEHlVExFdV6gWuVkg0JdyvcXiwUu75QfyM9uArOh8LjGAVoOg3ZjoU5nqGab4YKKp379+tagx+rVq1m9enUVeyQQCAS3Rn8+ldQ/zlt7PgJog9xwe7gJ6gpYd0qSxD9X/+Gz/z4jKivKalcr1YxuNpoJrSbgauta/AQlToQFwv8qbFbbyUpPrUZBo36gvrlaypBj4vCGy5zZGXU91xCA5t38uGd4I+wqoMKqokmLi+XXOa9bJSfdA+owatZcEcy+DdkHDhD96gzMybJCESoV3tOm4j5uHIoSPGNGper4atdFANRKBe88EFztEh0E1YM+ffpYfzeefPJJli5dWsUelZ7w8HCMeWpYt+pvfX3s6tWrpKen4+JS+iTtLVu2sHnzZkJCQoiPj8fJyYmWLVvy8MMPM27cuFu2dBTUIMxGOLka9nwM6dcKjzW7Xw5k+7aqGt/KQPZ/8aT+cR7ycutsm7njMaZZ8QnwJURn1PHmvjfZHrndanuw0YPMumcWNqqKX5NEnE5iz8/nrMc9RjahcQeRgF8RSCYTiYsXk7zkm3xFGG9v/D/+CIfOnUs1175fV5IeL1fQBzRrQduBtVPJtKaRYzDz7Z7LgLwdKKqz735qXEC7efPmaDQajEYjV65cKfa862P16tUr02IP4MyZMwwYMAAnJyd27NhRKJheHiSpnI1DBYLbYcyRZYVQUOJGtf+8Kf9DAbbOYOsCtq7yVzvXAseuNxzfMF4Nq7yNiTqyDsSg+y8eyWApNKb2tsexhz/2bb1RVqNefYLSo8/KYsPCuUSG5Pen7jZqDF2HP1rhG2GSJBGeEi4Hsa9u42rG1ZvPUUi4BXrTpl4P+tftT6BTIJZcM4aoTAzXMvOkyjNukug2JeZgSsxBdzyvp6RaARbp9n/KEqT9dh4nvZn29ipsleDmZIMmKpOkBcfK94JVClQuWnQ2SvbEpZOABZ2NkpceaoGjlz0qFxuUjjYolBX4fU6LhBOr5QfyGx/GAQI7Q/sn5EowrdPN44K7mrKspcSGuEAguNNY9CbSN0eQfSRf5lOhVeF6f0PsO/pUyPvS0bijfHrsU0KSQwrZ721wL1PaTSHQqQTJ3SVOhL2OAhr3l4PYze4DbdFVEJIkcel4Ivt+O092gWC+m58DfR5rin8T11Lc886RGhfDb7NfJytFDsp6BNZl5NsfiGD2LZDMZpIWf0XS11/nbyj7+BCw8FPs27cv8TzzNp8l1yQ/rz3ZrT6NvcUaT1A8Wq2WN954gwcffLCqXSkTkZH5ShdeXl7FnldwLCoqqkx7nK+88govvfQS06ZNw8nJifPnz/Ppp5/ywgsvsHjxYjZu3HjLoDpAbm4uubn5hQEZGRm3OFtwRzEb4dQvsGeB/BxdkKB75UC2f9sqca2sZO6LJn3jZeuxfTtv3EY0KXc7wJisGKbsmMK5VDnArFQomdZhGmODx1bK82Lc5XS2fhdiTehrO7AubfqJdqIVgTE+XlaEOZa/3+XQsyf+8z9E7V661jAx58M5/rectKnW2DDouSklSsQTVD2rD18lOa86+/7W/mLtWAuocQFtGxsb+vfvz5YtWzh2rPgN+qN58lb33Xdfme5z/PhxBg0ahLe3N9u3b8ff3986ZjKZiIqKwtfXt1AWY0JCAhMmTODNN98sVi5Ip9NZZS9vt1gUCEpMRozcx+7aEflf7CmwlLWPrSRLCurTgSKkBG+HSnvrgPetjrUuFVYdLkkSuRfTyNoXjf5c6k3jts3cZVnxxq4iyHEXkBoXw9r5c0iNkauSVBoNgye+TLPuvSvsHpIkEZIUwrar29h6dSvRWdE3naNAQTvvdgysN5AB9Qbg6+BbaFypVWHbyBXbRq7WOc2puYV6cRtisgr3czeVPHCnAprYFkjMyDHdNg6u0ChlVQJFLjmnDmPJTETSp6JtXAfv6S+g9nRAaa/BAgz9ch+hyBKQH97fCvf2FSy/ZMqFsxtlSfHLu7gpim/vKcuJt3uiRvT6ElQezz33XKkkIw8ePMh3331XiR4JBAJBYfQXUkn940IhVSBtY1fcRjRB7Vr+BNCLqRdZeHwhe6L2FLJ38e3C1I5TaeFRCinRsxvlXtmS5fbnooAmg2DMb7c8Kz0xhz2/nCcyNNlqU2uUdLyvPm0H1EVVWsWWO0RqbDS/zXmjUDB71Ky52Lu4Vq1j1RhTYiLRr85Adyi/Z6VDz574L5hfIonx6xy4lMSmM7EAeDjYMKV/kwr3VXD3oFarmTJlCm+99VZVu1JmMjMLtF+4RYV0wbHSBpFtbW3p168fCxcupHXr1lZ7hw4dePjhhxk8eDA7d+5kyJAhnDhx4pZtD+fNm8fs2bNLdX9BJWM2wZnfYPd8SL1SeKzJIDmQHVCz+q5LkkTGtqtk7shPanfs5o/L/Q3LnUB/IuEEL+98mRS93DLNUePIgl4L6BnYs1zzFkdavI5Ni09jMsrrqyadfOg2rFGl3Ku2kbVnDzEzX8Ocmrffq1Lh9fJLeDzzTKkD0SaDgX++/syakNdt1Bjc/QMq2mVBJaA3mlmyO786e7Kozq4V1LiANsD48ePZsmUL//77b5FyO2fPniU8PByFQsHTTz9d6vkPHTrE4MGDqVevHtu3b78pUzIqKooGDRqwc+dO+vTpY7XrdDrWr19Pjx49ig1ob926FbNZlnUta7BdUMsxGyHuTF7w+jBEHS26erG0OPnLASJ9OuSk5QW108ByG5nhm/zLhax4+V+pUciS53YuRQS8XW8fENfYIRnNZJ9IIGt/DKZ4XeHZNUrsO/rg2M0fjZd9GfwTVEeiwkNY/8lc9Jnyw72dswsPvfoW/kHNyz23RbJwKvGUtRI7LjvupnOUCiUdfDowsN5A+tftj7d9yaWjFAoFandb1O622LeRr5OMFgyxWXJw+1omOWHJYCzJBnMR82tVN0t/W3tVa1G72KCwU5Nz8iTXnpmCRSf/zTj07kXAJ6+itMmX2/r9aCShMfL3ONjPmZEdKzCrOC5ElhQ//Svk3JCAolBC4wFyEDtocJFSpoLaR8+ePXnsscduf2IearVaBLQFAsEdwZKbV5V9uEBVto0Kl/sa4NDZt9yJlPHZ8Sw+uZj1l9ZjKRCAbuLWhGkdptHdv3vJ7yFJEHkIrh0tYTAbQAJjdrGjZpOFk9sjObrpCuYC65d6LT3o9WgQzp52JbzPnSclJpo1c14nK1Xe6PasU4+Rs+Zi71w2xbfaQPahQ0S/8mp+z0qVCq+XXsJjfOk2lE1mC3M2hFmPZwxuiotd5bQLEtwd+Pj4lKhvdkWzYsWKMu0zXmfz5s0MGjSoAj26Nb6+vtY+3TdiY2PDokWLaNOmDeHh4fz44488//zzxc71+uuvM23aNOtxRkZGudsyCsqIxQxnfpcD2SmXCo816g99Xoc6xfdlr2okowXdmUT0ocmYdSZU9mpsW3hg18KT9L8jyD4Uaz3XeUBdnPrXLff6ae2Ftcw5NAdT3h5nHac6fNnvSxq6NizXvMWhyzCw4YuT6LPlYqOApq70H9u8YlXtaiGS0UjiZ5+R/P0PVpvaz4+ATz7Bvn27Ms156M9fSMkrjvFt1IQO9z1UEa4K7gA/HY4kKUtOHh7S0o8gH1GdXRuokQHthx9+mN69e7N7925mz57Np59+ah2TJIk33ngDkPvodOhQOBNtw4YNPP300/j4+BQpqbNnzx7uv/9+mjZtyj///IN7KSUqABYtWsQzzzyD2w3ZyGlpabz++uuAvBE7ZIjoxSAoAdnJEHUkvwI7+jiYcm59jWeQXMkYeaDk9xnwLrR5pLBNksCoKxzgvjHgfatjQyalQ4LcdPlfKTFLHmRZhpJtGoRFKvwBptLqcKwbg0NDHUpnR0h0hcwbAuJaZ1DWcMlxo16WjDy7EXSpYO8m90kKfqhaSsFXBGF7d7J1yWeYTfJDiUdgXYbNnIWLt+9triwes8XM8YTjbLu6jX+v/ktCTsJN56gUKjr7dmZg/YH0q9MPDzuPMt/vRhQaJdq6zmjrOgOQsOQUhislz8RXedvh+XgwKmcblLa3/5jPOXWKa+OfzQ9m9+hB4OefFwpmZ+qNfPTPeevxrAeCUZX3QUyfLj+En1gJMSduHnerD+0ehzaPgYvIjhXk0717d7y9S9dzrFGjRowdO7aSPBIIBAIZ/aU0Un8/jzm1QFV2QxfcRgShdi/fWizTkMmPIT+yMmwlerPeavex92FSu0k80PABVCVdyyZdlJPITv8KaTe3TbklCiXYFV11G3MhlV2rz5Eal59U6uCqpecjTWjY1qtaqyKlxETx25w3yL4ezK5bn5FvfyCC2cUgmc0kLVlC0uKvwCInLqi9vQn49BPsO3Ys9Xw/HYnkbJz87Ng60IWRHUSQTHBrevXqRXh4eKmu2b59O3PnzmXHjh1lvq/FYrEWqZT1+us4OeXvW+j1+qJOv2nM2dm5zPcuitatW+Pv709MTAwbN268ZUBbq9XesoJbcAewmCF0Lez6EJIvFB5r2Af6vAF1u1SJayUlJyyZlDXnkXJM+V0SFZATmkyq6kIhtTrXBxri2L18ewEmi4lP//uUlWErrbYufl34pPcnuGgr5zPeoDex8ctTZCTJf7seAQ7c+3xrVJrqqU5TUzBGRxM9bTo5p05ZbY59++I394NSKcIUJP7yRY6s/x0ApUrN/55/CaWqhu8N1xLk6uz8hJ7J/UV1dm2hRga0AX7//XerbE5OTg6PP/44BoOBxYsXs3btWvr168fXX39903XffvstSUlJJCUl8eeffxbKLjx06BD33nsvOp2OkJCQYntmF9e30cbGBq1WS3R0NC1btmTGjBm0adMGBwcHTpw4wYIFC7h06RJdu3bljz/+qJhvhODuwmKBxLMF5MMP35xteSMae1lCqE4XqNMZAjuBvbsc3PykaZ50+K1EhxVyUDe4iL5TCgXYOMj/yhJQMpsgN0OuuCx1QDytRNXhBksQmaah5Fh6cONbmo0iFEf1euw4hOKaBW5ZyJ5XHW7rklch7ppfBV4SyXS1rfz9qirOboZ1E+Xv23XJSIUSwjfA3zNh2BJoem/V+VfBSJLEgTWrOfTHL1ZbvdbteGDqa2jtHUo9n8li4lj8MbZd2cb2yO1WCaqCqJVquvp1ZVC9QfSt0xdXW9fyvIQSo8s1o5KkEm0CS5JErlqJxrtkCgQ5Z0KIHP8slmy50sqh2z0EfvkFyhs2KhbvvGTNery3pS9dG5YxgC9JcHW/LCketv7m5By1LTQfKvfGrtejwloQCO4u9u7dW+prunbtWiqJcoFAICgNllwz6VsiyD6YX1Gk0ChxGdIAhy5+5arGMZqN/Hb+N5acWkJabprV7qRx4plWzzCm+Rhs1SUIlmcnQcifcPoXiP6vzP4gWaDZA4VMOVkGDvx5ibMHCrx+BbTuV4fODzTApgQJdlVJcvQ11sx5g+w0WSXGq259RohgdrGYkpKImTGD7AMHrTaH7t1liXGP0q8RU7INfLI1P3HynQdaoBQVbILbMH36dAYPHszzzz9Po0Ylk/CNj49n9+7d5brvU089xVNPPVWuOa5TcM8xMTGx2PMKjgUGBlbIvW/0IyYmhoiIiAqfW1BBWCxy8cKuDyHpXOGx+j2h7xtQr1uVuFYacsKSSV4Zlr9FeePX68FsBbiNaopDu9IlMd9IhiGDGbtnsD9mv9U2utloXu30Khpl5aiAmM0W/vkuhMRIOUnL0U3L/ZPaorWr3muh6k7mv/8S88abWNLzCqA0GnxemY7b2LL3PjebTPyz5DOkvESjrsMfwbNu/QryWFDZ/Hr0GgmZ8j7l4Ba+NPOt2IQvQfWlxr6benp6cvToURYtWsTPP//MypUrUalUNG/enK+++ornnnsOZREb4RMmTODgwYP4+PgwfPjwQmOHDh1Cl1ehdqvsyOK4ntX4+++/s3XrVr744gtiYmIwm814eHjQvn173nnnHUaPHo1aXWO/9YKKRJ8B0ccKyIcfkwPAt8K1bl7wuoscvPZpCaoifp80tnIQ8+fR5Kc93kjeh/6wJZVTwatSy8F1+9IrHVirw4sIeEvZaeRcVZMV4Y0h48YsPBP2moM4Kv7ARnmxNDfMrw4vfYE4qGxK3zPcGjR3KV91+NnN8EsB6d3rkpHXv+rT5d+DR3+CZjVfGcJkMLDl60WcO5DfM7LNwHvpN+75UmVSGs1GDscdZtvVbeyI3FFok/g6NkobugV0Y2C9gfQO7F1pGby3Ilpvpl4JF+gKhYJYo0T9EpybExpK5DPPYMnr3WbfpQuBixejvKF/29XkbJbukzc3bNRK3hhSBin3jFg49ROcWAUpl28e92sjS4q3GlFs1ZdAUB4OHTrEt99+y9KlS6vaFYFAcJeRezmdlN/PY07Jf360aeCM+4gg1B5ll9eWJIl/rvzDZ8c/IyorymrXKDU82uxRJrSacPvkOmMOnPtbrsS+uP3mZFGFUq7oavEwbH1DfjYpRSKsZJEIPxjLgT8vkpudP7d3PSf6jGmGV93qL/uXHHWNNe8VCGbXb8jIt97HzklsihVF9uEjRL8yHXNinsS4UonXlMl4TJhQ6p6V1/lk6znSc2RJ1uHtA+hQT6wFBbenffv2LFmyhEGDBvHSSy8xcuRI/Pz8qtqtUtG8eXM0Gg1Go5ErV64Ue971sXr16t3UcrEiKK5oR1ANsFjg7AY5kJ0QVnisbjfo+zo06FU1vpUSyWghZc35Wy8z8lBolNi39CzX/a5mXGXSv5O4knEFALVCzetdXmdU01HlmvdWSJLErlVniQyVCyS09moemNwWRzehbFBWJIOB+I8/JnVFfoW9JjCQgIWfYteqVbnmPrr+dxKvyntdXnXr0/mhEeWaT3DnyDWZ+XqXqM6urdToqKpWq2XmzJnMnDmzxNc88MADJF3v73QDL7/8Mi+//HK5fHJ3d2fChAlMmDChXPMI7kIkSQ7kXCsgH54Qxi1Xcyob8GsrV15fr8B2KoWUctN75SBmUZW7kkXekKqulbsFq8Od/QGw6IxkHYkj+2As5vTcQqcrHdQ4dPHDsasfKue+YJ4hJwfo08ommW4xls5fswGyE+R/ZUHrXLaAuFor/3yB4n+X8jSc1k2E6edqtPy4Lj2NdR+/T+z5s7JBoaDPE+NpP2RoibIyDWYDB2MOsvXqVnZe20lmEbL4WpWWngE9GVhvIL0Ce+Fo41jRL6NY9NlGEq9mkhCZQcLVTBKuZqBLycXPWY1GwS1foyRJGCUoSfd6fXg4kU8/gyVDTqCx79SJOl9/hdLu5o33uZvDMZjl5IjxPRpQx72E/efNRjj/jywpfmHrzb05bV2g9SNyINuvdcnmFAjKyKVLl1i+fLkIaAsEggrDYjCT8c8Vsg7EWJdgCo0S58H1cbzHv1xV2UfjjvLpsU8JSQ4pZB/SYAiT200m0OkWFXoWi6yGcvoXCPur6GRZ31bQ+lE5kez6s4WDR6kSYZNjstj90zliL+ZngtrYqbnnoYYE9wyoERW2yVGR/DbnDXTpaQB412/EiLfeE8HsIpAsFpK/+YbEL760SoyrvDwJ+PgTHLp0LvO8oTHp/HQkEgAHGxWvDW5WIf4K7n4aNpT73qakpDB16lSmTp2Ki4sLzs7ORRa3AGTnqVJVF2xsbOjfvz9btmzh2LFjxZ539OhRAO67775S3+Ohhx7i2WefveW1kZHy3+CNLRkFVYgkwdlNsGsexBdeC1Cni1yR3aB31aoElhLdmURZZrwESAYLupCkMldoH4g5wCu7X7Hu97hqXfm0z6d08q3cvuJHNkRw9mAcACq1kiETW+PuX3oFQYGM4do1oqdOQx+S/zfgNGgQfu+/h6qc7ReSrl3lYJ7io0Kp5H8TX0alrpyqfUHF89uxKOIy5GTigcE+tPAXqkq1iRod0BYIqjUGndwXNupIfhBbl3zraxx9CgSvu8hVi+pyZvI1GyIHMcPWy5mdOalyBWSzB+TqihoQ3DQm6MjaH43ueAKSsXBQTONrj2P3AOzbeqHQFKjOLXd1eE7pe4ZfP75dlX1R5GbI/8pSHV4iJNm/sPU390qvISRdu8ra+XPISJRDthqtLfe99CqNOty6R5TepGd/9H62RW5j17VdZBtv3siwU9vRK7AXA+sNpGdAT+w1JQzaloPcHBOJkXLQOjEveH29x9KNHNeZ6eKgQipGevx6Vv3xHDMOjjY3jRdEf+4ckeOetko12XXoQJ0lX6O0v/k1H7iUxD+h8vfby0nLC31LkPWYeF4OYp/6pegEjwa9+T97Zx0mV3m34fuM+7pkLe5CPECAOBIIHiwtVkhwCi2lUL4ibYFCC0EClOLBnSbBYkSAuLvvZt1nx+2c748zO7uzvsludjc593XNdebovLMy8573eZ/nx8jr5fruXeDzR6FjqaysJDY2NmrbypUrGz64CVpbY1FBQUGhKXxH7FR8to9gWS1Xdncb8TP7oUk8dlf2/or9PL/xeVblRZdWGJc6jvtG38fghMGNn1y8Rxaxt30GVbn199vSYehMeTJZyqD6+8MTYYNf3s1B+2AO+U7HK5oxqFz00q+hd8xONFe8TKDnuWz46iBbFucgijXCd98xKYy/sg/mmK7hQio9ms1nf/tLtJj9f3/HaOn8rvITTbC8nPwH/oTr55rIVtMZp5P+7LNoEo/dQSdJEo//bxfV5tC7p/Ql2ab0DRVaRkOO5srKSiorK5s871ijaduLW265he+//56lS5dit9vrObD37NnD7t27EQSBm2++udXX/+abb8jIyGhU0N6yZQsFBXK5iGMRzBXaGEmCfd/D8iehcFv0vvTRspDde3KXErKr8e4sa3zOXF0E8B6DoC1JEh/u+ZBn1z9LSJJr3feJ7cOLk18k05rZ+ka3gh0r89jw7RF5RYCpNw0irW9su77myUzV999T8Mj/ITqdAAhaLckP/Zm4a6897s9xUQzxw2svIIbkCRZjZlxOSi/F4dtV8AdFXl1ek8h6z+S+HdgahY5AEbQVFNoKe27Yeb1eXhZua7oGtKCGlME14nXmWDlOvD06plqDLGJ2ISFTkiR8+ytxrM7Dt68ieqcAhgHxWMano+8d0/Y3pYIAOpP8CLvDW0V17fBjEcSPxR3eGhb9AXZ+CbHdIa579NLQed0oR7ZsZMHcf+L3yGUhLPEJXPbgoyT36NXg8e6Am1V5q1icvZiVuSvx1K3VDJi1ZiZmTmRa92mMTxvfsvqTx4jfG6T0qJPibNl5XZLjoLLI3ex5Wr0ac6yeoiI361whRpjU6AQiwnb1MiDJondRUGLq8KRGr+fdt4+cG28iFB7oMQ4fTuZ//oPKXH/WcEiUeGJBTazZA+f1x6JvpNvgc8o1vTbNh6Nr6u+3pcPwWTBiFsT1aPZ9KygAzJkzhzfeeIMbb7yRN998M7J94sSJnW4wUkFB4dRACoSw/5CN8+e8mgFZjYqY83pgGX/sruxCVyGvbHmFbw5+g1gr0aRvXF/uH3U/49PGN/y55yiCHZ/LkeIFW+vv11nlCazDroIeZzVb4uawbwxLS97C5wkBIqACRA55T2eVX83QvZnsfW8tjlpCfkySkQnX9idz0DFMIu0gSnOO8Onf/oKnSp7cl9KrD1f85W+KmN0A7g0byLv/DwSLw5MUBYHEu+4k8bbbEFpR6qchFmwrYN0ROZa1Z6KZm8b3OM7WKpxqnH322RGndks4dOgQq1evbscWtZ4rrriCCRMmsGLFCh5//HGee+65yD5Jknj44YcBuOGGGxg1alS98xcsWMDNN99MSkoKCxcubNBl/e6773LffffVqzXu8/kiKZV9+vQ5JsFcoY2QJNi/GH56UjbG1CZtBEz6C/SZ2iWF7GpC7kDLxGwACcQWurmrCYQC/GPtP/hi/xeRbRMzJvLU2U+1e+re4a0lrPyoprb5WTP70mfU8dX/PlURfT6Knn6ayo8+jmzTde9O+vPPYRjUwITMY2DTom8oPLAPgLi0DM648rpmzlDoTHy+MZd8u3wvMmVAMkMzFHf2qYYiaCsoHAtBPxRuD7uvw/HhVXlNn2OIDbuvww7stJGgP3FRxl0F0R/CvakY5895BEuiRUhBp8Y8OgXLmWnH5X5pd9rEHd5CAfzwKrnud0vxO+QZvw1hjGtA6O4hL2MyO8xNu+XHb1n29mtI4XjD5J69uexPf8USnxB1nNPvZGXuShZnL2Z13mq8ofpuZ6vOyqTMSZzb/VzOSDsDnbppN/OxEPSHKM11ysJ1dhXFOQ4qClw0V5pMo1WRmGklubuV5B42krtbiU02EQqJvPPgzxS6g/xQFSRNK9BNq0IryBHjBYEQ+QEJEblGU++RDQvavoMHybnpZkIV8gQRw2nDyHzjv6gtDUdgfbL+KHsK5YiuoekxXDmyTrypJEHuBtj8Huz4EvzO6P0qrZwQMeJ66D3p+OrEK5ySfPTRR0iSxGeffRYlaMOx1fpTRHAFBYXjwZdTRcWn+wiW1vRPdVlW4mb2Q5t0bMkuDr+Dt3a8xfxd8/GFasrppJhSuHvE3VzU6yLUdb8//S45hnTbJ3BwWf2SHoJaHvQedhX0ny5P0GwBh7eW8O1r22sNNquilj5PqMZ5BKg0AqPO687I87uj0Xad7/iSnCN8FiVm9+XKv/wNg0W5L6uNJIqU/fcNSl58EUKyy02dmEj6v57FfPrpx319tz/Ik4tq0lP+etEg9Jqu83ek0DmYM2cO113XciHigw8+6HSCNsDnn3/O5MmTef755/F4PPzmN7/B7/czb948vvrqKyZPnsyrr77a4Lmvv/46paWllJaW8uWXX3L//fdH7bdarTgcDsaMGcMf/vAHxo4dS3x8PLt37+a5555j8+bN9O/fn4ULF2IwKAkJJxxJgoNLYflTkFcndj51mCxk9zuvSwvZwUovrvVF+I86mz+4GgFUxpZLFhXeCu776T42Fm2MbPvdkN9x94i76/ej2pjCQ3Z+fGNnZLxn+LQsTpvcvm7wkxXf4cPk3Xc/vj17IttsF11E6mOPNTpu1VoqCvL4+ZP35RVB4Lw596DRtf24oEL7EAiJzKvtzp6iuLNPRRRBW0GhJThLakWHr4P8TRBsOBo4QtIAyBhT48BO6AON1HJSgGClD9ev+TjXFdarq6OO02M5Mx3zmBRUhpP8YyvKHd6t+eM/+Y08qFl3MLPxF6DRabGeCvlRsKXh/dZuDTu747rLDtw2vlEQxRAr5r/Fpm+/iWzrM+Z0pt/1R7Thm+0qfxU/Hf2JxUcW80v+L/hFf73rxOpjmZw1mWndpzEudRxaddvVxQkFRMrynZF618XZDsrzXUhi02KbSiOQmBEWr7tbSe5uIy7VhEpd/zNCo1Iz5cZBfPvqNkQJcgMSuYFQ/YsKMOXGQQ0OKvsOHSb7xhsJlcllDwxDh5L1xhuoGxm8rfIG+PePNTOM/zpjUE0tTFepHCe+eT6U7Kl/ctJAGPlbOdLUfOwxlAoK999/P88991zEOVKbv/zlL0ydOrXF1/rxxx95+umn27B1CgoKpwpSQMS+JBvnytxarmyBmHN7YDkr/Zhc2YFQgE/2fsJ/tv2HSl9lZLtVa+WWYbdw3YDropNjxBAcXgHbPoXdC+pPIgN5suywq2HIFWBpPK2lIYKBEEvf3d1i51Ra31gmzupPXGrXqgtZkn1YFrMdcnmg1N59ueIvf8NgVsTs2gQrKsh/8EFcK2ui703jxpH+r2fRJLXub6sxXll+MFL7cPKAZCYNUJxsCu2PxWIhKyuro5tRj8TERNavX8/cuXP56KOPmD9/Pmq1moEDB/LKK68wZ86cRuuCz549m19//ZWUlBQuv/zyevsLCgr46quv+P7773n//fd56qmn8Pl8xMXFMWzYMObNm8dNN92E0diJDQMnI5IEh36Sa2QfXRu9L2UoTHpInpTWRYVsKSTi3VOOa10h3n0VLXdmRy4AhiEtG0vYV7GPe5bdQ55TNhnpVDoeO/MxZvSe0coXbT2VRW4WzdtGMFwase+YFM68rHczZyk0hH3BAgoefQzJLScZCno9qf/3CDFXXNFmE9MlUeTH/7xEMCCPG444/yLSB7SN61vhxPDlplzyKuXJxRP7J3FaZmzHNkihQzjJlSEFhWNADEHxbrlTmRuODy8/1PQ5WjNkjK5xX2eMlt2uCs3iy6nCuToPz45SOdmwFrqeNqzj0zEMSjjmCMeTngEXyQObLeXSV6HXBKjIhsrs+suqvMbFcUeB/GgoUlqlgZiMOkJ3j5p1c1Krbsb8Xg+LXniGQ5vWR7aNnnE551x3I3Z/Fcv3f8eP2T+ypmANwQai/eMN8UzNmsq0HtMYnTIajer4v+5CIZHyfFek3nVxtoOyPCdiqBnxWiWQkGEhqbuV5CxZvI5PM6PWtHyCS89hiUy/bShL392Nzx2smZcQXupNGqbcOIiew+rf9PmPHCHnhhsIlZQCYBg0iKw3/ova2nis5ktL91Pmkjv5Fw3rxpisGDkCbdN7sPe7+rH4Oos8gD7yekgf1WVvvBU6F4899hiPPfZYg/sGDhzIhAkTWnyt3NwG6skqKCgoNIP/qIPyz/YSLK5xZWszrcTP7Ic2ufWubFES+eHID7y46UVynTWfS1qVlmsHXMutQ28l1hBbc0LhDrku9vbP5T5YXWKyZCf2sKshqV+r21PNwY3Fcv+ihQwc363LidnFRw7x2d8fwVstZvfpxxUPP3FKitmiz4fj++9xLFlKyF6JOiYW69QpWM8/H+/OnXLEeGGhfLAgkHj77STeecdxR4xXk13m4vWV8v21Vi3wfxcpg8kKrScQCKBu5d/kJZdcwiWXXNJOLTo+9Ho9Dz74IA8++GCrzpsxYwalpaWN7jebzfzmN7/hN7/5zfE2UaGtOLxKrpGd80v09uRBMPHPMGBGlzXDBMs8uNYX4dpYiOhooJSeSoBmJv8DCEYNphYI2stylvHQqodwB2URNMmYxNxJcxmWNKzVbW8t7io/C17agtclv8/0/nFMuX6gMnbZSkSPh8J//AP75zVR8breveWI8X7H3rdtiK1Lvid39w4AYpJTOPuaG9r0+grtSyAk8rLizlZAEbQVFOT45rwNNe7r3A1yLHNTxPUIC9dhB3byIDlmWqFFSCERz/ZSHD/nEzha52etFjCdloRlfDq69FNvgKnVDLoUvntQjiBvctqrAIYYGHyZHB1uS4PuZ9Q/LOiHqtzGBW9XScOXF4NQcUR+HG5gv9Yk14hvzOFtqKl54igr5atnnqDkiDzQpVKrOf3668ntJTJnyW2sK1xHSKrvUE4yJjG1+1SmdZ/GyOSRxxUtJYoSFYVh8fqIHBteetRJKNi0E14QID7NTFJ3GyndrSR1t5GQbm6TKM6epyVx4z/jObiphENbSvC6AhjMWnoNT6L3yKQGX8Ofk0P2DTcSLJF/b/qBA8l6603UMY3XmDlc6uKdX44A0FtTwpOx62Dubxouq5B1Boz4LQy+FHRda2BbofPzzDPP8NBDDyEIArt27aJf+Ib2hhtuqFcDsDl69+7N9ddf3x7NVFBQOAmRgiJVS3JwrDha071SC9imdcd6dgaCuvWDlesK1vHcxufYWbYzavuFvS7k7hF3k25JlzdU5cP2z2DrJ1C8s/6F9DHy9+5p10Dm6W0y6H1oa2mTIT5RCHB4aykDTm9BklAnofjIIT7721/wOuX7jm59+nPFX55Abzr1+i6OZcvI//NDiFVV8t+OKIJKhWPxYoS/PooUCMjbAHV8PGnPPoNl/Pg2bcPfF+3GH5Jf4+azetIz8dT7PSgcP60VsxUUOpwjP8uO7COrorcnDYAJD8pjO11QyJaCIp5dZbjWFeI7UFlvvzpWj3l0CqYxqQTynJTN39Xs0FX8zH4I2sZ/FpIk8eaON3lx04tI4YsNThjMC5NeIMWccpzvqHn83iALX95KVamcNJKQbuGC24aibqLNCvXx7d9P3v3349tfI1LGXHYZqf/3CCrTsZXzaYyqkmJWfvB2ZH3a7LsjyY8KXYOvN+dxtFyeZHx230RGZilGwlMVRYFTOLWQJCg7GK57HXZgF++myd6UWg9pI2rqX2eMBWv7d5BORkKuAK51BTh/LUCsio6GVlm0mMd1w3J6N9RWpX5Ji9Ea4LLX4KNraXwkMjzoetlrzdfB1uggvpf8aAi/CypzGhe8fVUNnxdwy/HUDUVUg1xjPq47RVI6X6314Aq7hAS9hkMTTLxT/ARiUX0xOdWcyrTu05jWfRqnJZ2GSmj9DYQkSlQWu8M1rx0U51RRkuMg6G8mxl2AuBQTyd1tsvu6u43ETAtaXfsNrmi0avqPS6X/uNRmj/Xn5spidlERAPr+/WUxOza2yfOeWbCFC6TVXK39ifHqnbCuzgHmZBh+rSxkJyozIhXaj8WLF6PVarnvvvvo1q1GOHn77bebOKthTj/9dE5vg5qfCgoKJz/+XAfln+0jWOSObNOmW2RX9jG4kvdV7GPuxrmsyosewB7XbRz3j7qfQQmDwOeALR/KJT0Or6Ref06lhb7nwmlXQ9/zmu/PtRJ3lb/lcaASETdSV6Do8EE+//sjNWJ2vwFc8dAT6Nt4oLQr4Fi2jNw776rZEBauq5eSr6aOu2n0aNL+/W+0KW0bBb5yXwmLd8l90ySrnrsnK31JhbZh27ZtLFmyhAMHDmC324mJiaFPnz5MnTqVYcPa362poNAoOWtkR/bhFdHbE/rKjuzBl7V5+bYTQaDEjWtdIe5NRYiuOikvKgHjwHjMY1PR942LuJY1MXoSfjuI8s/2yaUG6yTPCUYN8TP7YRyU0OjreoNeHv3lUb49/G1k2wU9LuCJ8U9El2tpJ0IhkR9e30FJjtyvsMTpueiu09C3oub3qUBTaTCCTof9y68o/NvfkLzypADBaCT10b8Se+mlbd4WSZJY/N+XCXhlMXTolPPoPnR4m7+OQvsRrFM7+17FnX1Ko3zaKpzc+N1yveuja2sc2J7yps+xdqsVHT4Wug0Djf7EtPckJVDkwvlzPq5NxVDH4artZsZyVjqm05IQWhHBrFCL/hfANR/C17eDtxIElRwbXr00xMhidv8Ljv+1dGZIHig/6iJJcg3uhoTuimxZCA/56p8H4K1k/z41i/LMhCT5Zs5hDLBkTB52TTBqkDVdbebcuMFMy5jAkMxzEGIyWpyQIEkSVaWecM1rByXZsvs64G2gJnUdYpKNJHe3RepeJ2Za0XXSmu7+3Dxyrr+BYIEcT6rv24est99CE9fEDMaCreQv/y9PH/mCGJ07ep+glgfSR/5WXrZhHXIFhcbYs2cPd9xxB0899VTU9l69ejF37lwuvvjiFl/L4/FQUlLSKesmKigodA6koEjVshwcPx2tKYOjFrBNycI6IQNB3bp+aqGrkHlb5vHNgW8i7iGAfnH9uH/U/ZyZMhbh8E+w/N+wZxEEPfUvkjFWFrEHXw6m+GN/c41Qludk20+5FB2yt/wkAQzmrtEPKDp0QBazXXLN8bR+A7n8ocdPSTFb9PnI//ND8orU9OwFQacj4z+voTa3rXM6EBJ5fEFN6sBDFwzAou+cfWmFrsP+/fuZPXs2K1eubPSYCRMm8Prrr9OnT58T2DKFU56j6+GnJ+Hgsujt8b1lR/bQK7uckC0FQrh3lOFaV4D/cH0zgzrBgHlMKuZRKY0aVYyDEkh7eBzuHaV4d5QieoKojBoMQxIxDUls0pld7C7m3mX3sqNsR2Tb3SPu5taht7ZZneWmkCSJn97fQ84ueVxZb9Iw4+7hWOKUMePaNJUGo/r7P9APHIBnXU15QX2/fqTPfR59r0aMNcfJzhVLObJ1EwCW+AQm/Obmdnkdhfbjf1vzOVImj1OO75PA6B5tf1+k0HVQ7h4UTh4kCey5tcTrtVC0Q45CbgxBDalDZfG62oEdk6nUf20DJFHCu68C5895+PZXRu8UwDAwAetZaeh6xpyQjudJz4Dp8Ie9sOsb2LNAFpaNcXL9pUGXtLmTp0EEQR5sNcXLqQZ1EUVwFtUTuo9WHGDhPieu3FiEsJu8KM7LslEl+HTyiHL3QIBpLjfTXG4G+gMI7Ib1n8vXVWnAll4nyrwHUmwWDtIoKdFRnOOkOFt2XrekRqQt0UBSVo14nZRlRW/qGoO3gfx8cm68kUB+PiDXH8p6+2008Q10+DwVcl3OTe9B4TbSIGLoB2Sn/ojfwmnXgq3rRIsqnByUlJQwZMiQetuPHDmC0+ls1bW+/PJLrr/+ekKh5ievKCgonHr4851UfLqPQKErsk3bzUzcVf3RdWudqOfwO3hz+5u8v/t9fLUm8qWaU7l7+F1caMxAve0z2HFDw6Vc4nrKceJDZ0JC68ortARRlDiyrZRty4+St7ey9ReQoNfwpDZvV1tTdOgAn/39L/hc8u80rf8grnjoMXTGU0/MBnB8/708sNwCJL8f59KlxLRi4lhLePeXIxwskX8fI7NiuXR4epteX+HUY926dUybNg2n04nUxESNFStWMHr0aBYvXsyYMWNOYAsVTknyNsLyp+DA4ujtcT3CQvZVXa5kYaDQhWtdIa7NxbKzujZqAeOQRMxjUtH3imlRDWlBq8I8IhnziJangOwo3cG9y+6l2FMMgFFj5KmznmJK9ymtei/Hw7oFh9nzayEAao2K6bcPIz5NKZtRm+bSYESHI0rMjr36alIe+jOqdor/dlaU89N7/42sT7v1rlOy5ExXJiRKvLysVu1sJd3nlKdrfYMqKNQm6IfCbTXx4UfXgaOg6XOMcbXE63Gy6KbUfW1TRF8I96YinD/nEyyNdpoIejXmMalYzuiGJsHYQS08idEaZBfPaVd3dEsaRqWSRVFbN7Jju7E428ES+wZidnrpdzQuoqMeTHPy89AyeuptTBMsTHN76VuRj+BqxD0kBqEyG1dZFcUBD8WBIMUBgeKABq/kavicWlji9CRlyZHhyT2sJGfZMFi6hnhdl0BhIdk33kQgNxcAXc+edH/nbTSJiTUHiaJct2vzfNj1v3queY+k41fD2Uy85n5UPcYrE3wUOgyDwUBeXgO12xUUFBTaCCkk4lh+lKplR0EMiyEqAdvkTKyTMlvlyvaH/Hy691P+s+0/VPoqI9utWiu39p3JtS4fhu//AaV7659sjIMhV8CwqyFjTLt893pdAXb9nM+On/JwlHuj9ml0KkRRQgw2nzuuN2noPbJzC9qFB/fz+T8eiYjZ6QMGcfmfT10xG6BqyRL576oZdzYQdlEtaVNBu8Th44Ul+wG5GY9dPBhVC0QPBYXGcDqdXHLJJTgcDuLi4rjssssYM2YMGRkZGI1GPB4Pubm5rF+/nq+//pry8nIuvfRS9u7di8Vi6ejmK5yM5G+Ra2Tv+z56e2wWnPMnebJaF0o6E/0hPFtLcK0vxB+O166NJsmIeWwqppEpqNs5ueXbQ9/y11/+GpkomGZO48XJL9I/vn+7vm5tdqzMY8O3R+QVAabeNIi0vrEn7PW7Aq1JgwHo9vRT7RIxXo0kSSx545VIf3Dg2ZPoNVKZ1NTVWLgtn0Ol8u/w9F7xjOvVeEkChVMDRdBW6Do4i2uc10fXQf7mxuOLARAgaUCNeJ05TnY5KOJMuxCs8OL8NR/XukKkOvHN6gQDljPTMI9KQdVJI5oV2p9DlYdYnL2YxdmL2VuxF11AxcRNiaSVWSPH5AxTM/TCq/lDj3PpHVvHleR3y7Hlldm483MpzrZTUhCiuNxMsSsFd6iJOO0wRlUFKdoDJGkPkKw5SJL2IGazBEJ3cHSHo93B2aOW0zsLtF1j8kWgqJicG24kkJMDgK57d7LeeQdNUnjQ2Z4n1+fcPF92x9dhB735MDCRBaEzePd3U1FlNf/zVFBoTwYNGsS8efO45JJL6tU+VJI9FBQUjhd/gYuKz/YSyK/lyk41ETezP7r0losdoiTyw5EfeGHTC+Q5aybhaFVaros7jVtLCohZ9Fj9E9U6uRzMsKuhzzTQNBzNebyU5TnZtjyXfWsLCQaiS//EJBsZNimDAad3I29/Jd++uq3pWtoCTLlxEBpt541ILTywj8//8X/43NVi9mAuf+gxdIau0Z9rSyS/H9f69TiXLsX504qWidkAokjI3ooY+hbw7A97cPhkV9/VozMZlhHbptdXOPV4+eWXKSoq4re//S0vv/wyVqu1wePmzJnD3Llzueuuu3jvvfeYN28eDz744AlurcJJTcE2+Olp2LsoentMJpzzRzjtunb7jm8P/HlOXOsKcG8pQfLVSbfSqDANTcQ8LhVdd1u735OJksjLm1/mv9trHLYjk0fy3MTnSDCeOFHr8NYSVn5UMyHxrJl96TOq5e7yU4XWpMEACKr2LTu599dVHNywBgBTTCyTbri1XV9Poe0JiRIvLt0fWb9HqZ2tgCJoK3RWxBAU7YTcdTUidsWRps/RWSFjVI0DO300GGNPRGtPWSRJwp9dhfPnfDw7SusNgOl7xWA5Kx3DgPgWxQ4pnFxIksT+yv2yiH1kMQftByP7rC4NUzckE+MKz+RVqxh38w38YeoV9a7jdQYozqkK17wOUJxtwVnRs9nXN2j9JFsKSNYcIEncTLJqN2ZVef05LV7ktIfCbQ1fyJJSS+Cus7S1vH53mxDwwq6vYc9CcFeAKQ4GXEQgaTw5N8/Gny0L1dqsLLLeexdtQqwcQ79pPhxcKtdUr40xDoZdw2uOM3l6kzw4fcnwNEYqYrZCJ2DWrFncfffdjBgxgtjYWGJiYiL7fv/73/OXv/ylxddyuZpPa1BQUDg1kEISjhVHqVqaA6FqVzZYJ2Zim5yFoGn54Nq6gnX8e+O/2VW2K2r7heo47s7ZR/rBg/VP6j4ehl0Fgy5tt3sVMSRyZFuZHCu+r7Le/qzBCQybnEHWwJo+es9hiUy/bShL390tl2cRkPv24aXepGHKjYPoOSyx3vU6CwX79/L5P/4Pv0eusZcxaAiXPfjoKSVmh5wuXKtX4ViyFOeKFYiO+q66ZlGpUNf6zj1eth6t5NMNcnqQ1aDhj+edOEedwsnL//73P0aOHMk777zTrKhmsVh4++232blzJ19//bUiaCu0DUU7ZUf27gXR223pcPYf5NJdXUTIFr1B3FtLcK0rJJBXv7STNtUsu7GHJ6E6QaXYXAEXD616iOVHl0e2Xd73ch4Z9wjaE+h0Lzxk58c3dkbmhI2YlsVpkzNP2Ot3dqRgkEBBAf6cHMreebflJ7ZDGkxt3FV2lr39n8j6lJtvw2i1tctrKbQf324viJSrGdsjnjMUd7YCiqCt0FnwVEDuhhrxOm8j+JupjxnfCzLG1jiwkweCqvO6BU4mpKCIe3spztV59Tu7GgHT8GQs49NbXXNQoesjSRJ7yvdEnNhHqo7UOya5XM+5m7uh8cl3BEZbDJc+8Ahp/Qbi8wQpyZbF6+JsByU5VVSVeutdoy56k6YmNry7laTuVqzxhprBDVEEV3FU7W4qj9Ss2/NAaqS2rrNIfuSuq79PUENMelTt7ijB25LSdqkQe75F/Px2HPt9OPKMhHwCar2EKXkp5QdsBKrkAXhtRgbd//1/aLe8CFs/Bndp3UZD70nyDfaACzlQHuBfc1cCEgatigfPH9A27VVQOE5uv/12Fi9ezP/+9z8qKiqoqKiI7CspKaGkpIHas02guLoVFBQCRS7KP90X1X/VpJiIn9kPXUbD7r6G2Fexj+c3Ps/qvNVR28f5gtxfWsIgf070CQl95ZIwQ6+S+wfthNcVYNfqfLavyMVZHp1kpTWoGXhGN4ZOzCA2peHo7Z6nJXHjP+M5uKmEQ1tK8LoCGMxaeg1PovfIpE7tzM7ft4cvnvxrRMzOHDSUyx58FG071WTsTARLSnAsW45j6RLcv65BCgTqH6RWQ6iRvm5dRBHrtKlt0jZRlHhswc7I+u+n9iPRom+Tayuc2uzdu5eHH364xf07QRC45pprePLJJ9u5ZQonPcV7YMXTsPOr6O3WbrKQPfJ60HT+zzlJkvAfdeBaV4hnawlSnRQXQafCOCwJy7huaDMsJ/ReKteRyz3L72F/hezMVAkqHhj9ALMGzjqh7agscrNo3rZIwk3fMSmccVnvZs46+RA9HvxHjxI4ehR/zlH8OdkEco7K2/LzIRhs/iL1Ltr2aTC1Wf7O63iq5Ov3HXsm/U4/q91eS6F9EEWJl5ZFu7OVMR0FUARthY5AkqB0vyxcVzuwS/Y0fY7GAGkjIXOMLF5njAVL567ddjIScvpxrS3EuSYf0RE9UKKyarGcnoZ5XCpqS9eYharQNkiSxI7SHRERO9eZW+8YAYHhycM5294X54aNiOEOry05nSGT5rBjlcjyD9ZQWeRu9vW0enVYvJYF7KTuVmKSjE13bFQqsKbKj6xx9feHAlCVV0fwrrV0FjXy5kPhGPQcuS51XTQGOba8MYe3sYVO6D3f4vj3TeSviUUMmKhtmXLk1gzUauOMdL8ggPaLC+tfIyYLRsyC4dfJbQrzj0VbCYbrht42oTdpsaeOi0mhc6NSqfj666/5/vvvWbZsGWVlZYiiyLvvvsvZZ59Nr169WnytQ4cOsXr16uYPVFBQOCmRQhKOVblULc6ucWULYJ2QiW1qy13Zha5C5m2ZxzcHvkGqFU3U3+fnvopKzvR4ifRGTIkw9Eo5UjxtRLuWPSrNdbJ9+VH2rSuqFysem2Ji6MQMBpyeis7Y/O2/Rqum/7hU+o9Lba/mtjn5+3aHxWwPAJmDh3HZn/56UovZvsOHcS5dimPJUjxbtzYYJ66y2bBMnIB18hSMY8Zw6IILZMd2U9HjgoDKasV63nlt0s6vNuexOacSgD7JFq4/o/0mdCicWrhcLuLj41t1TlxcHG538/ebCgoNUrIPVvwTdnxBVDyhJQXOuh9G3Qjazv+9I7oDuDcX41xXSLCB8RdtukV2Y5+W1G4lA30hHz8e+ZFlOcuo9FUSq49lctZkzu1xLttLtnP/T/dT4ZMnM1u1Vp6d8Czj08e3S1saw2X3seClLXhd8thnev84plw/8KRMn5QkiVBlJYGcHFmwPppTI1jn5BBs5UTyFtHGaTC1ObBhLXt+XgGAwWxhyu9ub5fXUWhfvt9ZyL4ieRLyqO5xjO+juLMVZBRBW6H98btkx/XRtXB0vSxieyqaPseaJotOGWH3derQLhPVczLiL3Dh/DkP95ZiCEYPgGjTLVjGp2EaltSqiEaFro0oiWwr2caP2T+yJHsJBa6CeseoBBWjUkYxrfs0zkmZyM5Pv2X7sppZzCpNd3z+i9j0Y2Wjr6PRqkjKkh3X1e7r2GRT299EqLUQ10N+NETAI4vWEaH7SLTg7W1kZmnQC6X75EdD6GMgrlrw7hEteMdmgc4EAS+OF+8id1Vt8VuoswSQSOhdgNZRK95UrYMBF8HI30LPibKwX4uf9hazfK98c5IWY2DOOafebGOFzs/555/P+eefH1l/9913mTNnDtddd12Lr/HBBx8ograCwilKoNhN+Wf7CBytiV7WJBmJv6o/usyWubKr/FW8tf0t3t81H5/oj2xPDQa5u8LOhU4XapAnsg24EIZdI6ehtGMkphgSObytlG3LcsnfX1lvf/chCQydFB0rfjKSt3c3Xz5VI2ZnDRnGpX/6K1p95xcVWoMkinh37MCxZCmOpUvxNxRnD2hSU7FOmYJ16hRMo0cjaGv+BtOefprcO++UJ1c0JGqHJ12kPf00Kv3xuwsd3gBPf18zcf3RGYPQqpX7RYW2ISkpiZ07dzZ/YC127txJYmLnLZug0EkpOygL2ds/iy7hZU6C8b+H0TfL9+2dGEmS8B+pwrWuEPf2UgjWcWPr1ZhGJGMek4ou3dKubVmes5xHfn6EKn8VKlSIiKhQsSRnCU/8+gT+kB8RuX09bD14cfKL9IxpvuRcW+L3Blk0b1skLTAh3cIFtw1Fre2632FSKESwsBD/0aP4c3Jq3NZh8Vp0NpOS2gAqkwltVha6zEy0WZmEyiuwf/VV8ydCm6bB1MbrcrLkjXmR9Yk33Io5Vimp19UQ69TOvldxZyvUQhG0FRqtycqgS1s/u1CSZNHn6Lqw+3otFO5oPMoXQKWB1GHh2tdhB3ZMxvG8I4U2QBIlvHvKcf6ch+9gHbFOAOPgBCxnpaPrblO+VE4RQmKIzcWbWZy9mCXZSyj2FNc7Ri2oGZs0jgmm8+gdGIw7X6RoTQWfHfgXIf/emuN0w9CYJiEINdGVao2KxEwLyVlWksLidVyqCVVnGPjSGiGpv/xoCE9lw87u6mWwkdh0nx0Kt8uPhjAnI6pM5K+qHoxs+n+teKuNmJ5uVGlD5EjxYVeBqWHnQiAk8reFNTU/H7xgAEZd540SVTj1+Omnn3jvvfcQBIEnn3ySlJSU47qe1JQjTUFB4aRDEiWcq/Ow/3ikZkKmAJZzMoiZ2h2hBYOS/pCfT3Z/wH+2vIo95Ilst4ZEbrXbua7KgV4SoOc5sog9cAYY2rc+n9cZYNfPTcSKn9mNoRMajxU/mcjbs4svnnqUgDcsZg8dzqUPPHLSiNmS349r3XocS5fgXLqMYHH9vjeAvm9fLFOnYJ0yFcPgQY3em1knTyJj3svk//khxKoqeaKjKEaWKquVtKefxjp5Upu0/+VlByhxyH+j5w1O4ey+SsKaQttx+umn8+abb3LXXXfRo0ePZo8/fPgwb775Jueee277N07h5KD8EKx4FrZ9HC1kmxJg/L0w5hbQde4yeyGnH/emYlzrCwmWeOrt12VZMY/thnFYIqoTMBawPGc59y6/N7JeLVxXL72hmnGTM9PO5JlzniFG3z4u3sYIhUR+eH0HJTnyREhLnJ6L7joNfQtSbjoa0ecjkJsbLViH48EDeXkNlyRpBnViIrrMTHRZmWgzs8LLTHRZWajj46P6HKLPh2Pp0hOeBlObFfPfwlVRDkDP4aMYdM7kNn8Nhfbnx11F7CmU/weHZ8Zydl9lMppCDZ3/01ihfdnzLXx9O3grQVDJnTRBBbsXwHcPwmWvQf8LGj8/6IOCrWH3dTg+3FnY9GuaEsLi9VjZgZ02otPPZuzqSAER9/YSvDvLCLmDqE0aDIMTMA1NqjeYJ/qCuDcU4fwln2BZtAgnGNSYx6RiOSMNTfzJMVCk0DRBMciGog0sPrKYJTlLKPeWR+1XiSqSPJmM0ZxDv+BQ9OWx2Nd6qQxJbCQPSXTjd36DFKpxcGuME9CaRpGYER0bHp9mRt0ZxOtjwRgrP7qdVn+fJIGzuOHa3RXZYM+NmvQjSSAGBUS/ilBFOVU5HsRASxxkAmJAwOEZTsxtPzUbbfrBmmwOlrgAGJkVy8WnpbX03SoonBDefvtt5s+fT2ZmJo8//nhkuyiKTZzVMLNmzWLWrFlt2TwFBYVOTKDETcVn+/Dn1HJlJxqJm9kPfffmBWdRDPH9hpd5ce/75Ik1/WGtJHFdlYNbK6uISRwAU66GoTMhJr1d3kdtSnMdbFuey751RYQaixU/IxVdO8WDdjZyd+/gy6ceI+CTfz/dh43gkgceQavr/HVLmyLkdOJauRLHkqU4V65s2DElCBhHjpSd2FMmo+ve8hhv6+TJ9F21EscPP+BYvISQ3Y46JgbrtKlYzzuvTZzZAAdLnLz182EAdBoVj1w4qE2uq6BQzU033cQXX3zB6aefzlNPPcVVV12F2VxfXHS73XzyySc8/PDDOBwOfve733VAaxW6FBVHYOWzsOWjaHOOMQ7OvAfGzgZ9+7qYjwdJlPAdqpRrY+8sqym1EkYwajCPlN3Y2tQTJ8j7Qj4e+fkRuY00PdFYp9Lx3MTnMGtP7IQBSZL46f095OySx730Jg0z7h6OJa7z9C1Cdjv+nKMEjtaPBw8WFTUtJDeEWo22W7dagnUW2ixZsNZlZKBq4HO1MVR6/QlPg6nNkW2b2bH8RwB0RiNTb71LMWB1QSSpjjt7quLOVojm1LjbVWiYPd/Cx7XiOqtnHFYvvXb46Fq45kMYMF3e5igMC9drIXc95G+GkJ/GESB5kCxeV4vY8b3atYacQjSeXWWUf7YPyROsLrkLAnh2llG54BDxM/thHJRAsNyL85d8XOsLkXzRjnpNolGOFR+ZgkqvODhPdgJigHUF61icvZilOUup9FUCIEgq4jzdSHZmkuLqQU//QIz2OAjJ/89uwE3NrF8xVErA+TWSWAWASq3jtHN/x+CJZ5OQbkajPTn/liRJQvJ6CVVVIVZVEXI4ap5X+REdFkJVWYQcsYj2nvK+yjJC9kpCDiei29f6m5CaV8exz0lMM5+xFS4/zy+p6SA+OmOw0kFU6HSsWbOGyZMn8/3336PR1HRZn3jiCS6//HKGDBnSga1TUFDojEiihPPnfOw/HKmJ0xTAMj6dmPO6IzTX9yg9wNp1L/BcwU/sqnOnfJHTxV0+LemDfyPXxU4d2u73NGJI5PDWUrYtbyRWfGgCwyZmkHmSx4rXJXfXDr58+uQRswPFxTiXLcexdCmuNWugAQeVoNNhPvNMrFOnYJk0CU3CsdcRVOn1xFx8MTEXX3w8zW6Svy3cRSAsosw5pxeZ8coEdoW2Zfr06Vx66aV8/fXX3HLLLdx+++0MGDCA9PR0jEYjXq+X3Nxc9u7di9/vR5IkrrzySs5rB0egwklCZQ6s/Bds+QDEYM12QyyceReMndPuKSzHQ8jhx7WhCNf6QkLl9RPidD1jsIxLxTg4sUUpNW3Nj0d+pMpf1aJj/aKfZTnLmNF7Rju3Kpp1Cw6z51fZpKXWqJh++zDi006wqC6KBIuLo1zWNeL1UUR7I+XumkAwGMKx4DXx4Lpqt3VaWlR5kuPlRKfBVOP3elj8+kuR9XNm3YwtUUmG6Yos2V3MrgL5s2JYRgwT+ym/R4VoFEH7VCXglZ3ZAI3OjAsrn5/fLLu08zbKjsKm0NsgY3SNeJ0+CgwnNh5GoQbPrjLK5u+q+RXXWUqeIGXv7UKbaSWQ66j3p6DvE4vlrHQM/eJOqUGyrkowEOLgxmIObS3F6wpgMGvpdVoivUclNyse+0N+fs3/lR+zf+Snoz9R5XMQ600iydmHQc5MklxZJLoy0IrN1LIXIC7VjNFUQM62T5HCriZLfAKX/umvpPTsGjWaRb8/LEA7EB1VhKrkh+hwyNuq7ISqHIQcVYhVDkIOB6LdLovXDkeDA5EnBoGQv/mb07lL9mH3yG28fGQ6p2XGtnO7FBRaT0FBAffff3+UmA3w2GOP0adPn1YJ2kuWLOHJJ59k2bJlbd1MBQWFTkKw1EP55/vwH6kZLNUkGGRXdo8m7kdcpbDjC/Zt/4DnA/msNhmj7pJP9/q5P340A8ffDL0mgqr9J+R5nH52rc5nx4o8nBXRseI6g5oBp1CseF2O7trOl08/RtAn/1x6DB/FJX/4CxpdM33UTobv0GE5SnzJUjxbtzZ4jMpmwzJxAtYpU7GcNb5VLqmOZNmeIn7aWwJAtxgDt0/sGv1/ha7HBx98wDXXXMOCBQvw+/1s376d7dujSzlVl5y59NJLmT9/fkc0U6GzY8+FVf+GTfNBrHUfr4+BM+6E02/rtOOakijh3V+Ba10h3t3lIEYP6qnMWkyjUjCPSUGb1LF9hqU5SxEQmnVnA6hQnXBBe8fKPDZ8e0ReEWDqTYNI6xvbLq8l+f348/II5NR3WQdyc5F8vuYvUgd1XFy0UF0rHlyTlHRCDQwnKg2mNqs+fJeqErk0S+bgYQybokxe6opIksQLS/dF1pXa2QoNoQjapyq7vpZjxptFgqAHdn7Z8O743jXideY4ub7sCRjkUWgeKSBS/tm+xucr1CJwtCaOEY0K84hkLOPTTmj8kMLxcXhrCUve2YXfE0JCitwoHNpcwspP9jH1psH0HBZdc8Qb9PJz/s8sPrKYjfu3Y65MIMmZxUTX9SS6MtGFmo+Vj00xkZRVEx2emGlh96ofWfrWW0jhWODknr259E//hzX+xNU8kYJBWWSOEqWrBeg626rsNaJ02FEteRuped1eqNWobTZUNitqqw21zYrKFoPaasW1aimBwjKaq58tI6FOzmzyiH1FDt5fmwOASafmwfMHHH/7FRTagUAggO8YbuYboqioiBUrVrTJtTqSUCjEv//9b959913UajV+v5+ZM2fyyCOPoG+HgQEFha6AJEq4fs3H/v0RpFpR3JbxadjO69FwTciAB/Z+C9s+pfDwMl6OsfA/ixlJa4wc0h8d9/e6gjPH3nPCokVLjjrYvjyXfesbjhUfNimD/qefOrHidTm6cxtf/vPxiJjdc/goLu4iYrYkini3b8exZCmOpUvxHzrU4HGabt3kKPGpUzCNGtWmrqkTgS8Y4okFuyLrD08fiEl3av69KrQ/RqORb775ho8//piXXnqJdevWEQrVpM2p1WrGjRvHvffey8yZMzuwpQqdkqp8WPUcbHo3OnlSb4PTb4fT75DLinVCgpU+3BsKcW0oIlRZ/35J3zcW85hUjIMSEDQdU9ZNlEQOVB5gU9EmNhVtYmXuyhaJ2SDX1K5OCjwRHN5awsqP9kbWz5rZlz6jko/rmiGns2HBOieHQGGh7FpuDYKApltqjWCdlVVLvM5EbW1JmboTx4lIg6kmd/cOtvywEACNTs+5s+9GUHXRcoanOMv3FrMjT56cPCTdxuQBx/d/qHByotxZnKrsWVhTM7ulaIyy4zpzjCxeZ4wB84kTqBRah3t7iRwz3kIEgxrrhAzMY7uhNnetgZNTncNbS/j21e1IiAioEMLCZ/XS5wnw7SvbmH77UJIHmvhp98+s276NoiNVxDm6kew8i0tD5zb7OrZEA0lZNpJ7hOteZ1nRG2u+RkQxxMr332Ljom8i2/qMOZ3pd/0RraF1NdclUUR0OhsRnmu5ous6pcPR3qLb3arXO24EAZXVitpqRWWzobaFRWmrLbzNitoWU7PNVus4qxXBZGp01qH9y2HkP/x/LW0I1ksbrxMsSRJ/W7iLUHjm9h0Te5Nia93vRkHhRJGZmcnXX3/NPffc09FN6TTccccdfPnll6xevZr+/fuTm5vLOeecw/bt2/n66687unkKCiecYJmH8s/34z9cE7+ojjcQf2Vf9L1iow8WRcheDds+gV3/oyrg4M0YGx+kJeOrNeiVqrFwz/A7uHDQLFRC+w+GiSGRQ1tK2f5TA7HiAnQfksCwSRlkDji1YsXrkrNjK1/98wmC/rCYPWK0LGZ3YsFX8vtxrV0nO7GXLiNYUtLgcfp+/eQo8SlTMAwa1KWdKG+tPsKRMrkfPrZnPBcN69bBLVI4Fbjmmmu45pprcDqdHD58GIfDgdVqpWfPnlgsnbfWsUIH4SiE1c/DhrchVEsM1llg3G2yK9sU33HtawQpJOHdU45rfSHeveX1zCsqqw7z6BTMY1LRxJ/4e/xAKMDOsp1sLNrI5uLNbC7e3OKI8bqoUBGrj23bBjZC4SE7P76xM1L1bcS0LE6b3LRJAOSxlWBJSQOx4LJ4HaqoaHVbBJ0ObWZm/VjwzCy0GemousAEvhNNwO/jx/+8GFk/65rriU1V+h5dEUmSeKFWacR7JivubIWGUQTtUxV3RevE7G7D4ZYloO68AwanKlJQJFTlJ2T3hR/yc/f20lZdR98rFtukrHZqpUJ7EQyE+P7tGjG7IQRUSEgsfG0rfpUbQ8hCMiNpap6bJU4vi9bdw+7rLBsGS+P//36vh0UvPsuhjesi20adP4Mzz5tBKCeHQFOu6Mi2mprTosNxHHWkjw2VySSLzFYrqhhbjVPaaotyTzcoTlss7TYD1HrhDFT/eBLR5aZpl7aEymzCeuFFjR6xfG8xq/bLnw3psUZuObtX2zZWQaENmTZtGq+99hqjRo1i4sSJxMTURP19+eWXHDhwoMXX2tpInGtXYu3atbz++uv885//pH///gBkZGTw2GOPccMNN7BgwQJmzDixdeYUFDoKSZRwrS3A/t1hJH/NPY35jG7EnN8Tlb6WK7t4N2z9GLZ/BlV5+IGPbVZeT0nDrq45zqoxM/u027h24LXo1e2feNBcrPjAM9MYMjGd2ORTL1a8Ltnbt/D1M3+LiNm9Ro5hxv0Pd0oxO+Rw4Fy5EufSpThXrkJ0OusfJAgYR43EOmUq1imT0WWdHPdgRVVeXlomD0SqBHhsxmBlIFLhhGKxWBg6dGhHN0Ohs+IshtVzYcObEKyVyKY1w7jZcMbdYE7osOY1RrDci2u97MYWHf7onQIY+sdjHpOKYUA8gvrEfea6Ai62FG+JCNjbS7fjCzWerqVVaQmILSvNJiIyOWtyWzW1USqL3Cyat41gOBWn75gUzrispkyGFAgQKCjAn51Tz2Xtz81F8nha/ZqqmBh0mZn1YsF1WVlokpMVZ3Er+eXTD6goyAegW78BjLig8fEwhc7Nin0lbM2VJykP7GZj2qCUDm6RQmdFEbRPVUxxEYd2UNJy0Hsmh7zj8EoWDIKTXoa19Db8gkYIyMfFZipidgcg+kMNitUhuy+yXXS2Ta1eydtyN7dC52HP+nxEL42K2dUICAiSgCFUf4a6xgJpPeNJ7RETjg+3YbLpEH0+QnY7oqOS0P4cnOH60XWd0o6KclaV5VIpyn9DgiQxOL+MlH/O5eA/57bH2274Per1NWJztSvaakMdY6sRnq2NOKWtVgRN5/xKVOn1pD37b3LvvDM8Eamhm1QJBBVpz/670XpE/qDI3xfujqw/NH0AhmZqqysodCQPPfQQn3zyCZs3b2bLli1R+7766iu++uqrjmlYGFEUefXVV3nooYdwOBwcPnyYHj16NHuez+dj7ty5fPzxxxw4cAC1Ws3AgQO54YYbmD17NqpGBjE+/PBDAM4///yo7eedJ9cH++CDDxRBW+GUIFjupeKLffgO1nJlx+mJu7Ifht6x8gZHEez4XBayC7cBIALfmU28FBdLnrbmO1+r0jJr4CxuGXoLMfr2r5EZiRVfV0QoGD3BOC7VxNCJp3aseF2yt23h62eeIBiQB/F7jRrLjPse6lRidqCoGOfyZTiWLMW1di0E6t+fCTod5vHjZSf2xIloEjqfaHK8PP3dHtx+Oe551rjuDEqzdXCLFE4GcnJySEpKwmg0Nn+wgkJDuErh5xdg3X/lkorVaE0w5hYYf2+nS5+UgiKeXWW41hfiq5veAqhj9JjHpGAanYom9sSUHSr1lLKpaBObizezsWgjeyv2IjZhlIrTxzEieQQjU0YyKmUUPWJ6cN7n5+HwO5qMHhcQsOqsnNuj+RTB48Fl97HgpS14XfJ3dmqSxHBxLYVPfFYjXOfnQ60yBi1Fk5ISdlnLgrUuKysiXqtjOmc99q5I4YF9bFz4NQBqjYbz5tyLSimD2iWRa2fXuLPvndJHmRSp0CjKXfKpyoCLYPcCDnvHsNR+Dz7JAoQANRDikO8MVlXdwpSYF+hp2AADlAHStkb0BhsVqUN2P6EqH6L7+ERmSZJa9AUgSSKCXpkF2NkJiSGcASdVvipKKyopzrazd1EFaskELfyiFwmiMxSSYgqSpQ8RGyxB7yojtMWBuLKKUFUVueFa0pLf3+z17EYdG3p2wxceGNaEQow8UkSis/UzVdFoIhHcjTqlY2xhUdoWFe+tslobFXJPBqyTJ5Ex72Xy//xnxCqHrGlLRJYqm420p/+JdfKkRq/x3q9HOFTqAmBsj3guHKrEMCl0bjIyMli7di1/+ctfWLZsGWVlZZHvNekYEhza8oZo586d3Hrrrfz666+tOq+0tJTJkyezfft2Zs+ezUsvvYTf7+fll1/m9ttv57PPPmPRokUYGijTsHHjRgD69OkTtT0lJQWLxRLZr6BwsiJJEq51hdgXHUby1wwumselEjO9JyrBB9s+lUXsQ8uj0qjWGPQ8Fx/Hbn1NVKOAwEW9LuKuEXeRZklr17ZXx4pvW36UggP26J0C9BiSwLBJmWQMjFMGb2pxZNtmvnnmbxExu/fo05lx34OoNR0vZvsOHQrXw16Cd+u2Bo9RxcRgnTgBy5QpWMaPR2U2n+BWnjg2Zpfz1eY8AGKMWu6f1q+DW6RwstCzZ0/mz5/Pdddd19FNUehquMvhlxdh7esQcNVs1xhqhGxL56rPGihx41pfhHtjEaKrzuQoFRgGJmAem4qhb1y7liGRJIlcRy4bizfKNbCLN5Fdld3kOemWdEYmj2RkykhGJo+kZ0zPen2af5z1D+5Zdg+6IIzbLTJ2v4TFI+E0CqzrK7B2oIqARj6urdJyJEkiVF6OPycnEg/uzsljZcVwqtTyRAaLM5d+q56nLORt5mphtFp06en1YsF1WZloMzJQtbLknkLrCQUD/PDaC0jh/v4ZV15HQkbzUfEKnZPVB0rZnFMJQP8UK+cOSu3YBil0ahRB+1Rl0KUc/uIjvq28u9ZGddTSJ5n4tvIhpie/RM9Bl5zwJnZVJElC8gQJ1haqa4nU1c8lX+tn+UWhArVVjzpGhzpGH37Iz1UGqPxmBcGylsVzCIKKys/nUfHW7uYPVjguJCQkSUKURCTCS0lCRGx0e0BlwGVMx23KxG3qjsechV8vd7zVmJtOoa5DfMUhRm59IbLuCz+OhUKbia1ZKYTU8mQIky/AmFInsbEJqLLqO6Wjo7rDorTNVuOQNhqVQdwmsE6eTN9Vq3D88AOOxUsI2e2oY2KwTpuK9bzzmhT0y5y+yGxHQYC/zuja9RkVTh169+7Nxx9/HLVNpVLx/vvvt2pg8/333+eGG25okzY9+uijPP3004wdO5Y///nPPP300y0+d+bMmWzfvp17772XuXPnRrZPmjSJyy67jG+++Ybbb7+dt99+u965JSUlqNVqTKb68cM2m42SRmqzKiicDAQrvVR8sT/KpaSO0RN3eW8Mmq2w6F+we0H0gDWwV6vl+bQsflZFDwqf0e0M7ht1HwMTBrZru5uMFTdqGHhmN4ZOTCcmSYkVr8uRLRv5+l9/JxR2O/cZczoX/b7jxGxJFPFu24Zj6VIcS5biP3y4weM0ad3CUeJTMI0aidCJnOTtRUiUeOx/uyLrfzy3H3Fmpc6nQttwLJMYFU5x3OXw6zxY+xr4a5V9UOth9M1w1u/B2nnEEikg4tlRinNdIf7D9nr71fEGzGNSMY9KQW1rn8/WkBhif+V+NhZtjLiwSzyN31sICPSJ68PIZNl9PSJ5BKnm5n+mEzMn8prhd+ie+g9mr4QogEoCUZAYt1fi5iUS/odv48zMia1qvxQKESgoJJCTHVXH2n/0KIGjRxFdNf1DUVCxbejtVMXLY2p6bzmnbXsFTR0xW2Wx1BGsZae1LjMTTWoqglpxAncka7/6lNKj8iSL5B69GT3j8g5ukcKxUq929pS+qNpxwo5C10cRtE9Rgmj5oaJazG7MmasCRH6ouJtb0Cp/LMj1+kR3INpV3YDDWgq0oj55Q6gFWaC2RYvVmvBzwSggVpUQyM8nkHeEQG4u3o15+PNyCeTlEyotBZUGy/nPgtaIIDTuvpYkEQIeAgdXg6jEjp9IBGqmkVQTVOtxWDJxWLNwWLOosmbhMbVR3RBJRBt0NXmIymyOCMy1xeZqJ7TaZkWwWNmZvZ9Na1dFzkvr05+LH3gEc2xc27RVoUFUej0xF19MzMUXt+q85xbvwxEuKzBzVAZD0pWYK4VTi8ONCA/Hwty5c3n++ee5/fbbeffdd1t83hdffMFPP/2EwWDgsccei9onCAJPPfUU33zzDe+++y533XUXo0aNavG1lQkqCicrkiTh3lBE5cJDUZNBzUN0xMQtRLXgE3AW1juvMC6Ll9J6sMCdjUSNmN0/rj/3j7qfM9PPbNd2l+Q42PZTLvsbiRUfNimDfuOUWPHGOLxlI99EidlnhMXsE/vzEv1+3GvWyE7s5csIlZQ2eJy+f3+sU6ZgnToF/cCBp9xn8mcbjrI9TxZhBqRauXbsyVETXKHzsGrVKoLBthuruP7669vsWgqdCE8lrHkF1rwKvqqa7WodjLoRzroPbO2byNIaAkUuXOsKcW8urp/OqBYwDpbd2PpesW3uxvaFfOwo3cGmok1sLN7I1uKtOAPORo/XqDQMSRgScV8PTx5+TGVaHMuWEffYfyLrKil6afaB+dHXcCQOwTo5uoa26PXKDuujR2W3de161vn5DZb7qIsE7Ok/i/L4QfL7CnkYF1xOwgUTZfE6q7ssXmdloY6NPeW+z7sKJdmHWfvVpwCo1GrOu/3eE95HVGg7fj1YxobsCgD6Jlu4YEjnmXCk0DlR/ttPUXavKyIUaEnEtIpQAPasL2LImZ2n49ceSKKE6PATrC1SV9UXrAkd3wxhQauKclM3JFwLWggWFxHIyyOQdwD//lz5eW4egbw8gsXF0NxMZTGIZ9PbGMfdIUeKNyBqV0ezeDa9DWoBTVIbCaddgOZc0dXPJUTEWsdIkthEtZ/WIQpaPKaMiOvabcrCZ0iR69Y3gSrkw+zJw+LJQwpIFKad07IXFFSYvbtJ/dsT9epIq202VBZLs3WkQ8EgS998he21xOyBZ03k3Dn3oNEpTozOyJ7CKj5alwOAWafmj+f17+AWKSgcH2+//TZnntm+YlRT7Nq1i/T09Faf98YbbwAwefJkYmNj6+0fOHAgAwcOZPfu3bz11lv1BO2kpCT27duH2+2u59K22+2kpio3fgonF0G7T3Zl76uIbFMb/MRZ52M48FX9EwwxVA28iDesRj7I+wm/+0hkVzdzN+4ecTcX9roQVTP9rGMlFBI53FSs+NBEhk3KIGOAEiveFIc3b5DF7LB41XfcmVx4z59O2EBlyOHAuWIljqVLcK1cFeXqiqBSYRo5EsvUKVinTEGXeepGXNo9AZ75YW9k/bGLB6NRK6WsFNqW119/nf/85z/NH9gADX3eKoL2SYbXDmtek13ZvlrfvyotjPwtnP0HiMnouPbVQvSH8GwrxbWuAH+Oo95+TZIR85hUTCOTUVvabnylyl/FluItEff19tLtBMTGBWCz1szwpOGRGthDE4di0BxfjLbo85H/54fklcbGM8Pb8/7wRxJuvolAfkHEbR0sLm79i2o0aNPSwvWsM9kjDKUwPxYAtUZgxh/Gk9b3wmN4NwodhRgK8cNrLyCGa5uPveRKknv06uBWKRwPc2vVzr5bcWcrtABF0D5FWbcqFxEJVQuyiiUkfvn+CBm9Y7ElGbvkB4sUFAk5/E3UrPYRcvjhOI3Vgl5dX6wOP9eEhWvBqAFRJFgkC9b+3Dw8+/MI5MqitT8vl2BhEYjH1hhNUhLajAwCBQUEC7fhWfsqxpE3gs4cEbYjAnfAg2fT24SKd2CdMoWMl148vh/ACSQkhnD4HTj8Dqr8Vdj9dqr8VVT5qiLbGlz3y+ui1NqfrxB+tH6AxqA2EKOJJc3Xk2RXd+KqumGuTEBjtyBITf8/qTUqEjMtJHe3kdzdSlJ3K3Gp5sj/4dqbr6E0MIqgxti0EC6JaIIeElOcxM2c2er3AOB1Olnw/FPk7Nga2XbmzFmcfsU1ysBsJ0WSJP62cBdi+H7xzsl9SLYq9ZwUujatjQ4PBoP4fMdaXKE+xyJm+/1+li5dCsCYMWMaPW7MmDHs3r2bRYsWMW/evKh9o0aN4ueff+bAgQMMGzYssr2oqAin09kqR7eCQmdGkiTcm4qpXHAQyVvjyjapFxMrvYHKUUtgVGmh33n4h1zOR2Il/931NvbKmsFsq87KnGFzuGbANW1Wi7EuHoefnavz2bmykVjx8d0YOkGJFW8Jhzav53//+kdEzO43bjzT73mg3cXsQFERzmXLcCxZimvdugZdXoJej3n8eKxTpmCZNBFNfHy7tqmrMHfJPspdco3zi4Z14/ReCR3cIoWTkYcffpipU6e2+jyn08kDDzzAnj17ItvmzJnTlk1TaA8CXtj1NexZCO4KMMXBgItg0KWgrXUv63PIseK/vAzeyprtKg0MnwXn/BFiO0dihD/PiWu97MauV35Qo8I0NBHzmFR0PW1tMrZS7C6O1L7eVLSJfRX7kJqwZsQb4hmVMipSA7tfXD80qrb97q1a9C1iVVXzBwKSx0PpvFdadKxgMqHLzIyuYx2OB9d26xYxbexYmceuD8MTsASYetNg0vrGHstbUehANiz8iqJDBwBIyMhi3OXXdHCLFI6HNYfKWHe4HIDeSWYuHNqtg1uk0BVQBO1TlNJyD5YWFt4VEAgUe/ng0TUIGgFLkpGENDOpmVYS0izEp5mxxhvaPAKnpUgBMao2dbCBmtWiM8Dx2mpVJk2DburaLmtVODZQEkWCJaVhh3Uu3k15+HNruawLCuAYI7PUCQlo09PRZaSjTa9+ZISXaZE6uvZvviH/wT8TKtyK8/sH0KSNQpM2AkFrRgq4COZvJpi/MRIzbp3W+hvE4yUQCrRKiK69rak4pPbArDVj09mw6WxYdVb5ub7hdYvailBuwF+kwpkXoizHRVmeE7EZd79KLZCQbiG5u5Xk7jaSuluJTzOjbsLl0HvGTPz/eo9tQ+aAJDYsaofF+0F73qP3A9ce0/uvLCzgq38+Tnl+LgBqrZbzbv89A8dPOKbrKZwYFu8q4ucDZQBkxhu5eXzPDm6RgsKJY926dbz33nt88sknlJeXd2hbdu/eTSAskPTo0aPR46r3ZWdnY7fbiYmpifK77rrrePHFF/nxxx+jBO0ff/wRgFmzZjV4TZ/PFyXoV4UHkgYMGIBK1fQkrZEjR/K///0vatvFF1/Mpk2bmjwP4P777+f++++PrDscDgYObFm94m+++SZKoF+4cCG33XZbs+dZLJaoQWuABx54gI8++qjZcy+88MJ67q/Ro0dTWFg/zrouzzzzTFRN97179zJlypRmzwNYv3493brV3Li//vrrPPHEE82e169fP5YtWxa1bdasWaxYsaLZc2+99VYeffTRqG0ZGS1zLr3//vtMnDgxsv7TTz/xm9/8pkXn5ubmRq0//vjj/Pe//40+SALRE0AK1PSZzsgayAeXazCqN0S2Tf5Yzb4KCTQ6vOIPOP1fEJJqBogFBExaE4//9XFuGFwzCaagoKDJSSW1Wbp0Kf3716SafPjhh/zpT3+KrIshiYAvRNAfPTBtNcbz9J3vRsWKz5kzh0WLFjX7mtdeey3PPvts1LYBAwbgdDbf733ttde46KKLIusbN27kkksuafY8kD+jrFZrZP25557jueeea/a8tvyM2LpyORPOnx5Z1+h0GH7eAs/Nq3fu8X5GSJKE/9AhHEuW8vBzz/G/QwcbPkEQEPR6VAYDF158Ma+/Et2WU/0zIihKlDp9IIEgwBdWPVemfdC+nxENMGHCBD744IOobZMnT2bfvn3NnvvXv/6V2bNnR9bb8jOiMVJTU9mwYUPUtq78GSEe40T81jBw4EAmTGjdfeeWLVuYM2cO+/fLzi+r1crrr7/O1Vdf3R5NVGgr9nwLX98uC9SCqmaMY/cC+O5BuOw16HE2rHsdfnkRPDUpLghqGH4tnPMAxPXoqHcQQfQFcW8pwbW+kEBu/f9RbapJdmOPSEZl0h7z60iSxJGqI2wu3hypgZ3rzG3ynCxrFiOSR8gidspIsqxZxyWkiy4XgaJigsVFsnmnMLwsLiIYfh4sabwmd3Oo4+PDLmu5hrWue1ZEvFYnJDTb9sNbS1j5UU2ayFkz+9JnVPIxt0ehYyjPz+WXz+Tve0FQcd5t96LRHvv/jkLHU7t29t2T+6LugiZKhROPImifongFCVPYoa0C0rQC3bQqdAL4JSgIiOQHpHqGZSko4Shw4yhwc2RjTWckpIKQRYM6Toc5yUh8mpluWVYy0q0kWfXoNXUrBbcM0ReqX6u6Tgx4vVozx4DKom1UpNZEYsBr3oMkSYTKywnk5uLfL7usZbE6LFrn5yP5/cfUFnVMjCxOZ4RF6rBwrcvIQJuWhsrUMneH9fzzEf/2ODg9qMQgwdy1BHPX1jtOBLCYsJ53XqvbKkkSnqCnvhAdcFDla1iIrn2MJ+hp9WseKwJCPeE5IkbXWo88am2z6CyNzk4VQyIVhW6Ks6soznZQlO1gV66dULCiweMj7VEJxKeZI+J1cnd5goha2zoHePz0i4j/x5MM2fE6ewb8lqDWXHPTF15qgh4G7HmPeN8h4i9ofZxS3p5dfPOvv+NxyCKI0RbDJX98hPT+LRMmFDoGXzDEP77dHVn/y/SBGLTH9lmsoNBVOHr0KPPnz2f+/PlRA9mSJHVokkROTk7keVJSUqPH1d6Xm5sbJWiPGzeOW2+9lWeeeYaLL76Yfv36kZeXx2OPPcbFF1/MjBkzGrzmU089xeOPP15ve0FBQbPtzmwgRrekpIS8vLxmz62q48CQJKlF54HsaK+Nx+Np0bm1B9urqaioaNG5DU16KCwsbNG5brc7aj0YDLb4vYZC0WKo0+ls0bm1/zaqKS0tbdG5dru93raWtrdu2oHP52vxuQ21oyXnOr12jGoDxPeCYVfDsKso+mwGecW7gMrGr4+dUB0XVCgUanF769ZrdbvdLTrXYNFy7aPjoj5zysvLW3RuRUX9/mN+fj4OR/1Y0rp4PNH9ar/f3+L3KtWJ/qyqqmrRuW31GXFw41q+felf2D3emgM8XrA37OQ65s8Is5miZ5/FuWQp/uxsAMqLCilqaqJxIABOJxUNuMqUz4hoCh0d8xlRWlq/tnlRUVHLPl/qCMEn4jOiIU7Wz4iO4sUXX+TBBx/E7/cjSRLDhw/n008/pU+fPh3dNIWm2PMtfFwz+ad6Yn5k6bXDR9eAzgr+Wn/zggqGXQMTHpD7Ch2IJEkEcp041xbg2VaC5I8eVRW0KoynJWEem4ou03pM9ydBMcjeir2yAzvswi73Nj55V0Cgf3z/iPt6ZPJIkkyN349EvR9RJFRRIYvTRUW1lsXh54UEi4oRW/AZ1Fp0ffqQ/uwzaDOzUFvMx3ydwkN2fnxjZyTlfMS0LE6bfOqWCumqiGKIH159gVB4kvjICy+hW1+lnF5XZt3hcn49JBtweiaauWiY4s5WaBmKoH2K4k5Sk2gXSdUIjDCp0amEyGCvJEmk6TQMFSU2uUMUBSX2aQNIqEgMCcSJQr2ocrUI6qogVAXxZrvJp4x84BckStUiVTqBgEWNKlaHMdFAQryebiY9aSo1SaiIDYHFL6J1B6NiwGvHDB4TAqitukZjwNW2cAy4JlpElCQJ0W7Hn5uH+0B0HLjsus5H8hybGKuyWCJidZTLOrxNbbEc33sOE9DAvIvU3PmxLFo3JJNWd61fvlDgT958fC5fPSE6yiEdjuuuvT0oHv+EgpaiUWmiRGer3tqkEF1brDZrzcddM1ESJSqL3RRnO2QB+4iD0qMOgoFmZqULEN/NTHKWlaSweJ2YYUGjO35xUaXXk/XMvxDuvJO4Xx+mLGkEJYmnEdCY0QZdJJVuJaFkMxopROa8eREHf0vZvWo5P7z2QiT6MT49k8v//CgxyUqt1s7OOz8fIbtMHkA9vVc85w1WfmcKJycul4vPP/+cd999l5UrV0YGXWsPviYmJlJWVtZRTYwaaDYYGo/9r72vriAM8Oqrr9K7d28uvfRStFotXq+Xa6+9lkceeaTRaz700ENRLsiqqioyMzPp1q1bsw7thsT3pKSkFsWu22y2qHVBEFoc167TRdcMNBqNLTrX0kAfKi4urkXnxjcQH9zSuuR1a5prNJoWv1e1OrovYLFYWnRuSkpKvW2JiYktOrchoaul7dXX6Ufo9fpjiuGvbkd6Wir4PYg+AUmq7bAQUQlOBCFIUmYv+N17kDEaBIG95Xup1FaiiYu+ldWr9Vi00ZMQ6/5NqNXqFrdXUyvm2uPwU7jPRZwlqZ6wgyCg1anQ6tUIKoHU1NR6A9Tx8fEtet24uLh629LS0lrkvjQajVHrOp2uxe+1bnttNluLzm2Lz4gD69ew4PmnEUMhYowG2ZltqT85pTat+YyQfD4knw/R58MUCFD+5lvR7VCpSTUYEPQGBIM+Ek1aF+UzIvo8b0Ck0i1PLFCrBBKtegTa4TOiBecmJibW25aSktKgMF+XtvqMAPn33JJzG/q76cqfEaIotmiS3LHSGgd4eXk5N910EwsXLox8Vs+ZM4e5c+fW+9tU6GQEvLIzG2g8XjG8vVrMFlQwdCac8ydI7NjJCqIniHtzMa51hQQKXfX2a9MtmMemYjotKZLs2FI8QQ87SndE3NdbS7biDrobPV6n0jEkcUjEfX1a0mlYdfW/VyW/n0BxST1XdbC49vNipAbKcLQKQUCTmIjo87U4chyVCn3PnhhamO7UGJVFbhbN2xYZs+s7JoUzLut9XNdU6Bi2/LCI/H2yYSM2tRvjr2o4nUyh6/BirdrZd03qg6aJdFIFhdoIUr07coXOSlVVFTExMdjt9nqDhK3l0R/fZcDCFM4yyjfXDc0KrP7TWO1x88qoV4gxxuEPiQT9AgaHFYsrFqs7llh3PPG+eGL8NoSw0K0TwKgCgyBgVAkYVGBUCRgFMITXtcfplAoJIRx6D1UGNw69myqDmyp9zXOH3o1T50VSNfwnrvMEsZV55Ue5t95z/TGK6QGdCnuCAUe8AXuCgao6D59RI2eytTPF7mL2V+xn1H6ROxeKWLwgCqCSapZOA8y7SMXGvifuS8OgNjTrkm7MSW3UGE+Yw06SJOwlHkqqxetsByVHHQRa8HcRm2IiKcsacV8nZlrQtfKmpbU4li0j/89/Rqxy1Ps9q2xW0p7+J9bJk1p8PUmS+OWzD1nzRU1Ma/dhI7jo9w9iMLfNpAuF9qPE4WPSv37C6QsiCLDw7rMYnFZ/cFLh1KUt+xQdgSRJLFmyhPfee4+vv/464n6r3a2Ni4tj1qxZ3HzzzezYsYMbbrihntPteHnnnXe46aabADh8+HCjceIffvhhJBJ8yZIljUbNvvHGG9x6660A/PLLL5xxxhlt2l7o+r97hZMATyXs+gZp6yd4DqupDNyGSM3folG9ktjBR1CPvAz6TAWNLF4WOAt4ecvLLDi4IKoO5ID4Adw36j7OTDuzzZtakuNg27Kj7N9QTCgYLarEdTPLseJjU9q9n3eysn/9ryx8/p+IIXni5IDxE7jgzvtRqY990meoqgrnipU4li7FtXIloruBQX+VCtOoUVinTsEyZQq6FkbuK8h4AyGmPreC3Ap5gvdrvxnF+UOUiZOnKp2lX7Fy5UpmzZpFfn4+kiRhtVr573//y1VXXdVhbTrZadPf/daP4atW1DfPGAOXvAJJ/Y7vdY8DSZLwZ1fhWleIe1sp1OknCHo1puFJmMd2Q5fe8jEUu8/O5uLNbCraxMbijewq29WkkcSqtTI8eTgjU0YyKmUUg+IHofH4a9zUhWGROvw8UCw7rENtMNlX0OvRpKSgTUlBk5KCJiUZbUpqeFuyvC0xEUGrjZRFbClpz/yTmIsvPua2uew+vnx2I1WlcvpLev84Ztx9GmqNIpp1NezFhbzzxzsJhlNgrnr0KTIHDe3gVikcDxuzy7ni1V8B6J5gYun9ExRB+xSnNX0K5c77FKVK2MpI8wUgNixmAxG39kizGpd4lErPYVSSQEzQilETR5zJTqKuikRLFYmBSpIC8ST5E4gPWdEe559WgBCVKhelmkoK9cUU68oo1VRQqq2MLO1qJ5LQgFgdBJygL5dIskNyZXhpl0i2Q1KlvLR465/aEvxqKImB4lghehkjUBwLDiMg+AE/UGf2YUX4cQLZ2FfFnLsFTt8jMXafhNkj4TIKrOsnsGaAQEDTeoHYorW0Soiuva5T65p/gROMJEk4yryyaJ0TFq9zHPhaEGdvSzRE6l0nd7eRlGVFbzzxH63WyZPpu2oVjh9+wLF4CSG7HXVMDNZpU7Ged16rnNlBv58fXnuBPT/X1NgbNvV8Jt90G+pGXCsKnYvnFu/F6ZP/fq8Zk6mI2QonDbt27eLdd9/lww8/JD8/H6gfgykIAn//+9+5//77I26cnTt31ndVnkBqR2F7vY13QGrvU8RmhZOKoB8OLIFtH8Pe7wkFDVQG7sAjjo8colK7iBvrwHjunWCMjWy3++y8ueNNPtj1AX6xJmo6zZzGXSPu4sJeFx53Ck9tQiGRQ5tL2L48l4KDdRyeAvQYmsiwyRlk9I/r0FIGXZ39635h4dx/IoYnGg08exLn3/F7VKrWi9mBwkIcy5bhXLIU17p10ECEuKDXYz7rLKxTpmCZNBFNA05XhZbx+spDETH7rD6JnDe4vhtcQeFEIUkSjz32GE8++SSiKEYixj/77DN691acmF2GPQtryqY1iwqsqR0mZodcAdybinCtLyRYXD+5UZdlxTwmFeNpSahakMpX6CqMuK83FW/iQOWBRo8VRIneYiLjNH0ZSjq9/THElYqEtpYQKPqZYNGXHCkqangyVytRx8TIgnRqWLBOrvU8LGKrYmJa3Beynn8+qn88KceTN3VfJgiorNZjKotYjd8bZNG8bRExOyHdwgW3DVXE7C6IJEn8+J+XImL2adOmK2L2ScALS2s+5+5U3NkKrURRJk5RuufFY5YM0Ey/QxAEzJKBVw79Ba2kISEYi4bji0n2SyE8koQvpMIjgleS5KUo4RElPBIEJABj+NGNoK4SyViAYCpEbSpAZ1Rh1PmIdfoiAnWyPVrAjjnG/ltQJQvWJTE1gnVxWLAuiQW7GaQuNngV0AisGiKwakjjx8Tp45jSfUqDQnSMLiayral60l0BSZJwVfopzq6iJMdB8RFZwPa6mo9RssTrI/Wuk7Nk8dpg0TZ73olCpdcTc/HFxzWL1W2v5Ot//Z2CfXvkDYLAhN/czKgLL1UGbbsIO/PtfLz+KABWvYY/nKvUFVLo2pSUlPDhhx/y3nvvsWXLlsj22gL14MGDmTVrFtOmTWPMmDGMGzcuKlpy1qxZEYd0R5CVlRV5XlJS0uhxtfdlKI5Bhc5IwAu7vpYHnt0VYIqDARfBoEtBWydOX5Igd4MsYu/4EjxyfUd3aDyVgTsQqZlsZRxgIvbKcagtNRMf/SE/H+35iNe3vU6Vv2aSqE1nY/aw2Vwz4Br06raLkHVX+dm1Oo8dK/Jw2aNrNOtNGgae2Y0hEzKISTI2cgWFlrJv7c8seuGZiJg96OxJnNcKMVuSJPwHD+JYshTH0qV4t29v8Dh1TAyWSZOwTp2C+cwzUdWJ/lZoPXmVHl75SR6EVKsEHp0xSLlHUOgwcnNzmTVrFqtXr470C2+77Tbmzp1brzSBQifHXdFCMRtABM+JdYpIooTvkB3X+kI8O0ohVGdCrVGDeUQy5rGpaFMbr/csSRKH7IdkAbt4E5uLNpPvkifpaoMS8Q4Y6IB4h/w83iGR6TWR5jEQUxVEW+6AUBFQJF8PaLx6diOo1WiSkmq5qlPQpoYF65RktKmpaJKTUTVRJulYUOn1pD39NLl33imnVjYkaoe/T9KefrrV5fKqCYVEfnh9ByU5cjS9JU7PjLtP6xDjicLxs33Zj+Ts2AqANTGJc2bd2LENUjhuNudUsHKfPO6RGW/kshHHVppG4dRF+TQ/RRlW3ocQIuoGKyvXJyPQwlnXRjUqmxaVTYtQvYzRorLpatYN8kCFzx3EXuihssCLVODBW+DBX+gh4Kg/o97ij8XijyXTHl0/xeAtw+wqwOzKDy8LMLsLUYuNi5MhQUWJ0UaRKY4icxxFplgKw0tnfBLqxAQSbSYSLDoSLXqSLDr6W/Xh53oSLHpijBpUqs594/7wqodZlbsKkeZvClSoGJUyikfPePQEtOzE4q7y10SGh5fuKn+z55lsOpJ7yOK1HB9uw2Q7uW+Ky3Jz+PLpx6kqkW+OtHoD0+95gD6jx3VwyxRaiiRJPLFgV+Te8O4pfUi0KPXiFLomn332Ge+99x4//vgjwbDbrraInZGRwbXXXsusWbMYNmwYQIfWyW6KgQMHotVqCQQCHDlypNHjqvd17969wRqmCgodyp5v5fqW3soaF5Wggt0L4LsH4bLXoP8FUH4Itn0K2z6Rn4cJSTYqA7fhEc+JbFOZNcRe0gfTsJpazKIk8u3hb3lp00uRQV6Qa0LOGjiL3w39HTH6tvv/KM6uYvvyXPZtKEIMRg+uxqeZGToxg/7jUtHqj29Sr4LMvjWrWfjCM0jhuriDzpnMebff26yYLYVCeLZuxbFkKc6lS/FnZzd4nDYtDeu0qVgmT8E0amSjNbEVjo0nv92NN1yL9PozutM3pel65woK7cU333zD7373OyoqKpSI8ZMBU1zLHdqCCownJmUj5PDj2ii7sUNl9VOWdD1tmMd2wzQkAUFb/3ssIAbYXbqLbYd+5cD+tRQe2YW+3Em8A9KdEkOrIN4pi9e2+mbvMK7wo3kEk6mWgzq5nqtak5KCJiEB4ThKexwP1smTyJj3Mvl/fkiup61SgShGliqrlbSnn25VubzaSJLET/P3kLNLlvn1Jg0z7h6OOVYZE+mKOMpKWTH/zcj6ubfehc6oTE7s6tSunX3nxD5oFXe2QitR7u5OUbqpk1ssZlejsmhR23SoY/Thhw61rdbzGH2L4nSqkVRBYiweupnKCOhzCWjzCKhycTjLqCwPUuUz4DJ1w2nuhsvcjaC2/ixHryEBryGBsoRa1mNJRO+vQBu0I+LGoQqSp4a9Kg35xjhKjTGITQ2YlMKhUg/QaG8SrVqQBW6rnmSrvEyy6EmyGeRlre2GBjq1J4LzepzHitwVzR8IiIhMzprczi1qfzxOf7jmtSPiwHZW+Jo9z2DR1jivw9Hhp1qH98i2zSx47in8HjnawBKfwKV/+ispPZWYtq7EDzsLWXtYvnnrkWDixjN7dnCLFBSOnauvvjpS/qSauLg4rrzySq677jrOOeecLuMK0+l0TJkyhe+//54NGzY0etz69esBuPDCC09U0xQUWsaeb+Hj62rWqwecq5deO3x0LST0gbL99U73MIGK0F2IYo272Tg4gdjL+kS5sn/N/5XnNz7P7vLdkW0CAjN6z+Cu4XfRzdKtTd5OKCRyaFMJ25bnUniofqx4z2GJDJuUQboSK96m7P11NYterBGzB0+Yyrm33d2omC36fLh+/RXn0qU4li1vtN6nfuBArFOmYJ06BX3//srvrJ349WAZi7YVABBv1vH7qR1Xu1bh1MXv9/OHP/yBV155BUCJGD9ZGHCRPEGuJUgiDJjRbk2RRAnf/gpc6wrx7C4HMXqym8qswTQqBfOYVDRxOoKlpXh37SBQWIS74CiFR3ZScfQggaJCtOUO4qokRgVh1HG2Sx0fL4vTyXVd1eHnKSmoLJZO/x0ol8tb2Sbl8uqybsFh9qwpBECtUTH99mHEpzXumFfovEiSxJI35kXGKAdPmEqP4cf7X6TQ0Ww9WsnyvbI7Oz3WyOUjlVQ6hdajCNqnKAnxyXgLylC1QNQWETEMjCf5htbVqJBCIYIlJQRycwnk5eHPzSWQlx9ZDxQWQjhmri628CNyLcCvs1/nQPAAAHkcSURBVOEyd8Nl6oY7sRcuawZOTTxB6kQ+Cyp8+gR8+gQA1EAW0F0Fllgj+gQ9xGjxmdQ49ALFUpASt58Sh49ih4/iKh+eQMPtqiYQkiiweymwN1+I22rQ1IjeVkOUAJ5sqxa/DcQatW3q+j63x7k8ve5pqvwO5J9gYwjYdFbO7XFum732icDnDsiR4WHxujjbgaOBGbN10Zs0sus6ImDbsMTpO32nvz3Zuvg7lr71amRwMblHby598P+wxid2cMsUWoM3EOIf39YIAA9PH4hOqRGl0MWRJAlBEEhISOCFF17gyiuvRKvtPKUeWsMtt9zC999/z9KlS7Hb7fUc2Hv27GH37t0IgsDNN9/cQa1UUGiAgFd2ZgON9ynD26PEbIFQ5rlU+m7Gk1MzmKgyaYi9pDfGYUmR/tfe8r08v/F5fs7/Oeqq49PGc9+o++gf3zblM5qNFR+fxtAJ6dgSlVjxtmbPLyv59qV/RfqbQyZN49zZdyOoovsqIbsd58qVshN71SqkhuqAqlSYRo/GOnUKlslT0GUoUYXtTTAk8viCnZH1P53Xnxhj1/w+Vui67N27l2uuuYZt27ZFJjzefvvtPP/880rEeBfH228GPu7HKrkIhrTszJ/IYf9Y/IIFneSkp24dg9N+QqMO4BDM6PtdRNsGYkPQ7sO9IezGrqxvjFAZXSBmEyraScXbhZQ8XUSwtFR2GNdCD6S25oW1WrTJyWEHdbIsWKemyg7rlBQ0KalokpNQnUR/421RLq8uO1bmseHbI/KKAFNvGkRa39g2u77CiWXP6p84tEme7G2OjWPi9bd0cIsU2oKXltXcK94xqbcyZqlwTCiC9imKeXAS/p0tqzmjQoV5WP3IcUmSCJWW1heq83Lx5+URyC+AQPN1iRtCHR+PNj0dbUY6uvR0tBkZ8np6Otq0tEgtF0mScFb4KC9wUZ7norzASXm+i/ICF0F/dKdSEsFR4sFREu28TlULDEgxEZ9mI36QmYQ0C4ZEPV69ilJXtdDtjQjeJeFHscNHmcvXYNmX2ji8QRzeIAdLmo4I0qhk13eyTV/P5V1XDG+J61uv1jOz+wO8se+vQKQUTfTPJNz2md0faNMahG2N3xuk9Gi1eC0L2Pbixh301WgNapKzaovXVmyJxlNavK6NKIZY+f5bbFz0TWRb79Gnc+Hdf0TbxvWSFNqft34+zNFy+f9ifJ8Epg1qYakIBYVOysKFC3n33XdZsGABpaWlzJkzh++//55Zs2YxdepUVKqudfNzxRVXMGHCBFasWMHjjz/Oc889F9knSRIPP/wwADfccAOjRimzzxU6Eds/k2PGW4otDcbOwWOYTsX35YjOmvsBw6AE4i7rg9oqD8oWOAt4ecvLLDi4AKmWWD4gfgD3jbqPM9PObJO3UJxdxbbluexvJFZ82KQM+o1VYsXbi90/r+C7l/6NJFWL2edy7uy7ImJ2oKAAx7JlOJcuxbVuPQTrl6ASDAbMZ43HOmUqlokT0MSdmLhZBZmP1uWwp1CuRzo0PYaZozM7uEUKpxpvv/0299xzD263G0mSsNls/Pe//2XmzJktvsb27dv56quv+Otf/9qOLVU4Fr7dXcEi/23cX7KG1eLtBHVm0IqRGPICYTTrCm7gLNUrPJd0BhfuruDykcfmvJUkiVBFBcGiIvz5hfgO2AnkaxB9NiB6rEj02glk/0wg+2ckd0mrX8ujF/DGW9CkJGNL70F8Zp9wjeoaV7U6Lq7e5C6F1nFoSwkrP9obWT/7qr70GZXcgS1SOB5clRUse+f1yPqUW+7AYLF0YIsU2oIdeXaW7C4GIC3GwJWjFHe2wrGhCNqnKIZ+NkJBDyq1oUlxT5IkxKCHQPYayjYWy0J1bl5YuM5D8jUf59wQqpgYtOlp6NLDQnVGhryekSEL1uaWdUwFQcAab8Aab6D74ISadosSjnIvZfkuyvOdsuCd76KiwE0oGC10iyFJFsHzowVntVZFXKqJ+G5mhqWZiU9LJL6bGVuCASHspA6GRMrdfoqrfJQ4a8TuGtG7Rgh3+5t2fQdFicIqL4VVLXN917i8DTVu72oh3KbHZtDw1o9GvJrfYkj7DNQeJElAEKTIEtGIN38mb2cbuW1MqMPi0WsT8IcoPeqUI8PD4nVFkbtpkzmg0ankWtdZNpLC4nVssinyu1KIxu/1sOjFZzm0cV1k2+gZl3P2dTc0W8NQofNRXOVl3rIDAKgE+L+LBikTNxS6PNOnT2f69OnY7XY++eQT3nvvPebPn8/7779PUlISV199Nddddx3jxo07oe0qLi6muFi+EcvLy4ts37dvH06nE4CePXtibqAv8/nnnzN58mSef/55PB4Pv/nNb/D7/cybN4+vvvqKyZMn8+qrr56YN6KgABD0gyMfqvLBngdV4Uft567WDOCqEFPOoDLvAtybiyJbBaOG2It7Yxouu7LtPjtvbn+TD3Z/gF+scUqnmdO4e+TdTO85HZVwfIO7NbHiRyk8VBW1TxCgx7BEhk3OJL1frPKd2Y7sXv0T3738XETMHjr5XKbecie+AwfkKPGly/Du2NHguerYWCyTJmGdOgXzmWeiMirO+Y6gwuXnXz/ui6w/dvEg1Mo9lsIJwul0Mnv2bD755JOIK3vEiBF8+umnrY4Y37ZtG48//rgiaHdCftxZhKEwhZ+09xMJkqzuB4SXQY2Rn/gDuoKD/OHTrTz93R7iTDrizNrwUke8DlICLhLclcS5KzE7KjBWlaMtL4XSYoJFxQSLikBrQ9t9PNqs8aiMCVFtkSSRUNFOAtmrCBZuB6n+WJ4IVFqg3AIVVoEyK5RbBTTJyaT0GEjPvqMZOmAiA5N7teNPTQGg8JCdxW/ujBh2RkzLYtgkZdJVV2bZ2//B65Qn0fU/42z6jjmjg1uk0BbUrp19+8Te6DXK2LPCsaEI2qcolT9+y9rinzij28xInGddqm8W1pYsZNBDS1E3Z0WuhcpsrnFVN+CyVlutbfZeGkJQCdgSjdgSjfQcVhObLIoSVSWesIvbGRa8XVQWuRFD0e8vFBApPeqk9KgzartGpyK+m5n4NDPx3SzEp5npnmZmcJqtycEwly9Yx+XtrXnu9EVE8TKnr26JnnpUu74PNeP6lhmEc//DaKw70Fh3IKg9SCEjQccQgo4hIGmxE+T9X7OZOToTi0FzwgYoQgGR0jwnJdlVFGU7KMmuorzAjdTMD0CtUZGYaYnUvU7qbiUu1dymke0nM46yUr565glKjhwCQFCpmPq7Oxg29fwObpnCsfLsD3txhSfNXDcuiwGptmbOUFDoOsTExDB79mxmz57N4cOHeffdd3n//fd56aWXePnll+nVqxezZs1i1qxZxMfHt3t7XnnlFR5//PF6288777zI8+XLlzNx4sR6xyQmJrJ+/Xrmzp3LRx99xPz581Gr1QwcOJBXXnmFOXPmdDnnuUInJhSQheqq/IaFanseuIpbdUlJ0uIWz8IbOp2QZEUtODCo12BSrUYQAnhCI6nYfSVisOa6hgHxxF3eB7VNjy/k4+M9H/P6ttep8teIzDadjdnDZnPNgGuOOzXIXeVn56o8dq5sOFZ80Pg0hiix4ieE3auW89285yNi9qDTRjGswsOhC6YTyMlp8BxterocJT5lCqaRIxE0ypBFR/PvxXuxe+SkhctHpDOqe/t/1yooVHPaaadx5MiRyLhVdcR4Vy1Bo9AwzkonZwnphKBGyK5L2K19miod6fA6Yv1VJHrsJHjtJHjsJHrtxPmc9U4Lhh8IajTdTsMw+grUyQMR6ryO6C4nkPMz3txfsRucFJuClAwUKbMKlFsFysOidbkVKs0gaLQMShjEyJSRjEweyYjkEcQaYtv2B6PQJJVFbhbN20YwIPcz+o5J4YzLWjfRRaFzsX/tL+xbsxoAg9XG5Jtv6+AWKbQFu/Kr+HGXPNk51WbgqjHKpBOFY0eQpFaolJ0Mn8/H3Llz+fjjjzlw4EBkQPCGG25g9uzZxzUgaLfbeeaZZ/jyyy/Jzs7GZDIxbNgwZs+ezTXXXNPs+fn5+fzzn/9k4cKF5OXlERMTw5gxY7j77rujBjxbQ1VVFTExMdjtdmy24xMrVt9yE2sdJaSZ+jAucTo6tRFRElEJqsjSH/KwtmQR+Z6DnJZdRHplTcdQMBrRpqehTU+v47JOR5eRjiompks5HUIhEXuRh/ICF2X5TirCseWVxZ5mxdVqdAZ1WOQ2E58mC93xaWZMNl2rfhYhUaLMFR1tXtf5LQvg3oiA1dZY9RpsRi1Wg4YYoxabUYvNoMVmDK8bqrfV2h9et+g1Db7fUEikPM8l17vOcVCS7aAsz1lvIkFdVGqBhHRLpN51Uncr8Wlm1GplwP9YKDp0gK+feQJnRTkAepOZGfc9RPdhwzu2YQrHzPZcOxfPW40kyekNKx6YRLz55KmvpdA+tGWfoqNYvXo17733Hp9//jmVlZUIgsCgQYPYtWsXP/74I1OmTIkcu2bNGl5//XXeeuutDmxx5+Bk+N0rIIvVjsKwMJ3bgGidD84imo24aQpBBdZuEHCDpwJPaCzlgfuQsAIhQB1ZCjjRqvbjF0fUnG5QEzujN6aRyUhILDq0iJc3v0y+Kz9yjE6lY9bAWfxu6O+I0cfUbUGrKM6uYtuyXPZvbCJWfFwqWp3iBjgR7Fq5jO9fmRsRs7s7fQw6mEtDd0X6QQOxTpmCdepU9P36dan7yJOdnfl2Zry0GlECk07N8j9OJMWmlCZSqKG9+xUqlSrymWCz2RgxYkQzZzROUVERe/bsIRRqn3GUU422/N2/8Pt30XhbLnAM2v0OqUXrW3SsYE5G2/0stFlnojJEt1OURA4EDrFas5a18WsojwniNNJgzT5B0mMTepOkHUh382D62AaRbLERZ9YRZ9KGlzpijFolxeIE4LL7+PLZjVSVyimX6f3jmHH3aaiVmrxdFo/TwTv3347bXgnA9HseYOD4CR3bKIU24fb3N/LdjkIAHpsxiBvH9+zgFil0NlrTp+iygnZpaSmTJ09m+/btzJ49m9/+9rf4/X5efvnlSGTjokWLMBxDHdgDBw4wefJk8vLyePDBB7n44ospLy/nmWeeYcWKFcyaNYv33nuvUcF8zZo1TJ8+Ha/Xy+OPP86ECRM4evQoTzzxBNu2beOhhx7iySefbHW72rKz+PG1l5EX8oMgoBLUZJr6k27uh15lwCd6yXPt46h7L6IUAklCAEwWK3qTCZ3Fit5qQ280oTUa0RtN6IxGdEZT+GGMWtber9Zqu9QARSggUlHklmtz57nCgreLqlJPi8cH9WZNROROiAjeZozW4xecql3f1XHnxVXeyPMfdhZFZtKfSFQCxBi0ZKg1pIlqkgICMR4JozuEIDZ9rqCC+LQa8Tq5u5WENAtqrdIhbQv2r/+Vb1/6F8FwqYCYlFQu+9OjJGQoM+O6KpIkcdV/fmX9kQoAHrlwILecrcSaKTTPySRq+nw+vvnmG959910WL15MMBjEarVy7bXXcssttzB69Gg++OADrr/+emUAk5Prd3/SEgqCs7DxCPCqfFnMPl6x2pIq17uOSQdb9SMNYjLk55YUUGtg68d4Pn+TssAj4ZMb6pdJ1K47qe8XR9wVfdHE6Pk1/1ee3/g8u8t317w8AjN6z+Cu4XfRzdLtmN9GKChycHMx25fnNhgr3vO0JIZNyiBNiRU/YYTsdja9/V9W/vpTZFtWqZ3BeaU1fyFqNabRo2URe8pktOnpHdFUhWaQJImr/7OGdUfkibAPnj+A2ycqzjeFaE6EoJ2YmNhgKZfW4nK5KCsrU/qDbURb/u4/uOVdKtXpjbuz66AK+YmpOoTJXYzRU4zJW4pRH0Bj0eCPicVtS0Jl7kWsOp14sX7t3QJNBd/HrmJJ7K+Ua+0NvoYYNBNy9yDk6UHI3QPRm4Y8ma9pBAFijFriTTpiTVrizTpiTbrwsnq7vF4thMcatWgU00aL8XuDfP3cZkpy5FjqhHQLl/1xJHqjkurSlflu3nPsWrkMgF6jxnLpA/+n9N9PAvYUVnH+3FUAJFv1rPzTpE5R8lShc9GaPkWX/aSfOXMm27dv595772Xu3LmR7ZMmTeKyyy7jm2++4fbbb+ftt99u1XV9Ph8XXnghR48e5fnnn+f3v/99ZN/UqVMZP348H3zwAX379uXRRx+td35JSQkzZsygoqKCr776iksvvRSAsWPHMnXqVIYOHcpTTz1F//79ueGGG47lrbcJfrUaRPlLQZRCZLt2ke3a1fDBgoAEuFxOXC4nlLQumrA2KrW6CeHbWLPNYERnqnOcwSgL6uFtak37R0yptSoSMywkZlhgTM32gD9EZaGbsnxnpP52eb4LR3n9+tc+V5CCA3YKDkR3ko1WbVRsebW722Bu+fsy6zWY9Rp6JNa/uavybOTHXYXNxpdXkxpjoH+KFbsnQJU3QJUnSJUngD/UjAotQbwokBpSkRJU0S0kkFyhQn4Xjd8oSkiUqiSK1CKFGpFCtUiJWkLweInJtmMr0mLdLru+bUZtLWe4BptBW8s5Hr1fp8zGrIckSWxc+BUrPnib6sJCaf0Hcckf/4LJdnxuKIWOZdH2goiY3SvRzPVn9OjYBikodAB6vZ6rrrqKq666iuLiYj744APmz5/P66+/zn//+1+GDh1Knz59OrqZCgoyoaDsnK7rpq7KreWsLgSpmf5XkwiyGB0TFqhtGdHPbWlgTQV1y/qcUt+LKQ9W9xca62dVDzZJxM7ojvnMLPZW7OX5xc/zS/4vUUeOTxvPfaPuo398/2N6d1ATK75jZR7uhmLFzwrHiicoseKtRfT5cHz/PY4lSwnZK1HHxGKdOgXr+eej0jccBx8oKMCxdBmOpUvYt28329ITIu627qV2BuWVojIYsJx9FpYpU7BMmIAmLu5Evi2FY2DhtoKImN0jwcTNZ/Xo2AYpnLLMnTuX66677riv8/7773foOJxC46jQtFjMBhDVOiriBlARNyBqu00j0MempQegESW52HWYAEF+tW7lu7jVbDXtQxKiB8titCkkawdipS/aQG98oUQqCVAh+akQ/biaGN+qjSRBpTtApbt1BhObQdOg+F3t/K7tAq+uG67toiK4NxDi2+0F/LiziEq3n1iTjnMHpzB9aLdmha5QSOSH13dExGxLvJ4Zd5+miNldnMObN0TEbL3JzNRb7lDE7JOEl5YdiDyfM6G3ImYrHDdd0qH9xRdfcOWVV2IwGCgoKCA2NjZq/+7duxk0aBCCILB+/XpGjRrV4mv/+9//5o9//CNpaWnk5OSgVkf/k3333XdMnz4do9HIgQMHSEtLi9p/99138/LLLzNu3DjWrFlT7/qvvvoqd9xxBykpKRw+fBijseWDLG05+/GLP97FkZzDDcbo1EOS0Gi16C1W/B4PAV990bYjUGu10cJ3WPDWGsKucVNYGK8jmmsj4nmNOK5St82Hqd8bpLwgLHAX1Ajdrkpfi69hjtGFBe5ooVtnaF3n7MtNudz/6VYAdKEgZzkO09N9GE3IS1Bt4LCpJ6utPfGr5es+f/VpXDYio951vIEQVWGRu9IdoKzIRflRJ858N/4SL1K5H6GZ2HCAcpUsWheqRQo1EsVqkUA79E0MWlWTgne1IN7QNqtB06VnxTpdHr74YhFHNq5F9LpQGcz0GDGGRFcee1YujRw3YPwEzrvtXjQ6JZa6q1H7xq/c5WdbXiXecL2ot24czeQBKR3cQoWuwqng0t25cyfvvPMOH330Efn5+QiCoDhyODV+9x2GGJLF6rpu6tqR4I5CkI7n71AAS3IdN3WavF793NqtxWJ1S3BtKqLi030tb+ElycwLvsvCQwuRarnIB8YP5L5R93FG2hnH3JaiI1VsW36UAxuL68WKJ6SbGTYpk75jU5RY8WPEsWwZ+X9+CLGqClQqEMXIUmWzkfb001gnT0KSJHz79uNcthTHkqV4d+4E4Gicle2ZSZF7zJ5VHsYNH4dt2lTMZ5yBqhX3vgodi9sfZMq/V1Bgl+/9lX6mQmOcCIf2+++/3yaCtpLY07a05e/+y9vfp0BMBUGFCkjTCnTTqtAJ4JegICCSH5BkfVqSEAQJKTzJTh0+vrteRUIDBgdnSOKIX+RIwEuxoRS7oQS7oQRDgkB6RjJDe/djdI8RpFpSm2yjLxii0h2gwu2n3OWn0h0IL/2UuwLy0u2nwh2gwuWnwu3H4Q0e18+lOax6DbHmuq7vhsXvapFcr+nYPtLiXUX84bMtVHmCqAQQJSJLm1HDczOHM3VQw983kiSx7N3d7FkjRxfrTRou/+Mo4tOOP8FBoePwud2888c7cJaVAnDunHsYOvncDm6VQluwv8jBuXNXIkmQaNGz6k+TMCr3aQoNcNI7tN944w0AJk+eXE/MBhg4cCADBw5k9+7dvPXWW60StKuvfemll9YTswHOPfdcrFYrDoeDDz74gAceeCCyz+/3M3/+fACuuOKKBq9/xRVXcMcdd1BUVMTChQuZOXNmi9vWlvSfPoMj/3mpZQcLAlN/dweDw18mohgi4PXic7vxe9z4PR556fXgr7XN53ET8HpqjvN68Ls9+L3hc9xuggF/My/eOKFAAE8ggMdR1fzBzaDR6cOid01Memvj1HVGI1qDgdSeMaT2jHa9+tyBiMhdFnF0O/E46s/YdNn9uOx+ju6uiNpuideTkGaJRJbHp5mJ62ZudMBu+tBuPLZgJ0OKDjKqfClIPmT3jIQuKDDYd5DBlXo2xE9hV0pvLhgSHfcoSRKOMi/F2Q5KcqrCSwc+d3SHvCFN2pZokOtdZ1mxpZvRJurxIEVc31XegOwE9wTDbvBAtDM8vP9YOv/egIg3INcePxYsek1EBLc14wqv2SavW3QaVB1UK+nzr35g36evoxd9mJD9UyJQ+t1uSmsdd+bMWZx+xTXKTMcuSEM3ftVoVAKhlsYxKCicIgwePJhnn32Wf/7zn/z973/n8ccf7+gmKXRlxBA4i+u4qWuL1nngKDhOsRowJzcSAR4Wra3dQNO2E9IkUUL0BBFdAUIOP6IrgOgMEHL6EZ0BPLvLW3wtEYk1yxazIGNBZFuaOY17Rt7DBT0vQNUK91U1oaDIwU3FbFueS9HhBmLFh4djxfsqseLHg2PZMnLvvKtmgyhGLUWHg9w778QyaRK+/fsJHD0adf7ReCvbM2rE7KEjxzH1/j+j0rZ/qpZC2/PqTwcjYvak/kmKmK3QYdxwww307t02Ufe9e/fm+uuvb5NrKbQtPYfGUbBNRapGYIRJjU4lIEkSgiAv03QahooSm9whioIwdpgbYUwynjWldCswoRejh7dDkkR+QCLbJ1IWMWDoSHCnkeAOG5Pyge2QDRQY9xGbfJSYZBOxKSZik43EppiISTZFnL96jZoUm5oUW8tLW/qDIpWe+uJ3hdsfFr3Dz2utt6Z0oMMXxOELcrTc0+JzzDp1tAs8IoLXiN91hfC2clQu3lXE7PkbIlVzxDpLhyfIrfM38PpvRzOtAVF77f8ORcRstUbF9NuHKWL2ScCqD9+OiNlZQ4czZNK0Dm6RQlvx0rID1UGhzDmnlyJmK7QJXU7Q9vv9LF0qOw3HjBnT6HFjxoxh9+7dLFq0iHnz5rXo2ocPH2bPnj1NXlutVjNixAhWrlzJokWLogTtn3/+Gbvd3uT5ycnJZGVlkZOTw6JFizpM0B5w1iSWv/06fp+3aZe2JKHTG+h/1sTIJpVKjd5kRm86/k5DKBjE7/UQCAvgfndY+K4llPsa2Bb9XBbNxdCxz3wM+n0E/T7c9srjfk9ag7FOTHqdGHWDkW49THQfZAJBi9+twuMUcNslHBUS9tIAfo8aiK437iz34Sz3kb2jrObFBLAlGiMid0JY6I5NMWHQqnkw2U3hrm9rtU6KXko+Rpd9y4VDfkfQGeRQdjklOQ6Kj8gCttfVfEfaEq+P1LtOzrKR1N3aqtj0pgiJEk5fsEHBu8oTfngbF8ld/tYPKjt9QZy+IPn21icRqASw1naB1xa8a7vCG3GJG7XqYxqI/fyrHzjy8UtUD2+r6ixB/o0nnX4uZ1x5bauvr9DxNHbjV01IlJg9f2OjN34KCqcyKpWK3r170wVDiRROFKIIruLGI8CrwmK1eJwuG3NS4xHgMdVidcORzq1FCoiEXAFEp5+QM1qgFl01z0Ph9RbXqGkGFQLmkOzCtelszB42m2sHXItO3XoR3mX3sXNVPjtX5uGuqhMrbtYw+Kw0Bp+jxIq3BaLPR/6fH5JXGvusDG93LltWb1fB4P5s19T8f4ycfgkTr79FmWDQRckpc/OflYcA0KoF/u+iQR3cIoVTmdaWEWyK008/ndNPP73NrqfQdvSZNZ4jO9Yw2myKbKv+DqleagUYZ1aT7fHjKLLT94tYINrFdUSfz3cxq9lqO0J/03D6CoPpFshA6zDjKPFhL/EgNpAw6PcEKc52UJztqLfPaNWGRW4TMWGhOzbZREySEU0z4oxOoyLZaiDZ2nIRPBgSsXuqhW5ZCI8Sv8Pu79pO8EpPoNGv77q4/CFcfg95lS0XwY1adR3Xd9gFXscNXlskrzu+5Q2E+MNnW0CCxpoqAYIEf/xsC2sfnholpO9YmcfG77LlFQGm3TyItL6xLX4PCp2Tozu3sXXxdwBo9QbOnX230n88SThQ7GTBtnwAEsw6Zp2e1cEtUjhZ6HKC9u7duwkEZJGtR48ejR5XvS87Oxu73U5MTPN1Yrdt21bv/MauvXLlyqjjW3t+Tk5OvfNPJBqdjum//xNfP/M3eXCioS+L8Pbpv/9Tu0UTqzUajBYrRov1uK8VDASaFL39Hje+OutRrvLwc5/HjSQee93CgNdDwOvBVdFyN0vDCKi1elRqPaBFDGmRJC0IOgRBD4IWBD3lR3WU5+oQ0IEgP1QqHeY4E+U581v0SkUr3+edrWYEoemPBFOMrka8DjuwTbb2i61WqwRiwqJv5jGcHwiJOJoQvBt3isvn+IKt+zsQJbB7qmfUtvzmoBqNSqglcmtqOcQbEsHl/VopxL5PX0dHw2752uStW4HTdSsWszLw25U43hs/BQUFuOyyyzh8+HBHN+PkJ+CFXV/DnoXgrgBTHAy4CAZdCtqWD+S1KaIIrpLGI8DteeDIP36x2pTYeAR4tbP6OH4GkiQheYI14rSrliBdS7SudllLvo6JUw0h4lJ7uGnITfxuyO+I0Td/D1aXosNVbPvpKAc2FNcbdE5ItzBscgZ9xyix4lIohOTzIfp8SH6//Ki97vMj+euvSz4fYvW6z4fk9+Hdu1eOGW8pgoBp3DisU6aQbVSz+bMPIrtGXXgpE377O2Uwsgvz90W78Ifvg24e35NeSZYObpGCgsLJzorCVQwNi76NfX9Uu7V7mPTg6x7Z7hV8rI3bQX5fJ2n9e/KblDt4Iq4falX9foIYEnGU+6gsdmMvdlNZ5KGy2E1lkRtHubfBG26PI4DHYafggL1Og8ASpyc24uquEbxtCQZUx1jOTqNWkWDRk2Bp+STHkChR5QlQ7m7EBe7y19rnj0Snt3Q+oycQwmMPtcr4odOowlHossDt8gWp8jTf35YAuyfIdzsKImURD20pYeVHeyPHnH1VX3qPTG5xWxQ6JwGvlx/+82Jk/ezrbiAmWTFonCzMW17jzr71nF6YdF1OhlTopHS5v6ScnJzI86SkpEaPq70vNze3RYJ2a69dUVGBy+XCbDYf0/lH68S0nWh6jxrHJQ/8H9/Pew6f21Vvv95s4YK77qf3qHEd0LrWo9Fq0WhjMNlaP3BWG0mSCAb8NW7xOoK3PxyjHvBWu8prxajXjlsPL1s8TbJ+S/j/9u47Pqoq/R/4597pkwqkCNJBSqguHVEwSLXRbbhgQxFRAVkX1xX0tyK6q6KCq6wFdfcrK9KkSBMEZUFABKlSDC2UJJRkkulzz++PKcmkTsgkM5n5vF+vYTJ3ztx5kntInrnPPee4HFa4HNe2ZrmtMjOxCxtsuZ+4C+UekixBrZWh1qig1shQaWVITgnZJ4DsE8DBa4oqfOgAJHtuZRFwfzBQhICiCLgEPPeiyD2gCOFr59umCL91I6vK5LllFtuuVWyIUyqeXl0CoFNseHjWR7jaoGPQ4qLql+e56KIipX3wIyI3o9GIJk2aVNyQrt2RNcDyiYD1KiDJgFDc94dXAt8+Dwz/AGg9JLjvqSiA+VKx0dRnC6cA946sdl37EjcAAGO9kqOpvVOCJ1wPxDW4pmK1cHpHURcbSV1gh2JylBhhHaxR1D4qCapYDeRYLeQYje9r970GKs/2n3dvQ6Ptxor3B0AFGYmdGmBMlxGVCsXlVHD85yzs/770acWbd05GhzCaVlw4nYWFYU8h2V1M9jwuo3As7HZ3G7/HtsI2jiKPvQVqe/HH7nuEag1YSUJs375o9ME/sW/DGmz66H3fU13uGI6+Yx8Oi2NE1+aHY9lYf+giACA5Toen0luGOCIiigbndh9DZ6nsWTi9iv59yY7PQ0F7GY17tsX9yf0D+tsjq2QkJBuQkGwA2tXze87pcCEv2+oucGeZkXvRjKtZ7oK3ObeUXFIUzqR49oj/koGyLCE+2YDEFIPfNOYJKUbEJuogBXmpOpUsuUdJxwQ+4ERRBExWp2fdb//id+E06P5F8qtmO5wB5qN2p4ILeVZcyLu2c5pvrP0NBzPzkGQDXJsu+i42aN33erTry/MdkWDbV18g96J7Cvnr26Sh88DbQxwRBcvv2flYsdd9BruOUYMHe/JcDAVPrStom0yF07/o9WWfOCr6XF6AV5tf6769Be3Kvr6iuGw2G2y2wkJVoN9HZbTs2gNPfPgFjv60Dcd3bocl3wRDbBxadu+FVj1uqraR2eFMkiRotDpotDrEoE6V9iWEgNNmcxe+Sx0xXnJbWSPLHdbKj/itXLD5ECK/8KEC2J1AFU8BRzQZ/tN6hzsFQL2co9ipah7qUKiayBKw7sBFFrSJqGYdWQMsuh82pwaHzg1Ahr077FIstCIfzbQ7kdZgC3Rf3gfc+39Am6GB7VMId7HabzR1ka+9o62rWqw21Ck2BXiRQrV3DWtNYDObCCEgrC73dN4FDrhMDihljKR25TsgrFUcFV4KSa/2FaTlWA2EUYbTIGDXu2DVOWDR2ZGvMcOkKUAeClDgKkC+PR9mpxkFjgL3zVaA/Px8mB2ebVcv40vH3yCpDZDKWQNbCAXCacF3qq0YiMAK2hVPK3492ve9HnF19Z73EBAOh7so7ChaSLZB2B2+QrJfobiiwrG3fYnCsf/jogXskBWTw4EQUMxm7F2/Bt99XFjM7nrnCNzywEMsZtdiDpeCl1ce8j3+8+A2iNNzDXQiqn5NzidDgQI5gDMsAgIZiedxy5/vCWoMao0KdT3L+BVntzqRm1U4mts9wtuCqxfNsJlL5nOKItztLpoBXPJ7Tq2R3UXuFAMSPCO7vWt262M1NfZ3VJYlJBg1SDBq0AyBLSkphIDJ5ixR/PaO+i4+Ctx7b3dVfhbM87lWLNlyEvfn62AU7p/JIY0Tf997HPKvx1EvVofkWB2S4tz3yXHuW1KsFslxOqTE6ZAUq0OCoeZ+phS4c0eP4Oc13wAA1BotBj7+DCS5Np1hpfLM33zCdy32ozc3R4yu1pUgKYyxN4Wx1157DS+//HK1v49aq0Xazbci7eZbq/29oo0kSdDo9dDo9UCdulXal1AU2K1W92hwc8mp023FRpLv37wFirPkyPtyonXHSWFEQHimmXYP9C98DHhO6jodkAMcCS4D0Cs2xET5FJ21jcXhCnhQniKAqxZehkJENchhBZZPxMHM3vhRmQinNgbQKL5R2uelrth5fhz6yO+j3fKJwLTf3OtEmy8XGU1dbApwX7G64hlIyqVPLDYFeJGR1d5itbb8kcfCpUDJs5VYh9qvQF1kJDVKWZexKoQMKAbAYRCw65yw6h0o0FqRr7EgT12Aq+o8XFblIUe6gmzpEvJcJuQ7PMVoZwEUk+Ke4qUKbj6iwPrzpzD0eBJCKKUWtYVwn6i0/vwp0gqykCevL72Q7Bm9nJOnxfHcZJy1JUMUO3kd78xB44J9qH/2IOR9Bbjwlg3nioyERhWWBqp11GrIWi0krRaSTgdJp4Os00LSFD6WdFpPG89jrQayTlfksdb9Gu82rdb9Gs9zklaH7HfegXnnzsBmlpJl/K4B9hQpZne7exRuvm8cTxjXcp9vP4XjWe4LnG9snIjhN14f4oiIKFrEO40BFbMBQIIETQ2fztbq1UhuHIfkxv7LJQohYC1w+IrbV4uM6s7NMsNpL5mzOB0KLmXm41JmfonndEY1EpI963SneqYwT3EXvbWG0J/ClyTJvRSeXoMm9SpuD7h/RgV2Fyb9Zw+2HssOeBLLGAUYVaD1FbNPqV341ugAJPd5j2yTDdkmG3C+/P1oVbKvyJ3kV/gu/NpbGI/RqpjL1ACnw4F1H7zjyzt7j3kAdRsw54gUpy4VYLlndHaiUYNxvZuGNiCKOKH/a1hJcXGFyYPVWva0JUWfi4+Pr5F9F3+9d+R2Wa+vKK4ZM2Zg6tSpvsd5eXlo1OhaVhKmSCDJMnRGI3RGIxBAbfz3vadgyj6Eslfd9ds74pLTMGHe61UNk2rYy89Mh/HC4YA++ikAEhMTcPCVwdUdFgXRE1/8jPWHLgRU1JYlINEQfTNrEEUym82GuXPnYtGiRTh+/DhUKhXatm2LcePGYcKECZBDfSX7oeU4dCIN38tTIctAQ42E+hoNtBJgFyqcdyg4Jwz4HtMgnXgTaXPbAzYT4Ly26Qd99AllTwHuK1aXzMWFEBA2l7sQfc4OJT+nsDhd4F+0VgocUEoZdVNVNrUDZq0NJo0Zuep85Mp5uIKruIrLuKRcQj5MKEAezDDBrligUgTUVkBdIKB2AWoF7nvPTeO5v94FNPFuV4RfG99NKb6t9H26t0nQuACdXcApfoXlp3/C8IfxgDbGV9j2FbgdFlj2fArXhV/R/QKQ+f0zJb5vRVIhK/kPONuwH/Lim/o9JwkXkrL3oWHmFiTmHocEwOW5hYxGU6yYrIXsKwi7H0taz7byHpdWSNbpPEXpIo89xWXZ8zpJq4WkrpmP64kjhsP8008BtT1ZNxaH8gtHm3UfNhp97v0jTwDXcjn5NszdcBSAe5r/WXe2gxzkKXGJiMqihxqKUCCXMxOMlyIU6MPkdLYkSTDEamGI1eK65v7LHwohUHDV7hvVnZvlKXZfNCMvxwKllIsgbWYnsk6ZkHWq5NWIhnitbyS3t8idkOqePl2tCd9BC5IkIVanxt2dG2DL0eyAXqMRwJOqBEBxX6wv19Ei+aa6GG11Ijvf5itm5+TbKpwC3e5ScC7XGtD63waNqsRI7+RYPZLitMVGgeugD+OfebjbsWQRLme6l2FNbX4Dutw+LLQBUVDN33wcLs//y0duaoZYjs6mIKt1Papx48a+r7Ozy/5DWPS5hg0Dm3q1svuuU6eOX9G6+OvLKmh7X19RcVqn00Gn05XbhqgsLf7QA3vXBbrStUCLLj2rNR6qHk279EDO6sMBtZUBNOvK41zbDGyXirUHLwTUVhHAoPap1RwREdWUnJwcpKenY//+/ZgwYQLee+892O12zJs3DxMnTsTixYuxevXqcpe6qW6Wvavwg/IkrtPJuNGohlaWIISAJLnvG2jV6GBQYY/ZiR8sT6Jl7kPQqh3l71SXUMYU4EXWsdbF+poLl4BidsBlck/1rZxxwJl3GUreOfc2b7G6wAnF4gp6lVQRLjhc+XA48uBwmuB0mOCy58Flz4OwmyCsJghbHmA1QbaaoHI4oHYBcS6gTlgPNvY/Qei6sA/5a6dD3aAL1A1uhKSJgXAUwHnuFzjP/QwopRf/bdp4ZDbog3MNboZd639Br8aRjwbntuH6cz9Abytcf1LSaAqLvDpdtYxSLnysLdJGV1hMVkXPicq4wYMhvzobislU7ijtk0kJOHR9ku9xj+FjcNM9D7KYHQH+vvY3mGzu/8NjujRCp0aJoQ2IKAopioJ//vOfmDFjBkwmEzIyMtC0adOg7PvcuXN4/fXXsWrVKmRmZiIhIQHdunXD5MmTMWjQoKC8R1WYnBeRLAU2q6EsyTh3YT/y/+8KtMYY6Iwx0BkMnq+N0BqM7m3GGGgNBsgh+nsuSRJi6+gQW0eHhq39lzNUXApMl624etFSpNhtxtWLFpiuWEsdl2LJs8OSZ8f547nF3giIq6NHYqpnve6UwtHd8fX0kFXhMY3z0A71MWvlQZgsznKH3agEMNKqA2zuYnZsXR1G/akrYhJLnh9XFIFciwPZ+TbkmGx+xW7/wrcdlwpsFY4OtzhcOH3ZjNOXzRV+P3F6tf9I7+L3nlvdGC00YXIMwsHFjBPYuWIxAEBWqTFo4jMh+z9KwXfmshlL97hHZ8fr1Rh3U9PQBkQRqdYVtNu2bQuNRgOHw4GTJ0+W2c77XJMmTZCQkFBmu6I6duxY4vXl7bto+9JeX1biWdbriYLppnuGYO/6/wAigOk6JR1uGsNRu7XRyJG3491vv4RWsaG8U4kCgF3WYcSIANcupbAR6Ac/CUC8QY0h7evXVGhEVM1Gjx6N/fv345lnnsHcuXN922+99VYMHz4cK1aswMSJE/Hpp5+GLMZffopHkiEW3WMKT0R4i1vee40E9IhRYydisfPIEFxn2AsrjLDCCBuMsElGOIUeDkkHF7SQFAlaAWglLbTQQCuZoJF/h1rOhEq1HypZD5XaAFlthEoTC1kT2Lp/lSEcVncx2pYHxea+d99MnluRr+0F8J55VKMWfsACAI3GXUQu5ea4eBFKfj4kAHYJOKiyIsuyFy6bApUiI0VlxQ0SoIX7p6Bt3hx1Ro7AJVssjl6Mw5ksHRThn6XUradCuz/EoUX7xtDEdIGse67IKGUt19CrYbJOhwZz5uDspElwyTIuJBhxIT4GDpUKGpcL1+UVwKpW4bcGhcXsniPuQe8xY1nMroWsDhfW7D+P9Qcv4qrZDkmSsP1396j7OJ0a0we3DnGERNHn4MGDeOyxx7B9+/ag73vHjh0YOnQorFYrXn75ZfTt2xdnzpzBK6+8gsGDB2PGjBmYPXt20N+3Mi44T6Khqyk0sr7cvytCCDgUK45e2AVlxY6A9q3R6d2FbmMMdAYjtEajp9ht9MyC6F8I1xqNnnae7UYj1BptUP/eySoZCclGJCQb0aS9/9zdTocLudkW5F70rNntG+FtgTmvlOXFBGC6bIXpshVnDl/xe0qWJcQnG0pdrzsmQQepBmfi0GtUeGt0Zzz2xW5IovS5JCUBDLRo0MjuzgN1RjXufKpzqcVswP391YnRok6MFq1S40pt4+V0KbhstvsK3EVHeRctgufk23DVXMHFtwBMVidMVid+z654qce6MVrPtOYlR3oX/bquURvRs6O4nE6s++AdCM/yQT2Gj0Fy46ahDYqC6v3vj/tmTXi4TzPE6zUhjogiUa0736LVatG/f3+sXbsWu3fvLrPdrl27AAC33357wPtu1qwZ2rRpgyNHjmD37t0YP358iTYulwu//PJLqfvu3bs3EhISkJubi927d6Nfv34lXp+VlYXTp09XOjaiytLHGNBr1BPYvvidCtv2GvUE9DGGGoiKgi02xoDWYyYgY9F7EECpRW3vB4XWYyYglse51gnog5/nnzdHd+bUV0QRYsmSJfj++++h1+sxa9Ysv+ckScJrr72GFStW4LPPPsNTTz2FLl26hCTOM6Y26Fbfv4BdnHe09o1GCf9LeQjnZAk6KNBLAnooMEqATga0suy5qaAKckFTCAXCnu8bLS1s3tHT7nvFVvi1sJkAVyknDCtJAeBSyXCpVHCpVFBUarhUaihqDYRKA0WtAVRaCLUaQq3x3cN7r3F/7b4vLDBDo4as0bhHKGs1kL1TY2s0UGndX8taredrDdQ6HVRaDVRaLdQ6902l1UKj9zzWaqHRqKCWpVKPYfbSZch54QUcvb4tjicBQD4ATxFflnAqUeBU4g24IQdoce4Yrg59Er9kpZSYLlOSJTTvnISOtzZC/ZYJLISGmbj0W3Fs/ARk7FoPp0p2j9SWJEAIXEyM9Wvbc+R96D36fh7DWmjDoYuYtngv8ixOyJ51SIsa0uE6JMVyljiimjRz5kzMmTMH3bt3x5///GfMmTMnaPvOzs7GnXfeiStXrmDZsmUYNmwYAKB79+647bbb0KFDB7z22mto3bo1xo0bF7T3rSx9XCx+OrUGfVJG+Gb6KU54htf+lL0aigh8uh2HzQqHzQpcuXzN8ckqta/47S2Ea/1GhrtHg3uL4yXaGY3Q6g0BXbCn1qhQr0Es6jWILfGc3eL0rM9t8RW6vdOY2y0lZ8pRFOFb2xv7L/k9p9a6i+qJqe51uhM8I7sTUw3Qx2iq5W/8bWmpWPBgV8xYtBsds46hmTkDapcVTpUeGcZmUBlbo73dXapQqWUMndgRdRsE58JVtUpGSpweKXEVz2xlc7pwKd/uX+z2Fr/zbX5F8XxbxcsTXS6w43KBHb9dLL+dSpZQL6ac9b6L3Mcb1GGdh+UXWLBkyWqc/PknKNYCyPoYpMTrYT75OwAgqXFT9Bg+OsRRUlUVvUjyYp4Ve89cBQDEalV46KZmoQ2OIlatK2gDwKOPPoq1a9fiu+++Q25ubokR2EeOHMHhw4chSRIefvjhSu/7ueeew/Lly/Huu++WWJdww4YNMJlM0Ov1uP/++/2e0+l0ePDBBzFv3jwsWbIEzz33XIn9L126FACQmpqKO+64o1KxEVVW71EDIITAjiUfekZqS4Cv7CkASYdeo55A71EDQhsoVcnI4YPwNYCjXy2ATrFBgXt6ce+9Xdah9ZgJGDk89FOJ0bXxfvB7bvFe5BY5Aem9jzeo8ebozrgtjdONE0WKjz76CACQnp6OxMTEEs+3bdsWbdu2xeHDh/HJJ5+ErKAdZ0iBVq74QhpJkqCVVOgXH7yLbpxCwKYANiFgE4Dd+3WRbTbF85wAAAMAA4SmLqBxQggnACcUuCCECwoUKHB5/hWeG+AE4JQkOCHDIWQ4JBlOSYZdAhySDLsswS5JsMsSbJIKNlmCTVbBLktwSu4Zzp2Sez/lTqcSCAHA7rmVK6BGJcgSoJZlqFUSVLLkLnI7NJjRuCNO1yk6AkUUu7fjWBJwquHjkA8YABQWs10aCdZGBjiaxeCXWDUO/H4R6lNZ0KhkaFQS1LL7XqOSoS51W8nHGpUMtSx59uHZJsvQqAvbhvNJvnD09bJ1OLlnI6CSPRfKeX5+xX6OCe2646YxD9R4fFR1Gw5dxIQvdvv+25a27Ojin89iQNp1GMCckqjGzJ07F2+//TYmTpyIzz77LKj7fuWVV5CTk4MePXr4itleCQkJmDFjBp588kk8//zzGDNmDAyG0FwA37JbT3y78y38mLUUPZKGQqsy+NbU9t47FCt+yl6Nc5YT6D36AVzfJg02cwFsZjPsFnOxr82wmwtgMxfAbrH4nnNYLdcUn+JywmLKg8WUd+3fpCRBqzeUKH6XNTK8+Chy98hyI1KaxCOlif8SLkIIWPMdvuK2u+jtnsI8N8sMp6PkGjdOu4JLmfm4lJlf4jmdUe0pcBt863V7pzHX6qtWSjAe3If7jn7id45S65TQznYCuPoDXMbBUOlaYMDDaWhwQ2KV3uta6dQqNEg0oEFixf8fzHYnckz2winOS5n+3FsYtznLX2vIpQhkmWzIMlU806ZWJfuv9e0pdCcVm/Y8KVaHmBpew/jrZet85yeNKDw/aS6ykt6gJ56BSs3Ru7VZeRdJOhSBXRmXeY6SqoUkREUrSISnfv36YcuWLZgyZQreeust33YhBEaOHIlly5Zh/PjxJaZgXLlyJR5++GGkpqZi1apVJaYFt9ls6NixI44ePYp33nkHTz/9tO85h8OBm266Cbt27cKsWbMwc+bMEnFlZ2cjLS0NOTk5WLFiBe666y7fc3l5eejYsSNOnTqFhQsXVvrqx7y8PN8I8Pj4+IpfQORhLbBg21drceLnHXBYC6DRx6BFl564acxgjsyOIPkFFixdugYZu3f4roBs1rUnRowYypHZEcLqcOHbA+ex7sBFXLXYkWjQYlD7VAxpX58js6lSmFOEN7vdjtjYWDgcDsycObPECG2vcePG4fPPP0eTJk3KXS6nqGAf+51PL8Z1hhTIUtVHVAshYFfssCpW2Fx2WBUbbIodVpfds90Om+KATXHAqjjgEp6L9CQZgAQJ7ntA9hThvI8L2wAypFLbeB8XbpNKbPO0LfY6qfh+/N6vyP4kCU4IOAG4JLi/llCk6C08xfPC54pvL/lYwOFXNC/7dddaTNe6nHj8zOcBL2OjS3gckqTGRZWCPVonjmhdcIagtuwtyGu9RXGVDI0sQaMuLIZ7i+MauVib4oVztXu72rNdq5J9hX9fAb5IG02xorvvfTxtCx+X3aYmi/L5BRa8++jYgJewefqjfzO3rGWsDhe6z94Y8BI2P71wG3NLCghzyqrLzMzE9ddfDwBYuHAhHnroIQCo8hradrsdKSkpyM3NxRtvvIHp06eXaJOVlYXUVHfB4auvvsLo0YGPmAzmsXfa7fjgiT/CVlAAWZLRyNga18e0gk7Ww6ZYkVlwFGfMv0ERCnQxMXjig8+h1mor/T6K4oLdYoHdbIbNUwS3mz33nkJ4WV/bPUVxm7nAN2VyKKg1Wl9xW2sovm64seSU6XojXC4N7BYJZpOEglzAdMmJ3Gwr8rItUEq7uqkcxnitr7hdtNCdkGyAuoK/G9sWr8eOr9+t8D2adxuP4c+NqlRc4U4IAZPN6S52l1n4tvsK4M5KHpfyGLWqwpHeZU55rkVSrK7Kf/u/XrYOJxe9B6Dsjx4CQNN7J2MUB93UWkUvkixvFskFD3blRZIUkMrkFLVyhDYAfP3110hPT8fbb78Ni8WCsWPHwm63Y/78+Vi2bBnS09Pxz3/+s8TrFixYgJycHOTk5GDp0qWYOnWq3/M6nQ6rV69Geno6pk6diqysLNxxxx24cuUK3njjDezatQsPPPAA/vrXv5YaV3JyMlauXImhQ4fivvvu861Pc/bsWbz88ss4deoUZsyYEdKpfCj66GMM6P/QcPR/aHioQ6FqFBtjwB8fHAk8ODLUoVA10WtUGH5jQwy/sWGoQyGianT48GE4HO6128o7kel97tSpU6XOWlQTVCpXpYrZFmc+MvL3w+Yyw+oq8Ny7v7YrFohySy21neS7qSBDJcnQFSt6Q/IW3Esrjvs/lsoo2BfdVrSNkGRAliEgQUjux+6bBEWSoUgyhAS4IEORJLgkCS7I0JvPB1bMBgBhQ671e+yLuQ6XJQE4gKYVL0MYEk7PzRrqQMqhkiWoZEAlyZBlQCW7C+AqWfKNpld5Hpe4SeVvU8sSZM/jSycOI16p+BhLAHSKDW//62vcmN6/+n8AFDQ7My4jr5TpaIsTAHItTnx74DzzTaIa4i1mB9u2bduQm5sLAOjWrVupbVJSUtC4cWOcPn0aq1evrlRBO5jUWi2GTJqC5X//GxSh4FTBIZwqOFSslQRIwJBJU66pmA0AsqyCPiYW+piS03kHSggBp91WxsjwsgrklhLtnLYAc6tinA47nLl2mHOvXvP3IEkytEYDtIYY6A0GyCodIGmhKBo4HRo4bDIcNjUALSRJC0g6SJIOkHTIv6JFwVUtMo/qIBX9DCABcXX17jW6U4yFa3anGhBXVw+71eaePTIAv+/+EtaC2yNqAI4kSYjXaxCv16B5cvn9T1EEci2OUkd5Z5uKTntuw6UCOyoaqmi2u3DqkhmnLpkrjDNery57yvMio7/rxWihVvl/BswvsODoVwugRcXX0R79agHyB97CCyRrIavDhWmL95ZZzAY8c8MK4LnFe3mRJAVdrS1oJyUlYdeuXZg7dy6+/PJLfPHFF1CpVGjbti3ef/99PP744yWmCweACRMmYPv27UhNTcWIESNK3XfLli2xf/9+vPHGG1iyZAnefPNNGI1GdOrUCV9++SXuvffecmPr2bMnDhw4gDlz5uCf//wnXnzxRcTHx6N79+54/fXXMWgQr0AiIiIiotKdPn3a93VycnKZ7Yo+d/bs2VIL2jabDbYiJ8zy8qowVWIprCqLbyrIiihCQY4tE/uvbA1qDLWHQOHHflfpZwDKOTFQ2t6qwls2B4BgnmLQW39FD+uvQdwjVRfFc6vMuDoFwLl9O/HxhbrVExSFnCwB6w5cZEGbqJb79dfCv8UVXSB5+vRpv/ah0KJLD9z93ItY+/7bsBXkQ5Ik33raQgjoYmIwZNIUtOjSI6RxSpIEjU4PjU4P1Ln2v4UupxN2i7nskeGeUeT2MqdVL4DdbIEQlR8tLoQCW0EBbAUFFTcul7pIsVsLe54Ol05pfY+9RXBZpYWEnEpdILntq7VROyhHliXUidGiTowWrVLjym3rdCm4bLYXW+vbXuoo8FxLxVeZ5lmdyLM6cSK7/L4hSUBdo/963+LYbjSqxAWSS5eucQ/KoVplzf7zvEiSQqrWFrQB92jq559/Hs8//3zAr7nzzjuRk5NTYbuEhAS8+uqrePXVV68ptgYNGuDdd9/Fu+9WPJUKEREREZGXyVS4/rBery+zXdHnyipUv/baa3j55ZeDF1wxV4yX0MTeMqC2siTjUp0rmPrON1AUBcJzUxQFiuIq8tgF4VI8bVzue5er2GuKPXa5fPsKrI0LiqvI/kvEUNje7zXF9lf8/YrGUPr7Fe7Hu73o+/m18f4MROE2olCTAegDOFlJtZcigKsWe6jDIKIqquwFkmfOnCl3f9V9kSQAtOzaA0988DmO/rQNx3duhyXfBENsHFp274VWPW665pHZ4UilVsMQFw9D3LVP1y6EgMNq8RS+/QvhpX5tNsNu8V9r3GYugMtxrdPpOAHhhBDu4mcw51nau/Zj7F37cRD3GF1iPLemIY6jLAqA7Zu+x0sHy/6sS7UfL5Kk6lCrC9pERERERFS2GTNm+C2xk5eXh0aNGgVt/436doB9rQUaWV/uer9CCDgUKxr36wRJlqEqZSYlqphfwbyMAnogRfuir1GcLjgdLjgdTjjtTjgdTrgc7m0uuxM/f7sCDvP5gGPUxaSi18g7q/GnQMUJIeAS7ikqXULApQjf14qA/2PF87wQcCnumROO/bgZMebsgJZZVwBojLF48fa21f1tURB9/fNZ/HbBFFCxQZaAREPkFI2IolVlL5CsqEBd3RdJeqm1WqTdfCvSbr612t+rtpMkCVqDew1tVGHiFKfDUWzKdDNsliJFcHOBX9G8eMHc7plWnShQvEAyOvAiSaoOLGgTEREREYWRuLjCqeWs1rJX+C36XHx86aM7dDoddDpd8IIrpt3Nt2LJVy+gd+JdvmkhixOehd125a3HyD6zqy2WaBCKiwGs+XbsXfdJwO3b3nwHutw+rPoCoqD7TGNEzuqFAbWVAbTvfRP+eHPzao2JgqtujBZTv9oXUFtFAIPap1ZzRES10+eff46HH374ml+/Zs0aDBw4MIgR1ZzqvkiSQket0UCtSYAxvuTyRYESigK71VKiKO4uiJvxw/99DZv5YsD7k9UGpDZtfM3xUM0QABQh4HApyD57FiqnNeALJF0aAzo3SqzeACnoMnIKApq+HuBFklQ9WNAmIiIiIgojjRsXnrzJzs4us13R5xo2DM00XmqtFl0njMaP875Ej6Sh0KoMvjW1vfcOxYqfclaj+1P3R9RUkdHipnuGYO/6/wS27qGkw01jBld/UBRUI0fejne//RJaxVbuSUgBwC7rMGLE0JoKjYJkaIf6mLXyIEwWZ7mjtCUA8QY1hrSvX1OhEdUqiqLA5br2JUAUpfLrHV+r4hdIxsTElNrOe4FkWRdHelX3RZJUu0myDJ0xBjpj6f0s54ylUhdIdrzt/qhdQ7u2+uzzryt1gWTXvrfg3QdvqtaYKPiW7jnLiyQppDjXHxERERFRGGnbti00Gg0A4OTJk2W28z7XpEkTJCRc+4iKqmrRpQe6TboPay8txI6slcg0H0OW5RQyzcewI2sl1l5aiO5P3Y8WXXqELEa6dvoYA3qNeiKgtr1GPQF9jKGaI6Jgi40xoPWYCQDKXv/Su731mAmI5TGudfQaFd4a3RmQUOZFC5LnnzdHd4Zeo6q54IhqkfHjx0MIcc23wYNr7qKvyl4gydHWVJ1uumcIIAV4QQQvkKyVRo68HTZZV+HyJgKAjRdI1lpDO9RHvEFd4Uh8CUACL5KkasCCNhERERFRGNFqtejfvz8AYPfu3WW227VrFwDg9ttvr5G4ytOyaw9M+GAh0h4aguymWThW9yCym2Yh7aEhmPDBQhaza7neowag56ini5yIlPzvJR16jX4GvUcNCEV4FAQjhw9C03snwy67j7F3DKH33i7r0OzeyRg5fFBI4qOquy0tFQse7Ip4g3uiPtnz39d7H29Q418PdsVtaRxJQxQJOnbs6Ps6kAski7YnCjZeIBn5eIFkdOBFkhRqnHKciIiIiCjMPProo1i7di2+++475ObmlhiBfeTIERw+fBiSJFVpLcdgUmu1SLv5VqTdfGuoQ6FqcNPogegy9GZs+2otTvy8Aw5rATT6GLTo0hM3jRnME48RYNTwQcgfeAuWLl2DjN07oFgLIOtj0KxrT4wYMZQnHiPAgLRU/PTCbfj2wHmsO3ARVy12JBq0GNQ+FUPa1+dJR6II0rt3byQkJCA3Nxe7d+9Gv379SrTJysrC6dOnAYTHBZIU2XqPGgAhBHYs+dCzlI0Ed4nTcy/p0GvUE7xAshYbOXwQvgZw9KsF0Ck2KHCPpvTe22UdWo+ZwAskaznvRZLPLd6LXIsTsuSeXtx7H29Q483RnXmRJFULSQhR0UwQFCby8vJ8yWhFa9sQERERlYU5Re3Qr18/bNmyBVOmTMFbb73l2y6EwMiRI7Fs2TKMHz8en376acD75LEnIiKiYGFeEVwLFy7EQw89BADIyMhA06ZNq7S/yZMnY968eejZsye2b99e4vkPPvgAEydORGpqKjIyMmAwBH7hEo89XStrgYUXSEa4/AILL5CMAlaHixdJUlBUJqdgQbsWYbJIREREwcCconbIyclBeno69u/fjyeeeAJjx46F3W7H/PnzsWTJEqSnp2P16tXQ6/UB75PHnoiIiIKFeUVwVbagvWDBAkyfPh3t27fH6tWrkZiY6Pd8dnY20tLSkJOTgxUrVuCuu+7yPZeXl4eOHTvi1KlTWLhwIcaNG1epWHnsiYiIKBgqk1NwDW0iIiIiojCUlJSEXbt2Yc6cOdi+fTsGDRqEYcOG4ezZs3j//fexYcOGShWziYiIiCi8ZGVl4cCBAzhw4AAyMzN9248ePerbXlBQUOpr33vvPeTl5eF///sfNm3aVOL55ORkrFy5EnXq1MF9992Hf/zjH9i1axeWLVuGW265BadOncKMGTMqXcwmIiIiCgWO0K5FePUjERERBQNziujFY09ERETBwryi6mbNmoWXX3653DabN28udQ3sDz/8EH/605/Qrl07rFmzpsQIba9z585hzpw5WL16NTIzMxEfH4/u3btj8uTJGDTo2tay5bEnIiKiYOCU4xGKySIREREFA3OK6MVjT0RERMHCvCJ68dgTERFRMHDKcSIiIiIiIiIiIiIiIiIiqvXUoQ6AAucdTJ+XlxfiSIiIiKg28+YSnKgn+jCfJCIiomBhThm9mFMSERFRMFQmn2RBuxYxmUwAgEaNGoU4EiIiIooEJpMJCQkJoQ6DahDzSSIiIgo25pTRhzklERERBVMg+STX0K5FFEXBuXPnEBcXB0mSgr7/vLw8NGrUCGfOnOH6NxGKxzg68DhHPh7jyFfdx1gIAZPJhAYNGkCWuQJNNKnufBLg76howGMc+XiMIx+PceSriWPMnDJ68RwlVRWPceTjMY4OPM6RL5zOUXKEdi0iyzIaNmxY7e8THx/PXz4Rjsc4OvA4Rz4e48hXnceYo2iiU03lkwB/R0UDHuPIx2Mc+XiMI191H2PmlNGJ5ygpWHiMIx+PcXTgcY584XCOkpdPEhERERERERERERERERFRWGJBm4iIiIiIiIiIiIiIiIiIwhIL2uSj0+kwc+ZM6HS6UIdC1YTHODrwOEc+HuPIx2NMtRn7b+TjMY58PMaRj8c48vEYU23G/hv5eIwjH49xdOBxjnzhdIwlIYQIdRBERERERERERERERERERETFcYQ2ERERERERERERERERERGFJRa0iYiIiIiIiIiIiIiIiIgoLLGgTUREREREREREREREREREYYkFbSIiIiIiIiIiIiIiIiIiCkssaBMURcH8+fMRHx8PSZJw8uTJUIdEQeJwOLBkyRL88Y9/RJs2bRATEwO9Xo/GjRtj5MiRWLlyZahDpCCw2WxYtWoVnn32WfTq1Qv16tWDWq1GXFwcOnbsiGeffRYnTpwIdZhUDUaNGgVJkvi7OwJ4j2N5t6eeeirUYRKVizllZGI+GR2YT0Yv5pORhTkl1XbMJyMXc8rIx3wyejGfjCzhnE+qQ/KuFDYOHjyIxx57DNu3bw91KBRkZ8+eRc+ePZGZmYnGjRtj+vTp6NixI3Q6HX788Ue89tprWLp0KYYNG4ZFixZBp9OFOmS6RhMnTsSnn36K+Ph4TJ48Ga+88goSExNx+vRpLFiwAO+88w4++OADLFq0CMOGDQt1uBQkixcvxpIlS0IdBgWRXq+HSqUq83n+nqZwxpwyMjGfjB7MJ6MT88nIxJySaivmk5GLOWV0YD4ZnZhPRqZwzSclIYQIyTtTyM2cORNz5sxB9+7d0adPH8yZMwcAkJGRgaZNm4Y2OKqyAwcOoEOHDmjYsCH27duHunXr+j3/66+/okuXLnA6nZg0aRLmzZsXokipqsaPH4/PPvsMW7ZswS233FLi+TvvvBOrVq1CYmIizp07B4PBEIIoKZhycnLQrl07mM1m5OfnA+Dv7tpOkiRs3rwZ/fr1C3UoRJXGnDJyMZ+MHswnow/zycjEnJJqK+aTkY05ZXRgPhl9mE9GpnDOJznleBSbO3cu3n77bWzduhWtW7cOdThUTaZMmVIiUQSAjh074r777gMAfPTRR74/OlT7NGzYEHfeeWepySIAjB07FgBw9epVHDhwoCZDo2oyefJk2Gw2zJgxI9ShEBExp4wCzCcjH/PJ6MN8kojCCfPJ6MCcMrIxn4w+zCeppnHK8Sh26NAhXH/99aEOg6pJUlISpk2bhrvvvrvMNp06dcIXX3wBm82G3377DV26dKnBCClY/va3v5X7fNEpQOLi4qo7HKpmy5cvx6JFi/DRRx+VO/ULEVFNYU4ZuZhPRg/mk9GF+SQRhRvmk5GNOWV0YD4ZXZhPUihwhHYUY6IY2a677jr84x//QIsWLcpsU/SPTWxsbE2ERSHw5ZdfAgBuuukmtGnTJsTRUFVcuXIFEydOxIABA/DII4+EOhwiIgDMKSMZ80nyYj4ZOZhPElE4Yj4Z2ZhTEsB8MpIwn6RQYUGbKIodO3YMgDuxbNmyZYijoWDKz8/Htm3bcM899+Crr77C8OHDsWzZslCHRVX0zDPPID8/H//6179CHQpVg+3bt+O+++5Dq1atEBsbi+TkZPTp0wdvvPEGcnNzQx0eEVGpmE9GLuaTkYn5ZORjTklEtRFzysjEfDIyMZ+MfOGaT7KgTRSlnE4nlixZAgCYNm0apwaJECdOnIBKpUJcXBz69OmDPXv24Ouvv8bSpUuRnJwc6vCoClavXo0vvvgCr732Gpo0aRLqcKgazJw5E/Xq1cP8+fOxdetWfPjhhzAajXj++efRvn17/PLLL6EOkYjID/PJyMR8MnIxn4wOzCmJqLZhThl5mE9GLuaT0SFc80kWtImi1Mcff4yLFy+ie/fueOaZZ0IdDgVJo0aNsG/fPuzcuRNffPEF6tevj1GjRmHAgAE4ffp0qMOja5Sbm4vHH38cN998MyZNmhTqcKga9OvXD99++y3mzZuHAQMG4A9/+ANGjBiBdevWYezYsTh79iyGDBmC7OzsUIdKROTDfDIyMZ+MTMwnowNzSiKqjZhTRh7mk5GJ+WR0COd8kgVtoih09OhRTJ8+HSkpKVi0aBE0Gk2oQ6Ig0Wq1aN++Pbp164axY8diy5YteOSRR7Bx40b06dOHJy5qqWnTpuHSpUv46KOPIElSqMOharB582b079+/xHZJkvD2229Dq9Xi4sWLePPNN0MQHRFRScwnIxfzycjEfDI6MKckotqGOWVkYj4ZmZhPRodwzidZ0CaKMhcvXsTtt98OtVqN9evXo1mzZqEOiaqRJEl46623EBMTgzNnzuBvf/tbqEOiSlq/fj0+/vhjvPLKK2jVqlWow6EQSEpKQteuXQEAq1atCnE0RETMJ6MN88naj/kkAcwpiSj8MKeMHswnaz/mkwSEPp9kQZsoily4cAHp6em4dOkS1q1bh06dOoU6JKoB8fHx6NmzJwDgm2++CXE0VBkmkwmPPfYYunXrhqlTp4Y6HAqhxo0bAwAyMjJCHAkRRTvmk9GJ+WTtxXySimJOSUThgjll9GE+WXsxn6SiQplPqmv8HYkoJM6ePYv+/fvjypUr2Lx5MxPFKJOamgoAyMzMDHEkVBk///wzTp8+jbNnz0Kn05V4Xgjh+7ply5a+r8eNG4ePP/64RmKkmlH0WBMRhQrzyejGfLJ2Yj5JRTGnJKJwwJwyejGfrJ2YT1JRocwnWdAmigInT55Eeno6rFYrvv/+e6SlpZV4PikpCbGxsSGKkK5VZmYm+vfvj48++gh9+vQps11ubi4AICEhoaZCoyDo1q0b9u/fX+bzK1aswIsvvggAWLNmDRo0aAAAqFOnTo3ER8ExYcIE9OrVCw899FCZbU6fPg0AaNq0aQ1FRUTkj/lk5GI+GdmYT0YP5pREVBswp4xMzCcjG/PJ6BHu+SQL2kQR7tixY+jfvz8AYOvWrX5XSXk1a9YMn376KcaPH1/D0VFVORwO/Pbbb9ixY0eZCaPFYsH27dsBAL169arJ8KiKYmJi0L59+zKf3717t+/rVq1a8cRULbV+/XqcO3euzGQxKyvLd6xvv/32mgyNiAgA88lIx3wysjGfjB7MKYko3DGnjFzMJyMb88noEe75JNfQJopghw4dQt++faHRaPDDDz+UmihSZHjnnXdw8eLFUp+bMWMGLl++DEmSMH369BqOjIgCsXbtWvzvf/8rsV0IgWeffRYOhwNJSUmYNm1aCKIjomjGfDJ6MJ8kqv2YUxJRuGJOGR2YTxLVfuGcT3KEdhTLyspCVlYWAP91K44ePYr8/HwA7qviYmJiQhIfVc2JEyfQr18/ZGdnQ6vVol27dqEOiaqBVquFTqfD2bNnkZaWhmeffRbdunVDamoqTp48iX/961/49ttvodPpMH/+fNx8882hDpmqqKCgABkZGQDK/t1d3lWTFH7i4+Phcrlw22234emnn0bfvn2RmpqKjIwMvP/++9i0aRMaNGiAZcuW+dabIgonzCkjF/PJ6MB8Mvown4xMzCmpNmM+GdmYU0Y+5pPRh/lkZAr3fFISoVzBm0Jq1qxZePnll8tts3nzZvTr169mAqKgWr58OYYPHx5we07nU3tdunQJX3/9NTZs2IBff/0VmZmZsNlsiIuLQ8uWLXHrrbfi8ccfR4sWLUIdKgXB999/j1tvvbXcNvzTXrvY7XasXr0aq1evxs6dO3Hy5ElYLBbEx8ejbdu2uPPOOzFhwgSuPURhizll5GI+GT2YT0YX5pORiTkl1WbMJyMbc8rowHwyujCfjEzhnk+yoE1ERERERERERERERERERGGJa2gTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSV1qAMgoujldDrhdDpDHQYRERERERERERFVM1mWodFoIElSqEMhIqJahgVtIqpxZrMZOTk5KCgoCHUoREREREREREREVEM0Gg3i4uKQlJQElUoV6nCIiKiWkIQQItRBEFH0sNvtyMjIgEajQd26daHT6XhVJhERERERERERUQQTQsDlciE/Px+5ubnQ6XRo1KgRi9pERBQQFrSJqEadPXsWVqsVzZo1Y8JKREREREREREQUZSwWC06fPo3ExESkpqaGOhwiIqoF5FAHQETRQwgBs9mMhIQEFrOJiIiIiIiIiIiikMFgQHx8PEwmEzjejoiIAsGCNhHVGIfDAZfLBYPBEOpQiIiIiIiIiIiIKETi4uLgcDjgcDhCHQoREdUCLGgTUY1RFAUAODqbiIiIiIiIiIgoinnPD3rPFxIREZWHBW0iqnGSJIU6BCIiIiIiIiIiIgoRnh8kIqLKYEGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhFRBFm4cCEkSfLdZs2aFeqQiKpNJPf3s2fPYsiQIZAkCQsXLgx1OBQGIrm/ExXH/k7RJhr6/DfffOP7/k6ePBnqcCiEoqG/E3mxvxMREQUPC9pERGFs9+7dePLJJ9GuXTskJiZCq9UiNTUVt9xyC6ZPn44NGzbA6XT62t9zzz04f/48pk2bFsKog++3337D2LFjUb9+fej1erRo0QLTp09Hbm5uqEOjIGJ/d/vkk0/Qvn17rF27NtShUDWK9v5uMpnw4YcfYujQobjuuuug0WiQmJiIXr164a233oLVag11iBRE0d7fCwoKsHz5cjzyyCNIS0uD0WiEVqtFw4YNMWLECGzcuDHUIVKQRXufLy43NxcTJ04MdRhUTaK9v588edKvYFnabe7cuaEOk4Ik2vu7lxAC//73vzFw4ECkpKRAp9OhYcOG6NevH2bOnAmTyRTqEImIKAKpQx0AEVF1sjpcWLP/PNYfvIirZjsSjVoMbJeKoR3qQ69RhTq8MlksFjzxxBP4/PPPMWzYMLz++uto06YNFEXBqVOnsGzZMsybNw//+Mc/kJycjO+++w4dOnSAwWCAwWBAbGxsqL+FoPn+++8xdOhQNG7cGAsXLkSrVq3w/fff4+mnn8bSpUvx448/on79+qEOMzw4rMCh5cCRVYD5CmCsA7S5A0gbBmj0oY6uTOzvbg6HA3fddRe2bt2K2bNnY+nSpdi6dWuowwpbNpcN60+ux6bTm3DVdhWJukSkN07HwKYDoVPpQh1emdjf3cW9Jk2a4MqVK7j33nvx1VdfoWHDhjh16hTmzJmDadOmYeHChdi4cSNSUlJCHW5YUGw2mNauhWnjd3DlXoUqIRFxt/VH3ODBkHXs7+Fu5syZePPNN9G7d2/8/e9/R9u2bWE2m7F582b89a9/xbJly/Dmm29i6tSpoQ41bDgdLpz4OQu/78uBtcABfYwGzTsloUWXFKiZw9c6zz33HNRqnn4qi9Nux9EdP+L4rh2w5OfBEBuPlt16olXPPlBrtaEOr0zs7/5at25d5nN169atwUjCm3AoMO/PhvXgJbjMTqiMaujb1YOxQzIkTfiOu2J/L2Q2mzFs2DAcOHAAL730Et59911otVr8/PPPmDZtGrZs2YIHH3wQcXFxoQ6ViIgiDD9REFHE2nDoIqYt3os8ixOyBCgCkCVg7cELmLXyIN4a3Rm3paWGOswSHA4HBg8ejK1bt2LevHmYNGmS3/OtWrXCgAEDMHHiRPTp0wfZ2dm4dOlSiKKtXlevXsXo0aMhhMCaNWvQvHlzAECzZs2g0+nwwAMP4I9//CM2bNgQ4kjDwJE1wPKJgPUqIMmAUNz3h1cC3z4PDP8AaD0k1FGWwP5eqKCgAFarFfv370fz5s2xbNmyUIcUtjaf3owXt72IPHseZMhQoECGjI2nN2LOzjl4tc+r6NeoX6jDLIH93c3hcODKlSsYMWIEvvzyS9/25s2bo2/fvujVqxd27tyJKVOm4D//+U8IIw0Ppk2bcO7PM6Dk5QGyDCgKIMswbdgA+dXZaDBnDuLSbw11mCWwv/tLSUnB+vXrERMT49vWvn17xMXF4aGHHsJLL72ESZMmQRfGFyjUlIx92fjus8OwmZ2ABEAAkIDff8nGD18dQ//xaWjWMSnUYZbAPl+6zZs34+OPP8aaNWswZEj45aKhdnz3T1j7/tuwFeRDkiQIISBJEo7t/B82LVyAIZOmoEWXHqEOswT295KOHDkS6hDCnuXQJVxefBTC4v/73XLwEq6u/B11R7eCIa1eqMMsgf3d37hx4/DTTz9h7969aNasmW978+bNkZycjHvvvZcXMRERUbUI30vfiIiqYMOhi5jwxW6YLO6pnhQBv3uTxYnHvtiNDYcuhijCsr3wwgvYunUr7rrrrhIflIrq0KFDxK+/9N577yEnJwd33323r5jtde+996JBgwbYuHEjtm3bFqIIw8SRNcCi+wGrZwp2ofjfW3OBL+9ztwsz7O+FEhISsGnTphJ9nfxtPr0Zz2x+Bia7exo7BYrfvcluwtObnsbm05tDFmNZ2N/9PfLIIyW2ybKMRx99FACwdOlSuFyumg4rrJg2bcLZSU9B8U7bqCh+94rJhLOTJsG0aVOIIiwb+3uhsWPHYvHixX7FbK8uXboAcF/UVFBQUNOhhZ2MfdlY88F+dzEbcBc7itzbzE6s+eevyNiXHZL4ysM+X5LFYsFjjz2GBx54AIMHDw51OGHn+O6fsOIff4PN839fCOF3bysowPK//w3Hd/8UshjLwv5OlWU5dAmXvjjkLmYDJX6/C4sTl744BMuh8CsEs78X2rhxI77++mtMmjTJr5jt1a9fP1y4cAFNmzat+eCIiCjisaBNRBHH6nBh2uK9gCj8jFSc8Pzz3OK9sDrC52T5hQsXMG/ePADAM888U2H7sWPHomnTptDrA59Oes+ePfjTn/6ELl26oF69etDr9WjVqhWmTp2KnJycUl9jNpvx5ptv4sYbb0RiYiIMBgM6dOiA5557Djt37izRfuPGjRgyZAgaNmzoWyNy9OjR+O9//wuz2RxwrIsXLwYA9O/fv8RzsiwjPT0dAPDf//434H1GHIfVPTIbQAU93t3OET7r0rK/+/OusUdls7lseHHbiwAAUUZ/925/cduLsLlsNRZbRdjfCyUkJODKlStlFjcaNmwIALBarZX6PxRpFJsN5/48w/1AlPH73bP93J9nQLGxv4djfweAzp0745Zbbin1uR07dgAA/vCHP0T9lLROhwvffXa47HTGSwDffXYYTubwYdvnvf76178iLy+P6weXwmm3Y+37bxd+MC2V+wPt2vffhtNur8Hoysf+TpUlHAouLz4a0O/3y4uPQjiUGokrEOzv/hYsWAAAnHGDiIhCggVtIoo4a/afR57FGchnJeRanPj2wPmaCCsgK1asgNVqhVarLfPEZ1HJycnIyMhAz549A36P+++/Hx9//DEmT56MHTt2YO/evfjLX/6CxYsXo2vXrsjKyvJrrygKBg0ahL/+9a+YOHEifvrpJ+zbtw/PPPMMFi5ciB49/KfAW7BgAQYMGICkpCQsX74cx44dw+eff47s7GzfWqmBKCgowMGDBwEAbdq0KbWNd/uuXbsC/v4jzqHl7mnGA+nx1qvAoRXVHlKg2N+pstafXI88e16ZxWwvAYE8ex7Wn1xfQ5FVjP29kCRJSExMhCyX/lHk/Hn33+UmTZpE9dp7prVr3dOMl1XM9hICSl4eTOvW1UxgAWB/L5+iKDh//jzmzZuHKVOmoFOnTli0aNE17y9SnPg5q3BkdgVsZidO7AmfUdrs8yXt3r0bc+fOxTvvvIN69cJvCuFQO7rjR9gK8hFIDm8ryMfRn8JnRir299J9+umn6Nu3Lxo1aoSUlBR069YNL730ErKzw+d3VaiY92cXjsyugLA4YT5QehE3FNjf/W3cuBGAexm4efPmoWfPnkhKSkLDhg1xxx13YM2a8JsVjoiIIgcXtCCisHLnez8i21S1EUZXzJW7ev3PS/bj9W9/q9J7JsfpsHJynyrtAygcpdOiRYtqW3Po+uuvx+zZszFixAjftjZt2qBly5bo06cPXnnlFd8VyACwdetW/Pjjj5g0aRImTJjg296qVSsYDAaMHTvWb/+zZ89GXFwcPvvsM1+xokmTJujevTsaN24ccJwZGRlQPFOqXnfddaW2qV+/PgDgxIkTAe83rHzYF8jPqrhdeSyXK9d+5dPAxllVe08AiE0BHt9SpV2wv0eXe1bdgxxL1U5O5dpyK9X+5e0vY+6euVV6TwBIMiThv3dUbSYI9vfAeU+ElTelY7jLGDkKzjJG1ATKdfVqpdqf/+tLyHrzrSq9JwCok5LQbMnXVdoH+3vZ3n//fTzzzDNwOp2Ij4/HSy+9hClTpkCj0VzzPkPtq9m7YM6r+uhRa4GjUu03//sIti+rWg5ojNdizAvdqrQPgH2+OIfDgUceeQSDBw/Gfffddy3fbtj694xnUXD1SpX3Y/EuJRGg9R++hx/+b2GV3jMmsQ7Gvja3SvsA2N/L8vrrr+Mvf/kLOnfuDLPZjGXLlmH27NlYsGABVq9e7Vtioja5+N4vUExV//3uMlfu9/uVJUeR921Gld5TjtMidfKNVdoHwP5e1JkzZ3Dlivv33wMPPICcnBy8+uqraNWqFY4ePYoXXngBt99+O2bMmIHZs2df08+CiIioPCxoE1FYyTbZcCGvZqdEtjmVGn/Psly86F7TOzExsdre47vvvit1u/cK4tWrV/t9WPJeUX769OkSrxk6dCjee+89v23Z2dlwOp3IysryK0THxsbiww8/RIcOHQKKMy8vz/e1wWAotY3RaAQA5OZWrsgVNvKzANO5mn1Pp7Xm37MM7O/RJceSgyxzFS/gqCSby1bj71kW9vfAHDx4EN988w1uvPFGPP3001XeX6g4c3Lg9BzzmiJsthp/z7Kwv5ftgQcewIABA5CdnY21a9di1qxZ+M9//oNFixahbdu217TPUDPn2VFwteanvHc5lJC8b2nY5/3NmTMHGRkZWLVqVcCvqS0Krl5B/uWaX+PX5bCH5H1Lw/7uLz4+Hn/605/wl7/8BfHx8b7tPXr0QEpKCqZNm4a7774bR48e9X1+rS0Ukx2uIFywVGlOEZr3LQX7u/9+vHbu3Inff//dN8ggLS0NPXv2RJs2bfDaa6+hX79+GDhwYED7JSIiChQL2kQUVpLjdFXexxWzHTZn4Gsu6dQy6hi1VXrPYMQNoEbWz7XZbJg/fz6WLl2K48ePo6CgAKLIdKaZmZl+7Xv16gWDwYCVK1diyJAhmDx5MgYMGACNRoM6dergqaee8mvfv39/rFy5Et27d8f06dNxzz33ICUlBQAwevToav/+apXYlKrvw3LZXaQOlFoPGIKwRmcQYmd/jy5JhqQq7yPXllupdbF1Kh0SdAlVft9gxM7+XjGLxYI//vGPSExMxFdffQWdLjh/W0NBnVT1PuO6ehWiEutiSzodVEE42RqM2Nnfy5aQkICEhATccMMN6N27N7p164a77roLvXr1wr59+9CkSZNr3neoGOOrlkd7WQsccFVi3VSVRoY+pmoj24MVO/t8ocOHD+PVV1/FW2+9hUaNGlXhOw5PMYl1grIfi8kElyPwgp1Ko4WhistwBCt29nd/devWxeuvv17qc08++SRee+01ZGZm4j//+Q8ee+yxSu071OS44PyOdJkdgLOi6fWLUEtQGav2+z1YsbO/Fyq61vbo0aN9xWyv6667Dvfccw8WLFiA9957jwVtIiIKOha0iSisBGPa7qV7zmLqV/sCbj9nZAcMv7Fhld83GFJTUwEAVys5zWigzGYz+vXrh127dmHo0KH4/PPP0aRJE6hUKgDADTfcAIfDfzqwhg0bYvny5Xj00Uexdu1arF27FgkJCRgyZAgeffRR9O/f36/9xx9/jIcffhirVq3C008/jWeffRY9evTA2LFj8eCDDwa8HmrRq9stFkuZ3w/gPjlcK1Vxym4AwL5FwLLHA29/57tAp3uq/r5BwP4eXao6ZTcArDyxEi/8+ELA7Wf2mok7W9xZ5fcNBvb38jmdTowZMwYZGRnYvHkzWrZsec37CgdVnbIbAHJXrMC55/8ccPv6/+8VJNx1V5XfNxjY3wN35513omfPntixYwfefvttzJ07Nyj7rUnBmLIbAH7bcR4bFx4OuP2tY9ugdY/Sl6Wpaezzboqi4JFHHkG3bt0wceLE4P0AwkgwpuwGgENbN+Hb+YEvEzHw8clIu/nWoLx3VbG/B06v16Ndu3bYsmULtm3bVusK2sGYshsACvZcxJWvjgbcvs7IVoi5MQgXfwcB+3uhojPnpaWlldrGO7X+zp07A/4ZEBERBUoOdQBERME2tEN9xBvUqOg6WglAgkGNIe3rV9Cy5vTq1QuAe01op9MZ9P2///772LVrF9q1a4dvvvkGAwcOROvWrdGyZctyiwcDBw5ERkYGVq5ciQceeACKomDRokW47bbbMHr0aLhcLl/b5ORkrFy5EocPH8Zf/vIXtGzZEtu3b8ekSZPQrl077N+/P6BYmzVr5rsa+sKFC6W2OX/+PAD3elZRK20YoE8EAunx+kQg7e5qDylQ7O9UWQObDkS8Nh5SBf1dgoR4bTwGNg2fUQHs72VzOBy4//77sXPnTmzevBmdOnW6pv1EmrjBgyHHxwMVjQySJMjx8YgbNKhmAgsA+3vldOzYEQCwffv2oO2zNmrRJQU6Y2DX3OuMarT4Q3I1RxQ49nm3M2fOYPv27di5cyfi4uIQGxvrd/Nq166db9sPP/xQtR9OLdWqZx/oYmIRSA6vi4lFqx431URYAWF/rxzvFM+XL18O2j5rG2OHZEiGwH6/SwY1jO2rPltMsLC/Fyo6Irtu3dJnffMWx71rbRMREQUTC9pEFHH0GhXeGt0ZkMo+PSB5/nlzdGfoNaqaC64Cd911FwwGA+x2e0And44dO4aFCxfixx9/DGj/W7a4RwSnp6f7rvgNlEqlwh133IF///vfyMrKwoIFCxAbG4uvv/4an3zySYn2bdq0wd/+9jf89ttv2L59O7p3744zZ87giSeeCOj9YmJi0K5dOwDAkSNHSm3j3d6tW3BGBtVKGj0w/APPg3J7vLudRl8TUQWE/Z0qS6fS4dU+rwJAmUVt7/ZX+7wKnSp8pqxmfy+d1WrFiBEjsG3bNmzZsoXF7CJknQ4N5sxxPyirqO3Z3mDOHMhhNEU7+7u/Dz74AGfOnCnz+ZiYGACA3R4e64WGilqjQv/xaQFdo9d/fBrUzOEDUpN9/vrrr8exY8dw8OBB7N27t8TNa82aNb5tXbt2rdT3EynUWi2GTJpS+MG0VO4PtEMmTYFaG5zpk4OB/d3fpk2bSl3L2Mt7cXZ1rsEc7iSNjLqjWwX0+73u6FaQNOFzupr9vVCDBg18U5V71xYvzru9Tp3gLHFARERUVPhkCEREQXRbWioWPNgV8Z6rgGXPByfvfbxBjX892BW3paWGKMLSpaamYsqUKQCAd955p8L2kydPxkMPPVTmh4niFKXsdQmLr8vk9eOPP2LWrFl+2/R6PR577DE8//zzAIBffvnF99z48eNx9uxZv/Y9e/bEkiVLSrStiHc9p++++67Ec4qiYNOmTX7tolbrIcC9/wfoPVOvS7L/vT4BuO9Ld7swwv5O16Jfo35459Z3EKd1X/0ve9JZ732cNg7vpr+Lfo36hSrEUrG/l2Q2m3HHHXdg//79+OGHH9CmTRu/5wcPHoxff/21UvuMNHHpt6Lh/HmQvVNByrLfvRwXh4bz5yMuPTymofVif/c3ceJEfPvtt2U+f/DgQQCo9VPtB0OzjkkY+kSHwpHa3uKH515nVGPoxI5o1jF8Ru8B7PNearXaN6qwtJtXkyZNfNuKTmEbbVp06YG7n3sROs9FLd7Zqbz3upgYDJv+Ilp06RGyGEvD/u7v4YcfLrV4CLjXRj506BCAwpG+0cqQVg/1HkwrHKld7Pe7ZFCj3oNpMKTVC0l8ZWF/9zds2DAAwL59pS/z581pevfuHfA+iYiIAsWCNhFFrAFpqfjphdvw9j2dMDDtOvRsXhcD067D2/d0wk8v3BZ2xWyvl19+GQMGDMCKFSswf/78MtvNnz8f69atw+DBgzFy5MiA9t29e3cAwIYNG0pMl7V48eJSX3P8+HG8+eabpU6R5l3LqXHjxr5tn332WaknbUtrW5HJkyejXr16WLFiBTIyMvyeW7RoEc6dO4f09HTcfPPNAe8zYrUZCkz7DRi+AGhzO9C0j/t++AL39jArZnuxv9O1uLXxrdg0ZhNm95mN9Mbp6JraFemN0zG7z2xsGrMp7IrZXuzvhfLy8jBo0CCcPn0aP/zwA5o3b16izbp166J6ek6vuPR03PDDVjR443XE9e8PY/fuiOvfHw3eeB03/LA17IrZXuzv/j766KNSpyr93//+hw0bNgAAxo0bV6l9RqpmnZIx/vWbcNtDaWjeORkNWiWieedk3PZQGsa/flPYFbO92OfpWrTs2gNPfPA5hjw1DS279ULDtA5o2a0Xhjw1DU988HnYFbO92N/9/fe//4XNZiux/YMPPkB2djaSkpLwwAMPVGqfkciQVg8NXuiBOve0hiGtHnTNE2BIq4c697RGgxd6hF0x24v9vdBzzz0HrVaLFStWlJiZIDs7G//3f/8HSZIwderUgPdJREQUMEFEVEMsFos4dOiQsFgsoQ4l7JnNZjF+/HgBQAwfPlysXLlSHD9+XPz2229i9erVYsSIEUKSJDF06FCRl5fn97rz58+LadOmCQBi2rRp4vz588JkMgkhhMjJyRGNGjUSAMRdd90ltm/fLo4cOSLeeustkZiYKAAIAOL8+fPi0qVLQgghPv30UwFA9OjRQ6xatUqcOHFCHDp0SLz33nvCaDSKFi1aiMuXL/tiACDi4+PFO++8I3799VeRkZEh1qxZI7p27SpUKpVYunRppX4W3333ndDr9aJ169Zi3bp14vfffxeffPKJiI2NFU2bNhWZmZlB+IlTKLG/F7p69ao4f/68OH/+vOjVq5cAIObOnevbZrPZgvATp1BifxciLy9PdOvWTQAQzZs3F126dCn1BkBs3rw5eD98qnHs724qlUoAEH369BHffPONOHr0qNizZ4/4+9//LmJjYwUAMXXq1CD91CmU2OdLKprbeOPcuXOnX6xUO7G/u7Vo0UIAEL169fL9DA4cOCBmzZolNBqNSExMFFu3bg3ST51Chf290Oeffy5kWRZt27YV3377rTh16pTYuHGj6Ny5s5AkSfzjH/8IeF88T0hERJXBgjYR1RgmqpW3c+dO8dhjj4kbbrhBGI1GodVqRePGjcWoUaPEypUrS7T3frApfps5c6avTWZmphg/frxITU0VarVapKSkiBEjRog9e/b4vaZv375CCPcHsMWLF4sxY8aIxo0bC61WKxITE0WnTp3E//t//09cuXLFL4bdu3eL6dOni06dOomYmBih0+lEixYtxP333y/27NlzTT+Hw4cPi/vuu0+kpqYKrVYrmjVrJqZOnVrival2Y38XYty4caV+T94bi3uRI5r7+y+//FJuP2efjzzR3N+FEOLMmTNizpw5Ij09XVx33XVCo9EInU4nmjZtKu69916xadOmyv5IKcxFe58vqrzcxhsr1W7R3t9zcnLEe++9J4YMGSIaNGggNBqNMBqNon379mLatGni7Nmzlf2RUhiL9v7utWvXLjFq1KgSMf/www+V2g/PExIRUWVIQggBIqIaYLVakZGRgWbNmkGv14c6HCIiIiIiIiIiIgoBnickIqLK4BraREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaRFTjhBChDoGIiIiIiIiIiIhChOcHiYioMljQJqIao1KpAAAOhyPEkRAREREREREREVGo2Gw2AIBarQ5xJEREVBuwoE1ENUaj0UCn0yE3N5dXYRIREREREREREUUhl8uFy5cvIyYmhgVtIiIKiCRYVSKiGpSXl4fMzEzExsYiISEBGo0GkiSFOiwiIiIiIiIiIiKqJkIIuFwuWCwW5ObmQlEUNGrUCAaDIdShERFRLcCCNhHVuLy8POTk5PimFiIiIiIiIiIiIqLIp1KpYDQakZKSAq1WG+pwiIiolmBBm4hCxuFwwOVyhToMIiIiIiIiIiIiqmayLHO2RiIiuiYsaBMRERERERERERERERERUViSQx0AERERERERERERERERERFRaVjQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFY+v9sf56YfHxuRAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "unique_labels = torch.unique(data.y).numpy()\n", - "figures = []\n", - "for key in data.group_combinatorial_homophily.keys():\n", - " max_k = int(key.strip('he_card='))\n", - " Dt, Bt, number_of_he = data.group_combinatorial_homophily[key]['Dt'], data.group_combinatorial_homophily[key]['Bt'], data.group_combinatorial_homophily[key]['num_hyperedges']\n", - "\n", - " settings = {\n", - " 'font.family': 'serif',\n", - " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", - " 'figure.figsize': (20, 4),\n", - " 'figure.constrained_layout.use': True,\n", - " 'figure.autolayout': False,\n", - " 'font.size': 16,\n", - " 'axes.labelsize': 18,\n", - " 'legend.fontsize': 24,\n", - " 'xtick.labelsize': 18,\n", - " 'ytick.labelsize': 18,\n", - " 'axes.titlesize': 18}\n", - " with plt.rc_context(settings):\n", - " f, (ax1, ax2, ax3) = plt.subplots(1, 3)\n", - " figures.append(make_plot(Dt, Bt, max_k, max_k, ax=ax1, plot_type='affinity'))\n", - " figures.append(make_plot(Dt, Bt, max_k, max_k, ax=ax2, plot_type='affinity/baseline', plot_tyitle=True))\n", - " figures.append(make_plot(Dt, Bt, max_k, max_k, ax=ax3, plot_type='normalised'))\n", - " f.tight_layout()\n", - "\n", - " if Dt.shape[0]>4 and Dt.shape[0]<= 20:\n", - " f.legend(['Class {}'.format(i) for i in range(len(unique_labels))], fontsize=16,\n", - " ncol=Dt.shape[0], \n", - " bbox_to_anchor=(0.8, .0))\n", - " \n", - " \n", - " elif len(unique_labels)> 20:\n", - " pass\n", - " else:\n", - " f.legend(['Class {}'.format(i) for i in range(len(unique_labels))], fontsize=16,\n", - " ncol=Dt.shape[0], \n", - " bbox_to_anchor=(0.65, .0))\n", - " plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Message-Passing Homophily" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Download complete.\n", - "Transform parameters are the same, using existing data_dir: /home/lev/projects/TopoBenchmark/datasets/hypergraph/coauthorship/coauthorship_cora/mp_homophily/2005719047\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Extracting /home/lev/projects/TopoBenchmark/datasets/hypergraph/coauthorship/coauthorship_cora/raw/coauthorship_cora.zip\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torch_geometric/data/in_memory_dataset.py:300: UserWarning: It is not recommended to directly access the internal storage format `data` of an 'InMemoryDataset'. If you are absolutely certain what you are doing, access the internal storage via `InMemoryDataset._data` instead to suppress this warning. Alternatively, you can access stacked individual attributes of every graph via `dataset.{attr_name}`.\n", - " warnings.warn(msg)\n" - ] - } - ], - "source": [ - "cfg = hydra.compose(config_name=\"run.yaml\", overrides=[\"model=hypergraph/unignn2\",\"dataset=hypergraph/coauthorship_cora\"], return_hydra_config=True)\n", - "loader = hydra.utils.instantiate(cfg.dataset.loader)\n", - "dataset, dataset_dir = loader.load()\n", - "\n", - "data = dataset.data\n", - "\n", - "# Create transform config\n", - "transform_config = {\"mp_homophily\" :\n", - " {\n", - " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", - " 'transform_name': 'MessagePassingHomophily',\n", - " 'transform_type': 'data manipulation',\n", - " 'num_steps': 3,\n", - " 'incidence_field': \"incidence_hyperedges\",\n", - " }\n", - "}\n", - "\n", - "# Apply transform\n", - "processed_dataset = PreProcessor(dataset, dataset_dir, transform_config)\n", - "data = processed_dataset.data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plotting" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def plot_homophily_scatter(avr_class_type1, labels, non_isolated_nodes, type1, step, save_to=None):\n", - " \n", - "\n", - " colors = np.array([\n", - " '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',\n", - " '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf',\n", - " '#aec7e8', '#ffbb78', '#98df8a', '#ff9896', '#c5b0d5',\n", - " '#c49c94', '#f7b6d2', '#c7c7c7', '#dbdb8d', '#9edae5',\n", - " '#393b79', '#637939', '#8c6d31', '#843c39', '#7b4173',\n", - " '#d6616b', '#d1e5f0', '#e7ba52', '#d6616b', '#ad494a',\n", - " '#8c6d31', '#e7969c', '#7b4173', '#aec7e8', '#ff9896',\n", - " '#98df8a', '#d62728', '#ffbb78', '#1f77b4', '#ff7f0e',\n", - " '#2ca02c', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',\n", - " '#bcbd22', '#17becf', '#c5b0d5', '#c49c94', '#f7b6d2',\n", - " '#393b79', '#637939', '#8c6d31', '#843c39', '#7b4173',\n", - " '#d6616b', '#d1e5f0', '#e7ba52', '#d6616b', '#ad494a',\n", - " '#8c6d31', '#e7969c', '#7b4173', '#aec7e8', '#ff9896',\n", - " '#98df8a', '#d62728', '#ffbb78', '#1f77b4', '#ff7f0e',\n", - " '#2ca02c', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',\n", - " '#bcbd22', '#17becf', '#c5b0d5', '#c49c94', '#f7b6d2'\n", - "]) \n", - " right_shift_points = 0\n", - "\n", - " \n", - " shift = int(np.mean(np.unique(labels[non_isolated_nodes], return_counts=True)[1]) * 0.1) #+ int(np.std(np.unique(labels, return_counts=True)[1]) * 0.1)\n", - " \n", - " plt.figure(figsize=(10, 6))\n", - "\n", - " for i in range(len(avr_class_type1)):\n", - " x_left = np.where(labels[non_isolated_nodes] == i)[0][0] + right_shift_points\n", - " x_right = np.where(labels[non_isolated_nodes] == i)[0][-1] + right_shift_points\n", - " plt.plot([x_left, x_right],\n", - " [avr_class_type1[i], avr_class_type1[i]],\n", - " color=colors[i],\n", - " linewidth=2)\n", - "\n", - " plt.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False)\n", - "\n", - " plt.vlines(x=[x_left, x_right],\n", - " ymin=[avr_class_type1[i]-0.01, avr_class_type1[i]-0.01],\n", - " ymax=[avr_class_type1[i]+0.01, avr_class_type1[i]+0.01],\n", - " colors=colors[i], ls='-', lw=1)\n", - " \n", - " if len(np.unique(labels)) < 20:\n", - " text_fontsize = 20\n", - " else:\n", - " text_fontsize = 10\n", - " \n", - " plt.text(x_left + (x_right - x_left)/2,\n", - " avr_class_type1[i] + 0.03,\n", - " np.where(labels[non_isolated_nodes] == i)[0].shape[0],\n", - " horizontalalignment='center',\n", - " verticalalignment='center',\n", - " color='black', weight='bold',\n", - " fontsize=text_fontsize)\n", - " \n", - " right_shift_points += shift\n", - "\n", - " # if len(np.unique(labels))< 20:\n", - " # leg = [mlines.Line2D([], [], color=colors[i], label=f'Class {i}') for i in range(len(avr_class_type1))]\n", - "\n", - " # plt.legend(handles=leg, loc='upper center', bbox_to_anchor=(0.5, -0.0), ncol=len(avr_class_type1), fontsize=10)\n", - "\n", - " right_shift_points = 0\n", - "\n", - " \n", - " x = np.arange(len(type1))\n", - " for i in range(len(avr_class_type1)):\n", - " plt.scatter(x[np.where(labels[non_isolated_nodes] == i)[0]] + right_shift_points, type1[np.where(labels[non_isolated_nodes] == i)[0]],\n", - " c=colors[i], s=10, marker='+', alpha=.75, label=f'Class {i}')\n", - "\n", - " \n", - " \n", - " most_right_point = x[np.where(labels[non_isolated_nodes] == i)[0]][-1] + right_shift_points\n", - " plt.scatter([most_right_point] * shift + np.arange(shift), [1]*shift,\n", - " c=colors[i], s=10, marker='+', alpha=.0)\n", - " \n", - " \n", - " right_shift_points += shift\n", - "\n", - " \n", - " if step>0:\n", - " # get rid of y ticks\n", - " plt.yticks(np.arange(0, 1.05, 0.1), alpha=0.0)\n", - " plt.ylim(0, 1.05)\n", - "\n", - " else:\n", - " plt.ylabel('Homophily', fontsize=28)\n", - " plt.yticks(np.arange(0, 1.05, 0.1))\n", - " plt.ylim(0, 1.05)\n", - " plt.grid(axis='x', color='white', linestyle='-')\n", - "\n", - "\n", - " if save_to is not None:\n", - " plt.savefig(save_to, dpi=600)\n", - " fig = plt.gcf()\n", - " plt.close()\n", - "\n", - " return fig\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjfklEQVR4nOzdd1xTVxsH8F8S9hZFREQUqyiuOqtWbdW27l3FhfN1tWqttcPavtW3rVprHdXWPdEqat27VWtVrAP33oqggggJeyT3/SMlEhIgQOBm/L6fTz6ee3PHE0DIk3POcySCIAggIiIiIiIiIrMhFTsAIiIiIiIiIiocJvNEREREREREZobJPBEREREREZGZYTJPREREREREZGaYzBMRERERERGZGSbzRERERERERGaGyTwRERERERGRmbEROwAyLpVKhejoaLi6ukIikYgdDhERERERERWCIAhITExExYoVIZXm3f/OZN7CREdHw8/PT+wwiIiIiIiIqBgiIyNRqVKlPJ9nMm9hXF1dAai/8W5ubiJHQ0RERERERIWhUCjg5+enye3ywmTewmQPrXdzc2MyT0REREREZKYKmjbNAnhEREREREREZobJPBEREREREZGZYTJPREREREREZGaYzBMRERERERGZGSbzRERERERERGaGyTwRERERERGRmWEyT0RERERERGRmmMwTERERERERmRkm80RERERERERmhsk8ERERERERkZlhMk9ERERERERkZpjMExEREREREZkZJvNEREREREREZsZqk/nY2FgEBwdDIpFAIpHgr7/+KvF7ZmVlYePGjejcuTP8/f3h4OAAX19ftG3bFsuWLUNKSkqJx0BERERERETmzyqT+Y0bNyIoKAibN28utXs+ePAALVu2xIABA7Bv3z54enqie/fuqFy5Mo4ePYrRo0ejYcOGuHDhQqnFRERERERERObJRuwAStPTp08xZswY7Nq1CzY2pffSY2Ji0KZNGzx69AjOzs7YvHkzOnXqpHn+zJkz6Nq1K27duoV27drh1KlTCAwMLLX4iIiIiIiIyLxYTc/8mjVrEBQUhF27dqFhw4Y4e/Zsqd17wIABePToEQBg+fLlWok8ADRt2hTbtm2DRCJBfHw8evTogaysrFKLj4iIiIiIiMyL1STzEydORGpqKmbMmIHTp0/j9ddfL5X77t27F4cPHwYANGjQAP3799d73Jtvvolu3boBAG7evInly5eXSnxERERERERkfqwmmW/ZsiUuXryIKVOmlOoQ+zlz5mjaISEh+R47ePBgvecRERERERER5WQ1yfyePXtQs2bNUr1nTEwM/v77b812u3bt8j2+TZs2mvb9+/dx/vz5EouNiIiIiIiIzJfVJPNi+OOPP6BSqQAADg4OqF27dr7HlylTBtWqVdNsHzhwoETjIyIiIiIiIvPEZL4EXblyRdOuXLkyZDJZgedUrVpV7/lERERERERE2ZjMl6Dr169r2r6+vgadk/O4nOcTERERERERZbOqdeZLW2xsrKbt4eFh0Dk5j3vx4oWRI6Kiuv5Ujk4LTogdhiikEmDPhJYI8nEXOxTT8OwKsKSl2FEAFRsAITsAR48SubwiQ4GRB0fi+ktxP1R0snHCtu7b4Oti2AeiZD5Sb93Cw+49xA7DZEmdnREYcQ63GjWGKjlZ7HAK5LdhPVwaNRI7jAIp4lLx2/R/oMwQxA6l0CQSoO/UJihXyVXsUMxGzKMHCP1svNhhGJV3QHW8/9W3cHB2ETuUUqFKzcLzZZehfGrg70EJUH5CA9j5WMfXhz3zJSgxMVHTtre3N+gcBwcHvefnJT09HQqFQutBxtd14UmxQxCNSrDu169j2VtiR6AWfQEIG1Ril594dKLoiTwApGSloM/uPmKHQSXgYa/eYodARhQ5sOR+HxlT2HdnzTKRBwBBADbPOCd2GGZl/RcfiR2C0T2/fwe75nwvdhilJi70uuGJPAAIQMzCCyUXkIlhMl+CUlNTNW07OzuDzsl5XEpKSoHHz5w5E+7u7pqHn59f4QMlIiIiIiIis8JkvgQ5Ojpq2hkZGQadk/M4JyenAo+fMmUK5HK55hEZGVn4QKlAu8e/KXYIopFKrPv16xh1TOwI1Co2AILXl9jl57eZjyDPoBK7vqGcbJywpesWscMgI8uIigIMHLFG5sFvQ8n9PjKm4K+aQGYnETuMIpFIgL5fNhY7DLMyaNYCsUMwOu+A6ug2earYYZSasiFBkPk4G36CBCg/vkHJBWRiOGe+BLm6vprTlJ6ebtA5aWlpes/Pi729vcFD+Knognzc8XBWZ7HDIFNQoS4wTS52FCXOzc4NYV3DxA6DLNSDHj0hlcmAf//OBZ49I3JEpiswgsOqjcmtrCPG/NxG7DCoFKQlJ+GvNcvgF1QX3SZPtZo55pZG6mgDn48aih2GyWLPfAny8vLStBMSEgw6Ry5/lSSUK1fO2CEREREREVm8nPPKrWmOOVkXJvMlKCjo1RDVqKgog87JeVzO84mIiCxF1R3b9baJiIxFpVIi5uF9xDy8D5VKKXY4RCWCw+xLUN26dTXtx48fQ6lUQiaT5XvO/fv39Z5PRCYg/hGwtJW6Pfo4UMZf3HiIzJTM1RUOtWpp2kRERifk0SayIOyZL0HvvvsupFL1lzgtLQ3Xrl3L9/j4+Hjcu3dPs92hQ4cSjY+ICik7kc/dJqJCeTJuvN42EZGxSGUylK8SgPJVAtQ1OogsEJP5ElS+fHm0bt1as3348OF8jz969KimHRAQgIYNWeyByKQIApCRpH4I/JifqCgyoqKQEhGBlIgIqAwsDktEVFjtP5ioGWbf/oOJYodDVCKYzJewyZMna9qhoaH5Hrtu3TpN+5NPPimxmIioCOIfAemJgEqpHq5XLlDsiIjM0oPuPdQfhimVSLt6FZUWLRQ7JCKyQAd/na/pmT/463yxwyEqEUzmiyAhIQGdO3eGi4sLWrdune/a7p07d0bbtm0BABcuXMCmTZv0Hnfy5Ens2rULAFCzZk2MGjXK+IETUdEtbQVIpYBUBkgA2DqIHRGRWVKlpqoXzP532KvMzU3kiIiIiMwTk/kimDt3Lvbt24fk5GQcP34cU6dOzff43377Df7+6kJZ//nPf7Bv3z6t58+cOYNevXpBEAR4eHhgx44dsLFhbUIik2Pr/KodvF68OIjMmEPt2nrbRETG1G3yVL1tIktiNRnjzZs3MWvWrDyfnzVrFtasWaPZ7tGjB3r06GHQtSUSSb7Pe3t748iRI+jfvz/OnDmDzp07o0GDBqhevToiIyPxzz//QBAE1KhRAxs3bkRgIIfvmpLrT+XouvAkAGD3+DcR5OMuckQkitHH1b3zdi7qtqOH2BERmaXKK5Zrit5xiD0RlRQHZxf0/Wam2GEQlSirSeafPXuGtWvX5vn8wYMHtbarVKmSZzI/adIkRERE4K+//kKjRo3w3XffFXj/gIAAnDx5Eps3b0ZoaCiuXr2Ka9euoWzZsmjdujX69++PkJAQODk5Fep1UcnLTuSz2/dmdBIxGip18Y+AX1sAmUnqbTsXceMhMlMZUVG417UbkJICAHCoU0fkiIiIiMybRBBYktmSKBQKuLu7Qy6Xw43zEI2i2pfa0yKYzFuZWZWBNLn2Pgd34IvH4sRDZKZuNW4CVVKS1j6npk3hvy7vD9qJiIiskaE5ndX0zBMV1e7xb2oNsyciosJTpaaKHQIRWbC05CRs/fYrPH9wV2u/d0B1vP/Vt3Bw5sg6sjwsgEeUD3lqJv674yqc7WRoUNkDvh6cBmF1hu7V3s6eM09EhZK72J1DnTqcM09ERrNrzvc6iTwAPL9/B7vmfC9CREQljz3zRHmQp2bizVmHkZSuBADcfJqI0aHnsGlUc5Ejo1KTmgCs6aweVl++FiC1BYbuETsqIrOjVCggsbGB1NUV9jWqw2/xYi5JR0TF8uTmNYR987nYYRCJisk8UR5Gh57TJPIAkJSeJWI0JIqNwUDGv3N8n18HfOqLGw+RmXoybjwkNjZwqFULANeWJ6KiyWsofX68A6pzaTqyWEzmifIhlQCqf0tEyiTA0pDG4gZEpSvmhnpt+cxk9YNryxMREYkmr6H0uUmkUkzauKsUIiISF5N5ojz82Kc+Os47hqQMFVzsbbB/Yiu4O9qKHRaVJs8AIPqCul2xAdeWJyoEpUKBR8OGI/3atVc7pVJU2b5NvKCIyOJJpFIMmrVA7DCISgWTeSI95KmZ6DT/OFKzBLg62CCwgiv8yrD4ndWJuwdIZa/aVkSRocDEoxMBAPPbzIebHYdFk+GUCgXutmkLVXKy9hMqFR4PCkHg2TPiBEZEZq3b5Klaw+yzE/fy/lVFjoxIHEzmifQYuvoMEv+dI5+SrsTtZ4kiR0SlLjVBPbQeUA+1l0hEDae0ZSfy2e1V7VeJFwyZnSfjxusm8kRExeTg7IJBs+aLHQaRyeDSdER6XH4i17SVgoAa3lyb1OqEDQJ8Gqrbmclcjo6oEFTp6Xr3S5ycUHXH9lKOhoiIyDKxZ55ID0EQtLZXDm0qUiQkKlsHoHILdbuMv7ixlLL5beZrDbMnKoz0e/fUo1n+/V1a7fCfsPP1FTkqIiIiy8JkniiX60/lmgr2UglQr5IbC99Zo+D16t757LaVcbNz49B6KjKJRAKJy6sRTUzkiYiIjI/JPFEOkfEp6LTghGZbJQBrhzcTMSISjaMHMHSP2FEQmZ2MqCioVCogORlSZ2dU3bVT7JCINNJTMrF/yRUAQMcxdWHvxA/rich8cc48UQ6dF2jPi5ZJJeyVtzbxj4DvfYFp7urHDF/1PiIyyINu3YEcxe/YK0+mJDuRz90mIjJHTOaJcnG2fVW1fPf4N0WMhESxtBWQmfRqOyNJvY+IDJKzij0r2hMREZUcJvNEOWwa3QxpSnWP/L6PWiLIx13skKi05Sp+SESGUyoU2ss4OjuLFwyRHm2H1EJsZBJiI5PQdkgtscMhIioWJvNEOfxv93U0qVIGTaqUwf92Xxc7HBJDuUDtbTsXLktHZKAn48bDoW5dQCYDZDJU43x5MjFH1t6Al58LvPxccGTtDbHDISIqFhbAIyLKlpoAxN0GHNyB8rUAqS2L4BEZSKlQIO3aNfXQepkMDnXqcL48ERlNWnISts34Bs/u34GtgwMGz14Idy9vscMiEhV75olyWBrSWG+brETYIMArSN2OuWGVS9IRFdWTceOhSk1VbyiV6rXmiUxMxzF19bbJ9O2a8z2e3b8DAMhMS0PoZxNEjohIfOyZJ8rB3dEWm0Y1FzsMEpPMBqhQT9129BA1FCKzI5Goh9hDvdY8kSlRxKUi7LuzAIDgr5pwWTozkpachGf370JQqQAAEin7I4kA9swTaUTGp6DetIOoN+0gIuNTxA6HxJCzJ5698kSFUmnRQjjUrg0AkDo6ouqO7SJHRKQtO5HP3SbTt2vO98hMS9VsCyoVQmb/LGJERKaBPfNE/8q5xnznBcdxeVp7EaMhUaTJgWeXX7XZM09kMGViIjIePIDUyQlVd2znfHkyKekpmchMz4KgAiRSwNZOJnZIlIeYRw8Q+tn4fI+RSKWcL08E9syTFYiOjsbGjRvxySefoGPHjqhfvz78/Pzg7OwMOzs7lC1bFg0bNsSTXfOQeOcshHyWJhs6dCgkEonBjzp16hQ63uvXr8POzk7nWn/99VcxvgpkkJzryXNteaJCedCjp942kSnYv+QKZLbqt72CCihTwUnkiEiftOSkAhN5ABg0a0EpRENk+tgzTxZvwoQJ+P333wEANjY2aNeuHd58803ExMTg+PHjiImJwcuXLwEA8RcOwrFiDfy5b4do8X744YfIzMwU7f5ERESWSCqVws5RndDbsGfeJO2a832Bx9g7OaO8f9VSiIbI9LFnnqyGt7c3Ll26hAMHDuDXX3/F1q1bcffuXfTsqd2DlBp9G0P7dEdycnKpx/jbb7+xB15MOdeT59ryRAbLiIqCSqWCKjERUKk4X55MTscxdVG2oro3vmxFZ1ayN0Exjx4g8vqVfI+xdXDkXHmiHNgzT1Zj3rx5CAoK0trn6uqKFStWYN++fUhPT9fsv3PnDjZv3oxhw4aVWnyJiYmYPHkyAHXvgerfiq1UihzcX1Wyd3AXNxYiM/Kgew8gLU1dyV4i4Xx5Mjn2Trbo9SmXnDVl67/4SHuHRIJPNu0WJxgiM8GeebJ4VatWRYMGDdC5c2e9z3t6eqJqtdd09l+8eDHPawqCYNDj6tWrBsf5zTff4OnTp3jvvffg5+dn8HlkJPGPgB8DgMfhQFaaes15CyIIAlatWoWyZctq1WJ4++23Czx32rRphaoV4eLiYnBcV65cwddff40WLVqgUqVKcHBwgJubGwICAvDmm2/iww8/xMqVKxEVFVWMV08lKSMqCqqkJECpBATh1VrzRETFwOUtrVtWfBqefH0cT75QP6K+CUdWfJrYYZkcJvNk8X788UecP38ebm5ueR7z4LlcZ5+dnV1JhqXl6tWrWLhwIezs7LBw4cJSuy/lkLPgXfR58eIoAdevX8dbb72FESNGaOpDiE0ulyMkJAT169fHd999h3/++Qd+fn4YMmQI+vXrh3LlyiE8PBy//vor/vOf/2DLli1ih0x5eNCjp3p9eQBQqTTL0xERFUbOonYSqZRF7qzc8wXngRwlpIR0pXofaeEwe7J6z549Q3r8U5397733XqnF8OGHHyIrKwuff/45atSoUWr3pVxsnYHMf2slWMA686mpqfjuu+/w448/IjMzExUqVMCzZ8/EDgsxMTF49913cfmyehnAMmXKYOfOnWjVSnsFgZ07d6Jv377IyMgQI0wqBImzM4R/e+Qrr1gucjREZI7K+1fFJ2F7xA6DyKxYZc/8nj170KdPHwQEBMDR0REVKlRAixYtMG/evBLttbp48SImTpyIBg0aoFy5crC3t4evry9at25d4vcm/V68eIHgAYMAlVJr/+DBg/Huu+/meV5cXBy+//57NGvWDO7u7rCzs0P58uXRrFkzTJ48GTdu3DA4hvXr1+Pvv/9GpUqV8PXXXxf5tVAxjT6u7l20cwHGX7CINeb/+9//YsaMGShXrhw2btyImTNnih0SAGD48OGaRB4Afv31V51EHgC6d++OSZMmlWZoVARVd2yHRCKB1MkJ1Q4dhCyfUVBERESG8P6oIWD7altiL1PvIy1W1TP/4sULDBkyBPv27QMABAYGokuXLoiNjcWJEydw6tQp/PjjjwgNDUW7du2Mdt/ExESMHj0aGzduBAA4OzujZcuW8PT0xKNHj3Dy5EkcP34cP/zwA5YtW4Zu3boZ7d6k6/jx4wgLC8PVW3fx999/Q8h4Nb/TtlxllG/eE2vWzMv3GjVq1ICrqyvatWuHhg0bIjw8HJcuXUJsbCxOnz6Nn376CaNGjcK8efPg5JT3WrYKhQKffvopAOCnn36Cs7OzcV4kFU78I2BJS3WvfMWGFlP8ThAETJgwAd9++y3c3NywZs0ag89VZCgw8ehEAIC30hsA8ODBA1SpUqVYMe3cuRN79+7VbHt5eaFv3755Hv/ZZ5+hXbt2CAwMLNZ9ybiUCgUeDRuO9GvXNPuk/P1FJiw9JRP7l6grpXccUxf2TrYFnEGlKebRA00BvEGzFnDpOSuX9jABL/79/2pb0RleI+tB6mhVaavBrKZnPiUlBR06dMC+ffsgk8mwcuVK3Lx5E1u2bMFff/2FGzduoEaNGnj69Ck6deqE48eNsyxVYmIiWrVqpUnkhw0bhqdPn+LAgQP47bffcPLkSdy4cQP169fH8+fP0atXL+zatcso9yb9IiIi8Msvv+DYnwe1EnmZuzccAxojqH6jAouu/Oc//8Hdu3excuVK/Prrr7h48aJOr2f2BzP5DRH+73//i2fPnqFt27b5JjRUwpa2ejW8Pvq8xRS/+/bbb7FgwYJ860XkJTuRB4ADDw4YLabFixdrbbdq1QpSad5/isqUKYN33nmHRSFNzJNx47USeQBQJSer588TmaDsRD53m0xDzkr2OlXtyeq8yPF/NDM6GXGh10WMxrRZTTI/YcIEREREAFC/wR0+fLjW89WrV8f+/fvh4OCAjIwM9OrVCwkJCcW+75gxY3Dp0iUAQMeOHbFy5Uq4urpqHVOjRg0cOnQInp6eUCqVGDhwIJ4+1Z3DTcYxceJEZGVlofK4tfBsPw4yF08AgFL+HIoz23B4xlBMnDgRSqVS59wJEybg4MGD+OGHH2Bjo/0J4RdffIE333xTa9/hw4cxe/ZsvXFcvnwZixYtgo2NDYveUYlwdHQUOwQtL1++xB9//KG1r3r16iJFQ0RERGTerCKZv3LlClavXg0A8Pb2xieffKL3uICAAIwePRqAekh+ceeXXrp0SdMjDwDfffddnj2+5cuXx8cffwwASEpKwtSpU4t1b8qfTCbD/i+7w/X1DqgQ8hOkTh6a51QqFRYsWIAvv/xS57yGDRvmWxhv0CDdHt25c+fqfDAgCAI+/PBDKJVKTJgwAUFBQUV/MVR8o4+ri98B6mH2FlD8rrjmt5mvaXeo2gGAeoTTggUL8NZbb8HT0xO2trYoW7YsGjZsiA8//BBnzpzJ95oRERFQqVRa+zw8PPDnn38iODgYlStXhr29Pdzd3VG/fn18+umnXJLORFVatBD2uarWS52dUXXHdpEiIspfxzF19bbJNOSsXM8q9lQux/9R24rOKBvC98l5EqzA0KFDBQACAGHChAn5HhsREaE51tnZWUhJSSnyfb/88kvNtXx9fQs8/vr165rjHRwcBLlcXuh7yuVyAUCRzrUm16IThIApe4WAKXuFa9EJwoIFCzRf++yHnZ2d8OzZs0JdNzw8XOc6AIR//vlH67g1a9YIAAQfHx9BoVDoXMff31/nGkePHi3OSyYSVq9erfNz9dZbbxV43jfffCMAEDw9PYXy5csLgwcPFj788EOhRYsWOtfr0aOHEBsbq/c6c+bM0Tnex8dHACA0a9ZM+PDDD4U33nhD63knJyfh999/N/JXgoiIiMh0GZrTWXzPfGZmJnbu3KnZLqiwXYMGDeDh4QEASE5Oxv79+4t87/DwcE27Tp06BR4fGBgIBwcHAEBaWhrnzpegrgtParW7dOmic0xGRgaOHDlSqOuWLVtW7/4nT55o2nK5HJ999hkAYPbs2TrTLohMVefOnfHgwQOsXbsWixYtwsmTJ7F+/XqtOe87duxA27ZtER8fr3N+bGyszr6nT5+iT58+CA8Px6JFi3Dq1Cn06tVL83xKSgr69euHU6dOlcyLoiLJiIrCrSZNcatJU2Rw9AQREZEoLD6ZP3PmjNabykaNGuV7vEQi0TrmwIGiF356/vy5pu3p6Vng8VKpVOu4f/75p8j3Jv2uP5Wjyhd7oVQJmgcAVKpUSe/xjx8/LtT1BUEocP+uXbsQExMDAAgJCYFEItF5PHr0SOcabdq00Tw/dOjQQsVFVBz9+vXDrl27sGbNGp3VGQYOHIj+/ftr7bty5YpmlYac5HK53ut//PHHmilIEolEM+UoW2Zmps4+ElfOQncsekdERCQOi6/xf+XKq2qI2eu6F6Rq1VfLYeQ8v7DySuzyk7OoWnHuTWoxMTEYPnw4OnfujLFjx2r1yGer5eOSZ8V5Ozs7TfvQoUM4dOgQpkyZkmcPfFxcnN79OX/uatWqlWfdhmzLly+HQqHQ2te3b19NRe8mTZrkez6RMdWsWRM1a9bM8/lBgwZhw4YNWvtWr16NWbNmoVy5cpp9+opKSiQSNGyovW5s48aNIZFItH6Hnj59Grdu3eISdUREFiYtOQm75nwPAOg2eSocnF1EjojIfFh8Mn/9+qulDCpWrGjQOTkTr5znF5aXlxdu3rwJQF3F2RA5K+g/fPiwyPcmtZSUFOzduxdyuRwDhv5H0xOfk4u9bZ4fnORMYMLDw/HTTz+hT58+eSbz2SsX5OTm5obGjRtrths3bqy1rc/WrVt1kvmxY8fi7bffzvc8IjHUr19fZ59KpcLhw4cRHBys2adviTxPT0/Y29tr7XNwcICHh4fOUP0zZ84wmTcBSoUCdlWrIu3aNUgdHVF15w6xQyIiExQdHY1jx47h3LlzuH79OqKjo/Hy5Uu8fPkSmZmZcHV1hb+/PzygxBtBgXj9tQDsmvM9+n6jvwC1SqXC7t27sX37dly4cAGRkZFITEyEra0t3N3dERgYiJYtWyIkJMSgvxVnz57Fb7/9htOnT+Pu3btQKBRQqVRwdXVFQEAAGjdujODgYL73IpNm8cl8zjma2XPhC5LzOIVCgczMTNja2hb63o0aNdKsV3/16tUCj3/y5IlWApc7maOiO336NIJnhaGOb2VcjUrU7K9XyR1LQxpj/OgROudUrFgR77zzjs7+Q4cO4Y033tB7n/Xrdaugjxs3rkg/P1RKUhOA3/oBsdeB8rWA/mGAo4fYUZkVQ2pFAOoPOHPLPWw/m7Ozs04ynz09hUrP22+/jWPHjuV/UB7TlOLj4zV/T9PS0hAeHo5Tp07hypUrePDgAeLi4vDy5UsoFAo4OTmhfPnyCAoKQvv27TFw4ECD/2YD6lFRn376qWblmmyrV6/mtCSCIi4Vm749g6wMFcr7u6Lr+Pqwd+Lf5ZI2YcIE/P777wDUI0/btWuHN998EzExMTh+/DhiYmI0nV1HL1yGn6cHPunfW++17t+/j969e+PixYuafZUqVUKvXr3w8uVL7Nq1C8+ePcOxY8cwa9YsTJw4EbNnz9aq6ZItJSUFw4cPR1hYmGafs7MzevbsCTs7O+zZswfnzp3DuXPnsGTJErz33nvYuHGjQVNmiUqbxc+ZT0x8lbjl7v3JS3YROn3XKIxu3bpp2lFRUZp17vOye/dure2kpKQC75Geng6FQqH1IF2ZmZk4vfp/kKXJ0SzAE80CPPFwVmfs+KAFli2aj9DQUK3j7ezssHr1ar1J+OzZs3Ho0CGtfYIg4LvvvtMqeggAb7zxBpcZNHVhg9SJPADE3FBvU6EYUisCAF5//fUinwuol5Qk8/Tnn3+iXbt2+OqrrxAWFoaUlBS0bt0a3bt3R7169ZCYmIh79+5h9+7dGDduHKpUqYLffvvNoGuvWbMGgYGBOok8Ubaw784iK0O9LGbMo0TsX8JpjKXJ29sbly5dwoEDB/Drr79i69atuHv3Lnr21K63EfkyAd+HhiE5OVlrf2JiItq2bauVyHt5eeHChQtYsWIFtm3bhmXLlmmeUyqV+OmnnzBlyhS98QwaNEgrkQeAvXv3YuPGjVi7di1Onjyp9f7v0KFD6NKli87SqlQysuLTEDUtHFHTwpEVnyZ2OCbP4pP51NRUTTvn/Of85D4uJSWlSPdu06YNmjdvrtn++uuv83zjmpiYiFmzZuUbhz4zZ86Eu7u75pE9p5rUcn4imxB5B3un9sGJxV/A49JvGDZsGF577TVNZflsgYGBOHTokM568tmJRFJSEtq3b48WLVrgP//5D8aMGYPatWvj66+/1jp+wIABOHjwYJ49j7nNmDEDkydPxuTJk/VWAl+8eLHm+Xv37hl0TaLiOnfuHCZPnow7d+7keYwhtSIA9Ydbhv5+1bff0KlSZNp++uknXL58GatWrcLq1atx/vx5nQ9U5XI5Bg0ahIMHD+Z5nZs3b+Ltt9/GsGHDkJSUVKiefCIqPfPmzUNQkPY64a6urlixYgVscvWcxyqSsHnzZq19K1as0CkM/N5772nVZOnfv79OL/y8efN0prleuHAB27dv19rn6+uLt956S7Nds2ZNnemQp06dwt69e/N7mWQkzxec19sm/Sw+mXd0dNS08ypyllvu4wxNxvRZv369ZljO/v37MWLECJ2e/sePH6NTp054/Pix1ptVffNLc5syZQrkcrnmERkZWeRYLVHlypURHR2N3377DR9//DHebt0S9oon2LBuDdatW4fo6Gh4eXnhjTfewOjRo7F7925cvXpV65d6tq+++grnzp3DnDlz0K9fP6SmpmLHjh1YvXo17t69i3LlyuGNN97ApEmTcPHiRWzYsAHu7u4Gx7ps2TL89NNP+Omnn/SOsNi8ebPmeX6fjajDTCA9EUiTA54BQLDuVAlrdvXqVfz00084fz7vP6j6akVIJBK0adNGa5+Hhwd69OihtS8+Ph7p6ela+1JTU/V+oNW6detCRE5isrGx0fuB9HvvvYdJkyZpVi/INmjQIPTp00drnyAImDFjRp73aNWqFY4dO4b33nsPV65c0Vu7gQgAgr9qAhs79Vve8v6u6DimrsgRWYeqVauiQYMG6Ny5s97nPT09Ub1GdZ39OXvgAeDkSd3ixbk7rxwdHXWmcmVmZuosa2rItQD1+8fc/v77b519ZFxZ8WkQ0pTqR7pu0VzSZfFz5nOu4Z37DWNe0tK0h3QUZx3wgIAAhIeHo1evXrh+/TpWr16NLVu2oGXLlihTpgyioqIQHh4OQRDwySefoEqVKhg/fjwAw+b429vbGzx9wFr5+Pigf//+6NTjfYwOPYdyAJaGNIa7Y+Hmy2UvW1jQ8oZFxYKHIlnTGbD/9//4y/ucL5+HQ4cOaRWzy0lfrYj+/fujQoUKOvunTp2K7du3IzMzE4A6YTt//rzWKCZ9U5J69uyp93pUOv54rTp8ZTJAJoPU0RGB587qHHPr1i0EBQVBpVJh4MCBWh+Eu7u7o379+hg8eHCe92jWrBm2bNmitS/3m/qcypcvj19++QV9+/Yt/Asiq+JW1hGj5ut+SE8l68cffyzwGKVSd+h67g8C9U131TcNUt8HiLk7R4x5LTI+rZ54AbDxKnqHqrWw+J75nJ/S5awUn5+cayG7ubkVu3hZYGAgLl++jPXr16Nnz54oU6YM/vrrL+zevRsxMTEYPXo0Lly4gDlz5mhNC2DVZuMaHXpOb5uICrZ27Vq9SfvatWuxceNGrX3VqlXD3Llz9V6nXr16Om/w5s+fr5mCJAgC5s2bp/W8l5dXntejUqL6t4dEqYQqx9+pnGbOnAmVSgWpVIovvvhC67lWrVrh4sWLGDhwYJ630Dd6Lr/pZufOnWMib0UiIyMRFhaGjz76CC1btkTlypXh7OwMGxsbuLm5ISAgAN26dcPPP/+sVfxYn2nTpkEikRj8cHEpeKm0+/fvY8qUKWjRogXKly8POzs7lClTBrVq1cLIkSN1au0Q8OzZM73TBnNPc9T3flhfUq4v2X7ttddK7FpUQqSvHlJbi09Vi83ie+ZzztGJjo426JyoqCi95xeHTCbDwIED830jA2jHqK9YFBVdlkrA7WfqX9g1KhR9tAVZkPhHgEoFZCSqe+fH6A6/M2fx8fH4/vvvNdvXrl3TOebevXuYPHmyZrtJkyZaPfDZtSKUSiVCQkIwZ84c1K9fHy4uLjh79izOntXuoX333XexZs0aeHt75xnXRx99BBcXF0yaNAkKhQKbN29GZGQkGjVqhLNnz+L06dOaY2vVqoXNmzejSpUqhX79VHz+3t54zd4etjmGxTvUrq1z3OPHjzUF63r16qW1rKeh9A1/zf2mPqec0+jI8tWqVUtTGM3e3h7t2rVD1apV8eTJExw8eBAPHjzAgwcPsHv3bkydOhXTp0/HpEmTSjwuQRDw7bff4n//+x+USvWHXk5OTujXrx/s7Ozw+++/Y8WKFVixYgXatWuHjRs36l3Zw9q8ePECIYMGQZmrqNzgwYPx7rvvau0bM2YMli5dqvWBX+4lhSMjI7U64wD137MmTZpo7evcuTOqVaum9SHC7du3kZ6erjXSNff1XV1dMWgQC+SWNO+PGuLZ/AggUwW7Sq4oG2KcPMyiCRbuxIkTAgDN48mTJwWe065dO83xI0eOLIUoX+nSpYvm3gcPHiz0+XK5XAAgyOXyEoiu+J7LU4W5h24Jz+WppX7v3r+eEOp+c0Co+80BofevJ0r9/uZIzO9XqZjpp/2wMA8ePND6/WfIY8iQIYI8XS4MOzBMGHZgmCBPlwvXrl0TFi5cKISEhAiNGzcWypcvL9jb2ws2NjaCp6en0KBBA2Hs2LHC8ePHCxVfbGysMGvWLKFNmzZCxYoVBTs7O8HJyUmoUqWK0Lt3b2HDhg1CRkZGCX11yBA3GzcRrgfWfPUIqi1k6fn78uGHH2p+hs6fP1+oeyiVSmHhwoU6P4u+vr7Co0ePDL7OW2+9pXON1atXFyoWMl3Ozs4CACEgIEC4efOm1nO3b98W/Pz8dL7/X3zxhSAIgpCWnCFs/ylC2P5ThJCWnCF88803hfq96OzsnGdcX331lc7xf/31l+b5a9euCXZ2dprnatSoIbx8+bJkvkgm7u+//xY+/PBDoUuXLoKrq6vW18zHw034ddFCQaVS6T13+/btgru7u+Z4qVQqLFmyREhISBAePHig9f4ZgFC7dm3h4cOHeq918+ZNITAwUOv4kSNHCtHR0UJsbKzOz0eZMmWEQ4cOleSXhkiHoTmdRBDyKK9uITIzM+Ht7a0pprRz506tJeNyEwQBnp6emiH5v//+O3r16lUaoUKlUsHb2xsvXrxA+fLlERUVBRubwg2eUCgUcHd3h1wuN6iAXmm7GiVHl4UnsGd8S9TxNbw4nDH0W6ZdBGXTqOZ5HEnZxPx+lYpZuQrcfPFYnDhMzPCDw7W2V7VfJVIkJLZbTZpClWMIqtTVFYFnz2gdExMTgypVqiA1NRUdO3bEvn37CrxuWloapk6diujoaJw/fx63b9/WPOfh4YGBAwfiv//9L8qXL29wrG+//TaOHTumtY/rzFsOFxcXJCcn4/Dhw2jbtq3O8zt37tQpsCmRSBAREYFHR7Xf6l5U7ML06dMNvrezs7Pe5YJv3ryJOnXqaHrkAfWoygsXLmgd17lzZ63/F4MGDdJZwcEazJ8/Hx9//LHOfi8PdzQLCsTMZatQW8/In2wvXrzA4sWLMW/ePL1FUgGgQYMGGDduHAYNGpTvNJ2MjAxs3LgRM2bM0Pr9k5OPjw8+/PBDjB49WqtyPpWMjKdJiPn5AiAAtpVc4DWiLqSOFj+IPE+G5nQWPxHB1tYW3bt312wfPnw43+MvXLigSeSdnZ3RsWPHYt0/IyMDSUlJWr/o8/LPP//gxYsXAICQkJBCJ/KUv6UhjfW2yYqNPq6/TUQAgKo7tgPOzgAAqbOzejuXuXPnauq9fPnllwZdNy0tDXPnzsWmTZu03kjb29ujffv2aNu2LcqWLWuEV0CWxNfXV28iDwBdunTRKVgsCAI2bNiQ5/UePHgAQRAKfOhL5AFgzZo1Ou/vGjRooHNcw4YNtbbXr1+fZwJpySZOnIisrCw8efIEy5Yt0xQ1jU2QY3f4GdSrVw8TJ07U+5752bNn+PzzzzFz5kxNIl+rVi2MGDECvXv31iQ7Fy5cwC+//KJTTDOn9PR0zJ49G59//rnm++Dt7Y3+/ftjyJAh8Pf3BwA8ffoUS5cuxeLFi7VqWlHJiFmoTuQBIPNJEuJCr4sbkJmw+GQeAD7++GPN2pNhYWH5LlG3bt06TfuDDz4o9py8SZMmwdXVFYsWLSrw2OyiUOXKlTP4DREZRp6aqSl6V5RK9mShyvire+O/eKxuEwBgfpv5ettkXTKionC/ew8gLQ0O9evjtaNHYOfrq3VMQkICFi9eDEC9dGDLli0NuraHhwcEQYBcLseRI0c0c+PT09MRFhaG3r17o3Hjxnjw4IFRXxOZr/Xr12PTpk15Pi+TyVC9uu4yZ7du3dJais6Yy9KFh4fr7NO36oa+fatWWeeIJ5lMBl9fX4wcORJnzpzRGn2jUqmwYMECnffA9+7dQ6NGjbBq1SpNUt2zZ09cvnwZK1aswNatW3HmzBnNcsDnz5/HoEGD8J///Efn/unp6Xjvvffw9ddf4/nz5wDURVsvXbqE3377DWvWrMGVK1c0c+0jIyPx3//+Fy1bttSZk09kCqyi67devXoYNmwYVq5ciefPn2Pu3Lk6lXYBdSXSpUuXAlAn1FOmTNF7vczMTAwfPhw7duzAa6+9hrVr16JevXr5xrBhwwaMGzdOU0xK3/M7duwAoB6GlL02vaWZuOkiAGDIqjOwlZXeZ0kvk18tS9jkuz/g6czl/AyR+e+SMRM3XcSfn3BZH3MTmxKLLbe3oE+NPvByMrzgkpudm0kMrS9q/GQcD3r0hPDvG+e0q1fxZNx4+K9bq3XMokWLNFWfi/IhtJubG9q0aYO3334bgwYN0hTRA9TL0r3zzju4dOmSQdXEybLlHkKvj74OGJVKBXsnW/SY1FDPGcUTExOjs8/BwcGguE6cOGH0eMyNn58fpk6dio8++khr//z58zFp0iRNIdXhw4frFLGePHmy1gjWwMBAvP/++1i5cqVm38qVK9G2bVsMGDBAs2/GjBk668UPHz5cq2irq6srJkyYgJCQEM2+8+fP49NPP8WyZcuK8YopP+XHN9AaZs/id4aximQeAH7++WdcuHAB58+fx9dffw1vb28MGzZM8/ydO3fQpUsXpKWlwc7ODtu2bUOZMmX0Xis0NFSzRNPFixcxbtw4nV8MuZ09exYjR47E3LlztdaPT05Oxvz58zVzt3788ccCK96bs/gU9aiIuOS8R0eUhmeKNFHvb26yv28WJ/4RsLSVuj36uMX1zsemxmLxpcV42+9ts0yGzT1+sycIQPZwVz0fRKekpGDBggUAgEaNGqF9+/ZFvpVEIsH8+fPx+++/Iz391Yev9+/fx/Lly/XOsyXKLXuqYk516tTJ8/jsn+Ft27bhypUrSExMhJubG/z9/dG8eXMMGTIETZs2zfN8fdMhVSrdddOzsrJ09l28eDHP61qTLl266CTzGRkZOHLkCPr37487d+7ofY+tb269vu/10qVLtZL5nMl+Ya+1bt06LFiwgCtplBA7HxdUmtlK7DDMjtUk805OTjhw4ACGDBmC/fv3Y/jw4Zg9ezbq1q2L2NhYnDhxAllZWfDx8cG6devQqpXhP0ySHEv25Gf16tXYtm0bGjZsCG9vb8TExOD06dNITk6Gj48PFi5ciN69exf1JZqFMk52iEvOQFlnu1LtmY9LTkeWUj0Rx0YmQVn2zBskU6lCXHIGyjjlXUTGrC1tpd1mATwiDbuAAKRdvQqoVJA6OKDSooVazy9dulSTPBljapiXlxeaNm2K48e161ccOHCAyTwVSKFQ4O7du1r7JBJJvh0krVq1go2NDTp06IC6deviwoULCA8Px8uXL3HhwgX8+uuv6NGjB5YvX663AJqfn5/Okp/61ifXt455cnIyUlJS4OTkZOhLtEiVKlXSu//xY/Xf48uXL+s8J5FINEPqc8rZWZYt54cmcXFxWstP53eevn3p6em4efOm3roIRGKxmmQeUL9R2LdvH3bv3o01a9bg/Pnz2LVrF9zc3NC4cWO8//77GDZsWIFD3ENCQnDkyBHs2LED1atXx8KFC/M8dubMmejUqROOHj2K8PBw3Lt3DydOnICdnR0qVKiAtm3bolevXujdu7dO4RZLNL/f6+iy8ATWDm9aqtXR318SrrXG/NYxLUrt3uYsu5r9/H6vix2K8T27AqT9O//NzgWQ6p8CY20UGQqM+WMMrsddh6ONI7Z22wpfF9+CTySLknrrFtL+fRPtUKcOpE5OkOWoppuRkYGffvoJABAUFISePXsa5b763thnv6knys/mzZt1CqeNHz8eVXyrY9nEY8jKUKG8vyu6jq+veb5z585YsmSJVkK9YcMGDB48WNPDvmPHDty7dw/Hjh3TGbHZpk0bHDhwQGufvjoPedV+kMvlFpvMx8TEYPjw4ejcuTPGjh2r2f/k5jWEffO5Zjs9U3fUAgBNJXp9oxqyCxPm7kzTt0BXzjpZ+q6V13l5LfaVX90tKpqs+DQ8++ks8O+3p9yYunCo4iFqTObEqpL5bF27dkXXrl2LfL6tra1mmH1BXF1d0alTJ3Tq1KnI9yMjyPlL2bJXYyRDLXsLgASAAGQkAR/pfvpvjSYenYjrceoKsqlZqeizuw/C++sWeSLL9rBXb0AqBVQqpF29ihpnTms9v3btWk0P1xdffFHgCLUpU6bgzp072Lp1a77H6XujnN/yUkSAupf722+/1drXt29fzJ07F6smn0RWhjoxj3mUiP1LrqBfv35o1KgROnfurCmQnG3gwIHYv3+/VhX8K1eu4NNPP8WKFSu0jh0xYgS+++47rZ7348ePIz09Hfb26hGAgiDkuZJSXnWULEFKSgr27t0LuVyulcznTOQB4Klcd9QCANSsWRMANJXlc0tISND5cEXfcnU5z/fy8oKTkxNSUlIKPC+vpe8qV66sdz8V3fMF5zWJPAC8WHIFlWZxuL2hrDKZJ+tjI5MiqGLeazSSlcr5Js7C5ssDwBfH1YU+x/w5BrZSw1ZwiE+Lh1J41buVlJGEdlvalUh8BclUZQJQv45dPXaJEoNVk0g0c+Vz9sorlUrMnj0bAFC1alX079+/wEudOnUKx44dw71791CtWrU8j7ty5YrOvuw39UT6qFQqDB48WDOCQyKR4PPPP8f333+vk6hnq1mzZr4/V4MGDdJZ0m716tWYNWuW1nD7smXLYuXKlejXr5+mJz8uLg5jxozB7NmzYWtrixkzZuDmzZt676NvqLilOX36NK5evZpn7YJT9x7p7KtYsSLeeecdAEDTpk1RuXJlnRE6V65cQevWrbX2Xb16VedavXr10rSlUil69uyp8729cuWKzugifddq3rw5fHx89L4OIrFYxdJ0RFxjnnSMOqa/bUES0hMAqBP0mJQYgx7ZCXQ2AYLB5xr7EZ8Wr/U6qPT4rVurLn6nVKrbOWzevFkzN/mzzz7TWwQsL/qKT2U7cuSI3rW3hwwZYvD1ybpkZmZi4MCB2LZtGwD1EnC7d+/GzJkzNYl88FdNYGOnbpf3dzVoabr69evr7FOpVHp72Pv06YN9+/bhtdde0+xbs2YNypcvjzJlyuCXX37Bl19+qTPCxMXFRdN7b8kyMzMREhKCp0+fAgCCp/8AAFAJAo7evIeIR9pz2O3s7LB69WrY2qo/gJZKpVi8eLHOKIYff/xRayTPzZs38fvvv2sdU61aNZ3Vq2bNmgUvL+2CqqtWrdLEB6jrHuSeQuvo6JjvtFoqOu+PGmp1L5cz4vKR1oA981Sqyrva46N21VHetXT/gLk72mLTqOalek9LINb3q1RUqAv896XYUZQoD3sPxKfFo4xDGYN75gVB0CTPHvYeBhf4LAmZqkzEp8XDw95DtBisUeqtW4gcOAiAer583IKf4fJvQi8IAmbNmgUA8PHx0VoVxhA//vgjmjVrhm7dumntP3/+vNYyUNmGDBnCaWqkV2xsLHr37q0pmNivXz8sWrQIZcuW1TrOrawjRs0v3NKqua+R7cmTJ3r3t2/fHjdv3sTJkydx9uxZxMXFwdHRETVr1sS7774LNzc3zJgxQ+ucgpY0Nnc5R0VcvHgR1apVwzvt2iEr9ilS0jPwKCERDx8+1DonMDAQS5cuxVtvaX+/OnXqhF27dmHUqFGa6T179uxB/fr18eabb0Iul+PQoUNaxQffeecdhIaGws1Ne1RmpUqVcPLkSQwaNAhnzpwBADx69Aivv/463nnnHdja2uLo0aNaIwGqV6+OtWvXolGjRkb52pA2mzIOqPQdh9UXFZN5KlXl3Rzw8bs1xA6DDMTvl3mb1WoWgvcEY8k7SxBU1rD1WocfHK61LeZ689fjriN4TzBmtZolWgzW6GGvV6uqpF29CqccS3Pt2bNHU136k08+MbhnMfuNfVZWFrp3744mTZqgcePGkEqluHr1Kv7++2+tglOOjo74/PPP8fXXX+d5zUOHDuHQoUOa7Xv37ukcExYWpjVcduzYsfkO8yfzcOTIEYSEhCA6Oho+Pj5YsmSJzgdEALBixQq4uroiODi4UNfPq/hZXvsB9fz31q1b6wz9BoBnz57p7Gvc2LJHCVauXBnR0dH466+/cPbsWVy+fBlnTp6APDkF6ZmZsJFK4eXlhYCAALz++uvo0qULOnTokOdIn06dOuHOnTvYvn079u7di8uXL+PJkydYu3YtZDIZ3Nzc0Lx5czRt2hR9+vTBm2++mWds1atXxz///IPDhw9j27ZtiIiIwP3797F161YIggAXFxfUq1cPDRo0QLdu3dC1a1fNSAEiU8Nkniza9adydFpwQrNdr5I7Qke8AXdH/lImIspNqVC8Wlv+XzmXpJs5cyYAwNPTE6NHjzb4uvv27UN4eDjCw8Nx8eJF3LlzB2FhYUhMTIQgCHBzc0OFChVQu3ZttG3bFu+//z68vb3zvWZ4eLimon5eDhw4oFVtvEuXLkzmzVhGRga+/vprzJkzByqVCkOGDMH8+fP1LiMGACNHjoS/v79WMn/u3Dls2rQJo0ePRvXq1fWeFxcXp3e/r2/RVvbQN32ksB8wmCMfHx/0799fU1dj0zef4cVj9Rz5cpX90W/67EJdz9HREQMGDNBaN76oJBIJ3nnnHc3cfCJzxWSeLFrXhSe1ti8/kWN06DkOuSfKw/w28zHx6ERNm6zLk3HjYV+7NtL/XTu7ys4dWsXvwsOLtrKBg4MD2rZti7Zt2xolTgCYNm0apk2bZrTrkWm7fPkyQkJCcPnyZfj5+WHZsmXo0KFDoa9z9epV/PTTT2jSpEmeyfylS5d09kkkErRp00Zn/6+//oq0tDRMmjQpz3vmnmtfp04dtGhhhUvkCnm0iajImMwTEVkoL0cvjK0/Fl6OXgUf/C83OzdRh9bnVJT4qfhkzs6aofWOgYEiR0OkHqbepEkTTcGzyMhIdOzYsVjXPHToUJ694/qWH+7fvz8qVKigs//XX3/FtWvX8Pbbb6Nhw4Y6z6empmotaSeRSLBkyZJiRG6+pDIZylcJEDsMIovCavZkseSpmajl46K1r14ld1azt3bxj4DvfYFp7sB0T+CZ7lJYlsLLyQsfvP4BvJzMMxk29/jNSeqtW7hRsxZSzpxRP86dQ/mpX4odFhEAIC0tTatyeWEkxqXhlzFHsGXmWaSnvFqtY+3atXqT9rVr12Ljxo1a+6pVq4a5c+fme5+BAwfqFMhTKBTo168foqOjAagT+blz5+Y7n9sYkuJfInzLBiTFm1aR126Tp+ptk+FM9XtbVKrULMQsvoSoaeGIWXIJqtSsgk8iLeyZJ4s1OvQcXOxt0SzAEwA4tJ7UlrYCMpPUbUEJLHvL4qvaW4PMmBgkhG2GR3Bf2JYvL3Y4Zidn0TsAgEqFx4NCEHj2jDgBkdkwl/97MY8SsX/JFci81EucKZVKhISEYM6cOahfvz5cXFxw9uxZnD17Vuu8d999F2vWrCmwhsPNmzdRvXp1tG/fHn5+foiNjcWhQ4cQH69eYtPHxwfz5s0rlbnyyfEvcWrrRlRr9AZcyniW+P0M5eDsgr7fzBQ7DLNmqt/boooLvY7M58kAgMxnyYgLvQ6vUZa90oOxMZknIiKzlxUbixe//AKXtm1MOqEwNRlRUbjXtZtO0TsiQ5nb/72QkBA0atQIR44cwZkzZ3Djxg0cOHAAcrkcSqUSnp6e8Pf3R7NmzTBgwAC0bNky3+stWbIEJ06cQEREBG7duoXTp09j//79cHBwgJeXF9q2bYsOHTpgwIABcHJyKqVXSUTWgsk8WaylIY0xOvScpk0EABh9HPi1hbp3XiIDRh0TOyIi0Tzo0RNISdHZL3V2RtUd20WIiEhXlSpV8l0WLrcXTxIR9p12D3t5f1d0HFMXABAUFISgIMOW6yxIy5YtC0z4iUi/siFBeLHmGjKfJ8O2gjPKhhjn/6U1YTJPFkuRlonr0QpNm8vREeIfAUtaAspUoFITYOBWwNFD7KhMiiJDoVXN3s3OLf8TyGwpFQqo9CTyTk2bwn/dWhEiIjIOV08H+NbwAAB0HFMX9k78+09kqiQyCewquqBsSBCkjkxNC0siFOajTjJ5CoUC7u7ukMvlcHOz3jfh8tRMNPz2DwCAk50MEgCXp7UXNygS36zKQEbSq+3KLYChe8SLxwQNPzhca9tUKtsX5F6nzsi4fx8yT09IbPnG3RDKly8hZGUBOd8G2NjAxrMMIGF9XDKMkJkJ5cuXsAsIQLV9e/M9Nlmejmt/R6F2a184u9uXWEw75p7X2u4xSbfKvLkpzNdu9aQxeBn1BI5u7pDZMDmyJMqsLKQq5PD0rYRhc81/VYTYZZe1tjlf/hVDczr+DyeLlD28HgBSMpRwtpOJGA0RlTRlQoL635csZlgsWVnIiokVOwoyQ9n/B/OTIs/A2b0PUbW+V4km85aoMF+71MRE9b8KeWmERiLI/h4TMZkni1XX1xVXotS/7PZ+1ErkaMgkjD6uHmafmQxUbAgE6y5LZO3mt5mvNczeXMg8PKB8+ZI984UgZGVBGRen3mCPPBVRds+8zMND7FA0Oo6pi/1Lrmja1sbR1RWpCjl75i1Qds+8o6ur2KEYRZk+NfB8gXokjfdH5j+CRgz8H04WKbv4XZMqZbA0pDHny5NaGX9gSqTYUZg0Nzs3sxlan1PFH2fjYe/34bd8GRxr1xY7HLNwq0lTSHO8Iaz+998iRkPmKvXaNTzs/T4q/jhb7FA07J1sLWJofVF1GjcZ66dMRO8p0+Ed8JrY4ZARPb9/F+unTESncZPFDsUo4rfchl1FF02bw+wLj8k8WSR3R1uuK09ERERERBaLyTxZJHlqptaydOyZJyLSVnXHdvXSdP+2iUraoVXXAAC7fr4ImQ2ndBSGMksFQP01HDitmcjREBlH2ZAgxIVe17Sp8JjMk0XKWQBvdOg59tITEeVi5+uLwLNnxA6DrEhaUqbWv1R4hnztnMt4ovn7/eFcxrMUIqLSZGnfW6mjDYfWFxOTeSIiMns2Xl4o9+GHsPHyEjsUIqtSmP97Di62SEvKhIOLLXvmC0mZpdJ87QriUsYTLfoMLIWoqLTxe0u5cZ15C2Pt68xffypHpwUnNNtSCbBnQksE+biLGBWZhGdXgCWtAAiAnQswNlxdEI8AAIoMBUYeHInrL9XD3WqXrY1l7y2Dm531/R6xdBlRUbjXpSuQmgoA8NuwHi6NGokcFVmD2MeJ2DzjLPp+2QRelY1fjVsRl4rfpv8DZYYAiRTo+2UTlKtkGVW/S/prVxrSkpOwa873AIBuk6fCwdlF5IhITKrULK0h9lJH9jHnZGhOx49FyaJ0XXhSa1slAP2W/iNSNGQyUhPUS9Lh388uM5KApVyuMKeJRydqEnkAuBZ3TbNEHVmWBz16ahJ5AIgcOEjEaIiMJ+y7s1BmqH/PCypg84xzBZxBpSk7kc/dJuuUncjnblPhMJknIssXxmSFiIiIiCwLk3myKLvHv6m17Wwvw96P2ANLAHwavGrbuQCjj4sXiwma32Y+gjxfVZKtXbY25reZL15AVGIqrw/V2vbbsF6kSMjaOLnboUnnKnBytyuR6wd/1QQyOwkA/DvMvnGJ3EcMJf21Kw3dJk/V2ybrlLN6PSvZFx3nzFsYa58zT5YjMjIS4eHhCA8PR0REBB4/foy4uDikp6fDyckJ5cqVQ506dfDOO++gf//+8Mqv+FJqAhA2CCfvvMTapzVw6mwEnjx5guTkZHh4eKBy5cpo164dhgwZgqCgvP+gPHz4EFWrVi3S6+nevTt27NhRpHOJjOnR4CFa2/7r1ooUCRFZi5hHD7D+i48AAINmLUB5/6L9LSWyFobmdEzmLQyTebIULi4uSE5OBgDY29ujXbt2qFq1Kp48eYKDBw8iLS1N69jp06dj0qRJeq+lUCgwfPhw/P7775p9vr6+6NatG2JiYrBjxw4olUrIZDJ8+OGHmDt3LmQymc51mMyTJWAyT0SlbW7/blrbkzbuEikSIvNgaE7HsoFEZNICAgKwb98+BAYGavbduXMH7dq1Q2RkJAAgKSkJn3zyCWJjYzFz5kyt87OystCjRw8cPXpUs8/LywsXLlzQ9OavWLECI0eOhFKpxM8//4ynT59i8+bNpfDqiEpfpUUL8WTceE2biKikxDx6gNDPxmu2JVLO8CUyJv6PIiKTtnz5cq1EHgCqV6+OhQt1k5AffvgBFy5c0Nq3Zs0arUQeAAYOHKg1LH/o0KFwd3+1fOGWLVuwcuVKY4Sv4ezsbNTrERWFUqHQSuRlHMFFRCUoe2h9NkGlwqBZC0SKhkyJKjULscsuI3bZZahSs8QOx2wxmScik+Xr64u2bdvqfa5Lly5wddVea1cQBGzYsEFr34oVK3TObdCggda2jY0N6tatq7Vv+vTpUCqVeu/91ltvQRCEAh9ffvml5pyRI0fm/UKJSknk2LFIu3EDaTduIHLsWLHDISIrI5FKOV+eAHBpOmOxymR+z5496NOnDwICAuDo6IgKFSqgRYsWmDdvHl6+fFli942IiMCECRPQqFEjeHp6wtbWFu7u7qhVqxaGDh2KQ4cOgSUMiNTWr1+PTZs25fm8TCZD9erVdfbfunVL087MzMS5c7rrDFeoUKHAfZGRkfjjjz8KE7IWuVyOX375BQDQvHlzvP3220W+FpExZERFITXiPFSJiVAlJyP91m2xQyIiC5ezF14ilbJXnsjIrGrO/IsXLzBkyBDs27cPABAYGIguXbogNjYWJ06cwKlTp/Djjz8iNDQU7dq1M9p9U1NTMWbMGKxbtw4AYGdnh2bNmqFSpUpISEhAeHg41q5di7Vr16Jt27bYsGGD3mSDyJr06NGjwGMcHR119qlUKk07Li5Ob++6g4ODQdc6ceIEOnTooNm2s7ND7dq1DSqC98svv0AulwMApk7lEjwkvgc9er7aUKnAj46JqKSV96+KT8L2iB0GmaCyIUGaHnkuTVd0VpPMp6SkoEOHDoiIiIBMJsOyZcswfPhwzfN37txBly5dcPv2bXTq1Al//vknWrUq/vrkgiCgd+/e2L9/PwCgRYsW2LRpE/z8/DTHJCcn49NPP8XixYtx5MgRtGvXDqdPn4aLi0ux709kyV68eKGzr06dOpq2jY3+X3E5E/5sWVm687Vyz7+vWLEirl69WmBcqampmD9/PgCgfv366Ny5c4HnEJUKqRT49+ffoUYNkYMhIiJrJXW0gdeoemKHYfasZpj9hAkTEBERAQD49ttvtRJ5QF1Qa//+/XBwcEBGRgZ69eqFhISEYt938+bNmkS+bNmy2LNnj1YiD6gLY/3yyy+aucHXr1/HrFmzin1vIkumUChw9+5drX0SiQQDBw7UbHt6euotPKdQKHT2JSYm6uyLjY0tUmzLly/XnJtz3rwpU2QoMPzgcAw/OByKDN2vD5m/qju2Q+LkBMhkcKhfH35LFosdEhERERWDVSTzV65cwerVqwEA3t7e+OSTT/QeFxAQgNGjRwNQ9/jlXuKqKHLO+e3fvz/KlCmj9ziJRIIPPvhAsx0aGlrse1sTeWomuiz8G1W+2ItqX+7D9adysUOiErZ582adIfTjx49HvXqvPuWVSqVo3bq1zrkPHjwwaF/2MPnCyMzMxJw5cwAANWrUwPvvv1/oa4hh4tGJettkOex8fVHz3FnUunYVVcM2sZI9ERGRmbOKZH7u3LmaYbXBwcGws7PL89jBgwdr2r/88gtSU1OLde87d+5o2kFB+c8Hyfn848eP9fYekn6jQ8/hapS6Z1WpEtB14UmRI6KSlJycjG+//VZrX9++fTF37lydYydOnKizL3dhu6ioKNy4cUPnOJlMVujYQkNDERkZCQD44osvIOWaukREREQaqtQsxCy+hKhp4YhZcolL0xWDxb/LzMzMxM6dOzXbBRW2a9CgATw8PACoE4bsIfJFVZzq9MnJycW6N5ElUqlUGDx4MB4/fgxAParliy++wMaNG/Um3++99x7Gjx+vtW/v3r1YtGgRUlJS8OjRIwwbNkzvPPqca88bGtsPP/wAAKhcuTIGDRpUqPPFNL/NfL1tMl9KhQL3e7+PGzVraT3u9+wFJT8sJiIikcSFXkfmc3Wek/ksmUvTFYPFJ/NnzpxBfHy8ZrtRo0b5Hi+RSLSOOXDgQLHun3PI7/Xr+f+g5nze0dERXl5exbq3NVka0hh1fNVrjsukEuwe/6bIEVFJyMzMxMCBA7Ft2zYA6uXkdu/ejZkzZ+bbA/7zzz/jp59+0nxQB6iH5Ds7O6NKlSq4du0aPv74Y53zypUrV6j4tm7ditu31ct9ffrpp7C1tS3U+WJys3PDqvarsKr9KrjZcfi1JYgcOxbp167p7E+/cQNPxo3XcwaR+UpPycS2H89h+cd/Y9uPEUhPyRQ7JCLSIys+DekP5BDSlBDSlODSKsVj8dXsr1y5omnb29vD19e3wHNyLjuV8/yi+PDDDxEWFgZBELBx40b873//0ztvXhAE/Prrr5rtLl265FmJm3S5O9piz3jdudFkOWJjY9G7d28cP34cANCvXz8sWrQIZcuWNej8SZMmYdSoUThy5AiuXbsGhUIBDw8PNGzYEG+//TZOnDiBefPmaZ2T88M4Q8yYMQMAUL58eYwYMaJQ5xIZW/rtOwUfRGQh9i+5grjoFABAXHQy9i+5gh6TGoocFRHl9nzBea0EXkhXcmm6YrD4bDFnb3fFihUNOidnwl9Qb3pBWrZsiR9++AGff/454uLi0LVrV2zatAmVKlXSHJOSkoLJkyfjyJEjANRDe41RfI/IUhw5cgQhISGIjo6Gj48PlixZgm7duukct2LFCri6uiI4OFjvdVxcXNCtWze95z5//lxnX+PGjQ2Oce/evbh06RIA9QcH+tatJypN9tWrI/XmTSAlRXt/rVqotGihSFERERHlIFUvU0dFY/FfuZxLS+UcYpufnMcpFApkZmYWa7jsp59+ijfeeAMzZszA4cOHUa1aNTRv3hyVKlVCQkICTp48qVkGr1atWvjtt99QrVq1It+PyFJkZGTg66+/xpw5c6BSqTBkyBDMnz8/z//LI0eOhL+/v24yH/8IWNpK3R59HCjjr3Nu9vD4bO7u7ujQoYPBsWZ/AOfh4aG1MoW5UGQoNFXs57eZz6H2Zi711i2knj+v3pBKUWX7NjgGBoobFFEJatm3OsK+PwsIQHl/V3QcU1fskKyOPPY5Vk/6AMqMdJ3nvAOq4/2vvoWDs4sIkZGpUKVmQVbWEVlRSeodEqD8+AbiBmXmLH7OfM61o+3t7Q06x8HBIc9rFFXdunXRuXNnvPXWW8jMzMSxY8ewYcMG7N27FwkJCWjQoAHCwsJw5coVvP766wZfNz09HQqFQutBZAkuX76MJk2aYPbs2fD19cX+/fuxZs0agz+Uy5aSkoJpfeph29V/eyezk/pcDh8+rLUdEhJicO/6sWPHcPKkegWF8ePHw9XVtVAxmgIuTWc5lAoFHnbv8WqHSoXHg0JEi4eoNGz/6QLsHGxg52iDhJhU2DuZT80SSxH62QS9iTwAPL9/B7vmfF/KEZGpiQu9DmVcKiQOMkgcZLCv6g47H37AUxwWn8znXFouvyXpcsp9XEquIYqFtWnTJlSrVg0TJkzAxYsXMXfuXDx48ADp6emIiYlBWFgY0tPT8Z///AcffPABnj59avC1Z86cCXd3d83Dz8+vWLESmYJnz56hSZMmuHz5MgAgMjISHTt2hEQiyfehT0rcU0w/rMDYHS+RlqFbsR4ALl68qJmLD6gL6/3vf/8zON7sufLOzs746KOPDD6PqCREjh0rdghEZIUEVjKjAggqAUKGEkKGUuxQLIbFJ/M5e9YyMjIMOif3cU5OTkW+/4YNGzBgwADEx8fD09MT4eHhmDhxIqpUqQI7Ozt4eXmhb9++OH36NIKCgrBs2TLUq1cPp0+fNuj6U6ZMgVwu1zyy17cmMmdpaWkG/38t0A51YhOTLGDI5hikhBzSevru3bvo27evZhlJNzc3bN68WW+hSn0iIiJw6JD6mqNHjza4IJ+p4dJ0liP99h0gx98tqbMzqu7YLmJERCUv+KsmettUespWzLtDyTugOrpNnlqK0ZBJEgDYSjVtFr4rPoufM59zuGt6uv6hP7mlpaXleY3CiI+Px9ixYzVJwvfff48aNWroPdbFxQWrVq1CnTp18OLFC3Tr1g1Xr14tcHk6e3t7g6cPEFm7zdcycazR22jbti3Kli2Le/fu4fDhw5oPDho1aoQVK1YUaqpLdq+8vb09Pvnkk5IIu1RkL01H5k2pUEBQqdRF72QyONSpjaphYWKHRVSiFHGpCPvuLAB1Iu9WlgVIxWBjZwe/oFe1Cvp+w2LOpE0ik8De91VexcJ3xWfxPfM5k+HsInMFkcvlmrabm1uRi99t2LBBM9/exsYGgwYNyvf4oKAgNG3aFAAQExODuXPnFum+RPSKx9DfsG1cI0zt8ho6vNsOHh4eOHToEJYsWYIzZ87gtddew8iRI7Fr1y6cPXu2UIn8zZs3sWPHDgDAkCFDDF4xg6ikPBk3HpBIAJkMACCR8Y0SWb7sRD53m0pXzp539sKTPjl74tkrbxwW/1c+KOjVD0p0dLRB50RFRek9v7DCw8M17Ro1asDFpeACDw0aNNAMsd+9ezeXqCOrVKVKFc2IluKycS2HngvPoadRrqatZs2aUCo574tMi0QigeTfYfYSG4v/M09EJsLB2YW98ZQvqaMNvEbVEzsMi2LxPfN1674a7pOenq6VqOfl/v37es8vrBcvXmjahs6/9fT01LQfPHhQ5HsTEZH1KT/1S6iSk6FKTISdvz/XkyerwPny4npy8xp+Cu6Cn4K7YG7/boh5xPevRKXF4pP5pk2baiXSERER+R4vCILWMYVZZzo3Z2dnTTv3PPy85DxOKrX4bw9ZksRnwNGZ6n+pZPFrTXooFQo87NUbkEggdXFBxqNHkLm5iR0WUYlzK+uIkfNaY+S81pwvL4Kwbz7XtAWVCuu/4KoupJ8qNQuxyy4jdtllqFKzxA7HIlh8tmhra4vu3btrtnOvJZ3bhQsXNHPrnZ2d0bFjxyLfu0qVKpr2vXv3DBo2fOfOHU3b19e3yPe2NvLUTPRbdgr9lp2CPDVT7HCsU+Iz4NgsJpilgV9r0iNy7FhAqQSUSqhyLMtKRERkCuJCr+ttU9FZfDIPAB9//LGmlzssLCzfJa/WrVunaX/wwQdaS9sVVvv27TXthIQEnDhxIt/jk5OTcezYMc12u3btinxvayJPzcSbsw7jn/svcfZhPIauPiN2SEREpS791m118TsAUCq5HB0RlYrg6T9o2hKpFINmLRAxGiLrYhXJfL169TBs2DAAwPPnz/OsEn///n0sXboUAFCuXDlMmTJF73GZmZkICQmBq6srGjRogMuXL+s97r333kO9eq+KPHz11VdQqVR5xjljxgwoFAoA6ur348aNK/jFEUaHnkNSuroImVIl4PITeQFnEBFZHgEApFJAJoPExQV2HN1FRKWgUs3a+CRsDz4J24NJG3ehvH9VsUMiE8Vq9sZnFck8APz8889o2LAhAODrr7/G6tWrtZ6/c+cOOnbsiLS0NNjZ2WHbtm15Fq0LDQ3F+vXrkZSUhIsXL+aZdEulUoSGhsLd3R0A8Pfff6NPnz6IiYnROi4jIwP/+9//tCrXz5o1C7Vq1Sry67U2UsmrtpOt1fxYU35SE4DFLYFp7urHjIpA/COxoyIqEam3bkFISlIPsxcE2FcLEDskolKjiEvF8o//xvKP/4YijlNMSkvMowcsfEcGebb4Ip58cRzR008h/YEc7l0DuMa8kUgEY63/ZAZiY2MxZMgQ7N+/H4B6Wam6desiNjYWJ06cQFZWFnx8fLBu3Tq88847eV5n1apVGDFihGa7devWWsPjc7t69SoGDRqES5cuAQDs7e3RvHlzVKxYEXK5HKdOncLLly8BqNe1nzdvHoYPH16k16hQKODu7g65XA43Kyl8JE/NxJBV/+BKVCKc7GTY91Er+JVxEjss67OoCfDiNuBUDpDZiR0NkBoHZKXn2ikBXH1ECceolBlAygugXA1gXPHXVFZkKDDx6EQAwPw28+FmZx2/OyyFUqHA7aZvaO1zbNgQVX7bIFJERKVHEZeK0KmnAAC2DjJIJBKMnNda5Kisw9z+3SDkGHEqkUoxaeMuESMiUxX1TTiE9BxL+UqBSjNaiReQGTA0p7Oqj0S8vLywb98+7N69G2vWrMH58+exa9cuuLm5oXHjxnj//fcxbNgwreXh9AkJCcGRI0ewY8cOVK9eHQsX5r/0T506dXD+/HkcOHAAW7duxZkzZ3Dx4kUcP34cjo6OKFeuHFq1aoV3330XAwcOhIeHhxFfteVzd7TFjg/5C0F0KS///fdF/seJSgASo8UOwniyv+bFlJ3IZ7dXtV9llOtS6XgybrzOPq4vT9Yi7LtXH2hmpilhx94+IrIiVvkbr2vXrujatWuRz7e1tcX69esLdY5UKkWnTp3QqVOnIt+XyKQ5eaoTeVPpmRdU6nhU2UufSAAXL0BiAb/2snvmnfL/4JGsh33t2ki/dg0A4FCnDteXJ+uRa4Ap15kvPYNmLUDoZ+oPE1n4jvIjq+CErEeJ6g0JUH58A3EDsiBWNczeGljjMHsyEdEXgWVvAaOOARVfFzsay2bkrzWH2Zs3pUKh6Z2vtGgh15Ynq7J11lnEPE4CAJSv7IL3v2AyT2RqXqy+CiFThbIhQZwrbyAOsyciIoO42blxaL0Zk7m5wX/dWrHDIBKFjZ0MFV9zFzsMIjJAXOh1eI2qV/CBZDCW/SYiIjJDSoUC93u/jxs1a+FGzVq41agxMqKixA6LqFR1HFNXb5uIyBqwZ56IjMO1AvDWF+p/qWTxa00AIseO1cyTBwBVcjIe9OiJwLNnRIyKqHTZO9mix6SGYodBRAbg2vLGx2SezJ48NROjQ88BAJaGNIa7o63IEVkp1wpAmyliR2Ed+LUmAOm374gdAhFZqbTkJOya8z0AoNvkqXBwdhE5IjJl5YbVETsEi8Vh9mT2Rqw9i+vRClyPVmDE2uKvuU1EZA7sq1cHnJw021JnZ1TdsV3EiIjIWmQn8rnbRFS6mMyT2bv9LFFvm4jIknl/818gPR2QyVBl5w4ERpyDna+v2GERERFRKWEyT2avhreL3jYRkSXKLnz3sHsPQKmE1MEBjweFiB0WEVmRbpOn6m0TUeniOvMWxhrXmeeceSKyJo8GD0HKGe0id1JXVxa+IyIishBcZ56shrujLTaNai52GGRqUhOAsEHqdvB6wNFDzGiIjEaVnq6zj3PliYiIrA+H2RORZdo28lU7O6knsgDp9+5pbVfZuYNz5YmIiKwQe+bJ7MhTMzFwxSlcjXpV7E4qAfZMaIkgH3cRIyOTkJqg7oV/fApITwTsXIAKXBIlP4oMBSYenQgAmN9mPtzsrGOKjinLiIrCvS5dgdTUPI+ROjsDUikcAwNLMTIicSniUrFh2imoMl/tk0iAvlOboFwlV/ECsxJpyUnYPG0KYh8/AADYOjhgyJxf4O7lLXJkZGpUqVmIXXsN3mPqI+qbcNh4OcJrRF1IHZl+GhN75snsjA49p5XIA4BKALouPClSRGRStg7T3s5IAgSJOLGYiexEPnebxPOgR898E3kAUCUnc3g9WZ2w785qJfIAIAjA5hnnxAnIyuya870mkQeAzLQ0hH42QcSIyFTFhV5H1tNkzXbmkyTEhV4XMSLLxGSeiCxL7C3dfTJ+CkwWSCbj8HoiIiIrxmSezM7SkMao46s9lE4qAXaPf1OkiMiklKupvV2xgboAHuVpfpv5etsknsrrQ/M/QCpFlW2/l04wRCYk+KsmkOZatEYiAfp+2VicgKxMt8lT4VW5qmbb1sEBIbN/FjEiMlVlQ4Jg4+Os2bat5IKyIUEiRmSZuDSdhbGGpem4FB3lK3vO/IY+QK/lrGJPZunR4CFa2/7r1ooUCRHRK/LY55ph9SGzf+ZceaISYmhOx555MjvZiXzuNhGAV8n7wC1M5ImIiIwo5/x4zpUnEh+TeTI7WSoB16MVuB6tQJaKA0uIyPJUWrRQb5uIiIgoG5N5Mj85Z4ZwlgjllJoArOulbof2VG8TmRGlQoH7vd/H7aZvICUiAuWnfgmZhU6ZIiLzk3N+POfKU35UqVl4sfqqpk0lg8k8mR0bmRRBFd0QVNENNjL+CFMOYYOAFzfV7dhb6m0iMxI5dizSr11TbyiVeNirt7gBERHl4O7ljXGrwzBudRjny1O+ci5D93LTTREjsWzMhMjsLA1prLdNRGTu0m/fETsEIiIiMhNM5snsuDvaYtOo5tg0qjkr2ZO24PWvlqbzCuSSdGR27KtXB5ycNNtcfo6ITEVachI2T5+CzdOnIC05SexwyMTlXIbOs1/NfI6k4uDSdBbGGpamIyKyVEqFAk/GjQegLnzH+fJEZCo2T5+itd33m5kiRUJk+QzN6WxKMSaiYouMT0HnBccBAHs/agW/Mk4FnEFWIf4R8GsLIDMJsHcFpjwBnl8DvGuLHRlRocjc3LimPBERlYjIyEiEh4cjPDwcERERePz4MeLi4pCeng4nJyeUK1cOderUwTvvvIP+/fvDy8urwGsKgoAdO3Zg69atOH36NJ49ewYAqFChApo2bYr3338fPXv2hEQiyfMa586dQ3h4OC5duoTbt2/jxYsXiIuLQ0JCAmxtbVGmTBnUqFEDb731FgYOHIjXXnvNaF8Tc8eeeQtj6T3z9aYd1Nq+PK29SJGQSZlVGUiTq9vZyfwsf+CLR+LGRVQISoUCkWPGIv3OHdjXqA6/xYvZM09EJiMtOQm75nwPAOg2eSocnF1EjogKy8XFBcnJyQAAe3t7tGvXDlWrVsWTJ09w8OBBpKWlaR07ffp0TJo0Kc/rPX78GP3790d4eDgAoEyZMujZsycEQcD27duRkJAAAGjRogU2btyIypUr61wjKSkJrq6umm0fHx+0bt0aZcqUwZ07d3D06FGoVCrN8zKZDJMmTcLMmTMhk8mK9fUwZeyZJyIiMiNPxo1H+h11Abz023fwZNx49tITkclwcHbh0HoLERAQgH379iEwMFCz786dO2jXrh0iIyMBqJPsTz75BLGxsZg5U/f7/uTJE7z11lt4+PAhAMDV1RXnz59HlSpVAABTp05F/fr1kZycjPDwcLz11ls4ceIEfH1984wrODgYq1atglOO2jGXLl1Cu3btEBcXBwBQKpX48ccfYWNjgxkzZhT3S2H2WACPzMrej1rpbZOVG30csM3VQzBsnzixEBEREZmw5cuXayXyAFC9enUsXLhQ59gffvgBFy5c0Nk/evRoTSIPAAMGDNAk8gBQrVo19O/fX7P98OFDjBkzJs+YPD09sXLlSq1EHgDq16+P//3vfzrHL1iwQDPKwJoxmSez4lfGCZentcflae05X55ecXAHfBsAVVoBE6+q93G+PJmZSosWqqvZA7CvUR2VFum+qSIiIioOX19ftG3bVu9zXbp00RryDqjnxG/YsEFr35EjR7Bvn3anScOGDXWul3vfnj17cPToUa19MpkM9evXx+DBg+Hs7Kw3rmbNmunsS0lJwe3bt/Ueb02sMpnfs2cP+vTpg4CAADg6OqJChQpo0aIF5s2bh5cvXxrtPn/99RckEkmRH2+//bbRYiGyaGGDXrW3jRQvDqJikLm5ocpvGxB49gyqbNjA+fJERGRU69evx6ZNm/J8XiaTofq/HyrndOvWLa3tVatW6RxTqVIlnX1+fn46+3Kf6+joiIsXL2LevHl5xpWRkaF3v52dXZ7nWAurmjP/4sULDBkyRPNJUmBgILp06YLY2FicOHECp06dwo8//ojQ0FC0a9dO5Ghh0UUdiIiIiAorPSUT+5dcAQB0HFMX9k62IkdEZD569OhR4DGOjo46+3IWoAOA/fv36xxTtmxZnX2enp46+3L36Bvi5MmTOvsqVaqEWrVqFfpalsZqkvmUlBR06NABERERkMlkWLZsGYYPH655/s6dO+jSpQtu376NTp064c8//0SrVsaZk+3m5gYfHx+Djs3IyMCDBw8AAJ07dzbK/S2JPDUTo0PPAQCWhjSGuyP/iBOA4PWveud7LRc3FqIiUCoUeDRsONKvXQNkMlTZ9jscc81nJCJoEvnsdo9JukN7iajoXrx4obOvTp06mvbDhw/1jmR2cXlVuygrPg3P5kcgJfa+znEvX77E48eP9Va21+fkyZOYPn261j57e3ssW7YMUqlVDjLXYjXJ/IQJExAREQEA+Pbbb7USeUBd9GH//v2oXbs20tLS0KtXL9y5cwceHh7FvnfPnj2xZs0ag45dvnw5Ro0aBQcHBwwdOrTY97Y02Yl8dnvTqOYiRkMmw9EDGLpH7CiIiuzJuPHqRB4AlEo87NUbta5dFTcoIiKyKgqFAnfv3tXaJ5FIMHDgQM32vXv39J5rb2+vaT9fcB7IVMFepr/T7d69e/km8/PmzcPly5dx69YtnDp1SrPfzs4OHTt2xLRp0/D6668b8pIsntE/znj8+DGioqKMfdliuXLlClavXg0A8Pb2xieffKL3uICAAIwePRqA+lMpfcswlLTFixcDUC/NoG9oChEREZG16jimrt42ERXf5s2boVQqtfaNHz8e9erV02zL5XK95+pMD1YBMon+KcN5XSPb2rVrsWbNGq1EHgBatmyJ9957DwEBAfmeb02MnsxXqVIFTZs2NfZli2Xu3LmauR7BwcH5FksYPHiwpv3LL78gNTW1yPe1s7ODt7c33N3dDTr+9OnTmqUfxo4dW+T7WrKlIY31tomIzFmlRQthX/vfFRj+HWZPRLrsnWzRY1JD9JjUkPPliYwoOTkZ3377rda+vn37Yu7cuVr7UlJS9J4vkUg0bRsvJ0ACSCDRe2xSUlK+sVy8eBGpqam4ePEixo0bp7n2kSNH8OGHH6J69eo4ePBgga/JGpTIRANBEEriskWSmZmJnTt3arYLKmzXoEEDzdD65ORkvQUeDNWiRQs8e/YMCxYsMOj47F75Bg0a4I033ijyfS0V58uTXo/CgWnu6sejcLGjISqUjKgo3GjYCLebvoH0a9cgdXZGtUMHOV+eSI/0lEzsmHseO+aeR3pKptjhEFkMlUqFwYMH4/HjxwDUifkXX3yBjRs36vS4514HPlvO/E8ik0BiLwPs9aeaeS1Bl5ODgwPq16+PhQsXYsmSJVrPxcTEoFu3brh48WKB17F0JZLMv3jxAqNGjdL0MovpzJkziI+P12w3atQo3+MlEonWMQcOHCix2HKKj4/H5s2bAbBXPi+558sTAQBWd9TfJjIDD3r0BHL0cqiSk9X7iEhH7uJ3RFR8mZmZGDhwILZt2wYAqFChAnbv3o2ZM2fqLTCX14hjreH5/+b1WSql3mMNHbWcbdSoUWjQoIHWvoyMDHzzzTeFuo4lKpFkXqlUYuXKlWjcuDGaN2+OdevWIT09vSRuVaArV179sre3t4evr2+B51StWlXv+SVpzZo1SE1NhZubGwYMGFAq9zQ3WSoB16MVuB6tQJbKdEZ/EBEVhVKhgCo5WewwiIjISsXGxqJdu3aatef79euHq1ev5ruiVrVq1fTuz5nrSWQS2FV0geChf858XtfIT5cuXXT2/fnnn8jKyir0tSxJiSTzLi4u6Ny5MyQSCU6fPo1hw4bB19cXn376qU6FxJJ2/fp1TbtixYoGnZMz4c95fkkRBEEzfGTw4MEGDT2xSjmnb5jQVA4S2bD9+ttEJi5y7Fgg19q9UmdnVN2xXaSIiEwbi98RGc+RI0fw+uuv4/jx4/Dx8cHOnTuxceNGnfXiV6xYgbCwMM12lSpVUKZMGZ3r5ZwHXzYkCACQnKY7v97T0xP+/v6FjrdSpUo6+1JSUhAXF1foa1mSEknmnZ2dsWvXLty/fx+ff/45vLy88PLlS8ydOxc1a9ZE+/btsXPnTk1RupIUGxuraRu6zFzO4xQKBTIzS3Ze1pEjR3D79m0AwJgxY0r0Xubq+lM5zj1KgCItC0npWVAylycAeHYFWNsFkMqAMScA/xZiR0RkEKVCgdSLl7T2SV1dERhxDnYGjCAjskYsfkdUfBkZGfj888/x7rvvIjo6GkOGDMH169fRrVs3vcePHDkSn3/+uda+Dh066ByXM6mWOtrAa1Q9qFroJv25z/3tt9/QpUsXTS6UX9z65FfY3BqUSDKfrXLlypg5cyYiIyOxfv16NG/eHCqVCn/88Qd69eoFf39/fPvtt3j69GmJxZCYmKhp51z/MD8ODg55XqMkZBe+a926NWpnVzM2UHp6OhQKhdbDEnVdeFLTVgnA3ecl+z0hM7HsLf1tIhP3ZNx4nRFG7JEnIqKSdPnyZTRp0gSzZ8+Gr68v9u/fjzVr1hjc4Zlt2LBhOvuePHmisy8yMlJn3/Dhw7W2b9++jb179+L48eP53lPf1Gdvb2+9owSsidGT+W+++UZnHXdbW1sMGDAAJ06cwKVLlzB69Gg4OzsjKioK06ZNQ5UqVdC3b18cOXLE2OFoLS1n6Cc3uY/LawkGY4iOjtZU2y9K4buZM2fC3d1d8/Dz8zN2iKKLjE+BMtcc+ZzLXxARmSOJkxMgkwEyGRwbNmSPPBERlZhnz56hSZMmuHz5MgB1ot2xY0dIJJJ8H/q8++67aN++vda+8+fP6xyXuxh6hw4d8lxZbPXq1XmuiPby5UtNofCcci4pbq1KJZnPqW7duli8eDGio6OxcOFCBAUFITMzE1u3bsW7776LWrVq4eeff4ZcLjdKPI6Ojpp2XsMzcst9XF5LMBjDihUrkJWVhfLly6NXr16FPn/KlCmQy+Wah75PwMxd5wXH4Wz76peJs70Mez9qJWJEZDJGHdPfJjJx5ad+CSElBVAq4VCrFvyWLBY7JCIismBpaWkG50KGWL58OSpXrqzZ3rhxIx4+fKjZfvjwITZu3KjZrly5MpYtW5bn9U6ePImpU6dqV8WHehm6nj17IiEhQWt/7dq18d///rd4L8IClOgw+/y4uLjgww8/xJUrV/DXX38hODgYNjY2uHXrFj7++GP4+vriP//5D86dK94SZK6urpq2oRX109LS8ryGMSmVSixfvhwAMGLEiCLN+bC3t4ebm5vWwxLJZDK4OdjAzcEG16Z3gF+ZkvuAhcxIhbrAf1+qHxVYDInMx+NBIZA6O0Pq6oqMR48gs9Df3UREZJn8/Pxw7NgxNGvWDIC6zlijRo0wYsQIjBgxAo0aNdJMVW7WrBmOHTumdwRxzuXvZs6ciddeew3Dhw/HRx99hB49eiAgIAB///235hiJRILg4GAcP34cLi4uJfwqTZ+N2AEAQKtWrRAfH4/79+/j7NmzEAQBKSkpWL16NVavXo3GjRtj7Nix6Nevn8589oJ4eXlp2rk/0clLzlEBbm5usLUtmSIru3fvxpMnTyCVSjFq1KgSuYcl2PtRK3RecFzTJiLjUWQoMO7wONxNuIvXPF7DonaL4GbHxJKIiIjyV6VKFYSHh2P79u3YsmULTp8+rVnmztvbG++++y769OmDXr165Tlk/6uvvkKXLl1w/PhxnD9/Hjdv3sT+/fuRkJCAjIwMODk5wd/fHzVr1kSLFi3Qp08f1KpVqzRfpkmTCHlNTigFz549w4oVK7B8+XK9RRNyhiaRSODu7q75pMbQueFLlizRzEW3t7fX6XXXZ9SoUZoe82bNmuHUqVMG3auwOnTogIMHD6Jz587Ys2ePUa6pUCjg7u4OuVxusb30RGQ8g/cPxuVY9fw5RxtH1CpbC6varxI5KsuXERWFBz16AlAXvuN8eSIiIspmaE5n9GH269atw5YtW/I95siRI+jbty/8/f3xzTffIDIyUpO4C4IAQRDQoEEDLF++HDdu3MDXX38NX19fJCQkYN68eahRowb+97//5VkkIae6dV8NvU1PT0dUVFSB59y/f1/v+cZ07949HDp0CEDRCt8RWb3UBGBNF/UjNUHsaMzW3YS7mnZqVmo+R5Ix2fn6IvDsGQSePcNEnoiILIYqNQuxyy4jdtllqFKzxA7H4hk9mR86dCgmTpyosz8hIQHz589HzZo18e677+L333/XrN+ePezCwcEBw4YNw+nTp3Hu3DmMGDECgYGBmD59Oh4+fIhdu3ahTZs2SE9Px/Tp0zFp0qQC42natKnWkgURERH5Hi8IgtYx+tZRNIalS5dCEAT4+/ujY8eOJXIPIosWNkh/mwrlNY/X4GijLhTqaOOI+W3mixsQERERma240Oua9stNN0WMxDqUSAG8nD3mZ8+exfDhw+Hr64tPPvkEt2/f1npeEAQEBgZi/vz5iI6OxsqVK9GkSRPdQKVSdOnSBX/++Se2b98OOzs7LF68uMCedltbW3Tv3l2zffjw4XyPv3DhgmZuvbOzc4kk2unp6Vi9ejUAYPTo0VqFH4iIStOidotQq2wtNPRuiIPvH+R8eSIiIjOnVGRA/scjKBXGq15vDqzxdZdIFpmVlYWVK1eicePGaNasGdauXatZ7z27F97GxgZ9+/bF0aNHcf36dUyYMAHu7u4GXb979+4YNmwYMjMztaob5uXjjz/WJMxhYWH5Lsuwbt06TfuDDz7QWtrOWLZs2YIXL17Azs4OI0aMMPr1iaxC8Hr9bSoUNzs3rGq/Cqvar2IiT0REZAGUiRlIPPwYysTST2rLhgRp2p79apbqvcV83WIpkWQ+Li4Oo0aNwvnz53V64StXrozvv/8ekZGR2LRpE956660i3SMwMBCCIBg0B75evXoYNmwYAOD58+eYO3eu3uPu37+PpUuXAgDKlSuHKVOm6D0uMzMTISEhcHV1RYMGDXD58uVCxb54sXo94V69eqF8+fKFOpeI/uXoAQzdo344eogdDREREZHVkzrawGtUPXiNqgepo0ksnGbRSmx8tyAIml54iUSiqdh+//59TJkypdhJbEREBCQSCWxsDPsh+fnnn9GwYUMAwNdff60Z5p7tzp076NixI9LS0mBnZ4dt27ZpzbXPKTQ0FOvXr0dSUhIuXryIcePGGRz35cuXER4eDoCF74iKhQXwiIiIiMiKlejHJeXLl8eIESMwatQoVK5c2SjX/OOPP7BlyxZs2LBBcw9DODk54cCBAxgyZAj279+P4cOHY/bs2ahbty5iY2Nx4sQJZGVlwcfHB+vWrUOrVoavZ57Xuon6ZPfKBwUFoXXr1gafR0S55C6AN9Q4yzsSERERmbPswnMvVl2BRGY9tbkEpQqA+vVX+KSxyNGUjhJJ5p2cnLBq1Sr07NnT4J5zQ3322We4dOkSAHUS/frrrxt8rpeXF/bt24fdu3djzZo1OH/+PHbt2gU3Nzc0btwY77//PoYNGwZPT898rxMSEoIjR45gx44dqF69OhYuXGjQ/RMTE7F+vXpuL3vliYpJlQnE3FC3y9cSNxYiIipRirhUbPzfaWSlq2DrIEO/r5vCrazx6xpR3tKSk7BrzvcAgG6Tp8LB2UXkiCgvqhT1imGqZOtcGi779VsDiWDIYu2FIJVKUaFCBURHRxvzshq//vornj59qrnX9OnTS+Q+5kqhUMDd3R1yuRxubixmRRYqNQGYXxfITAZsnYHytYERB8SOioiISsjyj/9GRo41q+0cbTByHkc4lqbN07VrSfX9ZqZIkVBBnv10DlmxqZA621hdz7wqOQs2Xo5m3zNvaE5n9J75ypUrw9vb29iX1fjggw9K7NpEZCbCBgESCWD3b6+AjAVWiIiIiAB1FfmYhRdQbnhd2PlazwiKjKgkxCy8UOpV9MVk9I9qHj58iNOnTxf7OlFRUXj8+LERIiIii+T1aukTLk1HRGTZgr9qAht79dtWWwcZgr9qInJE1qfb5Kl620QkHpPtzmrcuDFiY2ORlWWdcz0IkKdmYuCKU7galQgAqFfJHaEj3oC7o63IkZFosivYP7+i3pZIgdF/c2m6Irr18hb67O4DAQKcbJywrfs2+Lr4ih2WRcuIisK9rt2AlBRAKkWV7dvgGBgodlhEJi36bjy2z7kAACjn54IeHzeAvRPfC5QGeexzrJ70AZQZ6Zp93gHVRYyITFXG0yTELLig2ZbYy+A9sSFsyjiIGJXlM+lJFEaezk9mZnToOU0iDwCXn8gxOvSciBGR6MIGvUrkAUBQAWs6ixePmQveEwwB6t+zKVkp6LO7j8gRWb4HPXqqE3kAUKnwsFdvcQMiMgPZiTwAvIhMwv4lV/I5mowp9LMJWok8ADy/f0dTCI8oW8zCC1rbQroSMUsuiRSN9TDpZJ6IiIiIiIgMJ3O1g2u7ypC52okdSqmyxtddqGr2AQEBJRmLlsePH0MQBCiVylK7pyWwpGr2HGZPOnIPs7dzBsaeAsr4ixqWueIw+9KXFBGByIGD1BscZk9kEA6zF09ew+zf/+pbLk1HWjjM3rgMzekKlcxLpVJIJJISH/6efQ+JRMJkvpAsKZknIrIkGVFRuNfuHQCA1NkZkEoRePaMyFEREeWNa8sTicPQnM4kh9lzrjwREVmaBz16atqq5GQRIyEiMkzOufGcJ09kegpdzd7BwQF9+/YtiVi0hIWFIT09veADiYiITFzqrVtQJSZq7au6Y7tI0RAREZElKPQw+woVKiA6OrokYwIA+Pj4ICYmhsPsC4nD7ImITM+N2nWAHH/PHOrVQ9XNYSJGRERUMA6zJxKHoTmdya4zT0REZAmUCoVWIg8AUgcWBCIi0+fg7IK+38wUOwwiyoNJzpkHOG+eiIgsw5Nx42Ffu7Zm26FOHVRatFDEiIiICpaWnITN06dg8/QpSEtOEjscItKjUMm8SqUqlSH2APDs2TMOsbdy8tRM9Ft2Cv2WnYI8NVPscIiIikzm7Aynpk3h1LQpqm7dAhmnQRGRiWPxOyLTZ7I980SjQ8/pbRMRmZOcvfDskSciIiJjMdlk3sfHBzY2nNJPRETmTebmBv91a+G/bi175InIbHSbPFVvm4hMh8km8wDnzVu7pSGN9baJiIiIqGSlpyQj5uF9xDy8j/SUZLHDISI9CrU0XWni0nRFw6XpiIiIiKi4Fg0L1toet5rLaVLeVKlZiAu9DgAoGxIEqSNHWBdHiSxNd+PGDRw8eBDt2rVD3bp19R7Ttm3bwkWah5cvXxrlOmS+5KmZmrnyS0Maw93RVuSISHSpCUDYIHU7eD3g6CFmNEREVMLSUzKxf8kVAEDHMXVh78T3AkSmKDuRz257jaonYjTWw+Ce+Zs3b6JRo0ZIS0uDnZ0dIiIiEBQUpHOcVCqFRCIpdmCCIEAikbBnvpAsqWe+37JTWtubRjUXKRIyGWu6aG8P3SNOHEREVCp2zD2vtd1jUkORIrE+8tjnCP1sAgAgZPbPcPfyFjkiMmWxyy5rbTOZLx6j98zv27cPqampAICMjAwcOHBAbzKfzURH7xMREZWapIgIRA5UjyaRODkhYPcu2Pn6ihwVEVHB3L28ObSeDFY2JEhrmD2VDoOT+QYNGmht169fP89jbW1t0bx58XpRw8PDkZWVVaxrkHn7sU99dF5wHACw96NWIkdDJqH7L8DSf38WRh8XNxYiA2Qn8gAgpKTgQY+eCDx7RsSIiMxLxzF1tYbZE5HpyXiahJiFFwAA5cc34Hz5UlSoAngrV67Erl270LFjR4wZM0bvMVKpFBUqVEB0dHSxAmMBvKLhMHuySPGPgF9bAJlJ6u2KDQA7Fw6zJ5N3o2YtrW2pqyuTeSIisihPvtTuYKk0g51wxWVoTleopelGjBiBnTt35pnIExGViKWtXiXyABB9QbxYiArBb8N6TVvi5ISqO7aLGA0RkWHksc+xaFgwFg0Lhjz2udjhEFEeTHadec65J64zT/kKXl/wMUQiUioUiFvwM5yaNkWNM6dR83wE58sTkVnILnyXu02UW1Z8GiADoAIgqIfZU+kx+oSGBw8eQCaTFfs6586d4xB7K+fuaMuh9aQ2dC+wpKW6LZEBo49xWToyeU/Gjddq+69bK2I0RERExvd8wXlIZDJ1Qg/AzsdF3ICsjNGTeX9/f6Ncp1KlSka5DpmnyPgUreJ3fmWcRI6IRPPsyqtEPnuufAUWQSqOqKQo9NrRCynKFEglUmzushmBnoFih2VRlAoF0q5dgyo5GZDJ4FCnjtghEZklRVwqwr47CwAI/qoJ3Mo6ihyRdQiZ/bPWsnREuWXFp+HZ3LNA5r87JIDEvvgdulQ4JjvMfsuWLVi3bp3YYZBIshP53G2yQsveetXmXHmj6LO7D1KUKQAAlaBC8J5gkSOyPI9HjlIn8gCgVCL93j1xAyIyU9mJfO42lazsZenGrQ7j+vKk1/MF518l8gAgADZe7HwrbSabzE+YMAHDhw8XOwwiMgWSHL+qOFeezEDa1ata2xKJRKRIiIiISofU1mRTS4tl0l9xFsGzXjnXleca81Zu1DFAIgGkMmDMCc6VN4ItXbfASab+9FwqkSKsS5jIEVkeiaOj+uf2X6xiT1Q0wV810dumkpWWnITN06dg8/QpSEtOKvgEsjreHzUEbF9t21ZyQdmQIPECslKFWme+qB4+fIiXL18iOTnZ4AS9Z8+eSEhIKJEieHv27MHatWsRERGBp0+fwt3dHQEBAejTpw+GDBkCT09Po98zm0qlwoEDB7B161acOXMGz549g1wuh6urK6pUqYK6devizTffRKdOnYpUN8CS1pknIjJXGVFReNCjJwB1Is8q9kRkTjZPn6K13febmSJFQmSdDM3pSiyZ37ZtG5YvX47jx48jNTW10OcLggCJRGLUZP7FixcYMmQI9u3bBwAIDAxE3bp1ERsbixMnTkCpVMLHxwehoaFo166d0e6b7dKlSxg5ciTOnj0LGxsbNGnSBH5+fkhKSsL169fx8OFDzbG1a9fG1VzDNA3BZJ6IiIgsQXpKJvYvuQIA6DimLuydbAs4g4yFyTyRuAzN6Yw+zD4zMxM9e/ZEnz59cOjQIaSkpEAQhEI9SkJKSgo6dOiAffv2QSaTYeXKlbh58ya2bNmCv/76Czdu3ECNGjXw9OlTdOrUCcePG7fo2l9//YXmzZvj7NmzGDNmDJ4+fYrw8HCEhYVh7969uH//PjZs2AA7Ozuj3peIKCdFhgKD9w9Gi40tMHj/YCgyFGKHZHGUCgUeDR6CR4OHQKng15eoqLIT+dxtKnndJk/V2yYi02L0pek+//xz7Ny5E0DRC/6UREI/YcIEREREAAC+/fZbneJ61atXx/79+1G7dm2kpaWhV69euHPnDjw8PIp972vXrqFr165ITU3FN998g2nTpukcI5FIMGDAAERGRuKLL74o9j2JiPSZeHQi7ibcBQDcTbiLiUcnYlX7VSJHZf4yoqJwr2s3ICXl1U6pFI9HjkLVsE3iBUZEVAQOzi7sjad8qVKzEBd6HQBQNiQIUkejp5VkAKN+1ePj4/Hrr79qknhBENCsWTO89957eO2111C2bFk4OjoWmOQLgoDevXsjISHBKHFduXIFq1evBgB4e3vjk08+0XtcQEAARo8ejQULFuDFixeYOXMmfvjhh2Lf/4MPPkBSUhLq1q2L//73v/keO2DAABw9ehRVqlQp9n3NmTw1E6NDzwEAloY0hrsjh9YRkel60KOndiIPACqVTlV7IjJcxzF1tYbZE5HpyE7ks9teo+qJGI31Mmoyf+zYMWRkZAAApFIpfvvtNwQHF239YmMON587dy5UKhUAIDg4ON9rDx48GAsWLAAA/PLLL5g2bRocHR2LfO+dO3fi77//BgBMmjQJUmn+Mxv8/Pxw4MCBIt/PUmQn8tntTaOaixgNkeWY32Y+xh0eh7sJd/Gax2uY32a+2CFZhjxGlEmK8feDyNrZO9mix6SGYodBRGSyjJrMZxdwk0gk6NGjR5ETecB4Q+0zMzM1w/4BFFjYrkGDBvDw8EBCQgKSk5Oxf/9+9OrVq8j3zx4RIJFI0Llz5yJfx5pExqfg7MN4AEC9Su6wtzHpFRSppKUmAGGD1O3g9Vyarpjc7NywruM6scOwKEqFAio9f7MkTk4I2Lmj9AMiIiIqYWVDgrSG2ZM4jJol5axa37Zt22Jda/v27Thy5EhxQ8KZM2cQHx+v2W7UqFG+x0skEq1jitNLLpfLsX//fgDqHncvL68iX8uadF5wHE626h/Ny0/kWBrSWOSISFTZiXzuNpGJeDxyFJCcDACQOjvDqWlT1Lp5AzXPR3BJOiIiskhSRxt4jaoHr1H1OF9eREb9yudcF724y6I1b26cYdVXrryqfmpvbw9fA95YVa1aVe/5hRUREaGZdlCjRg3N/vv372Pfvn148OABkpKSUK5cOdStWxfvvPMOypUrV+T7WRKJRAJnOxkAcL48EZm0tKtXAakUUKmgSk5GpUULxQ6JiIiIrIBRk/l33nkHMpkMKpUKUVFRxrx0kV2//qo4Q8WKFQ06J2fCn/P8wrp48aKmXaZMGTx9+hQTJ07E5s2b9R5vb2+PsWPH4vvvv4eTk1OR72vu9n7UCp0XHNe0ycoFr9ceZk9kYiSOjhBSUwGZDBJHR8iK+WE2ERERkSGMOszex8cHw4YNgyAI2LFjR7Gu9fHHH2PEiBHFjik2NlbTNnSZuZzHKRQKZGZmFunet2/f1rSfPXuGZs2aYfPmzRg0aBDOnj2LlJQUxMfHY9euXahXrx7S09Mxf/58tG7dWmtqgDWRp2bi400XAAA1KrjCzYG98lYt/hGwoB7w7DLQ/RfOlyeTcqtRY9yoWQtCUhKgVEJib8858kRGlJ6SiR1zz2PH3PNITynaezEqPHnscywaFoxFw4Ihj30udjhkglSpWYhZfAlR08IRs+QSVKlZYodktYxeWWz+/Plo3Lgxzpw5g3nz5hX5Ops2bcKaNWuKHU9iYqKmbW9vb9A5Dg4OeV6jMHIurXf8+HE8fvwYX375JUJDQ9G4cWM4OjrCw8MDXbt2xalTp9CkSRMA6uH5Q4YMMege6enpUCgUWg9zNjr0HG4/TwIA3H6WqFXVnqzQ0lb620QmSEhJ4Rx5IiPKXpYud5tKVuhnE/S2iQB1Iv901hlkPFJASFMi82my1jJ1VLqMnsw7OTnh6NGjGDp0KD799FMMHTq0WEPViytnUT5Dl7vLfVxK7rWDDZQ7sa5WrRqmTZum91gnJycsW7ZMs717926DCgDOnDkT7u7umoefn1+RYiUySYIAZCSpH0Za4YKIiIj0k8c+R3pKsuYhCCqxQyITExd6HUK6UrOds02lr1Bz5ocPH16oi9etWxehoaEIDQ2Fn58fgoKCUKZMGYN6yOVyeaHulZeca8RnF6MrSO7jijp/Pfd1Bg4cCFvbvIeNv/7662jUqBEiIiIAAMuWLStwVYApU6Zg0qRJmm2FQmHWCf3SkMYYseYMbj9PQo0Krqxkb+3KBQJPz79qE5kwvw2s6UBkTB3H1NX0yHccU1fkaKxD7p54fo5OuQmqXD8UEi5NJ6ZCJfNr1qyBRCIp1A2y14t//PgxIiMjC3VeYe+lj6urq6adnp5u0DlpaWl5XqMwXFxctLabNWtW4DktWrTQJPPHjh0r8Hh7e3uDpw+YA3dHW2wd+6bYYZCpsHUAKrcQOwoivQIjOA2IqCTZO9mix6SGYodhNbJ75XOSSo0+iJfMnQDATgJkCIAEqPBZEy5NJ6Ii/Q8VBMHgh0Qi0TwMPdeYcq7tnnMOe35yjgpwc3PLtzc9P7mX5zOkxzwgIEDTfvbsmdY0ASKrk7N6PSvZk4lQ/juF6vGo0Zo2EZG5W/fZeK1tiVSKkNk/ixQNmaKs+DRkPFYAGQIk9jLY+bvBpoxDwSdSiSn0xyhSqVRrPfmSEhkZaZTEPijo1bCP6Ohog87JuaxezvMLy9/fX2s755D/vOTuzY+PjzfoPCKL5OgBDN0jdhREWqImf4rKy5YCAJ6MGw//dWtFjoiIqPgyc41MrVSzNty9vEWKhkzR8wXnNW0hXanupSdRFTqZ9/LywoMHD0oiFi0+Pj6IiYkp9nXq1n01xyo9PR1RUVFa68jrc//+fb3nF+feAAzqZc89FSB3ck9EREREZGwVAqrj6b3bgCDAztER3SZPFTskMkWSfx8AJLLiT4mm4rH4iTBNmzZFmTJlNNvZ89HzIgiC1jEdOnQo8r1zz5E3ZGRAzg8wXFxcdIbqExGRuHzn/KhpV1q0UMRIiIiMp9eX0+FXqw78gupi5C+r4eDMDiXS5v1RQ8BWnT7aVXJl4TsTYLLJvLHmztva2qJ79+6a7cOHD+d7/IULFzRz652dndGxY8ci37ty5cp44403NNvnz5/P52i1ixcvatqtW7cu8r3NlTw1E/2WnUK/ZacgT80UOxwSU/wjYFZl9SP+kdjRWAxFhgLDDw7H8IPDocjgfO+ikP37IWvlZUs1bSIyvvSUTOyYex475p5HegrfE5Q0B2cX9P1mJvp+M5OJPOkldbCBva8r7Ku4o9ywOix8ZwIKlcxfuHABf/75Z0nFouXZs2dQKo2zbuHHH3+sqcYZFhaW7xJ169at07Q/+OCDYs9XHz16tKa9devWfI9VKBT4448/NNuDBg0q1r3N0ejQc3rbZIWWttLfpmKZeHSi3jYRkanJXpYud5uIxBEXel1vm8RTqGS+fv36xSoIJ5Z69eph2LBhAIDnz59j7ty5eo+7f/8+li5VFzUqV64cpkyZove4zMxMhISEwNXVFQ0aNMDly5fzvPeQIUPQoEEDAOoh/lu2bMnz2O+++04zr75hw4YIDg4u+MURWaLUBCA9CUiTq//lQrckMqVCgfu938eNmrVwq1FjAMDtVq2RkaNgKhEREVFpMtlh9sb2888/o2FD9VqlX3/9NVavXq31/J07d9CxY0ekpaXBzs4O27Zt05prn1NoaCjWr1+PpKQkXLx4EePGjcvzvlKpFGFhYShfvjwAYPjw4dixY4fWMUqlErNmzcKPP6rnYXp7e+P333+3yrU9l4Y01tsmK7MxGBBU6ragBMoFihuPBZnfZr7eNuUvcuxYpF+7prVPSEnBgx49RYqIyLKlp2RCpVQhNjIJKqWAjmOKXpCYiIwj5xx5zpc3DaU20SEtLQ3nzp3DkydPEB8fD4lEgjJlyqBSpUpo1KgRHBxKdo1CJycnHDhwAEOGDMH+/fsxfPhwzJ49G3Xr1kVsbCxOnDiBrKws+Pj4YN26dWjVyvBhvRJJ/pUcq1evjiNHjmDQoEG4ePEievbsicDAQNSvXx8ZGRk4deoUnj9/DgB48803sXHjRoPWpLdE7o622DSqudhhkNieX4dmvROJDLDlGqbG4mbnhlXtV4kdhtlJv3Vb7BCIrMr+JVcglUnh5aeeu23vZCtyREQkdbSB16h6YodBOZRoMi8IArZu3YrFixfj5MmTyMrK0h+EjQ1atWqFsWPHolevXgUmx0Xl5eWFffv2Yffu3VizZg3Onz+PXbt2wc3NDY0bN8b777+PYcOGwdPTM9/rhISE4MiRI9ixYweqV6+OhQsLrmZcu3ZtnD17FmFhYdi8eTMuXbqEnTt3ws7ODhUqVEDHjh0RHBxcrOr5RBZFIn3VOx+8XtxYyOrpm+ghcXJClU0bSz0WIiJjS0tOwq453wMAuk2eygJ4pCMrPk2zzrz3Rw1hU4YdLaZAIhirbHwu165dw7BhwzTLvBV0m+wEvkmTJli9ejVq1apVEmFZPIVCAXd3d8jlci5rR+Yp/hHw8+vqRN7eFShfBxhxQOyoyMo9HDAQ6XfuAAAc6tWD/8oVIkdEZNkUcakI++4sACD4qyZwK1u8gsSUv83TtetE9f1mpkiRkKmKmhaute07rYVIkVgHQ3O6EpmUfeLECbRo0QIRERGaJD6/3vbs5wRBwJkzZ9CsWTOcPHmyJEIjIlO3tBVg5wJIZUBmCjBgk9gRkZXLiIpC2u3bUKWkwC4gAJXm6S+iSkTGc2TtDXj5ucDLzwVH1t4QOxwiIpNk9GH2jx8/RufOnZGYmKiVpHt4eCAwMBAVKlSAs7MzBEFAcnIynj59itu3b0MulwNQJ/aJiYno1KkTrl69arVzx4msmkSiTugBwNFD1FCIHvToCYlEAomTEzLu3+fa8kRkcbpNnqo1zJ4oN++PGmoNsyfTYPRh9j179sTOnTshkUjg7OyMsWPHYsCAAahfv36+5124cAHr16/HsmXLkJycDIlEgh49euD33383ZngWj8PsyezFP3q1rvzo40AZf3HjIat3q3ETqP5dNlTq6IjAc2dFjojI8qWnZGrWlu84pi4L4BGRVTE0pzNqMh8TEwNfX1+oVCoEBQVh9+7dqFKlSqGucf/+fXTt2hU3btyATCZDVFSUZlk3KhiTeSIi43rQNxhp/y5L51C7NqpuDhM5IiIiIrJkosyZ/+uvv6BUKuHg4ICdO3cWOpEHgICAAOzYsQMODg5QqVT466+/jBkiERFRoUgdHODUqBGcGjWCtISXUSUiIiIylFGT+SdPngAAunfvjoCAgCJfp3r16ujevTsAICoqyiixEZGZSE0A1nRRP1ITxI6GCJUWLdTbJiIiIhKTUZP57IJ3r7/+erGv1bAhCysQWaWwQfrbRCKRubnBf91a+K9by+J3REREZDKMmsxXrFgRAGBrW/wiJTY26kL7Pj4+xb4WERERERERkSUx6tJ0jRo1AgDcvHmz2NfKvgZ76ImsTPdftKvZE4koIyoK97v3gJCaCoc6dVB5+TL2zhMRkdXIik/Ds7lngUz1tsReBu+JDWFThjVkTIHRl6Zr3rw57t27h7t37xa5mrpCoUC1atXg7++Pc+fO6T2md+/eSEhIwOHDh4sTrsVhNXsye2u6aG8P3SNOHEQAbjVpClVKimbbqVEj+K9bK2JEREREpSdqWjiENKXWPomDDL7TWogUkXUQpZo9ACxcuBAKhQJDhw5FVlZWoc9XKpUYNmwY5HI5fv755zyPCw8PZ6V7IiIiIiIiskpGT+YbN26M9evX448//kDz5s3xxx9//L+9Ow+Pujz3P/6Z7AskLEEIi0gwRcBQQaSCjULxdwREUGRrBULSc8AqICrtMaVWcUORIgpUoJUloT2AVRGRYItClYJFA0oqWKhIZBPCkkyWSTJJ5vdHzJCJQ5gkM/PNzLxf1zXXub/k+T7PneIB7jybXJ383759uwYOHKisrCz98Y9/1KBB/MQHCCgXc6XTn0vf7JYqSqUJ64zOCAGu26a3ZIqMlCRFXH89p9kDAAJG+emi78/Khwer/UNsg24u3L7M/qmnnpJUved9/fr1MplMiouLU//+/XXttdcqJibGfkCe1WqV2WzWV199pU8//VR5eXmSpLvuuuuKe+VffPFFlZSUqLKyst52gYZl9vBpz1/t+PzYN8bkAQAAEMCqLBU6NW+Pw6+FJ8Sq3bQ+BmUUWFyt6dxezAcFBdmvqKvddc2vXU5D2ta0N5lMFPN1UMzDp1HMAwAAGC5v5QGVHS1w+LWOTwxUUKRbz0/HZRi2Z742k8lk/7izLQA/Vfv0ek6yBwAAMExIpxb2+KqH+lLIN0Me+x1x84Q/AH9nyZfenF4dX9VTiog1NB0AAIBA1XZyL53PPKjghFi1ndyLQr6Z8sjvSvv27XXq1ClPdG0XHx+vs2fPenQMAF60YZKUd7A6Pnuo+plr6QAAALwuKDKE/fE+gB+xAGgeqqxSeVF1HBptbC7AdyrNZp2YMVOS1HnpEgVzFgkAP1RaXKTNC5+VJI2aM1cR0S2u8Ab8XZWlQuczqydZmJlvvjy6Z96TWMYP+BmbybGI51o6GKzSbNZ/ht6u0kOHZKussBf1AOBvNi14SmePHdXZY0e1acFTRqeDZqCmkK8bo3lx+49YVq9ercjv7uT1pFdeeUUWi8Xj4wDwkuAQKf6Hl54jWxmWCiDJoXgvO3xEET17GpgNAHjOuW9yncYAmje3F/MpKSnu7tKp8ePHe2UcAF5gyZespdLpfdWz8/fvMjojQJIUnpiosiNHJFUvswcAf5P3zTGVlRRLkkIjInVV124GZ4TmoOYAvJoYzZPb75mHsbhnHj5pzUjp2wOXnjv04fA7GI798gACwdK0CSorKZG+KwkeXLWePfOAwVyt6bx2koHFYtGePXuUm5ur8+fPy2QyqW3bturatasGDhyoiIgIb6UCoLnh8DsAAAxjMpkkk0mSKOQBH+LxYn7Hjh1asGCBPvjgA1VUVDhtExoaqttvv12//OUvddttt3k6JQDNTc3hd9bqZX4cfofmoPae+RMzZqprxloDswEAz7jnsSe1/vFfSpImzHvB4GzQHFRZKpS36l+yniyUKSxY7R/qp5DWTLw2Rx47zb6oqEjjx4/X7bffrr/+9a+yWq2y2WxOP+Xl5crKytJPfvITTZw4UYWFhZ5KC0BzVHP43dWDqv8vh98BAOAV/3xjg7r0SlKXXknavYEfpqP69Hrryep6zFZeqTMv7zM4I1yOR4r5/Px8DRw4UG+88Yb9CjnTd0t3nKn5ms1m0+uvv65bbrlFBQUFnkgNQHNUeyaeWXk0E/Hzn1PpoUMqPXRI8fOfMzodAAC8wlZlk6pU/UGz5pED8IYMGaK///3vMplM9mK+ffv26tWrl+Lj49WiRQvZbDYVFxfr5MmT+vLLL3XmzJnqhL4r7AcPHqz333/f3an5PQ7AAwD3yJ3ieDsLy+wB+KPS4iJtXvisJGnUnLnsmYfOvvq5yk8XSuU2ySR1+NVNLLP3MsMOwPvTn/5kL+QjIiL04IMPKiUlRb179673vX/9619au3atXn31VZWUlGjnzp3685//rJ/97GfuThEAAADNVFmJVe8u+1znT5Wobcdo3flgH4VHhRqdlt+KiG6h8U/MNzoNNCOmYJPCO18qICnkmy+3L7N/7rnqpYjdu3fXZ599pgULFlyxkJek66+/Xi+++KL27dun7t27y2az2ftyty1btmjcuHFKSEhQZGSkOnTooEGDBumll17ShQsX3D6eyWRq0Oe6665zew4AgIapfa88d8wD3pO1PEfnT5VIks6fKlbW8hyDMwICS+175bljvnlz6zL7Y8eOKSEhQWFhYfr00091/fXXN6qfnJwc9e/fXxUVFfrqq690zTXXuCW/c+fOKSUlRVu3bpUk9ejRQ0lJScrLy9OuXbtUWVmp+Ph4ZWZmaujQoW4ZU6r/vABnevTooS+//LJRY7HMHj7nYq60/MfVJ9l37Cfd9xcOwAOAALZp0T7lHS+yP7fr0kJ3P9LPwIwAwLsMWWb/z3/+U5I0bNiwRhfykpSUlKRhw4Zpy5Yt+uc//+mWYr6kpETDhg1Tdna2goODtXLlSqWlpdm/fuTIEY0cOVKHDx/WiBEjtH37diUnJzd53BqRkZG6+uqrXWqbkJDgtnGBZm9F8qUr6U7tkzZMkqZuMTYnAIBhht+f5LDMfvj9SUanBASM8tNFOvvKfskmhXZuoXY/T1JQpMdvM0cjufV3puYQuwEDBjS5rx/96EfasmWLvc+mmjVrlrKzsyVJTz/9tEMhL0mJiYnKyspS7969VVpaqjFjxujIkSNq1aqVW8YfMGCAdu7c6Za+AAAA/FV4VKjG/LK/0WkAAenskupCXpKsJ4p0PvOg2k3rY2xSuCy37pm3WCwymUxq0aLpp2DWnHhvsVia3FdOTo5Wr14tqfpU/UcffdRpu4SEBE2fPl1S9ZL8+fM5DATwuOkfSaHR1XHHflxNBwAAALjArcV8XFycbDabcnNzm9xXbm6uTCaT4uLimtzXokWLVFVVfVHihAkTFBYWdtm2U6ZMscfLli1zyw8TANSjdVcp/bj02wvSf29nvzyahUqzWblTUpQ7JUWVZrPR6QAA4BVXzewrfXfcV2jnFhyA18y5tZjv1q2bJOntt99WU87Vq6ys1FtvveXQZ2NZrVa9/fbb9ucrHWzXt29f+9L64uJiZWVlNWl8AIDvOTFjptMYAPzNm/Of1MZ56SotLrpyY/i9sPgW6jw/WZ2fT1b7GX3ZL9/MubWYv+WWWxQVFaWvv/5a8+bNa3Q/v/3tb3Xs2DFFRUXpxz/+cZNy2rt3ry5evGh/vvHGG+ttbzKZHNps27atSeMDAAAAzd3mhc8anQKABnLrj1rCw8N17733KjMzU08//bTy8vL0zDPPqHXr1i69f/78eaWnp+uPf/yjTCaTxo0bV++SeFfk5Fy6mzQ8PFydOnW64ju1VwPUfr+pqqqqtGvXLu3evVvHjx9XRUWF2rRpo8TERA0ZMqTJqxAAAO7ReekS+4w8d8wDAIDmyO3rJp566ilt3LhR5eXlWr58udatW6cRI0Zo6NCh6tmzpzp27Kjo6GjZbDYVFRXp1KlTOnTokLZv366srCyVlJRIkiIiIpo0u1/j4MGD9rhjx44uvVO74K/9flMcO3ZMvXv3rvf++OHDh+uFF15QUhJXsACAkYJjYtQ1Y63RaQCA14yaM9foFAA0kNuL+a5du+oPf/iDpkyZIpPJpMLCQm3cuFEbN2684rs1++yDgoL02muvqUuXLk3OJy8vzx67es1c7XZms1lWq1WhoaFNyiM3N1fR0dH67W9/q3HjxikhIUGVlZX64osv9Ic//EGrV69WVlaWdu7cqYyMDI0dO7ZJ4/mivcfOa/zyjyVJvTvG6M//c7NiI5v2vzuaOUu+tG6sdHpf9Yn29++qPhAPbney6KTGbBqjksrqH5hGhUTpzdFvqlOLK69W8mflJ0/qq5F3SZc57NQUFaWEdzYrzIVVXQCa5tyJQm145hP7s8kkjZ97k+I6tzQwK/9TWlykvzz9G1389qRmrnldJ//9hWw2qaykWBHRTb+RCr6lylKhs3/MUcXJWmcmmKSrZvVVWDz/PTR3bt0zX2PSpElatmyZQkJCZDJVH4dos9nq/dQICwvTq6++qokTJ7oll8LCQnscHh7u0jsRERGX7aOxOnbsqP3792vevHm6/vrrFRUVpZYtW+rmm2/Wa6+9prVrq2eALBaL7rvvPn388ccu9VtWViaz2ezw8VU1hbwkfXHKrOmZnxqYDbxiw6TqQl6SrMXSimRj8/Fj494ZZy/kJamkokTj3hlnYEbNw9d333PZQl6SbCUl1W0AeNzG5xz/3rfZvv9raLrNC5/Vma//4/Br1lKLMn81y6CMYKTzmQcdC3lJsn133zyaPY8U85L0i1/8Qh999JF+9KMfORTrJpPJ4VPDZrPplltu0T/+8Q/9z//8j9vyqH21nKv77+u2q1n631g5OTn6/PPPlZiYeNk2kydP1s9+9jNJUnl5uR588EGX+p4/f75iY2PtH3esZgAAAAAANG8eK+YlacCAAdq9e7d27dql//3f/9XAgQMVHx+v8PBwhYeHq2PHjho0aJAee+wx7dmzRx999NEVT5tvqMjISHtcXl7u0jt120VFRTUph+uvv15xcXFXbDdr1qWfiO7bt08fffTRFd9JT09XQUGB/XP8+PEm5WqkjfffbI97d4zRisn9DcwGXjFhnRTfrzoOjZamX/m/eTTO63e9rqjgS3+WRYVE6fW7Xjcwo+ah26a3pFp/T9RlioqqbgPA48b/2vHvfZPp+7+Gphs1Z67ad7vW4ddCIyI1ecErBmUEI7Wd3Eshneospzd9d988mj2TrSkXwvuAn/70p1q/fr2k6jvk9+3bd8V3Fi9erIcfftj+XF5e3uQ9866oqqpSTEyMiouLJUmPP/64nnrqqQb1YTabFRsbq4KCAsXExHgiTQAAAACAh7ha03l0Zr45aNeunT3Oz8936Z2CggJ7HBMT45VCXqo++K979+7258OHD3tlXMAwlnxpzcjqjyXf6GwAAAAAn+H3xXyvXr3s8alTp1x65+TJk07f94aWLS+d2HrhwgWvjg143YZJzmMAAAAA9Wq2xXx8fLxCQpp+c17tO9vLysocCvXLOXr0qNP3vaG0tNQeR0dHe3VsAAAAAIBvaLbFvCS5Yzv/gAED1Lp1a/tzdnb2Fces3WbYsGGNHrugoEDPPPOM/do5V9RePdCxY8dGjw34hAnrnMcAAAAA6tWsi3l3CA0N1ejRo+3P77//fr3t9+/fb99bHx0dreHDhzd67IsXL+rxxx/XggULXGp/4sQJnT592v6cnMyd2/Bzka2kqVuqP5GtjM4GAAAA8BlNX8d+GeXl5dq8ebN27NihL774QhcuXFBxcbHLs+15eXluy+Xhhx9WRkaGqqqqtGHDBr344ouXvXM+IyPDHj/wwAMOV9s11pdffqmzZ8/qqquuqrdd7bFbtWrVpB8kAAAAAHUV5J1R5q9mKTQiUtNfXWN0OgCawCPF/DvvvKNf/OIXDrPMkuvL5k0mk2w2m0wmk1vy6dOnj1JTU/Xaa6/pzJkzWrRokR577LHvtTt69KhWrFghSYqLi1N6errT/qxWq9LS0rRp0yZde+21Wrt2rfr06XPZ8auqqvTEE0/o1VdfvWybo0eP6vnnn7c/P/bYY4qNjXX1WwQAAACuKONXM2UtLZXc889sAAZy+zL7zZs3695779WpU6fsxbvNZmvQ/nd37JWv65VXXlG/fv0kVd/fvnr1aoevHzlyRMOHD1dpaanCwsL05ptvOuy1ry0zM1Pr1q1TUVGRPvvsM82YMeOK4y9fvlwzZsxwekL9Bx98oMGDB6uwsFCSNHbsWP3qV79q6LcIAAAA1Mta67BlAL7NrTPzFRUVmjFjhioqKuyz6zabTT179lT37t0VGxvr8gn1GzZsUFlZmdtyi4qK0rZt25SSkqKsrCylpaVpwYIFSkpKUl5ennbt2qWKigrFx8crIyOjQfvVL7eCoF27dpo+fbr+/Oc/q7CwUMuWLdNrr72mAQMGqFOnTiotLdWBAwf01VdfSZLCw8P12GOP6be//a3bViUAzZol/9KVdBPWsW8eXldpNuvEjJmSpM5Llyg4JsbgjADAszokJOrbo0eMTgOAG5hsbpwG37lzp37yk5/YC9F7771Xv/vd79SlS5cG9xUfH6+zZ8+qsrLSXenZvfPOO1qzZo327dun06dPKyYmRt27d9fYsWOVmpqqNm3a1Pu+1WpVamqqNm3apMTExCsusy8pKdH27dv13nvvaf/+/frqq6+Un5+v4OBgtWnTRr1799bgwYOVmpqqDh06NOl7M5vNio2NVUFBgWJ86B+lxy+W6M6XP5IkvftQsrq0jjI4I3jFmpGOz1O3GJMHAk6l2azc1DSVffGFJCni+usVFBWlrhmu3z4CAL6otLhImxc+q5CwcI1Jf9LodGCwKkuFzmcelCS1ndxLQZEeO1INDeBqTefWYn7ZsmWaOXOmTCaT+vXrp08++aTRfXmymPdnvlrM93nyPYfnA0/eYVAm8CqKeRgkd0qKSvbudfi1qAEDKOYBAAHl7PLPZf22WJIU2iFaV93/Q4MzguR6TefWH72YzWZ7PGHChCb1NX78eIf+APihCescl9kDXmKrrPjer3VeusSATAAAME5NIV83hm9wazFf++q1pi4Xf/nll5uaDnzIuw8lOyyzR4CouWce8DabpKgoqaREknTN25vYLw8ACDih7aNlPVNsj+Fb3FrMDx482B5/++237uwafq5L6yiW1gPwGlNIiKKuv97+HNmjh4HZAABgjLipvR32zMO3uPVquu7du+uee+6RzWbTW2+91aS+7r33Xg0dOtRNmQEAcEntJfUsrwcABKqgyBC1m9ZH7ab14fA7H+TWA/Ak6dy5c7r55pv19ddf65lnnlF6enqj+uEAvMbx1QPwAHiWudys2TtmS5IWD1msmDD+fACAQFNzkr0kjZozVxHRLQzOCIAzrtZ0bp2Zl6S4uDj94x//0G233aa5c+fqrrvu0o4dOyjKAcBANYV83RgAEDg2LXhKZ48d1dljR7Xl5ReMTgdAE3lkLUX79u31wQcf6Je//KV+97vfaevWrQoLC1NCQoJat26tsLCwK/Zx4cIFT6QGAAAABKRz3+Ta4/PHjxuYCZoD7pj3fR75HTt06JDS0tK097s7fG02m8rKynTo0CGZTCaX+rDZbC63BQDUb/GQxQ7L7ANdpdmsEzNmSqreM89J9gACQVyXrjp3vLqgb9u5i8HZwGjn1n5hv47u3NovuGPeB7l9z/yhQ4f04x//WPn5+d8ryBs6lMlkYnl+A7FnHgCuLHdKisNz14y1BmUCAN7DnnnUdvLJ3Q7PnZ4cZFAmqMvVms7tM/P//d//rYsXL9qLeJvNppYtWyohIUEtW7ZUcHCwS/3s3r1bFRUV7k4PAAAACEgR0S00/on5RqeBZoI75n2fW4v5nJwc7dmzx17IDxw4UAsWLNCgQYMavGS+5jR7AADcrfPSJQ7L7AEACDTcMe/73FrM79mzxx53795dH3zwgcLDw905BAAATRYcE8PSeqAZKSuxKmt5jiRp+P1JCo8KNTgjwP/V3DEP3+XWq+nOnTtnj6dMmdKkQr5z5866+uqr3ZEWAAAAmrGaQr5uDAC4PLfOzLdu3doeX3PNNU3q65NPPmliNgAAAAAA+Ce3zszfeuut9rigoMCdXQMAAMBP/SSlp/KOFynveJF+ktLT6HQAwCe4tZjv3bu3RowYIZvNpvfff79JfS1atEhPPfWUmzIDAABAc/XB2kNq16WF2nVpoQ/WHjI6HQDwCW4t5iVpzZo1uv7667V582b99a9/bXQ/L774oubNm+fGzAAAAAAA8A9uL+bj4uK0Y8cOjRgxQnfffbcWLFigoqIidw8DAAAAPzH8/iSnMQDg8kw2m83mzg5rL43PysrS3r17FR4erptvvlk9e/ZU69atFRYWdsV+XnzxRZWUlKiystKd6fk9s9ms2NhYFRQUKCYmxuh0gMuz5EsbJlXHE9ZJka2MzAYAAABoFlyt6dxezAcFBclkMtmfa7qv/WuusNlsMplMFPMNRDEPn7FmpOPz1C3G5AEAAAA0I67WdG5fZl+jdhHf0EIeAABPqTSblTslRblTUlRpNhudDgAAQKN4rJiXqgv6xn4A+LkJ65zHgIedmDHTaQwAAOBLQjzV8fr16zV+/PhGvx8fH6+zZ8+6MSMAzUpkK5bWAwAAGKDKUqG8Vf+S9WShTGHBav9QP4W0jjA6LTSQR2fmAeCyLPnV++bXjKyOAS/pvHSJ0xiAMcpKrPrL85/o9w/s0B9m/13m8xajUwL83vnMg7KeLJQk2cordeblfQZnhMZotsU8S+0BP1dzkn3dGPCw4JgYdc1Yq64ZaxXMQaGA4bKW5+jsN9XXGFvLq7ThmU8Mzgjwf7Yqm1Sl6g98ltuX2b/11luSpJtuuqlJ/Xz66aecZA8AAAAA7maTFGaSym2STWr/UD+jM0IjuL2YHz16tFv66dy5s1v6AdBMTVjneM88ACAgDb8/Se+88pnOflOk0LAgTfhN0yaEAFyZKdik8M6XVqexX943eewAPACoFwfgAQAkhUeFauxjFPCAt1RcLFXZCbNUbpMpPFjtZzMr76u8WsyXlZXp1KlTOn/+vEwmk9q2bav4+HiFh4d7Mw0AAAAACEhnXt4nVdikIMlmrdTF1w+r3bQ+RqeFRvD4AXhms1kvvPCCfvzjHys2NlbXXnutfvSjH2nAgAHq3r27YmNjlZycrIULF8psNns6HUnSli1bNG7cOCUkJCgyMlIdOnTQoEGD9NJLL+nChQteyaHGxIkTZTKZZDKZdM0113h17OakwGLVxJV7NHHlHhVYrEanA0+z5EuvDZOev1padQen2XuYudystPfSlPZemszl3vlztjmrNJuVOyVFuVNSVOmlv3cAoDkoLS7Sxnnp2jgvXaXFRUanA6CJTDYPHhv/+9//Xr/+9a9VWPjdtQeXGcpkMkmSWrZsqfnz5+sXv/iFR/I5d+6cUlJStHXrVklSjx49lJSUpLy8PO3atUuVlZWKj49XZmamhg4d6pEcasvKytKIESPsz127dtWxY8ea1KfZbFZsbKwKCgoU40OnNE9cucfhef20gQZlAq9YM1L69sCl5w59WHLvQWnvpTk8r7pjlUGZNA+5U1IcnrtmrDUoEwDwro3z0u1xSFi4xqQ/aVwyMEzFxVJ9uzhbslYprHNLxaVer6BIdl83J67WdB75XbPZbEpJSdGf/vQnewFfM/tcH7PZrBkzZujjjz/W2rXu/cdVSUmJhg0bpuzsbAUHB2vlypVKS7v0D9wjR45o5MiROnz4sEaMGKHt27crOTnZrTnUzeeBBx7wWP9As1Zllcq/mxEIjTY2FwAAgAAS0jpCnefdYnQacAOPLLN/9NFHtW6d4+nUNptNISEhio+PV2Jioq699lrFx8crODhYNptNNptNJpNJNptN69at05w5c9ya06xZs5SdnS1Jevrppx0KeUlKTExUVlaWIiIiVF5erjFjxig/P9+tOdT2xBNP6NixY5wX8J0Vk/s7jeGnbCbHIp7T7D1q8ZDFTuNA1XnpEqcxAPi7UXPm2uMRs9z7b20A3uf2ZfZ79uzRLbfcYi/Mb7rpJk2ZMkW33367rr32WgUHBzu0r6io0H/+8x9t375dGRkZ+vTTT6sTM5m0e/du/ehHP2pyTjk5ObrhhhtUVVWl9u3b65tvvlFYWJjTtrNnz9bLL78sSfrVr36lF154ocnj1/X555+rf//+Cg4O1qOPPqrnnntOUuAusy+wWDU9s/r3fcXk/oqNDDU4I3jcqjuks4eq46t6SmnvGZsPAAAA0Ey4WtO5fWb+8ccflyRFRkYqMzNT//znP/Xggw+qR48e3yvkJSkkJETXXXedZsyYob179yojI0ORkZEOfTXVokWLVFVVJUmaMGHCZQt5SZoyZYo9XrZsmSwWi1tyqFFVVaVp06apoqJCv/71r5WYmOjW/n1RTSFfN4Yfs5mcx4AXcAAegEDE4XeA/3FrMX/x4kXt3LlTJpNJmZmZuu+++xrcx6RJk5SRkSGbzaYdO3Y0eam71WrV22+/bX++0sF2ffv2VatWrSRJxcXFysrKatL4dS1btkx79+5Vjx499Nhjj7m1b8BnBIdUH3rXoU91DHjRiRkzncYA4M82L3zWaQzAd7m1mP/oo49UVVWlAQMG6J577ml0P/fee68GDBigqqoqffjhh03Kae/evbp48aL9+cYbb6y3vclkcmizbdu2Jo1f24kTJzR3bvVepRUrVtS7QiCQsF8+ANXeI89+eQAAAKDB3FrMnzx5UpL0X//1X03u64477nDos7FycnLscXh4uDp16nTFd7p16+b0/aaaOXOmCgsLNXXqVN12221u69fXxUaGav20gVo/bSD75QNFZKvqq+imbqmOAS/iADwAgaj24Xe1YwC+y63rW/Pz82UymRQXF9fkvuLi4mSz2Zq8zP7gwYP2uGPHji69U7vgr/1+U7z99tvatGmT2rZtqxdffNEtfQIAGi44Joa75QEEnIjoFhr/xHyj0wDgRm4t5lu1aiWbzaZz5841ua9z587JZDLZ9683Vl5enj12ta/a7cxms6xWq0JDGz9jXFhYqBkzZkiSFi5c6JYfdvgTTrMPMBdzpRXJ1fH0j6TWXY3NBwGn0my275XvvHSJgn3k5g8AAJqqylKhc2u+kPVMsUI7RCsupbeCIjm/yFe5dZl9zYz29u3bm9zXe++959BnYxUWFtpjV+90j4iIuGwfjfGb3/xGJ06c0G233aapU6c2qa+6ysrKZDabHT6+htPsA0xNIV83BryEA/AAAIHqfOZBWc8US5Ks3xbrfKZ7ViHDGG4t5pOTkxUUFKSPP/5YmzdvbnQ/b7zxhvbu3augoCDdeuutTcqp9tVyrh44V7ddSUlJo8f/9NNPtXTpUoWFhWn58uWN7udy5s+fr9jYWPunS5cubh8DAPxFpdms0kOHVHrokGyVFUanAwAA0GhuLeZbt26t2267TTabTffdd59ef/31Bvfx5z//WSkpKTKZTBo8eHCTl9nX3FkvSeXl5S69U7ddVFRUo8aurKzUtGnTVFVVpf/93//Vdddd16h+6pOenq6CggL75/jx424fw9M4zT7ATH1XKi+q/kx91+hsEGBOzJip8MRESVLZ4SMcgAcACChtJ/dSaPtoSVJoh2i1ndzL4IzQFG7fIPHUU08pOTlZJSUlmjhxohYvXqwpU6Zo6NCh6t69u0wmk0P7qqoq/ec//9H27duVkZGhTz75RDabTSaTSU899VST82nZsqU9Lisrc+md0tLSy/bREIsXL9b+/fuVmJhov5LO3cLDw13ePtBc1ZxmjwCxLV26etCleOoWY/NBwDGFhCiiZ09JYr88ACCgBEWG6Kpf/NDoNOAmbi/mb7nlFs2YMUNLly6VyWTSxx9/rI8//lhS9fL1q666StHR0bLZbCoqKlJeXp6sVqv9/ZpC/qGHHtLAgU0v8Nq1a2ePXT0Zv6CgwB7HxMQ06vC73NxcPfHEE5KkV1991ecLbgDwB52XLnE4/A4AAMBXeeTowpdffllnz57Vxo0bZTKZZLPZJFXPjNe3DLxm1v6+++7TokWL3JJLr16Xlo6cOnXKpXdq321f+/2GePDBB1VcXKxJkyZp6NChjeoD8EsT1kkbJl2KAS+qLCxU6aFD9piZeQAA4Kvcume+hslk0vr167Vo0SKH/eYmk8npp0Z0dLReeeUVZWRkuC2XpKQke1xWVuZQqF/O0aNHnb7fEO++W70XeN26dZf9vk0mk1JTU+3v5Obmfu/rTz75ZKPGB5qtyFbVS+unbqmOAS/6+u57nMYAAASCKkuF8lYeUN7KA6qycBCsr/PopYKzZ89WSkqKfv/732vLli3Kzs5WRYXjfzQhISHq37+/Ro8erenTpzf5wLu6BgwYoNatW+vixYuSpOzs7Hqvu7PZbMrOzrY/Dxs2rFHjpqSkuNTuP//5j/7xj39Iqv5hxtixYx2+fsMNNzRqfF/CPfMAAACA59W+iu585kG1m9bHwGzQVCZbzRp4L7BYLDp58qQuXLggSWrbtq06der0vXvd3S01NVVr1qyRJM2aNUsvv/zyZdvu27dPN954o6Tq4jovL8/hRHx3W7NmjX12vmvXrjp27FiT+jObzYqNjVVBQYFifGT56MSVexyeOQwPgKeUnzxpn5HvtukthdXzw10AAPxN3soDDs8U882TqzWdR5bZX05kZKSuvfZaDRgwQAMGDFD37t09XshL0sMPP6ygoOpvdcOGDfVeUVd7if8DDzzg0UIeAOBdYZ06qccne9Xjk70U8gCAgFP7KjqupfN9Xi3mjdKnTx/77PeZM2cue7je0aNHtWLFCklSXFyc0tPTnbazWq2aPHmyWrZsqb59++rAgQNO28E13DMPAAAAeF5QZIjaTeujdtP6KCjSozuu4QUNKuZ/8pOfaNy4cZ7KxcG9997r1lPgX3nlFfXr10+S9Pjjj2v16tUOXz9y5IiGDx+u0tJShYWF6c0331Tr1q2d9pWZmal169apqKhIn332mWbMmOG2PANRzT3z66cNZL88AAAA4CEcgOdfGvTjmJ07d6pDhw6eysXB7t27dfbsWbf1FxUVpW3btiklJUVZWVlKS0vTggULlJSUpLy8PO3atUsVFRWKj49XRkaGkpOTXe679on8V/Lll1/q+eeftz//5z//scfnzp3T1KlT7c9xcXFauHChy30DzZ4lX/rzRCnvoHRVT+mnGzjR3gvM5WbN3jFbkrR4yGLFhPnGeRoAAPcpLS7S5oXPSpJGzZmriOgWBmcEI3AAnn9p0AF4QUFB6tChg8v3tTdFfHy8zp49q8rKSrf3/c4772jNmjXat2+fTp8+rZiYGHXv3l1jx45Vamqq2rRpU+/7VqtVqamp2rRpkxITE7V27Vr16ePa/yPs3LlTQ4YMcaltYw7E88UD8BBA1oyUvq21LaVDn+or6uBRae+lOTyvumOVQZkAAIyycZ7j9tHxT8w3KBMYiQPwfIOrNV2DN0pUVlbq+PHj8vQh+J4o4mvcdddduuuuuxr9fmhoqNatW9eodwcPHuzx/+0AAAAAoK62k3vZZ+c5AM/3NXhmviFLypvCZrPJZDJ5tKj3R8zMo1ljmb0hWGYPAGCZPeA7XK3pGlXMe2tmmWK+4SjmAQCALykrsSpreY4kafj9SQqP4jBcAIGtWdwzbzKZGjWT763ZfwBeZsmv3je/ZmR1DHhRpdms3Ckpyp2Sokqz2eh0AHynppCvGwNwL06y9z8N3jMfGhqqgQMHutT273//u8LCwlxuX9vu3btVUcF/ZIBf2TDJMebwO3jRiRkzHeKuGWsNzAYAAO/iJHv/0+Bivk2bNtqxY4dLbYOCghrUvraa0+wB+ImLuVLubslWKYW3lNr3NjojAEAzMPz+JIdl9gAA13h0mT1wJQUWqyau3KOJK/eowGI1Oh140opkSd+dt1FWKNnYTgPv6rx0idMYgLHCo0J19yP9dPcj/dgvD3hQ7dPrOcnePzR4Zt5buL4tMEzP/NQhXj+t4Vsy4ENMJskUXB0HN9s/fuCngmNiWFoPNEMcgOcdnGaPoMgQltb7mQbNzK9evVqLFy/2UCqOXnnlFa1atcorYwHwgukfSaHR1XHHftKEdcbmE0DM5WalvZemtPfSZC7n4DcAzQsH4HlHTSFfN0bg4AA8/9OgqbGUlBRP5fE948eP99pYMM6Kyf3ts/MrJvc3OBt4VOuuUvpxo7MISDV3zNfEq+7gB6UAAAQaDsDzP+yZh6FiI0O1ftpArZ82ULGRLKsDACDQ1D70jgPwPGfUnLlOYwC+y2Tz4Ob0oKAgdejQQadOnfLUEKjDbDYrNjZWBQUFiomJMTodAM2Audxsn51fPGSxYsL4swFA88B+ecB7qiwV9tn5tpN7KSiS84uaK1drOop5P0Mxj2bLkn/pnvkJ66TIVkZmgwBUaTbb75rvvHSJgvkzEjDcmy9m6/ypYklS247RGvPLGw3OCACM52pNxzJ7AN5RU8jXjQEvqSnk68YAjFNTyNeNAQBXRjEPwPMs+dK3B6o/VVajswEANBNtO0Y5jQEAV9agYv7DDz/Uxx9/7KlcHHz88cf68MMPvTIWAA/bMElq16s6PnuIa+lgiPj5z6n00CGVHjqk+PnPGZ0OAEl3PvhDtevSQu26tNCdD/7Q6HQAv8bVdP6nQXvmg4KCFB8fr5MnT7rcvrF75uPj45WXl6eKCv5Dawj2zKNZWjPS8XnqFmPyQEDLneJ4vWrXjLUGZQIAgPflrTzg8MzVdM2Xx/bMe/C8PEPHAuBBtWfimZUHAADwOluVTeWnilR+qki2Kuosf8CeeQCeV1pwac98aYHR2SBAdV66xGkMAEBAsF0mhs9q8OWCBQUFSktL81j72u8B8BMrkh3jx74xLhcEpPKTJ/X13fdIkrpteotr6QAAAccUbFJYxxZGpwE3avCeeZPJ5HLnNputQe2dvVtZWdmo9wMVe+bRLD1/teMzxTy87N83DXB47vHJXoMyAQDAGFWWCp3PPChJaju5l4IiGzyvCy9xtabz6O9gYwt5BI4Ci1XTMz+VJK2Y3F+xkaEGZwS3+zbn0tJ6U7A0/e/G5hNgThad1Lh3xkmSXr/rdXVq0cngjLzP8u9/q6qwsPohKEhBUVx/BTQH5vMWrX96ryrKq3RV15a6a+YPFR7FvwM8oSDvjDJ/NUuSNHnBK4pt197gjOBNVZYKnf1jjipOFklB0lUz+1LI+4lG7Zm32Wwe/yAw1BTydWP4kZW3XYptldK2dONyCUA1hXzdOJAcG3PvpYeqKoUlJBiXDAC7Dc98ooryKknS2dxCZS3PMTgj/1VTyNeNERjOZx6sLuQlqUo6u2S/sQnBbRr8I5nWrVvrjTfe8EQudjabTffee6/y8/M9Og4AIPAERUQYnQIAAECTNXjPfGPvjW+o+Ph4nT17lj3zDeRre+ZZZh8Avs2RVtwq2aqkjn2lyZukyFZGZxUwWGZfvcz+2D1jpKoqRVx/va5e9RoH4AEGO3eiUBue+cT+fFXXlhr10A0ss/cQltkHNmfL7MPiOQivOXO1pqOY9zO+VswDAIDA8/sHdjjcc93pB6109yP9DMwIAJoPjxyAd/XVV6t9e+/8JK9z586KYCkkAAAAAADf06CZeTR/zMwDAIDm7tyJQm149hPJxhJ7AKirWVxNBwAAANQV17mlHnz1J0anAQA+rVFX0/m6LVu2aNy4cUpISFBkZKQ6dOigQYMG6aWXXtKFCxfcPl55ebk++OADPf744xo2bJi6du2q6OhohYWFKS4uTjfffLMeeeQRffbZZ24fGwAAAADgfwJqmf25c+eUkpKirVu3SpJ69OihpKQk5eXladeuXaqsrFR8fLwyMzM1dOhQt4yZnp6u5cuX26/ZCwsLU+/evdWtWzcFBwfr3//+tw4cOGBvn5KSouXLlzf6vACW2aPZ+DZHWv7j6tgULE3/u9QhydicAhCn2QMASouLtHnhs5KkUXPmKiKak8yB5swjp9n7spKSEt16663Kzs5WcHCwVq5cqbS0NPvXjxw5opEjR+rw4cMKCwvT9u3blZyc3ORxb7jhBn3++eeSpIkTJ2rBggXq0qWLQ5vPPvtM9913nw4ePChJGjFihN59991GjUcxj2bjqTZSVa3bKIKCpd+6f+UL6jfo/wY5PO/+6W6DMgEAGGXjvHSH5/FPzDcoEwCucLWmC5hl9rNmzVJ2drYk6emnn3Yo5CUpMTFRWVlZioiIUHl5ucaMGWOfTXeHwYMHa926dd8r5KXqgr9mbEnaunWr3n77bbeN3VwVWKwa++o/1OfJ9zR2+W4VWKxGpwR3seQ7FvKAQSrNZh372X36900DdOy++1RpNhudEgB4XVVVpc4eO6qzx46qir+fAb8REMV8Tk6OVq9eLUlq3769Hn30UaftEhISNH36dEnVS/Lnz3ffTy3nzJmj4ODgy3796quv1p133ml/3rx5s9vGbq6mZ36qw2eKJEmHvy3U9MxPDc4IbrNhkhTf99KzKVia9nfj8glgr9/1utM4UJyYMVNlR45IksoOH9GJGTMNzgiAJJWVWLVp0T5tWrRPZSX8MN/jbJeJAfi0gCjmFy1apKqqKknShAkTFBYWdtm2U6ZMscfLli2TxWJp0tjjxo3T9OnTddttt12xbWJioj0+ceJEk8YFDBfeQromufrzxAX2yxukU4tO2v3T3dr9090BuV++qqxMVYWFqioslL77ewCA8bKW5ziN4RlBwcG66poEXXVNgoLqmVwC4Fv8vpi3Wq0OS9avdLBd37591apVK0lScXGxsrKymjT+3LlztXz5crVoceWDRkpLS+1xTQ7+bMXk/vpB++r/XX7QoaVWTO5vcEZwmwnrnMeAl5V99ZUUVP1XXVVpqTovXWJwRgDgfaPmzHUaA/Btfn/P/N69e3Xx4kX784033lhve5PJpBtvvFHvv/++JGnbtm0aM2aMR3OssXfvXnvsrtP0m7PYyFD95Re3GJ0GAD9mMplkio62PwdzMCjQLAy/P8k+Iz/8flZueVpEdAsOvQP8kN/PzOfkXFq6FR4erk6drrzMtFu3bk7f96SsrCzt3l19yvQPfvADh+X+gM/ZMMl5DHhZt01vOY0BGCs8KlR3P9JPdz/ST+FRoUanAwA+ye9n5muue5Okjh07uvRO7YK/9vueUFJSolWrVumxxx6TJPXo0UNbt25t9D3zAIBLwjp1Uo9P9l65IQAAgI/x+2I+Ly/PHru6D712O7PZLKvVqtBQ9/zUuKCgQA899JAsFotOnDihzz77TCUlJUpKSlJaWpp+8YtfKDw83C1jAYaZsO7SjDx75mGQSrPZfnp956VLWGIPAAhIVZYKnc+snqBsO7mXgiL9vgQMGH7/O1lYWGiPXS2S686KFxYWqk2bNm7Jx2KxaO3atQ6/1qpVK1177bVq06aNbLaG3RdSVlamsrIy+7OZO5TRHES2kqZuMToLBLja19CdmDFTXTPW1tMaAAD/VFPI18TtpvUxMBu4k9/vma99tVx9V9LVVrddSUmJ2/Lp0KGDbDabKioqlJeXp7/97W8aOXKkNm3apJSUFPXs2VMffvihy/3Nnz9fsbGx9k+XLl3clisA32YuNyvtvTSlvZcmczk/6AMAAPAnfl/MR0ZG2uPy8nKX3qnbLioqyq05SVJwcLDi4uJ0++23KzMzU2+99ZaCg4N17Ngx/b//9/+0Y8cOl/pJT09XQUGB/XP8+HG35wrAN83eMdtpHChqX0PHlXQAgEDVdnIvpzF8n98vs2/ZsqU9rr0cvT6173uv24enjB49WnPmzNELL7yg8vJyTZo0SV999dUVD8ILDw9njz0AOBEcE8PSegBAwAuKDGFpvZ/y+5n5du3a2eP8/HyX3ikoKLDHMTExbjv87kpmzZplj0+dOqXXX3/dK+MapcBi1cSVezRx5R4VWKxGpwP4ncVDFjuNA0Wl2azcKSnKnZKiSs4TARCgSouLtHFeujbOS1dpcZHR6QBwI78v5nv1urSU5NSpUy69c/LkSafve1rHjh11zTXX2J937tzptbGNMD3zU6cxAPeICYvRqjtWadUdqxQTFngnudc9AA8AAtHmhc86jQH4Pr8v5pOSkuxxWVmZQ6F+OUePHnX6vjd06NDBHrv6wwcAAAAAQGDx+2J+wIABat26tf05Ozu73vY2m82hzbBhwxo99u7du7Vw4ULl5OS4/I7Vemm5uaun7/uqF8f9UAdPmXXwlFkvjvuh0enAnSz50pqR1R9LvtHZIEBxAB4ASKPmzHUaA/B9fl/Mh4aGavTo0fbn999/v972+/fvt++tj46O1vDhwxs99l//+lf98pe/1LZt21xqX1VVpa+++sr+7O/XzP3y9c/Vq2OMenWM0S9f/9zodOBOGyY5jwEAgFdFRLfQ+Cfma/wT8xUR3cLodAC4kd8X85L08MMPKyio+lvdsGFDvVfUZWRk2OMHHnjA4Wq7xnJ17/vf/vY3h0P67rjjjiaPDQCBij3zAADAnwVEMd+nTx+lpqZKks6cOaNFixY5bXf06FGtWLFCkhQXF6f09HSn7axWqyZPnqyWLVuqb9++OnDgQL3jZ2Vl6e9//3u9bYqKivTII4845DxixIh63/F1Kyb3dxrDD0xY5zwGAAAA4BYBUcxL0iuvvKJ+/fpJkh5//HGtXr3a4etHjhzR8OHDVVpaqrCwML355psOe+1ry8zM1Lp161RUVKTPPvtMM2bMqHdsm82mUaNG6bXXXnO6KiA7O1vJyck6ePCgpOofJPzpT39ScHBwY75VnxEbGar10wZq/bSBio30zvV/8JLIVtLULdWfyFZGZxOwzOVmpb2XprT30mQuD7yr2dgzDwAA/JnJZrPZjE7CW/Ly8pSSkqKsrCxJ0nXXXaekpCTl5eVp165dqqioUHx8vDIyMnT77bdftp9Vq1bp5z//uf351ltvdTrzvmfPHqWnpzt8rVWrVurfv7+uuuoqlZWV6eDBgzp06JBDX3/84x+VmJjYqO/RbDYrNjZWBQUFiokJvKuoAFyS9l6aw/OqO1YZlAkAwCilxUX2K+lGzZnLvnnAB7ha0wVUMV/jnXfe0Zo1a7Rv3z6dPn1aMTEx6t69u8aOHavU1FS1adOm3vetVqtSU1O1adMmJSYmau3aterTp89l2x87dkzvvvuuPvroIx08eFAnTpxQYWGhQkJCFBsbq2uvvVY33XSTJkyYoJtvvrlJ3xvFPIAaFPMAgI3zHLeNjn9ivkGZAHAVxXyAopgHUMNcbtbsHbMlSYuHLFZMGH8mAECgoZgHfA/FfICimAcAAEANltkDvodiPkBRzKNZsORful9+wjoOwYPXVZrN9uvoOi9domD+PAQAAD7C1ZouYE6zB+BFNYV83RjwEu6YBwAA/o5iHgAAAAAAH0MxD0MUWKwa++o/1OfJ9zR2+W4VWKxGpwR3mrDOeQx4CXfMAwAAf8eeeT/jK3vmU1fvVXbuRftzr44xWj9toIEZAQAAAIDx2DMPAAAAAICfopiHIRZP7KsftK++GuUHHVpqxeT+BmcEAAAA+J8qS4XyVh5Q3soDqrJUGJ0O3Ihl9n7GV5bZAwAAAPC8vJUHHJ7bTetjUCZwFcvsAQAAAADwUxTzAAAAAOCn2k7u5TSG7wsxOgEEpp+u3K29x/IVFRasrQ8lq0vrKKNTgrtY8qUNk6rjCeukyFZGZhPQzOVmzd4xW5K0eMhixYQFxtab8pMn9dWo0VJxsYKio9Vt89sK69TJ6LQAfMd83qINz3wiSZrwm5sU0zbS4Iz8V2lxkTa98JTOHc9V3NVddfevfquI6BZGpwUvqrhYqjMv75MktX+on4IiKf/8CTPzMMTB00WSpJLySt358kcGZwO3qink68bwuppCvm7s776++x6puFiSVFVcXP0MoNmoKeTrxnC/zQuf1bnjuZKkc9/kavPCZw3OCN5WU8jXjeEfKOYBAAAAAPAxFPMwRK/46iVeUWHBevehZIOzgVuNXiZ9e6D6M3qZ0dkEtMVDFjuN/V23TW9J0dGSVL3MftNbBmcEoLZ7Hu0ra1mlrGWVuufRvkan49dGzZmruC5dJUlxV3fVqDlzDc4I3tb+oX5OY/gHrqbzM1xNB8OtGen4PHWLMXkAAJqlTYscl/re/QgFBgDUxtV0AICAVGk2K3dKinKnpKjSbDY6HQAwTGlxkTbOS9fGeekqLS4yOh0AbkYxD8C9JqxzHgNecmLGTKcxgOZh+P1JTmO4X+0D7zj8DvA/3E0AwL0iW7G0HgBwWeFRoSytBwA3YGYeAOBXOi9d4jQGgEBT+8A7Dr8D/A8H4PkZDsADAAAAAN/FAXgAAAAAAPgpinkA8EPmcrPS3ktT2ntpMpdzojsAAIC/oZgHAD80e8dspzEAAAgcVZYK5a08oLyVB1RlqTA6HbgZxTwA97LkS2tGVn8s+UZnAwAAELDOZx50GsM/UMwDcK8Nk5zH8KrFQxY7jQEAQGCoslSo/FSRyk8VyVbFmef+iHvmAcAPxYTFaNUdq4xOAwAAGOTc2i9ks9kka5Ws3xYr/n8HGJ0S3IyZeQDuY8mXKiukbw9IVVZpwjqjMwIAAAhI1m+LZTKZZAoLliQFRTKP628o5gG4z4ZJUnCI1KGPFBQqRbYyOiMAAICAFNo+2mkM/xGQxfyWLVs0btw4JSQkKDIyUh06dNCgQYP00ksv6cKFC24fr7S0VG+++aamTZumvn37qm3btgoNDVXr1q3Vu3dvTZ06Ve+++66qqqrcPjYAAACAwBM3tbfCOrZQWMcWipva2+h04AEmm80WMKchnDt3TikpKdq6daskqUePHkpKSlJeXp527dqlyspKxcfHKzMzU0OHDm3yeKdPn9bvfvc7rVy5UoWFhZKkjh076sYbb1TLli317bffas+ePbJYLJKkG264QRkZGUpKSmr0mGazWbGxsSooKFBMTEyTvwegQSz5lw69m7COmXkAAACggVyt6QKmmC8pKdGtt96q7OxsBQcHa+XKlUpLS7N//ciRIxo5cqQOHz6ssLAwbd++XcnJyU0a88knn9S8efMkSa1bt9aKFSs0duxYmUwme5sLFy5o9uzZyszMlCTFxsbqgw8+UL9+/Ro1JsU8AAAAgCpLhf06uraTe7Fn3oe4WtMFzDL7WbNmKTs7W5L09NNPOxTykpSYmKisrCxFRESovLxcY8aMUX5+vtvGf/PNNzVu3DiHQl6S2rRpo4yMDI0aNUqSVFBQoJ/97GeyWq1uGxsAAABAYDm39gv71XTn1n5hdDrwgIAo5nNycrR69WpJUvv27fXoo486bZeQkKDp06dLql6SP3/+fLeMf/vtt2vw4MH1tqk91r///W+9/fbbbhkbAAAAgacg74yWTB2vRT8dpT//5lGVFhcZnRK8zPptsdMY/iMgivlFixbZD5ebMGGCwsLCLtt2ypQp9njZsmX2/exNcccdd1yxTa9evdSpUyf789/+9rcmjwt4nSVfWjOy+mPJNzobAAACUmlxkV6b9T8qt5TIVlWlb786os0LnzU6LXhRxcVS2coqZSutlGycZu+v/L6Yt1qtDrPcVzrYrm/fvmrVqpUkqbi4WFlZWY0ee9KkScrKytJ9993nUvsuXbrY4xMnTjR6XMAwNYff1Y0BAIDXbF74rGy1bkmycWNSwDnz8j4pLEgKkmzWSk6z91N+X8zv3btXFy9etD/feOON9bY3mUwObbZt29bosa+99loNGzZM8fHxLrWvfTVdSAgHVAAAAKBxQiMi7XFYZKRGzZlrYDYwgslkkiksWKawYA6/81N+X8zn5OTY4/DwcIel7JfTrVs3p+972jfffGOP+/bt67VxAbew5EvWUumb3dLpz6XRy4zOCACAgDRqzlxd1bWbwqOi1em6XvqfZasVEd3C6LTgRe0f6uc0hn/x+x/RHDx40B537NjRpXdqF/y13/ekr7/+Wt9++639ecKECV4ZF3CbDZOk84elsO/+sfD2g9LULcbmBABAAIqIbqGJTy0wOg0YKKR1hDo9OcjoNOBhfj8zn5eXZ49r9sJfSe12ZrPZK9fE/d///Z89HjNmjHr27OnxMQHA31SazTr2s/v075sG6Nh996nSbDY6JQAAvK7KUqG8lQeUt/KAqiwVRqcDD/H7Yr6wsNAeh4eHu/RORETEZfvwhKKiIi1ZskSSFB0drd/97ncuv1tWViaz2ezwAQwxYZ3Urld1fFXP6mfAy07MmKmyI0ckSWWHj+jEjJkGZwQAgPedzzzoNIZ/8ftl9rWvlqvvSrra6rYrKSlRmzZt3JpXbY8//rh9if2yZct0zTXXuPzu/PnzNW/ePA9lBjRAZCvp540/MBIAAACA6/x+Zj4y8tJJnuXl5S69U7ddVFSUW3OqbevWrXr55ZclSQ8++KBSUlIa9H56eroKCgrsn+PHj3siTbcpsFRvWfjhvL8q6cn3dPxiicEZwW24Yx7NQOelSxSemChJCv9BojovXWJwRgAAeF/byb2cxvAvfj8z37JlS3tcVlbm0julpaWX7cOd/vWvf+mnP/2pbDab7rnnHntR3xDh4eEubx9oDmav36/VqQMkSSXllbrz5Y904Mk7DM4KblH3jnkOv4MBgmNidM2f/2R0GgAAGCooMkTtpvUxOg14mN8X8+3atbPH+fn5Lr1TUFBgj2NiYhQaGurutHT06FH913/9l8xms4YPH67169crODjY7eMAAAAgsJQWF2nzwmclVV9Tx7V0gH/y+2X2vXpdWlZy6tQpl945efKk0/fd5euvv9aQIUN0+vRp3XnnnXrrrbdc3s/v6xZP7GuPo8KC9e5DyQZmA7eqfeAdh98BAGCYmkK+bgzAv/j9zHxSUpI9Lisr08mTJx3ukXfm6NGjTt93h6+//lqDBw/WN998oxEjRuiNN97wqWXyTRUbWb3K4fMn/svgTOB2ka1YWg8AAAB4id/PzA8YMECtW7e2P2dnZ9fb3mazObQZNmyY23I5duyYhgwZYi/k33zzzYAq5AEAAOB5o+bMdRoD8C9+X8yHhoZq9OjR9uf333+/3vb79++3762Pjo7W8OHD3ZLHsWPHNHjwYOXm5mr48OH1FvKTJk3S7bff7pZxASCQlJ88qX/fNED/vmmAymttmQKAQBIR3ULjn5iv8U/MZ7884Mf8vpiXpIcfflhBQdXf6oYNG+q9oi4jI8MeP/DAAw5X2zVWbm6uhgwZotzcXA0bNkxvvfVWvTPyu3btuuIPHQAA3/f13fc4jQEAAPxNQBTzffr0UWpqqiTpzJkzWrRokdN2R48e1YoVKyRJcXFxSk9Pd9rOarVq8uTJatmypfr27asDBw5cduzc3FwNHjxYx44d07Bhw7Rp0yaW1gMAAAAAmsRks9lsRifhDSUlJUpOTta+ffsUEhKilStX2gt8STpy5IhGjhypw4cPKywsTNu3b1dysvOT1letWqWf//zn9ufk5GR9+OGH32v3zTffaPDgwfr6668lSbfffrtLhfwHH3wgi8WixvzWmM1mxcbGqqCgQDExMQ1+HwB8WfnJk/YZ+W6b3lLYFQ48BQAAaG5cren8/jT7GlFRUdq2bZtSUlKUlZWltLQ0LViwQElJScrLy9OuXbtUUVGh+Ph4ZWRkXLaQd8ZkMjn99Tlz5tgLeUnavn17k78PoFmy5Et/nijlHZSu6in9dEP16faAl4V16qQen+w1Og0AAACPC4hl9jXatWunrVu3avPmzRozZoxKS0u1efNmffHFF+rfv78WLlyof/3rX1c8fG7y5Mm67777FB0drRtuuEFLlixx2q6+vfmAX/nTWOn4Hqm0QDrzhbRhktEZAQAAAH4tYJbZBwqW2cMQT7WRqiovPV+TzJ3zAAAAQCO4WtMF1Mw8AA8JjZZM3/1xYgqWJqwzNh8AAADAz1HMA2i6+3dJ4S2liFhp1n72ywMAAAAeFjAH4AHwoNZdpce+MToLBLBKs1m5qWkq++ILKThY17z5hiJ79DA6LQB1mM9btOGZTyRJE35zk2LaRhqckX8qLS7S5oXPSpJGzZmriOgWBmcEwBOYmQcA+LwTM2ZWF/KSVFmpY2PuNTYhAE7VFPJ1Y7hXTSFfNwbgXyjm4VUFFqskKXX1XnsMAAAAAGgYinl41ez1++3x9MxPDcwEgD/pvHSJwnv3rn74bpk9gOZnwm9uchrDvUbNmes0BuBf2DMPAPB5wTExSnjjL0anAeAKYtpG6n9eutXoNPxeRHQLjX9ivtFpAPAwZubhVYsn9rXHKyb3NzATAAAAAPBdzMzDq2IjQyVJq1MHGJwJAAAAAPguinkAgM+rNJt1YsZMSdX754NjYgzOCEBdZSVWvbvsc50/VaK2HaN154N9FB4VanRaAOCzWGYPAPB5NYV83RhA85G1PEfnT5VIks6fKlbW8hyDMwIA30YxDwAAAACAj6GYBwD4vPj5z6n00CGVHjqk+PnPGZ0OACeG35+kth2jJEltO0Zr+P1JBmcEAL7NZLPZbEYnAfcxm82KjY1VQUGBYtgzCiBA5E5JcXjumrHWoEwAAACaxtWajpl5AAAAAAB8DMU8vKrAYpUkpa7ea48BoKlYZg80f+bzFv3h4Q/1h4c/lPm8xeh0/FppcZE2zkvXxnnpKi0uMjodAB5CMQ+vmr1+vz2envmpgZkA8Cen03+tiJ49FdGzp06n/9rodAA4seGZT5zGcL/NC591GgPwLxTzAAAAAAD4GIp5eNXiiX3t8YrJ/Q3MBIA/6bx0idMYQPMx4Tc3OY3hfqPmzHUaA/AvnGbvZzjNHgAAAAB8l6s1XYgXcwIAAADgQaXFRfZ98qPmzFVEdAuDMwLgKSyzBwAAAPwEh98BgYNiHgAAAAAAH0MxDwAAAPgJDr8DAgd75gEAAOBRZSVWZS3PkSQNvz9J4VGhBmcEAL6PmXkAAAB4VE0hXzeG+7FnHggcFPMAAAAAAPgYinkAAAB41PD7k5zGcD/2zAOBw2Sz2WxGJ+FtW7Zs0dq1a5Wdna3Tp08rNjZWCQkJGjdunFJSUtSmTRuPjp+Xl6cZM2Zo48aNkqQdO3Zo8ODBbunbbDYrNjZWBQUFiomJcUufAAAAAADvcLWmC6iZ+XPnzunOO+/UXXfdpb/85S8KCwvTyJEjdd1112nv3r165JFHdP311+v999/3WA7/93//p169etkLeQAAAAAAGipgivmSkhINGzZMW7duVXBwsF577TV9+eWXev3117Vz504dOnRIP/jBD3T69GmNGDFCH330kVvHP336tEaPHq2f/exnys/Pd2vfAAAAAIDAEjDF/KxZs5SdnS1Jevrpp5WWlubw9cTERGVlZSkiIkLl5eUaM2aM24ruNWvWqFevXtq8ebP69eunTz75xC39AgAAAAACU0AU8zk5OVq9erUkqX379nr00UedtktISND06dMlVS/Jnz9/vlvGnz17tiwWi5577jn985//1A033OCWfgEAUqXZrNwpKcqdkqJKs9nodADAUKXFRdo4L10b56WrtLjI6HQAeFBAFPOLFi1SVVWVJGnChAkKCwu7bNspU6bY42XLlslisTR5/B//+Mf67LPPlJ6erpCQkCb3BwC45MSMmU5jAAhE3DMPBA6/L+atVqvefvtt+/PQoUPrbd+3b1+1atVKklRcXKysrKwm57BlyxZdd911Te7H1xVYrEpdvdceAwCAwFBWYtWmRfu0adE+lZXwbwAAcAe/L+b37t2rixcv2p9vvPHGetubTCaHNtu2bfNYboFmeuan9nj2+v0GZgLAn3ReusRpDKD5yFqe4zSG+3HPPBA4/H7Nd07Opb8wwsPD1alTpyu+061bN6fvAwCan+CYGHXNWGt0GgDQLEREt9D4J9xz7hOA5s3vZ+YPHjxojzt27OjSO7UL/trvo2lWTO5vjxdP7GtgJgAAwJuG35/kNAYANJ7fz8zn5eXZ45q98FdSu53ZbJbValVoaKibMwMAuEOl2Ww/+K7z0iUKjokxOCMAdYVHheruR/oZnQYQEKosFTqfWT0h2XZyLwVF+n3JF7D8fma+sLDQHoeHh7v0TkRExGX7aG7KyspkNpsdPs0Ve+YBeAKn2QMAcElNIV83hv/x+2K+9tVy9V1JV1vddiUlJW7NyZ3mz5+v2NhY+6dLly5GpwQAAAAA8DC/L+YjIyPtcXl5uUvv1G0XFRXl1pzcKT09XQUFBfbP8ePHjU7pstgzD8ATOM0eAIBL2k7u5TSG//H7DRQtW7a0x2VlZS69U1paetk+mpvw8HCXtw8YLTYyVKtTB9hjAHAHTrMHAOCSoMgQtZvWx+g04AV+PzPfrl07e5yfn+/SOwUFBfY4JiaGw+/cpMBiVerqvfYYAAAAANA4fl/M9+p1aWnJqVOnXHrn5MmTTt9H03AAHgAAAAC4h98X80lJl+4yLSsrcyjUL+fo0aNO3wcAAAAAoDnw+2J+wIABat26tf05Ozu73vY2m82hzbBhwzyWW6DhADwAAAAAcA+/L+ZDQ0M1evRo+/P7779fb/v9+/fb99ZHR0dr+PDhnkwvoHAAHgAAAAC4h98X85L08MMPKyio+lvdsGFDvVfUZWRk2OMHHnjA4Wo7AAAAAACag4Ao5vv06aPU1FRJ0pkzZ7Ro0SKn7Y4ePaoVK1ZIkuLi4pSenu60ndVq1eTJk9WyZUv17dtXBw4c8EziAAAAAAA4ERDFvCS98sor6tevnyTp8ccf1+rVqx2+fuTIEQ0fPlylpaUKCwvTm2++6bDXvrbMzEytW7dORUVF+uyzzzRjxgyP5w8AAAAAQI0QoxPwlqioKG3btk0pKSnKyspSWlqaFixYoKSkJOXl5WnXrl2qqKhQfHy8MjIylJyc7HLfJpOp3q9/+eWXev755y/79eeff15r1qyxP9999926++67XR4fAAAAKC0u0uaFz0qSRs2Zq4joFgZnBMCTTDabzWZ0Et72zjvvaM2aNdq3b59Onz6tmJgYde/eXWPHjlVqaqratGlT7/tWq1WpqanatGmTEhMTtXbtWvXp0+ey7Xfu3KkhQ4a4nN8TTzyhJ5980uX2tZnNZsXGxqqgoEAxMTGN6gMAAAC+Z+M8xy2i45+Yb1AmAJrC1ZouYGbma7vrrrt01113Nfr90NBQrVu3zuX2gwcPVgD+zAQAAAAA4CEBs2ceAOCfKs1m5U5JUe6UFFWazUanAwCGueOB2Tp77KjOHjuqOx6YbXQ6ADyMYh4A4NNOzJjpNAaAQPPe7xfrqmsSdNU1CXrv94uNTgeAhwXkMnsAAAAA8EdVlgqdzzwoSWo7uZeCIin5/BUz8wAAn9Z56RKnMQAEmlFz5jqNEVhqCvm6MfwPP6YBAPi04JgYdc1Ya3QaAGC4iOgWnGAPBBBm5gEAAADAT7Sd3MtpDP/DzDwAAAAA+ImgyBC1m9bH6DTgBczMAwAAAADgYyjmAQAAAADwMRTzAAAAAAD4GIp5AAAAAAB8DMU8AAAAAAA+hmIeAAAAAAAfw9V0AAAAAOAnqiwVOp95UFL1PfNBkZR8/oqZeQAAAADwEzWFfN0Y/odiHgAAAAAAH0MxDwAAAAB+oMpSIVulTeWnimSrsqnt5F5GpwQPYgMFAAAAAPiB85kHZQo2KaxjC0liv7yfY2YeAAAAAAAfQzEPAAAAAH6g9rJ6ltj7P9ZdAAAAAIAfCIoMUbtpfYxOA17CzDwAAAAAAD6GYh4AAAAAAB9DMQ8AAAAAgI+hmAcAAAAAwMdQzAMAAAAA4GMo5gEAAAAA8DEU8wAAAAAA+BiKeQAAAAAAfExAFvNbtmzRuHHjlJCQoMjISHXo0EGDBg3SSy+9pAsXLvjt2AAAAAAA/2Cy2Ww2o5PwlnPnziklJUVbt26VJPXo0UNJSUnKy8vTrl27VFlZqfj4eGVmZmro0KE+ObbZbFZsbKwKCgoUExPjrvQBAAAAAF7gak0XMMV8SUmJbr31VmVnZys4OFgrV65UWlqa/etHjhzRyJEjdfjwYYWFhWn79u1KTk72ubEp5gEAAADAd7la0wXMMvtZs2YpOztbkvT00087FNOSlJiYqKysLEVERKi8vFxjxoxRfn6+z48NAAAAAPA/AVHM5+TkaPXq1ZKk9u3b69FHH3XaLiEhQdOnT5dUvSx+/vz5Pj02AAAAAMA/BUQxv2jRIlVVVUmSJkyYoLCwsMu2nTJlij1etmyZLBaLz44NAAAAAPBPfl/MW61Wvf322/bnKx0u17dvX7Vq1UqSVFxcrKysLJ8cGwAAAADgv/y+mN+7d68uXrxof77xxhvrbW8ymRzabNu2zSfHBgAAAAD4L78v5nNycuxxeHi4OnXqdMV3unXr5vR9XxobAAAAAOC//L6YP3jwoD3u2LGjS+/ULrprv+9LYwMAAAAA/JffF/N5eXn2uGY/+pXUbmc2m2W1Wn1ubAAAAACA/woxOgFPKywstMfh4eEuvRMREfG9Ptq0adMsxy4rK1NZWZn9uaCgQFL1DwIAAAAAAL6lppaz2Wz1tvP7Yr729W71XQtXW912JSUljSrmvTH2/PnzNW/evO/9epcuXVzMEgAAAADQ3BQWFio2NvayX/f7Yj4yMtIel5eXu/RO3XZRUVHNduz09HQ98sgj9ueqqipduHBBbdu2lclkakC2AAAAAACj2Ww2FRYWXvHcNb8v5lu2bGmPay9Hr09paell+2huY4eHh39vCb+r+/MBAAAAAM1PfTPyNfz+ALx27drZ4/z8fJfeqdl3LkkxMTEKDQ31ubEBAAAAAP7L74v5Xr162eNTp0659M7Jkyedvu9LYwMAAAAA/JffF/NJSUn2uKyszKFYvpyjR486fd+XxgYAAAAA+C+/L+YHDBig1q1b25+zs7PrbW+z2RzaDBs2zCfHBgAAAAD4L78v5kNDQzV69Gj78/vvv19v+/3799v3t0dHR2v48OE+OTYAAAAAwH/5fTEvSQ8//LCCgqq/1Q0bNtR7TVxGRoY9fuCBBxyul/O1sQEAAAAA/ikgivk+ffooNTVVknTmzBktWrTIabujR49qxYoVkqS4uDilp6c7bWe1WjV58mS1bNlSffv21YEDB7w2NgAAAAAAJpvNZjM6CW8oKSlRcnKy9u3bp5CQEK1cudJeZEvSkSNHNHLkSB0+fFhhYWHavn27kpOTnfa1atUq/fznP7c/Jycn68MPP/TK2AAAAAAABMTMvCRFRUVp27ZtGj58uCoqKpSWlqaePXtq/PjxGjJkiHr16qXDhw8rPj5e7777boOKaZPJZNjYAAAAAIDAEzAz87W98847WrNmjfbt26fTp08rJiZG3bt319ixY5Wamqo2bdrU+77ValVqaqo2bdqkxMRErV27Vn369PHK2AAAAAAABGQxDwAAAACALwuYZfYAAAAAAPgLinkAAAAAAHwMxTwAAAAAAD6GYh4AAAAAAB9DMQ8AAAAAgI+hmAcAAAAAwMdQzAMAAAAA4GMo5gEAAAAA8DEU8wAAAAAA+BiKeQAAAAAAfAzFPAAAAAAAPoZiHgAAAAAAH0MxDwAAAACAj6GYBwAAAADAx1DMAwAAAADgY/4/NaGq+1c6coEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "H = data.incidence_hyperedges.to_dense().numpy()\n", - "labels = data.y.numpy()\n", - "n_steps=11\n", - "Ep, Np = data['mp_homophily']['Ep'].numpy(), data['mp_homophily']['Np'].numpy()\n", - "num_steps = transform_config['mp_homophily']['num_steps']\n", - "\n", - "\n", - "isolated_nodes = np.where(H.sum(0) == 1)[0]\n", - "# Get non-isolated nodes\n", - "non_isolated_nodes = np.array(list(set(np.arange(H.shape[0])) - set(isolated_nodes)))\n", - "\n", - "# Sort non-isolated nodes by their class node\n", - "non_isolated_nodes = non_isolated_nodes[np.argsort(labels[non_isolated_nodes])]\n", - "\n", - "# Extract the class node probability distribution for non-isolated nodes\n", - "sorted_labels = labels[non_isolated_nodes]\n", - "avr_class_homophily_types = []\n", - "types = []\n", - "for step in range(num_steps):\n", - " type = Np[step, non_isolated_nodes, sorted_labels]\n", - "\n", - " # Within every class, sort the nodes by their class node probability distribution\n", - " avr_class_type = []\n", - " \n", - " for i in np.unique(sorted_labels):\n", - " idx = np.where(sorted_labels == i)[0]\n", - " type[idx] = type[idx][np.argsort(type[idx])]\n", - " avr_class_type.append(np.mean(type[idx]))\n", - " \n", - " avr_class_homophily_types.append(avr_class_type)\n", - " types.append(type)\n", - "\n", - "\n", - "settings = {\n", - " 'font.family': 'serif',\n", - " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", - " 'figure.figsize': (5.5, 3.399186938124422),\n", - " 'figure.constrained_layout.use': True,\n", - " 'figure.autolayout': False,\n", - " 'font.size': 16,\n", - " 'axes.labelsize': 24,\n", - " 'legend.fontsize': 24,\n", - " 'xtick.labelsize': 24,\n", - " 'ytick.labelsize': 24,\n", - " 'axes.titlesize': 24}\n", - "\n", - "step = 0 \n", - "\n", - "with plt.rc_context(settings):\n", - " fig = plot_homophily_scatter(avr_class_homophily_types[step], data.y, non_isolated_nodes, types[step], step=step, save_to=None)\n", - " plt.close()\n", - "fig\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# MP Homophily for cell-complex" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Transform parameters are the same, using existing data_dir: /home/lev/projects/TopoBenchmark/datasets/graph/cocitation/Cora/graph2cell_lifting_mp_homophily/1963906553\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torch_geometric/data/in_memory_dataset.py:300: UserWarning: It is not recommended to directly access the internal storage format `data` of an 'InMemoryDataset'. If you are absolutely certain what you are doing, access the internal storage via `InMemoryDataset._data` instead to suppress this warning. Alternatively, you can access stacked individual attributes of every graph via `dataset.{attr_name}`.\n", - " warnings.warn(msg)\n" - ] - } - ], - "source": [ - "from omegaconf import OmegaConf, open_dict\n", - "# Recompose config with additional override of model equivalent to \"\"model=cell/cwn\"\" which will force to load approriate tranforms\n", - "cfg = hydra.compose(config_name=\"run.yaml\", overrides=[\"dataset=graph/cocitation_cora\", \"model=cell/cwn\"], return_hydra_config=True)\n", - "loader = hydra.utils.instantiate(cfg.dataset.loader)\n", - "dataset, dataset_dir = loader.load()\n", - "\n", - "data = dataset.data\n", - "\n", - "# Create transform config\n", - "\n", - "# Add one more transform into Omegaconf dict\n", - "\n", - "new_transform = {\n", - " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", - " 'transform_name': 'MessagePassingHomophily',\n", - " 'transform_type': 'data manipulation',\n", - " 'num_steps': 3,\n", - " 'incidence_field': \"incidence_1\",\n", - " }\n", - "# Use open_dict to temporarily disable struct mode\n", - "with open_dict(cfg.transforms):\n", - " cfg.transforms[\"mp_homophily\"] = OmegaConf.create(new_transform)\n", - "\n", - "# Apply transform\n", - "processed_dataset = PreProcessor(dataset, dataset_dir, cfg.transforms)\n", - "data = processed_dataset.data\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxiElEQVR4nOzdeVhU1f8H8PewL7IqIqCCuKOYW66ppVbuu+KOYKmZmktZ5q+vmZVWaqaWu6JoiSbuornvK7gvaYobqKDCDDsDc39/EDeGGWAYZhhmeL+eZ57OvXPuOR9Qic+cTSIIggAiIiIiIiIiMhpmhg6AiIiIiIiIiIqHyTwRERERERGRkWEyT0RERERERGRkmMwTERERERERGRkm80RERERERERGhsk8ERERERERkZFhMk9ERERERERkZCwMHQDplkKhQGxsLBwcHCCRSAwdDhERERERERWDIAhISkqCp6cnzMwKHn9nMm9iYmNjUa1aNUOHQURERERERCXw5MkTVK1atcD3mcybGAcHBwA5f/COjo4GjoaIiIiIiIiKQyaToVq1amJuVxAm8yYmd2q9o6Mjk3kiIiIiIiIjVdSyaW6AR0RERERERGRkmMwTERERERERGRkm80RERERERERGhsk8ERERERERkZFhMk9ERERERERkZJjMExERERERERkZJvNERERERERERobJPBEREREREZGRYTJPREREREREZGSYzBMREREREREZGSbzREREREREREaGyTwRERERERGRkWEyT0RERERERGRkym0yHx8fj4CAAEgkEkgkEhw7dkzvfWZlZeGPP/5A9+7d4e3tDRsbG3h5eaFjx45YuXIlUlNT9R4DERERERERGb9ymcz/8ccf8PPzw5YtW0qtz+joaLz11lsYOnQo9u3bB1dXV/Tu3RvVq1fH0aNHMXbsWDRt2hSXL18utZiIiIiIiIjIOFkYOoDS9OzZM4wbNw67du2ChUXpfelxcXF455138OjRI9jb22PLli3o1q2b+P6FCxfQs2dP/P333+jUqRPOnj2LunXrllp8REREREREZFzKzch8SEgI/Pz8sGvXLjRt2hQXL14stb6HDh2KR48eAQBWrVqllMgDQIsWLRAeHg6JRIKEhAT06dMHWVlZpRYfERERERERGZdyk8xPnjwZaWlp+P7773H+/Hk0bty4VPrdu3cvDh8+DABo0qQJhgwZorZe27Zt0atXLwDAnTt3sGrVqlKJj4iIiIiIiIxPuUnm33rrLVy5cgUzZswo1Sn28+fPF8sjRowotO7IkSPVPkdEpM6wYcPETTxzX2+//bbGz586dQoNGjRQaaM4bt++jZkzZ6JDhw7w8PCAnZ0dLC0t4erqisaNGyMoKAi7d++GIAjF/OqIiIiIqDDlZs38nj17Sr3PuLg4nDhxQrzu1KlTofXfeecdsfzgwQNERUWhadOmeouPiIzXsWPH8Pvvv2v17OvXrzF9+nSsXbtW6yQ7OzsbU6dOxdKlS6FQKAAAFhYW6NWrF5ydnXHgwAFcvXoVV69eRUhICJo1a4Zt27bB29tbq/6IiIiISFm5GZk3hIMHD4q/5NrY2KBBgwaF1ndxcUHNmjXF6/379+s1PiIyTllZWZgwYYJWz4aGhqJevXpYs2YN3N3dtY7hs88+w+LFi8WfcQCwevVqbNu2DWvWrEFUVBQqVqwovhcZGYmOHTsiJSVF6z6JiIiI6D9M5vXo+vXrYrl69eowNzcv8pkaNWqofZ6IKNeiRYtw8+ZNmJkV70f43r17MXLkSCQlJeHrr7/GsWPHtOo/Pj4eS5YsUbpnbm6OgIAA8bpy5cp47733lOo8ePAAa9eu1apPIiIiIlLGZF6Pbt26JZa9vLw0eiZvvbzPExEBQGxsLGbPng2JRILRo0cX61m5XI73338fN27cwKxZs2Btba1VDOfPn1c5ccPNzQ02NjZK96pXr67ybN6lR0RERESkvXKzZt4Q4uPjxbKzs7NGz+St9/LlSx1HRNqQpskxbPVZ3IhJMnQoJdbA0xG/f9gKTraWhg5F2fPrwLquwIynwNyqQEYpfq+rNAICdwO2zqXXZz5RL6IQuD9Qo7pPfnuC5ORkOLd1xj7FPpX3Lz6/CP/1/mqfVWQqYDbEDH1O9QFOAZnxmWrrFfR8rsRziSr3XmW+Unnuxe0XKvX239lfZPvq2Fva49zQc2j1eyukyLWbqm8mMcOWHltQ17WuVs+XR8mRkXgybLihwyiUmb096kZewt/NmkPBZRxGy8zeHjV27YSVhoMfpe3l0ySEfVt6xxqXF30/bQLPWi6GDkOt9JRkbPl6BuIfRxs6FJ0ImP0DqtYrfMmvrmUlpOP5gotAKZ+4XWmcP2x8nEu3UwPhyLweJSX9l5BoOgKWd2Qr7/MFycjIgEwmU3qRbo0NvWQSiTwA3IyVYWzoJUOHoWplB8P1/fwaEGbYZEXTRD75VjKkF6QwszVDlUFVit2PmZVufuRbV1H9eZadnq1yT5GmULlnVdlKJzFoQyEoELAnoOiKJCrriTyZDkVKCqL79DV0GAXa8n0Z/H+nCdg+/7KhQyjQrvnfmUwiDwBhsz4v9T5f/BJV6ok8ALxcXn6WKjOZ16O0tDSxbGWl2S+weeulpqYWWX/u3LlwcnISX9WqVSt+oERU5glZAp5tfAYAqNy3MiycDDexytbHFnZ17JTuKVIVyHylPNKf/jRd+UFzwKVD2RyBISIiIjI2TOb1yNbWVixnZqqfzppf3np2dnaF1MwxY8YMSKVS8fXkyZPiB0qFWjGiORp6ORg6DJ1o4OmIFSOaGzoMVWOOG67vKo2AgI2G6x/A+i7ri6zz8q+XyIjNgHVVa1TsVLHI+vpWbXw12PraKt17tuEZMuMzkZ2ajddHXyPlzn9TniVWEngFe8HW2zZ/U6XGTGKGsB5hBuvfGFXbZNh/G1R+mNnbo8aO7YYOo0CDviyD/+80AX0/bWLoEArU69OZcKteo+iKRiJg9g+l3qf7J00Nsqi70rjiL+czVhJB20OGTYBEIhHLR48exdtvv63T9lu3bo1z584BAPr27Yvw8PAin5k8eTJ++eUXAICnpydiYmKK1adMJoOTkxOkUikcHR2LHzQRlTlPnz5F/fr1kZycjOPHj6N9+/YAgJCQEAQFBSnV7dChg8a71D98+FDpBI1cmv5vQaFQYOfOnfjuu+8QGRmpto6zszPGjh2L8ePHq90Qj4iIiIiUaZrTcQM8PXJzcxPLiYmJGj0jlUrFcqVKlXQdEhEZoSlTpiA5ORlDhw4VE3lDUygUWL58OebPn4/o6Jw1hU5OTujcuTOcnZ1x+vRp3LlzB4mJiVizZg2ysrIwc+ZMuLhwmj0RERGRLnCavR75+fmJZU1H2PPWy/s8EZVPBw8exJ9//gkHBwf89NNPhg4HQM7I/dChQ/Hxxx+LibyLiwsuXbqEP//8E6tXr8a1a9fQq1cvADkncyxYsADNmjXD48ePDRk6ERERkclgMq9H/v7/rdd4/PgxsrNVd3vO78GDB2qfJ6LyJzMzExMnTgQA/O9//4Onp6eBI8oREhKCsDDltecDBgxArVq1xGtLS0t89tlnSnWio6PxwQcflEqMRERERKaOybwevfvuuzAzy/kWp6en4+bNm4XWT0hIwP3798XrLl266DU+IirbFixYgL///hv169fHJ598YuhwRKtXr1a516CB6tm1DRs2VLl38OBBcTSfiIiIiLTHZF6PKleurLS+9fDhw4XWP3r0qFj29fVF06ZN9RYbEZV9uUnz7du3YWVlBYlEovTKv/kdABw/flypzsOHD3Ue17Vr11TuOTs7q9xzcnJS+/yVK1d0HBERERFR+cMN8PTs008/FXeWDg0NxZQpUwqsu2HDBrE8bdo0fYdGRGXc6NGj8fr16wLfv3nzJvbv3690r2rVqggICBCvC0qoSyIrK0vlXnEORtH0qE4iIiIiKhiTeS0kJiZi2LBhOH78OJo2bYpNmzahWrVqaut2794dHTt2xJEjR3D58mVs3rwZgwcPVql3+vRp7Nq1CwBQr149jBkzRq9fA2lOmibH2NBLAHLOnHeytTRwRGRKZJkyTD46GQCw6J1FcLT67/iRL7/8stBnQ0JCVJL5mjVrYv78+TqPMy9vb2/8/fffSvcSEhJU6qm7l/s8EREREZUMp9lrYeHChdi3bx9SUlJw8uRJzJw5s9D6v//+u/jL6wcffIB9+/YpvX/hwgX069cPgiDA2dkZO3bsgIUFP2cpK3IT+fxlIl3ITeTzl8uyAQMGqNy7fv26yr0bN26o3KtatSpatGihl7iIiIiIypNykzHeuXMH8+bNK/D9efPmISQkRLzu06cP+vTpo1HbEomk0Pfd3d1x5MgRDBkyBBcuXED37t3RpEkT1K5dG0+ePMG5c+cgCALq1KmDP/74A3Xr1tWoXyodWQoBd58nAQDqVHEwcDQmKC0RCBsOWNoCw7YaOhrSwBdffIEtW7bg3r174r1t27Zh+vTpqFevHoCcqfQ//vij0nPm5ub47bffxI1BiYiIiEh75SaZf/78OdavX1/g+wcOHFC69vHxKTCZnzp1KiIjI3Hs2DE0a9YM3377bZH9+/r64vTp09iyZQtCQ0Nx48YN3Lx5ExUrVkT79u0xZMgQjBgxAnZ2dsX6uqgU5F0LXIx1waShsOGGjsCgFr2zSGmafVEuXbqEzZs3A4DaEzLu37+PTz/9FEDOlPuPPvpI6f3vv/9eXIcvk8nU9pH7PAC4urqqTPevUKECTp48iVGjRonT/GUyGVq2bIn33nsPTk5OOH36NO7cuSM+4+npieXLl6Nnz55Ffo1ERMZm2LBh+P3335XudejQQdw3Ka/ExEScPXsWZ8+exfnz5/HgwQO8ePECqampsLKygouLC+rWrYu2bdti2LBh4oekmrp+/Tq2bNmCw4cP4/Hjx3j58iWsrKxQqVIleHh4oHHjxmjatCm6dOkCLy+vknzZRGRgEqE4uxZRmSeTyeDk5ASpVApHR8eiH6AiDV55Vul685jWBorERIX0yPkvR+Y1EhISonYXe3XU/SLp4+ODR48eadyft7d3oTvinzt3Dlu3bsX58+fxzz//QCqVQi6Xo0KFCvDy8kKjRo3QrVs39O/fnx9WEpFJOnbsGN555x2V+wUl8z169MDevXvF67Zt28Lf3x/Jyck4cOAA4uPjxfdyTy5ZsmRJkT9DpVIpJkyYgE2bNkEQBEgkErRs2RKNGjWCIAi4cuUKLl68KNb/+eefMXny5OJ/wUSkd5rmdOVmZJ5IWytGNFfaAI90LGBjuR+dL45Ro0Zh1KhRWj+v66PqWrVqhVatWum0TTJdycnJ+OOPP7Bv3z7cuHFDHI20tbVFpUqV4Ofnh/feew/Dhw9HxYoVNWrz1KlTGDt2LG7duqV0vzhjFbdv38bGjRtx6tQp3L17V/xQysHBAdWrV0eTJk3Qr18/9OjRo8ildWSaMlLliFieszdI13H+sLbL2Qw3KysLEyZM0KpNKysrhIeHo3v37uK9pKQk9O/fHwcPHgSQ8/d47dq1uHfvHo4cOVLgnkpxcXF49913xaNDXVxcsHPnTrRr106p3s6dOzFo0CCeKkJkIrhwkagITraW2DymNTaPac2d7PXB1hkYtYej8kQmLiIiAjVr1sSYMWOwY8cO/PPPP6hVqxY++OADvPHGG3j48CH27duHyZMno2bNmti0aVOh7b1+/RoffPAB2rdvr5LIayo7OxuffPIJGjZsiO+//x4nTpzAy5cv0bVrV4wcORJ2dna4evUqQkJC0KtXL7z55pvFmtlCpiM3kc9fXrRoEW7evKnVXiCff/65UiIPAA4ODggNDYW1tbXS/ZMnT+LXX38tsK3g4GAxkQeA3377TSWRB4DevXtj6tSpxY6ViMomJvNERAYky5Qh+EAwgg8EQ5apfg07kSFky2R4NDIQj0YGIruA/RU0FRkZiV69eiEuLk6817lzZ1y8eBHLly/HqVOnMGLECPE9qVSKESNGqJz+kis0NBT16tXDmjVr4O7urnVcn332GRYvXgyFQiHeW716NbZt24Y1a9YgKipKaYZAZGQkOnbsiJSUFK37JNMRGxuL2bNnQyKRYPTo0cV+fuTIkWrvu7u7o1OnTir3Q0ND1dbfuXOn0rR9Nzc3DBo0qMB+p0+fjoMHD6J///7FjJiIyhom80RkWGmJOevmNw00dCQFik+Nx29XfkN8anzRlYvJGI+mM0b6/DM0VU8nTFRb1sY333yDrKwspXsBAQEwNzcXr4cPV15uIwgCvvrqK5W29u7di5EjRyIpKQlff/212jXJmoiPj8eSJUuU7pmbmyMgIEC8rly5Mt577z2lOg8ePMDatWu16pOMV9dx/irlqVOnIjk5GSNHjkSbNm00bmvGjBkIDw9HrVq1CqyjbtO7v//+W23dZcuWKV23a9eu0JkCLi4u6Ny5M6pVq6ZhxERUVjGZJyLDMoL18vFp8Vh2dRni05gIGiv+GRrW6dOnVe7lTySqV6+uUicqKkplFFwul+P999/HjRs3MGvWLJXpyJo6f/68ygcMbm5usLGxKTKuEydOaNUnGS9rO0v0mdoUfaY2hbWdJY4cOYKwsDA4OTnhhx9+KFZbbdu2Rd++fQutY2trq3Iv7wySXK9fvxbX1+eqXbt2seIhIuPFZJ6IyIDmtJ2DO6/v4M7rO5jTdo6hwyESVV26RG1ZG0lJSSr3LC2V9yCxsrJS+2z+IxTff/997N+/HzVr1tR7TAXFVdCxjlQ+yOVycdO72bNnl2ipR0Fevnypcq9hw4Yq9yIjI1WSfGdnZxw6dAgBAQGoXr06rK2t4eTkhDfeeAOfffYZYmJidB4vERkGk3kiMqzevwLPrwEvVM9MLw9mnJyhtkxkaOaOjvDesB7eG9bDvIRHndatW1flXv5kWl2C7ODggMqVKyvdUzdiqa+YCoqrsOnRZHpkr9KwasoJrJpyArJXafj5559x+/Zt+Pv74+OPP9ZLn5GRkSr38u4rkSvvpne5Fi9ejHfffRePHz9Gr1690KRJE8hkMly7dg3z589HnTp1EB4erpe4iah08Wg6IjKsnR8DVRrlnDNfRn1x8gsAwLhD42BpptsTDfKu4b4SdwWdtqpuekQlJ1fIAeT8We7qs8vA0ZQ/n3zyCT744AOle9evX0fv3r2VrvMbO3as0rp6XWratCneeustnDp1SryXmJiIJ0+eKC0ByB+XhYUFPvzwQ73ERGVT2Lf/nc2+/PO9mBOWM4tq6dKlBR4VVxL37t1TSeabN2+OsWPHqtTNeyZ9rmfPnmHgwIEICwuDRCKBIAgYMGCAmMCnpqZi8ODBOH78OFq3bq3z+Imo9DCZJyIqQmJGIgAgIT1B733FpcYVXYm0lvtnSUXLlsnEje+qLl1SotH50aNH4+HDh5g7dy6ys7MB5Iwetm7dGq1atcLt27fxzTffKD3Tv39/fPvtt9p/ARrYunUr+vTpg/Pnz4v3xo8fjyVLlsDFxQWbN2/G0aNHxfdsbW2xYsUKNG7cWK9xUdkVdmIpkpOTMXToULRv314vfcyYMQOCIIjXDRo0wO7du9UuA5FKpWrbmDJlCiQSCQBAIpFgypQpSqPxcrkcU6ZMwblz53QcPRGVJibzRGRYARvL/CZ4ztbOSEhPgIuNi05H5nM/HMhS5GzCVcm2kvjLF+mWXCFHQnoCnK2dDR2K0Xjy0UfIuHtPLPsUce57UebMmYNhw4Zh/vz5WL9+PeLj49G5c2elOhKJBD179sSECRPw7rvvlqg/TVSpUgVnzpzBzp078d133yEyMhJ79uzBnj17lOo5Oztj7NixGD9+vNoN8ci0Bfzfmwj79iJuPbqIqHvH4eDggJ9++kkvfS1atAjbtm0Tr7t06YLff/8dLi4uauvnfjiWl0QiQdOmTZXuNW/eXBylz3X+/Hn8/fffapecEJFxYDJPRIZl6wyM2lNkNUOa124eAvYEYHnn5fCr6KezdoMPBCtdr32fx13py61XtxCwJwDz2s0zdChGIzeRz1/W1qVLl/Dll1/i0KFDYkLRvn17+Pn5ITo6GgcPHoRCocC+ffsgl8vh4OCAVq1albjfwigUCixfvhzz589HdHQ0AMDJyQmdO3eGs7MzTp8+jTt37iAxMRFr1qxBVlYWZs6cWWBiRabJsaItAn9ohUaNxgAA/ve//8HT01Pn/SxZsgRTp04FkLPx4jfffIPp06cX+iGvo5oZM66uriqnPNjY2MDZ2RkJCcozzC5cuMBknsiIcQM8oiJI0+QYvPIsBq88C2ma3NDhmJa0RGBNF2BedSC08GN6TNGidxapLROVBdZ5jreyLuFRVzt37kSbNm1w8OBBMZGfP38+jh8/jmXLlmH//v34/fffAQBZWVmIiIhA27ZtERISUqJ+CyMIAoYOHYqPP/5YTORdXFxw6dIl/Pnnn1i9ejWuXbuGXr16AcjZXXzBggVo1qwZHj9+rLe4qOzJSJVjdN+p+Pvvv1GvXj188sknOm0/KysLEydOxKRJkyAIApo1a4ZLly7h888/L3K2lpubm8o9Ozs7tXXt7e1V7sXFcWkXkTFjMk9UhLGhl9SWSQfChgPxt3LK8X8bNhYDcLRyxNr312Lt+2vhaFWy3cKJdClbJoOQlQVFaiogCPD86Uet20pMTERgYCDk8v8+DLW3t8ekSZOU6gUEBCgdN6dQKDBu3Dgx0da1kJAQhIWFKd0bMGCA0k71lpaW+Oyzz5TqREdHq2zmR6YtYvl1HDy/AwBw584dWFlZQSKRKL2CgoJUnjt+/LhSnYcPH6rUefjwIdq3b4+lS5fC2toa33//Pc6dOwd/f3+lenv37sXq1auRnJysdF/d/g15p9IXdV9fG0wSUengNHsiIiJS8nTCRGRGR8Ps3xG+ZzO+hPeG9Vq1tXXrVpVNumrXrq12M6+GDRvi/v374nVGRgZCQkIwe/ZsrfouzOrVq1XuNWjQQG1M+R08eBDR0dGoUaOGzuOisqlziz5ITs35e1yrueq58jdv3sT+/fuV7lWtWhUBAQHitZOTk9L7GzduxIQJEyCVStGqVSusXbsW9evXV9v/Tz/9hOPHj6Nz586oUKGCeL9ly5awsrJCZmameC81NVVtG+ru62O5ABGVHibzRIWQpsmRla3A3RfJqFPFAWsC3zR0SKYlYCPw++Cc0Xm3srtmz83WDR+98RHcbFWnM5Jx4J9h8SgyMqD498x1MzVTc4tD3TnYzs7Oauuqu3/lypUS9V8QTePKn4DlunLlCpP5ciAjVQ5FtgId6g5CRU97dP+4EaztVD+ICgkJUUnma9asifnz56vUffXqFcaNG4c///wTtra2WLBgASZPngwzs+JPmHV2dkafPn2wZcsW8V5CQgIyMjKU1s2npaWprJcHoLcd+cn4CYKAdevW4bPPPsPr16/F+x06dMCxY8c0auPgzv3YMGc5rsXewdP0eCQlJ8HMzAyOjo6oVasWWrdujaFDh6JZs2YatXfx4kWEhobiyJEjiI2NRWpqKipXrgw/Pz/06tULo0aNKnCZialiMk9UiLGhl2BhbgY/z5wp0E62uj1jvNyzdQZG7y+ymqG52blhfOPxhg6DSoB/hsWTcf8+YGYGKBRQpKej6tIlWreVlZWlcq8404DzjjjqUnHiUkdfcVHZErH8OszMzeBWLWc0XF0iX1wdO3YUP0xKS0vDtGnTMG3aNK3bmzlzJrZv3y4uZREEAVFRUUpnyOc/tx4A+vbtiypVqmjdrzF48uQJzpw5gzNnziAyMhKPHz/Gq1evkJGRATs7O1SqVAkNGzZE586dMWTIELV7EOR3+vRprF+/HmfPnsXTp0+RkpICZ2dnVK9eHZ06dUJgYCD8/DTbLPf27dvYuHEjTp06hbt370IqlYobgFavXh1NmjRBv3790KNHj1I97ebWrVsYN24cTp48qdXzL1++REBAAI4cOSLec7F1wpAhQ5CRkYHdu3fj7NmzOHv2LBYuXIjhw4dj1apVsLGxUdteRkYGxo8fj3Xr1kEQBFhaWqJnz55wd3fHwYMHceDAARw4cADz5s1DSEgIOnbsqFXcxojJPFEhshQC7j7PGZ2qU8XBwNEQEZUOiUQCSZ4R+ZKcMe/t7a1yT90IYUH31T2vC97e3vj7b+W9OtT1X1Cs+oqLTF9BZ8Nrq1GjRvjpp58wefJk8d6iRYvQqlUr8Ti6n3/+WekZNzc3LFy4UKdxlEX169dHSkoKAMDa2hqdOnVCjRo18PTpUxw4cADR0dGIjo7G7t27MXPmTMyePVs8USA/mUyG4OBgpaMDvby8MGTIEMTFxWHHjh2IjIzEggUL8PHHH2PhwoUF7kmQnZ2NqVOnYunSpVAoFAAACwsL9OrVC87Ozjhw4ACuXr2Kq1evIiQkBM2aNcO2bdv0/nMnLS0N3377LX766SfI5XJUqVIFz58/L1YbWVlZ6NatGy5evCjeszK3xM7RK9BuSc6ykyNHjqBTp07i+xs3bkRmZqbKPia57fXp00dp5svmzZvRr18/Mea33noLUVFRePLkCbp37449e/YotW/SBDIpUqlUACBIpVJDh2IS+v92SvCftV/wn7Vf6P/bKUOHQ0Skd1lSqfBg4CDhll8D4U6z5kLG06clau/vv/8WzMzMBADiy9bWVkhPT1epW6NGDaV6AIQDBw4U2n50dLTKM5r8ejNz5kyVZ4KCglTqHT9+XKVe1apVhezsbM2/CWS00lMyhe0LIoXtCyKF9JRMpfcuXrwoTJs2TZg2bZrQpUsXtX9Pct//7bffxOe8vb3V/p3V5BUdHV1grKtXrxYcHR3Fuq1btxYmTJggtGzZUqmN+vXrC9evX9fXt6xMsbe3FwAIvr6+wp07d5Teu3v3rlCtWjWV7/EXX3yh0o5cLhfeeecdpXpubm5CXFycWGfVqlVK7w8cOLDAuKZMmaLSb0hIiPj+ixcvhIoVKyq97+vrKyQnJ+vgu1KwTz/9VAAgeHh4CH/88Yewbt06lTg7dOhQaBvh4eEqz7xZrZEgf52mVM/Dw0Ol3rVr11Ta++GHH5Tq1K1bV6XOxo0blep4enoafS6kaU7HZN7EMJnXrYAVZ5RepGOpCYKwrnvOKzXB0NGUOmmGVAjaHyQE7Q8SpBn8N0tlw4P+A4RbdesJt+rWEx70H6CTNr/44guVX9q+//57pTqbNm1SqVPYL8O5tE3mk5KShNq1ays94+joKNy+fVusk5GRIXTv3l2pjrm5ubBr167ifxPI5KhLdAp65U2A9JXMC4IgxMfHC/PmzRPeeecdwdPTU7CyshLs7OwEHx8foX///sKmTZuEzMzMQtswJbnJ/OHDh9W+v2PHDpXvsUQiEaKiooTEuOfCklGDhCWjBgmLFy5QqTd58mSltuRyueDk5KRUZ/Xq1Sp9xsXFCRYWFio/V9LSlJPdIUOGqPS5ePFi3X1z1Jg2bZowadIkMY/QJpmfNm2ayjMB/VR/luf/kAmAsHTpUqU6UqlU/DPMfQ0ZMkSlrVu3bqm09b///U/7b0QZoGlOx2n2RIVYMaK5eBzdihHNDRyNYehjvVmuGwt6Y+z66zjzTwIQ5CLej46Oho+PT6HPart27I033tDbhlrFNfnoZKXy2vfXGi4Yon+l37ihtlwSc+fOhZOTE+bMmSPuqP3ll18iIiICDRo0QHR0NP766y+xvrm5OcaPH48FCxaobe/7778XN2SSyWRq63z66adi2dXVFV9++aXS+xUqVMDJkycxatQocfqmTCZDy5Yt8d5778HJyQmnT5/GnTt3xGc8PT2xfPly9OzZU4vvApmaUaNGYdSoUcV+Tt0RdbpSqVIlfP755/j888/11oex8fLyKnANdY8ePeDg4ICkfzf8BABBELBp0yZ4v3oMeXo6AGDx99+pPNukSROlawsLC/j7++PUqVPivdmzZ2PUqFFK0+3Pnz+vsmeHm5ubynrx6tWrq/R54sQJTJw4saAvtcTmzJkDW1vbErWR93uZK+sf1XtWVlYq9/L/PN+yZYu4TCJX1apVVZ6rVq2ayr2QkBB8/fXXpbrXgCEwmScqhJOtJTaPaV10RROmy/VmudLS0jB79mwsmH8SWdlCaXwZRKSpfze+E8s68sUXX2DUqFHYvHkzjhw5gps3b+LKlSs4c+YMrK2t4eXlhXr16qFDhw4YMmSI0pnz+a1cuRKPHj0qtL+8HwR4e3urJPMA4O7ujoiICJw7dw5bt27F+fPn8c8//2DPnj2Qy+WoUKEC/Pz80KhRI3Tr1g39+/cvdzslExmzjRs3olKlSgW+b25ujtq1ayMqKkrp/t9//w3PCjlJYLZCgSevElSeVbd5YP57T548wcGDB9GlSxfxnrpkV91RnZoku7pW0kQeAOrWVT2dKDk9ReWeuq+lVq1aStcREREqdSpWrKhyr0KFCrC0tBQ3gQSAx48f48aNG/D399cobmPFZJ6INOLr64t9+/Yp/ZC+d+8eOnXqhCdPngAAkpOTMW3aNMTHx2Pu3Llq24mIiMDHH3+M6OhoVHF3x/MXL0ol/rJo0TuLxNH5Re8sMmgsRLl8tofjYb/+OeXwbUXULp4qVapg8uTJSht1aUPXI5utWrVCq1atdNom6V6KNAM3T8SgQXsv2DtZF/0AlVml9WfZp0+fIuuoS2AVCgWq+NbD8wf3kJKRCYWaky7U7byurq1Tp04pJfPqkl11Cb4myW5ZNGLECHz77bdKm4f+/fqhUp2MjAzcu3dP6V61atXQo0cPpXvqTmGoUKGC2n4dHByUjtADgMuXL5t8Mq+7j9yJyKStWrVK5X9AtWvXxpIlqkdW/fDDD7h8+bLK/Rs3bqBbt254/PgxJkyYgDv5dpIuDfYlPDNblxytHLH2/bVY+/5aOFppv1s4kS7Z1q2L+jdvoP7NG7BV80snkaGkSjNxce9DpEp5LKCxK0t/li9fvlS517BhQ/T7cjaq1muAqnXqq30udxf6vNQdeZn/96GmTZvirbfeUrqXmJgoDozkun79utK1hYUFPvzwQ/VfRBni5uaGPXv2wKOKh3jv4csn+Prrr/Hy5Us8e/YMEydOFJdcATlT53ft2qX0YUhWVpbaGVjW1uo//FF3//79+yX5UowCk3miAkjT5Ojz60nU/HIf/L8+gCcJqUU/ZKI0WW+WV+56s/yysrLQokULXLhwAUuWLIGTVcmm2Ht7e0PI2ciz0NfKlSvFZ8rS/whlmTIEHwhG8IFgyDL1O3WOSBPJkZG4Xa8+bterj2Q1IyJE5U1Gqhw7FkZhx8IoZKTKi36AjIpMJsM///yjdE8ikWDYsGGwsa+AQbPmInjez2oHAtSNnKsbYY+Pj1e5t3XrVrRs2VLp3vjx4/Hw4UNIpVKsWLECR48eFd+ztbXF2rVr0bhxY02/NINqXqMRjg5bh9mdJ8Hz36R+9uzZcHNzg6enJ1atWgUgZ1Bo0aJFuH37tsrXVtCSgoKO+7OwUJ1wrutjIMsiJvNEBRgbegnXY3J+KKdmZqP7LycNHJFhbNy4EZs3by7w/dz1ZvnlP78ZyFl/f/bsWTRt2jTnRthwncVZkOzsbPzwww8AcjaTGTZsmN771FT+DfCobJDHxSF+yVLI4+IMHUqpezJsuNoykT6V5X9zEcuvqy2TadiyZQuys7OV7k2cOBGNGjUSr83MzNC+fXuVZ6OjozW6py6hrFKlCs6cOYPw8HA0a9YMALBnzx7UqFEDzs7OGDduHARBgLOzMz7//HPcuXMHI0aMKPbXZyj355/CgpNrseDkWsQ+fwYA8PHxQWBgIIYMGYLKlSsDyFmuuWzZMoSEhKj8OeQduc+roA3t1N1PTk4uyZdhFJjME1Gh+vTpozIdLL+C1pvlZ21tDbO8G2optB/laNCggdp1Z/mFhYWJ06ymT5+udpMZoryy4uPx8tdfkaVmNIWIdK8s/5tTZAuIf5KM+CfJUHDDVpOSkpKCOXPmKN0bNGgQFi5cqFJX3T4fBw8eVLqOiYnB7du3VeqpG0lWKBRYvnw5pk2bJq4Ld3JyQv/+/TF69GjUq1cPQM70+zVr1mDx4sVKa9DLslevXqH3+nFYdWELZBk5yXSrVq1w/fp1hISE4Pfff8fVq1dRo0YNADmDPxMnTkT37t2VNrAraLNRQc3+BQXdL0tLK/WFG+CRSYiNjcXx48dx6dIl3Lp1C7GxsXj9+jVev34NuVwOBwcHeHt7o2nTpujfvz+6dOlS4Cd7o0aNwvr169W+J5mteq9Bgwa4oeHxTblrxXfv3q10/+jRo3j77bc1aqMsKmi9WaHSEoEXt7TuU5PvuSAImDdvHoCcXatHjx6tdX/6wA3wqKyptmmjOCJfbdNGA0dDpOyvtTcBALsWX4G5RemMR6UlZYpJ/IuHMoR8cbpU+jV12Vk5H/j/tfYmhn1d+ptPKhQKjBw5Eo8fPwaQM6r7+eef47vvvlMedPjXe++9h4kTJyrtE7R3714sXboUwcHBiI+Px4cffqh2IMPJyUnpWhAEDB06FGFhYeI9FxcXXLhwQdzgTi6XY8CAAdi1axdevnyJBQsWIDw8HMeOHVN7ZF1ZMnXqVNx7pbzWfeLEiUob11WpUgXBwcH46quvxHsHDhzATz/9JJ484uiofi+h/CP4udTtV5D/e2+KmMyTSZg0aRK2bcvZddnCwgKdOnVC27ZtERcXh5MnTyIuLg6vX7/G5cuXsWbNGrz55pvYsmVLkWeZ60pWVhYWLVqEr7/+WuW8TGNX2HqzQoUNB/R89ufu3bvFDWSmTp2qdudZQ8rdAI+orKjQrBnq31EdWSIqC9KT5Ur/LW2KbAEpiRkG6dtUGeLPUi6XY+TIkQgPDweQk1iuXr0a3bt3L/S5xYsXw8fHB3PmzEFiYiKAnCQ199x3T09PTJkyBT///LPSc/mPxgsJCVFK5AFgwIABSjvVW1pa4rPPPsOuXbvEe9HR0fjggw/w119/Fe8LLkWpqan4448/VO43aNBA5Z66QZ8VK1aIybyFhQW8vb1VNsHLyFD/b1Dd/cKOODUV5TKZ37NnD9avX4/IyEg8e/YMTk5O8PX1xcCBAxEYGAhXV1e99HvlyhWEhITg+PHjePLkCZKSklCpUiXUrFkTffv21Wvf5YW7uzuOHDkCPz8/8V5SUhICAwOxfft28d7Fixfx3nvv4fLly3qfgnP+/HmMHTsWV69ehaOjI2xtbZGWlqbXPkuTJuvNCuTmB+BJkdW0lXs8nouLCz766CO99UNERPpnU8ES6cly2FSwLLWReUEQkJ6Sk3Da2FsWOKuPiic7SyH+WZam+Ph49O/fHydP5uyDNHjwYCxdulTt2eXqTJ06FWPGjMGRI0dw8+ZNyGQyODs7o2nTpnj77bdx6tQplWQ+/+9Dq1evVmlX02T34MGDiI6OFqeolzW3b99Wmiqfy9nZWaN7jx8/RkJCAlxcXADk7PyfP5kvaB28uvviHk0mrFwl8y9fvkRgYCD27dsHIOecxx49eiA+Ph6nTp3C2bNn8dNPPyE0NBSdOnXSWb9JSUkYO3as+EmVvb093nrrLbi6uuLRo0c4ffo0Tp48iR9++AErV65Er169dNZ3efPzzz8rJfJAzrmTq1evxr59+5Q+tbt37x62bNmCoKAgvcUjk8nQpk0bKBQKDBkyBAsXLkSrVq3UHrVhjIqz3kxJwiMg5jIg19/GJEeOHMG5c+cA5Hy4kH/HfUOLSY7BwN0DAQBbe26FVwUvA0dEuWI/mw4AePLhGEjK0R4LQnY2sl+9AgCYV6wISQE7BhPpmvDvL/+xn01HzX17C6z3XnADbPn+InpNagy36vr/mS57lYbNcy5AUACVvR3Qc+IbsLYrPz8T9Cn+cRK2fH8R7wWrJrH6cuTIEYwYMQKxsbHw8PDA8uXL1f7OvXr1apgL2Ug5cwQAMOLHxXBycxffr1ChAnr16qX22RcvXqjca968udL1tWvXVOqoS2wLmiJ+5cqVMpvMq5vqDqhfz17Q2vfMzP+OK+zSpYvSYByQsyY/v5SUFKXngJxz69V9SGJqyk0yn5qaii5duiAyMhLm5uZYuXIlgoODxffv3buHHj164O7du+jWrRsOHTqEdu3albjfpKQktGvXDlevXgUABAUF4ZdfflFKLO7evYtBgwbh6tWr6NevH8LDw5nQF1ONGjXQpEmTAqdIubq6ok6dOipndl65cqXANr0/3yOWHW0scO3r94sdl0KhQK1atfDbb7/p9AOisqC4682UrGin10QeAL7//nsAOR+effLJJ3rtSxu5iXxu+cyQMwaMhvLK/nf6ZPbr14YNxICy1eyDQaRvuf/2yoqwby8iKzNnDXTcoyRELL+OPlNNf6TP1GRmZuKrr77C/PnzoVAoEBgYiEWLFqlNoIGcI2xd7e0we2APAEDo9EmYsC5Mbd387t69q3Tt5OSELl26KN1Tl/AWlNiqkz9pLUu8vb3V3k9ISFBZ2qpuQz87Ozu4ubmJ1wEBAZgyZYrSzvZPnz5Vee7JE9VZnoGBgUX/PmoCyk0yP2nSJHG3yDlz5igl8kDOOYcRERFo0KAB0tPT0a9fP9y7d6/Af+iaGjdunJjId+3aFWvWrFGZolWnTh389ddfqF+/Pl6/fo1hw4bh7t278PDwKFHf5clPP/1UZB11P/ysrKz0EY7IwcEB169f13s/pU3b9Wal5cKFCzh8+DCAnH+DXL5CxWHu7Izs169h7uparkbms/IdC2bx79FBRPomyOU5/+ZK+DsXUX7Xrl3DiBEjcO3aNVSrVg0rV65USa41kZqaih9//BGNGjVCv379CqyX+7tHrhEjRqic+OPt7a1yfK+6xLag3esLSpjLgipVqqBt27Y4fVp5o8jr16+jSZMmSvfUbWTcu3dvpQTcyckJ//d//yeuoweAqKgolecuX76sEse0adO0+hqMjlAOXLt2TTAzMxMACO7u7kJGRkaBdT/55BMBgABAmD59eon6vXLliiCRSMT2IiMjC60/Z84csW5QUJBWfUqlUgGAIJVKtXreVD179kywsLAQv7+5r7/++kulbmBgoABAaPDVPsH78z1Cg//tFx6/TtFZLN7e3ipxHD16VGft61tcXJzQrl07MfbBgwcLL1++LF4jz64JwiwnQZjlqPK9ACBER0eXKMZevXoJAARra2shNja2RG3py9Okp0Lr31sLrX9vLTxNemrocCiP1Bs3hFt16wmpN24YOpRSlfH0qXCn+ZvCneZvChlP+XeSSo+m/+aSE9OF87vuC8mJ6aUSl/RlqrDik2PCrx8dEbbOuyikp2SWSr/lQWn8WT579kywsrJS+3tGUa9q1aoKS0YNEpaMGiQkxj0X4uPjBQBC5cqVhbS0NLX9Xb58Wen3/ipVqgivX79WqTdz5kyV/tT93n/8+HGVelWrVhWys7N1/r0qyLp161Ri6NChQ6HPREVFCXZ2dkrPNG/eXCk3iY2NVfl9uGLFisLjx49V2svMzBTeffddpbrbtm0T309LSxPefPNN8T1ra2vhwIEDOvseGIqmOV25SOZHjRol/gFPmjSp0LqRkZFiXXt7eyE1NVXrfr/88kuxLS8vryLr37p1S6xvY2OjVULOZF5VfHy88N5776n8MBo5cqTa+rnJ/MuXL4Vvv/1WaNmypeDo6ChYWloKbm5uQsuWLYVp06YJt27d0ioeY07mDx8+LHh6egoABA8PD2Hnzp1q661atUrYvHlzwQ2teU8Q5lYThLnVdJ7MX79+Xfyf6bhx47Ruh8qv8pjMZ0mlQvSQocKd5m8K0UOHCln8fwiVovL4b470Lzo6WqtEHoBQvXp1IezrL4Swr78Q0pKTxGQegDBo0CAhJUV5kOfevXtC7dq1xTqOjo7CiRMn1MaVlJSkVDe3/u3bt8U6GRkZQvfu3ZXqmJubC7t27dLr9+z169fCtGnTxFeXLl3UfqCQt4663/fOnTsn1KtXT+V7GhgYKAwdOlSoXLmy0nvNmjUT7ty5U2BcaWlp4u/nAARLS0uhf//+wvjx44U6deooxXbw4EF9fotKDZP5f2VmZgouLi7iH3JByUcuhUIhODs7q/3kp7jefvttsZ3333+/yPrZ2dmCjY2N+ExoaGix+2Qyn+PEiRPCxx9/LPTo0UNwcHBQ+oHRoEEDYdWqVYJCoVD7bO4PC1dXV8Hb21sIDg4WPvroI+GNN95Q+YE2ZswYlR/oRTHGZD4jI0OYPn26OMMlMDBQSEhIKLA+AMHb27vgBv9N5PWRzA8dOlQAIFhYWAgPHjzQuh0qv8pjYvFwxEhxVP5O8zeFhyPUf9hJpA/l8d8c6V9Jknk3J0cxmQ/7+gulZB7Imek7ZMgQYcKECULXrl2VZgA0a9ZMuHz5cqGxPX/+XCVRdnR0FAYMGCCMHj1aJRH29PTUeyKv7fcsMDBQbVtyuVzYsWOHEBQUJDRu3FhwdXUVLC0tBUtLS6FixYpC8+bNhbFjxwr79+8v8Hfy/M6fPy98/PHHgp+fn+Ds7CxYWVkJXl5ewrvvvissWbJESE5O1uF3w7A0zelMfs38hQsXlNacNGvWrND6EokEzZo1E9e87N+/v9C1MYXJu6OlJmt2zczM4OrqitjYWADAuXPnMHz4cK36Lu8iIyPx66+/qtz38fFB165d0bp16yKPl/nggw/w3XffwcLiv38m8+bNw4wZM8TrlStX4v79+9i3b5/JrYvPpav1Zkrc/ID4W7oJMI8HDx6IZ7cOGTKkzO72SmWbhZsbKn38MSzybMJDRPrDf3NU1jk7OyM8PByRkZGIjIxEdHQ0/vrrL0ilUjg5OaFWrVpo27YtevbsiR49ehT5O6a7uzsiIiJw7tw5bN26FefPn8c///yDPXv2QC6Xo0KFCvDz80OjRo3QrVs39O/fH3Z2dnr/On18fIq1GV9hLCws0Lt3b/Tu3Vsn7QFAixYt0KJFC521ZxJK57MFw1m2bJn4yZG1tbVGz3zwwQfiM61atdK677yfqg0ZMkSjZ6pXry4+0759+2L3yZH5/2RlZQlPnz4VVq5cKXh4eCh9imhmZiZ88sknQlZWlspzkZGRha61adu2rcqnknPmzNE4LmMamS/JerNCR+ZTEwRhXXdBWNdd7bPajsyPGTNGACBIJBKtl0EQlUecZk9E9J+05CSlafZEpY0j8/+6deu/0T9PT0+NnvHy+u+857zPF5ebmxvu3LkDAHit4RFHiXmOZXn48KHWfRNgbm4OLy8vfPjhh+jSpQuaN2+OuH93a1YoFPjll19gbW2NH374Qem5pk0LP3Zm+PDhKrt0Lly4EDNmzIC5iZ3LnJ6erp8jUGydgVH/Hv0XVPin15qKjY3F+vXrAQB9+/ZF/fr1ddIuUXlg7ugIn983GToMIqIywca+AgbNmmvoMIiKZPLJfHx8vFjW9Ji5vPVkMhnkcjkstTieqFmzZjh58iQA9ccv5Pf06VPIZDKlvkk3qlWrhpkzZ6qcN75o0SJMnToV7u7uAIAnCal4f8FRpP57BKidlTkOTGmPai7/TW164403VNpPSEjApUuX0LJlS/19Ecbs+XVg+VsAgGUXM3E/IefcXjTsr7b6999/D0dHR/F6/vz5RXaxYMECZGRkAIDSESZlhSxThuCIYPydqHwcjZ2FHcJ7h8OrglcBTxLpXrZMhocjA5H57wfOIjMz+GwPh23duoYJjKgMePk0CWHfXhSvLa3NMfh/LeBY0baQp8gUSONfIGTax8jKSAcAuPvWxoD/mwMb+woGjqx0ZMsykXz+GSq09IC5o3bLRzOfJSNuyWUAQOWJTWDlUXrfO13Eb2zMiq5i3JKSksSytbW1Rs/Y2NgU2EZx9OrVSyzHxMSI59wXZPfu3UrXycnJRfaRkZEBmUym9CL1evTooXIvMzMTR44cEa+7/3JSTOQBIDUzG91/Oan0TMWKFdW2//TpU90EaopWdhCLYTflWHA2M+e16g+11VetWoUFCxaIr6K8fv0aK1euBAC89957Re6NYQiTj05WSeQBIDUrFQN3DzRARFSePZ0wUTWRBwCFAg/7qf+Qjai82PL9JaVreUa2UnJPpSs54TXObN2E5ATNZrmWROj0SWIiDwAvHtzDrvnf6b1ffSrO9y87KRNJhx8jO0n7WZm5iXz+cmnQRfzGxuST+bS0NLGs6QZl+eulpqZq1fc777yD1q1bi9dfffVVgZtKJCUlYd68eYXGoc7cuXPh5OQkvqpVq6ZVrOVB1apV1d5//Phxsdop6M+woPvGLHcjFG1eBS0TOTbKHsIsx/9eGrRVFFdXVyQlJUEQBBw4cEDH3wUiIiIylJSE1zj75x9IKYVk3hTx+2faTD6Zt7X9b0qUpmt/89crye6RGzduFHeyj4iIwOjRo1VG+h8/foxu3brh8ePHSuv6804zLsiMGTMglUrF15MnT7SO1VjFxcWhR48eWLZsWaH1Cvrzz/uhyef+GUg6tgbZaTkzHOyszLH3k3ZK9V+9eqW2nbx7LVA+Y46rvx8UUbpxGNCidxahrrPq1GU7Czts7bnVABFReVZ16RJY1aun+oaZGXzCt5V+QERlyKAvmytdW1qbI+D/3jRQNFSaRvy4GBbW/83QdfetjV6fzjRgRMan8sQmasukHya/Zt7BwUEs566nLUp6errSdd42isvX1xdnzpxBv379cOvWLaxbtw5bt27FW2+9BRcXF8TExODMmTMQBAHTpk2Dj48PJk6cCECzNf7W1tYaLx8wVampqdi7dy+kUik++uijAutdv35d7f16eX6hvXc9Cq/Pb8e+Xz4vcP371atXVe45OjqiefPmamoTAKCKP/C11NBRGJSjlSP+7P2nocMgApCz4V3NHdsNHQZRmVSpqgM+Xt7R0GGQATi5ueOTDeX3/9WvN+csv3q59jok5tqP+ZpXyBkoe7Xupk7i0pSQnbMn0+vNd1BlWvn4vdzkk3m3PGeW5t0pvjBS6X9Jh6Ojo1ab3+VVt25dXLt2DZs3b8a2bdtw6dIlHDt2DBYWFqhatSrGjh2LsWPHwt/fHz/99JPSc6S58+fP48aNG2jYsKHa99WN3Ht6eqJz584q9//6668Ck/mNGzeq3JswYUKJ/56UGUnPgUvrgOZBgEMVQ0ejX+XpayUiIjJC+5bmbIK7be4smFuYfOqic9lZOZtB7Vs6H0ELlxdaV5Eqz/lvSlah9cq63K+jPDD5fxF+fn5iOTY2VqNnYmJi1D5fEubm5hg2bBiGDRtWaL28MTZu3FgnfZcXcrkcI0aMwL59++Dh4SHeVygUWLBgAUJDQ5XqW1lZYd26dWqT8B9//BEtW7bEe++9J94TBAHfffcdzpw5o1S3ZcuWmDnThKZgJT0Hjs8D6nY1/QS3PH2tRERERijt3+WpabLyPcOvpNI02NDbzM4SipQsmNlblGhk3lCEbEVO/HYmMsCmAZNP5v39/cVyRkYGYmJiilzb/ODBA7XPl4Z//vlHLLdp06ZU+zZWZmb//bC5cuUKatasiffffx/Vq1eHTCbD8ePHER0drfRM3bp1sWLFCnTo0EHpfu458cnJyXj//ffRunVr+Pn5wcLCAidOnMDt27eV6g8dOhS//fZbofsqhIWF4eLF/3bBTUhIUKmzbNky7NmzR7yeOXMmXFxcNPjqiYiIiEyXrYMD0mRS2Do66X1kPv8HBraOTnrtrzRkZ2XlfP80WDbsOrge4pZcRqVgf1h5Gd9xfJkxOcfiuQ5WsyeMiTL5ZL5FixZwcXERE6jIyMhCk3lBEJSOkOvSpYveY8ylUChw7tw5AEDlypXRsSPXa2mievXqiI2NxbFjx3Dx4kVcu3YN165dw6FDh5CamgpLS0u4ubnB19cXjRs3Ro8ePdClSxdYqPkfwsRpn+NkelXE3Y1CLUkc7t+7ix07dog7pVeqVAk1a9ZE27ZtMXLkSLVnzucXERGB9evXF1pny5YtStcTJkxgMm9iZJkyTD46GUDOZniOVkVvcEmkL9kyGZ5OyNmfperSJTDXYMNVIiJD6DbhU2ycMRn9Z8yGu28tvfa1ZfYMpetBs+bqtb/S8OLBP9g4YzK6TfjU0KGQHph8Mm9paYnevXsjJCQEAHD48GGl89/zu3z5sri23t7eHl27di1R/5mZmcjMzIStra046luQc+fO4eXLlwCAESNGqE02ST0PDw8MGTIEQ4YMKVE74zZGwtW7Hly9cz7Ru7yldRFPFC0kJET8+0flV24in1te+/5awwVD5V5uIp9b9t5Q+AeORETlQa9PZ4rnynMXezIG5SJbnDJlCjZs2ACFQoGwsDD89NNPBZ7hvmHDBrE8fvx4paPttDF16lT8+uuvWLRoET755JNC6+ZuflepUiV8+eWXJeqXSGvhH+b8d2N/wFz9vxOTkf3vcYXhHwITLhZel4iIiEyajX0FkxiNp/LD+HY20EKjRo0QFBQEAHjx4gUWLlyott6DBw+wYsUKADkJ9YwZM9TWy91ozcHBAU2aNMG1a9eKjGHTpk3Izs4u9P0dO3YAABYtWiSeTU+la8WI5mrL5Urq63//+xJIijXtV+pL5a9Zjxa9s0htmcgQqi5dorZMRFTW2Lu4ovWAIbB34e/G2ijO98/cwQoOnarD3ME4B3OMPX5tSARBEAwdRGlITU1Fu3btEBUVBQsLC6xcuVJM8AHg3r176NGjB+7evQsrKyscOnQI7dq1U9vW2rVrMXr0aPG6Xbt2OHHihNq6EyZMwK+//goACAoKwsKFC5XOj09JScGiRYswe/ZsyOVy/PTTT/j0U+3XtMhkMjg5OUEqlcKxDK6BjJOlY9P5xxjWsjoqO9oYOpxyRePv/dI3gZd3AbtK5WNkPvUlUKkOR+aJiIiIqEzQNKcrF9PsAcDOzg779+9HYGAgIiIiEBwcjB9//BH+/v6Ij4/HqVOnkJWVBQ8PD2zYsKHARF4diUSiUb1169YhPDwcTZs2hbu7O+Li4nD+/HmkpKTAw8MDS5YsQf/+/bX9Eo1CXFIGfjl8D+/6uTOZL2Uaf+/7rQJWdgCGbwM8G5dafAYReyXna+23ytCREBEREREVS7lJ5gHAzc0N+/btw+7duxESEoKoqCjs2rULjo6OaN68OQYMGICgoKAip7iPGDECR44cwY4dO1C7dm0sWVLwFMW5c+eiW7duOHr0KM6cOYP79+/j1KlTsLKyQpUqVdCxY0f069cP/fv3h4MGR0aQ7kjT5Bi2+ixuxKieu7llXCu08KlogKhMyKMzwLp8G0h6NgFG7ABsnQ0RUamKSY5B3+19kaZIU7pvZ2GH8N7h8KpQ+BGZRCWR9vffeNi7T5H1JHZ28N29C1ZFHNlKVF7E/pOA7fMvAwAqVauAPlOawLocnVldHsU/fogNn01QulfZxxcD//c9bOyN73g2Q8lKSMfzhRcBec61ZdUKcBvtDzPbcpVulrpyM82+vCjr0+xvxEjRY8kp7Jn4Fhp6GfbszsErz+Lcg4LXSj+c170Uo9E/jb/3uaPVY46XbGT+6wL68GkHjNqjfbu6pKuvVY02f7RBUqbqB0UA4GDlgDNDzui0P6K8bjdoCBSyT0teZg4OqHvxgp4jIjIOv447onTtVccZfaY2NVA0VBqWBgcgIyVF5X41P39uhlcMMV+fgZCu/P8da18nuI1pZKCIjJumOV252ACPiIrBoQrQ4Yuc/5q68vS1EhEREZFJ4ci8iSnrI/OdFxzHP/HJqGhvBUtzw36WpBAEvE7JRJZC9Z+Aq70VrAwcn67JsxV4lZKJWm4VcGhaB/13yGn2nGZPBpEtk+FRUDAybt4ssi6n2RMp4zT78ofT7HWD0+x1S9Ocjsm8iSnryXyzOQfxKiXT0GGUaxXtrRD51buGDoOI9OTRyECla+8N6w0UCREREWmDu9lTmeRiZ4VXKZllYmS+vMkdmXexM/Hj5oiIiIiIygEm81SqFg1ujB5LTmF9cAuDb4BX3uRugLdocGP9d5aWCIQNzykHbCwX0+rzkmXKMOHwBPyT+A9qOdfC0k5L4WhV9mbKkGmqunQJnk6YKJaJiIjINHFolIh0LzeRz18uJyYfnYx/Ev8BAPyT+A8mH51s2ICoXDF3dIT3hvXw3rAe5mVwuRURERHpBpN5IiIiIiIiIiPDZJ5KVWUHa3zSqTYqO1gbOpRyp1S/913mAo/P5Ly6lL8zWue0nQNBEJAqT0UNpxpY9M4iQ4dERERFyEiVY8fCKOxYGIWMVLmhw6FS8ud3X2FpUAA2z5qO9JRkQ4dDVCzczd7ElPXd7KmcmFdd+fqLx4aJw0CCDwQrXa99f62BIiEiIk3tWBildN1nalMDRUKlacVHoyBPzzlGtrKPLwbNKn+DEFT2aJrTcWSeiIiIiIiIyMgwmSci3Rt7Un25nMg7rZ5T7ImIjEPXcf5qy2TaKlatBgCoVN0bvT6daeBoiIqH0+xNDKfZExGVb9kymdLRdNzRnoiIyLhwmj0REVE5lJvI5y8TERGRaWEyT+WWNE2OwSvPYvDKs5CmcddanUpLBEJ65LzSEg0dDRERERGRyWEyT+XW2NBLasukA2HD1ZeJSO+qLl2itkxERESmxcLQARAREZHumDs6wnvDekOHQURERHrGkXkqt1aMaK62TDoQsFF9mYiIiIiIdIK72ZsY7mZPRERERERkvLibPREREREREZGJYjJPREREREREZGS4AR6ZvCcJqeiy8BhS5OpXlNhZmePAlPao5mJXypGZiLREYEMf4Nll5fsSM2DsCaCKvyGiKjUxyTHou70v0hRpKu/ZWdghvHc4vCp4GSAyMlVpf/+Nh737FFlPYmcH3927YOXFv39E6shepWHT12ehyHc6raW1OQb/rwUcK9oaJjDSu7hH0QibNR0TQ7ZiyaiBkGdkYPi8X1DZu4ahQzMaWQnpeL7gIpClfF9iZQb3Kc1g4WJjmMDKGY7Mk8nr/svJAhN5AEjNzEb3X06WYkQmJmy4aiIPAIICWNmh9OMpZQN3D1SbyANAalYqBu4eWMoRkal72K+/RvWE1FRE9+mr52iIjFfYtxdVEnkAkGdkI+zbi6UfEJWajV98onQtKBQq96hwL36JUknkAUDIVOS8R6WCyTwRERERERGRkWEyTyZv7yftYG8pKfB9Oytz7P2kXSlGZGICNgIeTVTvS8yAMcdLP55StrXnVtiaqZ+KaWdhh609t5ZyRGTqfMK3aVRPYmeHGju26zkaIuMV8H9vwsxS9b6ltTkC/u/N0g+ISs3web8oXUvMzFTuUeHcP2mqdsG2xMos5z0qFTyazsTwaDoiIiIiIiLjxaPpiIiIiIiIiEwUk3kiIiIiIiIiI8NknoiIyIhky2R4NDIQj0YGIlsmM3Q4REREZCBM5omIiIzI0wkT1ZaJiIiofCmXyfyePXswcOBA+Pr6wtbWFlWqVEGbNm3w888/4/Xr13rrNzIyEpMmTUKzZs3g6uoKS0tLODk5oX79+hg1ahT++usvcD9CIiIiIiIiKkq52s3+5cuXCAwMxL59+wAAdevWhb+/P+Lj43Hq1ClkZ2fDw8MDoaGh6NSpk876TUtLw7hx47BhwwYAgJWVFVq1aoWqVasiMTERZ86cQWJiIgCgY8eO2LRpE6pUqaJVX9zNnojItGXLZOKIfNWlS2DOn/VEREQmRdOcrtwk86mpqWjfvj0iIyNhbm6OlStXIjg4WHz/3r176NGjB+7evQsrKyscOnQI7dqV/OxxQRDQvXt3REREAADatGmDzZs3o1q1amKdlJQUfPbZZ1i2bBkAwM/PD+fPn0eFChWK3R+TeSIiIiIiIuPFo+nymTRpEiIjIwEAc+bMUUrkAaB27dqIiIiAjY0NMjMz0a9fP3G0vCS2bNkiJvIVK1bEnj17lBJ5ALC3t8evv/6Kjh07AgBu3bqFefPmlbhvolKRlgiE9Mh5pSUaOhoiIiKNZKTKsWNhFHYsjEJGqtzQ4RAZFUVaFuJXXkP8ymtQpGUZOpxyq1wk89evX8e6desAAO7u7pg2bZraer6+vhg7diyAnCn5c+fOLXHfmzdvFstDhgyBi4uL2noSiQTjx48Xr0NDQ0vcN1GpCBuuvkxERFSGRSy/rrZMREV7FXpLbZlKV7lI5hcuXAiFQgEACAgIgJWVVYF1R44cKZZ//fVXpKWllajve/fuiWU/P79C6+Z9//Hjx5DxyCEiIiIiIiJSw+STeblcjp07d4rXRW1s16RJEzg7OwPIWcueO0VeWyXZkiAlJaVEfROVioCN6stERERlWNdx/mrLRFS0iiP81JapdFkYOgB9u3DhAhISEsTrZs2aFVpfIpGgWbNmOHz4MABg//796Nevn9b9N2rUCLdu5Uw9yf1vQfK+b2trCzc3N637JSo1ts7AqD2GjoKIiKhYrO0s0WdqU0OHQWSUzGwt4DamkaHDKPdMfmT++vX/1kBZW1vDy8uryGdq1Kih9nltfPzxx5BIJACAP/74Q+mDhbwEQcBvv/0mXvfo0QMWFib/WQsRERERERFpweST+byj3Z6enho9kzfhL2o0vShvvfUWfvjhB0gkErx69Qo9e/bE06dPleqkpqbi448/xpEjRwAATk5OOtl8j4iIiIiIiEyTyQ/9xsfHi+XctfBFyVtPJpNBLpfD0tJS6xg+++wztGzZEt9//z0OHz6MmjVronXr1qhatSoSExNx+vRp8Ri8+vXr4/fff0fNmjW17o/+c+uZFN1/OQUBgL21OfZPbo9qLnaGDsu0JDwCVrTLKY89Cbh4GzaeUiTLlGHcwXG49eoWbC1s8WevP+FVoejZP0TaSI6MxJNh/54YYWYGn+3hsK1b17BBERkp2as0hH17EQAQ8H9vwrGirYEjotIgjX+BdVPHIzszA1a2tpgYshXpKcmwsa9g6NCMSlZCOp4vigTkClhVdUCloIYwszX5tLJMMvmR+aSkJLFsbW2t0TM2NjYFtqEtf39/dO/eHR06dIBcLsfx48exadMm7N27F4mJiWjSpAnCwsJw/fp1NG7cWON2MzIyIJPJlF70n55LTiN3C8KUjGx0/+WkQeMxSbmJfP5yOTD56GTcepUzeyctKw0Ddw80cERkysREHgAUCjzs199wwRAZudxEPn+ZTFvo9EnIzsxQurdv8XwDRWO8XvwSBchzTgrLfJrEo+kMyOST+bxHyxV2JF1e+eulpqaWKIbNmzejZs2amDRpEq5cuYKFCxciOjoaGRkZiIuLQ1hYGDIyMvDBBx9g/PjxePbsmcZtz507F05OTuKrWrVqJYqViIiIiIiIyj6TT+Ztbf+bNpWZmanRM/nr2dlpPy1706ZNGDp0KBISEuDq6oozZ85g8uTJ8PHxgZWVFdzc3DBo0CCcP38efn5+WLlyJRo1aoTz589r1P6MGTMglUrF15MnT7SO1RT9MaalWLazMsfeT8rXyHGpGHtSfbkcWPTOIvhVzDmOxdbCFlt7bjVwRGTKqm3Kc/SjmRl8wrcZLhgiIxfwf2+qLZNpG/HjYphbKc/U7TbpUwNFY7zcP2kKWOakkVZVHXg0nQFJhJIchG4EhgwZgs2bNwPIOUM+KiqqyGcWLVqEKVOmiNeZmZlarZlPSEiAt7e3OE1/2bJlGDduXIH1b926hYYNG0IQBFSuXBk3btwo9vF0MpkMTk5OkEqlcHR0LHbMpkSaJke7H3I2FaxTxQEWZhJsHtPawFGZmLREIOzfqb8BG3OOqSMiIiIiIq1pmtOZ/Mh83mQ4d5O5okilUrHs6Oio9eZ3mzZtEhN5CwsLDB8+vND6fn5+aNGiBQAgLi4OCxcu1KpfyjE29JJYvvu85PsekBphw9WXiYiIiIhIr0w+mffz+2/aR2xsrEbPxMTEqH2+uM6cOSOW69SpgwoVit4ps0mTJmJ59+7dWvdNOeq4//c9XzGiuQEjISIiIiIi0h2TT+b9/f3FckZGhlKiXpAHDx6ofb64Xr58KZZdXFw0esbV1VUsR0dHa903Af/r6YfLT6RIyczG5rGt4GSr/fGCVICAjerLRKRT2TIZHo0MxKORgcjmqSVEJZaRKseOhVHYsTAKGalyQ4dDpSA9JRmb/zcdS4MCsHnWdKSnJBs6JKISM/lkvkWLFkqJdGRkZKH1BUFQqtOlSxet+7a3txfL6enpGj2Tt56Zmcn/8ejV4BXnYG9lDnsrcwxecc7Q4ZgmW2dg1J6cF9fLE+nN0wkT1ZaJSDsRy6+rLZPp2jX/O7x88ggA8PLxIx5JRybB5LNFS0tL9O7dW7w+fPhwofUvX74srq23t7dH165dte7bx8dHLN+/fx+a7DV47949sezl5aV130RERERERGS6TD6ZB4ApU6aIo9xhYWGFHlG3YcMGsTx+/Hilo+2K6/333xfLiYmJOHXqVKH1U1JScPz4cfG6U6dOWvdNUDqGjkfSEZExq7p0idoyEWmnY2B9xD9JRvyTZHQMrG/ocKgU9Pp0JipV8wYAVKruzSPpyCSY/NF0uT744AOsWbMGADB37lx88cUXKnUePHiABg0aID09HZUqVcLdu3fVrnWXy+UIDg7Gjh07UKtWLaxfvx6NGjVSqadQKNCkSRNcu3YNANC+fXscPXq0wOnzM2fOxPfffw8gZ/f7a9euoX794v0PhkfTERERERVux0Llo4r7TG1qoEiIiFTxaLp8Fi9ejKZNc35Qf/XVV1i3bp3S+/fu3UPXrl2Rnp4OKysrhIeHF7hpXWhoKDZu3Ijk5GRcuXIFEyZMUFvPzMwMoaGhcHJyAgCcOHECAwcORFxcnFK9zMxMfPPNN5g7d654b968ecVO5ImIiIiIiKh8KDfJvJ2dHfbv34+uXbsiKysLwcHBqF+/PgYNGoR33nkHfn5+uHv3Ljw8PLB37160a6f5tGyJRFLge40aNcKpU6fwxhtvAADCw8NRvXp1vPPOOxg2bBh69OgBDw8PzJo1C4IgwNHREWvWrMG0adNK/DUTERERkaqu4/zVlomIjEm5mWaf1+7duxESEoKoqCg8e/YMjo6OqFmzJgYMGICgoCCl4+HUkcvlCAoKwo4dO1C7du0Cp9nnpVAosH//fvz555+4cOECYmJikJSUBFtbW1SqVAlvvPEG3n33XQwbNgzOzs5af22cZk9ERERERGS8NM3pymUyb8qYzBMRERERERkvrpknIiIiIiIiMlFM5omIiIiIiIiMjIWhAyAiIiIiIiLjoEjLwqvQWwCAiiP8YGbLlNJQODJPREREREREGslN5POXqfQxmSciIiIiIiIyMkzmiYiIiIiISCMVR/ipLVPp4wIHIiIiIiIi0oiZrQXcxjQydBgEjswTERERERERGR0m80RERERERERGhsk8ERERERERkZFhMk9ERERERERkZLgBHhkdaZocg1eewe1nyRrV3zKuFVr4VNRzVOVEWiIQ0gN4cV35vsQcGHscqOJvkLBKW9SLKATuDxSv7SzsEN47HF4VvAwYFZV1yZGReDJseMkaMTODz/Zw2Natq5ugiEyY7HUaHF1tsXLyccjTs9XW6ftpE3jWcinlyEjf0lOSseXrGYh/HK3ynsTMDMPn/YLK3jUMEJnxUaRlIW71dWTFqP7ebVm1AtxG+8PMlimloXBknozO2NBLGifyADBo+Tk9RlPOhA1XTeQBQMgGVnYo/XgMJG8iDwCpWakYuHuggaIhY1HiRB4AFAo87Ne/5O0QlQPhP0YVWWf7/MulEAmVtl3zv1ObyAOAoFBg4xeflHJExutV6C21iTwAyJ8m41XorVKOiPJiMk9ERERERERkZJjMk9FZMaI56ntU0Lj+lnGt9BhNOROwEXBXM5VeYg6MOV768RjI+i7rla7tLOywtedWA0VDxqLapo0lb8TMDD7h20reDlE50G960yLr9P20SSlEQqWt16cz4VZd/TT63Gn2pJmKI/xg4aX+927LqhVQcYRfKUdEeUkEQRAMHQTpjkwmg5OTE6RSKRwdHQ0dDhERERERERWDpjkdR+aJiIiIiIiIjAyTeSIiIiIiIiIjw2SeiIiIiIiIyMgwmSciIiIiIiIyMkzmiYiIiIiIiIwMk3kiIiIiIiIiI8NknoiIiIiIiMjIWBg6ACIiIiIiIl1JT0nGrvnfAQB6fToTNvYVDBwRkX5wZJ6IiIiIiExGbiKfv0xkapjMExERERERERkZJvNkdKRpcgxeeRaDV56FNE1u6HCIiIiIqAx5f/xkxD18gLiHD/D++MmGDodIb5jMk9EZG3pJbZmIiIiI6MBvi1DZxxeVfXxx4LdFhg6HSG/KZTK/Z88eDBw4EL6+vrC1tUWVKlXQpk0b/Pzzz3j9+rXO+jl27BgkEonWr7fffltnsRAREREREZHpKFfJ/MuXL9G9e3f07NkTf/75J6ysrNCjRw/Uq1cPFy5cwNSpU9GwYUMcPnzY0KECAMzNzQ0dQpm0YkRztWUiIiIiol6fzlRbJjI15eZoutTUVHTp0gWRkZEwNzfHypUrERwcLL5/79499OjRA3fv3kW3bt1w6NAhtGvXTid9Ozo6wsPDQ6O6mZmZiI6OBgB0795dJ/2bEmmaHKNDLuDui2TUqeJg6HCoHJJlyjD56GQAwKJ3FsHRytGwAZFRyJbJ8HTCRABA1aVLYO7IvzdE+iZ7nQZHV1uEfHEa/T5rCseKtoYOicjoKNKy8Cr0FgCg4gg/mNmWm/TRKJSbkflJkyYhMjISADBnzhylRB4AateujYiICNjY2CAzMxP9+vVDYmKiTvru27cv7ty5o9FrxowZAAAbGxuMGjVKJ/2bkrGhl3D3RTIA4O7zJK6Zp1KXm8jnLxMVJjeRz18mIv0J/zFKLId9e9GAkVBp49F0upObyOcvU9mg82T+8ePHiImJ0XWzJXL9+nWsW7cOAODu7o5p06aprefr64uxY8cCyJmSP3fu3FKLMdeyZcsAAAEBAXB1dS31/omIiIiIiKjs03ky7+PjgxYtWui62RJZuHAhFAoFgJwk2crKqsC6I0eOFMu//vor0tLStO7XysoK7u7ucHJy0qj++fPncfnyZQDARx99pHW/pmzFiOao414BAFCnigPXzFOpW/TOIrVlosJUXbpEbZmI9Kff9KZiOeD/3jRgJFTauGZedyqO8FNbprJBIgiCoMsGzczMUKVKFcTGxuqyWa3J5XK4u7sjISEBALBz50706tWrwPqCIMDV1VWcYr9t2zb069evNELFqFGjsH79ejRp0gRRUVFFP6CGTCaDk5MTpFIpHLkmk3QtLREIG55TDtgI2DobMhoiIiIiIpOjaU6nlzXzL1++xJgxY8RRZkO6cOGCmMgDQLNmzQqtL5FIlOrs379fb7HllZCQgC1btgDgqDyVYbmJfP4yERERERGVKr0k89nZ2VizZg2aN2+O1q1bY8OGDcjIyNBHV0W6fv26WLa2toaXl1eRz9SoUUPt8/oUEhKCtLQ0ODo6YujQoaXSJxERERERERknvSTzFSpUQPfu3SGRSHD+/HkEBQXBy8sLn332Gf755x99dFmgW7f+23XR09NTo2fyJvx5n9cXQRCwfPlyADlr9u3t7fXeJ5FWAjaqLxMRERERUanSSzJvb2+PXbt24cGDB/j888/h5uaG169fY+HChahXrx7ef/997Ny5U9yUTp/i4+PFsrOzs0bP5K0nk8kgl8t1HJWyI0eO4O7duwCAcePG6bUvY3brmRQ+X+yFzxd74TtjL249kxo6JCqHZJkyBB8IRvCBYMgyZYYOh4xEZkwM/n6zBf5+swUyy9iJL0SmRvYqDcsnHcXKyccBAK9ikgwcEZWmuEfRWDikFxYO6YW4R9GGDodIr/R6znz16tUxd+5cPHnyBBs3bkTr1q2hUChw8OBB9OvXD97e3pgzZw6ePXumtxiSkv77AW5tba3RMzY2NgW2oQ+5x9G1b98eDRo0KNazGRkZkMlkSi9T1XPJabGsEJSvqZRwzTzPmSetRPfpq7ZMRLoX9u1FZGf+t79z+ALD7+FEpWfjF5+oLROZIp0n87NmzVI5x93S0hJDhw7FqVOncPXqVYwdOxb29vaIiYnB119/DR8fHwwaNAhHjhzRdThKR8sVdiRdXvnrpaam6jSmvGJjY7Fz504A2m18N3fuXDg5OYmvatWq6TpEIiIiIiIiKmNKJZnPy9/fH8uWLUNsbCyWLFkCPz8/yOVy/Pnnn3j33XdRv359LF68GFKpbqZQ29raiuXMzEyNnslfz87OTiexqLN69WpkZWWhcuXKWh2BN2PGDEilUvH15MkTPURZNuye2FYsm0mUr6mUcM08z5knrdTYsV1tmYh0L+D/3oS5lUS87jetiQGjodI2fN4vastEpkjn58xr48SJE1i2bBnCw8Mhl8shkUhga2uLwYMHY9y4cWjevLnWbQ8ZMgSbN28GAI3Pb1+0aBGmTJkiXmdmZsLS0lLrGAqSnZ0NHx8fPH36FDNmzMD3339f4jZ5zjwREREREZHxMug588XVrl07DB48GI0bNwaQs7t7amoq1q1bh5YtW6Jly5YICQlBenp6sdt2c3MTy4mJiRo9k3dWgKOjo14SeQDYvXs3nj59CjMzM4wZM0YvfZgSaZocg1eexeCVZyFN0++mhERERERERGWZQZP558+f49tvv4WPjw/69euHS5cuQSKRiC9BECAIAi5evIjRo0fD09MTn376abGmkvv5+Ynl2NhYjZ6JybPTcN7ndS33OLquXbvCx8dHb/2YirGhl9SWiYiIiIiIyhudJ/MbNmzA1q1bC61z5MgRDBo0CN7e3pg1axaePHmC3Nn+uQl8kyZNsGrVKty+fRtfffUVvLy8kJiYiJ9//hl16tTBN998A01WCPj7+4vljIwMpUS9IA8ePFD7vC7dv38ff/31FwDtNr4jIsPg0XSkjWyZDI9GBuLRyEBkm/CpI0RERFR6dL5m3szMDB4eHipJc2JiIkJCQrB8+XLcu3cPQE7iLpFIxHLedfJvvvmm0vMKhQL79u3DokWLcOTIEUgkEkyaNAk///xzofHI5XK4u7sjISEBALBz50706tWrwPqCIMDV1VWckr9t2zatNqYryvTp0/HTTz/B29sbDx48gJmZbj5XMeU189I0uTgiv2JEczjZ6mf5A1Fhgg8EK12vfX+tgSIhY/JoZKDStfeG9QaKhIiIiMo6g66Zz/v5wMWLFxEcHAwvLy9MmzYNd+/eVXpfEATUrVsXixYtQmxsLNasWaOSyAM5HxL06NEDhw4dwvbt22FlZYVly5YVOdJuaWmJ3r17i9eHDx8utP7ly5fFRN7e3h5du3bV5EsuloyMDKxbtw4AMHbsWJ0l8qbOydYSm8e0xuYxrZnIExERERFRuaaXLDIrKwtr1qxB8+bN0apVK6xfv1487z13JN7CwgKDBg3C0aNHcevWLUyaNAlOTk4atd+7d28EBQVBLpfjxIkTRdafMmWKmDCHhYUVekTdhg0bxPL48eOVjrbTla1bt+Lly5ewsrLC6NGjdd4+EekPj6YjbVRdukRtmYiIiEhbeknmX716hTFjxiAqKkplFL569er47rvv8OTJE2zevBkdOnTQqo+6detCEASN1sA3atQIQUFBAIAXL15g4cKFaus9ePAAK1asAABUqlQJM2bMUFtPLpdjxIgRcHBwQJMmTXDt2rVixb5s2TIAQL9+/VC5cuViPUtEhuVo5Yi176/F2vfXwtHKtJaykP6YOzrCe8N6eG9YD3MTWwJFREREhqG3+d1518NLJBJ0794de/bswYMHDzBjxowSJ7GRkZGQSCSwsLDQqP7ixYvRtGlTAMBXX30lTnPPde/ePXTt2hXp6emwsrJCeHg4XFxc1LYVGhqKjRs3Ijk5GVeuXMGECRM0jvvatWs4c+YMAG58R0RERERERNrRLBPWUuXKlTF69GiMGTMG1atX10mbBw8exNatW7Fp0yaxD03Y2dlh//79CAwMREREBIKDg/Hjjz/C398f8fHxOHXqFLKysuDh4YENGzagXbt2GseU+6GFJnJH5f38/NC+fXuNnyMiIiIiIiLKpZfd7O3t7bF27Vr07dtX45FzTTVp0gRXr14FkJNEX79+vdhnwe/evRshISGIiorCs2fP4OjoiJo1a2LAgAEICgqCq6troc/L5XIEBQVhx44dqF27NtavX49GjRoV2W9SUhI8PT2RnJyMJUuWFGtEX1OmvJs9ERERERGRqdM0p9NLMl+lShXExsbqslnRb7/9hmfPnol9zZ49Wy/9GCsm80RERERERMZL05xO59Psq1evDnd3d103Kxo/frze2iYiIiIiIiIyBjpP5h8+fKiTdmJiYpCdna2ztfZEREREREREpkKvG+CVRPPmzREfH4+srCxDh0IGIE2TY/DKM7j9LFnpvpkE2DPpLfh5OBkosnLs0RlgXdecclAE4N3GsPEYQExyDAbuHggA2NpzK7wqeBk4IiqrMmNicL9HTyAtTel+tU0bUaFZMwNFRWT6ZK/S8Mc355GVoYCdkxWCfnjL0CGRnqSnJGPL1zMQ/zha7fsBs39A1XoNSjkq05GVkI7nCy4C/6ZiEiszuE9pBgsXG8MGRkr0djSdLuh4OT8ZkbGhl1QSeQBQCEDPJacNEBGJiXz+cjmSm8jnLxPlF92nr0oiDwBPhg03QDRE5UfYtxeRlaEAAMgzsg0cDenTrvnfFZjIA0DYrM9LMRrT8+KXKDGRBwAhU5Fzj8qUMp3MExEREREREZGqYu1m7+vrq89YlDx+/BiCICA7m5+qFoep7GbPafZlEKfZc5o9aYzT7IkMg9Psyw9Os9cvTrM3LL0cTWdmZgaJRKL36e+5fUgkEibzxWQqyTwREREREVF5pGlOVyan2XOtPBEREREREVHBir2bvY2NDQYNGqSPWJSEhYUhIyND7/0QERERERERGZtiJ/NOTk5Yt26dPmJRsn//fsTFxem9HyqbpGlyjA29BABYMaI5nGwtDRwRERERERFR2VEmp9kT5Sby+ctERERERESkxch8aeG6+fItSyHg7vMkAECdKg4GjoaIiIiIiKhsKVYyr1Ao9BWHiufPn5daX1QG5f0whx/sEBERERERKSmzI/NUvlmYm8HPk0frEREREZGq9JRk7Jr/HQCg16czYWNfwcAREZW+Mrtm3sPDAxYW/KyhvFoxornaMhERERFRbiKfv0xUnpTpbJnr5ssvJ1tLbB7T2tBhEBFpJTMmBtF9+gIAauzYDisvLwNHRERERKamzI7MExERGavcRD5/mYiIdKPXpzPVlonKk2KNzN++fRsHDhxAp06d4O/vr7ZOx44ddRLY69evddIOGR+eMU9EREREhbGxr4BBs+YaOgwig5IIGs5lv3PnDpo1a4b09HRYWVkhMjISfn5+KvXMzMwgkUhKHJggCJBIJMjOzi5xW+WJTCaDk5MTpFIpHB2NcwO5wSvPKl1zuj0RGRtOsyciIiJtaZrTaTwyv2/fPqSlpQEAMjMzsX//frXJfC6udydt8Yx5IjJ2Vl5eqHvxgqHDICIiIhOmcTLfpEkTpes33nijwLqWlpZo3bpko6lnzpxBVlZWidogI8Uz5omIiIiIiAqlcTL/zjvvYNWqVdi1axe6du2KTp06FVjX1dUVR48eLVFgHh4eiIuLK1EbZJx4xjwRERERkeEo0rLwKvQWAKDiCD+Y2ZbpQ9DKLY3XzGvKzMwMVapUQWxsbInayU3muWa+eExhzTw3wCMiIiIiMpz4ldeUrt3GNDJQJOWTztfMlzauuS+/eMY8ERERERFR4XSezEdHR8Pc3LzE7Vy6dImj8kRERERERKWs4gg/pWn2VDbpPJn39vbWSTtVq1bVSTtkPJ4kpOL9BUeR+u++h3ZW5jgwpT2qudgZNjACEh4BK9rllMeeBFx08++cyJRkxsTgfo+ewL8nv8DMDD7bw2Fbt65hAyMqJ14+TULYtxcBAJbW5hg8qwUcXW0NHBXpQ3pKMsK/n4XnD+7B0sYGI39cAic3d0OHZTKyEtLx4pcoAID7J025Xr4MMzN0AAXZunUrNmzYYOgwqBR1/+WkmMgDQGpmNrr/ctJwAdF/chP5/GUiEkX36ftfIg8ACgUe9utvuICIypkt318Sy/KMbIT/GGXAaEifds3/Ds8f3AMAyNPTETp9koEjMi25iXz+MpU9ZTaZnzRpEoKDgw0dBhEREREREVGZU2aTeYCb4JU3ez9pB7s8s3jsrMyx9xOOApcJY0+qLxORqMaO7YBtnim9ZmbwCd9muICIyplBXzYXy5bW5ug3vakBoyF96vXpTFTxrQ0AsLSxwYgfFxs4ItPi/klTtWUqe3R+NJ06Dx8+xOvXr5GSkqJxgt63b18kJibqZRO8PXv2YP369YiMjMSzZ8/g5OQEX19fDBw4EIGBgXB1ddV5n7kUCgX279+PP//8ExcuXMDz588hlUrh4OAAHx8f+Pv7o23btujWrZtW+waYwtF0RERERERE5ZWmOZ3ekvnw8HCsWrUKJ0+eRFreNYQaEgQBEolEp8n8y5cvERgYiH379gEA6tatC39/f8THx+PUqVPIzs6Gh4cHQkND0alTJ531m+vq1av48MMPcfHiRVhYWODNN99EtWrVkJycjFu3buHhw4di3QYNGuDGjRvF7oPJPBERERERkfEy2DnzcrkcgwYNwq5duwBoN1VeIpHoOiykpqaiS5cuiIyMhLm5OVauXKm0Jv/evXvo0aMH7t69i27duuHQoUNo1053U7yPHTuGbt26IS0tDePGjcOcOXNQqVIl8X1BEPDHH38gKCgImZmZOuuXiIiIiIiITI/O18x//vnn2LlzZ4nWu+tjssCkSZMQGRkJAJgzZ47K5nq1a9dGREQEbGxskJmZiX79+iExMVEnfd+8eRM9e/ZEWloaZs2ahWXLlikl8kDOBxhDhw7FN998o5M+jZE0TY7BK89i8MqzkKbJDR0OEVGxZMtkeDQyEI9GBiJbJjN0OERERFpRpGUhfuU1xK+8BkVaVtEPkMHodJp9QkICPDw8IJfnJGKCIKBVq1Z47733UKtWLVSsWBG2trZFjrwLgoD+/fvrbM389evX0bhxYygUCri7u+Px48ewsrJSW3fy5Mn45ZdfAADTp0/HDz/8UOL+O3TogBMnTsDf3x9XrlyBmVnBn6E8efIEH374IXx8fLB8+fJi92XM0+wHrzyrdL15TGsDRUJEVHyPRgYqXXtvWG+gSIiIiLQXv/Ka0rXbmEYGiqT8Msg0++PHj4tTxM3MzPD7778jICBAq7YKSra1sXDhQigUCgBAQEBAoW2PHDlSTOZ//fVXfP3117DNuztxMe3cuRMnTpwAAEydOrXQRB4AqlWrhv3792vdHxEREREREZk+nU6zz93ATSKRoE+fPlon8oDuptrL5XLs3LlTvC5qY7smTZrA2dkZAJCSkoKIiIgS9b9u3ToAOd+T7t27l6gtU7diRHO1ZSIiY1B16RK1ZSIiImNScYSf2jKVPTodmc+7a33Hjh1L1Nb27dt1shHchQsXkJCQIF43a9as0PoSiQTNmjXD4cOHAQD79+9Hv379tOpbKpWKHwZUq1YNbm5uWrVTXjjZWnJqPREZLXNHR06tJyIio2dma8Gp9UZCp8l83nPRS7peu3Vr3SR1169fF8vW1tbw8vIq8pkaNWqofb64IiMjxQ8k6tSpI95/8OAB9u3bh+joaCQnJ6NSpUrw9/dH586dVTbGIyIiIiIiIspPp8l8586dYW5uDoVCgZiYGF02rbVbt26JZU9PT42eyZvw532+uK5cuSKWXVxc8OzZM0yePBlbtmxRW9/a2hofffQRvvvuO9jZ2WndLxEREREREZk2na6Z9/DwQFBQEARBwI4dO0rU1pQpUzB69OgSxxQfHy+Wc9fCFyVvPZlMJu7OX1x3794Vy8+fP0erVq2wZcsWDB8+HBcvXkRqaioSEhKwa9cuNGrUCBkZGVi0aBHat2+vtDSgPLjw8BV8vtgLny/24sLDV4YOh/JLSwRCeuS80hINHY3BxCTHoM0fbdDmjzaISS4bH1hS2cGj6YgMR/YqDSsnH8dv44/izx8uISOVR9yasvSUZGyZPQNbZs9AekqyocMhMhidnzO/aNEiNG/eHBcuXMDPP/+sdTubN29GSEhIieNJSkoSy9bW1ho9Y2NjU2AbxZH3nPqTJ0/i8ePH+PLLLxEaGormzZvD1tYWzs7O6NmzJ86ePYs333wTQM70/MDAwAJaVZaRkQGZTKb0MkaDlp9TW6YyImy4+nI5M3D3QLVlIgB4OmGi2jIR6V/YtxeRlZlzclHcoyRELNd+mSSVfbvmf6e2TFTe6DyZt7Ozw9GjRzFq1Ch89tlnGDVqVImmqpdU3k35ND3uLn+91NRUrfrOn1jXrFkTX3/9tdq6dnZ2WLlypXi9e/duHDlypMg+5s6dCycnJ/FVrVo1rWIlIiIiIiIi41GsNfPBwcHFatzf3x+hoaEIDQ1FtWrV4OfnBxcXF41GyKVSabH6KkjeM+I13R0/fz1t16/nb2fYsGGwtLQssH7jxo3RrFkzREZGAgBWrlxZ5KkAM2bMwNSpU8VrmUxmlAn9lnGtxBH5LeNaGTgaUhGw8b8R+YCNho3FgLb23CqOyG/tudXA0VBZU3XpEnFEnkfTEZWugP97E5vnXEBWpgKVvR3QdZy/oUMiPer16UxxRL7XpzMNHA2R4RQrmQ8JCYFEIilWB7nnxT9+/BhPnjwp1nPF7UsdBwcHsZyRkaHRM+np6QW2URwVKlRQum7VqugktU2bNmIyf/z48SLrW1tba7x8oCxr4VMRD+d1N3QYVBBbZ2DUHkNHYXBeFbxwZsgZQ4dBZRSPpiMyHMeKthizqIOhw6BSYmNfAYNmzTV0GEQGp9Vu9rkJuibyJ+SaPKuLJD5X3rPd865hL0zeWQGOjo6FjqYXJv/xfJqMmPv6+orl58+fIy0tTWl2AREREREREVGxk3kzMzOl8+T15cmTJ8X60KAgfn5+Yjk2NlajZ/Ieq5f3+eLy9vZWutYkKc8/mp+QkMBknoiIiIiIiJQUO5l3c3NDdHS0PmJR4uHhgbi4uBK34+//35qpjIwMxMTEKJ0jr86DBw/UPl+SvgHlzfgKkn8pQP7k3hRJ0+QYG3oJALBiRHM42Wo3E4KIiIiIiKi80Plu9mVNixYt4OLiIl7nrkcviCAISnW6dOmidd/518hrMjMg7wcYFSpUUJmqb4pyE/n8ZSIiIiIiIlKvzCbzuphiDwCWlpbo3bu3eH348OFC61++fFlcW29vb4+uXbtq3Xf16tXRsmVL8ToqKqrIZ65cuSKW27dvr3XfxiRLIeBWrAy3YmXIUujmz52IqDSl/f03bjdoiNsNGiLt778NHQ5RuZORKseOhVHYsTAKGalyQ4dDepSekozN/5uOpUEB2DxrOtJTkg0dkslRpGUhfuU1xK+8BkValqHDoUIUK5m/fPkyDh06pK9YlDx//hzZ2dk6aWvKlCkwM8v5UsPCwgo9om7Dhg1iefz48SVerz527Fix/OeffxZaVyaT4eDBg+L18OHDS9S30cj7wY2OPsQhIipND/v1V1smotIRsfy62jKZnl3zv8PLJ48AAC8fPxKPqCPdeRV6S22Zyp5iJfNvvPFGiTaEM5RGjRohKCgIAPDixQssXLhQbb0HDx5gxYoVAIBKlSphxowZauvJ5XKMGDECDg4OaNKkCa5du1Zg34GBgWjSpAmAnCn+W7cWfDb1t99+K66rb9q0KQICAor+4kyAhbkZ/Dwd4efpCAvzMjtZhIiIiIiIqMwoN5nT4sWL0bRpUwDAV199hXXr1im9f+/ePXTt2hXp6emwsrJCeHi40lr7vEJDQ7Fx40YkJyfjypUrmDBhQoH9mpmZISwsDJUrVwYABAcHY8eOHUp1srOzMW/ePPz0008AAHd3d2zbtk2cTWDqVoxorrZMRGQsfMK3qS0TUenoOs5fbZlMT69PZ6JStZwToypV90avT2caOCLTU3GEn9oylT0SQVeL04uQnp6OS5cu4enTp0hISIBEIoGLiwuqVq2KZs2awcbGRu8xxMfHIzAwEBEREQCAevXqwd/fH/Hx8Th16hSysrLg4eGBDRs2oHPnzgW2s3btWowePVq8bt++PY4fP15o3zdv3sTw4cPFNfF169bFG2+8gczMTJw9exYvXrwAALRt2xZ//PGHRmfSqyOTyeDk5ASpVFouNs8jIiIiIiIyJZrmdHpN5gVBwJ9//olly5bh9OnTyMpSv4GChYUF2rVrh48++gj9+vWDRCLRV0gAgN27dyMkJARRUVF49uwZHB0dUbNmTQwYMABBQUFwdXUt9Hm5XI6goCDs2LEDtWvXxvr169GoUaMi+83KykJYWBi2bNmCq1ev4vnz57CyskKVKlXQtm1bBAQElGj3fIDJPBERERERkTEzeDJ/8+ZNBAUFice8FdVNbgL/5ptvYt26dahfv74+wjJ5xpjM85x5IjJm2TIZnk6YCACounQJzI3kZy+RqchIlYub3nUd5w9rO/4eQUTGTdOcTi+Lsk+dOoU2bdogMjJSTOILG23PfU8QBFy4cAGtWrXC6dOn9REalUE8Z56IjFluIp+/TESlgzvZE1F5ZaHrBh8/fozu3bsjKSlJKUl3dnZG3bp1UaVKFdjb20MQBKSkpODZs2e4e/cupFIpgJzEPikpCd26dcONGze0XjtOREREREREZKp0Ps2+b9++2LlzJyQSCezt7fHRRx9h6NCheOONNwp97vLly9i4cSNWrlyJlJQUSCQS9OnTB9u2cVfg4uA0eyKi0sVp9kSGxWn2RGRqDLJmPi4uDl5eXlAoFPDz88Pu3bvh4+NTrDYePHiAnj174vbt2zA3N0dMTIx4rBsVzRiTeSIiIiIiIsphkDXzx44dQ3Z2NmxsbLBz585iJ/IA4Ovrix07dsDGxgYKhQLHjh3TZYhERFqRZcoQfCAYwQeCIcuUGTocIiKicik9JRlbZs/AltkzkJ6SbOhwiAxKp8n806dPAQC9e/eGr6+v1u3Url0bvXv3BgDExMToJDYiopKYfHSy2jIRERGVnl3zv1NbJiqPdJrM525417hx4xK31bRp0xK3QURERERERGSKdJrMe3p6AgAsLUu+8YiFRc5G+x4eHiVui4iopBa9s0htmYiIiEpPr09nqi0TlUc6PZquWbNmAIA7d+6UuK3cNjhCT0RlgaOVI9a+v9bQYRAREZVrNvYVMGjWXEOHQVQm6HRkvlatWmjZsiW2b98OmUz7DaJkMhnCw8PRpEkT1KlTR22d/v37o1OnTlr3QURERERERGSsdJrMA8CSJUsgk8kwatQoZGVlFfv57OxsBAUFQSqVYvHixQXWO3PmDHe6JyIiIiIionJJ58l88+bNsXHjRhw8eBCtW7fGwYMHoelR9ocOHULr1q0RERGB1atXo02bNroOj4iIiIiIiMjo6XTNPAB88803AICePXti8+bN6NKlCypVqoTmzZujVq1acHR0FDfIk8vlkMlkuH//Pi5duoT4+Hjx2YcPH4ptqZOczHMliYiIiIiIqHySCJoOm2vIzMxMPKIub9O59wpSnLq59SUSCbKzs7WM1DTJZDI4OTlBKpXC0dHR0OEQERERERFRMWia0+l8ZD4vTZJybeoSERERERERlWd6S+Z1POBPRERERERERP/S+QZ4AODu7g6FQqHXl7u7uz5CJyIiIiIiIirz9JLMExEREREREZH+GG0yz2n8REREREREVF7pfM38unXrYGtrq+tmVSxevBhpaWl674eIiIiIiIiorNH50XRkWDyajoiIiIiIyHhpmtMZ7TR7IiIiIiIiovJKr+fM55WWloazZ8/i0aNHePXqFSQSCSpWrAhvb2+0bt0aNjY2pRUKERERERERkVHTezJ/9OhR/Pjjjzhy5AiysrLU1rG0tETnzp3x2WefoUOHDvoOiYiIiIiIiMio6W2afXJyMgYNGoTOnTvjr7/+glwuhyAIal+ZmZmIiIhAx44dMXjwYCQlJekrLCIiIiIiIiKjp5dkPjExEa1bt8a2bdvEI+QkEkmB9XPfEwQBW7duRdu2bSGVSvURGhEREREREZHR08s0+759++LmzZtKSbq7uzv8/Pzg4eGBChUqQBAEpKSkICYmBnfu3MGLFy/E52/evIl+/frh8OHD+giPiIiIiIiIyKjpPJnftGkTjh8/DolEAhsbG3z88ccIDAxEgwYNCn3uxo0bWL9+PZYtW4bU1FQcO3YMv//+O4YOHarrEImIiIiIiIiMms7PmW/QoAFu376NWrVqYe/evahdu3axnr979y66d++O+/fvw8/PDzdu3NBleACAPXv2YP369YiMjMSzZ8/g5OQEX19fDBw4EIGBgXB1ddVpf4UtMVCnbt26uHPnjlZ98Zx5IiIiIiIi42WQc+YfPnyI27dvw8rKCuHh4cVO5AGgTp06CA8Ph6WlJW7fvo2HDx/qLL6XL1+ie/fu6NmzJ/78809YWVmhR48eqFevHi5cuICpU6eiYcOGnN5PREREREREZZpOp9mfP38eANClSxc0bNhQ63b8/f3RpUsX7NmzB+fPn4ePj0+JY0tNTUWXLl0QGRkJc3NzrFy5EsHBweL79+7dQ48ePXD37l1069YNhw4dQrt27Urcby5bW1tUr15do7q+vr4665eIiIiIiIhMj06T+dxN7Fq0aFHitlq2bIk9e/YobYxXEpMmTUJkZCQAYM6cOUqJPADUrl0bERERaNCgAdLT09GvXz/cu3cPzs7OOum/RYsWOHbsmE7aIiIiIiIiovJNp9Ps09LSIJFIUKFChRK3lbvjfVpaWonbun79OtatWwcAcHd3x7Rp09TW8/X1xdixYwHkTMmfO3duifsmIiIiIiIi0jWdJvOVKlWCIAh49OhRidt69OgRJBIJKlWqVOK2Fi5cCIVCAQAICAiAlZVVgXVHjhwpln/99VedfJhAREREREREpEs6TeZr1KgBANi5cydKskl+dnY2tm/frtSmtuRyOXbu3Cled+rUqdD6TZo0EafWp6SkICIiokT9ExEREREREemaTpP5tm3bws7ODtHR0Zg9e7bW7fzvf//Dw4cPYWdnh7feeqtEMV24cAEJCQnidbNmzQqtL5FIlOrs37+/RP0TERERERER6ZpON8CztrZG//79ERoaijlz5iA+Ph7ffvstXFxcNHr+1atXmDFjBlavXg2JRIKBAwcWOiVeE9evX1eKz8vLq8hn8s4GyPt8SSkUCpw6dQpnzpzBkydPkJWVBVdXV9SuXRvvvPNOiWchEBERERERUfmg02QeAL755hts2bIFmZmZWL58OTZu3Ihu3bqhU6dOqF+/Pjw9PWFvbw9BEJCcnIzY2Fjcvn0bhw4dQkREBFJTUwEANjY2JRrdz3Xr1i2x7OnpqdEzeRP+vM+XxMOHD9GgQQPcuXOnwDpdu3bFDz/8AH9/f530SURERERERKZJ58m8t7c3Vq1ahZEjR0IikSApKQlbtmzBli1binw2d529mZkZ1qxZg2rVqpU4nvj4eLGs6TFzeevJZDLI5XJYWlqWKI5Hjx7B3t4e//vf/zBw4ED4+voiOzsbN2/exKpVq7Bu3TpERETg2LFj2LBhAwYMGFCi/sqiW8+kGLT8HG7Mfh8NZx1AckaW0vuNqjohdHRLONmW7HtNJZDwCPitDSBPVv9+lUZA4G7A1rlUwzKkmOQY9NvRD6nZOR80mknMsKXHFtR1rWvgyEgfkiMj8WTYcO0eNjODz/Zw2Nbl3w0iXctIlWP7gii8ikkpsI5EAgya+SYqVXUoxchIn6TxL7Bu6nhkZ2aovGdpY4PA+b/Cyc3dAJGZnqyEdDxfcBHI8+t5pXH+sPFxNlhMVDSdrpnPNXz4cPz666+wsLCARCIBkJOoF/bKZWVlhWXLlmHw4ME6iSUpKUksW1tba/SMjY1NgW1oy9PTE5cvX8bs2bPRsGFD2NnZwcHBAa1atcKaNWuwfv16ADnH+w0bNgznzp3TqN2MjAzIZDKlV1nVc8npQt+/9lSKsaGXSikaUmtFu4ITeQB4fg0I0zLRMVIDdw8UE3kAUAgKBOwJMGBEpE9aJ/IAoFDgYb/+uguGiEQRy68XmsgDgCAAW77n7xGmJHT6JLWJPADI09MROn1SKUdkul78EqWUyAPAy+W6W25M+qGXZB4APvroI5w8eRItW7ZUStYlEonSK5cgCGjbti1Onz6NDz/8UGdx5D1aTtP19/nr5U7919b169dx9epV1K5du8A6I0aMwNChQwEAmZmZ+PjjjzVqe+7cuXBychJfupjNQERERERERGWb3pJ5AGjRogXOnDmDU6dO4fPPP0fr1q3h4eEBa2trWFtbw9PTE23atMEXX3yBs2fP4uTJk0XuNl9ctra2YjkzM1OjZ/LXs7OzK1EMDRs2RKVKlYqsN2nSf58uRkVF4eTJk0U+M2PGDEilUvH15MmTEsWqT7snti30/UZVnbBiRPNSiobUGnsSsKxQ8PtVGgEBG0svnjJga8+tsDP/72eAmcQMYT3CDBgR6VO1TSX4+21mBp/wbboLhohEXcf5o6KXfaF1JBJg0Jf8PcKUjPhxMcyt1M+stbSxwYgfF5dyRKbL/ZOmKguwK43jPl5lnUQoyYHwRmDIkCHYvHkzgJwz5KOioop8ZtGiRZgyZYp4nZmZWeI185pQKBRwdHRESkrONLKvvvoK33zzTbHakMlkcHJyglQqhaOjoz7CJCIiIiIiIj3RNKfT68h8WeDm5iaWExMTNXpGKpWKZUdHx1JJ5IGcjf9q1qwpXt+9e7dU+iUiIiIiIiLjYvLJvJ+fn1iOjY3V6JmYmBi1z5cGB4f/dmB9/fp1qfZNRERERERExqHMJvMeHh6wsCj5yXl5z2zPyMhQStQL8uDBA7XPl4b09HSxbG9f+NowIiIiIiIiKp/KbDIPALpYzt+iRQu4uLiI15GRkUX2mbdOly5dtO5bKpXi22+/FY+d00Te2QOenp5a901ERERERESmq0wn87pgaWmJ3r17i9eHDx8utP7ly5fFtfX29vbo2rWr1n0nJCTgq6++wo8//qhR/adPn+LZs2fidbt27bTum4iIiIiIiExXyeexFyAzMxO7du3C0aNHcfPmTbx+/RopKSkaj7bHx8frLJYpU6Zgw4YNUCgUCAsLw08//VTgmfMbNmwQy+PHj1c62k5bd+7cQVxcHCpXrlxovbx9Ozs7l+iDBCIiIiIiIjJdeknmd+/ejY8++khplBnQfNq8RCKBIAiQSCQ6iadRo0YICgrCmjVr8OLFCyxcuBBffPGFSr0HDx5gxYoVAIBKlSphxowZatuTy+UIDg7Gjh07UKtWLaxfvx6NGjUqsH+FQoFZs2Zh2bJlBdZ58OAB5s2bJ15/8cUXcHJy0vRLJCIiIiIionJE59Psd+3ahf79+yM2NlZM3gVBKNb6d12slc9v8eLFaNq0KYCc89vXrVun9P69e/fQtWtXpKenw8rKCuHh4Upr7fMKDQ3Fxo0bkZycjCtXrmDChAlF9r98+XJMmDBB7Q71R44cwdtvv42kpCQAwIABAzB9+vTifolERERERERUTkgEHWbOWVlZ8PX1xdOnT8XRdQCoX78+atasCScnJ413qA8LC0NGRgays7N1FR7i4+MRGBiIiIgIAEC9evXg7++P+Ph4nDp1CllZWfDw8MCGDRvQuXPnAttZu3YtRo8eLV63b98ex48fV6mXkpKCadOm4ffffxcTdRsbG7Ro0QJeXl5IT0/HtWvXcP/+fQCAtbU1vvjiC/zvf/+DmZl2n7PIZDI4OTlBKpXC0dFRqzaIiIiIiIjIMDTN6XSazB87dgwdO3YUp8f3798fCxYsQLVq1YrdloeHB+Li4nSazOfavXs3QkJCEBUVhWfPnsHR0RE1a9bEgAEDEBQUBFdX10Kfl8vlCAoKwo4dO1C7du0ip9mnpqbi0KFDOHDgAC5fvoz79+8jMTER5ubmcHV1RYMGDfD2228jKCgIVapUKdHXxmSeiIiIiIjIeBkkmf/1118xceJESCQSNG3aFBcvXtS6LX0m86aMyTwREREREZHx0jSn0+kGeDKZTCwHBASUqK1BgwYptUdEREREREREOXSazOc9eq2k08V/+eWXkoZDREREREREZJJ0upv922+/LZafP3+uy6aJiIiIiIiI6F86TeZr1qyJvn37QhAEbN++vURt9e/fH506ddJRZERERERERESmQ+fnzK9YsQK+vr44d+4c5s6dq3U7Z86cwbFjx3QXGBEREREREZGJ0HkyX6lSJZw+fRodOnTAzJkz0bNnTxw9epS70hMRERERERHpiE43wMvl7u6OI0eO4LPPPsOCBQuwb98+WFlZwdfXFy4uLrCysiqyjdevX+sjNCIiIiIiIiKjp5dk/vbt2wgODsaFCxcAAIIgICMjA7dv34ZEItGoDUEQNK5LREREREREVJ7oPJm/ffs23nrrLSQmJqok5IIgQBAEXXdJREREREREVK7oPJn/4IMPkJCQICbxgiDAwcEBvr6+cHBwgLm5uUbtnDlzBllZWboOj4iIiIiIiMjo6TSZv379Os6ePSsm8q1bt8aPP/6INm3aFHvKvIeHB+Li4nQZHhEREREREZFJ0Gkyf/bsWbFcs2ZNHDlyBNbW1rrsgoiIiIiIiKjc02ky//LlS7E8cuTIEiXyVatWhY2NjS7CIiIiIiIiIjIpOk3mXVxcxLKPj0+J2rp48WIJoyEiIiIiIiIyTWa6bKx9+/ZiWSqV6rJpIiIiIiIiIvqXTpP5Bg0aoFu3bhAEAYcPHy5RWwsXLsQ333yjo8iIiIiIiIiITIdE0PHB7y9fvkTHjh1x69Yt7Nu3D++9955W7eTuZp+dna3L8EyeTCaDk5MTpFIpHB0dDR0OERERERERFYOmOZ1OR+YBoFKlSjh69Ci6deuGPn364Mcff0RycrKuuyEiIiIiIiIqt3S6AR4AcWp88+bNER8fjxkzZuDrr79Gq1atUL9+fbi4uMDKyqrIdvgBABEREREREZF6Op9mb2ZmBolEIl7nNp/3niYEQYBEIuE0+2LiNHsiIiIiIiLjZbBp9rnyJvHFTeSJiIiIiIiIqGA6n2afl44H/YmIiIiIiIgIehyZ37x5MxQKhdYvd3d3fYVGREREREREZNT0lswTERERERERkX6U2WSeU/SJiIiIiIiI1NP5mvnt27cDAN58880StXPp0iXuZE9ERERERESkhs6T+d69e+uknapVq+qkHSIiIiIiIiJTU2an2RMRERERERGReno9mi6/jIwMxMbG4tWrV5BIJKhYsSI8PDxgbW1dmmEQERERERERGTW9j8zLZDL88MMPeOutt+Dk5IRatWqhZcuWaNGiBWrWrAknJye0a9cO8+fPh0wm03c4AIA9e/Zg4MCB8PX1ha2tLapUqYI2bdrg559/xuvXr0slhlyDBw+GRCKBRCKBj49PqfZNRERERERExkki6HHb+N9++w1ffvklkpKSABS8Q71EIgEAODg4YO7cufjoo4/0Es/Lly8RGBiIffv2AQDq1q0Lf39/xMfH49SpU8jOzoaHhwdCQ0PRqVMnvcSQV0REBLp16yZee3t74+HDhyVqUyaTwcnJCVKpFI6OjiWMkIiIiIiIiEqTpjmdXkbmBUHAyJEjMXHiRMhkMjGJzx2Bzv/KG/SECRMQGBio85hSU1PRpUsX7Nu3D+bm5lizZg3u3LmDrVu34tixY7h9+zbq1KmDZ8+eoVu3bjh58qTOY8gfz/jx4/Xax/+3d/9BUd93HsdfC7L8GhYheIKebSRSE1ocUcukaYl6pg0ktjZGa1t/ELibOGc8G2Nu7mjr9IczRyaXYmJiG51pUbA/bBqjRl3aaGKNZw0tykmPJpojmPgjZj1lF+XXIt/7w/E7rAIusIt+v/t8zOzM58t+Pp/3Z/988f18vx8AAAAAgD2FJcyvWrVKW7ZsCfibYRgaMWKEMjIylJWVpQkTJigjI0PR0dEyDEOGYcjhcMgwDG3ZskVPP/10SNe0YsUK1dbWSpLWrFmjkpKSgO+zsrLkdrsVFxenzs5OzZ07V83NzSFdQ08/+MEP1NTUxPsCAAAAAAADFvIw/6c//UnPP/+8Gcw///nP68UXX9Tf/vY3tba26tSpU3r33Xf13nvv6dSpU2ptbVVDQ4PWrVunqVOnSroa/NeuXat33nknJGuqr69XRUWFJGn06NFatWpVr/0yMzO1dOlSSVe35JeVlYWk/vX++7//W88//7xiY2P7XAsAAAAAAH0JeZhfvXq1JCk+Pl5VVVV655139MQTT2jixImKjo6+of+IESN09913a/ny5aqpqVFlZaXi4+MD5hqq8vJydXd3S5IWLFggp9PZZ98lS5aY7fXr16utrS0ka7imu7tbjz/+uLq6uvTd735XWVlZIZ0fAAAAAGB/IQ3zFy9e1P79++VwOFRVVaWFCxcOeI5FixapsrJShmHorbfeGvJWd7/frx07dpjXN3uxXW5urkaOHClJunz5stxu95DqX2/9+vWqqanRxIkT9e///u8hnRsAAAAAEBlCGubffvttdXd3Ky8vT4888sig53n00UeVl5en7u5uHThwYEhrqqmp0cWLF83ra1v5++JwOAL6VFdXD6l+T6dOndL3vvc9SdKGDRv63SEAAAAAAEBfQhrmT58+LUn6yle+MuS5HnzwwYA5B6u+vt5sx8bGauzYsTcdM378+F7HD9W//Mu/qKWlRY899pimT58esnkBAAAAAJElpGG+ublZDodDaWlpQ54rLS1NhmEMeZt9Q0OD2R4zZkxQY3oG/p7jh2LHjh3avn277rjjDv3nf/5nSOYEAAAAAESmkIb5kSNHyjAMnT9/fshznT9/Xg6Hw3x+fbA8Ho/ZDnaunv18Pp/8fv+Q1tDS0qLly5dLkp577rmQ/LMDAAAAABC5Qhrmr93R3rt375Dn+v3vfx8w52C1tLSY7WDPdI+Li+tzjsH4/ve/r1OnTmn69Ol67LHHhjTX9To6OuTz+QI+AAAAAAB7C2mYz8/PV1RUlA4fPqydO3cOep5XX31VNTU1ioqK0v333z+kNfU8Wi7YF85d36+1tXXQ9f/yl7/opZdektPp1MsvvzzoefpSVlam5ORk8zNu3LiQ1wAAAAAA3F5CGuZTUlI0ffp0GYahhQsX6pVXXhnwHL/61a9UVFQkh8OhGTNmDHmb/bUz6yWps7MzqDHX90tISBhU7StXrujxxx9Xd3e3/u3f/k133333oObpT2lpqbxer/n56KOPQl4DAAAAAHB7CWmYl6Qf//jHkq7ezf7mN7+pL37xi9qwYYPef/99GYZxQ//u7m4dP35cP/3pT3Xvvfdq8eLF5p3wa3MNRVJSktnu6OgIakx7e3ufcwzE888/r6NHjyorK8s8ki7UYmNj5XK5Aj4AAAAAAHsbEeoJv/jFL2r58uV66aWX5HA4dPjwYR0+fFjS1e3rf/d3f6fExEQZhqFLly7J4/EEvGDOMAw5HA595zvf0Re+8IUhr2fUqFFmO9g343u9XrPtcrkUExMz4LonT57UD37wA0nSz372s6Cf1wcAAAAA4GZCHuYl6YUXXtAnn3yi3/72t3I4HOYd+Y6Ojn63gTscDknSwoULVV5eHpK1ZGdnm+0zZ84ENabn2fY9xw/EE088ocuXL2vRokWaNWvWoOYAAAAAAKA3Id9mL10N5b/5zW9UXl4e8Ly5w+Ho9XNNYmKi1q1bp8rKypCtJScnx2x3dHQEBPW+NDY29jp+IHbv3i1J2rJlS5+/2+FwqLi42Bxz8uTJG77/4Q9/OKj6AAAAAAD7Csud+WuefPJJFRUV6ac//al27dql2tpadXV1BS5gxAhNmzZNc+bM0dKlS4f8wrvr5eXlKSUlRRcvXpQk1dbW9nvcnWEYqq2tNa8LCgoGVbeoqCiofu+//77+67/+S9LVf2bMmzcv4PvJkycPqj4AAAAAwL4cRm9vpQuTtrY2nT59WhcuXJAk3XHHHRo7duwN57qHWnFxsTZt2iRJWrFihV544YU++x45ckRTp06VdDVcezyegDfih9qmTZvMu/Of/vSn1dTUNKT5fD6fkpOT5fV6eRkeAAAAAFhMsJkuLNvs+xIfH68JEyYoLy9PeXl5uuuuu8Ie5CVp5cqVioq6+lO3bt3a7xF1Pbf4L1u2LKxBHgAAAACAwRjWMH+rTJo0ybz7fe7cuT5frtfY2KgNGzZIktLS0lRaWtprP7/fr8WLFyspKUm5ubk6duxYeBYOAAAAAEAvBhTm/+Ef/kHz588P11oCPProoyF9C/y6des0ZcoUSdLq1atVUVER8P2JEydUWFio9vZ2OZ1Obdu2TSkpKb3OVVVVpS1btujSpUuqq6vT8uXLQ7ZOAAAAAABuZkAvwNu/f7/S09PDtZYAhw4d0ieffBKy+RISElRdXa2ioiK53W6VlJTo2WefVU5Ojjwejw4ePKiuri5lZGSosrJS+fn5Qc/d8438N/Puu+/qmWeeMa/ff/99s33+/Hk99thj5nVaWpqee+65oOcGAAAAAESGAb0ALyoqSunp6UGf1z4UGRkZ+uSTT3TlypWQz/36669r06ZNOnLkiM6ePSuXy6W77rpL8+bNU3FxsVJTU/sd7/f7VVxcrO3btysrK0ubN2/WpEmTgqq9f/9+zZw5M6i+g3khHi/AAwAAAADrCjbTDTjMjxo1Sn/5y18U7pfgT5s2Tf/3f/8XljBvZ4R5AAAAALCuYDPdgM+ZP3/+vO68886hrC0ohmEMaPs6AAAAAACRYsBhXlLY78oDAAAAAIC+hfVoOofDMai769yRBwAAAACgbwO+Mx8TE6MvfOELQfX94x//KKfTGXT/ng4dOqSurq4BjwMAAAAAwO4GHOZTU1P11ltvBdU3KipqQP17uvY2ewAAAAAAECis2+wBAAAAAEDo3bZhnpfsAQAAAADQuwFts6+oqFB8fHy41hJg3bp1amtrG5ZaAAAAAABYicMI4y3wqKgopaen68yZM+Eqgev4fD4lJyfL6/XK5XLd6uUAAAAAAAYg2Ex3226zBwAAAAAAvSPMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALCYAYX5AwcO6PDhw+FaS4DDhw/rwIEDw1ILAAAAAAArGdA58zNmzFBGRoZOnz4drvWYHnnkEXk8HnV1dYW9FgAAAAAAVjLgbfZhPJb+ltYCAAAAAMAqeGYeAAAAAACLGdA2e0nyer0qKSkJW/+e4wAAAAAAwI0cxgD2skdFRcnhcAQ9uWEYA+rf29grV64Manyk8vl8Sk5OltfrlcvlutXLAQAAAAAMQLCZLqzb7Acb5AEAAAAAQN8GvM1e4sV0AAAAAADcSgMO8ykpKXr11VfDsRaTYRh69NFH1dzcHNY6AAAAAABY0YDDvNPp1PTp08OxlhvqAAAAAACAG3E0HQAAAAAAFjOgO/Of+tSnNHr06HCtJcDf//3fKy4ublhqAQAAAABgJQMK801NTWFaxo3+/Oc/D1stAAAAAACshG32AAAAAABYTESG+V27dmn+/PnKzMxUfHy80tPTdd9992nt2rW6cOFCyOt1dnbqzTff1OrVq1VQUKBPf/rTSkxMlNPpVFpamu6991499dRTqqurC3ltAAAAAID9OIwIOjT+/PnzKioq0p49eyRJEydOVE5Ojjwejw4ePKgrV64oIyNDVVVVmjVrVkhqlpaW6uWXXzaP2XM6nfrsZz+r8ePHKzo6Wu+9956OHTtm9i8qKtLLL7886PcF+Hw+JScny+v1yuVyheInAAAAAACGSbCZbsBH01lVa2urCgoKVFtbq+joaG3cuFElJSXm9ydOnNDs2bN1/PhxPfTQQ9q7d6/y8/OHXNftdptB/pvf/KaeffZZjRs3LqBPXV2dFi5cqIaGBm3evFkej0e7d+8ecm0AAAAAgD1FzDb7FStWqLa2VpK0Zs2agCAvSVlZWXK73YqLi1NnZ6fmzp1rhvBQmDFjhrZs2XJDkJekyZMnm7Ulac+ePdqxY0fIagMAAAAA7CUiwnx9fb0qKiokSaNHj9aqVat67ZeZmamlS5dKurolv6ysLGRrePrppxUdHd3n95/61Kf08MMPm9c7d+4MWW0AAAAAgL1ERJgvLy9Xd3e3JGnBggVyOp199l2yZInZXr9+vdra2oZUe/78+Vq6dKmmT59+075ZWVlm+9SpU0OqCwAAAACwL9s/M+/3+wO2rN/sxXa5ubkaOXKkmpubdfnyZbndbs2dO3fQ9b/3ve8F3be9vd1sjxw5ctA1AQAAAAD2Zvs78zU1Nbp48aJ5PXXq1H77OxyOgD7V1dVhW9v1ampqzHao3qYPAAAAALAf24f5+vp6sx0bG6uxY8fedMz48eN7HR9Obrdbhw4dkiR95jOfCdjuDwAAAABAT7YP8w0NDWZ7zJgxQY3pGfh7jg+H1tZWvfTSS5o/f74kaeLEiQFvtgcAAAAA4Hq2f2be4/GY7WCfQ+/Zz+fzye/3KyYmJiTr8Xq9+s53vqO2tjadOnVKdXV1am1tVU5OjkpKSvTP//zPio2NDUktAAAAAIA92T7Mt7S0mO1gQ/L1d8VbWlqUmpoakvW0tbVp8+bNAX8bOXKkJkyYoNTUVBmGMaD5Ojo61NHRYV77fL6QrBMAAAAAcPuy/Tb7nkfL9XckXU/X92ttbQ3ZetLT02UYhrq6uuTxePTGG29o9uzZ2r59u4qKinTPPffowIEDQc9XVlam5ORk8zNu3LiQrRUAAAAAcHuyfZiPj483252dnUGNub5fQkJCSNckSdHR0UpLS9MDDzygqqoqvfbaa4qOjlZTU5O+/OUv66233gpqntLSUnm9XvPz0UcfhXytAAAAAIDbi+3DfFJSktnuuR29Pz3Pe79+jnCZM2eOnn76aUlX/5mwaNGiG9bRm9jYWLlcroAPAAAAAMDebB/mR40aZbabm5uDGuP1es22y+UK2cvvbmbFihVm+8yZM3rllVeGpS4AAAAAwFpsH+azs7PN9pkzZ4Iac/r06V7Hh9uYMWN05513mtf79+8fttoAAAAAAOuwfZjPyckx2x0dHQFBvS+NjY29jh8O6enpZjvYfz4AAAAAACKL7cN8Xl6eUlJSzOva2tp++xuGEdCnoKBg0LUPHTqk5557TvX19UGP8fv9ZjvYt+8DAAAAACKL7cN8TEyM5syZY17v27ev3/5Hjx41n61PTExUYWHhoGv/4Q9/0L/+67+quro6qP7d3d363//9X/OaY+YAAAAAAL2xfZiXpJUrVyoq6upP3bp1a79H1FVWVprtZcuWBRxtN1jBPvv+xhtvBLyk78EHHxxybQAAAACA/UREmJ80aZKKi4slSefOnVN5eXmv/RobG7VhwwZJUlpamkpLS3vt5/f7tXjxYiUlJSk3N1fHjh3rt77b7dYf//jHfvtcunRJTz31VMCaH3rooX7HAAAAAAAiU0SEeUlat26dpkyZIklavXq1KioqAr4/ceKECgsL1d7eLqfTqW3btgU8a99TVVWVtmzZokuXLqmurk7Lly/vt7ZhGPra176mn//8573uCqitrVV+fr4aGhokXf1Hwi9/+UtFR0cP5qcCAAAAAGwuYsJ8QkKCqqurVVhYqK6uLpWUlOiee+7RN77xDc2cOVPZ2dk6fvy4MjIytHv3buXn5wc9t8Ph6PXvDz74oKZPny5J8vl8+qd/+ieNHj1aX/7yl7Vw4ULNmzdP2dnZmjZtmurq6iRJ999/vw4dOqTPfe5zQ/7NAAAAAAB7chiGYdzqRQy3119/XZs2bdKRI0d09uxZuVwu3XXXXZo3b56Ki4uVmpra73i/36/i4mJt375dWVlZ2rx5syZNmtRn/6amJu3evVtvv/22GhoadOrUKbW0tGjEiBFKTk7WhAkT9PnPf14LFizQvffeO6Tf5vP5lJycLK/XK5fLNaS5AAAAAADDK9hMF5Fh3s4I8wAAAABgXcFmuojZZg8AAAAAgF0Q5gEAAAAAsBjCPAAAAAAAFkOYBwAAAADAYgjzAAAAAABYDGEeAAAAAACLIcwDAAAAAGAxhHkAAAAAACyGMA8AAAAAgMUQ5gEAAAAAsBjCPAAAAAAAFkOYBwAAAADAYgjzAAAAAABYDGEeAAAAAACLIcwDAAAAAGAxhHkAAAAAACyGMA8AAAAAgMUQ5gEAAAAAsBjCPAAAAAAAFkOYBwAAAADAYgjzAAAAAABYDGEeAAAAAACLIcwDAAAAAGAxhHkAAAAAACyGMA8AAAAAgMUQ5gEAAAAAsBjCPAAAAAAAFkOYBwAAAADAYgjzAAAAAABYTESG+V27dmn+/PnKzMxUfHy80tPTdd9992nt2rW6cOFCyOu1t7dr27Ztevzxx5Wbm6s77rhDMTExSklJ0Wc/+1k99thj2r17t7q7u0NeGwAAAABgPw7DMIxbvYjhcv78eRUVFWnPnj2SpIkTJyonJ0cej0cHDx7UlStXlJGRoaqqKs2aNWvI9c6ePauf/OQn2rhxo1paWiRJY8aM0dSpU5WUlKSPP/5Yf/rTn9TW1iZJmjx5siorK5WTkzPomj6fT8nJyfJ6vXK5XEP+DQAAAACA4RNspouYMN/a2qr7779ftbW1io6O1saNG1VSUmJ+f+LECc2ePVvHjx+X0+nU3r17lZ+fP6SaP/zhD/WjH/1IkpSSkqINGzZo3rx5cjgcZp8LFy7oySefVFVVlSQpOTlZb775pqZMmTKomoR5AAAAALCuYDNdxGyzX7FihWprayVJa9asCQjykpSVlSW32624uDh1dnZq7ty5am5uDln9bdu2af78+QFBXpJSU1NVWVmpr33ta5Ikr9erb3/72/L7/SGrDQAAAACwl4gI8/X19aqoqJAkjR49WqtWreq1X2ZmppYuXSrp6pb8srKykNR/4IEHNGPGjH779Kz13nvvaceOHSGpDQAAAACwn4gI8+Xl5ebL5RYsWCCn09ln3yVLlpjt9evXm8+zD8WDDz540z7Z2dkaO3asef3GG28MuS4AAAAAwJ5sH+b9fn/AXe6bvdguNzdXI0eOlCRdvnxZbrd70LUXLVokt9uthQsXBtV/3LhxZvvUqVODrgsAAAAAsDfbh/mamhpdvHjRvJ46dWq//R0OR0Cf6urqQdeeMGGCCgoKlJGREVT/nkfTjRgxYtB1AQAAAAD2ZvswX19fb7ZjY2MDtrL3Zfz48b2OD7cPP/zQbOfm5g5bXQAAAACAtdg+zDc0NJjtMWPGBDWmZ+DvOT6cPvjgA3388cfm9YIFC4alLgAAAADAemwf5j0ej9m+9iz8zfTs5/P5huWYuF//+tdme+7cubrnnnvCXhMAAAAAYE22fzC7paXFbMfGxgY1Ji4u7oY5UlNTQ7quni5duqQXX3xRkpSYmKif/OQnQY/t6OhQR0eHee3z+UK+PgAAAADA7cX2d+Z7Hi3X35F0PV3fr7W1NaRrut7q1avNLfbr16/XnXfeGfTYsrIyJScnm5+eb8QHAAAAANiT7cN8fHy82e7s7AxqzPX9EhISQrqmnvbs2aMXXnhBkvTEE0+oqKhoQONLS0vl9XrNz0cffRSOZQIAAAAAbiO232aflJRktntuR+9Pe3t7n3OE0l//+ld961vfkmEYeuSRR8xQPxCxsbFBPz4AAAAAALAH29+ZHzVqlNlubm4OaozX6zXbLpdLMTExoV6WGhsb9ZWvfEU+n0+FhYX6zW9+o+jo6JDXAQAAAADYj+3DfHZ2ttk+c+ZMUGNOnz7d6/hQ+eCDDzRz5kydPXtWDz/8sF577bWgn+cHAAAAAMD2YT4nJ8dsd3R0BAT1vjQ2NvY6PhQ++OADzZgxQx9++KEeeughvfrqq2yTBwAAAAAMiO3DfF5enlJSUszr2trafvsbhhHQp6CgIGRraWpq0syZM80gv23bNoI8AAAAAGDAbB/mY2JiNGfOHPN63759/fY/evSo+Wx9YmKiCgsLQ7KOpqYmzZgxQydPnlRhYWG/QX7RokV64IEHQlIXAAAAAGA/tg/zkrRy5UpFRV39qVu3bu33iLrKykqzvWzZsoCj7Qbr5MmTmjlzpk6ePKmCggK99tpr/d6RP3jw4E3/6QAAAAAAiFwREeYnTZqk4uJiSdK5c+dUXl7ea7/GxkZt2LBBkpSWlqbS0tJe+/n9fi1evFhJSUnKzc3VsWPH+qx98uRJzZgxQ01NTSooKND27dvZWg8AAAAAGBLbnzN/zbp163T06FEdOXJEq1ev1ujRo82AL0knTpzQ7Nmz1d7eLqfTqW3btgU8a99TVVWVtmzZIkmqq6vT8uXLdeDAgRv6ffjhh5o5c6aampokSV1dXXr00UdvutZPPvlkEL8QAAAAABApIibMJyQkqLq6WkVFRXK73SopKdGzzz6rnJwceTweHTx4UF1dXcrIyFBlZaXy8/ODntvhcPT696effloffPCBeb13794h/w4AAAAAACJim/01o0aN0p49e7Rz507NnTtX7e3t2rlzp/7nf/5H06ZN03PPPae//vWvN3353OLFi7Vw4UIlJiZq8uTJevHFF3vt19+z+QAAAAAADJbDMAzjVi8CoePz+ZScnCyv1yuXy3WrlwMAAAAAGIBgM11E3ZkHAAAAAMAOCPMAAAAAAFgMYR4AAAAAAIshzAMAAAAAYDGEeQAAAAAALIYwDwAAAACAxRDmAQAAAACwGMI8AAAAAAAWQ5gHAAAAAMBiCPMAAAAAAFgMYR4AAAAAAIshzAMAAAAAYDGEeQAAAAAALIYwDwAAAACAxRDmAQAAAACwGMI8AAAAAAAWQ5gHAAAAAMBiCPMAAAAAAFgMYR4AAAAAAIshzAMAAAAAYDGEeQAAAAAALIYwDwAAAACAxRDmAQAAAACwGMI8AAAAAAAWQ5gHAAAAAMBiCPMAAAAAAFgMYR4AAAAAAIshzAMAAAAAYDERGeZ37dql+fPnKzMzU/Hx8UpPT9d9992ntWvX6sKFC2Gv7/F4tGDBAjkcDjkcDu3fvz/sNQEAAAAA9hFRYf78+fN6+OGH9dWvflW/+93v5HQ6NXv2bN19992qqanRU089pc997nPat29f2Nbw61//WtnZ2frtb38bthoAAAAAAHuLmDDf2tqqgoIC7dmzR9HR0fr5z3+ud999V6+88or279+vv/3tb/rMZz6js2fP6qGHHtLbb78d0vpnz57VnDlz9O1vf1vNzc0hnRsAAAAAEFkiJsyvWLFCtbW1kqQ1a9aopKQk4PusrCy53W7FxcWps7NTc+fODVno3rRpk7Kzs7Vz505NmTJFf/7zn0MyLwAAAAAgMkVEmK+vr1dFRYUkafTo0Vq1alWv/TIzM7V06VJJV7fkl5WVhaT+k08+qba2Nv3Hf/yH3nnnHU2ePDkk8wIAAAAAIlNEhPny8nJ1d3dLkhYsWCCn09ln3yVLlpjt9evXq62tbcj1v/SlL6murk6lpaUaMWLEkOcDAAAAAEQ224d5v9+vHTt2mNezZs3qt39ubq5GjhwpSbp8+bLcbveQ17Br1y7dfffdQ54HAAAAAAApAsJ8TU2NLl68aF5PnTq13/4OhyOgT3V1ddjWBgAAAADAYNg+zNfX15vt2NhYjR079qZjxo8f3+t4AAAAAABuB7YP8w0NDWZ7zJgxQY3pGfh7jgcAAAAA4HZg+zDv8XjM9rVn4W+mZz+fzye/3x/iVQEAAAAAMHi2f7V6S0uL2Y6NjQ1qTFxc3A1zpKamhnRdodLR0aGOjg7z2ufz3cLVAAAAAACGg+3vzPc8Wq6/I+l6ur5fa2trSNcUSmVlZUpOTjY/48aNu9VLAgAAAACEme3DfHx8vNnu7OwMasz1/RISEkK6plAqLS2V1+s1Px999NGtXhIAAAAAIMxsv80+KSnJbPfcjt6f9vb2Pue43cTGxgb9+AAAAAAAwB5sf2d+1KhRZru5uTmoMV6v12y7XC7FxMSEelkAAAAAAAya7cN8dna22T5z5kxQY06fPt3reAAAAAAAbge2D/M5OTlmu6OjIyCo96WxsbHX8QAAAAAA3A5sH+bz8vKUkpJiXtfW1vbb3zCMgD4FBQVhWxsAAAAAAINh+zAfExOjOXPmmNf79u3rt//Ro0fNZ+sTExNVWFgYzuUBAAAAADBgtg/zkrRy5UpFRV39qVu3bu33iLrKykqzvWzZsoCj7QAAAAAAuB1ERJifNGmSiouLJUnnzp1TeXl5r/0aGxu1YcMGSVJaWppKS0t77ef3+7V48WIlJSUpNzdXx44dC8/CAQAAAADoRUSEeUlat26dpkyZIklavXq1KioqAr4/ceKECgsL1d7eLqfTqW3btgU8a99TVVWVtmzZokuXLqmurk7Lly8P+/oBAAAAALhmxK1ewHBJSEhQdXW1ioqK5Ha7VVJSomeffVY5OTnyeDw6ePCgurq6lJGRocrKSuXn5wc9t8Ph6Pf7d999V88880yf3z/zzDPatGmTef31r39dX//614OuDwAAAACILBET5iVp1KhR2rNnj15//XVt2rRJR44c0c6dO+VyuTRt2jTNmzdPxcXFSk1N7XeexYsX680339T27duVlZWlF198sd/+H3/8sTZv3tzn97///e8Dru+8807CPAAAAACgTw7DMIxbvQiEjs/nU3Jysrxer1wu161eDgAAAABgAILNdBHzzDwAAAAAAHZBmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALAYwjwAAAAAABZDmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALAYwjwAAAAAABZDmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALAYwjwAAAAAABZDmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMREZ5nft2qX58+crMzNT8fHxSk9P13333ae1a9fqwoULtq0NAAAAALAHh2EYxq1exHA5f/68ioqKtGfPHknSxIkTlZOTI4/Ho4MHD+rKlSvKyMhQVVWVZs2aZcnaPp9PycnJ8nq9crlcoVo+AAAAAGAYBJvpIibMt7a26v7771dtba2io6O1ceNGlZSUmN+fOHFCs2fP1vHjx+V0OrV3717l5+dbrjZhHgAAAACsK9hMFzHb7FesWKHa2lpJ0po1awLCtCRlZWXJ7XYrLi5OnZ2dmjt3rpqbmy1fGwAAAABgPxER5uvr61VRUSFJGj16tFatWtVrv8zMTC1dulTS1W3xZWVllq4NAAAAALCniAjz5eXl6u7uliQtWLBATqezz75Lliwx2+vXr1dbW5tlawMAAAAA7Mn2Yd7v92vHjh3m9c1eLpebm6uRI0dKki5fviy3223J2gAAAAAA+7J9mK+pqdHFixfN66lTp/bb3+FwBPSprq62ZG0AAAAAgH3ZPszX19eb7djYWI0dO/amY8aPH9/reCvVBgAAAADYl+3DfENDg9keM2ZMUGN6hu6e461UGwAAAABgX7YP8x6Px2xfex79Znr28/l88vv9lqsNAAAAALCvEbd6AeHW0tJitmNjY4MaExcXd8Mcqampt2Xtjo4OdXR0mNder1fS1X8EAAAAAACs5VqWMwyj3362D/M9j3fr71i4nq7v19raOqgwPxy1y8rK9KMf/eiGv48bNy7IVQIAAAAAbjctLS1KTk7u83vbh/n4+Hiz3dnZGdSY6/slJCTctrVLS0v11FNPmdfd3d26cOGC7rjjDjkcjgGsFgAAAABwqxmGoZaWlpu+d832YT4pKcls99yO3p/29vY+57jdasfGxt6whT/Y5/MBAAAAALef/u7IX2P7F+CNGjXKbDc3Nwc15tpz55LkcrkUExNjudoAAAAAAPuyfZjPzs4222fOnAlqzOnTp3sdb6XaAAAAAAD7sn2Yz8nJMdsdHR0BYbkvjY2NvY63Um0AAAAAgH3ZPszn5eUpJSXFvK6tre23v2EYAX0KCgosWRsAAAAAYF+2D/MxMTGaM2eOeb1v375++x89etR8vj0xMVGFhYWWrA0AAAAAsC/bh3lJWrlypaKirv7UrVu39ntMXGVlpdletmxZwPFyVqsNAAAAALCniAjzkyZNUnFxsSTp3LlzKi8v77VfY2OjNmzYIElKS0tTaWlpr/38fr8WL16spKQk5ebm6tixY8NWGwAAAAAAh2EYxq1exHBobW1Vfn6+jhw5ohEjRmjjxo1myJakEydOaPbs2Tp+/LicTqf27t2r/Pz8Xuf6xS9+oX/8x380r/Pz83XgwIFhqQ0AAAAAQETcmZekhIQEVVdXq7CwUF1dXSopKdE999yjb3zjG5o5c6ays7N1/PhxZWRkaPfu3QMK0w6H45bVBgAAAABEnoi5M9/T66+/rk2bNunIkSM6e/asXC6X7rrrLs2bN0/FxcVKTU3td7zf71dxcbG2b9+urKwsbd68WZMmTRqW2gAAAAAARGSYBwAAAADAyiJmmz0AAAAAAHZBmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALAYwjwAAAAAABZDmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDF/D8fCG7YEVZ5DgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "H = data.incidence_1.to_dense().numpy()\n", - "labels = data.y.numpy()\n", - "n_steps=11\n", - "Ep, Np = data['mp_homophily']['Ep'].numpy(), data['mp_homophily']['Np'].numpy()\n", - "num_steps = transform_config['mp_homophily']['num_steps']\n", - "\n", - "\n", - "isolated_nodes = np.where(H.sum(0) == 1)[0]\n", - "# Get non-isolated nodes\n", - "non_isolated_nodes = np.array(list(set(np.arange(H.shape[0])) - set(isolated_nodes)))\n", - "\n", - "# Sort non-isolated nodes by their class node\n", - "non_isolated_nodes = non_isolated_nodes[np.argsort(labels[non_isolated_nodes])]\n", - "\n", - "# Extract the class node probability distribution for non-isolated nodes\n", - "sorted_labels = labels[non_isolated_nodes]\n", - "avr_class_homophily_types = []\n", - "types = []\n", - "for step in range(num_steps):\n", - " type = Np[step, non_isolated_nodes, sorted_labels]\n", - "\n", - " # Within every class, sort the nodes by their class node probability distribution\n", - " avr_class_type = []\n", - " \n", - " for i in np.unique(sorted_labels):\n", - " idx = np.where(sorted_labels == i)[0]\n", - " type[idx] = type[idx][np.argsort(type[idx])]\n", - " avr_class_type.append(np.mean(type[idx]))\n", - " \n", - " avr_class_homophily_types.append(avr_class_type)\n", - " types.append(type)\n", - "\n", - "\n", - "settings = {\n", - " 'font.family': 'serif',\n", - " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", - " 'figure.figsize': (5.5, 3.399186938124422),\n", - " 'figure.constrained_layout.use': True,\n", - " 'figure.autolayout': False,\n", - " 'font.size': 16,\n", - " 'axes.labelsize': 24,\n", - " 'legend.fontsize': 24,\n", - " 'xtick.labelsize': 24,\n", - " 'ytick.labelsize': 24,\n", - " 'axes.titlesize': 24}\n", - "\n", - "step = 0 \n", - "\n", - "with plt.rc_context(settings):\n", - " fig = plot_homophily_scatter(avr_class_homophily_types[step], data.y, non_isolated_nodes, types[step], step=step, save_to=None)\n", - " plt.close()\n", - "fig\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Hypergraph" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Transform parameters are the same, using existing data_dir: /home/lev/projects/TopoBenchmark/datasets/graph/cocitation/Cora/graph2hypergraph_lifting_mp_homophily/1975368801\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torch_geometric/data/in_memory_dataset.py:300: UserWarning: It is not recommended to directly access the internal storage format `data` of an 'InMemoryDataset'. If you are absolutely certain what you are doing, access the internal storage via `InMemoryDataset._data` instead to suppress this warning. Alternatively, you can access stacked individual attributes of every graph via `dataset.{attr_name}`.\n", - " warnings.warn(msg)\n" - ] - } - ], - "source": [ - "from omegaconf import OmegaConf, open_dict\n", - "# Recompose config with additional override of model equivalent to \"\"model=hypergraph/unignn2\"\" which will force to load approriate tranforms\n", - "cfg = hydra.compose(config_name=\"run.yaml\", overrides=[\"dataset=graph/cocitation_cora\", \"model=hypergraph/unignn2\"], return_hydra_config=True)\n", - "loader = hydra.utils.instantiate(cfg.dataset.loader)\n", - "dataset, dataset_dir = loader.load()\n", - "\n", - "data = dataset.data\n", - "\n", - "# Create transform config\n", - "\n", - "# Add one more transform into Omegaconf dict\n", - "\n", - "new_transform = {\n", - " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", - " 'transform_name': 'MessagePassingHomophily',\n", - " 'transform_type': 'data manipulation',\n", - " 'num_steps': 3,\n", - " 'incidence_field': \"incidence_hyperedges\",\n", - " }\n", - "\n", - "# Use open_dict to temporarily disable struct mode\n", - "with open_dict(cfg.transforms):\n", - " cfg.transforms[\"mp_homophily\"] = OmegaConf.create(new_transform)\n", - "\n", - "# # Apply transform\n", - "processed_dataset = PreProcessor(dataset, dataset_dir, cfg.transforms)\n", - "data = processed_dataset.data\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT5/cH8M/NYk9Zgjhw46ir2taqX7XDXevCUZx11r1a66+11qodal1t3aNoFVfdo62jtWodOHBPEARlCQTITu7vj0ggJECAJJck5/168fLemzsOqMDJ8zznMCzLsiCEEEIIIYQQQojN4HEdACGEEEIIIYQQQsqGknlCCCGEEEIIIcTGUDJPCCGEEEIIIYTYGErmCSGEEEIIIYQQG0PJPCGEEEIIIYQQYmMomSeEEEIIIYQQQmwMJfOEEEIIIYQQQoiNEXAdADEvjUaD5ORkeHh4gGEYrsMhhBBCCCGEEFIGLMsiJycHwcHB4PGKH3+nZN7OJCcnIzQ0lOswCCGEEEIIIYRUQGJiIqpVq1bs65TM2xkPDw8A2r94T09PjqMhhBBCCCGEEFIWYrEYoaGhutyuOJTM25n8qfWenp6UzBNCCCGEEEKIjSpt2TQVwCOEEEIIIYQQQmwMJfOEEEIIIYQQQoiNoWSeEEIIIYQQQgixMZTME0IIIYQQQgghNoaSeUIIIYQQQgghxMZQMk8IIYQQQgghhNgYSuYJIYQQQgghhBAbQ8k8IYQQQgghhBBiYyiZJ4QQQgghhBBCbAwl84QQQgghhBBCiI2hZJ4QQgghhBBCCLExlMwTQgghhBBCCCE2hpJ5QgghhBBCCCHExjhsMp+WloaIiAgwDAOGYXDmzBmLP1OlUmHHjh3o3r07atSoAWdnZ4SEhKBTp05Yt24dJBKJxWMghBBCCCGEEGL7HDKZ37FjB8LDw7Fr1y6rPTMuLg5vv/02Bg8ejKNHj8LX1xcffPABqlevjtOnT2Ps2LFo0aIFrl27ZrWYCCGEEEIIIYTYJgHXAVjT8+fPMW7cOBw8eBACgfU+9dTUVHTs2BFPnz6Fm5sbdu3ahW7duulev3TpEnr27In79++jc+fOuHDhAurXr2+1+AghhBBCCCGE2BaHGZnfsmULwsPDcfDgQbRo0QKXL1+22rMHDx6Mp0+fAgDWr1+vl8gDQOvWrbFv3z4wDIPMzEz07t0bKpXKavERQgghhBBCCLEtDpPMT506FVKpFIsWLcLFixfRrFkzqzz3yJEjOHnyJACgefPmGDRokNHz2rZti169egEA7t27h/Xr11slPkIIIYQQQgghtsdhkvm3334b169fx5w5c6w6xX7JkiW67cjIyBLPHTp0qNHrCCGEEEIIIYSQwhwmmT98+DAaNGhg1Wempqbin3/+0e137ty5xPM7duyo237y5AmuXr1qsdgIIYQQQgghhNguh0nmufDnn39Co9EAAJydndGoUaMSz/fx8UHt2rV1+8ePH7dofIQQQgghhBBCbBMl8xZ08+ZN3Xb16tXB5/NLvaZWrVpGryeEEEIIIYQQQvJRMm9Bd+7c0W2HhISYdE3h8wpfTwghhBBCCCGE5HOoPvPWlpaWptv29vY26ZrC56Wnp5s5ImKL7jzPRrcV/5rlXo2CPfHb6Dfg5SI0y/1szoubwJq39Y8FNQWGHQJcvDkJyZ6IFWKMPjEad16a/41IN6Eb/hv8H9747Q3kKfPKdQ8ew8OuHrtQ37e+maMjBMiNiUHikI+4DsNm8dzcUOvgAYhMHPywZ3KJEr8vvYqMpPJ9r7MlH85sjuA6PlyHYXXP7t1G9LxPrfrMiPnfoVqDkpf8ck2VKcOLpZeBCnbo9hvXBM41vc0SU2VHI/MWlJOTo9t2cnIy6RpnZ2ej1xdHLpdDLBbrfRD70nPVObPd63ayGGOjrpjtfjZnXQfDYy9igWj6Bdwcpp6eapFE3lw0rAYRhyO4DoPYKUrkK0aTl4e43h9yHUalcGzNTYdI5AHg9yXXuA6BE9ZO5Ll6ZlmlrLha4UQeANLXOM5SZUrmLUgqleq2RSKRSdcUPk8ikZR6/uLFi+Hl5aX7CA0NLXughBBiBiqNGX4CE0IIIYQQk1Ayb0EuLi66bYVCYdI1hc9zdXUt9fw5c+YgOztb95GYmFj2QEmllS1Vwrn0uokmaxTsibWRrcx3Q1sz5m/DY0FNgYht1o/FziTlJuF66nWuwygRj+Ehukc012EQO6QWiyGycvtbe8Nzc0Ot/b9zHUal0GlYQ/AcZDXchzObcx0CJyLmf+cQzyyrwCktzLII3G9ck4rfxEbQmnkL8vDw0G3L5XKTrpHJZEavL46Tk5PJU/iJ7Rm19TJkaoDPY+Aq4qNRsCd2jnmT67BsV1AT4KtsrqOwO2KFGN32dQMLVneMz/Bxfeh1sz/rv8H/mf2ehFRU4vjxUCUlgefhAad6dVFz+3auQyI27NTWu6hay1u333t6C+6CIRZRrUEjzIg+zHUYlY7AxxnVvmnHdRg2hZJ5C/L399dtZ2VlmXRNdnZBouHn52fukIgNScyU4Ep8pm5folA79qg6qbSmnp4KDavRO+YicCnmbELsj/zefWjy8nTbhBBCiDXQNHsLCg8P120nJSWZdE3h8wpfTxxLtlSJ/31/Wu+Yq5DnuFXoSaWVlJuEmJQYg+N7eu3hIBpCrE8tFusSeQDQFKqXQ0h5dBrWEGmJuUhLzEWnYQ25DocQUolRMm9BTZoUrNdISEiAWq0u9ZonT54YvZ44lsiNF6Fm9Y/VDyp92QUh1pKUm4TWUa3RZW8Xg1H5432PI8Sd2ksRx5AweozePmNCvRtCiiOXKBG94BKUcjXAsvhrU+XtEEII4R5Ns7egd999FzweDxqNBjKZDLdv30bTpk2LPT8zMxOPHz/W7Xfp0sUaYZJKJluqROwz/XXdfAbYOLw1RxHZiRc3gbXtAVYDBDcHIvdTb/kyuP/yPvod6lfqeR4iD0rkiUNQi8WIHzoMinv39I6HHdjPTUDELhxadQMKmXbwR6lQIyPZMVrUORJZXi4OLlkIAOg1cy6c3dw5jojYMhqZt6CAgAC0b99et3/y5MkSzz99umBadVhYGFq0oIInjshYH/gzszvSFPuKWtdBm8gDQPI16i1vovwReFMSeQDY3XO3hSMipHJIHD/eIJFn3N0hCqE3s0j5iDOkSIkT6/ZZDVAlmGZ62Jv8RL7oNiHlQSPzFjZz5kycOXMGABAVFYVp06YVe+6vv/6q254xY4alQyOVlEShvxzj6JS3EepDP8yJ5YkVYow8NhL3s8pewMtV4Ip9H+yjUXniENRiMaTXrhscp1F5Ul7pz3IQ/c1lg+PdP3mNg2iIJWk0aqQnPAUA+FWvwXE0xNbRyHw5ZGVloXv37nB3d0f79u1L7O3evXt3dOrUCQBw7do17Ny50+h5586dw8GDBwEADRo0wJgxY4yeR+xbYqZEb4o9jwHCq3pxGJEdGfM3wLz6lhfcnHrLGzH+r/FlTuRdBa443vc4Lg65SIk8cQhqsRiPOnYCNPq1IkK3b6NReVJuuxYZJvKBNT3g5Eqz8uyNSqGAXJIHuSQPKoWC63CIjaOR+XJYtmwZjh49CgA4e/Ys5s6dqzeqXtRvv/2GNm3a4OnTp/j444/h6emJbt266V6/dOkS+vTpA5Zl4e3tjf3790MgoL8aR5OYKUG77/Qr2DMMw1E0diioCTAvs/TzHJRYIUZsWmyp523tshUtAmkJEHEsuTExSBxS/NIcxt0d7i1bWjEiYm+K1BGF0JmPnpObcRILsZzstBSkPHkEAGB4PKTGPynlCseikaqQEaUt+lglMhw8F8qHSuMwX6F79+7h22+/Lfb1b7/9Flu2bNHt9+7dG7179zbp3qUlXIGBgTh16hQGDRqES5cuoXv37mjevDnq1q2LxMRE/Pfff2BZFvXq1cOOHTtQv359k55L7Eu3FWcNjh2a1JaDSIijMaW4HU2jJ45IkZSExz16AqW0m6Pp9aQixBn6/76ETnwMW/QWjcrboV9nT9JtsxoNRC60jDKf4nkuUldcAwAIq7kjI+oO/McUXzicaDlMMv/ixQts3bq12NdPnDiht1+zZs1ik/np06cjJiYGZ86cQcuWLfHNN9+U+vywsDCcO3cOu3btQlRUFG7duoXbt2+jSpUqaN++PQYNGoTIyEi4Uksbh1V0rXyzUE+aYk/MQqwQY/SJ0bjz0vQWR9Rejjg6tViMx+++ZzCdvqjaJ/+i6fWk3OQSJbZ9cUG3z/CAYYspkbdXSplMb3/oD6s4iqTySV11TbetfJYLpzD6HdgUDpPM/+9//wPLsqWfaAJvb28cOXKkzNcJBAIMHjwYgwcPNkscxH5kS5XQaAr+ffIZYOvINziMiNiTMX+MKVMizwOPEnnisIprOWeAx0PN3/dRIk/KTS5RYuvn5/Wm2LMaUCJvp57duw321ZuDDI+HoLC68PIP5DiqSoYB8OrX4SqR4ZyGYiscJpknpDIbvvlS/vcu8BkGzat7USs6YhZJuUm4nXG7TNfs6rnLQtEQUnlJ799H/Ae9SzwndPs2WhtPzObYmptQyvRn5QmcqDa1vYqe96lum9Vo0Ofz+RxGU7moMmXasuwq7b7fuCa0Xt5E9FUipBIoXMFezbLYOLw1h9EQe9LvoGn94QGgUZVGWPfeOniKPC0YESGVhykJfD6aTk/MTaM2nDE66Ms2HERCLC07LcXgmLObOweRVE4pK64CGuj6rOX8kQDnMd5chmQzKJknhGOJmRKoC02x5zGgUXlzk2YBvw0E0u4AAQ2BQdGAizfXUVmFVKVfWGlPzz2o70tFNgkxNZFnXF0RduggJfLEAlgInHhQyTVgeMBHC96EZxUXroMiFlC48B0ARMz/jqNIiL2huTyEcChbqsT/vj+jd6xpNRoVNbvt/YDEC4AsG0i5DUQX32LK3jjznXXbbgI3SuQJgbZKfamJPI+Hmgf2o8HVGErkiYUw4PF4ELkIEFTLixJ5OyXLy4VCItHtMzweqjVoxGFElU/glBaAUJuWiqp50Hr5MqBknhAORW68CHWRwoxU+M4Ckq8WbMtzuIvDzIYMGQKGYfQ+/ve//+leT8pN0o3MuwndUM+3nt71//77Lxo1amRwj7K4e/cu5s6diw4dOqBq1apwdXWFUCiEr68vmjVrhhEjRuDQoUNmK0BKSEUpkpLwuPM7xb7u1LAh6l26iIZ3bsOFWsUSC9KoWSjlaijlaqNT7ol92Ld4nt6+QOTEUSSVl8DHGdXmt0W1Re0QMKEZrZcvA/pKEcKhwmvlAW07OppibwECV0DxKoln+EDENm7jMYMzZ87gt99+M/qasVZ0UpUUqzuvBgC8fPkSs2fPxqZNm8qdZKvVakyfPh2rV6+G5lV1XoFAgF69esHb2xsnTpzAjRs3cOPGDWzZsgUtW7bE3r17UaNGjXI9jxBzKC6RZ1xdUffMafA9aWYUsazkR5n4fck1vWNCJz4yUyTFXEFsWerTODx/eF/vWECNWhxFQ+wRJfOEcORSfIbBMRqVN7PMp8DPbwHKXO0+wweCW9j8enmVSoWJEycW+/rEkxMNWtFpWA08RZ6IiorCjBkzkJaWhqCgILx48aJcMcyaNQsrV67UO7ZhwwYMGzYMAJCamorw8HBkZGj/ncfExKBTp06IjY2Fm5tbuZ5JSHkpkpLwuEdPQCo1eI3n5oY6p09RIk8sKv1ZDqK/uWz0NaVcjaq16d+fPdr22RS9fYbHQ+9Pv+QomspLlSnTFsGDdsq9wMe5lCtIPppmTwgHsqVKDFjzn96xo1PeplF5c1vTtiCRBwBWDQht/wfE8uXLcfv2bfB4xr+FP8x8aHDMTeCGI0eOYOjQocjJycFXX32FM2fOlOv5aWlpWLVqld4xPp+PiIgI3X5AQADee+89vXOePHmCTZs2leuZhJSXbjTeSCIPHo8SeWJxcomy2EQ+X/dPXrNSNMSa8vvK5xu1cj1VsTciP5Evuk1KR8k8IRwYG3XF4Fh4VS8OIrFjmU+Nr4+38Sn2ycnJmD9/PhiGwahRo4yeU3TqvKvAFXs/2AulUon3338ft27dwrx58+DkVL51excvXoRKpdI75u/vD2dn/TdKqlevbnDtP//8U65nElIeuTExJa6Pr/3nH5TIE4s7uOJ6ia9/OLM5nFzpzXx7I8vLhcCp4OdiYK068PIP5DCiykmVKQMrU4OVqQEqHVFmNM2eEI40rOqOu8+1o8a7xtH0erNb87bhsXH/2vwU++nTpyM3NxfDhg3DW2+9hfXr1+u9nqvIhVwlBwDwGB5cBa64MPgCAMD3fV/07t27wjHk5Bi+SSIUGv4iKhKJDI6JxeIKP5+Q4qjFYsQPHQbFvXslnkft5oi1yCVKpD41/J754czmCK7jw0FExFoOLlmIwJphSE98CgDo98U3HEdUOaWsuAqIGEDBgpWrEfTp61yHZFNoZJ4QDnzZMxwPUvLA5zE4OuVttK5ZheuQ7I8iT39/SiwQ1ISbWMzk1KlTiI6OhpeXF777zniP2rsv7+q2NawGdX3q6vZdXMzT9qi+kQrfxhJ8Y4l7nTp1zBIDIcYkjB5TciLP46HepYvUbo5YzbE1N/UPMMAnazpRIu8geHw+AmqGIaBmGE2vLwHD44Fx5oNx5tN6+TKiZJ4QK0vMlKDbin+h1rBwEfIxcO1/pV9EyubFTe36+HwiD8DHtquoK5VKXdG7+fPnIzDQtKl6+RXszalFixZ4+239mQ9ZWVlITEzUO3bzpv4vsQKBAKNHjzZ7PMSxKZKTAQD3W7aC7MaNYs9jXF1pWj2xOpVSf810xFwadXQUb0V8hMQ7N5F45ybeiviI63AqJY1UBX4VF+00e4Ua/mObch2SzaFknhAr677irG47V64q4UxSbus66O8HNuYmDjP68ccfcffuXTRp0gSffPKJSdds7bIVniLLJC67d+9GmzZt9I5NmDAB8fHxyM7Oxtq1a3H69Gnday4uLti0aROaNWtmkXiI41EkJeFu8xaI69mr5BN5PNQ8sJ9G4wknXj7PA8NjwPAYCJ358KvmwXVIxEp2zZ+jHXHm8bBr/hyuw6mUMqLuQJ0h1Y7Ki/jIPvSE65BsDq2ZJ8TKWAAMCmp8HJnSjsNo7FDmU0Cj1j82eCc3sZjJs2fPsGDBAgDA6tWrIRCU/q17T889qO9rOB3eXIKCgnD+/HkcOHAACxcuRExMDA4fPozDhw/rneft7Y2xY8diwoQJRgviEVJecR/01laoL6bVYe2Tf1HyTjjHMAyETnyuwyCE2CkamSfEiu48z0aOTKVL5BuHeCLUx5XTmOxO0cJ3dlD0btq0acjNzcXgwYPRvn37Us/f2mWrRRN5ANBoNFizZg1mzJiBmJgYAICXlxf69u2LUaNGoUGDBgC00+83btyIlStXIjMz06IxEcchvX8fmtzcYl8P3b6NEnnCufRnOVBIVVBIVVDKVPhwRnOuQyJWkPo0DksjeoDVaHSt6T76dgXHUVVOPv3rgWVZsAo1hAGuqBIZznVINodG5gmxop6rzuntJ2RIOIrETkmzAHmhomsM3+aL3v3555/Ys2cPPDw88MMPP5R6PgMGLQJbWDQmlmUxePBgREdH6475+Pjg0qVLugJ3SqUS/fr1w8GDB5Geno6lS5di3759OHPmDI3QkwpRJCUh/oPeBsdF9euj+ppfaE08qTR2LSpoQ8uywL+7HqL3dMt+fybc2/bZFINjATVqcRBJ5Ze5+wGcQgqWnvBcKDUtKxqZJ8SK1Br9Bpr1AqmyqVlFfwTtIoZXhLY960GhUGDSpEkAgC+//BLBwcF6r0tVUoNreDzLf1vfsmWLXiIPAP369dOrVC8UCjFr1iy9c+Li4vDxxx9bPD5i3+KMJPIAUOu37ZTIk0pDLlGC1VDTbEeTnZaiG40nJdNIVVAk5UL+JBvy+GywKvq6lQcl84RYSbZUCTdhQaLpJuJj4/DWHEZkp5w8AB5f+2Hjhe+WLl2K+/fvo2HDhpgyxfCd/l9v/2pwrFGVRhaPa8OGDYbPbWT43MaNDb/+f/75J+Li4iwSF7F/iqQkg+n1jKttv2lH7NOxNTfBFxX8zBc68dF1nG3PFCOli5o92eAYTbE3LiPqDljFqxpHGkCRklfyBcQomstAiJWMjbqChsFeeJCi/UX07Ked4OUi5DgqOyLN0p9mH9TU5gvf5SfNd+/ehUgkMuma//79DwxT8AtkXFwcatasada4YmNjDY55e3sbHPPy8jJ6/fXr11GrFk05JGUX1+sDvX2emxtqHzlczNmEcIvP54Pvot32D3WHkyv9zLc32Wkp2Dx9AtQKucFrDI+HCRt+o/7yxdAo1AXVoBno/e5CTEfJPCFWJODzEB6snQZKibyZbe8HpBTqa5562+YL340aNQovX740OC5Xy7Hj3g7Ik+TIvak/SlmtWjVERETo9otLqCtCpTJsqciypk8nVSgU5gyHOIjcmBho8vRHbuqcPkVT60ml1HVcExz56QYykiWoEuxGo/J26tfZk4wm8gAgEDlRIl8CZVKh319YIHAK1ZMoD0rmCbGSH/q/pusxT+3oLCD5KtcRmN3nn3+uty9WiDHy2Ejcz7qPqs2qIvNspkEyX7t2bSxZssSicdWoUQP379/XO2asUn1x1etr1KhhkbiI/VGLxYgfOgyKe/cMX3Rzo0SeVGo8Pg/+oe7oOq4JjcrbodSncVBIii9kbI0aNrZKI1UVjMq/+jIJfJw5i8eW0b8yQqwgMVOC/31/GmKZChoWmBZ9neuQ7Is0S1squLAxf3MSiiVNPDkR97Pul36ihfXr18/g2M2bNw2O3bp1y+BYtWrV0Lo11YogpkkYPcZ4Ig+g9sEDVo6GENMdW3PT6DaxD7K8XETNnlTs60JnZ0R+v9KKEdmWjKg7EIS8mrWgAQImUdvG8qJknhAr6L7iLNSvcs1cuQoPXuRwG5A9kWYBPzYC2FdVUBk+MCXW5lvSGfMo6xHXIQAAPvvsM9StW1fv2N69e3GvUNKlUCjw/fff653D5/Px888/02gFMYkiKQmyGzeMvkZ95AkhXNr//dcGx0Lqh2NG9GHMiD6MyVv3wMs/kIPIbAOrYaHOkIJx5kNU0xOiqrQcobxomj0hFnYpPgNimf4aY2pJZ0Y7IgBF4XVXasDHPqdxV/eojitXriDrYhYAQJVsuHb98ePHmDlzJgDtlPvx48frvb5o0SLdOnyxWGz0OfnXA4Cvr6/BdH93d3ecPXsWw4cPx/Hjx3X3atOmDd577z14eXnh3Llzesl9cHAw1qxZg549e5bxsyaOymgLOh4PNX/fB5f69a0eDyFl0XVcE92IPK2Xtz/pCU8hcHKGSi4DAASG1UXvT7/kOCobwhazTcqMknlCLChbqsSANf/pHeMzoJZ05pRyW3+fsc9R36TcJNzOuA3ZMxkyjmcUe96zZ8+wdOlSAECHDh0Mkvl169bh6dOnJT4r/3pAu769aDIPAIGBgTh27Bj+++8/7N69GxcvXsSjR49w+PBhKJVKuLu7Izw8HE2bNkW3bt3Qt29fuFILMWKi3JgYgxZ0zk2botauaI4iIsR0colSr/gdsT9+oTWQnvgUfFc3+IXWwMCvvy/9IlKAKWablBkl84RY0Kitlw2OuTkJqJK9uWQ+BeRFliyM/YebWCys30HtOnWfdj7waecDD5EHzg86X+b7xMfHmzWuN954A2+88YZZ70lI4pCP9PZ5bm6ovmE9R9EQUjaHVt1ASpx25lN6Ui6OrbmJ3tOpUrc96f3plzi4ZCEAoNfMuRxHY1s0UhUUz3MBpQaMiE8j8xVEyTwhFnTvuX6i6SriUyV7c1rTVn/fydMu18oDgFQlBQMG7Kufert77uY4IkIsQ21k+Qe1oCO2JPVpwc9+pUzNYSTEUpzd3DFg3mKuw7BJGVF3tD3lRXwAAMOnofmKsM/5qIRUEhJFwZpmHgPc+boLQn1oqrFZSLMMR+XH/ctJKNZQ36e+LpEP9w1HiDsV/yL2KWHkKL390O3bKJEnNkUg4ummDjM8WjNPSFHCwILlJ1UiwzmMxPY5ZDJ/+PBh9O/fH2FhYXBxcUFQUBDeeust/Pjjj7rCUJZw/fp1TJ06Fc2bN4efnx+cnJwQEhKC9u3bW/zZxPoSMyXQvJo6xGcYuL16B5KYyY4I/X2Rh8UK36VJ0vDz9Z+RJkmzyP1Lk5SbhHsvtcXk3IRucBI4cRKHLeP675CYRi0WQ1akpaF7y5YcRUNI+Qz8ojVEzgKIXAT4aMGb1GPeDmWnpWD1iAisHhGB7LQUrsOxKT7960GZkgcACJzSAjwXmiheEQ6VzKenp6N79+7o2bMn9uzZA5FIhB49eqBBgwa4dOkSpk+fjsaNG+PkyZNmfW5OTg4GDx6M5s2bY8WKFXj48CFatWqFvn37ombNmjh37hymT5+O8PBwHDx40KzPJtzptuKsrqaHmmVxdGp7TuOxK9IsILFIPYLx5yz2uDRpGn658QvSpNZPBJNyk9BlbxdooG29J1PJIODRD76y4vLvkJRMev8+7jZoiLsNGuJB6zb6L1IbQ2JD5BIldi64iKi5F6CQquDp5wwnSlTsiiwvF7/OmoQNE0dBLsmDRqNG1OzJXIdlMzRSFVKWXwUrU4NVqPFyx73SLyIlcpifkhKJBF26dMHRo0fB5/OxceNG3Lt3D7t378aZM2dw9+5d1KtXD8+fP0e3bt1w9uxZszw3JycH7dq1w44dOwAAI0aMwPPnz3H8+HH89ttvOHfuHO7evYvXXnsNKSkp6NOnDyX0diBbqkSOTAUWAJ/HgM9jaHq9OUV/BL2KKU6edtuOLr/wXT41q8byjsu5CYYQM8pP4uONtaB7pebv+6wXECEVdGzNTWQk5en20xNzde3piH04uGQh0hLidPtKmYzDaGxPRtQdsPJXdSQ0gOJZTskXkFI5TDI/efJkxMTEAAAWLFiAkSNH6r1et25dHDt2DM7OzlAoFOjTpw+ysrIq/Nxx48bhxo0bAICuXbti48aN8PDw0DunXr16+OOPP+Dr6wu1Wo0hQ4bg+fPnFX424c7YqCtwF2n/e6k1LJqEeJRyBSkzkTvA42s/AhpxHY3FSFVSvf0mfk3gKaL1w8S2KZKSSkziAYBxd6d+8oSQSi/y+5Vch2BbCte7EzpMKmoxDMuydt8Q4ObNm2jWrBk0Gg0CAwORkJAAkUhk9NypU6dixYoVAIDZs2fju+++K/dzb9y4gebNmyP/SxwTE4MWLYpvTfLNN9/giy++AKAdwd+0aVOZnykWi+Hl5YXs7Gx4UsEgzgxcdwEqtQYPUrR9ks9+2ona0ZmLNAvY0gNIeTXaEdQUGHYIcPG22CN77e+FuOw4+Dj7QMiz3t8jy7IG08L9Xfy1VWBJmSg1SmTKMlHLqxYO9qbZT1y73+p1gz7yhTGurgg7dBCiECr0SGyHXKLE70uv6kbn/ULd0Xtac1ozb0ey01KwefoEqBVyAEDE/O9QrYH9DiiYm0aqQtqmW1Am5YAR8RE4pQUEPs5ch1UpmZrTOUQyP2LECGzZsgWAdoQ+P1k35urVq2j5qtiOm5sb0tLS4OLiUq7nzp07F4sWLQIAhISE4NmzZyWef/fuXYSHays6Ojs7IyUlpcwJOSXzlUO2VImxUVcAAGsjW1Eib06b3gcS/ivY5/GBLy1bPLJ9dHtkyjIt+gxiHT7OPvgn4h+uw3BoiqQkPO78jsFx58aNUX3TRqpcT2zSkCFD8Ntvv+kd69ChA86cOWNwblZWFi5cuIALFy7g4sWLePLkCVJSUiCRSCASieDj44P69eujbdu2GDJkCBo0aFCmWG7evIldu3bh5MmTSEhIQHp6OkQiEfz8/FC1alU0a9YMLVq0QJcuXRBCb5iVya75c/T2qT0dsRRTczq7r8qhVCpx4MAB3X7nzp1LPL958+bw9vZGVlYW8vLycOzYMfTp06dczz5//rxuu3HjxqWeX79+fTg7O0Mmk0Emk+HgwYP46KOPyvVswi0vFyF2jnmT6zDsU8odqz/S28kbmbJMq4/Mv5S9hEqjbW/IgIGfix+NypdT/si8t5M316E4vLii0+t5PNT77wIl8cRmnTlzxiCRL8lHH32EI0eO6Pbbtm2Ld955B7m5uThx4gSSk5ORnJyM06dPY+HChRgxYgRWrVoFV9eSa+9kZ2dj4sSJ2L59O1iWBcMwaNOmDbp37w6WZXH9+nWcP39e9/vpjz/+iKlTp5brcyaEVA52n8xfunQJmZkFI2otS2lxwzAMWrZsqatof/z48XIn8ykpBa0qfH19Sz2fx+PB19cXycnJAID//vuPknkbded5Nnqu0lZXPzSpLcKrenEckZ14cROQi/WPjfnb4o/9tt23iDgcgTXvrEF4Fev0Q82vYp+PAYNTA05Z5dn26E7GHUQcjsC37b7lOhSHlhsTYzC93qVZM0rkic1SqVSYOHFiua4ViUTYt28funfvrjuWk5ODvn374s8//wSgXW61adMmPHz4EKdOnYJAYPxX99TUVLz77ruIjY0FAPj4+ODAgQNo166d3nkHDhzAgAEDoFAoyhWzo3t/wlRd9XpaK192qkwZUlZcBQCaYm8mdl914ObNgiqi+X3dS1OrVi2j15dVeVYwFP4mXZFnE27lJ/JFt0kFreugv+/kCQQ14SYWCytaxZ5G5Ik9uDdoMHZnZWFS0jN0efIYrz98gDq7ouHh4YFatWqhe/fuWLFiBTIyMky+57///otGjRqBYRi9j7K4e/cu5s6diw4dOqBq1apwdXWFUCiEr68vmjVrhhEjRuDQoUPl+rlO7Nvy5ctx+/ZtMEzZf6X+9NNP9RJ5APDw8EBUVBScnJz0jp89exY//fRTsfcaOXKkLpEHgJ9//tkgkQeADz74ANOnTy9zrETrxM/LEVAzDAE1w3Di5+Vch2Nz8hP5otuk/Ow+mb9zp2BKbnBwsEnXFE74C19fVv7+/rrtly9NW9NbuIJ+fHx8uZ9NuJOYKYFaw0KtYfW6p5EKenET0Kj1j9lpFXuxQoxcpf7oZXSPaI6iIcQ8jh07hi5PHmNeyguczM1FglKJeo0b4+OPP8Zrr72G+Ph4HD16FFOnTkXt2rWxffv2Eu/38uVLfPzxx2jfvn25f1ar1WpMmTIFjRs3xqJFi/DPP/8gPT0dXbt2xdChQ+Hq6oobN25gy5Yt6NWrF15//XU8ffq0XM8i9ic5ORnz588HwzB4s37XMl8/dOhQo8cDAwONLguNiooyev6BAwf0pu37+/tjwIABxT539uzZ+PPPP9G3b98yRkwIqWzsPplPSyuoBO3t7W3SNYXPE4vFUCqV5Xp24Sn9t27dKvX8Z8+eQSwumEJceJvYhsRMCdp9d1q3r2ZZHJrUlsOI7IQ0C1jztv6x4ObA4J2chGNp4/8ar7ffxK8J6vtSiy5iu87t3Yte3bohQ13whlzH1q1x+epVrFmzBv/++y8iIyN1r2VnZyMyMhJHjx41er+oqCg0aNAAGzduRGBgYLnjmjVrFlauXAmNRqM7tmHDBuzduxcbN27E1atXUaVKFd1rMTEx6NSpE/Ly8ozdjjiY6dOnIzc3F+2bd0NYkOlLsObMmYN9+/ahTp06xZ5jrOjd/fv3jZ77yy+/6O23a9cOPF7xv+L7+PjgnXfeQWhoqIkRk3y9Zs41uk1MEzilhdFtUn52n8zn5OTototOWSqOs7P++o3C9yiLXr166baTkpJ0fe6Lc+jQIb393BLa9uSTy+UQi8V6H4Q73VecNThG6+XNYEeE4bExZyzajq4wfxd/jH9tPPxd/Es/2Qxup9/W21/z7hqrPNeeWfvvkOj7YvgIqIocGzx6NPh8vm6/aI0YlmV17VoLO3LkCIYOHYqcnBx89dVXRquFmyItLQ2rVq3SO8bn8xERUfD9JiAgAO+9957eOU+ePClX61hiX06dOoXo6Gh4eXmhS5MRZbq2bdu2+PDDD0s8x1gnpcJvOuV7+fKlbn19vrp165YpHmI6Zzd3DJi3GAPmLYazmzvX4dgcgY8zQr56CyFfvUXr5c3E7pN5qVSq2y6ut3xRRc+TSCTlenbHjh3x5psFFc2/+OKLYtfb5eTk4Ntv9QszmRLv4sWL4eXlpfugd1m5VfRv111k9//FrKNoBfuqza36eH9Xf0xoNgH+rtZJBAt/n+CBB08RFQerKGv/HZICiqQkXJMa/hwt+vOqevXqBudcvXrVYBRcqVTi/fffx61btzBv3jyT36gv6uLFi1Cp9N9i8Pf3N3hD31hc//xD7Q0dmVKp1BW9mz9/Pny9qpRyRdmlp6cbHDPWGSkmJsYgyff29sZff/2FiIgIVK9eHU5OTvDy8sJrr72GWbNmISkpyezxEkK4YfeZRuF3Nk2t3Fn0vNJagZRk27Ztukr2x44dw6hRowxG+hMSEtCtWzckJCTores3pU/8nDlzkJ2drftITEwsd6yk4mr7uyK/7BKfAY5N61Di+cREhd8EY/jA0P2chWINjfwagc/wwWf4aORnn3UBiOOI6/UB8oyMKAqF+m0ei3sDu+iMs/fffx/Hjx9H7dq1KxSXsVl3RWMqLi6aBefYfvzxR9y9exdNmjTBJ598At+qboCZi5Qam81ZeClKvsJF7/KtXLkS7777LhISEtCrVy80b94cYrEYsbGxWLJkCerVq4d9+/aZNV5CTKGRqpC2LhZp62KhkRadr0XKw+6TeQ8PD922XC436RqZTFbsPcoqLCwM58+fR3i4di3V5s2bERwcjK5du2Lw4MHo0KEDateujQsXLmDGjBmYM2eO7lpT1vg7OTnB09NT74Nw41J8Bq4nisECaBTsiddr+SLUp/xvBJFCGAbg8bUfIjerTa/nQlJuEuKy4wBok3qaYk9smVoshiYvD7WEhglx0WTaWILs4eGBgIAAvWPGph+XR/36hnUojCX4xuIqaa0zsW/Pnj3DggULAACrV6+GQCCAQMSHT4B5/l0CwMOHDw2S+VatWmHs2LEG5xauDZXv+fPn6N+/P86fP4/Vq1fjwoULem2WJRIJBg4ciAsXLpgtZkJMkRF1x+g2KT+7T+YLV5QvXCm+JNnZ2bptT09Po+/Ul0X9+vURGxuLbdu24cMPP4SPjw/OnDmDQ4cOITU1FWPHjsW1a9ewZMkSvWUBxn7RIJVTtlSJAWv+0+3fThZjbWQrDiOyMwGNAJG79sNOK9jn63+oPxiGgavQFXHZcTTFnti0hJGjAACRPj4GrxVtv2qsHevYsWP11tWbU4sWLfD22/qFNbOysgxmuBWNSyAQYPTo0RaJiVR+06ZNQ25uLgYPHoz27dsDALqOM2+L1Dlz5ugtt2rUqBEOHTpk9PfRwr+zFo0zv0UjwzCYNm2a3utKpdLgGCmZLC8Xu+bPwa75cyDLK72uFdGnkaqgSM6FIjkXrIbaPZmL3Sfz+SPigLaFiCkKryUqfH1F8Pl8DBkyBPv27UNCQgKkUilycnJw9+5drF69Gk2aNDGIsVmzZmZ5NrG8sVFXDI55uVTsTSDyijSrYDugod1WsAe0LenylHnIUeQgR5EDDWs4NZkQW6AWi/G494eQverk0tfbG+OqVNFLzFeuXImTJ08iLy8PV65cwddff613j759++Kbb76xaJy7d+9GmzZt9I5NmDAB8fHxyM7Oxtq1a3H6dEGHEhcXF2zatIl+PjuoP//8E3v27IGHhwd++OEHAIBcosSxNYZvRJXX8uXLsXfvXt1+ly5dcPbsWQQFBRk9X61WGxxjGAYtWuhXCm/VqpUuuc938eLFYivkE0P7v/8aqfFPkBr/BPu//7r0C4iejKg7EAa6AQCUL/JQJdI8OZajs/tkPj9JBrTT7E0p+vHkyROj11vDo0ePdNtvvfWWVZ9NKqZh1YKqprvGvcFhJHYm+iOALwCCmgI8oV1PsZ96eqp+kUx645rYqMTx46G4d0/v2OSAQNy6dQujRo2CQCBAWloa3nnnHbi7u+P111/Ho0ePwDAMevXqhT/++AN79uwpd3E7UwUFBeH8+fPYt2+frp3s4cOHUatWLXh7e2PcuHFgWRbe3t749NNPce/ePaPrlon9UygUmDRpEgDgyy+/1NU4Mmciv2rVKkyfPh2AtlbDt99+i6NHj8LHyMyWfMaWV/r6+hr833F2dja6fPPSpUsVC9qBpCc8NbpNTMfwGYiC3SEKdgfPRcB1OHbB7r+KrVu3ho+PDzIzMwFoC4qEhIQUez7LsnrrlLp06WLxGPNpNBr89592qnZAQAA6depktWeTilkb2Qpjo67gjTBfrI1sRaPy5qRRAql3tdsBDbmNxcJUGhXYVxk8n+GX2CeYkMpKev8+pDFXDY5nfD0fX0+ejL/++kv3plX79u0RHh6OuLg4/Pnnn9BoNDh69CiUSiU8PDzwxhuWfWNUo9FgzZo1WLJkCeLitLUqvLy88M4778Db2xvnzp3DvXv3kJWVhY0bN0KlUmHu3LklJlfEPi1duhT3799Hw4YNMWXKFLPeW6VSYdq0aVi9ejUAoGXLlti8ebNJA0qFl5PmK65ws5ubm+734XypqanliNgx+YZUw4vHDwEAQbWp/V9ZVYkM162Tp1F587H7ZF4oFOKDDz7Ali1bAAAnT57U6/9e1LVr13Rr693c3NC1a9cKPV+hUEChUMDFxaXUdX///fefrhVJZGQkBAK7/+uxG14uQuwc82bpJ5KyYxnj23bKTeCGPJW2Fdfunrs5joaQssmNiUHikI8Mjt8Y/TGGDh4MpVKpO7ZkyRLMmDFDtx8dHY2BAwdCpVLh2LFjOHHiBDZu3Ijhw4dbJFaWZTF48GBER0frjvn4+ODSpUu6AndKpRL9+vXDwYMHkZ6ejqVLl2Lfvn04c+aM0ZZ1xH5t2LABAHD37l2TWx3//fffelPb4+LiULNmTb1z4uPjMXjwYFy4cAFOTk6YN28eZs2aZfA74JEjR/D8+XMMHDgQ7u4FMwGNLfkorg2yseOWqklBCLEOh8gWp02bhl9//RUajQbR0dH44Ycfiv1G/Ouvv+q2J0yYUOGqudOnT8dPP/2E5cuXl/pObv76Kz8/P3z++ecVei6xrmypUrdunkbmzSx/ir2D4PF48BB5oI53HYS4Fz+LiJDKRpGUZDSRVzZujHELFugl8m5ubpg8ebLeeREREZg7dy4eP34MQDtqPm7cOHTo0AG1atUye7xbtmzRS+QBoF+/fnqV6oVCIWbNmoWDBw/qjsXFxeHjjz/GH3/8YfaYSOU1atQovHz50uC4WqlB3I00JKQ8wbV75/Veq1atGiIiInT7Xl5eeq9v27YNEydORHZ2Nt544w1s2rQJDRsan4H2ww8/4O+//9YtTcnXpk0biEQivbbKEonE6D2MHS/cEpkUT5aXqxuVFzo742XSM44jsj1FK9n7j3Gc3+0sySHmcDZt2hQjRowAAKSkpGDZsmVGz3vy5AnWrl0LQJtQF24TV5hSqURkZCQ8PDzQvHlzoz0+i9q+fbvRIiWFX9+/fz8AbfGT/N70xDYULoBnrBgeKSdpFqCUAQnngec3gA9+4joiQkgx4np/aHCMcXXFhfbtDCpu161b12hl7saNG+vty+Vy3cw6c8sfaS2sUSPDbhlFYwK0hdDyp+UTx/D5559jyZIlBh8danyE4b2m4e3X3jW4pnbt2nrn5i/PyMjIQP/+/REZGQmFQoGlS5fi3LlzxSbyJfH29kbv3r31jmVmZhq0Y5ZKpQZT7AHoKvKTkh1cshBCJ2cAgFImg19oDY4jIkTLIZJ5QFs1N7+y5xdffIHNmzfrvf7w4UN07doVMpkMIpEI+/btK3ZNXFRUFLZt24bc3Fxcv34dEydOLPX5ly9fxujRow3a4+Xl5WHhwoW6Nxt++OEHDBkypByfISF2aEcE8LzQ2tsDn3AXi4WJFWI8ytIWwKzjXQcCnkNMnCJ2QpGUBE2RHu1ODRui7pnTuPXwocH5xgpxFXf8+vXrZojQkLE34o09v+hoaj5LxUVsi0bNIi0xFzkv5aWf/EqnTp2wZ88eANoke8aMGeDz+WAYptiPv//+u9j7zZ07V+/NMZZlcfWqft2Kon3rAeDDDz8stko+MeRfvSZEzi4QObug96dfch2OzSm8Tp7WzJuPwyTzrq6uOH78OLp27QqVSoWRI0eiYcOGGDBgADp27Ijw8HA8ePAAVatWxZEjR9CuXTuT71201UdxNm/ejJo1a6JTp04YNGgQOnfujMDAQPzf//0f/Pz8sGfPHsycObO8nyLhUOGe8tRf3oxS7gAatfZDkcd1NBY19fRU1PHWTu99lPUIyzsu5zYgQkykFovx+N339I45N22KsN/3ge/pCZVKZXBNWdb0Fp4+bE5licsYS8VFbE3Z244U1xu+vJo2bapbqplv+fLlun/PLMvixx9/1Hvd39+/2JmqxFCvmXPB4/MRUDMMH6/eCGc399IvIsQKHGrox9/fH0ePHsWhQ4ewZcsWXL16FQcPHoSnpydatWqFfv36YcSIEaVOcY+MjMSpU6ewf/9+1K1bF6tWrSr23MWLF6Nbt244ffo0zp8/j8ePH+Pff/+FSCRCUFAQOnXqhD59+qBv377w8PAw96dMrEQsU+JOsli3TWvmzeDpeUAu1j8WsY2bWKxApVHpjcx7igzbDRFSmajFYjwdMRLy27cNXuM5O+u2a9QwnI5qbLpvcceNXW8ONWrUMOixbez5xcVqqbiIbZBLlFgyfTtOXTgKAMiQGq6hfvz4sW6Qpnbt2hg/frzF4pkyZQrc3d0xffp0iMVi7Nq1C4mJiWjZsiUuX76Mixcv6s5t2LAhdu3aZVCMjxBLojXzlsGwZXkbmlR6YrEYXl5eyM7ONtp7lFhG069O6O3HfvU+R5HYCWkW8F2RX5SdPIE5iZyEYw0DDw/E7QxtUtSoSiPs7LGT44gIKVn8kCFGW9CBx0O9/y6A/+pn0IMHD9CwYUNoNBrdKS4uLsjMzDTohR0WFmawFv3EiRN47z39kX+9OOLjjRbIK+3Xm//7v//DwoUL9Y6NGDECmzZt0jv2zz//oEOHDnrHqlWrhqdPn1L7SAe2f9lV7D20E9vO/FD6yQA6dOiAM2fOAABq1qyJp0/L16fcWEX8wtLT07Fx40acOHEC9+/fR3p6OgQCAQICAtCyZUv06dMH/fv3N1qzghRv57zZut7yftVrYOD87zmOyPakrrkB5QvtLEthkBsCxr3GcUSVm6k5nUONzBNCbMT2fobHAgwLU9kLsUKsS+T5DB/3Xt7jOCJCSqYWiyG9dt3oa7X//EOXyANAvXr1MHv2bHz77be6Y1KpFMuWLdMrNPvbb78ZJPL9+/cvMZGviM8++wy7du3Cw0Jr+vfu3YvZs2ejQYMGALRT6b//Xv+Xdj6fj59//pkSeYI36nfBG/W76PY/WdPJpOvi4+MtFJG2gPOnn36KTz/91GLPcET5iXzRbVIGbDHbpEIomSfEDI5MaYfuK87qtkkFJRcZ7QtqCgy235HqiScLimiqWTXchbQWj1RuiePHA4VG2gEAPB5q/r4PohDDloqLFy+Gl5cXFixYoGuP9fnnn+PYsWNo1KgR4uLi9Fq98fl8TJgwAUuXLjX6/EWLFunahInFYqPnFK5B4+vra9Dy1d3dHWfPnsXw4cNx/Phx3b3atGmD9957D15eXjh37hzu3St4cy04OBhr1qxBz549i/vSEAfRaVhDbP/qAjSvOi5+OLM5twERi/ILrYH0xKe6bVJ2DJ+BKJh+vzE3mmZvZ2iaPbF50izg+1oAqwEYPiBys+vp9QDw5m9vIk+ZB/bVW9XH+x6nHvOk0lKLxXjwxpt6yTzj7o4GVy6Xeu2LFy+wc+dOnDp1Crdv30ZaWhokEgmcnJzg6+uLBg0aoEOHDhg0aBBq165d7H3KOk25Ro0aJY6G/vfff9i9ezcuXryIR48eITs7G0qlEu7u7ggJCUHTpk3RrVs39O3bF66uriY/l5hXXrYct/9JQqP2IXDzcir9Agva90MMMpK1U4arBLuhz6yWnMZjayrT36UpZHm5OLhEuyyn18y5VACvHDRSlW7dfJXIcPBcaEy5JDTNnhBim/aMAIRugOJVm6tx/3IbjxWwLKtL5N0EbpTIk0rt2cRJBqPyYQf2m3RtUFAQpk6diqlTp1YoBnNPU37jjTfwxhtvmPWexPwk2QpcPhKPWq/5c54AZiTlQqnQ6LZJ2VSmv0tTOLu5Y8C8xVyHYdN4LgIqemcBlMwTQiqX1HuASgLw+Nqk3se+p7OJFWJIVVIA2vXypra6JIQLarEYsiLV6xl3d6NT6wmxV+IMKRQyNQCA4dHyX0dAI/OksqLqLYSQykWRU9Bb3gFWAU09PRWuQlfwGT4AoK5PXY4jIsrUVKStWg1lairXoVQ6CSNHQZOXp3fM1FF5Qopja//nohdc0m2zGsAvxI3DaIg15CfyRbeJaTRSFdLWxSJtXSw0UhXX4dgVSuYJIZWXg4xS1/WpC1ehK1yFrljdeTXX4Tg8VVoa0n/6Caq0NK5DqVQUSUmQ3bqld4zn4UGj8qTCbOn/nFyi1I3K5+v+CbXYIqQkRXvME/OhafaEVNCd59noueocAODQpLYIr+rFcUQ2SpoFuHjrH7PjdnT5FrRdgP6H+gMAdvfcDU8RFa4klVPcB70NjtXa/7v1AyEO649N2iUeB1deB1/AzXiUNFdhcGzH15eMnElKolZp6w38sek2hnxV+etV9Jo5V2+aPSGVBSXzhFRAtlSJbiu0Bdr4PAY9V53D40XdOI7KRu0cDIw4WrDP8O26HV2+2f/MhkQp0W1v77ad44gIMaQWi6HJ1S/yVfPAfhqVJ1Yly1Xq/VlZ5GXJuQ7BZlW2v8viUAG8ivHqGYbUVdcAAAGTqI2jOVEyT0gFjI26ottWa1jweY4xLdzspFnAi1j9Y9VaG47U25mk3CTEpmk/bx7Dw+3026VcQQg3EseP1z/g5gaX+vW5CYY4LGd3IWS5Sji7CzkbmWdZFrJcJTRqFjw+A2d3IRUuLQe1SqP7u6zsqPhdxWikKl0iz4j4SFsbi5Cv3uI4KvtByTwhFdQ4xAO3krRt1A5NastxNDZqR4ThMQcYlc+fXg8AGlYDdyH9glAZJM+aDQBIHD0GjLDy/6JpDaqihckUCjzs8D9OYiH2h1VqR2eTZ81G7aNHij3vvZGNsGvRZfSa3Az+1T2sFZ4euUSJY2tuAgC6jmsCJ1f6HlEeaQk52LXoMt4badnldImJiTh//jzOnz+PmJgYJCQkICMjA3K5HK6urvDz80Pjxo3xzjvvYNCgQfD39ze4R9HidyHv9MDWrVtx4cIFPHv2DHl5efD29kb16tXRuXNnDBs2DOHh4SbFd/fuXWzbtg3//vsvHjx4gOzsbCiVSnh4eKB69epo3rw5+vTpgx49etjsm0aF18izCjUYEZ/DaOwPJfOEVMAP/V9D9xVn4ekswJEp7RDq48p1SLYp9S4gKFQNeNy/dj8qn89N4IY8lbY6+J5eeziOhgCAOitL++fLl9wGUpkplVClpHAdBbEz+f/3KrMjP8UiIzlPt91nVkuOIyIladiwIfJedeBwcnJC586dUatWLTx79gwnTpxAXFwc4uLicOjQIcydOxfz58/H9OnT9e6hUirw4vFDyJRK7L/9GJe/+lb3WkhICAYNGoTU1FTs378fMTExWLp0KT755BMsW7YMfL7xxFWtVmP69OlYvXo1NBpt/QCBQIBevXrB29sbJ06cwI0bN3Djxg1s2bIFLVu2xN69e1Gjhm226xWGeED5auArcEoLjqOxL5TME1IB06Kv623vGUfThsrFPxzITtBuh7QGgppwG4+V7O65G/0P9YeHyAO7e+5GiDutP64M+N7eUL98Cb6vL43Mv6JKTS1oFckwEAQEcBsQsSusUqn9P+ftzXUopcpP5Ituk8otLCwMR48eRf1Cy4MePnyIzp07IzExEQCQm5uLGTNmIC0tDYsXF6yPz3iWCLVGg81nL+NRaobuuL+/P65du6Ybzd+wYQNGjx4NtVqNlStX4vnz59i1a5fReGbNmoWVK1fqHduwYQOGDRsGAEhNTUV4eDgyMrTPi4mJQadOnRAbGws3N+u0QmRZFps3b8asWbPwstCb2x06dMCZM2dMusepU6cQfWknLv55DgkZSchVSMBbxoOnpyfq1KmDN998E4MHD0bLlqa9KXb58mVERUXh1KlTSE5OhkQiQUBAAMLDw9GrVy8MHz4crq6ONbDGsKwDNHJ2IGKxGF5eXsjOzoanJ1XFtrQmX52ARKFtUeMq4uPmV+9zHJGNkmYB+0YDQ3Ybr2pvp8QKMaaengoAWN5xOVWyrySkt28jvm8/1Ny7By6N7L+jginuv95ab7/+ZareTczH1P9zedly3P4nCY3ah8DNy8mKERbY98MVZCRri5ZWCXZFn1mtOInD1lnr79Ld3R15eXk4efIkOnXqZPD6gQMH0Lt3b71jDMMgJiYGzZs3hywvFz9/PBj/PX6K3Zf1a/tMnToVP/74o25fpVLBz88P2dnZumMbNmzAqFGj9K5LS0tDcHAwVKqCfut8Ph+5ublwdnbWHRs8eDB27Nihd+3KlSsxadIk078A5XTnzh2MGzcOZ8+eNXjNlGQ+PT0dEREROHXqlO5YlSpV0L17d8jlchw6dAgSiUT32kcffYT169frff6FyeVyTJgwAZs3bwbLshAKhejZsycCAwPx559/4tGjRwCA0NBQbNmyxejfta0xNaejPvOEVETh98LofTFSRvmJfNFtQioLtViMJ337QZOTA01ODqDRUDs6whk3Lye07hnGWSIPaHvK+4e6wz/UnfrLV4A1/y5DQkKKTe569OgBDw/9+gssy2L7dm1nmYNLFiIorC4uPkkwuLZ5c/2q7AKBAE2a6M8snD9/PtRqtd6xixcv6iXygHaUv2giW716dYNn/vPPP0Y/D3ORSqWYO3cumjVrhrNnzyIoKKjM91CpVOjWrZteIi8SiXDhwgVs3boVO3fuxKFDh/Su2bZtm25WgrH79e7dG5s2bUL+GPTOnTuxd+9e/Pzzz4iNjUWLFtqp+4mJiejevTtOnjxZ5rhtFSXzhJRTtrSgnYqriI/6QdwU47F50ixgRVMg5VUl932jOQ2HEFLg2cRJkN8u6LKgkcmoHR1xaE6uQvSe3gK9p7eg4nc2YNu2bdi5s/iCunw+H3Xr1jU4fv/+/cIn4dnLbINzjCW6RY8lJibizz//1DuWk5NjcJ3QyJIukUhkcEwsFhscM6cvv/wSixYtgp+fH3bs2KG33MBUhw4dwuXLl/WOvf7663pf506dOqFq1ap65+zatQs3b940uN+yZctw/Phx3X79+vXRp08f3b6Li4tenQOZTIahQ4da/GtVWVAyT0g5jY26gvpBHnAT8cEA2Di8danXECN2RACKXEDhWGsPk3KTcDfjLq6mXIVcLcfyjsu5Dom8IvD3h98nn0BgpKoxIcT86P8csZTevXvj7bffLvEcFxcXg2P5Rel6zZyLXIkUGiOzL41NCTd2r3///Vdvv76Rtp7GEnxjyWidOnUMjpkTy7KYPHky7t27h4EDB5brHufOnTM4FhoaanDMlJkHYrEYX3/9td6x/FH4ko4lJydj6dKlJsVr6yiZJ6QCBHwewoM9ER7sCS8Xeoe+XFLuaJcosK+mofVZz208VtL/UH8wDANXoSvisuNovXwlIgwIgP+kiRBSkTdUXbwIyC8mxOOh5r693AZE7BL9nyNcSk9PNzjWuHFjAICzmzv6fDbP6HX5CX9hRafPA8C1a9f09lu0aGHwBkNWVpauEF++oqPUAoEAo0dbdvbiggULsGLFigrV3TLnzINdu3bpuhHkq1atmsF1xt4s2LJlCxyhNBwl84SU05c9w3E5PhOX4zPxZU/T+omSYjAMwLxq3+IAxe/ECjHylHnIUeQgR5EDDWv4CwEhlUHy7Nng8fngeXjApXkzuBgZUSKEEFslFot1xdPyMQyDIUOG6PZ9fX2NVpA3NnJuLJFNS0szOLZ79260adNG79iECRMQHx+P7OxsrF27FqdPn9a95uLigk2bNqFZs2alfk4VYWxmQVmZc+bBsWPHDM6pUqWKwTF3d3eDNwwSEhJw69atUuO1dZTME1JOA9f+BzcRH24iPgau/Y/rcGxXQCNA5A6IrNNqpTKYenqq/rvF9v/GMbFR8vsPoJFIoJFIIL//gOtwCCHErHbt2mVQoG7SpElo2rSpbp/H46F9+/YG18bFxZl0rHB1+3xBQUE4f/489u3bp2vLdvjwYdSqVQve3t4YN24cWJaFt7c3Pv30U9y7dw+RkZFl/vy4EBkZCR8fH71jRWcZyOVyPHz4UO9YaGgoevTooXcsJibG4P7u7u5Gn1u0kCFgOCvCHlEyT0g5JGZKIJapIJapkCdXUy5WEX3Wch2BVYkVYtxOvw321b8aHsMDj0ffiknloUhKwt0WLXG3QUNocnMBtRpgWfo+RxyeOEOK9dP+wfpp/0CcIeU6HFJBeXl5WLBggd6xAQMGYNmyZbp9WV4uds2fg+ZVDKedFy1sl5SUhLt37xqcx+fzDY5pNBqsWbMGM2bM0CWsXl5e6Nu3L0aNGoUGDRoA0E6/37hxI1auXInMzMyyf5Ic8Pf3x+HDh/UK3D1+/BjT241A8q14PH/+HJMmTdJrTVetWjUcPHhQb2aASqXC06dPDe7v5GS8A4Kx448fP67Ip2IT6DdIQsqh+4qzYF5tq1kWtf1dOY3HZkmzgLXttNv+jjF9d+LJiZCoCn6AaVgNdvfczWFEhOiL6/0hUOiXLACARgPnevW4CYiQSiL6m8tGt4nt0Wg0GDp0KBIStC3nGIbBZ599hh07dugl3weXLAQAvFanFrq0bql3jyNHjmD16tWQSCR4+vQpRowYYXQdvZeXl94+y7IYPHgwPvnkE91Ivo+PD65cuYI9e/Zgw4YNiI2NRa9evQBo1/QvXboULVu21MVb2b311lt48OABVqxYgUB3PwDAj/9uQUiTWggODsb69dr6SHXr1sXy5ctx9+5dgyUExVWjN/bmCKCtKVCUsVkR9oaSeULKgUXBzGg+j4Gz0PAbCDFB9EcF22n3iz/PjjzK0l+bx2f4CHGnVl+kEjHyyygAhK75xcqBEFLJsCyUcjWUcu1sFWKblEolhgwZgn379gHQTnk/dOgQFi9ebDBTTqNRIzX+CVLjn2BYl05YunQpvL29da9PmjQJbm5uqFmzJm7fvo1p06YZPM/Pz09vf8uWLYiOjtY71q9fP7314kKhELNmzdI7Jy4uDh9//HG5PmdrE4vFmDdvHr788kuk5GoLDIZ6BaFfky4YNGgQAl4Vu3z48CF++eUXbNmyxWC5g6Tom8qvMAxj8vHc3NyKfBo2gTIQQsooW6qERl3wy66zgIe1ka04jMjG+YcDaXe4jsJq6njXwf2M+5CotT+kontEl3IFIdZlLJUP3b4N/ApUNybEHvgEuSI1IVe3TWxPWloa+vbti7NnzwIABg4ciNWrVxstqgZAv6YNC0yfPh1jxozBqVOncPv2bYjFYnh7e6NFixb43//+h3///Rc//vij3i0Kr78HgA0bNhg8plGjRgbH8ivqF/bnn38iLi4OtWrVKuUz5U5GRgbatWunt+SgRXAj/DZoKWrNaAtRVXe8ePECb731FuLi4nD//n1MmjQJhw8fxqFDh3SF7Fxdjf8fK65CvbHjxgoX2htK5gkpo7FRVyBTs+DztO8A8nkMtaUrr4ht2tH5oKbabQewuN1i9D/UHx58D+zuuZtG5UmlokhKAl61AeK5uQE8HupfvsRxVIRUDjw+D0Invm6b2JZTp04hMjISycnJqFq1KtasWaObyl7Yhg0b4OHhgYiICPD4fATUDNN73d3dHb169TJ6bUpKisGxVq30B3xiY2MNzik82p+v6PT8fNevX6/Uyfz06dMNagfM+OFz1B/8vm4/KCgII0eOxBdffKE7duLECfzwww/4/PPPAaDY9nhFR/DzGWsLWNzX0J7QdyJCysFVWPBfp16g8aqaxASybOBFrPZDZnxtlD25//I+uuztghxFDqp7VMcX574o/SJCrCiu1we6bU1eHmrt/53DaAipPOQSJdKTcgtNsadp9rZCoVDg008/xbvvvovk5GQMGzYMd+7cMZqMA8Do0aPx6aefAgB6zZyrO154uzgPHuh3/fDy8kKXLl30jhlLOsvSD12hUJh8rrVJJBLs2LHD4Lj/P0qoMmV6x4zNPFi7tqAoskAgQI0aNQzOkcvlRp9t7Hjt2rVLjdnWUTJPSBn90P813XbTal7YOLw1h9FYXmJiIqKjozFlyhS8/fbbqF69Otzc3CAQCODp6YmwsDD06tULK1euNNpLtSS35rdB2zUpYOYkgvGtAYZhwDAM4uPjS702/9yyfli6R2tJIg5H6LZvZ9zmLA5CjFEkJUHzalQ+nyiEZo4QAgBHfoqFSlGwCIVG5m1DbGwsXn/9dXz//fcICQnBsWPHsGXLFqMj4SWRK5T4ZuEi3Tr74pw8eVJvPzIy0qB3u7EE1Vil+uKq1xu7vrK4e/culEqlwXEPvitSVlzVO2bs7yAhIUHv827RooXBOcWtgzd23Nj19oam2RNSRrN230CjkIJpO/Y+xb5hw4bIe/ULvpOTEzp37oxatWrh2bNnOHHiBOLi4hAXF4dDhw5h7ty5mD9/PqZPn17iPaVSKebPn4+lq1KgMl5ry+6IFWKoWf2pYcs7LucmGEKKUIvFePze+/oHHWCtISGmykjK1Y6esoBSoUbXcU24DomU4sWLF3j99dd1I9mJiYno2rWrydfL8nKxYeIoAIDIzx8LlyxFQEAAunXrBmdnZ4Pzr1+/rluLD2inkn/99dcG5/Xr1w8LFy7UO1a0DzsA3Lp1y+BYtWrV0Lp15R1EMjbrANDOPGAVaoNjxhSeedClSxf8/rv+DLGMjAyDa/Ly8gxmLISGhhqtRWBv6G1FQohJwsLCcOPGDV0rlv379yM2NhahoaG6c3JzczFjxgzMmTOn2PscO3YMjRo1wnfffQc/d5E1Qq8Upp6eCld+QTGXcN9weIqooBipHJ5NnKTtJ19I7YMHOIqGkMonP5EHAIGQBydX+34j3x7IZLIKTUnf//3XUMikUMikyHiWCABITU3FsGHDDCqtP3r0CAMGDNAlqJ6enti1axd8fHwM7vvZZ5+hbt26esf27t2Le/fu6fYVCgW+//57vXP4fD5+/vlng4r7lUlxswayZTkQhnjoHTM288DV1RX+/v66/YiICINCeM+ePTO4LjEx0eDYsGHDKvXXylzs/zM04vDhw+jfvz/CwsLg4uKCoKAgvPXWW/jxxx/x8uVLiz03JiYGkydPRsuWLeHr6wuhUAgvLy80bNgQw4cPxx9//FGmNTOEG4Ur1ztSFfv169ejfn39XvB169bFqlWrDM797rvvcO3aNYPjt27dQrdu3ZCQkICJnWvg3jR/g3MsjcvKpvWr1IeHyAMeIg+sf389Z3EQUpgiKQmSK1f0jjk3bUpT7Al5RZwhhVKunUbG8AAU0xqL2Je0hHjtiLJGA6W8YL33rl27EBYWhsGDB2PSpEno1q0bGjVqhIcPHwIAWrZsib///hvt2rUzel93d3ecPXtWby29WCxGmzZt0L9/f3z88cd47bXXcOTIEd3rwcHB+P3339GzZ08LfbbmERQUhLZt2xocf8S+gP9I/TXyxmYefPDBB3oJuJeXF/7v//5P75yrV68Wvczgd86goCDMmDGjTLHbKodK5tPT09G9e3f07NkTe/bsgUgkQo8ePdCgQQNcunQJ06dPR+PGjQ3Wu1SUVCrFsGHD0KpVK6xatQq3bt1CkyZNMGDAALz99tt48eIFtm7divfffx/vvPMOXrx4YdbnE/PychFi55g3sXPMm3Y/xT5fSEgIOnXqZPS1Hj16wMND/91WlmWxfft2g3NVKhVat26NS5cuYdVHjeHlXLFvQTVq1ND+oC3lY926dbprRo8eXaFnltfyjssh4AnQwLcBjvc9TqPypNKI+6C3QW/56hvozSZC8kV/cxl4lb+zGsAvhJagOAT2VX0eHg+e7h7Yt28f5s6diy5dusDb2xt//PEH1qxZg0uXLqFOnToYPXo0Dh48iMuXL5danycwMBDHjh3DhQsXMH36dLRt2xYuLi44fPgwtmzZgufPnyM8PBwDBw7Er7/+iocPH1b6RD7fqlWrDEbTt97aj1xlwWyG58+fY9OmTXrnVKlSBd99953B/WbOnIl3331Xt3///n292gUymUyvHaCTkxO2bt1a5roItophHWQoWCKRoH379oiJiQGfz8e6deswcuRI3esPHz5Ejx498ODBA4hEIvz111/FvqNWFizLonv37jh27BgA4K233sLOnTv1pibn5eVh1qxZ+OWXXwAA4eHhuHjxItzdy14lXSwWw8vLC9nZ2cW2dCAVky1VYmyUdhRrbWQru0/o9+/fDz8/P7z99tvFntOyZUuDd0p79OiBQ4cO6R2Ty+UQCoXad12lWcBvA8F8fMLgfnFxcahZs2aJcTEMgxo1apRaLE+tVqN+/fp4/PgxqlevjkePHul6mBLi6KT37yP+g976B/l8NLxtOGJCiKNaP+0fsCyrK4A3asnbNM3eAez8cjbSE58CAPxCa2Dg19+XcoXty8zM1FvPf/v2bRw/flzvnGrVqiEioqCg7+uvv663DwAXL17E8OHD9ZYOVA+tjo6dOkKpVOKvv/5Camqq7rWWLVti+/btBjNA88lkMowbNw5bt24FAAiFQvTq1QuBgYH466+/dF0EqlWrhs2bN+Odd94p51eg8jA1p3OYZP7jjz/Gxo0bAQCLFi0yuqb3yZMnaNSoEWQyGfz8/PDw4cMKv6sTHR2NgQMHAtC+4/Tw4UOj62dYlsU777yDU6dOAQDmzp2Lb775pszPo2Te8gauu6C3v3PMmxxFUnm8/fbbOHfunN6xbt266U0RMyDNAqI/AjPC8BxTkvnGjRsjJCQEJ04YvhlQ2G+//YYhQ4YAAFavXo1PPvmkxPMtRawQY+rpqQC0o/Q0Mk+4phaL8aB1G4PjNQ/sh0sxv1AR4ojEGVLt6DyAiP97HZ5VXEq5gtgDWV4uDi7RJra9Zs6Fs5v9tyKOj48vcw/7YcOGYcuWLQbHFTkybBu9An/cP4vb6Y+QlPkCuQrt6Lynpydq1aqFli1b4sMPP8R7770HxoTlK5cuXcKvv/6K06dPIzk5GRKJBP7+/ggPD0evXr0wYsQITpdTmhMl84XcvHkTzZo1g0ajQWBgIBISEiASGS+8NXXqVKxYsQIAMHv2bKPTPcriww8/xP79+wEAEydONLq+ON/evXvRr18/AED16tXx9OnTMj+PknnLo2TeUIMGDXD//n29Y6X+/9nSAwDKncybgmVZvPbaa7h58yYCAwMRHx9vtAKtpYkVYry35z3kKfPAZ/ho5NcI27sZLkMgxJrihwyBNEZ/Ro1Lixao+Rv92ySEEFIxaetioUguaBcnCnaH/5imHEZkW0zN6RxizfyyZcugebUeMCIiothEHgCGDh2q2/7pp58glUor9Oz8YhiAdvp8SQq/npCQALFYXKFnE/PLliqhUmtwJ1kMlYZ1qAJ4xRGLxXj06JHeMYZhdKPhRkmzgOc3gITzFo3t0KFDunYv06dP5ySRB7SV7POU2vZ+alaN2+nUY55wT/7gIVBoXaNz48YIXfMLhxERQoih3MyXOL97O3IzLVek2hhZXi52zZ+DXfPnQJZnvLe5LeDq6wcAwsCCUfIqkSXnQaR87D6ZVyqVOHCgoL1O586dSzy/efPmuqn1eXl5urXu5VWRiQ/5vb1J5TE26goEfB7Cgz0h4DF2v17eFLt27YK6SEurSZMmoWnTEt59jf7IwlFpLV68GADg4+OD8ePHW+WZxeEV+nbrIqApmoR7orBagFwO8Plwfq0pau3ZDT7N6CKEVDJ5mS9xYc8O5FkxGc3vMZ8a/wQajVo33d4WcfH1A7TJO8NnIAp2R9VPW4PnIrDq8x2F3Sfzly5d0utj2LJlyxLPZxhG75yiRR/KqnBCc+fOnRLPLfy6i4uLXp9FUjmoNCzuJIt1I/OOLi8vDwsWLNA7NmDAACxbtqzkC1UyQC4GNOqSz6uAU6dO4b///gOgfXOhaMV9a1recTka+TUCn+HDXeiOPb32cBYLIYSQspFLlNi/7Cr2L7sKuUTJdTjECgon7+kJZV/2aqvUYgWy/3wKtVhR4XvxXATwH9MU/mOaWi2RN2f8tsLuk/n8KbaAtlVBiAl9cwsXfih8fXl88sknuoIOO3bs0HtjoTCWZfHzzz/r9nv06AGBgN7BqnQKz7Sw/3ITJdJoNBg6dCgSEhIAaN8I++yzz7Bjxw7w+fySL067/6pZr+UsWrQIgLav/JQpUyz6rNLkKHIQL46Hq9AVe3rtQYg79e8m3FM8iQPP1RU8V1consRxHQ4hldaxNTeNbhP75hdaQ7fda+ZcDiOxHnWOAjknE6DOsc1k2NbjLw+7T+YLj3YHBwebdE3hhL+00fTSvP322/juu+/AMAwyMjLQs2dPPHv2TO8ciUSCTz75RFfJ3svLSzc9mFQu+VPsw4M9IeDb/X+fYimVSgwZMkTX5zMoKAiHDh3C4sWLtW3nTMEwAK+UpL+cLl26hJMnTwIAxo0bB19fX4s8x1T9D/U3uk0IV9RiMViWhUYiAVgWTnXrch0SIYRUGr1mzgWPz0dAzTB8vHqjQ1SyNzeNVIW0dbFIWxcLjVTFdTh2y+6HftPS0nTbpraZK3yeWCyGUqmsUF/qWbNmoU2bNli0aBFOnjyJ2rVr480330S1atWQlZWFc+fOISsrCwDQsGFD/Pbbb6hdu3a5n+eIkpOT8ffff+PKlSu4c+cOkpOT8fLlS7x8+RJKpRIeHh6oUaMGWrRogb59+6JLly7FtsAYPny4ro9laaLHAo0aNcKtW6b1ZE5ISMDEiRMN+q+fPn0a//vf/0y6B9fS0tLQt29fnD17FgAwcOBArF69GlWqVDHtBtIs7awGjRpgLJPM5/dIdXJywowZMyzyDEJsWcLoMWAlEkCjAViWCt8RUoKu45roRuS7jmvCcTSO5+jqJQCAvYvngW+lWassy0KWoy1EvWXGBJPaplVWapU2kT66eglGLFtjtedmRN3R26ZK9pZh98l8Tk6ObtvJycmka4pWvM7JyanwyF6TJk3QvXt3qFQqnDp1Cn///bfe682bN8dnn32Gvn37lj5FuRC5XA65XK7bd9QK+JMnT8bevXsBAAKBAJ07d0bbtm2RmpqKs2fPIjU1FS9fvsS1a9ewceNGvP7669i1a5dZ2p+ZQqVSYfny5fjqq69surDhqVOnEBkZieTkZFStWhVr1qxBr169DM7bsGEDPDw8EBERYXiTHRGASqIdlRe6ATC+9KS8bt26pXuzZMSIEahatapZ718eu3vu1o3I7+65m+NoCAFkt25pZ8fw+dDIZFT4jpBiyCVKvUTeyZUK31qb9NXv8lJxNifPt3bhOEuRFsqJivNy5z0AQPqmm2AqOANVnadfX+L5oosVup8pWLW2e9nLnfcQNMMxOk7ZfTJfuLVcSS3pCit6nkQiqVAyv3PnTkyYMAGZmZmoUqUKli1bht69eyM4OBjZ2dk4ffo05s+fj48//hgnT57EV199ZXICsnjxYsyfP7/csdmbwMBAnDp1Sq/NX05ODoYNG4bff/9dd+zy5ct47733cO3aNbi5uRm7ldlcvHgRY8eOxY0bN+Dp6QkXF5cKtzy0NoVCgS+++AJLliyBRqPBsGHDsHz58mJnu4wePRo1atQwnsyn3tUm8co87YeZLV68GCzLQiAQYPbs2Wa/f3mEuIfg/CDLtuEjxFRqsfjV7BjtLz2Mhb8HEmLLDq26gdSnObrtfp86RoJQmbh4eEAqzoaLp5fVRuaLvnHg4ullledaglql0n79TCgErHlV4FGTZ/5p8dYsSqdxoEKVdp/Mu7gUtIBSKEz7R1T0PNdCfXjLavv27YiMjATLsvD19cX58+dRr1493ev+/v4YMGAAunXrhnfeeQfr1q3Dvn37cPjwYbRp06bU+8+ZMwfTp0/X7YvFYoSGhpY7Xlv3448/6iXyAODh4YENGzbg6NGjerMYHj58iF27dmHEiBEWi0csFuOtt96CRqPBoEGDsGzZMrzxxht4+tR2KqPGxsYiMjISsbGxCA0Nxbp169ClS5fy39A/HEi7A4jctds4YbZYnzx5gujoaADAoEGD9IpZEkK0nk2cBLi4AK9mCTnRsi5CipWfyBfdJtbTbeJMbJszFX3nzEdgWB2rPDM7LQVRsycDACK/Xwkv/0CrPNcSUp48wrY5U9Ft4sxSz+W5CqHJU4HnJqjwyDwXWLVGG78DzaCx+2S+cDuqwolcSWQyWbH3KIvMzEyMHz9e12t+4cKFeol8Ye7u7ti0aRMaN26M9PR09OrVC7du3Sq1PZ2Tk5PJywfsWa1atdC8eXN0797d6Ou+vr6oV6+eQXeC69evF3vP/L+3bKkSr83/Q+81T2cBYr96v9S4NBoN6tSpg59//hmdO3cu9fzK5sWLF3j99dd1b3AlJiaia9euFbvp4J0FfeYjtgEf+1QwygLfffcd1Go1GIbBnDlzzHbfihArxJh6eioAbYs6TxFNZybc4/F4wKufbbwiS8sIIQUEIh5UCo1umziGEz8vR0DNMN32gHmOUZjad2ADpK66Br+RTSAKqVjRP41UpVs3XyUy3Crt6RRJuUhddQ2+AxtY/FmVhd1/VyqcDOcXmStNdnbB1BpPT89yF7/bvn27bs2+QCDARx99VOL54eHhaN26NQAgNTW19F7dROeHH37A1atX4VnCuk9jMzNMWXoxNuqKwbEjU9qZFJeHhwdu3rxpk4k8oH1jy9QZLSZz8QaGH9Z+uHib7bbJycm6woUffvghGjZsaLZ7V8TEkxNx7+U93Ht5DxNPTuQ6HEJQdfEiXSV7UVgYqq1exXVIhFRaA79oDaETH0InPgZ+0ZrrcAixGUUL4BHLsPuR+cJTrpOTk026Jikpyej1ZXX+fMEa2Xr16sHdvfR3uJo3b46LF7UFIvJbfZGKe/HiBR4/fmxw/L333jPp+sYhHriVpH1j5uiUtxHqY9rSCz6fX6aCho7gl19+Mfp3UdiiRYv03phZsmRJqfddunSpbvbN559/XrEgzehR1iOj24Rw5fmcz+FS6GcbFb8jpHieVVww+sf2XIfh0Nx8fPFmv0Fw87Fem9leM+fi4JKFum1bxsXXj1iP3SfzTZoUtBCRy+VISkrS6yNvzJMnT4xeX1bp6em6bR8f06YSFy60FxcXV+5nkwLp6ekYNmwYVCr9Yh5Dhw7Fu+++W+x1GRkZWLNmDR4fOIgbN29DrZTD19cHI8+E4e2338aoUaMqzeivLYnesR1/nz1X4jnr16/X2y8tmX/58iXWrVsHQPsGTcuWLSsWpBnV8a6jS+LreFtnrR8hJdHI5dpq9gCcGzfmOBpCCCmZu48v3uo/xKrPdHZzt5up9WX5+vE9RPDoXB18D9OKhhdHI1WBVbNQpuRBGOQGv2GNKnQ/U5krflti98l869at4ePjg8xMbfurmJiYEpN5lmURExOj269Ioa/CVdKLrsMvTuHzeDy7XwVhMWfPnkV0dDSePn2Kv//+W69FYaNGjTB16lSMGjWqxHvUq1cPHh4e6Ny5M15v1RLnz5/HjRs3kJ6WhosXL2Lp0qUYM2YMfvzxxwoVSazMatasqasdYC5nRnoDIwvVNhh+uML39PX11fs7rkxWd16tt2aeEC6pxWLIbt7UVrLn8yEvZZYMIYQQx8H3FMHr3RoVvk/61ttQphR0LLLGennAfPHbErtP5oVCIT744ANs2bIFAHDy5EmjfbHzXbt2Tbe23s3NrULFvgr3MH/8+DFYlgXDMCVe8/DhQ912aTMISPFiYmLw008/GRyvWbMmunbtijfffLPUv4uPP/4YCxcuhKBQG5Rvv/1Wr7DaunXr8PjxYxw9etTk1ocOTZoFPL+hbUkndAMCy7+MxVZ4ijyx6f1NXIdBCKT37yP+g94FB0z4mUSIo6M+84SUnfJFntFtYn4OMfQ7bdo03Sh3dHR0iQW9fv31V932hAkT9FrbldX77xdUO8/KysK///5b4vl5eXn4+++/dfu2WjStMpg6dSpUKhWePXuGdevWoWrVqgCA+Ph4LFmyBE2bNsXUqVOhVqsNrp08eTJOnDiB7777DgKBANlSJQauu4CB6y5g/JQZaNu2rd75J0+exPfff2+Vz8vm7YgAFLmARg0o8gDW/hMJsUKMkSdGYuSJkRArxFyHQxxYfJ+++gc0GtTa/zs3wRBiI/IT+aLbxL7J8nKxa/4c7Jo/B7K8XK7DsTnCQDej28T8HCKZb9q0qa6XeEpKSrFV4p88eYK1a9cCAPz8/IptbaVUKhEZGQkPDw80b94csbGxRs9777330LRpU93+//3f/0Gj0RQb56JFiyAWa3/ZFwgEmDiRKl9XBJ/PR0hICEaPHo2LFy8iICBA95pGo8GKFSuMFkpr0aKFXmG8UVsv406yGHeSxRi19bLRrgTLli0z+saATcp5AZxerP3T3FLuAGyh/wN8jicHWfJzfSV/in3RbUK4xri7Q0QzwAghRI8sLxcbJo5CavwTaDRqXSE8Yjq/4Y0gCnaHKNgdfsOts17eUTlEMg8AK1euRIsWLQAAX3zxBTZv3qz3+sOHD9G1a1fIZDKIRCLs27ev2KJ1UVFR2LZtG3Jzc3H9+vVik24ej4eoqCh4eXkBAP755x/0798fqampeucpFAp8/fXXepXrv/32WyquZkahoaGYO9ewGuny5cuRkpJS7HWX4jNwJT4TYpkKuXIV7r/IwWuvvWZwXmZmJq5cMWxhZ5NyXgB/f2v+BDfzKSAvMjIdsc28zygrS32uryTlJuFqylVcfnEZdzLuQKVRlX4RIRagFoshqltXt8+4uiLswH7uAiLEBsglSmjUGqQl5kKjZtF1XPmLIhPbUTh5T094ymEktovnIoD/mKbwH9PUauvlHZXDJPOurq44fvw4unbtCpVKhZEjR6Jhw4YYMGAAOnbsiPDwcDx48ABVq1bFkSNH0K6daX3EAZS45rBp06b4999/dQngvn37UL16dXTs2BFDhgxBjx49ULVqVcybNw8sy8LT0xMbN27EjBkzKvw5E309evQwOKZQKHDq1Cmj5ydmSjBgzX+6fQ0LgGVRpUoVo+c/e/bMLHHarbXtAKbQt5xqrc3aZ74y6newH9SsdsZGnpLWjBHuJIwcBcW9ewAAnpsbXBo3plF5QkpxbM1N8Pg8+Ie6g8dnaL28A/ELLSiiZuut6bigkaqQti4WaetioZHSQIYlOUwyDwD+/v44evQoDh48iD59+kAmk+HgwYO4ffs2WrVqhSVLluDWrVt45513SrxPZGQkhgwZAjc3NzRr1gyrVq0q8fzGjRvj6tWrOHLkCEaMGIE6derg+vXriI6Oxt9//w1PT0988MEHWL16NZ4+fYqRI0ea89Mmr1SrVs3o8YSEBKPHu604a3CsfpBHsdXdzV313e4U/vowfGDwTu5isRKpSqq3L+DRu9OEG/mt6ABAk0dvLBFiCo2aRVpirm5knjiGXjPngsfnI6BmGD5evRHObu5ch2RzMqLuGN0m5ueQv1n27NkTPXv2LPf1QqEQ27aVbXowj8dDt27d0K1bt3I/lxiXmpqKkSNHonv37hg/fnyx5xVX+LBwFfo//vgDf/zxBz6ZOhM5Mv13EhsFe2Lj8Na4fe2y0fvYTfeBfaO1f27rC/DNWKFfKS1YL8/wgJ/fNN+9y0v96t/EvtHARON/r+UlVojhxHOCRC0BALgKXKk1HeGEWmxYeLHa6pLfhCaEaJN5pVyt2yaEkMrGIZN5Yl8kEgmOHDmC7OzsEpP5mzeNV6Ft0KCBbvv8+fNYunQprvLrg2GCkf+ju1moJ/Z/ol16cePGDYN7eHp6olWrVuX/JCoTyctXf6Zb7hkaJZCTbLn7l1X+52xGU09PBY/HA1/DBwDU960PT5Gn2Z9DSGmeTZwEp0aNIL99GwBQ88B+8D3p3yIhpcks1FIrk9prOYzCa+YPLlmIAfMWl3A2MaZKZLhuRL5KpP23IeYSJfPEbly8eBG3bt1C48aNjb7+yy+/GBwLDg42uqzi9qWzCGg/GBKldiR568g3dK8Zm5UxceJECIV2spbO1VebyLv6mW9kPuc5gEKjGnyR9v5cUytefa6+Frk9wzBwFboCoCn2hFt8Nze4tm4NAHCpX5/jaAip/OQSJRRyNcBqJ5PRuDwhpDKi3y6J3chvGXj06FFdX3lA24Zu6dKliIqK0jtfJBJh8+bNRpPwjAt7gIC6cKnVAk2qecLLRQiWZbFw4UKcP39e79w2bdoYrZRvs/qsB9Z1AD7aCwQ3M889F4dq+8uzGu16+ZkPK0fxu+Tr2s+1z3qz33p5x+WYeHIiHmU9Qh3vOjTFnnAmYO7nuh7zNfft5TgaQmzDkZ/02w77hVCvbEfRa+Zc3eg8Fb8rn6Jr5v3HNC3hbFIRlMwTm8fjFdRxvH79OmrXro33338f1atXh1gsxt9//424uDi9a+rXr4+1a9eiQ4cOesf5fO2UaLVcitRdX8IppAHEATUw7lZN/PPPP7h7967e+YMHD8bPP/8MV1fXYuOLjo7G5csF67EzMzMNzvnll19w+PBh3f7cuXOLbY1ok6qEaRNnAKjapHIk8hbmKfLEr11/5ToM4uDUYrEukee5uCDho0jUv3yJ46gIqfwyknL19rt/YtiWltgnZzd3mlpfARqpCopk7f8fYZAbGF7xXb9IxVEyT2xe9erVkZycjDNnzuDy5cuIjY1FbGws/vrrL0gkEgiFQvj7+yMsLAzNmjVDjx490KVLFwgEhv/8/+///g9nZdUQ8985yJ8/hPLlM4jvXcDm26fBsiz8/PxQu3ZttG3bFkOHDjXac76oY8eOYevWrSWes2vXLr39iRMn2lcy/zIOcPYq2CaEWMWziZN02xqpFLwS3ngkhGiJM6RQyLSF7xgeIBDxqS2dA5Hl5eqNzFM1+7JJ33pb2+FJqYHyRR6qftqa65DsGiXzxC5UrVoVgwYNwqBBgyp0H4Zh4BlaH1X5QchVaMDnMTgz638I9Sn/L8BbtmzBli1bKhSXTZNmadvSKfMAoRsQ0IjriKxCrBBj6umpALRT7qn4HeGKc6NGkL0qfldr/+8cR0NI5Rf9zWWAAcBqV4fRFHvHQgXwKkb5Ig8MwwAi7WxXngulm5bkUH3mCTGFSq2BVMWCz2PQJMSzQom8TfIIAjp8pv3THKI/0ibwIneAYSpXf3lzf66F5CfyRbcJsRa1WAyVWAxZbCygViP0160Q2UsLTUIsTOjEB8NjwPAYmmJPSBkIA92MbhPLoGSekCKepOXBTcSHm4iPJ2kO2IrGIwjoOMe8CS5fAAQ11X5UpvXylvhcCakkEsePh+LevYL9ocM4jIYQ2xHxf6+DYRgInfj4aMEbNMXewRQuekcF8MrOb3gjiILdIQp2h99wx5iNySVK5olVpYpl+PHPB0gVy7gOpVhh/m7IU6iRp1AjzN9+3lHk7Gsfsc34tp0rXL2eKtkTLsjvP+A6BEJskpOLAP6h7vAPdYcTTRF2OPkF8AbMW0zr5cuB5yKA/5im8B/TlKbYWwEl88SqUnPkWHHyIVJz5FyHYlRipgSxz7Kh1rBwEfIhsKMKnJx97V28geGHtR+VaVSeEDtXtC82taUjxDTH1tw0uk0IKZ0qU4akr84j6avzUGVW3sE7e0HJPCGFdF9xFgzDgM9jIFWqIeDTfxFSdvdf3kfbHW1x+cVlSJQSWjNPOOFcrx54Hh7geXjApUULuNSvz3VIhBBC7FzKiqtGt4llUKZCSBGuwoL/FmsjW3EYiZ2QZgFbemg/pFlcR2MVEYcjdNu3M25zGAlxVNL79yG9dg2anBxAo0HwD99zHRIhNkGcIUXKUzGSHmQhNSEHnYY15DokYkXZaSlYPSICq0dEIDsthetwbI5GqgKrUINVqLkOxWEwLMsWnYlHbJhYLIaXlxeys7Ph6Vn5WmG9s/RvPErLRRU3EYSVcNRbrWGRnqudhu7n7gS+HU2zV6o1yMhToI6/O/6a0cF6D97SQ39/+GHrPZsjzX5tBjVb8IPs3KBz1JqOWI1aLMaD1m30jrm2bo0av27lKCJCbMf6af9AKS/4/h1cxwu9p7fgMCJiTatGDIBSpp0aLnR2xqTNuziOyLakrYuFRqmBMikHABA063UIfJw5jso2mZrTUVUCYlWZEgUAICNPwXEkpUvLrZzr+isq/++AWE59n/q48/IOACDcN5wSeWJViePHcx0CIYTYpPxEvug2MQ2rYaFKk4AR8SEMcqNE3goomSdW5eMqQkaeotKOzGtYFlmvkl1vVxF4jP2NzPu4iqz74A9+Ata2026PPWvdZ3NArBAjMTcRHiIP1PGuAwGPvs0S6ypaxd65cWNUW72Ko2gIsS0R//c6di64BJVCg4AaHug6rgnXIRErCqgZhpQnjwAAgWF1OI7GBrHFbBOLod8yiVUtH9gMPVb9i60jW6NxiBfX4ejJlirR7rtTcBbyUS/IAwIeg51j3uQ6LLO5lZSNHqv+xfKBzaz74AOfaPvL52/b+TT7qaenoo53HTzKeoRHWY9wvO9xrkMiDoYFAD4fAMC4uKDWnt2cxkOILfGs4oIxy624FI1UKgKhCE6ubrptUjYMn4EomNr5WVPlGxolhCOjtl7W9Ze//yKH63Dsw4ubQPxZ7Ycil+torEbAE6CBbwM08G1AU+yJ1TnXqweeqyt4rq5wrleP63AIIcRm8Ph8BNQMQ0DNMPBevSlKTOfTvx4UyblQJOfCpz/9/LEGSuYJeeXBixxdJXuJQk2V7M1hbaHRjeRrQMQ27mKxkgVtF+Dey3u49/IeFrRdwHU4xMGoxWKwKhU0EgnAslTFnhBCTCTLy4VGrUZq/BNoNGr0mjmX65BsTubuBxAFu0MU7I7M3Q9Kv4BUGCXzhLwS5u8GiVIDAGgS4gkvFyHHEdkBtkhrEhdvTsKwpi/OfaEblf/i3Bdch0McTOL48ZDdLmiH+HzO5xxGQ4jtkUuU2L/sKvYvuwq5RMl1OMSKDi5ZqBuZ5/H4cHaj6eKk8qNknlhVgIcTpnSuiwAPJ65DMSDgMXAT8eEm4kNgRy3p8ln9ay/NAoSFfhBWbW6d5xLiwOQPHuq2NVIph5EQYpuO/BSLtMRcpCXm4shPsVyHQ4hNqRIZbnSbWA4VwCNWFeDpjGnvVs41NAI+D+HB9ru+2epf++iPgKAmQJq2RRuG7rfeszm0oO0C9D/UHwCwuycVHiPWJQqrBdnNW4BGA56bG1WxJ6SMMpLzjG4T+/f+hKmImj0ZABD5/UqOo7FNPBcB/Mc05ToMh0Ij84S88kP/13AnWYw7yWL80P81rsOxfSoZkHRJW/jOr55DTLEHgDln5xjdJsRqGAbg8yGqUxt8T/t9g5IQc5NLlGBZFkq5GmBZVAl25TokYkUnfl6uK3534uflXIdDiEkomSfklVm7byA82BPhwZ6YtfsG1+HYvrT7xrft3KOsR0a3CbE0tVgM2S3tenmeiwsUT+I4jogQ23JszU34hbhB6MQHGAbdP6E39gkhlRsl84QQ85NmAYo8QKN+1fTacdTxrmN0mxBLSxw/HmBZQK2GRiqFU926XIdEiM3h8XnwD3WHf6g7nFypEK4jKVy9nirZl51GqkLaulikrYuFRqriOhyHQck8IQASMyW4nZSNy/GZkKs01JauonZEAKy2MwBYNeBXn9t4rGh159W6avarO6/mOhziQOT39dsAha75haNICLFNXcc1MbpNHIOzmzsGzFuMAfMWUyX7ckjbeBPyJ9mQP8lG2sabXIfjMKgAHiEAuq04q2tL9yg1l9rSVVTKHeiG5Bk+IHTmNBxr8hR5YtP7m7gOgzgY6f370OTmand4PDAuLrRenpAycnIVovf0FlyHQYhNUj7LNbpNLIuSeUIASBRqo9uknNgic+sjtnETByEOQHr/PuI/6F1wQKOBc73K2TWEkMpKLlHi0MrrSE3IhVDEQ8QXreFZxYXrsIgVZael6FWz9/IP5Dgi22Ewrd7+OjxXWjTNnhAATUI8jG6TcmIYgMfXfojcHKaSPSHWphaL9RP5V2iKPSFlc2zNTaQmaEcTlQoNor+5zHFExNryE/mi26R0GVF3IAgpWJoQMLk5h9E4FodM5g8fPoz+/fsjLCwMLi4uCAoKwltvvYUff/wRL1++NNtzzpw5A4Zhyv3xv//9z2yxkOLdeZ6NG4liqDUsnIU8rBrckuuQbJs0q2Bb6AYENOIsFGsTK8QYeWIkRp4YCbFCzHU4xAE8mzjJ4JhTo0Y0xZ6QMtKoWbAa7YfDVW4lpIJYDQt1hhSMMx+imp4QVaWaA9biUMl8eno6unfvjp49e2LPnj0QiUTo0aMHGjRogEuXLmH69Olo3LgxTp48yXWoAAA+n891CA6h56pzuh/beXI1taWrqOiPtAm8yF07Qj94J9cRWc3U01ONbhNiKRq5XG+fcXVFjc1Us4GQsmMhcCr4tTji/17nMBbChcjvVxrdJiZgi9kmFucwa+YlEgm6dOmCmJgY8Pl8rFu3DiNHjtS9/vDhQ/To0QMPHjxAt27d8Ndff6Fdu3ZmebanpyeqVq1q0rkKhQJxcdrewN27dzfL8wmxOr4ACGqq3XagKfYqjUrXW57a0hFrkD96VLDD46HumdM0Kk9IOfD4PATWKPi/Q+vlHY+XfyAmbo7mOgybxPAZiIJpNJ4LDpPMT548GTExMQCABQsW6CXyAFC3bl0cO3YMjRo1gkwmQ58+ffDw4UN4e3tX+NkffvghtmzZYtK569evx5gxY+Ds7Izhw4dX+NmkZImZEjjxWEhedVFrFOxJbekq6oOfgLWv3ggbe5bbWKxMoVYgR5Gj2ybEktRiMdi8PO3Oq5lclMgTUj5vD6iLXYuuAAAGfE6/BzgaWV4uDi5ZCEDbY55a05WNT/96SFlxFQAQOIU6QliT2afZJyQkICkpydy3rZCbN29i8+bNAIDAwEDMmDHD6HlhYWEYO3YsAO2U/MWLF1stxny//KItWhQREQFfX1+rP9/RdF9xFnINAz5P++HhLKC2dBV14BPtqHxQU+22A7n38h74DB98ho97L+9xHQ6xc4njx2uXsgCAWg3nRo5Tn4IQc/t96TUInfgQOvHx+9JrXIdDrGz/918jNf4JUuOfYP/3X3Mdjs3J3P0AomB3iILdkbn7AdfhOBSzJ/M1a9ZE69atzX3bClm2bBk0Gu3Qa0REBEQiUbHnDh06VLf9008/QSqVlvu5IpEIgYGB8PLyMun8ixcv4to17Q+Q8ePHl/u5hBDrEyvEYFkWalbb2tBFQFM0iWXJHzwE4+amHZXn81F9w3quQyKEEJuUlhAPhUwKhUyKtIR4rsMhxGQWKYDHFu0xzSGlUokDBw7o9jt37lzi+c2bN9dNrc/Ly8OxY8fK/ey33noLL168wIoVK0w6P39Uvnnz5mjTpk25n0tMd2RKO7gKtf8Nmlbzoin25lC4p7wD9ZefeHKiXgK/p9ceDqMhjkAUVgvsqzecnRtTBtCyiv9WQ4UUhUUUhVYDUvF7xwRFXCrkCqR4Ua3ieVZZM18eno6xowZg/Hjx6N5c277DF66dAmZmZm6/ZYtS247xjAMWrZsqatof/z4cfTp08eiMQJAZmYmdu3aBYBG5a0p1McVN+d34ToM++LiDQw/zHUUVvco6xF4PB48RB4AgBD3EI4jIvZMLRZD/vgJAIDn4gKG7zAlcAgxu12LroDhaZesqJQaKn7ngPyr10R64lMAgF9oDY6jsT08FwH8xzTlOgyHZJGRebVajY0bN6JVq1Z488038euvv0JepH2Otdy8eVO37eTkhJCQ0n/BrlWrltHrLWnLli2QSqXw9PTE4MGDrfJMAmRLlRi47gIGrruAbKmS63CIDStcvZ4q2RNLezZxEhiGAc/VFWAYMAJK5gkhpDxkebm6bb/qNdD70y85jIaQsrFIMu/u7o7u3buDYRhcvHgRI0aMQEhICGbNmoVHhdvoWMGdO3d028HBwSZdUzjhL3y9pbAsizVr1gDQrtl3c3Oz+DOJ1tioK0a3SQVIs4AtPbQf0iyuo7Ga1Z1Xo4FvAzTwbYDVnVdzHQ5xAE516+q2q61exWEkhNi2wtXrqZK94zm6cgl4fD4CaoaBx+NTJXtiUyySzLu5ueHgwYN48uQJPv30U/j7++Ply5dYtmwZGjRogPfffx8HDhzQFaWzpLS0NN22qW3mCp8nFouhVFp2xPbUqVN48EBb+XHcuHEWfRYpkC1V4k6yGHeSxVBpaIGU2UR/ZHzbznmKPLHp/U3Y9P4meIpo7TKxrCpTJkN69So0OTkIWfMLrZcnpAL8qnlgws8dMeHnjvCr5sF1OITYHI1UhbR1sUhbFwuNVMV1OA7FIsl8vurVq2Px4sVITEzEtm3b8Oabb0Kj0eDPP/9Enz59UKNGDSxYsADPnz+3WAw5OTm6bScnJ5OucXZ2LvYelpBf+K59+/ZoVMbWQnK5HGKxWO+DmGZs1BXUC9S++/rgRQ4VvyOE2IzEocN0VewThw7jOhxCbJpcosT+ZVexf9lVyCW05M7RdJs8U7fda+ZcDiOxXRlRd4xuE8szezI/b948gz7uQqEQgwcPxr///osbN25g7NixcHNzQ1JSEr766ivUrFkTAwYMwKlTp8wdjl5ruZJa0hVW9DyJRGLWmApLTk7WVdsvT+G7xYsXw8vLS/cRGhpq7hDtllylwbXEbOQp1Kgd4E795c3FQavZixVijDwxEiNPjIRYQW+qEctRi8WAWq39IIRU2LE1N41uE8fg7OaOAfMWY8C8xTTFntgcqyTzhTVp0gS//PILkpOTsWrVKoSHh0OpVGLPnj1499130bBhQ6xcuRLZ2dlmicfFpaAiqUKhMOmaoue5urqaJRZjNmzYAJVKhYCAgHJVzZ8zZw6ys7N1H4mJiRaI0j49Sskxuk0qQJpVMLU+Ypu2sr2DmHp6qtFtQswtYfSYgh21GjX37eUuGEJsnFyiRFpiLtISc6FR05I7QspKlSmDPCkH8vhssCoNtaazMotOsy+Ju7s7PvnkE9y8eRNnzpxBREQEBAIB7t+/j2nTpiEkJAQff/wxrlypWFEyD4+CtU+mVtSXyWTF3sOc1Go11q9fDwAYNWqUyTMHCnNycoKnp6feBzENwzBwE/HhJuKDYRiuw7EPDrpenhBrUYvFkN24UXCAz4dL/frcBUSIjTu25iaqBGsHbTKS89B1XBOOIyLEtqSsuAqGYcCI+FCmSsBzoe4q1sRZMl9Yu3btMHDgQDRr1gyAtrq7RCLB5s2b0aZNG7Rp0wZbtmwxSLJN4e/vr9vOysoy6ZrCswI8PT0hFFpm+vWhQ4fw7Nkz8Hg8jBkzpvQLiFkdmdLO6DYhZSVWiKHSqHDv5T2oNCos77ic65CInUosuhyLpZFEQiqKx+fBP9Qd/qHucHKlJXeOJi0hHssG9cKyQb2Q+jSO63BsEqtQg1XQ0i8ucJrMv3jxAt988w1q1qyJPn364MqVK9p3dl59sCwLlmVx+fJljBo1CsHBwZg5c2aZppKHhxdM9UhOTjbpmqSkJKPXm1t+O7quXbuiZs2aFnsOMc7TWYjwYE+EB3vC05l+eJtFl8VAwnntR5fFXEdjNRNPTsSjrIK2m1TNnliK/MFDoNBMIufGjTmMhhDbV3gknkblHVP0V5/qtrd9NoXDSGyPRqoCq9EArxqUCfwttzSZGGf2ZP7XX3/F7t27Szzn1KlTGDBgAGrUqIF58+YhMTER7KvRhfwEvnnz5li/fj3u3r2LL774AiEhIcjKysKPP/6IevXq4euvv9ZdU5ImTQq+Mcvlcr1EvThPnjwxer05PX78GH/88QeA8hW+IxWTLVWi3XendG3pqMe8mWzpDojctR9bunMdjdUUTuQLbxNibk5164JxcwP4fPDc3VF9w3quQyLEpjm5CtF7egv0nt6CRuUdFKvRaBNSUmYZUXfA8HhgnPlgRHzwhJVi0rdDMftXfPjw4Zg6darB8aysLCxfvhwNGjTAu+++i7179+r6t+evV3Z2dsaIESNw8eJFXLlyBaNGjUL9+vUxf/58xMfH4+DBg+jYsSPkcjnmz5+P6dOnlxpP69at4ePjo9uPiYkp8XyWZfXO6dKliymfdpmtXbsWLMuiRo0a6Nq1q0WeQYpXOHl/8IKK35GKqeNdx+g2IeYWuuYXuISHw7VlS9Q5dZL6yxNCSAUF1AgDoE3qP/p2BcfR2B5hoJtum4rfWZ9F3j4pPGJ++fJljBw5EiEhIZgxYwYePHig9zrLsqhfvz6WL1+O5ORkbNy4Ea+//rphoDweevTogb/++gu///47RCIRfvnll1JH2oVCIT744APd/smTJ0s8/9q1a7q19W5ubhZJtOVyOTZv3gwAGDt2LHg8eheLC/k95gFQj3lzkGYBPmGALBuQ5wLDj3AdkdWs7rwaDXwboIFvA6zuvJrrcAghhBBiorTEeDA8HqrWrY+AGrW4DsemVIkMB8NnIAp2R9VPW1PxOw5YJItUqVTYuHEjWrVqhTfeeANbt27V9XvPH4UXCAQYMGAATp8+jTt37mDy5Mnw8vIy6f4ffPABRowYAaVSiX/++afU86dNm6ZLmKOjo0tsUffrr7/qtidMmKDX2s5cdu/ejfT0dIhEIowaNcrs9yel+7JnuK7H/M6xb1CPeXOI/gjIfAI4ewFO7sDxOVxHRIhdUYvFeNT5Hcju3gWrVuHZxElch0QIIXYj4xm1dy4rjUwFRXIuFMm50MhUXIfjkCySzGdkZGDMmDG4evWqwSh89erVsXDhQiQmJmLnzp3o0KFDuZ5Rv359sCxr0hr4pk2bYsSIEQCAlJQULFu2zOh5T548wdq1awEAfn5+mDPHeDKiVCoRGRkJDw8PNG/eHLGxsWWK/ZdffgEA9OnTBwEBAWW6lpjHwLX/6drSDVz7H9fh2AeNElDkaj8crMI29Zgn1pA4fjw0Egk0Egnk9x9wHQ4hhNgFoZMLRM4u1Ka4HFJWXDW6TazHYvO7WZbV/adgGAbdu3fH4cOH8eTJE8yZM6fCSWxMTAwYhoFAYNp0jpUrV6JFixYAgC+++EI3zT3fw4cP0bVrV8hkMohEIuzbt09vrX1hUVFR2LZtG3Jzc3H9+nVMnDjR5LhjY2Nx/vx5AFT4jtgZlgGEBeumELGNu1gIsUPye/cBtRpQq6GRSFBt9SquQyKEELsR+f1KrkMgpMwsulg7ICAAn3/+OZ48eYJDhw6hW7duFX7X688//8SYMWOwfft23TNM4erqiuPHj6Nr165QqVQYOXIkGjZsiAEDBqBjx44IDw/HgwcPULVqVRw5cgTt2pned7wsn1P+qHx4eDjat29v8nXEvKjHvAUwrLZllsgdCAwHXLy5jshqFrRdgHsv7+Hey3tY0HYB1+EQO6QWi6HJy9M7RsXvCCGk4sb+sgUTN0fDyz+Q61Bsjv/Yproe8/5jm3IdjkOySJUCV1dXbNq0CR9++KHJI+emmj17Nm7cuAFAm0Q3a9bM5Gv9/f1x9OhRHDp0CFu2bMHVq1dx8OBBeHp6olWrVujXrx9GjBgBX1/fEu8TGRmJU6dOYf/+/ahbty5WrTJtdCQnJwfbtmlHK2lUnlv5Pebzt0kFSbOAF7cBRQ7A8AGNY62b+uLcF2jg20C3ven9TRxHROzNs4mTAB4PeNU+iXGlXr6EEGIO+xZ/BZVCjl4z58LZzb30CwgAbY/5tLWxYER8CIPckH3oCfzHUEJvbRZJ5j08PNC/f39L3BqjR4/G8+fPAWgr3IeHl70FQs+ePdGzZ89yxyAUCnVJeVl4eHggJ4faoHEtv8c8ANQL8sDYqCvYOeZNjqOycTsitIl8vvSH3MVCiB3SyOUFtSh4PIQd2M9pPIQQYm8OLlmIAfMWcx2GzciIuqPbVr7IgyiY3gjhgtmT+erVqyMw0HLTVCZMmGCxexPHMHzzJYhfVdy89zwHjUNoqmqFpd4FGB7AagBWDfg7Vp/R5R2X6wrfLe+4nNNYiH2SP36sHZkHwLi4QBQSwnFEhBBCHJ0w0A3KFO0SMOoxzw2zJ/Px8fFmuU9SUhLUajWqV69ulvsRAmhH5a8lZOn2c+Uq6jFvDv7hQOptQJmnLYI3eCfXEVmVp8iTptYTi2IYhqbWE2IBcokSx9bcBAB0HdcETq609M5R9Zo5l+sQbEqVyHBkRN2BKNgdVSLDqcc8RyxaAK8iWrVqhbCwMK7DIHZm1NbLevseTnzqMW8Og3cCVV8Dqr8FTL3pUMXvxAoxRp4YiZEnRkKsEHMdDrFD0vv3ocnJ0X7k5aH6tiiuQyLEbhz5KRZpiblIS8zFkZ/K1mqY2La0hHgAQPLDu/jf8DG0Xp7YpEqbzAPQ61FPiDk8eJEDd1HBP/ujU6mjgFm4eAPDD2s/HCiRB6jHPLEstViM+A96FxzQaJC6cBFn8RBibzKS84xuE/sX/dWnuu1tn03hMBLbVHjNfOFtYl2VOpknxNxq+LkiV6GtBt2kmidCfWjaqllIs4AtPbQf0iyuo7EquVqOqylXcTXlKuRqOdfhEDvzbOIkrkMgxK5VCXY1uk0IIbagTIsbrDntPS0tzWrPIo4hW6rE7STtNGg+j0F8Gr0DbxYvbgJr3tZuBzcHoj/SjtA7iCdZT4xuE2IOGolEb9+5cWNUW21aO1RCSOneGdkI0d9c1m0TxyDLy4V/aE3d/kffruAuGBuVv2Y+f5two0zJfHx8PBiGsfj09/xnMAxj0ecQxzI26goYhgH/1T8r+vdlJus6FGwnXwNqtuMuFg4wDANXIY3mEPNTi8WQ3bpVcIDHQ609u7kLiBA7k/4sR5fIB9TwwKmtd9F7eguOoyLWcHDJQgidXQAAwXUbIqBGLY4jsj08FwH1la8EKuU0e1orTyylSYiHbvvIFMdKOi2KKfStJGIbd3FwYHfP3Ua3Cakogyn29AYkIWa1a9EV3Xbq0xwOIyHEtmikKqT8dB3PPj+LpK/OQ5Up4zokh1XmHgLOzs4YMGCAJWLREx0dDbmc1p8S8/mh/2vovuIs3ER8HJnSjtbLm8uYv7Wj8wxfu+1gBfBC3ENwftB5rsMgdohVqwBXV+DVVPua+/ZyHBEhdogB8GoMqeu4JpyGQqzn/QlTsfNLbQG8zqMncByN7cmIugNlkvYNMFahRsqKqwj56i2Oo3JMZU7mvby8sHnzZkvEouf48eNITU21+HOI45gWfV1ve884+qZjFkFNgC9fch0FZ8QKsa6K/fKOy+Ep8uQ2IGI3NHKFLpF3atwYLvXrcxwRIfZlwOettKPzjHabesw7jhM/L4d/9ZoAgJPrf0afOV9xGg8h5VUpp9kTYgkPXuQY3SYV5MCV7AFqTUcsQ5GUBHn+enkeD/K7d7kNiBA75FfNAxN+7ogJP3eEXzWP0i8ghADQFrwTvlq6yoj4CJxCtSa4UmmTeVo3T8ytXqC70W1SQdEfGd8mhJRbXJHe8oyLC2exEEKIvek1c65uu9vkmRxGYpt4LgIEftIM1Ra1Q8hXb0Hg48x1SA6rTMm8RqNBcnKypWLR8+LFC6jVaqs8iziGHwc2N7pNSEUs77jc6DYh5aUWi6HJzdU7FnZgPzfBEEKIHXJ2c9dNrXd2owGeslJlypD01XkqflcJVNqReULMbdbuGwgP9kR4sCdm7b7BdTj2QZoFqFXAi1hAo3S4Sva0Xp5YQsLoMfoH3NwgCgnhJhhC7JRcosT+ZVexf9lVyCVKrsMhxKakrLgKVqHWFb8j3Km0yXzVqlUhEJS5Ph8hxJqiPwL4AiCoKcATOlwl+4knJ+Ley3u49/IeJp6cyHU4xE7o9ZYHqPAdIRZwbM1No9vEMWSnpWDt+OHa7XQquF0WqkwZWJka0ABgtdXsCXcqbTIP0Lp5Yl5rI1sZ3SakvB5lPTK6TUhFMC4uAO/Vj2c+H6FrfuE2IEIIsTNRsyfrtnd+MZvDSGyP3kg8C10hPMKNSp3ME2IuiZkStPvuFO4ki/FD/9fg5ULtZ8yi8LR6B5tiDwB1vOsY3SakIsIO7AfPzQ08Dw/U/uME+J60fIMQcyvcU576yxNSRsyrP3mA/8jGnIbi6Mo0j/3u3bs4ceIEOnfujCZNjH/j69Spk1kCe/nScftWE/PrtuIsJK+mAXVbcRY3v3qf44iIPVjdebXemnlCKkqRlIS43h8CAGrt/53WyhNiIU6uQvSeTu20HJEsLxe+wdXw8vkzAMDABd9zHJHt0EhVYDUagAXA047K81xoWTSXTP7q37t3D61atYJMJoNIJEJMTAzCw8MNzjtz5gwYhjFyh7JhWdYs9yEkW6pEjkwFAODzGF1ST8ygaFu64Ye5i4UDniJPbHp/E9dhEDuSn8jnb9e/fInDaAghxP4cXLIQApEIwXUbAgC8/AI4jsh2ZETdAcPjAa860fGENMmbayb/DRw9ehRSqRQsy0KhUOD48eMlns+ybIU+CDGXsVFX4C7S/lNXa1g0obU9hJDKimWhkUigkUgA+llICCGkkhEGuum2q0QaDuwS6zJ5ZL55c/2+3K+99lqx5wqFQrz55pvljwrA+fPnoVKpKnQPQvI1qOqJBynavs1bR77BcTR2JGJbwei8A66ZJ8TchDVrQH7rtm6bEGIZcolSV8W+67gmcHKlWjqOotfMuTi4ZCHXYdikKpHhyIi6A1GwO6pEhtMU+0rA5L+Bjh07Yv369Th48CC6du2Kzp07F3uur68vTp8+XaHAqlatitRUahVBKm5tZCuMjbqC8GBPrI1sRcXvzMnF2+Gm1hNiScqnCeB5eOi2CSGWUbQ1Ha2fJ6R0PBcB/Mc05ToMUkiZ3k4ZNWoURo0aZalYCLEILxchdo6p2EwRQgixNEVSEjR5eYBGA56bG5yovzwhFqNRs8hIzgMAVAl2K+VsYk/2f/810hOeQujswnUohFRYpZ0bQevmCSGEOJK43h+CcXUFK5VCI5NRf3lCLEijZqGUq3XbxHGkJcRDKZMVtFcjxIaZPZmPi4sDn8+v8H2uXLkCtZqqjpOKy5YqMTbqCgDQNHtzy3wKrG2n3R57FvChNb6EVATDMGBcXQGA+ssTYiFyiRKpCTkAAKGIh8wUCccREWuR5eVCIZVSgVFiN8zeT6BGjRqoVq1ahe9TrVo11KhBiQGpmGypEm2/PYn/nrzE5fhMDN9MbZ7MKj+RL7pNCCmzkDW/QJOTA01ODkJoVJ4Qizm25iYEr7rcKBUaVAl25TgiYi37Fs+jRJ7YlUrbHHD37t349ddfuQ6D2LjIjReR+2oanVrDIvZZNscREXsiVogx8sRIjDwxEmKFmOtwiA1Ti8VIHDoM4PPBc3dH0rjxXIdEiN0qPK1eKOKh+yfFd2gi9uXF44cAo51fz2o0HEdjezRSFdLWxSJtXSw0Uuo6VhlU2mR+8uTJGDlyJNdhEBtXNHl3FVbaf/K2aexZ49sOYurpqUa3CSmrxPHjAbUaUKuhkUq5DocQu6ZRs1AptImcT5AbtaVzELK8XG1NLpYFw+NB6EwzMsoqI+qO0W3Cnf9v797joqrz/4G/zgzMMKCDKKioeEHxgmJ5LTUr17bELM289CsRoV3NMjNrt6i1e9laS+ZlU9u8gLurVopmYt80rUxbFDXNS1qIF7xh6gwww1zP74+JI0MDDDDDmcvr+XjMY98nzjmft22Z7/l8Pu+PzzbAA9gEjxpOIQD2Sv8YbZl1u3zJBKKoDsDzPD6LqKFMP51wzBaJImCzoVPOBrlTIgpY1y4ZEKpWSjEFh03vvonYzl1xseAkAOD/vfGOzBkRNVyjFPOFhYW4evUqysrK3C7QzWaz1/LZvHkzVq1ahfz8fFy4cAGRkZGIj4/H+PHjkZqaiubNm3ttbLvdjq1bt+KTTz5BXl4eLl68CJ1Oh6ZNm6Jjx45ISkrCkCFDMHLkSI/0Hgh2m2fehvsWfgcA+OzJIYiL4rew5Dnzh82XZuTnD5svay7kv2x6PewGg6OQVyohaDRQtW0rd1pEASuqVbjUAK9l+6YyZ0ONxW634er5c1CFaRDdvgMio1vKnZLfaZGSKM3It0hJlDkbArxYzK9fvx4ffvghvv32WxjrsWRQFEUIgmfPjLhy5QpSU1OxZcsWAEC3bt0watQoFBcXY9euXdizZw/eeecdZGdnY/jw4R4dGwB++OEH/PnPf8bevXsREhKCAQMGoGfPnigtLcXRo0dx4MABHDhwAFlZWejZsyd+/PFHj+cQTHRGC1777CgGdIxiF3vyCq1Ki+X3LJc7DfJzZ6c7748P69pVpkyIgoNCCWlmXtHwA5jIX4jVxOQ2hSYEMVN7y50GVeLxYt5isWDChAnYtGkTgPotlfd0EQ8ABoMBI0aMQH5+PpRKJZYtW+a0J//kyZMYNWoUTpw4gZEjR2Lbtm0YOtRz3bl37tyJkSNHwmg04rHHHsPrr7+O6Oho6eeiKOK///0v0tLSvLoqIZhUHEdXEa+ZOkjGbAIQj6Uj8gjTiZPS+fIAeL48kZcplArExDWROw1qZAqlEi07xsudBpFHebwb2HPPPYeNGzc2aL+7N/bKz5w5E/n5+QCA119//XfN9RISEpCbm4uwsDCYzWaMHTsW169f98jYR44cwX333Qej0YiXX34ZH3zwgVMhDzi+wHj44Yfx2muveWRMAqx2EUfP63H0vB5WO7+C9bggP5aOnezJU1TxnaRCPqxXT54vT+RFJoMFdpsdxWdLYbeJSH4sSe6UqJHc/+yLLmNyH7vZ+x6Pzsxfu3YN//znP6WZdVEUceutt+Luu+9Gly5d0KJFC2g0mlpn3kVRxIMPPuixYvrw4cNYsWIFAKBVq1Z45plnXN4XHx+PadOm4f3338eVK1cwd+5c/P3vf2/w+I8//jhKS0uRlJSEl156qcZ7H374YezYsQMdO3Zs8LhBr/KXQmym6FnG64CpFBBtgKAEVBFyZ9Toqnay53J7qi9BGQJFeLgUE5H35C457DQzz072wSMsogkmvDxX7jT8WtVu9lxyLz+P/qnh66+/lpaIKxQK/Oc//8HEiRPr9S6VSuWxvDIzM2H/7SzJiRMn1vjuyZMn4/333wcALF68GK+88go0Gk29x964cSO++eYbAMDs2bOhUNS8GCIuLg5bt26t93hUSeUvjbywdSOorZ0EhIYD5hJHQR/dTe6MiPyWEBKCsB495E6DiCig6YovIfuvMwEAKfMWIDKmlcwZETWcR5fZFxYWAnAsGR8zZky9C3nAc0vtLRYLNm7cKF3X1tiuT58+aNasGQCgrKwMubm5DRq/YkWAIAi49957G/QuqiPOzHuP3QJYDY7OQWotEBomd0aNrnL3enayp4Zot2ihy5iIPK/ysnousQ8uFYV81ZjcV7mDPbvZ+waPzsxX7lr/hz/8oUHv2rBhg0caweXl5eHatWvSdb9+/Wq8XxAE9OvXD9u3bwcAbN26FWPHjq3X2DqdTvoyIC4uDjExMfV6D9Xd2WsGHDirAwD0bheJEKXH20MEN1EAQiMAS5njeuJqefMh8mNKrRYdslbJnQZRUFCHh2LM7L5yp0GNrLysFOZyR50SGhYGAVyxWR/sZu97PFrMVz4XXdvABj6DBnmm8/jhw4elWK1Wo60bZ/d26tTJ5fN1lZ+fL30h0bXSUUMFBQXYsmULTp06hdLSUkRHRyMpKQl33XXX7xrjUf3c+/63CA9VwGCx49A5HfbP+aPcKQUWZQgQe9ONa00z2VKRC/fMExER+Yecea8hRKWGpdwIS3k5Hl3wodwpEXmER4v5u+66C0qlEna7HUVFRZ58db0dPXqjUUObNm3ceqZywV/5+bo6ePCgFEdFReHChQuYNWsW1q1b5/J+tVqN6dOn480330T4b82QqP4EQUCEynGALM+Y97DRi52PpSMiIiLyUcVnCmE1myAoFAgNC+N+eQoYHl17HBsbi7S0NIiiiJycnAa96+mnn8ajjz7a4JyKi4uluGIvfG0q36fX62GxWOo19okTJ6T44sWLuPXWW7Fu3TpMmjQJe/fuhcFgwLVr17Bp0yb07t0bJpMJ8+fPx+233+60NYDq7vOnhrqMyUM2PgG07u34bHxC7mxk8fqQ13H86nEcv3ocrw95Xe50iIiIqDpiNTGRn/P4RuL58+ejf//+yMvLw3vvvVfv96xZswYrV65scD4lJSVSrFar3XomLMy5mVfld9RF5aP1vv32W5w5cwYvvPACsrOz0b9/f2g0GjRr1gz33Xcf9uzZgwEDBgBwLM9PTU11awyTyQS9Xu/0ISAuKhyHXrkHh165B3FRXOXgcXYLcPGQ42Ov35dd/m7Od3PQvXl3dG/eHXO+myN3OkRERFSNFu3iXMZE/s7jxXx4eDh27NiBKVOm4C9/+QumTJnSoKXqDVW5KZ+7x91Vvc9gMNRr7KqFdefOnfHKK6+4vDc8PBzLli2Trj/77DN89dVXtY4xd+5cREZGSp+4OP4GRY1AFFzHRFQnNr0ehQ8/gp8GDEThI4/Axi9kiYg8TqFQQhWmgSpMA4VCKXc6RB5Tpz3z6enpdXp5UlISsrOzkZ2djbi4OCQmJiIqKsqtGXKdTlensapT+Yx4d7vjV72vvvvXq77nkUceQWho9Xu3b775ZvTr1w/5+fkAgGXLltV6KkBGRgZmz54tXev1ehb0AHRGC6Zl7wMALE3pzz3znqYMcSyxD2Lzh82XmuDxaDqqr3MznoTp5EkAgOnESZyb8SQ72xMReZhCqUTLjvFyp0HkcXUq5leuXAlBqNssXMV58WfOnMHZs2fr9Fxdx3KladOmUmwymdx6pry8vNp31EWTJk2crm+99dZanxk8eLBUzH/99de13q9Wq93ePhAsdEYLbnv7KxgsNoSrlHh01V588thgudMKLBNXA2sn3YiDkFalZQd7IiIiH1deVgq7zYYrZ08jun0HjPnrS3Kn5LfsRit+zXasuG6RkgiFxqO91Kke6rXMXhRFtz+CIEgfd5/1pMpnu1few16TyqsCtFptjbPpNal6PJ87M+bx8Te+Nbx48aLTNgFyz7TsfTBYbAAAg9mGExfr1/OAqmG87lzIB+GxdESe0m7RQqgTEgAA6q4JaLdoocwZEREFlk3vvinNzCsUSoRFNKn9IXKpopCvGpN86vx1ikKhcDpP3lvOnj3rkcI+MTFRis+fP+/WM5WP1av8fF116NDB6brykv/qVJ3Nv3btmlvP0Q1Wu+NLIbsIKBUCurbib9oeVVHIV8RTNsuXC1EAEEJCENajB9otWghllS+BicizTAYLcpccBgAkP5YEdTi34QU6u92GK2dOAwCi23eo5W6qjt1ohfl8KQAgtHUEBAV7JvmCOhfzMTExOHXqlDdycRIbG4vLly83+D1JSUlSbDKZUFRU5HSOvCsFBQUun2/I2ADcmmWvuhWganFPbhBFRKiUMFjsCA9V4qMpA+XOiIjIpbPTp8N04qQUd/z3v2XOiCiwfb74EH49XybFY//ST+aMyOt4LJ1H/Jp9FKGtImC5VAbLxTLEPsc/X/sCj3ez9zUDBw5EVFSUdF2xH706oig63TNixIh6j111j7w7KwMqf4HRpEmT3y3Vp9qFKBXo2TYSAzpGoWdbLZvfeVrlPfJBul+eyFMqCvmqMRF5R0UhXzWmwFWxxL5lx3golOxk3xCCUoCqTROo2jThfnkf4bPFvKf2zoeGhmL06NHS9fbt22u8/8CBA9Le+oiICCQnJ9d77Pbt2+OWW26Rrvfv31/rMwcPHpTi22+/vd5jB7N3xt+Eo+f1OHpej3fG3yR3OoGnXHfjjPlyz5w6QRSMbHo9RLsd9pIS2A0GqOI7yZ0SUUA7//M1mI1WmI1WiHYRLdrU77Qi8i/3P/uiy5jqJmp8V5jPl8J8vhRR47vKnQ79pk7F/IEDB7Bt2zZv5eLk4sWLsNlsHnnX008/DYXC8Utdu3ZtjUfUZWVlSfHjjz/e4P3q06ZNk+JPPvmkxnv1ej2+/PJL6XrSpEk13E3VeXrtQZcxeciS2wBzqeOz5Da5syHyW2f+PBVi2W8zg6IIQclZDiJvMRks2PDuAenaYrLh3if4hX8wCItoggkvz8WEl+ey+V0DXPv4hDQrf+3jE3KnQ7+pUzF/0003NaghnFx69+6NtLQ0AMClS5eQmZnp8r6CggIsXboUABAdHY2MjAyX91ksFqSkpKBp06bo06cPDh06VO3Yqamp6NOnDwDHEv+PP/642nvfeOMNaV993759MXHixNp/cfQ7lbvXs5O9F1jKXMdEVCflP/5448JuhxDCYp7IWyqa3lXG5ndE5O98dpm9py1YsAB9+/YFAMyZMwcrVqxw+vnJkyeRnJyM8vJyqFQqrF+/3mmvfWXZ2dlYvXo1SktLcfDgQcyYMaPacRUKBdauXYuWLVsCANLT05GTk+N0j81mw9tvv4133nkHANCqVSt8+umn0moCqpvK3evZyd4LYvu6jonIbTa9Hqi8nUyp5LF0RF7Wom2EFD/wbB8ZMyHyPy1SEl3GJC9B9PTB7tUoLy/Hvn37cO7cOVy7dg2CICAqKgrt2rVDv379EBYW5vUciouLkZqaitzcXABA9+7dkZSUhOLiYuzatQtWqxWxsbHIysrCXXfdVe17li9fjkcffVS6vv322/H111/XOPaRI0cwadIkaU98t27dcNNNN8FsNmPPnj24dOkSAGDIkCH473//69aZ9K7o9XpERkZCp9MFbfM8ndGCadn7AABLU/qzAZ6n8Zx5ogY7PTkV9vJylB85AgDo/H9fQFXLSStEVH88ko6I/Im7NZ1Xi3lRFPHJJ5/ggw8+wHfffQer1eryvpCQEAwdOhTTp0/H2LFjIQjePbfws88+w8qVK7F//35cuHABWq0WnTt3xrhx45CWlobmzZvX+LzFYkFaWhpycnKQkJCAVatWoXfv3rWOa7VasXbtWqxbtw4//PADLl68CJVKhdatW2PIkCGYOHFig7rnAyzmiYj8wenJqU7XHbJWyZQJUXBgMU9E/kT2Yv7IkSNIS0uTjnmrbZiKAn7AgAFYsWIFevTo4Y20Al6wF/NHL+hw38LvAACfPTkEibGRMmdERPR75qIinBrzAACgU84GzsoTeVlOpvOJQmNmc5tYsCgvK8Wmd98E4OhmzyZ45A/crem8sil7165dGDx4MPLz86UivqbZ9oqfiaKIvLw83Hrrrfjuu++8kRoFuIpCvmpM5Gl6sx7pX6Qj/Yt06M16udMhP3Mh4wWE9eiBsB49cCHjBbnTISIKWDnzXsPlwgJcLixAzrzX5E7Hb9mNVhQvO4TiZYdgN7pebU2Nz+Otc8+cOYN7770XJSUlTkV6s2bN0K1bN7Ru3RoREREQRRFlZWW4cOECTpw4AZ3OcV61IAgoKSnByJEj8eOPP9Z77zgFH53RApv9xgoQpcK72zUouM3aMcspXn7PcvmSISKiGiU/luS0zJ6CQ3lZKc6fOA4ACA0Lw5Uzp2XOyH/9mn3UKY6ZWvsWY/I+jxfzTz31lFTIR0REYPr06Xj44Ydx0001n+V54MABrF69GsuWLUNZWRlKS0sxa9YsfPrpp55OkQLUtOx9iAgVUGZxFPQ9YrmMioh8U7tFC3FuxpNSTETeZTJaUXy2VIq5Zz445Mx7zbFKWBRhKS9Hm4TucqdE5FEeXWZ/+fJlbN68GYIgIDExEYcOHcLf//73Wgt5AOjTpw/+8Y9/4IcffkCPHj0giiI2bdqEy5cvezJFCnBKpRLasBBow0LQRM3/UJP3zB8232VM5A5bSQnKjx1D+bFjsJWUyJ0OUUAzGSxYPed7WEw2QBSx9o29cqdEjeTKmdNQhWkg/Hbc85jnXpI5I//Fo+l8k0eL+Z07d8JmsyEsLAwbN25Ex44d6/yO+Ph45OTkICwsDHa7HTt37vRkihTA3hl/k2P7htmGzi2bYGlKf7lTogCmVWmx/J7lWH7PcmhVwddskurPXFSEX4bfBXtJCWC3S43wiMg7vlx+RIotZruMmVBja962HSymcgBA684JbH7XAApNCGKm9kbM1N5QaDy+uJvqyaPF/Llz5wAAo0ePRnx8fL3fk5CQgNGjRwMAioqKPJIbBb6/fPwDeraNxICOUVCHKHi+PBH5pFOjx0ixvaxMvkSIgkjL9jeKuIl/GyBjJtSYFAolVGEaqMI0UCiUcqdD5HEeLeYrGt7dfPPNDX5X3748MoTqxmoXcfS8HkfP62G1e+XERSKiBrMbjUClE1465WyQMRuiwHf7w91w7ZIRoWolJr1+K7QtNHKnRI1EoVSiZcd4tOwYD4WSxTwFHo8W823atAEAhIY2fEY0JMSxfCM2NrbB76IgIYquYyIiHxLWsyegUABKJcJ69+YZ80Re9s1/fkJMXBPExDXBV6uOyZ0ONaL7n33RZUwUKDy64aFfv34AgOPHjzf4XRXv4Aw9uUNntODEJUeX2q6tmyKEx9KRF+nNeulouvnD5nPPPNVJ+399yE72RI3oytlSGEosCFUp0KIt90wHk7CIJpjw8ly50yDyGo/OzHfp0gW33HILNmzYAL1eX+/36PV6rF+/Hn369EHXrl1d3vPggw9i+PDh9R6DAsu07H3o2srxH+gTF0vY/I68quoZ80RE5Lsq1uo5mt9x5R4RBQ6PFvMAsHDhQuj1ekyZMgVWq7XOz9tsNqSlpUGn02HBggXV3rd79252uicnIUoFEttokdhGy+Z35FVWuxXHrx7H8avHYbXX/fc5Cm4Vs/JVYyLyDkEQEKpWIlSthELp8T/6EhHJxuO/o/Xv3x+rV6/Gl19+iUGDBuHLL7+E6Ob+5W3btmHQoEHIzc3Fv/71LwwePNjT6VGAqjwTz1l5IvJV5qIiGPLzYcjPh91kkjsdoqDQPNbR8K5FmwgkP5YkczZERJ7j8UMCX3vtNQDAfffdhzVr1mDEiBGIjo5G//790aVLF2i1WqlBnsVigV6vxy+//IJ9+/ahuLhYerawsFB6lyulpaWeTp2IyC0hihB0b95d7jTID50aPcbRoNNuR/mPP6Lrnt1yp0QU8BRKBWLimiD5sSSow7lyL1iUl5Vi07tvAnA0v+MZ8xSIBNHdaXM3KRQK6Yi6yq8WhJobktXl3or7BUGAzWarZ6aBSa/XIzIyEjqdDlpt8DTlemjZHqfrNVMHyZQJBQM2wKP6Otazl9N1jyM/ypQJUfDYvOggrGY7AGDMbDZWDhb/+dszuPjLSQBA684JePiNf8icEZH73K3pvLpxSBAE6ePJe4mq4hnzROQPwnr2dBkTEZHnlJeV4sLJnyDa7RDtdqmoJwo0XivmRVH06ofICc+Yp0bEbvZUX+3/9SHC+/VDeL9+aP+vD+VOhygoXCjQ4/zPOtw2IUHuVKiRVCyvr8DagQKVV4r5Vq1awW63e/XTqlUrb6RO/qryig6u7iAiH6XUatEhaxU6ZK2CMoi2QhHJKVTl6GS/4R8H5E6FGlFomEaKYzu7Puqa3Gc3WlG87BCKlx2C3ciTfHwFz+cgv6czWvDTBT3KzDbH6bH89pW87PUhr0tH070+5HW50yEiIqJK7n/2RbTs0Anq8Ai07Z6IsS+8KndKfu/X7KMuY5KXx7vZNxYul6EK07L3QRAERKiUABznzRN505zv5kjd7Od8NwfL71kuc0bkD8xFRTg15gEAQKecDVC1bStzRkSBzWSwQB0eCovZBogiJs4ZKHdK1EjCIprgodfmyZ0Gkdd5vJhfsWIFNBpN7Tc20IIFC2A0Gr0+DvmHrq2a4MQlx3GFPGeeiHzRqftHw15WJsXd8vfJnBFRYPty+RGMmnEzYuO1sJrt0Lbw/p9PiQKR9Vo5TEUlgMUOVbumiE7rVftD1Cg8XsynpqZ6+pUuTZgwoVHGId/3zvibcO/73wIAPn9qKCI1PEOWvGv+sPlOR9MR1cam10uFPACnmIiIyJdden+/48QxlRKWywYoNH67uDvg8P8J8nsz/3sAZWabFG94fIjMGVGg06q0XFpPdXJ2+nTnvxARIU8iREHkj+k3jn9MfixJxkyIiLyj0Yp5o9GIPXv24PTp0/j1118hCAJatGiBDh06YNCgQQgLC2usVCjAHDqncxkTEfkK04mTjgL+txn5zps2ypwRUeBThztW6o2acbO8iRD5uVZP9cWl9/dLMfkOrxfzO3bswLx58/DVV1/BanV9jEFoaCjuuusu/OUvf8Edd9zh7ZQogOiMFoiiCLsIKBUCwkPZ/I68S2/WOy2x16p4vBjVTp2QANPJk0DTplAnJLD5HRER+Y2QqDC0fWWw3GmQC16rfEpLSzFhwgTcdddd+L//+z9YLI6iy9XHbDYjNzcXf/jDH/DQQw+hpKTEW2lRgJmWvQ+922mhVDjOlt8y63aZM6JAV1HIV42JatLmnXkuYyIiIqL68koxf/36dQwaNAiffvqpdIScIAjV3l/xM1EU8fHHH2PIkCHQ6bhcmmpntYsoKDYgQqVEn/bNEBcVLndKRES/c/6vf3UZExGR5+mKL2FR2kQsSpsIXfEludMh8hqvLLN/4IEHcOTIEacivVWrVkhMTERsbCyaNGkCURRRVlaGoqIiHD9+HJcu3fgX7ciRIxg7diy2b9/ujfQoQOiMFhw/r0ep2QalQoDVZpc7JQoC7GRPdWUuKoIx37HXUBER4dg/T0ReV3HO/OZFB/HH9J7SHnoKfNl/nekUz1ixVsZsiLzH48X8v//9b3z99dcQBAFhYWF44oknkJqaip49e9b43I8//ohVq1bhgw8+gMFgwM6dO/Gf//wHDz/8sKdTpAAxLXsfjFa7tMS+oJhHPZH3sZM91dWpMQ8ACgVgt8NeVgZNXzYPImoMFefMA0DuksMYM5v/7hFRYPH4Mvu33noLANC5c2ccPHgQ8+bNq7WQB4BevXrhnXfewf79+9G5c2eIoii9y9M2b96M8ePHIz4+HhqNBq1bt8bgwYPx3nvv4erVqx4fTxCEOn26d+/u8RwCVeWGd11bNZExEwoWerMe6V+kI/2LdOjNernTIX/w23YzAIBSibglH8iXCxFREEiZt8BlTBRoBFGs/KeMhiksLER8fDxUKhX27duHXr161es9hw8fRv/+/WG1WvHLL7+gY8eOHsnvypUrSE1NxZYtWwAA3bp1Q1JSEoqLi7Fr1y7YbDbExsYiOzsbw4cP98iYQM39Alzp1q0bjh8/Xq+x9Ho9IiMjodPpoNUGdpdtndGCR1fm4cSlUnRt3RQfpQ5ApIZL6Mi70r9Id7rmLD3VpmDcOJh+PAIAUPfqifhPPpE5I6LgwGX2ROSv3K3pPLrM/n//+x8AYMSIEfUu5AEgKSkJI0aMwObNm/G///3PI8W8wWDAiBEjkJ+fD6VSiWXLliE9/cYfyk+ePIlRo0bhxIkTGDlyJLZt24ahQ4c2eNwKGo0G7du3d+ve+Ph4j40byCI1ofhk+hC50yAiqpHl9BkomjaVYiIiIn9iN1rxa/ZRAECLlEQoNF4/3Zzc5NFl9hVN7AYOHNjgd91yyy1O72yomTNnIj8/HwDw+uuvOxXyAJCQkIDc3FyEhYXBbDZj7NixuH79ukfGBhx/T44fP+7Wp2LlAJHPuXYaeLu943PttNzZyKJy0zs2wKPa2PR6iKIIu8EAiCLUCQlyp0QUNL5cfkSKc5ccljETIv9WUchXjUl+Hi3mjUYjBEFAkyYN37tc0fHeaDQ2+F2HDx/GihUrAACtWrXCM8884/K++Ph4TJs2DYBjSf7cuXMbPDZRQFk61HUcRCoa4C2/Zzm0qsDeykINd27Gkwjr2hWK8HBAELhfnqgR2W2OnaRXzpVJMQWH8rJSrHs1A+tezUB5Wanc6RB5jUeL+ejoaIiiiNOnGz5jd/r0aQiCgOjo6Aa/KzMzE3a749iyiRMnQqVSVXvv5MmTpXjx4sUe+TKBvENntOChZXvw0LI90BktcqdDROSSEBKCsB49ENajB5QB3suEyLeI1cQU6Da9+6bLmOqnRUqiy5jk59FivlOnTgCAjRs3oiF99Ww2GzZs2OD0zvqyWCzYuHGjdF1bY7s+ffqgWbNmAICysjLk5uY2aHzynmnZ+1zG5EXTvnUdE5FL7RYtdBkTkXeZDBZcveCYkGkeGw6F0uMHOJGPKi8rxeXCAlwuLIDdbpM7Hb/H/fK+zaO/sw0ZMgTh4eE4deoUXn311Xq/56WXXkJhYSHCw8Nx2223NSinvLw8XLt2Tbru169fjfcLguB0z9atWxs0PlFAieoAPH/G8YnqIHc2RD5PqdWiQ9YqdMhaxVl5okaUu+QwmsdqAABXLxiQ/FiSzBlRY1k/92WYjAaYDGUoPn0K9z/7otwp+TXul/dtHv1qRa1W48EHH0R2djZef/11FBcX44033kBUVJRbz//666/IyMjAv/71LwiCgPHjx9e4JN4dhw/faHiiVqvRtm3bWp+pvBqg8vMNZbfbsWvXLuzevRtnz56F1WpF8+bNkZCQgGHDhjV4FUKweWf8Tbj3fcfs8OdPBef+bWp8erMes3bMAuBogMd980REvqliNj66XQSPpQsC5WWlWPdKBorPnAIACAoFLCYTwiIa3suLyFd59Jx5wLHXvXv37jCbzQAcjexGjhyJ4cOHo0ePHmjTpg0iIiIgiiJKS0tx/vx5HDt2DNu2bUNubi4MBgNEUYRGo8Hx48cRFxfXoHxmzpyJhQsdSxs7deqEgoKCWp955ZVXpJUFWq0WOp2uQTkIgoAOHTpIv6bqJCcn4+9//zuSkur/7XEwnTP/0LI9Ttdrpg6SKZMgYrwOrJ3kiCeuBjTN5MxGFjxnnurCptfj3IwnATiW2XN2nqhxmAwWfLn8CEbNuFk6b54C27pXM3D2qPMknEoTjidXrpMpo8DAZfbykOWceQDo0KEDPvzwQ0yePBmCIKCkpATr1q3DunW1/4tU8b2CQqHARx991OBCHgCKi4uluGIvfG0q36fX62GxWBAa2rD/CJw+fRoRERF46aWXMH78eMTHx8Nms+HIkSP48MMPsWLFCuTm5mLnzp3IysrCuHHjGjReoNMZLThSpIfBYkO4SolurZvKnVLgu3gYWPLbtpc2fRxF/ZTN8ubUyPRmPY5fdXwh16VZF4Qo+B80qp65qAi/3H0PYLNBERGBs9Ono+O//y13WkQB78q5Eqx9Yy9Cw5QAAFO5lcV8ELBazL/7a5PfYa+ShrKXW2E+XyrFLOZ9i1e6gUyaNAmLFy9GSEgIBEEA4CjUa/pUUKlU+OCDD/DQQw95JJeSkhIpVqvVbj0TFhZW7Tvqq02bNjhw4ABeffVV9OrVC+Hh4WjatCluvfVWfPTRR1i1ahUAx/F+jzzyCL7//nu33msymaDX650+wcDR8M7xz43BbAM8u8CEXFl2x434/AH58pDRrB2z0KVZFwDAz9d/5jnzVKNTo8cANkfzJXtZGUwnTsqbEFGQWPfWXqfr9fP2y5QJNaZfz511up746t8RGdNKpmwCx6X397uMyTd4rbXn9OnT8e233+KWW25xKtYFQXD6VBBFEUOGDMF3332HP//5zx7Lo/LRcu7uv696n8FgaFAOhw8fxg8//ICEhIRq70lJScHDDz8MADCbzXjiiSfcevfcuXMRGRkpfTyxmsFfCIKACJUSESolQtiltnEIlf4+T1wtXx4yClGEoHvz7ujevDv3y1ON7FWONlXX8N8AIvIc0S53BiQHQRCgDo+QPu2695Q7JSKv82oFNHDgQOzevRu7du3Cc889h0GDBiE2NhZqtRpqtRpt2rTB4MGD8fzzz2PPnj349ttva+02X1cajUaKK/bx16bqfeHh4Q3KoVevXoiOjq71vpkzZ0rx/v378e23tR/9lZGRAZ1OJ33Onj1b6zOB4J3xN0EURZSZbejcsgmWpvSXO6XAN/VrQBAAhRJ4bFdQ7pevPBPPWXmqTVjPnoDC8Z9ZRUQE4pZ8IHNGRMEhJs654dnYv/aVKRNqTCnzFriMqWFaPdXXZUy+oVE2PQwePBiDBw9ujKF+p2nTG3upTSaTW8+Ul5dX+w5vGjBgACIiIlBWVgYA+PLLLzF0aM1d2iu+GAk2T689KM3MKxUCIjXcC+d1rZOAl67KnYWstCotG96RW2wVW54EAYomTdBpYw6b3xE1ktFP90HuksMIUTm+TNM219TyBAUCdXgEWnaMl2LyjJCoMLR9RZ46jmoX8GuTY2JipPj69etuPVO5e71Wq21w8zt3KRQKdO7cWbo+ceJEo4zrj366WIIysw1lZht+utjwngZERJ50bsaTMJ86BUV4OCAIuJDxgtwpEQUNdXgoxszui1EzbpY7FWpEm95902VMFMgCvh1hYmKiFJ8/f96tZ4qKilw+3xgqrwK4ejW4Z0Grc/aaASXlVgCAUhDY/I6IiIgoiJWXleJyoeP46ej2HaBQKGXOiKhx+OzMfGxsLEJCGv5dQ+Uz200mk1OhXp3KZ9E35Mz3+qi8xD8igkuEXBn5/o1eAjZR5LF0RORz2i1aKDW8U3dNQLtFPB6JqDHofzXiw6e/wYdPfwP9VWPtD1BA2PTum4iO6wAAuHLmNO5/9kWZMyJqHD5bzANw6oJfXwMHDkRUVJR0nZ+fX+uYle8ZMWJEvcfW6XR44403pGPn3FF59UCbNm3qPXagqjwrX+GjKQNlyoaIqHpCSAjCevRA3AcfcL88USNZ+8aNY+l4JF1wUSiVaNkxHi07xiMsokntDxAFAJ8u5j0hNDQUo0ePlq63b99e4/0HDhyQ9tZHREQgOTm53mNfu3YNc+bMwbx589y6/9y5c7hw4YJ0XVvzu2B07/vfQqh0fXOcls3viMjnnJ0+HeXHjqH82DGcnT5d7nSIiAJa5Zl4zspTMPHannmz2YxNmzZhx44dOHLkCK5evYqysjK3Z9uLi4s9lsvTTz+NrKws2O12rF27Fu+88061Z85nZWVJ8eOPP+50tF19HT9+HJcvX0bLli1rvK/y2M2aNWvQFwmBrIlaCYPFcYjsqvRbZc6GiOj3TCdOuoyJyLsm/m2ANDvPI+mCR1hEE0x4ea7caRA1Oq8U85999hmmT5/uNMsMuL9sXhAEiKIIQRBqv9kNvXv3RlpaGj766CNcunQJmZmZeP755393X0FBAZYuXQoAiI6ORkZGhsv3WSwWpKenIycnB126dMGqVavQu3fvase32+14+eWX8cEH1Z8xXFBQgLffflu6fv755xEZGenuLzFo/GtKf0xY8j0AYN1jt3JWnoh8kiq+E8p/PAIACOvVU+ZsiIKHtoUGf37vdrnTICJqFB5fZr9p0yY8+OCDOH/+vFS8i6JYp/3vntgrX9WCBQvQt6/jG9o5c+ZgxYoVTj8/efIkkpOTUV5eDpVKhfXr1zvtta8sOzsbq1evRmlpKQ4ePIgZM2bUOv6SJUswY8YMlx3qv/rqK9x5550oKXEcsTZu3Dj89a9/resvMSj8aeU+aMNCoA0LwZ9W7pM7neBhvA58NAJ4uz2w/B7HNRFVS1CGQBEeDkV4OARlwB8cQ+QzTAYLcjL3IydzP0wGi9zpEPk9u9GK4mWHULzsEOxGa+0PUKPy6J8wrFYrZsyYAavVKs2ui6KIHj16oHPnzoiMjHS7Q/3atWthMpk8llt4eDi2bt2K1NRU5ObmIj09HfPmzUNSUhKKi4uxa9cuWK1WxMbGIisrq0771atbQRATE4Np06bhP//5D0pKSrB48WJ89NFHGDhwINq2bYvy8nIcOnQIv/zyCwBArVbj+eefx0svveSxVQlEHrF2ElB81BFfPua4nrJZ3pyIfFhF8zsialy5Sw5L8ZfLj/CseaIG+jX7qFMcM7X61cjU+DxazO/atQvnzp2TCtFx48bhH//4B+Li4ur8rq1bt+Ly5cueTA8xMTHYsmULPvvsM6xcuRL79+/Hpk2boNVq0b9/f4wbNw5paWlo3rx5je9JSUnBV199hZycHCQkJGDhQtdHDkVERGDJkiXIzMzEtm3b8MUXX+DAgQM4fvw4vv/+eyiVSjRv3hx333037rzzTqSlpaF169Ye/TUHkqMXdCgpt0IEEKFWYussLqMjIt9j0+shWq0wnTwJddcExNWwxYqIiIiovgTRg2vaFy9ejCeffBKCIKBv377Yu3dv7Q9VIzY2FpcvX4bNZvNUekFBr9cjMjISOp0O2gA7CqnzC1tgszv+cVUqBPzy1kiZMwoixuvAfx5yzM637AH8v7WAppncWRH5pNOTU52uO2S5fzwpETWMyWCRZueTH0uCOpy9dYgawm60SrPzLVISodBw61hjcLem8+j/G3q9XoonTpzYoHdNmDDB6X1EFYV81ZgagaYZ8OhWubMgIiKqkTo8FGNms4s9kacoNCFcWu/DPFrMVz56raHLxd9///2GpkMBplfbpvixqESKiYh8Uezct3BqzAMAgE45G2TOhoiIiAKVR7vZ33nnnVJ88eJFT76aCP/+0yDcGt8ct8Y3x7//NEjudIiIXDpf6TSS8zyZhKhRsZs9EQUTjxbznTt3xgMPPABRFLFhQ8NmIx588EEMHz7cQ5mRv9MZLZiW7TiKbmlKf54vT0Q+y3TipMuYiLyvajd7IqJA5vFz5pcuXYr4+Hh8//33mDt3br3fs3v3buzcudNziZHf0hktGPL2dnxfcBV7C69hyoo8uVMiIqqWOiHBZUxERETkSR4v5qOjo/Hdd9/hjjvuwIsvvoj77rsPO3bsYFd6qrdHV+1Fqcnxz4/NLuLQOZ3MGRERVS9uyQcI69EDYT16IG4Jj6UjakzJjyVJ8R/Te8qYCRGR93n0aLqq/vKXv+Af//gHBEGASqVCfHw8oqKioFKpan32u+++g9Vq5ZcAdRSIR9P1fuUL6Mut0nVTtRKHXx0hY0ZByHgdWDvJEU9czWPpiIiIiIi8RJaj6SocO3YM6enpyMtzLIcWRREmkwnHjh2DIAhuvUMURbfvpcDWtVUTHL+gR6nZDqUgYMus2+VOKfhUFPIV8ZTN8uVCREREVEl5WSk2vfsmAOD+Z19EWEQTmTMiahweX2Z/7Ngx3HbbbcjLy5MK8ooP4CjS3fkQVfhoykD0atcMt8Y3x/6X/oi4qHC5UyIicsmm1+P05FScnpwKm14vdzpEREEhZ95ruFxYgMuFBciZ95rc6RA1Go/PzP/pT3/CtWvXnIr3pk2bIj4+Hk2bNoVSqXTrPbt374bVaq39Rgp4kZpQrJnKo+hkNXG18zJ7InLp7PTpUgf7s9Ono+O//y1zRkREge/KmdMuY6JA59Fi/vDhw9izZ49UyA8aNAjz5s3D4MGD67xkPjY2FpcvX/ZkeuSneCwdEfkL008nYDcapZiIiLwvOq4Drpw9LcXkGXajFb9mHwUAtEhJhELjlR3a1AAeXWa/Z88eKe7cuTO++uorDBkyhHvfqd50Rgtue/sr7C28hiPn9Xh01V65UwpOVffME5FLoigCNhtgs3HLGBFRIxnz3Eto2TEeLTvGY8xzL8mdTsCoKOSrxuQ7PPr1ypUrV6R48uTJUKvV9X5Xu3btEBYW5om0yI89umovSkyO7RYGsw0nLpbInBERkWs2vR7ib7PyUCoBfpFNROR1bH5HwcyjM/NRUVFS3LFjxwa9a+/evTh16lQDMyJ/91Ol4t1mF9G1FX+DlkXlffLcM0/k0tnp052uw7p2lSkTouBkMliQk7kfOZn7YTJY5E6HGgmb33lPi5RElzH5Do/OzN9++40jw3Q6nSdfTcFKFKEQALsIKAVHZ3uSgaYZj6MjqoXpxEkI4eHS7Hzckg9kzogouHy28AdcPl0ixeOe6y9zRtQY2PzOexSaEMRM7S13GlQDj87M9+zZEyNHjoQoiti+fXuD3pWZmYnXXuO3a8GuW+umaKIOgTYsBH3aN2PzOyLyWeqEBAiCAEV4ODQ33QSlVit3SkRBpaKQrxpTYKvc8I7N7yjYCKKHO/RcuXIFf/jDH3D06FFs2bIFd999d73eU9HN3mazeTK9gKfX6xEZGQmdTgdtAPxBkp3sichf2PR6nJvxJACg3aKFLOaJGtmyWV/DarYDAEJUCkydf4fMGVFj4J55CkTu1nQeL+YB4Ndff0VaWhq2bduGV155BY8//jiaNKnbv1gs5usn0Ip58hHG687nzGuayZkNERHR7+h/NWLtG45Tbyb+bQC0LTQyZ0REVD+yFfOVl8bn5uYiLy8ParUat956K3r06IGoqCioVKpa3/POO+/AYDCwmK+jQCvmOTPvI1aOcr7m/nmi3+HMPBEREXmCbMW8QqFwOle+4vV1PWteFEUIgsBivo4CqZjXGS0Y+vevAABdWzdFiELAmqmDZM4qSLGYJ6pV4SOPwHTiJABA3TUBHf/9b5kzIiIiqj+70SqdL98iJREKjUd7p1MN3K3pPNoAr7LKRXxdC3kiANKMPACeLy83Hk0HANCb9Uj/Ih3pX6RDb9bLnQ75mIpCvmpMRETkjyoK+aox+Q6vFfOAo6Cv74fIanf8s1BmtkGEY5k9yaTiaLopm4N6v/ysHbNcxkQ2vR6iKMJuMACiCHVCgtwpERERNYhoF2E+Xwrz+VKIdtZnvshrxfyaNWtgt9vr/WnVqpW3UiM/YbLaUGKywWYX0TE6nPvlichnnZvxJMK6doUiPBwQBJ4xT0RE/k+sJiaf4dWZeaKGOHq+BEqFAKVCwNHzXGZP8ps/bL7LmEi0WWE6eWO/PJvfERGR3xOqicln+GwXAy61p/BQBQwWuxQTyU2r0mL5PcvlToN8EWcviIgo0PC/bT7P48X8hg0bAAADBgxo0Hv27dvHTvZBbsus23Hv+98CAD5/aqjM2RARVU8ICUFYjx5yp0FEROQxglKAqk0TudOgGnj8aDqSVyAdTUdE5A9sej3O/OnPKD9yBAqNBp025kDVtq3caRERETUIj6aTj2znzJO8AqWYP3vN4DQrHxcVLnNGRESunZ6civJjx6TrsB490CFrlYwZERERkT+T/Zx5V0wmE06dOoV9+/YhPz8fhYWFMJlMjZkC+YmKQr5qTCQnnjNPRERERL7C68W8Xq/H3//+d9x2222IjIxEly5dcMstt2DgwIHo3LkzIiMjMXToULz77rvQ6xvnD8ebN2/G+PHjER8fD41Gg9atW2Pw4MF47733cPXq1UbJocJDDz0EQRAgCAI6duzYqGP7qrPXDNCXW6Evt6LMZGO/DbkZrwMrRzk+xutyZyMbvVmPez65B/sv7cexX49hxvYZcqdEMrPp9fhlzAMw5OXBXlICe0kJQtu1Q7tFC+VOjYgoKJSXleI/Lz6DzP93PxamTYCu+JLcKQUMu9GK4mWHULzsEOxGq9zpUDW8Wsz/85//RPv27fHCCy9gz549MJvNEEXR6WM2m7F7924899xzaN++PT74wHtn8165cgX33nsv7rvvPnzyySdQqVQYNWoUunfvjry8PMyePRu9evXC9u3bvZZDZbm5uVi7dm2jjOVPkuffmIm3iSI6x3CJvazWTnIdB5lZO2bBaDUCAIxWI36+/rPMGZHczs14Eubjx53+munECR5LR0TUSDa9+yYuFjiOBbWUlyP7rzNlzihwVOyVrxqTb/FKMS+KIiZPnownn3wSer1eOmauYga66qeCXq/HjBkzkJqa6vGcDAYDRowYgS1btkCpVOKjjz7C8ePH8fHHH2Pnzp04duwYunbtigsXLmDkyJH49lvvLu02GAx4/PHHvTqGP9IZLSg1OX/7FxbKZhvkGzQhGinu0qyLjJmQLxBtnKkgIpKT3W6DaLdDtNvlToVIFl4p5p955hmsXr3a6a+JooiQkBDExsYiISEBXbp0QWxsLJRKpTRLLwgCRFHE6tWr8eyzz3o0p5kzZyI/Px8A8PrrryM9Pd3p5wkJCcjNzUVYWBjMZjPGjh2L69evezSHyl5++WUUFhZCrVZ7bQx/NC17H4RK10oBWJrSX7Z8CMDoxcDFQ47P6MVyZyOb+cPmIyEqAeGh4egd0xuLhi+SOyWSmwhAc+MLHigU6Lj+U9nSIQp2JoMFOZn7kZO5HyaDRe50qDGIQGjYjd+HU+YtkDGZwBI1vivM50thPl+KqPFd5U6HquHxbvZ79uzBkCFDpMJ8wIABmDx5Mu666y506dIFSqXS6X6r1Yqff/4Z27ZtQ1ZWFvbt2+dITBCwe/du3HLLLQ3O6fDhw7j55ptht9vRqlUrnDlzBiqVyuW9s2bNwvvvvw8A+Otf/4q///3vDR6/qh9++AH9+/eHUqnEM888g7feegsA0KFDBxQWFjbo3f7ezf6hZXtQbrHicFEJAGDnX+5kJ3u5rRzlfD1lszx5EPmY05OdV5Gxgz2RvHIy9ztdj5ndV6ZMqLGsezXD6XrCy3NlyiTwFC875HQdM7W3TJkEJ9m62c+ZMwcAoNFokJ2djf/973944okn0K1bt98V8gAQEhKC7t27Y8aMGcjLy0NWVhY0v810VLyroTIzM2H/bfnNxIkTqy3kAWDy5MlSvHjxYhiNRo/kUMFut2Pq1KmwWq144YUXkJCQ4NH3+7uX7kuUCvnPnhzCQp6IfFblRndsekdE1PjunDIV544fwbnjR3DnlKlypxNQRLsozcyLdraj9lUeLeavXbuGnTt3QhAEZGdn45FHHqnzOyZNmoSsrCyIoogdO3Y0eKm7xWLBxo0bpevhw4fXeH+fPn3QrFkzAEBZWRlyc3MbNH5VixcvRl5eHrp164bnn3/eo+8OBBOXfu8yJhlNXO06JgpySq0WHbJWoUPWKja9I5KZ/lcjLp8pwfmfdbBa7Eh+LEnulMjLystKsfr5pwAAoWFhWPcK/1ztUWI1MfkUjxbz3377Lex2OwYOHIgHHnig3u958MEHMXDgQNjtdnzzzTcNyikvLw/Xrl2Trvv161fj/YIgON2zdevWBo1f2blz5/Diiy8CAJYuXVrjCoFgZTDbXMZERL7Gptfj9ORUnJ6cClsjHa1KRK6tfWMvBEFAqFqJaxcNUIeHyp0SeVnOvNek5neW8nK50wk4glKAqk0TqNo0gaAUan+AZOHRYr6oqAgAcPfddzf4Xffcc4/TO+vr8OHDUqxWq9G2bdtan+nUqZPL5xvqySefRElJCaZMmYI77rjDY+8NJEltm7qMSUY8mo7IpXMznnQZExGR9105c1pqfifa7Wx+52EtUhJdxuRbPFrMX79+HYIgIDo6usHvio6OhiiKDV5mf/TojXMR27Rp49YzlQv+ys83xMaNG5GTk4MWLVrgnXfe8cg7A43OaEGIQoEIlRJ92jfDqvRb5U6JiMglm16P8mPHUH7sGI+oI/IBDzzTBxaTDRaTDQ8800fudKgRRMd1gEKhgDo8Am27JSIyppXcKQUUhSYEMVN7I2Zqbyg0PCbaV3m0mG/WrBlEUcSVK1ca/K4rV65AEARp/3p9FRcXS7G776p8n16vh8XSsONNSkpKMGPGDADAu+++65EvOwLRtOx9CFEqkNhGixCFgEgNl8j5BB5NR/Q752Y8CfVvDUxNJ06yAR6RjPS/GrHuLcdpSC07NMWudSdlzogaQ/KTz7iMqeHsRiuKlx1C8bJDsBv5hbUv82gxXzGjvW3btga/64svvnB6Z32VlJRIsbtnuoeFhVX7jvr429/+hnPnzuGOO+7AlClTGvSuqkwmE/R6vdOHyKM2PgG07u34bHxC7myIfIJos8J00lEwqLsmsAEekYzWvrFXii+fbtif2ch/fPHP+WjZMR4tO8bji3/OlzudgPJr9lGXMfkejxbzQ4cOhUKhwPfff49NmzbV+z2ffvop8vLyoFAocPvttzcop8pHy7nbcK7qfQaDod7j79u3D4sWLYJKpcKSJUvq/Z7qzJ07F5GRkdInLi7O42M0lqUp/V3GRL5Ab9Yj/Yt0pH+RDr2ZX5oFPXb5JfIpIaobf6RlJ3siChYeLeajoqJwxx13QBRFPPLII/j444/r/I7//Oc/SE1NhSAIuPPOOxu8zL7izHoAMJvNbj1T9b7w8PqddW6z2TB16lTY7XY899xz6N69e73eU5OMjAzodDrpc/bsWY+P0VgiNaFYM3UQ1kwdxCX2voRH0wEAZu2Y5TKm4CTabLAbDLAbDBBtPHmDSE4T/zZA6mQ/6fVb2ck+SNz/7IsuY2o4Nr/zHx7vZvDaa69h6NChMBgMeOihhzB//nxMnjwZw4cPR+fOnSEIzkcb2O12/Pzzz9i2bRuysrKwd+9eiKIIQRDw2muvNTifpk1vdEQ3mUxuPVNe5XiLyu+oi/nz5+PAgQNISEiQjqTzNLVa7fb2AaJ60TQDpmyWOwsin2L65ReXMRE1Pm0LDf78XsNWcpL/CYtoggkvz5U7jYBU0fyOfJ/Hi/khQ4ZgxowZWLRoEQRBwPfff4/vv/8egGP5esuWLREREQFRFFFaWori4mKnBnMVhfxTTz2FQYMGNTifmJgYKXa3M75Op5NirVaL0NC6f8N7+vRpvPzyywCADz74gAU3kZ+bP2y+NCM/f9h8WXMh+QmCAKGeq7aIyLNMBgtylziOEk5+LIkz80QUNLxyzsD777+Py5cvY926dRAEAaLo2FBoMplqXAZeMWv/yCOPIDMz0yO5JCbeWBpy/vx5t56pfLZ95efr4oknnkBZWRkmTZqE4cOH1+sdwUZntGBatqMb7dKU/lxq7wuM12+cLT9xtWOWPkhpVVosv2e53GmQj+iUswGnxjwgxUQkn4pCviIeM7uvjNkQETUej+6ZryAIAtasWYPMzEyn/eaCILj8VIiIiMCCBQuQlZXlsVySkm40QTGZTE6FenUKCgpcPl8Xn3/+OQBg9erV1f66BUFAWlqa9Mzp06d/9/NXXnmlXuP7o4pCvmpMMqoo5KvGREHMptfjQsYLCOvRA122b4OqgaeuEBEREdWHV2bmK8yaNQupqan45z//ic2bNyM/Px9Wq/NZhSEhIejfvz9Gjx6NadOmNbjhXVUDBw5EVFQUrl27BgDIz8+v8bg7URSRn58vXY8YMaJe46amprp1388//4zvvvsOgOPLjHHjxjn9/Oabb67X+P7Iahdx4qLjSJmurevXp4CIyNvOzXjSKe6QtUrGbIgo+bEkp2X2FBzKy0qx6d03ATga4IVFNJE5I6LGJ4gVa+AbgdFoRFFREa5evQoAaNGiBdq2bfu7c909LS0tDStXrgQAzJw5E++//3619+7fvx/9+vUD4Ciui4uLnTrie9rKlSul2fkOHTqgsLCwQe/T6/WIjIyETqeD1o/OPdYZLbjt7e0wWOwIVynRrVUTfDJ9iNxpEZfZE/3O6cnOX9aymCcianzrXs1wumYzPAok7tZ0XllmXx2NRoMuXbpg4MCBGDhwIDp37uz1Qh4Ann76aSgUjl/q2rVrazyirvIS/8cff9yrhTzdMC17HwRBQIRKCQFAiLJR/9Gk6lR0sp+ymYU80W/aLVroMiYiosZRXlaKy4UFuFxYALudx4NS8AqKiql3797S7PelS5eqba5XUFCApUuXAgCio6ORkZHh8j6LxYKUlBQ0bdoUffr0waFDh7yTeJDp2urG8qilKf1lzISIqHpKrRYdslahQ9YqKP1oBRQRUaDY9O6biI7rAAC4cuY0z5mnoFWnYv4Pf/gDxo8f761cnDz44IMe7QK/YMEC9O3r6G46Z84crFixwunnJ0+eRHJyMsrLy6FSqbB+/XpERUW5fFd2djZWr16N0tJSHDx4EDNmzPBYnsFqaUp/hCgVSGyjxbfP/YGd7InIZ9n0epyenIrTk1Nh0+vlToeIKCgplEq07BiPlh3juV+egladGuDt3LkTrVu39lYuTnbv3o3Lly977H3h4eHYunUrUlNTkZubi/T0dMybNw9JSUkoLi7Grl27YLVaERsbi6ysLAwdOtTtd1fuyF+b48eP4+2335auf/75Zym+cuUKpkyZIl1HR0fj3Xffdfvd/qzougF7C69JcaQmUuaMCABw7TSw9Ld/F6Z9C0R1kDcfIh9w5s9TUf7jj1Lcae0amTMiCm48Zz743P/si07N78iz7EYrfs0+CgBokZIIhcarPdOpAerUAE+hUKB169Zun9feELGxsbh8+TJsNs/vg/nss8+wcuVK7N+/HxcuXIBWq0Xnzp0xbtw4pKWloXnz5jU+b7FYkJaWhpycHCQkJGDVqlXo3bu3W2Pv3LkTw4YNc+ve+jTE89cGeJ1f2OJ0/ctbI2XKhJy83d75+vkz8uRB5EOO9ezldN3jyI8yZUJEAJCTud/pmufMEzVM8TLnLcQxU92rc8hz3K3p6vw1i81mw9mzZ+HtJvjeKOIr3Hfffbjvvvvq/XxoaChWr15dr2fvvPNOr/+98zdnrxlgszv+nigFAXB/oQMRUaMTNBqIRqMUExEREcmhzjPzdVlS3hCiKEIQBK8W9YHIH2fme7/yBWw2G8osjn8Utzx1GxJjuczeJ3CZPdHvmIuKcGrMAwCATjkboGrbVuaMiIIbl9kTeRaX2cvPazPzADizTB6nVCqhVTpiFvI+JKoDl9YTVaFq2xbd9ubJnQYR/UYdHsql9UQUlLx6NJ0gCPWayW+s2X/yDWum3Yoysw1lZhvWTLtV7nSIiIiIiIJWxax81Zh8T51n5kNDQzFo0CC37v3666+hUqncvr+y3bt3w2q11vk58j+vfXYUAzpGSfGaqXX/54WIiIiIiCiY1LmYb968OXbs2OHWvQqFok73V1bRzZ6IyBfozXrM2jELADB/2HxoVf7Rk4KIiCjQlJeVOh1Nx3PmPatFSqLTnnnyXV5dZk/kjqUp/V3GRL6kopCvGlNwMf70E4717IVjPXvB+NNPcqdDFPRMBgtyMvcjJ3M/TAaL3OlQI8mZ9xouFxbgcmEBcua9Jnc6AUehCUHM1N6Imdqbze98nM8W82yyFzwiNaFYM3UQ1kwdhEgNO9ASke8qHPugy5iI5PH54kMoPluK4rOl+HzxodofIL9XXlaK8yeOw1xuhAgRV86cljulgGM3WlG87BCKlx2C3chtz76sTl+1rFixAppGOlN3wYIFMP52ji8RkdzmD5vvtMyeiIjk9+v5MpcxBa5N776JUHUYLKZyWMrL0Sahu9wpBZyqDfBipvaWMRuqSZ2K+dTUVG/l8TsTJkxotLFIXjqjBdOy9wFwLLPn7Dz5Iq1Ki+X3LJc7DZJZx/WfSjPyHdd/KnM2RBTVKhyXz5QAAFq2bypzNtRYYtp3xJWzjhn5Mc+9JHM2RPLx2WX2FDwqCvmqMRGRr9F064YeR35EjyM/QtOtm9zpEAU9hRIIVSsRqlZCoZQ7G2oM9zw+SyrkU+YtYPM7L6jc9I4N8Hwbi3mSlc5owdHzehw9r4fVzj4JRERE5D6FUoGYuCaIiWsChZJ/rA0GuYv+4TImz2EDPP/B3/VIVtOy96FrK8c3qiculrCbPRH5NJtej9OTU3F6cipser3c6RAFvT+k9pAa4P0htYfc6VAjKD5TCHO5EeZyI4rPFMqdDpGsWMyT7EKUCiS20SKxjZb75YnIp52b8aTLmIjk8dWqY9LM/FerjsmdDjUGsZqYKAixmCdZ8Yx5IiIiInJXTPuOUIVpoArTIKZ9R7nTIZJVnYr5b775Bt9//723cnHy/fff45tvvmmUsYiIaqM365H+RTrSv0iH3szl1cGq3aKFLmMikkfyY0kuYwpcY557CS07xqNlx3h2sqegJ4ii6PYCFYVCgdjYWBQVFbl9f+vWrXH+/Pk6JxYbG4vi4mJYrdY6PxvM9Ho9IiMjodPpoNVq5U6nVg8t2+N0vWbqIJkyIapZ+hfpTtc8po6IiKhx6YovIfuvMwE4OtlHxrSSOSMi73C3pqvzMvs61P4N1phjERER1YTN74iI5FVRyFeNyXPsRiuKlx1C8bJDsBs5qerruGeeZMU98+Qv5g+b7zKm4MHmd0REFOh+zT7qMibfVOeDA3U6HdLT02u/sZ73V36OAl+kJpRL633VtdPA0qGOeNq3QFQHefORmVal5dJ6IiIiGaXMW+C0zJ4o2NV5z7wgCG6/XBTFOt3v6lmbzVav54OVv+2ZJx/2dnvn6+fPyJMHkY8w/vQTCsc+CADouP5TaLp1kzkjIqLgUl5Wik3vvgkAuP/ZFxEW0UTmjAKP3WiVZuRbpCRCoanz3C95gNf2zNdFfQt5Cg5nrxmQ9PJWdH5hCx7453fQGS1yp0SViXagXOf4iHa5syGSlbmoCIWjxwA2GxRhYTgzKUXulIiIgk5FIV81Js9RaEIQM7U3Yqb2ZiHvB+pVzIui6PUPBb7k+d+ixGSDzS7i0FkdpmXvkzslqkysJiYKQqfGPCDF9rIyGTMhIiIicqjz1y1RUVH49NNPvZGLRBRFPPjgg7h+/bpXxyH56IwWlJpudMi08Qsc36NQAGGRcmdB5DsiIoDfCvlOORtkToaITAYLcpccBuA4Y14dHipzRuRt9z/7otMye6JgV+c98/U9N76uYmNjcfnyZe6ZryN/2TOftiIPO38qliZ8lQKw/6W7Eanhf4h9BhvgEUnMRUXS7HynnA1QtW0rc0ZElJO53+l6zOy+MmVCRORZ7tZ03AhBsrDaRUSoFCg126FUCNj5lztZyPuaqA5sekf0G1Xbtui2N0/uNIiIiIgkddoz3759e8TFxXkrFyft2rVD+/bta7+R/JMoQqFQQBsWgj5xkYiLCpc7IyIiIvIjyY8luYyJqP7sRiuKlx1C8bJDsButtT9AsqrTzHxhYaGX0vi9vXv3NtpY1PhClAoktvHdbQBERJXZ9Hqcm/EkAKDdooVQ+vA2JiKiQMWj6byv4li6ijhmam8Zs6HaePVoOqLqzH+ojxQvTekvYyZEtdOb9Uj/Ih3pX6RDb9bLnQ7JoKKQrxoTkXwqmt9VjSlw8Wg67xPtIsznS2E+XwrRzgbVvi4oi/nNmzdj/PjxiI+Ph0ajQevWrTF48GC89957uHr1qsfHM5vN+OqrrzBnzhyMGDECHTp0QEREBFQqFaKjo3Hrrbdi9uzZOHjwoMfH9lWRmlCsmToIa6YO4l558nmzdsxyGRMRkXzsNhHFZ0tRfLYUdhuLDiKP4NHEfiWoivkrV67g3nvvxX333YdPPvkEKpUKo0aNQvfu3ZGXl4fZs2ejV69e2L59u8fGzMjIQKtWrTB8+HC88cYb2LFjB1q0aIERI0ZgzJgxaNu2Lf73v//hvffeQ58+fTBlyhSUl5d7bHwiImq4dosWuoyJSE6sOoJN5ePoeDSddwhKAao2TaBq0wSCUpA7HapF0HSzNxgMGDFiBPLz86FUKrFs2TKkp6dLPz958iRGjRqFEydOYOTIkdi2bRuGDh3a4HFzc3Nx/fp1AMBDDz2EefPm/a6J4MGDB/HII4/g6NGjWLVqFYqLi/H55583eGwi8oz5w+ZLM/Lzh82XNRciInJQKBWIieOe6WASFtEEE16eK3caAa1FSqK0b75FSqLM2VBt6nTOvD/705/+hI8++ggA8NZbbyEjI+N39xQUFKBnz54oLy9HdHQ0Tp48iWbNmjVo3Jtvvhk//PAD7rzzTmzbtg1KpdLlfWfOnEG3bt2kWfmcnByMHj26zuP5yznzRET+wqbX4+fhdwEA1F0TIChD0CFrlcxZEZHJYJH2yic/lgR1OLftEVFgcLemC4pl9ocPH8aKFSsAAK1atcIzzzzj8r74+HhMmzYNgGNJ/ty5nvvm79lnn622kAccx/7de++90vWmTZs8NjYREdVf5YZ3phMnZcyEiCpTh4dizOy+GDO7Lwt5IgpKQVHMZ2Zmwm63AwAmTpwIlUpV7b2TJ0+W4sWLF8NoNDZo7PHjx2PatGm44447ar03ISFBis+dO9egcYmIyHPUlX5/5p55IiIi8gUBX8xbLBZs3LhRuh4+fHiN9/fp00daWl9WVobc3NwGjf/iiy9iyZIlaNKk9j1dlRvfNXR5v6/TGS14aNkePLRsD3RGi9zpEBFVK3buWzCddMzId8rZwDPmiYiIyCcEfDGfl5eHa9euSdf9+vWr8X5BEJzu2bp1q9dyqyovL0+Ka/vSwd/NWnNAiqdl75MxE3LJeB1YOcrxMV6XOxsiWRXNfgZ2gwF2gwFFs11v0yIiIiJqbAFfzB8+fFiK1Wo12rZtW+sznTp1cvm8N+Xm5mL37t0AgK5duzot9ydqdGsnuY6DlN6sR/oX6Uj/Ih16s17udKiRlf/4o8uYiIiISE4BX8wfPXpUitu0aePWM5UL/srPe4PBYMCiRYswfvx4AEC3bt2Qm5uLsLAwr44rt/kP9ZHipSn9ZcyEqHYzts/A8avHcfzqcczYPkPudKiRCRqNy5iIiBpPeVkp1r2agXWvZqC8rFTudIh8QsCfM19cXCzF7u5Dr3yfXq+HxWJBaKhnuqTqdDo89dRTMBqNOHfuHA4ePAiDwYCkpCSkp6dj+vTpUKvVHhnLl0VqQrFm6iC506DqTFx9Y0Z+4mp5c/EBP1//2WVMgc+m10MdH4/yI0eg0GjQaWOO3CkREQWlTe++6RTzvHnvsButTufMKzQBXy76tYD/f6ekpESK3S2Sq86Kl5SUoHnz5h7Jx2g0YtUq5/OJmzVrhi5duqB58+YQRbFO7zOZTDCZTNK1Xs8lwOQBmmbAlM1yZ+EzujTrIhXxXZp1kTkbakznZjwJRVgYwn/rpaJyY6sWERGRv6oo5CvimKm9ZcyGahPwy+wrHy1X05F0lVW9z2AweCyf1q1bQxRFWK1WFBcX48svv8SoUaOQk5OD1NRU9OjRA998843b75s7dy4iIyOlT1xcnMdy9SZ2syd/smj4InRv3h3dm3fHouGL5E6HiIgo6Nz/7IsuY6JgFvDFvKbS/kaz2ezWM1XvCw8P92hOAKBUKhEdHY277roL2dnZ2LBhA5RKJQoLC/HHP/4RO3bscOs9GRkZ0Ol00ufs2bMez9Ub2M2e/IlWpcXye5Zj+T3LoVXxWLJgUvlMeZ4vT0REga5FSqLLmHxTwBfzTZs2leLKy9FrUvm896rv8JbRo0fj2WefBeD4MmHSpEm/y8MVtVoNrVbr9CEiIs9QarXokLUKHbJW8Xx5IiIZ5cx7DZcLC3C5sAA5816TO52ApdCEIGZqb8RM7c398n4g4Iv5mJgYKb5+/bpbz+h0OinWarUea35Xm5kzZ0rx+fPn8fHHHzfKuHKw2uw4el4Pq11kN3si8lnmoiL8NGAgfhowEOaiIrnTIaLfmAwW5GTuR07mfpgM3K4XDK6cOe0yJs+xG60oXnYIxcsOwW60yp0OuSHgi/nExBvLQ86fP+/WM0WV/sBW+Xlva9OmDTp27Chd79y5s9HGbmw/F984UiRS0zhflhAR1YVNr8cvd98Du8EAiCJOjXlA7pSI6De5Sw67jClwRcd1cBmT51Rtfke+L+CL+aSkJCk2mUxOhXp1CgoKXD7fGFq3bi3F7n754M9OXCyp/SYiIhmcm/GkFNsrNVMlIvnZbSKKz5ai+Gwp7La6nQRE/mnMcy+hZcd4tOwYjzHPvSR3OkQ+IeA3QgwcOBBRUVG4du0aACA/Px9tazhaSBRF5OfnS9cjRoyo99i7d+/G7t27cc8997j9pYDFcmOpmLvd9/1Z11ZN5E6BiMgl0WYFwsKAsjJAqUSnnA1yp0REErGamAJVWEQTni3vZS1SEp3OmCffF/Az86GhoRg9erR0vX379hrvP3DggLS3PiIiAsnJyfUe+//+7//wl7/8BVu3bnXrfrvdjl9++UW69pdj5uqje2stEtto8dGUgXKnQq4YrwMrRzk+xutyZyMrvVmP9C/Skf5FOvRmvdzpUGMSAYVCAUXTptDcdBPPmCfyIQqlAjFxTRAT1wQKZcD/cZaoUbD5nf8Jit/9nn76aSgUjl/q2rVrazyiLisrS4off/xxp6Pt6svdve9ffvmlU5O+e+65p8Fj+6oVaQOxZuog7pf3VWsnuY6D0Kwds1zGFPiEkBCE9eiBsB49IITwDzVEviT5sSSXMRFRMAmKYr53795IS0sDAFy6dAmZmZku7ysoKMDSpUsBANHR0cjIyHB5n8ViQUpKCpo2bYo+ffrg0KFDNY6fm5uLr7/+usZ7SktLMXv2bKecR44cWeMzRETkPTxjnsh3qcNDMWZ2X4yZ3RfqcE4MEFFwCopiHgAWLFiAvn37AgDmzJmDFStWOP385MmTSE5ORnl5OVQqFdavX4+oqCiX78rOzsbq1atRWlqKgwcPYsaMGTWOLYoi7r//fnz00UcuVwXk5+dj6NChOHrUsUclOjoa//73v6FUKuvzSyVquNGLgYuHHJ/Ri+XORlbzh813GVPg4xnzRES+QVd8CYvSJmJR2kToii/JnQ6RzxBEUQyariHFxcVITU1Fbm4uAKB79+5ISkpCcXExdu3aBavVitjYWGRlZeGuu+6q9j3Lly/Ho48+Kl3ffvvtLmfe9+zZg4yMDKefNWvWDP3790fLli1hMplw9OhRHDt2zOld//rXv5CQkFCvX6Ner0dkZCR0Oh20PvyHz7QVeTBabFia0p9L7X3RylHO11M2y5MHERERBb1FaROdrmesWCtTJkSNw92aLqg2AcbExGDLli347LPPsHLlSuzfvx+bNm2CVqtF//79MW7cOKSlpaF58+Y1viclJQVfffUVcnJykJCQgIULXS+/HDRoEHbu3InCwkJ8/vnn+Pbbb3H06FHk5+ejpKQEISEhiIyMxJAhQzBgwABMnDgRt956qzd+6T5rWvY+rJk6SO40qCq7Bbj825dMLXvImwsREVEVJoNFOl8++bEkLrUnoqAUVDPzwcDfZuYBsJj3NcbrwPwkwFIGhEYALXsCj7p3IgMREVFjyMnc73Q9ZnZfmTKhxnD59Cmsfv4pAMCkt99Hyw6dZM6IyLvcremCZs88+aalKf3lToGqWjsJEARA1cTxv8qgWsBDJDEXFeGnAQPx04CBMBcVyZ0OEVHQ2rlyGdp174l23Xti58plcqdD5DNYzJMseDSdj4tJvBFPXC1fHkQysen1+OXue2A3GABRxKkxD8idEhFV8ofUHig+W4ris6X4Qyq3gxFRcGIxT0TOJq52zMa37g08dQjQNJM7I6JGd27Gk1JsNxplzISIXPlq1THExDVBTFwTfLXqWO0PkF+7/9kXXcZEwY7rZ0kW7GbvwzTN2L2eCEBYz54oP3IEANApZ4PM2RARBa+wiCaY8PJcudMg8jmcmSdZTcveJ3cKRES/027RQijCwhDerx+67tkNVdu2cqdERJUkP5bkMiYiCiacmSciIqpCqdWiQ9YqudMgIhf0vxqx9o29AICJfxvAY+mIPMRutOLX7KMAgBYpiVBoWCr6Os7Mk6zYzZ6IfJFNr8fpyak4PTkVNr1e7nSIqJKKQr5qTIGrvKwU617NwLpXM1BeVip3OgGropCvGpPvYjFPsmA3eyLyZZUb4FWOiYiocZWXleJfMx7F5cIC2O02bHr3TblTIvIZLOaJiIiIyG9M/NsAlzEFpsrF+5Uzp2XMJPC1SEl0GZPvEkRRFOVOgjxHr9cjMjISOp0OWq1W7nSIiPySuahIOlu+U84GNsAjIpLJulczYLfZcOWso5D/06KPEBbRROasiLzL3ZqOxXyAYTFPRNRwpyenOl2zGR6R7zAZLMhdchiAo5M9G+AFtvKyUml2/v5nX2QhT0HB3ZqOLQqJiIiIyG98vvgQfj1fJsVj/9JP5ozIm3jGPFH1uGeeiIioinaLFrqMiUh+FYV81ZiIKNhwZp6IiKgKnjNP5LtatAnHr+cNUkxEFKw4M0+NSme0AADSVuRJMREREZG77n3iJsTENUFMXBPc+8RNcqdDRCQbFvPUqGb8Zz8A4PhFPR5dtVfmbIiIiMjfqMNDMWZ2X4yZ3ZfN74g8yG60onjZIRQvOwS70Sp3OuQGFvPUqH6+XCLFJy6W1HAnEREREQW78rJSrHs1A+tezUB5Wanc6QS0X7OPuozJd7GYp0bVJebGcSJdW/FoESIiIiKqXsWxdFVjImIxT41s0SOO42O6t9bioykDZc6GiIiIiIgAoEVKosuYfJcgiqIodxLkOXq9HpGRkdDpdNBqtXKnQ/7IeB1YO8kRT1wNaJrJmQ0REREFsfKyUmlG/v5nX0RYBFd2UuBzt6ZjMR9gfL2Y1xktiNSEIm1FHuY/1AeRGjau8TkrRzlfT9ksTx5ERERVmAwW5C45DABIfiyJDfCIKCC5W9NxmT01qllrDkjxtOx9MmZCRERE/qaikK8aU+BiAzyi6rGYJyJnE1e7joOU3qxH+hfpSP8iHXqzXu50iIiIggob4BFVj8U8Nar5D/WR4qUp/WXMhKqlaeZYWj9lM/fLA5i1Y5bLmIiIGl/yY0kuYyKiYMRinhpVxR75FWkDuV+eiIiI6kQdHooxs/tizOy+3C8fJO5/9kWXMRGxAV7A8fUGeET+Rm/WSzPy84fNh1bFf6+IiOTCBnhEFAzYzT5IsZgnIiKiQJWTud/peszsvjJlQkTkPe7WdCGNmBMR+QOeM09ERD7KbhPx6/kyAECLNhEyZ0NEJC/umSciZxWFfNWYKEjY9HoUPvwIfhowEIWPPAKbnqcYEPkOsZqYiCj4BGUxv3nzZowfPx7x8fHQaDRo3bo1Bg8ejPfeew9Xr171+Hjl5eVYv349pk6dij59+qBFixYIDQ1FVFQUevbsiSlTpuDzzz+H3W73+NhERFQ352Y8CdPJkwAA04mTODfjSZkzIqIKCqUCMXFNEBPXBAplUP4xlohIElS/C165cgX33nsv7rvvPnzyySdQqVQYNWoUunfvjry8PMyePRu9evXC9u3bPTLehQsX8Oyzz6Jly5Z48MEH8eGHH+Ly5csYMmQIJkyYgL59++LUqVNYtWoVRo0ahX79+uHw4cMeGdsX6YwWpK3Ik2LyUTxnnoiIfBSPpgs+5WWlWPdqBta9moHyslK50yHyKUHTAM9gMOD2229Hfn4+lEolli1bhvT0dOnnJ0+exKhRo3DixAmoVCps27YNQ4cObdCYr7zyCl599VUAQFRUFJYuXYpx48ZBEATpnqtXr2LWrFnIzs4GAERGRuKrr75C3771a+jiyw3wHlq2B5pQJVakDUTaijysSBsod0pERL9jLipCwegxEI1GhPXqhfYfLoPSx34/JSIKFutezXC6nvDyXJkyIWo87tZ0QTMzP3PmTOTn5wMAXn/9dadCHgASEhKQm5uLsLAwmM1mjB07FtevX/fY+OvXr8f48eOdCnkAaN68ObKysnD//fcDAHQ6HR5++GFYLJy5JiKSw4WMF6BJTER4v35QqNUs5ImIiMgnBUUxf/jwYaxYsQIA0KpVKzzzzDMu74uPj8e0adMAOJbkz53rmW/+7rrrLtx555013lN5rJ9++gkbN270yNi+ZGlKfyme/1AfGTMhIqqeaLOi/NgxlB87BtFmlTsdIqKgdv+zL7qMiShIivnMzEypudzEiROhUqmqvXfy5MlSvHjxYhiNxgaPf88999R6T2JiItq2bStdf/nllw0e19dEakKlpfWRmlCZsyEiqgabZRMR+YywiCaY8PJcTHh5LsIimsidDpFPCfhi3mKxOM1yDx8+vMb7+/Tpg2bNmgEAysrKkJubW++xJ02ahNzcXDzyyCNu3R8XFyfF586dq/e4RERUP+aiIhh/+AF2gwGq+HgIISFyp0RERETkUsAX83l5ebh27Zp03a9fvxrvFwTB6Z6tW7fWe+wuXbpgxIgRiI2Ndev+ykfThfAPkEREje7U6DGAKAI2G8p//BHtFi2UOyUioqDFTvZENQv4Yr7yUW9qtdppKXt1OnXq5PJ5bztz5owU9+kTeHvKeTQdEfk6u9EICAKgVAIAm98REclo07tvuoyJyCHgi/mjR49KcZs2bdx6pnLBX/l5bzp16hQuXrwoXU+cOLFRxm1M07L3SfGsNQdkzISIyLWwnj1dxkRERES+JuCL+eLiYimu2Atfm8r36fX6Rjkm7r///a8Ujx07Fj169PD6mERE5Kz9vz5EeL9+CO/XD+3/9aHc6RBRJSaDBTmZ+5GTuR8mA1f4BQN2sieqWcBvzC4pKZFitVrt1jNhYWG/e0fz5s09mldlpaWlWLjQsS8zIiIC//jHP9x+1mQywWQySdd6vd7j+XnK0pT+0ow8j6YjIl+k1GrRIWuV3GkQkQu5Sw47xWNm95UxG2oMFZ3sici1gJ+Zr3y0XE1H0lVW9T6DweDRnKqaM2eOtMR+8eLF6Nixo9vPzp07F5GRkdKnckd8X8Oj6YiIiIiIiDwj4It5jUYjxWaz2a1nqt4XHh7u0Zwq27JlC95//30AwBNPPIHU1NQ6PZ+RkQGdTid9zp496400iYiIiGSV/FiSy5iIKFgF/DL7pk2bSnHl5eg1KS8vr/YdnvTjjz/i//2//wdRFPHAAw9IRX1dqNVqt7cPEBEREfkrdXgol9YTEVUS8DPzMTExUnz9+nW3ntHpdFKs1WoRGur5JeEFBQW4++67odfrkZycjDVr1kD521FIRERERERERDUJ+GI+MTFRis+fP+/WM0VFRS6f95RTp05h2LBhuHDhAu69915s2LDB7f38RERERERERAFfzCcl3dhTZTKZnAr16hQUFLh83hNOnTqFO++8E2fOnMHIkSPx6aefcpk8ERERERHJym60onjZIRQvOwS70Sp3OuSGgC/mBw4ciKioKOk6Pz+/xvtFUXS6Z8SIER7LpbCwEMOGDZMK+fXr17OQJyIiIiIi2f2afdRlTL4r4Iv50NBQjB49Wrrevn17jfcfOHBA2lsfERGB5ORkj+RRWFiIO++8E6dPn0ZycnKNhfykSZNw1113eWRcIiIiIiIiCjwBX8wDwNNPPw2FwvFLXbt2bY1H1GVlZUnx448/7nS0XX2dPn0aw4YNw+nTpzFixAhs2LChxhn5Xbt21fqlAxERERERkae0SEl0GZPvCopivnfv3khLSwMAXLp0CZmZmS7vKygowNKlSwEA0dHRyMjIcHmfxWJBSkoKmjZtij59+uDQoUPVjn369GnceeedKCwsxIgRI5CTk8Ol9URERERE5FMUmhDETO2NmKm9odAE/AnmASFo/l9asGABDhw4gP3792POnDlo1aqVVOADwMmTJzFq1CiUl5dDpVJh/fr1TnvtK8vOzsbq1asBAAcPHsSMGTPwzTff/O6+M2fOYNiwYSgsLAQAWK1WPPjgg7Xmevny5Xr8ComIiIiIiChYBE0xHx4ejq1btyI1NRW5ublIT0/HvHnzkJSUhOLiYuzatQtWqxWxsbHIysrC0KFD3X63IAgu//qzzz6LU6dOSdfbtm1r8K+DiIiIiIjIk+xGq9T0rkVKImfm/URQLLOvEBMTgy1btmDTpk0YO3YsysvLsWnTJhw5cgT9+/fHu+++ix9//LHW5nMpKSl45JFHEBERgZtvvhkLFy50eV9Ne/OJiIiIiIh8ATvZ+ydBFEVR7iTIc/R6PSIjI6HT6aDVauVOh4iIiIiIfFzxMuceYDFTe8uUCQHu13RBNTNPRLUwXgdWjnJ8jNflzoaIiIiIGgE72fsnzswHGM7MU4OsHOV8PWWzPHkQycSm1+PcjCcBAO0WLYSSv48S+QyTwYLcJYcBAMmPJUEdHipzRkRE3sGZeSIiojqqKOSrxkQkv4pCvmpMRBSsWMwT0Q0TV7uOiYiIiIjIp7CYJ6IbNM0cS+unbHbEREGm3aKFLmMikl/yY0kuYyKiYMU98wGGe+aJiIiIiIj8F/fME1HdsZs9EREREZFfYDFPRDesneQ6JiIiIiIin8JinoiIiIiIiMjPsJgnohvYzZ6IiHyUyWBBTuZ+5GTuh8lgkTsdIiLZsZgnohvYzZ6IiHwUz5knInLGYp6IiIiIiIjIz7CYJyIiIiKfx3PmiYichcidABERERFRbdThoRgzu6/caRAR+QzOzBMRERERERH5GRbzRERERERERH6Gy+yJiIiIyOeZDBapi33yY0lQh4fKnBERkbw4M09EREREPo9H0xEROePMPBERERER+ZzyslJsevdNAMD9z76IsIgmMmdE5Fs4M09EREREPs1ksMBus6P4bCnsNpFH0wWJikK+akxEDpyZJyIiIiKflrvkMBRKBWLiHDOz3C9PRMSZeSIiIiIi8kH3P/uiy5iIHARRFEW5kyDP0ev1iIyMhE6ng1arlTsdIiIiogZjJ3siCibu1nRcZk9EREREPk0dHooxs/vKnQYRkU/hMnsiIiIiIiIiP8NinhqNzmhB2oo8KSYiIiIiIqL6YTFPjWZa9j4pnrXmgIyZEBERERER+TfumSciIiIiIgpidqMVv2YfBQC0SEmEQsMy0R8E5cz85s2bMX78eMTHx0Oj0aB169YYPHgw3nvvPVy9etXr4xcXF2PixIkQBAGCIGDnzp1eH9MXLE3pL8XzH+ojYyZERERERFShopCvGpNvC6pi/sqVK7j33ntx33334ZNPPoFKpcKoUaPQvXt35OXlYfbs2ejVqxe2b9/utRz++9//IjExEevWrfPaGL4qUhOKFWkDpZiIiIiIiIjqJ2iKeYPBgBEjRmDLli1QKpX46KOPcPz4cXz88cfYuXMnjh07hq5du+LChQsYOXIkvv32W4+Of+HCBYwePRoPP/wwrl+/7tF3ExERERER1VeLlESXMfm2oCnmZ86cifz8fADA66+/jvT0dKefJyQkIDc3F2FhYTCbzRg7dqzHiu6VK1ciMTERmzZtQt++fbF3716PvJeIiIiIiKihFJoQxEztjZipvblf3o8ERTF/+PBhrFixAgDQqlUrPPPMMy7vi4+Px7Rp0wA4luTPnTvXI+PPmjULRqMRb731Fv73v//h5ptv9sh7iYiIiIiIKDgFRTGfmZkJu90OAJg4cSJUKlW1906ePFmKFy9eDKPR2ODxb7vtNhw8eBAZGRkICeE3XURERERERNQwAV/MWywWbNy4UboePnx4jff36dMHzZo1AwCUlZUhNze3wTls3rwZ3bt3b/B7iIiIiIiIiIAgKObz8vJw7do16bpfv3413i8IgtM9W7du9VpuRERERERERPUR8MX84cOHpVitVqNt27a1PtOpUyeXzxMRERERERH5goAv5o8ePSrFbdq0ceuZygV/5eeJiIiIiIiIfEHAF/PFxcVSXLEXvjaV79Pr9bBYLB7OioiIiIiIiKj+Ar61eklJiRSr1Wq3ngkLC/vdO5o3b+7RvDzFZDLBZDJJ13q9XsZsiIiIiIiIqDEE/Mx85aPlajqSrrKq9xkMBo/m5Elz585FZGSk9ImLi5M7JSIiIiIiIvKygC/mNRqNFJvNZreeqXpfeHi4R3PypIyMDOh0Oulz9uxZuVMiIiIiIiIiLwv4ZfZNmzaV4srL0WtSXl5e7Tt8jVqtdnv7ABEREREREQWGgJ+Zj4mJkeLr16+79YxOp5NirVaL0NBQT6dFREREREREVG8BX8wnJiZK8fnz5916pqioyOXzRERERERERL4g4Iv5pKQkKTaZTE6FenUKCgpcPk9ERERERETkCwK+mB84cCCioqKk6/z8/BrvF0XR6Z4RI0Z4LTciIiIiIiKi+gj4Yj40NBSjR4+Wrrdv317j/QcOHJD21kdERCA5Odmb6RERERERERHVWcAX8wDw9NNPQ6Fw/FLXrl1b4xF1WVlZUvz44487HW1HRERERERE5AuCopjv3bs30tLSAACXLl1CZmamy/sKCgqwdOlSAEB0dDQyMjJc3mexWJCSkoKmTZuiT58+OHTokHcSJyIiIiIiInIhKIp5AFiwYAH69u0LAJgzZw5WrFjh9POTJ08iOTkZ5eXlUKlUWL9+vdNe+8qys7OxevVqlJaW4uDBg5gxY4bX8yciIiIiIiKqECJ3Ao0lPDwcW7duRWpqKnJzc5Geno558+YhKSkJxcXF2LVrF6xWK2JjY5GVlYWhQ4e6/W5BEGr8+fHjx/H2229X+/O3334bK1eulK7HjBmDMWPGuD0+ERERERERBZegKeYBICYmBlu2bMFnn32GlStXYv/+/di0aRO0Wi369++PcePGIS0tDc2bN6/xPSkpKfjqq6+Qk5ODhIQELFy4sMb7L168iFWrVlX78y+++MLpumPHjizmiYiIiIiIqFqCKIqi3EmQ5+j1ekRGRkKn00Gr1cqdDhEREREREdWBuzVd0OyZJyIiIiIiIgoULOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyM0FZzG/evBnjx49HfHw8NBoNWrdujcGDB+O9997D1atXA3ZsIiIiIiIiCgyCKIqi3Ek0litXriA1NRVbtmwBAHTr1g1JSUkoLi7Grl27YLPZEBsbi+zsbAwfPtwvx9br9YiMjIROp4NWq/VU+kRERERERNQI3K3pgqaYNxgMuP3225Gfnw+lUolly5YhPT1d+vnJkycxatQonDhxAiqVCtu2bcPQoUP9bmwW80RERERERP7L3ZouaJbZz5w5E/n5+QCA119/3amYBoCEhATk5uYiLCwMZrMZY8eOxfXr1/1+bCIiIiIiIgo8QVHMHz58GCtWrAAAtGrVCs8884zL++Lj4zFt2jQAjmXxc+fO9euxiYiIiIiIKDAFRTGfmZkJu90OAJg4cSJUKlW1906ePFmKFy9eDKPR6LdjExERERERUWAK+GLeYrFg48aN0nVtzeX69OmDZs2aAQDKysqQm5vrl2MTERERERFR4Ar4Yj4vLw/Xrl2Trvv161fj/YIgON2zdetWvxybiIiIiIiIAlfAF/OHDx+WYrVajbZt29b6TKdOnVw+709jExERERERUeAK+GL+6NGjUtymTRu3nqlcdFd+3p/GJiIiIiIiosAV8MV8cXGxFFfsR69N5fv0ej0sFovfjU1ERERERESBK0TuBLytpKREitVqtVvPhIWF/e4dzZs398mxTSYTTCaTdK3T6QA4vgggIiIiIiIi/1JRy4miWON9AV/MVz7eraZj4Sqrep/BYKhXMd8YY8+dOxevvvrqWVZETAAAAyVJREFU7/56XFycm1kSERERERGRrykpKUFkZGS1Pw/4Yl6j0Uix2Wx265mq94WHh/vs2BkZGZg9e7Z0bbfbcfXqVbRo0QKCINQhWyIiIiIiIpKbKIooKSmpte9awBfzTZs2leLKy9FrUl5eXu07fG1stVr9uyX87u7PJyIiIiIiIt9T04x8hYBvgBcTEyPF169fd+uZin3nAKDVahEaGup3YxMREREREVHgCvhiPjExUYrPnz/v1jNFRUUun/ensYmIiIiIiChwBXwxn5SUJMUmk8mpWK5OQUGBy+f9aWwiIiIiIiIKXAFfzA8cOBBRUVHSdX5+fo33i6LodM+IESP8cmwiIiIiIiIKXAFfzIeGhmL06NHS9fbt22u8/8CBA9L+9oiICCQnJ/vl2ERERERERBS4Ar6YB4Cnn34aCoXjl7p27doaj4nLysqS4scff9zpeDl/G5uIiIiIiIgCU1AU871790ZaWhoA4NKlS8jMzHR5X0FBAZYuXQoAiI6ORkZGhsv7LBYLUlJS0LRpU/Tp0weHDh1qtLGJiIiIiIiIBFEURbmTaAwGgwFDhw7F/v37ERISgmXLlklFNgCcPHkSo0aNwokTJ6BSqbBt2zYMHTrU5buWL1+ORx99VLoeOnQovvnmm0YZm4iIiIiIiCgoZuYBIDw8HFu3bkVycjKsVivS09PRo0cPTJgwAcOGDUNiYiJOnDiB2NhYfP7553UqpgVBkG1sIiIiIiIiCj5BMzNf2WeffYaVK1di//79uHDhArRaLTp37oxx48YhLS0NzZs3r/F5i8WCtLQ05OTkICEhAatWrULv3r0bZWwiIiIiIiKioCzmiYiIiIiIiPxZ0CyzJyIiIiIiIgoULOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/8/8BRo5tJKqIneEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "H = data.incidence_hyperedges.to_dense().numpy()\n", - "labels = data.y.numpy()\n", - "n_steps=11\n", - "Ep, Np = data['mp_homophily']['Ep'].numpy(), data['mp_homophily']['Np'].numpy()\n", - "num_steps = transform_config['mp_homophily']['num_steps']\n", - "\n", - "\n", - "isolated_nodes = np.where(H.sum(0) == 1)[0]\n", - "# Get non-isolated nodes\n", - "non_isolated_nodes = np.array(list(set(np.arange(H.shape[0])) - set(isolated_nodes)))\n", - "\n", - "# Sort non-isolated nodes by their class node\n", - "non_isolated_nodes = non_isolated_nodes[np.argsort(labels[non_isolated_nodes])]\n", - "\n", - "# Extract the class node probability distribution for non-isolated nodes\n", - "sorted_labels = labels[non_isolated_nodes]\n", - "avr_class_homophily_types = []\n", - "types = []\n", - "for step in range(num_steps):\n", - " type = Np[step, non_isolated_nodes, sorted_labels]\n", - "\n", - " # Within every class, sort the nodes by their class node probability distribution\n", - " avr_class_type = []\n", - " \n", - " for i in np.unique(sorted_labels):\n", - " idx = np.where(sorted_labels == i)[0]\n", - " type[idx] = type[idx][np.argsort(type[idx])]\n", - " avr_class_type.append(np.mean(type[idx]))\n", - " \n", - " avr_class_homophily_types.append(avr_class_type)\n", - " types.append(type)\n", - "\n", - "\n", - "settings = {\n", - " 'font.family': 'serif',\n", - " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", - " 'figure.figsize': (5.5, 3.399186938124422),\n", - " 'figure.constrained_layout.use': True,\n", - " 'figure.autolayout': False,\n", - " 'font.size': 16,\n", - " 'axes.labelsize': 24,\n", - " 'legend.fontsize': 24,\n", - " 'xtick.labelsize': 24,\n", - " 'ytick.labelsize': 24,\n", - " 'axes.titlesize': 24}\n", - "\n", - "step = 0 \n", - "\n", - "with plt.rc_context(settings):\n", - " fig = plot_homophily_scatter(avr_class_homophily_types[step], data.y, non_isolated_nodes, types[step], step=step, save_to=None)\n", - " plt.close()\n", - "fig" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "tb", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/tutorials/tutorial_add_custom_dataset.ipynb b/tutorials/tutorial_add_custom_dataset.ipynb deleted file mode 100644 index df4103ba..00000000 --- a/tutorials/tutorial_add_custom_dataset.ipynb +++ /dev/null @@ -1,883 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 📚 Adding a Custom Dataset Tutorial\n", - "\n", - "## 🎯 Tutorial Overview\n", - "\n", - "This comprehensive guide walks you through the process of integrating your custom dataset into our library. The process is divided into three main steps:\n", - "\n", - "1. **Dataset Creation** 🔨\n", - " - Implement data loading mechanisms\n", - " - Define preprocessing steps\n", - " - Structure data in the required format\n", - "\n", - "2. **Integrate with Dataset APIs** 🔄\n", - " - Add dataset to the library framework\n", - " - Ensure compatibility with existing systems\n", - " - Set up proper inheritance structure\n", - "\n", - "3. **Configuration Setup** ⚙️\n", - " - Define dataset parameters\n", - " - Specify data paths and formats\n", - " - Configure preprocessing options\n", - "\n", - "## 📋 Tutorial Structure\n", - "\n", - "This tutorial follows a unique structure to provide the clearest possible learning experience:\n", - "\n", - "> 💡 **Main Notebook (Current File)**\n", - "> - High-level concepts and explanations\n", - "> - Step-by-step workflow description\n", - "> - References to implementation files\n", - "\n", - "> 📁 **Supporting Files**\n", - "> - Detailed code implementations\n", - "> - Specific examples and use cases\n", - "> - Technical documentation\n", - "\n", - "### 🛠️ Technical Framework\n", - "\n", - "This tutorial demonstrates custom dataset integration using:\n", - "- `torch_geometric.data.InMemoryDataset` as the base class\n", - "- library's dataset management system\n", - "\n", - "### 🎓 Important Notes\n", - "\n", - "- To make the learning process concrete, we'll work with a practical toy \"language\" dataset example:\n", - "- While we use the \"language\" dataset as an example, all file references use the generic `` format for better generalization\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Create a Dataset 🛠️\n", - "\n", - "## Overview\n", - "\n", - "Adding your custom dataset to requires implementing specific loading and preprocessing functionality. We utilize the `torch_geometric.data.InMemoryDataset` interface to make this process straightforward.\n", - "\n", - "## Required Methods\n", - "\n", - "To implement your dataset, you need to override two key methods from the `torch_geometric.data.InMemoryDataset` class:\n", - "\n", - "- `download()`: Handles dataset acquisition\n", - "- `process()`: Manages data preprocessing\n", - "\n", - "> 💡 **Reference Implementation**: For a complete example, check `topobenchmark/data/datasets/language_dataset.py`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Deep Dive: The Download Method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `download()` method is responsible for acquiring dataset files from external resources. Let's examine its implementation using our language dataset example, where we store data in a GoogleDrive-hosted zip file.\n", - "\n", - "#### Implementation Steps\n", - "\n", - "1. **Download Data** 📥\n", - " - Fetch data from the specified source URL\n", - " - Save to the raw directory\n", - "\n", - "2. **Extract Content** 📦\n", - " - Unzip the downloaded file\n", - " - Place contents in appropriate directory\n", - "\n", - "3. **Organize Files** 📂\n", - " - Move extracted files to named folders\n", - " - Clean up temporary files and directories\n", - "\n", - "#### Code Implementation\n", - "\n", - "```python\n", - "def download(self) -> None:\n", - " r\"\"\"Download the dataset from a URL and saves it to the raw directory.\n", - "\n", - " Raises:\n", - " FileNotFoundError: If the dataset URL is not found.\n", - " \"\"\"\n", - " # Step 1: Download data from the source\n", - " self.url = self.URLS[self.name]\n", - " self.file_format = self.FILE_FORMAT[self.name]\n", - " download_file_from_drive(\n", - " file_link=self.url,\n", - " path_to_save=self.raw_dir,\n", - " dataset_name=self.name,\n", - " file_format=self.file_format,\n", - " )\n", - " \n", - " # Step 2: extract zip file\n", - " folder = self.raw_dir\n", - " filename = f\"{self.name}.{self.file_format}\"\n", - " path = osp.join(folder, filename)\n", - " extract_zip(path, folder)\n", - " # Delete zip file\n", - " os.unlink(path)\n", - " \n", - " # Step 3: organize files\n", - " # Move files from osp.join(folder, name_download) to folder\n", - " for file in os.listdir(osp.join(folder, self.name)):\n", - " shutil.move(osp.join(folder, self.name, file), folder)\n", - " # Delete osp.join(folder, self.name) dir\n", - " shutil.rmtree(osp.join(folder, self.name))\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Deep Dive: The Process Method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `process()` method handles data preprocessing and organization. Here's the method's structure:\n", - "\n", - "```python\n", - "def process(self) -> None:\n", - " r\"\"\"Handle the data for the dataset.\n", - " \n", - " This method loads the Language dataset, applies preprocessing \n", - " transformations, and saves processed data.\"\"\"\n", - "\n", - " # Step 1: extract the data\n", - " ... # Convert raw data to list of torch_geometric.data.Data objects\n", - "\n", - " # Step 2: collate the graphs\n", - " self.data, self.slices = self.collate(graph_sentences)\n", - "\n", - " # Step 3: save processed data\n", - " fs.torch_save(\n", - " (self._data.to_dict(), self.slices, {}, self._data.__class__),\n", - " self.processed_paths[0],\n", - " )\n", - "\n", - "\n", - "```self.collate``` -- Collates a list of Data or HeteroData objects to the internal storage format; meaning that it transforms a list of torch.data.Data objectis into one torch.data.BaseData.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 2: Integrate with Dataset APIs 🔄\n", - "\n", - "Now that we have created a dataset class, we need to integrate it with the library. In this section we describe where to add the dataset files and how to make it available through data loaders." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here's how to structure your files, the files highlighted with ** are going to be updated: \n", - "```yaml\n", - "topobenchmark/\n", - "├── data/\n", - "│ ├── datasets/\n", - "│ │ ├── **init.py**\n", - "│ │ ├── base.py\n", - "│ │ ├── .py # Your dataset file\n", - "│ │ └── ...\n", - "│ ├── loaders/\n", - "│ │ ├── init.py\n", - "│ │ ├── base.py\n", - "│ │ ├── graph/\n", - "│ │ │ ├── .py # Your loader file\n", - "│ │ ├── hypergraph/\n", - "│ │ │ ├── .py # Your loader file\n", - "│ │ ├── .../\n", - "```\n", - "\n", - "To make your dataset available to library:\n", - "\n", - "The file ```.py``` has been created during the previous steps (`us_county_demos_dataset.py` in our case) and should be placed in the `topobenchmark/data/datasets/` directory. \n", - "\n", - "\n", - "The registry `topobenchmark/data/datasets/__init__.py` discovers the files in `topobenchmark/data/datasets` and updates `__all__` variable of `topobenchmark/data/datasets/__init__.py` automatically. Hence there is no need to update the `__init__.py` file manually to allow your dataset to be loaded by the library. Simply creare a file `.py` and place it in the `topobenchmark/data/datasets/` directory.\n", - "\n", - "------------------------------------------------------------------------------------------------\n", - "\n", - "Next it is required to update the data loader system. Modify the loader file (`topobenchmark/data/loaders/loaders.py`:) to include your custom dataset:\n", - "\n", - "For the the example dataset we add the following into the file ```topobenchmark/data/loaders/graph/us_county_demos_dataset_loader.py``` which consist of the following:\n", - "\n", - "```python\n", - "class USCountyDemosDatasetLoader(AbstractLoader):\n", - " \"\"\"Load US County Demos dataset with configurable year and task variable.\n", - "\n", - " Parameters\n", - " ----------\n", - " parameters : DictConfig\n", - " Configuration parameters containing:\n", - " - data_dir: Root directory for data\n", - " - data_name: Name of the dataset\n", - " - year: Year of the dataset (if applicable)\n", - " - task_variable: Task variable for the dataset\n", - " \"\"\"\n", - "\n", - " def __init__(self, parameters: DictConfig) -> None:\n", - " super().__init__(parameters)\n", - "\n", - " def load_dataset(self) -> USCountyDemosDataset:\n", - " \"\"\"Load the US County Demos dataset.\n", - "\n", - " Returns\n", - " -------\n", - " USCountyDemosDataset\n", - " The loaded US County Demos dataset with the appropriate `data_dir`.\n", - "\n", - " Raises\n", - " ------\n", - " RuntimeError\n", - " If dataset loading fails.\n", - " \"\"\"\n", - "\n", - " dataset = self._initialize_dataset()\n", - " self.data_dir = self._redefine_data_dir(dataset)\n", - " return dataset\n", - "\n", - " def _initialize_dataset(self) -> USCountyDemosDataset:\n", - " \"\"\"Initialize the US County Demos dataset.\n", - "\n", - " Returns\n", - " -------\n", - " USCountyDemosDataset\n", - " The initialized dataset instance.\n", - " \"\"\"\n", - " return USCountyDemosDataset(\n", - " root=str(self.root_data_dir),\n", - " name=self.parameters.data_name,\n", - " parameters=self.parameters,\n", - " )\n", - "\n", - " def _redefine_data_dir(self, dataset: USCountyDemosDataset) -> Path:\n", - " \"\"\"Redefine the data directory based on the chosen (year, task_variable) pair.\n", - "\n", - " Parameters\n", - " ----------\n", - " dataset : USCountyDemosDataset\n", - " The dataset instance.\n", - "\n", - " Returns\n", - " -------\n", - " Path\n", - " The redefined data directory path.\n", - " \"\"\"\n", - " return dataset.processed_root\n", - "```\n", - "where the method ```load_dataset``` is required while other methods are optional used for convenience and structure.\n", - "\n", - "### Notes:\n", - "- The ```load_dataset``` of ```AbstractLoader``` class requires to return ```torch.utils.data.Dataset``` object. \n", - "- **Important:** to allow the automatic registering of the loader, make sure to include \"DatasetLoader\" into name of loader class (Example: USCountyDemos**DatasetLoader**)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 3: Define Configuration 🔧" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we've integrated our dataset, we need to define its configuration parameters. In this section, we'll explain how to create and structure the configuration file for your dataset.\n", - "\n", - "## Configuration File Structure\n", - "Create a new YAML file for your dataset in `configs/dataset/.yaml` with the following structure:\n", - "\n", - "\n", - "### While creating a configuration file, you will need to specify: \n", - "\n", - "1) Loader class (`topobenchmark.data.loaders.USCountyDemosDatasetLoader`) for automatic instantialization inside the provided pipeline and the parameters for the loader.\n", - "```yaml\n", - "# Dataset loader config\n", - "loader:\n", - " _target_: topobenchmark.data.loaders.USCountyDemosDatasetLoader\n", - " parameters: \n", - " data_domain: graph # Primary data domain. Options: ['graph', 'hypergrpah', 'cell, 'simplicial']\n", - " data_type: cornel # Data type. String emphasizing from where dataset come from. \n", - " data_name: US-county-demos # Name of the dataset\n", - " year: 2012 # In the case of US-county-demos there are multiple version of this dataset. Options:[2012, 2016]\n", - " task_variable: 'Election' # Different target variable used as target. Options: ['Election', 'MedianIncome', 'MigraRate', 'BirthRate', 'DeathRate', 'BachelorRate', 'UnemploymentRate']\n", - " data_dir: ${paths.data_dir}/${dataset.loader.parameters.data_domain}/${dataset.loader.parameters.data_type}\n", - "``` \n", - "\n", - "2) The dataset parameters: \n", - "\n", - "```yaml\n", - "# Dataset parameters\n", - "parameters:\n", - " num_features: 6 # Number of features in the dataset\n", - " num_classes: 1 # Dimentuin of the target variable\n", - " task: regression # Dataset task. Options: [classification, regression]\n", - " loss_type: mse # Task-specific loss function\n", - " monitor_metric: mae # Metric to monitor during training\n", - " task_level: node # Task level. Options: [classification, regression]\n", - "```\n", - "\n", - "3) The dataset split parameters: \n", - "```yaml\n", - "#splits\n", - "split_params:\n", - " learning_setting: transductive # Type of learning. Options:['transductive', 'inductive']\n", - " data_seed: 0 # Seed for data splitting\n", - " split_type: random # Type of splitting. Options: ['k-fold', 'random']\n", - " k: 10 # Number of folds in case of \"k-fold\" cross-validation\n", - " train_prop: 0.5 # Training proportion in case of 'random' splitting strategy\n", - " standardize: True # Standardize the data or not. Options: [True, False]\n", - " data_split_dir: ${paths.data_dir}/data_splits/${dataset.loader.parameters.data_name}\n", - "```\n", - "\n", - "4) Finally the dataloader parameters:\n", - "\n", - "```yaml\n", - "# Dataloader parameters\n", - "dataloader_params:\n", - " batch_size: 1 # Number of graphs per batch. In sace of transductive always 1 as there is only one graph. \n", - " num_workers: 0 # Number of workers for data loading\n", - " pin_memory: False # Pin memory for data loading\n", - "```\n", - "\n", - "### Notes:\n", - "- The `paths` section in the configuration file is automatically populated with the paths to the data directory and the data splits directory.\n", - "- Some of the dataset parameters are used to configure the model.yaml and other files. Hence we suggest always include the above parameters in the dataset configuration file.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here's the markdown for easy copying:\n", - "\n", - "\n", - "## Preparing to Load the Custom Dataset: Understanding Configuration Imports\n", - "\n", - "Before loading our dataset, it's crucial to understand the configuration imports, particularly those from the `topobenchmark.utils.config_resolvers` module. These utility functions play a key role in dynamically configuring your machine learning pipeline.\n", - "\n", - "### Key Imports for Dynamic Configuration\n", - "\n", - "Let's import the essential configuration resolver functions:\n", - "\n", - "```python\n", - "from topobenchmark.utils.config_resolvers import (\n", - " get_default_transform,\n", - " get_monitor_metric,\n", - " get_monitor_mode,\n", - " infer_in_channels,\n", - ")\n", - "```\n", - "\n", - "### Why These Imports Matter\n", - "\n", - "In our previous step, we explored configuration variables that use dynamic lookups, such as:\n", - "\n", - "```yaml\n", - "data_dir: ${paths.data_dir}/${dataset.loader.parameters.data_domain}/${dataset.loader.parameters.data_type}\n", - "```\n", - "\n", - "However, some configurations require more advanced automation, which is where these imported functions become invaluable.\n", - "\n", - "### Practical Example: Dynamic Transforms\n", - "\n", - "Consider the configuration in `projects/TopoBenchmark/configs/run.yaml`, where the `transforms` parameter uses the `get_default_transform` function:\n", - "\n", - "```yaml\n", - "transforms: ${get_default_transform:${dataset},${model}}\n", - "```\n", - "\n", - "This syntax allows for automatic transformation selection based on the dataset and model, demonstrating the power of these configuration resolver functions.\n", - "\n", - "By importing and utilizing these functions, you gain:\n", - "- Flexible configuration management\n", - "- Automatic parameter inference\n", - "- Reduced manual configuration overhead\n", - "\n", - "These facilitate seamless dataset loading and preprocessing for multiple topological domains and provide an easy and intuitive interface for incorporating novel functionality.\n", - "```\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_1170891/1713955081.py:14: UserWarning: \n", - "The version_base parameter is not specified.\n", - "Please specify a compatability version level, or None.\n", - "Will assume defaults for version 1.1\n", - " initialize(config_path=\"../configs\", job_name=\"job\")\n" - ] - } - ], - "source": [ - "from hydra import compose, initialize\n", - "from hydra.utils import instantiate\n", - "\n", - "\n", - "\n", - "from topobenchmark.utils.config_resolvers import (\n", - " get_default_transform,\n", - " get_monitor_metric,\n", - " get_monitor_mode,\n", - " infer_in_channels,\n", - ")\n", - "\n", - "\n", - "initialize(config_path=\"../configs\", job_name=\"job\")\n", - "cfg = compose(\n", - " config_name=\"run.yaml\",\n", - " overrides=[\n", - " \"model=hypergraph/unignn2\",\n", - " \"dataset=graph/US-county-demos\",\n", - " ], \n", - " return_hydra_config=True\n", - ")\n", - "loader = instantiate(cfg.dataset.loader)\n", - "\n", - "\n", - "dataset, dataset_dir = loader.load()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "US-county-demos(self.root=/home/lev/projects/TopoBenchmark/datasets/graph/cornel, self.name=US-county-demos, self.parameters={'data_domain': 'graph', 'data_type': 'cornel', 'data_name': 'US-county-demos', 'year': 2012, 'task_variable': 'Election', 'data_dir': '/home/lev/projects/TopoBenchmark/datasets/graph/cornel'}, self.force_reload=False)\n" - ] - } - ], - "source": [ - "print(dataset)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data(x=[3224, 6], edge_index=[2, 18966], y=[3224])\n" - ] - } - ], - "source": [ - "print(dataset[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 4.1: Default Data Transformations ⚙️" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "While most datasets can be used directly after integration, some require specific preprocessing transformations. These transformations might vary depending on the task, model, or other conditions.\n", - "\n", - "## Example Case: US-county-demos Dataset\n", - "\n", - "Let's look at our language dataset's structure the `compose` function. \n", - "```python\n", - "cfg = compose(\n", - " config_name=\"run.yaml\",\n", - " overrides=[\n", - " \"model=hypergraph/unignn2\",\n", - " \"dataset=graph/US-county-demos\",\n", - " ], \n", - " return_hydra_config=True\n", - ")\n", - "```\n", - "we can see that the model is `hypergraph/unignn2` from hypergraph domain while the dataset is from graph domain.\n", - "This implied that the discussed above `get_default_transform` function:\n", - "\n", - "```yaml\n", - "transforms: ${get_default_transform:${dataset},${model}}\n", - "```\n", - "Inferred a default transform from graph to hypegraph domain." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Transform name: dict_keys(['graph2hypergraph_lifting'])\n", - "Transform parameters: {'_target_': 'topobenchmark.transforms.data_transform.DataTransform', 'transform_type': 'lifting', 'transform_name': 'HypergraphKHopLifting', 'k_value': 1, 'feature_lifting': 'ProjectionSum', 'neighborhoods': '${oc.select:model.backbone.neighborhoods,null}'}\n" - ] - } - ], - "source": [ - "print('Transform name:', cfg.transforms.keys())\n", - "print('Transform parameters:', cfg.transforms['graph2hypergraph_lifting'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Some datasets require might require default transforms which are applied whenever it is nedded to model the data. \n", - "\n", - "The topobenchmark library provides a simple way to define custom transformations and apply them to the dataset.\n", - "Take a look at `TopoBenchmark/configs/transforms/dataset_defaults` folder where you can find some default transformations for different datasets.\n", - "\n", - "For example, REDDIT-BINARY does not have initial node features and it is a common practice to define initial features as gaussian noise.\n", - "Hence the `TopoBenchmark/configs/transforms/dataset_defaults/REDDIT-BINARY.yaml` file incorporates the `gaussian_noise` transform by default. \n", - "Hence whenver you choose to uplodad the REDDIT-BINARY dataset (and do not modify ```transforms``` parameter), the `gaussian_noise` transform will be applied to the dataset.\n", - "\n", - "```yaml\n", - "defaults:\n", - " - data_manipulations: equal_gaus_features\n", - " - liftings@_here_: ${get_required_lifting:graph,${model}}\n", - "```\n", - "\n", - "\n", - "\n", - "\n", - "Below we provide an quick tutorial on how to create a data transformations and create a sequence of default transformations that will be executed whener you use the defined dataset config file.\n", - "\n", - "\n", - "\n", - "Below we provide an quick tutorial on how to create a data transformations and create a sequence of default transformations that will be executed whener you use the defined dataset config file." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Avoid override transforms\n", - "cfg = compose(\n", - " config_name=\"run.yaml\",\n", - " overrides=[\n", - " \"model=hypergraph/unignn2\",\n", - " \"dataset=graph/REDDIT-BINARY\",\n", - " ], \n", - " return_hydra_config=True\n", - ")\n", - "loader = instantiate(cfg.dataset.loader)\n", - "\n", - "\n", - "dataset, dataset_dir = loader.load()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "REDDIT_BINARY dataset does not have any initial node features" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Data(edge_index=[2, 480], y=[1], num_nodes=218)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Take a look at the default transforms and the parameters of `equal_gaus_features` transform" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Transform name: dict_keys(['equal_gaus_features', 'graph2hypergraph_lifting'])\n", - "Transform parameters: {'_target_': 'topobenchmark.transforms.data_transform.DataTransform', 'transform_name': 'EqualGausFeatures', 'transform_type': 'data manipulation', 'mean': 0, 'std': 0.1, 'num_features': '${dataset.parameters.num_features}'}\n" - ] - } - ], - "source": [ - "print('Transform name:', cfg.transforms.keys())\n", - "print('Transform parameters:', cfg.transforms['equal_gaus_features'])" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Processing...\n", - "Done!\n" - ] - } - ], - "source": [ - "from topobenchmark.data.preprocessor import PreProcessor\n", - "preprocessed_dataset = PreProcessor(dataset, dataset_dir, cfg['transforms'])" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Data(x=[218, 10], edge_index=[2, 480], y=[1], incidence_hyperedges=[218, 218], num_hyperedges=[1], x_0=[218, 10], x_hyperedges=[218, 10], num_nodes=218)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "preprocessed_dataset[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The preprocessed dataset has the features generated by the preprocessor. And the connectivity of the dataset has been transformed into hypegraph domain. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Creating your own default transforms\n", - "\n", - "Now when we have seen how to add custom dataset and how does the default transform works. One might want to reate your own default transforms for new dataset that will be executed always whenwever the dataset under default configuration is used.\n", - "\n", - "\n", - "**To configure** the deafult transform navigate to `configs/transforms/dataset_defaults` create `` and the follwoing `.yaml` file: \n", - "\n", - "```yaml\n", - "defaults:\n", - " - transform_1: transform_1\n", - " - transform_2: transform_2\n", - " - transform_3: transform_3\n", - "```\n", - "\n", - "\n", - "**Important**\n", - "There are different types of transforms, including `data_manipulation`, `liftings`, and `feature_liftings`. In case you want to use multiple transforms from the same categoty, let's say from `data_manipulation`, then it is required to stick to a special syntaxis. [See hydra configuration for more information]() or the example below: \n", - "\n", - "```yaml\n", - "defaults:\n", - " - data_manipulation@first_usage: transform_1\n", - " - data_manipulation@second_usage: transform_2\n", - "```\n", - "\n", - "\n", - "### Notes: \n", - "\n", - "- **Transforms from the same category:** If There are a two transforms from the same catgory, for example, `data_manipulations`, it is required to use operator `@` to assign new diffrerent names `first_usage` and `second_usage` to each transform.\n", - "\n", - "- In the case of `equal_gaus_features` we have to override the initial number of features as the `equal_gaus_features.yaml` which uses a special register to infer the feature dimension (the registed logic descrived in Step 3.) However by some reason we want to specify `num_features` parameter we can override it in the default file without the need to change the transform config file. \n", - "\n", - "```yaml\n", - "defaults:\n", - " - data_manipulations@equal_gaus_features: equal_gaus_features\n", - " - data_manipulations@some_transform: some_transform\n", - " - liftings@_here_: ${get_required_lifting:graph,${model}}\n", - "\n", - "equal_gaus_features:\n", - " num_features: 100\n", - "some_transform:\n", - " some_param: bla\n", - "```\n", - "\n", - "- We recommend to always add `liftings@_here_: ${get_required_lifting:graph,${model}}` so that a default lifting is applied to run any domain-specific topological model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 4.2: Custom Data Transformations ⚙️" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Creating a Transform\n", - "\n", - "In general any transfom in the library inherits `torch_geometric.transforms.BaseTransform` class, which allow to apply a sequency of transforms to the data. Our inderface requires to implement the `forward` method. The important part of all transforms is that it takes `torch_geometric.data.Data` object and returns updated `torch_geometric.data.Data` object.\n", - "\n", - "\n", - "\n", - "For language dataset, we have generated the `equal_gaus_features` transfroms that is a data_manipulation transform hence we place it into `topobenchmark/transforms/data_manipulation/` folder. \n", - "Below you can see th `EqualGausFeatures` class: \n", - "\n", - "\n", - "```python\n", - " class EqualGausFeatures(torch_geometric.transforms.BaseTransform):\n", - " r\"\"\"A transform that generates equal Gaussian features for all nodes.\n", - "\n", - " Parameters\n", - " ----------\n", - " **kwargs : optional\n", - " Additional arguments for the class. It should contain the following keys:\n", - " - mean (float): The mean of the Gaussian distribution.\n", - " - std (float): The standard deviation of the Gaussian distribution.\n", - " - num_features (int): The number of features to generate.\n", - " \"\"\"\n", - "\n", - " def __init__(self, **kwargs):\n", - " super().__init__()\n", - " self.type = \"generate_non_informative_features\"\n", - "\n", - " # Torch generate feature vector from gaus distribution\n", - " self.mean = kwargs[\"mean\"]\n", - " self.std = kwargs[\"std\"]\n", - " self.feature_vector = kwargs[\"num_features\"]\n", - " self.feature_vector = torch.normal(\n", - " mean=self.mean, std=self.std, size=(1, self.feature_vector)\n", - " )\n", - "\n", - " def __repr__(self) -> str:\n", - " return f\"{self.__class__.__name__}(type={self.type!r}, mean={self.mean!r}, std={self.std!r}, feature_vector={self.feature_vector!r})\"\n", - "\n", - " def forward(self, data: torch_geometric.data.Data):\n", - " r\"\"\"Apply the transform to the input data.\n", - "\n", - " Parameters\n", - " ----------\n", - " data : torch_geometric.data.Data\n", - " The input data.\n", - "\n", - " Returns\n", - " -------\n", - " torch_geometric.data.Data\n", - " The transformed data.\n", - " \"\"\"\n", - " data.x = self.feature_vector.expand(data.num_nodes, -1)\n", - " return data\n", - "\n", - "```\n", - "\n", - "As we said above the `forward` function takes as input the `torch_geometric.data.Data` object, modifies it, and returns it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Register the Transform\n", - "\n", - "Similarly to adding dataset the transformations you have created and placed at right folder are automatically registered.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create a configuration file \n", - "Now as we have registered the transform we can finally create the configuration file and use it in the framework: \n", - "\n", - "``` yaml\n", - "_target_: topobenchmark.transforms.data_transform.DataTransform\n", - "transform_name: \"EqualGausFeatures\"\n", - "transform_type: \"data manipulation\"\n", - "\n", - "mean: 0\n", - "std: 0.1\n", - "num_features: ${dataset.parameters.num_features}\n", - "``` \n", - "Please refer to `configs/transforms/dataset_defaults/equal_gaus_features.yaml` for the example. \n", - "\n", - "**Notes:**\n", - "\n", - "- You might notice an interesting key `_target_` in the configuration file. In general for any new transform you the `_target_` is always `topobenchmark.transforms.data_transform.DataTransform`. [For more information please refer to hydra documentation \"Instantiating objects with Hydra\" section.](https://hydra.cc/docs/advanced/instantiate_objects/overview/). " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "tb", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/tutorials/tutorial_dataset.ipynb b/tutorials/tutorial_dataset.ipynb deleted file mode 100644 index 2b2b008c..00000000 --- a/tutorials/tutorial_dataset.ipynb +++ /dev/null @@ -1,454 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Using a new dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this tutorial we show how you can use a dataset not present in the library.\n", - "\n", - "This particular example uses the ENZIMES dataset, uses a simplicial lifting to create simplicial complexes, and trains the SCN2 model. We train the model using the appropriate training and validation datasets, and finally test it on the test dataset." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Table of contents\n", - " [1. Imports](##sec1)\n", - "\n", - " [2. Configurations and utilities](##sec2)\n", - "\n", - " [3. Loading the data](##sec3)\n", - "\n", - " [4. Model initialization](##sec4)\n", - "\n", - " [5. Training](##sec5)\n", - "\n", - " [6. Testing the model](##sec6)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Imports " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import lightning as pl\n", - "import torch\n", - "from omegaconf import OmegaConf\n", - "from topomodelx.nn.simplicial.scn2 import SCN2\n", - "from torch_geometric.datasets import TUDataset\n", - "\n", - "from topobenchmark.data.preprocessor import PreProcessor\n", - "from topobenchmark.dataloader.dataloader import TBDataloader\n", - "from topobenchmark.evaluator.evaluator import TBEvaluator\n", - "from topobenchmark.loss.loss import TBLoss\n", - "from topobenchmark.model.model import TBModel\n", - "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", - "from topobenchmark.nn.readouts import PropagateSignalDown\n", - "from topobenchmark.nn.wrappers.simplicial import SCNWrapper\n", - "from topobenchmark.optimizer import TBOptimizer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Configurations and utilities " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Configurations can be specified using yaml files or directly specified in your code like in this example." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "transform_config = { \"clique_lifting\":\n", - " {\"transform_type\": \"lifting\",\n", - " \"transform_name\": \"SimplicialCliqueLifting\",\n", - " \"complex_dim\": 3,}\n", - "}\n", - "\n", - "split_config = {\n", - " \"learning_setting\": \"inductive\",\n", - " \"split_type\": \"random\",\n", - " \"data_seed\": 0,\n", - " \"data_split_dir\": \"./data/ENZYMES/splits/\",\n", - " \"train_prop\": 0.5,\n", - "}\n", - "\n", - "in_channels = 3\n", - "out_channels = 6\n", - "dim_hidden = 16\n", - "\n", - "wrapper_config = {\n", - " \"out_channels\": dim_hidden,\n", - " \"num_cell_dimensions\": 3,\n", - "}\n", - "\n", - "readout_config = {\n", - " \"readout_name\": \"PropagateSignalDown\",\n", - " \"num_cell_dimensions\": 1,\n", - " \"hidden_dim\": dim_hidden,\n", - " \"out_channels\": out_channels,\n", - " \"task_level\": \"graph\",\n", - " \"pooling_type\": \"sum\",\n", - "}\n", - "\n", - "loss_config = {\n", - " \"dataset_loss\": \n", - " {\n", - " \"task\": \"classification\", \n", - " \"loss_type\": \"cross_entropy\"\n", - " }\n", - "}\n", - "\n", - "evaluator_config = {\"task\": \"classification\",\n", - " \"num_classes\": out_channels,\n", - " \"metrics\": [\"accuracy\", \"precision\", \"recall\"]}\n", - "\n", - "optimizer_config = {\"optimizer_id\": \"Adam\",\n", - " \"parameters\":\n", - " {\"lr\": 0.001,\"weight_decay\": 0.0005}\n", - " }\n", - "\n", - "transform_config = OmegaConf.create(transform_config)\n", - "split_config = OmegaConf.create(split_config)\n", - "readout_config = OmegaConf.create(readout_config)\n", - "loss_config = OmegaConf.create(loss_config)\n", - "evaluator_config = OmegaConf.create(evaluator_config)\n", - "optimizer_config = OmegaConf.create(optimizer_config)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def wrapper(**factory_kwargs):\n", - " def factory(backbone):\n", - " return SCNWrapper(backbone, **factory_kwargs)\n", - " return factory" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Loading the data " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example we use the ENZYMES dataset. It is a graph dataset and we use the clique lifting to transform the graphs into simplicial complexes. We invite you to check out the README of the [repository](https://github.com/pyt-team/TopoBenchmarkX) to learn more about the various liftings offered." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Transform parameters are the same, using existing data_dir: ./data/ENZYMES/clique_lifting/3206123057\n" - ] - } - ], - "source": [ - "dataset_dir = \"./data/ENZYMES/\"\n", - "dataset = TUDataset(root=dataset_dir, name=\"ENZYMES\")\n", - "\n", - "preprocessor = PreProcessor(dataset, dataset_dir, transform_config)\n", - "dataset_train, dataset_val, dataset_test = preprocessor.load_dataset_splits(split_config)\n", - "datamodule = TBDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Model initialization " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can create the backbone by instantiating the SCN2 model from TopoModelX. Then the `SCNWrapper` and the `TBModel` take care of the rest." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "backbone = SCN2(in_channels_0=dim_hidden, in_channels_1=dim_hidden, in_channels_2=dim_hidden)\n", - "wrapper = wrapper(**wrapper_config)\n", - "\n", - "readout = PropagateSignalDown(**readout_config)\n", - "loss = TBLoss(**loss_config)\n", - "feature_encoder = AllCellFeatureEncoder(in_channels=[in_channels, in_channels, in_channels], out_channels=dim_hidden)\n", - "\n", - "evaluator = TBEvaluator(**evaluator_config)\n", - "optimizer = TBOptimizer(**optimizer_config)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "model = TBModel(backbone=backbone,\n", - " backbone_wrapper=wrapper,\n", - " readout=readout,\n", - " loss=loss,\n", - " feature_encoder=feature_encoder,\n", - " evaluator=evaluator,\n", - " optimizer=optimizer,\n", - " compile=False,)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Training " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can use the `lightning` trainer to train the model." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: True (cuda), used: False\n", - "TPU available: False, using: 0 TPU cores\n", - "HPU available: False, using: 0 HPUs\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/setup.py:177: GPU available but not used. You can set it by doing `Trainer(accelerator='gpu')`.\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:75: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/utilities/parsing.py:44: Attribute 'backbone_wrapper' removed from hparams because it cannot be pickled. You can suppress this warning by setting `self.save_hyperparameters(ignore=['backbone_wrapper'])`.\n", - "\n", - " | Name | Type | Params | Mode \n", - "------------------------------------------------------------------\n", - "0 | feature_encoder | AllCellFeatureEncoder | 1.2 K | train\n", - "1 | backbone | SCNWrapper | 1.6 K | train\n", - "2 | readout | PropagateSignalDown | 102 | train\n", - "3 | val_acc_best | MeanMetric | 0 | train\n", - "------------------------------------------------------------------\n", - "2.9 K Trainable params\n", - "0 Non-trainable params\n", - "2.9 K Total params\n", - "0.012 Total estimated model params size (MB)\n", - "36 Modules in train mode\n", - "0 Modules in eval mode\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassAccuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", - " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassPrecision was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", - " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassRecall was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", - " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/projects/TopoBenchmark/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)\n", - " normalized_matrix = diag_matrix @ (matrix @ diag_matrix)\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/loops/fit_loop.py:298: The number of training batches (10) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", - "`Trainer.fit` stopped: `max_epochs=5` reached.\n" - ] - } - ], - "source": [ - "#%%capture\n", - "# Increase the number of epochs to get better results\n", - "trainer = pl.Trainer(max_epochs=5, accelerator=\"cpu\", enable_progress_bar=False)\n", - "\n", - "trainer.fit(model, datamodule)\n", - "train_metrics = trainer.callback_metrics" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Training metrics\n", - " --------------------------\n", - "train/accuracy: 0.1567\n", - "train/precision: 0.1365\n", - "train/recall: 0.1525\n", - "val/loss: 2.3835\n", - "val/accuracy: 0.1400\n", - "val/precision: 0.1269\n", - "val/recall: 0.1830\n", - "train/loss: 2.3218\n" - ] - } - ], - "source": [ - "print(' Training metrics\\n', '-'*26)\n", - "for key in train_metrics:\n", - " print('{:<21s} {:>5.4f}'.format(key+':', train_metrics[key].item()))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 6. Testing the model " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we can test the model and obtain the results." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n" - ] - }, - { - "data": { - "text/html": [ - "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
-       "┃        Test metric               DataLoader 0        ┃\n",
-       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
-       "│       test/accuracy           0.1666666716337204     │\n",
-       "│         test/loss              2.021564483642578     │\n",
-       "│      test/precision           0.08934479206800461    │\n",
-       "│        test/recall            0.15170806646347046    │\n",
-       "└───────────────────────────┴───────────────────────────┘\n",
-       "
\n" - ], - "text/plain": [ - "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", - "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", - "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[36m \u001b[0m\u001b[36m test/accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1666666716337204 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test/loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.021564483642578 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test/precision \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.08934479206800461 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test/recall \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.15170806646347046 \u001b[0m\u001b[35m \u001b[0m│\n", - "└───────────────────────────┴───────────────────────────┘\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "trainer.test(model, datamodule)\n", - "test_metrics = trainer.callback_metrics" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Testing metrics\n", - " -------------------------\n", - "test/loss: 2.0216\n", - "test/accuracy: 0.1667\n", - "test/precision: 0.0893\n", - "test/recall: 0.1517\n" - ] - } - ], - "source": [ - "print(' Testing metrics\\n', '-'*25)\n", - "for key in test_metrics:\n", - " print('{:<20s} {:>5.4f}'.format(key+':', test_metrics[key].item()))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "tb", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/tutorials/tutorial_lifting.ipynb b/tutorials/tutorial_lifting.ipynb deleted file mode 100644 index d1a77003..00000000 --- a/tutorials/tutorial_lifting.ipynb +++ /dev/null @@ -1,543 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Implementing your own lifting" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this tutorial we show how you can implement your own lifting and test it on a dataset. \n", - "\n", - "This particular example uses the MUTAG dataset. The lifting for this example is similar to the SimplicialCliqueLifting but discards the cliques that are bigger than the maximum simplices we want to consider.\n", - "\n", - "We test this lifting using the SCN2 model from `TopoModelX`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Table of contents\n", - " [1. Imports](##sec1)\n", - "\n", - " [2. Configurations and utilities](##sec2)\n", - "\n", - " [3. Defining the lifting](##sec2)\n", - "\n", - " [4. Loading the data](##sec3)\n", - "\n", - " [5. Model initialization](##sec4)\n", - "\n", - " [6. Training](##sec5)\n", - "\n", - " [7. Testing the model](##sec6)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Imports " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from itertools import combinations\n", - "from typing import Any\n", - "\n", - "import lightning as pl\n", - "import networkx as nx\n", - "import hydra\n", - "import torch_geometric\n", - "from omegaconf import OmegaConf\n", - "from topomodelx.nn.simplicial.scn2 import SCN2\n", - "from toponetx.classes import SimplicialComplex\n", - "\n", - "from topobenchmark.data.loaders.graph import *\n", - "from topobenchmark.data.preprocessor import PreProcessor\n", - "from topobenchmark.dataloader import TBDataloader\n", - "from topobenchmark.evaluator import TBEvaluator\n", - "from topobenchmark.loss import TBLoss\n", - "from topobenchmark.model import TBModel\n", - "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", - "from topobenchmark.nn.readouts import PropagateSignalDown\n", - "from topobenchmark.nn.wrappers.simplicial import SCNWrapper\n", - "from topobenchmark.optimizer import TBOptimizer\n", - "from topobenchmark.transforms.liftings.graph2simplicial import (\n", - " Graph2SimplicialLifting,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Configurations and utilities " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Configurations can be specified using yaml files or directly specified in your code like in this example. To keep the notebook clean here we already define the configuration for the lifting, which is defined later in the notebook." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "loader_config = {\n", - " \"data_domain\": \"graph\",\n", - " \"data_type\": \"TUDataset\",\n", - " \"data_name\": \"MUTAG\",\n", - " \"data_dir\": \"./data/MUTAG/\"}\n", - "\n", - "\n", - "transform_config = { \"clique_lifting\":\n", - " {\"_target_\": \"__main__.SimplicialCliquesLEQLifting\",\n", - " \"transform_name\": \"SimplicialCliquesLEQLifting\",\n", - " \"transform_type\": \"lifting\",\n", - " \"complex_dim\": 3,}\n", - "}\n", - "\n", - "split_config = {\n", - " \"learning_setting\": \"inductive\",\n", - " \"split_type\": \"k-fold\",\n", - " \"data_seed\": 0,\n", - " \"data_split_dir\": \"./data/MUTAG/splits/\",\n", - " \"k\": 10,\n", - "}\n", - "\n", - "in_channels = 7\n", - "out_channels = 2\n", - "dim_hidden = 128\n", - "\n", - "wrapper_config = {\n", - " \"out_channels\": dim_hidden,\n", - " \"num_cell_dimensions\": 3,\n", - "}\n", - "\n", - "readout_config = {\n", - " \"readout_name\": \"PropagateSignalDown\",\n", - " \"num_cell_dimensions\": 1,\n", - " \"hidden_dim\": dim_hidden,\n", - " \"out_channels\": out_channels,\n", - " \"task_level\": \"graph\",\n", - " \"pooling_type\": \"sum\",\n", - "}\n", - "\n", - "loss_config = {\n", - " \"dataset_loss\": \n", - " {\n", - " \"task\": \"classification\", \n", - " \"loss_type\": \"cross_entropy\"\n", - " }\n", - "}\n", - "\n", - "evaluator_config = {\"task\": \"classification\",\n", - " \"num_classes\": out_channels,\n", - " \"metrics\": [\"accuracy\", \"precision\", \"recall\"]}\n", - "\n", - "optimizer_config = {\"optimizer_id\": \"Adam\",\n", - " \"parameters\":\n", - " {\"lr\": 0.001,\"weight_decay\": 0.0005}\n", - " }\n", - "\n", - "\n", - "loader_config = OmegaConf.create(loader_config)\n", - "transform_config = OmegaConf.create(transform_config)\n", - "split_config = OmegaConf.create(split_config)\n", - "wrapper_config = OmegaConf.create(wrapper_config)\n", - "readout_config = OmegaConf.create(readout_config)\n", - "loss_config = OmegaConf.create(loss_config)\n", - "evaluator_config = OmegaConf.create(evaluator_config)\n", - "optimizer_config = OmegaConf.create(optimizer_config)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def wrapper(**factory_kwargs):\n", - " def factory(backbone):\n", - " return SCNWrapper(backbone, **factory_kwargs)\n", - " return factory" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Defining the lifting " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we define the lifting we intend on using. The `SimplicialCliquesLEQLifting` finds the cliques that have a number of nodes less or equal to the maximum simplices we want to consider and creates simplices from them. The configuration for the lifting was already defined with the other configurations." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "class SimplicialCliquesLEQLifting(Graph2SimplicialLifting):\n", - " r\"\"\"Lifts graphs to simplicial complex domain by identifying the cliques as k-simplices. Only the cliques with size smaller or equal to the max complex dimension are considered.\n", - " \n", - " Args:\n", - " kwargs (optional): Additional arguments for the class.\n", - " \"\"\"\n", - " def __init__(self, **kwargs):\n", - " super().__init__(**kwargs)\n", - "\n", - " def lift_topology(self, data: torch_geometric.data.Data) -> dict:\n", - " r\"\"\"Lifts the topology of a graph to a simplicial complex by identifying the cliques as k-simplices. Only the cliques with size smaller or equal to the max complex dimension are considered.\n", - "\n", - " Args:\n", - " data (torch_geometric.data.Data): The input data to be lifted.\n", - " Returns:\n", - " dict: The lifted topology.\n", - " \"\"\"\n", - " graph = self._generate_graph_from_data(data)\n", - " simplicial_complex = SimplicialComplex(graph)\n", - " cliques = nx.find_cliques(graph)\n", - " \n", - " simplices: list[set[tuple[Any, ...]]] = [set() for _ in range(2, self.complex_dim + 1)]\n", - " for clique in cliques:\n", - " if len(clique) <= self.complex_dim + 1:\n", - " for i in range(2, self.complex_dim + 1):\n", - " for c in combinations(clique, i + 1):\n", - " simplices[i - 2].add(tuple(c))\n", - "\n", - " for set_k_simplices in simplices:\n", - " simplicial_complex.add_simplices_from(list(set_k_simplices))\n", - "\n", - " return self._get_lifted_topology(simplicial_complex, graph)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Loading the data " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example we use the MUTAG dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from topobenchmark.transforms import TRANSFORMS\n", - "\n", - "TRANSFORMS[\"SimplicialCliquesLEQLifting\"] = SimplicialCliquesLEQLifting" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Transform parameters are the same, using existing data_dir: data/MUTAG/MUTAG/clique_lifting/458544608\n" - ] - } - ], - "source": [ - "graph_loader = TUDatasetLoader(loader_config)\n", - "\n", - "dataset, dataset_dir = graph_loader.load()\n", - "\n", - "preprocessor = PreProcessor(dataset, dataset_dir, transform_config)\n", - "dataset_train, dataset_val, dataset_test = preprocessor.load_dataset_splits(split_config)\n", - "datamodule = TBDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Model initialization " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can create the backbone by instantiating the SCN2 model form TopoModelX. Then the `SCNWrapper` and the `TBModel` take care of the rest." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "backbone = SCN2(in_channels_0=dim_hidden,in_channels_1=dim_hidden,in_channels_2=dim_hidden)\n", - "backbone_wrapper = wrapper(**wrapper_config)\n", - "\n", - "readout = PropagateSignalDown(**readout_config)\n", - "loss = TBLoss(**loss_config)\n", - "feature_encoder = AllCellFeatureEncoder(in_channels=[in_channels, in_channels, in_channels], out_channels=dim_hidden)\n", - "\n", - "evaluator = TBEvaluator(**evaluator_config)\n", - "optimizer = TBOptimizer(**optimizer_config)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "model = TBModel(backbone=backbone,\n", - " backbone_wrapper=backbone_wrapper,\n", - " readout=readout,\n", - " loss=loss,\n", - " feature_encoder=feature_encoder,\n", - " evaluator=evaluator,\n", - " optimizer=optimizer,\n", - " compile=False,)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 6. Training " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can use the `lightning` trainer to train the model. We are prompted to connet a Wandb account to monitor training, but we can also obtain the final training metrics from the trainer directly." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: True (cuda), used: False\n", - "TPU available: False, using: 0 TPU cores\n", - "HPU available: False, using: 0 HPUs\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/setup.py:177: GPU available but not used. You can set it by doing `Trainer(accelerator='gpu')`.\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:75: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/utilities/parsing.py:44: Attribute 'backbone_wrapper' removed from hparams because it cannot be pickled. You can suppress this warning by setting `self.save_hyperparameters(ignore=['backbone_wrapper'])`.\n", - "\n", - " | Name | Type | Params | Mode \n", - "------------------------------------------------------------------\n", - "0 | feature_encoder | AllCellFeatureEncoder | 53.8 K | train\n", - "1 | backbone | SCNWrapper | 99.1 K | train\n", - "2 | readout | PropagateSignalDown | 258 | train\n", - "3 | val_acc_best | MeanMetric | 0 | train\n", - "------------------------------------------------------------------\n", - "153 K Trainable params\n", - "0 Non-trainable params\n", - "153 K Total params\n", - "0.612 Total estimated model params size (MB)\n", - "36 Modules in train mode\n", - "0 Modules in eval mode\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassAccuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", - " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassPrecision was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", - " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassRecall was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", - " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/projects/TopoBenchmark/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)\n", - " normalized_matrix = diag_matrix @ (matrix @ diag_matrix)\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/loops/fit_loop.py:298: The number of training batches (6) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", - "`Trainer.fit` stopped: `max_epochs=50` reached.\n" - ] - } - ], - "source": [ - "# Increase the number of epochs to get better results\n", - "trainer = pl.Trainer(max_epochs=50, accelerator=\"cpu\", enable_progress_bar=False)\n", - "\n", - "trainer.fit(model, datamodule)\n", - "train_metrics = trainer.callback_metrics" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Training metrics\n", - " --------------------------\n", - "train/accuracy: 0.7633\n", - "train/precision: 0.7353\n", - "train/recall: 0.7353\n", - "val/loss: 0.6774\n", - "val/accuracy: 0.7895\n", - "val/precision: 0.7750\n", - "val/recall: 0.7115\n", - "train/loss: 0.5690\n" - ] - } - ], - "source": [ - "print(' Training metrics\\n', '-'*26)\n", - "for key in train_metrics:\n", - " print('{:<21s} {:>5.4f}'.format(key+':', train_metrics[key].item()))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 7. Testing the model " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we can test the model and obtain the results." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n" - ] - }, - { - "data": { - "text/html": [ - "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
-       "┃        Test metric               DataLoader 0        ┃\n",
-       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
-       "│       test/accuracy           0.7894737124443054     │\n",
-       "│         test/loss             0.6774305701255798     │\n",
-       "│      test/precision           0.7749999761581421     │\n",
-       "│        test/recall            0.7115384340286255     │\n",
-       "└───────────────────────────┴───────────────────────────┘\n",
-       "
\n" - ], - "text/plain": [ - "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", - "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", - "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[36m \u001b[0m\u001b[36m test/accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7894737124443054 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test/loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6774305701255798 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test/precision \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7749999761581421 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test/recall \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7115384340286255 \u001b[0m\u001b[35m \u001b[0m│\n", - "└───────────────────────────┴───────────────────────────┘\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "trainer.test(model, datamodule)\n", - "test_metrics = trainer.callback_metrics" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Testing metrics\n", - " -------------------------\n", - "test/loss: 0.6774\n", - "test/accuracy: 0.7895\n", - "test/precision: 0.7750\n", - "test/recall: 0.7115\n" - ] - } - ], - "source": [ - "print(' Testing metrics\\n', '-'*25)\n", - "for key in test_metrics:\n", - " print('{:<20s} {:>5.4f}'.format(key+':', test_metrics[key].item()))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "topox", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/tutorials/tutorial_model.ipynb b/tutorials/tutorial_model.ipynb deleted file mode 100644 index a628e497..00000000 --- a/tutorials/tutorial_model.ipynb +++ /dev/null @@ -1,499 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Implementing your own model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this tutorial we show how to implement your own model and test it on a dataset. \n", - "\n", - "This particular example uses the MUTAG dataset, uses an hypergraph lifting to create hypergraphs, and defines a model to work on them. \n", - "\n", - "We train the model using the appropriate training and validation datasets, and finally test it on the test dataset." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Table of contents\n", - " [1. Imports](##sec1)\n", - "\n", - " [2. Configurations and utilities](##sec2)\n", - "\n", - " [3. Loading the data](##sec3)\n", - "\n", - " [4. Backbone definition](##sec4)\n", - "\n", - " [5. Model initialization](##sec5)\n", - "\n", - " [6. Training](##sec6)\n", - "\n", - " [7. Testing the model](##sec7)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Imports " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import lightning as pl\n", - "import torch\n", - "from omegaconf import OmegaConf\n", - "\n", - "from topobenchmark.data.loaders.graph import *\n", - "from topobenchmark.data.preprocessor import PreProcessor\n", - "from topobenchmark.dataloader import TBDataloader\n", - "from topobenchmark.evaluator import TBEvaluator\n", - "from topobenchmark.loss import TBLoss\n", - "from topobenchmark.model import TBModel\n", - "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", - "from topobenchmark.nn.readouts import PropagateSignalDown\n", - "from topobenchmark.optimizer import TBOptimizer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Configurations and utilities " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Configurations can be specified using yaml files or directly specified in your code like in this example." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "loader_config = {\n", - " \"data_domain\": \"graph\",\n", - " \"data_type\": \"TUDataset\",\n", - " \"data_name\": \"MUTAG\",\n", - " \"data_dir\": \"./data/MUTAG/\"}\n", - "\n", - "transform_config = { \"khop_lifting\":\n", - " {\"transform_type\": \"lifting\",\n", - " \"transform_name\": \"HypergraphKHopLifting\",\n", - " \"k_value\": 1,}\n", - "}\n", - "\n", - "split_config = {\n", - " \"learning_setting\": \"inductive\",\n", - " \"split_type\": \"random\",\n", - " \"data_seed\": 0,\n", - " \"data_split_dir\": \"./data/MUTAG/splits/\",\n", - " \"train_prop\": 0.5,\n", - "}\n", - "\n", - "in_channels = 7\n", - "out_channels = 2\n", - "dim_hidden = 16\n", - "\n", - "readout_config = {\n", - " \"readout_name\": \"PropagateSignalDown\",\n", - " \"num_cell_dimensions\": 1,\n", - " \"hidden_dim\": dim_hidden,\n", - " \"out_channels\": out_channels,\n", - " \"task_level\": \"graph\",\n", - " \"pooling_type\": \"sum\",\n", - "}\n", - "\n", - "loss_config = {\n", - " \"dataset_loss\": \n", - " {\n", - " \"task\": \"classification\", \n", - " \"loss_type\": \"cross_entropy\"\n", - " }\n", - "}\n", - "\n", - "evaluator_config = {\"task\": \"classification\",\n", - " \"num_classes\": out_channels,\n", - " \"metrics\": [\"accuracy\", \"precision\", \"recall\"]}\n", - "\n", - "optimizer_config = {\"optimizer_id\": \"Adam\",\n", - " \"parameters\":\n", - " {\"lr\": 0.001,\"weight_decay\": 0.0005}\n", - " }\n", - "\n", - "loader_config = OmegaConf.create(loader_config)\n", - "transform_config = OmegaConf.create(transform_config)\n", - "split_config = OmegaConf.create(split_config)\n", - "readout_config = OmegaConf.create(readout_config)\n", - "loss_config = OmegaConf.create(loss_config)\n", - "evaluator_config = OmegaConf.create(evaluator_config)\n", - "optimizer_config = OmegaConf.create(optimizer_config)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Loading the data " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example we use the MUTAG dataset. It is a graph dataset and we use the k-hop lifting to transform the graphs into hypergraphs. \n", - "\n", - "We invite you to check out the README of the [repository](https://github.com/pyt-team/TopoBenchmarkX) to learn more about the various liftings offered." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Transform parameters are the same, using existing data_dir: data/MUTAG/MUTAG/khop_lifting/1116229528\n" - ] - } - ], - "source": [ - "graph_loader = TUDatasetLoader(loader_config)\n", - "\n", - "dataset, dataset_dir = graph_loader.load()\n", - "\n", - "preprocessor = PreProcessor(dataset, dataset_dir, transform_config)\n", - "dataset_train, dataset_val, dataset_test = preprocessor.load_dataset_splits(split_config)\n", - "datamodule = TBDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Backbone definition " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To implement a new model we only need to define the forward method.\n", - "\n", - "With a hypergraph with $n$ nodes and $m$ hyperedges this model simply calculates the hyperedge features as $X_1 = B_1 \\cdot X_0$ where $B_1 \\in \\mathbb{R}^{n \\times m}$ is the incidence matrix, where $B_{ij}=1$ if node $i$ belongs to hyperedge $j$ and is 0 otherwise.\n", - "\n", - "Then the outputs are computed as $X^{'}_0=\\text{ReLU}(W_0 \\cdot X_0 + B_0)$ and $X^{'}_1=\\text{ReLU}(W_1 \\cdot X_1 + B_1)$, by simply using two linear layers with ReLU activation." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "class myModel(pl.LightningModule):\n", - " def __init__(self, dim_hidden):\n", - " super().__init__()\n", - " self.dim_hidden = dim_hidden\n", - " self.linear_0 = torch.nn.Linear(dim_hidden, dim_hidden)\n", - " self.linear_1 = torch.nn.Linear(dim_hidden, dim_hidden)\n", - "\n", - " def forward(self, batch):\n", - " x_0 = batch.x_0\n", - " incidence_hyperedges = batch.incidence_hyperedges\n", - " x_1 = torch.sparse.mm(incidence_hyperedges, x_0)\n", - " \n", - " x_0 = self.linear_0(x_0)\n", - " x_0 = torch.relu(x_0)\n", - " x_1 = self.linear_1(x_1)\n", - " x_1 = torch.relu(x_1)\n", - " \n", - " model_out = {\"labels\": batch.y, \"batch_0\": batch.batch_0}\n", - " model_out[\"x_0\"] = x_0\n", - " model_out[\"hyperedge\"] = x_1\n", - " return model_out" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Model initialization " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the model is defined we can create the TBModel, which takes care of implementing everything else that is needed to train the model. \n", - "\n", - "First we need to implement a few classes to specify the behaviour of the model." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "backbone = myModel(dim_hidden)\n", - "\n", - "readout = PropagateSignalDown(**readout_config)\n", - "loss = TBLoss(**loss_config)\n", - "feature_encoder = AllCellFeatureEncoder(in_channels=[in_channels], out_channels=dim_hidden)\n", - "\n", - "evaluator = TBEvaluator(**evaluator_config)\n", - "optimizer = TBOptimizer(**optimizer_config)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can instantiate the TBModel." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "model = TBModel(backbone=backbone,\n", - " backbone_wrapper=None,\n", - " readout=readout,\n", - " loss=loss,\n", - " feature_encoder=feature_encoder,\n", - " evaluator=evaluator,\n", - " optimizer=optimizer,\n", - " compile=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 6. Training " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can use the `lightning` trainer to train the model." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: True (cuda), used: False\n", - "TPU available: False, using: 0 TPU cores\n", - "HPU available: False, using: 0 HPUs\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/setup.py:177: GPU available but not used. You can set it by doing `Trainer(accelerator='gpu')`.\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:75: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", - "\n", - " | Name | Type | Params | Mode \n", - "------------------------------------------------------------------\n", - "0 | feature_encoder | AllCellFeatureEncoder | 448 | train\n", - "1 | backbone | myModel | 544 | train\n", - "2 | readout | PropagateSignalDown | 34 | train\n", - "3 | val_acc_best | MeanMetric | 0 | train\n", - "------------------------------------------------------------------\n", - "1.0 K Trainable params\n", - "0 Non-trainable params\n", - "1.0 K Total params\n", - "0.004 Total estimated model params size (MB)\n", - "13 Modules in train mode\n", - "0 Modules in eval mode\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassAccuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", - " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassPrecision was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", - " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassRecall was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", - " warnings.warn(*args, **kwargs) # noqa: B028\n", - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", - "`Trainer.fit` stopped: `max_epochs=50` reached.\n" - ] - } - ], - "source": [ - "# Increase the number of epochs to get better results\n", - "trainer = pl.Trainer(max_epochs=50, accelerator=\"cpu\", enable_progress_bar=False, log_every_n_steps=1)\n", - "\n", - "trainer.fit(model, datamodule)\n", - "train_metrics = trainer.callback_metrics" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Training metrics\n", - " --------------------------\n", - "train/accuracy: 0.7872\n", - "train/precision: 0.7782\n", - "train/recall: 0.7184\n", - "val/loss: 0.4973\n", - "val/accuracy: 0.7447\n", - "val/precision: 0.7321\n", - "val/recall: 0.6354\n", - "train/loss: 0.4405\n" - ] - } - ], - "source": [ - "print(' Training metrics\\n', '-'*26)\n", - "for key in train_metrics:\n", - " print('{:<21s} {:>5.4f}'.format(key+':', train_metrics[key].item()))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 7. Testing the model " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we can test the model and obtain the results." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n" - ] - }, - { - "data": { - "text/html": [ - "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
-       "┃        Test metric               DataLoader 0        ┃\n",
-       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
-       "│       test/accuracy           0.7234042286872864     │\n",
-       "│         test/loss             0.4853072166442871     │\n",
-       "│      test/precision           0.7339743375778198     │\n",
-       "│        test/recall            0.6431372761726379     │\n",
-       "└───────────────────────────┴───────────────────────────┘\n",
-       "
\n" - ], - "text/plain": [ - "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", - "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", - "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[36m \u001b[0m\u001b[36m test/accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7234042286872864 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test/loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.4853072166442871 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test/precision \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7339743375778198 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test/recall \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6431372761726379 \u001b[0m\u001b[35m \u001b[0m│\n", - "└───────────────────────────┴───────────────────────────┘\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "trainer.test(model, datamodule)\n", - "test_metrics = trainer.callback_metrics" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Testing metrics\n", - " -------------------------\n", - "test/loss: 0.4853\n", - "test/accuracy: 0.7234\n", - "test/precision: 0.7340\n", - "test/recall: 0.6431\n" - ] - } - ], - "source": [ - "print(' Testing metrics\\n', '-'*25)\n", - "for key in test_metrics:\n", - " print('{:<20s} {:>5.4f}'.format(key+':', test_metrics[key].item()))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "topox", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} From faea88712a160aeebdfd346eb634a08ce4a71a8e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 12:18:50 -0800 Subject: [PATCH 10/15] Revert codecov.yaml --- codecov.yml | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/codecov.yml b/codecov.yml index ac4c5a9c..85ba6f8b 100644 --- a/codecov.yml +++ b/codecov.yml @@ -4,5 +4,4 @@ coverage: round: down precision: 2 ignore: - - "test/" - - "topobenchmark/run.py" \ No newline at end of file + - "test/" \ No newline at end of file From 03493c4fb2ed20754170fd637d6d889af9870c0c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 12:49:21 -0800 Subject: [PATCH 11/15] Check influence of .gitattributes --- .gitattributes | 1 - test/evaluator/test_TBEvaluator.py | 15 --------------- test/evaluator/test_evaluator.py | 12 ++++++++++++ 3 files changed, 12 insertions(+), 16 deletions(-) delete mode 100644 .gitattributes delete mode 100644 test/evaluator/test_TBEvaluator.py create mode 100644 test/evaluator/test_evaluator.py diff --git a/.gitattributes b/.gitattributes deleted file mode 100644 index 9030923a..00000000 --- a/.gitattributes +++ /dev/null @@ -1 +0,0 @@ -*.ipynb linguist-vendored \ No newline at end of file diff --git a/test/evaluator/test_TBEvaluator.py b/test/evaluator/test_TBEvaluator.py deleted file mode 100644 index 3396f8eb..00000000 --- a/test/evaluator/test_TBEvaluator.py +++ /dev/null @@ -1,15 +0,0 @@ -""" Test the TBEvaluator class.""" -import pytest - -from topobenchmark.evaluator import TBEvaluator - -class TestTBEvaluator: - """ Test the TBEvaluator class.""" - - def setup_method(self): - """ Setup the test.""" - self.evaluator_multilable = TBEvaluator(task="multilabel classification") - self.evaluator_regression = TBEvaluator(task="regression") - with pytest.raises(ValueError): - TBEvaluator(task="wrong") - repr = self.evaluator_multilable.__repr__() \ No newline at end of file diff --git a/test/evaluator/test_evaluator.py b/test/evaluator/test_evaluator.py new file mode 100644 index 00000000..bd08b8ee --- /dev/null +++ b/test/evaluator/test_evaluator.py @@ -0,0 +1,12 @@ +""" Test the TBEvaluator class.""" +import pytest + +from topobenchmark.evaluator import TBEvaluator + +def test_evaluator(self): + """ Setup the test.""" + evaluator_multilable = TBEvaluator(task="multilabel classification") + evaluator_regression = TBEvaluator(task="regression") + with pytest.raises(ValueError): + TBEvaluator(task="wrong") + repr = evaluator_multilable.__repr__() \ No newline at end of file From d208ddb153a58fe7d670c9d6fdb7b50703278e98 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 12:57:36 -0800 Subject: [PATCH 12/15] Fix bug --- test/evaluator/test_evaluator.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/test/evaluator/test_evaluator.py b/test/evaluator/test_evaluator.py index bd08b8ee..99b186a2 100644 --- a/test/evaluator/test_evaluator.py +++ b/test/evaluator/test_evaluator.py @@ -3,7 +3,7 @@ from topobenchmark.evaluator import TBEvaluator -def test_evaluator(self): +def test_evaluator(): """ Setup the test.""" evaluator_multilable = TBEvaluator(task="multilabel classification") evaluator_regression = TBEvaluator(task="regression") From 088e1c860c6a15ec60cd0fd53a203bb782d32262 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 13:44:45 -0800 Subject: [PATCH 13/15] Fix bug --- test/evaluator/test_evaluator.py | 17 ++++++++++------- 1 file changed, 10 insertions(+), 7 deletions(-) diff --git a/test/evaluator/test_evaluator.py b/test/evaluator/test_evaluator.py index 99b186a2..e09eb579 100644 --- a/test/evaluator/test_evaluator.py +++ b/test/evaluator/test_evaluator.py @@ -3,10 +3,13 @@ from topobenchmark.evaluator import TBEvaluator -def test_evaluator(): - """ Setup the test.""" - evaluator_multilable = TBEvaluator(task="multilabel classification") - evaluator_regression = TBEvaluator(task="regression") - with pytest.raises(ValueError): - TBEvaluator(task="wrong") - repr = evaluator_multilable.__repr__() \ No newline at end of file +class TestTBEvaluator: + """ Test the TBXEvaluator class.""" + + def setup_method(self): + """ Setup the test.""" + self.evaluator_multilable = TBEvaluator(task="multilabel classification") + self.evaluator_regression = TBEvaluator(task="regression") + with pytest.raises(ValueError): + TBEvaluator(task="wrong") + repr = self.evaluator_multilable.__repr__() \ No newline at end of file From 37f5a1530434af7c0171cd1de15170fc64d5d8d3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 16:57:07 -0800 Subject: [PATCH 14/15] Revert "Update Docs and Codecov" This reverts commit bbc8ac8a6ab898a666bc8a77cd427ed4085d61f9. --- topobenchmark/data/utils/io_utils.py | 2 + tutorials/homophily_tutorial.ipynb | 904 ++++++++++++++++++++ tutorials/tutorial_add_custom_dataset.ipynb | 883 +++++++++++++++++++ tutorials/tutorial_dataset.ipynb | 454 ++++++++++ tutorials/tutorial_lifting.ipynb | 543 ++++++++++++ tutorials/tutorial_model.ipynb | 499 +++++++++++ 6 files changed, 3285 insertions(+) create mode 100644 tutorials/homophily_tutorial.ipynb create mode 100644 tutorials/tutorial_add_custom_dataset.ipynb create mode 100644 tutorials/tutorial_dataset.ipynb create mode 100644 tutorials/tutorial_lifting.ipynb create mode 100644 tutorials/tutorial_model.ipynb diff --git a/topobenchmark/data/utils/io_utils.py b/topobenchmark/data/utils/io_utils.py index 2cd86386..d0b0708e 100644 --- a/topobenchmark/data/utils/io_utils.py +++ b/topobenchmark/data/utils/io_utils.py @@ -13,6 +13,7 @@ from torch_sparse import coalesce +# Function to extract file ID from Google Drive URL def get_file_id_from_url(url): """Extract the file ID from a Google Drive file URL. @@ -46,6 +47,7 @@ def get_file_id_from_url(url): return file_id +# Function to download file from Google Drive def download_file_from_drive( file_link, path_to_save, dataset_name, file_format="tar.gz" ): diff --git a/tutorials/homophily_tutorial.ipynb b/tutorials/homophily_tutorial.ipynb new file mode 100644 index 00000000..5a694129 --- /dev/null +++ b/tutorials/homophily_tutorial.ipynb @@ -0,0 +1,904 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_1117779/40423503.py:21: UserWarning: \n", + "The version_base parameter is not specified.\n", + "Please specify a compatability version level, or None.\n", + "Will assume defaults for version 1.1\n", + " hydra.initialize(config_path=\"../configs\", job_name=\"job\")\n" + ] + }, + { + "data": { + "text/plain": [ + "hydra.initialize()" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import rootutils\n", + "\n", + "rootutils.setup_root(\"./\", indicator=\".project-root\", pythonpath=True)\n", + "\n", + "import torch\n", + "import hydra\n", + "from topobenchmark.data.loaders.graph import *\n", + "from topobenchmark.data.loaders.hypergraph import *\n", + "from topobenchmark.data.preprocessor import PreProcessor\n", + "from topobenchmark.utils.config_resolvers import (\n", + " get_default_transform,\n", + " get_monitor_metric,\n", + " get_monitor_mode,\n", + " infer_in_channels,\n", + ")\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "hydra.initialize(config_path=\"../configs\", job_name=\"job\")\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Group Homophily" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Loade the data and calculate the group homophily" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Download complete.\n", + "Transform parameters are the same, using existing data_dir: /home/lev/projects/TopoBenchmark/datasets/hypergraph/coauthorship/coauthorship_cora/group_homophily/1048349801\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Extracting /home/lev/projects/TopoBenchmark/datasets/hypergraph/coauthorship/coauthorship_cora/raw/coauthorship_cora.zip\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torch_geometric/data/in_memory_dataset.py:300: UserWarning: It is not recommended to directly access the internal storage format `data` of an 'InMemoryDataset'. If you are absolutely certain what you are doing, access the internal storage via `InMemoryDataset._data` instead to suppress this warning. Alternatively, you can access stacked individual attributes of every graph via `dataset.{attr_name}`.\n", + " warnings.warn(msg)\n" + ] + } + ], + "source": [ + "cfg = hydra.compose(config_name=\"run.yaml\", overrides=[\"model=hypergraph/unignn2\", \"dataset=hypergraph/coauthorship_cora\"], return_hydra_config=True)\n", + "loader = hydra.utils.instantiate(cfg.dataset.loader)\n", + "\n", + "dataset, dataset_dir = loader.load()\n", + "\n", + "# Apply transform\n", + "\n", + "transform_config = {\"group_homophily\" :\n", + " {\n", + " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", + " 'transform_name': 'GroupCombinatorialHomophily',\n", + " 'transform_type': 'data manipulation',\n", + " 'top_k': 5,\n", + " }\n", + "}\n", + "processed_dataset = PreProcessor(dataset, dataset_dir, transform_config)\n", + "data = processed_dataset.data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define plotting function" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "colors = np.array([\n", + " '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',\n", + " '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf',\n", + " '#aec7e8', '#ffbb78', '#98df8a', '#ff9896', '#c5b0d5',\n", + " '#c49c94', '#f7b6d2', '#c7c7c7', '#dbdb8d', '#9edae5',\n", + " '#393b79', '#637939', '#8c6d31', '#843c39', '#7b4173',\n", + " '#d6616b', '#d1e5f0', '#e7ba52', '#d6616b', '#ad494a',\n", + " '#8c6d31', '#e7969c', '#7b4173', '#aec7e8', '#ff9896',\n", + " '#98df8a', '#d62728', '#ffbb78', '#1f77b4', '#ff7f0e',\n", + " '#2ca02c', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',\n", + " '#bcbd22', '#17becf', '#c5b0d5', '#c49c94', '#f7b6d2',\n", + " '#393b79', '#637939', '#8c6d31', '#843c39', '#7b4173',\n", + " '#d6616b', '#d1e5f0', '#e7ba52', '#d6616b', '#ad494a',\n", + " '#8c6d31', '#e7969c', '#7b4173', '#aec7e8', '#ff9896',\n", + " '#98df8a', '#d62728', '#ffbb78', '#1f77b4', '#ff7f0e',\n", + " '#2ca02c', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',\n", + " '#bcbd22', '#17becf', '#c5b0d5', '#c49c94', '#f7b6d2'\n", + "]) \n", + "\n", + "\n", + "def normalised_bias(D, B):\n", + " out = torch.zeros(D.shape)\n", + " for i in range(D.shape[0]):\n", + " for j in range(D.shape[1]):\n", + " if D[i,j] >= B[i,j]:\n", + " out[i,j] = (D[i,j] - B[i,j]) / (1 - B[i,j])\n", + " else:\n", + " out[i,j] = (D[i,j] - B[i,j]) / B[i,j]\n", + " return out\n", + "\n", + "\n", + "def make_plot(Dt, Bt, max_k, number_of_he, plot_type, ax, plot_tyitle=False):\n", + " settings = {\n", + " 'font.family': 'serif',\n", + " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", + " 'figure.figsize': (5.5, 3.399186938124422),\n", + " 'figure.constrained_layout.use': True,\n", + " 'figure.autolayout': False,\n", + " 'font.size': 16,\n", + " 'axes.labelsize': 24,\n", + " 'legend.fontsize': 24,\n", + " 'xtick.labelsize': 24,\n", + " 'ytick.labelsize': 24,\n", + " 'axes.titlesize': 24}\n", + " with plt.rc_context(settings):\n", + " if plot_type == 'normalised':\n", + " h_t = normalised_bias(Dt, Bt)\n", + " \n", + " elif plot_type == 'affinity/baseline':\n", + " h_t = Dt/Bt\n", + "\n", + " elif plot_type == 'affinity':\n", + " h_t = Dt\n", + " \n", + " else:\n", + " raise ValueError('plot_type must be one of: normalised, affinity/baseline, affinity')\n", + " \n", + "\n", + " if max_k <= 20: \n", + " # Plot h_t lines with different colors corresponting to each row\n", + " for i in range(h_t.shape[0]):\n", + " ax.plot(h_t[i], '-o', markersize=8, color=colors[i], linewidth=2)\n", + "\n", + " else:\n", + " x_values_to_visualize = []\n", + " # Visualise only non-zero values, x indices have to correspont to position of non zero values\n", + " for i in range(h_t.shape[0]):\n", + " # Get non-zero values\n", + " if plot_type in ['affinity', 'affinity/baseline']:\n", + " non_zero = np.where(h_t[i, :] > 1e-6)[0]\n", + " #print(non_zero)\n", + " elif plot_type == 'normalised': \n", + " # do not take the ones which are equal to 0\n", + " \n", + " non_zero = np.where((h_t[i, :] > -0.99) & (h_t[i, :] != 0))[0]\n", + "\n", + " # Plot non-zero values and make sure when several values have same y value they are not plotted on top of each other\n", + " ax.plot(non_zero + 1, h_t[i, non_zero], '-o', markersize=4, color=colors[i])\n", + "\n", + " # Add x values to the list of x values to visualise\n", + " x_values_to_visualize.extend(list(set(list(non_zero + 1))))\n", + " \n", + " \n", + " # Manually put axis x values and five size of the ticks\n", + " if max_k <= 20:\n", + " ax.set_xticks(range(h_t.shape[1]), [str(i) for i in range(1, h_t.shape[1]+1)])\n", + " else:\n", + " ax.set_xticks(x_values_to_visualize, [str(i) for i in x_values_to_visualize])\n", + " \n", + " # Size of the ticks\n", + " ax.tick_params(axis='x', which='major')\n", + " \n", + " # Add title and labels\n", + " if plot_tyitle:\n", + " ax.set_title(f'{max_k}-uniform hypergraph, number of hyperedges: {number_of_he}')\n", + " else:\n", + " pass \n", + " # Add grid to the plot\n", + " ax.grid()\n", + " if plot_type == 'normalised':\n", + " ax.set_ylabel('Normalised bias', fontsize=20)\n", + " # Put a line perpendicular axis x in values 1, make it thin and black\n", + " ax.axhline(y=0, color='k', linestyle='--', linewidth=2)\n", + " # Make y scale be between 0 and 1\n", + " ax.set_ylim(-1.1, 1.1)\n", + " #plt.ylim(bottom=-1.2)\n", + "\n", + " elif plot_type == 'affinity/baseline':\n", + " ax.set_ylabel('Affinity/Baseline', fontsize=20 )\n", + " # Make y axis logarithmic with 10 as base\n", + " # Make y axis logarithmic but manually\n", + " ax.set_yscale('symlog')\n", + " \n", + " # Put a line perpendicular axis x in values 1, make it thin and black\n", + " ax.axhline(y=1, color='k', linestyle='--', linewidth=2)\n", + " ax.set_yticks([0, 1])\n", + " ax.set_ylim(bottom=-0.5)\n", + "\n", + " elif plot_type == 'affinity':\n", + " ax.set_ylabel('Affinity', fontsize=20)\n", + " ax.set_ylim(-0.1, 1.1)\n", + " else:\n", + " raise ValueError('plot_type must be one of: normalised, affinity-t, affinity')\n", + " ax.grid()\n", + " return ax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_97245/14240756.py:24: UserWarning: The figure layout has changed to tight\n", + " f.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7QAAAG+CAYAAAATGjtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xTVf8H8E+SjrTpgNINlLJpKXuVJRSRjchSNihLHD/Hoz7iAvRR3CA+PCgbcYMsQUDZFih7FFpogdIWuvdImya55/cHNjRNR0rTyefty1eTnHPP/Sb3Jvdyv/ecIxNCCBAREREREREREREREREREdUy8poOgIiIiIiIiIiIiIiIiIiIqCRMaBMRERERERERERERERERUa3EhDYREREREREREREREREREdVKTGgTEREREREREREREREREVGtxIQ2ERERERERERERERERERHVSkxoExERERERERERERERERFRrcSENhERERERERERERERERER1UpMaBMRERERERERERERERERUa3EhDYREREREREREREREREREdVKTGgTERER1QP5+fnYtm0b5s2bhy5duqBRo0awtrZGw4YN0b59e8yaNQt79uyBJEk1HWqNW7RoEZydnTFmzBhoNBqzlomMjMSLL76I9u3bw9HREUqlEj4+Pujfvz8WL16Mq1evVnHU9VODBg0gk8lM/ieqC7j/1i+3b98ucXsOHDiwpkOrt/Lz87FixQoMGDAArq6usLGxgZubGzp27Ii5c+fit99+M6udixcvcts9xJ599tkSt/+RI0dqOrR67/r16/joo48wcuRI+Pj4wN7eHnZ2dvD29sbgwYPxn//8B3FxcTUdJhEREdUTMiGEqOkgiIiIiOjBxMfH44svvsDq1auRnZ0NAPD29ka3bt3g6OiIhIQEnDx5Enl5eQCAzp0747vvvkOHDh1qMuwaExkZiTZt2hier127FrNnzy5zme3bt2PKlCnIz8+HUqlEYGAgPDw8EBkZifPnzwMAZs6ciY0bN1Zl6PXSc889B7VaDQDYtGmT4XX+E4XqAu6/9UtKSgpee+01AEBCQgL2798PABgwYAATY1UgOTkZgwYNwpUrVwAAAQEBaNeuHXJycnD06FHDeYs536eYmBi89957ALjtHkabNm3C4cOHAQD79u1DYmIiAODw4cO8qaGK7NixA5988glCQkIAANbW1ujevTt8fHyg0+lw+fJlREZGGsrefvttvPPOO1AoFDUZNhEREdVxTGgTERER1WGLFy/GkiVLAAANGzbEt99+iwkTJhj1EkxLS8PLL7+MzZs3AwCcnZ1x6NAhdO3atUZirkkRERFo27at4fm3336LefPmlVo/KSkJLVu2RE5ODtzd3XH8+HG0atXKUL5ixQq89NJLTGhbQNF9lv9EobqG+2/9cuTIEQQFBQFgUrSqPPnkk9iyZQuAe8fSF1980VB2+/ZtdOvWDWlpaRX+PnHbPdwGDhyIo0ePAmBCuyoVPeZNmDABK1asgJeXl1GdvXv3YsaMGUhJSQEATJ8+HZs2beJIJkRERPTAOOQ4ERERUT2xbds2TJw40eRCkYuLC7777js8/vjjAIDMzExMmTIFWq22JsKsUW3atMHChQvh6OiIYcOGYfr06WXW37p1K3JycgAA06ZNM0pmA8Ds2bMxcuRIdO7cuapCJiIiqleysrKwfft2AICrqyuef/55o3JfX1+88sorGDlyZE2ER0RmevTRR/HLL7+YJLMBYPjw4dizZ4+hV/bmzZsNN9cSERERPQgmtImIiIjqgcGDB5fbC2Xp0qWGx9evX8fOnTurOKra6aOPPkJWVhb27t0LOzu7MuuGhYUZHhcdqryQSqXC7t278fLLL1s6TCIionopIiICOp0OANCqVSvI5aaXpt555x3s3r27ukMjogpYsmRJid/fQj179sS4ceMMzz/99NPqCIuIiIjqKSa0iYiIiOqBoUOHllvH398fjRs3Njz/66+/qjKkeiE3N9fw2NbWtgYjISIiqh94bCWq+xwdHdGnT59y6w0ZMsTw+OrVq4iPj6/KsIiIiKges6rpAIiIiIjowU2bNg2BgYHo1KmTWfWbNm2Ku3fvAgDu3LlTlaHVC5wLl4iIyLJ4bCWq2/bu3QuVSmXWfNhNmzY1en7nzp0ShygnIiIiKg97aBMRERHVYa1atcKwYcPMvjAkSZLhsZVV5e5tXL58OWQymcn/R44cMam7ePHiEuvevn3bpO4TTzxRZrtHjhzBhAkT0LRpU9ja2sLDwwOPP/44Dhw4UGqsR44cKbHNWbNmlRnrpk2bDK8//fTTZr1XAEhPT8enn36KoKAgeHt7w9bWFq6urujWrRv+/e9/IyIiotRYL168WGKshUPKq9VqrFixAv369YOnpycUCoXR+ylv+YyMDLz//vsICAiASqWCs7MzBgwYgJ9++skklrNnz2LcuHFo2rQplEolWrRogeeffx5xcXGlxm8pkiRh06ZNGDhwINzd3aFUKuHr64vZs2cjMjKyxGV8fX1LfO+l7W+l7ZeFF2hLaw8ANBoNvv76awQFBcHLywu2trbw9PTEsGHD8OOPP1YoYRMdHY23334b3bt3h6urK2xsbODh4YG+ffti0aJFhptQSvLyyy+XGOPGjRsBAOHh4XjppZfg5+cHJyencvff3NxcfPLJJ+jZsycaNmwIOzs7NGvWDBMmTMCOHTsAlP99quw+XFROTg5+/fVXzJkzB127dkWDBg1gbW0NFxcXdOnSBf/3f/+Hq1evlvn5lradCz+jw4cPY8aMGWjZsiUcHBzg5OSETp064d1330VKSkp5m69ED7L/VpXSfqsXL14MALhx4wZefPFFtG7dGnZ2dmjYsCH69euH1atXQ6/Xl9jmjh07yvxMi9q4caPZx4ry9ufz589jypQp8PHxgY2NDZo0aYIZM2YgPDzcqB2tVos1a9agZ8+ecHZ2hpOTEwIDA7Fq1apS31N5cnJy8OWXX6J3797w8PCAUqlEs2bNMG3aNBw/frxCbZ04cQILFiyAn58fnJ2dYWdnhyZNmmDkyJFYuXIl8vLySl22c+fOZf6+HThwAJMmTULz5s2hVCpNfrsqozLHttu3bxviCAoKMrx+9OhRs47NlZGZmYmPPvoInTt3hrOzM1QqFQICAvDOO+8gIyOjzFhL+t/X19dkmYEDB5b6u1dae4W/ifHx8XjnnXfQtWtXuLq6wtbWtl7sW5Ik4ddff8WTTz4JX19f2NnZwdHREa1atcK0adOwffv2Ch0rg4ODMX36dDRr1gxKpRIeHh7o3bs3vvzyS+Tk5FTocyqUkpKCd999F506dYKTkxNUKhVatGiBGTNm4PDhwwBK/w0r/A0tSWWO60XFx8fj/fffR79+/eDq6gpra2s4OjrCz88PU6ZMwbp165CYmPhA770yhg0bhv79+5tVt+i/PYDK//uDiIiIHmKCiIiIiB4anp6eAoAAIBYtWlSptvbv3y9mzpwpZs6cKTw8PAztHj582KTu9u3bDXVVKpWhblRUlEndr776qtR23333XaFQKES/fv3E5MmTxSOPPCIUCoWhzrJly0qMNTw83NBm3759DfVnzpxZZqwtW7Y01O3bt6/h9cL/w8PDTZb/7rvvRIMGDQQAIZfLRZ8+fcSkSZPEkCFDhL29vQAgrKysxOuvvy70er3J8tHR0Yb2hw4dalj/gAEDxK1bt0T79u2Fvb29GDJkiJg4caJRjDNnzixz+cjISNGqVSvRokUL8eSTT4qRI0cKBwcHQ52XXnrJEMe3334r7O3txbBhw8SkSZOEn5+foZ6Hh4e4fv16abvGAylsG4DIyckRw4cPFyqVSgwfPlxMmjRJdOrUyVCuUqnE33//bdLGv/71LzFz5kzRsGFDQ91evXoZPo/k5GSj+oXbesaMGUIulwu5XC5mzJhh2C8K25s5c6ZRfLdv3xZ+fn5CJpOJnj17ikmTJomhQ4catm/h552enl7u+/7Pf/4jbG1tBQDDdp08ebLo37+/sLa2FgCEUqkUX3zxRYnL//DDDyXurxs2bBCbNm0SSqVS+Pr6ivHjx4sRI0YYff+Kf1fPnz8vfHx8DOWenp5izJgxYsKECaJ169YCgBgzZozYv3+/0b5QuP41a9YIISq/Dxf6/fffjfZPLy8vMXToUPHkk0+K3r17C0dHRwFAyGQy8cYbb5T4fSq6nYt/RuvXrxfPP/+8ACCaNGkixo4dK8aPHy+aN29uqNOoUSPx119/lbsdLbH/VpWiv9VF41i0aJHYtWuXcHBwEAEBAeKpp54SI0aMMPrMx44dKyRJMmnz3Llzpe53xf39999mHyvK2p9Xr14tbG1tRf/+/cXkyZNFz549DeV2dnbi+PHjQggh1Gq1GDx4sGjWrJmYOHGiePzxxw2/yQDEuHHjSnxPRR0+fNhov71+/bpo27atUCqV4tFHHxWTJk0Sffv2FXK53LAPvvTSS+W2m5OTI5566ilD2+7u7mLMmDHiySefFB07djT67h08eLDENt59990Sj6e3bt0y7M9du3YVTz31lHjkkUeETCYz1KmMyh7bkpOTS/xdKPobUvy35EGUtO1atWolvLy8xPjx48WECRNEkyZNDHXatGkjEhISSox18uTJRt/tMWPGiJkzZ4p//etfJutdunSpmDlzphg+fLjh92rmzJli6dKlpb73AQMGiH379omGDRvWu30rIiJCdO7c2VDerl078eSTT4qxY8eKpk2bGl7v3r27iI6OLvO9SZIkXnzxRcP6Cve/yZMni8GDBwulUinatGkjrl27JgYMGFDmb0xR+/fvF40aNTLUb968uRg/frwYO3asYR9ZsGCBWL9+vaFOy5YtDZ/R9u3bS2y3ssf1Qlu3bjUc56ytrUXfvn3FxIkTxbBhw4yO1VZWVuLVV18ts62a9M033xhiVSqVIi8vr6ZDIiIiojqKCW0iIiKih8StW7eMLsyGhYVZrO2KXEBs1qyZoW5JCe3S2p09e7Zo1qyZuHz5slGdM2fOGC74WVlZlZhkLmrDhg0lJs9KUjSRWVKiprjPP//cUL9z584iIiLCqDwjI8PoAvn48ePLvEhd9MJ8r169RKdOncSECROMEqUFBQVizJgxJb6f4ssHBASIpUuXGq0zLi7OkKwEIH755Rfx119/id69e4v4+Hij9j788ENDvYEDB5b7eVRE0X1z9uzZ4rHHHhOpqalGdYpuu+bNm4uCgoIS23rttdcM9R5//PFy133w4EEBQIwYMcKs+Nq3by9at24tLl26ZFQnPT1dPPHEE4Z6PXv2FBqNptQ2n332WaNESUpKilF5TEyM6N+/v1ECsixF99fZs2cLOzs7k/32xo0bhu9L0e/q9evXjW4E+OCDD4ROpzNa9rfffhP29vbC39/fKCFTlsrsw6tWrTIkL/73v/8JrVZr1HZ6erp44403DO0vXLiwzFiKf0bt27cXCoVCrFy50ug7IUmSWLt2rbCysjIkS0+cOFFmu5bcf6vSokWLDDFMmjRJNGzYUGzZssWoTmJiolHie+3atWW2WZHfyYocK4q2+/TTTwtvb29x/vx5ozq//vqrIcnl6uoqcnNzxfTp08WSJUuMtmlaWppRAnzjxo1lrrvoftu9e3fh5+cnRo4caXJTTFhYmGjXrp2hbtGbgorLyckR3bt3N/o+F9+njx8/Lry9vQ0JrP3795cZZ9Hj6bx580Tjxo1FSEiIyWdUWtLRXFV5bCvvN6SiSjruvfHGG0aftVarFXPmzDHUmzZtWqntFd1mX375Zbnrf/fddwUA8emnn5Ybn4+Pj3BwcKh3+9aVK1eEq6urACAcHBxMEr+SJIk1a9YYkrteXl7i7t27pcZSmEwHIPz8/EzOX1NSUsSoUaOEn5+f0edQ1m/M33//bUg6W1lZibVr15ocB/73v/8JhUJhdMwr77zRUsf1CxcuGI5BjzzyiMn5mF6vF999953hxgNLf48sacaMGYb3+9RTT9V0OERERFSHMaFNRERE9JAomowcN26cRduujoS2TCYTp06dKrHeW2+9Zaj32muvldlmVSW0Dx8+bOhR1ahRI5MeX4V0Op3R+/roo4/KbLNooqx79+4mF6mFEOLIkSMlvp/iy0+cOLHE9fzyyy+GOn369BE9evQQcXFxJvUkSRJt2rQx1C3v5oGKKBqnp6enyMrKKrHeI488Yqi3e/fuEutEREQY6igUCnHnzp0y113Yq23nzp1mxadUKsXNmzdLrKfRaIx6w7377rsl1tu4caOhTpcuXUpNbmZlZRl6s8nlckMv1JIU70le2ogFs2bNMvquSpIk+vTpY1ju2WefLXUdP/zwg9E6KpLQrug+XJjQLq/nWWECQaFQiMjIyDLrFv+MPvzww1Lrfvzxx4Z6rVu3LrNXmSX336pUNKENQHz22Wcl1vvzzz+NtllZqiOhDUDs2bOnxHqFPWKBezcTjB8/vsR6wcHBRonOshTfbwMCAkR+fn6JdW/duiXs7OwMdQ8cOFBivcLvHQDxwgsvlLruc+fOGUYe8fDwKHOkh6LHU4VCIc6ePVtiPV9fX5Oko7mq+thWlQltAGLkyJEl1svOzjYkA21sbERaWlqJ9VavXm2UTC2LTqcTjRs3FjY2NiIpKcms+OrbvqVWq40SwFu3bi11HcuXLzfUGzp0aIl1io4IYmdnJ27dulVivfz8fBEQEGD02Zb2G6NWq41GgPj4449LjbHouXN5542WPK5Pnz7d0FZZN6AW7p9lfY/++usv0apVK+Hs7FztPblzcnIMIzvIZDJx8eLFal0/ERER1S9MaBMRERE9BLKzsw3DjatUqnITyRVVHQntsnoEHz161FAvMDCwzDarKqFdtFdQWUkyIYwTK/b29iY9eAoVv/BdWsI1KytLbN682aQXafHlS+tlmp6eblRvzpw5pcb+wgsvGOp9++23Zb7Piii6/sWLF5da74MPPjDUe/PNN0utN3DgQEO9JUuWlFovKSlJ2NjYiMaNG5v0SC4tvgULFpT5XrZs2WKo6+DgIDIzM43KNRqN8PLyMjux+cUXXxjqjho1qtR6RfdXd3f3EhPHQtzr+bV582ZDYqpo8tLKysqkJ1hxRXsNVjShXZF9+MyZM2LRokWlJjAKHT9+3ND+O++8U2bdop9RgwYNSk0kCSFEXl6e0XC069atK7WupfffqlI0oW1vby9yc3NLrKfRaAy9F+VyuVCr1aW2WR0J7TZt2pRab9myZUaff3BwcIn19Hq9cHJyMus9Fd9vf/nllzJjLdqDtH///iblly9fNpQrlcpSf/MLjR492lD/888/L7Ve0ePp2LFjS623b98+sXnz5jLXWZqqPrZVdUL7yJEjpdZ99NFHDfX27dtXYp3s7GyjYfiPHj1aans7duwQQNm9UOv7vrVixQrDcuXdDKPRaIx+Y8+dO2dSp+jNVs8//3yZ7f38889Gn21pvzFFb1JwdXUt82alvLw8oykLSjtvtPRxvWhyPiMjo9R2UlNTy/0eFR3iHSj9xoiq8Nlnn5m9/YiIiIjKIwcRERER1XvvvvsuEhISAAArV66Er69vzQb0AB577LFSy1q1amV4fOPGjeoIx8jp06dx9uxZw/MJEyaUWb9Pnz7w8vICAKjVamzYsKHcdVhbW2Po0KElljk6OmLatGno3bt3qcvb29ujV69eJZY1aNAADRo0MDx/9NFHS22nRYsWhseRkZHlRP1gytrWLVu2NDwua1vPnTvX8HjdunWQJKnEehs3bkRBQQFmz54NhUJhVnyPP/54meUjRoyAra0tACAnJwdbt241Kt+xYwfi4+MBAE5OTqVu10JFt8cff/yBzMzMcmMcNmwYrKysSizr3Lkzpk2bBg8PDwDApk2bDGW9e/eGp6dnmW2PGTOm3PWXpKL7cPfu3bF48WI0b968zHYLv0sAcPLkSbPjGTp0qGE7lUSpVGL48OGG5xs3bjSrXUvsv9Whb9++sLe3L7HMxsYGPj4+AABJknDr1q3qDM3EoEGDSi0run/Y29uX+jsol8sNx76KvCeFQoGRI0eWWWfs2LGGx3///Tdu3rxpVL5q1SrD46CgIDRq1KjM9op+53/66Sez4hw9enSpZUOHDsW0adPMaqeo6ji2VSWlUol+/fqVWm7O99HBwQGTJ082PF+9enWp7RWWzZ8/36z46uO+VTSeiRMnltmujY0N+vfvb3j+448/GpXfuHEDJ06cMDwfN25cme2NGjUKcnn5lzmLHvOGDx8OpVJZal2lUlnuMRqw/HG9aEy//vprqe24uLggKioKP//8c7kxVreYmBh88MEHAID27dvj008/reGIiIiIqK5jQpuIiIionvvjjz/w1VdfAQCef/55zJw5s4YjejBt2rQptaxhw4aGx+Yk+yzt4MGDhsdOTk5lxgoAMpkM3bp1K3H50rRq1arM5Ft5WrRoUeaFXkdHR8Pj1q1bl1rPycnJ8LiqPuuyPr+iifey1j9+/HjDhf2YmBjs3bvXpI4QAmvWrIFCocCcOXPMjq9Dhw5lltvb26Nt27aG58HBwUblhw4dMjzu2rVrqYnnQkVvIpAkCadPny43xvbt25dbp6T4unbtWm79gIAAs9suqjL78JkzZ7BixQq8+uqrmDNnDmbNmmX4//XXXzfUK7xxxxzlbUfA+PM4c+YMtFptuctYYv+tDuX9TtX072pRRW9aKq7ob1d5v3MP8vvVvHlzqFSqMusU/94cP37c6HnR73xpNxYVVfQ7f+nSJeTl5ZW7TEW+8+aqjmNbVWrZsmWZNyqZ+32cN2+e4fHWrVuRlpZmUicmJgb79u1DmzZtEBQUZFZ89W3fSkhIQHh4+APHU/yGpOLHzvKOTyqVqtwboDQaDc6cOWN2m4B5xzxLH9f79OljePz888/j9ddfR2xsbIlt+fr6lnkj2vr169GqVSs4OTnh5ZdfLvOmRUvRarWYOnUqsrKy4OLigm3btpV6AxURERGRuco+wyIiIiKiOu3KlSuYPHkyhBAYO3asIbFdmtOnT2PGjBll1jl48CAaN25syTDN4uzsXGpZ0Z4s5iScLO3q1auGx+b2fi960bXo8qUpmlx6EGV9fgCMkkBl1S2aHCgoKKhUTKUxd1uXtX5bW1vMmDEDy5YtA3Cv51zxnnCHDx9GZGQkRo0ahaZNm5odn6ura7l1mjVrhsuXLwMArl+/blR25coVw+Po6GjMmjWrzLaEEEbPzelZau7+otFoEB0dbXjerFmzcpcprwdgZWMqau/evXjllVdMPsPS5Obmmt22uduxUH5+Pm7fvl3mDR+AZfbf6lDeb0JdidXc3y7gwX6/zNlPGjZsCEdHR2RnZwMw/s5rtVqj5/v370dUVFSZ7RX29AQAnU6HmJgYo5tkSovB0qrj2FaVLLWPd+/eHV26dMGFCxeg0WiwadMmvPLKK0Z11q5dC0mSjJLf5alv+1bRYxsAfPXVV+X20r9w4YLhcfFjW9H35uTkZHQDQmkaNWpk0ou9qNu3bxtta0sd8yx9XH/33XexZcsWxMfHQ6vV4vPPP8eXX36JPn364PHHH8fo0aPRrl27cuMCgMGDB1fZiDqlWbBgAYKDg2Fvb4+dO3eWezMMERERkTmY0CYiIiKqp27duoUhQ4YgKysLw4cPx88//1zukMpqtbrcxFFNJIyBe8MVl0Ymk1VjJKZSU1MNjx0cHMxapmi9lJSUcuuX9f7NUV5voQetWxUsta3nzZtnSGjv2bMHd+/eNboZo3B42IokIACY1cu46PYt3puv6P4SFRVVbgKiuIyMjHLrmLu/pKenGz03Z/+1s7Mzq+0HjanQt99+iwULFkAIARsbG7z22muYMmUKWrRoYRTD7du3DUm04kmCslR0OwKm27Iktfm3qqjytkdtitXc36Sq+O0yd1QBBwcHQ9Kx6H5SfJ85efJkhYbGByz7na+I6ji2VSVL7uPz5s3DggULAABr1qwxSmjr9XqsX78etra2FRoFp77tW0X3FwDYvn17pWIpenwyd/8r7/hUVcc8Sx/XXV1dcfr0abz88svYtm0bhBCQJAnBwcEIDg7GG2+8gXbt2uGZZ57B/PnzjUafqGlvvvkm1q1bB6VSie3bt5c57D8RERFRRXDIcSIiIqJ6KCoqCkFBQYiPj8fIkSOxfft22NjY1HRYRNWqXbt2hvk59Xo91q1bZyhLTk7G9u3b0aRJE4wYMaKmQsTUqVMhhKjQ///+979rLN7qcuPGDfzf//2fIUG9ceNGfPjhh2jfvv0DJ9SJaoM1a9ZU+DtvztDNVLWmTp1qGB48PDwcx44dM5Tt3r0bd+/exbhx48zqdV1Vatu+FRkZWaFYzBn+vC6w1HG9SZMm2Lp1KyIjI/H++++bTJNx7do1Q2L76NGj1fX2yvTuu+/ik08+gZ2dHXbt2oUhQ4bUdEhERERUjzChTURERFTPREVFYeDAgYiJicGIESPw22+/md0LaODAgeVedDN32NHS1PTQtVWh6HCUOTk5Zi1TtF5NXgCv74r2vl63bh0kSQJwL0FaUFCAOXPmlDtyQXEajabcOkW3r4uLi1FZ0f2lsNddTSk+lKw5+291JB2+++47w29FixYtMHnyZIuvo6LbETDdllQxdfH335z9BCj9O198n6np73xF8Nh2n6OjIyZNmmR4XjjCR9HH8+fPr1Cb9W3fKj40d2XjKXp8Mnf/K+/4VFXHvKo8rrds2RLvvvsuLl++jGvXrmHx4sXw8fExlMfHx2PUqFFmTUdSld577z385z//gVKpxM6dO/HYY4/VaDxERERU/zChTURERFSP3L59G0FBQYZk9rZt28xOZldG0eEoy0tYZGZmVnU41S4gIMDw+Pbt22YtU/TCY9HlybImTJhguOgfExODvXv3QgiBNWvWQKFQYPbs2RVus/iwqiUpuh8Un+ey6Pau6LCklmZra2s05605+68577+yCucfB4CuXbtWyToquh2VSmWlb+ipjyry+2/O8Ma1jTn7SXp6ulESq+h33tra2miO4pr+zlcEj23Git4gtXXrVqSlpSEmJgb79u1Du3btMGDAgAq1V9/2reLbu7Lx+Pn5GR5nZWWZDBdekvI+0+bNmxudF1vqmFddx/W2bdti0aJFuHnzJpYvX24YNj8nJwcrV66ssvWWZ9GiRfjggw+gVCqxa9cuJrOJiIioSjChTURERFRP3L59GwMHDkR0dDSGDx9eZjJ72rRpGDx4sMXWXXTuvrIuOMbGxkKtVltsvbVF0c8yKysLERERZdYXQuD8+fOG54MGDaqy2B52SqUS06dPNzxfvXo1Dh8+jMjISIwYMQJNmjSpcJuhoaFllqvVaqN9oPj8kUX3l2vXriErK6vcdZ4+fRoBAQHo0KED7t69W8GIy1Y4LDsAXLhwodz6V65csej6S5Kfn294XN78reb23CuuvO0IGH8ePXv2rJJ5ius6c3//dTpdjfcgfBC3bt0q97hV9PccKPs7f+rUKbPWu3LlSgQEBNTokL08thnr2bMnOnXqBOBe7+pNmzZh7dq1kCQJc+fOrXB79W3f8vT0RPv27Sscz6xZsxAQEIC3337b6PXi77W845NarS43mWxjY2M0zLqljnmWPq7/8MMP+P7770td1srKCi+99BKefvppw2tXr14td51VYfHixXj//ffL7Zn9559/YvDgwfjuu++qOUIiIiKqL5jQJiIiIqoHoqOjERQUhOjoaAwbNgzbt28vs2d2cHAwDh48aLH1t2rVyvD45s2bpdbbv3+/xdZZm3Tv3h09e/Y0PN+6dWuZ9Y8fP474+HgAgEqlMrogSZZXtFfdnj178MEHHwCo+PCwhXbt2lVm+R9//GEYStbR0RETJkwwKh8zZowhka7VarFly5Zy17l+/XpcvXoVcrkcjRs3fqC4SzNz5kzD45MnTyIhIaHM+r///rtF11+SojcaREZGllnXnIRESfbv319mj+L8/Hzs3bvX8Jzf05KZ+/t/5MgRs4dYrk30ej327NlTZp3t27cbHg8YMMBo1AMAWLBggaEn5ZkzZ3Djxo0y2xNCYOXKlbh69apRL9XqxmObqaLHk9WrV2P9+vWwtbU1+h01V33ct55//nnD419//RU6na7M+rGxsfjhhx9w9epVdO/e3aisRYsWRjdcbdu2rcy2du/ebZhWpCxFt9XevXuNbqAqTqPRmHXuaunj+ttvv4358+dDr9eX2UbRz8zBwaHcdVrakiVLsGTJEkMyu6ybJOLi4nDw4ME6eWMTERER1Q5MaBMRERHVcdHR0Rg4cCBu376NYcOGYceOHdUyzHhRjzzyiOHxn3/+WWIdrVaLL7/8srpCqnafffaZYS7mL7/8EomJiSXW0+v1Rr2Q3n77bZN5J8my/P390bdvXwD3Pv8jR47Ax8cHw4cPf6D2NmzYUGovsIKCAvznP/8xPP/Xv/4FR0dHozrW1tb45JNPDM8XL16MtLS0Utd39uxZrF+/HgDw1ltvPVDMZRk0aJBhqFydToclS5aUWvfnn39GWFiYxWMorui2OXfuHM6dO1diPZ1Oh+XLlz/QOtLT07Fs2bJSy7/66ivDULNt27atknm8yzJz5kzIZDLIZDJ8/PHH1bruiij6+3/gwIFSE0pF9/m65j//+U+pNz9ERUUZvp8ymQyLFi0yqdO+fXvMmTMHwL2E4ssvvwwhRKnrW7FiBcLDw6FUKvHqq69a4B08OB7bjE2bNg329vYA7vXEvXv3LiZMmPDA77W+7VtPP/00OnToAODeyEFlnfcVxqvT6dC+fXuMGTPGpM7ixYsNCfv169eXOkR48WNvWaZMmYI2bdoAAFJSUvDVV1+VWnfZsmVmTZVQFcd1tVpd7g0PRUcaKZr8L+rAgQNo3bo1GjRogDfeeKPM9iri/fffx+LFi6FUKrFjx44aHU2CiIiIHg5MaBMRERHVYTExMQgKCjJc4NPpdBg/fjxGjRpV5v9JSUkWjWPIkCGGXkNHjx7Fhg0bjMpzcnIwdepU+Pj4wMfHx6Lrri0eeeQRfP755wDuzbc4bNgwk+FZs7KyMH36dBw7dgwAMG7cOLz55pvVHuvDqGivOgCYM2cO5PIH++fQxIkTMXz4cJNhSDMyMjBp0iRcunQJABAYGFjqheopU6bg5ZdfBgDcuXMHgwcPLnG40N9//x3Dhw+HVqvF5MmT8dRTTz1QzOVZv349XF1dAQDffPMNPvzwQ5OeYTt37sScOXMwY8aMKomhqLFjxxp6ngkhMGHCBFy8eNGoTmZmJqZPn24yJK+5pk6divfeew/ffvutSQJo/fr1eOeddwAAdnZ22LRpU7XfKFR03lY3N7dqXXdFtG/f3nDDSFRUFN5//32jz1Or1eKll15CUlKS0VC/dUWzZs0QFRWFiRMnmsyle+3aNYwcORJ5eXkAgFdeeQVBQUEltrNixQr07t0bwL2RIqZOnWrSXkFBAT777DNDovGrr75Cs2bNLP2WKoTHNmNOTk4mv8MPOtpH9+7dodVq69W+pVQqsXXrVnh4eAAAFi5ciE8++QRardaoXkpKCqZNm4Zt27bB3t4emzdvLvGYPGjQILzyyisAgLy8PIwYMQLXrl0zqpOWloYnn3wSt2/fNus9KZVKfPfdd7CzswMAvPPOO4bkciEhBFavXo1FixZh6tSpZr33qjiuz549u8Qe4jqdDuvXr8fatWsB3OvNPnv27BLbeOaZZ3Djxg1kZmbis88+w6FDh8x6P2X54IMPDDdYuLu74+uvvy733x4PevMZERERUSGZKOvWTSIiIiKq1Z588kmzhjUsjSVPBYODgzF8+HDDfLYdOnRAQEAAcnJycOzYMbRv3x47d+5E9+7dER0dDQAYP348HBwc4OrqarhgvmPHDuzYsQMAsG/fPkNvsKFDh8LT0xPt2rUzXChfu3YtgoODAQCbNm0yxFI4nGS/fv0wZ84cXLt2zdDD8caNGzh+/DgAoGXLloY5Gp944gk88cQTRusPDg42DKHbt29fo6F133zzTbRr187kc/j+++/xf//3f0hPT4dcLkdgYCCaNWuGtLQ0/P3331Cr1bCyssLLL7+Mjz/+2NDzrahZs2YBABISEgwXMj08PDBs2DBDnc8//9yQgKzo8oWxF32vW7duRW5uLoD726XoZ/3aa68hJSWl1M9vzpw5JvNdlufjjz82XJguafsVbpOi6y/tPZW3/ry8PHh7eyMjIwMKhQIxMTHw9vY2O9bCHmIAkJubi6eeegp79uxBz5490aJFC2RkZODYsWOGzzAoKAjbt2+Hs7Nzme1+8cUXeO+996BWqyGTydC1a1e0atUKOp0OFy5cwK1btyCTyTB//nx8/fXXsLKyMlo+ODjYcEG7tP216HYsy+XLlzFmzBjDDTJeXl4IDAyElZUVLl26hMjISLz77rsICgoyJFYGDBiAI0eOmLRV2X0YuDc86ciRIw2JbJlMhp49e6Jly5bIzMzE33//jdzcXMybNw+rVq0CcG+Y48Ih3ovuP0XjKtzXNmzYAJ1Oh+effx4eHh7o0aMH5HI5zp8/bxgS1dXVFb/88kuJcwFX9f7btWtXw3Dqp0+fRo8ePUr9rMpS9Pfv4sWLhhsuOnXqhM6dOwMANm7cCMB4fyrp97fob3VR169fx4ABAwz1W7Vqha5du0Kr1eL48eNwcXHB7t27MXv2bBw9etSozdLWX9L+XHT95n6mRd9/Se+pcP0pKSl47bXXABjvtwMGDMDbb7+Np556Cnl5eejfvz9cXV0RGxuLEydOQJIkyGQyvPzyy/jiiy+MfiuKy8vLw7PPPovNmzdDCAEbGxv06dMH3t7eyMzMREhICFJTU6FSqbBs2bIS52Uuetwr6XcbKHnfr6zKHttK+3yL/y4UHrcrytzjXtE4Svs+lPfbdPLkSfTp0wcA4OfnV6FRK44cOWL0+7lmzRqMHj0a0dHR9Wrfun37NiZNmmSYR9vFxQW9e/dGgwYNEBcXh5MnTyI/Px/NmjXDTz/9ZEjIl0QIgX/9619Yvnw5hBCQy+Xo3bs3fHx8kJKSguDgYCiVSvz888/46KOPSvyNKWmbHjp0CE899RRSUlIAAM2bN0e3bt0gSRLOnDmDxMRE/Pe//4W1tbVh+PyZM2cafq9KU9njOnBvJICffvrJMOJF8+bN0alTJ9jb2yMpKQmhoaGG37IuXbpg+/btpSbzfXx8EBsba3h+8ODBSs1vHxYWZjRXekUtWrQIixcvfuDliYiI6CEmiIiIiKjOGjNmjADwwP9b2o0bN8TcuXNF8+bNha2trWjYsKEIDAwU//vf/4RGoxFCCNGsWTOTOJo1a2ZoY9GiRWXGPGDAAEPdmTNnlll35syZQgghDh8+XO5nsWjRIrPWX/j/4cOHS/0c0tLSxCeffCIGDBggPDw8hLW1tXBxcRGdO3cWr7/+urh+/XqZn6M564+Kinrg5Qtjr8hnXdJ2K/r/hg0bynxPJRkwYIBZ28RS63/++ecFADFmzJgKx1r8eyNJkvjpp5/E8OHDRePGjYWNjY1wd3cXQ4YMET/88IOQJMnstuPi4sSSJUtE7969hZubm7CyshJOTk6iU6dO4vnnnxfnz58vddkNGzaUu72Lbsfy5Obmik8//VT06NFDODs7Czs7O9GiRQsxY8YMceLECSGEEAcOHDC0PXTo0HI/rwfZhwvl5+eLVatWiaCgINGoUSNhZWUlGjRoIDp37ixeeeUVERERIaKiosrdfwoV/c0o3GdCQ0PFc889J9q0aSMcHByEg4OD6NChg3jnnXdEcnJyqbFV5f6blJQk5HK5ACC8vLyEXq8v97MqjTm/f4XK25+K/lYXFx8fL1599VXRtm1bYWdnJ5ycnESXLl3EJ598IrKyssr8zB5k/eZ+pua+/9L2o8LvT3x8vHj77bdFly5dhIuLi7CxsRFNmzYVU6dOFcePH6/QNjl37px48cUXRfv27UWDBg2ElZWVaNSokejbt69YsmSJuHPnTqnLlnfcK23ft4TKHNtK+3yL/1943K6o8totPO6ZE4c5v03t27cXAMSyZcsqFGfR/bFw38rOzhZffPGFCAwMFG5ubvVq39qxY4eYOnWqaNGihbC3txc2NjbC29tbDB8+XHzzzTciNzfX7LZOnDghpk2bJpo2bSpsbGyEi4uL6NKli3j77bdFfHy8EKL035jStmlKSop49913RceOHQ2//23atBHPPfecCA0NFUIIsXbtWkM78+fPNyvWyhzXC925c0esWrVKPPnkk8Lf3184OTkJhUIhVCqVaNWqlXjyySfFr7/+Wu7x4a+//hItW7YUTk5O4tVXXzUr/rJcuHDBrO9ydf8+ERERUf3HHtpERERERPRQKBzR4I8//qjw/NlFe8Y97P+E2r59O8aNGwfg3hCrP/zwQw1HZL7iPbQLe3XWNp9//jlef/11APfmnrbkvKdEVDl6vR5NmzZFeno67t69CxcXF7OXLd5Du6QRLqh2WbZsmWGo9rfeegsffvhhDUdERERE9HDiHNpERERERFTvpaamYufOnWjWrBmGDh1a0+HUaZGRkYbHHTt2rMFI6qdbt24ZhmPt1KmTYU5WIqod/vjjD8THx2PixIkVSmZT3cRjHhEREVHtwIQ2ERERERHVe5s3b0ZBQQHmzp0LuZz/DCpu1apV8PT0NMw9WpYDBw4YHhed+5YqLzIyEoMGDUJubi6aNm2KXbt2wcbGpqbDIqIi1q1bBwCYP39+DUdCD+qtt96Cp6cnbt26VW7dwmOejY1NpeaeJiIiIqLK4ZUcIiIiIiKqNxYuXIixY8cavSZJElatWgVra2s888wzNRRZ7Zabm4vExESsWbOmzHonT57EwYMHAQBDhgxBp06dqiO8h0ZOTg6ysrLQq1cvnDx5Ej4+PjUdEtFDa/jw4ViyZInRa9HR0di9ezcCAgLQt2/fGoqMKisrKwuJiYlYv359mfV++eUXQw/tWbNmwc3NrTrCIyIiIqISMKFNRERERET1RmhoKHbs2IFz584ZXvv6668RERGBadOmwcvLqwajq/1++OEHLFq0CGq12qRs7969GDNmDCRJgpubG9auXVsDEdZvXbp0wfnz5xEcHIzGjRvXdDhED7W///4b3377LXJycgDcuznq1VdfhV6vN8xxT3Xb0qVLsWrVKmi1WqPXJUnC5s2bDTfBtWnTBp9++mlNhEhERERE/7Cq6QCIiIiIiIgsLSgoCI899hhSU1Nx9OhReHl5YenSpRVq47XXXkNKSorJ67NmzQIAuLq64vPPP7dEuDXO1dUVcrkckiTh/fffx4oVK9CpUyd4e3tDrVbj4sWLiI6OBgB06NABv/32G5o2bVrDUZtnx44d2LFjBwAgODjY8PratWtx5MgRAMCbb76Jdu3a1UB0pnx9fWs6BCL6R3x8PAICAtCrVy9cuXIFYWFhePTRRzFt2jSz20hJScFrr70GAEhISDC8fu3aNcPxpF+/fpgzZ45FY6fSFfa0liQJzz33HJYsWYKAgAB4eHggKysLZ8+eNWyrAQMG4JdffoGzs3NNhkxERET00JMJIURNB0HmkSQJcXFxcHR0hEwmq+lwiIiIqI4SQiA7Oxve3t6cS/gh8zCcT3777bf48ccfERUVBbVaDXd3dwwcOBD//ve/0axZswq11aFDB8TExJRa7uPjg9DQ0MqGXGvcuXMHe/fuRXBwMK5fv464uDjk5ubC1tYWrq6u6NatG0aPHo0nnniiTv12LF26FB9//HGZdXbv3o3+/ftXU0REVBe8+OKLOHnyJOLj46HT6dCkSROMGzcOL7/8MlQqldntREdHo2PHjmXWmTJlClatWlXZkKtdXT6nvH79On7//XcEBwfj2rVriI+PR25uLuzt7eHl5YXevXtj0qRJGDZsWE2HWis9DOeUREREVPUqcj7JhHYdcufOnTrTC4KIiIhqv9jYWDRp0qSmw6BqxPNJIiIisjSeUz58eE5JRERElmTO+SSHHK9DHB0dAdzbsE5OTjUcDREREdVVWVlZaNq0qeHcgh4ePJ8kIiKqf/be2oslIUvMrr8ocBGGtxhe6fXynPLhxXNKIiIisoSKnE8yoV2HFA7h4+TkxJNFIiIiqjQOD/jw4fkkERFR/ROSHgJrO2tIkMqtK4ccIekheMrpKYutn+eUDx+eUxIREZElmXM+WbcmuCEiIiIiIiIiIiKDDE2GWclsAJAgIUOTUbUBERERERFZGBPaREREREREREREdVBKXgqS1clm15dDjga2DaouICIiIiKiKsCENhERERERERERUR2SkJuApaeWYthvwxCdHW32chIkDPIZVIWR0YOQJAkrV66Ek5MTZDIZbt++bbG24+Li8NJLL6Fly5ZQKpXw8PDAqFGjsH//foutg4iIiKiqcQ5tIiIiIiIiIiKiOiA2Oxbrr6zHjhs7oJN0FVpWBhkcbRwxxHdIFUVHD+Lq1auYO3cuTp48afG2Q0JCMGLECOTn52PJkiUYMGAAYmNj8f7772PYsGFYuHAhPvroI4uvl4iIiMjS2EObiIiIiIiIiIioFovKjMLbwW9j9PbR2Bqx1ZDMtrOyw0z/mfhP3/9A9s9/JSl8/cN+H8JWYVttcVPZFi1ahK5du0KhUODNN9+0aNvJyckYPXo00tPT8eOPP+L1119Hz549MX78eBw7dgxNmzbF0qVLsWnTJouul4iIiKgqMKFNRERERERERERUC0WkR+CNo29gzI4x2HVzF/RCDwBQWaswt8Nc7B+/H6/1eA1jWo3BV0FfwdHGEcC9ubKL/nW0ccSKQSswsOnAGnkfVLLly5dj2bJlOHbsGNq2bWvRtt9//32kpKSgV69eeOKJJ4zKnJ2dsXDhQgDAv//9b+Tl5Vl03URERESWxiHHiYiIiIiIiIiIapGrqVex+tJqHIo9ZPS6k40TpvtPx+R2k+Fs62xUFuQThEOND+HP23/iUMwhZGgy0MC2AQb5DMIQ3yHsmV0LhYWFoXHjxhZvt6CgAJs3bwYAjB8/vsQ648ePx3PPPYfExETs3r0bEydOtHgcRERERJbChDYREREREREREVEtcDHpIlZfXo2/7/5t9LqL0gUz/GdgUrtJUFmrSl3eVmGL0S1HY3TL0VUdKllAVSSzAeD48ePIzMwEAPTo0aPEOu7u7vDx8UFMTAz27NnDhDYRERHVakxoExERERERERER1RAhBM4mnsW3l77FqYRTRmXudu54OuBpjG8zHnZWdjUUIdU1ly9fNjz29fUttZ6vry9iYmKM6hMRERHVRkxoExERERERERERVTMhBE7EncDqy6txPum8UZm3yhuzO8zGmFZjOFQ4VVhMTIzhsZubW6n1CstiY2PLbE+j0UCj0RieZ2VlVTJCIiIioophQpuIiIiIiIiIiKiaCCFwJPYIVl9ejSupV4zKfBx9MKfDHIxqOQrWcuuaCZDqvOzsbMNjpVJZar3CsvIS1EuXLsWSJUssExwRERHRA2BCm4iIiIiIiIiIqIrpJT0OxBzA6surEZEeYVTW0rkl5naci6G+Q2El5+U6ql0WLlyIV1991fA8KysLTZs2rcGIiIiI6GHDM2QiIiIiIiIiIqIqopN02Bu1F2tC1yAqM8qorJ1LO8zrOA+P+jwKuUxeQxFSfePo6Gh4nJ+fD5VKVWK9/Px8AICTk1OZ7dna2sLWlkPfExERUc2p82fKkiRh5cqVcHJygkwmw+3bty3WdlxcHF566SW0bNkSSqUSHh4eGDVqFPbv32/W8tevX8fs2bPh4+MDpVIJb29vPPXUUzh9+rTFYiQiIiIiIiIiotpHq9diW+Q2PL7jcbwV/JZRMruDawf8d9B/8euoX/FYs8eYzCaL8vHxMTxOTk4utV5hGXtbExERUW1Xp3toX716FXPnzsXJkyct3nZISAhGjBiB/Px8LFmyBAMGDEBsbCzef/99DBs2DAsXLsRHH31U6vI7d+7E5MmToVKp8MEHH6Bbt264du0a3nvvPfTp0wdff/01FixYYPG4iYiIiIiKW7lyJVauXAm9Xl/ToRAREdV7Gr0G2yK3Yf2V9UjITTAq6+reFfM7zUdvr96QyWQ1FCHVdx07djQ8vn37Nnx9fUusV9gxqGh9IiIiotqozt7+uWjRInTt2hUKhQJvvvmmRdtOTk7G6NGjkZ6ejh9//BGvv/46evbsifHjx+PYsWNo2rQpli5dik2bNpW4fHh4OCZPnoyCggLs3bsXzz77LHr06IHp06fjyJEjsLe3xwsvvIBDhw5ZNG4iIiIiopI8//zzCAsLw5kzZ2o6FCIionpLrVVj09VNGPbbMHx06iOjZHZvr97YMHQDNg3fhD7efZjMpirVp08fODs7AwDOnj1bYp2kpCTExMQAAEaOHFltsRERERE9iDqb0F6+fDmWLVuGY8eOoW3bthZt+/3330dKSgp69eqFJ554wqjM2dkZCxcuBAD8+9//Rl5ensnyb7zxBvLy8jBhwgR0797dqKxZs2ZYsGABJEnCK6+8YtG4iYiIiIiIiIioeuUU5GBt6FoM+20YPj/7OVLyUgxlA5oMwPcjvsfqIavR3bN7Ga0QWY6trS2mT58OAPjtt99KrLNt2zYAMEyxSERERFSb1dmEdlhYGJ577jmL39FaUFCAzZs3AwDGjx9fYp3C1xMTE7F7926jsvj4ePzxxx9mLX/58mX2kiEiIiIiIiIiqoMyNZn438X/YchvQ/DV+a+Qrkk3lD3W7DH8OupX/PfR/6KTW6dqi0loJeSeT0Tq5jAkfXsZqZvDkHs+EUIrVVsMVD1Wr14NZ2dn9O3bFxkZGSbl7733HlxdXRESEoJdu3YZlWVlZeHjjz8GAHzyySews7OrjpCJiIiIHlidnUO7cePGVdLu8ePHkZmZCQDo0aNHiXXc3d3h4+ODmJgY7NmzBxMnTjSU7du3D5Iklbl8586dYW1tDa1Wiz179pRaj4iIiIiIiIiIape0/DR8d/U7/Hz9Z+Rqcw2vy2VyDPMdhrkd5qJVw1bVHldeWCrStkRA5OkAGQABQAbkXU1Fxu+34DKxDez8G1V7XFS6pKQkJCUlAQDu3r1reD0iIgI5OTkAgObNm0OlUpks+/XXXyMrKwsnTpzAoUOHMG7cOKNyNzc3/P777xgxYgQmT56MJUuWYMCAAbhz5w6WLFmC6OhoLFy4EDNnzqzCd0hERERkGXU2oV1VLl++bHjs6+tbaj1fX1/ExMQY1S+6vEKhQNOmTUtc1sbGBl5eXiUuT0REREREREREtU+yOhkbrm7AlutbkK/PN7xuJbPCqJajMDtgNnydfWsktrywVKRuDruXxAZM/oo8HVI3h6HRdH8mtWuR//3vf1iyZInJ60OHDjU8Pnz4MAYOHGhS54UXXsAbb7yB9u3bY9CgQSW2HxgYiCtXruDjjz/GqlWr8M4778DJyQk9e/bEJ598YrQeIiIiotqMCe1iYmJiDI/d3NxKrVdYFhsbW+LyDRs2hEKhKHP5mJgYk+WL0mg00Gg0hudZWVllB09ERERERERERBYVnxOPdVfWYXvkdhRIBYbXreXWGNtqLJ7p8AwaO1TNSILmEFoJaVsi7iexS60IpG2JgPdbvSCzrrOzENYrixcvxuLFix9o2fnz52P+/Pnl1vP29saKFSuwYsWKB1oPERERUW3AhHYx2dnZhsdKpbLUeoVlxZPMhcuXtWxZyxe1dOnSEu/SJCIiIiIiIiKiqhWbFYu1V9Zi141d0Amd4XVbhS0mtpmIme1nwlPlWYMR3qMOTb43zLgZRJ4O6ispUHVxr+KoiIiIiIgshwntWmzhwoV49dVXDc+zsrJKHcaciIiIiIiIiIgq71bGLawJXYM/ov6AJCTD6/ZW9niq3VOY4T8DrnauNRihsfyrqffnzC6PDMhnQpuIiIiI6hgmtItxdHQ0PM7Pz4dKpSqxXn7+vbmSnJycSly+sLw0pS1flK2tLWxtbcsPmoiIiIiIiIiIKuV62nWsvrwaf0X/BVEkO+xo7YgpflMwzW8aGigb1FyApdCrteYlswFAAJKZvbmJiIiIiGoLJrSL8fHxMTxOTk4uNaGdnJwMACY9pguXT09Ph16vL3Ue7dKWJyIiIiIiIiKi6nMl5Qq+vfwtjsQeMXq9gW0DTPefjsntJsPRxrHEZWuSPrsAuWcSUBCbY/5CMkBux8uBRERERFS38Ay2mI4dOxoe3759G76+viXWu337tkn9os/1ej1iY2NLXL6goADx8fElLk9ERERERERERFXvfOJ5rL68Gsfjjhu93kjZCLPaz8KTbZ+EvbV9DUVXMiEENLcykXsqHnlXUgHJ3K7ZhQ0AyoDaM1w6EREREZE5mNAupk+fPnB2dkZmZibOnj2LgQMHmtRJSkpCTEwMAGDkyJFGZcOGDYNcLockSTh79myJCe2LFy9Cq9WWuDwREREREREREVUNIQROJZzCt5e+xdnEs0ZlHvYeeCbgGYxrPQ5KK2UNRVgyKV8H9blE5JyKhy4pz7SCXGZWcltmZwV7JrSJiIiIqAyZ+Wp8eXwLjt45jDx9NuwUjhjQJAiv9p0IZ2XN3PApr5G11mK2traYPn06AOC3334rsc62bdsAAB4eHhg1apRRmZeXF0aMGGHW8h07dkSPHj0sEjcRERHRwyohIQEXL15EVlZWTYdCREREtZQQAsfuHMP0vdMx98+5Rsnsxg6N8V7v9/DHuD8wxW9KrUpmF9zNQfpvkYj/8BQyfr9llMyWq6zhOLAJPN/ogUbT/ABZOY3JAJeJbSCz5uVAIiIiIirZsuPb0e/Hgdh253OkiPNQKyKQIs5j253P0e/HgVh+YkeNxPVQnsGuXr0azs7O6Nu3LzIyMkzK33vvPbi6uiIkJAS7du0yKsvKysLHH38MAPjkk09gZ2dnsvynn34KOzs7bNmyBefPnzcqi42NxapVqyCXy7Fs2TLLvSkiIiKih0h6ejrefvttNGvWDI0bN0a3bt1w9uz9C9MtWrTAO++8g/T09BqMkoiIiGqaJCQcjD6Ip3Y/hecPPo9LyZcMZb5Ovviw34f4fezvmNhmImwUNjUY6X1Cq0fuuUQkrryIpK8vIPdMAoRWMpTb+DrBZVJbeC3sCedhzWHlooSdfyM0mu4PWeH82IXJ7X/+yuys0Gi6P+z8G1XvmyEiIiKiOmPZ8e1YF7kINto8DA+xx/zdjTB/pzvm726E4SH2sNHmYW3Ee1h2fHu1x1ZnhxxPSkpCUlISAODu3buG1yMiIpCTkwMAaN68OVQqlcmyX3/9NbKysnDixAkcOnQI48aNMyp3c3PD77//jhEjRmDy5MlYsmQJBgwYgDt37mDJkiWIjo7GwoULMXPmzBJj8/Pzw48//ogpU6Zg6NCh+M9//oNu3brh+vXrePfdd5Gbm4v//ve/GDRokKU+DiIiIqKHRmhoKEaOHIm7d+9CiHtDa8pkxl2S7ty5g6VLl+K7777D7t270bFjx5oIlYiIiGqIXtLjz+g/sfryatzIuGFU1qpBK8zvOB+PNXsMCrmihiI0pU3JQ25IPHLPJULk6YzKZLYK2Hdxh0OgF6w9Ta91AYCdfyN4v9UL6ispyL+SAilPB7mdFZQBrrAPcH1oemZnZGTgiy++wKVLl+Dk5ITJkydzyj8iIiKicmTmq7H++lIEXbZFqzuu0CkUKJALQCEDhIBHmgoz/tIjskky1ktL8Uy3odU6/HidTWj/73//w5IlS0xeHzp0qOHx4cOHS5wD+4UXXsAbb7yB9u3bl5pUDgwMxJUrV/Dxxx9j1apVeOedd+Dk5ISePXvik08+MVpPSZ544glcuHABn3zyCT788EMkJibCxcUF/fv3x88//4yePXtW7A0TEREREdRqNUaPHo07d+7AysoKnTt3hru7O/bu3WtU78aNG/j222/x6aefYuTIkbh69SqcnJxqKGoiIiKqLlpJiz9u/YG1oWtxO+u2UZmfix/md5qPoKZBkMtqR3JX6AXyw1ORExIPzY0Mk3JrLxVUgV6w7+wGuW35l/H0ELij0eOWWo/8XB2UQoYWGj1aQtTdi4DF5ObmwsvLC7m5uQCAvXv3YsiQIQDu3dQYGBiI+Ph4Q/2ffvoJr7/+umHERSIiIiIy9eXxLRh4WcA3zh26wlPlwg4k//zVyeVoHucBGZKwzHcrFg+aUW3xyURhtxaq9bKysuDs7IzMzExekCUiIqIHVpfPKb788ku89tprGD16NL755ht4eXkhJSUF7u7uOHDggMnNinv37sXIkSPx4YcfYuHChTUUde1Rl7c9ERFRWQr0Bdh5cyfWha7D3Zy7RmWd3Dphfsf56Ne4n8moLjVFn6VB7ukE5J5OgD6rwLhQIYN9RzeoAr1g4+NodsxRl5JxcFM4NGrdvaHGBQx/be2t8OgsfzTv6Gqx91BT5xXff/89ZsyYAaVSibFjx+L9999Hy5YtAQBPPvkktm7dCgDw9PSEm5sbwsLCIEkSjh07hr59+1ZbnPUZzymJiIjqnyGrp2PknynQyeX3E9klEQJWkoQ9Q1zx57zNlVpnRc4p6svNmURERET0ENi1axf8/f2xbds2KBT3hggt6yLv8OHDMXbsWOzcuZMJbSIionooX5eP3yJ/w4YrG5CoTjQq6+HZA/M7zkdPz561IpEthIDmZgZyQ+KRF5YKSMblChclHHp5wb67BxQq6wq1HXUpGX98E3oviQ2Y/NWodfhj1WWMeLYDmndyq9T7qGn79u2Dra0tTpw4gc6dOxtev3v3LrZt2waZTIaxY8fip59+grW1NU6dOoVBgwZh9erVTGgTERERlSAhNwFdz9+GTuFcfmWZDDqFAt0vJJZf14KY0CYiIiKiOiMsLAyvvPKKIZltjr59++KDDz6owqiIiIiouqm1avx6/VdsvLoRqfmpRmV9G/fFvA7z0NWjaw1FZ0xSa5F7Lgm5p+KhS8kzLpQBynYucAj0gm3rhpDJK55412n1OLgp/H4SuzQCOLgpHLM+cYGVde2ZO7yizpw5g+nTpxslswFg27ZtkCQJ1tbW+Prrr2Ftfe+mgF69emHy5Mk4evRoDURLREREVHtdTb2K/55bh+PxBzE3xeXenNnm3AgqBBonV318RTGhTURERER1RmZmJry9vSu0jKOjI/Ly8sqvSERERLVedkE2frr2EzaHbUaGJsOoLKhpEOZ1nIcA14CaCa6Ygths5ITEI+9yMoTWuDu23MEaqp6eUPX0hFUDZaXWc/Nc0r1hxs2gUetw83wy2vbyrNQ6a9KdO3fQpUsXk9d///13yGQyjBgxAl5eXkZlnTp1wo8//lhdIRIRERHVWpKQcDT2KL4+tw6RWZcAADIJEMLKvGQ2AMhksK7mFDMT2kRERERUZzRs2BCxsbEVWubixYto1KhRFUVERERE1SEjPwPfh3+PH8N/RLY22/C6DDIM8R2CuR3moq1L2xqM8B6pQI+8S8nICYmH9m6OSbltC2eoAr1g598IMiu5RdZ561LK/TmzyyMDbl2s2wltSZJMXsvIyDD0wH7qqadMypVKZYnLERERET0s8nR52BaxE2subURqwV0AgI1Ghn5XHOEb7witVQVSxkLA0c6hiiItGRPaRERERFRndOnSBRs3bsS//vUv2NnZlVv/5s2b+O677zBo0KBqiI6IiIgsLSUvBd9d/Q4/X/8Zebr7I64oZAqMaD4CczrMQYsGLWowwnu0SWrknopH7rlEiHy9UZnMVgFVNw+oAr1g7W5v0fXqCvRIi881L5kNAALIz9VaNIbq5uXlhStXrhi9tnnzZmi1WiiVSowaNcpkmZiYGDRs2LC6QiQiIiKqNVLyUrAh9Af8cv0XaKR7N4a6ZFph4EVHOOc4QMjkkCp6n6VMhtbde1k+2DIwoU1EREREdcbUqVMxY8YMDBs2DGvWrEGbNm1KrCdJErZt24aXXnoJarUa06dPr+ZIiYiIqDIScxOx8epGbI3Yinx9vuF1K7kVxrQcg9kBs9HUqWkNRggIvYS8q6nIDYmH5lamSbl1Ywc49PKCXWc3yG0sO2d1yp1shP0dh+unE1GQZ95w4wDuzdmtsrZoLNWtT58++OGHH/D000+je/fuCA8Px4cffgiZTIaRI0fCwcG4t5AkSfjll1/Qtm3N9+AnIiIiqi43M27iv+fW4dCdfZCgBQTQ6o4tAsOdYKW7d5OlKBxhXAi45+uQaqOAXi4re+hxIWAtCXR8Zl7Vv4kimNAmIiIiojpj6tSp+Oabb/D333/D398fnTt3hr+/PwBg1apV2LJlC6Kjo3HmzBmkpaVBCIGgoCBMmDChhiMnIiIic9zNuYt1oeuw48YOaKX7PYlt5DYY13ocngl4Bl4OXmW0UPV0mZp7vbHPJELKLjAutJLDvpMbHAK9YN3EATJz5yE0Q0G+DpFnEhEWHIek6OzyFyiJAFp0drNYTDXhxRdfxE8//YRevXqhUaNGSEtLgyRJkMlkeOWVVwz19Ho9rl27hnfffRc3b94scShyIiIiovpECIGQ+BCsOLsOV9JPAQAUehkCr6ngd9sJQmZjVF+hl+Art0G3sU+iyYSJuLp5E/bv2w4IUXJSW9wbFmjQiHGwcXSs8vdTFBPaRERERFRnyGQy7Nq1C8OHD8eZM2dw4cIFXLhwATKZDNu2bTPUE/+cYAcGBuK3336rqXCJiIjITNFZ0VhzeQ1239oNvbg/ZLedlR0mtpmIme1nwt3evcbiE5KA5kYGckLikR+eajLEt5WrHVS9PKHq5gG5veV6QAshkHQ7G2HBdxFxNgk6jfFw5lbWcrTo4oaoSynQFisria29FVp2rdsJ7V69euHzzz/HG2+8gZSUFAD3zhHfeust9OnTx1Bv8eLF+OijjyCEgEwmw/jx42sqZCIiIqIqpdVrsfvWH/jf+fVIyL8FALDPk2PARUd4pTpCkivu98YGYFegRdtGXug6ez4aBAYabsIMeGYOBAQO/7EdWoXsfmL7n7/WksCgEeMQ8Mycan+PTGgTERERUZ3i4uKC4OBgLFu2DF9//TXu3r1rUqdJkyb4v//7P7z88suwsuIpLxERUW11I/0GVoeuxv7b+yEJyfC6ylqFye0mY7r/dLgoXWosPn2uFupzicg5FQ99ar5xoRxQ+jWCQ6AXbFs2gExuud7Y+blaRJy+1xs79W6OSblrUwf49/VGm54esLW3RtTlFPyx6nLZc2nLgEdn+cPK2rLDn9eEV155BaNGjcL+/fuh0+nwyCOPoGvXrkZ1Bg0aZDgPdHR0ROfOnWsgUiIiIqKqk6nJxOarv+D7sB+Qq08DAHimWOORS05Q5asgZDKj+bEb5hegg39ndFzwAmx9fEpss8Mzc9F24iRcXr8aN8+dgqagALa2NmjZrRc6PjOv2ntmF5KJwu4rVOtlZWXB2dkZmZmZcHJyqulwiIiIqI6qb+cU165dQ2RkJLKzs+Ho6IjWrVujXbt2NR1WrVTftj0REdVd4anhWH15NQ7EHDB63dHGEdP9pmOK3xQ42zrXSGxCCBTEZiP3ZDzUocmAzvjSmdzJBqoennDo6QmFs61F1xt/IwNhwfG4cT4Jeq1kVG5tq0Drnh5o388bbj6OJsOZR11KxoGN4SjI00EAkAGGvzZ2Vhj8tD+ad3S1WLw8r3h4cdsTERHVrNjsWKw6vwF/3N4FPTSQCaB9lB26XXeETNgZ1ZUJgcZagc6PDkPrp2dDrlLVUNSmKnJOwe4qRERERFSntWvXjglsIiKiOuJS8iWsvrwax+4cM3q9oW1DzGg/A5PaToKDjUONxCZp9FBfTEJuSDy08bkm5batGsAh0AtKPxfIFPISWngwedkFuHYyAWHH45CRqDYp92juBP9+3mjVzR02ytIv5d2wlvA/5zx4yQRaaxVQSkC+HIi01iPeSYvmVno0t1jUdUtycjLCw8PxyCOP1HQoRERERA/sYtJFfHVmLc6mHAMgYF0A9LvqiJZ3HSHJjae9sdbp0ULpgO6TpsNj5CjI5Oafv+q0etw8l4Rbl1KQn6uFUmWNFp1c0bKbe42N9sOENhERERHVa6Ghodi+fTvee++9mg6FiIjooXUm4QxWX16NkPgQo9fd7Nwwq/0sTGgzAfbW9jUSmzYxFzkh8VCfT4IoNg+1zM4Kqm4eUPXyhLWb5eITksCda+m4GhyHqEvJkPTGvcBt7a3Qppcn2vfzRqPG5Sf4/wpLxLzNZ2GnV6OL9gCaqWMg0+shFAo42Pvgtnow5m4+i9XTu+Mxfw+LvY+64s8//8SMGTOg15c/zzgRERFRbaKX9Pjz9gF8fW4dYtXhAADnbAUGXnREo0xHSHK50bDiKo0W/k2ao8v8F+DYIaDC64u6lIyDm8KhUeuMhvy5dSEZf/8aiUdnWXbUH3MxoU1ERERE9drly5exZMkSJrSJiIiqmRACJ+NO4tvL3+J80nmjMi+VF54JeAZjW4+FrcJyw3abHZtOQt7VFOSExKMgKsuk3LqJAxwCvWHfyRUyC/ZCyc3QIPxEPMJPxCErJd+k3Lt1A/j380bLLm6wsjFvvflaPf615SKeUB9Ai6RwFEhWyIEcAgrIIOCScxcL5Otw090Pr22xwqm3BkNZD+bRJiIiIqrP1Fo1fgrfivWh3yFLlwgIwDfeBn2uOsGmwB4oNj+2W74WHXv0Qfv5z8Haze2B1hl1KRl/fBN6L4kNmPzVqHX4Y9VljHi2A5p3erB1PCgmtImIiIioTtJoNLhx4wYyMzOh0+lKrRceHl6NUREREZEQAkfvHMXqy6sRmhJqVNbUsSnmdJiD0S1Gw1phXUoLVUeXno/c0wnIPZMAKUdrVCazlsOukxscAr1g08TRYuuU9BJirqbhanAcoq+kQkjGvbHtHK3RLtAL/v280cCj4r3A/wiNx6C0fWiSEIEC3EtUC8iM/hZICjRNiEAQgL1X2mNslyaVe1O1QGhoKJYvX46jR48iLi4OGo2mpkMiIiIiqrTE3ESsvvgdtt/8DVqRC7kEdIuwR4dbTgD+uRH03ike5JIEH2GFrqPHotnkqZDb2DzwenVaPQ5uCr+fxC6NAA5uCsesT1yqdfhxJrSJiIiIaglJo0H2vn3IPnAQ+swMKJwbwHHwo3AcNgxy2+rvuVRbXbx4EW+99RYOHDjAYSOJiIhqEUlIOBB9AKsvr8b19OtGZS2cW2Bux7kY5jsMVvLqvRwlJIH8iHTkhsQj/3qayUU6Kzc7qAK9oOrqAbmd5WLLSs1D+PF4hJ+IR25GsWSrDGjq5wL/vt5o3skVCqsHn5P78MUotEkK/yeZLSul1r3xIlsmhePQhag6n9DetGkT5s2bB51OByHKu+p6j0xW2mdDREREVPOupV3DV2fW4njCAQjoYauRYcglJzRJcoRU7PzZVqtDa2dXdJ81Fy6PPGKR85yb55LuDTNuBo1ah5vnk9G2l2el12suJrSJiIiIaoHsQ4cQ9+ZCSFlZgFwOSBIglyP7r78g//AjeH/8MRwHBdV0mDXu0qVL6N+/P9RqtdkXLwFewCQiIqpKOkmHfbf3Yc3lNbiVecuorG3DtpjXcR4GNxsMuezBk7YPQp9TgNyzicg9nQB9WrHhveUy2LVvBFWgF2xbOFvsXEGvkxB1KQXhx+MQE26aPFc528Cvrzf8+njBydWu0uvLytfCO+xnFEjmXOKToUCyQqubWwH0r/S6a0pYWBjmzZsHrVaLwMBA9OzZE7a2tvjss88wffp0tGjRAgCQk5ODs2fP4ujRo2jTpg0mT55cw5ETERERGZOEhGN3gvHVmTW4kX0RAOCWboUBFxvCUe0AITOeH9s5X4uANv7o9Nz/wa55c4vGcutSyv05s8sjA25dZEKbiIiI6KGSfegQ7jz/wv0XJMnor5SdjTvPP48mK/8Lx0GDaiDC2mPJkiXIzc1Fy5YtMWXKFPj7+6Nhw4awLaMH+59//omPP/64GqMkIiJ6OGglLXbf3I21oWsRkx1jVBbQKADzO83HgCYDqvXGMiEECqKzkBMSj7zQFEBvfEVO4WwDVU8vqHp4QuH04EMyFpeRqEZYcByuhcQjL7vYUOZyGZoFNIJ/P280a+8CuaJyiX0hBE5HpeGXs7H4IzQer6bfQjbkKL13dpFYINAw5Wal1l/TVqxYAa1Wi2+++Qbz5s0DAKSmpuKzzz7DzJkzMajY+fL333+Pp59+GiNGjKiJcImIiIhMaPQa/HZ9J769tBFpBbGAANpFK9HzmiPk0r0paEThqZ0Q8CqQ0GXAYLSeMw9WjpabGgcA9HoJ0aGpuBuRbl4yGwAEkJ+rLb+eBTGhTURERFSDJI0GcW8uvPektB7HQgAyGeLeXIjWfx97qIcfDw4ORteuXREcHAylUmnWMnfu3KlQb24iIiIqm0avwY7IHVh3ZR3ic+ONyrq6d8X8jvPR27t3tSayJY0O6gtJyA2JhzZBbVJu26YhHHp5QdnOBTKFZeLSafW4eT4ZYcFxiIvMMCl3bKSEf19vtOvtBYeGlT9/S8rOx7bzd/HrmVjcSsmFTEholhcDjRowJ5kN3JtTWy7V7Slbjh49iiFDhhiS2eWZNm0aduzYgRUrVmDz5s1VHB0RERFR6dLy07Du0g/4NeIX5EuZUOhl6HvVAW1jHSHJjG+2tNJLaG5th24Tp8B7zBOQKSw7X3VaXC7CT8Th+qkEkxsyyyUDlCpri8ZTHia0iYiIiGpQ9r5994YZL48QkLKykL1/P5wff7zqA6ulsrOzMWPGDLOT2QDQp08fbNiwoQqjIiIiejjk6fKwNWIrNl7ZiKS8JKOyXl69ML/jfHT36F6tieyC+FzkhsRBfSEZosA4USu3t4J9dw849PSClQWG9y6UejcHYcH3Lv4Vn2dQrpCheSc3tO/njSbtGkImr9xnodNLOBaZjJ9Px+LgtSToJQEnbQZG55xG85xbEDrxz9zZ5pFBwFFVt2+OjI2NxcyZM41eK9znSruJ8ZFHHsGyZcuqPDYiIiKikkRlRuGrM+tw+O4fkKCFSi3H6AvOcEt3hCRXQCpyymhfoEU7z6boOncBnLt2s2gcmjwdbpxNRPiJeCRGlX49Ug7A21oGL2s5bGRAgQDitRLitAISAAigRWc3i8ZWHia0iYiIiGpQ1l8HIGQyyISAXiZDQgMVEpxU0CoUsNbr4ZmVC8+MXCiEgJDJkP3XgYc6od2kSROoVKoKLdO8eXM0t/C8QkRERA+TXG0ufr72M74L+w5p+WlGZf0b98e8jvPQ2b1ztcUjdBLyQlOQExKPgmjTC3E2Po5QBXrBvoMbZNaWmbdbq9Ej8mwiwoLjSrz418DDHv59vdE20BP2FhjKPCZVjV/PxmLLuVgkZmlgJWnRU30J3XIuQZZXAMD8ESGLEpChdY9elY6vJul0Ori6uhq9Vjj9TEJCQonLCCFKLSMiIiKqCkIInI4/g2Vn1uJqxkkAQJNEa/QPbQSlRgUhkxnNj90oX4sOnXugw3MvwsbDw3JxSAJ3IzMQfiIOt84nQ6eVjMoLb8hs08sDhzaGo6FWhy72VrCRyyCEgEx276+3jRU6SALn1Tpk2FihZVcmtImIiIjqNSEENNeuIXPHTuQcOQKZEEh0sselpu7QWSkMQ4xDCCQ2cMBVbz06xSbBI0sNbXpGTYdfo8aNG4fg4GDMnj3b7GWioqLw999/Y8aMGVUYGRERUf2TqcnEj9d+xPdh3yOrwDiJ+6jPo5jXcR78G/lXWzy61DzknE6A+mwCpFzjntEyGznsO7tDFegFG28Hi60zKToLYcFxiDiTCG2+cQ9whbUcLbve643t1apBpXum52v12H81Ab+ejcXxG6mAEGhZcBuP55yAKicDesk4OS+DQHPHdPi38cBfF/KgkRQoe+hxAVuFHm2eeL5ScdY0d3d3REREGL2mUqmgVCpx+vRpTJ061WSZY8eOQWHhYTqJiIiISqKVtNh9Yx9Wnl+HRM1NyCSg8w07dL7hBODeiIOF82PLJIEmkhxdh49Ci+mzLDrNYHZaPq6djMe1k/HISsk3KW/UxAF+fbzQpqcH7Bzu3ZAp73oRiiv3Yyg8vy38ay0DeqmsoA/QwMq6es+tmNAmIiIiqibaxCRk7d6NzJ07oSlyES7RyR7nfD3vVyy8GPrPX51CjnO+nuhyOxEOcls8zH2N33rrLfTq1Qs///wzJk2aZNYyJ06cwNNPP82ENhERkZnS8tPwfdj3+OnaT8jR5hhel0GGYb7DMLfjXLRu2LpaYhGSQP61NOSeikd+RLpJt2QrD3s4BHrBvos75ErLXObS5OkQcSoBYcfjkBKbY1LeqLED/Pt5o01PD4vMHRgen4VfzsRi+4W7yMzTwlmfiSm5R+GdHQtNwb0kth73k9kNbdQI8LWF/6BRcOg1GbB3gdXO/2HHj3tw7wMqKal974Mb/tTjsFI5VTrmmtSpUyds2LABr7/+Otzc7vcM6ty5M9auXYunnnoKffr0Mby+adMmbN++HR06dKiJcImIiOghkV2QjU2hP+P7sB+RK6XApkCGR0Md0CzeCZLc+JzRRqdHS4eG6D59FtwefcxiU/botHpEXUxB+Ik4xF4zPXe2tbdCm56e8OvjBTcfR6MyoVbDOkwHSWYLWSk3ScpkMggIWIfpINRqyOztLRK3OZjQJiIiIqpCUl4esg8cRObOncg9cQKQjIf10crluNTU/d6T0k5e/+mtHdrUDXoPP/Ss4phrs0uXLuH999/Ha6+9hpUrV2LMmDFo27YtHB0dIZeXPKRoeHh4NUdJRERUNyWrk7Hp6ib8GvEr8nR5htcVMgVGtRiF2R1mo7lz9dxap88uQO6ZBOSeToA+Q2NcqJDBLsAVDr28YNPcySIXAIUQSLiZibDgONw4l2QyFKOVrQJturvDv19juPs6Vnqd2fla/H4pHr+cicGlO5lQCB2G5B9Hh+ww5OdKEJBDUySJbS3To617AQL69oH3Y7Mhc/E1aq/lmOcwRgjs+/V3aPRWuHepUWb4a6vQY/hTj6PlmOcqFXdtMGTIEOzZswc9evTAq6++igULFsDa2hpPPvkkQkJCMGDAAPTs2RNNmzbFtWvXEBoaCplMhrFjx9Z06ERERFQPxeXE4euz67E3eif0yEfDTAWGXmyABtmOkORyo2HFHTRatG/eFl0WPA9Vm7YWWb8QAimxOQg/fm9UIY3aeCQjyICmfi7w6+OF5p1cS+1Zrf7zLwjhUuZ4P/eak0EIB6j/PADVE9U3LaJMCPEgU+5QDcjKyoKzszMyMzPh5FS376YlIiKqz4QkQX36DDJ37kT2/v2Q1GqTOsrOnZEYOAgrbyahc9JJs9uOajcM/13yQqXiq8vnFHK5/IEvIOv1+vIr1XN1edsTEVHVSchNwPor6/FbxG8okAoMr1vJrTC21Vg8E/AMmjg2qfI4hBAoiMpETkg88q6mAnrjS1aKBrZQ9fKEqrsnFI6Vn6caAPJztLgWEo+w4/FIj881KXdv5gj/ft5o3cMDNpXsAS6EwLnodPx8JhZ7LscjT6tDd10YBuSEQJGdizydaW9vb4c8dOjcBm1GPw2bZj1KvwHyH7rcLETsWIkbZ08jL78AdkobtOreE22eeN7iPbNr6rwiMTERTZo0gV6vh0wmQ2xsLLy9vaHRaNC9e3dcvXrV6HxRCIFWrVrh3LlzcHR0LKNlMhfPKYmIiIDLyZfxxak1OJ9yDICEVndtEXjVEVY6e5NzNneNHp37PAK/eQtg1aCBRdafl1OAiFOJCD8Zj9Q7pqMKObkq4dfHC20DveDooiy3vdSlm5CX6Qug5A4jxvSwc45Go4UzKxx3URU5p2APbSIiIiIL0dy6hcydu5C5axd08fEm5daNG0M94DHsa9wVv8QBqQkFGKk5Zug/Ux4BAceM81URep3yIPdjWmroJiIiovokNjsW60LXYefNndBJ93ty2CpsMaHNBMxqPwueKs8yWrAMKV8H9blE5JxKgC6p2I2AMkDZpiFUgV5QtnWBTG6B3tiSwN2IdIQFx+HmxWRIOuNzCxs7K7Tt6QH//t5wbVL5BGhKjgbbzt/Bz2dicSs5F81EHJ5RH4FrdgLS8uxw7xaC+8lslZUW/q0bIWD4BLj0GAPIzZ+f0ErlBP+pC+FvOo10veHh4YHc3FzDOaHtP3NN2tra4uDBg3jxxRexY8cOaLVa2NjYYMyYMVi+fDmT2URERFRpekmPA9GH8NWZdYjNuwq5Hgi8Zg//206QZP/MPf3P6apckuArt0W3sU+i6YSJkFlVPiUrSQKxYWkIPxGHqEspkIrdAGplLUfLru7w6+MF79YNzDp3lvJ1yLuaivxsT5iXzAYABaQCzqFNREREVGfo0tORtecPZO7cifzQUJNyuYMDxIBHcbxFD2zMdkZshgaIvN/zSSVlmJXMBu4N6WOjz7RY7HXV22+/jcGDB5td/88//8THH39chRERERHVLbcyb2Fd6DrsubUHenF/BBM7KztMajsJM9rPgKuda5XHUXA3B7mn4qG+kARRbIhvucoKqu6eUPXygpUZPUrMkZupwbWT93pjZyXnmZR7tXKGfz9vtOzqDmubyl2g00sCxyKT8euZWPwVlggHfSbGaI9gdk4kUrNtoJWskAY7Q305JLTwskHAI0FoPmI25EqHSq2/vrOxKbmHvru7O3755RdoNBqkpaWhUaNGpdYlIiIiMpdaq8ZP4duwPvQ7ZOniYZcnw4iLTvBMdYQkt4JU5NKeUqtDW1cvdJs9Hw17BVpk/RmJaoSfjMf1kATkFp+OB4BHcyf49fFCq+4esLUrP/UrtBLyr6dBfSYKeZFq3BsXvSLzYesht6nekRCZ0CYiIiKqIKmgADlHjiBz5y7kHD0K6IrNTaNQwKpXb1z274NNMh9cTs4HYgHg3gmnSkqFnz4EbXPuwiXb/N7GEgSEPWeL8fPzw4ABA8yuf+fOnSqMhoiIqO6ISI/A6sur8eftPyFw/5zCwdoBU/ymYJrfNDRUNqzSGIRWgvpyMnJD4lEQm21SbuPrBIdAL9gFuEJmZW4PkdJJkkDM1VSEBcfhdmgqhGR8LqVUWaNtb0/49/WGi5eq0uuLTVNjy7k72HI2FmmZWRgqncKS3PPQZOmQXmCPhGIXCl1UAgHdO8B/7HyovKpnfvKHga2tLby8vGo6DCIiIqrjktXJWHl+E3bd+g1akQPPVCsMv+gC+3wVhMx4fuwGGi0C2ndGp+dehLJx5afrKcjX4eb5ZISfiEP8DdMOLnZONmjXyxPt+niZdR4r9AKamxlQn41GXlgGhK7wBs4HOedWQOlXtf9uKI4JbSIiIiIzCCGQd/EiMnfuRNbefZAyTU8krdq2w+2uj+AnBz8cStYDKQCQDwBQShloqwuBnzoWrulas3tlFyWHDPqW1XuyWNtMnToVLVq0qNAyHTt2xHvvvVdFEREREdV+V1Ou4tvL3+Jw7GGj151tnTHdbzom+02Gk03VzoOrS8lDzql4qM8lQlIb3wwos1HAvqs7HAK9YO1Z+aQyAGSn5SP8eBzCT8QjJ920F0uTdg3h388bLTq5QWFducS5RqfHX2GJ+OVMLE7cSEIgQrEg/wTss9IRk9MACbABcL+XsI1CQtu2jREwaiq8ug7g1CjVYOfOnXjllVdw69atmg6FiIiI6oCItAh8fmoNQhIPQECHgCglul13g0zcuzlRFJ6+CQFvHdD10eFo9fQzUNhXpJezKSEEEm5mIvxkPG6cTYJWY9wLWiaXwbdDI/j18YJPQCMoFGWfxwohUBCTDfXZWORdToKkKUwL3x+NSI4M2CmCYeeRitS48RCwR9lJbgkymRr2Q8wfPdESmNAmIiIiKkPBnTvI3LULmTt3QhsdY1KucHNDcmAQdrl1wm8ZSujyBJB372TTVspBa30I/NS34Z5eALnhbPf+RctMRz1UuTIoJFmZSW4BgQIrCT0HjLLo+6trNm/eXOFlOnTogA4dOlRBNERERLXbxaSL+ObyNzh+97jR6y5KF8xqPwtPtX0K9taVu+hWFqEXyL+WipyQeGgiM0zKrT1VUAV6wb6LG+S2lb9EpddLiL6ciqvBcYgJSwWKDWxj72wDv95e8OvrDWc3u5IbqYDrCdn45Uwstp+PhXd+JB7XH8OU7GhEZzojWW8DwPhGxCaeKgQMGo42Q56CtV3l10/my8nJQXR0dE2HQURERLWYEALH7hzHstNrcDPnPKy0wIArDmhx1xGS3HgKEyu9Hi3snNB90gx4Dh8OmbxyN0jmZmpwPSQB4SfikZGoNilv6GkPv77eaNvLE/ZOZU+nIoSANj4XeefuQH0xHvrcwvPs++fbMuTCTn4S9m4xsO3WCbIOzwENm8Hlrz+RehAAJJSc1L43TZDLIAVklUzeVxQT2kRERETF6LOzkbVvH7J27oL67FmTcpmdHdQ9++FQ027YmO+GHJ0A0gBAwFpSo6X+NPzzbsIzTQNFCUnsHAcJdh2aoe+gsejq3x/TVgxH71MqCIgSk9qFQ4Ke65aHf7UeUQXvuH47cOAAPvroIxw6dKimQyEiIqpyQgicTjiN1ZdX43TCaaMyd3t3PBPwDMa1Hgc7q6pLqOqzNMg9nYDcMwnQZxYYFypksO/oBlWgF2x8HC3SOzkzWY2w4HhcOxkPdZbx+mQywCegEfz7esO3QyPIy+nFUp4cjQ67L8Xh5zOxSLkTgSfwNz7PvYKkLFvE5TkjDG5G9R3sFPDv1R0Bj89Cw8ZNK7Xuh012djYOHjyIoKAgODs7G15///33K9zWpUuXLBkaERER1SMF+gL8dv13fHNxA9K00XDKluOJi85wyXSEJFcYDStuX6CDX9MW6Db/eTi2b1+p9ep1Em6HpuDaiXhEX00zmRrHWqlA6x4e8OvjBQ9fp3LPm3WpeVCfj4P6bCx0mYU9sIumgTWwk5+BfYMIKLu2hazTVMCtjVEbdo8NQSOxH2mHJQjhAECPe7257/2VydRwGaSA3WNDKvXeHwQT2kREREQAhE6H3OPHkblzJ7IPHoLQFBuaUiaDvlNXnG4diLWyZogrkAM5ACBgJWnQQjqDdnkRaJyWDyvJNImday/B2r8xAoMeR/8uw2GluH8a9uLExfhM92/0veQCW50CEgTkkBn+FlhJCO6UhjcmfgJbhW2Vfxb1TWJiIo4ePVrTYRAREVUpIQSC7wZj9eXVuJh80aissUNjPBPwDJ5o9QRsFGX36KjM+jU3M5F7Kh55V1OBYhfkFC5KOPTyhH03DygcKh+DXivh5sUkhAXH4e71DJNyBxdb+Pf1hl8fLzg0VFZqXUIInI/JwK9nYvH35WsYpDuOFwvOQJtVgIgsN1wU7kb15TKgZTtfBIycDN+ugZArFKW0TGUZOnQoTp06hR49eiAkJMTw+uLFizlMOxEREVVaRn4G1lz8Ab9E/AyNyECzeBsMD20Ea60KkMmMEtmuGh069uiDgGefh3WjRpVab+rdHISfiMf1UwnIz9GalDdu2wB+fbzRoosbrG3KPo/UZ2mgvpgI9ekoaFMKAy66jB628guwV4XCrosP5J2fALzevHfXZynshgyFdz811H8eQH54OqQCBeQ2eij9GsJ+yOBq75ldiAltIiIiemgJIaC5dg2ZO3Yic88e6FNSTCv5+CK8Qz9stG+Ly1o74J/zTLnQorn+HNrmX4NPmhrWetMkdp5SgqydB7oPGIGgXmNKvYA8sOlAiEkf4z3vd+ASo0ezBHvYaOUosJYQ7alGmo8CHwz4BAObDrTsB1CL6fV6hIaGIiAgAFZW909Zv/vuuwq3deLECUuGRkREVKtIQsLh2MNYfXk1wlLDjMqaOTXDnA5zMLLFSFjLratm/Wotcs8nIfdUPHTJecaFMkDZzgWqQC8oWzeETF75JGRaXC7CguNw7VQ8NLnGc3HL5TL4dnKFfz9vNPVzgbyS60vN0WD7hbvYcfoGfFOPYaQ4jieyUxCe6YaLBS4m9Ru5OqHD4FHwe3Qk7J2cS2iRKiIyMhJCCNy8edOkTAhRwhJlYxKciIiIACA6MxpfnF6Lo3F/QEgF6BZhhw43PSBk/9wE+c8pg1wSaCKzQrdR49B88hTIrB/8fFqj1iLyTCLCT8QjKTrbpNyhoS3a9fZCu95e5U6NI6m1UIcmI+/UTWjixD8BG49CZCO7Cnu7s7Dr4A5Ft8eBJi8BFRgWXWZvD9UTj0P1hNmLVDkmtImIiOiho01MQtbu35G5cxc0EREm5TLnBojt2h+/NgzAX3qXe3ctagG50KGp/hLa5V+Fb3oObHSmSex8GwmirSs69R+CIX0mwNbavB5BQT5BODD5EP68/ScOxRxCqiYDDWwbYI7PIAzxHfLQ9cweN24cdu/ejWHDhmHPnj2G12fNmsWLkURERAD0kh5/Rf+F1aGrEZkeaVTWqkErzO0wF0N9h0Ihr5rewQV3spETEo+8S8kQWsmoTO5gDVUPT6h6ecKqQeV6RwOAtkCPG2fv9cZOuJVpUu7sZgf/ft5o19ur3DkFyyNJAsE3UvDr6dvIuXYQoxCMpepI3Mh0QXiOCwSaGdW3sVHAL7APAoaOhUfL1jxPsaCNGzfi22+/xdy5c03Kvv/+e0yZMsXstr7//nvMnDnTkuERERFRHSKEwNmEc/j81BqEZZyErRZ47IIDmiS7QS+3gihyCmej1aN1Qzd0f3ouGvXt98Dnd0ISuBORjvDj8bh1MRn6YufMCis5WnR2Rbs+XmjSruybMaUCPfKvpkJ9KhL50TpAFCan7y9jLbsBe9vTsPNzgFX34YDvHEBRf9LA9eedEBEREZVBUquRffAgMnfsRO7Jk4BkfBIJa2ukd+qFvV5d8JOsMXRyK0ACZNCjse4K2mouo0V6NpRa0yS2xlqCrmUDBPR/FMP6T4K9reqBYrRV2GJ0y9EY3XL0A77L+uPo0aMQQuD48eMmZeyRQ0REDzOdpMMfUX9gzeU1uJ1126jMz8UP8zrOwyCfQZDLKjdXdEmkAj3yLiUj51Q8tHdyTMptmjvDIdALdu0bQWZV+fUnx2QjLDgOEacTUJCvNypTWMnRoosb2vfzhnebBpU+1t/NyMOWMzG4fOYY+qoP4v905xGXaY+wTHdE61ub1G/augUChjyB1r36wNq28kl7MjVy5EiMHDnSIm3JZLIHOockIiKiuk0n6fD7jf1YeX4dEjWRcE1XYOLFBnDMdYAkl0Nf5JTVUaNFQNsAdFnwIux8fR94nVkpebh2Mh7XTiYgOy3fpNzNxxF+fbzQuocHlKrSe30LnYT8iHSoT91AfmQehFR4o+r9oK1kd2FndQL2beSw7vEY0Go5YFU/O8UwoU1ERET1lpAkqE+fuTcv9v79kNRqkzp5rf0R3KIn1lu3RIbVP0P6CAFvfRja5F9Eq8wM2GlMk9gFVhIKmjuhXZ9HMDxoKpzsOKykJX3++edYsWIFXnjhBZOy5cuXY8yYMWa3tX37dvzrX/+yZHhERETVTqvXYufNnVgXug53cu4YlXV07Yj5neajf+P+VXITlzZZjdyQeOSeS4LINx7mW2argKqbB1S9PGHt8WA39RVVkKdDxJlEhAXHITnGdDhGF28V/Pt6o20vTygdKjeMeoFOwoHwRBw8eRreMb9jpDiOQTkSrmR44Pf8Nib1HZwdETBoONoHDUEDD89KrZse3IYNG9CnT58KLdOnTx9s2LChiiIiIiKi2iZXm4v1l37G9+E/QK1PRtsYWwwNd4Vcune+apgfWwh46gQ6PfIo/ObMh8LB4YHWpyvQ49bFZISfiMeda+km5UqVNdr08oBfHy+4NnEstR0hCWhuZSLv9C2owzIhdIVp3PujLimQAjurYNj7FsC65wDI2n4E2D5Y3HUJE9pERERU72hu3kTmzl3I/P136OLjTcp17p646NcHG+za4Zbyn/kPhYC7PhJtNefQKjMNDvmmSWydXEJeMxVa9e6D4YOmoZGjWzW8m4fTnDlzMGfOnBLLXF1d0axZsxLLSuLmxu1ERER1V74uH9sit2H9lfVIVCcalXX36I55Hech0CvQ4olsoZeQF5aG3JA4aG6aDvNt7a2CKtAL9p3dIbep3LDmQggkRmUhLDgOkWcToSswHknHykaOVt090L6fNzyaO1X6vUYmZmPXiVAUXP4Nj+mO4uX8JFzJ9MD+LF/ohPF7USjkaNk9EB0GDYVPx86QV9EQ7mS+Bxk6vHnz5mjevHkVRGMZGo0Gy5cvx88//4wbN25AoVDAz88PM2fOxLx58yCvwJyXhW7fvm3We/7ss8/w2muvPUjYREREtU5CbgK+PLUOf8buBHR56B2mQtsYT+jlxr2WFXoJvrb26D5xKho/PgayBzjWCiGQFJ2N8BPxiDyTiIK8Yjd+yoCm/o3g18cLzTu6QmFd8jqEECiIzUbemdtQX06BpCm8afN+CleOLNgpjsO+cQZsegVC5vc2YO9S4ZjrMia0iYiIqF7Qpacja88fyNy5E/mhoSblwl6Fm+0D8WODAITYN4b4ZxjORvootC04i9aZyXDKM01i6+UCuU1s0bxXLwwfPB0eDbyr4+1QKRYtWoSOHTtWaJmOHTvivffeq6KIiIiIqoZaq8aWiC3YeHUjUvJSjMr6ePfBvI7z0M2jm8XXq8vUIPd0AnJPJ0DKLjAutJLDvqMrVIFesGnqWOnEcn6uFtdDEhB2PA5pcbkm5W4+jvDv5402PTxgY1e5S1i5Gh32XbiF6JNb0THtTzyjv4aILFdcyvBAhta0t7Vb06YIeHQ4/PoNhJ2jU6XWTVUvMTERUVFRyM7OhqOjI5o3bw4PD4+aDsssKSkpGDRoEEJDQzFv3jx8/fXXKCgowH//+18sWLAAW7ZswZ49e6BUPtjQ9vb29mV+V21sKjfvPBERUW1wJfkqPg35FhdSj0KVB4y44AD39EbQyxVGw4rbaXVo6+WDbnOfQ4POnR9oXXnZBbh+KgHhJ+JLPId1drODX18vtO3lBYeGpQ//rU3MhfpMDNQX4qHPLUxi3x+BSIY82MlDYOcRD2XPzpAFvAQ41o3zm6rAhDYRERHVWVJBAXIOH0Hmzp3IOXYM0BnfCQm5AgntOmOHWyfsdWqNAsW9k8KG0h200ZxG66xENDScd96/yCPJBHK8rdG0RzcMe2w6mrj6Vsv7ofItWrSowst06NABHTp0qIJoiIiILC+nIAc/XfsJ34V9hwxNhlHZwCYDMa/jPHRws+xxTUgCmhsZyAmJR/61VMC4gzSsGimh6uUF+24eUJQxz59Z6xICcREZuBoch1sXkqHXGa/MRqlAm56e8O/nDTef0odjNHddl2JScf7IDjS6tRODxRkk5qhwJcMDG3K7QcA4yWdrb4d2/QahQ9BjcG/eskqGbyfL0Wg0+Oqrr7B27VrcvHnTpLxVq1aYO3cuXnzxRdja1t65JCdOnIjQ0FC89NJLWL58ueH1oKAgjB07Fjt37sSCBQseeMj0q1evwrcS84ASERHVVpKQ8FfUEXx1di1i80LRONEaUy43gG2BA4RMZpTIbqjRoUOXHui04EXYuLtXfF16CTFX0xB+Ih63L6dAkoRRuZWNHK26ucOvjze8WjmXeh6pS8uH+vwd5J2JgTbTNIkNaKGUn4W9SxSUPdpB3nEm0ND8UQrrM5kQQpRfjWqDrKwsODs7IzMzE05OvDuYiIgeTkII5F28iMydO5G1dx+kTNMhMLObtsCBpt3wq5M/MpT3LoQ6SQloqz2FVllxcM0poV0IZHkq4N2tM4Y+Ng3NvUznTawvHrZzipCQEKxevRrr16+v6VBq3MO27YmI6pJMTSa+D/8eP4T/gOyC+3NHyyDD4GaDMa/jPLRzaWfRdepztVCfS0TuqXjoUvONC2WA0q8RHHp7wbZlA8jklUvuqrMKcO1kPMKOxyEzKc+k3LOFM/z7eaNVN3dY21ZuWO/0HA2OHfsL+ou/oL/mKKDR4kqmJ8Iz3ZGnN03I+3TojICgx9CqRyCsbWpv4rO2qcnzilu3bmHkyJGIiIgAcO/fCMUVXkhu27Yt9uzZUyuHHP/tt98wYcIEKJVKxMfHo0GDBkbl4eHh8Pf3h0wmw5kzZ9Ctm/mjMhQOOR4VFWXxhDbPKYmIqCbl6/Lx/dVt2BC6Cdm6OHS6oUSXSCcI2BnVkwmBxkKBrsNGo+X0mZA/wKgk6Qm5uHYyHtdOJkCdVWBS7tXSGe36eKFVN3fYKEvuQ6zPLkDexTioT99CQXJJN4fqYSu/DHuncNh19YW8yxOAW9sKx1oXVeScgj20iYiIqE4ouHMHmTt3InPXLmijY0zLGzTCqZY98INze0Q7eQEAVFIKuhQcRZusO3DPLvkevkw3Gdy7tMdjj01FWx/24q2Pbt68iU2bNjGhTUREtVJqXiq+C/sOP1/7GWqd2vC6XCbH8ObDMbfDXLRs0NJi6yucoy83JB7qy8mAzvgcSe5oA1VPT6h6esLKuXLJXSEJxIanISw4DlGXTHuy2Kqs0K6XF/z6eaGRt0Ol1iVJAucuXkDi8e/gn7IfQ6VEXM9yw/6M5kjMN+3p7ejqhoCBg9F+wGA4uz+8QzfWRVlZWQgKCsKdO3cghICjoyMCAgLQuHFjKJVK5Ofn4+7du7hy5Qqys7Nx7do1BAUF4fLly7Uu+bp27VoAwKBBg0yS2QDg5+cHPz8/hIeHY/369RVKaBMREdU3qXmpWHFmE36P2gposzHgkgOaJXhDL7dG0bNMa50eLZ1c0GPa03Ab9GiFR90pyNfhxrkkhB+PR8It04409k42aNfbE+16e6Ghp6rENqQ8HfJCE6EOiYQmTgZADuOe2ICN7BrsVRdh18kDim6PA14v3pt4m0rEhDYRERHVWvrsbGTt24fMnTuRd/acSblkq0R4q674uUEAzru2giSTQyky0LFgH9rkRMMzUw8ZTE8Es1yAhp3aYtBjk9CxZY/qeCtUQceOHbNYW+Hh4RZri4iIyFIScxOx8epGbI3Yinz9/d7RVjIrjG45GnM6zIGPk4/F1icV6KG+mITckHhoS5jrz7alM1SB3rDzd4FMIS+hBfPlpOcj/EQ8wo/HIzst36S8cdsG8O/njRad3WBlXbne2InxsQg/8B0aRe1Ed/11xKqdcSXDE79n+0InjNtWWFujVY/e6BA0BD4BHSGTV+59Us34+OOPERsbixYtWuCzzz7D6NGjYWVleolTp9Nh165deOONNxAVFYVPPvkEH374YQ1EXLKCggIcPHgQANCjR+n/JunRowfCw8OxZ88erFy5srrCIyIiqjVupN/EJye+xankv9AgW+Dx845wzmkCqdj82KoCHdq3aIOuC/4PqlatKrQOIQTib2Qi/EQcbpxLgq7AeFocuVwG306u8OvtBZ/2LpCXcL4sFeiRH5YKdch15EfrAaEAYHw+ai2Lgp3yLOwDnGHVfQTQdDbAc1Kz1OmEtkajwfLly/Hzzz/jxo0bUCgU8PPzw8yZMzFv3jzIH2AnqOidGsWHNDpy5AiCgoLKXW7Lli2YMGFChdZFRET0MBBaLXKOH0fWrl3IPngIQqMxLpfJcNfXH9tcO+KIe3vkWSthK2XDX3cQrXOi4J2pg1wUHs/vH9eznQWcOrbCI49OQLd2/TgnYi03cOBAbiMiIqqX4nLisP7KemyL3AatpDW8bi23xrjW4/BMwDPwdvC22Pq0ibnIPZWA3HOJEBq9UZlMaQVVN3eoAr1g7WZfqfVIegnRV1IRFhyH6CupKD4CtJ2TDfx6e8KvrzcauFduXdr8HIQd+gkidAvaq8+iq84KVzPcsS6zOzK1dib13Zu3REDQY2jXdwDsHCo3LzfVvO3bt8PLywshISFwdXUttZ6VlRXGjRuH/v37o3Pnzvjtt99qVUI7PDwcWu2934CyhgQvLIuOjkZmZiacnZ0rtJ59+/bhjz/+wJUrV5CYmGjo0T5+/Hg8/fTTUCqVD/oWiIiIqowQAn/HhuCL06txK+csWt21wbSrzlDoVIBMBqlI+s+tQEKnvgPQft4CWFVwNJacdA2uhcTj2ol4ZCabTovj4q2CXx8vtOnpCXsn0yHLhV5CfkQ68kKuI++GBkJfmHa9n8hWyBJgbxMC+7a2sO75KNB8CqCo0+nZGlFnP7GUlBQMGjQIoaGhmDdvHr7++msUFBTgv//9LxYsWIAtW7Zgz549D3RSZmtrW+KdnYUkSUJeXl6Zc++oVCUPM1CorPaJiIgeNkIIaMLD7w0pvnsP9KmpJnUy3RrjD+8u+MOjM1LsG8BaqNFSdxJtMm6iSUYBFCUksXMcJNgH+KLvo2PRu8NgJkjrmJLmQnxQ3PZERFTTYrJisCZ0DXbf3A2d0BleVyqUmNh2Ima1nwV3e3eLrEvoJORdTUVOSDwKokyHSbRu4gCHQC/YdXSD3KZyPaSzUvIQFhyH8JPxUGcWm1dQBvj4u8C/nzd8O7pCUZme33od4i7uQ+qJ79Ey9TDaSxrczGmEXRntcDu3IVBsVB6lygF+/YMQEPQY3H1bPPh6qdaJjo7G66+/XmYyuyg3NzfMnj0bn3/+eRVHVjExMfenUXJzcyu1XtGyO3fuVDih/dprr+Gll17Cq6++CkdHR0RERODLL7/Ec889h5UrV2L37t3lzrGt0WigKXKjcVZWVoViICIiMpdWr8Wv137H6osbkF5wG73C7TEwygOS/J9c3z+nfHJJgo+VHbqPnQif8RMhU5h/TqvXSoi6nILwE/GIDTO9EdPGzgqte3jAr48X3Js5mlxTEpJAwe0sqEMikBeeDUlbOJT4/byfHGmwtz4Ju5Z62PQcAFnrDwFr3kRWGXU2qzpx4kSEhobipZdewvLlyw2vBwUFYezYsdi5cycWLFiADRs2VLjtb775BrNmzSq1fO3atZg7dy6ef/75Uuvk5ORUeL1EREQPG21iErJ2/47MHTuhiYw0KdeonBDs0wU73TsjskETWIkCNJdOo1dmBHwyNLCSTJPYufYSbPybIDBoNPp3HQGFvHIXaanmvP322xg8eHCl2/nzzz/x8ccfWyAiIiKiiruZcRNrQtdgb9ReSOL+0IX2VvaY1G4SZvjPQCO7RhZZly4j/15v7DMJkHK0RmUyaznsOrnBIdALNk0q10tZr5Nw62IywoLjcOdaukm5Q0Nb+PXxgl9fbzi6VOLCnRDIjz6D2KOb4Ba9B95SOqzyVQjJ8EZ4ljvy9cbzEEImQ7MOndFh0BC07NYLVjamvWio7nNwcCg3AVtc8+bNYWdn2nu/JmVnZxsel9Uhp2hZRRLJSqUSgwYNwrJly9CxY0fD6926dcP48eMxbNgwHD58GCNGjMCFCxdga2tbaltLly7FkiVLzF43ERFRRWVqMrHq3A/YeuNnyPMyMOiCAzxTGkOvsDLqjW2r1aGNmzd6zHkWDXv0rNA6Uu5kI/x4PCJOJyI/V2tS3qRdQ/j18bo3LU6xmz6FENDG5UIdEom80FTo8wuPm/fPR2XIgZ3iJOx91LDt1Qsyv3cAW4cKxUilq5MJ7d9++w1HjhyBUqnE4sWLjcpkMhmWLl2KnTt3YtOmTXjhhRfQrVs3i67/66+/hr29PWbPnm3RdomIiB4GklqN7AMHkLljJ3JDQgDJeE4aycoKl306YodbJ5zzaAtJJuArncWwnAPwTc+Dtd40iZ2nlCD380T3ASMQ1HMMrBXFLm7WETqtHjfPJeHWpRTk52qhVFmjRSdXtOzmXun5JesiPz8/DBgwoNLt3LlzxwLREBERVcy1tGtYfXk1DkQfgMD9bh+ONo6Y5jcNU/2mwtm2Yj0tSyIkgfzIdOSGxCP/WhpQrIeJlZsdVL28oOrqDrl95c6R0hNyERYch2shCcgvnjCXy+DboRH8+3nDp30jyOUPPjqKSL2FxOObobi6BW6aWDTVWyE80w1XMrogSWN6UdDJzQMBQYPRfsCjcHK1TC93qr0CAgKMejebIyYmBm3btq2iiGonT09PwxzdxdnY2GD58uXo1KkTwsPDsWHDBjz77LOltrVw4UK8+uqrhudZWVlo2rSpxWMmIqKHT2zW/7N33/FRXWfi/z93elWvg5BAiCIh0UGigwQY427H3cYVnGY7bZN1dn/JJruJE2e/iTeJYxuXuODewIBNbASmV1MkgSiig0ZdGk3R9Pv7Y0BoNBJIFIHgvF8vvzBzzr1zBtno6Dz3eZ7jPLfxVdZYl5FUH+C2XWYMLWkEFQoCbY7Corx+8oaOZMT3n0Rn6Xp7HrfTx4Gt1ZRvsFJ7zB4xbo7TMWR8CkPGpxKVEPnwm6/WhWvzIVp2VOF3ng5in3kITMKNTrkFQ2odunEjkHJ/BIa4Lq9P6LpeGdB+9dVXASgsLCQmJiZiPDs7m+zsbMrLy3n99de7FdAuLS0lLS2t0/E1a9ZQUlLCE0880eF7C4IgCIIQSQ4GcW3Zgm3RYpq/+grZ5YqYczQ1i8VJw1nbZzgutZq+wV0Uut6hX6MDrf/0o5hnDkbdmiAMTmTE5FnMnPAdNOrOMwp6g8O7ail+sxyPyx/6mDIgwaEdtaz98ABFD+fQf1jXyipeDR566CEGDBhwUe41YMAA5s6de1HuJQiCIAjnUlpbyoKSBXxz4puw12O1scwdOpe7B9+NWXPhfZwDDi+ub6txbK4i0OAOH1RI6IfGY8xPRTsg+oJab/i9AQ5ur2H3ukqsFZHly6MSdORMsjBkfCrG6AvYjznrcO34EMfW90iylZAsw1FnDJttg6mwJxCQw8uVq9QaBuZPIHf6TPrm5CEpLqCcudCrzJs3j1/+8pf827/9GwbDufuxO51O3njjDX7605/2wOq6zmw+8/eA2+3udF7bsahu9gU9m2HDhmGxWKisrGTp0qVnDWhrtdqzZnALgiAIQndtte7gTxtfpty2gdzDGubuiwJC39dbM7JlmdSgxMgZ1zPo4cdQdrHFcDAoc2JvA+UbrBzeWUfAH55Mo1QpyByZSPbEVNIGxSK1exDT3+ShZdtRXNuO4ms6/Z5tvw/60Sm2Y0g8gW5cNophj4M5uft/CEK39LqAttfrbX26cOzYsZ3OGzt2LOXl5SxbtowXXnihy/fPzc096/jf/vY3AJ588sku31MQBEEQrlWegwexLf4c25Il+K3WiPGm6ES+TB3B12mjqTLG0idYSr77E/rXNKP3nd69njmc9KqD+LNiyZtUxKzJd2PQGnvok1xah3fV8sVLpWcyqtr96nH5+eLFEuZ8N4/+wzvvr3c1OZ+2MZ0pKCigoKDgot1PEARBEDrybfW3vLzrZTZaN4a9nqBP4OGhD3PnoDsxqM8dfDsbWZbxHrPj3FiJq7QOAuHp2MooDcZxKRjHpaCMurDgU90JB3vWVbJ/S1Xogbs2FCqJzBGJ5EyydHgI2GVeJ8HyZdg2v0NU5RoMBPF5tWywpVPWlIzdH3lomTJgILnTZzJ4whR0RlHCsb2gx4N9+XLsK4oJ2JpQRsdgnlGEefZsFFdJQPLee+9lzZo1TJ06lRdffJExY8Z0Onf79u18//vfZ8CAAXz/+9/vwVWeW3p6euu/19bWdjqv7djZknDOdw2VlZUcPnz4ot5XEARBEDoSCAb4/MBX/H37a9S79jGlxMiEkykElOFtYpSBIJmGKMbe9xAp183u8sOZttoW9m60snejFUejJ2I8KcNM9oRUssYkozOGVy4KOH20bD+Ba8tBvLWn90xt96JBtIoy9DEV6Mf0RznyOxCb0Z2PL1ygXhfQLi8vx+cLlbU6W7+c02NHjx7FZrMRHX3hZbyOHz/OokWLKCwsZOjQoWed+9577/H666+zf/9+amtriY2NZeTIkdx7773cc889KLvRoF4QBEEQehN/QwPNy77Atngx7rKyiHGP1sBqyzC+ShvN7th0UtnLYPe/mFPZhMEbGcT2KYN4M6MYMnEq10+7H7P+4mUlXAn8vgDFb5ZHlAeNIEPxm+U8/Me4a7L8+NlUVVVRVVVFZmbmRc1aEQRBEIRzkWWZTdZNvFzyMt9Wfxs2lmJM4dHcR7kt6zZ0qgvoIw0EPX5cO2pxbrLiq3JGjGsHxmAqSEU3JB5Jef7Z2F63nwNbq9mz3krNkchevbEpBnImWRhckILedJ79qQN+OPwNLd++h2rfMtTBFkxBBfvt8ZQ1JXPMFRtxic4cRc7k6eROn0lier/ze99rgH3lSir//RmCzc2gUIRa+ygU2L/+GsXvfo/lD3/AXDj9ci+zyx599NGzjh8/fpz8/HwyMjLIy8sjJiYGpVJJIBCgqamJsrIyjhw5gkql4s4772TevHm89tprPbT6c8vOzkatVuPz+Thy5Ein806PZWRkXJTzzbZk+Vw/hAiCIAjChXP5XLyy433e3fsOquY6inaaiWtKI6BUhpUV1/v8ZPcdwOjv/oCo7Jwu3dvnDXBoew3lG62c3NcUMa4zqRmcn0L2hFTi+4Q/DBn0+GkpqaJl037cJ5WEziPDHwBUS/sxmHdjGGlBOeYmSPxBNz+9cLH0uoB22x45iYmdZyi1HTtx4sRF2fC9+OKL+P3+LmVnP/nkk/z0pz/l17/+NTqdjl27dvHcc8/xwAMP8PLLL7No0SLi4s5eR9/j8eDxnHmKpLk58odJQRAEQbgSBL1eHKu+wbZ4MY41a8AfnsUTVCjYmTKE5X1GsTk5hxjFEQZ7NvNw9ReY3ZFBbL8iSEuGkUHjJ3F90QPEmuJ78NP0rIPf1kRkPXXG4/JzcHstg/NTLvGqrnyNjY387//+LwsXLmztkf31119TWFgIQGZmJvfddx8//elPiY2NPBgXBEEQhAshyzJrT67l5V0vU1JXEjaWZkrj8bzHuXnAzaiVF9az2lflxLHJimtHDbInEDamMKgwjE7GmJ+KuoN+f10lyzI1R+zsWXeSA9tq8LV7H5VaQdboJHImWUg53/LlsgwntxMo+QD/ro/ReurRyVDjNlFqG8BeWyKeYPiflSQp6Dd8JLmFsxgwehxK1YX9WV7t7CtXcuIHPzzzQjAY9mvQbufED35A2gt/x3xqv3Sle+ONN87535ssyxw5coSjR492OAbg9/t57733AK6ogLZGo6GoqIjly5ezbdu2Tudt3boVgBtuuKFb97/11luZN2/eWa87fc56tqQhQRAEQThf1c5q/nfj63x9YhFpVT5uLzGj9qchS1JYIDvOF2D4mAnkffcHqM8RN4PQ9/jqI82Ub7BSsbUarzt8/ypJkJ4bT/aEVPrlJaBUnTlzlH1B3OW1uDaU03JUBlkFhO8zVdJxDIbt6PPiUI+7HlIfDd1UuKx6XUDbbj/TtF13lnr5bccuRiDY7XbzyiuvkJGRwU033dTpvJiYGK6//noWLFgQVgZozJgxfOc732HChAmsXbuWO++8s7V0emeeffZZfvOb31zw2gVBEAThUpBlmZYdO7EtXkzzl1+GMkHaORrfly8to1jdZwRKTR2DvVu5p24D0S2nN4FnNpQBhYwrTUf//HzmzJhLYsy1EbQ9tKvuTM/sc5Hg0E4R0C4tLeWGG27g5MmTrQeV7Q87T5w4wbPPPstbb73F0qVLGTZs2OVYqiAIgnCVCcpBVh5byYKSBZQ3lIeN9Yvqx/xh87m+//WoFOd/3CL7g7SU1eHYZMXbQZa0Jt2MMT8Vw7AEpAuo2uJx+di3uZo96yqpP+mIGE/oayJnooVB45LRGs4zmFx/EEo/wrfjA9S2QygBr1/F9mYLZU3J1HoiS4bHJKeSO30mOVMKMccnnN/7XmOCHg+V//5M6DedZdzKMkgSlf/+DAPXruk15cfj4+MxGi+8zZDT6aS+vv4irOjievzxx1m+fDnFxcUdVpjcu3cv5eXlSJJ0zoz19hYvXkxaWlqnAe2dO3diPdUWqrvBckEQBEE4m7Lacv6w4WVKGr5hzD4NDx0yE5RCD2DKp45vJFkmTdIw+qbbyLznPiTVuffPrmYv+zZVUb7RSqM1smpRTLKB7AmpDM5PwRhzZq8jB2Q8FQ24NuyhpcKHHFAD4ftoJTXodVsxZBtQ589ASr8nVPFGuGL0uoD25fL+++9TV1fHz3/+87OWCx8xYgRffPFFh2PR0dE8++yz3HLLLaxcuZLly5cze/bsTu/1zDPP8JOf/KT1983NzfTt2/f8P4QgCIIgXATe48exff45tsWf42tTOeW0JkMMX/cZQXHf0dhMfgb7tnCj7W1inacDjmcCj0FJxmHR0HfMaObMehBLwtXfe0aWZRqrXFQeaMJa0cSR0rquBbMBZHA7fZd0fVc6l8vFTTfdxIkTJ1CpVIwYMYKkpCS+/PLLsHkVFRW8/PLLPPfcc9xwww3s3r1blCMXBEEQzlsgGOBfR/7FK6WvUNFUETY2MHYg84fNZ2b6TJSK8w8w+xvcODdbcW6rJtju+72kVmAYmYQxPxVNn/PvGy3LMtYKG3vWVVKxvYaALxg2rtYqGTgumaGTLCSmm88vG9tRC7s/JbjrAxSVoTLsShmOOGMobUqhwhFPUA4/HFRptAwqmEju9JmkZeee3/tew+zLl3f4cGkEWSbY3Iz9X/8i+uabL/3CLoLnn3+e++6774Lvs3DhQh566KGLsKKL64477mDq1KmsXr2a3/zmN/z5z39uHZNlmV/+8pcAPPTQQ4wePTrs2iVLlvDoo4+SnJzM0qVLO8yyfvPNN/nxj3/MgAEDwl73eDz86Ec/AiArK6vbwXJBEARBaE+WZf516Bue3/Yatc27KNxhYmxNMn6lmmCbrZ3aH2BgbBJjH5lHwsRJ57xvIBDkWFk95RusHC2tJxgMP0RTa5VkjU4ie0JqWDUhWZbxHm0OBbHLnQR9pwPcZx7UVNCEXrMFw0AJTcEUpMz/AaUIm16pet1Xxmw2t/672+3udF7bsYtxePm3v/0Ng8HAY489dkH3mTlzZms/n6VLl541oK3VatH2kidmBUEQhKtboLmZ5uXLsX3+OS3bvo0Y96o0rEnNY2Xf0RyKNzEwsJUJtkUktCZBnNm5ysjYk1VYxozgulkP0C9lYM98iMskGAhSd8JxKoBto7KiCbfjPIPSEuiM13a5zZdeeoljx45x00038dJLL5GamkpdXR1JSUlh89LT0/nd737HpEmTuOGGG3jhhRd45plnLtOqBUEQhN7KF/Sx7NAyXi19laPN4SWNh8YPZf6w+UzrOw2FdH7ZG3JQxr2vAecmK+79jREPuamSDJgKUjGMSkKhO/8jnBa7l72bqihfX0ljlStiPLl/FDmTLGSNTkJzPu/jdcLeL6DkA+SDK5HkAAqgyatjd1MyZbZkHP7I843UrMHkFs5k8PgpaA2G8/hkAoDty+WhMphd6YesUGD/ekWvCWhfLJIkXbH9oj/++GMKCwv5y1/+QktLCw888ABer5cXXniBzz77jMLCQl588cWI6xYsWEBdXR11dXV8+umnYUkxEDpDtdvtjB07lp/+9KeMGzeOuLg4ysvL+fOf/8yOHTsYPHgwS5cuPWsVTEEQBEE4G0/Aw5u7PuWN3W+ibaiicLsZk6svQYUCf5tnPU1eP0MH5zLq+09iSD93QkuD1Un5Biv7NlfR0uyNGE/NiiZ7goUBoxJb96+yLOOtdNCycS+u0kYC7tPf387sQyVc6FVbMPRzox0/HmnQf4BafB/sDXpdQDs9Pb3132trazud13asbenv87Fhwwa2b9/OvHnzztn3+lz0ej2JiYlUVVVx+PDhC7qXIAiCIFxKss+HY/36UF/s4pXI3vDNo4zErsQsVvQdzY4UC/34loH2lUw61vFBUXOCRNLoXGbOvJ9BfXN74iNcFn5fgJoj9tYMbOtBW0QvyrYUSolgoIuHazJkjki8SCvtnT7//HNycnL49NNPW6vmnC2L6/rrr+e2225j8eLFIqAtCIIgdJk34GVRxSJeK32NSmdl2NiIxBE8MfwJJlomnncmccDuxbmtCufmKgJNnvBBpYR+aDymAgua/lHn/R5yUObE3kb2rK/k0M7aiP2G1qBiUH4KQydZiD+frO+AHw6tgpIPkfcuQ/KFyj76gwoO2BMpa0rhuCsm4jJ9VDQ5UwrJnTaDhL5Xf3WeS8V7/Dj24mIcxStxneqx3CXBIAGb7dIt7CJatWoV2dnZF+VeM2fOZNWqVRflXhdbQkICW7du5fnnn+e9997j7bffRqlUkp2dzT/+8Q+eeOIJFB2UPJ0/fz4bN24kOTmZ22+/PWLcarXy2WefsXz5chYuXMizzz6Lx+MhNjaWYcOG8cILL/DII4+g1+t74mMKgiAIV5mGlgb+svlNlh35mAHH3Ny+Jwop2AckiWCbb1tJfpkRU2eQ8/gTKM/xAKO3xc+BbdWUb7BSfTiy+owxWsPg8alkj08lJvnMvfz1Lbg27se1swq/4/TrbYPUXvTKbRjSmtAVjELK+TFoz7/qkXB59LqAdnZ2Nmq1Gp/Px5EjRzqdd3osIyMjov9Md/31r38F4Mknn7yg+5x2pT4RKgiCIAiyLOMpL8e2eDG2pcsIdNBn7rg5ma/7jmZDnwHEq/cw0PEt953cgkTkYWtzHMSPGELhzHvIzRzTEx+hx3lb/FgP2bAeaKKyoonqI80E/Z1/r9caVKQOiCY1KwbLwBhiUw28/R8b8bj853wvrUHFgFHXdkB7z549/PjHPz5rC5j2Jk6cyH//939fwlUJgiAIV4sWfwuf7P+Ef5b9k5qWmrCx/JR85g+bz9iUsecVZJZlGe/hZhybrbSU1UG7ALMyRosxPwXjmBSUZs15fwZnk4fyDVbKN1TSXBdZ2c4yMIacSRYGjExEpelmiXRZhpPbQ5nYuz9Fcp5KJpChym2irCmFPc1J+ILh95UkBf1HjiZ3+kwyR41Fqbq2K86cD1mWce/Zg6O4GHvxSjz79p3fjRQKlBd4TtZTpk6detHulZSUFFHR50qi1Wr5xS9+wS9+8YsuX3PTTTdRV1fX6bjRaOSBBx7ggQceuBhLFARBEAQAKhoP8ez6BXxb/S8m7Nbw0PEo/IrY0OCpLbIiGKSf1sSYO+8j7eZbzrp3loMylQeaKN9o5eC3NfjbtcRRKCX6D08ge4KFvtmxKJShaHmg2YNryyFc247hazodxG4bMA+gVezEkFyFPj8HxbB5YLiwhFXh8up1AW2NRkNRURHLly9n27Ztnc7beurp1BtuuOGC3q+yspJPP/2UqVOnkpeXd9a5NTU1zJ8/n//4j/9g7NixHc5xuVytm82OetsIgiAIwuXgq66meckSbIsX4zlQETHerDWyss9IVqfloDQdYZCzgltr96KQI/ti26NloodlMXXGXYwcPOGq64HYYvdSWdGE9UCofHjdcftZqzsaojVYsmJaA9jxFiOSIvzPpOjhHL54seTsvbSl0DyV+vx7c14NbDYbFoulW9eYzWZaWlou0YoEQRCEq4HT5+SDfR/w5u43aXA3hI1N6jOJJ4Y9wYikEed176Dbj2tHDY5NVvzV7cp9S6AbFIsxPxXdkLiIPUKX3yMQ5NjuBnavq+RoWT1yu96CerOaIQWp5EyyhGWzdFn9QSj5EEo/hIZDp5eOy6+m3JbILpuFRk9klmdsah9yp88kZ/J0THHx5/PRrmmyz4dr2zbsxSuxFxfjt1o7nKeMj+/wQdQOBYOYZ864iKsUBEEQBOFqJ8sya45v5v9tfoWa2m3M2GHi4cZkAkoV/jbZ2FpfgCGWdMbM/z4xw4af9Z72Bjf7Nlkp32Dt8CHM+D4msiekMig/Gb0p9LBn0OXDsf0QLZsP4qnVE9qRhu9tNdJuDAlH0I8ZgHLUPWBOudCPL1whel1AG+Dxxx9n+fLlFBcXY7PZIjKw9+7dS3l5OZIk8eijj17Qe7300kv4fD6eeuqpc851uVwsXryYSZMmdRrQ/uqrrwgEQmVHLzTYLgiCIAgXIuhyYV+xAtuixTg3bozouedTqNiUksOqvrnY4hvJch2isGkFSltkENthCmLM68+kotvJzy28qoLYzfUtod7Xp0qId9R3sq2oRD2WrGgsA0NB7OhE/Tn/PPoPS2DOd/MofrM8lKktEQpun/pVa1BR9HAO/YclXLTP1VvFxsZy/Pjxbl2zc+dO4uPFIbogCIIQqdnbzLvl77KwfCE2T3gZ5sK+hcwfNp+hCUPP697eSgfOTVZcO2uQve0yTYwqjGNSMI5LQRV//uV+m+tbKF8fOgh0ti9dLkHf7DhyJlroPzwBpaqbfb4dtbD7Uyj5AE5+2/pyUIYjzlhKmlI5aI+DdlV61Fodg8ZPInf6TPoMzrmq9oU9Ieh04li7DvvKYhzfrCbYHFluE0A3fBjmohmYiwpR9elDxZSpBO32s/fRliQUZjPm6667RKsXBEEQBOFq4gv6eH/3Ul7Z9QZG6zGm7IpC5+lDUKEg0CbfItoXYNiIcQz/3g/RJnZeWdDvC3B4Vx17N1g5Vt4QkdihNagYNDaZ7IkWEvqakCSJoDeAa9sxXBv34a5Ug6ykfRBbLR3EEL0P/ag+qMbeCLH9Lt4fgnDF6JUB7TvuuIOpU6eyevVqfvOb3/DnP/+5dUyWZX75y18C8NBDDzF69Oiwa5csWcKjjz5KcnIyS5cuPWuWtNfrZcGCBaSnp3PLLbd0eX3PP/88jz32GLGxsWGvNzU1tfZunDx5MnPmzOnyPQVBEAThYpADAVxbtmBb/DnNX32F7IoMzu6O68fKvsM5nuIj3XeYEY2bUJ2MDGK7DEE0Q/tSMO1mJo2ajVLR+zOHZVmmscqFtaKJylMlxB0NnrNeE9/HGMrAHhiDJSsGY4z2vN67//BEHv5jHAe313JoZy1upw+dUU3miEQGjEq85jOzTxs5ciRvvPEGP/3pT7vU7+/gwYO89dZbFBYW9sDqBEEQhN6i0d3I23ve5r297+HwOVpfl5C4rt91PJ73OIPjBnf7vrIviKu0FucmK95j9ohxTUYUpoJU9HkJSN0NMJ8S8Ac5UlLHnnWVHR4EGqM1ZE+0kD0hlaiEbgbLPQ7Y90UoiH1wFciB1qFGr46yphR2NPXBF4hcu2VQNrnTZzJ4/CQ0+vPIAr+G+evqsK9ciaN4Jc6NG5G93shJajXGggLMRUWYpk9HnRxePtvyhz9w4gc/AEnqOKh96sECyx/+gEJ7fvtVQRAEQRCuDXavnb9uWchnFe+Tc8DFbQfMBKU+AGf6Y8syFlSMmn0TAx+Yi0LTecuc2mN2yjdY2b+lKrLlngR9h8SSPcFC/xEJqNRKZH8Qd2kVrg17cB+TkINqwntig0o6id5YgmF4Aur8OZD08MX7AxCuSL0yoA3w8ccfU1hYyF/+8hdaWlp44IEH8Hq9vPDCC3z22WcUFhby4osvRly3YMEC6urqqKur49NPP+UnP/lJp+/x4YcfUl1dzR/+8Icu9WnUaDRotVpOnjxJbm4uP//5zxk+fDhGo5EdO3bw3HPPcfDgQQoKCvjkk08u6PMLgiAIQnd4KiqwLf4c25Il+KuqIsathjiK+45kX5qaBI7Tr7GEAVWnd6hngtgtuiDKISmMnXYj08bdjErZa7cSQKg8Z90Jx6nsaxvWg0202H2dzlcoJBIzzK0B7NQB0eiMF68HpAofg3XfMDhmKWgawRALuhuBWwER0Aa4//77mTt3LrNnz+aVV15h0KBBHc4LBoN8+umnPP3007hcLh588MEeXqkgCIJwJaprqePN3W/ywb4PaPGfaUehlJTckHkDj+U9RmZ0Zrfv669vwbHZimtbNcF2h3SSRolhVBLG/FQ0qcbzXntTtYs96yvZu9EasV+RJMjISyBnkoWMoXGtvQW7JOCHQ6tCQey9y8B35oFHX1DB/uYENjdl0Niii7jUEB3D0KlFDJ02g/g+fc/7s12LPIcP41i5EvuKYlp27uwwCK0wmTBNnYq5qBDjlCkoTaZO72cunE7aC3+n8t+fCWV1KxQQDLb+qjCbsfzhD5gLp1/CTyUIgiAIQm92wl7J79ctYMuJZUzZpeTBqij8SjPBNgV3VIEgmVFxjH3wUZKnTe+0Go/b4WP/1irKN1ipO+6IGI9K0DFkfCpDxqdijtMhB2U8FfXY15XhOuhHDmiB8CC5kjr0+h0YhhpRj5+JZLm79aE94eonyfLZahFd2TweD88//zzvvfceFRUVKJVKsrOzeeihh3jiiSdQKCJ/gFuyZAmPPPIIycnJLFu27KwZ2vn5+ZSUlHDixIkul6lsaGjg448/5quvvmLnzp1UVlYSCASIj49n1KhR3H333dx7772oVN0PADQ3NxMdHY3NZiMqKqrb1wuCIAjXFn9DA83LvsC2eDHusrKIcYdaxxpLHrsyYtBprPRrdKL1R37vdGuCMDiREZOvY+bEO9Coem9Gh98XoOaIvbV8uPWgDZ8n0Ol8lVpBcmY0lqxoUgfGkNI/GrX2EgWW934Bi74H7iaQFCAHz/yqi4HbXoLB11+Ut+rNewpZlpk8eTIbNmxAoVAwYsQIcnJyWLhwIXfccQcJCQkcPXqUrVu30tDQgCzLTJ8+neLi4su99CtCb/7aC4IgXIgqZxX/LPsnnxz4BE/gTPUVlULFLQNu4bG8x+hr7l5AVg7IuPc24NhUiedAU8S4OsWAsSAVw8gkFNrzewjQ7wtwcHste9ZVUtnBe5jjdeRMtDBkfCqm2G7s0WQ5VEa85EMo+wRcdWFDVreZzY0ZHLLHQni1dCSFgsxR48idPpP+I0ajPI/zjWuRHAziLi1t7YftPXiww3mqpCTMM4owFRZhHDcW6SzZTh0JejzY//Uv7F+vIGCzoYyOxjxzBubrrrvomdliX3HtEl97QRCEq8uWyl08t/Flqk9uZMYOI9F2M4F2SZ4Gn5+czMGM+d5TGAcM6PA+waDM8fIGytdbOVxSS9AfHn5UqhUMGJVI9gQLfQbGgAS+Y8241pXg2tdC0BtZXUhBM3rtNgyDVGgmTkNKHx96YE+4KnRnT3FBAe1HH32UJ554gvz8/PO9hdANYrMoCIIgnEvQ48Gx6htsixfjWLsW/OEZQgFJwdakQWzpl4LfVE+GzYHeF7kJ9KqDBLLiyJ1UxHVT7kav6Z1lI70tfqyHbFhPlQ+vPtIcsZluS2tQkTogmtSsGCwDY0hMN3e/3+T52PsFvH/fqd90tL5TT5ve8y4MufCWJb19T9HQ0MD111/P1q1bO30S+PQWt6CggC+++IKYmJgeXOGVq7d/7QVBELrrhP0Er5W9xqKKRfiDZ/ZFGoWGOwbdwaO5j5JiTOnWPQPNXpxbq3BusRKwtSsNrZQw5CVgLEhFkxF13v2j60862LOukn2bI8syKpQS/YcnMnSShbQhsUiKbrxH/cFQELv0Q2g4FDbk9KvZ3pTGdlsa/g4qXsdZ0sidPpOcKYUYY2IjJwgRgl4vrs2bsRcX4yheib+2tsN52oFZmAqLMM8oQjd0KFIvOaQV+4prl/jaC4Ig9H5BOchn+77ihe2vE324ggllUSgCxoiM53i/zPDxU8h74vuozOYO79VU42LvRit7N1bhbIps3ZfcP4rsCalkjUlGq1fhq3LiWleKa3cTgZbICkYSLejV36Lv70c3cTxS1jTo5VUihY51Z09xQf8FvPHGG8ycOVMEtAVBEAThMpJlmZYdO7EtXkzzl1+GSgy2sz+6D+v7p9MU56Sv3U6W+zi4Ac4clvmUQbyZ0WRPnMLsafdj1ve+g4kWu5fKiiasB2xUVjRRd9zeYQvB0wzRmlD58FMB7HiLsXuHwheDzx3KzAZkWYUrOAl3oICAbEYp2dEpN2FQrEOS/KF5P90H6siSn9eSuLg41q1bx1/+8hf+9re/cfLkyYg5aWlpPPXUU/zoRz86r8o4giAIQu922HaYV0tfZdmhZQTa9IHWq/TcNeguHhr6EImGxC7fT5ZlPIdsODdZadldD8F22SZxOozjUjCOSUZp6l5G7Wk+T4AD26rZs66S6sOR+7mYZAM5Ey0MLkjBENWN93DUQNmnoZLildvDhoIy7LcnsrppIHanCqndg3VqnZ4hEyaTO30mqQOHnHeA/loSsNtxrFmDo7gYx+o1BJ3OyEmShH7UKMxFRZiLCtFkZPT8QgVBEARBuCa1+Ft4cdsHfFD+NsP32Ln5SBQBhSU0eGqrJwVl0tU6Rt92F/3uuLPDh+18ngAHt9dQvsHaYSUhvVnN4PwUhkxIJd5iwt/gxlVcQtPOanyO021U2gazfeiUOzD0daCbOArFkB9f8+dfQrgLytBWKBTEx8czd+5cHn/8cbKzsy/m2oR2xNOPgiAIQlve48dDfbE//xzfsWMR47W6aNb0z6IyyUeS247ZHbn59CuCuPuZGFgwkTlFDxJjiuuJpV80zfUtWCtsp4LYTTRWuc46PypRjyUrGsvAUBA7OlF/+Q9md70Pnz1BS2AcDb4fI2MGAoR6Zod+lbATp/4LeuUWuG0BDL/7gt7yattT7N27lwMHDmC32zGbzQwcOJAhQ4Zc7mVdka62r70gCEJ7BxoP8ErJKyw/shy5TXDWqDZy35D7eDDnQWJ1Xc8uDrb4cX5bjXOzFX9tS/igBLrBcRjHp6Ib2M1M6TZqjjazZ10l+7dW43OHt0I5XZZx6CQLqVkxXd+3eByhftglH8Chb0AOv2+d28DXTTkcbzahDES2X+kzZCi502cyqGAiGl1k6UchnK+6urUftnPLFvD5IuZIGg3GiRMxFxVimj4dVRdb213JxL7i2iW+9oIgCL1PjbOWP6x/jQ2HFjFth0RqfRR+pTpsjtofYFCShbGPfY/4MWMi7iHLMlWHmtm7oZID22oi2vhJComM3HiyJ6SSkRcPLj8tm/fh2nYcb1NH2d0BtIpSDJZ69AVDUeTNBm3HWeDC1anHSo4rFAqGDh3KgQMH8Pl8jB8/nvnz53PnnXei14sfeC42sVkUBEEQAs3NNC9fjm3x57R8+23EuFupZm36QA5bFJgDTqJbIoPYAUnG1VdPZn4+c2bOJSE6uSeWfsFkWaaxyoW1oonKUyXEHQ2RZYzaiu9jbM2+tmTFYIy5Qvp/u21QvRusJbDx77Q0pFLv+89Tgx2VmAw1r4zX/B790ES4e+EFvb3YU1y7xNdeEISr1e763bxS8grFx4rDXo/SRPFgzoPcO+ReorXRXb6f94QdxyYrLbtqkX3hTaQVJjXGsSkYx6Wgij2/rBFPi5/9m6vYs76SuuOOiPH4PkZyJlkYNC4FnVHdwR06EPDBwVWhcuJ7l4Ev/EE/b1DBKtsQdjVZULoj91DG2DiGTi1i6NQZxFn6nNfnulbIsoz34EHsK4qxFxfjLi3tcJ4iOhrztKmYioowTZyIwhhZUrM36037ipqaGsrKyigsLLzcS7kq9KavvSAIwrWurGYfv1//EjWH1lC404DebSbYLuPa7AuQO3QEo374NLrkyHY8TpuHfZuqKN9gpak6MpkkNsXAkAmpDM5PQa9V0rLtIK7Nh/DUGujonEsj7UWfdALDuCyUI28AQ+9KsBEunh4rOQ7wzDPPMGvWLN544w1ef/11Hn74YZ5++mnuv/9+5s2bx/Dhwy/0LQRBEAThmib7fDjWrcP2+ec4ilcie8ObGgaR+Da1H3v66lEr3cS4PKQ5oO2GMSjJOC0a0seOZfbMB7AkpPfshzgPwUCQuhOOUAb2gSasB5tosUdmu5ymUEgkZphDJcQHxpA6ILrrB8CXiixDcyVUlUJVyal/SqHxSJspahp8z536XWf9EhVAkAbv01icLyGKfQqCIAhCyM6anSwoWcDak2vDXo/TxTE3Zy73DLkHo7prQcSgN0BLSS2OTVZ8JyKDzJr+UZgKLOiHxiOput/jWJZlqg7a2LOukopva/C3C5SrtEoGjUkiZ1IfkvqZu5aNLctwYlsoiF32KbjqIoZ3uvqyumkQHnsAlRxAyZlgtkKpZMDofHKnz6Tf8FEolMpuf65rhRwI0LJr16kg9gp8RyMrJAGoLRZMRUWYi4owjB6FpL7M+1EBgK+//pq5c+cS6KAigSAIgiBcbWRZ5suDa/i/La8Qt28vY/eakeUUkCSCbbaxyQGJUTOvZ/DDj6HUhieBBAJBjpbWU77BytGyeuRg+9Y0SgaOSSZ7QipJaUbcJcdxvbWSxkodyCrAFDZfJR3BEHsQw+i+qMbdBObIwLkgnM0FBbSnTp1KcnIyCQkJ/OxnP+NnP/sZa9eu5ZVXXuGf//wnL774IqNGjWL+/Pnce++9mEymc99UEARBEARkWca9Z0+oL/bSZQQaGiLmVMQmsr1fHD6dj1iXRKLHA21CnTIyjhQVltEjuG7Wg2SkZPXgJ+g+vy9AzRF7KHhd0YT1kC2i7GZbKrWC5MxoLFnRpA6MIaV/NGrtZTyEDfih/kAoYG3ddSqIXQotkV+7tlzBSafKjJ+LAhkzLs9orq7cnu6rqqrCe+rBjuTkZLRtfug6ePAg//Vf/8WuXbuIiori3nvv5fvf//7lLy0vCIIgXDSyLLOtehsv73qZzVWbw8aS9Ek8kvsIdwy6A72qa5XjfLUunJurcH5bjdziDxuTtEoMo5IwFaSiTj6/78Buh4+9m6zsWW+l0RrZTzkpw0zOJAsDxyaj0XXxmKauIhTELvkQGg9HDFf6olnSOJLaZi16nwvwhh0Axaelkzt9JjmTp2OIjjmvz3UtCLrdODduxF5cjGPlqg735ADa7GzMhYWYZxShHSJ6jQuCIAiCcHn4Aj5e3fEJ75S8xahd9cw5GYVfmRJqxHNqe6IMBulniGbsfXOxzJodsW+pr3RQvsHK/s1VHSaWWAbGkD0xlcxhCQQO1dDy1Sasx1TIQQ3tg9hKqQqDeQ+GEUmox18PsQ9emg8uXBMuqOT42dhsNhYuXMirr77Krl27MBqN3HPPPTz++OPk5+dfire86olyPoIgCFc/X3U1zUuWYFu8GM+BiojxGoOZzf2TcJhlols6PiizJypIGpnLzFn3M7Dv0Eu95PPmdfupOmhrLR9efaSZoL/zbYnWoCJ1QHRrCfHEdDPK88iOuig8jlDJ8LZZ19V7IHD2EugAqA2QPJRA3Bh82hE07YjB7zBAl/KuA+jTvMT/cNYFLb837ykaGhro06dPa0D7yy+/ZNas0J9HeXk5BQUFOBwOTm9xJUni3nvvZeHCCyvTfrXozV97QRAEWZbZULmBBSUL2F6zPWzMYrTwWN5j3JJ1C1rluVuMyIEgLXsacG624qloihhXpxoxjk/FMDwJxXk8MCcHZU7ub2TPukoO7qyN2ONo9CoGj0smZ7KFhLQu9gl01EDZJ6G+2JU7IoadsobPm0exrykRo8uGgvbvaWDIxCnkTp9JyoBBIujaiUBTE47Vq7GvKMaxbh1yS0vkJKUSw+jRmGcUYSosQpN2bZZov9T7iszMzIt2L6fTSV1dncjQvkjEnlIQBOHK0uRu4o8b3mD9no+ZvkMmzmbGrwx/UFLnC5CdnsmY7z1J1OAhYWOeFj8HtlZTvsFKzZHmiPubYrUMGZ/K4IJk9DYXrrW7aDkoEwxEtt9R0IjBuAv90Gg0E2ciJWdf3A8rXFV6tOR4Z6Kjo/nBD37AD37wAzZv3szcuXN5/fXXef3118nNzWXevHk88MADxMTEXKolCIIgCEKvEHQ6sa9YgW3xYpwbN4VqQ7bhVKvZ3M9CbawCk0dCCRHBbHscxI/IpmjmveRkjurB1Xddi91LZUUT1gM2KiuaqDtub/9RwxiiNFgGxrQGsOMtRiRFDx+8yjI4qtuUDC8N9b1uOAR04ZlAYyLBxNH4TOPwK4fg86Xga1Lhs7YQrOi8fHrnlARVSedx3dXj448/xuPxkJCQwLx588jNzW0de/rpp7Hb7QCMHj0ai8XCmjVreO+997jvvvuYM2fO5Vq2IAiCcAFkWeab49+woGQBZfVlYWPp5nQez3ucGwfciFpx7tLOAZsHx5YqnFurCDaHt3FBJWEYloixIBVN3y6W/G7HafOwd2MoG7u5NjIQmpoVTc4kCwNGJaHWdCFQ7nHA3qWhTOxDq0AOL1MeRKLYlctGWyaKZhf6oBszTWFz+ubkkTt9JgPzJ6DWnl/P76ud7+RJ7MUrsRcX49q2DToIekp6PaZJE0P9sKdORRUbexlWem05cuTIOedIksTZcnXajouHOARBEISrTUXDEX637mXqdq9gcqmBW33RyAoJf5ttZowvyPBxExj23R+iaROPO/0AZvkGKwd31BJo1w5HoZLIHJ5I9vgUksxK3Ot20vL3/Ti8RiD8AVIJB3rdDgyDtWgnTUNKuwnE913hIrtkAW2Aw4cP8+qrr/LGG29QVVUFhH4QLS0t5amnnuLnP/85d9xxBz/84Q9F1rYgCIJwTZEDAVxbtmBbtJjmr79GdrnCxn0KBdvTUjiRqEHrV6BAwtwu+dcRLRM1bCDTZt7FyMETenD1XdNc3xLqf13RhPVAE41VrrPOj0rUY8mKbg1iRyfqe/bQKRiA+oNnAteng9jO2i5cLCHHDcQfMxGfdji+YD98rmh89QECe91t5p39z+DcZBRGzQXeo3f76quviIqKYvv27aSlpbW+XlFRwYoVK5AkiSeeeIJ//OMfQKgE+dixY/nnP/8pAtqCIAi9TCAYYMWxFSwoWcD+xv1hYwOiBzBv2Dyu63cdKsXZjzbkoIznYBPOTVZayush/KwOZbwOU34qhtHJKI3d73ccDMoc39PAnnWVHCmpI9iuv6DOqGbw+BRyJlqIS+1C2fKADw6uDAWx9y4Df2RgfJe/P180DaO5WSLBU4+R8FLYprh4hk6dQe60GcSkpHb7M13tZFnGs2/fqX7YxXjKyzucp4yLwzR9GuaiGRgnjEehEw8E9LTJkyd3mqn95ZdfUlNTQ3p6Orm5ucTGxqJSqQgEAjQ2NlJWVsbRo0dRq9V85zvfQaO5tvfRgiAIwtVBlmW+ObqF/7dpAUk7Sxh+MIqAIjk0dqqQoSTLWBQaxtx0GwPuuR9JeSbC3Vzfwr5NVZRvsGKvd0fcP6GviewJFjL7mQh8W0bLJ8eoazETCiee2XdLuNFpdmIYALpJ45H6/zsoLlMlReGacEEB7UcffZQnnngiLBjt8/n49NNPefXVV1m1ahWyLLc+CRkdHc3999/PvHnzUKvVvP766yxcuJB3332X22+/nTfeeAOj8VrvCikIgiBczTwVFdgWL8a2ZCn+Uw97neZXSOxLiqcixYgCJUpZQh/exhGnScaY14+JRbeTn1t4xWQZyLJMY5ULa0VTawlxR8PZy2/H9zG2Zl9bsmIwxpy7POhF43VBzZ7w4HX1bvCdO+AsK3UE4sfjM4zDpxyM35uCr1mDr9oDlW0PsCN7ZJ6mMKlRpxhRpxgJevy4tlZ3ceESutyELs69Om3fvp2HH344LJgN8MknnwCg1+v5/e9/3/r6gAEDuP/++/n88897dJ2CIAjC+fMH/Xx5+EteKX2Fw7bw/tBD4oYwf9h8itKLUEhnPzALunw4v63GubkKf127oLAEuux4TAWpaLNizqsKjL3BTfn6Sso3WHE0Ru570obEkjPJQubwRJTqcxzuyTKc2BoKYu/+FFz1EVMqSeJj+xgON0WT7KxCIzfQdlegUKrIGltA7vSZZAwbgULR/VLpVzPZ78f17XbsxStwrCjGV1nZ4Tx1ejrmoiLMM4rQjxgRdgAs9LwnnniC++67r8PX09LSWLx48VmTZLZs2cIPf/hDqqqq+Prrry/lUgVBEAThkvIH/bxTuow3t73GmG9rmFUThU+ZTKDNNlMVCJIVl8S4R+aROH7imWu9AQ7tqqV8vZUT+xojig5qDSoG5acwJDcO/aGDuNbvpOlf0adG27bH8aNTlWDIcKObNBrFoB+BsvsPhArC+biggPYbb7zBjBkzyM/Pp7y8nFdffZW3336b+vrQD16nA9mTJk1i3rx53HnnnejaPM36v//7v/z+97/ntdde4+c//znPPPMMf/3rXy9kSYIgCIJwxfHX19O87Atsixfj3r07bCwgSRyLjaK8TzQBpRKlrEDdblPpMgTRDu3L+Om3MGHkdSivgMPJYCBI3QlHKAP7QBPWg0202Dsvoa1QSCRmmLFkxZA6MIbUAdHoziMD6rw4attlXZdC/YGIkp0dCWrT8MVMw6cdhi+YEcq6bpCRj7UtQxkEIp9oBZA0CtTJocC1KsUQCmInG1CazmSHyL4gLWX1yC3+Du8Rdj+9CsM1HtC2Wq3k5OREvL506VIkSeLWW2+NaGmTnZ3Nq6++2kMrFARBEM6XL+BjyaElvFr6Ksftx8PG8hLyeGLYE0xJm3LWB/pkWcZ3woFjYyWukjrwtyudaFZjHJuCcVwqqvN4mC4QCHK0pJ7d6yo5tqc+4jDQEK0he3wq2RMtRCfqz33DugOhIHbph9B4JGLYoYjiM9dYtjalEW2vI8bfTBr2sDkJ6f3Imz6TIZOmYYiKjrjHtSzocuFYvx7HimIc33xDwGbrcJ4uNxfzjCLMRUVosrKumIdGr3VarRZlBw8UvPvuu3z99deUlpaeMzFm3LhxrFy5kmHDhvHCCy/w5JNPXqrlCoIgCMIl4fA6+POmhazb/j5Tdvi52WkmoEzA1+ZbpMEXIHdwLqN/8BSGtL5AaF9ce8xO+QYrB7ZW43G1O3eSID0njiGjkki2V+HeuR/vjmhCTXna7imDaJV70PdpRD9+GMrcJ0AtqtYIPe+CS45/8cUX/OMf/2Djxo3AmSB2QkICc+fO5fHHH2fIkCGdXq/RaPje975HXV0dCxYsEAFtQRAE4aoQ9HhwrFqFbfHnONauBf+ZTWNQgmqzkT19YnFp1ShP1QNStjkQdeuCKLNTGTvtRqaOvQmV8pJ2CTknvy9AzRF7KHhd0YT1kA2fO7K34GkqtYLkzKjWAHZK/2jU2ksciA8GofFwZPDabj3npbKsxmcuaM269nmT8Nm0BG0BCDv37CTorJBQJepRJxtaM6/VKUaUMdpzZnxJagVxdw6i/u09Z2/LLUHcnYOQzpXhdZVTKBR4veE9T6urq1v3onfffXfENR0dhAqCIAhXDk/Aw2cHPuP1stexOsO/b49KGsUTw59gfOr4swYZg94ALTtrcWy24jvpiBjXDojGWJCKPiceSdn976W2Whd71lnZu9GKq13vbUmC9Nx4ciZa6JcXj+Jc97dXQ9knoSB25Y6IYb9Cy8rgaL5sGEyg2UPflhNkcChsjsZgJHviVPIKZ5HUf4AIwLbhb2jAsWoV9hXFODdsQPZ0UDVIpcI4bhymGUWYCwtRp6T0/EKFc2ppiSy3D7BgwQIefvjhLld5NJlMPPLII7z77rsioC0IgiD0GsebrfzP2gU0bl1OwV4ts4NGZEki0OaII94Po6bNYOjjT6DUhx6mbLF72b+lmvINldSfjKweGJWoJ2dsMv20DuSyo7iXNNGMkvAgNqgVBzAkVWEoGIRy5AOgNUfcSxB60gWfjr/33ntAKJAtSRIzZsxg3rx53HrrrajVXc+8iomJoba2Kz0qBUEQBOHKJMsyLTt2hPpif/klQfuZ7JkgUG/Ssy8lliaTFkUHQWyPJgiDkxg5+ToKJ96GVnX5nnb0uv1UHbS1lg+vOWIn4O88o1lrUJE6ILq1hHhiuhml6hIGXn1uqC0Ha9uS4WXgjTzAbkuWFfgVffGbxp/qdZ2BzxWF3wbUtZ/dccBeGaM9FbA2oE42okoxok7UI13A59XnxBP/YA4NH+0PZWpLhILbp36V9Cri7hyEPif+vN/japGWlsa2bdvCXnv11VcJBoOYzWauu+66iGsOHTpEfLz4sxMEQbjSuHwuPt7/MW/sfoPalvDzgPGp45k/bD5jUsac9R6+GhfOTVac26uR2z1sJ+mUGEcnY8xPRZ1k6Pb6Ar4gh3bWsntdJSf3NUaMm+K05Ey0MGR8Kua4c+zbPHYoXxoKYh/6JqJSjIzEbu0IFtYPo9qmY4DjEGnBiojbpOcOJ3f6TLLGjUet6cF2LVc479Gj2ItXYi8upmXHjtCDju0ojEaMUyZjLpqBacpklFFRl2GlwsWwe/duHnrooW5dk5aWxr59+y7RigRBEATh4tlysoQ/rn2RlM3bGXrcjE8ZH8p/OPX8ohSUSdcaGXf3/fS98WYkSSIYCHKktI69G6wcLqkjGAjPmFBpFAwckcjgJBndoSO0bGyhRVYDMeHzpOMY4o+gH5OBetytYIjrgU8sCF1zwQFtWZaxWCw88sgjPPbYY/Tr169b17vdbt577z3+9Kc/ERsbe6HLEQRBEIQe5z12DNvnS7B9/jm+Y8daX5eBBqOOw4nRVEfrkQg9Qqlos6f0qoMEsuIYNmkGs6bcjU7ThdKUl0CL3UtlRRPWAzYqK5qoO25HPku2sCFKg2VgTGsAO95iPK/ek13iajgVtG4TvK7dB3LnGeKyDEFi8KmG4jPm41MMwudNwt+sQfYAHSd7hJH0qlDQ+nTG9ansa4Xu0mTL63PisfwyH1dZHe6yOoItfhR6FbrcBAy5Cdd8ZvZpU6dO5e233+bGG29kzpw5rFmzhj/+8Y9IksTtt9+ORqMJm+92u1m4cCFDhw69TCsWBEEQ2nN4Hby/733e2v0WjZ7wQPHUtKnMGzaP4YnDO71e9gdp2VOPc5MVz6HIEtLqNBOm/FT0wxNRaLpfpaPB6mTPukr2barC7QxvqaJQSPQbnkDOJAt9s+NQnG3/E/BBRXEoiL33C/BHbkCshsG86xjLtrpE0hzHSPEcIrHdHFN8ArnTZpI7rYjoJJFJDKGzKHfZ7lA/7OKVeA4c6HCeMjEBc2GoH7YhPx9Fu32C0Ds5nU4OHz7crWsOHTqE291xmyBBEARBuNyCcpCP96zgzXULGLmtkimNUfiViWFlxTX+AINS08l/4gfE5A0DoKnaRfkGK3s3WXHZvBH3TelvJre/nvjaY3gqrMj7tbS0y8RWUoM+Zj+GESmoJ8xGikq9pJ9VEM6XJMtnO64+O4VCwa9+9St+9atfoVCc3yHrwYMHGThwIACzZs1i+fLl57ucq15zczPR0dHYbDaixJPEgiAIl1WguZnmL5djW7yYlu3bW1+XgSaDluNxZk7GmZClyENUnzKILzOa7InTmD39Xky6nv873d7gbs2+th5oorHKddb5UYl6LFnRrUHs6ET9xS9tKcvQdDQUsG6bed184qyXBWU9Pjkdn3YUfm0evmA6PmcUQU8X9yYqCXVSeKlwdYoBhVlz1Zbv7M17ivLyckaMGIG/TRl/WZZRqVTs2LGjNXBdV1fH5s2b+e1vf8u2bdv47//+b375y19ermVfMXrz114QhN7P5rHxbvm7LCxfSLO3OWxsZsZM5uXNIzs+u9Pr/U0enFusOLdUEXSEB5pRKTAMT8RUkIqmb/fLIfq8AQ5+W8OedZVYD0YGyaMT9eRMCmVjG6LOEhSVZTi+JRTE3v0ZuOojpjj0ffiCiXxk7U9Mcx0DXIdQy+FtTRQqFQPHjie3cBbpucNQKET7DNnrxbl1K47iYuwrV+GvqupwniYzE3NRKIity8tDOs/zKuHcLte+Iicnh8bGRnbt2kVSUtI551dXVzN8+HDi4uLYs2dPD6zw6if2lIIgCBdHi6+Fv235gPUbFjJhpweN10yw3d7F5AswfMRYRv7gabTx8Xjdfg5ur6F8gxVrReS+VR+lZlh2NGluK8GTEPRHVipS0ITeVI4hLxrN5FlIcf0v2WcUhLPpzp7iglOMBg0adN7BbIABAwbg84V+EL2Q+wiCIAjCpSb7fDjWrQv1xV65EvlUH18ZaNZrqIwxcSzeTKCDftd+hYynn4mB4ycyp+hBoo09V5VElmUaq1xYK0IB7MoDTTgaOugl2EZ8H2Nr9rUlKwZjzEUuaen3Qu3edpnXZeCJ3Iif+RxK/HIffGTi041qzboOuE4dKnsBe6eXgwSq+FCfa9XpkuEpRlTx+kuXXS5cdNnZ2SxcuJDHHnsMhyNUYl6n0/H888+HZWH/3//9H7/73e8AkCSJu+6667KsVxAEQYAGdwNv7X6L9/e9j9N3po+fQlIwu99s5uXNIys2q8Nr5aCM50Ajjk1W3HsbQhuvNlQJeowFqRhHJaEwdL3t2Wm1x+zsWVfJ/i1VeNuVLFeqFGSOTGToJAuWQTFnf9Ctdn8oiF36ETQeiRj2a2PYapzGAms2dquHHMc+CvwbIuYlZmSSVziTIZOmoTeJPoUBhwPn2rXYVxTjWLMmrKVPK0lCP3w45hlFmAqL0GaKA9mr3e23387vf/97xo0bxx//+EduvfVWtNrIn1fcbjeLFi3imWeeoba2lvnz51+G1QqCIAhCpGpnLb9b8yq2tUsZWaFlimQAdARPh8hkmSRUjL3+ZgY9MBdJpcJ60Eb5snIqvq3B7wnftyoUEoMHRTFA1Yimxk5gH/gJD2RLuNDrSzFk69FOKURKualnPqwgXCQXlKF99OhRkpKS0OvPXR519uzZqFQq5s+fz80333y+b3lNE08/CoIg9DxZlnHv2YNt8WKaly4j0NDQOmbXqrGeCmJ71ZEHqAFJpqWvnsz8AmbPeIDEmJ4pERkMBKk74cBaEeqBbT3YRIvd1+l8hUIiMcOMJSuG1IExpA6IRmfs/oFwp1qaQv2tT2dcW0tCwexgx2uSZQiQGOpvrRiMT5OHP5iOr8UMwa4FnhVm9aky4W0C10mG8yo7ejW6GvYUNpuNtWvX4vf7yc/PJzU1vCTWzp072bVrFwBms5nbb7/9cizzinM1fO0FQeg9al21/HP3P/lo30e4A2dK/aokFTcOuJHHch+jX3S/Dq8NOH24tlXj2GIlUN+uTLAi1KrDWJCKdsA5As0d8Lb42b+1mj3rKqk9FhkgjbMYyZloYXB+CjrTWfZE9ioo+wRKPgTrzohhWaXjUNwU3mwew+aTGgbb95Pecpz2q9UYTeRMmkbu9Jkk9x/Qrc9yNfLV1OBYuQp7cTGuTZuQfZF7RkmtxjBhfCgTe/p0VIntC7ULPeFy7SscDgd5eXkcPXoUSZLQarUMGTIEi8WCTqfD7XZTWVnJ3r178Xg8yLJMZmYmu3btwmg09tg6r2ZiTykIgnB+Sqr38+yqF7Cs3UJGlQmfKvyBLGUgSD9zHPkPPUrqtEKcTR72brJSvsGKrSayfU1qkp6hcW6imlwE3B39fexFrylFP1CBfspEpPRRcJVWIxR6p+7sKS4ooK1UKnn77be57777zjk3KyuLQ4cOIUkSn3/+OTfccMP5vu01S2wWBUEQeo6vqgrbkiXYFi/GW3Gw9XWnRoU1xsSJODMubWS5yaAk47RoSR87hutnPUhqfN9Lvla/L0DNEXtr+XDrIRs+d+f9pVVqBcmZUa0B7JT+0ai1FyHQK8tgO3EmcF1VEvqn6VinlwRlEz65H75gP3yq7FNZ14nI/q4VkZE0yjN9rlszr40oL2ZA/iok9hTXLvG1FwShJ1gdVl4re43PDnyGN3iml59aoea2rNt4NO9R+pj6RFwnyzLeY3acm6y4SmvBH35coYzSYByXgnFcCsqo7lWPkWWZ6sPN7FlXyYEOslpUGgVZY5IZOslCcv+ozoPkHjuULwkFsQ+vBjkY/j6Sgqbk8SyRJ/HPgwmk2Q4z2LEffbBddRxJIiN3OLnTZ5I1djyqa7y3s+fQoVAWdnExLaceSGtPYTZjmjYNc1ERxkmTUJpEYPJyu5z7iiNHjnDjjTe2lhDv6P/Z00eeQ4cOZenSpWRkZPToGq9mYk8pCILQdbIss+zAWv5Z/A+Gbz5OtCMKvzL8HE7nC5CdOZhxP3gafd8MjpTUUb7ByrHd9bSP4Jl1SvIskNTiQG7p6O/gAFrVbgz9vegnjUUxcAKI6sjCFarHSo53JxZeVlbGzp07efjhh3n22WdFQFsQBEG44gSdTuwrVmBbvBjnxk2c3jG2qFVYY4ycjDVj10censrIOFLU9Bkzkutm3k96SsclMy8Wr9tP1UFbaw/smiN2Av5gp/O1BhWpA6JbS4gnpptRqi5wIxvwQd3+dsHrUmhp7HC6LGvwyX3xyRn45P74VDn4An0J+tqUP/J3eGmIQkKVqG/tbx3KvDaijNGKcuHCOR0+fJi1a9cyd+7cy70UQRCEq9rx5uO8WvYqn1d8jr9NT2itUsudg+7koaEPkWKMrFgT9ARw7azBucmKz+qMGNcOjMGUn4ouOx5J2b3v+26nj32bq9izrpKGysh7J6abyZlkYdDYZDT6To5IAj6oKIaSD2Dfl+CPzI7xJg1jk7GI548NxFdygmz7Xm70RpYUNyckkTd9JkOnFhGVeO7ev1crORikZdcuHCtXYl9RjPfw4Q7nqVJSQlnYRYUYxo5F6qAqknBt6tevHzt27OAf//gHr7/+OmVlZWHnlJIkMWzYMB577DG++93vohb/7QiCIAg9zBf08dK2T9nw9euMLnUzMWhClmLxt4llR/uCjJo0jWHzv09TE+zcYGXfC+txO8Ir1KglyElR0RcHyhYjNCiQCQ/+aZR7MfRtRj9hOMqh80EpvvcJV5cL7qHdVTqdjoKCAp588kl+/etf99TbCoIgCMJZyYEArs2bQyXFv/oauSV0QOlWKamKMWGNMdJo7Li1hj1RQfKoPGbOvJ+svjmXbI0tdm9r+fDKiibqjtsjns5syxClwTIwpjWAHW8xXljQ190M1bvDA9c15RCI7MMtywr8cgp+OSOUec0AfFIWfl88tC2weZbgtTJGeyZwfSrjWpWgR7rQILxwzdqwYQOPPPKICGgLgiBcIoeaDvFK6St8cfgLgm0ylvUqPfcMuYe5OXNJ0CdEXOercuLYZMW1owa5Xca0pFdhHJOMMT8VdcK525y1Jcsylfub2LO+koPbayMe/FPrlAwal8LQSRYS0zvpUy3LcHxLKIi9+zNoaYicEpPBwZQ5vNo0mvV7G8huLiff9SEquV1PQ5WaQfkTyCucRd+cPKRrNEMm6PHg2rQJe/FK7KtWEqit63CedtCg1n7YuqE53S4pL1w71Go1Tz/9NE8//TQ2m40jR47gcDgwmUz069eP6Ojoy71EQRAE4RrU2NLEs6v/if3rz8g+qmaMUg+okU9taSRZJkWppeCOe0idfSsV22r49K/lEa1wlEC/aCUDdC3oPTpokYDwvatacRhDSi36gsGoRj4Ial2PfEZBuBx6LKB9Wn19PU5n5FPRgiAIgtCTPAcOYPv8c2yfL8FfXQ2AV6mgKi4Ka4yJepOuw54y9jiJhBHZFM26l+z+Iy/J2uwN7tbgtfVAE41VrrPOj0rUY8k6k4Ednag/v4M/WQ71gjxdKvx09nXDoQ6nBokN9bmW+4Uyr6WB+AN9kOWuPQGqMKhQJYcHrtXJBhS6Ht+eCL1YIBCgvr4et9vd6Zy6uo4PzAVBEIQLs69hHwtKFvD10a+ROfO0nVlt5r7s+3gg+wFidDFh18j+IC1ldTg2WfEeaY64p6avGWNBKoZhCUjq7rVEcTV72bvRyp71lR32GEzJjCZnkoWs0Umdt1up3RcqJ176ETQdjRzXx9E04CYW+SfwWpmK1PIysh2fcqs/shd3UmYWedNnMWTCFHQmU7c+y9UiYLPhWLMGe/FKnGvWEHR1sK9VKDCMGoVpRhHmoiI0fS99yx7h6hMdHc3w4cMv9zIEQRCEa9j++qP88au/kbxqI2n1JnyqKHxttpyqQIDM+FTGz/8+LfpMyjda+erfN4Q9fCkBKVoFg6N8RPmUSCjAE95mRSVVok88gWFMP9T5t4G2kwc0BeEq0+UT49WrV7N69eqI1z/99FMqKirOeb3P5+Po0aN88sknZGZmdm+VgiAIgnAR+OvraV62DNviz3Hv3g2AT6GgOtZMZYyJOrO+wyC2Ixqihw1k2oy7GDFk/EVdkyzLNFW7WgPYlQeacDREZj63Fd/H2Bq8tmTFYIzpXg9JAIIBqK8Aa7vgtSsy8BeU9aGAdTCjTeZ1JsFgFw9mVQrUyYbQP6cD1ykGFGaNyLgRztvy5cv505/+xIYNG/B6vee+QBAEQbhoyurKeLnkZb45/k3Y6zHaGB7MeZB7h9yLWRN+sOZvcOPcYsW5tZqgM7yEoqRWYBiZhDE/FU2f7gV+5aDM8fIG9qyr5PCuOoLB8DI2WqOKIfmpZE9KJd7Syb3tVVD6MZR+CNYO+jer9PgHXc9GYyH/OGyh7ptScuzfcIv7BO13Mhqjmdwp0xk6bQZJ/a7Nsw+f1Yp95UocxcU4t2wFf2RpHkmrxThpEuaiIkzTpqKKi7sMKxUEQRAEQbhwKw9t5fVl/8fQzUfJc5sIKGPxtYm8GXx+huaMZPD93+VIRYBln1hxNOwMu0eCSiLLHCRRBgVKwiLhgIJ6DLEHMYxMRT3xOiRjfA98MkG4snQ5oP3NN9/w29/+NuL1zz77jM8++6zLbyjLMo8++miX5wuCIAjChQh6PDhWrcK2aDGOtWshEMCvkKiJMVEZY6LWbEDuoBy30yRjzOvP5KI7GJs77aIFXoOBIHUnHK0lxK0Hm2ix+zqdr1BIJGaYsWTFkDowhtQB0eiM3eyB43VC9R6o2nUmcF29J6L/oywrTwWsM/AF+7VmXgfk5K69jwSqeD3qZAOqNoFrVbxe9LkWLqrf/e53/OpXvwrrk3gu4uEJQRCEC7e9ejsLShawvnJ92OvxungeHvowdw2+C4Pa0Pq6HJRx72/EucmKe18DtPtrW5Wkx5SfimF0crcrtDga3ZRvsFK+3oq9IbJKR5/BMeRMspA5IhFVR5ne7mbYuzRUUvzwGpDDy5IjKZAzp3Gsz428Xp/Lqm0H6F9fRq7zM3TBdg9SSRL9ho0kr3AWmaPzUV1jvXplWcaz/wCOlcXYVxS3PjjanjImBtP06ZiLCjFOmIDCYOhwniB0x9dff83ChQvZvHkzVVVVfPbZZ0yfPh2ARx55hPvvv58ZM2Zc5lUKgiAIV5tAMMA/dyxh0+IFDN3rYiRGkKIJtNl2xvplRs+4Ac2wm9i3pY6P/+9g2D1ilBIZekhTBVGhjtgrK2hGH7UffV4c2skzkWJuvfQfTBCuYN36ibGjQ8OuHiQaDAYGDRrEQw89xFNPPdWdtxUEQRCEbpFlmZbt27Et/hzbF18iO+wEJInaKAOVMSZqogwEO+hd6NIH0eWmM77wFiaMuA7FRehv6PcFqDliby0fbj1kw+cOdDpfpVaQnBnVGsBO6R/deUnMjjhqQhnX1jZZ1/UVtN0VyzIESMQXzA0FrU+VDffLaXR1a6Awa0KlwpPPBK7VyYZulwYVhO7avHkzv/rVrwC45557GDduHCqViqeeeoqf//znZGdnA+BwONi2bRsLFy5k0KBB/PznP7+cyxYEQei1ZFlmc9VmFpQsYGvV1rCxZEMyj+Y+yu0Db0enOtOvL+Dw4txWjXOzlUBju8ozCgl9bjzG/FS0mdHdeuAoGAhytKyePesqOVpWT/vjCH2UhuzxKWRPsBCT3EGw1O+Fg8WhIPa+L8HfQbuK1BG4htzB54EC3vm2EWnDDnIcL3KLN7KKjTkxmWGFs8iZUkhUQmKXP8fVQA4EaNm+PdQPu7gY3/HjHc5Tp6WFsrCLCjGMGoWkEq1lhIvDZrNx3333sXz5ciD0d5UkSWHnlAsXLuStt95i9uzZvPvuu6KntiAIgnDBHB4nz61+A/vSj8g8qSJbpSMonakCpAgGSdWZyblhLvWBAWzZWo1314HWcbMC+mgU9NMF0BL5EKREC3pDOfocI7qphUiJN/TI5xKE3qDLP0n8+te/5te//nXYawqFgoULF3Lfffdd9IUJgiAIQnd5jx3DtvhzmhYvxn/iBEEJak0GrH2TqI42ElBGBqhbdEHU2RbGTruBqeNuRqm4sICs1+2n6qCttYR4zRF7WC+c9rQGFakDzvS/Tkw3o1R1IZAeDIZ6W7fvd+2oDpsWkM34grntMq8zkOlaRoykVYaVCled+ndld7PEBeEieeGFF5AkiaVLlzJ79mwA6uvreeqpp5g1axaFhYVh8x9++GFmzJhBnz59LsdyBUEQei1Zlll7ci0LShawqza8DHcfUx8ey3uMWwbcgkapaZ3vPdKMY5OVlrI6CIRHm5XRWoz5KRjHpqA0a7q1lua6Fvasr2TvBitOW/vsaEjPiSNnkoV+wxJQtt/vyTIc3xwKYu/+DFoaI98gJgM57y52xMzkn/tU7F60jYG2d5nsPISS8H2cQq1hcMFE8qbPJC07F+kiPADZWwRbWnBu3Ih9RTGOVasINHbwZwnocnJa+2FrBw0SVVKEi06WZW6//Xa++eab1kB2dHQ0zc3NYfNef/11FixYwJdffslNN93E6tWrxX+PgiAIwnk5ZrPy3NK/krBiHQnNRqJVJrxtomsaf4CM1EwSxz/IkYMSa79xApUA6BWQplaQrpUxKU5f1Pb80YdOW45hsArd1Mko+szqqY8lCL2KeDRWEARB6NUCNhvNy/9F0+LFuLdvJwjUm/RY0xKpjjbiU0UGqD2aINLgJEZOmU3hhNvQqM6jB/UpLXZva/nwyoom6o7bI7KF2jJEabAMjGkNYMdbjOcux+1rgZo9Z4LW1hKo3g0+Z+sUWdbgk/ueyrrOaM28DtLFnjoKCVWiPqzHtTrZiDJWKw59hCvK+vXruf3221uD2ecydepUHnjgAV566SVRblIQBKELgnKQVcdW8XLJy5Q3lIeN9Yvqx7xh87i+//WoFaGH24JuP64dNTg2WfFXu8JvJoF2YCymglR0Q+K61YIk4A9yaGct5esrOV4eGTg1xWoZMiGV7AmpRMXrI29Quy8UxC79CJqORY7r4yD3duoyb+W9k8ks3bCbmBNfkG3fxw0BR8T0pMyBDC+6jsETJqM1GLv8OXo7f2Mjjm9WYy9egXPdemR3B1ntSiWGcWMxFxZhLipEbbH0/EKFa8pHH33EqlWr6NevH3/84x+5/vrrcbvdJCUlhc178MEHefDBB/nP//xPnn32WRYuXMiDDz54mVYtCIIg9EYbj5fyxof/S9a2IwzwGwkqosP6Yxt9AdKzpyInF3Fsr4Pja0P7Ya0EFrWCNC3EKTtKngmgVe/HkOlHPyUfReb3QZy/CcJZXVBAe9WqVa1lHQVBEAShp8g+H46167AtXkTzym/A56XRqKOyTwJV0Sa8HZS99qqDBLPiGTZ5BrMm341Wo4u8cRfYG9ytwWvrgSYaq1xnnR+VoAsLYEcn6s8eIHbWh2dcV5VA3f7Wvo6yrMAvp+CTh+ML9mvNvPbLqYQ/3dk5Zaw2vFR4ihFVgh6pK5nhgnCZWa1W8vPzw147/f9UMNhxNYSxY8fy7LPPXvK1CYIg9GaBYICvjn7FgpIFVDRVhI1lxWTxxLAnmJkxs7WajbfSgXOzFdeOGmRvuyxmowrDmBRM41JQdRRsPovGKid71lWyd1MVbocvbExSSPTLiydnkoX0ofEo2gfIm61Q9kkokF1VEnlzlR6GzMGfeyfF3lw+2HKMyi+3MMS+l1nukxHTNUYzedOKyJ02g4T0ft36HL2Z98QJHMWhftiub78NVQZqRzIYME2ahHlGEaYpU1DGxPT8QoVr1rvvvktCQgIbN24kOTkZAI/H0+n8//mf/+Grr74SAW1BEAShS2RZ5t1dX7Hp/b8xsMLFIKUBMBNUtE4gRtKRNPQWau39OVzvg3o7KqCPRiJNrSBRJXV4/qdRVqDPcGKYNBzlkMfhGqr2IwgX6oIC2lOnTu32NYcPH2bt2rXMnTv3Qt5aEARBuMbIsox79x5sixfTuGQpclMjNoOWykQz1hgTHnXktzSfMogvM5qhE6dz3bR7MerN3X7PpmpXawC78kATjobOD0oA4vsYW4PXlqwYjDGdZH8Hg9B0pE3g+lTmtb3y1HtDkLhT/a1vae1z7ZP7Al3LKFcYVGFlwtUpRtTJBhQ6UaBF6N3M5vD/l3W60AMqJ09GBiMAXC4XtbW1l3xdgiAIvZEv6OOLQ1/waumrHGk+EjaWHZfNE8OfYHrf6SgkBbIviHNnNc5NVrzH7BH30mREYSxIxZCbgKTu+uGc3xvg4PYadq+rxFphixiPStCRM8nCkPGpGKPb7YPczVC+JBTEPrwGaFcqR1JA5jQYdjeHE6bx/q4GVr21ndSavzPYeYChwfYlzCUyho9meOEsMkePRam6+tusyLKMe88eHKf6YXv27etwnjI+HnPhdExFRRjHj0ehPf8qR4JwIbZt28ajjz7aGszuiltuuYW//vWvl3BVgiAIQm/n9nn4y8o3aV70PpYaFf1UGnzKMy37lIEg0cZ0dGk30lBv4FglKPBhUUv0UStIVksoOwhiqxTHMFgaMIzPRjXiAVBe/ftLQbgUevxEe8OGDTzyyCMioC0IgiB0ia+qCtuSJTR8ugj/4UM06zVYY0xYU9Jp0UZuAP0KGXeGkSETJjO78AGiTbFdfq9gUKb+hONMBnZFEy12X6fzFQqJxAxzawA7dUA0uo56S/s9UFMeHryuLgNPqMdbUNaf6m+dh0++qTXzOkhU1xauUrTpc21ozb5WmNWiXLhw1UlNTaW0tDTsNYPBgMlkYvXq1Tz00EMR1/zrX/9Co+lev1ZBEISrnTfgZfHBxbxW+honHeEPBA1PHM4Tw55gUp9JSJKEv76F5s1VuLZVEXT5w+ZKGiWGkYkYCyxoUrtXirvuhIM96yrZv6UKT7v7KlQSmSMSyZlkIW1QbHi5cr8XKlaEgtj7l4O/gzLYlpGQdxctg2/li8NBPlm9D2f56+TY93KdryFiuikxhRFFsxg6tQhTXBdbtvRiss+H69tvsa8oxr6yGH+ltcN5moyMU/2wZ6AfPgypw5KZgtCz6urqGDx4cLeuSU1Npamp6dIsSBAEQejVqhz1/L9P/kJs8VqMLgMapSG8P3ZAwhw/BreqAFdATUs9JKkk0jQKUtUSqg7O3pRSNYakSgzjMlGPux3U3ataJAhCJJGiJQiCIFxxgk4nzV9/TcNni3Bv2YJDowoFsQf3xamLDEoFJBlXmp6s8eO5fsaDxEcndXDXSH5fgJoj9tby4dZDNnzuQKfzVWoFyZlRWLJiSB0YQ0r/aNTadod6LY3hgeuqUqjdC0E/sqzCL/c51d/61tY+1wG6mFkggSpe31om/HT2tSpe362elILQm40aNYo33niDH/7wh2EHmaNHj2bhwoXMmjWLe+65BwhlnP32t7+luLiYMWPGXK4lC4IgXFHcfjefHPiEf5b9k2pXddjY2JSxPDHsCcaljAMZ3OUNODZZ8eyP7GGtSjZgKkjFMDKpW9VfvG4/FdtC2dg1R5ojxmNTDORMsjC4IAW9qc2+LxiE45uh9EPY/VlozxVxcT/Iuws5707KPMm8v/kI3368hH4NuxnhOoKSdqXR1RqGTJhM3vSZ9Bky9Kp/EDDodOJYtx578Qoc36wm2Bz55w+gGzYMc1ER5hlFaDIzr/o/F6H3MRgMNHfy329nDh8+HFHlRxAEQbi27bQe4M03f0/6jsOkykZkyYy/zTGfVjaijpuGTx6IU1IQj0QfvYRFrUDbwTmcgkYM8UfRj+qDZsJMJH10D34aQbj6demnzjfeeIPnn3+eH/7whzz++OOtryvFk7mCIAjCRSIHArg2b6bhs0U0f/U1LbI/FMQe2Ae7PrKcYVCScaRo6F8wjutnziU5vs8538Pr9lN10NaagV1zxE7A33HPXQCtQUXqgOjWDOzEdDPK032mZRlsx+FQSXjw2nYMWYaAnHSqRHg2vuD1p/pcp9HVZ8kUUZo2Wden/knSI3XQH1wQriWzZ8/mk08+oaCggEceeYTf//736HQ65s6dy+rVq7n//vv56U9/St++famoqKCxsRFJklqD3IIgCNcql8/Fh/s+5I3db1Dvrg8bm2iZyPxh8xmVPIqA3Yt95XGcW6oI2Nq1WlFK6HMTMI1PRZMR1eVApyzL1By1s2ddJQe2VuPzhD9AqFIrGDA6iZxJFlIHRIfft2ZvKIhd8hHYjkXe3BAPQ2+HYXdjixvOol2VLH69BM3BhWQ79jEz4Iy4JHHAYEYUzWLw+MloDYbIe15F/HV12FetwrGiGOfGjcheb+QktRpjfn6oH/b0QtTJXXs4VBAul0GDBvHJJ5/w9NNPd2m+y+Xi7bffJicn5xKvTBAEQbjSybLMorJVbHzjefoecZKm0hPEBKe3nzJo1elgmIykTMaohD5qBWkaBfoOgtgSDvTRhzAMi0c7ZQaS+eae/UCCcA2RZFmWzzUpJiYGu92O2WwOK8+jOM+G9ZIkEQh0ngEndKy5uZno6GhsNhtRUV0sQysIgnCF8xw4QOOixdR/thiPvQlrjJHKGBPNBl3EXBkZe7KatDEjuf66B0lLzjzrvVvsXqwVZwLYdcftnO27niFKEyodfiqAHW8xhjKfAz6o3QdVbYPXJeC2EZCj8AUz8MunelwH++GT05Hp2uGopFW2KxVuQJVsRNlR6XJBuEh6857CZrORl5eHz+dDkiR27NhBcnIywWCQwsJC1qxZA4T2m6e3ufn5+axZswa1Wvx/1Zu/9oIgnB+71857e9/j7T1v0+RpChub3nc684fNZ2j8UDyHbDg3W2kpq4dg+IZJGavFmJ+KcUwySlPXWzh4XD72ba5mz/pK6k84IsYT+prImWhh0LhktIY2f0c3W6HsYyj5MLTnak+lhyE3wLC7CfafxqZjzXy48SAHtmxgkK2cNHdlxCVqUxTDphWRN30W8Wl9u/wZeiPvkSPYi4uxryimZedOOtoAK0wmTFOmYJ5RhHHyZJQic1U4D5drX/GHP/yB//iP/+DHP/4xf/zjH1EqldTX15OYmMiKFSsoLCxsnXvy5EkeeOAB1qxZw//7f/+PH/3oRz22zquZ2FMKgtDb+AI+/rHiLZo+eo/YRiU+Vfj5gEJWotSPRKEdhUllIk2toI9GgVnZURDbjc5YgWGoCd20IqQ4S099DEG46nRnT9GlNLGJEyfy5ZdfMnHixIix22+/nby8vC4vrqSkhEWLFnV5viAIgnD18dfXY1u6jOqPP8V7uAJrjBFrnInGvhkdzrfFK7CMGcasWQ+QmTak0/vaG9xn+l8faKKxynXWdUQl6MIC2NGJeiRPM1TvhhNLYdupwHXtXoJ+Cb/cF18wA588CJ88E1+wH0HiuvahlRLqRD2q09nWp7KvlTFaUcZRELohOjqaY8ciM/QUCgVffPEFv/nNb3j//fepqqoiNTWVu+++m//v//v/RDBbEIRrTpO7iYXlC3m3/F3sPnvr6xISMzNmMn/YfAbqB+DcXk315m/x17SE30AC3eA4jAWp6Nr3sD4LWZaxVtjYs66Siu01BHzh1XDUWiUDxyUzdJKFxHTzmX2Q2wblS0JB7MNrgHZBWEkBmdNh2F0w5AaqPWo+2nacr9/5mLiTOxnkOEBf2RdxTcaI0Ywouo7+I8egVF2dXdfkYBB3WVmoH3ZxMd6DBzucp0pKwlRUiLloBsZxY5E0XX84QRCuJE8++SR/+9vf+Mtf/sJHH33EXXfdRVZWFgAbNmygtraWo0ePsmHDBr766is8Hg/p6el897vfvcwrFwRBEHpafYuNv77zvxhXrkXjM2BS6PC12RIqpCgU+nGYtDn00WpIUyuIUXW07/Wj0x3AMFiNbtoUFKkze+wzCIIQ0qUMbb/fT0lJCXl5eWGHgQqFgoULF3Lfffd1+Q3feecd5s6dKzK0z4N4+lEQhN4s6PHgWLkS60ef4tq6iRqzHmuMmXqTDjoI6DbHQMKoHGZedx9D+o2IGJdlmaZqV2sAu/JAE44GT8S8tuL7GFuD15YB0RgV9WeyrU9lX8sNx/DLqa39rU9nXvvlVKBrlUmUsdo2pcJDgWtVgh5JeX6VTQThYhN7imuX+NoLwtWvrqWOt3a/xfv73qfFfyZIrZSUzOk/h8fzHifNmYRzkxXXzhrkdgFnhUmNcUwKxnEpqOIiK+Z0psXuZe+mKsrXV3b4UGFy/yhyJlnIGp2E5nTPbb8XKr4OBbH3fQmBDvZyllGhIPbQ2/EZElm1t4ZP1u+lducGhjSXE++L7KVtTEpl1IzryJlSiCm2iw8f9jKy14tz85ZQP+yVq/DX1HQ4T5M1AHPRDMwzitANHYp0npX2BKEjl3NfsX37doqKirDZbGd9QFiWZeLi4li1alW3EnKEsxN7SkEQrnTlNUd4+6XfkFx6FL+kjzh7VKgy0OvHkqbPIE2rIEHV0R4piEZzEMOAIPpp41FmDO2ZxQvCNeSiZ2irVCpGjRoV8XpGRgYmk6lbizOZTKSnp3frGkEQBKF3kmWZlu3bqfroUxq//hcNGgXWGBN12enIHRw62M0y0cMHUTTrboYNLggbCwZl6k84zmRgVzTRYvdF3OM0hUIiMcMcCmAPMJMaU4eueTdULYHdJcgrSgm0cKpEeAa+YBY+uQif3BeI7Nnd4XsYVafKhBtRnQpcq5MNKLRXZ/aPIAiCIAhXrmpnNW/sfoOP93+MO+BufV2lUHHLgFt4bPAjxB3R4XjHSs3xkxHXa/pHYSpIRT80AanDA71IclDmxL5G9qyr5NDOWoKB8OfltQYVg/JTGDrJQnyfU2cHwSAc3RAKYu/+DNxNkTeO7R8KYufdBQlZHK5z8uHaI2xYvZg+NaUMcB1lEOGBeEmjZcj4yQwvug7LoCFXZQWcgN2OY80aHMXFONasJeiILOOOJKEfORJzURHmokI0/fr1+DoFoSeMGjWKnTt38r3vfY/ly5d3Om/OnDn84x//EGeRgiAI14gvy9ax6eU/kVDpIl6lxa9o2xJQiVY7jDTzOPrqokhUSSg62DOqVUcwZLRgmDIS5aBHOkzEEQSh53UpQ1u4MoinHwVB6C28x45R88lnVC1ahM3jwBpjotZsINhBqUqHMYghN5NpM7/DmNyprYePfl+AmiP21vLh1kM2fO7Oq3uo1AqSM6Ow9DeQGttAimoP6vpQ5nWw+ig+X9Kp4PWZzOsgXfu7VFIrUCWf6XF9OvtaYVJflYelwtVP7CmuXeJrLwhXn5OOk7xW+hqLKhbhC5552E+j0HD7wNt5xPIAhpIAzm+rkVv8YddKWiWGUUmY8lNRpxi7/J7OJg/lG62Ur6+kuc4dMW4ZGEPOJAsDRiai0ihDL9aUh4LYpR+DLbJ1BIYEyL0dht0NfUbj9gf5sszKom924i3fzBDHPkyByMzvhAFDGD3zOgaNn4RGp+/yZ+gtfNXVOFauxL6iGOeWLeCLfKBT0mgwTpiAeUYRpmnTUCUkXIaVCteiK2VfUVFRwYoVKzhw4AB2ux2z2czAgQOZMWNGayly4eK6Ur72giAIAIFggNf+9Tb1H7yD0a7E167NjEIRRZp5GunGLFI0KpQdnOWpFJUY+jSinzgU9bAJoFD21PIF4Zp20TO0L6bDhw+zdu1a5s6d29NvLQiCIFxCAZuN+qVfcPTDj3BUHaMyxkRNkoGgIvJw1KkPos7uy9SZt1MwYiYKhQKv28/xPQ2t5cNrjtgJ+IMdvFOIRq8itZ8OS0IzFv0BEn1bUVSV4tvuwy+n42rNvJ5KgKSufQgJVAn6sB7XqhQjqjhdl/tGCoJweSxcuJAPP/yQgwcPolKp6NevHzfccAOPPPKI6J8tCMJV6WjzUV4peYVlh5bhl88EqvUqPXdl3ckD6ttRbnfhWXSM9nm86lQjxoJUDCOSUGi7dlgXDMocK6tn97pKjpbVIwfDn43Xm9UMKUglZ5KFmORTmTDNlbD1Yyj9MNTmpT21AYbcEMrEHjAdlGrKTtr44OPtlK1fQ2bDboZ5qiIvM0czfPpM8qbPJM7Sp0vr7y1kWcZ78GBrP2x3aQd/boAiOhrztKmYioowTZyIwtj1BxIE4WqTlZUlAteCIAjXoGaPkxdf/wPqb9YjBXVoFNrW/tgSEsnG4WSYx9JHG4u6g3M9pVSHPrkaQ0EW6jG3Iak0PfwJBEHojh7P0BY9tM+fePpREIQrjezz0bxmLQcXfkDTnu1URxmojjYS6KBXdIs2iDwolUkzbmLKuJvwOgNYK2ytJcTrjts523ckg0mBJaWFVOMxUtlGdNNuAi5ja8Z1qM91H7r6rJYiSnOmx/WpsuHqJD2SWjyBKVz9etOeYu3atbzyyiuUlpbi8XgYPHgwTz31FNOnTwfA5/Nx6623dlpqcsiQIXz11Vf06XN1BTzOV2/62guC0LGKxgoWlC7gX0f+RVA+8/CfUW3kkYy53GovJLjdRqDZG36hSsKQl4ixIBVNurnLVWaa61soX2+lfIMVZ1O7HtcS9M2OI2eihf7DE1CqFOC2wZ7PQ0Hsw2uBdhs8SRkKXufdFQpma03YWnws3nmS5Ss3ojv0LQOdB9HI7TKRFQrSh49l1Mzr6D9iNArl1bNnkwMBWnbtwr6iGEdxMd6jRzucp7KkhvphFxVhGD0KSTywJVxmYl9x7RJfe0EQLqeDdSd59y//HzF7j+JVhVfoidf2ISNqPH0N/dB1kGWtwIY+4QSG0X3RTJiOpDVEzBEEoedctgxtp9OJzWbD7/d3Oqeuru5ivqUgCILQw2RZpqWsjAMLP6B2fTH1OjXV0UZ8/ZIj5nrVQdwDEphQNIexQ26g9rCTyoomPli+lcaqyJKRbUWZfViirVgUe0lsOYg2qMXf2A9ffQZe+TvU0LVKH5JWgTrFdKZU+Kmy4QqDOAAUhCvdc889xzPPPBP22r59+1iyZAnvvvsud911F//5n//Jl19+2ek99u7dy3e+8x02btx4qZcrCIJwSZXXl7OgZAErjq0Ie92sNvPjuO8yuXo4/mXN+IK1YePKOB2m/FQMY5JRGru2/wkEghzZVceedZUcK2+IiEkbozVkT7SQPSGVqAQ9+D1w4ItQEHvfcgh4Im/aZ3QoiJ17O5iSkGWZzYcb+HjtDo5uWcMgWzmjfU0RlxmSLIyZNZucydMxxsR2af29QdDtxrlxI/biYhyrviFQX9/hPO2QIa39sLXZ2aLdjSB0gd/v580332TXrl1ERUVx5513Mnz48Mu9LEEQBOECfVO6kY0v/AFTTQsGtaY1mB2tTiTdlEuGKQ+jKrIFjYQLfcxRDMMT0U4pRDJG9/TSBUG4CC44Q/vkyZP87ne/Y8mSJVRWVnb5OpGh3X3i6UdBEC4nn9XKofc+5vAXn2GXfVRFm/B2kM3sVwZx9Ith+KhZZMVPpfaIC+sBG/aGyP6KbSWaGklXnyBJtmJWKIAUfMF+BOniwaUC1ElnyoSfzr5WRmvFwZ8gtNMb9hTffvst+fn5yLJMR9vV+Ph4SkpKyMrKwu12c9tttzFnzhz69u1LIBDgyJEjLFq0iK+++gpJkliyZAlz5sy5DJ/kytIbvvaCIITbVbuLBSULWHNiTdjracpUfqJ5gqFH+xKsj8yc1mXHYypIRZsV0+XWKU3VLvasr2TvRist9vAMaUmCjLwEciZZyBgah0ICjm+Ckg9g9yJwN0XeMC4zFMQedhfEDwCgxu7m4y3HWLNyDfGVO+nnOoqiXcRc0ugYPH4yo2bOJiVr0FWzlws0NeFYvTqUib1+PbKrgwc8FQoMY8aE+mEXFqJJS+v5hQpCF12ufYXX62XMmDE4HKGGCm+++SaTJ08GoKmpiWnTplHaply/QqHg+eef5wc/+EGPrfFqJ/aUgiD0FFmWeWfJm1R9+C5qtxL/qSo9RlU06cYcMky5RGviOrjSi950GH1uFPpp05FiEnt24YIgdEmPZWgfPnyYgoIC6urqOjxo7MzV8sOoIAjC1S7odHJ88TLKPlxIS3MD1dEm3PGRpXgCUhBnShz9+00hXjOa2sMuqlf4qOZwxFwJMCuD9NHWk6RsJEqpQEUMQZJBDvW69nTeOhsAZYwKdWrUmZLhKUZUCXqkDkqdC4LQO7300ksEg0FiYmL44Q9/SH5+Pmq1mn379vHiiy+yb98+fv3rX+N2u/nggw/4zne+E3GP7373u/ztb3/j6aef5tNPPxUBbUEQepWtVVtZULKATdZNYa+PCw7nu/77SD0aBX6ZIGeC2QqzGuPYFIzjUlHFaLv0Pn5fgEM7atmzrpKT+5sixs3xOnImWhgyPhVTrBaq98Cqv0Ppx2A7HnlDQwLk3hEKYvcZDZKEPxBkdXk1n67ajm3XegbZ9zE20BJxadyAbMZdN5tB+RNR63RdWv+VznfyJPbildhXrsS1dSt08HC/pNNhmjwp1A976lRUsVdPJrogXArLli2jrKwMSZIoKCggts3/M7/4xS8oKSkBQKVSYTQasdls/PjHP2bKlCnk5eVdrmULgiAI3dDi9fDyi/+NtG4jAUmHJGlQaYxkGrNJN2YTr7N0cFUArf4QhiE69NMno0gq6vF1C4Jw6VxQhvbcuXNZuHAh0dHR3HzzzeTk5BAbG4tW2/kPzhs3buSVV165KBnaHo+H559/nvfff5+KigqUSiXZ2dk89NBDzJ8/H4Wi+4GNI0eO0L9//3PO+9Of/sTPfvazTscrKyv54x//yNKlSzl58iTR0dGMHTuWJ598kuuuu67b6wLx9KMgCD1DDgSoXr2WrW+8iufkUWrMBlq0keUpZcATnUhc7FgU7kH4PZF/5+okiFJKxCgDJKodRClBLUUh0bVylwodoaC1JfpU5rUBdbIBhfaidswQhGtOb9hTZGdnc+zYMbZu3UpOTk7YWEtLC+PHj2f//v3Mnj2bTz/99Kz3KigowOv1sn379ku55F6hN3ztBeFaJssyGys38nLJy2yvOfN3ljao5mZ3EXc6ZmOu10Rcp82MxliQin5ofJcf8Ks/6WDPukr2ba7C4wpvG6ZQSvQfnsjQSRbShsQi2Suh7GMo+QiqSyNvpjbAkBtDQezMaaAM7fWO1jv5cOMBvl31DWm1paR6qiMuVZpiGFE4g+FFs4hN6ehgsneRZRnPvn3Yi4uxFxfj2VPe4TxlbCymwumYi2ZgnDAexVUSwBeuLZdrX/H444/z5ptv8vnnn3P99de3vt7Q0IDFYsHn8zF58mQ+++wzYmNj+eSTT7jvvvt47LHH+Mc//tFj6+yOS3HGeZrNZuO5557j008/5ejRoxgMBoYNG8b8+fO55557zuueYk8pCMKlcqzOygfP/Tv6iko8ai1qhZa+hsGkm7JJ0mV0mCyp0RzGkCWhn16Asu/Ay7BqQRDOV49laBcXF5OVlcWGDRtISEjo0jUqlYpXXnnlQt4WCPXiLiwspLS0lPnz5/O3v/0Nr9fL3//+d773ve/x0UcfsWzZMnTn+UOhwWA4aya5RhN5iHDapk2bmDNnDm63m9/85jdMnTqV48eP89vf/pbZs2fzzDPP8Pvf//681iUIgnCpNO/Zy9qX/o6zvIQGgw6nTgMJ4T1lZCRknQWtKg+FKgu9pCFoAwUQp5SIUkpEKSFaKROlBJV0+tuMCuj8YSdJGUSVoEbdJw51qrk161phUouqHoJwjTpx4gS33357RDAbQK/X87Of/Yy5c+eGHWJ2Zs6cOfz1r3+9FMsUBEG4KGRZZvWJ1SwoWUBp3ZmAcZonmbudc5jWOBqVNzyYIemUGEclYyxIRZ0UWUGnIz5PgAPbqtmzrpLqw80R4zHJBnImWhhckIJB7YLyz+GtD+HIOiIaaUtKGFAYCmIPngNaEwBuX4DlJSf44usNBPZtZqDzIGPl8IC5rFCSNnwM+dddT8bwkSgUkW1sehPZ78f17XYcK4uxryjGd/Jkh/PUfftinjEDc1Eh+pEjkZS9+3MLwuWyefNm7rrrroh94GeffYbX60WhUPDKK6+0Zm7fcccd3HbbbXzzzTeXYbXndinPOCsqKigsLOTkyZP84he/4Oabb6ahoYHnnnuOe++9l6VLl/LWW29dUMBcEAThYti4cyPr//4HNI0+1GotSTEjyDBmk2LIRClF7pmUykpMmS3op4xGNXDuZVixIAg97YIC2vX19fzoRz/qcjAbYNiwYfzqV7+6kLcF4M4776S0tJSnn36a559/vvX16dOnc9ttt7F48WK+973v8c9//vO87r9792769evX7etqa2u56aabaGxs5LPPPuPWW28FYNy4ccyYMYO8vDyeffZZBg8ezEMPPXReaxMEQbhYPDW1fPPi36jfvA6HSoldr4W49k9CSUiqvig1Q1CrszCrdKcC1xLmU78autiXEWRU0cFQ0Dot4VTJcCPKOF2XezsKgnBtcDqdjBs3rtPx/Px8ANK60Fu0b9++rT0WBUEQriRBOciKoytYULKAfY37AFDKCsbbh/Md+ywGN2dEXKPuY8JUkIp+eCIKTdcCojVHm9mzrpL9W6vxucOrpSnVCgaMCmVjp/bTI1WsgC//A/b/CwKeyJv1GRMKYg+9HUxnehHuqWzmozW72b9+Ff0bdjPYb4u4VJfUh3HXzWbolEIMUdER471J0OXCsX49juKVOFatImCL/LwAutzc1n7Y2oEDxcOagnARHDlyhHnz5kW8vmTJEiB0NjhwYHiGXkFBAUuXLu2R9XXXpTrj9Hg83HDDDRw/fpy//OUv/OhHP2odmzFjBhMnTuSdd95h4MCB/PrXv75In0YQBKF7PvrkdU5+/CH4NfQx9ic9NYc+hixUisiEQkmqx5TeiGFiLuq8u0DsqwThmnJBAe2UlJRuBbMB8vLyLrhfzSeffMI333yDTqfjv/7rv8LGJEni2WefZfHixbz55pv88Ic/ZPTo0Rf0ft3x29/+lrq6OvLz81uD2adFR0fzzDPP8P3vf59f/OIX3HXXXej1+h5bmyAIAkDA7WbNa69wrHgZXp+fZoMOzJFZPSbtEGINQ4nRpBGl0hCllDApQNHFzaJS50WVqEHdNyGUeZ1iRJ1kQFKLJ78FQeia2LP0ED09drZWN6dpNBp8Pt9FW5cgCMKF8gf9LD+ynFdKXuGQ7RAACb5Yrm+ayA22qUT7jOEXqBQYhidiKkhF09fcpffwtPg5sKWK3esqqTse+VBPfB8jOZMsDBqbhK5uK5S8DJ8sAncHgdm4TBh2N+TdCfEDWl+2u30s3n6M4q++wXhkOxktxxjVPpNbo2PQ+CmMnTWb5AG9O6Drb2jAseob7MXFONevR/Z0EPBXqTCOG4dpRhHmwkLUKSk9v1BBuMp5vd6I8zSXy8XXX3+NJEnce++9EdeYzeYrcj94Kc84//73v7N//34sFgtPPvlk2JhGo+G3v/0tc+bM4Y9//CPz5s3DYun9bR8EQegd3F4vb/zl13i3lRGr78vI2BtIMw5Gq4yMlcg4MKZUYRqfhXrMjUhK0YZQEK5VF/R//5w5c9ixYwePPPJIl6+pra2lvLycKVOmnPf7vvrqqwAUFhYSExMTMZ6dnU12djbl5eW8/vrrPRbQ9nq9vP3220ConFFH7rjjDr7//e9TXV3N0qVLufPOO3tkbYIgXNtkWWbzpx+z+9O3CTa7QkFstQrUKrQKPdGaRKI1icRoM4jWpBKlNqLu4mGjpPShjg2Esq77WUL9rpMNKAxd65MtCILQmbOVPuzNARFBEK5dvqCPpQeX8mrpqxyzH0OSJUY5s7mhcQoFjjwUhP+9p0rQY8xPxTg6qUt7K1mWqTrUzJ51J6n4tga/Nxh+P62SQWOSyJ5kIVl/Aqn0VVjwMTSfiLyZMRFy74C8u6DPqNYMGFmW2Xa0kY9XbKN62xoG2PaSG3RHXB6dmc2EOXMYOG48am3v7Q/tPXYMe/FK7MUraNm+A4LBiDkKgwHj1CmYC4swTZ2CUvSTFYRLKikpiX379oW99vHHJyFjFgAA99RJREFUH9PS0oJKpYpIMAE4efLkFdnr+VKecZ6+96233oqygxYHs2bNwmw2Y7fbeeedd/i3f/u38/sQgiAIXWStqeTD3/0nsfVaBpoHkp7xPfSqyIc1g7IHXXwlUQV90I4vQlJ33v5VEIRrxwUFtH/5y18yceJE7rrrLiZNmtSla7766ivmzp1LIBA49+QOeL1eiouLARg7dmyn88aOHUt5eTnLli3jhRdeOK/36q7169djO1VmrLO1JSUlkZ6ezrFjx1i2bJkIaAuCcEmVrl/Dhtf/gdxgx63REK1JIjYpkcxTAexodQJ6lalrN5MCqE0tqBPUqNITUffrgzrVjDJaIwJLgiAIgiAIZ+EJeFh0YBGvlb2G1WnF7Ddyh20GcxonYfElhU9WgD47HmNBKtoBMV1qy+J2+Ni7ycqe9VYarc6I8aQMMzmTLAwcHESz/xNY/hFUl0XeSG2E7BtDQezMadAmA6bW7uGTjQfYWFxMknUXKZ4a2q0chSmG4YUzGTXjOmKSe2dmsizLuMt2Y19ZjGNFMZ4DBzqcp0xMwDy9EPOMIgwFBSg04qBVEHrK2LFjefvtt3nqqadIT0+npqaG3/72t0iSRFFREXFxcRHXLF68OKIM+eV2Kc84Dx8+zN69e896b6VSyciRI1mzZg3Lli0TAW1BEC6Zb7esp+Sl9+ijzmCW6VbMaZHV2AKyH6Wpirhx0einTEXSGzu4kyAI17ILCmgHg0FefvllHnzwQSZPnszNN9/M4MGDMZvNnWbU1NXVXchbUl5e3loi6Gw9rk+PHT16FJvNRnR09/pzLV++nC+++IKysjKqq6sxm83k5uZyxx138Mgjj6DTRT5hXlJSEvH+na3t2LFjYfMFQRAulorSEja/9DZ6lxqjJprhhplExyRiUsV0OfCs1NpRxwRQp0ahzuyLOiMZVYIeSSnKhQuC0HO68neWeKBGEIQrWYu/hY/3f8wbZW9Q46phSEt/7mt6iCnNo9DI4RnXiigNpnEpGMemoIw+dzsFOShzcn8je9ZVcnBnLUF/eKlvjV7F4HHJ5Iw1k9C8Akp+A8XroH1JcEkJAwpDJcWHzAHNmcPDQFBm9b4alixfi7NsA5nOQwyT/eHrUChJHTaGidfPIX3YCBSKrvX1vpLIXi/OrVtxFK/EvnIl/qqqDudpMjMxFxViLipCN2wY0lkqiQiCcOnMnz+fRYsWkZOTQ05ODvv376e5uRlJkiJKazscDv7jP/6DnTt38uMf//gyrbhjl/KMsztnlGvWrBFnlIIgXBJf/N8/UOxpIc3Qj5lJd0eMB+UgfnUt8aPUmGdMQRHVedsxQRCECwpo9+vXr/UQ8Z133uGdd965KIs6m2PHjrX+e2JiYqfz2o6dOHGi2wHtn/3sZzz99NP85Cc/wWw2s3//fv785z/z/e9/nxdeeIGlS5dGbAi7u7bjx4+fdQ0ejwdPm55czc3N3foMgiBc3WRZJlDbQEvpXqwllTQe92DEhFkVzVTzzdCV9oqKFjRmB5okNeq+SaiyMlH3iUOh7X0HkYIgXH0eeOABHnjggU7HJUlixowZPbgiQRCErnH6nLy/933e2vMWLpeT6bYx3ND4GAM8fSPmarNiMBWkosuO69LDg06bh70bQ9nYzbUtEeOpWdHkjE9igHkn6vIF8N5XEOig13OfMaEg9tDbwBT+8+vxBhcfri6l7Jti0urKSPNH/iyqSUojf/b15E2Zjt585ZXxPZeAw4lz3VrsK4pxrF5N0G7vcJ5+xAhMp4LY2szMHl6lIAgdmT17Nk899RR//etf2bZtW+vrDzzwAHPmzGn9/R/+8Af+8z//k2AwiCRJ3HbbbZdjuZ26lGec3b13Y2MjTqcTo7HjjMjOziiHDBly1jZBAKNGjeLzzz8Pe+3mm29m+/btZ/8QwE9+8hN+8pOftP7ebreTnZ19zusglJXftkT70qVL+e53v3vO60wmU2t2+2n/9m//xnvvvXfOa2+44QZefvnlsNfGjBlDVScPSrX13HPPcd9997X+ft++fRQVFZ3zOoCtW7eSmpra+vsFCxbw29/+9pzXDRo0iJUrV4a9dv/997N69epzXjtv3jx+/etfh72WlpbWpfUuXLiQadOmtf7+m2++OevPfW2dOBHeJuU3v/kNr7zyyjmvmzp1akTsorCwkP3795/z2l/96lfMnz+/9fdWq/WsVRXaKi4uZvDgwa2/f/fdd/n5z39+zutSUlLC/n4DeOKJJ1i2bNk5r7333nv505/+FPbakCFDcDgc57z2pZde4sYbb2z9/bfffsstt9xyzusg9JCO2WzGXnGIzf9YwpfbtvPuji87nBskgFINCp2WUWPG8Pn/iL8jzkX8HSH+jmirN/8dcdqf//xn/vznPxPsoKVTZy4ooA2hgEp3XUgmjb3ND5kdZUl3NNadQLBOp6OwsJC//OUvDBs27P9n787jo6rux/+/7myZzJJJQnZ2CJCEfd9kS1ARlMWlVlFQq1jbalu72vZntd/Pp/bTxY+fVmurVkVxaV0QBUQg7EvYd8ISCEv2PZl9u/f3x0CSySRkAoEQOM/Ho8XMPffOmSQMZ+77vN/v+sdHjhzJPffcw4wZM1i/fn19//CIiIad822dW2vzeumll3jxxRfDnrsgCDcu2eHFm38eb14+znM1OCs0KG4zagKZPQaSMFyiyqFf8aNobETEuDH2MKDr2wNtal/Uls7bz1AQhBvf5awzWyIyuQVBuBZq3bV8eOxDlhxdQrTVyP3V08mqHYtRjgwaJ0VqMI5MxDg2CW28odXryrLC+aNVHN1SxJmDFchy8Puj3qhlwLhEMnqXElv0LmxeBq7a0AvF9g0EsQffC136Bh1y+/ysOlDAmlXrUJ3cSXdnAYOaZHMrukj6jpvMhDvuIKF330733uotK8O2fgPW7LU4tuegXMiMbEzSajGMH4c5azqmaVPRJjQtrC4IwvXglVdeYfbs2axcuRKfz8eUKVNCAtYDBgzg4YcfBiAqKoqJEyd2xFRbdDXvcV7utVsKaLd0j7K4uLjVuXTvHrqZq7y8nMLCwlbPbfp6FUUJ6zwIlHRvzOl0hnVu45vtF1VXV4d1blVVVchjJSUlYZ3rcDiCvvb5fGG/1qatPW02W1jnNrc5oqKiIqxzL7bdbCzc+TbeHHHx63DPbW4e4ZzbXNXY0tLSsM5tGuTx+/1hz9fnC65s43A4Lvu1VlVVhXVudXV1yGNFRUVB7wstcTqDN0t6PJ6w55v3z89QCo3E6RJI041gpbyfElt5q+d1Lw8dI94jQon3CPEe0Zrr/T2i6T2+urq6Nr/WKw5oP/nkk4wbNy7s8du3bw9rR0RHSUpKqu9f05ROp+OVV15h6NCh5Obm8s4774S1a+dyPffcc0E7jOrq6ppdBAqCcONQfDLeUhvevHy8Z4rwlTlx1+pRfBcXSzoggZb2P8uKjNVbg9VXh8/gpt+YnsSOHICme/ew+i8KgiBcT9LS0khMTLzi65SWlnL8+PF2mJEgCELzqlxVLDm6hE+O/oehVan8puY7DHaE9mrVdjdjGpuMYWgckrb1ijjWKhe524rJ3VaErSo0y7pbWgwZg2X6eL9CffQTOFIQehFjPAy6F4bcBykjoEkQ+lhJHZ+s3snZ7RvoVXOM3rIr6LgCmPtkcMvMmQwYOwFNJ+sV7T59Gmt2oB+288CBZseozGZMU6Zgnp6F8ZZJqE2iZ6MgdAaZmZlkZma2eHzevHnXXVZ2Z9XSPcrk5ORWM7SbyxCPj4+na9eurT5vVFRwBRBJksI6DwL3cRuLjIwM61yTyRTyWExMTFjnNte/PSkpqdXzAAyG4A1uGo0m7NeqVgevKUwmU1jnNvdZKy4uLqxzmwt0hTvfxgliF78O99zm5hHOuXFxcSGPJSYmNht0a6rp74RarQ57vhpNcPjFYDCEdW5zvzexsbFhnRsTE1q2OyUlJazsy8jI4E2YOp2u5edUFGSXG9mjIKEisjAZU0TD77FJZyTR1AW/4kMTqUMd0fwaUrxHiPeIpsR7xA3yHtFE083QUVFRdO3aFVmWw9ogByApV5D6olKpWLJkSVCpg9Z88MEHLFiwIGRXSLi++uorZs+eDQTKQMyaNavZca+++mp935zDhw8zcODAy3q+5nTt2pWioiJmzZrF8uXL6x//yU9+wssvvwwEdmW0tKvx3nvv5bPPPiMuLo7yZnYgtaSurg6LxUJtbW3Im7UgCJ2LIiv4q114C6rwnj6Ht7Aab6WCz2kEwiv37fDVUeMpp9ZTQZ2nEoe3DnX/eOY++1MMxtDFlSAIwkWdYU1xOevMlixZsoSFCxde9vrzRtIZfvaC0JmUO8pZfGQx6w+vYVrFKG6vmUCMv8mNNa0Kw7AEjOOS0XVtfY3m98ucPVTJ0S1FnDtSSdNP7AaLjvQRJtKjtmHJXwJlR0IvojVC+p0w5FvQeyqog2+U2Nw+lu3IY/M3a4g6t5dETzOfS00xDJl2K2Nuux1LwpVvLrpWFFnGdfAg1uxsrGuz8eTnNztOk5SEOTMT8/QsDKNGIXWyQL0gXA8607qivLyc3NxcJk+e3NFTqXc173H+7W9/45lnnmn1nJ/+9Kf85S9/AS59L7OpzvSzFwSh/ShuJ46NmyjPqQFbAhpVaL6kzVtDof00FdHVzPntL9A3CYAJgiA01pY1xRVlaE+cOJGENpbf6tu3LwsWLLjs5+zRo0f9f18qGNz4WLi1+dsyh6KiIvKbfDBuOreWFoEX5yayrQXh5uC3efCW2PGeK8N7phhvmRNfXQSKrG00quWG1x7ZTa2njFpPeX0Au9ZbjuxzE+n1EpmRxuwf/pLoxOQWryEIgnAzkySpXcuXC4IglNhLeOfQ2+TvPcrtVRP4lu1XqJrU0NHER2Icl4xxRCKqyNY/eteWOzi6pZhj24tx1AWXQJQk6JEeRUbXU/SqfR9V7hZoUg4cSQ2pWYGS4gPuAF3w51FFUdhzppKlX2+iau8WetlO0U8J3uijqDTEDRrFlDtn0WvwUKRWsu6uF7LHgyMnB+vabKzr1+EvDy0ZCBDRv/+FftjT0Q/M6HQl0wVBuHyrV6++ogSbq+Fq3uNs67VjYmLCDmYLgnBzUbxePDu2ULWtEE9lEmrJgAYDjZe+Tp+N8/bjFDnyiZyWwT2P/LDjJiwIwg3rigLamzdvbvM548aNa1OJ8qbS09PRarV4vV7OnDnT4riLx3r27NlseYMr0dIN0cY9t8+cOUOvXr0uObfG4wVB6Pxkjx9fqQNvsQ3vmSK8RTV4q0D2NM72UAPNZ+b4FQWr30utp4Ia1xlqPIXUespx+hv6V6j9MhaXi+iePcn63s/oOjDj6r4oQRCEDrJ06VJGjRrVLteaOnUqS5cubZdrCYJwcztvPc8Hu9/Dv6+G26snkOSdFDxABZED4zCOSyaij6XVgKnfK3N6fzlHthRReDy0l5kpRkdGfytp0lLM55dClSf0It1GB4LYA+eBMbRUXqXNzWebDrF37RoSSg8S67PStNihOqE7Y2+/g+FTM9E3U0bxeuSvq8O2cRPW7GzsmzYhN+krCIBKReSI4ZizpmPOykTXKMAjCILQ0a7mPc6m9yhbu7a4RykIQmOK3493/06sW05gL05AhQnoibrR0tbjd1HgOMF52zEqpFLGff9pHhr9o46asiAIN4Er7qHdVjk5Obzxxhu8/fbbl3W+TqcjKyuLVatWsXv37hbH7dq1C6DFcj0tmTt3Lk888cQlzzt37hxASMB6woQJ9anxu3fvZurUqSHnlpWV1Z/f1rkJgnB9UPwKvkpnIOu6sDaQeV3mwm/XAI1vWjZftlBRFOwyWGWFOp9CrbeWavcJ6hwHkOWakPEqWSbW7kQVH8/YBU/RL3OqyCYRBOGGN3v27HZ7r+vatetl91sSBEEAOF1zihWbPifmsJr7rePRKtrgAVEaosZ2xTg6CXVU66Wrq4rtHN1SxPGcElx2b9AxlUqiVypkWLbQvfQtVGdrQi/QJTUQxB58L8T2CTnslxU25RazcsUavEdz6OY8T9OO3rIukl5jJzN51kwSe/dtdc7XA29xMdZ167BlZ2PfuQt8vpAxUkQExokTMWdlYZo2FU0zvQoFQegcvvnmG15//fWQ+3R9+oS+77XGbre359TaxdW8x9m7d2/S0tI4duwYu3fv5pFHHgkZ4/f72bdvX5uvLQjCDUpR8Obuw7HpAHVnY5GUWKBPUA0in+ylyJHHOXsuFdZ8fN2iuPePL9EtUXzeFgTh6rvmAe1Tp06xePHiyw5oAzz++OOsWrWK7OxsamtrQ3YnHjt2jNzcXCRJ4rHHHmvTtZctW0a3bt1aXMjt37+/vkF50zERERE8/PDDvPrqq3z22Wf89Kc/DTn/888/BwIN5e+88842zU0QhGtLURT8tR68pXZ8JXa8BdV4C2vw1iggNy2/qG32Gm5Zoc5/4X+yQp0frH4Fr78Sv+c4fk8uyLUh50myQhebA63BSMa8hxjyrXtRib5+giDcRBITE7nrrruYM2cOt912G3q9vqOnJAjCTehEyTFyVq+lz6k45rlDK42p+5qIntgD/YBYJPWlN+F4PX5O7Snj6JYiik+Frv8ssWoyUk6Q5ngLQ90xqGsywJgAg+4J9MVOGR6oQ95EQbWD/3yzg5Obs+lWlUuS7A46rgCRvTOYPGsW6eMmoNE2v4a9XiiKgvvkSWwX+mG7jjTTLxxQWyyYpk3DPD0L44QJqAyGazxTQRCuhocffpjKykq2bt0aVDb7UhnHl3I9bgy/mvc4H3/8cX7605/yxRdf8Ne//hVVkzYSa9aswWq1otfrefDBB6/4tQiC0Dn58o/hXL8T6+kIZF8KkBqUriMrfkqcZzhnO0qhPQ+V345qzHAe+9HHGHTic7ogCNeOpITZULCmpobo6OigxzZt2tTmJ1y9ejUvvfTSFfesmTp1Khs3buTHP/4xL7/8cv3jiqJwzz33sHTpUh555BHeeeedoPO++uorHnvsMRITE1m+fHlIlrUkSZhMJvbv30/fvsG71N1uN7fffjsbN24kNTWVQ4cOhdxcLS8vJyMjg4qKCpYtW8bs2bPrj9XV1TFkyBDOnj3Lu+++y8KFC9v0mtvSHF0QhLaRnb5AxnWpHW+xHW9hFd4yF4onvL6BsuLDJvuo9ukaBa8VPI3eYWV/DT7pCF77EdQ+W8g1JEWhi81JpKSiR+YsRj66EK3IKBEE4SroDGsKlUpVf9MxMjKS22+/nTlz5nDnnXcSK94bL1tn+NkLwvUgN/cAedn7GFDUFYMc/JnPo/NhGp1M7ISeaLpEtnqt8vNWjm4p4sTOUjzO4IxitUaiT7cqMlSf0dW+IjRGrTNB2p2BIHbvKaAO3ZPu9vn5Zk8+61euQnd6Nwme0P7RiimWjKnTueWOO4iKi2/9G9CBFL8f5759gX7Y2dl4z59vdpy2a1fM07MwZWVhGDECSXPN9+sLwk3vaq8rxo0bx86dOxkzZgw5OTn1j6tUKiZNmtSmTO3Tp0+zZcuW66qH9kVX6x6n2+1myJAhnDhxgv/7v//jmWeeqT/m9XqZOHEiu3bt4oUXXuC3v/1tm+Ys1pSC0Ln5i87gXL8F+wkZj6tXyIYfRVEod53nnP0o5+0n8PkcoPWSePf9PHDPY9flBiFBEDqntqwpwgpoP/nkk7z11ls88sgj/Otf/6p/vPGNxra60gVkRUUFmZmZHDp0iO9+97s89NBDeDweXnvtNT777DMyMzNZsWJFSMD5rrvuYvny5QD85S9/4dlnnw06HhUVhdVqJSYmhp/85CeMGTOG2NhYcnNzefnll9m3bx8DBgxg+fLlpKamNju3nJwcZs6cidvt5sUXX2TKlCkUFBTw4osvcuDAAZ577jl+//vft/k1i8WiIFw5xSfjLXMEgtclDnwlVrxFdfhtYe3tAfz4lRrsspcKn4Fyr4E6WcEhNz/a2MVNlXcnzrKD6J3u0AGKQqzdRbTLQ5dRtzD6iceJTO0cJR8FQei8OsOaYseOHSxdupRly5Zx/PhxILDxUK1WM3HiRObOncvcuXPp2bNnB8+0c+kMP3tB6CiKT+bY1j3UbDtH99qEkOM1cU5SpqQRM6wbkvbSmx49Th8ndpWSu7WIsrPWkOOxMR4yorYwwPkuelWT4yoN9M0KBLEHzARd89nGx4tr+fSr9ZTs3kS3ulNolODP2LJKQ8zAUWTOvpPeg4YgqcLbqNkRZJcL+7ZtWNdmY1u/Hn91aD9xgIiMdMxZWZinTyeif39xM1UQOtjVXlfU1taSnZ1NZmZmUJKNSqViyZIlbcoq/uCDD1iwYMF1GdC+Wvc4AfLy8sjMzKSoqIhf/vKX3HnnnVRXV/PHP/6RDRs2MH/+fN57772Q7O3WiDWlIHQ+cmUJznUbcOQ6cDv6AOqQMVXuYs7ZcjlnP4bTb0Xr8+GOiWDc937GpBG3XPtJC4Jww2v3gHZUVBQ2mw2TyURdXUPds7YuduqfVJLaZQHpdrt55ZVX+Oijj8jLy0OtVpOens7ChQt58sknm53fV199xaOPPkpiYiIrVqwI2b1ot9tZunQpq1atYs+ePZw/fx63201MTAxDhgzh7rvv5tFHHyUy8tI78YuKivjDH/7AihUrKCwsJCoqijFjxvD0009z++23X9brFYtFQQifIiv4q131gWtviR1vsRVfpQuU8G58qSlHoQy77KFCNnHek0SlR08LsWtUKon4nmaMiW5Olq6l8tQeomqbHx1tdxFvdWDuN5Bhjz5G9Pix1/VNRkEQbiydbU1x/PhxvvjiC7744gt27tyJoij1QYwhQ4Ywd+5c5syZw7Bhwzp2op1AZ/vZC8K14K10krduH6qDdoze4GCBS+WhKtVN+q1jMXfvcsnrKIpCaX4dR7cUcXJPGT538GdejUYhNe4kA33vkag+EpqN3W1MIIg9cB4Y45p9Drvbx7LNh9mxehXRBfuJ8jdT9Se+B6Nuu50xWVnojabWvwEdxFddjW3DRqzZa7Fv3YbidIYOUqsxjB4dCGJnTkPbVfRnFITrSUetKy43oP3www8jyy19ou9YV+Me50W1tbX88Y9/5PPPP+fMmTMYDAaGDh3KokWL+Pa3v31Z8xVrSkHoHBRrFa4N63EcqsZZ1wuICBlT56nkrP0o52y52HyBTYURXhe21K7c/7P/pnd8t2s7aUEQbirtHtB+4YUXePnll/nRj37E7373u/rHVSoVv/71r5k+fXrYk1u9ejV/+MMfrssdkdc7sVgUhOb5rYE+1/WB6xI7vlI7ije8rGsJG1rpDBrpHE7FRYXUhUK5JwW2RLy+lksXqrUqkvpEkZwaTUS8k5yjn1OwZzfRFT4kQoPmUQ43SbU2DAldyXjwIRJn3Cb6+wmC0CE685qipKSEZcuWsXTpUjZs2IDH46kPbvfo0aM+uD158uTL3nx5I+vMP3tBaE+KrOA8VknBhlz05xRUTdZuhZFluIdGMObWTPTGS6/XXHYvx3eUcHRLEVVF9pDj8VHVZGi+pJ9mNREqR/DBLv0CQezB90Js86VzFUVhz+kyvlr2DbZD20hxFISM8esMdB09iVtn30lCr96tvPqO4ykoqO+H7dizB5oJLEkGA6ZbbgmUE588GXWT1meCIFw/xLri5iV+9oJw/VKcNtyb1+HYV4KzugcKxpAxdp+dc7bDnLMfpcZTBgRaIaoVF76JY3jye89j0rXeWkcQBOFKtXtAuyU3Womf651YLAo3O9ntx1tqx1fiuBDADvxPtvtaPxkAD1rpPFrpLFrVGaCUamMPiqSBFDt7UVph5FJvTbpIDcmpFlJSo0npF40UZWfl2vfI276D6BJPyI1QAJPLQ3K1jagII73n3UfKPXPRJoaWsBQEQbiWbpQ1hdVqZeXKlfXVderq6uqD27Gxsdx5553Mnj2bGTNmtFpd52Zxo/zsBeFy+a0ebLuKqdp2Fq0teO3mxce+LieIGt+VyeNvQ6fWtXgdRVEoOlnD0S1FnNpbjt8XHJjVanz0N25noOYL4rWng082JcKge2DwfZAynNBU7YBKm5tPV+dwdMMaEsqPopc9wXNAQtcrnUkzZzFk4gTUGm0bvhPXhqIouHNzA/2w163DfexYs+PUXbpgzpyGKSsL4/jxqCJCs4cEQbj+dKZ1hdPppLy8nB49enT0VG4InelnLwg3A8XrwrN9A87dZ3GUpyAr0SFj3LKX8/YTnLXup8LdsEFS4/fj0fuIu+/bLLzrUbExXBCEa6ota4qWUw8b+eMf/8hzzz2HJEkcPXqU/v37A7Bw4UL69m1br9e+ffuyYMGCNp0jCMLNRfEr+CocDRnXpYE//VWuMK8go5ZKAoFr6Qxa1Rm0unK8cd0o0U2kyDWMooqpVJT6USpavoohSkfyheB1Sj8LsSkm6uxVrFjzHktf24q50IlakYgFaBTMNrg9JNfYifXIJN06kx7fvpeItDTR408QBKGdmc1m7r//fu6//368Xi/r1q1j6dKlfPXVVxQXF7N48WLee+899Ho9t956K3PmzOGuu+4iLq75Ur6CINyYFEXBk1+LdXsRziMVSLKEttHarVRbyY7ko6ROHs6cjMdRq0L7CV7kqPNwLKeY3K3F1JQ6Qo4nGc6SofmSVP1WtCp3wwGdCdLvCmRj95oM6uY/isuywoZDZ1jz5ddIJ3bQxVNJ09CL3xRL/0lZZN41i6gu19/7meL14tiz50IQOxtfUXGz47Q9e2CePh1z1nQihw5BUrf8fRcEQbhSn3/+uUiwEQThxuL34d27Gcf2EzhK4vDLCUBG0BCvIlPkLOFMXQ6lzlMojRop6rweahP1jP3uL7l1qOiPLQjC9S+sDO1bb72VzZs38+Mf/5hf/epXmM3mazE3oQmx+1G40SiKgr/W01Am/GLwuswB/vCKR6ioDgSspbP1mdeaKA+q5AFYo0ZR5B1IcXUCRedlqktCbzo2FhWnJ6VfdCCInRqNJSESSZKwOmpZte4DDm3egPGcDY0culNR7/GSXGMn0eokauR4ej14H6aJE5E0Ye0bEgRBuKZuhjXFjh07WLp0KcuWLeP48eMASJKEWq3G4/G0cvaN62b42QvCRbLLh2NPKbYdxfjKgvszy8jsMh3hYPczTJp8G5m9MlFJzWejKLLC+WNVHN1SRP6BCuQm69QIjZM03RrSI9fSRXu+4YBKA6nTA5nYA2aCruXS5QVVNj5Zto5zORtIrslDTXDGt1+lxZw+kulz7iJ1yJDrbqOkbLdj27IVa/ZabBs3IdfWNjtOP2RIoB92Via6vn2vu9chCELbdKZ1hagY2b46089eEG4osozvyE4cWw/iOG/G5w/tb+1XFEo8Ds7aDlFk3YZf8QYd1/mcVGV059tPv8iAhJ7XauaCIAjNavcM7WPHjvG9732Pl156KejxPn368MorrzB79uywJydK/AjCzUl2eOszrQP/C5QNV1zhfZiUcF4IWJ9FczHzWn0OdVwiJA1GSRxMTcQsztR1pei8j+IjtVjrM7ptzV4zNsUYyL5ODQSxTTENpQ2dbjvLVr/N/k3Z6PNr0PpVWABouNEZ4fWRXGMjucaGsU8a3b/3BJYZt6MWm34EQRA63NixYxk7dix/+MMfOH78OF988QVLly5l165dHT01QRCuMk+hDfuOYuz7ysAbHBiuUVv5Jnob+X0q+NbYB3mh61MtBlVt1W5ytxWRu7W40bqyQVfdYTIiv6GPfgcaqdGNwu5jA0HsgXeDsUvL8/TJrNp2iK1ff03k2X2Y/Xaa3pKU43owfPptTLr9NiIMl+7lfa35Kiqwrl+PLXsd9m3bUJrbLKTVYhw7NtAPe1qmaL0jCEKbZGZmttu1SktL2+1agiAI15Si4D+1H8fG3TjyI/D6egPpQUNkRaHcJ3PeUcj5us14fAVBx1WyjKx24poyge888hzRkaZr+AIEQRDaR1gB7fLycgYNGhTy+JkzZ7DZmg8UtUSU+BGEG5vilfGWBZcK95XY8deFmw3nRyMV1Gdba6VA9rVaZ0NKyoCkwZA0DTlhCJXenhSdcVGUV0PxjhqcVi9Q2OxVVSqJ+J7mC9nXFpJTo9Ebg/sMur0usrd8xp4N36A+VUGEV0UgNN0QxNb6/CTV2EipsWGO6kLCPQ/SZe4cdN26Xs63SxAEQWijxx57jCeffJKxY8eGfc6AAQP4xS9+wS9+8QtKSkqu4uwEQegoiteP42AF9pxiPOetIccPRZ5kRcxmXKkqvjPscZ5NHtdsIFv2y5w9XMnRLUWcPVxJ03pmkaoa0iPXkR65lmhNo1Lacf1h8Ldg8L0Q2/uScz1WUMkXS7+mat8WEu0FNA3x+nQGEkbcwh3zZpPUq1eY34Frw3PmDNbsdVizs3Hu20fINwhQGY2YpkzBPD0L46RJYrOnIAiXbcOGDUiSRBjFJS/p4jVEVQhBEDoTueA4zvXbcOTJuN19gbSQMZU+mQK3m/O2gzicO1GU4OqUWp8Pq9lHzH0PsGjGQjQttL0RBEHoDMJ6B9Pr9RQWNh8kEgTh5qTICv4qV0PG9cXgdaWTJhUSW6SmDK3qYp/rs2ikM2ilAiRTDCQNuRC8vh2ShuCP6k3peTtFJ2so3l5D8alavK5DLV9bqyKpT1R9D+yk3ha0EaF9+Xw+Lxt2LGPH+hVwvBS9R0Ug96UhiK3x+0mstZNSY8Miq4mZOZP4e+ahHzpUfCAWBEG4xt59911uvfXWNgW0G0tKSmrnGQmC0JF8FU5sO4px7ClFdviCjjlUTrItO1kRvYmufXqzaMgPGJk4stnr1FU4Obq1iGPbirHXNt2IKdNDt58Mwxp6RexCLV3YnG1KhEH3BvpiJw+FS6wL7W4vS1fncCB7NTElR4hQPCQGPYOEukcGE2fNZNQtE1FfJ21rFFnGdfhwfT9sT96pZsdpEhIwZWVizszCMHYMKp3uGs9UEIQb1YABA0hMTGx9YCtKS0vr29AIgiBcr+Sys7g2bMSR68Tl7Aekhoyp9SsUeGTOuyqxOXbj9xyh6c1Ync9NWVc9Y574JXcNnnpN5i4IgnC1hfUpOSMjg9dee405c+YwZMiQoGMimCMINzZFUZBt3oYy4SV2vKV2fKUOFG94kWsJa33QuiHz+iwqyQld+l4IXE+GpB8EAtnmRDwuHyWnawMB7NW1lOZvxe9r+fl0kRqSUy2kXAhgx/cwo9Y03wfRL/vZsvtrctYtw5NbiMGlQg80DmKr/TIJdYEgdheHh8iJk0i4dx6mKVPEDTpBEIQO9swzz7B7924ef/xx0tPTWz9BEIQbiuJXcOVWYttRjPtkTcjx0xEFLI/ZxIaoXYztOZ7fD/kzQ+KHhIzz+2TyD1RwdEsh549VQ5MEQJOqgrTIbNIN2USpywMP6kyQPhuG3Ae9p4AqdMNk/TwVhd3HzrPyixV4j24nxlNF0y01HmMX+kyYxh3z7iKqS8vlya8lxePBvmMn1nXZ2LLX4Ssra3acLrUv5qzpmLMy0Q8ahKRqfu0tCIJwJX7zm9/w4IMPXvF1lixZwsKFC9thRoIgCO1LqS3FtT4bx+FaXLa+KIRW+7H5FQq9MgVuP7WeM8jOnfj9TRIQFQWN4qB4cE8eeOI3DE0ODYYLgiB0ZmEFtOfPn8/TTz/N8OHDiY6OxmKx1B/70Y9+xK9//euwn9But7d9loIgXBOy2x8IVpc06nVdake2+1o/GQAPWulcfa/ri0FsFZVIWj0kXCwZnhUIXCdmQESgBKHT5qE4r5aiVTUU552j/LwNRW65rJghSleffZ3Sz0JsigmVquUNNrIss+NQNlvXLsVx+AxGhwoNoGkUxFbJMvF1DlJqbCTUOdCkZZCwcBFRM2eiiYkJ83sgCIIgXG1JSUm89tprvPLKK4wfP55FixZx3333ERkZ2dFTEwThKvLXubHvLMG+sySknY1X8rLJvJcVMZs5FpnP9F7TeW/IEtJiQ0szVpfYObq1mOM5xRda1jSQ8NMrYhcZhjX00O1HJcmg0kDqHYEgdv87QHfpXtZVViefLFvLqa3riavKw9QkY8an0hI5YCS3zr2LtKFDrotN4n6rFdumTdiy12HbtAm5udZikkTk8OGYs7IwZ2Wiu87KoQuCIFxKe5QuFwRBaC+KvRr35rU495fhqOmNQnege9AYp6xQ6JEp9CpU+zzIniMojhx8BJcVV/tl3BEOrNMm8MwDPyPBKO5hCoJwY5KUMFZzsixz99138+WXX7bPk0qS6KF9Gerq6rBYLNTW1hIVFdXR0xE6McUv46twNsm6duCvcoV5BRmNVHKhRHhD5rVGKkKSZIiMheSLJcMv/NmlHzTq02KtcgWyr/NqKDpZQ3WJ4xLPB1FxelJSo0nuF01KajSWhMhWb/4pisLe3C1sWvsJdQdOYbKFjpdkhXirg+QaGwl1djRxicTNm41lzhwi+vQJ8/shCILQuXTmNYVKpWLJkiXcdtttvPvuu7z99tscO3YMi8XC/PnzeeKJJxg6dGhHT/O61Zl/9sLNSVEU3KdqsecU4TxaGdLaplhbzoqYzayxbMemdXJH7zt4YvAT9I3uGzTO5/Fzam8ZR7cWU9RMVneUuoSMyDWkRa7HqK4OPNh9XCCInTEPjJfOnpZlhfU7j7BxxUo0p/Zg9Idu5PZ06cmQzFuZPvNWIgzGNn0frgZvaRm29euwrs3GvmMHeL0hYySdDuOECYFy4tOmoYmL64CZCoJwvbra64qzZ88SHx+PwXDpjUThcDgclJeX07Nnz3aYmSDWlILQdorbhnf7Why7C3BUdkNWQteXHlmhyBvIxq7wKSiyFZVnBx77YfyqpmXFvVTE+oi6+9s8fetCdBpRUVIQhM6nLWuKsDK0VSoVX3zxBatWrWLdunVUVlYiyzKLFy9m0qRJ9GlD0Of06dNs2bIl7PGCIFw+RVHw17obgtYlF7Kvyx3gD29nsorq+hLhgeD1GTTSeVSSOzAgpteFwPW0C38OhqiUoB6CiqJQU+qg6GRpIAv7ZA3WVoLnsSnGQPZ1ajTJqdGYYiLCft2H83azbs1HVO07jrk28JiJRsFsRSHO5iS5xkZirR2tLgLLjBlEz52LYfQoUS5REAThOjZlyhQSExOJi4vjpz/9KT/96U/ZvHkzb775Ju+88w6vv/46I0aMYNGiRTzwwAOYTKaOnrIgCJdBdnix7y3DvqMYX7kz6JgfmZ2mQ6yI2cxeYy5qlZq7+t7F44Mfp0dUj6CxFQU2jm4p4sTOEtxNemyr8NJHn0NG5Bq66Q4jSQrE9Ych34fB9wXWua0oKKvhs89WULJ7E3G2QixNjnu0RmKHTWDWvXPp1qtjgyiKouA5dQpr9jqs2dm4Dh5sdpzKYsE0ZTLmrOmYbpmIytjxwXdBEG5O7Rl8Li0tZfPmzSxYsKDdrikIgtAqnxvv7vU4duThLEnApyQDwYFsn6JQ4g30xS7zKSiAWlWCqm4dTl8xiiQ17pKI1ufkfC8Doxf+jB8Mzrouqv0IgiBcC2FlaLfkYoZMW3rZfPDBByxYsEBkaF8GsftRuBTZ4Q0ErkvtQZnXiju8v2sSjkC5cNXZoMxrtVQXGKDSQkJ6IOP6YvZ14kDQN71tF8hQqSywUXSyhqK8QBZ203KOQc+tkojvYb4QwLaQnBqN3qht0+s/ce4Qa775gPK9RzBXNfO2pijE2l0k19hIqrWjkxUM48cTM3cu5ulZqESZWkEQbiI36pqitraWJUuW8NZbb3HgwAGMRiPf/va3efzxxxk7dmxHT++6cKP+7IUbh6fAii2nGOeBchRvcBZKtaaOry1bWBWzlXJtNVqVlrv73c1jgx4jxZTScA2Xj7zdZRzZUkTZmbqQ54hRF5BhWMOAyPVEqqxgSoLB9waC2MlDgzZmNjtHn58Va3PYs2YVxsLD6JTgda6MCrl7OuNn3MHEqbeg1oS1j/yqUPx+nAcOYM3OxrY2G8/Zs82O06QkY87Mwjw9C8PIkUjatq3FBUG4OXWmdYW4H9m+OtPPXhCuOdmP7+AmHNuO4CyIxiuHbs6RFYVSX6CkeIlXIfDOJGOOOIatcB1OdXB7HUlWQGXnzPCePPTQLxjTLeOavBRBEISrrd0ztDds2MB7772HJEn8/ve/JzEx8YomKHrWCMLlU7wy3jJHfX/ri4FruUkfwZb50EiFjUqFB7Kv1VJZICsFAkHqpCGQNKmhZHhcf2ihdI3fK1N6tq6+fHjJqVo8rpY/JKq1KpL6RNX3wE7qbUEboW7jdwLOFJ3gm2/ep3jPQczlgeczNxkTfSGInVxjQ+/zo+nXj9jvzCPqzlloExLa/JyCIAjC9ctisfD973+f73//++zYsYMFCxbw9ttv8/bbbzNo0CCeeOIJHnroIaKjozt6qoIgNCJ7/DgPlGPbUYy3ILR380HDSZbHbGS7+QA+yY9erefhAQ/zyMBHSDAE1nOKolB21srRLUWc3FWKt8mmTg1u+uq3kWFYQ7I2FynCDBmzA0Hs3pNB1fpa9OipAr76/Cvsh7ZjcVfRtDuhy9iF7uOmcdc9dxHT5dIlyq8m2e3Gvn07tuxsrOvW46+sbHZcRFoa5sxMzNOziEhPF9k9giB0Wn6/n8rKSlyulivBVVRUXMMZCYJw01EU/Md34NyyB8eZSDy+fsDQJkMUKnwKBV6ZYq+C98JtWHOMjKZ2A1WleynXqKDRslTj92Mz2KnMnMiz835MN4u4lykIws0rrAzthQsX8v7779O9e3e2bt1Kt27drsXchCbE7sebiyIr+Kpc+C6UCveWBgLXvgonhLknRE1ZQ7lw1Rk00lm0UgGS1KjcoqVHQ6nwi5nXlu6XzEzxuHyUnK690AO7ltL8Ovw+ucXxukgNyakWUi4EsON7mFFrLq+sd2H5WVZ98x7nd+3BWOJFReg8oxzuQBC71obB40OK7ULM7LuwzJ2DPi3tsp5XEAThRnIjryny8/N56623ePfddykpKQGCN1Pq9XruuecefvCDH9yUWds38s9e6Hy85Q7sOcXY95ShuILLgbs1XlZFbWFF9GbORwT+Lhs0Br6d9m0WZCygS2QgYOx2eDmxs5QjW4qobCYYHqc5TYZhDf31m4jQeKDfbYEg9oA7QNt6hR6708PnX67l2Ka1WCryUDdp4u1VadH2G0HW7LsYOnJohwWF/bW12DZuxLo2G9uWLSgOR+gglQrDqFGYszIxZWWhE5/rBUG4Qh29rli1ahV/+tOf2LZtGx5PeJv8RYZ2++jon70gXBcUBfnsQZwbt+E4pcLtGUBQNPqCap9MgSfQF9t94aOpNkJNSlc7NUc/pcJWgl8dfJ9U5/NQmODFOPdb/GTaIxh0orKkIAg3pnbP0M7JySEzM5NVq1ahaVQu7Xe/+x133303gwYNurIZC8JNTFEUZJu3vsf1xbLhvlJHSJnFlkhYgzOuVWfQSudQSY1uZKk0EJ8GSfddCGAPgaRBENk0tySU0+ap731dnFdD+XkbitxyVN0QpavPvk7pZyE2xYRKdfk398qri1m5+j3O7NyJodCFSpEuZGI3XNPk8tRnYpvcXtBFEHXr7VjmzMY4YQJSB5Z6FARBENrPY489xpNPPhkUjPZ6vXz++ee89dZbrF+/HkVR6oPYFouF+fPn88QTT6DVann77bdZsmQJH374IXfffTfvvvsuRtEfVhCuGcUv4zxaiT2nGPep2pDjpVE1fGxYwXrLLtyqQHDCrDPzUPpDzE+fjyXCgqIoFJ2s4eiWIvL2luL3Bq9LtZKTfvpNDDSsIV5zCqnneBj8XzBwHhhiw5pnzt5csr/8CvnEbgx+B03Pcsb2JH3KdGbNnoHe0DE3GL1FRfX9sB27dkEzQRpJr8d4y8RAP+ypU9DEtL72FwRB6Az++7//m+eff75NVSBFJQpBENqDUnwS58YNOI97cDrTgNDYiE32c94NBV4ZR6Pbu0l9o4jhMGd3LuV4sS+QUNQomK2RHZxIjWTUfc/w++EzUUmXlxAkCIJwIworwlNcXMyzzz4bFMwGeOGFF0hNTW1TQHvt2rX8/ve/Z926dW2bqSDcAGS3ryHTuqShbLhs97V+MgButNL5+ozri3+qqApOqNaZIWlYcOZ1fBpoIsJ6FmuVqz54XXSyhuqSZjI8GomK05OSGk1yv2hSUqOxJERe8QfF6roKvs5+n7zt29Cfd6CWJUxA4yC2we2tD2KbXR4kIHL0aKLnzsF8222ozU0LkAuCIAid3bvvvsv06dMZO3Ysubm5vPXWW7z//vtUXiipe/Gm5i233MITTzzBfffdh16vrz//z3/+M7///e/517/+xc9//nOee+45/vrXv3bIa2krv9/PX/7yFxYvXoxarcbj8XDffffxm9/8hoiI8P6NF4SO4qt1Y99RjH1XKbI1OItO0cDh+Hz+FfEJx/Vn6pd7MRExLBi4gPsH3I9ZZ8Zp9bBv0zlytxRRXRq6Pk3UHicjcg2p+q3oEnrCkAcD2dgxoX0Lm1NeWcfnS1dQkLOBaGsh+ibHXVojUYMnMOve2fTp2/syvgtXRlEU3CdOYF27Fmt2Nu6juc2OU8fEYJo2DfP0LIzjx6OKFBk9giDcWHbs2MHzzz8PwLe//W3GjBmDRqPhmWee4ec//znp6ekA2Gw2du/ezZIlS+jfvz8///nPO3LagiB0YkrlOdybsnEcrsNpT0MhtAKkS/Fxzi1R4JGxNgpiGy06UodF4zm2lBPbt3JGqwEVXFz0qmQZr9bG8ZE9WXDv7/hhzxHX5kUJgiB0MmEFtL1eL263u12esLS0lI0bN7bLtQTheqX4ZXzlzqAe194SO/7qcP8eyWikYrTShTLhFzKvNVIxktQkazuqKyTNaAheJw2B6J6gCm8Hn6Io1JQ66suHF52swVrVct8pgNgUYyD7OjWa5NRoTDHtcxO9zl7DqvUfcHzbZnRn6tD4VQRy5hqC2HqPl+QaO8k1NixONxKg7dmT6LlziLprNrpuXdtlLoIgCML1a+XKlfz9739n+/btQEMQOy4ujgULFvD444+TdokWEzqdjqeeeoqKigreeOONThPQ/t73vsfnn3/Oli1bGDBgAAUFBUyePJlDhw7xxRdfdPT0BCGEIiu482qw5RTjOlZJk2rd+KIl1sXt4k3Vx9jUDQHquMg4Hhn4CPf1v49IdSQFx6vZtuUwp/eVITe5RoRko3/kBgZGrqFLjAcG3wtDfhtYE4exwVKWZdZs2EHO118Tcf4gWsVHdOPjqPB0TWf0bTPImj4J9TWu+qP4fDj27g30w16bjbewsNlx2u7dMWdlYZ6eReTw4Ujq1nuCC4IgdFavvfYakiSxfPlyZsyYAUBlZSXPPPMMt912G5mZmUHjH3nkEaZPn07XruJ+gSAI4VOsZXg2r8ZxoBxnbT9kUkPG+PBy3iNx3g3VfoWLfSJVaoneQ+Po0c1N/sq32PfpWTwaNWgb1pJan49Ki52SzPH8YuYz9IkV7WAEQRAuJaxP4927d+eLL77gmWeeudrzEYRORVEU/DXu4B7XJXa85U7wh1f2SiXVoJVOB7KtL5QN10jnUUlNgt+SCuIGNApcX/ifMa5Nc5ZlhcoCG0UnayjKC2RhO63eFsdLKon4HuYLAWwLyX2j0Zu0bXrOS3G4bXyz4WOObFmP5nQ1Wp8KA3BhqyIAEV4fSTU2UmpsRDsCQWxVVBSWeXdjmTMH/ZAhonSYIAjCTeSjjz4CAv8OS5LE9OnTeeKJJ5g7dy5abfj/RkVHR1NeXn61ptmuduzYwRtvvMH//M//MGDAAAC6devGCy+8wMKFC/nqq6+46667OniWghDgt3tx7CnFvqMYX2WTjZIqcPSW+LdxJZ94lqNIDWvmJGMSjw16jHmp8/DbJY6uLSZ38znqqkKrGaVoj5BhWENf8yE0g+6AIX+DXpNAFV4g98y5YpZ9uoya/VsxuasvVAJqYDfEkTR6CnPvvYuEhLatt6+U7HRi37o10A97wwb8NTXNjtMPHIh5ehamrCwi+vUT62FBEG4aW7du5e67764PZrdmypQpPPTQQ/zjH/9g+vTpV3l2giB0ZoqjGm/Oahx7CnFW9cKv9ASCq/3IeCmVId8hUeEDhYb1bJeuJtImJGGyHWT3J6+T67Yhq1SgaVijan0uTnfzYph5N7+Y8hgWvagwKQiCEI6wAtq33nor//jHPxg5ciRTp07FYrHUH/v888/Jy8sL+wkPHDjQ9lkKwnVAdngbelw3CmAr7tBedc2RJHcgYC3lB2Veq6W60MFaY3DJ8KTBkJAB2raXC/R7ZUrP1tWXDy85VYvH1fKc1VoVSX2i6ntgJ/W2oI1o3wwPt8/Fmk2fcGDzGqSTFUR4VQReWUMQW+vzk1RrI6XaRqzdFcjR1mgwTc/CMmcOpilTUOl07TovQRAEoXNQFIWUlBQeffRRvvOd79CrV682ne9yufjoo4/405/+RMxl9pOVZZnXX3+d5557DqvVSn5+fljzcLvdvPLKK3z88cfk5eWhVqtJT09n4cKFLFq0CFULFVY+/PBDgJAbt7fffjsAH3zwgQhoCx1KURQ8563Yc4pxHCwHX/DmTlWUjsoBbv4uLWGLdTt4qS/C083UjccHP86dve+i+Fgd6/5xmDNHalGU4ABtpKqWtMh1ZBg3EJ0+CIY8Cv1nhL1Gdrs9fLUim8Pr12AsO4kKJSiQ7VHpoM9wpt41i3Fjh1/TALGvqgrb+g1Ys7Oxb92K0lyFNI0G45jRmLKyMGdmok1OvmbzEwRBuJ4UFxczduzYoMcuvmfLTUt5XDB69Gheeumlqz43QRA6IY8D7+7VOHecxlGWjE/pBqQEDVHwUaPyc8Kqpsx7sfBQYL0bYdDQf3QiA0Z1oXTNx+z++9dUay6sIy9+vlMUVJKdg2l6Rt/5Xf48ci4a1bWt/CMIgtDZhfWu+dxzz/Hvf/+bffv2sX///qBjS5cuZenSpVdjboLQIRSvH2+Zs75M+MXgtVznaf1kAGQ0mhK08smGPtfSGdRSOZLUTNa2KbGhVPjFP2N7h51d0pTH5aPkdG19CfHS/Dr8vuY/0AHoIjUkp1pIuRDAju9hRq0Jr1x5W/h8XtbtWMqeDV8jHy9F71Zd6EvY8Fxqv5+kWjspNTa6WJ31R/RDh2CZM4eoO+5Ac5mBB0EQBOHG8fzzz/P888+3GPxtTWFhId/5zncAuO2229p8/pEjR3jiiSfqS56Hq6KigszMTA4dOsSiRYv429/+hsfj4dVXX+Wpp57ik08+YcWKFUE9vy/as2cPAKmpwWXuEhMTMZlM9ccF4VqTPX4c+8uw5xTjLbKHHNf1tXA6tYJX6l7jSM2RoGO9onqxaMgibomaxomthXz0z03Y7Rf/Xl8MJst01x0gw7CG3qkq1MPuhYwXwRAb9hwPHjrON0u/xHN8F3qfg6Y5MNaYnqTeksmcuXdgNhnCf/FXyHPuHNbsdViz1+Lcu4+QeuqAymDAOHky5qwsTFMmo46KumbzEwRBuJ6ZzcHv5hfXT4UttGZwOBydpjKPIAjXgM+D7+A6nNuO4iiKxSv3Bbo0GeTHoXVz0h5BgUPBh4qLQWwk6J4WQ/qEFJKS/Oz7x1/5/JP9OLQa0DRsilT7/TgibRwe3Z0Fd/yaH6WOF1V1BEEQLlNYAe1u3bqxY8cOfv3rX7Nu3ToqKyvrSzxe7FnYFuJNW7geKLKCr9KJr9TRKHjtwFfphDB/rdXaWrTko5VPNOpzXYgkhZZFBAm69AsErZMvBK8TB4M58Ypeh9Pmqe99XZxXQ/l5G4rc8gswROnqs69T+lmITTGhUl2dv5N+2c/m3SvZsf5LvLmFRDpVBHKqGwIQKlkm8UIQO87qRH3hPUWTkoxl9mwss+cQ0af3VZmfIAiC0Dn179//soPZAH379sXrDbTbaOt1fvvb3/KHP/yBMWPG8Mtf/pI//OEPYZ973333cejQIX74wx/yyiuv1D8+bdo05s2bx7Jly3jqqad45513Qs4tLy9HrVZjMIQG26KiosQNWuGa85baseUU49hbFlKxSIrUYBgRz56uJ3nt/MvknQuu6NUvph9PDFxEatUQjn1yjA/P7CAQwG74+2hUVZIemU16t3yiRt4Kg/8JMcHlHi+lrtbKF5+vIH/bekx1haiAxltFHFoThoHjuGPebDLS+rT9G3AZFEXBdeQo1uy12NZm4z55stlx6rg4zJmZmKdnYRg3TlQlEgRBaCI5OZlDhw4FPWYwGDCZTGzcuJGFCxeGnPPNN9+gE++ngnBzk/34j23GuWUfjrNGPP4BwOiQYd4IG+f8Bk5UyngULRfzsQGi4vSkjU8mbXwy7lMH2f7mL1lZVYJP3bQ/tpeiOCtFk8fyi9t+wK/i+16DFygIgnBjC7uuRd++ffn444+DHlOpVCxZsoQHH3ww7CdcsmRJswtLQbhaFEVBtnqDsq29JXZ8ZQ4Ub8uZy42pNG40miK0/mNolbwLweuzqCRnYEDTZGqNHhIHNsq8HgKJGaAzXvHrsVa56oPXRSdrqC5xXHJ8VJyelNRokvtFk5IajSUh8qpuKpFlmZyDa9m2binOw2cx2FVoAE2jG5SSIpNQ6yClxka81YHmQgBeZTRinnE7ltlzMIwehXQFwQpBEAThxpSfn09CQkJYY2fMmIFGo2HRokXMnj076JhafXmVUF555RX+93//l6eeeorFixeHfd5nn33Ghg0b0Ov1vPDCC0HHJEnipZdeYtmyZSxevJgf/OAHjBw5Muxri82iwrWi+GScRyqx5RTjya8NOa7tZiJybALrzbt4M/e/OXvobNDxgV0G8kjXRZgPRnD8r1ZOu49dOCJd+H8/PSP2kBG7h55jBqAa9r3AejrM33FFUdiyZQdbVqxEdeYgGsUXVFLcjwpHchrDsm5n1h1T0GqufplHxevFsWsX1rXZWNetw1dS0uw4Xe/emKdnYc7KQj9kiFgHC4IgXMKIESN49913+cEPfsCAAQPqHx85ciRLlizhtttu49vf/jYQ+Lfhd7/7HdnZ2YwaNaqjpiwIQkdRFORTO3Bu3oHztBqXdyAQ+l6gRFgp0Ro4XKrgqIkAGjZsqrUq+o6IJ31CCil9o8j//BO++t6/KZE9KJIEjT5bavxOjvZyY8ycza+mPk5cG6oKCYIgCJd2zRs15OfnX+unFG4istvX0OO6xF6ffS07msuYboZKRquvQstptJ5DgZ7XqjOoqA7cZmvu3rehS0O58OShgT9j+4L6yv96KYpCTamjvnx40ckarFWuS54Tm2KsLx+enBqNKSbiiucRzjz35m5m49pPsR08hdEqIQGGRkFsFIU4q4Ou1TYS6uxoL2aRq1QYJ92CZc4czFmZqCLb3idcEARBuHn06dOH999/P6wNlXl5eZw+fZqvv/6aL7/8klmzZl3x8x89epSuXbu2+by33noLgMzMTKKjo0OOp6enk56eTm5uLm+//XZIQDs+Pp4TJ07gcDhCsrRra2tJSkpq85wEIVy+ahf2nSXYd5Ug27xBxyStisih8USMiWeFcw1vH36OQltwudfhsSO5T74b306ZU2UAbqAhS86sLiXDtIW04XpMY2ZDr5+1qf1OcVEJyz5dRvmeLRhc1TTNv6uLjCdu5CTm3HMnPVLC2xBzJfw2O/Ytm7Guzca2cSOy1drsuMihQzFdCGJH9Lk2WeKCIAg3ghkzZvDZZ58xbtw4Hn30UX7/+9+j1+tZsGABGzduZP78+fzkJz+he/fu5OXlUV1djSRJ9UFuQRBucIqCUnAQ1+bNOI77cLkHojAiZJiks1Jj1nOkUkt5qZ7GmdgAib2jSJ+QTOqoRNQ+Jwf++Rqrtm2iVnvhfueFTZeSrCBrbOwepGVs1mP8ddS9RGiu/v1YQRCEm80VRdzeeecdJkyY0F5zEYSwKT4ZX4Wzvkx4IPPajr/aHd4FJAVNpAOtpgiN9yha35EL5cJLkC72rmvub0dsnwtZ14Mh6ULw2pwUdtZIa2RZobLA1pCBnVeD0+ptcbykkojvYQ6UD0+1kNw3Gr1J2y5zCcehkztZt+Zjag6cwFQTeMxI4++FQrTdRfcqK4m1dnT+hoVhxIABgb7Yd85CG2amnSAIgiC0pd3N4cOH2b9/P4888ggvvfRSuwS0LyeY7fF4yM7OBmD06NCSdheNHj2a3NxcVqxYwWuvvRZ0bOTIkWzdupW8vDyGDBlS/3hpaSk2m61NGd2CEA5FVnCdrMaeU4zrWFVISx5NfCTGscmohkbxRcGXvL3jbcocZUFjpugzmVo4kpqdXTjnD960qMJLb/1uBvaroduUiUgD/gza8Dc2+rwevvl6HfuzV6MrOYkKhcZbPdwqHd5ew7ll5kymTRx+RW0KwppPeTnWdeuxZq/FsT0HxRu6hpe0Wgzjx2HOmo5p2lSxBhYEQbhM9957Ly+++CJer5ePP/6YX/ziF+j1ehYuXMjixYvZtGkTxcXFlJSU1K8dx44dy9NPP93BMxcE4WpSyk7i3pSN46gNp2MgCkNDxqi0NlyxWk66zOSd1UMZQMO6LdKsZcDYJNImJNMlxYT1VB5bf/MsufkncWnVoG1YU2r8fmrMdewf05WHp/6En6RNE9WzBEEQrqIrCmi3tXS4z+fD7Q4z4CgIBG5a+6vdeEvtwZnXFU7wh3dDW6X3odVXBrKuXfvQysfRSueRZA94LgxqmgCi1kFCRqOS4YMhaRBEmNv19fm9MqVn6+rLh5ecqsXj8rc4Xq1VkdQnqr4HdlJvC9qIyyuZermOnz3I2tUfUr7vCObKwM+gcSlHBQWTy02vCitJtXYifI1K9MTHYbnzLixzZqNPS7um8xYEQRBuPnq9nnHjxvH000/z29/+tsPmkZubW9+zu1evXi2Ou3js7Nmz1NbWYrFY6o89+OCD/PWvf2X16tVBAe3Vq1cDMH/+/PafuHBT8ts8OPaUYttRgr9pZSCVROTALhjHJePrruE/J/7D4pWLqXJV1Q/R+HXMcNxO+tkMrNYUSptcP1pdSEbKSQZM7oNh5FPQxjKMx4+dYNVny7Af3UmEzxnUFxug2tKTnhMyuefu24mNMjV7jfbiPp0f6IedvQ7ngQPQzIYbldmMacoUzNOzMN4yCbXpylsQCYIg3OwsFgvnzp0LeVylUrFy5UpefPFFPv74Y0pKSkhOTub+++/n//v//j+02muXACAIwrWh1JzHs/kbnIcqcdSlIzMwZIxK7UBJhHOaeA4dl/GW+wF7/XFJJdFzUBfSJyTTc3AX1GoVxeuyWfqrtzlrq8avVoG24f6r1ucmP9lK4cRR/GLqU/w2OfQ5BUEQhPZ3TUqO79y5k/fee49///vfVFVVtX6CcFPy2wN9rn2N+lx7Sx0o7pYDvI1JWgWtyY5WU4TWewSNYzda6TRqrND4XlzT5Ax9NCQPaRS4Hgxx/UHd/h90PC4fJadr68uHl+bX4fe13MdbF6khOdVSX0I8vocZteba99PLLzrON6uXULLnIOaywM+jaWhf5/XQt6yOpFobkd6Gn5kUEYF5+nQsc+dgHD8e6Rr0KhQEQRCExiorK7Hb7a0PvEoa33CNj49vcVzjYwUFBUEB7bFjx/LEE0/wxz/+kdmzZ9O/f38KCwt54YUXmD17NnfddVez13S73UEbSuvq6gBIS0trNWN1xIgRfPnll0GPzZ49m717917yPIBnn32WZ599tv5rq9VKenp6q+cBLFu2LCjjfPny5Xz3u99t9TyTycSxY8eCHvvZz37GRx991Oq5s2bN4p///GfQY6NGjaKkhX7Hjf3xj38MKoF//PhxsrKyWj0PYNeuXSQnJ9d//cYbb/C73/2u1fP69+/PunXrgh6bP38+GzdubPXcJ554ImSDR7du3cCvIHv8KF45JBtbUoGkU/Peu+8x+tauvJv7IUs+X0Lh/kIK3igAQKWo0fsjUMla/sGbTZ5V4T8/eI6Bo4wkZ92BFPMwL774Im8+MITWTJkyhTdef50Vy77mxOZsImuLeH1DDhXWhr/TMhKSVoder0er3Q8rl/Hib+D5559n0aJF9eOKi4svWSWhsezs7KC+rB9++CE///nPUbxeFLcb2eUGf2hbozi1hqVjx2LOysI8PQvDqFF89+mnWfH4460+5wMPPMCf/vSnoMfS0tKw2WytnvuPf/yDO++8s/7rPXv2MGfOnFbPg8CmG7O5YXX/8ssv8/LLL7d6nniPuMneI8KwZMkSpk6dWv/1hg0beOihh8I6t6CgIOjrF198kTffbPpeEmrKlCl88MEHQY9lZmZy4sSJVs+9Gu8RrUlKSmL37t1Bjz355JOsWLGi1XOvx/cIWW75fkZHMRgM/M///A//8z//09FTEQTharGV493+NY59RTiq++JXBoQMkSQ32mQ3ZdFdOZinofqoE6gJGhOTZCBtQjIDxiZhtEQge70cf/ctdq9aTpnqwvubuuEzk0qxs7+fG+OEO/j15EV0NSdexRcpCIIgNHXVIkvnz5/n/fff5/333w/6IKEoiii9cZNTvP4LAeuGUuHeEgey1dP6yQAq0EQ1yrp27kHr2oOaciRn8LgQ0T2bZF0PBku3disZ3pTT5qkPXhfn1VB+3oYit5xZHhmluxC8tpDSL5rYFBMqVcf8fSkoP8Oqb96jYPdejMVeVEghQWyV7KV3mZXu1VYMnuAbeoYxYwJ9sW+/DbXp6mbHCIIgCDemjRs3Nnvz/fPPPycvL6/V871eL2fPnuWzzz6jTwf2p7U26p+r1zfNJ6XZYxcDz429/vrr9O3bl7lz56LVanG5XDzwwAP85je/afGaL730Ei+++GLI48XFxa3Ou3v37iGPlZeXU1hY2MzoYE3nryhKWOdBoER7Y06nM6xzG99sv6i6ujqsc5vbdFtSUhLWuQ6HI+hrn88X9mv1+4M3btpstrDObbzZ4aKKioqwzq2tra3/b9ntw7EvvJ8pwKf5n/ObT5/H5g0ETzRuLb7qi2tAHx5arsZ160vPBq25a2trw3re3dtzeHXRw2gUPxcLkttcbmqdTbLHnU7q6mqDHmoa5PH7/WG/Vp8v8LpkjwdHTg5FH30U1rnq2FhSN6wP+sxbVVUV1rnV1dUhjxUVFQW9h7TE6XQGfe3xeMJ+rU1bOdTV1YV1rniPuPHfIy4Kd75NK/K53e6wz21uHuGcW1FREfJYaWlpWOe2x3vERQ6H47Jf6436HiEIgtCunDX4dq/CsSsfR3l3fEpvoHfwGMlLRKIdW7ce5JbAmaNVKHLwv+FavZp+oxJJn5BMYu8oJEnCXVFOzot/5cCB3di06qB7yipZxh1hZdsQDeMmzOfvYx7AqBMVdwRBEDpCuwa07XY7n376aX2/mouL3saL37i4OCorK9vzaYUrpHhlHIfKcR2pxO/woTZo0A/sgmFwPJL28rOBFVnBV+msD1xfzLz2VTpDsj5aoo6SAlnX6kK03iNobdvQeE8guXzBWddNY74qLSSkBQeuEwdBZPRlv55wWKtcjfpf11JdfOlssKg4PSmp0ST3iyYlNRpLQmSHbvgoqypixZr3OLdzF4ZCFyrlYhC7YU4KPrpX2ulTXovJHdwbUNerF5a5c4i68y503dreY1QQBEEQGtuwYUOzmWhLly5l6dKlYV9HURQee+yx9pxah1Cr1fziF7/gF7/4RdjnPPfcc0FZkHV1dXTv3p3k5ORWM7SbyyaPj48Pq494VFRU0NeSJIXdf1yn0wV9HRkZGda5pmY20MXExIR1bmxsaNnrpKSkVs+DQCZYYxqNJuzXqlYHt44xmUxhnZuYGJoNEhcXF9a5FosFb4kdW04xjr1lKB4/SaZGP2sVqLRqJJ0KVBKyIuPwOXB4HawqWIXJZCLR1ouM0glwSsX7xj83eQYFjVpGG6FGpYtoeLjJGtdisTQ7X1mWcTmd+D1uJEXB6HehURqCetX6eEwJ3cBQi0Z96d/hpr8TarU6vJ+NouDctJmCt97CvnETssOBUldLYpNKQ5JWi6TXo4qIgAs/y6SkpJD1fGxsbFjPGxMTE/JYSkpKWNmXkZHB/cd1Ol3Yv4dN5xsVFRXWueI94sZ9j2gq3PlGRESEfB3uuc3NI5xz4+LiQh5LTExsNjDf1GW/RxD4OTZmMBjCOre535vO/B4hy3JYm+SuB8uWLePHP/4xp0+f7uipCIIQLo8D//5vcOw4jrM4Ho/cH2j63iUTEVeH3L8beQ4Dx/eU4TwWGntI6RdN+sRk+g5PqG/fWH3gADvfeI0TJefxaNRBZcU1fi9lsVZ2j05kwbjvs3TgDNSqa9v2URAEQQgmKU23WraRoiisXbuW9957jy+++KJ+93Hjy8bExDB//nwee+wxDh8+zMKFC0N2Ggutq6urw2KxUFtbG3ID4HI5j1ZS9ckJFKcvELNUqP9TitQQe19/IjO6XPIaiqIgWz1BPa69pQ68pQ64RDntxlSRarQxfrQRFWg4Fci6rt2MSml9pzERUaFZ1/FpoNG1fu4VUBSFmlLHhQB2IAvb2rTPYBOxKcb68uHJqdGYYiIuOf5aqKorZ+Xa9zmVs43I807UcmhA3afyk1jjIr24CrPLE7R/QG2xEDVrVqAv9pAhogKDIAhCJ3A11hRXw4svvthsdnG4DAYD/fv3Z+HChTzzzDPt/m/Uu+++y6OPPgpAfn5+i/2xv/rqK2bPng0ESuPOmjWr2XGvvvoqTz/9NACHDx9m4MD278XWWX72QvtTfDLOwxXYthfjORtaAUDXw4xxXHL9ptYSewnvHH6Hz05+htvvJsJroH/FaDJKxxPjTA45P8FcTsYoE/1mTkVnblvWis/rZdOa9exavQp18YmQvaouVQSO7kMZe/sMZk4d1Wog+3J4S0qwZmdjy16HfedO8IWWE5ciIjBOnIg5KwvTtKlomglyCoIg3Ew607rigw8+YMGCBeJ+ZDvpTD97oZPxeZCPZuPcdgDH+Sjc/gwgNJCss9SgG5xEYUQCR/eUU3YmdH1riokgbXwyaeOTsMQHNpgpisLZZUvZ9clHFHgcyE0qY2r8Lo71qKNo9FB+NvG73NJjZMh1BUEQhPbTljXFZWdoHz16lMWLF/Phhx9SVFQEhJYhkiSJ//qv/+LZZ5+t36l75MiRkHFCx3AeraTy/aMN2dJN/lScPirfP0qXhzPqg9qyy9fQ37okUCrcV2pHdoTe8GmWRoU2ToPWZEOrLghkXddtRWU9jBROe/Wobhf6XQ9u+F90z6tWMrwxWVaoLLA1ysCuwWn1tjheUknE9zCT0i+alFQLyX2j0Zvavy/35aiz1/D1+g84vm0TEWesaPwqAnvTG76PXrWfKJuXoQUVxDjcwTcWtVrMU6dgmTMH0+TJSLqru3lAEARBuDn99re/DenjqVKpWLJkSVA/0utdjx496v+7vLy8xXGNj4Xbr1QQWuOrcmHfUYx9dymyPXjtKulUGIYlYByXjC4lsBossBbwr93/4ou8L/D5faTUpZJeOoE+VUNRK8EfH3VqFwMGeMi4YzRx/TLbPLczJ07w9edfUnsoB63PFfThVAHKo3rSdewUHpw3g+Qu7XuzXFEU3CdPYsvOxpq9Dtfhw82OU1ssmKZNw5SViWniRFRNsm0FQRCEjlNaWsrKlSvJzc2lpqYmpBR8YyIzWxCuY7If+eRmXFt34jitw+UbAkwMGaY11hE5OIa6rn04cKiSU9+U4/eeChqj0kj0GRpP+oRkuqXH1rdy9DnsHHnzH+zbtI5KzYW7nBeOSYqCorKTk+7EMuI2fnXLE/SJ6YEgCIJwfWlTQLu8vJwPP/yQ9957j/3799c/3jhAPXDgQObPn8+tt97K6NGjGTt2bFDZqfnz5zN//vwrn7lwRRSvTNUnJ1ov/a1A5Ye5RPSJxlfmwF/Tcl+8IBJouujRRvvR6ivQKnlonHvQVG5CqqmBmtDxwV+rIX5AaOa14dplQfi9MqVn6wLB65M1lJyqxeNqeSevWqsiqXdUffnwxN5R6PRXrU19m9ldNr7Z+BFHtq5Hc6oGnU9FIHemIcPFo5bRu/0MPVdFktUW8mPRDx2CZc4cou64A00z5c4EQRAEQQiVnp6OVqvF6/Vy5syZFsddPNazZ89mS74KQrgUWcF1vAp7TjGuE9Uha35NggHTuGQMIxJQXViv5tfm89bBN1lxegU6j5FB5VNILxuPxRVaVjo53kbG1D70nZSOVte20otOq5XVX31N7sa1aGsCG6Mbb/ms05hR+o0ma/adTB7er10rKyh+P859+7Bmr8OanY333Llmx2m7dsWUlYk5azqGkSOQNNfPml4QBEEIeOGFF3jppZcuGcRuTFEUUVFOEK4nioJydieuzZtxnJRxeYahMD5kmFpvxZBuQh6aQd4pK7nbirGuOhoyLq67ifQJKfQfnRiUUGQ/d449r73CkZO5OLRq0DS8D6j9fqxGK5uGS4wbdj//Gr+AqAhRcUAQBOF6FdYn808++YT33nuP1atX1y8UGwexu3XrxgMPPMD8+fMZMmQIgOiTfZ1zHCoPlBkPh0/BfaK6xcOqKB3a+IhGWdeH0dZuRao8DDZP69fXmQL9rZMGN2Rfx6eDVh/mq2kfHpePktO19eXDS/Pr8F+iZLouUkNyqqW+hHh8DzNqTfuXP7wSbq+LNZs/4cDm1UgnK4nwqgjklAQHsSVZIaOgjtSKqpAgtjYlhag5s7HMnk1E797XcPaCIAiCEGr9+vWkp6d39DTaRKfTkZWVxapVq9i9e3eL43bt2gXQYklyQWiN3+rBvrsE+46S0I2oaonIQXGYxiaj6x1Vf1P/ZNUJ3tz5J74p2UHXmjSyyh6hZ/Ug1EpwoFqv8zBgpIWMWwcTmxLai/hSFFnm0O7drP9yOe68A6gVf1AQ2yepqYgbQNrkLL4zayrRxvZryyO7XNi3bQuUE1+/AX9V82WhIjLSMWdmYZ6eRcSAASLoIQiCcB375z//ye9+97v6ry0WC1FRUahULd+Tsdvt4l6lIHQ0RUEpPoR7yzqcuU6cziHIjA0ZptI6MPTTohs/mIJqHzu3lVCw4WDIJs0Ig4b+Y5NIH59MfA9z0LGyLVvY+e4bnKqpwKdWBfXH1vo9nE+oY9eIOOaP+BErh81Bq7o+qmoKgiAILQsroH3//fcjSVJIX+x7772XBx98kMmTJ4sP/J2M60glDQ2zwyNFqNEmGdDGglZ3Met6N+qKXVB4JryLmJMblQu/ELyO6Q2X+NBxtThtnvrgdXFeDeXnbShyyynrkVG6C8FrCyn9oolNMdWXrbmeeH0esnOWsm/jKuTjpejdKgJbA4KD2B6VRGqRi2FFRTT97quMRswzbscyZw6GUaOQOuDnIwiCIAjNmTJlSpvPyc/PZ/PmzSxYsOAqzCg8jz/+OKtWrSI7O5va2tqQDOxjx46Rm5uLJEk89thjHTRLoTNSFAVPfh22HcU4D1eAP3g9q46OwDg2CeOoJNTmhjYxR06v4c09/0tOtZW0snE8UPY8Zk9oNaRuPSUystLoMzwRtbZta8Lq0lK+Xvol53I2onXWBObT6HiFPgHDoAncOW8mw1NT2nTtS/FVV2PbsBHbumxsW7aiOJ2hg9RqDKNHY87MxJyVibZr13Z7fkEQBOHq+sc//gHA888/z3e/+12SkpJaPWfJkiUsXLjwak9NEIRmKBV5eLd+g+NQNQ7bIGRC+1JLaheG3gqRtwyhNiKSAzklnHw9F3fTNpcS9MiIJW18Mr2HxqFpFKiWfT5OffQBu5d/QZHiCbSoVDesX9WygwN9rZQOzeBHY3/LH3tPEDENQRCETiTs2mkXS/N06dKF//u//+Pee+9FqxU7lzorv91DW4LZuqhq4rv+C6n0EJSGsaNVUkGXfg3B6+QhkDgYTKElC68Va5Wrvnx4UV4t1cX2S46PitOTkhpdX0LckhB53S5y/LKfjbuWs3PDcny5hUQ6VQRuVzYs2nwqGatORbdyP5lnCtDLTRaEKhXGWyZimT0Hc1YmqsjIa/kSBEEQBOGq2bZtG48++miHBrTvuecepkyZwsaNG3nxxRd5+eWX648pisKvfvUrABYuXMjIkaE3eAShKdnlw7G3DNuOYnyljuCDEuj7x2Acl4x+QCzSxU2Y9gr27/o7b5xazvm6VNJL72B+TTqqJtsbDUaZ9IndSZ/UHUt823pG+zwedqzfQM6qVShFJ5AILinuVOmpSRnMqFtv53uZo4lsY8nylngKCur7YTv27AF/aKsgKTIS06RJmLMyMU2Zgjo6ul2eWxAEQbi2Tpw4wfz583nhhRfCPqdpoo4gCFdZbQHe7Stw7C/BWZuGTxkSMkSSvOi7ezBMHIjSM56Te8rJ/eQslYWh92yj4vSkT0hhwLgkzLHBVT091dUc+PvfOLAnh9qLGzAv3MOVZBmvzsamwU5i06fyq4lPkh6X2v6vVxAEQbjqwgpoL1++nMWLF/PVV19RUVHBk08+yapVq5g/fz7Tp0+/ZEkf4fqk9pUBOoJzJFriR207ipS/ofnDWgMkDgzOvE7IAF3bbn61J0VRqCl1XMi+rqUorwZrpeuS58SmGOvLhyenRmOKab9Sh1eDLMtsP7iGbdlf4DxyFqNdhRbQBgWxFaojVXSpVjHpVAkxntAFYURaWqAv9qyZaBMSruErEARBEITOp6ysjLKyMgAKCwvrHz9x4gQ2mw2A3r17YzQaQ8799NNPyczM5H//939xOp089NBDeDweXnvtNZYuXUpmZiavv/76tXkhQqflKbJhzynGsb8MxRPcHkdl1GAclYRxbDKaizf6PA6UYyvYfeBd3qmqxl03hQFlzzHQG1wlQJIUeqRbyJjck16Du6BSh/8ZT1EUCvJOsnrpl1QcyEHjC6y7L24FlZEoMfUkYdQk7p9zG/1SYi779Td+Tndubn0/bPexY82OU8fGYsqchjkrC+P48aj017atkSAIgtD+oqKiuOWWW9p0zvz585k/f/5VmpEgCADYK/Dt+grH7nM4K3vhVTKAjCaD/OiTHBjGD0A3pAcFebXs2lZM/ht5yE0qDWl0KlJHJJA2IZmU1OiGTZoX1OUeZdc/XiX3fD5urRoaVRPS+H1URltZP1xh3IC7WTzhUeIMXa7SCxcEQRCuhbAC2jNnzmTmzJnU1tby73//m/fee4/333+fJUuWEB8fz/3338+DDz7I2LGhPS+E65NevR0nmWGOVqNXbw/8pzG+oVT4xeB1l76gap/MisslywqVBbb68uFFeTU4rd4Wx0sqifgeZlL6RZOSaiG5bzR60/VfcUBRFHYf3cTm7E+xHjyNySqhAoyNgtiypFBmUmO06hiXV0pPa0XIddTxcVjuvAvLnNno09Ku4SsQBEEQhPC8++67vPLKK/zgBz/g8ccfr39cre7YNcff//53XnzxxZDHb7/99vr/Xr9+PVOnTg0ZExcXx65du3jllVf46KOPeP/991Gr1aSnp/P3v/+dJ598UmwUFZqleGUcB8ux7yjGc84aclzXKwrTuGQiB8UhaVTg90FeNsqBf7Pl9Do+949GX30nA2sHhJxrilaTMakHaeOTQ7JdWuO01rFx5TccXL8adXUxEPwBs1YThbv3SCbPuoMfjUlD24YgeXMUnw/H7j1Ys7OxZq/FV1Tc7Dhtzx6Ys6Zjnp5F5NChSB38viEIgiC0r1tuuYWqqqqOnoYgCACuWvz7VuLccRxHWTIeOQNomgEtExFnxzC6N5GjU6mzejmwrZhjn+/AUesJuWRSnyjSJ6SQOjIBXWRw+EJRFApXfc3uj94j31mHrAruj63xu8nrVseeIRa+Pegp1o68jwj19Z20JAiCIIRHUi6z3k5+fj6LFy9myZIlnD59GkmS6NOnT/2Ox9jYWOLj41m7di2ZmeEGToVLqaurw2KxUFtbS1RU1BVdS/nXbIpOfhcFI4R0UG5MRsJOSvc/IC34D5hb70t0Lfi9MqVn6y6UEK+l5FQNHldoWcGL1FoVSb2j6suHJ/aOQqcPu+J+hzuYt5N1qz+m9sAJTDWhx2UUSqNUSC4Tw8/UMrw8P2SMpNdjnj4dy5w5GMePQ9J0ntcvCIIgtK/2XFNcLdHR0VitVsxmMzU1NfWPX27AV5Ik/M2UIL7ZdIafvdDAV+nEtqMYx+5S5Cb9AyWdGsOIBEzjktEmGUFRoGgvHPwE5fBnfOM2s8kzg9iqcUT6TMEXlhR6DY1j0KRudE+PRaUKv62OLPs5vmcv67/8CvvJA6iU4L9XXklDSUx/+t6Syb0zJ5Mcc2VVm2S7HdvWrYFy4hs2ItfWNjtOP2RIoB/29Cx0fftet62CBEEQbiQdta44fPgwDzzwAFu2bMFisbR+AvDBBx+wYMECsR5sJ2JNeZPzOJAPf4Mz5yCOwhjc/iE0VwVUa7FiGNEVw/g0/Do1p/aWkbutmOK80PVcZJSOtLFJpE1IJjY5tNqV3+0m919vsH/dakrVTcIZioIkOdiVVkd5/348PeoJ7uo/DZUkNgsLgiBc79qyprjsiFbv3r154YUXeOGFF9iyZQvvvfcen376Kb/73e/4f//v/5GRkdFsf5qcnBzeeOMN3n777ct9aqEdSKYoYnWvUOn5NSDTfFA7UMIwVvcKUlyPDg1me1w+Sk7XBsqHn6yhNL8Ov09ucbwuUkNyqqW+hHh8DzNqTedaxBw7c4C1az6kYt9RzJWBv0dNbkVSEiXhlC2kn3Mz//Bx9P7QrHTDmDFY5szBfPttqE1NryAIgiAI16eJEyfy9ddfM3HixJBjd999N4MHDw77WgcPHuSLL75ox9kJwtWj+BVcx6qw5RThPlkTclybZMQ4LhnD8HhUERqoOg0bPoFD/8FVcY6v5KmccPyMaHsqXZucq4mWGTm1LxkTumKI0rVpXtUlxWR/uYLT29ajdgZuQjZeXZfqE9GkjWXG7Bnckt69TUHypnyVldjWr8e6Nhv7tm0ontDMHbRajGPGYJ6ehSkzE21i4mU/nyAIgtC5DBo0iNdff527776bRx99lJkzZxIbG9vR0xKEG5vPg3J8Hc5tu3CejcTpGw7NVP/UGG0YhsZhmDAQdZdIik/VsvOL0+TtKcPnDt5QolJJ9BzchfSJKfQYGIu6mWo+rqIi9rz2Vw7nHsCmVQfFzVWyjCPSyrphduJ6TeSXE77L8KSB7f3KBUEQhOvEZWdoN8ftdrNs2TIWL17MmjVr8Pl8mM1mHnjgAR5//HFGjRoldkRegXbd/XjgY1j6JE7/GKq8P0bBDPgJrAoCf0pYidX+L5HqnTDvDRh6/5W/iDA5bZ763tfFJ2soP29DkVv+VY2M0l0IXltI6RdNbIrpim6idZRThcdYvXoJJXsPElXWfMC+zAyVmlh6FUlMO5tLrLu5spO9sMydi+WuO9F2bXorUxAEQbjZdYaMCp/Px8GDBxk8eDBabUNbEJVKxZIlS3jwwQfDvpZYfzboDD/7m5W/zoN9Vwn2ncX4m5ZeVEsYBsdhHJeMrmcUkqMSDn8Oh/4DBbso8fbiG+9Mqu0T0fqDM6JllR9LmsS024bTbUBsmzKXvR43+zZuZNvXX+MvPBly3KHSU5Y4mKGZt3Lv9FFEG9oWJG/Mc+ZMfT9s5759gYzzJlRGI6YpkzFlZWGaPBm12XzZzycIgiBcuY5cV/j9fhYvXsz3v/99PB4P0dHRmM3mFqv52O12KioqxHqwnYg15U1C9qOc3oJ76xYceRJO70gUQqvvqCMcGAaaibxlCNpkI45aD8dyisndVkxtmTNkfEyykfQJyQwYm9TiJsvKXTvZ9dY/OFFRjFcTnP2t8XspiqtjwzCZsb3u4pe3PE6K6fqoKioIgiC0zTXJ0G5OREQE3/rWt/jWt75FWVkZH3zwAe+//z5vvPEGb775JoMHDyY1tWkPDaFDZMyFr39BpGsXKaoFOOSJuPzjkRUzKsmKXr0dg2orkuQDfTRkzLmq07FWuS6UD6+hKK+W6mL7JcdHxelJSY2uLyFuSYjstGUFC8ry+Xr1+xTu3oux2IsKiaZ/bStNCgWR8SSWRTLl4An61u0KuY7aYiFq1iwsc+egHzy4034/BEEQBAFAo9EwYsSIkMd79uyJqY0VR0wmEz169GivqQlCu1EUBffpWuw5xTiPVEKTDZzqWD2msUkYRiai1nnh+Nfw4b8hLxuPX8sx1yRy3H/B6+4DgLbRuXZzFX3HdWHmbVOINIcfaFYUheK8E6xdtpySfdtR+1xBx2UkCow9iRl+C3Pvms7Qnl0ua92pyDKuI0ewrg30w/bknWp2nCY+HlNWJuas6RjGjkGlu/yguSAIgnBjcLlczJs3j9WrV9dXhqyurqa6uvqS54n7JIIQBkVBOb8Lz7Z1OI55cLpGIDM5ZJhK6yKyvw7DpKHoelqQ/QpnDlaQ+/kpzh2pDNmbqNOr6Tc6kfQJKST0Mjf791Hx+znz6X/Y/cWnnPe5UFQSNApmq2UXR3rXcSDdxD0DvsP60Q9i0F5ZextBEASh82jXDO2WHDlyhHfffZePPvqIoqIi0cPwMrX77sfjX8NHD1z4orlfgwsLiwc+ggF3XPnzXXwmRaGm1FFfPrworwZrpeuS58SmGOvLhyenRmOKiWi3+XSEkupCvl79Hmd37sJY6EalhC7iagwKp81xmKpimXgun5HlJ1A1/euq1WKeOhXLnNmYJk9GEjf4BEEQhDCIjIqbl/jZXx9kpw/7nlLsO4rxlTfJWpFAnxaLcVwy+j5mpLMb4eB/IHc5isdOqbcfh5y3csI1CRR90KlelZuabueYmDWQrNET2tRz3lFXS87qNezL/gaqikOOV2ssWHsMZ/ztM5g9IQ2Dru17oxWPB/vOXViz12LLXoevrKzZcbq+fTFnZWGenoV+0CCkNrwOQRAE4drpqHXFSy+9xK9//WsA0tPTGTBgwCWzswFOnz7Nli1bxP3IdiLWlDcYRUEpOYR3+2ocR+pw2ofiJyFkmKT2ENlHwjBxMBH94pDUEpWFNnK3FnN8ZwkuW2grxK4DYkifkEyf4fFodaF9tgG8dVYO/+M1DuRsolIb/PdYUhT8GhtbBlqp7dWLJ4c9yrfSZ6JWNX8tQRAEoXNpy5rimgS0L5Jlmf/6r//ixRdfFAvIy3BVFovHVsIXT4GrBiQVKHLDn/pomPePKw5my7JCZYGNopM1gSzsvBqc1tAFzkWSSiK+h5mUftGkpFpI7huN3qRtcXxnUVlXxsq173MqZzuG807UcmgQu04vcyo6Dp+9K2PPFTK56CAGnztkXOTQoVjmzsE8YwaamJhrMX1BEAThBnKz3YDKz89n8+bNLFiwoKOn0uFutp/99cZTYMWWU4zzQDmKN7i9jMqkxTg6CeOYRDSOo4Eg9uHPwF6OSzZx3DmFI87pVPt6hVy33HgeV78S5s7IZFyv0WHPR5b95O3dw4avllN7fD8qJXhOXknD+eh+dB87jXtmTqJfYttLfPttNuybNmFdm41t0yZkmy10kCQROWxYfT/siN692/w8giAIwrXXUeuKgQMHcu7cOVauXMmkSZPCOke0oGlfYk15g6g8hXfHCpz7S3FYB+JTuoeOkXxEdvdhmJCBfmAyklaFy+7l5K5Sjm0vpuxsaCtEU0wEaROSSR+fTFRcZItPb8vLY/ff/8rRMydwaoM3S6r9fmrMVrKH24hLGcPPxi1iQrdRV/ySBUEQhOtLh5Ucb41KpaJv3760Vwzd7Xbzyiuv8PHHH5OXl4darSY9PZ2FCxeyaNGiNmUkXGS32/n888/56quv2L17N8XFxUiSRHJyMuPHj2fRokVMnhxaZuWiDRs2MG3atFaf55NPPuHee+9t8/zaXdpM+MlxOLoMjn0FzmqIjIG0uwJlxrX61q/RhN8rU3q27kIJ8VpKTtXgcbX8gUGtVZHUO6q+fHhi7yh0+mv6q3nV1NqrWbluCSe2b0F/xorGryJwG7AhmG2LkDkVHUO1ry/DCyp5/NA+Eh2hJcW1KSlEzZmNZfZscZNPEARBENpg27ZtPProoyKgLXQI2ePHebAcW04x3oLQYK6utwXTuGQiU+qQjvwb3v83VJ1CUaDIO5CjjvnkucYjE1yJx6N2cTJuN4bBHh6ech9D44eGPafqkiI2r1jJiS3rkRy1ADT+5FQckYTcbzRZM2/nJ8N6oFW37XOVt7QM2/p1WNdmY9+xA7yhm1klnQ7j+PGYpmdhnjYNTVxcm55DEARBuHmdOXOGH/zgB2EHs0G0oBGEerUF+HYvx7nnHI7qVLzK8GYGyeiT3USO60/ksG6oIjQoskLB8WpytxVzel85fl/wRki1RkWfYXGkT0iha1oMKlXzJf4VRaF03Vp2LXmX09ZqfGoVNApma/we8pPr2DTUy6iUO3hvwhP0ju7Znt8BQRAEoZO65lHDefPmkZ+ff8XXqaioIDMzk0OHDrFo0SL+9re/4fF4ePXVV3nqqaf45JNPWLFiBXp9+AHZPXv2cNttt1FVVcXAgQP5zW9+Q1paGoqisGbNGv70pz/xwQcf8L3vfY9XX331kr13jEbjJZ9Lo7l+ArY+tJxyTuZ0TQYuuxe9UUsfZxx90Yb1C+Jx+Sg5XVtfQrw0vy5kUdOYLlJDcqol0AM7NZqEnmbUmhunjKDNZeWbDR9xdOsGNKdr0PlUBDp9NrxGh07mdLSF8+o0BhS5mLdrL2nVe0OupTIaMd8xg+g5c4gcOVKUWxQEQRCEJux2O7W1tfh8vhbHVFRUXMMZCUKAt9yBfUcJ9t2lKK7g308pQo1xZCLGIXq0pStg57+hcDcADr+FY6655DqmU+PvGnLdElM+uYnb6TEsmqdHfIf0Lunhzcfl4tDWzWxbuRJ3wcnAPBodt6sjKewykIwp03l2+khSolvOpmlKURQ8p09f6IedjevgwWbHqaKiME2dgjlrOqZbJqJq5TOTIAiCIDQnNjaW/v37t+mcOXPmMGfOnKs0I0G4ztkr8O/7EufOPBzl3fAoA4GBIcN0cQ4Mo3sTOao3amOgWmZdhZPc1ec4tr0YW1VoFcn4HmbSJyTTb3QiemPLFTZlt5sT77/LvtUrKMIPkgSNNk1KONjb30puXz2z+8xn/ZgFWPSWK3/tgiAIwg3jmkdVDQYDPXte+a6q++67j0OHDvHDH/6QV155pf7xadOmMW/ePJYtW8ZTTz3FO++8E/Y1i4uLqaqqYtiwYeTk5BAR0dCneeLEiYwZM4ZZs2bx97//nd69e/PTn/60xWvZmiuldx3KP1BO9uJc3A5f4I6WAkhwel85m/9zkqxHMug9JDhbwmnzBILXeTUUn6yh/LwNRW456z4ySneh/7WFlH7RxKaYWtyl11m5vE5Wb/6Eg5vXoDpZSYRXhQFoHMR2aWXyo83kRWSQUqYl8/A+xpZ+gkZukr2uUmG8ZSKWOXMwZ2aiigz/ZqIgCIIg3AwKCwv57//+b7766iuKioo6ejqCUE/xyziPVmHfUYw7rybkuDbFiHFUFwz6XaiOvgyL14HiR1EkznuGctRxG/nu0cgE3wx0aeyciNvF8aQdjM0Yxh8G/5LUmNTW56MoFJ08xqblKynYsw1Vk1Y2MhLnjD2JHDiBO2dlckv/xLDX6Yrfj/PAwfp+2J4zZ5odp0lOru+HbRg5Eknb+VsJCYIgCB1r5syZHDt2rE3nlJeXk5ube8mqi4JwQ3HVIh9cgWvHYRzF8bjkYUC/kGFaiwPDyG5EjklFEx24F+7z+Dm+o4TcbcUUHq8OOUdv1DJgbBJpE5KJ62a65DTc5eXsf+3/OHRgD7U69YUdlYH1piTLuPU2Ngy1Yk9K4bHBT/HOoLlo1WK9KAiCIIS6pj2028tnn33Gvffei16vp7i4mOjo6KDjubm5ZGRkIEkSu3btYuTIkWFdd/ny5dx111189tln3H333c2OmTx5Mps3b6Zr164UFBSEHL9YcvxqfFvbuz9N/oFyVv7jUCCI3RIJpj2UhkarouhkDUV5tVQX2y953ag4fSD7+kIJcUtC5CWz2Tsrj8/Nupwv2Lvxa5TjZejdodnTHo3MmWgjJyLTiKhNILNgP9OK9mNyO0LGRqSnY5k9G8uds9DEx1+LlyAIgiDcpDpzz7v8/HzGjRtHRUVFm9ZbkiSJnol07p/99cxf68a2swT7rhLkOk/wQY2EYXAcxm6F6Io/Rjq+AryB9bTNH8sxZyZHndOx+hNDrlsYdYLcxO2c73KUO/rN4DuDvkMvS69W5+OorWH32jXsWfsNclVJyPFqbTTlyUMZPf027rklnRijrpmrhJLdbuzbt2PLzsa6bj3+yspmx0UMGFAfxI5IT78hPwsIgiAIHbeuKCgoYOrUqfznP/9hxIgRYZ0jemi3L7GmvE55HCi5q3Bt34PjvBmXfyQKodVLNQYnhmHxRI4fgDY+kJKjKAplZ6zkbivi5O4yPM4mFYYk6DGwC+kTkuk1JK7Vaps1+/ex642/c7y0ALdGHfz8fh+lsXVkj7ARFzOcH495gqxeE8WaURAE4SZ03fbQbi9vvfUWAJmZmSHBbID09HTS09PJzc3l7bffDjug3bdvX37yk58wderUFscMHTqUzZs3U1hYSGVlJV26dLmcl9DhfF4/2YtzLx3MBlBg/fuX3vUam2K8kIEdKCFuiom45PjOzOf3sWnPCnau/wpfbhGRThWBV9uwiPOqFc7G6DkZOQCbO5WpBYf4TcEmUqxlIddTx8dhuWs2ljmz0Q8YcM1ehyAIgiB0Vr/97W8pLy/HYrEwe/ZsMjIyiImJCaqs09T27dt58803r+EshZuBIiu4T9VgyynGlVsJTTruaLroMab5MSjLUR//GHLLAZAVFWfdoznqnM5Z9ygUgm8GOrR1HI/fybGEHBzGGualzuPVwb+nqym0/Hhjst/P6X272bRiJVW5+5CU4Al5JC35Uf1IHDWJu2+fyPAeMWHdNPTX1mLbuBHr2mxsW7agOEI3ZqJSYRg5EvP0LExZWei6dWv1uoIgCIJwuWRZ5u9//zvf+ta3mDp1KjNnzqRfv36YzWZULbRqEy1ohBuWz4Nych3u7dtw5GtwekejMCNkmDrCReQgC4bx6Wi7murXgY46Dyd2BrKxq4pCk5gsCZGkT0hmwNjkVu/5KrLM+WVfsPvTjzjrsSOrVNAomK2W3RzrUcf2DDfD46fz7oRFpMe1rX2AIAiCcPPqdAFtj8dDdnY2AKNHj25x3OjRo8nNzWXFihW89tprYV07PT2dP//5z5cco1YH/hFWqVREduJS0Kf2lAXKjLeRpJKI72EmJTVQPjy5bzR6041dBsYv+9l2YA3b13+B6/A5jHYVWkDb6OajT6VwPlrHCWN/SvyDGVdykicL9jCofGnI9SS9HvP06VjmzME4fhzSddRPXRAEQRCud9nZ2aSmprJt2zbi4uJaPwHQaDQioC20G9nhxb6nFPuOEnwVzuCDEuj76jFF7yai8C2kPXn1h+p8CRx1TueYazp2f0zQaQoy56OPkZuwnbMxh9FqtdzX/z4WDlxIkjHpkvOpKipkxzcrObpxHTitF6dRrygiCXuvUUydkcUzI3tjjGh97ektKsKavQ7rumwcO3dBM9lskl6P8ZaJgX7YU6egiYlp5kqCIAiC0P569epVH4zLz89vU7vB65Hb7eaVV17h448/Ji8vD7VaTXp6OgsXLmTRokUtBulbc+bMGXr37t3quD/96U+XbKsoXIdkP0r+Fjw563Ge8ONwj0bm1pBhKo2HyAF6DBMHoutlQbrQWkb2y5w5UsmxbcWcOViB3KSVpCZCTerIBNInJJPc19LqJki/zcaRt/7B/s3rKddcGHvx91ZRUFQOtg+s43R3Hbf3uJfscY8SZwjvs5wgCIIgXNTpImm5ubl4vV4gsIBtycVjZ8+epba2FovF0i7Pf/LkSQBGjhyJwWBocdxHH33E22+/zYkTJygvLycmJobhw4fzwAMP8O1vf7s+MN5RTh+oaOiZHYboJAOT7+9PYu8odPpO92vTZoqisDN3I1vWfIrtUD4mq4QaMDYKYsuSQkG0lpOmPpySRjOoooh5J/cwseRrtD5vyDUNY8cG+mLfditq06X7ywiCIAiC0LzKykp+9KMfhR3MBhgyZAjPP//8VZyVcKNTFAXPeSv2nGIcByvAF5z9rDJpMHYrxuh8D03BerjQmcivaMh3j+Go83bOuwcTHGoGm66aYwk7OJaQgy2imkhNJAvTFrIgYwFxkS3/jntcTnK3bmbb1ytxnM8LOW5TGzgbk0HfidP4btYI+iWaW3197hMnsK4N9MN2HT3a7Dh1dDSmzEzM07Mwjh+PqhNv8BUEQRA6t8tp9Xc9ljOuqKggMzOTQ4cOsWjRIv72t7/h8Xh49dVXeeqpp/jkk09YsWIFen1o2ehwGQyGS752nS681iNCB1MUKNiNN+cbHEdtOFwj8StZIcMklZfIvmoiJwxE3z8WSd1wL7O6xE7utmKO55TgaNomB0hOtZA+IZm+IxLCuv/rOHuGvX//K0dOHMWm04Cm4fdMJctYjVbWD7fijE3g4fQfsmTYfURqxPpREARBuDydLjJ57ty5+v+Ov0Sf4cbHCgoK2iWgXVFRwdq1awH4+c9/fsmxTz/9ND/5yU/47W9/i16v58CBA/zxj3/koYce4p///CdffPEFsbGxl7yG2+3G7XbXf11XV3fFr+Eil90bdjAbwBClo3v6ped7I9h/Mof1a/5N7YETmGsCizBToxuPMgrF0WpOmnpzUj2WZKudrNzdvFD8CmZH6M9H17s3ljlzsNx1J9quly4TKQiCIAhC65KSktoUzAYYPHgwgwcPvkozEm5kssePc385tpwivM2UYIxIdGPUrSGy/G2kMw03Bat9KRx13Mpxz204fcGbYBVJ5kz0EXITt3E+OhdFUjBrzTyZ/iQPpT9EtD662bkoikLRiWNs+3oFZ3dtQ/IF34T0o+KMoSfSgLHMvGMqzw1MQXeJ3oaKz4dj795AP+zsdXgLCpodp+3ePdAPOyuTyOHDRXUhQRAE4brw5JNPMm7cuLDHX68taO677z4OHTrED3/4Q1555ZX6x6dNm8a8efNYtmwZTz311BVloR85cuSSSUHCdUxRoPQIvp3LcRyswGEfhk+ZEjpO8qPvrmCYkIY+IwGVriGRyuP0kbenjNxtRZScDr13abDoSBuXTPqEZKITW07eaqx8yyZ2vfMmeTUVeDVq0DWsDzV+L+cT61g/zEYX00CeHfU4s1IzUUmXV2lAEARBEC7qdHcjrFZr/X9fandi42PtFQj+y1/+gsfjYd68edx7773NjomOjuaOO+7gjTfeoFuj3nGjRo3i3nvvZcKECWzevJn77ruvvnR6S1566SVefPHFdpl7U3qjNvwMbenC+BtU7pn9rFnzAZX7comqDDxmbpI9UxwlcdLcgxOa8eg9aqad2csPi9+ma1VhyPXU0dFEzZqFZe4c9IMGXZc7gAVBEAShs5o5cyb79u3j0UcfDfuc8vJycnNzmTx58lWcmXAj8ZY5sOcUY99biuIKLrct6RSMMbkYbf9EW3uq/nGfouOUazxHfXMpsvcKuabHaGNfl/Ucj9+JQxf4fBIdEc3DGQ/zQNoDmHXNZ1Hba6rZv24Nu9d8g6+qNDCHRscrtTEUJgxh2LRMfj0pg67RLWe9yE4n9q1bsWavw7Z+Pf6ammbH6QcODPTDzswion8/sZ4VBEEQrjuTJk3iwQcfDHv89diC5rPPPmPDhg3o9XpeeOGFoGOSJPHSSy+xbNkyFi9ezA9+8ANGjhzZMRMVrr3KU/h3f4ljbwHOujQ8ysRmBslEJPswjOtH5NAUVI0yqhVFoTivhtytxeTtLcPnaVJdSC3Re0gcaROS6ZERi0rderBZ8Xo5/dES9qxYRoHiRZGkoP7YKsXJgVQre/u5yYiZxFvjFzE8cchlfwsEQRAEoalOF9DuKJs3b+bPf/4z/fv351//+leL44YNG8bKlSubPWaxWHjppZeYM2cO69atY9WqVcyYMaPFaz333HM8++yz9V/X1dXRvXv3y38RjfQZGsfpfeXhDVagz7CWs+E7o1NFuXzzzRJK9x7CXOZHQiKqyZgyM+RFdeO4ZixeOZrxxYd5sWQpg4qOISnBC0G0WsxTp2KZOwfTpElIolyTIAiCIFwVv/rVr5g4cSLf+ta3uOWWW8I6Z/Xq1SxYsAB/M32ABeEixSfjPFqJPacY9+nakONaUw0m5VMifV+jqm2oolTh7clR/zxO2Cfg9gZvApXUUJ18js1RX1EYdRKkwG7SLvouPDLwEb414FsYtKGZMH6fj9P7drFt5UrKcw+ErD09kpY8cz8sQycy+9bxTOoXj1rVfNDZV1WFbf0GrOvWYd+6FcXlCh2k0WAcMxpTVhbmzEy0ycmtfr8EQRAEoaNMnDiRhISENp3Tt29fFixYcJVmdHneeustADIzM4mOjg45np6eTnp6Orm5ubz99tsioH2jqy1E3rcM5+48HFW9ccvDgVEhw3RdXBjG9CZyRA/U5uD7j7ZqF8e2l5C7vZi6cmfIuV26GkmfkEL/MYlEmsO7d+mtrOTA669ycE8O1Rczvy9sdpQUBY/WxubBVgqSNEzreierxj1Oijmlba9dEARBEMLQ6QLaZnND5oKruZsxzRyLimoaqmybY8eOcffdd9O1a1fWrl1LTEzMZV/r1ltvRa1W4/f7Wb58+SUD2hEREURERFz2c11K35EJbP7PSdwOX6tjIwwa+o7o/AHtc6Wn+Hr1+xTt2Y+p2IuqPojdcPOv0ggnLUmc0I6lTkpiUMVpvl+8kQmFB9G5QxeCkcOGYZk7h6gZM1A38+FDEARBEIT2Jcsy//znP3n44YeZNGkSs2fPZsCAAZjNZlSq5jMLKioqrvEshc7EV+PCvqME+64SZJs36Jik8hOp34nJ9290vgu9qiXwyHry/LdxxD+XsprQzwb6OImTSbvJ1n+GS9tQqjzBkMBjgx7jnn73oNeEVpuqLDjPnjWrOLxxHYrTevHp6hXoU6hKGcYtt05j0Zg+dDE1/1nBc/481rXZ2LKzcezdC7IcMkZlMGCcPBlzViamyZNRt0OLJkEQBEG4Fv77v/8bgE2bNpGUlET//v1bPWfcuHFtKlF+tXk8nvrKjaNHj25x3OjRo8nNzWXFihW89tpr12p6wrVir0A+uAzXzqM4SpNwySOB0FZJWouLyBHdMYzuhSY2eA3p98rkH6wgd1sR549W0bS9vC5SQ/8xiaRPSCa+hznsyjt1R46w+5+vcqwgH6dWA43KmKv9fiqj68geYcNriuH+/t/luyMexKQztflbIAiCIAjh6nQB7R49etT/d3l5yxnGjY81Lv3dVsePHyczMxOj0Uh2dvYVZ0hHRkYSHx9PSUkJ+fn5V3StK6HRqsl6JIOVrx+8dNlxCbIeyUCjVV9i0PWruKqAr9e8x9mduzAVelApoUHsGoPCSUsCx3VjqFb1oKu1jHvO7GNG0XuYa0NvgGu7dsUyZzaW2bPRiR5EgiAIgnBN9erVq/4mzAcffMAHH3zQwTMSOiNFVnCfrMaWU4zrWFXIelijLceoLMWozkYl20EVaGFYJqdzVLuQk5X98XqlJueoMKUpbIlazhb/6qBIdFdTV74z+DvM6TsHnTo4G8btcHBs2yZyvlmF7VxeyFxtaiN5lnS6j53CQ9OGMaJHdMiNSEVRcB05ijV7LbbsdbhPnGj2davj4jBnZmLOysQwbhyqq7R5VhAEQRCupqlTp9b/W7hw4ULefvvtDp5R2+Xm5uL1BjbSXaq/9cVjZ8+epba2FstlbEBbtWoVK1eu5PDhw5SWlmI2mxk0aBD33HMPjz766CVbOgpXgasW5cgKXDv24CiMweUfg0Lopgy1wY1hWAKGsX3RJhpDjpeft5K7rZgTO0tw25skLEnQbUAM6ROT6TM0Ho0uvPu6iqJQtHI5uz9eQr7Til+tAm1D+EAte8jrVsuWQQ5iIlP50fBfcveAO9CoOl2IQRAEQeiEOt2/Nunp6Wi1WrxeL2fOnGlx3MVjPXv2vKzFHsChQ4eYPn06ZrOZdevWBQXTr4TSdKtcB+k9JI6Z3x1M9uLcQKb2xZ7aF/6MMGjIeiSD3kPiOnimbVNZV8aKte9xOmc7hvMu1HJoELtOr3AqOo5jESOpkPpg9jqYdnY/c8qWk1J8OuSaKpMJ84zbiZ4zh8iRI5FayAATBEEQBOHqu5y1lOgBLAD47V4cu0uw7SjBX9W02pOfSFUORvUKIlQHL1ZSxC0bOWF8jCN1t1BZGVqaMa6bCXWGlc94i8PWAyBTv+zsFdWLxwc/zsw+M9GqGsqRK4pC4bEj7PpmFad3bQOfp8lMVJw29MLdZxS33TqZnwzvhiki+KOb4vXi2LULa/Y6rOvW4SsubvY163r1CvTDzsoicuhQsY4VBEEQbggRERH86le/Ys6cOR09lcty7ty5+v+Oj2+5KmLjYwUFBZd1j/OnP/0pP/zhD3n22Wcxm82cOHGCl19+me9973u89tprLF++/JJBdQC3243b3dBypa6urs3zuKl5HCgnvsG9fRvOs3qcvnHIzA0ZporwYBgUjWFcf7TdTCGfYVx2Lyd2lpK7rYiK87aQ881d9KRPSGbAuCSiukSGPT2/08nxf73JvvWrKVErgZLijftqSw52pdVxpKeHflFjeX3cIsaljBKfsQRBEIRrqtMFtHU6HVlZWaxatYrdu3e3OG7Xrl0AzJo167KeZ+/evdx2220kJCSwdu1aUlIaen/4fD4KCgpISkoK2sVYVlbGokWL+PWvf91iuSCHw1Ff9rK1xeK10HtoPI/8Tyyn9pZzen85LrsXvVFLn2Hx9B0R32kys2vt1axct4QT2zcTccaG1q8iUJy+YWFli5A5FR3LiYjhlKgGoJX9jC7J5bnKD0k7cwiVv8luRrUa4y0TiZ4zB1NmJiqxY1UQBEEQrgtPPvlkm0pGbt++nTfffPMqzki4nimKguecFXtOMY5D5eAL3hChlioxqr/GqF6NWqq6cA4UmWZxVL6HU+dj8ZUFn6ONUJM6OoG6PmdZXPYSebXBmdWp0aksGrKI/7+9+46Pqkr/OP69UzLpCZAQCKGGllClg6gYiogFLKwKKigqYl1l/bmWte2KuEXZRVBxbaArNoqgIlWK0nsJvUOAhJJMejJzf3+EBEISSCBkJuTzfr2yE+8999xnJmfDyXnuOadP/T6yWs70p50nkrTx13laPecXZZ84ViTWJHt17anRUrHdr9cz1zRXs1pBhc67UtOUtmSxnPPmK3XhQrlLGEz2a9Mmbz/sXj3laNSo9B8WAACVgM1m01NPPaWXX37Z06FcNKfTWfD9+WZIn32urElkX19fxcXF6d1331Xr1q0Ljrdv31533HGH+vbtqwULFqhfv35au3btebc9fOutt/T666+X6f5VXm62zF0LlLN8gdJ3SunZXeTWrUWKGbYc+Tfzl1/XZnI0CpVhKZwkdrtNHYw/ofjfE7R7faLc5/Zl7RZFXxWumG61VadptSLXn0/GwUNaN/7f2hS/QSk+ttOZgrzrLW630vxS9Wtbp45Vt6hbxA2a3vVhNQptWOaPAgCA8lDpEtqS9NBDD2nWrFmaN29escvtbN26VfHx8TIMQw8++GCZ61+2bJn69u2r+vXra+7cuUWelDx48KAaNmyoBQsWqEePHgXH09PTNX36dHXv3r3EhPbs2bPlcrkkXXyyvbzZ7FY161xLzTrX8nQoZeLMSNGsRV8pfsmvsu9Olk+uRXk7tZx5gjDDx61doSHa7ttGhywtJBlqfnK/hh2fqc5718ie5ixSryMmJm9J8Ztuku08T8kCAADPuOaaazRo0KBSl7fZbCS0qyB3lkvp644pbWmCco6kFTnvsKxRoPUn+VpWyDDy9pjOCIjRtoCHtCWhqU7uzH/Y8cygYUTDYDXrFqGdNdbo3W3/1N4dewvVGVM9RsPbDNf1da+Xxcjrk7pyc7R79UqtmD1LCZvXyjhnhYEsi4+2BTSRI7aLbunZSa+1qCWH7UwSPDcxUc75C+ScP0/pvy+VmVN4n29JMux2+XftoqC4ngqMu172mjUv5iMDAKBSiIiIKNW+2eVt4sSJFzXOmO+nn35Snz59yjGi86tVq1bBPt3n8vHx0ZgxY9SmTRvFx8fr008/1aOPPlpiXS+88IKeffbZgv9OSUm55G0Zr0hul7TvN+Us/0XpWzOUkdVZuWbR8V/DkivfaB/5d20m36bVZdiKrqCTnJiurUuPaOvSBKWezCpyvmaDYMV0q60mHWrK4W8vcv58ji9frlUff6Dtx48o22aVfM5aVtyVq4TwFM1vmyq3b7AGRA/VEx3uVzXfamW6BwAA5a1SJrTvuOMOXXfddVq4cKFef/11vfPOOwXnTNPUiy++KClvH5327dsXunbGjBl68MEHFRERUeySOosWLdLNN9+sZs2a6ZdfflH16tXLHN+YMWM0bNgwVatW+B/6U6dO6YUXXpCUNxDbr1+/Mtdd1WXkpOuXxV9r4+J5su48IUe2RXm7yJzp+GXa3doTGqTtfq10wNJapmFVzbQTeiRpkXofXK3AxKLLMdrCwxV86y0KubW/fJtV/B9FAACgdK6++mrVLGOyLjo6Wvfff/9ligjeJudImlKXJSh97TGZWa5C5yxKkb91rgKss2S3HJYkmY5qOlDrIW1JuUa7t7vldpmSzqzc4/C3qWnnWmraNVyLM+fquY0v69DuQ4XqbRPeRsNbD1f3Ot0Lll5MOrBP6+bN1saF8+VOz3uI8uz5Mgd86+hwzVbqHNdDf+vcSHWr+xecy9q9R6nz58k5d54y1q/PmzJ+DktQkAKvvVZBvXoq4JprZA0MvJSPDQCASuPaa69VfHx8ma6ZO3euRo0apfnz51/0fd1ud8EklYu9Pl9Q0JlVWDIzz90GRcWeCw4Ovuh7F6d169aKjIzU4cOHNXPmzPMmtB0Ox3lncFdppikdWq3clTOVsfGk0jPaKcfsW7Sc4ZJvXUP+XZrJt2W4LMXsa52T5dKutccU/1uCDu84VeS8X5BdTTvXUkzX2qpRp2x9P9Pl0r5vvtbq6d9pvytTbotFOushSouZqS0NnFoek65ge1093vqPGtRigHysRbfcAQDAEyplQluSvvvuu4JlczIyMnTvvfcqOztb48aN09SpUxUXF6f333+/yHUTJkxQUlKSkpKSNGXKlEJPFy5btkw33nij0tPTtWnTphL3zC5p30YfHx85HA4dOnRILVu21P/93/+pTZs2CggI0Nq1a/X3v/9du3btUpcuXfT999+XzwdRBWTnZmnu0ilau+gXmduOyS/LorzhvjNJ7GyrW3urBWi7Xwvts7aV27DLPydT/Y+t04Bj6xWxZ0uReg1fXwX17q2Q/v0V0LWLDGvlWF4dAICqbPHixWW+pkuXLmVaohyVj5nrVsamJKUuS1D23qLLcfoYWxVg+0n+liUyjGzJ6lBag3sUb96m+O1BSlmeKanwAHVkk1DFdo9UnVZBmr5vmt5Y/qmOph8tVKZjrY4a3nq4OtXqJMMwlJWepq2/LdLK2bOUvH9XkTic1kBtC26usHbddft1rXVtk3BZLYZMt1sZ69fLOXeenPPmKXv37mLfpy0iQkE94xTYs6cCOnaU4cMAIwCg6hk5cqT69u2rRx99VNHR0aW65ujRo1q4cOEl3Xfo0KEaOnToJdWR7+wxx8TExBLLnX0uKiqqXO59bhyHDx/Wnj17yr3uK5ppSkc3y7XmB2WsPaz01JbKNnsWV1COWi75dW4s/za1ZClmJrVpmjq6J0Xxvydox6qjysks3Cc1LIbqt6yhmK61Vb9VDVmLmc19PrnJydr0wTitX7ZYSflJdIul4H24bGn6raVTuyOzVT+grcZ0eljX17uG/bEBAF6n0ia0w8LCtHLlSo0ZM0ZfffWVJk2aJKvVqpiYGI0fP17Dhw+XxVL0H/hHHnlES5cuVUREhG6//fZC55YtW6b09HRJ5386siT5TzV+9913mj17tsaOHavDhw/L5XKpRo0aateunV599VXdc889stkq7UdfIXJdufp11Qyt/HWmcuMT5J9hUd6uQWd+pjlWU/tDfbXdv7n2WDrIZfGRxe1Sl+O7dPepjWq8fbWM7OzCFRuG/Dt1Ukj//grq00fWwICKfFsAAMADli1bpgkTJuiTTz7xdCgoZ7knMpW2IkFpK4/KnVZ4KW5DmfK3/qoA60/yseyWZMjd4DrtC71XWw420t6lKTLdpqQz/X6/ILuad6mt2O6R8qkufbPtG3024zMdzzxeqO6rI6/WI60fUbuIdjLdbh3cslFr5s7WzhW/SbmF43DJol0BjXQqqq3i4q7WEx3qKSzQIXd2ttLz98OeP1+5JQxmO5o0UWDPOAX17CXfli0YXAQAVHnt2rXTBx98oD59+ujpp5/WwIEDVbt2bU+HVSYxMTGy2+3KycnR3r17SyyXf65+/fpFtlwsDyVN2kEJju+Se+10ZazZpfRTTZTl7iap6AQZe40c+XdsKP92kbIGFz+zPS05S9uWH9HW3xN08kh6kfOhEf6K6VZbzbrUUkBI2WfHp27fptXvv6f4vTuU5mOTzpoRbnG7dCrIqflXOXUqyFCHsDiN7jpcMTWalfk+AABUFMOk51JppKSkKCQkRMnJyeW+zJA3cLld+m39bC2dP01Zmw8oIK3oAwkui6kDoT7aHtBUuyydlGvJS3M3TknQEOdmtd2+XLbkk0Wu82nUSCH9+yvklptlj4y87O8FAABvdqX3Kc715Zdf6v7777+kJSKvFFfCz950m8rcflJpyxKUue3E2VtcS5Jsxn4FWn+Sv3W+LEa6VKu1UhoNVnxKV21dnVp0D0JDqhtTXbFXR6phmzClu9P01davNGnLJJ3KOlWo6PV1r9cjrR9Ry7CWch5P0uaFc7V6zi/KPFE0GZ3oU0M7QmLVqOu1uuvqZmpfv5rcTqdSFy2Wc95cpS1aLHda0b29ZRjya9dOQT17KqhnnHzq17/ETwwAgMvDU/2KRo0aSZJOnDghpzNvW4+QkBAFBwcXO7lFktLS0pSUlORV/cEbb7xRs2bN0k033aSZM2cWWyY2Nlbx8fF67LHHNG7cuDLVP2DAAD388MO66aaiezjni4yMVEJCgvr166cff/yx1HVfCX3KUks+JHPDNGWs3KyMpHrKcHeUVHSVHFtwtvzb15V/+7qyhfkVW5XL5da+jccV/3uC9m06fvrhyjPsDquadKip5t0iVatRcJkfZDRNU0fnzNGqLz/TrtSTyrUVTrZb3TnaWztZC1unSfYA9at/u57uNFQ1/cu2pRMAAOWlLH0KpgnDo0zT1Iotv2rR3O+UvnGPAp0W2STZzpqJ7TZMHQy1a0dAtHbaOivbyJtVXT0jWfenb9A1e1fK/0DRpZGsoaEKvukmhQzoL9+WLZnNAgBAJXPq1CmFhoYWOrZo0aIy11PWPRbhnVyp2UpbeVRpyxPkOnVOUlo58rMsVaDtJ/kYm2SE1pOr5WPaZb9ZWzYa2j/1hGQWnmUdEOKjmKsjFdOttoLD/HQq85Te3zhe/4v/n5w5zoJyhgz1rt9bj7R+RNFBjbRr1XJ99f7LOry56N7WmRaHtgU2UW50B918fSe91Ka2fE8dl3P+LB14Y57SVqyQcnN1LsPhUEC3bgrq1VOBPXrIVqNGuX1uAABcaYqb0Xzq1CmdOnXqvNd527jQQw89pFmzZmnevHlKTk4uMgN769atio+Pl2EYevDBB8tc//Tp0xUVFVViQnvdunVKSEiQpPMmvauktCSZm6Yra+VapR8OU4a7q0y1LlLM6p8j/7YR8uvYQPZa/iW2sROH0xT/+2FtW35EGc6cIucjm4QqplttRberKbuj7FsiurOytPPzz7Rm9kwdtrhlGkah/bENZWhN0xStj85UoDVCj7R4TENa3Sl/u3+Z7wUAgKcwQ7sSuVKefjRNU+t2LNWvc79R8vodCjpVtLPnlqkjoTZtD2igHbYuyrTkvV9HbrbuyNilmxLWqvrWdZLbXeg6w25X4PXXK2RAfwV2786+ggAAFKMy9CmGDx+u//73vxo6dKg+/vjjguMWi+WiByO9aUaOp1SGn/3ZTNNU9t4UpS5LUMbGRKlw109WHVOA7WcFWOfI6m9ILW7TqTp3Kn5PTcUvO6qMlMLbzxiGVL9VmGK7R6p+i+qyWC1KykjSxM0TNXnbZGXkZpyp27CqX8N+eqjVQwpKNrRh/mxtXLhArozUwjFKOuAbpb01Wuqqa7rrrs4N1SjtmJzz5sk5d54yN20q9r1ZQ0IU2KOHAnv1VODVV8viz4AiAKBy8VS/wmKx6JprrimYqV0au3fv1pIlS7yuP9ijRw8tXLhQzzzzjN55552C46Zp6o477tDUqVM1dOhQffrpp0WunTFjhh588EFFRERo5syZatCgQaHzhmEoMDBQ69atK7LXeFZWlm644QYtXLhQjRs31saNG+Xr61vquCtbn7JUMlNkxs9U9oqlSt8fqAxXN7kVWqSYxSdHfi2ry79zI/nUCyrxb5OsjFztXHVU8b8n6OielCLnA0Idat6llpp3ra3QiIvrB2YdPaL148Zq44bVOuUoPG/NME1lOlK1sE2KDofnKtI3Rk+2H6YbG/WS1VL2pDkAAJcDM7ThlTbvXaN5s7/S8XXxCj49QSZIhTt9R0Ms2hZYV9ttXZVhqSZJMky34jIO6K6TG1Vv4zIpo+i+Mn5t2ypkQH8F9+0r6zkzuQAAQOXz1VdfyTRNffvtt4US2tLF7fXnbTNycH7uzFylrz2m1N8PKDcx+9yz8rWsUYD1J/n6bJLR/Ablxryv7c7W2rL0mA7NPCXpQKErgmr4Kvbq2mreNVKB1fL2IDyadlSfbf5M323/TpmuM/to2wybbm18q+5vNEjODbv065tjdHL/7iIxptiCFB/YTAEtu2jA1bG6Lueosn6dLef787R7//5i35c9MlKBvXoqqGcv+bdvJ8PGn2MAAFyM4cOHa9CgQaUu/+WXX2rJkiWXMaKL89133ykuLk7vvvuuMjIydO+99yo7O1vjxo3T1KlTFRcXp/fff7/YaydMmKCkpCQlJSVpypQpevbZZwudDwoKktPpVMeOHTVy5Eh16tRJ1atXV3x8vN555x2tXbtWzZo108yZM8uUzL6i5GTI3DZLOSt/VfpumzJyusmlPxQpZthy5dcsSP6do+WIDpVhLf5vC9Nt6tCOU4r//bB2r0lUbk7hpzEtVkMN24Qr5uraqhtTXRbLxf2NcmrtGq2aMF7bjh5Upt0mnZXMtrpzdbS6UwvaOpXmJ7Wqdo1Gd3lYV0W0vah7AQDgLRhBwWW149BmzZ79pY6u2ajgY24ZMnTuMxZJwYa2B9bRNnsXpVrCC463yD2poWlbFLv5d1mOHS1St71Onbx9sW+9RT7nPIUKAAAqt2effVbvvPOO/vjHPxY599JLL6lXr16lrmv27NkaPXp0OUaHyyX7cKrSft+v9HWJMnML74FpUbICrLMVYP1FtsbNpVZDdTy0l7asTNa2T48oK2174fKnBwxju9dW3ebVZZweMDyUekgfb/xY03ZOU477zJKPPhYf3d74NvWzdtOBpas0fdyfZeYWXhIy17Bql38jJUS0Uo+u7TTaPCLfFYuV+sRflXDiRLHvyRETk7cfdq+ecjRrxsMVAAB4QGBgoOrVq+fpMIoICwvTypUrNWbMGH311VeaNGmSrFarYmJiNH78eA0fPrzEfcEfeeQRLV26VBEREbr99tuLnE9ISNDUqVM1a9YsffHFF3rrrbeUlZWlatWqqXXr1ho3bpweeOAB+fkVv9/zFSs3W9q9QDmrZitjW7bSs7sq17yzaDmLS37RvvLvHC3fZjVk2Iv/OUiS80Smti5N0NalCUpJyixyvkZUoGK61VbTThHyC7y41SRNl0sHp0/V6u8ma292ulxWi2Q/M7RvcWdpW32nlsWmSVZfxdW5Q892HqaooKiLuh8AAN6GJccrkcqynM++ozs1a84XOrxyrQKP5MqiooN2JwKlHcG1tc3eScmWyILjEWaGHsrZpU47lstnR9H9Li2BgQq+sa9C+veXX7t2Mkro1AMAgJJVlj5FcSwWi7744osyz8i5//77vW6JSU/wxp+9meNW+vojSlu0XdnHii5/6GNsVqDtZ/nVSZHR+g7lNL1NO7cb2rLksI7sLrp8Y2iEv2KvjlSzLrXkH3xmwHBfyj59tOEj/bj7R+WaZ/ax9rP5aWDELboqsba2L/pNGScSi9R51CdcW4Nj1Kh5K91lS1SdzSuV/ttvMjMyipSV1Sr/Dh0U1LOnAuPi5BNV5yI/GQAAvJun+hUul0tWK0sme5I39inPy+2S9v0m16qZSt+SovTMTsoxmxRXUL71rPLr3Fh+LcJk8S15Llhujkt71iUp/vfDOrD1ZN4+NGdx+NvUtFMtxXSrrfB6QRcdeq4zVVs/el/rFi/QUZ9zxkFNU25rupbFOLW9Xpb8LNV1T/NBGtb2HgX7VIKfCwCgymPJcVS4wycO6KfZE3Vg5SoFHMqW1cyfiX0mmZ0SIG0Pqqltjo46YTnzVKyv6dJQy0H1PLhGgWuXS7m5hSu3WhXQ/WqF9u+vwLg4WarqMkgAAFQhf//73/XCCy/IMAxt2bJFTZs2lSQNGTKkyB6AFxIdHa3777//coSJs5jp6UqfPUeZ8afkyrbK6uOSb0yo/Pv0llHM/tC5SelKnbdO6RvT5c51SDozMG0oXf7WBQoIXSefdldLrf+uxIxIbV5yWDu+2anszMIPJ1htFkW3D1eL7pGq3Ti00CzonSd3asLGCfpl7y9ym2eWfQyyBGigcb3Cdrh17IcVWn/OKGSGxaFtgU2l6o30B4dTD+9aq9wPJkoul9LOeS+Gn58Cu3dXUK+eCrzuOrbAAQDgMiKZjVIxTenQarnWTFfG+iNKT79K2eZNkopOjvGpZcq/UyP5tYmQNcB+nipNJR1IVfxvh7V95VFlpZ8zhmlIdWOqK6ZbbTVsEyab/eLbavqevVo7/t/avGOLnA67dFYy2+J2KyXAqQVXOXU81KUwn0Z65aoHNaBpP9ktJccPAEBlRkIbSstwatqPE7R71Qq5M7Jl8fNRow6dNOCmRxTgV/IThEnJRzVz7kTtWb5MAQcyZXUXTWKn+pnaERqmrT7tlWQ0kvIHF01Tt/ue0oDE9aq5apHMlKKzaxyxMQrt31/BN90kW1hY+b5pAADg1ebMmSO73a5nnnlGtWvXLjj+6aeflrmuLl26qEuXLuUZHs6RMfsXnVjglmlWlxQiySpluJSxzKpTyxeqepxVfr37yHSZylyxUalL9ijrePXTVzsK6rEbexTgt1D+rWvI0u52ZYX9VZtWHdOWjw4rcf+hIvetUSdAsd0j1bRTLfmeM/gYfzxeEzZM0Nz9cwsdj0oP1Q3O1tKWRLkyNurYWedMSfv96uqUvZZ6W7I04MBGWRdPkySdM1wpa/XqCoy7XkE9eyqga1ceugQAwEM2bNiguXPnaufOnUpOTlZISIgaN26sXr16qXXr1p4ODxXt6Ga5105V5to9SnfGKtMdp+KGwO01XPLv2EB+bWvLFuooWs9ZMlKztX35UcUvTdDxg6lFzgeH+SqmW20161JbQdUvvk9omqaOL1qoVZ9/rB3JScq2WSXHmT6u1Z2jAzVTtLBtmrJ8TDUL6qRRnR9W18jObGsDALjikdCu4qb+/JG2fjlVPjkW+cqURYbcytaRPQv0n2nzFHPvHRrQd1hB+VNpJ/TjvEnasew3+e5Nld1lKZLETvc1tSu0uuJ9rtJRS9MzSWxJ3QKyda9zs6LXLpb7wH5JhVfksYWHK/jWWxRya3/5Nmt6ed88AADwWlu3btVjjz2mt956q9DxRo0aacyYMbr11ltLXVdGRoYSExO9ct/EK0HG7F90fP7ZA3fWQq+m6a/j8yS/9ZOUfTJULleopOpnlc+Rn22ZAqNPyafr9VL0eB3Zn6ktCw5p5+rflJvt1tlsDquadKip2O6RimgQXGTwbkPiBn244UMtOrio4JhPtkUtj4Wp9ZEI6ViKXNpX6JpkW5BOWGqqVVaWHtyxRY7jvxb7Xu316imoVy8F9eopvzZtZDBDDAAAj9mxY4ceeeQRLVq0qMQy1113nSZMmKDGjRtXYGS4aDmZ0pZp0taZUvpJyb+a1PxmKXaAZD9Povj4LpnrpypzTbzSTzRSpruzTF1XpJgtKFd+7aPk376O7OFFVxA6m9tt6sCWE4r//bD2rE+S21V4NR+b3aLodjUV0622IpuEyrBcfELZzM7Wnv99odU/TtNBueS2GJLt7NWLMrUhOkVrmmRIFpu617pJIzs9pOhqZVu5CgCAyoyEdhU29eePtOuzabKfTkZbznm15xja+ekUfZOTIcNu05bffpXP7hT55FoUdLpkvkwfU3uqhyrep7UOWWIl48y5JgHSMNcetYn/XVq/VpJ09rCk4eenoN69FHJrfwV07cLAIAAAUGJiolq2bFnk+N69e5WaWnRWxPlMmTKFPbQvEzM9XScW5Pfsii7feOa4qYykBoWOWo0jCgjfroBu0bK2fUKZuX7asPyItnyzTicOn7uot1SzfpBiu0eqSccI+RSzn+GqI6v04YYPtSxhmSTJMKXaSb5qkVBDkYftMtympDOrAuUaViUb1VUnJUNxCTvlm76u2Oh9W7VSUM+eCuoZJ5/GjZn9AgCAF1ixYoV69+6t1NRUmaZZYrmFCxeqQ4cOmjNnjjp27FiBEaLMtv4kc+pTSk9vqUxXV7nMQFmNVPlumix//5dl3D5WanbjmfIph2VunKKslWuVnhipDFc3mepcpFqrX6782kbIv0M92SMDLtiXO3U0XfFLE7Rt2RGlncoqcj6iYbBiutVW4w4Rcvhd2tB69vHj2jR+rDasXqbjDtvp7vSZ1S1zfNK0uFWK9tfKkY8RrLsbD9bwq+5VDb8al3RfAAAqIxLaVVRahlNbv5wquwwZKr4jZ8iQKVP7v/hZhgwFSjp7oDLLbupAjWBt9mmhA5bWMo0ziegwP6uG+R5T9z0rZf95scysczqAhiH/zp0V0r+/gnr3ljUwoPzfJAAAqLR8fX116FDRJabhXdJnzzm9zPiF5Pc33fL1266ANg75xvWWgu7Uoe2ntOXLA9q9NlGu3MKzsX38bGrWKUIx3SMVXrfoVjimaWppwlJ9uP5DrTm2RpIUmG5T44MBanooRP4Z+fc9M9CdIX/VSMlWp4N75J+zvWioNpsCOnfO2w87Lk72iIhSvD8AAFBRUlNT1b9/fzmdTlWrVk233XabOnbsqKioKPn5+SkjI0MHDx7UypUrNW3aNJ04cUIDBgzQtm3bFBgY6OnwUZytPynjyzE6kfMfmQqS5JJklUyXMtzddCrZqepfvCO/O1NkZqUqe9VSZRyqpnTXNXKrTZHqLD658mtZQ/4d6sunQfAFZ09nZ+Zq15pExf9+WAk7k4uc9wuyq1mX2orpWlvVIy99DNO5aaNWfzBO8Yf2Kt3HJjnODNFb3C4dD3Vq/lVOOQPcCrXV0XOth+oPMQPka2OLGwBA1UVCu4qa9uME+eSUNIvmjHOT3Tk2U4dqBGmTT3Pts7aV2zizj4u/3aJBNbLU9/AaBc+eL9fx45IKLynu06iRQvr3V8gtN8seGVku7wUAAFx5YmNjNW7cOPXv37/I3ofMkPUemfGnVLBn9gW55QjYp7C/PKz0lGytXZqgLUuWKTkxo0jJ2o1DFNs9UtHtasruU7Ru0zS16OAiTdgwQRuSNsjqMtTwiL+aHAxU5HG/IuVdplWhqblqffigQjKzi5y3BAQo8LprFdizpwKvvVbWoKLJcwAA4B3ee+89HT16VPfdd5/ee+89BZXw7/bw4cM1ZswYPfHEE5o4caLGjRun559/voKjxQXlZCrj2490POelsw6es4WNAnQ852X5ff27ss3GcplDilRjWF3yax4sv44N5NskVIb1/OOepmnqyK5kxS9N0M5Vx5STVXg1J8NiqEGrGorpVlv1WtaQ9QL1XYjpduvIjzO1avIX2p3lVK7VKvmcncjO1q4op35rkapcu9QgoI3+2nGYrq93nSzGpd0bAIArgWGeb10eeJWUlBSFhIQoOTlZwcHBl1TXX/98l3z3pBYsL34+pkylO0wtqnmV9lg6yGXxKThnsxi6KdKmO09tUe3l85WzY0eR663Vqin4ppsU0r+/fFu2YBAaAAAPK88+xeUybtw4PfnkkzIMQ6GhoQoJCZGUt+R4eHi4AgJKPzMiLS1NSUlJLDmu8v/ZH3v9C2Vn1C91edPnqDbVaaa965Pkdhf+M8Q3wK5mXWsp9upIVa9d/M/Xbbo1d99cTdgwQdtObFONZB81ORioRocD5JNbeKDPNKWg9Fw1TUxSzZQ0Wc75q8cWHq7AnnEK6tlT/p07y+LjIwAAUHqe6lN269ZN2dnZWrlyZanGmEzTVKdOnWSz2bR06dIKiPDKV54/e3PNZB3+JlimAlTyFjYlMNzyjfaTf6eG8m1eXZZiHoQ8V1pylrYtO6L43xN06mh6kfPVavkrplukmnaOUECIo2zxFMOVlqYdn/5Xa+fP1mGbpHParGmka2Vzp7Y0yJRkVaeacRrZ6SHFhsVe8r0BAPB2ZelTMEO7inJnZJUqmS3lzdJO9jW009at4NjVUQG6N2evmm5YrOxpyyS3WzlnX2O3K/D66xUyoL8Cu3eXwQAhAAAogxEjRmjOnDn64YcfdPLkSZ08ebLgXGJiohITE8tUHw/UXR5WH5fMDLeMUgw+mqaphNRw7V5b+GcX1byaYrtHqlGbcFntxdeT687VrL2z9NGGj3Qoca8aHQrQrQdrq7qzaB/Tke1S/eOnFHXCKd/cwg8x+ERHF+yH7duqlQwLs10AAKhstm3bphdffLHU/TvDMHT33Xdr1KhRlzkyXIz05dtkKq4MV7jlqGeXf8dG8msZJksp9rF25bq1d2OStv6eoH2bT8g858FKu69VTTpGKKZbbUU0CC6Xvx0yDxzQ+vFjtTF+vZIddsl+pk7DdCvdL00L26ToSI1c2eSvAQ0H6/H2Q1UroNYl3xsAgCsRCe0qKttml1s5pUpqu2Uqy2ZTbK1A3e9/Qh22LZXrk3lyp6fr3AUb/a66SiH9+yv4xr6ynp5JBQAAUFYWi0XTpk3TrFmzNH/+fB0/flxut1uff/65rrnmGjVq1KjUde3evVtLliy5jNFWXT7NQpWxonRJYcMwlJCTl2D2D/ZR8261FXt1bYWE+5d4TY47RzN3zdR/1/9Xrr3H1ORAoK4+GiWrWbgPa3G7VftUquqecKpaWuaZHq5hyK9tWwX1jFNgXE85GjW8mLcJAAC8SFpamqpXr16ma6pVq6b09KKzceF5mcfrqGDP7Atyyzdgt8Iee6BUdR8/lKr43xO0bfkRZabmFDlfp2moYrrVVqMStrm5GCd//12rPp2gbcePKMtukxxntmu0uHOVEObUgrZOZfqaCrTW1OMt7tN9LQcqwH7pe3MDAHAlI6FdRSXViFb1g5tKVdYiQ41T7Hp6+uvKTUjQud0/e1SUQm69VSG33iKfBg3KPVYAAFB19e3bV3379i34788//1zDhw/XoEGDSl3Hl19+SUL7Mjkc1lZ29z7ZjfPPgjdNUzmmlBnuqxtvbaz6rc6/D2GWK0vTdkzT/5Z9rJDtGep8KEABmRFFyoWmZaruiRTVOpUq++mZNoaPjwK6ds1bTvz662ULD7/0NwoAALxGeHi4Nm/eXKZrNm/erLCwsMsUES6FS0EqXTJbkiwyDb/zlshKz9GOlUcV/3uCju1zFjkfWM2h5l1rq3nX2goJP39dpWXm5Gj/t19r9fTvtM+dLbfFItnPDLsbZpY2N0zRqmbpclulSN9merLDMPVt2Fs2C8PzAACUBv9iVlGpQdfL5lqvXIulyN4thZimbC63em7Yotyztlu3BAYq+MYbFTKgv/zatWMZTwAAUK5+/fVXTZw4UYZhaNSoUYqIKJrMLAvTNC9cCGW2Oz5FaRm56uxvk2maxfYJ8z/7Nem5Co6upkZtS04wZ+Rm6NvNkzVn9leK2O3WtSd8JRVeVtwnJ1d1TqYq6kSKgrLyHrW0BAcrsMd1CorrqYDu3WUNZIYLAABXqi5duujjjz/WE088oQalmFixZ88effzxx+rTp8/lDw5lZg2tJqWWdoa2S5bQorPzTbepg9tPKv63BO1elyhXjrvQeYvNUKO24YrpVltRzavLYimfcczckye1+cPx2rBssY45Tg+z529pY5rKtafr99gU7a6TLclQmxrX6JmOD6ldxFWMpQIAUEYktKuojge2qs3+Y1rdoJZkmsUntU8PPrY5cExW05SsVgV27563L/b118vi61vBUQMAgKri008/1aRJk1S3bl29/vrrBcfdbvd5rire4MGDNXjw4PIMD6dlpuXoaI60Is2lq/yt8jFUkNjOf80xpTXpLh3NlSLTii71KEmp2an6cv772rRgjiIP2tQ2t3AS2zBNhaekq+6JFIWnpMsiyVqrloJ79lRQr57y79BBht1ebN0AAODK8sADD+j7779Xly5d9NZbb+kPf/iDAgKKPsyWnp6ur7/+Wi+++KKcTqeGDRvmgWhxIb6dY5VxcE8pS1vl2zm24L9SkjK0ddkRbf09Qc4TmUVKh9cLUky32mrSMUK+AeXXV0zbtlVr3h+rLXt3KtVhlxxnhtgtbrdOBjv1a1unTga7ZJGPbqh7h57uMEx1g+uWWwwAAFQ1JLSrqK4JmxSQkqH2e49ofd2ayrVZzyS2T7/aXG61OXBMNVPSlVmvoVr9b6JsLM8EAAAqwLJlyxQXF6dZs2bJZjvTZX3jjTd0++23q2XLlh6MDvl8A+ySIR3JNfVLSq4i7YZq2y2yG3lLjCfkuHQ4x5RbkgwVGUg8krhf30wdq+MrNirYaVODc2ZjB2RmK+qEU3VOOuWb65IR3UQ17u2lwJ495Rsby8wWAACqoH79+mnAgAGaNm2aHnroIY0YMULNmzdXnTp15Ofnp8zMTB08eFDbtm1Tdna2TNPUnXfeqRtuuMHToaMY/m0jdWrGbrmzJUPn2cJGpiw+kk9shLavOKL43xN0cOvJIuUcATY161RLzbvVVnjdoHKL0zRNHZv9i1Z/+Zl2piUrx2Y9Z3/sHO2tnaLFrVKV4yP5Warpweb36MHWgxTiCCm3OAAAqKpIaFdRNc1MZcpUREq6em7ZpyMhAToSEqAcq1V2l0u1ktNUKzktb2a2pNCaYSSzAQBAhUlISNCzzz5bKJktSa+99poaN25cpoT23LlzNWrUKM2fP7+8w6zyGrUJ0+61iZIkl5mrfanbtTtnp0wzU4bhK6u9sSw+TWUYNsmUGrUNl9vl0qaVizRv+udy7U6UIUPBZ/1ZYnW5VftUqqJOOBWSkaWc2NaKeuAGhfTuJZ+6zGoBAADSl19+qbvvvlszZsxQdna2Nm7cqI0bNxYqk7/tyYABAzRp0iRPhIlSMOwW5XSJknXhQZk6/xY2OwP99dPLS5WdkVu4DkOqG1tDMd1qq2HrMFntlnKLz52ZqV2ff6o1s3/UIasp0zAk29nLo2dobVOnNkRnyDSkcJ8GGnHVAxrQ5BbZrawgBABAeSGhXUXZq1VThmHIME1ZTVN1TqWqzqnUYsuahiF7tdCKDRAAAFRpOTk5ysrKKpe6jh49qoULF5ZLXSgsun1NLf5mh9JPbVNO+izJzJJkKG8OjSF3zk4pY4Hs/n3lCAjXrpWT9NN/Fsudm7d0/NmzcKqlZSjquFM1UrOUFnOVoh7opzr9estWrZpn3hwAAPBafn5+mj59uiZPnqyxY8dqxYoVcrlcBeetVqs6d+6sp59+WgMHDvRgpLiQ3ByX5s49qGrZpdjCJjml0LXB4X6K6VZbzbvUUmC18t0aMSvhiDaO/482blitE77206PoeX1XwzSV4Zumxa1SdKhm3pY6zYM76o+dHla3yC6sIgQAwGVAQruKCurVU845c0pV1jBNBfXudZkjAgAAOKNu3bqaNm2annrqKU+HgvOw2a2KjtymNYemn3XULPxqZiknbbpy0qT4Y4Wvd+Tkqs5Jp0Kd2TrVuJ2q3d1XbW67QbYA/4oIHwAAVHJ333237r77bqWmpmrPnj1yOp0KCgpSw4YNFRgY6OnwUAq7Vh9TVnqujkgX3sJGksVqqGmnCMV0i1TtxiHlnjxOXr1aqyeM19Zjh5ThY5N8z15W3KVj1Z1a0NapNH+3DNl0Xe2b9MeOD6lxtcblGgcAACiMhHYVFdS3ryxvjpLb6czbM7skhiFLUJCC2GcIAABUoN69e+uDDz5Q+/bt1aNHD4WEnNl3bsqUKdq5c2ep61q/fv3lCBGSsp1ObVg2VbJYdJ4tDwsxTFM1U9IUkJGlwxEt5LrvVrW5o5eqh5DEBgAAFycwMFCtWrXydBi4CLvXJ+Uv8CO3pIM5pg7muEosX69FDfUcEluuMZgulw5NmaLV33+lvbmZyrVaJJ8zw+YWM1vb6qZoWYt0uaymHEaQBjUZqIfb3qcwP7ZoBACgIpDQrqIsDociR4/Wwccfz9toprik9uknHCNHj5bF4ajgCAEAQFX2wgsv6Ouvv9batWu1bt26QuemTp2qqVOneiYwFLJqwri8Ab9SquZ0an/1QKXePFz9b+2rAXVDWZIRAAAUa//+/QoPD5efn5+nQ8FllJmWc2aBn1LIzsy9cKFSyk1J0baPPtS6xfN1xMeSNxZ6Vt/WZU3X8pgUba+bJRlSqD1SD7ceooHNb5OfjXYJAEBFIqFdhQXFXa+oce/p8J9fkDslJW9mjdtd8GoJClLk6NEKirve06ECAIAqJioqSsuXL9dLL72k+fPn6/jx44X20isrkqaXx+YVS/IejCzN52uaygoI1P99Ml3+PvwZAgAAzq9hw4aaNGmSBg0a5OlQcBn5BtgLZmhfkHG6/CXK2LVLa8eP1ead8UrxtUsO65lbuN1yBqbq1zZOJVXLS543DGylp9o/pLj6PWQxSv8wJwAAKD+MJFVxQXFxarJ4kZy//CLnnLlyJSfLGhKioN69FHTDDczMBgAAHhMdHa3JkycXOmaxWPTFF1+UaWDziy++0JAhQ8o7PEjKzsmW7D6lK2wYcudmk8wGAAClcjEPMaLyadQmTLvXJpausCk1aht+UfcxTVPHFyzQ6okfa0fKcWXZz90fO1cHIlK0qHWqshymJIs61+ypZzo+rBZhLS7qngAAoPwwmgRZHA6F3HqrQm691dOhAAAAlLs9e/Z4OoQrlmlxl2mGtmlxX/6gAADAFWPx4sXKzS2/Jabvv//+cqsL5SO6fU0t/maHstIv/HN2+NsU3a5sCW13Vpb2fvmF1vw0TQcMl9wWi2Q/e0g8UxuinVrXJF1ui2STn25rdJsevWqIIgMjy/huAADA5UJCGwAAAJXGp59+qm7dunk6DJx2LNyhkBOlXM7dMHSspu/lDQgAAFxRJkyYoA8//PCiri1uyxkS2t7HZreq59BY/fT+hvMvO25IPYfGyma3nqfQGTnHjmnT++O0Yc0yJfnaJasknV4u3DSV7ZOuJS1TtL9WtmRIgdYwDWl5nwbHDlSQT9Clvi0AAFDOSGgDAACg0ijr0uG5ubnKysq6TNHAelN/2T6bqlyL5fyztE1TNrdbtptur7jgAABApffiiy+qV69eZb4uNTVVzz33nLZu3VpwbPjw4eUZGspRw9Zh6vdoK837PD5vpnb+ntqnXx3+NvUcGquGrcMuWJdz/XqtmTBe8Yf2Ks1hP2dZcbeSQp36ta1TKYEuSVIdvyZ6ov0w3dCwj+yWS9+fGwAAXB4ktAEAAHDFWbFihSZOnKivv/5aJ06c8HQ4Fy0rK0tjxozR5MmTtXPnTlmtVsXExGjIkCF65JFHZLFYPBrfH3vdq5fnfKoGCdVLXnr89P6XO+uc0t96Dq7gCAEAQGUWExOj6667rkzXrFu3TsOHD9eOHTskSUFBQZowYYLuuuuuyxEiyknDNuEa+nZ17VqTqN3rEpWZliPfALsatQ1XdLvw887MNl0uHflxplZPnqTdWWnKsVklx1mJbDNHO+uk6PeWacq15WXK21a/Wk91HKYOER2Knc0PAAC8CwltAAAAXBEOHDigSZMmadKkSdq+fXvBcdM0K+UgVVJSkuLi4rRx40Y98sgjGjt2rLKzs/Xee+9pxIgR+vbbb/Xjjz/K19dzy3iH+Por+q7nteubN9X4YJhyrdYzie3Trza3WzuiktT4Dy8pxNffY7ECAIAr33/+8x89//zzys7Olmmaatu2rb755hs1btzY06GhFGx2q5p1rqVmnWuVqrwrNU07P/lIaxfM1mG7IdMwJNuZxLfbkqFVTVMU3zBTpiFZZFffejfr8XYPqkFIg8v0LgAAwOVAQhsAAACVVlpamr777jt9/vnnWrRokczTs4HzXyUpLCxMx48f91SIF23gwIHauHGjnn76aY0ZM6bg+PXXX6/bbrtN06dP14gRI/Tpp596LkhJf+w2QO+apiZtGKW4jYaijgXI4rbIbXHrYM00zW9l6t42L+mP3QZ4NE4AAFC5uN3uUpc9ceKEHnjgAc2cObOgHzh8+HCNGTNGDofjcoWIcpbtdGrDxx9q15oVyszOlq+Pj6LbdVLrYcPlE3RmX+vMffu0YfxYbYrfoJN+PpLPmVWLDNNUml+qFrV26khYjiTJzxKiQc3v0ZBWg1TNt1qFvy8AAHDpDPPs0T54tZSUFIWEhCg5OVnBwcGeDgcAAFRSlb1PYZqm5s6dq4kTJ2ratGlKT08vOJ6vWrVqGjx4sB588EFt2rRJQ4YMkcvl8lTIZfb999/rzjvvlK+vrxISEhQaGlrofHx8vGJjY2UYhlauXKn27duXqt7L+bNPzkzXu79/p18PzFeG2yk/S5B61I3TM93uZGY2AABXIG/pUy5atEiDBw/W4cOHZZqmgoKC9NFHH+kPf/iDx2K60l2On/3GTz7Sgp+mKsdqKbLij93l1vX9blNUsxit/mSCtp04pkyfwvO0LG6XDoelaGHbVGX45j0MEe6op0evelD9G98sh5UHGwAA8DZl6VMwQxsAAACVwpYtW/T555/rf//7nw4fPiypcBJbkgzD0N/+9jc9++yzBbNxNm/eXKSct/vvf/8rSYqLiyuSzJby9pOMiYlRfHy8Pvnkk1IntC+nEF9/vRZ3v6T7PR0KAACoAkzT1GuvvaZRo0bJ7XYXLDH+7bffKjo62tPhoQw2fvKRZs+aJllObxNkFH7NsRiaPWuaLD9Nldtqkc5KZhvK1uYGKVrdLE2u06uNNw9pr6c6DFP3Ot0r5dZDAACgKBLaAAAA8FqJiYn63//+p4kTJ2rdunUFx89OULdo0UKDBw9W79691bFjR3Xu3LnQ0pKDBw/W4MGDKzLsS5Kdna158+ZJkjp27FhiuY4dOyo+Pl4//vijxo0bV1HhAQAAeNzBgwc1ePBgLVmypKBf+Oijj2rMmDHy8fHxcHQoi2ynUwt+mpqXzC4p+Xz6uNt65nyOLV3LYlO0q06WZEiGrOpRp4+eaDdMzao3q4jQAQBABSKhDQAAAK/z7bffauLEiZo9e7Zyc3MlFU5iR0VF6Z577tHgwYPVunVrSaqU+2QXJz4+Xjk5efv9NWjQoMRy+ef27dun5ORkhYSEVEB0AAAAnjV9+nQNGzZMJ0+eZInxK8CGjz/MW2a81NI1vfsJnQzO207IxwjUnU0Haljre1XTv+blCRIAAHgcCW0AAAB4nbvuukuGYRTZF/vOO+/UoEGDdO21116xywfu37+/4Pvw8PASy5197uDBgyS0AQDAFS07O1sjR47U+PHjJYklxq8QO1avOLNn9oWYpnzcpk4GuxRqr6WHWw/Vnc1uk7/d//IHCgAAPIqENgAAALySaZoyDEM1atTQv//9b915552y2+2eDuuyczqdBd/7+vqWWO7scykpKcWWycrKUlZW1gXLAQAAeLNt27bp7rvv1oYNGwoeeBwxYoTeffddlhiv5FIyUqXSztA2DFncVr1z3TuKqxcnq8V6eYMDAABeoyzruQAAAAAVYubMmRo4cKAcDoeSkpI0fPhwPfTQQ5o9e7bcbrenw6s03nrrLYWEhBR81a1b19MhAQAAlMmnn36qDh06FCSzg4OD9fXXX2vcuHGlTmZv3LhRb7zxxmWOFBcjV7l5M7RLwzQli0W9G/QmmQ0AQBVDQhsAAABep1+/fvr666+VkJCgDz74QK1bt9akSZN04403KjIyUk8//bSWL1/u6TAvi6CgoILvMzMzSyx39rng4OBiy7zwwgtKTk4u+Dpw4ED5BQoAAHAZpaamatCgQXrooYeUlpYm0zR11VVXafXq1Ro4cGCZ6tqwYYNef/31yxQpLsXhMJVuuXHllTtU8o48AADgCkZCGwAAAF4rJCREjzzyiJYsWaJdu3bpL3/5iwIDAzV27Fh169ZNTZo00WuvvaYdO3Z4OtRyU69evYLvExMTSyx39rmoqKhiyzgcDgUHBxf6AgAAqAzatGmjr7/+umAbmscee0zLli1jv+wrzMp2EbK5XBeepW2asrlcWnVVRMUEBgAAvEql3kM7KytLY8aM0eTJk7Vz505ZrVbFxMRoyJAheuSRR2SxXHy+Pjk5WX//+981ZcoU7du3T/7+/mrdurUeeeQR3X333Re8/vDhw3r77bc1c+ZMHTp0SCEhIerYsaOefPJJ3XDDDRcdFwAAQFXVsGFDvfbaa3rttde0ZMkSTZw4Ud99953eeOMN/fWvf1VsbKwMwyjYVzHfsmXLNGHCBH3yySceirxsYmJiZLfblZOTo71795ZYLv9c/fr1FRISUjHBAQAAVJA9e/bIMAwZhqHg4GBt2bLlosfUjh49Ws7Robx0je6lnVFj1eBwRF5Su7jZ2qf79zujEtWt8T0VHCEAAPAGlXaGdlJSkjp27Kg///nP6tSpk37++WdNmTJFtWvX1ogRI9S7d+/zLtF4Pjt37lSrVq00evRo3XbbbZo/f74mTpwot9ute+65R/fee+95925ctmyZWrZsqY8++kiPPvqoFi1apPHjx+vAgQPq27evXnzxxYt92wAAAJDUvXt3TZgwQQkJCZo8ebL69u2rbdu2yTRN3X777Xr00Ue1atUqSdKuXbv0+eefezji0vPx8VHPnj0lqeA9FGflypWSpJtuuqlC4gIAAKhoNWrUUL169RQaGqo9e/Zc9Nf5Vr2BZz179UD92tqivZHHZMsfb81/QPX0q83t1p7Io/q1tUXPdLvTQ5ECAABPMsxzp7BUEtdff71+/fVXPf300xozZkzBcdM0ddttt2n69OkaOnSoPv300zLVm5WVpdatW2v79u1699139cc//rHgXHZ2tq6++mqtWrVKr732ml599dUi1ycmJio2NlZJSUmaOnWqBgwYUHAuOTlZrVq10oEDB/TZZ59pyJAhZYotJSVFISEhSk5OZrlIAABw0a7UPsWxY8f05ZdfatKkSVq3bp0Mw1CrVq3UuHFjTZ06VS6Xy9Mhltr333+vO++8U76+vjpy5EiRGdhbt25VTEyMDMPQypUr1b59+1LVe6X+7AEAQMW73P0Ki8WiL774QoMGDbrkur744gsNGTKkUvUHvVl5/+zH/D5N/93+ihxZpnqu91PdYwEy3BaZFrcO1EzTvDYZynIYeqjpG/pjtwGX/gYAAIBXKEufolLO0P7+++/166+/ytfXV6+99lqhc4Zh6K233pIkff7551q9enWZ6n7vvfe0fft2RUZG6sknnyx0zsfHR2+88YYk6e2339bhw4eLXP/GG28oKSlJnTt3LpTMlvL2gHzhhRckSc8//7wyMjLKFBsAAABKVrNmTT3zzDNas2aNNm7cqGeffVZJSUmaMmWKp0MrszvuuEPXXXedMjMz9frrrxc6Z5pmwYo/Q4YMKXUyGwAAoKoyilvGGl7jj90GaFiT15Vt99PPnTP04c3H9WH/Y/rw5uP6uXOGsu1+JLMBAKjiKmVC+7///a8kKS4uTqGhoUXOx8TEKCYmRqZplnmvxPy6BwwYIKvVWuR8nz59FBQUpIyMDH355ZeFzmVnZ2vSpEmS8gYhi5N//OjRo5o5c2aZYgMAAEDptGjRQv/4xz+0f//+Ig9AVhbfffedWrVqpXfffVcjRozQb7/9pgULFmjgwIGaOnWq4uLi9P7773s6TAAAgMtiyJAhio6OLpe6oqOjdf/995dLXbg8nrn6Ni0Z9KvuqPucwox28nc3VZjRTnfUfU5LBv1KMhsAgCqu0iW0s7OzNW/ePElSx44dSyyXf+7HH38sdd179uzR1q1bz1u31WrVVVddVWzdv/32m5KTk897fc2aNVWvXr0yxwYAAICys1gsio6OVmXcZScsLEwrV67U6NGjtXTpUt1www0aMGCADh48qPHjx2vOnDny9fX1dJgAAACXxaeffqrOnTuXS11dunQp87aEqHghvv56Le5+/TrkMy1/4Hv9OuQzvRZ3v0J8/T0dGgAA8DCbpwMoq/j4eOXk5EiSGjRoUGK5/HP79u1TcnJykX0Hi7Nhw4Yi15dU96JFiwqVL+v1+/fvL3I9AAAAyt9tt92mPXv2eDqMi+JwOPT888/r+eef93QoAAAAAAAAgEdUuhna+/fvL/g+PDy8xHJnnzt48OBlqfvkyZNKS0u76OsPHDhQqrgAAABw8fz9/VW/fn1PhwEAAAAAAADgIlS6GdpOp7Pg+/MtsXj2uZSUlMtad0BAwEVdf6G4srKylJWVVeheAAAAAAAAAAAAAFBVVLoZ2lXJW2+9pZCQkIKvunXrejokAAAAAAAAAAAAAKgwlS6hHRQUVPB9ZmZmieXOPhccHFwhdZf1+gvF9cILLyg5ObngiyXKAQAAAAAAAAAAAFQllS6hXa9evYLvExMTSyx39rmoqKjLUne1atUKlhu/mOsvNOPa4XAoODi40BcAAAAAAACAK4fb7da4ceMUHBwswzC0d+/ecqv78OHDevrppxUdHS1fX19FRETo5ptv1i+//FJu9wAAALjcKl1COyYmRna7XZLO27nLP1e/fn2FhISUqu7WrVsXuf58dZ9dvjyuBwAAAAAAAFB1bN68Wd27d9cTTzwhp9NZrnUvW7ZMLVu21EcffaRHH31UixYt0vjx43XgwAH17dtXL774YrneDwAA4HKpdAltHx8f9ezZU5K0atWqEsutXLlSknTTTTeVuu6GDRuqefPm563b5XJp7dq1xdbdrVu3guR5SdcfO3ZM+/fvL3NsAAAAAAAAAK4cr776qtq1ayer1ao///nP5Vp3YmKibrnlFp08eVL/+9//9Nxzz6lTp0664447tGjRItWtW1dvvfWWPv/883K9LwAAwOVQ6RLakvTQQw9JkubNm6fk5OQi57du3ar4+HgZhqEHH3zwouqeNm2a3G53kfNz5syR0+mUr6+vBg0aVOicw+HQfffdJ0n6/vvvi61/ypQpklSwvA8AAAAAAACAqmfMmDF69913tWjRIjVr1qxc637jjTeUlJSkzp07a8CAAYXOhYSE6IUXXpAkPf/888rIyCjXewMAAJS3SpnQvuOOO3TdddcpMzNTr7/+eqFzpmkWLJczZMgQtW/fvtD5GTNmKDw8XC1btix2WfAnnnhCTZs21aFDh/Tee+8VOpeTk6NXXnlFkvTnP/9ZderUKXL9K6+8orCwMC1btkw//PBDoXMpKSkaPXq0JOntt9+Wn59f2d44AAAAAAAAgCvCli1b9Nhjj8kwjHKtNzs7W5MmTZKUN45anPzjR48e1cyZM8v1/gAAAOWtUia0Jem7775Tq1at9O6772rEiBH67bfftGDBAg0cOFBTp05VXFyc3n///SLXTZgwQUlJSdq8eXPBbOmzORwO/fjjj6pbt66effZZvfzyy1q2bJl+/vln9enTRytXrtTgwYP1l7/8pdi4wsPDNWPGDFWrVk333HOP/vnPf2rlypWaOnWqrr32Wu3bt08vvPCChgwZUu6fCQAAAAAAAIDKobjJMuXht99+K1jVsmPHjsWWqVmzpurVqydJ+vHHHy9LHAAAAOWl0ia0w8LCtHLlSo0ePVpLly7VDTfcoAEDBujgwYMaP3685syZI19f3yLXPfLII6pRo4ZiY2N1++23F1t348aNtXHjRj3//PP6/vvvdf311+vee++VYRj66quv9MUXX8hiKfmj69KlizZt2qRhw4bp/fff1zXXXKPhw4crKipKs2bN0qhRo8rtcwAAAAAAAACAfBs2bCj4vkGDBiWWyz93dnkAAABvZPN0AJfC4XDo+eef1/PPP1/qa2655RYlJSVdsFxISIjefPNNvfnmmxcVW2RkpP7zn//oP//5z0VdDwAAAAAAAABltX///oLvw8PDSyyXf+7AgQPnrS8rK0tZWVkF/52SknKJEQIAAJRNpZ2hDQAAAAAAAAAozOl0Fnxf3AqW5567UIL6rbfeUkhISMFX3bp1yydQAACAUiKhDQAAAAAAAADnMXHiRNlstov+mj17tqffwkV74YUXlJycXPB1oRndAAAA5a1SLzkOAAAAAAAAAJeb2+2Wy+W6pOsrSlBQUMH3mZmZCggIKLZcZmamJCk4OPi89TkcDjkcjvILEAAAoIyYoQ0AAAAAAAAA5zF06FCZpnnRX3379q2wWOvVq1fwfWJiYonl8s+xhDgAAPB2JLQBAAAAAAAA4ArRunXrgu/37t1bYrn8c2eXBwAA8EYktAEAAAAAAADgCtGtWzeFhIRIklatWlVsmWPHjmn//v2SpJtuuqnCYgMAALgYJLQBAAAAAAAA4ArhcDh03333SZK+//77YstMmTJFkhQREaGbb765wmIDAAC4GCS0AQAAAAAAAKASmTBhgkJCQnT11Vfr1KlTRc6/8sorCgsL07Jly/TDDz8UOpeSkqLRo0dLkt5++235+flVRMgAAAAXjYQ2AAAAAAAAAFSwY8eOadOmTdq0aZMOHTpUcHz79u0Fx9PS0oq9duzYsUpJSdHvv/+u+fPnFzkfHh6uGTNmqFq1arrnnnv0z3/+UytXrtTUqVN17bXXat++fXrhhRc0ZMiQy/b+AAAAygsJbQAAAAAAAACoYOPHj1erVq3UqlUrvfzyywXHb7jhhoLjK1euLPbaJ554QsHBweratavi4uKKLdOlSxdt2rRJw4YN0/vvv69rrrlGw4cPV1RUlGbNmqVRo0ZdlvcFAABQ3gzTNE1PB4HSSUlJUUhIiJKTkxUcHOzpcAAAQCVFn6Lq4mcPAADKC/2KqoufPQAAKA9l6VMwQxsAAAAAAAAAAAAA4JVsng4ApZc/mT4lJcXDkQAAgMosvy/BQj1VD/1JAABQXuhTVl30KQEAQHkoS3+ShHYl4nQ6JUl169b1cCQAAOBK4HQ6FRIS4ukwUIHoTwIAgPJGn7LqoU8JAADKU2n6k+yhXYm43W4dPnxYQUFBMgyj3OtPSUlR3bp1deDAAfa/AQDAgy73v8mmacrpdCoyMlIWCzvQVCWXuz8p0acEAMAbVMS/x/Qpqy7GKAEAqBq8aYySGdqViMViUVRU1GW/T3BwMJ1FAAC8wOX8N5lZNFVTRfUnJfqUAAB4g8v97zF9yqqJMUoAAKoWbxij5PFJAAAAAAAAAAAAAIBXIqENAAAAAAAAAAAAAPBKJLRRwOFw6NVXX5XD4fB0KAAAVGn8m4zKjPYLAIDn8e8xKjPaLwAA3sGb/k02TNM0PR0EAAAAAAAAAAAAAADnYoY2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaENut1vjxo1TcHCwDMPQ3r17PR0SAABVSk5Ojr7//nvdf//9at68uQICAuTr66t69erpjjvu0IwZMzwdInBB9CkBAPAc+pO4EtCfBADAs7y5T2nz2J3hFTZv3qyHH35YS5cu9XQoAABUSQcPHlSXLl106NAh1atXT88995xat24th8OhJUuW6K233tKUKVM0YMAATZ48WQ6Hw9MhA0XQpwQAwHPoT+JKQH8SAADP8vY+JTO0q7BXX31V7dq1k9Vq1Z///GdPhwMAQJV06tQpHTp0SFFRUVq7dq2eeOIJXXvttercubNGjhyp+fPny2azadq0aRo5cqSnwwWKoE8JAIBn0Z9EZUd/EgAAz/P2PiUJ7SpszJgxevfdd7Vo0SI1a9bM0+EAAFClPfPMM6pevXqR461bt9Y999wjSfrvf/+r1NTUig4NOC/6lAAAeAf6k6is6E8CAOA9vLVPSUK7CtuyZYsee+wxGYbh6VAAAKiywsLCNHLkSPXv37/EMm3atJEkZWVladu2bRUVGlAq9CkBAPAs+pOo7OhPAgDged7ep2QP7SqsTp06ng4BAIAqr1atWvrnP/953jJWq7Xg+8DAwMsdElAm9CkBAPAs+pOo7OhPAgDged7ep2SGNgAAgJfbsWOHpLyOZePGjT0cDQAAACob+pMAAAC4VJ7sU5LQBgAA8GK5ubn6/vvvJUkjR44s9CQkAAAAcCH0JwEAAHCpPN2nJKENAADgxT7++GMdPXpUnTp10tNPP+3pcAAAAFDJ0J8EAADApfJ0n5KENgAAgJfavn27nnvuOdWsWVOTJ0+W3W73dEgAAACoROhPAgAA4FJ5Q5+ShDYAAIAXOnr0qG666SbZbDbNnj1bDRs29HRIAAAAqEToTwIAAOBSeUufkoQ2AACAlzly5Iji4uJ0/Phx/fLLL2rTpo2nQwIAAEAlQn8SAAAAl8qb+pQ2j90ZAAAARRw8eFA9e/bUyZMntWDBAgYfAQAAUCb0JwEAAHCpvK1PyQxtAAAAL7F3715de+21cjqd+vXXX4t0FPfu3avU1FQPRQcAAABvR38SAAAAl8ob+5QktAEAALzAjh07dO211yo3N1eLFi1SbGxskTINGzbUd99954HoAAAA4O3oTwIAAOBSeWufkoQ2AACAh23ZskXXXXed7Ha7Fi9erMaNG3s6JAAAAFQi9CcBAABwqby5T8ke2lXYsWPHdOzYMUnSoUOHCo5v3769YKmAhg0bKiAgwCPxAQBQFezatUs9evRQYmKifHx81KJFC0+HBJQJfUoAADyL/iQqO/qTAAB4nrf3KUloV2Hjx4/X66+/XuT4DTfcUPD9ggUL1KNHjwqMCgCAqmXjxo1KTEyUJGVnZys7O9vDEQFlQ58SAADPoj+Jyo7+JAAAnuftfUrDNE3T00EAAAAAAAAAAAAAAHAu9tAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHglEtoAAAAAAAAAAAAAAK9EQhsAAAAAAAAAAAAA4JVIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAV7J5OgAAVVdubq5yc3M9HQYAAAAAAACAy8xischut8swDE+HAgCoZEhoA6hw6enpSkpKUlpamqdDAQAAAAAAAFBB7Ha7goKCFBYWJqvV6ulwAACVhGGapunpIABUHdnZ2dqzZ4/sdruqV68uh8PBU5kAAAAAAADAFcw0TblcLqWmpio5OVkOh0N169YlqQ0AKBUS2gAq1MGDB5WZmamGDRvSYQUAAAAAAACqmIyMDO3fv1+hoaGKiIjwdDgAgErA4ukAAFQdpmkqPT1dISEhJLMBAAAAAACAKsjPz0/BwcFyOp1ivh0AoDRIaAOoMDk5OXK5XPLz8/N0KAAAAAAAAAA8JCgoSDk5OcrJyfF0KACASoCENoAK43a7JYnZ2QAAAAAAAEAVlj8+mD9eCADA+ZDQBlDhDMPwdAgAAAAAAAAAPITxQQBAWZDQBgAAAAAAAAAAAAB4JRLaAAAAAAAAAAAAAACvREIbAAAAAAAAAAAAAOCVSGgDwBXks88+k2EYBV+vvfaap0MCLpsrub0fPHhQN954owzD0GeffebpcOAFruT2DpyL9o6qpiq0+R9++KHg/e3du9fT4cCDqkJ7B/LR3gEAKD8ktAHAi61atUqPPfaYWrRoodDQUPn4+CgiIkLXXnutnnvuOc2ZM0e5ubkF5e+66y4lJCRo5MiRHoy6/G3btk333nuvateuLV9fX0VHR+u5555TcnKyp0NDOaK95/nkk0/UsmVLzZo1y9Oh4DKq6u3d6XTqww8/VL9+/VSrVi3Z7XaFhoaqa9eueuedd5SZmenpEFGOqnp7T0tL07Rp0zRs2DDFxsbK399fPj4+ioqK0u233665c+d6OkSUs6re5s+VnJysESNGeDoMXCZVvb3v3bu3UMKyuK8xY8Z4OkyUk6re3vOZpqkvvvhCffr0Uc2aNeVwOBQVFaUePXro1VdfldPp9HSIAIArkM3TAQDA5ZSZ49JPGxM0e/NRnUrPVqi/j/q0iFC/VrXla7d6OrwSZWRk6NFHH9XEiRM1YMAAvf3222revLncbrf27dunqVOn6r333tM///lPhYeHa968eWrVqpX8/Pzk5+enwMBAT7+FcvPrr7+qX79+qlevnj777DM1bdpUv/76q5566ilNmTJFS5YsUe3atT0dpnfIyZS2TJO2zpTST0r+1aTmN0uxAyS7r6ejKxHtPU9OTo5uvfVWLVq0SKNGjdKUKVO0aNEiT4fltbJcWZq9d7bm75+vU1mnFOoIVVy9OPVp0EcOq8PT4ZWI9p6X3Ktfv75Onjypu+++W998842ioqK0b98+jR49WiNHjtRnn32muXPnqmbNmp4O1yu4s7LknDVLzrnz5Eo+JWtIqIJ69VRQ376yOGjv3u7VV1/Vv/71L3Xr1k3/+Mc/FBMTo/T0dC1YsEB/+ctfNHXqVP3rX//Ss88+6+lQvUZujku7Vh/T7vVJykzLkW+AXY3ahCm6fU3Z6MNXOn/6059kszH8VJLc7GxtX7ZEO1cuU0ZqivwCg9W4Yxc17dJdNh8fT4dXItp7Yc2aNSvxXPXq1SswEu9m5riVvjFRmZuPy5WeK6u/Tb4tasi/VbgMu/fOu6K9n5Genq4BAwZo06ZNeuWVV/Sf//xHPj4+Wr16tUaOHKmFCxfqvvvuU1BQkKdDBQBcYfiLAsAVa86Woxr57TqlZOTKYkhuU7IY0qzNR/TajM16Z2Bb9YqN8HSYReTk5Khv375atGiR3nvvPT3++OOFzjdt2lS9e/fWiBEj1L17dyUmJur48eMeivbyOnXqlAYOHCjTNPXTTz+pUaNGkqSGDRvK4XBo8ODBuv/++zVnzhwPR+oFtv4kTRshZZ6SDItkuvNe42dIPz8v3faB1OxGT0dZBO39jLS0NGVmZmrjxo1q1KiRpk6d6umQvNaC/Qv08m8vKyU7RRZZ5JZbFlk0d/9cjV4xWm92f1M96vbwdJhF0N7z5OTk6OTJk7r99tv11VdfFRxv1KiRrrvuOnXt2lUrVqzQM888oy+//NKDkXoH5/z5OvznF+ROSZEsFsntliwWOefMkeXNUYocPVpBcdd7OswiaO+F1axZU7Nnz1ZAQEDBsZYtWyooKEgPPPCAXnnlFT3++ONyePEDChVlz/pEzfs8XlnpuZIhyZRkSLvXJmrxNzvUc2isGrYO83SYRdDmi7dgwQJ9/PHH+umnn3Tjjd7XF/W0nauWa9b4d5WVlirDMGSapgzD0I4Vv2v+ZxN04+PPKLp9Z0+HWQTtvaitW7d6OgSvl7HluE58u11mRuHf7xmbj+vUjN2qPrCp/GJreDrMImjvhQ0ZMkTLly/XunXr1LBhw4LjjRo1Unh4uO6++24eYgIAXBbe++gbAFyCOVuO6pFJq+TMyFvqyW2q0KszI1cPT1qlOVuOeijCkr344otatGiRbr311iJ/KJ2tVatWV/z+S2PHjlVSUpL69+9fkMzOd/fddysyMlJz587Vb7/95qEIvcTWn6TJg6TM00uwm+7Cr5nJ0lf35JXzMrT3M0JCQjR//vwibR2FLdi/QE8veFrO7Lxl7NxyF3p1Zjv11PyntGD/Ao/FWBLae2HDhg0rcsxiseihhx6SJE2ZMkUul6uiw/IqzvnzdfDxJ+TOX7bR7S706nY6dfDxx+WcP99DEZaM9n7Gvffeq2+//bZQMjtf+/btJeU91JSWllbRoXmdPesT9dMHG/OS2VJesuOs16z0XP30/gbtWZ/okfjOhzZfVEZGhh5++GENHjxYffv29XQ4XmfnquWa/s+/Kev0//dN0yz0mpWWpmn/+Jt2rlrusRhLQntHWWVsOa7jk7bkJbOlIr/fzYxcHZ+0RRlbvC8RTHs/Y+7cufruu+/0+OOPF0pm5+vRo4eOHDmiBg0aVHxwAIArHgltAFeczByXRn67TjLP/I10LvP0//zp23XKzPGewfIjR47ovffekyQ9/fTTFyx/7733qkGDBvL1Lf1y0mvWrNH//d//qX379qpRo4Z8fX3VtGlTPfvss0pKSir2mvT0dP3rX//SVVddpdDQUPn5+alVq1b605/+pBUrVhQpP3fuXN14442Kiooq2CNy4MCB+vrrr5Wenl7qWL/99ltJUs+ePYucs1gsiouLkyR9/fXXpa7zipOTmTczW9IFWnxeuRzv2ZeW9l5Y/h57KFmWK0sv//ayJMksob3nH3/5t5eV5cqqsNguhPZ+RkhIiE6ePFliciMqKkqSlJmZWab/D11p3FlZOvznF/L+wyzh9/vp44f//ILcWbR3b2zvktS2bVtde+21xZ5btmyZJKldu3ZVfkna3ByX5n0eX3J3Jp8pzfs8Xrn04b22zef7y1/+opSUFPYPLkZudrZmjX/3zB+mxcr7g3bW+HeVm51dgdGdH+0dZWXmuHXi2+2l+v1+4tvtMnPcFRJXadDeC5swYYIkseIGAMAjSGgDuOL8tDFBKRm5pflbSckZufp5U0JFhFUq06dPV2Zmpnx8fEoc+DxbeHi49uzZoy5dupT6HoMGDdLHH3+sJ598UsuWLdO6dev00ksv6dtvv1WHDh107NixQuXdbrduuOEG/eUvf9GIESO0fPlyrV+/Xk8//bQ+++wzde5ceAm8CRMmqHfv3goLC9O0adO0Y8cOTZw4UYmJiQV7pZZGWlqaNm/eLElq3rx5sWXyj69cubLU7/+Ks2Va3jLjpWnxmaekLdMve0ilRXtHWc3eO1sp2SklJrPzmTKVkp2i2XtnV1BkF0Z7P8MwDIWGhspiKf5PkYSEvH+X69evX6X33nPOmpW3zHhJyex8pil3Soqcv/xSMYGVAu39/NxutxISEvTee+/pmWeeUZs2bTR58uSLru9KsWv1sTMzsy8gKz1Xu9Z4zyxt2nxRq1at0pgxY/Tvf/9bNWp43xLCnrZ92RJlpaWqNH34rLRUbV/uPStS0d6L9+mnn+q6665T3bp1VbNmTXXs2FGvvPKKEhO953eVp6RvTDwzM/sCzIxcpW8qPonrCbT3wubOnSspbxu49957T126dFFYWJiioqJ0880366efvG9VOADAlYMNLQB4lVvGLlGi89JmGJ1ML9vT63/+fqPe/nnbJd0zPMihGU92v6Q6pDOzdKKjoy/bnkN16tTRqFGjdPvttxcca968uRo3bqzu3bvrjTfeKHgCWZIWLVqkJUuW6PHHH9cjjzxScLxp06by8/PTvffeW6j+UaNGKSgoSJ9//nlBsqJ+/frq1KmT6tWrV+o49+zZI/fpJVVr1apVbJnatWtLknbt2lXqer3Kh9dJqccuXO58Mk6UrfyMp6S5r13aPSUpsKY0fOElVUF7r1rumnmXkjIubXAqOSu5TOVfX/q6xqwZc0n3lKQwvzB9ffOlrQRBey+9/IGw8y3p6O323HGnckuYUVNarlOnylQ+4S+v6Ni/3rmke0qSLSxMDb//7pLqoL2XbPz48Xr66aeVm5ur4OBgvfLKK3rmmWdkt9svuk5P+2bUSqWnXPrs0cy0nDKVX/DFVi2deml9QP9gH/3hxY6XVIdEmz9XTk6Ohg0bpr59++qee+65mLfrtb544Y9KO3XykuvJyN9KopRmfzhWi//32SXdMyC0mu59a8wl1SHR3kvy9ttv66WXXlLbtm2Vnp6uqVOnatSoUZowYYJ+/PHHgi0mKpOjY9fK7bz03++u9LL9fj/5/Xal/Lznku5pCfJRxJNXXVIdEu39bAcOHNDJk3m//wYPHqykpCS9+eabatq0qbZv364XX3xRN910k1544QWNGjXqoj4LAADOh4Q2AK+S6MzSkZSKXRI5K9dd4fcsydGjeXt6h4aGXrZ7zJs3r9jj+U8Q//jjj4X+WMp/onz//v1FrunXr5/Gjh1b6FhiYqJyc3N17NixQonowMBAffjhh2rVqlWp4kxJSSn43s/Pr9gy/v7+kqTk5LIlubxG6jHJebhi75mbWfH3LAHtvWpJykjSsfRLfICjjLJcWRV+z5LQ3ktn8+bN+uGHH3TVVVfpqaeeuuT6PCU3KUm5p3/mFcXMyqrwe5aE9l6ywYMHq3fv3kpMTNSsWbP02muv6csvv9TkyZMVExNzUXV6WnpKttJOVfyS964ct0fuWxzafGGjR4/Wnj17NHPmzFJfU1mknTqp1BMVv8evKyfbI/ctDu29sODgYP3f//2fXnrpJQUHBxcc79y5s2rWrKmRI0eqf//+2r59e8Hfr5WF25ktVzk8sFRmuaZn7lsM2nvhevKtWLFCu3fvLphkEBsbqy5duqh58+Z666231KNHD/Xp06dU9QIAUFoktAF4lfAgxyXXcTI9W1m5pd9zyWGzqJq/zyXdszzillQh++dmZWVp3LhxmjJlinbu3Km0tDSZZy1neujQoULlu3btKj8/P82YMUM33nijnnzySfXu3Vt2u13VqlXTE088Uah8z549NWPGDHXq1EnPPfec7rrrLtWsWVOSNHDgwMv+/iqVwJqXXkfGibwkdWnZfCW/ctijsxxip71XLWF+YZdcR3JWcpn2xXZYHQpxhFzyfcsjdtr7hWVkZOj+++9XaGiovvnmGzkc5fNvqyfYwi69zbhOnZJZhn2xDYdD1nIYbC2P2GnvJQsJCVFISIiaNGmibt26qWPHjrr11lvVtWtXrV+/XvXr17/ouj3FP/jS+tH5MtNy5CrDvqlWu0W+AZc2s728YqfNnxEfH68333xT77zzjurWrXsJ79g7BYRWK5d6MpxOuXJKn7Cz2n3kd4nbcJRX7LT3wqpXr66333672HOPPfaY3nrrLR06dEhffvmlHn744TLV7WmWoPL5HelKz5FyL7S8/llshqz+l/b7vbxip72fcfZe2wMHDixIZuerVauW7rrrLk2YMEFjx44loQ0AKHcktAF4lfJYtnvKmoN69pv1pS4/+o5Wuu2qqEu+b3mIiIiQJJ0q4zKjpZWenq4ePXpo5cqV6tevnyZOnKj69evLarVKkpo0aaKcnMLLgUVFRWnatGl66KGHNGvWLM2aNUshISG68cYb9dBDD6lnz56Fyn/88cd68MEHNXPmTD311FP64x//qM6dO+vee+/VfffdV+r9UM9+uj0jI6PE9yPlDQ5XSpe4ZLckaf1kaerw0pe/5T9Sm7su/b7lgPZetVzqkt2SNGPXDL245MVSl3+166u6JfqWS75veaC9n19ubq7+8Ic/aM+ePVqwYIEaN2580XV5g0tdsluSkqdP1+Hn/1zq8rX/+oZCbr31ku9bHmjvpXfLLbeoS5cuWrZsmd59912NGTOmXOqtSOWxZLckbVuWoLmfxZe6/PX3NlezzsVvS1PRaPN53G63hg0bpo4dO2rEiBHl9wF4kfJYsluStiyar5/HlX6biD7Dn1TsNdeXy70vFe299Hx9fdWiRQstXLhQv/32W6VLaJfHkt2SlLbmqE5+s73U5avd0VQBV5XDw9/lgPZ+xtkr58XGxhZbJn9p/RUrVpT6MwAAoLQsng4AAMpbv1a1Fexn04WeozUkhfjZdGPL2hcoWXG6du0qKW9P6Nzc3HKvf/z48Vq5cqVatGihH374QX369FGzZs3UuHHj8yYP+vTpoz179mjGjBkaPHiw3G63Jk+erF69emngwIFyuVwFZcPDwzVjxgzFx8frpZdeUuPGjbV06VI9/vjjatGihTZu3FiqWBs2bFjwNPSRI0eKLZOQkCApbz+rKit2gOQbKpWmxfuGSrH9L3tIpUV7R1n1adBHwT7BMi7Q3g0ZCvYJVp8G3jMrgPZespycHA0aNEgrVqzQggUL1KZNm4uq50oT1LevLMHB0oVmBhmGLMHBCrrhhooJrBRo72XTunVrSdLSpUvLrc7KKLp9TTn8S/fMvcPfpuh24Zc5otKjzec5cOCAli5dqhUrVigoKEiBgYGFvvK1aNGi4NjixYsv7cOppJp26S5HQKBK04d3BASqaeerKyKsUqG9l03+Es8nTpwotzorG/9W4TL8Svf73fCzyb/lpa8WU15o72ecPSO7evXiV33LT47n77UNAEB5IqEN4Irja7fqnYFtJaPk4QHj9P/8a2Bb+dqtFRfcBdx6663y8/NTdnZ2qQZ3duzYoc8++0xLliwpVf0LF+bNCI6Liyt44re0rFarbr75Zn3xxRc6duyYJkyYoMDAQH333Xf65JNPipRv3ry5/va3v2nbtm1aunSpOnXqpAMHDujRRx8t1f0CAgLUokULSdLWrVuLLZN/vGPH8pkZVCnZfaXbPjj9H+dt8Xnl7L4VEVWp0N5RVg6rQ292f1OSSkxq5x9/s/ubcli9Z8lq2nvxMjMzdfvtt+u3337TwoULSWafxeJwKHL06Lz/KCmpffp45OjRsnjREu2098I++OADHThwoMTzAQEBkqTsbO/YL9RTbHareg6NLdUzej2HxspGH75UKrLN16lTRzt27NDmzZu1bt26Il/5fvrpp4JjHTp0KNP7uVLYfHx04+PPnPnDtFh5f9De+PgzsvmUz/LJ5YH2Xtj8+fOL3cs4X/7D2ZdzD2ZvZ9gtqj6waal+v1cf2FSG3XuGq2nvZ0RGRhYsVZ6/t/i58o9Xq1Y+WxwAAHA27+khAEA56hUboQn3dVDw6aeALaf/cMp/Dfaz6aP7OqhXbISHIixeRESEnnnmGUnSv//97wuWf/LJJ/XAAw+U+MfEudzukvclPHdfpnxLlizRa6+9VuiYr6+vHn74YT3//POSpLVr1xacGzp0qA4ePFiofJcuXfT9998XKXsh+fs5zZs3r8g5t9ut+fPnFypXZTW7Ubr7f5Lv6aXXDUvhV98Q6Z6v8sp5Edo7LkaPuj307+v/rSCfvKf/Lae7s/mvQT5B+k/cf9Sjbg9PhVgs2ntR6enpuvnmm7Vx40YtXrxYzZs3L3S+b9++2rBhQ5nqvNIExV2vqHHvyZK/FKTFUujVEhSkqHHjFBTnHcvQ5qO9FzZixAj9/PPPJZ7fvHmzJFX6pfbLQ8PWYer3aKszM7Xzkx+nXx3+NvUb0VoNW3vP7D2JNp/PZrMVzCos7itf/fr1C46dvYRtVRPdvrP6/+llOU4/1JK/OlX+qyMgQAOee1nR7Tt7LMbi0N4Le/DBB4tNHkp5eyNv2bJF0pmZvlWVX2wN1bgv9sxM7XN+vxt+NtW4L1Z+sTU8El9JaO+FDRgwQJK0fn3x2/zl92m6detW6joBACgtEtoArli9YyO0/MVeeveuNuoTW0tdGlVXn9haeveuNlr+Yi+vS2bne/3119W7d29Nnz5d48aNK7HcuHHj9Msvv6hv37664447SlV3p06dJElz5swpslzWt99+W+w1O3fu1L/+9a9il0jL38upXr16Bcc+//zzYgdtiyt7IU8++aRq1Kih6dOna8+ePYXOTZ48WYcPH1ZcXJyuueaaUtd5xWreTxq5TbptgtT8JqlB97zX2ybkHfeyZHY+2jsuxvX1rtf8P8zXqO6jFFcvTh0iOiiuXpxGdR+l+X+Y73XJ7Hy09zNSUlJ0ww03aP/+/Vq8eLEaNWpUpMwvv/xSpZfnzBcUF6cmixcp8u9vK6hnT/l36qSgnj0V+fe31WTxIq9LZuejvRf23//+t9ilSn///XfNmTNHkjRkyJAy1XmlatgmXEPfvlq9HohVo7bhimwaqkZtw9XrgVgNfftqr0tm56PN42I07tBZj34wUTc+MVKNO3ZVVGwrNe7YVTc+MVKPfjDR65LZ+WjvhX399dfKysoqcvyDDz5QYmKiwsLCNHjw4DLVeSXyi62hyBc7q9pdzeQXW0OORiHyi62hanc1U+SLnb0umZ2P9n7Gn/70J/n4+Gj69OlFViZITEzU//73PxmGoWeffbbUdQIAUGomAFSQjIwMc8uWLWZGRoanQ/F66enp5tChQ01J5m233WbOmDHD3Llzp7lt2zbzxx9/NG+//XbTMAyzX79+ZkpKSqHrEhISzJEjR5qSzJEjR5oJCQmm0+k0TdM0k5KSzLp165qSzFtvvdVcunSpuXXrVvOdd94xQ0NDTUmmJDMhIcE8fvy4aZqm+emnn5qSzM6dO5szZ840d+3aZW7ZssUcO3as6e/vb0ZHR5snTpwoiEGSGRwcbP773/82N2zYYO7Zs8f86aefzA4dOphWq9WcMmVKmT6LefPmmb6+vmazZs3MX375xdy9e7f5ySefmIGBgWaDBg3MQ4cOlcMnDk+ivZ9x6tQpMyEhwUxISDC7du1qSjLHjBlTcCwrK6scPnF4Eu3dNFNSUsyOHTuaksxGjRqZ7du3L/ZLkrlgwYLy+/BR4WjveaxWqynJ7N69u/nDDz+Y27dvN9esWWP+4x//MAMDA01J5rPPPltOnzo8iTZf1Nl9m/w4V6xYUShWVE609zzR0dGmJLNr164Fn8GmTZvM1157zbTb7WZoaKi5aNGicvrU4Sm09zMmTpxoWiwWMyYmxvz555/Nffv2mXPnzjXbtm1rGoZh/vOf/yx1XYwTAgDKgoQ2gApDR7XsVqxYYT788MNmkyZNTH9/f9PHx8esV6+eeeedd5ozZswoUj7/D5tzv1599dWCMocOHTKHDh1qRkREmDabzaxZs6Z5++23m2vWrCl0zXXXXWeaZt4fYN9++635hz/8waxXr57p4+NjhoaGmm3atDH/+te/midPniwUw6pVq8znnnvObNOmjRkQEGA6HA4zOjraHDRokLlmzZqL+hzi4+PNe+65x4yIiDB9fHzMhg0bms8++2yRe6Nyo72b5pAhQ4p9T/lfJPeuHFW5va9du/a87Zw2f+Wpyu3dNE3zwIED5ujRo824uDizVq1apt1uNx0Oh9mgQQPz7rvvNufPn1/WjxRerqq3+bOdr2+THysqt6re3pOSksyxY8eaN954oxkZGWna7XbT39/fbNmypTly5Ejz4MGDZf1I4cWqenvPt3LlSvPOO+8sEvPixYvLVA/jhACAsjBM0zQFABUgMzNTe/bsUcOGDeXr6+vpcAAAAAAAAAB4AOOEAICyYA9tAAAAAAAAAAAAAIBXIqENAAAAAAAAAAAAAPBKJLQBAAAAAAAAAAAAAF6JhDYAAAAAAAAAAAAAwCuR0AYAAAAAAAAAAAAAeCUS2gAAAAAAAAAAAAAAr0RCGwAAAAAAAAAAAADglUhoAwAAAAAAAAAAAAC8EgltABXONE1PhwAAAAAAAADAQxgfBACUBQltABXGarVKknJycjwcCQAAAAAAAABPycrKkiTZbDYPRwIAqAxIaAOoMHa7XQ6HQ8nJyTyFCQAAAAAAAFRBLpdLJ06cUEBAAAltAECpGCZZJQAVKCUlRYcOHVJgYKBCQkJkt9tlGIanwwIAAAAAAABwmZimKZfLpYyMDCUnJ8vtdqtu3bry8/PzdGgAgEqAhDaACpeSkqKkpKSCpYUAAAAAAAAAXPmsVqv8/f1Vs2ZN+fj4eDocAEAlQUIbgMfk5OTI5XJ5OgwAAAAAAAAAl5nFYmG1RgDARSGhDQAAAAAAAAAAAADwShZPBwAAAAAAAAAAAAAAQHFIaAMAAAAAAAAAAAAAvBIJbQAAAAAAAAAAAACAVyKhDQAAAAAAAAAAAADwSiS0AQAAAAAAAAAAAABeiYQ2AAAAAAAAAAAAAMArkdAGAAAAAAAAAAAAAHil/wdqmEXA3T2liAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_97245/14240756.py:24: UserWarning: The figure layout has changed to tight\n", + " f.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7QAAAG+CAYAAAATGjtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1x8G8DdhhQ0KIshQnCjuPRGsW2vdW2xdta1126q1apfaWvWntc46au3SOlr33nsv3LJxoOwRCDm/P5ArkSQEDTJ8P8+jhHvOPfeb5Cb3cr/3nCMTQggQEREREREREREREREREREVMvKCDoCIiIiIiIiIiIiIiIiIiEgbJrSJiIiIiIiIiIiIiIiIiKhQYkKbiIiIiIiIiIiIiIiIiIgKJSa0iYiIiIiIiIiIiIiIiIioUGJCm4iIiIiIiIiIiIiIiIiICiUmtImIiIiIiIiIiIiIiIiIqFBiQpuIiIiIiIiIiIiIiIiIiAolJrSJiIiIiIiIiIiIiIiIiKhQYkKbiIiIiIiIiIiIiIiIiIgKJSa0iYiIiIqBtLQ0HDhwANOmTUO7du3g5eUFa2trmJubw8nJCY0aNcK4ceNw6dKlgg61wE2fPh329vbo0qULlEqlQevcuXMHo0aNQrVq1WBrawuFQgFPT080b94cM2bMwPXr1/M56uLJwcEBMpksxz+iooD7b/ESHBys9f1s2bJlQYdWbKWmpmLhwoXw8/ODk5MTzM3N4ezsjBo1amDYsGH4559/DGrn0qVLfO/eYh9++KHW9//QoUMFHVqxFxoail9++QWDBw9GnTp1ULJkSZiZmcHW1hbe3t7o2rUrVq1ahaSkpIIOlYiIiIoBmRBCFHQQRERERPTqJk+ejKVLlyI2NhYAYG5ujmrVqqFcuXIwMTHBrVu3cOXKFal+YGAgli5dCoVCUUARF5w7d+6gUqVK0u8rV67EkCFD9K6zefNm9OvXD6mpqVAoFGjUqBFcXFxw584dXLhwAUDma7pmzZr8DL1Y+uijj5CcnAwAWLt2rbScf6JQUcD9t3iJjo7GhAkTAAAPHz7E7t27AQB+fn5MjOWDJ0+eICAgANeuXQMA+Pr6okqVKkhMTMThw4eRkpICwLDPU2hoKL788ksAfO/eRmvXrsXBgwcBALt27cKjR48AAAcPHuRNDfnk6tWrGDp0KM6cOSMtK1OmDCpVqoTSpUvj2bNnOH36tPS3ibu7O1avXo133nmngCImIiKi4oAJbSIiIqIirlatWrh8+TIAoE+fPvj+++/h4eGhUefSpUvo378/bty4AQDo0KEDtm/f/sZjLWi3b99G5cqVpd+XLVuG4cOH66z/+PFjlC9fHomJiShVqhSOHz+OChUqSOULFy7E6NGjmdA2guw9W/knChU13H+Ll0OHDsHf3x8Ak6L5pVevXtiwYQOAzGPpqFGjpLLg4GDUrVsXz549y/Pnie/d261ly5Y4fPgwACa089OWLVvQtWtXAICTkxN++ukn9OrVS+NYmJqaiu+//x7Tp08HkHnD7f79+9GsWbMCiZmIiIiKPg45TkRERFRMtGzZEr/99luOZDaQmfTeuXOn1Ct7x44d2Lp165sOscBVqlQJkydPhq2tLdq1a4eBAwfqrb9x40YkJiYCAAYMGKCRzAaAIUOGoGPHjqhVq1Z+hUxERFSsxMfHY/PmzQAyk2Eff/yxRnnZsmUxduxYdOzYsSDCIyIDyWQy/PHHH+jdu3eOKTcUCgW+/PJLfPTRRwAyp0fKfuMKERERUV4xoU1ERERUTEyYMAEmJiY6yz09PTUuDv/7779vIqxC57vvvkN8fDx27twJS0tLvXWzerQD0BiqPIu1tTW2bduGMWPGGDtMIiKiYun27dtQqVQAgAoVKkAuz3lp6osvvsC2bdvedGhElAd169bNdRjxkSNHSo8vXbqEsLCw/A6LiIiIiinTgg6AiIiIiF5Pz5490ahRI/j5+eVat2LFitLj8PDw/AyrWEhKSpIeW1hYFGAkRERExQOPrURFW7ly5TBixAiDhnTP/rcHkPn3h7bRpIiIiIhyw4Q2ERERURE3depUg+umpqZKjx0cHPIhmuKFc+ESEREZF4+tREVbzZo1sXTpUoPqZv/bA+DfH0RERPTqOOQ4ERER0VvkzJkz0uNWrVq9VlsLFiyATCbL8e/QoUM56s6YMUNr3eDg4Bx133vvPb3tHjp0CD169ICHhwcsLCzg4uKCd999F/v27dMZ66FDh7S2OXjwYL2xrl27Vlr+/vvvG/RcASAmJgbff/89/P394ebmBgsLCzg5OaFu3br47LPPcPv2bZ2xXrp0SWusWb1gkpOTsXDhQjRr1gylS5eGiYmJxvPJbf3Y2Fh89dVX8PX1hbW1Nezt7eHn54c//vgjRyznzp1Dt27d4OHhAYVCAW9vb3z88ceIjIzUGb+xqNVqrF27Fi1btkSpUqWgUChQtmxZDBkyBHfu3NG6TtmyZbU+d137m679MmseSF3tAYBSqcSiRYvg7+8PV1dXWFhYoHTp0mjXrh1+//33PCVsQkJCMHXqVNSrVw9OTk4wNzeHi4sLmjZtiunTpyMiIkLnumPGjNEa45o1awAAQUFBGD16NHx8fGBnZ5fr/puUlIQ5c+agQYMGcHR0hKWlJby8vNCjRw9s2bIFQO6fp9fdh7NLTEzE33//jaFDh6JOnTpwcHCAmZkZSpQogdq1a+PTTz/F9evX9b6+ut7nrNfo4MGDGDRoEMqXLw8bGxvY2dmhZs2amDZtGqKjo3N7+7R6lf03v+j6rp4xYwYA4O7duxg1ahQqVqwIS0tLODo6olmzZli+fDkyMjK0trllyxa9r2l2a9asMfhYkdv+fOHCBfTr1w+enp4wNzeHu7s7Bg0ahKCgII120tPTsWLFCjRo0AD29vaws7NDo0aNsGTJEp3PKTeJiYmYN28eGjduDBcXFygUCnh5eWHAgAE4fvx4nto6ceIERo4cCR8fH9jb28PS0hLu7u7o2LEjFi9ejJSUFJ3r1qpVS+/32759+9CnTx+UK1cOCoUix3fX63idY1twcLAUh7+/v7T88OHDBh2bX0dcXBy+++471KpVC/b29rC2toavry+++OILxMbG6o1V27+yZcvmWKdly5Y6v/d0tZf1nRgVFYUvvvgCderUgZOTEywsLIrFvqVWq/H333+jV69eKFu2LCwtLWFra4sKFSpgwIAB2Lx5c56OlceOHcPAgQPh5eUFhUIBFxcXNG7cGPPmzUNiYmKeXqcs0dHRmDZtGmrWrAk7OztYW1vD29sbgwYNwsGDBwHo/g7L+g7V5nWO69lFRUXhq6++QrNmzeDk5AQzMzPY2trCx8cH/fr1wy+//IJHjx690nN/U7L/7eHm5oYqVaoUYDRERERUpAkiIiIieivs2LFDABAARKVKlURKSsprtbd7924RGBgoAgMDhYuLi9T2wYMHc9TdvHmzVNfa2lqq++DBgxx1//e//+lsd9q0acLExEQ0a9ZM9O3bV7Ro0UKYmJhIdebPn6811qCgIKnNpk2bSvUDAwP1xlq+fHmpbtOmTaXlWf+CgoJyrP/rr78KBwcHAUDI5XLRpEkT0adPH9GmTRthZWUlAAhTU1MxceJEkZGRkWP9kJAQqf22bdtK2/fz8xP3798X1apVE1ZWVqJNmzaiZ8+eGjEGBgbqXf/OnTuiQoUKwtvbW/Tq1Ut07NhR2NjYSHVGjx4txbFs2TJhZWUl2rVrJ/r06SN8fHykei4uLuLWrVu6do1XktU2AJGYmCjat28vrK2tRfv27UWfPn1EzZo1pXJra2tx9OjRHG2MHz9eBAYGCkdHR6luw4YNpdfjyZMnGvWz3utBgwYJuVwu5HK5GDRokLRfZLUXGBioEV9wcLDw8fERMplMNGjQQPTp00e0bdtWen+zXu+YmJhcn/c333wjLCwsBADpfe3bt69o3ry5MDMzEwCEQqEQP/74o9b1169fr3V/Xb16tVi7dq1QKBSibNmyonv37qJDhw4an7+XP6sXLlwQnp6eUnnp0qVFly5dRI8ePUTFihUFANGlSxexe/dujX0ha/srVqwQQrz+Ppzlv//+09g/XV1dRdu2bUWvXr1E48aNha2trQAgZDKZmDRpktbPU/b3+eXXaNWqVeLjjz8WAIS7u7vo2rWr6N69uyhXrpxUp2TJkmLv3r25vo/G2H/zS/bv6uxxTJ8+Xfz777/CxsZG+Pr6it69e4sOHTpovOZdu3YVarU6R5vnz5/Xud+97OjRowYfK/Ttz8uXLxcWFhaiefPmom/fvqJBgwZSuaWlpTh+/LgQQojk5GTxzjvvCC8vL9GzZ0/x7rvvSt/JAES3bt20PqfsDh48qLHf3rp1S1SuXFkoFArRqlUr0adPH9G0aVMhl8ulfXD06NG5tpuYmCh69+4ttV2qVCnRpUsX0atXL1GjRg2Nz97+/fu1tjFt2jStx9P79+9L+3OdOnVE7969RYsWLYRMJpPqvI7XPbY9efJE6/dC9u+Ql79LXoW2965ChQrC1dVVdO/eXfTo0UO4u7trnA89fPhQa6x9+/bV+Gx36dJFBAYGivHjx+fY7qxZs0RgYKBo37699H0VGBgoZs2apfO5+/n5iV27dglHR8dit2/dvn1b1KpVSyqvUqWK6NWrl+jatavw8PCQlterV0+EhITofW5qtVqMGjVK2l7W/te3b1/xzjvvCIVCISpVqiRu3rwp/Pz89H7HZLd7925RsmRJqX65cuVE9+7dRdeuXaV9ZOTIkWLVqlVSnfLly0uv0ebNm7W2+7rH9SwbN26UjnNmZmaiadOmomfPnqJdu3Yax2pTU1Mxbtw4vW0VlLS0NI3z7lWrVhV0SERERFSEMaFNREREVMwlJSWJRYsWSRcnK1euLO7du2fUbeTlAqKXl5dUV1tCW1e7Q4YMEV5eXuLKlSsadc6ePStd8DM1NdWaZM5u9erVWpNn2mRPZGpL1Lxs7ty5Uv1atWqJ27dva5THxsZqXCDv3r273ovU2S/MN2zYUNSsWVP06NFDI1GalpYmunTpovX5vLy+r6+vmDVrlsY2IyMjpWQlAPHXX3+JvXv3isaNG4uoqCiN9r799lupXsuWLXN9PfIie9JgyJAhonXr1uLp06cadbK/d+XKlRNpaWla25owYYJU791338112/v37xcARIcOHQyKr1q1aqJixYri8uXLGnViYmLEe++9J9Vr0KCBUCqVOtv88MMPNRIl0dHRGuWhoaGiefPmGglIfbLvr0OGDBGWlpY59tu7d+9Kn5fsn9Vbt25p3Ajw9ddfC5VKpbHuP//8I6ysrETVqlU1EjL6vM4+vGTJEil58fPPP4v09HSNtmNiYsSkSZOk9idPnqw3lpdfo2rVqgkTExOxePFijc+EWq0WK1euFKamplKy9MSJE3rbNeb+m5+mT58uxdCnTx/h6OgoNmzYoFHn0aNHGonvlStX6m0zL9+TeTlWZG/3/fffF25ubuLChQsadf7++28pyeXk5CSSkpLEwIEDxcyZMzXe02fPnmkkwNesWaN329n323r16gkfHx/RsWPHHDfF3LhxQ1SpUkWqm/2moJclJiaKevXqaXyeX96njx8/Ltzc3KQE1u7du/XGmf14Onz4cFGmTBlx6tSpHK+RrqSjofLz2Jbbd0heaTvuTZo0SeO1Tk9PF0OHDpXqDRgwQGd72d+zefPm5br9adOmCQDi+++/zzU+T09PYWNjU+z2rWvXrgknJycBQNjY2ORI/KrVarFixQopuevq6ioiIiJ0xpKVTAcgfHx8xI0bNzTKo6OjRadOnYSPj4/G66DvO+bo0aNS0tnU1FSsXLkyx3Hg559/FiYmJhrHvNzOG411XL948aJ0DGrRokWO87GMjAzx66+/Suf2xv4cGcPly5dFQECAdBz/6quvCjokIiIiKuKY0CYiIiIqZmJjY0VgYKDo1auXaNKkidRzqnr16mL+/PkiNTXV6Nt8EwltmUwmTp8+rbXelClTpHoTJkzQ22Z+JbQPHjwo9agqWbJkjh5fWVQqlcbz+u677/S2mT1RVq9evRwXqYUQ4tChQ7kmtAGInj17at3OX3/9JdVp0qSJqF+/voiMjMxRT61Wi0qVKkl1c7t5IC+yx1m6dGkRHx+vtV6LFi2ketu2bdNa5/bt21IdExMTER4ernfbWb3atm7dalB8CoVC500hSqVSozfctGnTtNZbs2aNVKd27do6k5vx8fFSbza5XC71QtXm5Z7kukYsGDx4sMZnVa1WiyZNmkjrffjhhzq3sX79eo1t5CWhndd9OCuhnVvPs6wEgomJibhz547eui+/Rt9++63OurNnz5bqVaxYUe+oFsbcf/NT9oQ2APHDDz9orbdnzx6N90yfN5HQBiC2b9+utV5Wj1gg82aC7t27a6137NgxjUSnPi/vt76+vjqPnffv3xeWlpZS3X379mmtl/W5AyA++eQTnds+f/68NPKIi4uL3pEesh9PTUxMxLlz57TWK1u2bI6ko6Hy+9iWnwltAKJjx45a6yUkJEjJQHNzc/Hs2TOt9ZYvX66RTNVHpVKJMmXKCHNzc/H48WOD4itu+1ZycrJGAnjjxo06t7FgwQKpXtu2bbXWyT4iiKWlpbh//77WeqmpqcLX11fjtdX1HZOcnKwxAsTs2bN1xpj9Rr7czhuNeVwfOHCg1NbLCfzssvZPfZ+jvXv3igoVKgh7e/t87cm9Zs0aMWDAANGpUyfh7e0tAAg7OzvRt29fcf78+XzbLhEREb09mNAmIiIiKmaioqI0Lr4BEA4ODqJr165i7dq1rz3UuDZvIqGtr0fw4cOHpXqNGjXS22Z+JbSz9wrSlyQTQjOxYmVllaMHT5aXL3zrSrjGx8eLdevW5ehF+vL6unqZxsTEaNQbOnSoztg/+eQTqd6yZcv0Ps+8yL79GTNm6Kz39ddfS/U+//xznfVatmwp1Zs5c6bOeo8fPxbm5uaiTJkyOXok64pv5MiRep/Lhg0bpLo2NjYiLi5Oo1ypVApXV1eDE5s//vijVLdTp04662XfX0uVKqU1cSxEZs+vdevWSYmp7MlLU1PTHD3BXpa912BeE9p52YfPnj0rpk+frjOBkeX48eNS+1988YXeutlfIwcHB703+KSkpGgMR/vLL7/orGvs/Te/ZE9oW1lZiaSkJK31lEql1HtRLpeL5ORknW2+iYR2pUqVdNabP3++xut/7NgxrfUyMjKEnZ2dQc/p5f32r7/+0htr9h6kzZs3z1F+5coVqVyhUOj8zs/SuXNnqf7cuXN11st+PO3atavOert27RLr1q3Tu01d8vvYlt8J7UOHDums26pVK6nerl27tNZJSEjQGIb/8OHDOtvbsmWLACB69+5tcHzFbd9auHChtF5uN8MolUqN71htSc/sN1t9/PHHetv7888/NV5bXd8x2W9ScHJy0ntenJKSojFlga7zRmMf17Mn52NjY3W28/Tp01w/R9mHeAd03xjxukaMGKGxHSBziPoJEyaIa9eu5cs2iYiI6O0iBxEREREVK6VLl4YQAiqVCk+ePMHevXvRqVMnbNmyBYGBgfDx8cGRI0cKOsw8a926tc6yChUqSI/v3r37JsLRcObMGZw7d076vUePHnrrN2nSBK6urgCA5ORkrF69OtdtmJmZoW3btlrLbG1tMWDAADRu3Fjn+lZWVmjYsKHWMgcHBzg4OEi/t2rVSmc73t7e0uM7d+7kEvWr0fdely9fXnqs770eNmyY9PiXX36BWq3WWm/NmjVIS0vDkCFDYGJiYlB87777rt7yDh06wMLCAgCQmJiIjRs3apRv2bIFUVFRAAA7Ozud72uW7O/Hjh07EBcXl2uM7dq1g6mpqdayWrVqYcCAAXBxcQEArF27Vipr3LgxSpcurbftLl265Lp9bfK6D9erVw8zZsxAuXLl9Lab9VkCgJMnTxocT9u2baX3SRuFQoH27dtLv69Zs8agdo2x/74JTZs2hZWVldYyc3NzeHp6AgDUajXu37//JkPLISAgQGdZ9v3DyspK5/egXC5H2bJlAeTtOZmYmKBjx45663Tt2lV6fPToUdy7d0+jfMmSJdJjf39/lCxZUm972T/zf/zxh0Fxdu7cWWdZ27ZtMWDAAIPaye5NHNvyk0KhQLNmzXSWG/J5tLGxQd++faXfly9frrO9rLIRI0YYFF9x3Leyx9OzZ0+97Zqbm6N58+bS77///rtG+d27d3HixAnp927duultr1OnTpDLc7/Mmf2Y1759eygUCp11FQpFrsdowPjH9ewx/f333zrbKVGiBB48eIA///wz1xjz29KlSyGEQGJiIm7evIlFixYhJiYGc+fORfXq1fHhhx9CqVQWdJhERERUhDGhTURERFRMmZiYwMnJCe+88w7WrVuHzZs3w8TEBMHBwWjdujUOHjxY0CHmSaVKlXSWOTo6So8NSfYZ2/79+6XHdnZ2emMFAJlMhrp162pdX5cKFSroTb7lxtvbW++FXltbW+lxxYoVddazs7OTHufXa63v9cueeNe3/e7du0sX9kNDQ7Fz584cdYQQWLFiBUxMTDB06FCD46tevbrecisrK1SuXFn6/dixYxrlBw4ckB7XqVNHZ+I5S/abCNRqNc6cOZNrjNWqVcu1jrb46tSpk2t9X19fg9vO7nX24bNnz2LhwoUYN24chg4disGDB0v/Jk6cKNV7+PChwW3m9j4Cmq/H2bNnkZ6enus6xth/34TcvqcK+ns1u+w3Lb0s+3dXbt9zr/L9Va5cOVhbW+ut8/Ln5vjx4xq/Z//M67qxKLvsn/nLly8jJSUl13Xy8pk31Js4tuWn8uXL671RydDP4/Dhw6XHGzduxLNnz3LUCQ0Nxa5du1CpUiX4+/sbFF9x27cePnyIoKCgV47n5RuSXj525nZ8sra2zvUGKKVSibNnzxrcJmDYMc/Yx/UmTZpIjz/++GNMnDgRYWFhWtsqW7as3hvRVq1ahQoVKsDOzg5jxozRe9OiMVhbW6Ny5cr45JNPcPnyZfj7+0MIgWXLlqFLly46bzAkIiIiyo3+MywiIiIiKja6dOmCCRMmYM6cOUhLS8OAAQNw7949jV4gZ86cwaBBg/S2s3//fpQpUya/w83B3t5eZ1n252BIwsnYrl+/Lj3O6gGYm+wXXbOvr0v25NKr0Pf6AdBIAumrmz05kJaW9lox6WLoe61v+xYWFhg0aBDmz58PILPn3Ms94Q4ePIg7d+6gU6dO8PDwMDg+JyenXOt4eXnhypUrAIBbt25plF27dk16HBISgsGDB+ttSwih8bshPUsN3V+USiVCQkKk3728vHJdJ7cegK8bU3Y7d+7E2LFjc7yGuiQlJRnctqHvY5bU1FQEBwfrveEDMM7++ybk9p1QVGI19LsLeLXvL0P2E0dHR9ja2iIhIQGA5mc+PT1d4/fdu3fjwYMHetvL6ukJACqVCqGhoRo3yeiKwdjexLEtPxlrH69Xrx5q166NixcvQqlUYu3atRg7dqxGnZUrV0KtVmskv3NT3Pat7Mc2APjf//6Xay/9ixcvSo9fPrZlf252dnYaNyDoUrJkyRy92LMLDg7WeK+Ndcwz9nF92rRp2LBhA6KiopCeno65c+di3rx5aNKkCd5991107twZVapUyTUuAHjnnXfybUSd3Nja2uKvv/6Ct7c3EhMTsXv3bixevBijRo0qkHiIiIioaGNCm4iIiOgt8umnn2LOnDkAgMjISGzYsAEDBw6UypOTk3NNHBVEwhjIHK5YF5lM9gYjyenp06fSYxsbG4PWyV4vOjo61/r6nr8hcust9Kp184Ox3uvhw4dLCe3t27cjIiJC42aMrOFh85KAAGBQL+Ps7+/Lvfmy7y8PHjzINQHxstjY2FzrGLq/xMTEaPxuyP5raWlpUNuvGlOWZcuWYeTIkRBCwNzcHBMmTEC/fv3g7e2tEUNwcLCURHs5SaBPXt9HIOd7qU1h/q7KLrf3ozDFauh3Un58dxk6qoCNjY2UdMy+n7y8z5w8eTJPQ+MDxv3M58WbOLblJ2Pu48OHD8fIkSMBACtWrNBIaGdkZGDVqlWwsLBAYGCgwW0Wt30r+/4CAJs3b36tWLIfnwzd/3I7PuXXMc/Yx3UnJyecOXMGY8aMwaZNmyCEgFqtxrFjx3Ds2DFMmjQJVapUwQcffIARI0ZojD5R2Dg7O6Nv375YsWIFAGDBggVMaBMREdEr4ZDjRERERG8RNzc3jV5Whw4dKrBYiPJblSpVpPk5MzIy8Msvv0hlT548webNm+Hu7o4OHToUVIjo378/hBB5+vfZZ58VWLxvyt27d/Hpp59KCeo1a9bg22+/RbVq1V45oU5UGKxYsSLPn3lDhm6m/NW/f39pePCgoCAcOXJEKtu2bRsiIiLQrVs3g3pd55fCtm/duXMnT7EYMvx5UWCs47q7uzs2btyIO3fu4KuvvsoxTcbNmzelxPbhw4ff1NN7JU2bNpUe379/X+fw6URERET6MKFNRERE9JbJPs9eZGSkRlnLli1zvehm6LCjuhT00LX5IftwlImJiQatk71eQV4AL+6y977+5ZdfpLkb16xZg7S0NAwdOlTvHKvaKJXKXOtkf39LlCihUZZ9f8nqdVdQXh5K1pD9900kHX799Vfpu8Lb2xt9+/Y1+jby+j4COd9Lypui+P1vyH4C6P7Mv7zPFPRnPi94bHvB1tYWffr0kX7PGuEj++MRI0bkqc3itm+9PDT368aT/fhk6P6X2/Epv455+XlcL1++PKZNm4YrV67g5s2bmDFjBjw9PaXyqKgodOrUyaDpSArKy3N8v/z3BxEREZEhmNAmIiIiKsJOnDiBuXPn4urVqwavk33IcHNzc6PEkX04ytwSFnFxcUbZZmHi6+srPQ4ODjZonewXHrOvT8bVo0cP6aJ/aGgodu7cCSEEVqxYARMTEwwZMiTPbb48rKo22feDl+e5zP5+53VYUmOzsLDQmPPWkP3XkOf/urLmHweAOnXq5Ms28vo+KhSK176hpzjKy/e/IcMbFzaG7CcxMTEaSazsn3kzMzONOYoL+jOfFzy2acp+g9TGjRvx7NkzhIaGYteuXahSpQr8/Pzy1F5x27defr9fNx4fHx/pcXx8fI7hwrXJ7TUtV66cxlDvxjrmvanjeuXKlTF9+nTcu3cPCxYskIbNT0xMxOLFi/Ntuy+bO3culi1bZnD9l6crMtbfH0RERPR2YUKbiIiIqAjbs2cPJk6ciF27dhlUX61W4969e9LvHh4eRokj+9x9+i44hoWFITk52SjbLEzeeecd6XF8fDxu376tt74QAhcuXJB+DwgIyLfY3nYKhUJjnvjly5fj4MGDuHPnDjp06AB3d/c8t5nbDSTJycka+0CzZs00yrPvLzdv3kR8fHyu2zxz5gx8fX1RvXp1RERE5DFi/bKGZQeAixcv5lr/2rVrRt2+NqmpqdLj3OZvNbTn3ssMuREo++vRoEGDfJmnuKgz9PtfpVIV6h6Euty/fz/X41b273NA/2f+9OnTBm138eLF8PX1RZs2bQyM1Ph4bNPUoEED1KxZE0Bm7+q1a9di5cqVUKvVGDZsWJ7bK277VunSpVGtWrU8xzN48GD4+vpi6tSpGstffq65HZ+Sk5NzTSabm5trDLNurGOesY/r69evx2+//aZzXVNTU4wePRrvv/++tOz69eu5btNYJk6ciAkTJkjTguTmzp07Gr+/yrkXERERERPaRERERMWAoXNh7927V6OHXNu2bY2y/QoVKkiPsyfMX7Z7926jbK+wqVevHho0aCD9vnHjRr31jx8/jqioKACAtbW1xgVJMr7sveq2b9+Or7/+GkDeh4fN8u+//+ot37FjhzSUrK2tLXr06KFR3qVLF+libnp6OjZs2JDrNletWoXr169DLpejTJkyrxS3LoGBgdLjkydP4uHDh3rr//fff0bdvjbZL3a/fCH8ZYYkJLTZvXu33h7Fqamp2Llzp/Q7P6faGfr9f+jQIYOHWC5MMjIysH37dr11Nm/eLD328/PTGPUAAEaOHCn1pDx79izu3r2rtz0hBBYvXozr169r9FJ903hsyyn78WT58uVYtWoVLCwsNL5HDVUc962PP/5Yevz3339DpVLprR8WFob169fj+vXrqFevnkaZt7e3xg1XmzZt0tvWtm3bpGlF9Mn+Xu3cuVPjBqqXKZVKg85djX1cnzp1KkaMGIGMjAy9bWR/zWxsbHLdpjElJibi3LlzBtXN/nrUqVMHzs7O+RUWERERFWNMaBMREREVAzt37sThw4f11klMTMS4ceOk32vUqIEOHToYZfstWrSQHu/Zs0drnfT0dMybN88o2yuMfvjhB2ku5nnz5uHRo0da62VkZGj0Qpo6dWqOeSfJuKpWrYqmTZsCyHz9Dx06BE9PT7Rv3/6V2lu9erXOXmBpaWn45ptvpN/Hjx8PW1tbjTpmZmaYM2eO9PuMGTPw7Nkznds7d+4cVq1aBQCYMmXKK8WsT0BAgDRUrkqlwsyZM3XW/fPPP3Hjxg2jx/Cy7O/N+fPncf78ea31VCoVFixY8ErbiImJwfz583WW/+9//5OGmq1cuXK+zOOtT2BgIGQyGWQyGWbPnv1Gt50X2b//9+3bpzOhlH2fL2q++eYbnTc/PHjwQPp8ymQyTJ8+PUedatWqYejQoQAyE4pjxozR27Nx4cKFCAoKgkKh0DhuFwQe2zQNGDAAVlZWADJ74kZERKBHjx6v/FyL2771/vvvo3r16gAyh/PWd96XFa9KpUK1atXQpUuXHHVmzJghJexXrVqlc4jwl4+9+vTr1w+VKlUCAERHR+N///ufzrrz5883aKqE/DiuJycn53rDQ/aRRrIn/7Pbt28fKlasCAcHB0yaNElve3k1derUXJPuq1atwsmTJ6XfJ0+ebNQYiIiI6O3BhDYRERFRMSCEwLvvvotffvlF64XR8+fPo3nz5lIiysnJCevXr5cuUr+uNm3aSL2GDh8+jNWrV2uUJyYmon///vD09ISnp6dRtlnYtGjRAnPnzgWQOd9iu3btcgzPGh8fj4EDB+LIkSMAgG7duuHzzz9/47G+jbL3qgOAoUOHQi5/tT+Hevbsifbt2+cYhjQ2NhZ9+vTB5cuXAQCNGjXSeaG6X79+GDNmDAAgPDwc77zzjtbhQv/77z+0b98e6enp6Nu3L3r37v1KMedm1apVcHJyAgAsXboU3377bY6L1Fu3bsXQoUMxaNCgfIkhu65du0o9z4QQ6NGjBy5duqRRJy4uDgMHDswxJK+h+vfvjy+//BLLli3LkQBatWoVvvjiCwCApaUl1q5dqzHv6puQfd7WwtybrVq1atINIw8ePMBXX32l8Xqmp6dj9OjRePz4scZQv0WFl5cXHjx4gJ49e+aYS/fmzZvo2LEjUlJSAABjx46Fv7+/1nYWLlyIxo0bA8gcKaJ///452ktLS8MPP/wgJRr/97//wcvLy9hPKU94bNNkZ2eX43v4VUf7qFevHtLT04vVvqVQKLBx40a4uLgAyExezpkzJ8ccytHR0RgwYAA2bdoEKysrrFu3TusxOSAgAGPHjgUApKSkoEOHDrh586ZGnWfPnqFXr14IDg426DkpFAr8+uuvsLS0BAB88cUXUnI5ixACy5cvx/Tp09G/f3+Dnnt+HNeHDBmitYe4SqXCqlWrsHLlSgCZvdmHDBmitY0PPvgAd+/eRVxcHH744QccOHDAoOdjiL179+Ldd9/VOpJKcnIyvvnmG43zrw8//DDHqDVEREREhpIJQyc8ISIiIqJC5+TJk5g8ebJG72wHBwfUq1cPpUqVglKpxI0bNxAUFCSVt2jRAitXrkTFihWNGsuxY8fQvn17aT7b6tWrw9fXF4mJiThy5AiqVauGrVu3ol69eggJCQEAdO/eHTY2NnBycpIumG/ZsgVbtmwBAOzatUvqDda2bVuULl0aVapUkS6Ur1y5EseOHQMArF27VoolazjJZs2aYejQobh586bUw/Hu3bs4fvw4AKB8+fLSHI3vvfce3nvvPY3tHzt2TBpCt2nTphpD637++eeoUqVKjtfht99+w6effoqYmBjI5XI0atQIXl5eePbsGY4ePYrk5GSYmppizJgxmD17ttabCgYPHgwAePjwoXQh08XFBe3atZPqzJ07V0pA5nX9rNizP9eNGzciKSkJwIv3JftrPWHCBERHR+t8/YYOHZpjvsvczJ49W7owre39y3pPsm9f13PKbfspKSlwc3NDbGwsTExMEBoaCjc3N4NjzeohBgBJSUno3bs3tm/fjgYNGsDb2xuxsbE4cuSI9Br6+/tj8+bNsLe319vujz/+iC+//BLJycmQyWSoU6cOKlSoAJVKhYsXL+L+/fuQyWQYMWIEFi1aBFNTU431jx07Jl3Q1rW/Zn8f9bly5Qq6dOki9YBzdXVFo0aNYGpqisuXL+POnTuYNm0a/P39pcSKn5+f1ikPXncfBoDIyEh07NhRSmTLZDI0aNAA5cuXR1xcHI4ePYqkpCQMHz4cS5YsAZA5zHHWxfLs+0/2uLL2tdWrV0OlUuHjjz+Gi4sL6tevD7lcjgsXLkhzPTs5OeGvv/7SOhdwfu+/derUkYZTP3PmDOrXr6/ztdIn+/ffpUuXpBsuatasiVq1agEA1qxZA0Bzf9L2/Zv9uzq7W7duwc/PT6pfoUIF1KlTB+np6Th+/DhKlCiBbdu2YciQIdLxKqtNXdvXtj9n376hr2n256/tOWVtPzo6GhMmTACgud/6+flh6tSp6N27N1JSUtC8eXM4OTkhLCwMJ06cgFqthkwmw5gxY/Djjz9qfFe8LCUlBR9++CHWrVsHIQTMzc3RpEkTuLm5IS4uDqdOncLTp09hbW2N+fPna52XOftxT9v3NqB9339dr3ts0/X6vvy9kHXczitDj3vZ49D1ecjtu+nkyZNo0qQJAMDHxydPo1YcOnRI4/tzxYoV6Ny5M0JCQorVvhUcHIw+ffpI82iXKFECjRs3hoODAyIjI3Hy5EmkpqbCy8sLf/zxh5SQ10YIgfHjx2PBggUQQkAul6Nx48bw9PREdHQ0jh07BoVCgT///BPfffed1u8Ybe/pgQMH0Lt3b0RHRwMAypUrh7p160KtVuPs2bN49OgRfvrpJ5iZmUnD5wcGBkrfV7q87nEdyBwJ4I8//pBGvChXrhxq1qwJKysrPH78GFevXpW+y2rXro3NmzfrTOZ7enoiLCxM+n3//v2vPb/9hAkTsGbNGunGCZlMhmrVqqFy5cpQKBR49OgRTp06Jf1NYG1tja+//hpjxozRux8TERER6SWIiIiIqMh78OCB+Omnn0Tv3r1F9erVhaOjozA1NRUKhUK4uLiIpk2bijFjxoiTJ0/maxx3794Vw4YNE+XKlRMWFhbC0dFRNGrUSPz8889CqVQKIYTw8vISADT+eXl5SW1Mnz49R3n2f35+flLdwMBAvXUDAwOFEEIcPHhQbz0AYvr06QZtP+vfwYMHdb4Oz549E3PmzBF+fn7CxcVFmJmZiRIlSohatWqJiRMnilu3bul9HQ3Z/oMHD155/azY8/Jaa3vfsv9bvXq13uekjZ+fn0HvibG2//HHHwsAokuXLnmONfu2hBBCrVaLP/74Q7Rv316UKVNGmJubi1KlSok2bdqI9evXC7VabXDbkZGRYubMmaJx48bC2dlZmJqaCjs7O1GzZk3x8ccfiwsXLuhcd/Xq1bm+39nfx9wkJSWJ77//XtSvX1/Y29sLS0tL4e3tLQYNGiROnDghhBBi3759Uttt27bN9fV6lX04S2pqqliyZInw9/cXJUuWFKampsLBwUHUqlVLjB07Vty+fVs8ePAg1/0nS/bvjKx95urVq+Kjjz4SlSpVEjY2NsLGxkZUr15dfPHFF+LJkyc6Y8vP/ffx48dCLpcLAMLV1VVkZGTk+lrpYsj3X5bc9qfs39Uvi4qKEuPGjROVK1cWlpaWws7OTtSuXVvMmTNHxMfH633NXmX7hr6mhj5/XftR1ucnKipKTJ06VdSuXVuUKFFCmJubCw8PD9G/f39x/PjxPL0n58+fF6NGjRLVqlUTDg4OwtTUVJQsWVI0bdpUzJw5U4SHh+tcN7fjnq593xhe59im6/V9+V/WcTuvcms367hnSByGfDdVq1ZNABDz58/PU5zZ98esfSshIUH8+OOPolGjRsLZ2blY7VtbtmwR/fv3F97e3sLKykqYm5sLNzc30b59e7F06VKRlJRkcFsnTpwQAwYMEB4eHsLc3FyUKFFC1K5dW0ydOlVERUUJIXR/x+h6T6Ojo8W0adNEjRo1pO//SpUqiY8++khcvXpVCCHEypUrpXZGjBhhUKyvc1zPEh4eLpYsWSJ69eolqlatKuzs7ISJiYmwtrYWFSpUEL169RJ///13rseHvXv3ivLlyws7Ozsxbtw4g+I3hFKpFLt37xbjxo0T/v7+wt3dXVhZWQkTExNhb28vKlasKHr06CGWLFkiYmJijLZdIiIienuxhzYREREREb0VevXqhQ0bNmDHjh15nj87e4+it/1PqM2bN6Nbt24AModYXb9+fQFHZLiXe2hn9eosbObOnYuJEycCyJx72tjznhLRq8vIyICHhwdiYmIQERGBEiVKGLzuyz20tY1wQYXL/PnzpaHap0yZgm+//baAIyIiIiJ6O3EObSIiIiIiKvaePn2KrVu3wsvLC23bti3ocIq07HNl1qhRowAjKZ7u37+PGTNmAMgcBjlrTlYiKhx27NiBqKgo9OzZM0/JbCqaeMwjIiIiKhyY0CYiIiIiomJv3bp1SEtLw7BhwyCX88+gly1ZsgSlS5eW5h7VZ9++fdLj7HPf0uu7c+cOAgICkJSUBA8PD/z7778wNzcv6LCIKJtffvkFADBixIgCjoRe1ZQpU1C6dGncv38/17pZxzxzc/PXnnuaiIiIiF4dr+QQEREREVGxMXnyZHTt2lVjmVqtxpIlS2BmZoYPPviggCIr3JKSkvDo0SOsWLFCb72TJ09i//79AIA2bdqgZs2abyK8t0ZiYiLi4+PRsGFDnDx5Ep6engUdEtFbq3379pg5c6bGspCQEGzbtg2+vr5o2rRpAUVGrys+Ph6PHj3CqlWr9Nb766+/pB7agwcPhrOz85sIj4iIiIi0YEKbiIiIiIiKjatXr2LLli04f/68tGzRokW4ffs2BgwYAFdX1wKMrvBbv349pk+fjuTk5BxlO3fuRJcuXaBWq+Hs7IyVK1cWQITFW+3atXHhwgUcO3YMZcqUKehwiN5qR48exbJly5CYmAgg8+aocePGISMjQ5rjnoq2WbNmYcmSJUhPT9dYrlarsW7dOukmuEqVKuH7778viBCJiIiI6DnTgg6AiIiIiIjI2Pz9/dG6dWs8ffoUhw8fhqurK2bNmpWnNiZMmIDo6OgcywcPHgwAcHJywty5c40RboFzcnKCXC6HWq3GV199hYULF6JmzZpwc3NDcnIyLl26hJCQEABA9erV8c8//8DDw6OAozbMli1bsGXLFgDAsWPHpOUrV67EoUOHAACff/45qlSpUgDR5VS2bNmCDoGInouKioKvry8aNmyIa9eu4caNG2jVqhUGDBhgcBvR0dGYMGECAODhw4fS8ps3b0rHk2bNmmHo0KFGjZ10y+pprVar8dFHH2HmzJnw9fWFi4sL4uPjce7cOem98vPzw19//QV7e/uCDJmIiIjorScTQoiCDoIMo1arERkZCVtbW8hksoIOh4iIiIooIQQSEhLg5ubGuYTfMm/D+eSyZcvw+++/48GDB0hOTkapUqXQsmVLfPbZZ/Dy8spTW9WrV0doaKjOck9PT1y9evV1Qy40wsPDsXPnThw7dgy3bt1CZGQkkpKSYGFhAScnJ9StWxedO3fGe++9V6S+O2bNmoXZs2frrbNt2zY0b978DUVEREXBqFGjcPLkSURFRUGlUsHd3R3dunXDmDFjYG1tbXA7ISEhqFGjht46/fr1w5IlS1435DeuKJ9T3rp1C//99x+OHTuGmzdvIioqCklJSbCysoKrqysaN26MPn36oF27dgUdaqH0NpxTEhERUf7Ly/kkE9pFSHh4eJHpBUFERESFX1hYGNzd3Qs6DHqDeD5JRERExsZzyrcPzymJiIjImAw5n+SQ40WIra0tgMw31s7OroCjISIioqIqPj4eHh4e0rkFvT14PklERFT8fH7kcxwJPwI11LnWlUOOFu4tMLuF/pErDMFzyrcXzymJiIjIGPJyPsmEdhGSNYSPnZ0dTxaJiIjotXF4wLcPzyeJiIiKnxTTFMgsZTCBicH1jXkewHPKtw/PKYmIiMiYDDmfLFoT3BAREREREREREZHEwcIBcgMv8ckhh4OFQ/4GRERERERkZExoExERERERERERFVFN3JoYNNw4AKihRoBnQD5HRERERERkXExoExERERERERERFUF3Y+5izfU1BtWVQQY7czu0Kdsmf4OiPFOr1Vi8eDHs7Owgk8kQHBxstLYjIyMxevRolC9fHgqFAi4uLujUqRN2795ttG0QERER5TcmtImIiIiIiIiIiIqYXQ92od+OfghNCM21rgyZ8xJ+2+xbWJhY5HdolAfXr19Hs2bN8MknnyAhIcGobZ86dQq+vr5YsWIFPvzwQxw5cgQ///wzwsLC0K5dO0yZMsWo2yMiIiLKL0xoExERERERERERFRHp6nTMOTMHE49MRIoqBQBQ2bEyvmz0JezM7QBAmlM766etuS0WBixES4+WBRIzaTd9+nTUqVMHJiYm+Pzzz43a9pMnT9C5c2fExMTg999/x8SJE9GgQQN0794dR44cgYeHB2bNmoW1a9cadbtERERE+cG0oAMgIiIiIiIiIiKi3D1JfoLxh8fj4uOL0rJ3y7+LLxp9AUtTS7xb4V3sCd6DA6EHEKuMhYOFAwI8A9CmbBv2zC6EFixYgPnz52PkyJFGTyx/9dVXiI6ORsOGDfHee+9plNnb22Py5Mn46KOP8Nlnn6FXr16wtLQ06vaJiIiIjIkJbSIiIiIiIiIiokLu3MNzmHB4Ap6mPgUAmMnN8HmDz9GzUk/IZJlDiluYWKBz+c7oXL5zQYZKBrpx4wbKlClj9HbT0tKwbt06AED37t211unevTs++ugjPHr0CNu2bUPPnj2NHgcRERGRsXDIcSIiIiIiIiIiokJKCIG119di6J6hUjK7tHVprG23Fr0q95KS2VT05EcyGwCOHz+OuLg4AED9+vW11ilVqhQ8PT0BANu3b8+XOIiIiIiMhT20iYiIiIiIiIiICqGk9CRMOz4Ne0P2SssauTbC9y2+h6PCsQAjo8LsypUr0uOyZcvqrFe2bFmEhoZq1CciIiIqjJjQJiIiIiIiIiIiKmTux97HmENj8CDugbRsWPVh+LjWxzCRmxRgZFTYhYaGSo+dnZ111ssqCwsL09ueUqmEUqmUfo+Pj3/NCImIiIjyhkOOExERERERERERFSK7g3ej7/a+UjLb1swWC/0X4tM6nzKZTblKSEiQHisUCp31sspyS1DPmjUL9vb20j8PDw/jBEpERERkICa0iYiIiIiIiIiICoF0dTq+P/s9JhyegGRVMgCgomNF/NnpT/h7+hdwdPS2mjx5MuLi4qR/ufXoJiIiIjI2DjlORERERERERERUwKJTojH+0HhceHxBWtbJuxO+bPwlLE0tCzAyKmpsbW2lx6mpqbC2ttZaLzU1FQBgZ2entz0LCwtYWFgYL0AiIiKiPCryPbTVajUWL14MOzs7yGQyBAcHG63tyMhIjB49GuXLl4dCoYCLiws6deqE3bt3G7T+rVu3MGTIEHh6ekKhUMDNzQ29e/fGmTNnjBYjEREREREREREVbRceXUDP/3pKyWxTuSmmNpyK75p9x2Q25Zmnp6f0+MmTJzrrZZVxCHEiIiIq7Ip0Qvv69eto1qwZPvnkE425YYzh1KlT8PX1xYoVK/Dhhx/iyJEj+PnnnxEWFoZ27dphypQpetffunUrateujX///RdTpkzB0aNHMWfOHJw5cwZNmjTBkiVLjBovEREREREREREVLUIIrLuxDkN2D0F0SjQAwMXKBWvarUGfKn0gk8kKOEIqimrUqCE91tf5J6sse30iIiKiwqjIJrSnT5+OOnXqwMTEBJ9//rlR237y5Ak6d+6MmJgY/P7775g4cSIaNGiA7t2748iRI/Dw8MCsWbOwdu1aresHBQWhb9++SEtLw86dO/Hhhx+ifv36GDhwIA4dOgQrKyt88sknOHDggFHjJiIiIiLSZvHixahatSrq169f0KEQERHRc8npyZh0ZBK+P/s9VEIFAGhYuiH+6vQXajrXLODoqChr0qQJ7O3tAQDnzp3TWufx48cIDQ0FAHTs2PGNxUZERET0KopsQnvBggWYP38+jhw5gsqVKxu17a+++grR0dFo2LAh3nvvPY0ye3t7TJ48GQDw2WefISUlJcf6kyZNQkpKCnr06IF69epplHl5eWHkyJFQq9UYO3asUeMmIiIiItLm448/xo0bN3D27NmCDoWIiIgA3I+7j77b+2JX8C5p2RDfIVjaeilKWpYswMioOLCwsMDAgQMBAP/884/WOps2bQIAaYpFIiIiosKsyCa0b9y4gY8++sjoQy+lpaVh3bp1AIDu3btrrZO1/NGjR9i2bZtGWVRUFHbs2GHQ+leuXOFFRSIiIiIiIiKit8jekL3ou60v7sfdBwDYmNlggf8CjKk7BqZy0wKOjoqK5cuXw97eHk2bNkVsbGyO8i+//BJOTk44deoU/v33X42y+Ph4zJ49GwAwZ84cWFpynnYiIiIq3IpsQrtMmTL50u7x48cRFxcHADqHZCxVqhQ8PT0BANu3b9co27VrF9Rqtd71a9WqBTMzM63rExERERERERFR8aNSq/DjuR8x7tA4JKuSAQAVHCrgz05/opVnqwKOjgrC48ePce3aNVy7dg0RERHS8tu3b0vLk5KStK67aNEixMfH48SJE1qnNXR2dsZ///0HR0dH9O3bF3PnzsXZs2exefNmtGjRAiEhIZg8eTICAwPz7fkRERERGUuRTWjnlytXrkiPy5Ytq7NeVln2+tl/NzExgYeHh9Z1zc3N4erqqnV9IiIiIiIiIiIqXqJTojFszzCsub5GWtahXAes77AeXnZeBRcYFaiff/4Z1atXR/Xq1fHFF19Iy9u2bSst1zW64yeffAI7Ozs0btwYAQEBWus0atQI165dw5AhQ7BkyRI0b94cI0aMgLu7O3bt2oXvvvsuX54XERERkbFxHKOXhIaGSo+dnZ111ssqCwsL07q+o6MjTExM9K4fGhqaY/3slEollEql9Ht8fLz+4ImIiIiIiIiIqFC59PgSxh8aj8cpjwEApjJTTKw/EX2r9DX6VHpUtMyYMQMzZsx4pXVHjBiBESNG5FrPzc0NCxcuxMKFC19pO0RERESFAXtovyQhIUF6rFAodNbLKns5yZy1vr519a2f3axZs2Bvby/909Xjm4iIiIiIiIiIChchBNYHrcf7u96XktmlLEthdbvV6OfTj8lsIiIiIiIDMaFdiE2ePBlxcXHSP329uYmIiIiIiIiIqHBITk/GZ0c/w+wzs6ESKgBA/dL18Vfnv1CrVK2CDY6IiIiIqIjhkOMvsbW1lR6npqbC2tpaa73U1FQAgJ2dndb1s8p10bV+dhYWFrCwsMg9aCIiIiIiIiIiKhSC44Ix9tBY3I29Ky17v9r7+LTOpzCV81IcEREREVFe8Sz6JZ6entLjJ0+e6ExoP3nyBAByDAOetX5MTAwyMjJ0zqOta30iIiIiIiIiIiqa9ofsx9TjU5GUngQAsDazxjdNv8E7Xu8UcGREREREREUXhxx/SY0aNaTHwcHBOutllWWvn/33jIwMnUOEp6WlISoqSuv6RERERERERERUtKjUKsw7Pw9jDo2Rktnl7cvjj45/MJlNRERERPSamNB+SZMmTWBvbw8AOHfunNY6jx8/RmhoKACgY8eOGmXt2rWDXC7Xu/6lS5eQnp6udX0iIiIiIiIiIio6nqY8xYi9I7D62mppWfuy7fF7x99Rzr5cAUZGRERERFQ8MKH9EgsLCwwcOBAA8M8//2its2nTJgCAi4sLOnXqpFHm6uqKDh06GLR+jRo1UL9+faPETURERPS2evjwIS5duoT4+PiCDoWIiIjeMpceX0Kvbb1w5uEZAICpzBSfN/gcc1rMgZWZVQFHR0RERERUPLyVCe3ly5fD3t4eTZs2RWxsbI7yL7/8Ek5OTjh16hT+/fdfjbL4+HjMnj0bADBnzhxYWlrmWP/777+HpaUlNmzYgAsXLmiUhYWFYcmSJZDL5Zg/f77xnhQRERHRWyQmJgZTp06Fl5cXypQpg7p162qMjuPt7Y0vvvgCMTExBRglERERFVdCCPwe9Dve3/0+Hic/BgA4WzpjVbtV6O/THzKZrIAjJCIiIiIqPkwLOoBX9fjxYzx+nPkHQ0REhLT89u3bSExMBACUK1cO1tbWOdZdtGgR4uPjceLECRw4cADdunXTKHd2dsZ///2HDh06oG/fvpg5cyb8/PwQHh6OmTNnIiQkBJMnT0ZgYKDW2Hx8fPD777+jX79+aNu2Lb755hvUrVsXt27dwrRp05CUlISffvoJAQEBxno5iIiIiN4aV69eRceOHREREQEhBADkuGgcHh6OWbNm4ddff8W2bdtQo0aNggiViIiIiqHk9GR8deorbL+/XVpW16Uu5vrNhZOlUwFGBqjSM3Dv/GPcvxyN1KR0KKzN4F3TCeXrloKpmUmBxvamxMbG4scff8Tly5dhZ2eHvn37cso/IiIioiJOJrKuAhYxM2bMwMyZM/XWOXjwIFq2bJlj+bJlyzBp0iRUq1YNO3bsgIODg9b1IyMjMXv2bGzfvh0RERGws7NDgwYNMGrUKLRt2zbXGG/duoU5c+Zg3759ePToEUqUKIHmzZtjwoQJaNCggSFPU0N8fDzs7e0RFxcHOzu7PK9PREREBBTtc4rk5GRUrVoVoaGhMDU1Ra1atVCqVCns3LkTe/fulW4YDA0NxbJly/D999+jdOnSuH79epF7rvmhKL/3REREhUFIfAjGHhqLOzF3pGWBVQMxuu5omMnNCjAy4MHlJ9i/NgjKZBUgAyAg/bSwMkWrwVVRrobxEu4FdV6RlJQEV1dXJCUlAQB27tyJNm3aAMi8qbFRo0aIiorSWGfixInSiIv0+nhOSURERMaQl3OKIpvQfhvxZJGIiIiMoSifU8ybNw8TJkxA586dsXTpUri6uiI6OhqlSpXCvn37coyAs3PnTnTs2BHffvstJk+eXEBRFx5F+b0nIiIqaAdCD2DqsalITM8cGdDK1ApfN/0abcq2KeDIMpPZO5ZezUxi6yIDOnxYHeVqOhtlmwV1XvHbb79h0KBBUCgU6Nq1K7766iuUL18eANCrVy9s3LgRAFC6dGk4Ozvjxo0bUKvVOHLkCJo2bfrG4izOeE5JRERExpCXc4q3cg5tIiIiIiqa/v33X1StWhWbNm2Cq6srgJzDjWfXvn17dO3aFVu3bn1TIRIREVExo1KrsOD8Aow+OFpKZnvbe+OPTn8UimS2Kj0D+9cG6U9mA4AA9q8Ngio9443ElV927doFCwsLnDhxAuvXr5eS2REREdi0aRNkMhm6deuGkJAQXL58GceOHYNCocDy5csLOHIiIiIielVMaBMRERFRkXHjxg30798fJiaGzwHZtGlT3Lp1Kx+jIiIiouLqWeozfLjvQ/xy7RdpWRuvNvi94+/wtvcuwMheuHf+ceYw4wZQJqtw78KTfI4of509exYDBw5ErVq1NJZv2rQJarUapqamWLRoEczMMoeAb9iwIfr27YsTJ04UQLREREREZAxMaBMRERFRkREXFwc3N7c8rWNra4uUlJR8ioiIiIiKqytPrqDXf71wOuo0AMBEZoKJ9SZirt9cWJtZF3B0L9y/HJ05V7YhZMD9S0U7oR0eHo7atWvnWP7ff/9BJpOhQ4cO0kg+WWrWrImIiIg3FSIRERERGZlpQQdARERERGQoR0dHhIWF5WmdS5cuoWTJkvkUERERERU3Qgj8fetvzD47Gyp1Zs9nJ0snzPWbi7oudQs4upxSk9JzH248i3hevwhTq9U5lsXGxuLw4cMAgN69e+coVygUWtcjIiIioqKBCW0iIiIiKjJq166NNWvWYPz48bC0tMy1/r179/Drr78iICDgDURHRERERV2KKgXfnPoG/977V1pWp1QdzPWbC2cr5wKMTDeFtVlmD21Dktqy5/WLMFdXV1y7dk1j2bp165Ceng6FQoFOnTrlWCc0NBSOjo5vKkQiIiKiIk2Vlobbp47h7tlTSEmMh6WNHSrUb4RKjZrB1Ny8QGLikONEREREVGT0798f9+/fR7t27XD79m2d9dRqNTZu3IgWLVogOTkZAwcOfINREhERUVEUFh+GATsGaCSzB1YdiJVtVxbaZDYAePg45qmHtnetwvtcDNGkSROsX78e586dAwAEBQXh22+/hUwmQ8eOHWFjY6NRX61W46+//kLlypULIlwiIiKiIuXuudNY+uEg7Fw8D3fPnkT4jWu4e/Ykdi6eh6UfDsK986cLJC720CYiIiKiIqN///5YunQpjh49iqpVq6JWrVqoWrUqAGDJkiXYsGEDQkJCcPbsWTx79gxCCPj7+6NHjx4FHDkREREVZofCDmHK0SlISE8AAFiaWuKrpl+hXdl2BRtYLmIfJ+Py/hfTscgBuJnJ4Gomh7kMSBNAVLoakekCagAWVqYoX6doJ7RHjRqFP/74Aw0bNkTJkiXx7NkzqNVqyGQyjB07VqqXkZGBmzdvYtq0abh3757WociJiIiI6IW7505j69xvpJslhRAaP5VJSdjywzfoMuELVKjX8I3GxoQ2ERERERUZMpkM//77L9q3b4+zZ8/i4sWLuHjxImQyGTZt2iTVyzrRbtSoEf7555+CCpeIiIgKuQx1BhZfWowVV1dIy8rZl8P8lvNR3qF8AUaWu4hbMdi5/CqUSZnzfJc2laG2lQnM5TIIISCTZf50MzdFdbXAhZQM1B1cFaZmJgUc+etp2LAh5s6di0mTJiE6OhpA5jnilClT0KRJE6nejBkz8N1330mvRffu3QsqZCIiIqJCT5WWhl0/z3+ezNY1/I8AhAy7fp6PD5f++kaHH2dCm4iIiIiKlBIlSuDYsWOYP38+Fi1ahIiIiBx13N3d8emnn2LMmDEwNeUpLxEREeUUkxqDz458hpNRJ6Vlrb1a4+umX8PazLoAI8vdjeOROLz+FtTqzIuN5UtZolqaCnh+U59MJtP4aSYDGlqbwslUVjABG9nYsWPRqVMn7N69GyqVCi1atECdOnU06gQEBEjngba2tqhVq1YBREpERERUNNw+dQzKpEQDagookxJx+/RxVG3un+9xZeHVPSIiIiIqcszMzDBp0iRMmjQJN2/exJ07d5CQkABbW1tUrFgRVapUKegQiYiIqBC7Fn0N4w6NQ1RSFADARGaCsXXHYlDVQVISuDBSqwVObLqLy/teDDPuVdUR1Z+lZPaj0RF71nN6tuE23KY0hMxM/gaizV8VK1ZExYoVdZb7+/vD3//NXWQlIiIiKsrunj0ljfCTG5lMhrtnTjKhTURERERkqCpVqjCBTURERAYRQmDD7Q2YfWY20tXpAICSipL4we8H1C9dv4Cj0y8tRYU9q64j5OpTaVmNAHfU9rZD7MY7BrUhUlRIvhYN69ql8ivMQunJkycICgpCixYtCjoUIiIiokIpJTHeoGQ2kHlOnZKYkM8RaSr6t2MSEREREelx9epVfPXVVwUdBhERERWwVFUqph2fhq9PfS0ls2s518Lfnf8u9Mns+OgU/PPDeSmZLZfL4NevMpr3qgRl0DPA0E7lMiD1WnT+BVpI7dmzh721iYiIiIxEJpPB0sb2jW6TCW0iIiIiKtauXLmCmTNnFnQYREREVIDCEsIwcOdAbL23VVrW36c/VrVdhVJWhbu3ctTdWGyccw7PIpMAABZWpuj8aU34tigDAMhITgcM60wDCECdosqnSImIiIioqBFC4Pz2LYgIup6ndSo0aJyPUeXEIceJiIiIqEhSKpW4e/cu4uLioFLpvjAbFBT0BqMiIiKiwuZI+BF8fvRzJKRlDotoaWqJGY1noIN3hwKOLHe3TkXhwG83oVZlZqztS1mi08c14eBiBaFSI+nCI6RHJBreoAyQWxaPy4FXr17FggULcPjwYURGRkKpVBZ0SERERERFijI5CbuX/A93zpx4sVBA/+g/AjC3sEClhk3zOzwNxeMMloiIiIjeGpcuXcKUKVOwb98+ZGRkFHQ4REREVEhlqDOw5PISLLuyTFpW1q4s5recjwqOFQowstwJtcCpf+/jwq4QaVmZyo5oN9wX5iYyxB8KQ+LxCKgT0vPYMKDwdTJytG/e2rVrMXz4cKhUKoPnepTJDB2XnYiIiKj4exx8H//Nn4XYh1HSMkelOWIs0vSvKAPKPjWH3MBzMGNhQpuIiIiIiozLly+jefPmSE5ONvjiJcALmERERG+b2NRYfH70cxyPPC4ta+XZCt80/QY25jYFGFnu0pUZ2LfmBu5ffCItq9bcDU06lEXKkXA8PRUFoXzppj45AHXubcssTWFVxBPaN27cwPDhw5Geno5GjRqhQYMGsLCwwA8//ICBAwfC29sbAJCYmIhz587h8OHDqFSpEvr27VvAkRMREREVDlcP7sGBX5ZClZ6ZvLawtkaz2k1x+lI5mIlIpCfvAYQSmV21xYufMguYWbVFpI0rYnfsRomu776xmJnQJiIiIqIiY+bMmUhKSkL58uXRr18/VK1aFY6OjrCwsNC5zp49ezB79uw3GCUREREVpOvR1zHu0DhEJkUCAOQyOcbUGYPB1QYX+pvcEmNSsf3nK4gOyxxGXCYDmncoizJpKjyeew7IyHZDnwyw9HWCbQt3ZCSk4em6G/rn0pYBJXpWgsxMnr9PIp8tXLgQ6enpWLp0KYYPHw4AePr0KX744QcEBgYiICBAo/5vv/2G999/Hx06FP4h5omIiIjyU7oyFft/WYrrh/dJy1y8K6Dz2M9xY+Y6qMysYYKKkJuVgzrtNjLS70KIVMhkCpiYVYDcvBJkMlOoANzadw6NmdAmIiIiIsrp2LFjqFOnDo4dOwaFQmHQOuHh4XnqzU1ERERF1z+3/8G3p79FujpzKO4SihL4ocUPaODaoIAjy92j4HjsWHIFyXGZPWWcLE3QpKI9ZCcikJz9VMZEBuu6LrBpXgZmzlbS4pIDq+LZhtsQKaqcnWksTVGiZyVYVi35Jp9Svjh8+DDatGkjJbNzM2DAAGzZsgULFy7EunXr8jk6IiIiosLpWWQE/ps/C9GhwdKymq07oOWgoTA1N0eEsiRgogZkcshkpjCxqAoTi6raGxNqRCjf7Kg/TGgTERERUZGRkJCAQYMGGZzMBoAmTZpg9erV+RgVERERFbRUVSq+O/0dNt/dLC2r6VwTP/r9CBdrlwKMzDB3zj3C/rVByEhXw9lUhiq2pighAIQmSHVkFiawaeQKm6ZlYGJnnqMNy6ol4TalIZKvRSP1WjTUKSrILU2h8HWCla9Tke+ZnSUsLAyBgYEay7J63uu6ibFFixaYP39+vsdGREREVBjdOnkMe5b9D2kpKQAAUwsLtBk+Cj7NWkp1ktXmgKmB54syOZJllvkQqW5MaBMRERFRkeHu7g5ra+s8rVOuXDmUK1cunyIiIiKighaeEI5xh8Yh6FmQtKxvlb6YWG8izEzMCjCy3AkhcG5HMM7+9wCuZjJUtDGFg6lMY+hwua0ZbJqWgU0jV8gV+i/lyczksK5dCta1S+Vz5AVHpVLByUmzR1DW9DMPHz7Uuo4QQmcZERERUXGVoUrHkd9W48LOf6VlJcp44N1xk1HS3RMAINLS8OjnJchIdwLMROacN7kRasRZGN7ZxBiKx62ZRERERPRW6NatG44dO5andR48eIBff/01nyIiIiKignQ0/Ch6b+stJbMtTS0xq/ksTGk4pdAns1VpGdi34hoe7w5BK1tT1Ld+nsx+zrSkAg7dKsB1UgPYtfTINZn9tihVqhRu376tscza2hoKhQJnzpzRus6RI0dgYmLyJsIjIiIiKhTiox/jrxmfaySzqzT1Q//v5knJ7NRbt3Cl30jsOWuHZGtXw5LZACCT466rY36ErRPPhImIiIioyJgyZQoaNmyIP//8E3369DFonRMnTuD999/HoEGD8jk6IiIielPUQo2ll5di6eWlEM+7M3vaemK+/3xUcqxUwNHlLuFREq4uuYJyyelQWGkmWs3cbWDr5w7Lak6QyQ28qPicKiketzf/hLvnzyIlNQ2WCnNUqFsflbp+AlNrO2M+hQJTs2ZNrF69GhMnToSzs7O0vFatWli5ciV69+6NJk2aSMvXrl2LzZs3o3r16gURLhEREdEb9+DSeez46UekJsQDAExMTeE/eDhqvNMeMpkMQqXCk19W48LmG7jv2QtC/vxG0KzpW/QltoUaKnkqUsuUyOdnoYkJbSIiIiIqMi5fvoyvvvoKEyZMwOLFi9GlSxdUrlwZtra2kMu1Dz4UFBSkdTkREREVTXHKOHx+9HMci3gxaou/hz++bfYtbM1tCzCy3GXEKfF45wMoLz2BJwBkS1hbVHSArZ8HLMrbS3NC58XdLYux6+//oMwwhQwCAjLIkIY7kSdwYMcRtO/9Lsp3+ch4T6aAtGnTBtu3b0f9+vUxbtw4jBw5EmZmZujVqxdOnToFPz8/NGjQAB4eHrh58yauXr0KmUyGrl27FnToRERERPlKrc7AyY1/4NSmv6TktJ2zC94dNxku3hUAAMoHD3BnymxcRH3El+0srZsgS8BVr31oHNIFMiEAmZbrbEINIQP2VvoN9Tw7AGiSs04+kQkhRO7VqDCIj4+Hvb094uLiYGdXPO6qJSIiojevKJ9TyOXyV7rACwAZGRlGjqboKcrvPREREQDceHoD4w6NQ0RiBABALpNjVO1R+MD3A8i1XXQrJNIfJyPhSDiSLjyCTP1iuQBgUtEBTu3KwbyMzSu3f3fLYmz9Y8fz37SdK2Ve/uvStwMqvPfxK28nu4I6r3j06BHc3d2RkZEBmUyGsLAwuLm5QalUol69erh+/brG+aIQAhUqVMD58+dha1u4b3goKnhOSUREVPgkx8Vi+8IfEHrtsrTMu24DtP9oHBQ2NhBqNZ799jvOrz+De54doDYxB5B5rnTeXImzVZYD1vdQNsYXAXf7wyLDChDqzMT2859Kk2QcqPAbQhxvwN8zAAsDFrxWzHk5p2APbSIiIiIqUl7lfsxXTYITERFR4bH5zmZ8c+obpKnTAAAlFCUwp8UcNHJtVMCR6aYMjUfC4XCk3ngKiBep5gwhEG1hioofVINdWfvX2oYqKR67/v4PgAm0J7PxfLnArr//w4etBxbp4cddXFyQlJQknRNaWFhIP/fv349Ro0Zhy5YtSE9Ph7m5Obp06YIFCxYwmU1ERETFVvjN69i+YA4SY54BAGRyOZr1GYT6nbtBJpcjPSIC1z/7FtfTayC23HvSekmyJOwsewjPSh+DTJYMAAgpcQ2/1psG76e1UO5ZDViorKA0TcaDEldwv+QlZMhVAICEtLg3+hyZ0CYiIiKiImXq1Kl45513DK6/Z88ezJ49Ox8jIiIiovykzFBi1ulZ+OfOP9KyGk418GPLH1HaunQBRqadEAKpt2OQcCgcaQ80L/SlC4EHSjWET0n4fVAVpmYmOlox3O3NP0GZYcglPhmUGaa4vWUxqvaf/NrbLUjm5uZal5cqVQp//fUXlEolnj17hpIlS+qsS0RERFTUCSFwfttmHPl9DYQ6cxggawdHdBr9Gdyr+kIIgYvLfsWjjScR7NUZGTYKad0bTkdxwvtfqEzScrSbIVfhjvM53HE+p3W7csjhYOGQL89JFya0iYiIiKhI8fHxgZ+fn8H1w8PD8zEaIiIiyk+RiZEYe2gsbjy9IS3rXbk3JtWfBHOTwpWoFBkCKVefIOFwONKjkjTKUtQC95RqhCjVqNO5HOp1KGu0EWTunj8rzZmdGxkE7p47g6r9jbLpQsvCwgKurq4FHQYRERFRvklNSsTuJQtw9+wpaZlHtRro+OlEKOwcsPfoNcTNnod06zp4Vr7ni/Xkz7Cnyu+ItL8jLbMxs0F5+/K4HH0ZhlBDjQDPAOM9GQMwoU1ERERERUb//v3h7e2dp3Vq1KiBL7/8Mp8iIiIiovxyPOI4Pjv6GeKUmb2cFSYKfNn4S3Qu37mAI9OkTstA8rlHSDgajowYpUZZEoDbySqEpwnIzeRoNcwXFeqWMur2k1PSDEpmA4CADCkpOXvhFHdbt27F2LFjcf/+/YIOhYiIiOi1PXpwD//Nn4W4Rw+lZQ279kKtLr2x8WIkLv72A1rfeoSn5bpBZWol1bld8gSOem9BuqkSzpbO8PfwRyvPVqhfun5mkvrvACSkJUBA93R/Mshga26LNmXb5OtzfBkT2kRERERUZKxbty7P61SvXh3Vq1fPh2iIiIgoP6iFGsuvLMfPl36WLqZ52Hpgfsv5qFyicgFH94I6OR2JJ6OQeCIC6iSVRplwssSFyCSEJ2cAAKzszdHxoxoo5WX8uatN5BnQP3/2CzIIwPT1hzkvahITExESElLQYRARERG9FiEErh7YjQOrlyEjPR0AoLC2QaMPPsFfsU8w6adP8f6JG2hs0h3BFV9M15cmj8XeSn/CxCsFAz37I8AzANWdqkMuk2u0/22zb/HpgU8hez7+z8tkz883v232LSxMLPLxmebEhDYRERERFWv79u3Dd999hwMHDhR0KERERJSLOGUcphybgiPhR6RlLd1b4tvm38LO3PjJ4FehilUi8VgEks5EQaSpNcosKjnisa0FDh8Ig3h+DdDZ0xYdRtaAjaORL/o9uQX17i9growF4GTQKgIyPCtZwbhx5JOEhATs378f/v7+sLe3l5Z/9dVXeW7r8mXDhs8kIiIiKqzSU1Ox75efcePIi+tbZm6lsL+qOZbcmoi6D+Ix9VQtRHhNRLSZjVTnqcstlO5ojp8qzUY5+3J6p71p6dES//P/H744/gXi0+IhhxxqqKWftua2+LbZt2jp0TI/n6pWTGgTERERUbH26NEjHD58uKDDICIiolzcfHYTYw+ORXhiOABALpPjk1qfYEj1ITl6jxSE9EdJSDgcjuRLTwB1th4rcsCyhjOsm5XBycMRuLE/TCryru2MdwZXhZmFEXtFJz4BDs1C8un12BFRASFJhiWzAQFzeQZOunTESONFk2/atm2L06dPo379+jh16sXckDNmzDDa/ONERERERcGzyHD8++N3eBoeKi276ZWEM1XOwkIlMHKPJUqlD0ZwhbpSudw0DfX7l0O9xnmb69rf0x8HyhzAnuA9OBB6ALHKWDhYOCDAMwBtyrZ54z2zszChTURERESFTkZGBq5evQpfX1+Ymr44Zf3111/z3NaJEyeMGRoRERHlgy13t+CbU99AmZE5B7WjhSPmtJiDxm6NCzgyQBkSj4RDYUgNeqZZYCqHdX0X2DZ3h8rCBLuWX0XErVipuG57LzTs7A2Z3EjJ1/RU4NTPwNF5CI+VYXtEDSSqsl9QzEqya9teZtk9Fx9Y2ToYJ558dufOHQghcO/evRxlQuie11EXJsGJiIioKDpzcBuOrVoJkZY5xU26iRrHqz9FsFsyqgWrMeBYNUR59MPjbKMZlatqB//3a8DS1vyVtmlhYoHO5Tujc/nORnkOxsCENhEREREVOt26dcO2bdvQrl07bN++XVo+ePBgXowkIiIqRtIy0jD7zGxsuL1BWuZb0hfzWs6Dq41rgcUl1AKpt54h4XA40oLjNcpklqawaewKmyZuMLExR+yjZGxbcBFxj1MAAHJTGQIG+qByw9JGCkYA1/4B9s2EiA3FuWdlcPRxOYjnietkE0vscm6N+ghC+cdBSFObPp/1UCb9NJdn4G4pH2xVvIP5vi7GiSufrVmzBsuWLcOwYcNylP3222/o16+fwW399ttvCAwMNGZ4RERERPkmOC4Y++7vwZ0tu1DqZpq0PMYmDYfqPEGKRToG77ZG2eQuCCnfSCo3N1XDb5AvKtZ3KXbXz5jQJiIiIqJC5/DhwxBC4Pjx4znK2COHiIioeIhKjMK4Q+Nw7ek1aVnPSj3xeYPPYW7yar1JXpfIUCP58hMkHA6H6lGyRpmJvTlsmrnDukFpyJ8PIR528xl2L78GZXJmjxlLWzN0GFkDpb3tc7T9SkJPAbunABHnkZphip2RVXE/saRUHKZwwx7n1kg2tUIEysDKowneS9mPsskhkGVkQJiYINjKC1ssWyFFbgV7S1O09y24GwXyomPHjujYsaNR2pLJZK90DklERET0JgghcP3pdRwIPYD9ofvx6GEIWl5wRqm4F6Px3C2TiBOVM+B1vwqGXzDDQ/cueGjnKJV7VrRGwNBasLYvmCHB8xsT2kRERERU6MydOxcLFy7EJ598kqNswYIF6NKli8Ftbd68GePHjzdmeERERPSaTkSewGdHPkOsMhZA5rCG0xpNQ5cKhh/jjUmdloGkMw+ReCwCGbFKjTLTUlaw9XOHVU1nyExfzOV97UgEjvx5G+L5fNoly1ijw0c1YFfS8vUDenYf2DsdCPoXAPAwxQb/RfggPl0hVTnjUBdnHOpBYW6G3rXc8Pe5MKTIrfC7dWfAWrM52fP/fuxZCwozI87nXQBWr16NJk2a5GmdJk2aYPXq1fkUEREREVHepavTcf7ReewP2Y+DYQfxKPkRAKDMYwXevewKi/TMczaVXOC4ZyncNG2Pz0+GwjHGGiHlm0ntmJmo0byfD6o0cSvWHTqY0CYiIiKiQmfo0KEYOnSo1jInJyd4eXkZ3Jazs7OxwiIiIqLXpBZq/HL1Fyy6uAji+bzO7jbumO8/H1VKVHnj8WQkpSPxRCSSTkZC/byXdRZzLzvY+rlDUaWExjzY6gw1jm+8iysHw6VlZauXROsh1WCueM1LbSkxwOEfgDPLAXU6hAAuxbji8OPyyBCZMaTIFdjj3AqhVp5oVsEJs7pVh0cJK7zj44IJGy4hLkUFuQxQC0g/7SxN8WPPWninatEYblyfVxk6vFy5cihXrlw+RGMcSqUSCxYswJ9//om7d+/CxMQEPj4+CAwMxPDhwyGXy3Nv5CXBwcEGPecffvgBEyZMeJWwiYiIKI+S05NxIvIEDoQewOHww4hPezG1jUwN1LrjgJr3Xoz0E2dmjX0uHdHF3QGfH9iJIDt/RLo6SeVlyirQangd2JZQoLhjQpuIiIiIiozp06ejRo0aeVqnRo0a+PLLL/MpIiIiIjJUfFo8ph6dikPhh6RlLdxb4Ltm38HewkhDdBtIFZOKxKMRSDr7ECJdrVGmqFICti3dYVE2Z0zKFBX2rLiG0BvPpGW1WnuicdfykMtfo0eMKg049wtwaDaQGgsASMswwZ4nvrgVYydVi7Jwwa5SbSC3ccD3naqiZ113qSdO66ouOD3lHey8FoXd1x4hNiUNDpbmaOvrgva+rkW+Z7Y+jx49woMHD5CQkABbW1uUK1cOLi5FI3kfHR2NgIAAXL16FcOHD8eiRYuQlpaGn376CSNHjsSGDRuwfft2KBSvdqHayspKb28tc/OCGd6fiIjobRGTGoPD4YexP3Q/TkaehDJDmaOOZao5mp8vA7e4F+elobbe8OwUiHX3T+Lanru4WKanVGYqV6NJz0rwbemRP72y01OBG1uAm9uA5BjAyhGo0gmo+h5gVjDJc5ngBDJFRnx8POzt7REXFwc7O7vcVyAiIiLSgucUby++90REVFBuPbuFsYfGIiwhDAAggwwf1/oYw2oMg1yW996nryr9YRISDocj+fJjIHseWw5Y1SwFWz93mJW21rpu3JNkbF98BTEPM+fWlstl8OtfGVWbur16QEJkXijc+2XmMOPPPUl3xH9P6iEmLlVadtGuJk6UaIjWvm74uosvStkVbE+cgj6vUCqV+N///oeVK1fi3r17OcorVKiAYcOGYdSoUbCwKLxzSfr7++PQoUMYPXo0FixYIC0XQqBr167YunUrBg8enOch07N6aD948ABly5Y1aswF/d4TEREVdpGJkTgQegAHwg7g/KPzUAt1jjpmMkuok6rANtQNrUPuwTojBQCghgx2zd9D73ea4f7Mn3DJrAlSrF7cqFe6jDne+bAu7J2NMM2NNjd3AFtGZt5kKZMDQv3ip8IB6LoUqNzeKJvKyzkFE9pFCE8WiYiIyBjetnOKU6dOYfny5Vi1alVBh1Lg3rb3noiICod/7/2Lr09+jdSMzOSsvYU95jSfg6Zlmr6R7QshkBYcj4RDYUi9FaNRJjOTw7p+adg0LwNTR90J4sg7Mdi59BpSk9IBABbWpmg/ojrKVHJ89cAiLgB7vgBCjmssvmbTGfsuJiFDlbktpdwc+5z8Ee/ig6+7VEP76q6vvk0jKsjzivv376Njx464ffs2gMz3+GVZvZUqV66M7du3F8ohx//55x/06NEDCoUCUVFRcHBw0CgPCgpC1apVIZPJcPbsWdStW9fgtpnQJiIienOEELgbexf7Q/fjQOgBBD0L0lrP0aIkHERt3A32QnJcWdSJvYbGMachfz4Vj6mtA94b+xmszlzA6U13EOLWMjOZDEAuU6PRe+VRq3VZjelwjOrmDuDPflnPSkuF59vt8ztQpcNrby4v5xQccpyIiIiokFClpeH2qWO4e/YUUhLjYWljhwr1G6FSo2Yw5VCAr+zevXtYu3YtE9pERERvWFpGGr4/+z3+uvWXtKxayWqY13Ie3Gxeo1ezgYRaIDXoGRIOhyEtNEGjTG5lCpsmbrBu7AYTazO97QSdiMSh9begzsi8qOdY2godP64Be2erVwssNgzY/xVw9W+NxenuzbAvti5unL0gLXts7oSdpdqgdcNqmNbJBw5WPCeMj4+Hv78/wsPDIYSAra0tfH19UaZMGSgUCqSmpiIiIgLXrl1DQkICbt68CX9/f1y5cqXQJV9XrlwJAAgICMiRzAYAHx8f+Pj4ICgoCKtWrcpTQpuIiIjyV4Y6A1eir+BA6AHsD90vjUT0Mk9bT/g6NkVkRAUcv2yJUCGHRYYSHaP3wjs55EU935po3aM/QmavwEF1PSSVCZDKnEuZovVHdeGoYyQho0hPzeyZDUB7MjtruSyz3vhbb3T4cSa0iYiIiAqBu+dOY9fP86FMSoRMJoMQAjKZDHfOnMCBNcvR/uOxKF+3YUGH+cYcOXLEaG0FBWm/K5aIiIjyz8Okhxh/aDyuRF+RlnWv2B2TG06GhUn+Dv8sVGokX3qChCNhUD1O0SgzcbCATfMysK5fGnJz/XNKq9UCJzffw6W9odIyj6ol0HZoNVhY6U+Ca6VMAI7NB04uBlQvhhJHifJ4VnscNv5zHAlRL5LZV22r4p73O1jUozb8KjnnfXvF1OzZsxEWFgZvb2/88MMP6Ny5M0xNc17iVKlU+PfffzFp0iQ8ePAAc+bMwbffflsAEWuXlpaG/fv3AwDq16+vs179+vURFBSE7du3Y/HixW8qPCIiItIiLSMNp6NOY3/ofhwKO4SnqU+11qtasioCPAJgpaqFf89m4K8zL0YJclY+QcfHu2Gren7DpUyGhl17oZLaDCcmrUOwWwcIWeZ5qgxqNOhYFnU6eENuks/T9NzYkjnMeK5EZr0bW4GavfM3pmyKdEJbqVRiwYIF+PPPP3H37l2YmJjAx8cHgYGBGD58OOTyvL+5eZ08/eUhjQ4dOgR/f/9c19uwYQN69OiRp20RERFR8XT33GlsnfuNdPNj1vlF1k9lUhK2/PANukz4AhXqvR1J7ZYtW+b5vIyIiIgKh1NRpzDp8CTEKDMv3JnLzfFFoy/QtWLXfN2uWqlC0pmHSDwWgYy4NI0yUxcr2Lb0gFUNJ8gMuBiYlqrC3lU3EHwlWlpWvaU7mvWskPeLiRkq4OKvwMHvgKQnL5ZbOgJ+n+OasiJ2L/sZSFdmbltmikNOfmjcpg0Wt60Ma4siffnO6DZv3gxXV1ecOnUKTk5OOuuZmpqiW7duaN68OWrVqoV//vmnUCW0g4KCkJ6eOay8viHBs8pCQkIQFxcHe3v7PG1n165d2LFjB65du4ZHjx5JPdq7d++O999/HwpFwc7FTkREVNglpiXiaMRRHAg9gKMRR5GUnpSjjonMBPVc6sHf0x9NXf1w4pYaK/fex/3oF+eSEAKN0m6h/sMjgDoDAKCwtUOb/h9A+ftu7EyuhsQyraXqJUrI0ebjBihZxibfnyMA4Oa2F3Nl50YmB27+x4S2IaKjoxEQEICrV69i+PDhWLRoEdLS0vDTTz9h5MiR2LBhA7Zv3/5KJ2UWFhZa7+zMolarkZKSonfuHWtr/d3+9bVPREREbw9VWhp2/Tz/eTJbz3A+QoZdP8/Hh0t/fWuGH9c2F+KrYnKciIgo/wkh8Mu1X7Do4iKon18IK2NTBvNazkPVklXzbbsZiWlIPBGJxBNREKkqjTLzsnawbekBRWVHg88H4p+mYMfPV/E0IhEAIJPL0LxXRVRv6Z734O7sy5wn+0m2EWPkZkDDEVA1Ho1/Vv+B8BPzpaKnZo64VuU9fDvAH/XKlsj79t4CISEhmDhxot5kdnbOzs4YMmQI5s6dm8+R5U1o6Iue/87OunvgZy8LDw/Pc0J7woQJGD16NMaNGwdbW1vcvn0b8+bNw0cffYTFixdj27Ztuc6xrVQqoVQqpd/j4+PzFAMREVFRE50SjYNhB7E/dD9OR52GSq3KUUdhokATtyZo5dUKLcq0QIbKEutOhaD7xiA8TdK8ubJSCTO8l3wSKcFnpWWuFSujedX6uD5vD+67toawzcwbyqBGndbuqP9eJZjkZ69sVRrw6CoQdhYIPwvc3mNYMhvIrJcSk3s9IyqyWdWePXvi6tWrGD16NBYsWCAt9/f3R9euXbF161aMHDkSq1evznPbS5cuxeDBg3WWr1y5EsOGDcPHH3+ss05iYmKet0tERERvn9unjkGZZMh5g4AyKRG3Tx9H1ea5jwZTHEydOhXvvPPOa7ezZ88ezJ492wgRERERkS4JaQmYemwqDoYdlJY1K9MMs5vPhr1F3hJwhlI9TUHC0QgknXsEqDQvvimqloStnzssvPI2Z/LD+3HYseQKUhIye86aW5qi3TBfeFTNY3L50fXMRPa9A5rLq74HvDMDj5It8OvnX0L+NFwqumVTCZW6DsbfbatBYaZ/OPS3mY2NTa4J2JeVK1cOlpaW+RPQK0pIeDGvu74OOdnL8pJIVigUCAgIwPz581GjRg1ped26ddG9e3e0a9cOBw8eRIcOHXDx4kVYWOieCmDWrFmYOXOmwdsmIiIqikLiQ6T5sK88uQKhpeOJvYU9/Nz9EOAZgCZuTWBpaon7TxLx/c4H+Od8OJQvnZM28i6BQT4KPNq8HM8iXsyxXcu/DUpfi8KhbUmIL9NOWu5gD7T+qAFK5fEc1iBxEZmJ66x/kZeADGWuq2klk2eONvQGFcmE9j///INDhw5BoVBgxowZGmUymQyzZs3C1q1bsXbtWnzyySeoW7euUbe/aNEiWFlZYciQIUZtl4iIiN4+d8+ekubMzo1MJsPdMyffmoS2j48P/Pz8Xrud8PDw3CsRERHRK7sdcxtjD45FaEJmj1MZZBhZcyRG1BwBucz4vUrSIhORcDgcKVeeaA5wI5fBqnYp2LYoAzMX/SPnaXP7zEMc+PUmMp5fiLR3tkTHj2vAsXQe2kp4BBz8Brj4m2YPlzL1gLbfAp6NsG3bXlz9fSnMn19AVMlMcLd8a4z+aAB8yzjkOe63ja+vr0bvZkOEhoaicuXK+RRR4VS6dGlpju6XmZubY8GCBahZsyaCgoKwevVqfPjhhzrbmjx5MsaNGyf9Hh8fDw8PD6PHTERE9CYJIXDj2Q3sD9mPg2EHcTf2rtZ6pa1LI8AjAK08W6GOSx2Yyk0hhMC5kBgsP3Id+4IeIftlPRO5DB2ru2JYc2+YBl/E3uU/Il2ZCgAwt7RE8yYBeLLtPo64tILaLmsURoGaLVzQqKcPTI1xY2N6ChB1OTNxHXYGCD8HJETqX0duBqjTDWtfqIEqnV8/zjwokgntlStXAgACAgLg4OCQo9zHxwc+Pj4ICgrCqlWr8pTQvnr1KtzddQ8hdeTIEVy5cgUjRozQum0iIiKivEhJjDd4aG0hBFISE3KvWAwEBgaifPnyRmmrfPnyGDRokFHaIiIiIk3b7m/DzBMzkZqReZHOztwOc1rMQbMyzYy6HSEElPfjkHA4HMrbmsMbyszlsG7gCpvmZWBqr7uXqc621QJntj3AuR3B0rIylRzQbnh1KGzMDGskLRk4+RNwbAGQfV5Fe0/gnemAb3fEJKbip+lzYHXzKLIuXcaZ2cPlveFY0rU5TPNzSMliZNiwYZgyZQomTpwIKyurXOsnJSVhzZo1GD9+/BuIznC2trbS49TUVJ31spfZ2Rmvt1aNGjXg5uaGyMhIbNu2TW9C28LCQm8PbiIioqJCpVbh/KPzOBB6AAfCDuBh0kOt9So4VIC/hz9aebVC1RJVpalrVBlqbL8SheVH7+NyWKzGOtbmJujTwBPvNy2L0jZmOLR2BS7v3SGVO5XxQA21A64fkCPWrb203NZaoM3H9VDa+xVHNRICiAnOTFqHnwXCzwAPrwJahknXUKI84F4fcK+X+bNkeWC+L5AaB93TIgKADFDYA1W7vFq8r6jIJbTT0tKkuwvr16+vs179+vURFBSE7du3Y/HixQa37+vrq7d80aJFAIBRo0YZ3CYRERGRLiYmhp+OyWQyWNrY5l6xGHiVaWN0adSoERo1amS09oiIiAhIz0jHD+d+wB83/5CW+ZTwwbyW8+Bu+wpzTesg1AKpN54i/nA40sM0b+yTW5vBpokbbBq7Qm5lYOL5JelpGdi/5gbuXXgiLava1BUt+laGiakBCWa1GrjyF7D/K81eLxZ2QPPxQMMPATMFdpy6iSPL58E56UWdZ85VMGjSJFT2LPVKsb+t+vbtiyNHjsDPzw9LlixBvXr1dNa9cOECPvroI5QvXx4fffTRG4wyd56entLjJ0+e6KyXvUxfJ5xXjSEyMhIPHjwwartERESFSYoqBSciT+BA6AEcDj+MOGVcjjoyyFDDuQZaebZCgGcAvOy8NMqTlCpsOBeGX44/QNizFI2y0nYKvN+0LPo08IS9pRniHj/Cn1/OxqP7d6Q6lXyqw/JSKk47t0CGw4ubxHwblUSTfr4wM89Dr2xlIhB54Xny+nkSO0n3uQQAwNwWKFMH8GiQmbwuUw+wLpmzXtelwB99AcigPakte1HPTPeUKfmhyCW0g4KCkJ6e2eVd33w5WWUhISGIi4uDvf3rz9cUFhaGLVu2ICAgANWqVdNb948//sCqVatw+/ZtPHnyBI6Ojqhduzb69u2LPn36wMSEcyERERG9zdTqDJz7bzNCb1w1eB0hBCo0aJyPURVNDx8+xMOHD+Ht7W3UXitERESk3cOkh5hweAIuP7ksLetWsRumNJwCCxPj9OIUKjWSLzxGwpFwqKI1LxqaOFrAtoU7rOq6QJ6Xi38vSYxRYseSK3gSmpkol8mAJt0roGYrD6kXjl4PjgJ7pmYO55hFZgLUex9oORmwdkJ0ohKzF/8Nh9N/w1md2dM2A3LYt+yGMcMHwYS9snX64IMP9JaHhYWhYcOG8PLyQvXq1eHg4AATExNkZGQgNjYW165dQ3BwMExNTdGzZ08MGzYMv/zyyxuKPnc+Pj4wMzNDeno6goODddbLKvPy8jLK9c3sDB0pioiIqKiJU8bhcPhh7A/ZjxORJ6TRhLIzlZuioWtDBHgEwN/DH85WzjnqPI5PxZoTwVh/OhRxKZrDcVcpbYvhLbzRqYYbzJ/fCHnv/BnsWjwPqUmJAAATMzPUKOmFhzfcEVraR1rXWqHGOyPrwL1yCf1PRK0Gnt3THDr88XXNqW20ca7yvOf18wS2c2VAbsB5c+X2QJ/fgS0jgdTYzLmyhfrFT4V9ZjK7cvtcmzK2IpfQzj5HjrNzzp1LW1l4eLhRTviWLFkClUplUO/sUaNGYfz48Zg+fToUCgUuX76M77//HgMGDMCyZcuwZcsWlCihf0dVKpVQKl9MyB4fH//az4GIiIgK3tPwMOxesgBRd2/laT0LaxtUatg0n6IqWmJiYjB37lz89ttv0hzZe/fuRUBAAADA29sb/fr1w/jx4+Ho6FiQoRIRERUrZ6LOYOKRiXiW+gwAYC43x5SGU9C9UnejtK9OVSHp9EMkHIuAOiFNo8zM1Rq2fu6wrO4MmYkBCWc9HofEY8fPV5AUl7kNM4UJ2gyphrLVnXJfOfoOsPdL4NYOzeWV2gGtvwKcK0MIgc3nQ7Fl9RrUeHImqy8L0hT26DjmM9SoXeO14n8brFmzJtcbC4QQCA4ORkhIiNYyAFCpVPjjj8yRBApTQtvc3BytWrXCrl27cO7cOZ31zp49CwDo2LFjntp/7733MGzYML3rZV1n1ddpiIiIqKh4mPQQ+0P342DoQZx7dA4ZIiNHHStTKzR3b45Wnq3QrEwz2JprHwnx9qMErDhyH1svRSItQzN53KKSM4Y390bTCiWlcxV1RgaO/7UOZ7ZulOrZOZSA+xNb3Fa0RkYJS2l5lToOaD6oBswVWlK0KbFAxPnnPa+fJ7BTY/U/cYXD86HDnw8fXqYuYOmgfx19qnQAxt8CbmwFbv4HpMQAlo6Zc2ZX7fLGe2ZnKXIJ7YSEF8NLKRS6X7TsZcZIBKempmLFihXw8vJC5866Jzp3cHBA+/btsXz5co1hgOrVq4cePXqgSZMmOHr0KHr27CkNna7LrFmzMHPmzNeOnYiIiAoHdUYGzm3bjBMb1iPj+YgzMpkcXl7lEPzgLp4vyLni84txLZu1gqm5ec7yt8zVq1fRsWNHRERESBcqX77YGR4ejlmzZuHXX3/Ftm3bUKMGLxoTERG9DiEEVl9fjf9d+B/Uz3uEuFm7YZ7/PFQrqX8UO0NkJKQh8XgEEk9FQaRqXny08LaHrZ87LCo5GtZzOhd3zz/G/jU3oErPfB62JRXo+FENlCxjo3/FpKfA4dnAuVWacxKWrg60+Rbw9gMARMam4Ms/T8H65F+omRouVbMq74uRn0+GlZ1xe9kWZyVLloS1tfVrt5OUlISnT58aISLjGjp0KHbt2oX9+/drHWHy5s2bCAoKgkwmy7XH+su2bt0Kd3d3nQntS5cuISoqCkDek+VERESFgRAC92Lv4UDYAewP3Y8bT29orVdCUQL+Hv4I8AxAI9dGMDfRfm1NCIET955i+ZH7OHxbcwhvMxMZ3q1ZBkObl4OPq+bogIkxz7B94fcIv3FNWuZm7wzxrBrul6ojLbM0z0Cr4bXh5fv8Bkp1BvDk5vOhw88CYWeB6Fw6v8jkQKlqgEf9F0nskhW0X098HWYKoGbvzH+FRJFLaBeUP//8E9HR0Zg0aZLe4cJr1aqFHTt2aC2zt7fHrFmz0KVLFxw4cAC7du1Cu3btdLY1efJkjBs3Tvo9Pj4eHh4er/4kiIiIqMA8DQ/DriXz8fDubWmZo5s72gz5CEkfDENJWQYuuztDZWqSmcCWyaSfphlq1Ax7ArOlK6HuPwhyC+MM5VkUJScno3PnzggPD4epqSlq1aqFUqVKYefOnRr17t69i2XLluH7779Hx44dcf36dQ5HTkRE9IoS0xIx7fg07AvdJy1r6tYUs5vPhoPC4bXaVkWnIOFoOJLOPwJU2YY/lgGWVUvCtqUHzD2095zJKyEEzu8Mxul/X8wX7FreHu1GVIeVnZ6bBlVK4PRS4MiPQPY5F21KA62mATX7AnITqNUC60+HYPU/B+AXuRs2GUmZ24UMdbv1Q8uevSGTc4jxvFiwYAH69ev32u389ttvCAwMNEJExtW9e3f4+fnh8OHDmDlzJubNmyeVCSEwZcoUAEBgYCDq1q2rse5///2HDz74AC4uLti2bZvWXtZr167F2LFjUb58eY3lSqUSY8aMAQBUqFAhz8lyIiKigqIWalx5cgUHQg/gQNgBhMTnHKUFANxt3NHKsxVaebVCDacaMNEz3HZ6hhrbrkRixZEHuBGl2UHWTmGK/o28MLhJWbjY5exkG3rtCrYv/B7JcbEAALlcDndVSTxVvYeMki/OYSv62sCvT1lYPD0H7H+ewI64AKQl5GhTg7Vztt7X9QG32oBFLjdhFlNFLqFta/tiB0hNzTnmvbYyY1y8XLRoEaysrDBkyJDXaqd169bSfD7btm3Tm9C2sLCAxVt8wZqIiKg40NUru26n99CkV38k79yFhPh4uABoFZ+Mh/bWeGhvjXQTE5hlZKB0XBJKxyXBRAioASTs3g37d98t0OdUkJYuXYrQ0FB07twZS5cuhaurK6Kjo1GqVCmNep6envj222/RrFkzdOzYEYsXL8bkyZMLKGoiIqKi627MXYw9NBbB8cHSsg9rfogPa3yo98JgbtLCE5BwOBwp16KB7NP4mshgVbsUbP3cYeZs9eqBv0SVnoEDv97EnbOPpGWVG5WGf/8qMDHTkWQWAri+Gdg3A4jNdrHUzApoOhpoMgowz+w9fP9JIj7feAWqywfQPuY05M+flKmNPbqN/xweVasb7blQ3slkskI7X/TGjRsREBCA+fPnIyUlBQMGDEBaWhoWL16MzZs3IyAgAEuWLMmx3vLlyxEdHY3o6Ghs2rRJo1MMkHkNNSEhAfXr18f48ePRoEEDlChRAkFBQZg3bx4uXryIypUrY9u2bXpHwSQiIipo6RnpOP3wNA6EHsDBsIOITonWWs+nhA8CPAMQ4BmAig4Vcx3ZJz41HX+eCcXq48GIitPMN7o7WmJIs3LoVc8D1hY5U6lCrcaZrRtx/K/fIJ6PXmRproBtSlU8dmop1VPIU+Bf/Sy807cCP93X/0TlpkDpGi+S1x71AQcv4/e+LqKKXELb09NTevzkyROd9bKXZR/6+1WcOHECFy5cwLBhw3Kd9zo3lpaWcHZ2xsOHD/HgwYPcVyAiIqIi62l4KHYtWZCjV3a7kaPhVskHAJCwbz8glwNqNUyEQJnYRJSJTdTeoFyOhL373uqE9r///ouqVati06ZN0qg5+v5Aad++Pbp27YqtW7cyoU1ERJRHO+7vwIyTM5CiSgEA2JrbYnbz2Wjh3uKV2hNCQHk3FgmHw6G8G6tRJrMwgXVDV9g2c4OJnXFv7k+OT8OOJVfw6MGLHjeN3vNGnbZeus8jws4Au6dmzl34Ikqgdn/A/wvAzhUAoMpQY8XRB/h59xW0eLgP3skvEt9uVavj3dGTYO3gaNTn87Y4ePAgfHx8jNJW69atcfDgQaO0ZWxOTk44e/YsFixYgD/++APr1q2DiYkJfHx88PPPP2PEiBGQa+nZP3z4cJw8eRIuLi7o1q1bjvKoqChs3rwZu3btwm+//YZZs2ZBqVTC0dERNWrUwOLFi/H+++/D0tIyx7pEREQFLSk9CUcjjuJAyAEcjTiKxPSc18rkMjnqutRFgEdmEtvNxs2gtiNjU7D6+AP8cSYMiUqVRllNd3sMa+GNdtVKw9RE+02PKYkJ2PnTj3hw8Zy0zAFWSDftingnF2lZOflx+Dstg+UjHb2wbd00hw53rQmY8bisS5FLaPv4+MDMzAzp6ekIDg7WWS+rzMvLK8f8M3m1cOFCAMCoUaNeq50shfWOUCIiIjIOqVf2378hQ5V5Ypy9V7aZ+YuLtBlxsYBabWDDamTExeVerxi7ceMGxo4dq3cKmJc1bdoUX3/9dT5GRUREVLykZ6Tjx/M/Yn3QemlZlRJVMK/lPHjY5n0qNKEWSLkWjYTD4UiP0LwYKbcxg03TMrBp5Aq5pfEvU0WHJ2L7z5eR+EwJADA1l6P1+9XgXdtZ+woxwZk9sq9v1lzu3RJo803mfNnPXY+Mw2f/XMHj+3fR7fEe2KmeX6yUydCoW2807tEX8tfoxf628/PzM1pbpUqVyjGiT2FiYWGBzz77DJ999pnB63Tu3BnR0dp7qAGAtbU1BgwYgAEDBhgjRCIionwXnRKNQ2GHcCD0AE5FnUK6Oj1HHQsTCzR2a4xWnq3g5+4HR4XhNw5ei4jDiqP3se1KFDLUmnm6d3xcMKx5OTQoV0Jvx4mHd2/jv/mzEB/9olOtg8oTKU7dIJNlJsDN1Qloab8UFa1PvFjRxAJwq6U5fLh9GYNjpyKY0DY3N0erVq2wa9cunDt3Tme9s2fPAgA6duz4WtuLjIzEpk2b4Ofnh+rV9Q8P9fjxYwwfPhxTp05F/fr1tdZJTk6WTja1zW1DRERERZvuXtlj4FapSs4Vsp0/Z8hN8di5DqKdaiDd1BpmqiQ4RV9BqScXYKJWAXI5TF7zRr2iLi4uDm5uht1xm8XW1hYpKSn5FBEREVHx8jj5McYfGo9LTy5Jy7qU74IvGn0BhWnehiUW6WokXXiExCPhUD3VHMbRpKQCti3cYV3HBTJdQ36/pgdXorHnl+tQKTMAADaOFugwsgacPbXMyZ0SCxz9MXOu7Iy0F8udKmcmsiu2loZ7TE3PwKIDd7D00D1Ui7uKHk9PwASZNygqbGzRYdQElKtVN+c2iIiIiEhDWHwYDoQdwP7Q/bj0+BIEcnYItTW3RUv3lgjwDEATtyawMjN8Whq1WuDw7SdYcfQ+Ttx7qlFmbipH9zruGNKsHCqU0jEvtRBAXDhE2Glc2rcHh05HQC0yzwlN1YC5ZVukOlZDVgrcU3YWAS4/w7qkPeDeA/BoALjXA1yqA6bmBsdNORW5hDYADB06FLt27cL+/fsRFxeXowf2zZs3ERQUBJlMhg8++OC1trV06VKkp6fj008/zbVucnIytm7dimbNmulMaO/ZswcZGZl/SL1usp2IiIgKD3VGBs7+twknN6zPtVc2ACjv3MHj+QuQ/PwmvCclqyOoykCozKwBoQZkckCo8cS5Nu5U6IGqN3+F09NrsG39zht/boWJo6MjwsLC8rTOpUuXULJkyXyKiIiIqPg4+/AsJh6eiKepmRf7zORmmNxwMnpU7JHrHITZqVNVSDwVhcRjEVAnavasMStjA1s/d1j6OkEmz5/5AIUQuLQ3DCc235VuHizlZYsOH9WAtf1Lw5lnpAPnVgOHZgEpz14st3IC/CcDdQYDJi8un50LfoZJ/1xB2KMYtI4+hIpJ96Qyt0o+6Dh6EuycdPT+JiIiInrLCSFw89lN7A/djwNhB3An5o7WeqWsSiHAIwCtvFqhrktdmMnN8rQdpSoDWy9GYsXR+7jzWHOEoBLW5hjYyAsDG3vByealc8O0ZCDqUub0M+FngfBzSIt7gj0PK+BWfCngeeraQm0DOPaFWp55o6SZSEHzOg9QpYUvZB5nAZvCOzJMUVUkE9rdu3eHn58fDh8+jJkzZ2LevHlSmRACU6ZMAQAEBgaibl3NO2L/++8/fPDBB3BxccG2bdv09pJOS0vD8uXL4enpiS5duhgc34IFCzBkyBA4OmoOdRAbGyvN3di8eXN06NDB4DaJiIio8HoaHopdP8/Hw3svTsJLuLmjrZZe2elRUXjy00+I27xFGmr8ScnquOo7/EWl50MUZf1UmVriiu8I1Lz/Gyq3bZuvz6Wwq127NtasWYPx48cbNN/fvXv38OuvvyIgIOANREdERFQ0CSHw641fMf/8fGSIzJvwXa1dMa/lPPg6+RrcTka8EgnHIpF0Ogriea/oLBYVHGDr5w6LCg55So7nVYZKjUO/38LNE1HSsgr1SqHVIB+Ymmcb/lsI4NZOYO+XwNNsF1JNLIDGHwHNxgKKFx0okpQq/LD7FtaeDEYJ5VP0frQbjqoXU8HU7dQVzfsGwsS0SF5qIyIiIso3KrUKFx9fxIHQAzgQegCRSZFa63nbe6OVZysEeAagWslqr3TOGJOUhvWnQ7DmRAiiE5UaZeWcrDGkWTl0r+MOS3OTzPPBp/eA8HNA+PME9sNrgHhxHhuttMK/4bUQk/aiV7i5aTXA5h3IZJnnlm5ucrQe1Qo2jnkbzYjypsieZW/cuBEBAQGYP38+UlJSMGDAAKSlpWHx4sXYvHkzAgICsGTJkhzrLV++HNHR0YiOjsamTZswbtw4ndv4+++/8ejRI8yePdugeRrNzc1hYWGBiIgI+Pr6YtKkSahZsyasra1x8eJFfP/997h37x4aNWqEf/7557WePxERERU8Xb2y63XuiiY9+8PU/MVQQhmxsYhesQIxv62HUL44oZaVdsNNn6GAGi8S2S973ls7qMogNJKbIn8G5Swa+vfvj0GDBqFdu3ZYsWIFKlWqpLWeWq3Gpk2bMHr0aCQnJ2PgwIFvOFIiIqKiISk9CdOOT8PekL3SssaujTGnxRyD5yRMf5KMxCMR/2fvvuOjKtYGjv/OtvTeQxJC70V6DwQEpEmxolQFLAiCvir3evXqtTewFxBQsIuAFBEkEHrvnUBCeu9t63n/WNjNkoQkhDSYrx8+MXPKzkkgmZ1nnmcoOJICxhJlIiVwaO+NS1gQmqAyynzfYkX5OjZ9fYrEi9mWtu4jQ+k+qonthGjScfj73xCz0/YGHe6Hwa+Ae4hNc+SFNP71x0kSsotok3eWgRk7UV2d6LRzdGLYU8/SonvvmnosQRAEQRCEBqfYUMzexL1sjd1KZHwk2drsMs/r6NOR8OBwwkPCaeLW5KZf70pGAUt3RfProXiK9LYLK7uHejCjf1OGNHVAkXQU9v16NYh9EAozyrkjnMnxZUtycwwmc3xQIStROo9AoWkBgEoy0HdCC9oNDq3RBZuCmSTLcumC9A2EVqtl0aJF/PTTT0RFRaFUKmnTpg1Tpkxh1qxZKBSlp3vXrVvHtGnT8PPzY8OGDTfM0O7ZsycnTpwgPj6+0mUqMzMz+f3339m8eTPHjh0jMTERo9GIl5cXXbp04cEHH+Thhx9GdRMrdnNzc3FzcyMnJwdXV9cqXy8IgiAIwq1T2axsU3ExWStXkv7NYky5uZZ2hasr3jNnkNpqKBE/RFX6dYdMa0urnv7V6ntDHlPIskz//v3Zs2cPCoWCzp0707ZtW1auXMmECRPw9vbmypUrHDx4kMzMTGRZZtCgQWzdurWuu14vNOTvvSAIgnDrXcq+xLPbniUmN8bSNrPjTJ7q9BRKRcUL+3VxeeRtj6PoTAY22x0qJZy6+uE8IAi1d8UVVW6FzMQCNnxxnNx0817dSrWCwZPb0KK7n/Wk3ETY+j84/hM2HQ7uBcPegiDbKn/ZhTr+t/4sq47EozLpCcvYSdv885bjvk2aMXreAtz9qjc2a6jEuOLOJb73giAIQllytDnsiN9BRGwEuxN3U2QoKnWOSlLRI6AHg0MGMzB4IL6O1SvNfSQ2i8U7LvP36WRMJYZ3SsnElJZ6pgSn0bjwtDmAnXoGytij20oC3zYYArqw7aySE8cvl7ifB0qXsSiU5gWffr4SQ+f0wrWWxrq3q6qMKaoV0J4+fTqzZs2iZ8+eN3sLoQrEYFEQBEEQ6l5ls7Jlg4GctWtJ++RTDCkplusljQaPSY/iPWMGSnd3/vr6JJePpd14PG25GJp29uGeWR2q9QwNfUyRmZnJPffcw8GDB8tdAXttiNurVy82btyIu7t7Lfaw/mro33tBEATh1tkUs4lXdr9imWh0UbvwVv+3GBg88IbXybKM9mI2edvj0F7OsTkm2Slx7h2Ac99GKF005dzh1rtyOoPNi0+hKzZn4zi6ahjxZEf8mlz9XafNh90fw55PoeTEqkcTuPs1aDMGrhtTbDyZxCtrT5Ger8NDl8Xw1M146617bHe6+x4GTp5hU5HnTiPGFXcu8b0XBEEQrkkuSGZb3Da2xm7lUPIhy/Y1JTmoHOjXqB+DQwbTP6g/rprq/e4wmmT+OZvC4h2XOXQlCwA38umsuEQPVRTD3OJoqj2HQpd74xs5eEJQ96t/ukGjrmTnFLLuo7dJjblkOU2paYfKMRxJUqPESK8xoXQa3hxJIbKyq6sqY4pqlRxfvnw5d999twhoC4IgCIJwR0iPu8LfXy4qlZU9/Kl5BLRoBZgnefO3bSP1o4/QRVkHvygUuI0di88zs1EHBFiaiwv0lQtmA8hXz7/DeXp6smvXLhYuXMinn35KQkJCqXOCgoKYM2cOzz777E1VxhEEQRCE25XepOejQx+x8uxKS1srj1YsHLiQYNfgcq+TjTJFp9LI2x6PPqnA5pjCRYNLv0CcegagsK+937uyLHNyezy7fr3ItXQN72BnRjzZERdPezAZ4ehK2PYm5FsXGGLvBmEvQvcZoLINSKfmFvOftaf4+7T5/Bb5FxmcEYnaZB6Dqe3suXvmbNr0G1gbjygIgiAIglCvyLJMdE40W2O3EhEbwamMU2We52nvycDggYQHh9MrsBd2Srtqv3aRzsjvR+JZvuMimqwL3KWI4iH1Re6SLtJMkWQ9Ma+MiyUl+LWD4B7WILZnU5tFjVEH97Hpi4VoC6+NdZWoHIegsmsHgLenzLC5fXH3cyzjBYSaVu13GXPmzOHQoUM8/vjjtGnT5lb0SRAEQRAEoV4xGY0c/HMVe3//8YZZ2YVHjpD6wYcUHTlic73zoEH4zHsW+zL2e1aoFMjISFS8qtOEjMZBBGcB1Go1L7zwAi+88ALnzp3j4sWL5OXl4eLiQosWLWjdunXFNxEEQRCEO0xaYRrPRz7PkVTrWGVMszG83OtlHFRll0uU9UYKDqWQtzMBY2axzTGVtwMuA4Jw7OKLpCq97VtNMhpN7PrlIqd2WBe2Nenkzd3T26G2U8KlCPj7ZUg9bb1IoTIHscNeAEdPm/vJssxvh+N5Y/0ZcosNKGQj/TN20zHPer1XUAij5y3AK6j8wL8gCIIgCMLtxiSbOJl+kojYCCJiI2y2qympkXMjBocMJjwknM4+nSu1hU1lpKfEs2vbX2Sc200b43n+VFzCyU5744ucfG2D14GdQeNU5qlGg4FdP3/PoXV/WNokhTtq59EolD4oMNJ9WBBd7m2NQmRl15lqz4j6+/vz+eefs2jRInr37s3MmTO5//77cXAQdeMFQRAEQWj40uOusOmLRaRcLj8rWxsVRerCReRft0+zQ+fO+D7/HI7dupW6r8lo4uT2BOLPZ1UqmA2gQCLbUwS0r9e6dWsRwBYEQRCEChxOOczzkc+TXpQOgEqhYkGPBdzf8v4yt/AwFerJ35dE/u5ETNdViFEHOeMSFoxDO686KbVYXKDn78WniD+XZWnrMrwxvcY0RUo/B5v/A1FbbC9qPQrufh28mpW6X1xmIQv+OMmuKPPXxlWfy6iMLXgVpVrOaTsgnCGPPYXa3r5mHkqoUampqZw6dYrw8PC67oogCIIgNAh6o56DyQfZGruVbXHbSCtKK/O81p6tCQ8OJzwknJYeLcvdGq7SDDpIOQnxh8iL2ovuyn68dYmMvXa8rBi5Qg0Bnaylw4N7gFtwqS1lypKfmcH6j98l4dyZErdridrpbiTJDk9XI3fP6YV3kEv1nkuotmrPiC5YsIChQ4eyfPlyli5dytSpU5k7dy6PPPIIM2bMoFOnTrein4IgCIIgCLWq3KzsMePpc99EVBoN+uRk0j77jJw/VoPJZLlW07QpvvPn4Tx4cJkD+eTLOWz/8TwZ8fmWtoqytGVktBLsKi7kkVv4nIIgCIIg3N5kWWbFmRV8dPgjy56Gfo5+fDTwIzr6dCx1viFHS/7OBAoOJCPrbPdAtGvpgUtYEHZN3ao/WXmTslMK2fDFCbJTCgFQqCQGPdqa1u2VsGEeHPkOZOu4jMC7YOibENq31L2MJpnv9sTw/t/nKdKbn7VJQTQjsraj0Juz0VVqDeHTn6D9oLvr7JmF6tuyZQuTJ0/GaCy9r6cgCIIgCGaF+kJ2JuwkIjaCnfE7ydOXrt2tkBTc5XsXg0MGMyh4EEEuQdV70dxEiD8IcQcg/hBy0jEkg3kcVl4IWecUiCa0pzX72r8jqKu+6PDKyWNs/PQDCnOyr7YoUDkMQGl3Fwpkugz0ofv97VAqa7cSkVC2agW0w8LC8PPzw9vbm+eff57nn3+enTt3snjxYpYtW8aXX35Jly5dmDlzJg8//DDOzs63qt+CIAiCIAg1psys7EbBDH/yWQJatMKYk0Pqp5+S+f0KZK21xJHK1xfvZ2bjPm4cUhn7Nhfl69j7xyXO7kmyaY9WGQk1lF96XL66yfZGRx0+WrGHdnJyMjqdDgA/Pz/s7Kz7MF26dIn//ve/HD9+HFdXVx5++GGeeuopMQEtCIIg3JEK9AW8uudV/o7529LWM6An7w14D09725Lb+tRC8iLjKTyWCkbZekACh44+uAwIQtOobud14s9nsenrk2gLzYsN7Z3V3PN4SwJTV8Ani0BXYtLVNQiGvArt7wNF6UnIiyl5vLDqBEdjswFQyEbuLjhMy7TDlnPc/QMYPW8BvqFNa/KxBEEQBEEQ6kxGUQaR8ZFsjd3KvsR96Ey6UudoFBr6BPYhPCScsOCwUuPIStMXQ9JxcwA73hzAJjfB5pTrZ2+KZTWnaYYuoCutuoXj2bIPGtfAm3v9q2STif2rf2XPbz8iX1sIKbmgcR6JQhWIm5OBoXN64dvYtVqvI9xa1Qpob9u2rVRb//796d+/P59++ikrV65kyZIlzJo1i/nz5/PQQw/x+OOP07Nnz+q8rCAIgiAIQo2oKCtbIctkfLuU9G++wZSTY7lO4eKC14wZeE56FEUZ267IJpkzuxPZu+YS2gKDpd3F35FVFHK8WEczvYIRhRrsZfNe2Qoky0etZA5mR2tMtHDQ1PwXoh7LzMykSZMmloD2X3/9xdChQwE4e/YsvXr1Ij8/H1k2T8Tv3buXvXv3snLlyjrrsyAIgiDUhcvZl5m3fR6Xcy5b2h7v8DizO8+22c9QeyWXvMh4is9k2N5ApcCpmx8u/Ruh8qr7beVO70xgx08XMJnMv+M9AxwZGR6H68YnIDfeeqLGGfrPh15Pgbp0v3UGE19FXuKziCh0RvMEppMhn8nFO1ClXbGc17JnX4Y+MRc7R8eafTChXE2b3rqFBAUFBbfsXoIgCILQ0MXnxbM1disRsREcSzuGqWR1m6tc1C4MCB7A4JDB9A3si6O6imMiWYbsK+agdfxB85+kE2C6caJGjMmPo3JzjphaEOfYjn59w3igV1Nc7dVVe/1yFOXl8tdnHxJ9zLqIUaFqjNppBJJkR+c+HvR6uBNK9Z2dlS3rTRSeTKP4dAbGQgNKRxX27bxw7OCDVEdfmxrbhNHNzY2nn36ap59+mv379zN58mSWLl3K0qVLad++PTNmzODRRx/F3d29progCIIgCIJQaemxMWz68uMys7L9mzYnZ+2fpH36KYYka3a1pNHg8eijeM14HJWHR5n3Tb2SS+RPF0iNybW0KTUKYgLV/JKVgXx16ekltYkv3PJoo0ymhU6NvUlFscLARY2es0Z/jKhBhmHt/WrmC9BA/P7772i1Wry9vZkxYwbt27e3HJs7dy55eebMrK5duxIYGMiOHTv46aefmDhxIiNGjKirbguCIAhCrdocs5n/7P4PhQZzWW5ntTNv9nuT8BDz/sGyLFN8Pou8yDh00bk210r2Kpx7B+DcNxClc90vpDOZZPb8HsXxiDhLW+NmCoY6v4Jm637riZICukyBQf8CZ98y73U8LpsXV53gXLI1k7uHOo2+qX9jKDC3KZQqwiY9xl3DR4kKL3UsJiamwnMkSbIsZKzouPh+CoIgCHcqWZY5n3WeiNgItsZu5ULWhTLP83XwZVDIIMJDwunu1x21sgpBZF0BJBy5Gry+GsQuSL3hJVqFI0dNTTlkaMZRU3OOmlqQiSttA1yZOaApr3QMQH0Ly30nXTzPuoVvk5eRbmlT2fdBad8TVwcDQ2d3xb952fN7d5KiMxlk/nYBuchgTpmXAQmKTmeQve4ynve3xKGtV633q8YC2gDR0dEsWbKE5cuXk5ycDJj/4Zw8eZI5c+bwwgsvMGHCBGbPni2ytgVBEARBqBPlZWV3HzOeXhMepnj3HqLnP4/2YpT1IknCbexYfJ6ZjTqw7DJH2kI9+9de5uSOBCgxx5bkrmC1qYCCbGzqKCmdz+AQ+BtXlEXEyBKSJCNf/ehgdKA48X6cjB25p33Arf8iNCCbN2/G1dWVI0eOEBRk3acpKiqKf/75B0mSmDVrFl988QVgLkHevXt3li1bJgLagiAIwm3PYDKw6PAivjvznaWthUcLFg5cSGPXxshGE4Un0smPjEOfXGhzrdJVg3O/Rjj19EdhV6PTRZWmKzLw95LTxJ62Zo93CjpFn/xXURSUyCRqfjcM/R/4tinzPkU6Iwv/ucCSnZe5muCNSpKZ5XoJxfF/MFwNeLp4+zD62ZcIaNGqxp5JqJr+/fuXm6n9119/kZqaSkhICO3bt8fDwwOVSoXRaCQrK4tTp05x5coV1Go19913HxpN3S/QEARBEITaYjQZOZp6lK2xW9kWt42E/IQyzwt1DWVwyGAGhwymnXc7FFIlAsiyDBmXSpQOPwgpZ0A23vg675Zke3Vmc24w38f6cMYYhAnr6w1s5cPM/k3p3czrli5Ek2WZo5vWEbniW0zGq32UHFA7jUCpCqF9N1f6TumCSqO88Y3uAEVnMshYccY6l3ndR7nIQMaKM3hNalvrQe1qvUOZPn06s2bNsglG6/V6/vjjD5YsWcK2bduQZdmyEtLNzY1HHnmEGTNmoFarWbp0KStXruTHH39k/PjxLF++HCcnp+o9kSAIgiAIQiWZs7IXkXLZGqz2bBTM8KeexS23kITpj1F0+LDNNc4DB+Izbx72rVqWeU9Zljm/P5k9q6IoyrOWUcrRwF9qLXGYuDZWD3SzZ3q/JmRylO8vreDa6FCSbD+iKMI+aAXTWryGvfrOHlwfOXKEqVOn2gSzAVatWgWAg4MDb731lqW9WbNmPPLII/z555+12k9BEARBqG3pRek8H/k8h1OsY5dRTUfxn17/wV62I393Ank7EzBma22uU/k44BIWhGNnXyRV/SmtmJtexIYvTpCZaC4VrZBMDHBdTDvDJuuiQN92MOwNaBZe7n32XspgwR8niMmwBvA7eym5N2cbmcdOW9qadunO8Kfn4+DsUiPPI9ycWbNmMXHixDLbg4KCWLt27Q2TZA4cOMDs2bNJTk5my5YtNdlVQRAEQahzxYZi9iXtIyI2gu1x28nSZpV5XgfvDoSHhBMeEk5Tt0ps8VGcAwmHzZnXcQcg4RAUlX1vC3s3aNQNgnsgN+rGPm0oX+zPYOfxdJvTNEoFY+8K5PH+TWnpd+vHYdrCQjZ/9TEX9u+2tEmqRmicRuBsZ8fdT3WiURvvW/66DZGsN5H52wWbxJyyT4TM3y4Q+K+etVp+vFoB7eXLlzNkyBB69uzJ2bNnWbJkCStWrCAjw7xy9logu1+/fsyYMYP7778fe3t7y/UffPABb731Ft9++y0vvPACCxYs4JNPPqlOlwRBEARBECp0o6zsLl16kbnoU678s9XmGodOnfB9/jkcu3cv974ZCflE/nSepCjr/tp6SWaPnYFDdgZMVydfW/u7MCusKaM6BmJCT/ivk7jRwtNrx36L/YAne43ATml3cw9+G0hKSqJt27al2tevX48kSYwdO7bUljZt2rRhyZIltdRDQRAEQah9R1KO8Hzk86QVpQGgUqh4ofsL3B80gcLIJJL3JGIqNNhcowlxwSUsCPs2XkiK+lWKOTEqm7++OklxvnlxoJ0in+Fu7xJkd8p8grMfhL8MnR8BRdmL/XKL9bzz1zl+3B9radOoFDzTRoF6xw9kZmcC5jFg34cm0WPMBCRF/QnoC2BnZ4dSWfr7++OPP7JlyxZOnjxZYWJMjx49iIiIoGPHjnz++ec888wzNdVdQRAEQagTubpcdsTvICI2gl0JuygyFJU6RyWp6ObfjcEhgxkYPBB/J//yb2gyQdo5677X8Qch7Tw3jHJKCvBtC0HdIKgHBHUHr+boTLDueCKLN1zmXPJ5m0vcHNQ82iuEKb1D8XW1L+fG1ZMWG8Pad18jJz3N0qa064rKoR9tOjjT//HuaOzrR2Wi2iCbZDCakPUmZEPpj0VnM8xlxitzryIDhafScbqr7K1+akK1v1MbN27kiy++YO/evYA1iO3t7c3kyZN5/PHHad26dbnXazQannzySdLT0/nmm29EQFsQBEEQhBpVXlb2kIcmo1q3kdg33jcP3q/SNGmCz/x5uAwZUm65I12xgYProzkeEW8eHF51Xm1km4OePIW5rU8zL2aFNWNAC2/LvdZd2kyuLrfM+9qSydXlsjlmM6Objb6JJ789KBQKdDqdTVtKSoplLPrggw+WuqasidA7zeeff87nn3+O0VhB+S9BEAShQZFlmR/O/sCHhz7EIJsnn3wdfVnU5QOCz7iS8sNBZL3J5hr7Vh64hAWjaeJaL/cUPrc3iW0/nMNkMI+f3JUJjPR4E3dVEqgcoM8z0Hcu2DmXe4+tZ1P49+pTJOcWW9q6hbjzmFsMZ9f/gu7qWM/Jw5ORc/6P4LYdavahhJtSVFR6Qh7gm2++YerUqZWu8ujs7My0adP48ccfRUBbEARBuC2kFKSwLW4bEbERHEw+aBkHluSgcqBfo34MCh7EgKABuNm5lX2zwkzb4HXCEdBWME/l6HU1cN3NHLxu1AXsrNnVOUV6ftoZzbLd0aTk2lYHCvZ04PF+Tbm/WxCOmpoLJp/atoV/vvkMo+laiXE71I7DcHYMYfCMjjTu5Fdjr30jsklGNpjAUHZQ2fb/ZdCbkPVGZINc+vh1H8u957XjxopSr6tAguKGFtD+6aefAPObKEmSGDJkCDNmzGDs2LGo1ZXfMN7d3Z20tLSKTxQEQRAEQbgJJqORA2t/Z+/vP2EyWrOyuw4fRcu0HHJmPImstQ6yVT4+eD8zG/fx45FUZQ+ZZFkm6nAqu3+7SEGONciapTDxj4OeGLUJhQSjOgQwa0AzOgSVfvMQERuBAgUmTKWOXU+BgojYiDs6oB0UFMShQ4ds2pYsWYLJZMLFxYVhw4aVuuby5ct4edXuvj71zdNPP83TTz9Nbm4ubm7lvIkVBEEQGpRCfSH/3fNf/or5y9I2ynkoc7RTMH6bS74p33qyAhw7+uAcFowmoH5u9SabZPatvcSRv60Z1UGaYwxz/wB7RSF0mmjOynZrVO49MvK1vLbuDH8eT7S0OWmU/N+gYFwP/M6ZyIOW9pD2HRnxzP/h5O5RMw8k1JjTp08zZcqUKl0TFBTE+fPnKz5REARBEOqpyzmXiYiNICI2gpPpJ8s8x93OnYHBAxkcMpheAb2wV12X+Ww0QOppc9nw+EPmAHbmpRu/sEIFfu0h+GrmdVA38GhCWaUG4zILWbY7hl8OxlKgs11Q3znYnZkDmjKsnT/KGqwOpNdp+efTjzhzoESJcaUvaqdRtGrjS9iTvdDYKTHpjBUGgK8FlWW90RxYvhZULiv4XDKofKPjtzKoXJdkMFUym/tWqXZAW5ZlAgMDmTZtGo899hihoaFVur64uJiffvqJ999/Hw8P8SZCEARBEIRbr+ys7CD6BLeAL5eSnWMtEa5wdsZrxgw8J09C4eBQ7j2zUwqJ/Pk88WetewYZkNlnb+CAnQG1RsGUbo15rF9TQrwcy7yHzqgjKjuqUsFsABMmsrXZlTr3dhUWFsaKFSsYNWoUI0aMYMeOHbz77rtIksT48ePRaDQ25xcXF7Ny5UratWtXRz0WBEEQhFsvOieaedvmcSnHPAHZrrAZ83WPEXjWHSPWcY2kVuDYzQ+X/kGoPGumlOOtoCs28M83h4k+U2Bpa+/4F/1cvkXZpA8MfQMCO5d7vSzL/Hk8kf/+eZqsQr2lPaylD/M723Ng6YdEp6WaGyWJXuMfpPd9D6Mop1x5Q2bSasnbtIm8f7ZizMlG6eaOy5DBuAwfjsLu9ti2pqCggOjo6Cpdc/nyZYqLiys+URAEQRDqCZNs4nT6abbGbiUiLoLonLJ/9wU6BVr2w77L9y5UihJhv7wU2+zrxKOgL7zxCzv7Q3B3a+nwgE6gKXte65oT8dl8s+Myf51KxliicqEkwd1t/Jg5oCldG3vYVAeqMFP5JoLKuvwCUs6ex88YQmBAUxSSEqXCCbXSEXsHNYocSHtj3+0TVC6PSkJSKax/1KU/Usbx4vOZGNLKrpBTigQKh9ot117tV3vllVd45ZVXUNzkPkMJCQk89thjAAwdOrS63REEQRAEQbAwGgxX98q2zcru0LoDwZF7MW2MtJwrqdV4PPIIXrNmorrBIju9zsjBjdEc3RwHJQbpl1RGtjroUbqqmdO7JZN6N8bTSVPmPfJ1+fx24TdWnllJalFqpZ9HgQJ3O/dKn387mjdvHt99951NaXFZllGpVDz//POWtvT0dPbv38/rr79OcnIyTz/9dF10VxAEQRBuuX+u/MPLu1+mUFdIz/wOPJR5D60LQ23OUTiqcOodiHPvAJTOZY9H6ou8pHQ2fryH9GxzCXEJI/1cvqVjyEW4eyW0uqfMDKBrknKKeHn1Kbaes46p3B3V/GdkG5qkHiXig6WWcaCDiysjZj9HaOeuNftQdSQvIoLElxZgys0FhcK8jY5CQd6WLSjefIvAd97BJXxQXXez2kJDQ1m8eDGzZ8/G17fiMpcpKSksXry4ykk4giAIQtXJehOFJ9MoPp2BsdCA0lGFfTsvHDv4mINowg3pTXoOJh8kIjaCbXHbSC0se86opUdLwkPCGRwymFYercyBYoMWEo9Zg9dxByEntszrr5EVdsj+XSGgB7LfXci+nZDtfaxBY50J+VIRsqHAmmF8Nahs0hmJSc3n1JUsMnO1dAC6YY8GsJckgpzt8He2wy5LQl51meRaylT21gSXfUBrvNEu4LdeyaCyuuzgMhUcL9mGpU1CUiuvHrv6Gmrl1XYFKBVIN5kBXxDoRNavFyp3sgz27b1v6nVuVrUD2i1btrzpYDZAs2bN0OvNq2ercx9BEARBEISS0mJj2PTFQlKjraWTPDy86JSUiePPf1gHsZKE25gx+Mx5BnWj8ktYApw7nELEj+eRC6wldXIkExGOenS+djwf1pL7ugThoCk72ye9KJ2VZ1by6/lfydPnVfmZTJgIDwmv8nW3kzZt2rBy5Uoee+wx8vPNpVTt7e1ZtGiRTRb2xx9/zJtvvgmAJEk88MADddJfQRAEQbhVDCYDnxz5hBWnvmdgTjfuy7ibxrpAm3OUbnY492+EU3d/FHb1PPvYaCDl75/YuMGJQqM7ABqpgGG+XxMyYgx0WwHK8reyM5lkfjoYy9sbz5GvtY7NRnYM4F9DmnDkh6/Ztm+XpT2wZRtGPfsiLl61O/FWW/IiIoh/era14eo+4dc+mvLyiH/6aYI+/wyX8IY9nhw/fjxvvfUWPXr04N1332Xs2LHYlZF9XlxczJo1a1iwYAFpaWnMnDmzDnorCIJw5yg6k0HmbxeQiwwgATIgQdHpDLLXXcbz/pY4tL2ztwMrS4G2gL1xe9h1ZQcHEw6i12pRy2rcTPb4yM1QyyrsTBpaubako0cH2rq2wUPlhpyShXwmhtzsfcg5acgFOciyAlnWINMamY7IsgZQI6Mx/5EckBWO5v83KcEEXL76B4D4q38qxwsIA+C6BZQykGeEvEL0pa6qPbICFBpl9YPKVz9SZsD5ugBzNYPKdcmxgw/Z6y6b/w1XQHJQ4VjLAW1JluWbXpRw5coVfH19cbhBOc5rhg8fjkqlYubMmYwZM+ZmX/KOdm3Pw5ycHFxdXeu6O4IgCIJQL5WdlS3RUrIj9NgZlCWGPk5hA/CdPx/7Vq1ueM+YKzn8uew0ymRrmUIjMgftDOQ3c+Txgc0Z3r78PYCu5F5h+enl/Bn1JzqTda9tCYmw4DAOJh2k0FCIfIO1ohISLhoXIh6IwE5ZvXKRt8OYIicnh507d2IwGOjZsycBAQE2x48dO8bx48cBcHFxYfz48XXRzXrndvjeC4Ig3InSi9J5OeJf+FywZ3zGEHwMttVkVH6OuAwIwrGzD5KynicLyDJc3MzFX39ja/wEjJjHNa7KZEYOuoLnyCfBwf2Gt4hOL+ClVSfYH51pafNxseONse25y6mQ9YveISvJuo9211Hj6P/wFJSq2i2LWFtMWi0X+w/AlJdn/vqWR5JQuLjQYueOW1J+vK7GFfn5+XTo0IErV64gSRJ2dna0bt2awMBA7O3tKS4uJjExkXPnzqHVapFlmaZNm3L8+HGcnOrnHvINjRhTCoJwvaIzGWSsOMMNU2Al8JrUtl4Gta+Vv5b1ZZTAvvb/NiWwS5yrt5bEtpTHvq509vX7Khv1Bow6PRhklHI9X4RYXZYs4hIB47KCyjc4Xl5QOT81ia2LvyRXn4NRNmCUDcjKJgQ3CWPIc+E4ud0e263Uptr+t1yVMUW1AtpKpZIVK1YwceLECs9t3rw5ly9fRpIk/vzzT0aOHHmzL3vHEoNFQRAEQbixsrKyXZVq2p+Nxr1Ia2mz79gR3+eew6lnjxve71JyHr+uPI1jVAEqrMHqKyojuW1dmDKsBb2aetrsAVTSqfRTLD21lH+u/GMTrFYpVIxpNoap7abSxK0J2+O2MydiDkCZQW3p6mt/Ev4JA4MHVvh1qIgYU9y5xPdeEASh4Tkec4SdazYyOLUbLibbYJymsSsuYUHYt/ZsGFkgySeR/36ZAyf8OVRg3T4k0D2F4bN74BDU7IaXG4wmvt0VzUdbLqA1mCztD3YLZsE9rYnbv52IpV9h0JsXENo5OjH8qXk0796rZp6nnshZu5bEF1+q9PmB772L2y1INqnLcUVMTAyjRo3izJkzAGWOx69NebZr147169fTuHHjWu3j7UyMKQVBKEnWm0h8a3+lszoD/9WzzPLjNR1UtpbLLn3vO2NPZSWS+sZlsCmjLVtn4EBcNgfjsykwmdAhowO0QFN/Z0Z2bkTXZl4o7ZQlAtLmrGWUUo2NUU8uW8Y/m/7EZMkBV2Dn0I9Bk8bTNrxZuXN1QsXKq7aAbP43fCurLVRlTFGtpalViYWfOnWKY8eOMXXqVN5++20R0BYEQRAE4ZYxGgwcXPs7e1f9bM3KBpqmZdM8KQPl1SGLJjQUn3nzcBl69w0Htkdjs/hh7XnczubjaVJcvRvkSzIFbZ2Zdl9r2gS4lXmtLMvsSdzD0lNLOZB8wOaYk9qJB1o+wKNtH8XX0brf38DggXw86GNe3v0yubpcFCgwYbJ8dNG48Ga/N29JMPtOFB0dzc6dO5k8eXJdd0UQBEEQKk2fWcSRP7fhfd6OsXKYzTH7Np64hAVhF1r2eKTeyU2CbW9gOPIbW3NmE1Xcz3KoTScVYTMeRKm6cWb5mcRcXlx1gpMJOZa2YE8H3hnfkR5Bzmxd+jmnI7dajvk1bc6oZ1/C3c//1j9PPZP3z1brntkVUSjI2/LPLQlo16XQ0FCOHj3KF198wdKlSzl16pTNPKUkSXTs2JHHHnuMJ554ArW6/PL1giAIQvUUnkyrVDAbQC4ykPzBISS14o4LKuskPVpJj17So1Po0UkGdJIOWQXOag3uCnA35KMoTkMy5iGhs/6R9Lafq5VIXsHg0xTJrwWSf2skF4+yg9Q3GVQ+fCWTb3ZcZvOZFJsCMAoJRnQIYH7/pnQKdr91X6BK0ufmsu75fxGdE1OiUy4ENhrBqH/fj4uHfa336Xbj0NaLwH/1pPBUOsWn0jEVGVA4qLBv741je+8yF6TUhlqrtWRvb0+vXr145plnePXVV2vrZQVBEARBuM2VlZXtrNXT8UqKJStb5eOD9+zZuI8fh1TOZJbJJLPtfCrL/rmEx4V8WutVgHmAZkJG19SJhya3o7G/S5nXG0wGNsdsZtnpZZzLPGdzzMvei0fbPsoDrR7AVVP2asNBIYOIaBTB5pjNRMRGkK3Nxt3OnfCQcIaGDq12mfE72Z49e5g2bZoIaAuCIAgNgi6pgOxtMRSfTKeRbB13GCUT6o4e+Axqhtq/gZRN1hXAnk9h98cUFNuxMft/pOpbXD0o02dCczoPCbnhQkOtwchnEVF8uf0SBpN5NlWSYHrfJjw3tCVFaUn88O9XyIiPtVzTaehIBk56DJVGU95tbyvGnOzKBbMBTCaMOTkVn9cAqNVq5s6dy9y5c8nJySEmJob8/HycnZ0JDQ3Fza2BLPgQBEFo4IpPZ1izOCvBmKOt+KSaYgn23rgMNqX2SS7x+XVB45J7MMtKmXO5F9iTupcdSTuIKYpFJ+kxSEZkyfoFaqzxIFzhwuDsdDokX0BRXOL3uIJr01FWPq0hqLv1j08rUNz6UuVGk8zm08l8s/MyR2OzbY45apQ82D2Y6X2bEOzpeMtfuzKSNm9lzbfLKSTL0qZUNab/hOl0GddFZGXfQpJagdNdvjjd5VvxybWk1jcPysjIoKCgoLZfVhAEQRCE20yZWdmyTNPUbJqnZKKUQeHsjNfjj+M5eRIKx7IH2zqDibXHElgceQm3OC19ilVoSg6RvO0YPa0doc3cy7y+yFDEmqg1fHf6OxLyE2yOhbiEMLX9VMY0G1OpgLSd0o7RzUYzutnoyn0RBIxGIxkZGRQXF5d7Tnp6ei32SBAEQRCqTpZldNE55EXGU3zePEGnuDqTWSxpiW2WRd/xI7DzbCCBbJMRjv8EEW9AXhJp+iZsyPoXBSZvANR2Cu5+rD1NOnrf8DaHr2Tx4qoTRKXmW9pa+Drz7n0d6RLiwdndkWz5+lP02uKr97Xn7lnP0KZvWHm3vO2YtFqM2VUIUCsUKG/DQK+bmxudOnWq624IgiDccWRZRp9ZXOlg9jWSvcocVFYrzeWpyyiDXWZQ+Ub7Kt/guPkcqUYCnlqjlv1J+4mIjWBb3DYyizOtB0vEnNthx+DcHMJzM2mqj6Xcnti7m4PWwT0gqBsEdgEH91ve75IKdQZ+PxzPkp3RxGYW2hzzdbFjWt8mTOwRgptj3VQ8MRUVsfuV9zkYewqZa/2TcPfoxYTX5+Lu61wn/RJqV6UD2pGRkURGRpZq/+OPP4iKiqrwer1ez5UrV1i1ahVNmzatWi8FQRAEQRBKKDMru0hHx7hU3Iu0SGo1HhMn4vXELFQeHmXeI7dYz0/7Y1m6Oxp1pp4hhWp8TNaBuWSvpP99zWnfJ7DM0kw52hx+OvcTP579kSxtls2xdl7tmN5+OoNDBqOsgRWzAmzatIn333+fPXv2oNPp6ro7giAIgnBTZJNM8ZkM8iLj0cXl2RzLUebzl/duuowII7zV/XXUw5twORI2/xuSTwJwqbgX/+TMxSCbyz86e9ox8qlOeAeVP/FYoDXwwebzLN8TYylxqVJIPDWoOU8PaobSZOSfJV9wfMtGyzVeQSGMnr8Ar0bBNfds9YhsMJCzZg1pn32OITm58heaTLjcPaTmOiYIgiDcEUw6I4VHU8nfk4ghpbDiC66RzOWMvSa1rbnO1YI8XR4743eyNXYruxJ2UWgo/TVQytCtuJjwgkLCC4vwNxpL30hSgF+7q5nXPcwfvZqZy9HUgtS8Yr7fc4WV+6+QXai3Odba34XH+zdlTKdANBVsDVOTcg8eYe2Hy0mVYwBzJrskOdJ54EQGzby3xvboFuqfSge0t2/fzuuvv16qffXq1axevbrSLyjLMtOnT6/0+YIgCIIgCNdUmJWNhNu9Y/B+Zg6aoEZl3iM5p5hlu6P5cX8sxiIDA4vUtNPbZk+37R9I77HNsHcqvfI0uSCZ705/x6qLqygyFNkc6xvYl+ntp9Pdv7soc1SD3nzzTV555RWbfRIrIr4fgiAIQn0iG0wUHk0lb0c8hjTb8USKOoNVnv9wMSSZ94a8TxO3JnXUyypKuwBb/gMXNgEgy3CkYDz78idZTvFv6so9T3TE0bX8UuA7L6ax4I+TxGdZvy6dgtx4976OtPZ3JTslmXUL37ZZ2Nh2QDhDHnsKtf3tv2eiLMvk/b2ZtI8/RhcdXbWLJQmFiwsuw4bVTOfqwJYtW1i5ciX79+8nOTmZ1atXM2jQIACmTZvGI488wpAhIoAvCIJwqxgyi8nfm0jBwRTk4srtm21DBvv2N67QUl+lFqayPW47EbER7E/ej8FU+vntTSb6FhUzuLCQAYXFuF2/JYiTz9XAdTdz8DrwLrCr/eziiyl5LNkZzeqjCeiMtn3s38KbGf2b0r+Fd53OpZh0Ok6/8zXbzp5BL8dZ2jV2gUz4938IbHVnLGIUrKpUcrysScPKTiQ6OjrSsmVLpkyZwpw5c6rysoIgCIIgCKRdiWbTl4vKzcp2GtAf3/nzsW/duszrL6Tk8c2Oy6w9loDBINNZp6RfkT32JYo8+TZ2YcDDrfALLb3PdVRWFMtOL2Pj5Y0YZOubFoWkYFjoMKa3n05rz7JfW7h19u/fzyuvvALAQw89RI8ePVCpVMyZM4cXXniBNm3aAJCfn8+hQ4dYuXIlLVu25IUXXqjLbguCIAgCACatgYL9yeTtSsCUa1thJNougd+8NrPD9TB3NxnKd32+x1FdN/sTVklBOmx/Gw4tA9mceWSUVWzT/Zvz+Z0tp7Xs4cegSa1RqcuuXpNTqOeNDWf47XC8pc1ereC5u1sxvV8TlAqJqIP72PTFQrSF5q3sVGoN4Y89QfuBd9/2i9dkWaZg9x7SFi6k+PRpm2POgwbh1KcPKW+9de3k0je4+vUJfOcdFHYVb4VT3+Xk5DBx4kQ2bbq2gEJGkiSbecqVK1fy/fffM3z4cH788Uexp7YgCMJNkmUZbVQ2+XsSKT6XWaq8uDrYGUNyIbLeVPYNSpAcVDg2oIB2TE4MW2O3EhG7lRPpJ8s8x81oJKywiMGFRfQuKsbh2u8ihQoCO18tHd7dHMR2b1xr2dfXk2WZvZczWLzjMtvOp9kcUykkxnQK5PH+TWkbWHpOrLYVnDrLlrd/5LIpGtmUbWkPbtGf8a8+h0pd67spC/VApb/rr776Kq+++qpNm0KhYOXKlUycOPGWd0wQBEEQBAHMWdkH1v7GvlU/Y7panqlkVrZT+w74PvccTr16lrpWlmUORGfyzY7LbD2XCkCAQWJIkR3+Rmu5JDtHFb3GNqNtv0AU15UqOpJyhKWnlhIZb7v1ip3SjnHNxzGl3RSCXIJu9WML5fj888+RJIn169czfPhwADIyMpgzZw5Dhw4lPDzc5vypU6cyZMgQGjUqO2NfEARBEGqDMU9H/p5E8vcmlcpmOuccww8e6znkdAaVQsXz3f6PR9o8Uv8DtPpi2P8V7PwQtLmW5kKHlvxV+D+Ss6xZ2D3vbUrX4Y3LfaZNp5L4z9rTpOVpLW29mnryzviOhHo7YTQY2P7Ddxxeb60Q6BEQyKhnX8I39Pbf1q7o+HFSP1pI4f79Nu2O3brhM38+jl3uAkDdKJDElxZgys0FhQJMJstHhYsLge+8g0v4oLp4hFtKlmXGjx/P9u3bLYFsNzc3cnNzbc5bunQp33zzDX/99RejR48mMjKy/v+7EgRBqEdMWiOFR1LI35uIIdW2ogxKCcdOPjj3CUQT5ELRmQwyVpy58V7aEnje3xJJXXflqysiyzKnM04TcfFPtsb+w+XitDLPCzAYCC8oIrywkC7FWnOgzbURtOlmLR0e0BHUDrXa/7LojSY2nkxi8c7LnEqw/V3pYq9iYs8QpvYJJcCt7vsqGwxEfbKCiEOx5BtPAFfnASU7wqfOpvPwhj+OEW6eWMYgCIIgCEK9lXYlmr8+eZ+0+FhL27WsbF9ff3wWvoLLsKGlJqaMJpktZ5L5KvIyx+KyAbA3wYBiNR11SqQSWdmte/vTe1xzm9KXJtnE9rjtLDu1jGNpx2zu7apx5eHWDzOxzUQ87T1v+TMLN7Z7927Gjx9vCWZXJCwsjEcffZSvvvpKlJsUBEEQap0ho4i8nQkUHEoGg+0Mb0ZIEW8rv+S0fRQAPg4+fBD2AV38utRFVytPluHUKvjnNcixjtFQO5HRfgEb9t9FXqY5+1ylVjBkWluadfEt81apecW8uvY0f52y7gHtYqfiXyPb8FD3YCRJIi8jnfWL3iXxwlnLOS179WPorDnYOTaADPZq0F68SOrHH5P/z1abdrs2bfCdPw+nfv1sxsEu4eG02LmDvL//Jm/LPxhzclC6ueFy9xBchg27LTKzAX777Te2bdtGaGgo7777Lvfccw/FxcX4+tr+PZs0aRKTJk3i5Zdf5u2332blypVMmjSpnLsKgiAI1xjSi8xlxQ+lIGtt931Wumpw6hWAUw9/lM7WeZRr+2Jn/nYBucgAEubg9tWPkoMKz/tb4tDWq1afpTL02nwOn/udrdGb2JZ7gRRZX+Z5zXU6wguKGFxYSBujAinwLmjVzZyB3agbuNWvhfR5xXp+ORjH0l3RJOYU2xxr5O7A9H5NeLB7MM529SNMWHTxEpGv/8I5ORuj8Yyl3ck1gAdffw2PgMA67J1QH1Trb+q2bdssZR0FQRAEQRBuFaPBwP5ff2D/n79julqq6VpWdiuDAv8XX8J9wgQkte0e18V6I78fjmfJzsvEZBSaG2XooFMyUKvG3mSd8PNq5MSAh1sR2Nzd0qY36ll/eT3LTy/ncs5lm3v7O/kzue1kJrSY0DDKf96mkpKS6NnTNhv/2kSu6fq9qa7q3r07b7/9do33TRAEQRCu0SXkkxcZR9HJdNtMJaWEXSdPljn/wYq0XyzNXf268kHYB3g71PMSnLH74e9/QcIha5ukgLseJcZ/Dpt/SESvNQezndw0jHiqI76NS5etlGWZ3w/H88aGs+QUWSeNh7Tx5Y2xHfB3M++FHXP8CBs//YCiPHM2kUKpYuDkx+g8bNRtnWmri08g/dNPyfnzT5vy4erGIfjMmYPrPfcgKcrOblPY2eE2ZgxuY8bUVndr3Y8//oi3tzd79+7Fz88PAK1WW+75b7zxBps3bxYBbUEQhBuQTTLai1nmsuIXskplWmtCXXHuE4hDOy8kZdm/gxzaehH4r54Unkqn+FQ6piIDCgcV9u29cWzvXT8ys2UZsmMpvLKbPdF/E5F1mkiKyC3jmSRZppNWx+CCQsLVnoQE9oeOV0uH+3UAlaaMF6h7idlFLN8Tw0/7Y8nT2lYG6tDIjRkDmjKivT+qcr6PtU02mYj5+ie27cokW76AbEy3HGvZM5x7Zs9GpamfX2uhdlUroB0WFlbla6Kjo9m5cyeTJ0+uzksLgiAIgnCbSom6wMZ3XyczN9vS5lykpXN6Hs0mT8Vz8mQU12XjZBfqWLH3Csv3xJBRYN2P0tcgMdpoj2eJylhqOyU9Rjeh46AgFFcH7wX6An6/8Dvfn/me1MJUm3s3d2/OtPbTuKfJPagVtgF0oW64uLjYfG5vb570TkhIKPP8wsJC0tLKLhMmCIIgCLeKLMtoL+WQFxmH9mK2zTFJo8Sppz+5nWDWkee5mHbRcmxy28k82/XZ+j3OyIyGf16FM2tt25sOQh76BsdPubJ7WZRl8tsnxIWRT3XEyb10RnBcZiH/Wn2SnRetk5VeThr+O6YdozoGIEkSJpORvb//xL4/frEEdF19fBn17IsENG9VY49Z1wwZGaR/9TVZP/8MemugX+Xri/fTT+M+flypBZ13okOHDjF9+nRLMLsy7r33Xj755JMa7JUgCELDZCo2UHg4hfy9SRjSrysrrlLg2PlqWfFA50rdT1IrcLrLF6e7yq7OUut0BZB4FOIPkhW3j8j042xV6tnrYI9WoQAlgDWwq5ZlehbrGWzvz8CAPng37m8OYDvXk+e5gdOJOSzZGc2644kYTLYrEga39mXGgKb0bOJZrxYFFsfGsee/P3JadkJn2AaY5/QUSjVDZ82hXZgoMS5Y1XotgT179jBt2jQR0BYEQRAEwYZBq2XX+29x5MQh5KuDa0mWaZqeS4/Bw/F98klUnrYlvuMyC/l2VzS/HIyjSG8tg6WR4X47FwJzDDarilt086XvfS0sk6vpRen8ePZHfj7/M3m6PJt7d/HtwvT20+kf1B+FVD9WrQoQEBDAyZMnbdocHR1xdnYmMjKSKVOmlLrm77//RiNW8wqCIAg1RDbJFJ1OJy8yHn18vs0xhZMa576BOPcKIDJ9F//e8W/y9OYxh6PKkdf7vs6w0GF10e3KKcqCHR/AgW/AaF00iE9rGPoGxtBwdvx8gTO7oyyHmnXxYfDUtqg1SptbmUwy3++N4b2/z1Oos47bxnYO5JXR7fB0Mv+uLsjOYuOn7xN76oTlnKZdujP86fk4ONsuartdGPPyyFy2jIzl3yEXFlraFW5ueM+cgccjj6C4uoBPgPT0dFq1qtrChoCAALKzs2umQ4IgCA2QPq2Q/D2JFB5ORdZdV1bczQ6n3gE4dfdH6dSAFlLJMmRehrgDEH8Q4g+SmH6OCEc7IhwdOGxvh8lVDdg+k5MMA9TehPv3oF+r8TgHdAVl/SjDXRFZlom8kMaSndHsikq3OaZRKhjfpRGP929Cc9/6NYaSZZnY71axY3M2Gap8jNqdlmOuPgGMf+kVvIKC67CHQn3UMP5VCoIgCIJw25JlmdjVq9jy03JyFMDVYLZzkY4+TVrR6qMX0QQF2VxzKiGHb3ZcZsPJJIwlVp0qgIf9vQiN16FLtZZVcvdzZMDDLQlubQ6Ix+XGsfz0ctZErUFn0tnce2DwQB5r/xidfTvXyPMK1dOlSxeWL1/O7NmzbSYyu3btysqVKxk6dCgPPfQQYP679frrr7N161a6detWV10WBEEQblOywUTBkRTydySUymhSetrjMqARTl39MCnhs2Ofs/jkYsvxJm5NWDRwEU3dm9Z2tyvHqIeD30LkO+ag9jVOPjDoX3DXZIqLZDZ9epyEC9mWw91GhNJjVBMkhW3mT1RqHi+uOsnhK9Z7BbjZ8+a49oS3tmbZxp85xfpP3qMgKxMASaGg30OT6T56fLklthsyU3ExWT/8SMY332DMybG0Sw4OeE6ZjNf06ShdS5dsv9M5OjqSm5tbpWuio6NLVfkRBEG408gmmeIL5rLi2gtZpY7bNXXDuU8g9m28kJT1J4u3XMW5kHAY4g9BvDmILRdlEaVWs9XJgQhHR84G+5d5qZfCnkE+dzG45Th6NB6MRtmwFsFrDUb+PJbIkp3RnE+xTdBwd1QzuVdjJvUOxceldLWcuqZLSmHvq99zyhiKlv3I2iTLsVZ9whg6azYae4c67KFQX1UqoL18+XIWLVrE7Nmzefzxxy3tSqXyBlcJgiAIgiDcWP7Ro+x8/y3OGgqRFdas7NZ2LoS9/G+cOnSwnCvLMrui0vlmx2WbEpUA9moFE1sF0DLBQMa5XK6FqFVqBd1GhtJ5cAhKtYIzGWdYemopW65swSRb91tWKVSMbDKSae2n0cy9WY0/t3Dzhg8fzqpVq+jVqxfTpk3jrbfewt7ensmTJxMZGckjjzzCc889R3BwMFFRUWRlZSFJkiXILQiCIAjVZSo2kL8vifzdCZjy9DbH1AFOuAwMwqG9D5JSIrM4kxe3vci+pH2Wc4Y2HsrrfV/HSe1U212vmCzDuQ2w5RXIvGRtV9lD76eh77Ng70pWcgHrPz9Bbpo5kK9UKQif3JqWPWwnjfVGE19HXuKTrVHojNax16O9QnhxeGtc7M0ZUrLJxIE/V7H75xXIV8doTh6ejJrzAkFt29fsM9cB2WAg+48/SP/8CwwpKdYDajUeDzyA9xOzUPn41F0H67mWLVuyatUq5s6dW6nzCwsLWbFiBW3btq3hngmCINRPpmIDBYdSKNibiCGj2OaYpFbgeJcvzn0CUfvXw7HJNSYTpJ+3ZF4TdxDSzgEyRuCEnYYIR0e2egUQV872HCGO/gwOHU5448F09OnYIKvx5RTqWbnfvOVeWp7W5liolyOP9WvChK5BOGrqXy6rLMsk/rqRyD8TSbf3RF/wC8jmv48KpYrwaTPpOOSeelUSXahfJFmW5YpOcnd3Jy8vDxcXF5vyPIqbXB0rSRJGo7HiEwUbubm5uLm5kZOTg6tYoSsIgiA0YNroaC68/x774qPIdbCuFnWVJe5+ZDqh946ztBmMJjacTOLryMucSbLNxPB00jClewgdcuB8ZCKmEtnaTTp50+/+Frh42bMvaR9LTy21mUwGc6nP+1rex6S2k/B3KnvV7u2oIY8pcnJy6NChA3q9HkmSOHr0KH5+fphMJsLDw9mxYwdgHm9eG+b27NmTHTt2oBZ7Tjbo770gCEJdM+bqyN+dQP6+JGSt7ZyGXVM3XAYGY9fC3TIJdzLtJPMj55NckAyAUlIyr+s8JredXD8n6hKPwt8vw5Vdtu0dH4Tw/4C7uexj3JlMNi0+ha7IXA3HwVXDiCc64N/Uzeayk/E5vLDqBGdLjN+aeDvxzvgO9GzqZWkrystl0xcLuXzkoKUtpH0nRjzzPE7uHrf6KeuUbDKR9/ffpH38CbqYGOsBScJtzGi8n3mmVGWi+qyuxhXvvPMO//73v5k3bx7vvvsuSqWSjIwMfHx8+OeffwgPD7ecm5CQwKOPPsqOHTv48MMPefbZZ2utn7czMaYUhIZBn1JA/t4kCo+kIOtMNseUHnY49w7EqZsfCsdb+F5ZXwxn1sC59VCYBY4e0HoUtB0L6ipsn1GYeTXz+moAO+EwaK1jCh2w38GerY6ObHd0IENVdvJlW6+2hAeHMzhkMM3cm9XPMVglXNty79dDcTZbtwB0bezBjP5NubutH0pF/Xw+fUYG+1/9jpNFLdEajmIs3m855urty5jn/oVf0+Z12EOhrlRlTFGpZRp9+/blr7/+om/fvqWOjR8/ng4lsqcqcuLECdasWVPp8wVBEARBuH3oU1NJ/fwzDkduJcrXHflqMFuSZTp37k7/5/+F+upexwVaA78cjOPbXdEkZNuW8QzxdOTx/k3orrLnwB+XOJtlXZXq6m1P/wdbEtzOgy2xW1i2bxlnMs7YXO9p78kjbR7hwVYP4mZnO/kq1G9ubm7ExsaWalcoFGzcuJHXXnuNn3/+meTkZAICAnjwwQf5z3/+I4LZgiAIwk3TpxeRvyOegsMpYCyREyCBQzsvXMKC0QRbSxnLssxvF37jnQPvoDeZM7i9Hbx5f8D7dPOvh1tg5MTD1v/BiZ9t20P6wLA3oVEXS9PJ7fHs/PUi8tVFhF5Bzox8qiMuntYJ6mK9kYX/XGDJzmjL1jBKhcSM/k15dkgL7NXWCeeki+dZt+gd8tLTzA2SRK/xD9H7vodQKG6fqoCyLFOwazepCz9Ce+aszTHnwYPxmTsH+5Yt66h3Dc8zzzzDp59+ysKFC/ntt9944IEHaN7cPAm+Z88e0tLSuHLlCnv27GHz5s1otVpCQkJ44okn6rjngiAINU82yRSfyzSXFY/KLnXcrrm7uax4a89SW4RU27mNsOZJKM4GSQGyyfzx7Dr460UY9xW0uqf0dUYDpJ65Wjb8ahA7I6rUafmSxE5HByIcHdjp6EBBGQmXSklJV7+uhIeEEx4cToBzwK19xlp2LC6bxTsu89epJEwlh6ESDG/nz+P9m9K1cf1eAJiyPoJtP10k3akl+uKNmAzWOZ2mXXtwz1PzsXd2rsMeCg1FpTK0DQYDJ06coEOHDjaTgQqFgpUrVzJx4sRKv+APP/zA5MmTRYb2TRCrHwVBEISGypifT8a33xLz4w8c93Ozycr2cHVjxP/9B/+WrQFIz9fy3Z4Yvt97hZwi2zKenYLcmBXWjF4+ruz+7SKxpzMtxxQqiS7DGtNusB8b4zaw/PRy4vLibK4Pcg5iarup3Nv8XuxVVVgZfJsRY4o7l/jeC4IgVJ4uPo+8yHiKTqVDyZkTpYRTFz+cBzRC7eNoc02RoYg39r3Bn5f+tLR18e3CB2Ef4ONYz0pIa/Ng1yLY+xkYSpQf9WwKd79uzqa6msVkMprY9etFTkYmWE4L7ejN3dPborG35krsv5zBS3+cJDq9wNLWJsCV9yZ0pEOQdRGhLMsc3bSOyBVLMRmvZnq7uDLimecJ7WQNoN8OCo8eJe2jhRQePGjT7ti9Oz7z5+F411111LPqq8txxZEjRxg8eDA5OTk3zLaTZRlPT0+2bdtWpYQc4cbEmFIQ6h9ToZ6CQynk70vCmFlGWfEuV8uK+9VQWfFzG+Hna3GiskJOV39WP/QjBHW7Wjb8agA78QjoC8u8bbpSwTZHB7a6erBfo8RQxr3tlHb0CezD4JDBhAWF4W7vfkseqa6YTDJbz6WyeMdlDsRk2hyzVyt4oFsw0/s2IdS7HpeIBww5ORx67TuO5zRFJ2Why18PsnmMKCkU9HtoMt1Hj0e6yUrQwu3hlmdoq1QqunQp/YaicePGOFdx5YSzszMhISFVukYQBEEQhIbJpNOR/fPPpH75FRc0ENXYB/nqhJOERI9R4+j10CRUajXR6QUs3nmZ3w/HozPYlsIa1MqHmQOa0S3IjaObY/n16/MYS5wT0taTzuMC2JT1Jy+sW0lmse2Av41nG6Z3mM7dIXejvI2yfQRBEARBuLVkWUYblU1eZHyprCbJTolTrwBc+gaidLUrdW1cbhzzts/jfNZ5S9ujbR5lfrf5qBX1qFKI0QBHV8C2t6Ag1dpu7w4DX4Juj4FKY2nWFur5e8lp4s5Yx1d33R1Cr3HNUFzN7Mor1vPupnOs3GfNuNEoFcwZ3JxZYc1QKxUl7lfI5q8/4cI+a2nzwFZtGTX3BVy8vGvggetG8YULpC36mPyICJt2+7Zt8Zk3D6d+fRts2dP6oEuXLhw7downn3ySTZs2lXveiBEj+OKLL8RcpCAIty19cgH5exIpPJqKrL+urLinvbWsuEMN7qmsLzZnZgNlB7NLtP8yESrIsYzV2LPVrwkRDhqO67NK3NH6f64aVwYGDyQ8OJzegb1xVDuWdasGpVhvZNWReL7dGc3lEosDAbyd7ZjSuzGP9mqMh5OmnDvUH+lbdxOx9ASpzu0wGg9jKNrJte+fk7sHo+a+SFDb9nXbSaHBqdZPsejo6Cpfc++993LvvfdW52UFQRAEQajnZJOJ3PXrSfv4EzIy0jgR4muTle3VKJh7Zj+HX9PmHI3N4uvIy/x9JtnmPY1KIXFv50bMHNCUVv4uxJxM5+f/HSA33brS2NnDjvZjfNmmXMsbO36j0GC7ordXQC+mt59Or4BeYsJQEARBEIRyyUaZolPp5EXGoU+0nUBUOKtx7tcI554B5U4GR8ZFsmDnAvL0eQA4qBx4vc/rDG8yvMb7XiVR/8Dm/5jLel6jUEPPWTDgeXCwLVmZnVrIxi9OkJVsHmMplBIDH2lFmz6BlnO2nUvlX6tPkpRjHaN1CXHnvfs60tzXxeZ+qTGXWbfwbbKTkyxt3UaPp99Dk1GqanCivRbp4uNJ//RTcv5cZzNhrwkNxefZubgMHSoykW6Rxo0bs3HjRqKiovjnn3+4ePEieXl5uLi40KJFC4YMGWIpRS4IgnA7kY0yxWczzGXFL+eUOm7Xwh3nvo2wb+lx68uKl+XMGnOZcUArwWYnRyIcHclWKHA3mQgvLGRoQSF2MmUGs2W3YM4EtiHC0YkIbTJRBQlAAehtx2R+jn6Eh5j3w+7i16V+LRishox8Ld/vvcKKfVfILNDZHGvu68yM/k24t3Mjm21b6itTYSFH/reMI6nB6Jwaoy/4E5P+kuV4cLuOjJzzfzi51+8y6UL9VOvvFqKjo9m5cyeTJ0+u7ZcWBEEQBKGGmfcH3EXqhx9RdP4cl3w9iGoZZM3KVijoOfZ+eox7kB2Xsnjmq72lyic526mY2DOEaX1DCXBzIC+zmL++OsnlY2mWcxQKicb9XNgXuJ5FUWsxmAzWY5KCuxvfzbT202jn1a52HlyocytXruTXX3/l0qVLqFQqQkNDGTlyJNOmTRP7ZwuCIAjlkvVGCg6nkrcjvlR5TpWXPc4DgnDq4oekLjsAaTQZ+eL4F3xz4htLW6hrKIsGLaKZe7Ma7XuVpJyBzS/Dpa227W3GwN2vmcuMXyfhQhZ/fX0SbYF5nGXvpOaeJzoQ2MIdgMwCHa+vO82aY4mWaxw1Sl4Y1opJvUNRlphAl2WZU9u2ELH0Kwx680StnZMTw5+cR/PuvW7xw9YNQ3o66V9+Rdavv4Leum2Oys8P79lP4z5uHNJtErSvb5o3by4C14Ig3BGMBXoKDiZTsC8JY7bW5pikUeLY9WpZcZ9azlY+tx4kBdsc7HjZ25NcpRKFLGOSJBSyzD9OjrzjaeTNtEwGFhWBgyeGzhM57O5DhC6diJT9JBecg+LSt27m1swSxG7r1fa2Sla4lJbPt7uiWXU4Hu11lQp7N/Vi5oCmhLX0sVTEqe8y9xxi2xf7SHZui0lKRZ+3DtlkXXDRc9wD9Ln/ERTK+h+YF+qnWh9J79mzh2nTpomAtiAIgiDcZopOniT1gw8p3L+fXHsNx1sEkVciK9s7JJTwmXPYm+PAiM/2cjE13+Z6Xxc7pvVtwsSeIbg5qDEaTBzeFMOhjTEYdNaBvWuoimOtNvFF7jq4Yr1eo9AwtvlYprSbQoirKCl4u9i5cyeLFy/m5MmTaLVaWrVqxZw5cxg0aBAAer2esWPHlio1eerUKdavX8/HH3/M5s2badSoUV10XxAEQainTEUG8vclkr87EVO+3uaYupEzLmFBOLT3vmFWU1ZxFi/tfIk9iXssbUNChvC/vv/DWVO17dlqTF4KbHvTXGJcLjFR2qgrDH0TGvcu87IzuxOJ/OE8JpM5i8ojwImRT3XEzccBWZZZdyKJ//552iaLqH8Lb94a14FgT9tJdH1xMf98+wVndlhLb/s1bc7oeS/h5ut/Cx+2bhhzc8lYupTM775HLiqytCvd3PCaOROPRyaisLevwx4KgiAIDZ0uMd9cVvxYGlwX+FR5O+DUOwCnrn4o7Oto4VROAtsc7Jjra906xHQ18HztY55CwRw/bx7LySXVzY/IrEhykktnlwN08ulEeEg44cHhhLqF1nj3a5MsyxyMyeKbHZfZei7FJmFdqZAY2SGAGf2b0iHIre46WUUmrZYT73zPwRhvtE5tMGpPYCjcBhgBsHdy5p7Zz9G0S/e67ajQ4N3Sn3AFBQXk5ORgMBjKPSc9Pf1WvqQgCIIgCHVMFxND6qKPydu0CZMEl/w8iPLzsMnK7jx6Ahf8e3Hfb7Gk5NquIm7m48SsAc24965A7FTmVZrx57PY8dN5S3lLAJUTnG+1gy2aVZBrvd5F48JDrR5iYpuJeDvcPvsuCvDee++xYMECm7bz58+zbt06fvzxRx544AFefvll/vrrr3Lvce7cOe677z727t1b090VBEEQGgBjjpa83QkU7EtG1hltjtk1d8dlYBB2zdwrzP45nX6aedvnkVRgLp2tlJQ82+VZprSbUj8yh3SFsO9z2LUIdCUWEboFw5D/QrvxUEbZa5NJZu8fURz7J87SFtLOk6GPt8fOQUVyTjEvrznFP2dTrLd0UPOfUW2Z0KVRqWfPiI9j3cK3yYi37q3daehIBk5+HFUDr6BiKi4m64cfSP9mMaYc64S85OiI19QpeE6bhtLF5QZ3EGqKwWDgu+++4/jx47i6unL//ffTqVOnuu6WIAhClchGmaLT6eTvSUQXk1vquH0rD5z7BGLXopbKipfqoAxX9sCeT9AmHeHlYPMicrmccZAsSSDLLHF3AwqgxNSQSqGip39PwkPCGRQ8CB9Hn1p4gNplMJr4+3QK3+y8zPG4bJtjTholD/cIYVq/JjRyd6ibDt6knCMn2bZwOwlO7ZA1evSFf2PSWbe28W/WgtHzFuDq41uHvRRuF5Isl7FpQRUkJCTw5ptvsm7dOhITEyu+4Cqj0VjxSYKN3Nxc3NzcyMnJwdXVta67IwiCINzhDGlppH3xBdm//Q4GgzkrO8TXJivbvVEIaXeNY2WUiXyt7YK37qEezBrQjPDWvpbySQU5Wnb/HsXFg9ZJUiSZ2JAT/OP7EzqVNevF19GXyW0nc1/L+3BSO9Xsw95mGsKY4vDhw/Ts2RNZlilruOrl5cWJEydo3rw5xcXFjBs3jhEjRhAcHIzRaCQmJoY1a9awefNmJEli3bp1jBgxog6epH5pCN97QRCEmqBPLSRvRzyFR1PBWOL3igQOHbxxGRCEJqji4KMsy6y6uIq39r+F3mTO7Pa09+SDsA/o7l8Psk5MJjj5K2x9HXITrO0aF+g/H3o9CeqyJ0p1xQa2fHuamJMZlraO4UH0ndAcSSHx88E43tpwlrwSY7oRHfz575h2+LqUzkA+u2s7W775DL3WXD9Ube/A0Jmzad037BY9bN2Q9Xqy/1hN+uefY0hNtR5Qq/F46CG8Z81E5X1nLLKsq3GFTqejW7du5OebF2t899139O/fH4Ds7GwGDhzIyZMnLecrFAoWLVrE008/XWt9vN2JMaUg1Bxjvs5aVjzHdj9lyU6JUzc/nHoHovauo8CnyWguMb77E0g4BMA6Z0f+5VO1332OKkf6B/UnPDic/kH9cdHcnovACrQGfj0Ux9Ld0cRlFtkc83e1Z1rfUB7qYa5U2JDIej2nPviB/Rdc0Np5YDJmos9fh2yyjiM7DxtF2KTHGvwiRqFmVWVMUa0M7ejoaHr16kV6enqZE43lqRerlQVBEARBuCnG/Hwyly4lY9ly5KIiTBJE+Xlw6bqs7NxWYXyja4n2tPUNmCTB0LZ+zBzQjK6NPSztJqOJk9sT2L/uMvpi66K3TNcEtob+QIaTdUK2iVsTprWbxqimo1Arb7NBsb4YzqwxvzkszAJHD2g9CtqOBfWdVaryq6++wmQy4e7uzuzZs+nZsydqtZrz58/z5Zdfcv78eV599VWKi4v55ZdfuO+++0rd44knnuDTTz9l7ty5/PHHHyKgLQiCcAfSxuaSFxlP8ZkMKDltoZJw6uqHS/8gVJWcEC42FPPm/jdZE7XG0tbZpzMfhH2An5Pfre34zYjZBX//G5KOWdskJXSdCgMXgHP52U656UVs+OIEmYkF5ssUEgMeakn7AY2ISS9gwR8n2XvZOkHp7WzHG2PbMbx9QKl7GXQ6tn+/mONbrBVUvIMbM3r+AjwDg6r9mHVFNpnI/esv0j75BP0Va8Y5CgVuY8bgPXs2miCxxUlt2LBhA6dOnUKSJHr16oWHh/V9xYsvvsiJEycAUKlUODk5kZOTw7x58xgwYAAdOnSoq24LgiDckC4+z1xW/EQaGGxjLSofB5z7BOLYxReFXR2VFdcXwbEfYe9nkHnZ5lCEq5dlz+wKyTKdfTqxZPhS7JR2FZ/fQKXmFrN8Twwr910ht9g2waNNgCszBzRhZIdANKrSFXPqu/wzF9j27iZiHdqDHRh159EXbAbMiz3V9g4MnfUMrfsMqNuOCredav30e/XVV0lLS8PNzY0xY8bQtm1bPDw8sLMr/wfR3r17Wbx4cXVe1kKr1bJo0SJ+/vlnoqKiUCqVtGnThilTpjBz5kwUZZTPqkhMTAxNmjSp8Lz333+f559/vtzjiYmJvPvuu6xfv56EhATc3Nzo3r07zzzzDMOGDatyvwRBEAShrpl0OrJ//oX0L7/EmJUFQK69hhOh/uTaWQPLxS6+rHEZQFqxddJUo1IwoUsQM/o3oamP7Z6SSVHZRP50gYwEazlMraqQvSFrOee7HyTzG7nOPp2Z3n46YcFhKKSGN+Cv0LmNsOZJKM4GSWHe51JSwNl18NeLMO4raHVPXfey1uzatQsHBwd27dpF27ZtLe1Dhw7l8ccfp3fv3qxcuZJ77723zGD2Nc888ww//PADR44cqY1uC4IgCPWALMsUX8gib3s8umjbvRkleyXOvQJx7huI0kVT6XvG5cXx3PbnOJt51tL2SJtHeK7rc3W/wC49Cra8Auc32La3GAZD/wc+rW54edKlHP766gRFeeZJSDtHFcNmtiewpQeLd1zmwy3nKdZb9+u8v2sQL49si5tj6efOTklm3cK3SY2+ZGlrFzaYwY89idquYS7Ok2WZgp07SV24CO3ZszbHnIcMxnfuXOxatKij3t2ZNmzYgFKp5M8//+See6zj48zMTL777jskSaJ///6sXr0aDw8PVq1axcSJE/nyyy/54osv6rDn5auJOc5rcnJyeO+99/jjjz+4cuUKjo6OdOzYkZkzZ/LQQw/dwqcQBKGqZKOJolPp5O9JQnflurLiEti39jSXFW9e8XYoNaYwEw5+C/u/gsLrtpP1aw9955IR/yemtOOVu58koVJqbttg9vnkPBbvvMzaYwnojbYLE8Ja+jCjf1P6NvdqkEmfstHIuU9/Yc8xNcUO7ZFlA4aiHRi1xyzneAWFMHr+ArwaBdddR4XbVrUC2lu3bqV58+bs2bMH70qWU1KpVLckoJ2enk54eDgnT55k5syZfPrpp+h0Oj777DOefPJJfvvtNzZs2IC9/c29YXJ0dLzhDxWNpvw3vvv27WPEiBEUFxfz2muvERYWRlxcHK+//jrDhw9nwYIFvPXWWzfVL0EQBEGobbLJRO6GjaR9/DH6+HgAc1Z2gDeXfNyRr6Y7mSQFh9zu4qB7V0ySeS9sV3sVk3uHMqVPKD4utm9WivJ07Fl9iXN7kmzaz/juYX/IOrRq8/7ZYUFhTG8/nS5+XWr6UevOuY3w80Tr57LJ9mNxDvz0MDz0I7S+M7KM4+PjGT9+vE0w+xoHBweef/55Jk+ebDOJWZ4RI0bwySef1EQ3BUEQhHpENsoUnUwjLzIefVKBzTGFiwaX/o1w6uGPwr5qUyE74newYOcCcnXmiWYHlQP/7f1fRjSt49/JhZkQ+S4cXAKmEpk/fh1g2BvQdGCFtzi/P5mIFWcxXc0Ec/N1YNTTnUiWDYz/YjfH460LAoI8HHh7fAf6tyg70/vigT38/eXHaAvNX3uVWkP4Y0/QYdDQm3/GOlZ45ChpH31E4aFDNu2OPXviO+9ZHDp3rpuO3eH279/PAw88UGocuHr1anQ6HQqFgsWLF1sytydMmMC4cePYvn17HfS2YjU5xxkVFUV4eDgJCQm8+OKLjBkzhszMTN577z0efvhh1q9fz/fff1+tgLkgCFVnzNNRcCCZ/H1JmPKuKytur8Spuz/OvQJQedXhfspZV2DfF3Dke9AX2h5rEgZ955IS0I4VZ1ZyIv1UpW+rQIG7nfut7Wsdk2WZ3VEZLN55mcgLaTbH1EqJezs34vH+TWjt33C3aCi8FMP2N/8kWt0W7BXIxlz0BeswGa1bBrbtP4ghjz+N+iZjcoJQkWoFtDMyMnj22WcrHcwG6NixI6+88kp1XhaA+++/n5MnTzJ37lwWLVpkaR80aBDjxo1j7dq1PPnkkyxbtuym7n/69GlCQ0OrfF1aWhqjR48mKyuL1atXM3bsWAB69OjBkCFD6NChA2+//TatWrViypQpN9U3QRAEQagNsixTsHsPqR9+aJONkmuv4VT75mTrtVyr3Zmu8WKL9yDS7cwTnI3cHZjerwkPdg/G+bpyWCaTzJldiexbcwltoXXyNc0pjp1NfiPV5QoqScWYpmOY2m4qLTxu84wXfbE5MxuwrYVakgxI5vOeO39HlB8vKCigR48e5R7v2bMnAEFBFZcuDQ4OtuyxKAiCINx+TDojhYdSyNsZjzFLa3NM5eOAy4AgHO/yRapiSUejychXJ77i6+NfWxbwNXZtzMKBC+t2fGLQwoFvYMf75kVv1zj7w+D/QKeHQaG84S1kk8z+Py9zeNMVS1ujVh4Mmt6Gbw/E8sW2KAwm8zNLEkztE8rzQ1vhVEaZU6PBwM4fl3N4wxpLm0dAIKPnLcCnccUV8Oqj4vPnSVu4iPzrAqD27drhM38eTn36NMjMqttFTEwMM2bMKNW+bt06wDw32OK6rPlevXqxfv36WulfVdXUHKdWq2XkyJHExcWxcOFCnn32WcuxIUOG0LdvX3744QdatGjBq6++eoueRhCEG9HFlSgrfl32rsrP0VxW/C5fFJob/x6vUUnHzftjn14NsnVLOCQFtBsHfeZwxdmDZaeW8efe/0Nv0lfp9iZMhIeE3+JO1w290cT6E4l8syOas0m2Gfau9ioe7dWYKX1C8XNtuHM4siwT9c0qdu0xUOjQHgCjPhpjwUZMsnncrVSrCZ82iw7hw8T4SKhR1Qpo+/v7VymYDdChQ4dq71ezatUqtm/fjr29Pf/9739tjkmSxNtvv83atWv57rvvmD17Nl27dq3W61XF66+/Tnp6Oj179rQEs69xc3NjwYIFPPXUU7z44os88MADODjU4SorQRAEQShH0clTpH70IYV791naTBLEdu3IWWMRst48aDWi4LC7NSu7TYArswY0ZWTHANTK0pPGqVdyifzxPKlX8ixtWmUhB4I3csZ/F/Zqex5t8SiT204mwLn0noy3pTNrzGXGKySbzzuzFjo9WLN9qidK7odY3rEbbXVzjUajQa+v2ptsQRAEof4zFerJ35tE/p4ETAW2exOqg11wDQvCvq0XkqLqE2vZxdm8tOsldifstrQNDhnM//r+DxeNS7X7flNk2Txu+Oe/kBVjbVc7Qp850OcZsHMu52IrvdbIP8vPcPmoNYOobf9AXPv4cv/S/VxIsS4Ca+7rzLsTOtK1cdm/k3PT01j/8bskXThnaWvZqx9DZ83BztGxqk9Y53RxcaR98im569ebv95XaZo0wWfuXFyGDRUTtfWATqcrNZ9WWFjIli1bkCSJhx9+uNQ1Li4u9XI8WJNznJ999hkXLlwgMDCQZ555xuaYRqPh9ddfZ8SIEbz77rvMmDGDwMDAW/FIgiBcRzaYKDqZTv6eRHRxebYHJbBv42UuK97Mre5+x8gyXN4Guz+Gy9ttj6kcoMtk6P0UZ01FLDm5hC1XtlgW+wGoJTVIYDAZbNqvJyHhonFhaGjDrd4CkFus5+cDsSzbHUNSTrHNsSAPBx7r14QHugWXuRCwISmOTyTytVVEKdqAgwJZNmEs2oVBa61c4+bnz+h5C/Br0qwOeyrcKar1L2rEiBEcPXqUadOmVfqatLQ0zp49y4ABN78h/JIlSwAIDw/H3d291PE2bdrQpk0bzp49y9KlS2stoK3T6VixYgVgLmdUlgkTJvDUU0+RkpLC+vXruf/++2ulb4IgCIJQGborV0j7+GNyN/5l017ctjWH/dzJybROfJbMyu7b3ItZA5rRv4V3mW/Aigv07Ft7idM7EgDr8fPeB9jX+E/sXVQ81eYpHm79MG52bjX2fPVGcQ4kHoX4Q3CgCluxSAo4t+6OCWjfqPShmEwWBEG4cxmyteTvSqDgQBKyzmRzzK6lBy5hQdg1vflJ4dMZp5m/bT6JBYkAKCQFc7vMZVq7aXX3+yfuIGz+N8TtL9EoQedHIPzf4Fq5QFR+VjEbvzxJWqx5Ql2SoPu4ZmzS5rP0m72WGK5KIfHUwGY8Hd4cO1XZWWIxxw6z4bMPKc4zZyQplCoGTn6MzsNGNbjf0/rUVDK++oqsX38Dg3VxhMrfH5/ZT+M2diySqmFPSt9OfH19OX/+vE3b77//TlFRESqVqlSCCUBCQgKurvWv1GtNznFeu/fYsWNRKkv/Ox46dCguLi7k5eXxww8/8H//93839xCCIJTJmKsjf38SBfuTMOXbLqiRHFQ49fDHuWcAKs86zN416uH0GtjzMSSftD3m6AU9ZiF3e4xD+dF8e+gddifutjnFWe3Mg60e5NG2j3Iq/RRzIuYgIZUZ1JauzgW92e/NBrt/dkJ2Ect2RfPzwTjytbaLKTsFuTFjQFOGt/NHVUaCR0MiyzLRK9azY2seBQ7tzG2mAuTCPzHordsGNu/ei2FPPou9U8ULKgXhVqjWaPxf//oXffv25YEHHqBfv36Vumbz5s1MnjwZo9FY8cll0Ol0bN26FYDu3buXe1737t05e/YsGzZs4PPPP7+p16qq3bt3k5OTc8O++fr6EhISQmxsLBs2bBABbUEQBKFeMKSnk/7FF6Um8ZTBwZzp1Z2oiyeRrgazr2VlH/boyj2dgpk1oCntG5UdhJZlmVN74tn5+3nkIgXXgtmZDknsbPIbikbFzGv3DGObj8VBdZtWLTFoIeUUJByBhMPmP+kXbu5esgmKsm5t/wRBEAShgdCnFJAXGU/hsTQwlZgolcChow8uYUFoAqs3ofbHxT94c9+b6Ezm/Sw97T15b8B79AzoWa373rSsK+aM7NN/2LY3CYOhb0BAx0rfKiUml41fnqAwx/xsanslwSOCmX/sEnGZRZbzOjRy490JHWkbWHbwz2Qysve3H9m3+ldLFrOrjy+jn30J/+Ytq/Z8dcyYm0vGkm/JXLECucj6NVC6u+M1axYeEx9GUYlqMELt6t69OytWrGDOnDmEhISQmprK66+/jiRJDB48GE9Pz1LXrF27tlQZ8rpWk3Oc0dHRnDt37ob3ViqV3HXXXezYsYMNGzaIgLYg3AKyLKOLNZcVLzqZbjteAdT+Tjj3CcShs0/dlhXX5sPRFbD3c8iJsz3mEQp9nsHU8SEiUw6yZMdcTqSdsDnF096TSW0n8WCrBy2VawYGD+TjQR/z8u6XydXlokCBCZPlo4vGhTf7vcnA4IG184y30KmEHL7ZcZkNJ5MwXvc9HdLGj5kDmtI91KPBLegrizY1nZ3//YULhpbIDk4AmPSxyLq/0OsLAJAUCgZMnErXUeNui2cWGo5qBbRNJhNff/01kyZNon///owZM4ZWrVrh4uJSbkZNenp6dV6Ss2fPWkoE3WiP62vHrly5Qk5ODm5uVcv22rRpExs3buTUqVOkpKTg4uJC+/btmTBhAtOmTcO+jI3tT5yw/mCvqG+xsbE25wuCIAhCXTDmF5C5dCkZy5cjFxZa2pWeniSMvJfdl8/hcOG4Jac6XePFTv8hDOnfhQ/6NSHYs/xSkrExKaz/7hBykgNgHhfoFVoOBf+Ftk0yz3acydDQoagUt1G2i8kEmZch4ZA1eJ18Eoy6W3N/SQEO5Zfhvt1U5o2RePMkCIJw+9NeySVvexzFZzNtD6gUOHX3w6V/ULWzm7RGLW/tf4s/LloDxx19OvJh2If4O/lX6943pTgHdn4I+74CY4l9wb1bmgPZLYaa06sr6eKhFLZ+dxaj3pzR7uxpz8WW9rwVcdZyjp1Kwfy7W/JYvyblZhYVZGex4ZP3iTttnc9o2qU7w5+ej4NzHZVivwmmoiIyV64kY/ESTLnWPS8Vjo54Tp2K5/RpKJ1FtlF9NXPmTNasWUPbtm1p27YtFy5cIDc3F0mSSpXWzs/P59///jfHjh1j3rx5ddTjstXkHGdV5ih37Ngh5igFoZpkg4nC42nk70lEn5Bve1ABDu28ce4diKaJa92+h81Phf1fw8Elpbc+C+wCfeeibzWcTVe2sHTTJKKyo2xOaeTciGntpnFv83uxV5Ueew0KGUREowg2x2wmIjaCbG027nbuhIeEMzR0aIPKzDaZZCIvpPHNjsvsvZxhc8xOpWBC1yAe69eEZj63z3jhym+biVyXQp5jG1CYF2iodbsoKD6MbLo6hvTwZOSzLxLUul0d91a4E1VrBjk0NNTyA/iHH37ghx9+uCWdupHY2FjL//v4+JR7Xslj8fHxVQ5oP//888ydO5f58+fj4uLChQsX+Oijj3jqqaf4/PPPWb9+fakBYVX7FhcXV+45AFqtFq3W+sY1t8SbLEEQBEGoDlmnI+uXX0n/8kuMmdbJYcnBgZQRE/ijwEijE7twwDxgNaLgtE83uoy5n3V9m+HhpCn33gmZSfz+YySKU14osGZdX/I8SmGPaJ7s/jB9AvvcHoHIvBRr4DrhMCQeMU9A34hCDf4doFFX85/8FPjn1cq9nmyC1qOr3+8G4tFHH+XRRx8t97gkSQwZMqQWeyQIgiDUFtkkU3w+k7zIeHQxtu+FJQcVzr0DcO4TiNK5/DFJZSXkJzBv2zzOZlqDuw+1eogXur+AWqmu9v2rxKiHw8th+9tQWGLy1NELBi6ArlOhCn2SZZlDG2M4sC7a0mYf4MASqYC4c9aqLz2aePLuhI408XYq915xZ06y4eP3KMg2XycpFPR/eArdRo1DusE2IfWJrNeTvWoV6Z9/gSHNupWOpFbj/vBDeM+ahcrLqw57KFTG8OHDmTNnDp988gmHDln38Xz00UcZMWKE5fN33nmHl19+GZPJhCRJjBs3ri66W66anOOs6r2zsrIoKCjAyansnwHlzVG2bt36htsEAXTp0oU///zTpm3MmDEcOXLkxg8BzJ8/n/nz51s+z8vLo02bNhVeB+as/JIl2tevX88TTzxR4XXOzs6W7PZr/u///o+ffvqpwmtHjhzJ119/bdPWrVs3kpOTK7z2vffeY+LEiZbPz58/z+DBgyu8DuDgwYMEBARYPv/mm294/fXXK7yuZcuWRERE2LQ98sgjREZGVnjtjBkzePVV2/exQUFBlervypUrGThwoOXz7du33/B9X0nx8fE2n7/22mssXlzxNl5hYWGlYhfh4eFcuFBx9bRXXnmFmTNnWj5PSkqyVj6QQdYZMemMYLruQgWs+/AnOt/XD5W7OZD7448/8sILL1T4mv7+/jY/3wBmzZrFhg0bKrz24Ycf5v3337dpa92iGflZKaAvslRXsVDZg50zsvICD/97FyfPfmnZdqUopogrH19BpVDhpHYiS5nFc1f/u97Zs2dxcXHBTmnH6Gajubj2Ir999BsAv/Fbuf2tbz8jZKBYb6RAa8BgtP1aKRQSHq4uHDp7Fm9na3C+wf+MMMlocwsxlAwXyjL+7g483q+TpSmkfSd+P3mB/w0ZVuFrip8R5VdeKWnr1q20atXK8nmd/Yxo3Zr8/PxyrrD66quvGDVqlOXzw4cPc++991Z4HVh/Rlzz0Ucf8dFHH2EyXf/Ds3zVTomSr/8BWAnVmcDOy8uz/H9ZWdJlHatKINje3p7w8HAWLlxIx47W0l1du3ZlwoQJDB8+nG3btln2D7crUXqqqn2rqF9vv/02r732WqX7LgiCIAgVkU0mcjf+RdrHH6MvubBKpSJpwD185dKSZrE7CdFZJ1BzHHxoMv4xvr6nN/bq8ktiXc6+zM8bNqLa3wgnna/1evs0CnpeZvrdo2nv3b5GnqtWaPMh6Zg5cB1/yFxCPDe+wsvwamENXjfqCv7tQVViVbK+GHYtvBoIv9G4SgJ7N2hbuYHi7eBmxpnluS0WUAiCINwBZKM5wykvMh5DSqHNMaWrBuf+QTj18ENhd2sqvOxK2MVLO18iR2tekGavtOfVPq8yqumoCq68xWQZLvwNW/5juzWJ0g56PQn955vHAVVg0BmJ+P4sFw+lWtqyfdUsLczEePXXorOdigUjWvNw9xAUirJ/V8omEwfW/s7uX1YiyyWyc+a+QFCbhjG2s4yBP/kEfYlAHwoFbmPH4vP0U6gbNaq7DgpVtmjRIsaMGcPGjRsxGAyEhYWVCli3atWKSZMmAeDq6krfvn3roqvlqsk5zpu9d3kB7fLmKJOSkso421ZwcHCptrS0NBISEiq89vrnlWW5UteBuaR7SUVFRZW6tuRk+zVZWVmVujYzM7NUW3JycqWuLSy0/Z1nMBgq/azXb+2Zn59fqWvLWhyRnp5eqWuvbbtZUmX7W3JxxLXPK3ttWf2ozLVlVY1NSUmp1LXXB3mq8r1x6O1vCWaD+ft8s8+amZlZqWuzskpsUxZ3EPZ8TGLsZfLKLRxXdPUP/HrqV9x6WP9eNHduzqWsSxgwUEzxDV/3+vfvubm5lepvffkZkZaVV+G1RqBI1toEs+H2/Rlhp7qafS5J9Br/IL3ve5gl94wQPyOuc/3PCKPRWOn+Ggy2e7HX+s+IqxITE23GDuUpKrFFD5j/HVW2vzf7M6Kkar8DnDVrFr169ar0+Xv37q3Uioi64u/vb9m/5noajYZFixbRqVMnzp49y7Jlyyq1su9mLViwwGaFUW5ubpk/4AVBEAShMvJ37yb1ww/Rnjlr057QpT/vB/TDPf8S3WL+RHl1WbFJUuDbbyTPzJyGRlN+9tOJtBOs2PMLqj1BBOW0tbQbFHq0HRN48L6BNPN+sGYeqqYY9ZB6pkT29RFIO2fOkL4RJ18I6gaNupiD14F3VVwiXG0P476Cnx7GvMd4WUHcqxPM474yn3+HaN26NX5+ftW+T0pKCufPn78FPRIEQRBqiklnpOBAMvm7EjBm205iqXwdcBkQjGNnHyTVrckENskmvj7xNV8e+xL56u/eEJcQFg5aSEuPWt4HOukEbP43RO+wbW8/AQa/Ch6Nq3zLghwtf311kpRo60TvfhcjO7RFlmFFeGtf3hzXngA3h3LuAkV5ufz1+UdEH7VmgIS078TIOf+Ho5t7lftV22RZpmDHDlIXLkJ7Xcaly9134zN3DnbNm9dR74TqCg8PJzw8vNzj48aNq3dZ2Q1VeXOUAQEBFWZol5Uh7uPjQ6NKLCJxdXW1+VySpEpdB5R6D+vg4FCpa53L2G7Aw8OjUteWtX+7v3/ltq1wdLTdzkulUlX6WZVK24Xnzs7Olbq2rPda3t7elbq2rGB4ZftbMkHs2ueVvbasflTmWm9v71Jtfn5+ZQbdrnft74SsN1J4LI2sv87g73zd32sJJJUChZ0SlNYFYiqVbfjF0dGxUv0t6++Np6dnpa71cHeH83/B7k8gdg8AgS4K8nWyebsSjRNonDAhUWgopFBfaBkLSRpz3/s16sfjHR6HeDjV6FSFrwmlF5G7urpWqr91/TPiSkYB3+6KZtmGCyidbau0aFQKnOxU2JUYf942PyMCA9HlFqI3KW22sVFIeoxXt7txtrfD3sWVEbOfo0lncza7+BlR2vV/J5RKZaX7Wyc/IzxKz1MGBgZWKkPbwcH2fYNGo6n0s5b3M8JkMlVqgRyAJFcj9UWhULBy5UqbUgcV+eGHH5g8eXKpVSGVtW7dOsaMGQOYy0CMHDmyzPM+++wzy745p06dol27W1fTv1GjRiQmJjJy5EjWr19vaX/uuef46KOPAPOqjPJWNd53332sWrUKb29v0kqUuKpIbm4ubm5u5OTklPphLQiCIAjlKTp1mrSPPqRgz16b9qRmHXg/dAhpGg13p2/Du0RWtlNACOPmPodfk2Zl3lOWZXYl7GL5se/gqDedEsNRytZBmCk4l1GTu9MkuAFkusgyZMVYA9cJhyDpOBhuvPoYjbM5YH0teN2oK7g2qtJ+ljbObYQ1T5r3sZIU5uD5tY/27uZgdqt7bu7e12kIY4qbGWeWZ+XKlUyZMuWmx5+3k4bwvRcE4c5iLNCTvyeRgr2JmAptMxQ0IS64hAVj38YTqZzs4ZuRo81hwc4F7EzYaWkbFDyIN/u9iYumFveBzk2EiDfg2I/YLGgL7gnD3jIvkrsJ6fF5bPj8BPlZ5slIowL+dNASpTYvzPNwVPPfMe0Y0ynwhhVMki6eZ92id8hLvzpvIUn0nvAQvSY8hEJRftWe+qLw8GFSP1pI0eHDNu2OvXvhO28eDiWq8gk3pyGNK9LS0jh79iwDBgyo665Y1OQc56effsqcOXMqvOb555/nww8/BG48l3m9hvS9F4TqMmQXU7AviYIDyaXGKgonNU49/XHuGYDSrY73hzZo4cSvsOdTSL9uQbezv7niS7dpxOlyWXZ6GWuj1qIzWbOUFZKCYY2HMb3DdFp7tq7lzte+w1eyWLLzMptOJ9tUYVdIcE/7AB7v34S7QipIUGigUiL2s/W7M2Q5WBdNOpoycA44Rew567gpoEUrRj37Eq7e5W9dIQjVVZUxRbUytPv27Yuvr2/FJ5bQrFkzJk+efNOvGRISYvn/GwWDSx6rbG3+qvQhMTGR6OjoUu0lX7+8QeC1volsa0EQBKEm6WJjSVv0MbkbN9q0p/o15uPmwzjm3Yzu2YcJTz+C4tpqXIWSXuMfoOe4B1CqSu/PaDAZ2BSziWWnlqG9pKFfzHhctNYVrJKLgbAHW9O2a3D9LfFckH41cF1i7+ui0mWfbEhK8GtnWzrcpxXcysnc1iPgufNwZi2cWwdFWebs7tajzWXG76DM7FtNkqRbWr5cEARBqD5DVjH5OxMoOJiMrLetgGLf2hOXsCA0oa63fDxxNuMs87bPIyHfXN5OISl45q5nmN5+OgqplvaB1ubDnk/ME876EuUjPUJhyGvm3/s3+dyXj6WxZdkZDFrzIq48hcwfjlpSVebfg/d2DuSVUW3xci5/0l2WZY7+9SeRK5dhMpon7h1cXBnxzPOEdupyU/2qTcXnzpG2cBH51+0Ba9++Pb7z5+HUp08d9UyoS5s3b65Wgk1NqMk5zqre28PDo9LBbEG4E8iyjC46h/zdiRSdyShVSE0d5Ixzn0AcO9666jE3rTgHDi2DfV9C/nV7MXu3gj7PQMcHOJ8bw7f73+TvK39jKlF9Tq1QM7b5WKa2m0qIawi3M6NJZsuZFBbvvMzhK7Zllx01Sh7oFsz0vk0I8XIs5w4Nm7GoiANv/MTx1ACMJYLZIV4JpBXuJvacdVu9LveMYcCj08qcGxSEulKtgPbOnTsrPuk6vXr1qlKJ8uu1adMGtVqNXq8nJiam3POuHWvcuHGZ5Q2qo7wJ0ZJ7bsfExBAaGnrDvnUUq4EFQRCEGmDIyCD9iy/J+uUXKLEXS6arN9+0HMaORp3w1mXwYMLveOutgVyfxk0Y/tQ8fEOblrpnob6Q1VGr+f709+RlFNM3ZgKhWSX2TFTIdL47mB4jm6HW1KOMHV0hJJ+wDV5nxVR8nUeT6/a97gCaWnhDo7aHTg+a/9zhVq9eTbduN5eZdr2BAweyevXqW3IvQRAEoXr0yQXkRcZTeDwVSsaxFeDYyReXsCDU/jUTVFl9cTVv7n8T7dUyih52HrwX9h69Am5+jqJKTEZzNnbEG7YTzvZuMOAF6DEDVDeX3SXLMkc3x7J3zSXLpHui0sQaJy0FCvB3teeNse0Z0vbGW3loCwv4+6uPubh/j6UtsFVbRj37Ai6epUsx1ie62FjSPvmU3A0bKJlqpWnaFJ9n5+Jy9931d8GlcEeqyTnO6+coK7q3mKMUBDOTzkjhsVQK9iSiT7bdsxilhEMHb5z7BKIJdqn73yk5CbD/Szi0HHTX7X0b0gf6zoEWwzicdpQl259lV8Ium1McVY482OpBJrWdhI/j7Z2BW6Qz8vvhOL7dFU1Mhu331cfFjql9QnmkZwjujuVvt9fQpe05xtavj5DhEApXp+0cTHk071HAsR1r0WvNVQo1Dg4MnTWXVr371V1nBaEc1d5Du6r27dvHN998w9KlS2/qeo1Gw+DBg9m0aROHDh0q97yDBw8ClFuupzxjx45lxowZN7wuNjYWoFTAuk+fPpbU+EOHDjFw4MBS16amplqur2rfBEEQBOFGjPkFZC5fTubSpZgKrQP0PHtnVrYYwsYmvTBJEj2yD9Et25qVrVAq6TnuQXqOu7/Uysvs4mx+OvcTP577kdyiPDonDmZE/N2oZOsgP6i1BwMeaolHDU0+V5rJaN7numTwOuUMyBVkYTh62QavA7uAk9eNrxFq3JgxR3q7jwABAABJREFUY27ZBEGjRo1uer8lQRAEofpkWUYXk0ve9jiKz9tmw0hqBU7d/XHu3wiVR81UI9Eatbxz4B1+v/C7pa2Ddwc+GvgR/k6V27ew2i5tg80vQ0qJfSgVKuj+OIS9CI6l91SsLKPexPYfz3FurzVIfkZt4G9HPQYJJvYM4aV7WuNqf+MMm9SYy6xb+DbZydY97LqNHk+/hyajVNX69FGl6VNTSf/yS7J/+91mMacqIACf2bNxu3cMUj3uv1C+v//+my+//LLUPF3TpqUX4FakoKDgVnbtlqjJOc4mTZrQunVrzp07x6FDh5g6dWqpc4xGI0ePHq3yvQXhdmTILCZ/X5K5ckzRdWXFXdQ49wzAqUcAStd6EPBMOWOu8nLyNzDpSxyQoM0o6DMXOagbO+J38O3fUzmaetTmcg87Dx5t+ygPtnoQN7tbmwhY36TlaVmxN4YV+66QVai3OdbSz5kZ/ZsypnMgdqp6lJhxi5m0Wg6/+wtHYj0xOIRa2kO9slEFJ3Bwy9+WNu+QUEbPW4BnoJg/EeqnWh/RX7p0ie++++6mA9oAjz/+OJs2bWLr1q3k5OSUWp147tw5zp49iyRJTJ8+vUr3Xrt2LUFBQeUO5I4dO2bZoPz6c+zs7Jg0aRKfffYZq1at4vnnny91/R9//AGYN5QfNWpUlfomCIIgCGWRdTqyfvuN9C++xJhh3Qe7WKVhVbMw/mgeRqHaHh9tGiOytuNalG45p7ys7MT8RL4/8z1/XPyDIkMRQdmtGB79NO7F1q1GnNw09L2/Bc27+tb+ymRZhpz4EsHrI5B4FPQVTFSpHCCgk3lPymt7X7s3vvl9r4Ua4+fnx+jRo7n33nsZOnQo9vai5LogCEJDI5tkis9mkhcZhy7WNnNI4ajCqXcgzn0CUTrVXCnDxPxE5m+fz+mM05a2B1s9yAvdX0CjrIVJ6dRzsOU/cHGzbXvrUeby4t7Nq3X7ojwdf319kqSoHEvbLns9e+0MNPZ25J3xHend7MYL9WRZ5mTEZiKWfYVRb57stXNyYvhT82nerWe1+leTjDk5ZCxZQuaKlcjFxZZ2pYcH3k/Mwv2hh1DY1fF+pkK1TJo0iYyMDHbv3m1TNvtGGcc3UufZlGWoyTnOxx9/nOeff541a9bwySefoFDYlkXesmULeXl52NvbM3HixGo/iyA0NLIso72UTf6eJIrPli4rrglxwblPIA7tveu+rLgsw5XdsPvj0mMKpR10fhh6P4PBM5RNMZtYum4CF7Mu2pwW4BTA1HZTGddiHA4qh1rsfO2LSs3n212XWXUkAZ3Bdmubvs29mNG/KWEtferl74VbKfPoWbZ+sodUuyaWSKC9MZ/uw904cWgnKdusf0fahQ1h8GNPoLYTcy9C/SXJldxQMDs7G3d3d5u2HTt2VPkFN2/ezNtvv13tPWsGDhxIZGQk8+bN46OPPrK0y7LMhAkTWL16NVOnTmXZsmU2161bt47p06fj5+fH+vXrS2VZS5KEs7Mzx44do1mzZjbHtFotw4YNIzIykubNm3Py5MlSk6tpaWm0bduW9PR01q5dy5gxYyzHcnNz6dixI1euXGH58uVMmTKlSs9clc3RBUEQhNufbDKRt2kTqYs+Rn+1+geAQVKwMbQXP7W6m2x7FxSykbHyaRrF7oWr+ySVl5V9PvM8y04vY1P0JoyyESetG31ixtEs8y7LOZJComN4ED1GNUFjX0tr44qyzAHr+BLZ1wWpN75GUoBPG2vgulFX8G0DSrH/T0MYUygUCsubSwcHB4YNG8a9997LqFGj8PS8+Sy2O11D+N4LgtDwyQYThcfSyNsRhyG1yOaY0s0O5wGNcOruj6KGtynZk7CHF3e+SLY2GwB7pT2v9H6F0c1G1+jrApCfBtvfgsPf2VaLCegMw96E0OqXccxIzGfD5yfIyzAHc/XI/OWo56KdkRn9m/LskJY4VPA11hcX88+Szzmzc5ulza9pC0bPexE331rKXq8iU2EhmStWkvHtt5hycy3tCkdHPKdPx3PqVJTOYi/g2lDT44pevXpx4MABevTowb59+yztCoWC/v37VylT+/Lly+zatate7aF9TU3NcWq1Wjp27MiFCxf4+OOPmTNnjuWYXq+nb9++HDx4kP/+97+8+uqrVeqzGFMKDZlJZ6TwSCr5exMxpJQuK+7Y0cdSVrzOmYxwdp05kJ14xPaYvbu50kvPWRTbu7Imag3LTy8nIT/B5rRmbs14rMNjDG8yHLXi9p0PkWWZ/dGZLN5xma3nbOeLVAqJ0Z0Cebx/E9oF3t5Z6QCy0cixD3/lwHlnDGrrmKixezbNRvoQsexzigvyAVCpNYQ/9gQdBg2tq+4Kd7iqjCkqFdCeNWsWS5YsYerUqXz77beW9pITjVVV3QFkeno64eHhnDx5kieeeIJHH30UnU7H559/zqpVqwgPD2fDhg2lAs6jR49m/fr1AHz44YfMnz/f5rirqyt5eXl4eHjw3HPP0aNHDzw9PTl79iwfffQRR48epVWrVqxfv57mzcteSb1v3z5GjBiBVqvltddeIywsjPj4eF577TWOHz/OggULeOutt6r8zGKwKAiCIFxTsHcvqR98SPHp0zbtkY06812b4SQ5eyNJMKaRiTYXN1KQHGc55/qsbFmWOZRyiKWnllr2VFKYFHRIDqNb3D2oTdbMloDmboQ93AqvRs4193D6YnM5zpKlwzOiKr7OLfhq8LqbOXgd0AnsarCfDVhDGFPs37+f1atXs3btWs6fPw+YFx4qlUr69u3L2LFjGTt2LI0bN67jnjYsDeF7LwhCw2XSGig4kEz+rgSMOTqbYyo/R1zCgnDs5IOkrNksJ5NsYvGJxXx+7HPkq+lWwS7BLBy4kFaerWr0tdEXw74vYOdHtvtZujaCwa9Ch/tBUf3nv3Iqg43fnMSkMy9WzJdkVjtpcQ9y5r37OtIxyL3Ce2TEx7Fu4dtkxFsXRnYeNpKwSY+jUte/CW9ZpyPr999J//JLjGnWikOSWo3HxIl4zZqJSix6q1U1Pa7Iyclh69athIeH2yTZKBQKVq5cWaWs4h9++IHJkyfXy4B2Tc1xAkRFRREeHk5iYiIvvfQSo0aNIisri/fee4/t27fzyCOP8P3335fK3q6IGFMKDZEho4j8vUkUHEpGLrb9WaBw1ZjLivf0R+lcD8qK64vg2A+w5zPIirY95hYMvZ+GuyaRJ8n8cv4XVp5ZSUZxhs1pHb078liHxxgYPBCFVMcZ5jXIYDSx8VQyi3dc5mRCjs0xZzsVE3uGMLVPKIHut3dW+jW5Zy7xzwcRJGmsyZoaYwF9R/qRUXiGA2utW/C4+wUwev6CUlUbBaE23fKAtqurK/n5+Tg7O5NbcvXrTb4JkyTplgwgtVotixYt4qeffiIqKgqlUkmbNm2YMmUKs2bNKrN/69atY9q0afj5+bFhw4ZSqxcLCgpYvXo1mzZt4vDhw8TFxaHVavHw8KBjx46MHz+eadOm4eBw4x+AiYmJvPPOO2zYsIGEhARcXV3p0aMHzzzzDMOGDbup5xWDRUEQBKHo9GnSPvyIgj17bNqPeTdnabuRXPQIRqNSMKGTP33zj3Bh81pk0/VZ2Q+gVKkwySa2xW5j6amlnEg/YblXQE4zwmIexL3Qz9Lm4KKmz/jmtOrlf2tLMplM5mB1wiFr8Dr51HX7QJXB3q30vtcufje+RrBoaGOK8+fPs2bNGtasWcOBAweQZdny97Bjx46MHTuWe++9l86dO9dtRxuAhva9FwShYTDm68jfk0j+niTkYtt9JzWhrrgMDMa+lUetlHXM0ebw713/JjI+0tI2MGggb/Z/E1dNDf7cM5ng1CrY+hrkWBcSonGGfvPME8/q6k+kyrLMwc2xHFh9iWtfzRSliXUuOqbd3YInwpqhqURZ1LO7trPlm8/Qa83Z3Wp7B4bOeobWfQZUu4+3mmwykbthA2mffIo+rsTXVqHAbdxYfJ5+GnVgYN118A5WV+OKmw1oT5o0CZPJVPHJdaAm5jivycnJ4b333uOPP/4gJiYGR0dHOnXqxMyZM3nooYduqr9iTCk0FLIso72YTf6eRIrPZ5YuK97Y9WpZca8aX3BXKYWZcGAxHPgGCtNtj/l1gL5zod1Y0nU5rDyzkl/O/0K+Pt/mtL6BfXmsw2N08+t2W5fUztca+OVg3P+zd97xUVbp376eKSmT3istQAIhiUDoTUBABEGpKigoIIoFRX11dV3X9be2dVewN0CqDREQRJDee0ujhYSS3nuZ9rx/TJjJkEKAVDjX5xNCTnvOZDIz5znfc39vFu9NJDnP2hHI38WOGQPa8VDPVjjZNb9Deg2BbDQS/dlvHDylRmdjcRcIdMih77O92bH8C5LiYszlHXv14945L2CrEa42gqal3gXtt99+m48//pgXX3yRd955x1yuUCj4+9//zrBhw+o8ub/++osPPvigWZ6IbO6IxaJAIBDcuWivXCFzwScU/PGHVfkFF38WdxnNca9gXDQ2PNanDff7Gzi09Auyrlwyt/NqG8TIOS/i3TYIrUHLhoQNfB/zPRcLLprb2GudGJr8MK3SwiwXkCBsYAC9HwjCrj7yWxakWkdep5yA8oLa+yhtwDfCIl4H9gD3IJH3+hZoyWuKtLQ01q1bx5o1a9i5cydardZ8k966dWuzuD1o0KCbPnx5O9OSn3uBQND80GeXUrgnmeKj6XBNfkK7zu44DW6FbZvGe685m3OWF3e8SFJREgASEs91e45Z4bMaNjLp0gHY/Ia1FaikgO7TYMjfwdG7Xi5jMBj56etT5EXnmsvOqQ0khdjzwaS76OhzfWtUvVbLjqXfErV1k7nMs3Vbxsz7G+7+gfUyz/pClmWKdu4kc/4Cys+ds6pzGjECrxfmYntNqjhB4yLWFXcu4rkXNHeM5XpKjlXYimdai52oJDR3eZtsxRvSfe5GyL0IB76EE8tBd40NetBg6DcX2g8lqSiZJbFLWHN+DVqjxQ1HQmJ4m+HMDJ9JqEdoo069sUnLL+P7/Yn8cOgyhdccpOzi78zsQUGMCvdD3RwOKDQSRQlX2Pb+JpKUlnWR2lBKvxEeuIRq2PDJfyjJzwNMwS6Dps6g+6ixt/WBB0HLod4F7Zq43Sx+mjtisSgQCAR3HvrsbLK++prcn34CvWWhnqZxY2nn+9gV2BV/NwdmDmjHxK6+RP/xK4fWrrKKyu4z/mF6PTiJUmMZq86tYkXcCjJKLfmEJFlicME4OsUPQtZaFrPebZy4e0oI3je7EV1WAKknIelq9PVxKEy5fj/PkArxuiL3tU8YqJqB5ddtxO2ypigsLGTjxo1md52CggLzDZm7uzv3338/Y8eOZeTIkdd117lTuF2ee4FA0DDIOiMl0ZmUxWZjKNGj1Kiw6+KBJtwLSW3ZFNSmFFG4K4nSqEzrSCeFhKarF053B6L2adxoj98v/M47B96h3FAOgKutKx8O+pB+/v0a7qLZF2DrP025LSvTYRgM/z/wqb8N5bTMYpb/7xiaPMt68KjGwIBx7Xm8fzuUiutvSOalpbJ+/gdkXLxgLusyeBj3zHgata1dLT0bn5KjR8n438eUnjhhVe7Qry9e8+ZhHx7eRDMTVKYlrStKS0vJzMykdevWTT2V24KW9NwL7ix0WaUU70+h+Fg6crm1/qB0scGhjz8OvXxR1seB/fog5STs/xRi14Bc6XCgpIQu46D/XPC7i3O551gcs5hNiZswyJbHpVKoeKD9AzwR9gRtnG/vdFynUwv4bk8Cv59MQW+0lrSGhHjx5KAg+gZ53FEirSzLnP52PfsPGSi3seQG97PNZvirQ4k7vI19P69ArvjbcvTw5P4XXiMgpHNTTVkgqMKNrClUdRnwP//5D6+//jqSJBEXF0dwcDAA06dPp/0NnoZt374906ZNu6E+AoFAIBDcaRiLi8lesoTsRYuRSyync/NtHPghZBh/tu1Lh0B3FtxtOnmacymBNW+/Um1UtsLHmc9Ofc4vZ3+hUFdodZ271SPpdu4+ytIs+9G2GhV9HmxP6AB/FHXYHAVAr4WMWItwnXwMMs9Sxc/rWhx9TRHXZuvwriY7cYGgDjg5OfHQQw/x0EMPodPp2L59O2vWrGH9+vWkpqaydOlSli1bhp2dHcOHD+eBBx5gzJgxeHp6NvXUBQKBoNlRGpdNzqpzyKV6kDB9hEtQGptN3voE3CZ1RGGronBXEuXncq36SjYKHHr54TggAJWrbaPOW2vQ8uHhD/nl3C/msi4eXZg/eD5+jn4Nc9GSHNj9X5MdaOU0Kd6hMOLf0OGeeruULMus3XOJ0z9fwMVgWpfpkUlsZ8c7T3ajlbumTuOcP7yfzV99QnlJMQAqtQ33zJxD2JDh9TbX+qDs9Gky5s+nePceq3K7iAi8X5qHQ58+TTQzQUvnt99+EwE2AsFtimyUKTufS/H+FMrO5lapt2nnjGO/AOxDPZCUzUDslGW4sA32fQqJu6zr1BqTw0ufZ8CtDScyTrBo23NWqVQA7FX2TA6ezGOhj+HjcPumX5NlmT3ns/huTwJ7zltbsNsoFTzYzZ9ZA4MIroNLze1GSVIa2/+9gUsEQUUMiMpQRu8BjgSPv5fNX84n4fgRc/s2Ed0Y9fwraJzFnpug5VKnCO3hw4ezZ88e5s2bxxtvvIGT0533BtEcEKcfBQKB4PZH1unIXbWKjM++QM7NMZeXKdX81uFuVncYTPfOgcweFMTAjp4Y9HoOrv6Jw+uqRmX7Du3NsrPL+T3+9ypWVMN87qV/0oOkHS23un6nfn70G9cee6daIqJlGXISKoTriujr1CgwlNfcB8DGCQK6Wee+dhb5DpuCO2FNcejQIdasWcO6des4e/YsAJIkoVQq0Wq11+l9+3InPPcCgeDGKY3LJnt53HXPoV2LwkGFY78AHPv6odA0fqRTWnEaL+18ieisaHPZpOBJ/K3X37BRNoC7i14LRxbCrg+hLM9S7uANQ/8O3R4DhbLeLpdeUMYHS04SeLoYO9m0AV+qkPEb3YopozrWKQLJoNex54clHPtjnbnMzS+AMfP+hlebdvU211tFe+kSmZ98SsHGjVblNu3b4/XiCzgNG3ZHRVy1FFrSukI4RtYvLem5F9y+GMv0FB9Np/hgKvqsa23FFTh088ahrx82/s3EVtygM0Vi7/sU0qOt6zSe0Psp6DkL2d6Nvcl7WRi9kOMZx62audq6MrXzVB7p9AgutrevMKnVG/n9VAoL9yRwJs06MMPFXs1jfdowrV8bvJ2al8NMY3Fu+Wb2bC+kzNbdXOatymbEq0Mo1eawfsEHFGRWODNKEn0nPEKfCQ+hqMd1qkBQX9R7hPaZM2d45plneP/9963Kg4KCWLBgAWPHjq3z5ITFj0AgEAgEVZGNRgo3bybpvx8jJSeZyw2Sgj/b9uanziPo3zOEXwYFERZgumlJT4hn05fzq0Rld3jkflblbWLr+veRK+1MqxQqxgaN5Z6SCZzflE9asUWA9ghw5O5HgvHr4Fp1ckWZ1nmvk49Zb+JWh0JlsgqvnPfaoyOInMaCRqJ379707t2bDz74gLNnz7J27VrWrFnDkSNHrt9ZIBAI7iBknZGcVeduSMxWutniNCgQTaQPCpum2Rg7kHKA13a/Rm65KRLLVmnLm33e5MEOD9b/xWQZzmyALW+ZDvVdRWUP/Z6D/i+Abf0d/JdlmV+OXmH1qrMMLFCgoELM1iiY8EJX2rVxrdM4BVmZbPjkQ1LPnTGXBfcdyIjZz2OrqVtkd0OjS88g68svyVu92iq9jsrfD6/nnsflgbFISrH5eqcydOjQehsrPT293sYSCARNiy6jhKIDKZQcy0DWXmMr7mqLY18/ND2aka14eREcXwYHv4T8K9Z17kHQ9znoOgW9Us2WS1tYFL2Is7lnrZr5aHx4vMvjjO84Ho26eXyGNwT5pTp+OHSZJfsTSS+wDppo7a5h5oB2TOoRiMamTrLWbUdZRg473llDgr4dVIjZSkM5PXuq6TZrAqe2bGTXsoUYKtZU9k7OjJr7/2gb0a0ppy0Q1Bt1euVnZmYSFhZWpfzixYsUFRXd0AWFxY9AIBAIBNYUHThAwrv/QR1/hspxJ7v9I/g5YjSDhkaydkA7s6WkXqerJipbhf/wvvzle5aPTr1sNb6D2oHJwZO532UCUb9lEp1osWlS2ynpPSaI8MEBKJQK0BZD6imLcJ10DPIvX/9BuLe3jrz2DQf1nXlSVtCwzJgxg6eeeorevXvXuU9ISAivvfYar732GmlpaQ04O4FAIGh5lERnmmzG64hDH19cx3RoMstOo2xkUfQiPj/5OcaKfIABjgEsGLKATu6d6v+Cycdh89/h8n7r8rsegaH/AJeAer3c5ewS/rb6FHYxhdyttWzZ2Ld1ZNYL3bC1r9vmfOKJo2z84mPKCgsA01px8PRZdB0xullEOhvy8sheuJCc5SuQyy0b1kp3dzyffhrXhx9CYdMAUfaCFsXOnTuRJIk6mEvWytUxmsPfvkAguDlko0zZ2RyK9qdQfj6vSr1texcc+/lj19kDqa6p0xqawnQ4/I3J3aUs37ouINJ0IK7T/ZTLetbFr2NJ7BKuFFoL3u1c2jEjbAaj241GrWwmAn0DcCWnhMX7EvnlyBWKrzmk0K21K7MHBjGiiy/K5vLcNgEXft3B7j8yKbG1OOx4SFmMeG0gjgEubPzsv5zdv9tc5x/cmftffA0nD5FyTXD7UCdB287OjuTk5Iaei0AgEAgEdxRFMbGceecDHKKOUvm25JRne1ZHPsjAsXezuk8b3Bwsm3lpF86z+asFVlHZtv6eHOlWyGJ5BWRYxvGw8+DR0Ed5sPV44jZlsXXnBSrvBXXs4UX/QQYcCrfBHxW5rzPioGJzuEY0npXyXncH/+6gca+9j0BQTyxZsoThw4ffkKBdGV9f33qekUAgELRsymKzLTmzr4cExkJdk4nZBdoC/r737+y8stNcNihwEO8NeK/+bTfzrsC2dyD6F+vyNgPg3n+Df/1GuhiMMt/vS+TTTWcZnq8iSG/Zruk8OIDBk4NR1GET12g0sP+XHzi05mdzmbOXD2NefA3fDsH1OuebwVhSQs6y5WQvWoSx0GIhqnBwwH3mDNynTUfp6NCEMxQ0N0JCQvDxufX8sOnp6eY0NAKBoOVgLNVTfDSNogOpGHLKrOoktQJNd28c+/qj9m1Gnx1Z52H/Z3Dqp6qp2TreaxKy2/SjSFfML3FLWR63nKxS6/zQYR5hzAqfxZDWQ1BILcvprkxnYGN0Kn/FppNXosVVY8OILj6MCvfDTm3tuhKVlMe3uxPYGJ2KsdJaVJJgRKgPswcFEdnmzt5vKs8tYNc7qzlf0gpsTeK0wqijW5hMr2cnkpNyhRVvvERuisXtMXL0gwyc8jhK1Z0ZyS64fanTX3RoaChffPEFDzzwABEREVZ14nSjQCAQCAQ3Rv6Fi5x65z94HdpB5VuuBGc/NvQdT/+H72d5j1ZWC31TVPaPHF73qzkqG6WC+E469rU6ZiVUt3ZqzeNhjzMmaAyXjuXx+7txlBZYcga7ORYzKHADgem/ww8ltU9WrTFt2AZ0t0Rfu7Qy3V0IBE3E3LlzOXr0KLNmzaJz585NPR2BQCBokRjyyymJyaIsPq/uduOyaWO5KTibc5Z5O+eZI5ckJJ7p+gyzI2bX70ZvWQHsnW+yBdVX2jj36ADD34GQUfW+DjqbVshrq6NIvJjPhGIbPI0Vj0cBQ6Z2IrS/f53GKc7L5Y9PP+JKbJS5LCiyF/c98xJ2jk2bP1TWasn9ZRVZX3+NIcuyaS/Z2OA2dSoes59E5ebWhDMUNFfefPNNpkyZcsvjrFixgunTp9fDjAQCQWOgSy+maH8KJcczkHXWh+6V7nY49vXDIdIHhaYZRS1fOQz7PoEzf2C1uFKoIWIy9HsevDuTXZrNyhOf8dPZnyjUWueH7uPXh1nhs+jl26tF6i5b4tJ5edVJCkr1KCQwyqCQYFNsGm+vj+XjSV0Z2smb7Wcy+G5PAocSc6z626oUTOoRyMwBQbTzbEaHFJqISxv2s2P1FYpt23DV0tFNzmL4C33w6tKauN3b2bLwC/QVbjc29hpGznmRjr37NeGsBYKGo06C9tSpU3n++efp1q0brq6uuLhYTj6/+OKL/P3vf6/zBYuLi298lgKBQCAQ3AakX07l2Lsf02rPn3gZLRZKaRo3dvYfT59Zj/B5uH8VC6XqorLzXAzsCk8h11lnLuvi0YUZYTO4p/U95F9MZ9OH+0i+YhlLJZXRw2EVXR1+R5lXzWa0pADvLtbitVcnUIoTnYLmha+vL1988QULFiygb9++zJ49m0mTJmFvb9/UUxMIBIJmjaFAS2lMFiVRmWgvFdxQ3mwAJFDYN/66YP2F9bxz4B3KDCaB2cXWhQ8Hfkj/gP71dxGDHk4sgx3vQXGmpdzeHQb/DXrMgHq2+tTqjXy5M54vdsTjUy7xaLEtGtm0drPVqLjv6XACgusm8l6JjeKPTz+iOM+UU1xSKBj4yHR6jBnfpBvissFAwYYNZH72ObokS+QQCgWuE8bj+cwzqP38mmx+gjuH+rAuFwgEDYtslCk7nUPR/mTKL+RXqbft6IpjX3/sOrk3H1txoxHObTIJ2VcOWtfZOEGPJ6DPHHD2J6UohSWH3mPN+TXmNQ2YDukNazOMGWEzCPOsmva1pbAlLp3Zy4+a15fGa74Xlup5ctlRvJ1tq+TH9nCwYXq/tjzapw3uDiLliK6wmD3/t5oz+X7Itl4ASEY9ER3K6fvSBGSjgS3ffk7Utk3mPl5t2jHmpddx863bQUiBoCUiyXVYzRmNRsaPH8/vv/9ePxeVJJFD+yYoKCjAxcWF/Px8nJ2dm3o6AoFAIKgjFy5ncug/XxCycy0avWXRnm+j4ejAcfScO5Newb5VNhuri8o2SDKnOuQT3T4fuSJ4p79fH2b4DqRncRG6y1EcjfLiVPZAjJXOrbWzPcgA58U4Kytt0Lq2hoAeFvHaLwJsxAnYO4GWvKZQKBSsWLGCESNGsGTJEhYvXsyZM2dwcXFh6tSpPPnkk9x1111NPc1mS0t+7gUCwc1hKLwqYmehvZh/4yL2Nbg9FIJDN+/6mdx10Bl0fHjkQ34+a7HPDvUI5ePBHxPgWE+5q2UZ4rfCX29C5hlLudIGej8FA18Be9f6uVYlTl7J47VfozibXkhYuZIRpWqUFaE3br4aRj0Tgau35vrTNxo5vO5X9v28ArkibYyjmzujX3yNwE5d6n3edUWWZYp27CBz/gLKz5+3qnMaORKvuXOxDWpXQ29BS6Gh1xWXLl3Cy8sLjeb6r4XrUVJSQmZmJm3atKmHmQnEmlJQnxhLdBQfSafoYAqGXGuhU7JRoIn0MdmK1+FzsdHQl0PUzyZr8axz1nVOfiYRO/JxsHMhPjeexTGL2Zi4EYNs0URUChVjgsbweNjjBLkENe7865kynYFe722lsFR/Q0vNIC8HnhwYxLhuAVXsyO9UkrcdZduK8xTaWtJtOBuyGT6nO77d25OXnsb6j98n4+IFc33YkBEMnfEUahvbppiyQHBL3Miaok5HqxUKBWvXrmXTpk1s376d7OxsjEYjS5cuZeDAgQQF1f0NNyEhgb1799a5vUAgEAgELZXjCZkc+HQRXXf8Rrdyi41UmdKG0wNGE/nq8zzXvvqIlLQL59n05Xyyky6by7Kdy9kbkU2usw4FEiNtvJlRWEKng78hG34hobwPewtmUmT0NPdxVqYx0Pk72romWoTrgEhT3mtHr4Z78AJBA3H33Xfj4+ODp6cnr7zyCq+88gp79uzhu+++4/vvv+err76ie/fuzJ49m0ceeQTHJrZYFQgEgqbAUKSlNCab0qhMyhOrF7FV3vbYh3thH+pO5sIY5DpYiUv2KjRhntdtVx+kFafx8q6Xicq02GdP6DiB13u/jq2ynjbr0mJMQnbCDuvy0Adh2NvgXv+Ca6nWwMdbzrJobyKyEe4uU9Gr3BL53SrUnXtndcG2DhaqpYUF/Pn5/0g8ecxc1jq8K6OffwWNi2u9z72uFB8+TObH8yk9edKq3KF/f7zmzcM+rOmEdkHLoj7F5/T0dPbs2cO0adPqbUyBQHBr6NIqbMVPVLUVV3nY4dDXH4cePijsmpFrXGkeHF0Mh76BojTrOq9OJlvx8EmgsuVU5ikW7l/Izis7rZrZq+yZ0HEC07tMx9fBt7Fm3qBsjE6l4AbS0rT3cuCNUZ0ZEuKNorlE2zcx+tJy9r37K7EZXsgVYrZkNNCldRH9XxuHSq0i/shBNn05n/ISkwuyysaWe2bOIWzwsKacukDQaNQpQrsmrkbI3Egum5UrVzJt2jQRoX0TiNOPAoFA0PwxGmW2n05n76Kf6b/rVwKLLTkCDZKCy32H0/XvL+PfvlW1/a8XlW0jyYwrLGJ6fgGBetNnaZ7ejz0Fs7is7W4eRynp6R58ie6D3VC16Q5u7UTea4GZ23VNkZ+fz4oVK1i4cCGnTp3CwcGBhx9+mFmzZtG7d++mnl6z4HZ97gUCQYWIHZtNaXQW5RfyqhexveyxD/dEE+GFykdjdocpjcsme3lc7dHbEng8Fop9qEeDzL8yh1IP8eruV8kpM+VVtFHY8GafNxnXcVz9XKAwDbb/G06uBLnSBnpgTxjxLrRumM+M/Rey+NvqaC7nlKCWYXSxDR31lmik8MGBDJjUAYXy+jnBU86dYcOCDynMrnDfkST6TniEPhMeQqFomgin0thYMucvoPiaIAa7uyLwnvcSDn3EZ/HtRktaV4j9yPqlJT33guaFbJApjcumaH8K2sRqbMWD3XDs749dR7fmYysOkJ8MB7+EY0tAW2Rd16Y/9JsLHUcgSxL7U/azKGYRR9KOWDVzsXVhSqcpTOk0BVc710abemPw9PJj/BWXZrYXrw1JgntDffn6sciGn1gLIW1/NFsXRpNvYzng4KjPYdiMLgT064xBr2fvT8s4uv43c72bnz9jXnoDr9Ztm2DGAkH9Ue8R2jt37mTZsmVIksR7772Hj4/P9TvVgshZIxAIBILbjXK9gXUnUtjx85/cu/dXHsq7YlWf2b0/Xf75GmEhHWscIyXuGGs+/w9l2cXmsqtR2QaHMmbnFzGloBD3CqFbL9twrGg8x0smYJQtH+mtQ90Y+HAIrt4j6vlRCgTNGxcXF5599lmeffZZDh06xLRp01i8eDGLFy8mLCyMJ598kkcffRRXV9emnqpAIBDUC4ZiHWWx2ZREZ5pEbGPVNipPk4htH+GF2ldTbT5l+1APPB4LJWfVOVOktoRJ3K74LtmrcJ8U3OBitizLLI5ZzKcnPsVYITQHOAbw8eCPCfUIvfULaIth/+emPJc6y3oL19amiOwu4xvkAGBBmY73N57mx8Om9aGTUWJCsQ1eBpNwLSkkBk7uSPjgwOuOJcsyxzf+zu6VizFWCHP2zi6Mev4V2kZ0q/e514XyxEQyP/2Uwj83WZXbdGiP97x5OA4d2qR5vAW3PwaDgezsbMrKympsk5WVVWOdQCBoeAzFOoqPpFF8IBVD/jW24rZKHCJ9cOjrh9qrGdmKA6THmmzFo1eBsXIEsgSdx0D/FyCwBwajga2Xt7AoehGnc05bDeGt8WZ66HQmBk9Eo25mj68e0BuMJGYX10nMBlO2l7xSbcNOqoVg1Oo48MFvRF1xwXhVzJaNdPbJZdDrD6Cyt6EoJ5sNn3xI8pk4c7/gPgMY8dRcbOshJYdA0JKoU4T29OnTWb58Oa1atWLfvn0EBl7/JktQ/4jTjwKBQND8KCjT8cOhy2z5fQ8PHFlLz4yzVvVFnSIIfutvuHS/ZoNRXw7pMZB8nNJLh/nhyDlyLzsiyabNPoMkc6pjPpmts3mssJAJhUVoZBmcAyAgkovyYPacaEdBpQPNjm62DJjckaCuXmLTUFArt/OaIjExkYULF7JkyRLS0kwWcJWXu3Z2dkyYMIHnnnvujozavp2fe4HgTsFYoqM0NpuS6CzK43OrFbGVHnZowr2wj/BE7edQ53WBrDNSEpNFWUwWxlI9CnsVdmGeaMI8kdTXjxq+FQq1hby59022X9luLusf0J8PB36Ii63LrQ1uNELUT7Dt/6AwxVJu6wyDXoFeT4Ha7tauUQNb4tJ5c2006QWmzXs/vcTkMjtsKvbEbexVjHwyjFah7tcdq7ykmM1ffcL5w/vNZQGdQhn9wqs4uTeOFXxldGlpZH3xJXm//QaVol7VAQF4Pv8cLmPGIClFPszbmaZeV2zatImPPvqI/fv3o9XWTRwREdr1Q1M/94KWgza5yGQrfioD9NYyhMrLHse+/mgivVHYNiNbcVmGi3tg36cQv8W6TmkLXaeYrMU92qM1aFl/YT3fx37PpYJLVk3bOrdlRtgMRgeNxkZp04gPoHE4l17Ir8eSWHMimczC8ut3qEAhwQgRoU3msXNs+fIIuWpLKkIHfS5Dp3Sg9dC7ALgUfZKNn/2Xkvw8ABRKFXc/NoNuI8eIfT/BbUO9R2gfPHiQoUOHsmnTJlQqS5d33nmH8ePHExYWdmszFggEAoGghZGaX8r3+y6yZfsJJpz8g3eSTqCo5NOpaxNE29dfxenuQUiyDFnxkHwUko+ZvtKiKTbq+FHyIuliO5yKnbi6FM1yLudy5zQeUpRwn00X1Hf1MOe9LtC5sveX8ySeskQYKBQSXYe3oseodqhtxaah4PZmxowZPPXUU1ZitE6n47fffmPhwoXs2LEDWZbNIraLiwtTp07lySefRK1Ws3jxYlasWMEPP/zA+PHjWbJkCQ4ODk31cAQCgaBOGEt0lMblUBqdSdn5PKoLgVG626G5GontX3cRuzKSWoFDN28cunnXw6zrzvnc88zbOc+8ESwh8fRdT/P0XU+jkG5RSE/cDZv/DmmWXNxISugxAwb/DRwaRgjOKirn7d9j2RCVai7ralQzvERtfv6cvey5/9kI3Hyv/zmUnniBDfM/IC/dMl7PsRPo/9BjKFWNKwLoc3PJ/m4huStXIpdbNrCVHh54Pv00rg9NRmFz+23cC5oX7777Lm+99dYNuUCKzX+BoHGQDUZKYytsxS8WWFdKYBfijmM/f2w7uDYvW3GjAU7/bnJySTlhXWfnCr2ehF6zwdGbYl0xv8YuZVnsMjJKM6yahnqEMjNsJve0vgdlE6UBaShyi7X8fiqF1ceTiEqqahlfF4wy3Bt2aw7ALRmjwcCR/63lxHkNhkpidkfXTO5+cyy2jvbIRiOH1vzC/lU/IFe4Fjl5eHH/i6/hH9ypqaYuEDQ5dbrrSU1N5aWXXrISswHefvttOnTocEOC9tatW3nvvffYvn379RsLBAKBQNDMOJtWyLe7E9hx6CwTz2zlk8T9qI2WU/5Gbx8Cn52Jc5gbUtpuWD4fUo5DmWWhn6VQsNLJmZj0VgRfdMGpUlR2Zkg5owYP5O6wh1F4dASFaRPXoDdycutljv5xCL3OEooVEOzKoIdDcPcXgpzgzmDJkiUMGzaM3r17c/r0aRYuXMjy5cvJzs4GLNHYAwYM4Mknn2TSpEnY2Vmi7v773//y3nvvsWjRIl599VVef/11Pv300yZ5LAKBQFAbxjK9OSd22flcMFQjYrvaYh/hhSbCE3WAY4sUa/5I+IN/HfgXpfpSAJxtnPlg4AcMDBx4awNnnYe//gHn/rQuD74Phr8DXsG3Nn4NyLLMupMp/Gt9LLkluopCmOLoTECyjquJygOCXRk5Oxw7R/V1x4vetpntS77BoDONZ+vgwMhnXqJDj8Z1GjEWF5OzbBnZixZjLLLkD1U4OuIxcwbu06ahEIfEBI3AoUOHeOuttwB4+OGH6dWrFyqVirlz5/Lqq6/SuXNnAIqKijh69CgrVqwgODiYV199tSmnLRDc9hiKtBQfSqP4UCqGAmvXBMlOiUMPXxz7+qHysG+iGdaAtgROroQDn0PuRes6l9bQ91no9ijYOpJblsvKE5/z45kfKdBai/W9fXszI3wGff36tsg1WU3oDEZ2nc1k9fEktp5OR3fNmlStlBgc7M2+C1mUag3UdsxIApztVdwX5ldLq9uXnNiLbFmwlyylP1ScdbDX5TF4fCBBo4cCUFpYwJ+f/4/Ek8fM/dre1Z37nnsZjfMtuhYJBC2cOgnaOp2O8vK620bURnp6Ort27aqXsQT1g6wzUhKdSVlsNoYSPUqNCrsuHmjCvRrcVk4gEAhaArIscygxh292XWB/bBLjLuzhu/M70Ogtn42SxhavgV64BSSjOP0cnK46zhWViiUuTuwxuNEr2otORZbIlXJPGwY9OZsBXUdW7Xcmh90/niMvvcRcZu9sw4CJHejY0+e2ulESCOrCxo0b+fLLLzlw4ABgEbE9PT2ZNm0as2bNolOnmk8t29jYMGfOHLKysvj222+FoC0QCJoNxjI9padzKI3KpOxcDSK2iy32EZ5oIrxQB7ZMERtAZ9Dx36P/5YczP5jLOrt35uPBHxPodAtpzoqzYdcHcHSxda5L33AY8S4E3X0Ls66dlLxS/r4mmh1nM81lnnZq5mhcKUuwCMCh/f0Y9EgISlXt99u6sjK2LPyC03t2mMt8gjoyZt7fcPFuvMgmo1ZL3s+/kPX11xgqDpABSLa2uD06FY9Zs1C5uTXafASCL774AkmS2LBhAyNHmu6fsrOzmTt3LiNGjGDo0KFW7R9//HGGDRtGQEBAU0xXILjt0SYVVtiKZ1ZZu6i8NTj280fTzRtFc3OUK86GI9/B4W+hJNu6zjcc+r8IoQ+CUkVqUSpLT33O6nOrKTOUWTUd2mooM8NnEuEV0WhTbwxOpxaw+lgSa08mk1VUNa1DeIALE7oHMLZrAO4ONmyNS+fJ5UeRZKoVtaWKf/43qSt26mb2t9DAGI1Gjn+2gaPRSgwqf3N5O4c0hr45Fjs3RwBSz59l/fwPKMw2rSUlSUG/SVPoPW4ykkLoNAJBnQTtVq1asXbtWubOndvQ8xE0MqVx2eSsOodcqjd9qsiABKWx2eStT8B9UjD2oR5NPU2BQCBoEgxGmc2xaXyz6wIxl3O479JBlp3ZjHO5RViWlDLuIUV4dEpFaZMIJVXHiXPxYbGnF9t0hUTEuzA8wRlFRVS2rJAIHTOKeyc/WcUusjivnH2/nuf8UYt9lSRB+OBAeo0Nwta+GeWYEggakR9//BEwCdmSJDFs2DCefPJJHnzwQdTq2iPdKuPq6kpmZub1GwoEAkEDYizXU3Y6h5KoLMrO5VTJLwmgdLHBviIntk2gU/Oy57wJ0ovTeXnXy5zKPGUuG9dhHG/0fgM71U3mstaVweFvYPf/oLySBaaTHwz9B9z1MDSQ7afRKLPy8GU+2HiaYq3FuefBEB96JRvIvSpmS9B/QgfuuqfVdQ8iZCddZv38D8hOumwu63rv/dz92ExUN/BZdyvIBgP569eT9eln6FIq5R5XKnGdMAHPZ59B7XPnWoYKmo59+/Yxfvx4s5h9Pe6++24effRRvv76a4YNG9bAsxMI7gxkvZHSmCyTrfjlQutKCew6e+DYzw/b9q7N7/BdTiIc+AJOrIAKhxgzQUOg/wsQNBgkiYS8BBbHLOaPhD/Qy5aDcipJxaigUcwMm0mQa1Djzr8BySnWsu5kMr8eSyI2paBKvaejLeO6+TMhMpBOvta5boeF+vDtYz14ZdVJ8kv1KCSTvfjV7872Kv43qSvDQu+stUN+fDJbPtpOuhRgVuNsdQUMGuVF8IQpgGlv48SmDexavgijwfR3pnFxZdTzr9AmvGsTzVwgaH7UaSd8+PDhfP3110RGRjJ48GBcXCzWBr/99hvx8fF1vuCpU6eu30jQKJTGZZO9PM5yZOqa73KpnuzlcXg8FipEbYFAcEdRpjOw6ugV/th9AK+8aB5PPU5w7GUUhZU2mCUZ16ASPMMKUdtbLMCxcQT/bsj+3Tjo5Mri3FMczDyBR04Zo6N8casUle3epjX3P/cqXq3bWl3faDASvTOZQ+sT0JVZNkV9g5wZ9EgIXq2cGuqhCwQtAlmW8ff354knnmDmzJm0bdv2hvqXlZXx448/8tFHH+EmIsoEAkETYCw3UHYm2yRin80FvbFKG4WzjTkntk2rli9iX+VI2hFe2fUKOWU5ANgobHij9xtMCJ5wcwPKMsT+BlvfhjyL+IvawbQh3e85sGk4G+yEzCL+tjqawxdzzGU+zrb8vW97cjYlk5tvimhS2yoZMasLbcOvn7P79J4d/PXd5+grnPLUdvaMeOp5OvUb1DAP4hpkWaZo2zYyP/mE8vPW+z1O943Ea+5cbNu1a5S5CATVkZqaSu/e1pb7VwUzo7Hq+ylAz549ef/99xt8bgLB7Y6hUEvxoVSKDqViLNRZ1Un2Khx6+uDYxx+V+00eUGtIUk7Avk8hbi3Ild4rJCWEjYd+z4PfXQDEZMWwMHoh2y9vR64Ub2yntGNC8ASmh07Hz/H2sM3WGYzsOJPBr8eS2HE2o4qluI1SwbBQbyZGBjKooxcqZc2RwsNDfTj0xjD+jEllc0w6eaVaXO1tuDfMh/vC/O6oyGyj0UjUwr84dFiPXmVxCGltm8I974xG423aiygvKeGvbz7l3MG95jYBnUK5/4XXcHQXmoxAUJk6Cdqvv/46P//8MydOnODkyZNWdWvWrGHNmjUNMTdBAyLrjOSsOle9/4dVQ8hZdQ7/N3oL+3GBQHB7U5xFYcIhYg/vQH/lKKPl84zP0JJxypmyHBurpk6BpXhFFGLrIoNPGAREmr4Ce2Bwb8+WpO18H/M9cefiUBig+3lXwhKcUZgMllAolfSdOIWeYydUicpOjc9j14/nyE622FLaOajpO749nfv63Tab2QLBrfDWW2/x1ltvobhJy63k5GRmzpwJwIgRI+pzagKBQFAjRq2BsjM5ppzYZ3KQddWI2E5qNFcjsVs731af+7IssyR2CZ8c/wSDbDqw5+/gz8eDP6aLZ5ebG/TKYdj8d0g6XKlQMuW5HPomOPne+sRrQG8w8t2eROZvPYe20oGER3q14hE/Tw78cA59xXPs5G7H6Gcj8AhwrH1MrZYdS74latsmc5ln67aMmfc67v6NY5VcfPAQGfM/puxUlFW5w8CBeL34AvZdbvK5EgjqGScn60O+dnYm8Sw5Obna9iUlJcKZRyC4BcovF1C8P4WS6KwqtuJqXw0O/fzRdPVGYdPMBEtZhvhtsP8TSNxtXafWQPfp0GcOuLVBlmUOphxgUfQiDqUdsmrqZOPElE5TmNJ5Cu527o34ABqO2JR8fj2WxO8nU8gurmopflegCxMjAxlzlz+uGptqRqgeO7WScd0CGdftFlLItHAKr2Sw5f2/SDX6g8r0u7PRFdJ/iBOhjz5qbpd5+SLrP36f3FTLZ1ePMeMZ8PC0KvuFAoGgjoJ2YGAghw4d4u9//zvbt28nOzvbbPF4NWfhjdDsbEbuQEqiM00243VALtVTEpOFQzfvBp6VQCAQNBLaEkiLguRjkHwM/eWjqAou4QT0AcryVGScciY91do+SeMn4T02DPs+g00Ctl8EqO0BKNOX8fuF31my92WuFF4BwCPPhgFRHlZR2d7t2jPymXlVorJLCrQcWBPPmQNplkIJQgf40/eB9tg5No61pEDQEggODr5pMRugffv26HSmaIJbGUcgEAiuh1FroOxsLqXRmZSdrkHEdlRjH+6JJtwLm7a3l4h9lSJtEf/Y9w+2Xt5qLuvv358PBn6Aq53rjQ+Ye9EUkR17zeH6oCEw4t/gG3Yr070usSn5vLY6iphkixVna3cN748Lw/Z8MXuWnjGX+wa5cN/T4Wica98IzktL5ff575N5McFcFjZkOEOfeAq1bcNHuZXGxJI5fz7F+/ZZldt37YrXS/Nw6NWrwecgENQVPz8/oqOjrco0Gg2Ojo7s2rWL6dOnV+mzefNmbGzqLsgIBAKTrXhJVCZF+1PQJRVZV0pgH+qBY39/bNq5NL/9foMOYlabIrIzYq3rHLyg91PQYyZo3DHKRrZd2sKi6EXEZlu39bL3YlroNCaFTMJB3XCOL41FVlE5a08ks/p4MqdTq1qKezvZMq57ABO7B9LRR7gD3gwxy7azf3cRukq5sgOUyQx7cySOgV7msthd29i68Ev0WpMjj63GgZHPzKNDzz6NPmeBoKVQ52Me7du356effrIqUygUrFixgilTptT5gitWrKh2YSloXMpisy05s+tA3przFO64gqSUQKVAUkqmL5UClJafUSqQVBKSUgEV383lV9tc7a9SgPKaNlf7VtTX1BeF1PwWSgKBoHliNEDmGbN4TfIxSI8D2WLlffXDUFukJCvGifyL9oDlPca2rT/e8+bhMGJ0lfee/PJ8fjn7CytOrzBbZyoNcNd5V8ITXZAq3mcVShV9Jz5SJSrbaJSJ25PMwXUJlJdYDhp5tXZi0CPB+LZzQSAQWEhMTMTbu26H7EaOHIlKpWL27NmMHTvWqk6pbGaRAwKB4LZB1plE7JLoLMpOZyNrqxGxHUwitn24J7btXG5LEfsq8bnxzNs5j4sFF81lT0U8xZy75qC80ZzWpXmw579w6BswVIok8gyBe9+FDsOgAe8Ty3QGPtt+nq93JWAwmhZ5CglmDmjH3MEdOfjzOU4eTje3D+nty5BHO6G8jtvZ+UP72fTVArSlJQCobGy5Z+YcwgY3fK7f8oREMj/5hMLNm63KbTt2xGveizgOGSLuvQXNju7du7NkyRKee+45QkJCzOWRkZGsWLGCESNG8PDDDwMmd4h33nmHbdu20aNHj6aaskDQojAUlFN0MJXiw2kYi6xtxRUaFQ49fXHo44fKrRnaipcXwvFlcOBLKEiyrnNvb0pFctcjoLZHZ9Cx4fwaFscstlqnALR2as0TYU8wtv1YbJQt+zCMVm9k+5l0fj2WzM6zGeiN11iKqxSMCPVhQmQgAzt41mopLqiZkvRctr67kStaP1CZXHnU+mL69FYT8eRj5nY6bTk7vv+G6O1/mcu827ZnzEuv4+rTcO5CAsHtQKP7FiQmJjb2JQXVYCjR11nMBpC1RvQZJQ03oRtFoqoYXlkkN4vhNyOYm9rdUN/K16tcdxtvTAmaH7LOSEl0JmWx2RhK9Cg1Kuy6eKAJ97pzUgbIMuQnVRKvj5tyJOmKa+1WVGbLhThfVPF6FJUW9ip/P7zmzsVlzBika8Sv9OJ0lsctZ9W5VZToLe+Pnnk2DI9rhW2eRZz2CerAyDkv4nlNVHbGpQJ2/XCWjEuF5jIbexV9Hgiiy6AAFOI9RCCoQlBQEMuXL6/Tgcr4+HgSEhL4888/+f333xk9enQjzFAgENyJyDojZedyTWuxuBxkraFKG4WDCvswT+zDvUwitvL2/5zflLiJt/a/Ram+FDDZdX4w8AMGBd5gLmiDDo4uhp0fQKklVzUaTxjyhskuVNmw2xtHL+bw2uooLmRa1pUhPk58ODGCYBcNf35xirQES6RTnweD6H5vm1rFYINex+6VSzi+cZ25zM0vgDEvvV7Fzae+0aWmkvnFF+SvWQsGy9+rOiAArxfm4jx6dJX1r0DQXBg5ciSrV6+mT58+PPHEE7z33nvY2dkxbdo0du3axdSpU3n55Zdp1aoV8fHx5ObmIkmSWeQWCARVkWUZ7eVCivYlUxqTDdeInmo/Bxz7+aPp6oXUHPMgF6bDoa/h6CIoy7euC+gB/V+ATqNBoaREV8KvsctYGreUjJIMq6ad3DsxM3wmw1sPv/GDd80IWZaJSS5g9fEk1p1MJrdEV6VNt9auTOgeyJgIf1w0whXwVji7ai97NmdTrrLkVfeVkxn2xj24BFkitXPTUlg//wMrR56Ie0Yy5PHZqISLiEBwXW7pju/777+nX79+9TUXQSOi1KhuKEL7qlAr641V8qQ0CTKgl5H1hhvR5RsfCSsx/NoId1NdNeK7uc21ke5SJcH9GpH9ZvsqJCG83waUxmWTs+qcKZXA1de2BKWx2eStT8B9UjD2oR5NPc36pzTXJFgnVYq+Ls6otYsBBeeMAZwytidW1wbX84UMPn8Sja7M3Ebp4oLH00/jNuURFLa2Vv0T8hL4PvZ7NiRsQG+0iNYqo4IH0+/C8WQuyKbymqKyy4p1HFyXQOyeZKv34ZA+vvQb3+G6lpQCwZ3MjaS7iYmJ4eTJkzz++OO8//77QtAWCAT1iqw3idil0VmUxmUjl1cjYmtU2HfxxD7CE9sg1ztCxAbQGXV8fPRjVpxeYS4LcQth/pD5tHJqVfeBZBnO/glb/gHZ8ZZypS30fRYGzAM755r71wPF5Xo+2nyWpQcucvUjSK2UeHZIB54Z3IGCtBJWfXCEohyTXaTKRsGwJ0Jpf52UXQVZGWxY8CGp58+ay0L6DmTEU89jY69psMejz80l+5tvyf3hB2StJcpd6emJ55yncZs0CUlsqAqaORMnTuRf//oXOp2On376iddeew07OzumT5/O0qVL2b17N6mpqaSlpZnXjr179+b5559v4pkLBM0PWWek5FQmRQdS0CVfYyuuAPsuniZb8TbOzdOxI+s87P8UTv1k7d4CEHwf9J8LrfuCJJFXlsePZ35k5ZmV5Jdbi949fHowK3wW/fz7Nc/HWUcyCstYdyKFX48lcTa9sEq9r7Md47oHMKF7IB28HZtghrcXZTkFbPv3H1ws8QGVyaJdpS+l511Guj471SrFWRVHHltbhs96ltBBQ5tk7gJBS+SWBO0btQ7X6/WUl5ffyiUF9YRdFw9KY7Pr3N5tYrA5h7Ysy2CUkQ0y6I3Ihsr/N/2MQTb9Xy9DRdlVMdzcplLfynU19TWNe+31KvroK41baQ5NjoxpnnqQqbrB1WxQ1GQZX4tgXsUy/qpgfjWKvWrfyn2qHb8Wu3qUwma+JkrjssleHmcRRq/5LpfqyV4eh8djoS1b1NaVQXqMtXV45Y3NGjC6tOKibSc25vizu7g1MXI7yoxq7r18hGnntuBaYrmJkezscJ82DY9ZM1E6W2+Onsw4yaKYRey8stOq3EZhw3jHYXjvyqEgNdVcXl1UtmyUOXMwjQNr4ikttJyOdfd34O5HgvHv6HZjvxOBQFArdnZ29OnTh+eff55//vOfTT0dgUBwGyDrjZTF51EalUlpbPUitmSvwr6LB5oIL2zbu5jWt3cQmSWZvLzrZU5knDCXjW0/ln/0+Qd2qhuwJk05CX+9CRf3WJeHT4Z73gLXGxDGb5Jd5zJ547dokvNKzWV3tXLlPxMiCPF1IjEqiy2LYtFV/B04uNoy+pkIvFrXnnMy8cRRNn7+P8qKTBvNSpWKwdOe5K4RoxrsnsdQVEzO0iXkLP4eY7Elylzh5ITHzJm4T3sMhabhhHSBoD5xcXHh8uXLVcoVCgUbN27kX//6Fz/99BNpaWn4+fnx0EMP8Y9//AO1WkQgCgRX0eeXU3wwleLDqRiL9VZ1Cgc1Dr0qbMVdbGsYoYm5fAj2fQJnN2IVKaBQQ8RD0O958O4EQFpxGsvilvHruV/NrjFXGdxqMDPDZtLVu2vjzb2eKdcb2HY6g1+PJbHrXKY5LcpVbFUK7u3iy8TIQPp38EQpApvqhfj1h9m1LpkylY+5zMuQzPCXB+LWua25zKDXs+eHJRz7Y625zM0/kLEvvY5nqzaNOGOBoOXTKJbjhw8fZtmyZfz888/k5ORcv4OgwdGEe5G3PsEUzXkdJHsVmjBPy8/SVfESsGm+1iuyfK2wfo3ora9ZDLcS6GvrW53Ybhbnaxhfby3cUzWlXuNjlJGNMuiMzTvi3SrK/MYs4VFWEtCrjZhXVD/+tX0rj19NXxQ0qvAu64zkrDp3fbcFGXJWncP/jd4tw37caDSJ1cnHIPmo6XtaDBirWiRZYecCAZEQEEm+ewQrr3jwzfFi8ksr+sky/VJjePrcJrzyLPkNUShwnTABz+eeRe1jWYgaZSN7kvawOGYxxzOOW13KycaJh9pPotNpW2J/3kSBbHoxK5Qq+k2aQs+xE1BUsmnMSipi949nSb1gEdDVtkp63t+OiKGBKO+wzW6BoDHJzs6muLj21AMCgUBQE7LeSNmFPEqjskwidlnVeyjJTmmOxLZr72paQ96BHE07yiu7XiG7zHR4Wq1Q87def2NS8KS6r5Hzk2H7/5kirSovclv3g3v/bVrrNTB5JVr+b8NpVh+35N60Uyt4ZUQIT/Rvh0KCE39dZv+aePMUvds4MeqZCBxq2fg3GgzsX7WSQ2t+MZc5e/kwZt7f8G3fsUEei1GrJe+nn8j6+hsMlfZjJFtb3B97FI9Zs1C6ujbItQWCpkCj0fDhhx/y4YcfNvVUBIJmhyzLaC8WULQ/hdLYrCp7kuoAR5OteEQzTV1nNMK5P01C9pVD1nW2ztDjCej9NDibLJ4T8xP5PuZ71iest3LYU0pKRrUbxRNhT9DRrWE+fxsaWZaJSsrn12NJ/H4qxbLvVYnINm5MjAxkdIQfznbiQE99UV5Qwo53f+dCvjeoXABQGsroHlxGj5emWO0FFmZnsWHBh6ScO20uC+k3iBGzn2tQRx6B4HalwQTtK1eusHz5cpYvX865c+fM5bIsiyjLZoCkVuA+Kdg6qrPahuA+Kbh5LmKugyRJJuFSpYBmepgQTBGbFuH9GjH8WsFcX10Uu+X/VnWVo9ivjY6vSwT9NWM2C6XbICMbDMja6zdtMirnd1dVEtWrE9utotjrJphbC/cS2kuFdTqYAqZI7ZKYLLPbQrOiINU68jrlBJQX1N5HaQO+ERDYwyxi4x5EQlYx3+1JZPX2JLT6PHPz8KwLvJjwF/4pF6yGcRo+DK9587ANCjKX6Yw6/kz8k+9jvic+zzoK3FvjzbTQaQxUdmXXt18Tk3zFXFddVLa2VM/hDYlE7Ugyvd4raN/dmwGTOuDodgORSgLBHcauXbvYtWtXlfLffvuN+PjrOzTodDouXbrE6tWrCar0GhcIBILrIRuMlF/Ip+RqJHY16y3JVol9Fw/sI7yw63Dnithgus9fFreM+cfmY5BN0cq+Dr7MHzyfMM+wug1SXgT7FsD+z6Fy9JRbOxj+DnQeA42wl/BndCr/WBdLVpHFXa5few8+GB9Baw8NBr2RHT+c5fR+izNPh0hv7pneGVUtB76LcnPY+OlHXImLNpe179GbkXPmYedY/5afssFA/rrfyfz8M/QplrmiVOI6cSKez8yxOsgpEAgEgtsXWWeg5GQmRftT0KVec9BXIWEf7oljP39sWjs1z317XRlE/Qz7P4Ps89Z1Tn7Q5xmIfNychiQ2O5ZF0YvYemkrcqUNTVulLeM6jOPxsMcJcAxoxAdQf6QXlLHmRDK/HksiPqOoSr2/ix3juwcyvnsAQV7CUry+ubjlBDt+TqREZdlb9dAlM+z53nh2DbZuG3WCjZ9+RGmhaX9ToVQxePosuo4Y3TxfZwJBC6BeBe3i4mJ+/fVXc76aq3lqKuc69PT0JDu77lbXgobDPtQDj8dCq827i2yKzL5t8+42IySFZLL8bsaHBkw289yYYF4R4W76fy1ie5Uo9tqi3qvpe834TU7l/O7NMMNC7m/nKdp1BclGiWSrRFHxXbJRoqj4Ltle838bBZKtCslGYSm3Ud587vWyAkg9CUkVkdfJx6Ew5fr9PEMqhOvupu8+YaCy5Pc7dimXbzce46+4dCqn2O1YlMr/u7ydVudOWA1n3yMS75dfRtOtm7msRFfC6vOrWRa3jLTiNKv27Vza8USXJxgZOIIja1ax9vd/IFdEZStVKvpOtI7KlmWZ+KMZ7P31PCX5llMYLt72DHo4mNbivVUguC47d+7knXfeqVK+Zs0a1qxZU+dxZFlmxowZ9Tk1gUBwGyIbZMoTrkZiZ2EsqUHEDvXAPtwTu2C3O1rEvkqxrph/7PsHWy5tMZf19evLh4M+xM2uDulUjAY4sQK2/xuKMyzldq5w92vQc5bVmq+hyCgo4611sWyKtawBnexUvDm6M5N7tEKSJEqLtGz6JoaU83nmNj1Ht6Xn/e1q3Zi8EhvFhk/+Q0m+qZ+kUDBwyuP0uH9cvW9oyrJM4datZC74BO0F64OczqNG4TX3eWzatq3XawoELYF169Yxb948EhISmnoqAkGjoc8to+hgKiVH0qqsaxSOahx6++HY2xelczONBCrNhaOL4dA3UJRuXefV2ZQfO2wiqGyQZZnDqYdYFL2IA6kHrJo6qZ14uNPDTO08FQ/7lrcXU6YzsCUunV+PJbHnfCbXOIpjp1ZwX5gfEyMD6RvkgUJYitc7upJydr73O+cy3UDlCoDCoOWuNvn0ee0RFGqLzGY0Gji4+mcOrP6RqxuUTp5ejJn3N/w6hDTF9AWC24ZbFrRlWWbr1q0sW7aMtWvXUlJSYi6/ipubG1OnTmXGjBnExMTccO5tQcNhH+qB/xu9KYnJoiwmC2OpHoW9CrswTzRhns1aZBU0HiabeZCUzddiHirbzFe2j68kmFcrrFeNhq82Cr6yQF9dBH11fSuNXzkavsrKszHRGdGlldTLUJJaYRLDrwrj14rhNgoUapB02UglV1AUXkTKP4tUkIBCKkWiFAWlSFIpEnZIlCNJFb8bJz9L1HVAJPh3NdmJX4PRKLP9TAbf7L7AkYu5VnVt9QW8nrab1sd2UVnhtu3YEa+X5uE4eLB5AzGnLIcfTv/Aj2d+pEBrHRne1asrM8JmcHeru0mPP89Pf3+FHKuo7I6MnPOCVVR2bloxu386R9IZy5yUagU97mtDt+FtUIr3VoGgzlReU9ZWVh0ajYbg4GCmT5/O3Llz63tqAoHgNkA2yJQnVhKxi6sRsW2U2IW6own3MonY4nPcTEJeAi/ufJHE/ERz2ZPhT/Js12dRKupw7xC/Df76B2TEWsoUaug1Gwa9Ahr3Bpi1NbIss+pYEv/eEEdBJTv54aE+/PvBMHycTW46OSnF/PHlKQqyygDT2u6eaZ3p2LPmKGfZaOTwul/Z9/MK80FIR3cP7n/hNQI6hdb7Yyk+eJCMj+dTFhVlVe4waCDeL76IXWj9X1MgaCkUFRVx6dKlpp6GQNDgyLJMeUI+RftTKIvLruK4aNPKCcd+/tiHezbfg3l5V+DgV3B8KWiviUJuM8AkZHcYDgoFRtnIjkvbWBSziOisaKumHnYeTOsyjcnBk3G0aVnRyrIsc+JKHr8eS2LDqRSrNcpVerV1Z2JkIPeF++IkLMUbjKQ9sWxbepoilYcpEBBw1aYybHZXfPqMtGpbUpDPxs/+y6UoS1BNu249uO/Zl7B3cm7MaQsEtyU3LWjHxcWxdOlSfvjhB1JSTJF1124uSpLEv//9b1566SVsbU0nvWJjY+u8CSloHCS1Aodu3s3ThlgguAEsNvMAzVd8l40mUdtK6LYS268K8dfmdK8qthcfSUOffgMCtVJCUkjIultP3i7rjKZxinQYrtvap+Krd20jIqlAslWhMKqRMpRIeUoU8UokmxQk23RzRLlRJRGdUcS2hCwuFZYhIROOklJkPNV6ZucdxW/3Bii3/G5Ufn54zZ2Ly9gx5sMZSYVJLI1dytr4tZQZyqxmc3fg3cwIm0F3n+7otVr2/rCUo+vX1BqVrSs3cPTPi5zcchljJceAthGeDJzcEWdP+7r9cgUCAQD//Oc/+ec//2lVplAoWLFiBVOmTGmiWQkEgpaObJQpT8ynNCqT0phsjMVVcw5KNgrsOnugCffELsQNSd1815ZNxeaLm3lr31uU6E3rLSe1E+8NfI/BrQZfv3PGafjrTYjfal3eeQwM+xd4tK//CVfDlZwSXv8tmr3xWeYyDwcb/vVAF0aH+5kPP16OzWbzdzFoy0yrXo2zDffNCce3XdUDl1cpLSzgz8//R+LJY+ayNhHdGPX8K2ica+53M5RGR5M5fz7F+60j0uy7dcP7pXloevas1+sJBM2F9PR0Nm7cyOnTp8nLy0Ovrzkdl4jMFtzuGLUGSk5kULQ/peo+kVJCE+FlshVv5dQ0E6wLaTEmW/GYX8FY+fUsQehY6PcCBEYCplRxG+PXszhmMQn51q/vQMdAngh7ggc6PICtsplGn9dAan4pvx1PZvXxJBIyi6vUB7jaMyEykAndA2jj4dAEM7xz0Jfr2PPhBk4nOyKrTIcsJaOecN9M+r0xEaWd9d9W8tnTbFjwAUU5JndiSVLQ/6FH6fXARCRFMz08IhC0MG5I0M7MzOSHH35g2bJlnDx50lxeWaDu0qULU6dOZfjw4fTs2ZPevXubxWyAqVOnMnXq1FufuUAgELRQzDbz9ZDfXaFRkfvLuTq3d5sYjEM3b5M4rjMglxswlhuQtZbvcrkBo9aAXG6sWn71/1oDxlItcmmpqVwvgXyrph8Ssh5kvQFj8fUl8iAgCAWgsa7QAQ7D4L5hJvHZUI5kq0bp6kh5korMhbGUSKUklCaSWHoJZ4WOSdIwyhTllCt1BPt2YkDbQQS4ByKVKUk5FMuun78nO/USEhIyVaOyZVkm8VQWe345R1GOxWveyd2OgQ91pN1dXrf4uxEIBAKBQHAryEYZ7cUCU07smCyMRdWI2GoFdp3dsQ/3wi7EDUUt+ZDvZHRGHfOPzWd53HJzWbBbMPMHz6e1c+vaOxdlwI73TBFXcqUDlv7d4d53oU2/Bpq1NQajzNL9F/lo81lKdZZ15/huAfzj/lDcHCwW51E7ktj7yzmz4Y9nK0dGzYnAyd2uxvFTzp1mw4L/UJidaSqQJPpNnELv8ZNR1CVyvY6UJySQueATCv/6y6rcNjgYr3kvWjkSCQS3G2+//Tbvv/9+rSJ2ZWRZFq8HwW2JPqeMogMpFB9JR74milfhZINjHz8cevmidGr49B03hSxD4m7Y/2nVg24qO+g6Ffo+az7sVqov5bfzv7EkdkmVVHHBbsHMCp/F8DbDUSnqNdNqg1KqNfBXXBq/Hktib3wW18YC2quVjAr3Y0JkAH3aCUvxxiD1aDxbvzlBgdISle1cnsY90zvhP3iEVVtZljm+8Xd2r1yM0VBx+NHFldFzX6V1WERjT10guK2p0zv7qlWrWLZsGX/99Zd5oVhZxA4MDOSRRx5h6tSpRESYXqQiT7ZAIBA0PJpwL/LWJyCXXv8mXrJXoQnzNP1fKSEpVWCnqlssu7YYUk9V5Lw+BknHoPCyqU5p+pJlJTJ2GLFHlu2Q0WB0CkJ2C0V2Ccbo2BbZ3g9ZL1UI5lfFcyNyub7ieyVxvdxwy/bskqQAlT0YwJBdZo4kVwHBBBBMQNVOacDJPLLIMxcNtHkA2pj+LyOjsFWhW5lOmk0WRoVEfl45RUU6QmTQ2ysxSOAV5Ix/qAeqUh3FJzJMucir2LJX/L+52nwJBM2QHTt20Llz56aehkAgaAHIRhnt5QJKo7Ioic7CWKit0kZSK7Dr5G7Kid3JXYjY1yGrNIuXd77M8Yzj5rIxQWP4R99/YK+qxYlGVwoHvoC9862tQ11awT3/hLAJ0EiRK+fTC3l1dRQnLueZy/xd7Hh3fDhDQiyuZQaDkb2/nCdmV7K5rN1dngx7IhQbu+q3Uqrb0LR3dmH08/+PNhFd6+0x6FJSyPziC/LXrAWj5WCAulUrvOY+j/Po0SISSHBb88033/DOO++Yf3ZxccHZ2RlFLX/3xcXFYq9ScNsgyzLl8XkmW/EzOVVtxds449jPD/suzdhW3KCH0+tg36eQetK6zt4Nej5pSkHiaAoQyC/P56czP7Hy9Epyy61TznX37s7M8JkMDBjYYg6uyLLMsUu5rD6exIZTqRSWV93X6xPkzoTugdwX7oejbcsR6FsyBr2B/f/bSPQFW2SlKd+6ZDTQ2S2VAW9NRO1gHVRTXlLM5q8/4fyh/eaywM5hjH7hVRzdGj51jkBwp1Gnd8KHHnoISZKq5MWeOHEiU6ZMYdCgQS3mw0IgEAhuJyS1AvdJwWQvj6tyA2PdENwnBdct56NBD5mnLeJ18nHIiLOOoqnuEo7uSAGRKAJ6QEB38O92y3kPzybns3RXArui07CRwR4JDaBBoneAC/eQi92RwxgKipFUtqC0Q1LboW7VFnVAG0CJsdxAWUkxujIttgY1ylu0o5eQkMsMGMos0TxOgNO1v9ukIoqSrsn1VBNKySRuVwjeprzkCovgbVtJ/LaplLfcqlxhsmu3qchtrmymN60CwS1y991333CfxMRE9uzZw7Rp0xpgRgKBoDkhG2W0Vwopjco0idgFVUVsVArsQ9ywj/Ayidi2QsS+SrmhnL8u/sX2y9vJK8/D1daVoa2HMqLtCGKzYnl518tklZrsuVUKFX/r+Tcmh0yueT/AaIToVbDtHShIspTbOMHAedDnGVA3TkoWrd7I17su8Pn2eLQGy7p2Wt82vDqyk9VGcVmxjs3fxZB0xrJh3v3eNvR5IMjktlQN5SXFbP7qE84ftmxoBnQKZfQLr+Lk7lkvj0Gfk0P2N9+Q+8OPyDqLy4DSyxPPOXNwmzgRyaaZRuAJBPXI119/DcBbb73F008/ja+v73X7rFixgunTpzf01ASCBsVYbqDkeDpFB1LQZ5RaVyolNHdV2IoHNmNbcW0JnFxpshbPuyavvWtr6PscdHsUbEx22hklGSyPW84vZ38xpzm5yqDAQcwMm0l3n+6NNftbJjmvlDXHk1h9PJnErKqW4q3c7ZnQPZAJ3QNp5a6pZgRBQ5ERfYktnx0mT+EBFVtqjuUZDJnchtb3Vd1LyLiYwPr575OXlmou6/nARAY89Jg5NaFAIKhf6ny056o1j4eHB5988gkTJ05ErVY35NwEAoFAUAfsQz3wGFJCzg4jsuwIGDCFTZu+S1IR7kOV2Id6VO0sy5B32Vq8Tj0Juuvk5VZrTIJ1QHcIiDR9ubSCejjcJMsyBxNy+Hb3BXaczbSqs1EpmBgZyEznfJTfLqD01Ckq38I5DrsH73nzsG3fnnJDOb9f+J2lsUu5VFBxkySDWlYRZN+WKe0fYbjfPdgY1GZLdX1JORcOHiQ55jQqSY1KoUattMW3TUfcPP2RtSYbdm2hFm2BFoUso4JbP9RlkJFL9RjqEGlfZ1SSSfSuKSr8qhheIYRLtopq25vbqpVISnF4TdAy2b9/P0888YQQtAWC2xRZvipiZ1EanYkhvzoRW8Iu2B1NhCd2nd1RiCiXKuy4vIM3971JgbYABQqMGFGgYOvlrfzrwL/QGXQYMQnBPhofPh78MRFetdgoXtwHf/0dUk5YyiQFRD4Og98wR1w1BlFJebz6axRn0grNZUGeDnwwIYJe7awPYOall/DHl1HkVeQfVSglhjzaiU59/WocPz3xAuvnv09+usX6tD43NA1FxeQsWULO4sUYSyzrdIWzMx6zZuH+6FQUGrHpLbhzOHfuHFOnTuXtt9+uc59rA3UEgpaEPqvUZCt+LB25zDpFm9LZBoe+fjj09EXp2IwPNRVnweHv4PC3UJpjXecbAf1fgNAHQWlao10uuMzimMX8fuF3dEbLIS6FpGBk25HMCJtBiHtIIz6Am6dEq2dzrMlSfP+F7CqW4g42JkvxiZGB9GzrLizFGxmDwcjhzzZzMk6BUVGxdyobCXG4wqAPJmLjWvWASPSOv9i+6Gv0OtN9h62DA/c9+zLtI3s15tQFgjuOOt3Fb9iwgaVLl7J+/XqysrJ46qmn2LRpE1OnTmXYsGG1WvoIBAKBoIE5sxH7/VPwt1FTYuxHmaEvRtkJhVSInfIAGsV+pH06aPUDtO5jEq3NAvYxKMmqfXxJCd6hFvE6sAd4hphvMuoLg1Fmc2wa3+y6wKmkfKs6F3s10/q2YYqXHv03n1O0c6dVvX1kJN4vv4ymezcKtYUsj17IytMrzRFEVwlxD2FG2AxGtB1RJZ9S6vmzbFo0n5wUS/SQT1BHRj7zIp6tTH7jhTll7Ft1nguXLdE6kkKi690BdL+nFSoJs4W6rDWardNlreEam/Xq8pIbMZbrzbnLbxm9jFGvh5L6FMkVZoHbykLdKrK8GhHdtpJwbqOwFsnFjZoVss5ISXQmZbHZGEr0KDUq7Lp4oAn3qpvDgkAgENwhyLKMLqnIlBM7OgtDXnnVRkoJu2BTJLZ9Z3cUNdhEC0xi9gs7XjD/fFW4vvq93GD5/fb27c1/7v4P7nY1OPFkX4Atb8GZDdblHUfA8P8D7071O/laKNUaWLD1HN/tSTBnslEqJGYPCuKFezpip7YWm5PO5rLpm2jKK9ZPdo5q7ns6HP8OrtWOL8syUVs3sWPptxgqIqbtHBwZ+ew82kf2vuX5G8vLyfvpJ7K+/gZDbqX1p50d7o89hsesmShdXG75OgJBS8PZ2ZkBAwbcUJ+pU6cyderUBpqRQFD/yMYKW/F9yZSdy61qK97WGcd+/th38WjeDm05Caa0IydWgL7Muq79UJOQ3e5uc4DE6ezTLIpZxJZLWzBWcgq0UdgwruM4pneZTiunVo35CG4KWZY5cjGXX49d4Y+oVIqr2efp196DiZGBjAzzRWMj1qlNQfa5FP6av48c2RKVrSnPYvAYH9qNf6JKe115GdsWf03sTku+d5+gDoyZ9zdcvK/vFiIQCG6NOr1Tjho1ilGjRpGfn8/PP//MsmXLWL58OStWrMDLy4uHHnqIKVOm0Lv3rd+wCQQCgeAG0JXB2jkASJIWB+VOHJQ7q2/789Tr2oYD4NrGEnUdEAl+EWarp4agTGdg1bEkFu5J4FK2dWR4gKs9swa2Y3yAiuJvviJv7VoqH2W16dAe75dexnHIYDJLM/n66Mf8cu4XinXWtk29fHsxI2wG/fz7VYmm1mu17PtlBcc2rEWu+P0oVSr6TppKzzHjUSiVGAxGTm27wpE/LqIvt9yE+HVw4e5HQvAIcKzX34lslJH1xioCuJVAflUIrxDAjVXKrUV0WVeH5/566I0Y9UYo1lEPkjtgss2vVQy3UaCoiCCvasteNeJcUitarEheGpdNzqpzyKV6kDBtWEhQGptN3voE3CcFV++0cJuyZMkSFixYwHPPPcesWbPM5Uph3SUQ3LHIsowuuYiSqCxKozJrFrE7umEf7ol9qAcKe7E5eD3KDeW8ue9NAORac9iYNpM/GfoJDupq1oYlObDrP3DkOzBWOlDnEwYj/g3th9TntK/LgQvZvP5bFBcrrS9D/Zz5z8QIwgKqisCxe5LZ/eM5jBXKt7u/A6OficDZs3pLdG1ZKVu/+4LTe3eay3zbd+T+F/+Gi7fPLc1d1uvJX7eOzM+/QJ9qsbFEpcJ10kQ858xB7e1d8wACwW3OgAEDyMnJuX5DgaAFYizTU3IsnaIDqeizrrEVVynQdK2wFfev332Ieif5mCk/9unfrfeiJCWETYB+z5v2mzCt8Y6mHWFR9CL2peyzGsZR7chDIQ/xaOijeNrXTwqPhuRKTgm/HU9m9fEkLudUdT9s46FhYvdAxnUPINBNuKs0FbJR5sg32zh2Qm8Vld3e5hJD/m8ctl5VD27mpiaz/uP3ybx80Vx214jRDJ42C5VwMhYIGgVJvkm/ncTERJYuXcqKFStISEhAkiSCgoLMJx7d3d3x8vJi69atDB06tL7nfUdSUFCAi4sL+fn5ODs7N/V0BAJBc+DkD2ZB+6awd7MWrwMiwaFxbhByi7UsO3CJZQcukl1sbQ0a6ufMU3cHMbKVPXkLF5K7ciWy1tJG5euL1/PP4/LgA1wsusyS2CWsv7DeyoZKQmJYm2HMCJtBmGdYtXNIOXeGzV8tsIrK9m3fkXvnWKKyk8/lsuvHc+SmWkRyeyc1/SZ0IKS3763bjTcSslFG1pkEcGNFBLmV6H2tYF4lorxq+3oRyesbCVPk91UL9dryj1uJ6BXCeTW5yyW1osGf59K4bLKXx1U5dX/tY/N4LLReRO2WsKZwdXWlsLAQJycn8vLyzOU36wwkSRIGQ30dxWi5tITnXiCojCzL6FKKzTmxDTllVRspJOw6umIf7oV9qDsKjdhQuhHWX1jPG3vfqHP79wa8x5j2YywF+nKTheju/0BZJZcdRx8Y+g/oOgUUjXcYqaBMxwd/nuGHQ5fNZTYqBS/c05HZg4JQXxPFZjTK7P81nlPbr5jL2oR5MGJmF2xqOBCRnXSZ3z9+n5xkS59uI8cw6NEZt7ShKcsyhX9tIfOTT9AmJFgqJAnn0aPxmvs8Nq1b3/T4AkF901TripiYGB555BH27t2LSx1dClauXMm0adPEerCeEGvK+keXWULxgVSTrXj5NbbirrY49KmwFXdoxuscWYb4rbDvE7i4x7pO7QCR06HPHFOubMAoG9l1ZReLYhZxKvOUVXN3O3ceC32Mh0IewsmmGecEB4rL9fwZk8avx65wMKHqYRtHWxWjw/2Y2COQHm3cWsw+0u1K3sUMNn+0iyyDZW/FvjyHgfc40/HREdX2OXdwL5u//gRtqemQidrWjuGzn6PzgMGNMWWB4LbmRtYUN31cvV27drz99tu8/fbb7N27l2XLlvHrr7/yzjvv8H//93+EhoZWm5/m4MGDfPvttyxevPhmLy0QCAR3BrJs2hTMTzJ9FSRZ/m/+unL9cSpj7wZ3PVIhXncHt3b1kvf6RriSU8LCPQn8cjSJUp31TdrAjp7MHhREvwAHcles5OKT32EstOQ6VLi44Dl7Nm5TpxBTeI7Fu19m++XtVtFEaoWase3H8niXx2nr0rbaOdQlKrs4v5z9v8Vz7lC6paME4YMC6P1AELYtbLNcUkhItiqwBSX1k1dLNlwVyS1Ct8VC/apAbqw5cryacvS3mNdOxnJ9dNdvXxckqorhZpG8khB+jXhuJaJfI6ijksw3sbLOSM6qc7WL2RWPLWfVOfzf6H1H2I/379+fP//8k/79+1epGz9+POHh4XUeKyoqirVr19bj7AQCQUMiyzK61GJKo7Ioic7EkF2diA22HdzQhHti38VDiNi3wLbL25CQrhudDaBAwfbL202CtixD3DrY+k/IvWhppLKH/nOh31ywbdzosW2n0/n7mhjSCix/Mz3auPHBhAg6eFedi7ZUz1+LYrkUk20uu2toK/pN7FBj/sq43dvZsvAL9OUmhwAbe3tGPDWXkL4Db2nuxfv3kzF/AWXR0Vbljnffjde8F7Hr1HhW7QJBcycsLIyvvvqK8ePH88QTTzBq1Cjc3WtIgyAQNGNko0zZuVyK9qdQfi63Sr1tkAuO/fyx6+yBpGzGIqheCzGrYf+nkBFnXefgBb2fhh4zQGN6neqMOjYlbmJxzGLi8+Ktmgc4BvB4l8d5sMOD2KnsGusR3DBGo8yhxBxWH09iY3QqJddYiksS9G/vycTIQO7t4ou9jXAaa2pkWebEkt0c3l+CQWkRs9tKFxj677HYB1R12DHodexe8T3H//zdXOYe0IqxL72BR2Dzt74XCG436sV/bcCAAQwYMIDPPvuMdevWsXTpUrZs2YIsy4wfP55HHnmEWbNm0aNHDy5cuMDSpUuFoC0QCAR6LRQk1yJYJ4O28Prj3Ag+XWDk+/U7Zh2JTsrnm90X2Bidas5hCKY8hvdH+PHkwCC6+DiQt2YNCTM/R5+RYW4j2driPu0x3GfO5EBRNIt3zuFo+lGr8R3VjkwOmcyjnR/FS+NV4zyuF5VtNBiJ2nGFQ+sS0JZZbki82zpz9yPBeLcRp8+vIiklJKUK7FTU162ZbLgaCW6sJs94bVHkxir1V3/GUA8i+dXr1M/DBAVm0Vs2yiab8bpMpVRPSUwWDt1uf5vRdevWERUVVa1wPX78eKZMmVLnsVauXCkEbYGgmSPLMrq0EkorcmJXsdgEk4jd3hVNuBd2XTyad4RSM8YoGzmfe57DaYc5nHqYPcl76iRmgymndl55HiQdg81vwJWDlWolUzT20DfB2b9B5l4T2UXl/Gt9HL+fSjGXOdgoee2+Tjzau0214nRBVil/fBlFTorJhUehkBj0SDBdBgZUew29Vsv2Jd8QvW2zucyrdVvun/c67v7V96kLpVFRZHw8n5KDB63K7SMj8X5pHprIyJseWyC4nenbty9Tp07lySefRKvV4urqipOTU41uPsXFxdWWCwRNgbFMT/HRdIoPpKC/5uCepFag6eaNYz9/1L4Nl/6tXigrgONL4eBXpv2tynh0gL7PmYIq1CZhukxfxpr4NSyJWUJKcYpV8w6uHZgZPpORbUeiUjTflDGXs0tYfTyJ1ceTSMqtul5t5+nAxMhAxnULwN+1+rQlgsanMCWXzR9sI13rDkpbAGzL8+jfX02nmbOqjZovyMpkw4IPSD1/1lzWecBghj35LDZ24rkVCJqCev10sLW1ZfLkyUyePJmMjAxWrlzJ8uXL+fbbb/nuu+8IDw+nQ4cO9XlJgUAgaJ7IMhRnmSKozYJ1svXPRRlcPySzFuzdTfkJywvq1l5SmCK0GxFZltl9Potvd19gX3y2VZ29WsnDvVoxo387At3sKdq2jYQn51vbKyoUuIwfh9szT7Ot7CTf757JudxzVuN42XvxaOijTAqeVKsNlU5bzv5fVlaJyu43+VF63D8OhVJJWkI+u348S9aVInM/W42KvuPaE9rfv8XmZm5JSEoFkkaBoh5TScn62vKMG6u3XK8xotyIrNVzy8q2EeQyA4ayG7Q8lKDsDhG0VSoV3bt3r1Lepk0bHB1vLOLP0dGR1sKiVSBodsiyjD69hJKrInZmNSK2ZBKx7SsisZWO9eMycichyzKJ+YkmATvtMEfSjphE6ZtAgYRr1gVYeE1asXaDTHmy/e669QnfALIs8/upFP61Po6cSilsBgV78d64sBpzU6bG57Hx62jKikxuLrYaFSOfCicwpPq1cm5aCuvnf0DmRcs6NWzICIbOeAq1je1Nzb08Pp7MTz6hcMtWq3LbkBC8X5qHw6BBwpJUIKiBsrIyxo0bx19//WV2hszNzSU3t2qEa2XEa0rQ1OjSiyk6kErJ8XRkrfVNpdLNFse+/jj08Gn+zjOFaSYR++j3UJ5vXRfYE/q/ACGjzClHCrQF/HzmZ1acXkFOmbUld1evrswKn8XAwIEopObpRFZUrmdjdCq/HkvicGJVS3EnWxX33+XPxMhAurd2Fe81zQhZlon56QD7t+ehV1qcPFoZ4rnnrVE4tAustt/Fk8f44/P/UVZo2nNVqlQMeXw2EcPuE8+vQNCENNhxJ29vb+bNm8e8efOIjY1lyZIl/Pjjj0RFRYkXvUAgaPloi00R1FcFanOk9RVLdLWh/ObHV9qCSyC4BIBLq4r/V3w5V5TbOMCpn2DNU3UbUzZCpzHXb1cP6AxGNkSl8O3uRE6nWgvuHg42PN6vLY/2aYObgw0lx45x6Zn/UnrypFU7x3vuwen5p/lDPsWy/TOrnN5t69yWJ8Ke4P6g+7FR1r65nXLuDJu+WkDuNVHZI5+Zh0dga0qLtBxYc47T+1Kt+nXu50ffce2xdxKb5y0ZSaVAUinqbVNAlmXQyzVbp1cbUW6s0ZbdWKit+9kWGYx1jOa+XUlMTLzhPg888AAPPPBAA8xGIBDcDLr0YkqisiiNzkSfUYOI3c4F+wgv7MOEiH2jyLJMUmESh9MOcyjtEEfSjpBVmlVjewe1A8W6ukUuGpEZmnreUuDREUb8HwSPbPQ0Nqn5pby5JoZtZyyuPq4aNf8YHcr47gE17jucOZjKjhVnMFakOXH10TD6mQhcfaoXv88d2sfmrz5BW1oCgMrGlmGznqHL3ffc1Lx1yclkfv4F+evWgdEiZqhbt8Zr7lycR92HVEOEqUAgMDF//nw2bza5JXTu3JmQkJBao7MBEhIS2Lt3b2NNUSAwIxtlys7kmGzF4/Oq1Nt2cDXZindyb/6H6DPPmWzFo34Gg9a6Lvg+k5Dduo95TZBVmsWyuGX8cvaXKmuNAQEDmBk2k0ifyGapFRiNMgcTsvn1WBJ/xqRVSZmnkGBARy8mRgYyItQHO7WwFG9uFGUVsuW9v0gpcQOlySXARltA3+4Gujz7ZLV/d0ajgQO//sjB3342BSsBzl4+jH3pdXyCRKCmQNDUNIp/R5cuXfjoo4/48MMP+fe//82//vWvxrisQCAQ3BxGg+m0aWWB+lrBurT2k9/XxdG3esHaueJnB8+6bQqGPgh/vmbKtV2rIiaBnQuENqygU1yu56cjV1i0J4GUfGvbrLYeGp4cFMSE7oHYqZWUnz/PlY/nU7Rjh1U7+27d0Mx9itX2cfxwck6VCKIIzwhmhM1gSOsh1z29e72obElSELsnmQNrL1BebBEJPQIdufuREPzau9zCb0NwuyJJEqgllGoF1IPdbfbyOErjsusmakugsG++9mvNlcTERPbs2cO0adOaeioCwR2LLsNkJ14SnYU+vaRqAwls2rqgifDEPswTpThMdkOkFaeZLcQPpx0mtTi1xrZONk709OlJL79e9PLtRSunVtzz0yAK9SXItaw/JVnGyWhkREkJaDxg8OsQ+TgoGzeKzGiU+fHIZd7feIaicsv6bXS4H2+P7YKXU/UR07JR5uC6BI5vvmQuC+zkxr1PhmFXzed5dTkT3fwDGTPvb3i1bnvD89ZnZ5P1zTfk/fgTsk5nLld5eeH57DO4TpiApG7mEXkCQTNhxYoVODg4sHHjRgYOrFv++pUrVwpBW9CoGEt0FB9Np+hgKoaca2zFbRRouvvg2NcPtU8ztxUHuHwQ9n0CZzdalyttIGIy9JsLXiHm4isFV/g+9nvWxa9Da7QI3wpJwb1t7mVG+Aw6uXdqrNnfEBezill9PInfjieTnFf14GV7LwcmRrZiXLcAfF2ab47vO524NUfZuzENndLivuOvi+eeV4fh3Cmo2j4l+Xn88elHXI45ZS4LiuzFfc+8hN0NusQJBIKGoVF3RBUKBe3btzfbAd0q5eXlLFiwgJ9++on4+HiUSiWdO3dm+vTpzJ49u9aTmTVRXFzMb7/9xvr16zl69CipqalIkoSfnx99+/Zl9uzZDBo0qMb+O3fuZMiQIde9zqpVq5g4ceINz08gENwisgxleRXR1dUJ1klQkALyDdoAV8bGsZJIHVDxvZVFsHb2B9XNWRNWQW0H476GHx8BJKpXxCo2Jsd9bc5bVN9kFJaxdP9Flh+4REGZdfRo11auPH13EMNDfVEqJHSpqaR89jn5a9daRaXYtG+P6pnH+dHzPL/F/z9K9dY3DgMCBjAjbAY9fHrU6fRutVHZHYIZOedFPAJbk3m5kF0/niU90RJBrrZT0ntsEOF3B6BQisgYQeNg18WD0tjs6zcEkMEuzLNhJ3Qbsn//fp544gkhaAsEjYwus4TS6CxKo7LQpVUTASyBTRtnNBFeJhHbWYjYdSWrNIsjaUfMIvblwss1ttWoNET6RNLLtxe9/HoR4haCUlEpikhXxruZ2cx1s0eS5WpFbaniHv7dzBxs+zwLd79mOizZyCRmFfO31VEcqmT36eVky/89EMbIMN8a+2nL9Gz9Po7EU5ZI9bBBAQx4qCPKatZ8BVkZbJj/IanxlpyJIf0GMWL2c9jY31heFENRETmLvydnyRKMJZbDHApnZzyenIX7o4+isBd5GAWCG+HixYs899xzdRazQaSgETQeurRiivanUHIiA1l3ja24hx2OfSpsxZv7QWWjEc7+Afs+haTD1nW2LtDjCej9NDj7mYvP5pxlUcwiNl/cjFGu5EKiUPNAhwd4ossTtHZufq/DgjIdG6NMluJHL1UNYHG2UzG2qz8TugfStZWwFG/OlOYWs/X9zVwucAWlac2m1hXRq1Mxd700E0lZfSR90plY/ljwIUW5pjWmpFAw4OFp9BwzXjjnCATNiEb/5Bw3btxNWUVeS1ZWFkOHDiU6OprZs2fz2WefodVq+fzzz5kzZw6rVq3ijz/+wM6u7uLNsWPHGDFiBDk5OXTp0oU333yTTp06IcsyW7Zs4aOPPmLlypU888wzfP7557V+eDk41H66TqVq5osWgaCloi83CdJXxen8JChIsv5ZW3T9cWpCUlZEUVcWqysE66vldi6Na7kYch88/AOsnWMS6yWFyV786nc7F5OYHXJfvV/6QmYRC/cksPp4Mlq99Y3aPZ28eeru9vRs64YkSRjy8kj/7jtyl69A1lpO6Kp8fDDMnMTC1pf48/K/MWRZDhMoJSUj243kiS5PEOIeQl24XlS2rtzI7p/OEbMricrnqzr29KH/xA44uNTTYQOBoI5owr3IW5+AXAcrcclehUYI2lYUFxeTn5+PXl/z7y8rq2arXYFAUL/os0opic6iNCoTXWr1NtY2bZyxj/BEE+aJUnzu1on88nwrAftC/oUa29oqbenm3c0sYId6hKJW1BL5G7eWwflZfKKz501PdwqUShSyjFGSzN+djEbezcxhcGkp+N7V6GK23mBk0d5EPt5yjvJKa86HerTijVGdcaklrUhhThkbv4oi64rpHkCSYMDkYMIHV29LnnDiCH9+/jFlRYWAaR05ePps7hp+YzkTjeXl5K78gexvv8WQl2cul+ztcX/sMTxmzkDpItyABIKbwd3dneDg4BvqI1LQCBoS2SBTdjrbZCuekF+l3jbYzWQrHuzW/G3FdWUQ9RPs/wyy463rnPyh7zPQfTrYOZuLj6cfZ2H0QvYk77FqrlFpeCjkIR4LfQwvjVdjzL7OGIwy+y9k8euxJDbHplF2zeEDhQR3B3sxITKQYZ2FpXhL4NymU+xefZlypau5zKfsAsPmDcT1ruodAWRZ5tiGNez+YQlyRdCNg6sb97/wGoGhYY0xbYFAcAM0uqqq0Who06bNLY8zadIkoqOjeeGFF1iwYIG5fMiQIYwbN45169YxZ84cvv/++zqPmZqaSk5ODl27duXgwYPY2lo2V/r370+vXr0YPXo0X375Je3ateOVV16pcayiolsQzAQCQfXIMhRnWovT1wrWRem3dg1790oR1dUI1k6+oGiGi9hOo+DlsxC3Ds6sN1mi27uZcmaHPlDvkdnHLuXyza4LbDmdbiUKq5USD3YNYPagIDr6OAFgLCsjZ8UKsr79DmOBJRpa4exM6SP38UVICrsyvwaL+yN2SjvGdxzPtC7TCHAMqPO8Us6dZtNXn1Qble0e0Ipzh9PZtzqe0gKLoO7mq2HQIyEEhrhVN6RA0OBIagXuk4LJXh533cwB7pOCkdTidHBycjLvvvsu69evJyUlpamnIxDc8eizK0Ts6Cx0ydXfB9m0dqrIie2JylWI2NejSFvE8YzjHEo9xOG0w5zNOYtcw4eESqEiwjOC3n696eXbiwivCGyU14l2N+ghIw6SjsDe+QAMKSll+5Vk/tJo2O6gIU+hwNVoZGhxCSNKSrCVMR2YPLMe7nqonh9xzcSlFPDa6iiiky0CQSt3e94fF8GAjrUf8kpPLGDjV1GUVKz9bOyU3PtkGK27eFRpazQY2PfLCg6vXWUuc/byYcy8v+HbvmOd5yvr9eSvXUvm51+gT0uzVKhUuE2ejOecp1F5Na9NfYGgpTFq1CjOnDlzQ30yMzM5ffp0ra6LAsGNYijWUXwkjeKDqRjyyq3qJBslmkhvHPv5o/a6MXePJqE0F44sgkPfQHGGdZ13qMlWPGwCqExrDFmW2ZO8h4XRCzmRccKquZutG4+GPspDIQ/hYtu8Dm9dyCxi9bEk1pxIJvWaVHkAHb0dmRgZyLhuAXg7C0vxlkBZUTnb399EYrYTKE1BhipdCZFtc+j+2nQUNtWvi8uKi9j81QLijxw0l7XqEsHouf8PB1exRygQNEckub78vxuR1atXM3HiROzs7EhNTcXV1dWq/vTp04SGhiJJEkeOHCEyMrJO427YsIExY8awevVqxo8fX22bQYMGsWfPHgICAkhKSqpSf9VyvCF+rQUFBbi4uJCfn4+zs/P1OwgELQ1tcYUV+JUaBOtkMJRff5yaUNpaC9RVBGt/sGkBuYuaCKNRZtuZDL7ZdaGKBZOTrYopvVvzRP925hxCsl5P/rp1ZH76Gfp0y0EDycaGwgcG8XVEBodL4qzGcbF1YUqnKTzS6RHc7Oq+eLxeVHZueim7fzxHyvk8cx+VjYKeo9tx1z2tUKqEQChoekrjsslZdc4UqX01g0DFd8lehfukYOxDq27A3wwteU2RmJhInz59yMrKuqH1liRJGAy3kE7iNqElP/eC5oU+p4zS6CxKojPRJdUgYrdywj7CE/twT1SuYkOwNkp0JZzMOGmKwE47TFx2HIYaUuAoJSVdPLrQy68XPX170s27G/aq61hWF6ZB0lGTgJ10FFKOg66aXOZ1oe0AePyPm+t7A5TrDXy+PZ6vdl5AbzS930sSPNGvHa/cG4zGpvbz+eePpLNt2WkMFRFXzp52jH7mLtz9q673i3Jz+OPT/5AUF2Mua9+jDyPnvFjnnImyLFO4+S8yP/kEbWVXOknCecz9eD3/PDatWtVpLIGgpdBU64qkpCQGDx7ML7/8Qvfu3evUZ+XKlUybNk2sB+uJO31NqU0pMtmKn8yEa9zqVJ72OPb1QxPpg8KuBTh05l2Bg1/CsaWgu8Zdp+1A6P8CdBhmdiLUG/VsvriZRTGLOJ973qq5n4Mfj3d5nHEdx11/bdKI5Jfq2BCVwupjSRy/nFel3lWjZuxd/kyMDCQ8wEVYircgEneeZvsP5ylTWNZrXqUJ3DOnFx59Imrsl554gfXz3yc/3XL4sPe4yfSbNBVFDbbkAoGgYbiRNUUL+FStysKFCwEYOnRoFTEboHPnznTu3JnTp0+zePHiOgva7du35+WXX2bw4ME1trnrrrvYs2cPycnJZGdn4+FRPxvLAsFtj0EPRWlVBeuCSj+XVs1TU3ckcPSpJFBf+9UKNB6NawV+m1CuN7D2RDLf7k7gQqb1zY2Psy0z+rfjkd6tcbYzWT3KskzRjh1kfPwx2vhKdpgKBXn3dOOL7lmcUuyESnuofg5+TO8ynXEdxqFR39jJ5dqisp08/TmwNpGobVcwGi3CV1A3LwZM6oiTu9hcFzQf7EM98H+jNyUxWZTFZGEs1aOwV2EXZrLlFZHZJv75z3+SmZmJi4sLY8eOJTQ0FDc3NytnnWs5cOAA3333XSPOUiC4PdHnXhWxs9BdKay2jTrQ0ZwTWyU+Z2tEa9ByKvOU2UI8KisKvbH61AkSEp3cO5ktxLt7d8fRphaRVVcGaVEV4vURSDoG+TXn2L4hJIXJBaiBOXYpl9dWRxGfYTks0dHbkQ8nRtC9de3Xl2WZIxsSOfLHRXOZf0dXRj4Vhr1j1QidyzFR/PHpfyjJzwNMORMHTXmcyPvH1WlDW5ZlivftJ3P+fMpiY63qHIcMwevFF7ELuTFrZIFAUDtGo5Evv/ySyZMnM3jwYEaNGkXHjh1xcnJCUUOuU5GCRnCryAaZ0tgsivanoL1YUKXeLsRkK27bsQXYigOkRZvyY8eshsqH6CQFdB4L/edCgGVPvdxQztrza/k+9nuSi5Kthmrv0p4Z4TO4r919tac5aUQMRpk95zNZfTyZzbFpVdLkKRUSg4O9mBgZyNDO3tiqhIjZktCWaNnx0WbiUx2gQsxW6kvp6ptOzzcfRVlDGlpZlonevpnt33+DQacDwM7Bkfuee5mg7j0bbf4CgeDmaHGCtlarZdu2bQD07Fnzm0zPnj05ffo0f/zxB1988UWdxu7cuTP//e9/a22jrDiho1AosLdvPifNBIImRZZNuZuvRlFXEayTTHmta4gyqRM2TtcI1AEVUdYVPzv5m22PBPVDfqmOHw5d5vt9iWQUWkfGd/R2ZPagIB7oGoBNpejmkuPHyfjv/yg9ftyqfU6PDnzZJ58op1PW47h1ZEbYDO5te+8N3/TotOXs+3kFx/5Yy1Xfc6VaTb9JU4kc/SCJp3LY8MUhinItc3f2smfQQ8G0CROHkQTNE0mtwKGbNw7dvJt6Ks2Wbdu20aFDB/bv34+nZ93yiatUKiFoCwQ3iT6vnNLoLEqjM9FerkHEDnBEE+FpErE9xD1SdeiMOmKzYs0R2CczTlJei/NQB9cOJgHbtxc9fHvUbNcpy5B3qVL09RFIjQKjrvYJubaGgB4Q2BNK82D3h3V7ILLRlNKmgSgu1/Pfv86yZP9Fc1oblULimSEdeHZI++tuNuu1BrYtPU38MYtVaqd+fgyeElLFkUc2Gjm05hf2r/rB7PDj6O7B/S+8RkCn0DrNt/TUKTI+nk/JoUNW5fY9IvF+6WU03bvVaRyBQHBjtG3b1nzgJDEx8YbSDTZHysvLWbBgAT/99BPx8fEolUo6d+7M9OnTmT17do0i/fW4ePEi7dq1u267jz76qNa0inc6hiKtxVY8X2tVJ9kqcejhg2Nff1SeLWANJMuQuAv2fQIXtlvXqeyg26PQ91lwDzIXF2oL+fnsz6yIW0F2WbZVlwjPCGaGz2Rwq8EopOZxADs+o5BfjyWz5kQS6QVV11qdfJ2YGBnIA10D8HISaXBaIpcPxLNtSSwlkpO5zL3kIvfMCMd78Oga++nKyti66Evidlv+9n3bd2TMvNdx9hJ7MAJBS6DFCdqnT59GV3F6pm3btjW2u1p36dIl8vPzcXGpn3wd58+brFQiIyPRaGqOIvzxxx9ZvHgx586dIzMzEzc3N7p168YjjzzCww8/bBbGBYIWgb68QphOrmQFfsUiVucngfYW8sZLSlN+6toEa7vmlXPndiY1v5TFexP58fAVisqtI4V6tXPn6buDGBzsjaLSiePy+HgyPp5P0XbrG6Lcjj583b+EE34Xrcp7+PRgRtgMBgQMuCkrp+Szp9n81QJyUy2ngk1R2fNQqj3448sYrsTlmOuUKgXdR7ah+72tUanF+69A0JLJzs7mxRdfrLOYDRAREcFbb73VgLMSCG4vDPnl5pzY2ktVI5AA1H4O2Ed4oQn3bBkbuI2MwWjgTO4ZDqeaBOzj6ccp0dds8d3GuQ09fXvS27c3PXx74Glfw3tceSGknLBYhycdgeLM2iej1pgirAIrBOyAHuDkY6nXlcHhb6AsH2rI021CMq3JQx+o/Xo3yZ7zmbz+WzRJuaXmsohAFz6cEEFnv+vb2Rbnl7PxyygyLhWap9tvXAe6Dm9VZb1ZUpDPn198zMWTx8xlbSK6Mer5V9A4X/++o/z8eTI++YSirdusym07d8Z73os4DBwo7EoFggbmZlL9NcfXZVZWFkOHDiU6OprZs2fz2WefodVq+fzzz5kzZw6rVq3ijz/+wK6GaMO6oNFoan3sNjXkl73T0SZX2IqfygC99d+bytsex77+aLr7oLBtAXsMBj3ErYX9n0KqdaAB9u7Qazb0ehIcLOuPrNIsVp5eyU9nfqJIZ73n18+/H7PCZ9HDp0ezeF3ll+j4PSqFX48lcepKXpV6N42aB7oGMDEykC7+zs1izoIbR1euZ/fHWzhzUQ0VYrbCUE642xX6fjQFpVPNDkY5KUn8/r/3yE6yuBZ1vfd+7n5sJip183AVEAgE16fFCdqXL1vedLy8vGpsV7kuKSmpXgTtrKwstm7dCsCrr75aa9vnn3+el19+mX/+85/Y2dlx6tQp/vOf//Doo4/yzTffsHbtWtzd3Wsdo7y8nPJyy0mygoLqN5MEgltClk2bYPlXahasi9KvP05t2LtXylsdWCl3dcXPjj6gaAE3ALc5Z9IK+HZ3Ar+fTDHnKQSTS/vILr7MHhREt2ssHnVpaWR+9hn5a9aC0WLfVODnzML+ZRzskGW2eZeQGNp6KDPCZhDhVXMem9qoLSq764ixnNiSxPG/DmGsdLPZuosHgx7uiIvXjVmZCwSC5omvr+8NidkA4eHhhIeHN9CMBILbA0NBudlOvDobTQC1r4M5J7ZafK5aYZSNxOfFmwXso+lHKdRWH9EOpnQrvXx70duvNz19e+Lr4FvNoEbIOmcSrZOPmgTsjDhTlHRteAabhOurArZXZ1DWcuuvtoNxX8OPjwAS1YvaFRu/4742ta9H8kt0/PuPOFYds6SPsVUpeGVECE/0b4tKef2Ir8zLhfzxZRTFeab7Z5WtkhEzQml3V9U9g5Rzp1m/4EOKsivshyWJfpOm0HvcZBTXuSfRJiWT9dln5P/+u3ktCqBu0xqvuXNxvu8+pJuMpBQIBDfGU089RZ8+fercvrmmoJk0aRLR0dG88MILLFiwwFw+ZMgQxo0bx7p165gzZ84tRaHHxsbWGhQksCAbjJTGZJtsxa891CeBXSd3k614B9eWIYpqi+HECjjwOeRdk37EtQ30fQ66TQUbB3NxUmESS2KXsDZ+rZWbjITE8DbDmRk+k1CPujmZNCR6g5E957P49VgSW+LS0RquyWWukBjSyZuJkYEMCfG2chcUtDySj19i67cnKcLJvCx1LbnMkEc64H/f7Fr7ntm/m7+++QxdmenQpNrOnhFPPU+nfoMaetoCgaCeaXGCdmGhZVOgttOJlevqSwj+3//+h1arZdy4cUycOLHaNq6urtx33318++23BAYGmst79OjBxIkT6devH3v27GHSpElm6/SaeP/99/nXv/5VL3MX3MGUF1XKU12dYJ0MtdgdXheVXaXo6moEa+cAsBEbns0VWZY5mJDDN7svsPOsdXSPjUrBpMhAZg0Mop2ng1WdIT+f7O++I2f5CuRKB2+KXWxZ3l/PzvBijAoJkFApVIxtP5bHuzxOO5fr253VRHVR2X4dQrh3zosU5tjz87tHKcgqM9c5utkycHIw7bp6towbTYFAUCdGjRrFiRMneOKJJ+rcJzMzk9OnTzNoUMu+YTUYDPzvf/9j6dKlKJVKtFotkyZN4s0336w1h7hAUBOGQi2lMVmURGWaROxqdEyVj8aUEzvcE7W3WNNdRZZlLhZc5EjaEQ6lHuJo+lFyynJqbO9l72WKwK4QsAMdA6uuT0pyrK3Dk49DeX7tE7FztQjXgT1Mkdg3k+M65D54+AdYO8eUSkhSmITzq9/tXExidsh9Nz52LWyKSeUf62LJrJTepk+QOx+Mj6DtNevPmkg4kcmW72PRa6/ahtsy+pm78Ay0jtKRZZnjG9exe+X3GA2mVEgaF1dGPf8KbcK71noNfVYWWV9/Q+7PP4POYueu8vbG89lncR0/DklE9wgEjcrAgQOZMmVKnds3xxQ0q1evZufOndjZ2fH2229b1UmSxPvvv8+6detYunQpzz33HJGRkdUPJLhlDIVaig+nUXQoFWPBNbbidiocevrg2Mev5aRWKc6Cw9+avkpzrev8upryY3d+wOrA2/nc8yyKWcSmxE0YKqUMVClUPND+AR7v8jhtXdo2zvxr4WxaIauPJ7HmRLLV+uEqoX7OTIwMZGxXfzwdxT1SS8egM7L3s23EnJUsUdlGHaGaBPp9MAW1a81BjHqdjl3LF3Fy8wZzmUdga8a+/Abu/oE19hMIBM2XFidoNxV79uzhv//9L8HBwSxatKjGdl27dmXjxo3V1rm4uPD+++/zwAMPsH37djZt2sTIkSNrHOv111/npZdeMv9cUFBAq1atbv5BCG4/DHooSqskUl/zVZBUdeF6Q0im6GkrK/DKX61A42GOwBW0HAxGmU0xaXy7+wKnkqw3Sl3s1Uzv24Zp/dpWWfwby8rIXbmSrG++xVjpsFCZvZLVvWX+7KFHqzb9PTioHZgcPJlHQx/FW3PzuWh02nL2/bScYxvXWUVl95/8KB373Mu+XxO4GHXe3F6hlOg6rDU9RrVF3RKsvwQCwQ3xxhtv0L9/fyZPnsyAAQPq1Oevv/5i2rRpGAyG6zduxjzzzDP89ttv7N27l5CQEJKSkhg0aBDR0dGsXbu2qacnaCEYCrWUxmZRGpVFeWJ+9SK2t71FxPapm6h4J5BUmGQSsNMOcST1CBmlGTW2dbV1NVuI9/TrSTvndtYCtkEH6bHW1uE5F2qfgKQEny4V4nXFl0f7+luLdxoFL5+FuHVwZr3pPsLezZQzO/SBeo3Mzigs45/rYvkzJs1c5mSr4o3RnXmoRyur1DY1Icsyxzdf4uDaBHOZTztnRs2JQONsbZ9bVlzE5q8+If7IAXNZQKcu3P/Cqzi6e9R4DUNhIdmLF5OzdBlyicUyXuHigufsJ3GbOhXFLdgACwSCm6N///54e9/YPWb79u2ZNm1aA83o5li4cCEAQ4cOxdXVtUp9586d6dy5M6dPn2bx4sVC0G4AtFcKTbbiUZlguMZW3EeDYz9/NN28Udi0kL2F7Atw4As4uRL0ZdZ17e+B/i9Au0FWa4eTGSdZGL2QXUm7rJrbq+yZHDyZx0Ifw8fBh6Ykt1jL76dMluLRyVUP+3k42PBgtwAmdA8k1P/6aUoELYP0uBT++uwwBbKzOSrbuSSJwQ/602r8nFr7FmRmsH7BB6TFnzOXhQ4cwrBZz6IWazeBoMXS4gRtJycn8//LyspqbFe5ztn51j7Izpw5w/jx4wkICGDr1q24ud3EifcKhg8fjlKpxGAwsGHDhloFbVtbWxFtcycjy6boiBrF6mQoSAH5FjbnbZxqEasDwckfVCKXUkuhTGdgY3Qqf8Wmk1eixVVjw4guPowK98OuIm90mc7AqmNJLNyTwKVs6zyOAa72zBrYjsk9WuFga/3xIBsM5K9dR+Znn6FPs2w86lQSf0bCmr5QbG+yb/Kw8+DR0EeZHDIZZ5tbe/+tKSp7+JNzuXRa5uf/O4peZ7GVCghxZdDDIbj7ic13geB2xWg08s033/DYY48xcOBAxo4dS0hICE5OTihqsHnNyspq5FnWP4cOHeLbb7/lww8/JCQkBIDAwEDefvttpk+fzvr16xkzZkwTz1LQXDEUaSmNzaY0KpPyhBpEbC97U07sCCFiXyW9OJ3DaSYL8SNpR0guSq6xrZPaiUjfSHr59qKXby86unVEIVV6TypIsUReJx2FlJOgL61xPMB0sLSyeO3f1coStEFQ28FdD5m+GgBZlll9PJn/2xBHfqkl0nlYZ2/+/WA4vi5122A06IzsWHmGswct69LgXj4MeawTKrW16JCeEM/6BR+Qn25p2/OBiQx46DEUyuoFCtMhzh/I/vZbDPmWjXPJ3h736dPwmDED5S3uMwgEgpvn3XffBWD37t34+voSHBx83T59+vS5IYvyhkar1ZqdG3v27Flju549e3L69Gn++OMPvvjii8aa3m2NrDdSGp1lshW/ck16EAnsQj1MtuJBLi3H7S3pGOz/BOJ+x2qhp1BB2ATo9zz4WlIwybLM3uS9LIpZxLH0Y1ZDudq6MqXzFKZ0moKL7a2n8LxZdAYju85m8uuxJLadSUd3zYEDtVLink4+TIgMZHCIF+o6pCgRtAwMBiMHv97FqSg9smRab0lGPSGqcwz83yPYeNV8GBEg8cRRNn7+P8qKTK9vpVrN0CeeInzovS3nNS0QCKqlxQnarVu3Nv8/MzOzxnaV6ypbf98oZ8+eZejQoTg4OLBt27ZbjpC2t7fHy8uLtLQ0EhMTb2ms+kKvM3DhWAYJp7IoK9Zh56Am6C5P2kd6V9kMENQj+nJLjur8pAo78CvWgrW26ObHV6hMgnRtgrVd0y1MBfXLlrh0Xl51koJSPQoJjDIoJNgUm8bb62P519gwLmeXsPTARXKKre2zuvg7M3tQEKPD/arkKJRlmaIdO8mc/zHl5+PN5UYJdoVJ/DJQQbaLaTHY2qk1j4c9ztj2Y7FV3tphnNqisr3b381f38eTl24R5DXONvSf1IGOPXzE4lQguM1p27at+XW+cuVKVq5c2STzMBqNfPXVV7z++usUFhaSmJhYp9yE5eXlLFiwgJ9++on4+HiUSiWdO3dm+vTpzJ49u0ZR/ocffgCochjy3nvvBUy/CyFoCypjKNZZIrET8qCatMsqT3vsIzzRRHih8tHc8Z+h2aXZHEk/wuFUk4B9seBijW3tVfZ09+luyoPt25tO7p1QXs2/rCuFK4etBeyCmsVwAJS2JsE6oIfFQtwl8LZyQrqSU8Iba6LZc95yyMjdwYa3x3ZhTIRfnf/+Sgq0bPommtQLFqG599ggIu9rYzWGLMtEbd3EjqXfYqiwCbdzcGTksy/RPrJXtWPLej15v/1G1hdfok9Pt1So1bhNnozn00+h8qqal1sgEDQugwcPNr/ep0+fzuLFi5t4RjfO6dOn0VW8N9W2hrxad+nSJfLz83FxufF9nE2bNrFx40ZiYmJIT0/HycmJsLAwJkyYwBNPPFFrSsfbCUOBlqJDqRQfSsVYpLOqU2hUaHr6mmzF3VrI70OW4fwW2PcJXNprXad2gMjHoc8ccLXsZRuMBrZc2sKimEWcyTlj1cVH48PjXR5nfMfxaNRNl2bmdGoBvx5LYt3JZLKKtFXqwwNcmNA9gLFdA3B3EEE4txuZ8Zn8tWAfeXpnkzsR4FiSyt33utJmyrO1rheNRgP7f/mBQ2t+Npe5+PgyZt7r+LRr3+BzFwgEDU+LE7Q7d+6MWq1Gp9Nx8eLFGttdrWvTps1NLfYAoqOjGTZsGE5OTmzfvt1KTL8VZLmakIgmIvFUJtuWnqa8RG+y7pAByZSHbM8v57nn8VDaRXg29TRbHkYjlGRVEqiTLXmrrwrWxTVbFNYJjUdF7upWlUTqSj87+oBCHEi4E9gSl87s5UfNh3CN13wv+P/snXd8XMW99r/nbG/qzWquuHfjAqaa3oshAUyH2JACgdxcAjc3Ae69QMgbMAkthAC2gYSAAYMB03swboA7xlWWLMnq2tXWU94/drVFWkkrWbYla76fz/EpM2d2Viuv5swzv+fnU7jtpW/b3Xf8UTksOGE4s0dkJx0Qetd9w/4//Qnf2sTVumtHSLx4oszevPA947LHcf346zml9JTYRO4BULF1M+8++Ui7qOzj5/2Uzf/2sert9dHrkgQTTi5mxnnDsNj63Z80gUDQQ3oylupNoW7Tpk385Cc/4auvvuq6chy1tbXMmTOHDRs2MH/+fP7yl78QDAZ59NFHufnmm3n55Zd56623kk4qro18F48YMSLhen5+Pk6nM1ouGNho3hC+TXV419cQ2NGYVMQ2ZFtjduKDHANaxG4KNLGmek00D/b2xu0d1jXLZqbkTYnmwR6XMw6TbApPJjfsgo1LYwJ21QbQlM5fPHNIXPT10ZA/4Yh1RtI0ncVf7ebBd7/HG4y5S104uZDfnTeuW5PRdRUe3np8Pe66sCOb0SRzyrVjGTEt0Xo46Pfx/lOPsvXLmH1qwfCjOPeXvyE9r71tqq5puN99l5qFjxDcsydWIEmkn38eOb/4BeYDWCgvEAh6H4vFwl133cUFF1xwuLvSI8rKyqLHuZ0slIkvKy8v79Ec53/8x39w6623cvvtt+Nyudi2bRsPPfQQP/3pT3nsscdYvnx5lwszA4EAgUAsX3FzXAqyvoyu6wTLwrbivg21sYmSCKYCB87Zhdgm5fYfW3ElCBtfgS//DDVbEssceTDrJjj6+nDakAgBNcAbO97g2Y3Pste9N+GWoelDuX789Zwz9BxMBtOheAftqPMEWPbtPpauK2fTvva/WzlOCxdNKWTutGJGFwiHlCMRTdNZ9cyXrFvlRZcjUdm6ygh9KyfcfwnWokGd3t/S2MDbf/kjZRtjc4Yjps/ijJt/idXhPKh9FwgEh45+N/tvNps55ZRTWLFiBWvWrOmw3urVqwE455xzevQ669at4/TTTycvL48PPviAwsLCaJmiKJSXl1NQUJAw4bh//37mz5/Pf/3Xf3VoF+T1eqO2l6lE8RxMdn1Xw9tPbog50bTZB7wKbz+xnrNvmsDQSWIVegIBTyS6ugPBunkfqIGu2+kIozUsSnckWKcVgfnwrZYU9B38IZVfvfwt6EndQ9shS3DepELmnzCMcYXJH4QDO3aw/+GH8XzwYcL1bYXwwskGtpSGJ75nF87m+vHXM71geq9MhocCfr586fl2UdnHXDIPs/1o3vnrHkKB2CRowbB0TrxiJDnFro6aFAgERygLFizolmXkV199xd/+9rdeee3f//73PPDAA8yYMYPf/OY3PPDAAynfe+mll7JhwwZuvfVWFi5cGL1+8sknc9FFF7Fs2TJuvvlmnn322Xb31tTUYDAYsNvb//1PS0vr1LlIcGSjeUP4NtfhXV9LYHtju4laAEOWFfvEHGwTcjEVDlwRuyXUwtrqtVEBe2v9VvQORlBGyciE3AlRC/FJeZPCDjT+JqhYB1sWhsXrijXgrev8hc1OKJoaE7CLjgbnwHi+2r7fzR1LN7B2T0P02qB0K/930XjmjO5ePs7dG2p57+lN0fGgI93M2T+dSN7gxInt2r17ePOh+6nfVx69NuXM8zjxqusxGBMn6nVdp+WLL9n/8EMENieKAs5TTiH31luwpmBlLBAIDi1Go5FbbrmF3/72t4e7Kz3G7Y5ZXXcWIR1f1l0R2Wq1MmfOHB5++GEmTpwYvT5t2jTmzp3LmWeeyccff8zZZ5/NN99802naw/vvv5977rmnW69/ONEVDe93NXi+2keovI37oQy2cTk4jynEPDSt/4yL/M2w9jlY+QS49yWWZY+AY2+BiT8Opw+J0BJq4V/f/4slm5dQ40t8XhifPZ4bJ9zIyaUnJ6ZJOUQEFY2Pv9/P0rXlfLR1P0qbMazZIHPq2DwumVbMCUfltnMUFBw51Jc18O7/+4z6oCvsOArYfdUcf5yF4Tf+vMv/o+WbN7L8zw/S0lAPgCTLnHDFtUw796L+8/9bIBCkRL8TtAFuvPFGVqxYwYcffpjUbmfr1q1s2bIFSZK4/vrru93+ypUrOfPMMxk8eDAffPBBu5WS5eXlDB06lI8//piTTjopet3r9bJs2TKOO+64DgXt9957D1UNP4D3VGzvDZSQyoeLtnStgOnw4aItXPuHrIFjP64q4KmKswLfGydYR879jQfwAhK4CuIE6+I40ToiWNuzjyh7QcHB47VvKmj2dREBFMd/nTOGG44blrQsVF1N7aOP0rj01bDLQISKLHjxJJnVIyVk2cBZQ87g+vHXMzpr9AH3P/oaWzfz7pMLaaiMPZQNOmoUU8+5gW8/cFNXsTN63eo0ccxFwxlzzCAkWfw/EQgGIscffzxXXHFFyvWNRmOvCdoLFy7k4Ycf5uabb2bRokUp37d06VI++eQTrFYrd999d0KZJEncf//9LFu2jEWLFvHzn/+cadOmpdy2eEgfeGg+Bd/mcE5s//ZGUJOI2JmWcE7sCTmYipwD8vfEp/j4dv+3YQG76ms21W5C1dWkdWVJZmzWWGYMCgvYU/KmYDdYoOb7sHC9anHYOrxmK50/REmQOzpmG158dPh8gDknhVSNpz7bySMf/EBQjY0rr5xVyh1njsZlTT0CTNd1vvtwL/9eur11zSO5pS7OvnkizsxE8WXzZx/x/tOPoUSiCM02G6cvuJVRxxzXrl3vN99Q89DDeCOL4VuxT59O7u23YZ8yJeU+CgSCQ0t+fn5KebN7m8WLF/donrGVt99+m9NPP70Xe9Q5BQUF0TzdbTGbzSxcuJBJkyaxZcsWnn32WW666aYO27rzzju5/fbbo+fNzc0HnJbxYKA2BSK24lVoLW1sxR1GHDMG4Zg5CGPGgaVJO6Q0V8LXT8CaZyHQZlFD8QyYfSuMOhviUhfV++t5fvPz/PP7f+IOJuYJnzVoFjdMuIGZBTMPy/hw076miKX4vnYp8QAmFadzybRizptUSIb9yHSvEYTRNZ21L3zN6s+b0GRX60WGhTZx4t0XYh86uPP7dZ3Vbyzli38uRo/MYzozszjnl3dQPHrcwe6+QCA4DPRLQXvu3LmceOKJfPrpp9xzzz089NBD0TJd17nrrruAcB6dtpOBb775Jtdffz35+flJLXU+++wzzj33XEaNGsW7775LVlZWt/u3cOFCbrjhBjIzMxOuNzY2cueddwLhidizzz672233FjvW7g/bjKdAwKuwY10No2YWHOReHQJ0PSxGR8XpJJu7EjqY6EoJsyucnyYqVrcK1pFzV+ERayco6F1UTafGHaCi0ce+uK2i0R8+bvLR6A113VAEWYLVuxq4oc18ntrcTN3fnqZ+8WL0OAuxeie8fLzMxxMlTCYrl424iGvGXUOxq/fsFsNR2UtY+/YbCVHZMy64HK9nLB8uqopVlmDccYXMunA4VsfhscESCASHn9mzZ5OXl9d1xTiGDx/O1Vdf3Suvv3nzZoqKirp939NPPw3AnDlzyMjIaFc+ZswYxowZw5YtW3jmmWfajWFzc3PZtm0bXq+3XZR2U1MTBQVHwDhN0Cmav1XErsX/Q0NyETvDEs6JPSEXU/HAE7FDaoj1tetZVbmKVVWr+K7mO0Jax2OlUZmjogL2tPxpuIL+cMT11o/ggz+EI7HbTAK3w5aVaB1eNBWsPUt5daSwobyJ/1y6ni2VsUn3oTkO7r94ArOGZXerLVXR+Oyf29j8RWzR4/CpuZxy7VhMcdawoWCAj5/9Kxs+ei96Lbd0COfedidZhYnf2f5t26hZ+Aiejz5KuG4dO5bc227DcdzsAfd/RyDob5xwwgls2bKl64pxfPDBB9x333181Ob/fnfQNC0apNLT+1txuWJOY36/v8N74svS0nrXannixIkUFhayb98+li9f3qmgbbFYOo3gPpzouk5wT3PYVnxjXXtb8SInzmMKsU/KRTL1oyjf/Vvh33+B9S9B2/HMqHNg9i1Qmuhatc+zj+c2PcdrP7yGX4397khInDr4VK4ffz3jc8Yfit4nUOsJ8Po3FbyytpytVe3HVnkuCxdNLeKSqcUclS9c+AYCTZXNvPvgJ9T4nCCH5/hsvhqOPVpl1M9+gSR3/n/V7/Gw4omH2bHm6+i10vGTOOeWX2NPzziYXRcIBIeRfiloA7zyyitR2xyfz8eVV15JMBjkscce47XXXmPOnDk88cQT7e576qmnqK2tpba2lldffTVhdeHKlSs566yz8Hq9bNy4scOc2R3lbTSbzVgsFioqKhg/fjz/+Z//yaRJk3A4HHzzzTc8+OCD7Nixg1mzZrF06dLe+UH0kJ3f1cZyZqfAFy//QPnWetJybLiyraRlW3Fl23BkWJD7UoSkEohYgXciWIdaet6+bIS0wpjtdzLBeoBPYAlSpyWgRARqH/taRerW8yYfVU1+Qkkmq3uKpkOjL7b6VQsEaHjhRWr/+iRaU2zCscUCrx8j887RElZHOj8ZfTlXjLmCLGv3F/h0RkdR2cOmXc7Gz70EvLE887mlLk68fBT5Q0WuJIFgoPP55593+55Zs2Z1y6K8M3oiZgeDwWh0TEcuPq1lW7Zs4a233uKxxx5LKJs2bRpffvkl27dvT7CMrK6uxuPxdCuiW9B/0AIK/i31eNfX4v++PrmInW7GNiEX28QczCWuASXEKZrC5rrNrKpaxarKVXyz/5uEydu2DEsfFrYQHzSDo7MnktlUHo66XvU8lN8KDbs7f0HZCPnjEwXsrGHCWSmCP6Sy8IMf+NvnO1EjYoIswU9OGMZtp47E2k3HL78nxIqnNlCxrTF67eizhzDj3KEJLj0NlRW8+fAD1OzZFb02Yc7pnHzdAkzmmPgSLC+n9i9/oemNN6MLKQHMgweT+8tbcZ1xRpeTpwKBoG/wq1/9ijPPPJObbrqJ4cOHp3RPdXU1n3766QG97rXXXsu11157QG20Ej/n2FnqmPiy4uLeW1we3499+/axa9eurisfAvSQhndDDf5NdaheBYPdiHVcNvYJ7cVoPaSGbcW/3Eeoss1cnyxhG5+Nc3YR5tJ+ND7SdSj7Cr58BLatSCwzmGHSZXDMLyA30aFgR+MOntn4DG/vfBtFjwUwGSUj5w4/l+vGX8ew9ORufQeLoKLx0dZqXllbwSffJ7EUN8qcPjafudOKOX5EjrAUP4IIenxsWvwRuzY0EFQkzEadoRMyGXf1HEwOK9+9so6V79egyrHc1oN9GzjpN2fjHHNUl+1X79zOmw/fT9P+6vAFSWLWxT/mmEsuRx5grkgCwUCj3wraOTk5rF69moULF/KPf/yDJUuWYDAYGDNmDI8//jgLFixATvIwOn/+fL766ivy8/O5+OKLE8pWrlyJ1+sFOl8d2RGtqxpfeeUV3nvvPf7yl7+wb98+VFUlOzubqVOn8vvf/57LL78co/Hw/uj9LaGUxWwITyZs/aqq3XVZlnBmWXBFBO60OLHblW3tXcFb06ClBpo7Eatb9nfdTmfYsyNW4MVxYnWcYO3MH3B2gYKekSy6uqJNhHWTL/Xo6rYYZYlBGVY8foWGFKO0ZQkybGZ0VaVp2RvU/PnPKFWx/9chA6yYJvHaMTLO3EH8cuzVzD1qLnZT7+Zr7ygqe9Jpl7K/fDhr342J62abkVkXDGPcCUV9a/GMQCDoV6xcuZKnnnqKZ5555rC8/pYtWwiFwt/Vbd2B4mkt27NnT7u0OldccQV//vOfee+99xIE7ffeC0cjzps3r/c7LjgsaAEV/9a6mIittB+0y2lm7BNysE3MDYvYA+RvpKZrfF//fVjArlrF2uq1tHSyWLXEVRLJgT2d6Y4Scmt3hAXsTX+Efd+CGujwXiC8gDVqHT4dBk0Ck61339QRwtc76/jNqxvYVRv7PEYXuHjwkolMLM7odnsNVS289dh6mmp8ABiMMnOuHs3IGYluFNu+/pJ3n1hI0BeuZzRbOPXGnzLuxFOidZTaWmqfeJKGf/0LQrFxszE/n5yf/ZSMiy5CMgn3H4GgPzF16lSefPJJTj/9dG699VYuvfRSBg0adLi71S3GjBmDyWQiFAqxe/fuDuu1lg0ePLhdysXeoKOgncOBb3Md9S9vQ/cpsSAcCXyb6mh8cydZl47ENjYbpdFPy8pKWlZVobVxn5SdJhwzCnDOHIQhvW9GlCdFU2HrW/DvP4dTncRjSYfp18PMm8IpDONYX7Oepzc8zcd7P064bjPamHvUXK4Zdw0FjkPn5KTrOhsrmlm6rpxl31Ykna+aUprB3KnFnDexkHS7+Pt7pLF5yUd8/qkXxWgH3QIGGTSNyvUyq375EQ5ziCYtDeSwe6nFX88xY1sYe/vPkLrQS3RdZ/0H7/Dxc0+hKuH/+1ZXGmf//FcMnSwWeAsEAwFJ70sjF0GnNDc3k56eTlNT0wHbDL3z1w3s/LamW6J2T4gJ3hGxOycmdqdlW7GnxwneAU8kunpvnEgdd95cAWr73CopY7TGBOp2gnUkn7W5d4U7wZGLJyG6unXzR8+rmvztVp92hwy7icJ0G4UZNooyrBRmRI4zbRRl2MhxWjDIEq+uK+f2f30HgEnzclLdOxxTuRlXIIjbYuarQWP5JPssQrIddJ2nRvoZ9tqzhLbHclJrwGcTJP51vEzG4KO4bvx1nDX0LExy7z9YJIvKzh8+kpzSC9nxnZLwnTR6VgHHXDwCe5qw6BcIepveHFP0B1544QWuvvrqA7KITMZzzz3HddddB8CuXbs6FKvffPNNzj//fACWL1/OOeeck7Teo48+yi9+8QsANm7cyLhxiXm/5s+fz+uvv84XX3zByJEjqaio4IQTTmD8+PEsW7YsaZuBQIBAXDqJ1nyHgwYNSrr4M56pU6fyxhtvJFw7//zzWbduXaf3Adx+++0JTkhut5sxY8Z0eR/AsmXLEiLOu7LAbMXpdLJ169aEa7/+9a/5xz/+0eW955xzDn/9618Trh199NFUVbVf0NmWBx98MCGn+/fff88pp5zSyR0xVq9ezaBBg9CCKv6t9Ty58DH++MrjycfoMsgmGclkYOSYUe0sU+fNm5dS5NlPfvITfv/73ydcSzXi6/nnn+ekk06Knn/yySdceeWVKd1bXl6ecH7PPfeklNt+6jFT+fG9P2Z11WpWV62mOdjMrj/sIlDVXow2SAbMBjNm2YQZibuvnsP8qSaoWAvuSirdGtP/1oEALklgMIWjnwxmPlz+KqOOPiFa/OKLL/Kf//mfXfa3oKCANWvWJFxbsGABb731Vpf3Xn755fzxj39MuDZ69Gg8Hk+X9z755JOce+650fO1a9dywQUXdHkfhBfdxFvfPvTQQwlpvTpi6tSpvPCvpfxhxVaeX1kGwP6l9xKq3oHTYsRh6XhSsrPvCFXR8Lco0YWPkiRhdZqQDeHnxmXLljF50kQ+e/5Z1r3zBpv3VbN07UZkgwGr04VsiCxA1nW0lhY0rxd0Hbss89bQYRjS08meP5/MeVdwx3//d7/4jmjlqaee4t577+3yvpEjRw6Y74gTTzyRF154IeHanDlz2LZtW5f3/u53v2P+/PnR88rKyk6dVOL58MMPGTVqVPR8oH5HaJpGZWXlIR9TDhsWjjStr6/H7Q7bF6enp5OWltbh+KalpYXa2tpeHw8eCGeddRYrVqzgnHPOYfny5UnrjB07li1btvDTn/60nYNPV1x44YX85Cc/6XDsCeHgnMrKSs4+++yUfg9b6e3nCd/mOuqWbO5yntJc6iK4192unqnYifPYQuwTc5GM/SjSN+SD7/4B/34U6ncklqUVwayfwrRrwBL7P6jrOl/t+4qnNz7N6qpE8TvNnMa8MfO4YvQVZFgzDsEbCLPf7WfZN/t4ZW0531e3txQvSLNy0dQi5k4tZkSeM0kLgiOBzUs+4uMvIqkVpCT/D3U9wdmouGUDJ99+CmlTurbBD/p9fPC3x9jyxSfRa4OOGsW5v/wNaTm5B9p1gUBwGOnOmKLfRmgLDoxhk3LY+U3HlkZtOfGKURQMS6O51o+7Lrw11/lw1/tprvUT9CXPx61pOs214ToVScplScVpaiRNrsIl7SPNsB+XYX9075AbkKRUREEpvEoxXpxOL0kUrO3Zwg5QkBKqprPf7U/MV30QoqsL02MCdVSwzrAyKN3W6QRgPGdPGMTdb25i/L7l3LbyA5wB0CSQddAkH8fs/Ir5lq/419jpHFO+n5Jle4jv+drhEi+eJJM7fhp3j7+e44uPR0426DxAkkdlmzlq1vlU7hrKjm9j3yFZhQ5OvHwUhUdl9Ho/BAJB/6KxsbFdvunPPvus2+10N8dib9M60QpgtVo7rBdf1tzc3K78iSeeYPjw4Vx44YWYTCb8fj+XX345v/3tbzts8/777+eee+5pd72ysrLLfpeUlLS7VlNTQ0VFslFdIm37r+t6SvdB2KI9Hp/Pl9K98ZPtrTQ0NKR0b319fbtrVVVVKd3b6vDUiqIoKb9Xz8b91H3UiH9rPXpIo3F3LVXursfo6VkZ7a7V1tam9LpNTU3trqXa3/jFEa3nqd6brB8p9XdrE7tWJdqgKk0KSkP75w8FhQCxPnq+ewPssegsVYcKd0fPFjoQiGyg2BJzPXu93h6/1/r6+pTubWhoaHdt3759Cd8hHeGLRCi3EgwGU+5v2zXuzc3NKd2bnlPA6Q9/RmVTzN3Mqrbgc9fR6IbGTu7t9ndEnF7XsL+Kl37/IpXbvwcgpGo0+SJ98HQcse+QZXJ+ejNZ112HIfJ90de/I9oKbx6PJ7XPJkkU55H6HVFbW9vuWnV1dUr3thWCVVVNub+KkvgdJL4jDi3JIpobGxtpbGzs9L6+Zjt94403smLFCj788MN27jwAW7duZcuWLUiSxPXXX9/t9pctW0ZxcXGHgva3334bHRN2JnofbPSQRv3L21IKugmWxf2+GyRsE3JwHluIpbSfLdL11sOav8PXfw27UcaTNxZm3wrj54YX20VQNZUPyj7g7xv+zpb6xOebPHse14y9hktGXtLrLnsdEVBUPtyyn1fWlvPptppoupFWLEaZM8YVcMm0YmaPyMEwQByFBipBj4/PP/WCwZpczIbYvLyucUz+Dib/9mZkc9dBLHXle3njofuor9gbvTb1rPM54crrMBhFlL9AMJAQgvYAZfi0PD7/x2YCAR3oTLzSsFgkRh9TgNFkIKe4/UQhuk6gvobmsgrc+/bj3t9Ec50fd5NOs8eMO5BGUEtuzafpBpqD2TSTDYxrVy4TwmWowWWqJ83uw+XSSMs04sp1kjYoB/ugQUgZxeAqBKOI4hSkRofR1Q3ha9XNBxZdnWk3xQnUNgrjI6zjoqt7A6vJwB05a5n8jw+i12Q9ce8IwPXfJK7a3VYIL5xsIH/2ydw3/gYm503ulf4ko3zrJt578pGEqOzcwUdhdp7J7o0mIDxRZ7IYmHHeUCacXIxB5E4SCAY8CxYs4Omnn+baa6/l73//e/T6SSed1OcmIw8VBoOBO+64gzvuuCPle+68886EKMjuRGjn5rZf6Z6bm5tSHvG2q2olSUo5/7i5zaSGzWZL6V6ns320R2ZmZkr3ZmVltbtWUJCaPaPdnjhpaDQaO31NPaSFN0WjedlObM6caJnDbKMgLZwjUjIakIzJf9fz8/PbXcvJyUnpvSYTulL9bCwWS7vznuSVb+1HUVERqq4SUkMEtSBBNYiqJwp4Bmcs3U+6JZ3pOZPR8j3UBeswqiFQQ6BrSV/DaY78/CxpUDQNg200RS/+PTw53MUCvrYpoux2e0rvNdnvTVZWVkr3ZmZmtrtWWFiYUvSlzZb4vGU2m1P+bNp+p6alpXV6r6aD2x9iV4uBvIiYbTcb+M8zRrF00zC+CTZ2+ZptvyN0TSc3K59QIPb5G0wyVrspbDsbQQ2FeP/JP5NnDU9eGoxGjj7zPD4qC+dQ1Hw+NI8nnK4qDtluJy0vj9xbbkm43he/I+IxGBLTXTmdzpTuPZK+I7oiJyen3bX8/Pykwnxb2v7dMBgMKfdXfEeE722N0D4cHH/88dFI7VTYuXMnX3zxxUHsUfeZO3cuJ554Ip9++in33HNPgjuGruvcddddAFxzzTUJ7jWtvPnmm1x//fXk5+ezfPnypG5BixYt4rbbbmuXazwQCPDLX/4SgBEjRvRIMO8tvBtqwjbjKSJZDbiOK8IxcxAGVz+bC2wsg68eh3WLoW3alCHHw+xfwohTEgJygmqQN3e8ybObnmVP857EW9KGcN346zh32LmYDQf/Z6HrOuvLm3hlbTlvfLcvabDHtMGZXDKtmHMmDiLNKsTGgYCm6Xzz94/DNuOpIMlIg0pSErO3fPEJ7z/1KKFAeMxpttk4fcGtjDrmuAPpskAg6KcIy/F+RK/a+YT87PqfH/H2/tYH+mQTOuFJgLPz/szQnz0A3to4K/C9ETvwyHknuet0HQK6A7eah1vNozlhn0uzmk9I79nqQdko4cqK5e0OW5pbSYvYmttd5gGTU1AQJj66urwhLFS3zWHd7E/9QaktJoPEoPSYSN02uroww4bdfOjWCvm8zWw6dhY2v97p0pRW9mXCS3NM5J15HtdNuJ7hGcO7vqmHhAJ+vvjnEta9kxiVXTT6TPZXDAc99n9zxNF5zJ57FM7MfpTjSiDox/QHy/G0tDQ8Hg9OpzMhkq8rEbYjJEnq95bjvUF/+OyPNPSQhn9bfTgn9pY69GB78VV2GLGNz8E2IRfL0HQkw5E7fq3x1kRzYK+qXEW5p7zDug6Tg6MzRjJddjGzxc3Iys3ItT908QpSOLIpPvd1zkjo4XfHQMMfUnl7QyXvbaqm0Rskw27m9HH5nD1hEBajzPL1ldz9xibqWmJOCscflcN9F02gJKtnz3QBb4h3n97E3s2xKOgpp5Uy66Lh0fRUmqry5b+eZ9XrL0frpOflc95td5I3ZBjN77xDzZ//TGhPWaxhWSb9/PPJ+fnPMRf3TFQVCASdc7jGFbIs8/zzzyfY+XfFwUpBc6DU1tYyZ84cNmzYwE033cSVV15JMBjkscceY+nSpcyZM4e33norqcvPeeedF7Uq/9Of/pSwiBHC42m3201mZia/+tWvmDFjBllZWWzZsoWHHnqIb775hlGjRrF8+XJGjBjRrX735mdft2Qzvs11KadFtI7NJufqsQf0moecyvXh/NgbX4X4xXuSDGMvgGNvgaKpCbd4Q15e3vYyizctZr9vf0LZmKwx3DjhRk4pPQWDnLj46WBQ3ezntW8qeGVtOdv3t19EU5hu5eKpxVw8tYhhucJS/EhAVTX87hDe5iBedxBfczDxuCmAt96L1x0k4NfR6cbzi64xSK7i4ic6TkuihEJ8suhvfPf+29FrOaVDOO+2O8kqFOM6geBIQliOC7pm8+sMlT/l7AwvHzbdQkB3Eo6SNET3FsnLKemPMFReA08c0+OXkhzZWNOLsaaXkBu1Ay+OWoLrjlwCfj1mY17nD0d41/lx1/lorvUnrNSPR1N0mvb7aNrvA9rbbxmMMq5sa3RLixO7XdlW7GnmARvl1V9x+0NRkTpZ/uqqZn87m6Pu0Da6OiZYW6PR1fJhXCSh6zqarqHoCqqm8vmiByj1p/5+N54zintve5ICR2oRJT0lWVR2ZuFwNGkO+8tjTg8Z+XZOuGwkJWPaR70IBIKBze23385DDz0UjRyJ57/+67849dRTU27rvffe44EHHujF3nWP0tLS6HFNTcd20vFlqeYrFfRNdEXDv60B3/oafFvq0ZOMZWV7q4idg2VYxhErYjf4G1hdtToqYu9q2tVhXavBwlRnKdN1CzObahmzaxPGUBcpA+w5EeE6ImAXTU3IMylInfc3V/Orl7+l2acgS+FIbFmCFZuq+P0bmxiW4+S78sZo/TSrkf8+dyyXTCvu8TNV434vbz++noaqsC23bJA4ad4oxhxbGK3jaajnrT8/SPnmjdFrw4+exRk33Yr6zTfs+tV/EmiTWsJ56ink3XorlqOO6lG/BALBkYfT6UwYk/UVcnJyWL16NQsXLuQf//gHS5YswWAwMGbMGB5//HEWLFjQ4YLO+fPn89VXX5Gfn8/FF1/crryyspLXXnuNFStW8Pzzz3P//fcTCATIzMxk4sSJPPbYY1x33XXtIvgPNapXSVnMBtAPIEjhkKLrsPMT+PIR2PlxYpnRBlOuhGN+BllDE4oa/A28uPVFXtzyIs3BxBQdMwpmcMOEGzhm0DEHfT7TH1J5f3M1r6wt5/Mfamg71WY1yZw1fhCXTCvmmGHZh3WuTJAaakjD6w4L076IOB1/3Cpa+9wh/C3dSbXYzc9ekgkqHd/TtL+aNx9+gOqdsYWs4046lVOuvwmTpeMUXgKB4MhHCNoDla3LQZIZal3N5dbreVM/iT2+mWiaE1n2MNj2NedJn+Cgiz9eRmtinuq0uOP0EkgrBHPnK/UlwOoAq8NEbmn7ySdd1wm0KMnF7si50oHgrSoajdVeGqu9ScsNJjkuwttKWo4tTvy2YXOZhOB9CFFUjf3uQJxYnRhdXdHow93lg4se3iQV0EBSkSQNJA2jQSMvzUR+mokcl4lcl4Fsp4ksp4EMu4FMhwGDQUfVVBStCUWvQ9EUFE1hV0Dlh0olet4qKLceK1rkXI+roymouhrdh7RQQr2298fXVzQFgy+Iw63gbA7hdCu4PAppHpVMD6R7IKNFp7g2/I5T+S3VJDhqY+NBFbOTR2WbyBh0Cp7m0UgRe0+jSWba2UOYcmopBpOImBIIBO25++67ufvuu5OWjRkzhhNPPDHltsrLO44APRSMGTMGk8lEKBRKmvOxldaywYMHJ7V8FfRtdEXD/0MDvvW1+DbXJRWxJZsR27hs7BNzsQxPRzoCU2w0B5tZW7U2KmBva9jWYV2TZGSyNY/pCsys28eEuh8w0UkEtmyCQRNjkdfFR0PG4ARbTkHPeH9zNfOXrIkKClqbvduvJIjZZ40v4J4LxpHn6vmkYsW2Bt756wYCLeHxvdVh4qybxlN4VMxWuWzjd7z15z/ibQq/tmwwcPwV1zJmUCnVN9+Mb83ahDbtM2eSd9svsU2e3ON+CQSCvk8oFGpnyd8VF1xwARdccMFB6tGBYbFYup1WBsIR2snyyLficDi48sorufLKjqMg+wIGuzE8qZGKqC2BbOvj09mqAptfhy8XQtWGxDJbFsxcANN/Ao7shKKqlioWbVrE0h+W4lMS897PKZnDDRNuYGLuxIPadV3X+WZvI6+sLWf5d/uSOhzOGJLFJdOKOWtCAS5hKX7YCQXUiAgdiaCOO44K1ZFI62A3rP1TQdJCmINuzEE3AUsGQXNaauNyXcNsTP4ffsfaVax47CH8LWEnAKPJzJwbbmLCyaf3ZtcFAkE/pY+PAAQHDW8D6Bof2238NieLZsP3yPpWNElC1nU0SeIvah7/V1PPST5fOPJh8uXtBWt71kGfQJIkCavThNVpIm9we8sBXdfxt4TCYndtnNhd749c86EksXaE8Mq0zgRvoyk+wtsWE74jUd79VfCOF1RDWigmukYE1pAeih7HC6wJwm38eXydtsJsnFjrC4Vo8vlp9gdoDgTwBAK0BIN4g0F8oRB+JZQgRCNpSK3nNhXsGo64sta6UrRu67WOaY5sPwSAANDxs99BQdZ00ryQ6YEMj052C2S0hI9b95me8DVrdxZDpvLaOhg8vq4r9pDyrZt494mFNFbFcqi5socQUk+mxZ0Z/aoYMjGH4390FGk5h3cVuEAg6Ns8+OCD3HnnnUiSxObNmxk5ciQQziHYNgdgVwwfPpyrr776YHQzJcxmM6eccgorVqxgzZo1HdZbvXo1QIeW5IK+h65o+Lc3hiOxN9eh+5OI2NZWETsHy4iMI07E9oa8rNu/LmohvqV+C1oHOa2NyIwzpjEjEGRGbTmTfS1Y9Z0dN55ekmgdXjARTCIqo7fxh1R+9fK3oHetJUjAI5dN5vzJB2b1uPnLfXz64vdoavgVMwvsnPOzSaTnhseHuqax8rWX+Orlf6BHfp+cWdmcftHlGF9dRtknnyS0Zx03jtzbb8Nx7LH98vlMIBB0j+6K2YK+jXVcNr5NdalV1sE6PufgdqinBFtg3RJY+Vg4V3Y8mUPgmJ/D5HntAn92Nu3kmQ3P8NbOt1D0mOBolIycPexsbhh/A8MyUs8X3xMqm3y8uq6CpevK2VnTPq1kUYaNudOKmTu1iMHZjoPal4GOrusE/WrM4jteoG6z97pDHQZ59RRZDURE6mbMIU94H3RjDoWvmYJurEYFR0E69qICLKNKMJWUsH1TI6uqU1yULckMnZjo1KipKl++tIRVy16JXssoGBRNLyMQCAQgBO2Biz2Tj+12bs2LrQbUIg/+rXu3LHNLfg6P7K/j5MHHwOn/e1i62hWSJGFzmrE5zR0L3p5QNLK7NdI7Fu3dseCthDQaqrxRC7y2yCawZhiwZMiY0sGUAaZ0HTlNQ05T0a0Kqp6a4NtZtG6rAB3SUhCau4gQVjUVvTteTocCY3jrt19Iuo4tCBke2ojSrSJ15NgDad7kGet7gipLqLKOSUk9Qlt19r6InCwqWzaasKYfT1CdGI3KdmVbOf7HIxk6sY8+fAoEgj7F+++/j8lk4rbbbmPQoEHR688++2y325o1axazZs3qze51mxtvvJEVK1bw4Ycf0tTU1C4Ce+vWrWzZsgVJkrj++usPUy8FqaCrGoHtjXjX1+LbVJfU9lKyGrCNzcY2MRfriAwk45EjYvsVP9/VfBcVsDfWbkyYfI1HAsZINmZ63Ex31zPVH8ChdzAONdmhcGpEwD4aio6GtEHJ6wp6lbc3VNKcYsSODqgdfYYpoGk6X726nW8/2Bu9Vjo2i9N/Mh5LJOLO29zEO4/+id3frYvVGTWWqR4F/623R8ebAOahQ8m99VZcZ5wuhGyBYACzfv16PvjgA7Zv3x4dZ40YMYJTTz2ViRMPbkSr4MCxT8il8c2d6Cn8LZJsRux9TdD21MCqv8Lqp8HXJh3ioMkw+1YYcz4YEme9NtZu5O8b/s6HZR8mzNNZDVYuPupirhl3DYXOQg4WvqDKe5ureGVtOV9sr6Xtn3ebycDZEwYxd1oRs4YKS/EDodV9NCEHddt99DiEqiSfp+4pBsWXIEq3RlWbQ81R8doUKTeqgfA9OTmYS0owDy/FVDoEc2kp5pISTKWlGDIz2427Jnl8rPvlhygGazg3fIc/DA2j6mfcVadELyVLL3PUzGM546ZbsdjFAgqBQBCj3+pHggMjMPJMftsSniDQO3jw1yUJSdf5bU4mH408C0tcmaqpSSNwu4zcTcFmuauo4ATr5jaCb8qCsVlByVdQ81QUVcEQsGD3p2H1peHwZeAKZOEKZOGM7E2aOenPSAuBt0bFW5NsNZxESNZwWxpxW+rDm7Uudmypx29s6XaakYGILBkwyUYMkgGjbAxvUnhvkMPXDJIBk2yKHseXtdY1JmkjWie+zUgdkyZhbQ5gbfJhbvJhaWjB1NiCubEFQ4MHY0Mzhno3ckMzUiDYe+83LQ1jTg7G3NzwPicHY2743JCTgzEnF2NeLob0dD79+73k/+ml1NrVwXbKyb3WT4DyLRt598lHEqKyra5SNGkOmpaFJIFslJh6+mCmnjkYk1mspBcIBKmxdetWfvrTn3L//fcnXB82bBgLFy7k/PPPT7ktn89HTU3NYc2bOHfuXE488UQ+/fRT7rnnHh566KFoma7r3HXXXUA4An3atGmHq5uCDtBVjcCOJrzra/BvrkPzJhGxLa0idg7WozKPGBE7pIbYULshaiH+3f7vCGodj3uO0mRmepqY7vMzze8nvW3CxVayj0rMfZ03tt1Er6D38QVVyuq97K5roawuvF+xsSrl+2UJ3t1YzUVTirv92kG/wvt/38TuDbEovIknFzP7khHIEeeCiu+3sHzhA3jqw3UkSWJCbiFFr75DUImLWisoIPfnPyP9wguRjOL3RiAYqPzwww/Mnz+fzz77rMM6J554Ik899RQjRow4hD0TdAfJJJN16Ujqlmzu3CpEgqxLRyL1lbRldTvgq0fh2xdB8SeWjTg1LGQPOT7B2VLXdVZWruTvG//O15VfJ9ziMru4fPTlzBszjyxrYvRqb6HrOmv3NLB0XTnLv6vEHWg/pp01LIu5U4s5a8IgnBbxN7YjNC0cQJU0grpNfmqfO4TW0Zi4h5ikEBbVi8nfiMlTGxdVHROtW0Vqg5bEAlKWMRUWYh5ZgqlkNObSsFhtLi3FXFyM7OiekGx22jj+JDsff66BriUXtSOuO8efZMccCbjZu2k9yx95MCG9zAnzrmfq2eeLxYoCgaAd4q/SAOU9h53miEWTQYXBVQ5Kq2xYQgYCJpWyAh97ClpQDRLNBgPHbXoYafMjUbG4z0X4HigS1NmqIVnwqg62kCsqcrfb/FkY9eSCt0mzkOUbRJYveXRJSA7ECdx1NFtjx25LPQGjNyXBOyrgpiD4xteJlmFA0WSCCgRDEoEQ+II6viB4Azotfp2gCrpuAF0ObxjQdRl0AxDeR891GZCj9Y2ykRyHjRynjVynnTyXnYK08DYo3UlhmgOHxZy030bJ2KsDGF3X0ZqbUWprUWpqUfbXhI9ra1Brq1FqasLXa2tRGxq6bjBVTKb2InVODsa8eNE6LFjLFkvX7UWYOe92Nj32L2x+vdPIbw3wWSVmzbvtgN8KRKKy/7GYdSvejEVlG0wYrbPRDZORIwPXkrFZnPDjkWTk2ztrTiAQCNpRU1PD+PHj213fvXs3Ho+nW229+uqrXH311ajqgdux7d+/n/379wNQUVERvb5t27Zov4YOHYojyQTAK6+8wpw5c3j44Yfx+XxceeWVBINBHnvsMV577TXmzJnDE088ccB9FPQOuqoT2NmIb0Mtvo21yUVsswHb2KxwJPZRmX1ngvUAUDSFrfVb+brya1ZVreKb/d+0y+MYz5CQygyflxk+P9P9AbK0JBEl1vRwxHWrdXjR1HDqIsFBockXiorVZfVedte2sKfey566FqqbAwfUtqZDo6/7Czmb63y8/fh66irCNqaSLHHCZSMZf0LYulzXddYuf43P/7EILfJdbTWamLSrkuxvt0fbMWRkkL1gAZlXXN6tMbNAIDjyWLVqFaeddhoejwe9E+eITz/9lKOPPpr333+f6dOnH8IeCrqDbWw22VeNpf7lbeFI7dac2pG9ZDOSdelIbGOzu2jpEFC+Br58BLa8SYICLxth/CVw7C+gIPE5RtM1Pir7iKc3PM2muk0JZbm2XK4eezWXjroUh+ngRKNWNPp4bV05S9dVsKu2vaV4SZaNuVOLmTu1mJKsgTt/o6oa/ki+6faR04mitd8TahfVfkBIYLUbsJp1rHIQc8iDydeIqakaQ10FxobKsEgdCkdXy3rXz7aSxYJpWCnm0sGR6OqSWKR1YSGSOfl8dk8Ze+Uc0D/i80+9KEZ7TNiO7I2qn+NPsjP2yjnomsaqZa/w5UvPx9LLZOdw7q13UDRqTK/2SyAQHDkIQXuA8lHF58hIFFVbOe67bCyKAQ0dGQkNnSHVDgKbMvl8Uh3l+T786oFNfBxuOhJ846Nz2wq+nUXuGuUARrkGXWqgRdqNKWDF2GLH6LEht1iQ3BYkjwm92YTuNoKaXJDtSvA2mCXsWSbsmSacWWZcOVZcWVbSc+yk59iwO62Y5K7zeDf7Q1Q0+NjXGN4qGv3sizuvavZzIAsFsx1mCjNsFGZYKcywUZRhi5yHr+U4LAfdmkgLBlFrayNCdUyUVmpbj2tQI9f0YO9FUxvS08PR0q2R062CdW5OgoAtp6cflJWFNnsawbtuwva7J9BIbmfeOq0cvOsmbPb2tvzdpXzLRt594hEaq2NR2SZrMZL5VGRDeHLakWHhuEuPYvjUXLGiUiAQ9Air1ZogGPcVHn/8ce655552188444zo8ccff8xJJ53Urk5OTg6rV69m4cKF/OMf/2DJkiUYDAbGjBnD448/zoIFC5Dl/i+I9md0TSewqymcE3tjHVpL+2gGySxjHRPOiW0dmYlk6t/uI5qu8UPDD3xd+TWrq1azpnoNnlDHi0aKQgoz/H5m+PzM8AfIa7tQRJIhf1yceH00ZI8A8bvda+i6Tq0nSFl9C7trvVGxek9deN/gTRKF00vIEmTYujf5WbmjiXeeXI/PHe6XxW7kjJ+Mp2RMeNzob/Hw7hML2b56ZfSeLF+QyTt3Y1XCv1+y3U7WtdeSdf11GJzOXno3AoGgv+LxeLjgggtwu91kZmZy0UUXMX36dIqLi7HZbPh8PsrLy1m9ejWvv/469fX1XHjhhXz//fc4xXdIn8U2NpvCu2bi3ViLf2Mtmk9Bthmxjs/BPj7n8C4c1DT44T34959hz5eJZWYnTLsWZt0M6YkOJiE1xPKdy3lm4zPsbt6dUFbqKuW68ddx/vDzMRt6V1gE8AYV3t0UthT/9466duKrwxy2FL9kWjHTh2QdsZbiakhLiJZuexwvWgdaUkvBkiqSLGFzmbCnmbG7zNicRiyGUFiYbqnH0FSFsWYvcsUu2PMDeLu3cBtATk8PW4OXlmAqiURYR6Ktjbm5SId4DD72qjmMuMjHpiUfs2t9PUFFwmzUGToxi3FXnYLZacPncbPisYfYuW519L7BE6dw9i/+A3tainm4BQLBgEQI2gOUxkAjRdVW5qzNjV6TI6HArXuzInPK2lw+mlZDTaFOsau4G4JvEtE4PvI2zgI6wSK61epZNkXrJbWNbtNGV5HJcme5Ow4yuqbjdQcT8ne35vNuvaYpydVkNajjrgrirgpSTfsVlCarAVeWFXO6Gc1uIGCWaJJ19msKFcEQe91+9jX5k1oIpYrZIEeF6tatKMNKUYadwgwrg9Jt2A6SjbSu66iNjWGhuqYmFlXdehwnWGtNTb32upLZHBWiDbnxUdW5UetvY04Ohuxs5F5ezdgTjv3RLfxb1zHf/1ccfh1NCtuLt+59VongXTdx7I9uOaDXSRaVLclGDJbZyJYpSJKMLEtMPKWE6ecMwWwVf2IEAkHPGTt2LI899hgXXHBBu9yHh3OhzN13383dd9/d4/stFgt33HEHd9xxR+91SnBA6JpOcHdTOCf2xlo0TxIR2yRjHZOFfWIulpGZyP04hYau6+xq2sXXVWEBe3XVahoDjR3Wz1MUZvgDEQHbT5HSRsB25EHJjJh1+KDJYBFiwYGiaTpVzX52R4XqRNG6Jdh9x4kcp5nB2Q4GZ9nD+2w7g7PtbKxo4r+Xbeq6AcIR2meMz0/5Nb//uoqPlmyJPu+k59k456cTySwIR6BV79zOmw/fT9P+6ug9w6obGFlVjwxIJhMZl19GzoIFGLP7QFSeQCDoEzz66KNUV1dz1VVX8eijj+JyuZLWW7BgAQsXLuTnP/85ixcv5rHHHhNjsD6OZJJxTMnDMSXvcHcljBKEDS+HheyarYllznyYeRMcfT3YMhKKvCEvS39YyqJNi6j2VieUjc4azQ0TbuC00tMwyL07ptR1ndW7G3hl7V7eWl+ZdLxw7PBsLplWzJnjC7Cb++e8TSigJkRLJ7P79kUirYMp5GbvDrJRwu4yY08zY0szY3OZ485NWC0SZm8dhoYqpKo9KHv3Ety9l1BZGcGKClC63x9jfn40f3VYuC4JR12XlmBI73sCsGw2YBlnxegtI+RpxuhMwzKuENlsoGr7Nt5c+ADNNWHXMySJY+Zezqy5P0bu5f8PAoHgyEPSO/PlEfQpmpubSU9Pp6mpibS0A4uyvO39W8l97gfMioTUiae1jk7QqFNz7VE8fNojB/SaguTomo63ORgRuX1xYnfsWFN79t80gE6THNuaZS2yD58H5HB0dVGmjcL0WER1fIR1tsPc66s0Nb8fpbYOpWZ/2Nq7XVR15LyuDkK9F2FiyMpKsPc25uYkRlZHoqpll6tfRhX7vM2sfOFhfB9+jMHjQ3XasJ1yMrPm3XbAkdnJorJlUyFG2xnIhkwACo/K4ITLR5JdKCaxBYK+Tm+OKQ4Wjz32GL/4xS+QJImMjAzSIw/qu3fvJjc3N6mld0e0tLRQW1vbK5bj/Z3+8NkfCnRNJ7inGe/6mrCI7e5AxB6dhW1CDtbRWf1WxNZ1nXJ3OV9XhS3EV1etptZX22H9LFVleiT6eobPz2BFiT0tGMwwaFJi7uv0koTckILUCakaFQ2+9qJ1vZeyei9BJYl9eydIEgxKs8aJ1THRenC2o8M8mP6Qyoz7PsDtU7pKXUqazcjXd52KtQtnAl3T+fqNnaxdsSd6rWhUBmfOn4DVYULXddZ/8A4fP/cUamRi16SoTCrbT57bC7JM+oUXkvuzn2IqKurWz0EgEBw6Dte44thjjyUYDLJ69eqUnt11XWfGjBkYjUa++uqrQ9DDI58jfkzpb4K1z8HKJ8BdmViWfRTMvgUm/hiMiekvmgJNvLjlRV7Y+gJNgcTAi6Pzj+aGCTcwu3B2r8857a338uq6CpauK6es3tuufHC2nUumFnPR1CKKM/uepbiu6wT9aixaOl6sdrfmoW49D6EEeve5zmiSsaVFROmIOJ14bIoem21GtOZmgmV7Ce0tI1hWFj4uKyO4dy9KdXXXL9iuA0ZMRYWYIxHWCdbgJSXIVmuvvt+DyfY1X7Pi8YcJtHiQJAld16N7o9mCpoTQIimKbK40zr7l1wyZOOUw91ogEBxOujOm6J/LsAQHzNFNpVQpO7qsJyFhUSSObio9BL0aeIRUjepmP/sa/VQ0e9nX4qfC72NfyMc+zcc+yY/HqeDQIUOTSdMk0jUpum89NnSwKMGCRJ4mkdfBXJjZZsDltJFmsJJmseGyW3G5rKRlWnFl27DYUv+K0DUNtaEhFkVdW4NSUxMRq+NE6tpaNLe7Jz+upEhWa5zNd8zu2xA9jwjVWVlIJlOvvW5fxGZP4+Sf/B5+8vteazPk9/P5PxfxzYrl0ahsJCNG62wMkahsm8vE7LkjGDmzoF8uBBAIBH2Tm2++mffff5833niDhoYGGhoaomU1NTXU1NR0qz3x/STQNZ1gWTO+9bV4N9SiuZOkIDHK2EZlhnNij85CtvRPEbuqpYpVVauiNuKVLZUd1nWpGtP9/oiNeIARoVBsZJkxOFG8LpjQbuJW0Dn+kBrNY11W700QrysafajdzPtjlCWKM22UZjsY0ipaZ9kZkmOnONPepdCcDKvJwEOXTuYnS9Yg6SQVtaXIP3+6dHKXrxEKqHzw3GZ2fhP7nh57fCEnXDYSg0Em6Pfx/lOPsvXLT6Pl6S1+pu6pxhZScJ12Grm33oJlxIhuvxeBQDAw+P7777nrrrtSHt9JksRll13Gfffdd5B7Juj3NO8Li9hrnoVgm7mrklkw+1YYeWa7VCrVLdUs3ryYl7e9jE/xJZSdVHwSN0y4gcl5k3u1qy0BhXc2VvHK2r2s3FnfrtxpMXLuxLCl+LTBmYf8eUjXdQItSvIc1O3yU4dQu7mQrytMVkNCJLXdZY6K1rHjsFDd1mFQ1zSUmpqwSL17L8G9ZXjL9tIYEa174hIp2e1trMFLIuJ1KaaCAiRj/5dptq/5mmX/73+jg8nWOMrWvRKMpTQtHDmGc395B67snEPeT4FA0H/p/9+Ugh5h3+1FR+80OrsVHZ2a17/gmS+2YbbZsdhtmG326GaxR46tNsyRY4stUsduxxKpZzB1nev5SELXdZp9ChWRPNX7mnyRY380d3V1KrmrJWiRoEXWaJtJNMdppjDdQqnNSqHJRLYk41IlzH4NvAq+xiCe+o4jvIM+lbpyD3XlyXO0WOxGXJlmHA4Jp0XBJnmxhZqw+mqxNFci11XH7L/r6qC3It8kCUN2dqJIHRdVbcxpFazzkB32AfV7dShJFpUtGQoxOcJR2ZIE408sZub5Q7HYj+zFAgKB4NAjyzKvv/46K1as4KOPPqKurg5N01i0aBHHH388w4YNS7mtnTt38sUXXxzE3gr6KrqmE9zrDufE3lCL2pxMxJawjswK58Qek4XcQRRrX6bWV8vqqtVRAbvMXdZhXbumMS3OQnxUMIQBwOSAolmx3NfFR4Ozj9h99nGa/SHK6uLF6hZ213kpq/NS1ezvdnsWo8zgbDulWRHROiciWmc7KMywYjT0fjqlU8fm89RVR/MfL39Lk09BlsL24q37NJuRP106mVPHdm437mkI8PYT66kpC4sAkgSzLzmKiXOKkSSJ2rLdLLv/bhrrYy4BQ2oaGV1Zh3PWLPJuuw1bmzQTAoFA0JaWlhaysrK6dU9mZiZeb/vIVYEAgP1b4N9/gfX/Ai3euUeC0efAsbdA6cx2t+1u2s2zm57ljR1voGgxK2mDZOCsoWdx/fjrOSrzqF7rpqbpfL2rnqXrynl7QyXeNpbikgTHjcjhkmnFnD62oNdTBGqajt8TamPtnTw/tc8dQuvmwr2usNiNCZHTrUJ1omhtwu4yY+ziveuhEKF9+whu3YunbA+hsr0E90airveWo/u7P4YzZGZGReqwRXgs0tqQk3NEz18qwSArHn84ImZ3/rkbjCYuvvMeLPa+5xYgEAj6Nv1vtkbQKwRbWlISsyEcpa2GQjRUtpVTu4dsMEYEblt7MTxyzRIRwaPHNjtme2KZyWLtEwOAkKpR1eSPitX7Gv0x8brRR0WDr0e57VoxG+WI9beVwnRb2BY8wxa1Ax+Ubk0pAkPTdLxNAZprYzbmzbU+mqvduOv8eJpVOko8EPAqBLwKsekmA5AV2UZiVFqw2uqw5dZjddVh9ddh89dh9ddj9ddhVAMJ7cl2e1xO6vZR1a3nhszMI2JlYn8laVQ2Roy2WFR23pA0TrpiFLmlyXOVCQQCQW9x5plncuaZZ0bPFy1axIIFC7jiiitSbuOFF14QgvYAQtdbRezasIjdFGhfySBhHZmJfWJuWMS29q9xR6O/kTXVayIC9ip2NO3ssK5F05gSCDDDF2CG38/YQBATQM4oGBYXfZ03BkTeuqTouk5dS7BdHus99eFI6/qWJAslusBlMTI4x87grERb8CHZDvJcll5P+ZMKp43N5+u7TuWdjZW8u7GaRl+QDJuZM8bnc9b4QV0+e+zf08xbj6/H2xT+eZisBs64cTyDx4dzX3/7z+f55LWXUCOTnEZVY8Le/QwtGUre/z6I49hjD+4bFAgERwy5ubls2rSpW/ds2rSJnBwRCSiIQ9dhz7/hy0fgh3cTywxmmHQ5HPsLyGkvSG+q28TfN/ydD/Z8gB4n3lkMFi4acRHXjr+WImfvpcwoq/OydF05S9eVU97ga1c+LMfB3GnFXDSliMIMW7faVlUNX3Oog8jpRPtvvyfU4Rxij5DA5ozZebe1+7a5TAnnBmP3FvVpXi/BvXsJlpWFBeuysohN+F5ClZXdD8yRJIyDCiLW4JGc1nHHBufASsGnqSr+Fg9+j4ctX3xCoCV5wFRbVCXEjrVfM/b4kw9yDwUCwZFG/5q5EfQaNmdaNH9FKhjNZgwmE0GvD13vmQWMpir43c343c09ur8VSZKjArjZZkuIAu80grw1cjxORJc7mLRLGl3d4IsTrP1Uu/0HNIjLcZoTclWHxWprQu7q7gj3uq6jtXhRI1bfShKrb1NtLem1NTjr6imM5CvRkQhY0vFZc/Bbs/Bbs/Fbs/FFjgPWTHQp+c9JMTnwmBx4XMkt6c0mHVe6AVe2jfQCF2kFaaRlW3FFtraWPoLDT/nmjbz7ZMdR2RaHkWMuHM7Y2YVIh2GiVSAQDBw++eQTFi9ejCRJ3HfffeTndx4V2BWpjnkE/RNd1wmVe/BuqMG3vha1sQMR+6hMbBNzsI3N7lcitifoYW31Wr6u+prV+77i+8YdCZOn8Rh1nYmBADMjAvZEfwCzLROKZ8Uirwungi3j0L6JPo6m6VQ1+9uI1TF7cE9A6bqRNmQ7zElzWQ/JdpBp75vuVVaTgYumFHPRlOJu3bd97X4+eG4zaij8jJGWY+Xsn04ku9CJd/sPvPt/d7PTG7PndPkCzFTNDP2f+3Cddlqf/FkIBIK+y6xZs/j73//Oz3/+c4YMGdJl/V27dvH3v/+d008//eB3TtD30VTYujwsZFesTSyzpsP0G2HGAnAlPn/ous7qqtU8veFpvqpMzMXuMrm4bPRlXDHmCnJsvbNwwhNQeHtDJa+sLWfVrvaW4i6rkXMnFnLJtGKmlmYk/C1VQio+dyhp5HRb0TrQ0v0xTmdIshQToiPW3jZXayS1KSFXtc1pQj4A5xld11EbGwnt2ZMoXEeO1drarhtp23+TCVNJSSTCOj7SejCm4iJks7nH/e2rxIRpNz63G7+ndfPgb0l+ze9xE2hp6dHrSZLE9lVfCUFbIBB0m/4ziyPoVUZMn8UPq/6dcv3T5v+CscefjK7rKIEAAZ+XoM9L0OuNHft8BLytx3HXonV9BH2x+moo1PULJ0HXNQLeFgLenv3RjEc2W5DMVjSjhaBkwi+Z8OpGmlUDXkwEJTNB2UxQNkX2ZoKSGUU24Wo9l81obQRfSzS6OhJhndGz6GoAXVFQ6uojonQkJ3VtLcr+iGhdGxOtdV/7VZpdIaFjDTRiDTRCXAoY2eXCmJODnJOLkl1EIL0Qny0HnyENr27HGzTiaQFPU5CO1jgEQxJ1tRp1tS3wfQtQlVBudZhwZVvDIneOLUHsdmUJwftQEo3KfufNuKsGjLbjolHZY2YP4piLhmNzHnmDd4FA0Pd49tlnWbJkCSUlJdxzzz3R65rW/YV18+bNY968eb3ZPUEfQNd1QhUevBtq8a2vQW1IImLLEtajMrBNzA2L2Lb+Mbbwhrx8u/9bVu37ilXln7G5eVc0qrUtBl1nXCDIDL+f6b4AU4IKtvxxcNT0mH141rCwB+UAJ6Rq7Gv0sbttpHWdlz31XoI9yN04KN0aFqqzHO0irl3WIz8li67rrHl7N6ve3BW9NmhEOmctmIDR28j3d/0vn25ah9saGz+W+hROnvcTsudeLFyZBAJBj7juuutYunQps2bN4v777+dHP/oRDoejXT2v18tLL73EXXfdhdvt5oYbbjgMvRX0GUI++PZF+OpRqG/jbpNWDMf8FKZeDZZEJzpN1/h478c8s+EZ1teuTyjLtmZz9biruXTkpbjMB+5gp2k6K3fW8cract7ZWIUvFIsgNung1CWOKcrkhMFZjE63E/IqeP69n3dXlMdEa3eIoK93RWrZKMWsvV1trb5NCfmprXZTrwZA6JqGUlVFsCycyzpUVhZ3vBfNk1pUcML7cTrDInVJacQivCQaaW3Mz0cy9E/XIlUJhQVnT1icThSjPTFRusWDz90cvRb0Hdp0DLqu4/O4u64oEAgEbRBPjwOUkbOO46PnnoqspOosYknC4nAwcubs8JkkYbJaMVmtkNm9fEVtUUKhqOjdXhz3RsRxX5vzyHHcPaFA93OatKIFAxAMT36aIpsL6HYMmGzEYLVittmx2R3YrHYsqh2z144FO+aAHXOzHXONHa/dTpnVhkmSMPj8GLw+ZI8HudkN9fWotXUJUdVqQwO95udjNMbyUcflpDYknOdizM5GtqVmUaSpGp7GAO5aP811YVtzd13rsR9PQ8eR7P6WEP6WUDTHXlusTlNU5E7LtkXF7tZjk6V/DjD7Gl1FZeeUODnx8lEUDEs/jL0UCAQDjZUrVzJnzhxWrFiBMU7wuPfee7n44osZP378Yeyd4HCh6zqhfS34NtTgXV+LWp9kHChLWEZkYG+NxLb3fVExoAZYX7OeVbs/ZFXFF6z3lKF0MEaXdJ3RwRAz/H5m+PxMNWXiLJoRE68HTQbzwM1H5w+p7K33JojWu+taKKv3Ut7gQ+1mLkeDLFGcaQtHWWfFR1nbKcmyp7xI9UhECap8tGQrP6yujl4bPauA488bRONTf2HTa6+wviATJSJmGzSdYyfP4Oj/+A2yxXK4ui0QCI4Azj77bC688EJef/11brzxRm6++WZGjx5NUVERNpsNv99PeXk533//PcFgEF3XueSSSzjjjDMOd9cFhwNvPax+Gr7+K3jbROzmjYPZt8L4i8GQOGYMaSHe2fUOz2x4hh1NOxLKip3FXDf+Oi4YcQEWQ8/+pum6TtCv4msOsnNvE59uqOa7H+oJtYRw6BJnaAbsugGHLuHUZYytQ5hmH3VbKviyR68aw2iSE6Kl7e2OY1bgZpvxoLqpaMEgofLyNhHW4bzWofJy9B4ERRlyc8IidVyEddQaPCOjT7vDKKFQXER0ohjta3ctFkUd8nc/0Km7SJKMxenE5nRidbiwOp1YXWns27aFpuqqrhsgrC/YnCKFoUAg6D5C0B6gGM1mzvrZbbz+x/8FXSK5qC2BBGf97DaMB8FOxWgyYTSlY0/rnkgWVDSqm2P5qivqPVTWNlNd10RdQxONTW60gB+zFsSsBzFrofBx66a3OddCkXrBFLOKJ0FTUL0efF4PvrqeNgLoOkZVw6hpGNEwZVkxpheEz1UtVtZmb7bZsaRnYM3MxJqTizU3D3NebjQ/taE1N3V6OpLccyufZMgGmbRsG2nZNpJlB1JVjZaGQFTsbhW6w6K3j5aGQMeCtyeE3xNi/57kgrfNZcKVZcWVbSMtJxLpHSd8m8wDd4IxFUJ+P5//YxHfrEgelW2xmZhx/jAmnFh0QBZQAoFA0BMqKyu5/fbbE8RsgLvvvpsRI0Z0S9D+4IMPuO+++/joo496u5uCQ4Cu64QqW/BFIrGVumQiNliGZ4RzYo/NxuDo2yJ2SAuxqXItq3YsZ1XVar71VRLoZJHpiGAwnAM7pHJ0xmjSB8cJ2Om9l5+xv+D2h6JW4LvrWiiLE60rm7q/2NVslCNidTi6eki2ndKIaF2YYcMkxkHtaGkK8M6TG6jeFUknJcGsc0opLf+IHWf9nU1OE3uKsqP1020Ozr/zbvJGjTlMPRYIBEcaL7zwApdddhlvvvkmwWCQDRs2sGHDhoQ6rSlnLrzwQpYsWXI4uinoJkpIZcfa/ez8rhZ/Swirw8SwSTkMn5aHsbuLyBr2wMrHYd1iCLWJQB16QljIHn5KOxcbn+Lj1R9eZdGmRVS2VCaUjcwcyQ3jb+D0IadjlNtPq+u6TqBFaZeD2usO56GOP/c2B9GU2PjPDEwHwuE2PcNkNcRFTpsTIqdjx2Gh2mQxHFJRV/V4ItHVkRzWe2OR1kplVfeDeQwGTIMGJURYh4XrUszFxchJXBsONUowmCBK+zzNiZHSkeO2IvWBBG+liiTLWJ2uyObE5nRhdTjD5y5XtMzWei1y3WKzJ51b3vzZR7zz2EMpvbau64yYcUxvvyWBQDAAEIL2AGb4tJlc8B+/ZcXjDxFoaUFHQkKP7i0OO2f97HaGT5t5yPqk6zpNvhAVjeGc1eH81f643NU+9rs7FkDBBgYbdBKUkuuyRPNVZ6TH5bBOt5JnA4esEvL7ohHjAa+XQH0tvtpa/PX1BBobCLibCbS0hKPEAwFCSoiQqqJIEJJl9J5a60gSitGAQg+F2EADVDRAxTZMFms0X7jFZkuaU9xss7XJMW5PyDFusdsxGA9sQthgkEnLsZGWYwMy25VHBe/a9mK3u86PpzHQoYmAzx3C5+5C8M4OW5mn5cTE7rSIpblxAAveezdv4N0nH0lYPRkflT1yRj7Hzh2BI11EzwgEgsNDKBQiEEhiId0Dqqur+fTTT3ulLcGhQdd1lGov3vXhnNhKbZJoAyksYtsm5mAbl9OnRWxVVdi6+0NW7XybVTXrWRusxdfJcHFwKMR0n5+ZhjSOzp1CzujZ4dzX+ePBeOSn/tB1nfqWYLs81q3idV1LsNttOi3GNnms7ZRmORiSYyffZUXuRWvMI53acjdvPbYeT8Tm32iWOWZEHdY//J69jY2sG5xPk8MarT9q+jGc/vPbMVtTc4ASCASCVLDZbCxbtox//vOf/OUvf2HVqlWoasye2WAwMHPmTG699VYuvfTSw9hTQars+q6GDxdtIeBVoDX2RoKd39Tw+b9+4JRrxzJ0Ygr5qSu/gy//DJteAz32O4Ekw9gLYfYtUDil3W1NgSb+ufWfvLDlBRoCDbHbdInp6cfwo9IrGGMbj68mxIYd+2ICdVx+ap87hNZNN5iusNiNCZHTCXbfLlPC+eGc59J1HbW2Ni6XdaI1uNrQ0HUjbZCsVswlxZhaI60Hl0atwU2FhUimQzP+DwX87YRoX0IEdbIoag9KsHeeZztDNhjCYrMjHCkdFaejEdQxgTp63enCbLX1atBTT91gBQKBoDsIQXuAs8s+hKdLria/bhvDW3Zi0QIEZAs7HMOozh7JaNsQhvfi6wUVjao2AvW+Jh8Vjf7ouTeodt1QB1hNcixXdXosh3U0d3WGFYsxPLjTAoFYPuqqHSgba1FqavHE2X0rtTVoNbUYQyFchO3IU0GVQJFlFENkk2N7zelAc7lQHTZUqwXVZA6L2LJESNcIqQrBYIhgwIdyABP5oYCfUMBPS0N9j9sAMJhMMbHbZsdst7U5bz22tTmPF9BtGM2WpCs/EwXv9qiKhqchkBDd3Sp2pyx4725OWm5LM7ezNE+Ly+F9JAreyaOyjZGo7MlkFbo48bKRFI1qv/hAIBAIDiUlJSW8/vrr3HLLLYe7K4JDSKi6Be/6SCR2TQci9rD0cE7scdkYnH1T3NW89Wz/4S1WlX3EqoatrFHduOMF0zZDokGKwoyAykxHMdMHzaJg8AlhAduRwqRtP0XTdKrd/sQ81nGitTvQ/dyPWQ5zJJ91LNq6VbzOcpj7tLVkf2HXdzW898xmlED4mc1u1Zj0wzOY3ltLpcvOdyOLCUWet2SDkTnXzWfiqWeJn71AIDhoXHbZZVx22WV4PB527dqF2+3G5XIxdOhQnE7n4e6eIEV2fVfD209uiM3vtNkHvApvP7Ges2+awNBJue0b0HXY8RH8+8+w85PEMqMNpl4Fs34KWUOBcHCFrzmEzx1kX81+Pvr+MzaUbcYYsDIldC72kAtbyEW6moUxaAUdtqOyne8O+L3q6Hgl8Eo6XlmnRdIxO02MLE1n6shs8vMcCfbfBmPfcYrRFYVQZWVYsN67NxZpvaeMYHk5urf7uZgN6emYSuOswUtKMQ8uxVRSijEvt9fGELquowQCSYXozsRpv8eDEur+YsruIhuM2FyxiOlY9HSiEG11hAXq1msmq61PjLP6ghusQCA48hGC9gDm/c3VzF+yBnRodI7ke+fIhHIpAD9Zsoanrjqa08Z2nVVa13UavaE2YnWcNXiDjxpPZ9HVXRMfXd0qWBdl2qKCdYbVgNbcHBaka2pQa3eh7AkL1UpNDVWtAnZNDVpzcpGzJ0gWS9TeO5qTuvU8J5yn2pibizErC6kbf7A1VY3mEQ9EcoZHj1vP/ZFyb1y+8Wjd2L09/cGroRC+UBO+5qYe3d+KJMttIsDjIsftcRHi8dHkNlu0LC3HTm5pOiZrPrIcE5rDgnckZ3dtotjdXOenpakTwTuygjZqldgGe5o5JnLn2BLEb2eWpft2VwcZJRhk28ov2L56JT5PMzZnGiOmz2LkrOMwms2dRmWbbdlMP2cok04p6VMPSwKBYOBy2mmn8eSTTzJt2jROOukk0tNjKUpeffVVtm/fnnJb33134BNPgq7RQxreDTX4N9WhehUMdiPWcdnYJ+QimTr+2xLa78W3vgbvhlqU6iSTYBKYh6SHc2KPz8Hg6mOTH5qKXr2Z3TvfY1X5F6xy72K1HKTBEDdOaBP9m6uoTMfCzLThTC85geKhpyLljgK5b40tDhRF1djX6Gd3XUtcPmsvZfXh44CidbvNgjRrQqR12CLcQWm2nTRr343S7y8EPT42Lf6IXRsaCCoSZqPO0AmZjL3qZDb9u4avXt8RHVunB6sY/+9HMAWb2VqQxc782ILI9Lx8zrvtTvKHjThM70QgEAw0nE4nEyZMONzdEPQAJaTy4aItnQd1Aujw4aItXPuHrNh8jBqCTa/Dl4+gVG3Fp6Xj1UbgUzPwGovwDjoVX8ZkvPtkfM814G2uxusOEmhJXDhnZjDTGNzj9yDJEjaXKRZJ7TIj2w3scvtZW93E5voWWmQ9LGJLYb0vw27igkmFXDmtmAlF6X1ClATQ/P6wWL13L8E9ZQnW4KGKfaB0f9GhMT+/fYR1ZG+Ie85LBV3XCfl9bYRoD/6InXf7HNOxTe1B37uLwWjE6kqLCM5txGmHE1skitraptxksfaZ34GeEnODfZhAiwdJktB1Pbq3OByc9bPbDqkbrEAgOLKQdP1A5EXBoaS5uZn09HSamppIS0s7oLb8IZUZ932A26dgVEMcX7GeYyo3khZsodns4KtB4/m8aCKKwUSazcjXd52KLEntoqsrIlv43I8vdGDR1a3CdOu+NcK60CaRE/Qg19ej1NZERWm1NiJWt0ZV19X1aGCVFEnCkJUVEaUjW15iTupWsVp2Ovv0oEPXNELBQNRGPSyG+9qJ49HjViHc640TyX0EvS1oas8/497CZLV1IIaHI8jjI8SNZiuqakIJGgj4JAItMl43eJvBUx+kpannqyzt6eZo3u62kd6uLCuGTibve5vta75mxWMPEfC2kODNhY7F7qBo9Fh2rlsdd0csKnvE1HxmX3oUrixr0rYFAsGRR2+OKQ4W5eXlTJ48mfr6+oS/sa0PxD1B7QN/ww43B+uz922uo/7lbeg+pe2fISSbkaxLR2IbG8unG6rx4ltfi29DDaGqDkTswWnYJ+aGRey0PiRie/ZD+RrKd3/CqqqvWeWrZJXZQI2x47XCGZrOdEMaM7PGMn3IqQwdfhaSrXuTd30Vf0ilvMHL7tpYHuvddV7K6loob/ChdNN20yBLFGXYoqL1kGwHpVl2huSE99Y+tqDwSGLzko/4/FMvitEOuha2Zo3sJU1Bj8sVmle9hjHfP09I1vh2cD71zpjb0ojpszjj5l9idYjISIHgSOdgjynLysrIzc3FZhMpC/oavfnZf7+ykg+e25Jy/WFTcrE7JHx7d+Ddvx9v0IZPSyeo927OZNkohfNOJ7P6TjMl5Ke22k1IsoSq6Xz+Qw1L11Xw7qYqgm0W7xlkiZNH5TJ3ajFzxuRFXSQPNWpjY8waPCJct1qDK/v3d79BkwlzYWFipHXp4LBwXVyMbG0/36TrOkGfrxMhOv56YsS0ph58YdpotsQJz05szuRCtC0uktrqdHboUDmQUIJBtn39JdtXfYXP48bmdDFixjGMnDlbRGYLBIJ2dGdMIQTtfkRvDhZfXVfO7f/6jpmVm/jVun/iCvlQkTCgR/duk40/Tb2MrweNI81qxB1QDii6Oi8aXR0RqdPMFMtBBqlesgNubJ7GiDgdJ1RHrL81j+eA3m88ks0WFz0dEaZzY8eG1qjqrMxDloulv6DrOmoolCRi3JdEFG89j0WOx0Ry3yHJI9MVRpMZk82GyWLDYLQiyWZ0zOiaCVUxEgoaUAJGkMxIkhkimyRZEq9hTDpYdaSbY3m7c+LE7mwrrszeE7y3r/maZX/8X7pezhxGMhZhsp9ORkEhJ1w2ksHjsru+SSAQHFH0B0EbYMeOHfzXf/0XH330EXV1dQmru7uLJElC0ObgfPa+zXXULdncVao00i8Yge4L4VtfS6iyJWk18+A0bBNzsI/PwZBu6ZX+HRBKAKo2QPlqqsu+ZFXtd6zSPKy2WqkwdSxgu3SJaZZcZuROZsaIcziq9MQEh5n+hiegxEVYhy3BW/eVzf5uPyOYjXJYpI7LYx0+d1CUacNkEG4xh5rNSz7i4y8ik+5S5z//obuWM2TPO9Q5bXw3rJBAZBgsGwwcf8W1TDvnwgE/kSsQDBQO9pjSYDCwZMkSrrjiil5vW3Bg9OZn/85fN7Dz25pUpzQOCM2g4DE24TO58Zrc+ExuFKufscUjOeGoY8nPyY4K2GZb8rmeZGzf7+aVtRW89k051c3t57tGF7i4ZFoxF0wuItd18Me4uqah1NQQ3LMn0Rq8LCxi98S1UrLbMbe1Bi8twVhcgpaRRsDna5NDuuPc0q3nutZ9t57uYrJY20RKJxei4+29LU4nJnMfeBYRCASCAUB3xhTCcnyA8t6mao6p2sRvv36O1hGjoc3eEfLxu6+f496Z1/L1oHGdtmczGcIidYaNwTaJwZKPIt1HbshNls+NvaURvb4OpSwSWV1Ti1JfD5GJ5cbI1mNkGUN2VszeOye3XVR1OLI6F4Ozd1dsDiQkScJoNmM0m7GnZxxQW6nYqSeI4W0iyKP3+H09tlNXQkGUUBAfB2anDnIbgTt8HPRYaNxnjiuLE8JlMzanE1eWC1dOGhn5GWTkp5OWYyct24oz05qS9bcSDPL2X/5Eqk9+BuvxWJwzOPrsIUw5vbTP2aYLBAJBPMOHD+ef//xnwjVZlnn++ee7NbH5/PPPc8011/R29wSEbcbrX96WkkVk0+vJbeLNpa5wTuwJORgPp4it69C0F8pXQ/ka6sq/ZnXTD6wyG1httbLbbAIHQPuoUxsyU+1FzCiYwcyjzmN03mQM/UjA1nWdBm8oIZf1nrqWaMR1raf7jjYOsyGcvzonIlpn2ymNRFwXpFmRZSF49hWCHh+ff+oFg7VzMVvXkbUgJXvfZ9fo4WyN++/qzM7h3FvvoGjUmIPfYYFAMGAQMTgDA39L6IDEbJMhGM45nZUejaKORk67jGzzbebV8n+xzrOakBwIuwgBWdYsrhp7FT8a9SPSzN0X5Zu8Id5Yv49X1pbz3d7GduVZDjPnTyrkkmnFjCtM6/XFXnowSGjfvlikdVmcNfjecvRA9wJJdEDLyYaiQrT8fLScLNT0NBS7nZDZRFBT8bdExOimKvwV2/F94Cbg8aDrh0CYttqSREonCtHJLL5FRLBAIBAcOQhBe4Dibm7htrX/BHQ6mrKQAQ2dX637J9ef9Vum5FgYJgcolXwUhDxkBd2k+Zqxu5uQGsK232pNLZo30TYyGNl6guxwxCKn44Xq+KjqnBwMWVlIhv4zaSgIR3CEB5kHZkWoaxqhgD8icLe3UY+d+7qMIO+5nboGuh9d98f6lcJdITc0V7a9GhPADSYrRkvYXt3icGBLc+JId+LMTMOV7cLqcLDvh22E/EmsWjsgtySfc2+dSXquPeV7BAKBoL+za9euw92FIxbvhpqwzXg3MZe4sE3MCYvYGYcp5UWwBfZ9ExWwmypWs0ZtZpXVyiqbhe1mM+RkJL3VjMwU1xCmFx/PzCGnMi5nHCa5bzv7aJrOfncgJlrXt7A7IlzvqfPi9nf/c8y0m6J5rAdnh0Xr1uNsh1lE6fYDNE1n/bMfhW3Gu0KSUCWVVdOn0eivjV4eMmkqZ/38V9jTjgwbfYFA0Lf4/PPPUXox7+3VV1/da20JegerLTwDSYczlPFo5Ju2cVz6IuxjZ2M/4XqMxePb1VI0hXd2vcMzG59he2NkUWVk2rDIWcS1467lwhEXYjV2bxyqqBqf/1DLK2vLeX9zNUE1Ucg1yhInj87jkmnFnDwqD3MKgQqdobW0JFqDl+0lWLaHUNleQpWVkCTCWQdCBjksQhtlQgZD+NxoIGg0oLpcKC4HisVCyCgT1HUCSohANGDEC9W7wttBwGyzpyRGJ15zYjD27bG2QCAQCA4+QtAeoEzf8w2ukK/LejLgCvl46Y3/6nBY6e/geocYDBizs6O234Y4u+9YhHV4k+1CdBN0jiTL0XzZZPW8HV3XUULBqAge9PkScohHo8IPup16EPQguh52OVUC4O++E1QHSKDvFGK2QCDo1zz77LMce+yxh7sbggj+TXWxnNkpYMy3k3PNOIxZh1jE1jSo2x4Rr8MCdkvNZtZaTKyyWVlltbI124wu5SbvNzITMkYwo+REZgyaxaS8SVgMfc+GUFE19jX6o2J1WV1MtC6r9+IPdT96Jj/NEhatI3msB2fbGZzloDTbTrpNTCz2Fpqmo4Y01JCGElJRghqqokX24XMlWq6hhlSUyLHiDxHyBlB8QRR/EMUfQgkoKAElVl/RUdWwQZaqS6i6jKrL6JIBiOWm1XUFLbgNNbQdXfcjSVYMphHI5pHoajVBz1sE9HA6KEmSOfbSK5h50Y+QZGETLxAIDg5PPfUUf/3rX3t0b7KFVULQ7nsMy97NTlKNkJaZMLScghuWQnpxu1K/4ue17a+xaNMiKjwVCWUjMkZww4QbOHPImRjl7k2Jf1/lZum6cl77poIad/s5n7GD0iKW4oVkO1MfI+q6jtrQEImuLkuwBvfv3Yu/oZ6QMSJIGwxhAbpVoB6URTDueshgIGiQUVLJy60GwHtgqQAtdgdWlwuro60Q7cSaJN+0zenC4nBiMAo5QiAQCAQ9Q/wFGaAcU7kxmis7FVKZnpBdrja5qdvkpI5EVRsyMsSEh6DPIUkSJrMFk9mCIyPzgNpSFYWg35fURj1BGPd68XtaaGn24HN7CHi8BP1eQgEfasiPrvXU26AjdJprG3q5TYFAIDi0dNc6XFEUAt202xOkjupVumURaXCYDo2Y7a2HinUxAbtiDb5AM99azFEBe1NpIWoHEcQyEmMzRzGj6FhmFMxgSt4U7Ka+sSDMH1Ipb/BG8lnHROuyei97670oWvc8O2UJijJtDMl2RPNYt1qDl2bZsZkHlgtSq7CshNTwvhvCcvRaUEVRkt8bPldRgmq4XkRsPjgpJA1Ew9GS0ebXXw3uIORdAXqA1pUqOhJaaDt4PwBiEZL29AzOueXXlI6fdBD6LRAIBDHuuusuTj311G7f5/F4+PWvf83WrVuj1xYsWNCbXRP0EsOV1/hcmktAt6PrWocLqyRJxiJ5GV5Q0U7Mbg4289LWl3h+y/PU++sTyiblTuLGCTdyQvEJyJ2l1mhDQ0uQN74LW4pvqGifqi7bYebCKUXMnVrM2MKOBXklEKBl107cO3bg2bObln0VeKur8NXX429uIqCpsQjqOIFaKUqHooPsfiJJWO2OWCS0Kw2ro6047YoTriP1HE5k4ZQpEAgEgkOMELQHKHm6H383Zh8lux3HzJkxwTo3B0NODqbcXAw5uRhzspGth8kuUiDoYxiMRmwRe6QDQdc0WppbaNjXQENVA037m2iua8ZT34y3yYPX7SHQ/C26Vt91YwBIINm6riYQCARHAKtWrWLx4sW89NJL1Nen+j0p6C4GuzH1CG0JZNtBePxQFdi/KSJerw3v634gCKy3WlhttfB1hpX11mJCnVhgj8ocxYxBM5hRMINp+dNwmQ/s7/iB0BJQ4vJYeymrb2F3bVi03tfko7spRc0GmZIsW6JYHdkXZdgO2A7zYNA9YVmNisndE5YT71VDGpp6ZOZrlbQQsqZg0ELIWghZjey1ED5bLn6qCbW8EXeH3mYfE7Otxlyu+sOfcGYegD2SQCAQpMiYMWM48cQTu3XPt99+y4IFC/jhhx8AcLlcPPXUU/z4xz8+GF0UHCDGQC2npD/Cm/t/RMj7XvKFVb6PMdnP4JS8lzAGY/OPtb5almxewr++/xeekCeh3eOKjuOG8TcwLX9aymlQQqrGp9/X8Mracj7cWk0oblwg6ypOgpw02MGcYS7GZBkItVTgXbuVzz9qxFtdjbeuBl9jI/6WFgIBP0FNQenotY1A1oGl4WtFkmQsTmdYgG4TMd1OnG4VqJ0uLHY7siyEaYFAIBD0D4SgPUAxZWbikySkFGbDdEnCNXs2xX/58yHomUAgaEWSZZwZLpwZLkrGliat8+LvF1G59eUUW9TJGNQ+t5RAIBAcKezdu5clS5awZMkStm3bFr2u67rI5XuQsI7LxrepLrXKOljH5xz4i7qrEqzD2fcNhLwowCaLmdVWK18X5PKtxYK/E1egYenDmFEwgxmDZnB0/tFkWg/MoaU76LpOozfEnvqIaF0bzmkdFrG91Hq67ypgNxuieaxbxerBWXYG5zgoSLNikHv2f0DT9HA0casgHEouJKcsLHcY2TyQheVg4rW4snbXtBAGGYwmGYPZgNFixGgxYLSaMVnNGO0WTHYLRocVk8OGyWXD6HJgdNqRHZnIDgcGhwPZ6UR2OJCsVtY+9gaffvFuiu/AwPRZFwgxWyAQ9Fn+/Oc/c8cddxAMBtF1ncmTJ/Ovf/2LESNGHO6uCTrCnomqfBVZWNU6XmmzsEoPEGpZhqrsBtsx7HXv5bmNz/H69tcJxrnbyZLM6YNP54YJNzA6a3TSl1NCIfzuZvweN36PB1+Lm13lNazdVsH2vdVofi8W1c85WgCrFsCi+nHoAQxaKNzAbtjxKexI5b118xlEkiQsNju2tDSsaenhPNKOROtuqysNmyNRsLbY7cINUyAQCARHPELQHqC4Tj0F9/vvp1RX0nVcp3Xf3kkgEBx8Jp92MpXfvxFZwdwFkoVJp5588DslEAgEh5CWlhZeeeUVFi1axGeffYYeWaynxy3ay8nJoa4uRdFV0C3sE3JpfHMnmk9p616cgE44OtveXUE75Ieq9YkCdtNeAFTge7OJ1TYrX2flss5qoaWTibwSV0lYwC6YwfSC6eTak+fL7i10XWe/OxCxBm+hLLJvjbxu9itdNxKHpEO2zcSQTDulaTZK0q0MclopcJrJtVtwmmTUUFxUs09D2e2lcpuH8ojNdVKxeQALy4aIuCyrYUG5O8JyskjnhOutwrUaRJY0jBGx2ei0I9sdyA4HsiuyT9jSInt7WHyOCM/RzW5HSjH3pK7r6JqGGgqhKCHUUIhgKISqKKheD2pTA2oohMdVk9pYEgAV62jh+CMQCA4NWjfyMdTX13PdddexfPny6DhwwYIFLFy4EIsl9ZzGgkOPMuIsVrxek1Ldt/cdRbkpxLuvnYuk6FhCMvagCYdq5rjsmRyXNQt7o4n9K1ZS5nkfv9sdEa7d+Fo8+D1ulA7SEZmBsb30niRdx6SomDQdi9GExWrD5nJhy8zEnpOHvbAQR2ERtvQMbK5Yvmmz1SaEaYFAIBAIOkAI2gMU15lnIhPCxXYAAEdXSURBVP/ffWhuN516FkoSssuF64wzDl3nBAJByoycWcSnL5yDt/7VLuvaM89h5IzCQ9ArgUAgOLjous4HH3zA4sWLef311/F6vdHrrWRmZjJv3jyuv/56Nm7c2O3c24LUkEwyoen5GD4tR4ekkfCtn0toej6SqZMJOl2Hht1h0TqS95rK9RCJhtGBHSYTX6c5WWW1ssZqobmT3H0FjoKogD2jYAaDnIMO4J3GiI9YDvpV9tV7Ka/1UlHnpbrBx/4GP7VNfhrcQTRFwwgYdQkjYNAhG8jTJYyYMOpgRIrsw/WssoRVljFLEgYdZA1QNXQNaAKqgkAQaKIO6O9LNaSEaOVOhGU1mWDcTWE57lzqwidfstuRHXYM9mSic0biudOBZLOhW61gtaCZzegWM7rZjG4yoUkSqqKgRURlRVFQQyE0pVVoDp+rSmQLuFFb6mPXQkpk31onUr9VnI62G0KLK1OUUOfPej37xNi9fi0TTxPPhwKBoO/w2WefMW/ePPbt24eu67hcLv72t7/xox/96HB3TZAC25pzCGimFGpKhFQj6UubuUIrwqi1HVfuYG1qcdMpI2k6ZlXFpGphgVrVMKkqZiW8N6kaVrMFW04u9oJBOIqLcQ4ZimPYMMylgzHm5QqnKIFAIBAIegkhaA9QZIuFwgceoPxnPwvb3ySb6IgMuAofeABZrGYVCPokRpOBM28+nzcfUQm1rEjINRXdSxZMjjM58+bzMZpEbiSBQNB/2bx5M4sWLeLFF19k3759QKKIDWFB9X//93+5/fbbo9E4mzZtaldP0DsoIZUPPignM6gwxW7ELMUs3lv3IR3WeRUaPyjn2tMGx/4WBdxQsS4WeV2+Gry10bZ1oMxo5GuHk9VWC6tsVurjBGxJlzGqRoyaCYNmIseUy6TMyYzPnMCotLFkm7JRFR2lQaVxv0ZtsDwuj3I4YjkxUrkDy+ygSjBSVwtpneYLd0a2YUCPH7XU1nevR38OhwJZ1jFIOgZZw4CGjBoWgvWIWKwGkJQgcsiPHPQjBX3h406E5a4jnbsWltuiA5okhTdZih2bTWCzgsOObrOC1YZuzUCxWMLCsiUiLpuM6EYjutGAZjCgyTKaLKFLMpoU/vFruhYRiuOE5FZRWWlCra1DrYoTm0MhdD31KML+jY7P4z7cnRAIBAIgPOa4++67ue+++9A0LWox/vLLLzN8+PDD3T1Biny/dlUkW3Zqwq9V6f68hgRhMTqkYFHUsBitaEkFanOccG3QdCTAWFCAuaQEU2kJ5pJSzINLMZWUYi4twZCW1u3+CAQCgUAg6D5C0B7AuOacTPFjj7LvN3eiNTeDLIOmRfeyy0XhAw/gmiMsigWCvszQiTmcd8uFfPDccHyNm1FD29F1P5JkxWAagS1jLKdeN5GhE3shb6lAIBAcYmpqanjxxRdZvHgx3377bfR6vEA9btw45s2bx2mnncb06dOZOXNmgrXkvHnzmDdv3qHs9oBhx9r9BLwKFcEdlNW9T4ltCEWOkVhkKwHNT0XLNvb6dmOwnYZBGc5nj75NrnE7Sv0+VHc9im5G1U0olKDqw3BjoVa20ihZcUsWNN2Mod5IhmbiLM0UFq/1sIBt0JNPZtYDX1EBVBzSn0VvYTDKGExyOEeyScZolDAYwCDryJKOQVIx6CqyriDrkchjNYisBJEUP1IwIjgHvMgBL5LPg+TzgNeN5PWEo59TEJbbC8cdCMltrimShN56boy7L3qPCU0yh0VkozEsMBuMYXHZIKNHBGZNAg1QdR0tsqmamuLiFB3wgd8H/oPwIfUhZIMRg8kU3oxGDMbwsdFoRG49NoWvy3Fl8ffsXLeGhsrU/r9IkoTN6TrI70ogEAi6pry8nHnz5vHFF19E/zbcdNNNLFy4ELPZfJh7J+gOlfv3pCxmA+gyZBcUYTWaMelgDikYfX4MbjeG+gbkxqYEUdqsaMi63vkrmEyYCwsxDS4NC9alJVHB2lRcjGy1HvD7FAgEAoFAcGAIQXuA45ozh6M+/wz3u+/ifv8D1KYmDOnpuE47FdcZZ4jIbIGgnzB0Ui7XPXgiO9aNZee3NfhbQlgdJoZNzmX41FwRmS0QCPodL7/8MosXL+a9995DUcK5huOFrOLiYi6//HLmzZvHxIkTAUSe7MPAzm+qUYM/EGp5E4A9LZvZ07K5XT2tZRlwAVu+H84WJgGTOm3XGtkOJwo6CqBIoEjhY1WKXJdAlyXMFgM2qxGH3YjLbibdaSbDaSLDKmPQlZiNthIIb62RzUEvBLxIvhbwudFb3OheN1pLM6rXi+Lzofh9KD4fmqaGLavjheKokAxKW3G5I7HZJqHZW9swo0oWtKRtSpGI5UNtj6mBroVDpNVD/NIpIBsMUbG4rXhsMEbOTUnOjXH1I+dGkwk5cr+xo/ZMbc+TtGkw9Eqezbwhw3nnsYdSqqvrOiNmHHPArykQCAQHwrJly7jhhhtoaGgQFuNHAIHGmrBzZCpjD10nv9HL0d981u3X8RotVDmy0QcVUTB2BEMnjMQ6ZDCmklJMgwqQOkllIxAIBAKB4PAjBG0BssVC+vnnk37++Ye7KwKB4AAwmgyMmlnAqJkFh7srAoFAcMD8+Mc/jtpWt5KZmckll1zCFVdcwQknnCDy0fUBvNXlhLzvpVQ35F2BbFqAJHXzEcSgYTQZMJtNGM0yBqOM0WyI7OOimY0yIcCrqrhDKk1BhYaAQr0vSI03iDukoKKho6DpKhoqOgq6rmLQgphVP2bFj1n1Y1X9WNUAaZJCllEj06DikFRsKFj0EAZVQVIV1FAwIa9xSFWp1jQqI2JzZ5HMrZsut/k9tgE2C2ABMrr3szoCkGQ5EkUcFm1lozEs+vZQPG4nFreLZI6IyyZT9HWirxnXfm8Ix32VkbOO46PnniLQ0kLnJvcSFoeDkTNnH6quCQQCQQLBYJBf/epXPP744wDCYvwIIaexmf2SI7XKksSgBk+HxU1WJxX2bCrt2VQ6sql05LDPmU3OyGGcddwYzp1YRLo9lXzdAoFAIBAI+hpC0BYIBAKBQCAQ9ElaczBnZ2fzyCOPcMkll2AyiQmovkSgfjXogdQq6wGatI/YVlQRFpIJoaOio4KuIEswyJ5HsWsQxY5B5NlykHQdLSIWq0oIJRjC7fXjafHR0uTF7/UR9PtRgkG0UDCS81lD1jVkNJxouNAZgk43nCzbvEnwEd6SIgNmGfqZvakky0kigbsn/HZ1T7cimSN1ZVlERx1qjGYzZ/3sNl7/4/+CLpFc1JZAgrN+dhvGfva7LhAIjgy+//57LrvsMtavXx9d8HjzzTfz8MMPC4vxfk6BL0i92YpikDuP0tZ1jKpGTosX+6xZqIOK2Cq5+NhtYW3ITqUjG58p5vFTkGbl4qlF/Ne0YobnOg/BOxEIBAKBQHAwEYK2QCAQCAQCgaDPsXz5chYtWsSbb75JbW0tCxYsYMWKFcybN49TTz0V+QiOluxPNPi3EFaKU8lrDNbmjUxsTlbS+nnWEqKWXWxgV4p9MEe2BPpQ8L4EyLKMLMsYZENE4I0Tec1mjGZLeG+1YjCbI0JvRGyOCr8x8TlsWR0+j0Uyt82NnEw8jrUphGNBPMOnzeSC//gtKx5/mECLJ+qQ0bq3OByc9bPbGD5t5uHuqkAgGIA8++yz3HLLLXi9XnRdJy0tjb/97W9ceumlKbexYcMGXnvtNX73u98dxJ4KekJGbiETN+5k3ZCCjq3HI4sYJu7dT+34o/jzST/l0201qJoOccHdFqPMmeMLmDu1mNkjcjC0dcIRCAQCgUDQbxGCtkAgEAgEAoGgz3H22Wdz9tln09TUxEsvvcTixYtZsmQJzz//PLm5ufz4xz/miiuuYOZMIa4cTgL+JqCPRM3rOnLrphE7jl6LO5bkcE5kQ7zAbMZoNmGIF5etNoxWK0abDaPdjslux+hwhDenC5PThdHhSMiNHLXJbhWaRT5GQT9hxNEzuenJxWz7+ku2r/oKn8eNzelixIxjGDlztojMFggEhxyPx8P8+fN56aWXolHZU6ZM4V//+le3LcbXr1/PPffcIwTtPsjQ8y6j5t+/ZdruKr4ryUMxGmLCdmRvVDUm7d1PfrOXB+VJfLx1f0IbRw/OZO60Ys6ZOIg0ax8ZmwoEAoFAIOhVhKAtEAgEAoFAIOizpKenM3/+fObPn8+uXbtYtGgRzz//PH/5y1949NFHGTZsGPPmzWPevHlkZWUd7u4OOOw+hRbJlFpEtA62YIg8tzdRXG4rNrc5l/TwXGZINqOZTOhmKwabDbPdgdXlwpmRRlpWGkanC4PTieywIzscyA4Hhsg+YbPbkYziMUggSIbRbGbs8Scz9viTD3dXBAKBgEmTJrF79+6oY0SrxbhIQXNkYT/tLDy/v5fcZi+nbN5DVbqDqnQHIYMBk6pS0NRCQVMLkq7jNpv5onAKAIXpVi6eWszcacUMzUkxB7dAIBAIBIJ+S7+eyQkEAixcuJB//vOfbN++HYPBwJgxY7jmmmuYP3/+AVlRNjU18eCDD/Lqq6+yZ88e7HY7EydOZP78+Vx22WVd3r9v3z7+8Ic/sHz5cioqKkhPT2f69On84he/4IwzzuhxvwQCgUAgEAgGKkOHDuXuu+/m7rvv5osvvmDx4sW88sor3HvvvfzP//wPY8eOjdrjxrNy5UqeeuopnnnmmcPU855zMMe7vUF6IESLzZZaZQlK6hrZaxmO12LBZwxvXqM1eozdTkZOOlm5WeTmZTJoUBbFRTkMLsggL82K1FleRYFAIBAIBEcUu3btQpIkJEkiLS2NzZs393hOrbq6upd7J+gtVmyr56Up8/jd188i6TpFjR6KGj0JdbTI/k9T5jFxWB63nzaSY4ZlIwtLcYFAIBAIBgyS3nbGr59QW1vLnDlz2LBhA/Pnz+eqq64iGAzy6KOP8tprrzFnzhzeeustrFZrt9vevn07c+bMoaKigjvuuIPzzz+f+vp6HnzwQT799FPmzZvH4sWLO5xAXLlyJWeffTZ+v5977rmHE088kb1793Lvvfeyfv167rzzTu67775u96u5uZn09HSamppIS0vr9v0CgUAgEAgEcGSNKQKBAMuWLWPRokW8//77KIqCy+Xi8ssv58Ybb+Too4/mhRde4Oqrr0ZV1cPd3W5xMMa7vf3Z/+uCs6k06igGOXm+w1Z0HaOq4XCrPHnCfzIk287gbAeDs+2RzcGQbDsZdmFpLBAIBAJBf+FgjyllWSYnJweH48Cjb1taWqirq+t348G+Sm9+9jctWct7m6uYvm8Tv1r3T1whHypggOjebbLxp6mXsbpwHKePLeDJq6b1wrsQCAQCgUBwuOnOmKLfCtonn3wyn3zyCbfeeisLFy6MXtd1nYsuuohly5Zx7bXX8uyzz3ar3UAgwMSJE9m2bRsPP/wwv/zlL6NlwWCQ2bNns2bNGu6++25+//vft7u/pqaGsWPHUltby2uvvcaFF14YLWtqamLChAns3buX5557jmuuuaZbfTuSJp8FAoFAIBAcPo7UMcX+/ft54YUXWLJkCd9++y2SJDFhwgRGjBjBa6+91u8mMA/GeLe3P/v/vfVBjvvqJdYOKQhfSCZqRx43pu2u4rNjfszvHvnPA35dgUAgEAgEh59DIWg///zzXHHFFQfc1vPPP88111zT78aDfZXe/Owv++tXrNxVD4BJDXHcvvUcu28jrpAXt8nOvwvH80XhREKGsNX8rGFZ/HP+MQf8HgQCgUAgEBx+ujOmOLwehT1k6dKlfPLJJ1itVu6+++6EMkmSuP/++wFYtGgRa9eu7Vbbjz76KNu2baOwsJBf/OIXCWVms5l7770XgD/84Q/s27ev3f333nsvtbW1zJw5M0HMhnAOyDvvvBOAO+64A5/P162+CQQCgUAgEAg6Ji8vj9tuu41169axYcMGbr/9dmpra3n11VcPd9e6zcEc7/YmlZOPx+FXmLq7CqMaMYNsXS8b2RtVjam7q7D7FaonH3+YeioQCAQCgWAgI9KW9F0y7GZancNDBhMfl0zj/2Zew2+Ou5n/m3kNH5dMi4rZsgQZNuHoIxAIBALBQKRfCtpPP/00AHPmzCEjI6Nd+ZgxYxgzZgy6rnc7V2Jr2xdeeCEGg6Fd+emnn47L5cLn8/HCCy8klAWDQZYsWQLA3Llzk7bfer26uprly5d3q28CgUAgEAgEgtQYN24cf/zjHykrK2snCPcHDuZ4tzc5ZVIJ/2/KPPKavZy8eQ+T9lST39RClttHflMLk/ZUc/LmPeQ1e/nTlHmcOrnksPVVIBAIBAJB/+Kaa65h+PDhvdLW8OHDufrqq3ulLUHvcvq4fLQU/UM1Hc4Yn39wOyQQCAQCgaBP0u8E7WAwyIcffgjA9OnTO6zXWvbWW2+l3PauXbvYunVrp20bDAamTJmStO0vv/ySpqamTu/Py8ujtLS0230TCAQCgUAgEHQfWZYZPnw4/SnLzsEc7/Y2Z08YxJZhk/ifmdfhN1opavQweU81s3buY/KeaooaPfiNVu6deR1bh03irPGDDltfBQKBQCAQ9C+effZZZs6c2SttzZo1q9tpCQWHhrMnDCLNZqSrGHoJSLcZxXhSIBAIBIIBivFwd6C7bNmyhVAoBMCQIUM6rNdatmfPHpqamkhPT++y7fXr17e7v6O2P/vss4T63b2/rKys3f0CgUAgEAgEgt7noosuYteuXYe7GylzMMe7vY3VZOChSyfzkyUKV+b9jtlJch5+WTiRkNHE3y6djNXU3gFJIBAIBAKBQDBwiY0n1yDpkGwZqhT5509iPCkQCAQCwYCl3wnaZWVl0ePc3NwO68WXlZeXpzTB1922GxoaaGlpweFw9Oj+vXv3dtkngUAgEAgEAsGBYbfbGTx48OHuRsr05ng3EAgQCASi583Nzb3Uyxinjs3nqauO5j9e/paPS6bxaek0ND2c41DTw5E0j186mVPHCntIgUAgEAgEAkF74seTTT4lOo5s3afZjPxJjCcFAoFAIBjQ9DtB2+12R4+tVmuH9eLLUp2462nbrYJ2d+/vql+HYgJSIBAIBAKBQNC36M3x7v33388999zTe53rgNPG5vP1XafyzsZK3t1YTaMvSIbNzBnj8zlr/CARSSMQCAQCgUAg6BQxnhQIBAKBQNAZ/U7QHkgcqglIgUAgEAgEAsGRyZ133sntt98ePW9ubqakpOSgvJbVZOCiKcVcNKX4oLQvEAgEAoFAIDiyEeNJgUAgEAgEHSEf7g50F5fLFT32+/0d1osvS0tLOyRtd/f+rvp155130tTUFN2ERblAIBAIBALBkU9vjnctFgtpaWkJm0AgEAgEAoFAIBAIBAKBQNCf6HeCdmlpafS4pqamw3rxZcXFqa3q627bmZmZUbvxntzfVXSMmIAUCAQCgUAgGHgczPGuQCAQCAQCgaDvoWkajz32GGlpaUiSxO7du3ut7X379nHrrbcyfPhwrFYr+fn5nHvuubz77ru99hoCgUAgEAgEB5t+J2iPGTMGk8kE0OngrrVs8ODBpKenp9T2xIkT293fWdvx9XvjfoFAIBAIBAKB4GCOdwUCgUAgEAgEfYtNmzZx3HHH8fOf/xy3292rba9cuZLx48fzt7/9jZtuuonPPvuMxx9/nL1793LmmWdy11139errCQQCgUAgEBws+p2gbTabOeWUUwBYs2ZNh/VWr14NwDnnnJNy20OHDmX06NGdtq2qKt98803Sto899tjoZGJH9+/fv5+ysrJu900gEAgEAoFAMDA4mONdgUAgEAgEAkHf4fe//z1Tp07FYDDwm9/8plfbrqmp4bzzzqOhoYEXX3yRX//618yYMYO5c+fy2WefUVJSwv3338+iRYt69XUFAoFAIBAIDgb9TtAGuPHGGwH48MMPaWpqale+detWtmzZgiRJXH/99T1q+/XXX0fTtHbl77//Pm63G6vVyhVXXJFQZrFYuOqqqwBYunRp0vZfffVVgKi9j0AgEAgEAoFA0JaDOd4VCAQCgUAgEPQNFi5cyMMPP8xnn33GqFGjerXte++9l9raWmbOnMmFF16YUJaens6dd94JwB133IHP5+vV1xYIBAKBQCDobfqloD137lxOPPFE/H4/99xzT0KZrutRu5xrrrmGadOmJZS/+eab5ObmMn78+KQWjj//+c8ZOXIkFRUVPProowlloVCI3/3udwD85je/oaioqN39v/vd78jJyWHlypW88cYbCWXNzc088MADAPzhD3/AZrN1740LBAKBQCAQCAYEBzLeFQgEAoFAIBD0DzZv3sxPf/pTJEnq1XaDwSBLliwBwuPKZLRer66uZvny5b36+gKBQCAQCAS9Tb8UtAFeeeUVJkyYwMMPP8zNN9/Ml19+yccff8yll17Ka6+9xpw5c3jiiSfa3ffUU09RW1vLpk2botHS8VgsFt566y1KSkq4/fbb+e1vf8vKlSt55513OP3001m9ejXz5s3jv//7v5P2Kzc3lzfffJPMzEwuv/xy/t//+3+sXr2a1157jRNOOIE9e/Zw5513cs011/T6z0QgEAgEAoFAcOTQ0/GuQCAQCAQCgaB/kCxYpjf48ssvoy4/06dPT1onLy+P0tJSAN56662D0g+BQCAQCASC3qLfCto5OTmsXr2aBx54gK+++oozzjiDCy+8kPLych5//HHef/99rFZru/vmz59PdnY2Y8eO5eKLL07a9ogRI9iwYQN33HEHS5cu5eSTT+bKK69EkiT+8Y9/8PzzzyPLHf/oZs2axcaNG7nhhht44oknOP7441mwYAHFxcWsWLGC++67r9d+DgKBQCAQCASCI5OejncFAoFAIBAIBAOb9evXR4+HDBnSYb3Wsvj6AoFAIBAIBH0RSdd1/XB3QpAazc3NpKen09TURFpa2uHujkAgEAgEgn6KGFMMXMRnLxAIBAKBoLcQ44re5bnnnuO6664DYNeuXZ0K0V3xq1/9ioceeggAj8eDw+FIWu+SSy5h6dKl5OTkUFNT02F7gUCAQCAQPW9ubqakpER89gKBQCAQCA6I7own+22EtkAgEAgEAoFAIBAIBAKBQCAQCBJxu93R484cfVrLmpubO23v/vvvJz09PbqVlJT0TkcFAoFAIBAIUkQI2gKBQCAQCAQCgUAgEAgEAoFA0AmLFy/GaDT2eHvvvfcO91voMXfeeSdNTU3Rbe/evYe7SwKBQCAQCAYYxsPdAYFAIBAIBAKBQCAQCAQCgUAg6Mtomoaqqgd0/6HC5XJFj/1+f4eW436/H6BLi0+LxYLFYum9DgoEAoFAIBB0ExGhLRAIBAKBQCAQCAQCgUAgEAgEnXDttdei63qPtzPPPPOQ9bW0tDR63Flu7NYyYSEuEAgEAoGgryMEbYFAIBAIBAKBQCAQCAQCgUAgOEKYOHFi9Hj37t0d1msti68vEAgEAoFA0BcRgrZAIBAIBAKBQCAQCAQCgUAgEBwhHHvssaSnpwOwZs2apHX2799PWVkZAOecc84h65tAIBAIBAJBTxCCtkAgEAgEAoFAIBAIBAKBQCAQHCFYLBauuuoqAJYuXZq0zquvvgpAfn4+55577iHrm0AgEAgEAkFPEIK2QCAQCAQCgUAgEAgEAoFAIBD0I5566inS09OZPXs2jY2N7cp/97vfkZOTw8qVK3njjTcSypqbm3ng/7d35+FNlen/xz/pli50YS1gCxQQahHQL2sdBKYIAqOIKKKCigujDKJCZWZc0RlF+I0iDssoMyhuIwqCUERklW1AUBRZFBCLQK1QtrZ0o23O74+SQm0LKQ05J+n7dV01ePL0nDvhTriT+5znmThRkjRp0iSFhIR4ImQAAICLRkMbAAAAAAAAADzsyJEj2rFjh3bs2KG0tLTS7Xv27CndnpOTU+HvTp06VVlZWfrf//6nVatWlbu/fv36SklJUe3atXXHHXfo5Zdf1pYtW7RgwQJ1795dP//8s5544gndc889l+zxAQAAuAsNbQAAAAAAAADwsBkzZqht27Zq27atnn766dLt119/fen2LVu2VPi7Dz/8sCIiIpSYmKikpKQKx3Tt2lU7duzQ/fffr3/961+69tpr9eCDDyomJkZLly7VhAkTLsnjAgAAcDebYRiG2UHANVlZWYqMjFRmZqYiIiLMDgcAAHgpaoqai797AADgLtQVNRd/9wAAwB2qUlNwhTYAAAAAAAAAAAAAwJICzA4ArnNeTJ+VlWVyJAAAwJs5awkm6ql5qCcBAIC7UFPWXNSUAADAHapST9LQ9iLZ2dmSpNjYWJMjAQAAviA7O1uRkZFmhwEPop4EAADuRk1Z81BTAgAAd3KlnmQNbS/icDj0yy+/KDw8XDabze37z8rKUmxsrA4ePMj6N4AX47UMeL9L/To2DEPZ2dlq3Lix/PxYgaYmudT1pMS/Q4Av4HUMeD9PvI6pKWsuvqMEcCG8jgHfYKXvKLlC24v4+fkpJibmkh8nIiKCf2QAH8BrGfB+l/J1zFU0NZOn6kmJf4cAX8DrGPB+l/p1TE1ZM/EdJQBX8ToGfIMVvqPk9EkAAAAAAAAAAAAAgCXR0AYAAAAAAAAAAAAAWBINbZSy2+0aP3687Ha72aEAqAZey4D343UMb0b+At6P1zHg/Xgdw5uRv4D343UM+AYrvZZthmEYZgcBAAAAAAAAAAAAAMBvcYU2AAAAAAAAAAAAAMCSaGgDAAAAAAAAAAAAACyJhjYAAAAAAAAAAAAAwJJoaAMAAAAAAAAAAAAALImGNuRwODR9+nRFRETIZrNp//79ZocEwEWFhYX6+OOPdffddys+Pl5hYWEKDg5WkyZNdMsttyglJcXsEAG4oKCgQIsXL9Zjjz2mxMRE1a1bVwEBAQoPD1e7du302GOPad++fWaHCZwXNSXgvagpAe9HPQlfQD0JeC/qScA3WLmmtBmGYZhyZFjCzp07NWLECG3cuLF0W2pqqpo1a2ZeUABccujQIXXt2lVpaWlq0qSJxo0bp3bt2slut2v9+vV66aWXdOzYMQ0cOFBz5syR3W43O2QAlbjvvvv01ltvKSIiQqNHj1aPHj0UFRWlAwcOaObMmVq2bJnsdrvmzJmjgQMHmh0uUA41JeC9qCkB30A9CW9HPQl4L+pJwHdYuaakoV2DjR8/XhMnTlTnzp3VrVs3TZw4URLFIuAtduzYobZt2yomJkbbtm1TnTp1ytz/3XffqUOHDioqKtKoUaM0bdo0kyIFcCHDhw/X22+/rTVr1qh79+7l7r/xxhu1ePFiRUVF6ZdfflFISIgJUQIVo6YEvBs1JeAbqCfhzagnAe9GPQn4DivXlEw5XoNNmTJFr776qtauXavWrVubHQ6AizRmzJhyhaIktWvXTnfccYck6T//+Y9OnTrl6dAAuCgmJkY33nhjhYWiJA0bNkySdPLkSe3YscOToQEXRE0J+AZqSsC7UU/Cm1FPAr6BehLwflauKQM8ejRYyq5du3TZZZeZHQaAi1SvXj0lJyfrpptuqnRM+/bt9e6776qgoEC7d+9Whw4dPBghAFe98MIL573/3Om4wsPDL3U4QJVQUwLejZoS8A3Uk/Bm1JOAd6OeBHyHlWtKGto1GIUi4N0aNmyol19++bxj/P39S/9cq1atSx0SgEvkgw8+kCT97ne/U3x8vMnRAGVRUwLejZoSqBmoJ2Fl1JOAd6OeBGoOM2tKphwHAB+2d+9eSSWFZcuWLU2OBkBVnDp1Shs2bNCQIUP00Ucf6eabb9aCBQvMDgsAUANRUwLeiXoSAGAV1JOA97JKTckV2gDgo4qKivTxxx9LkpKTk8ucCQnAuvbt26dWrVrJ4XBIklq2bKl58+bplltuMTkyAEBNRE0JeB/qSQCAlVBPAt7JajUlV2gDgI+aNWuWDh8+rM6dO+vRRx81OxwALoqNjdW2bdu0efNmvfvuu2rUqJFuvfVW9e7dWwcOHDA7PABADUNNCXgf6kkAgJVQTwLeyWo1pc0wDMPjR4XlzJ49W/fee68kKTU1Vc2aNTM3IADVsmfPHnXs2FEhISHatGmT4uLizA4JwEUyDEMjRozQrFmzFBsbq6+//lr169c3OyygQtSUgG+hpgR8A/UkvAn1JOBbqCcB32F2TckV2gDgYw4fPqw//OEPCggI0LJlyygUAS9ns9k0efJkhYWF6eDBg3rhhRfMDgkAUANQUwK+g3oSAGAG6knAt5hdU9LQBgAf8uuvvyopKUnHjh3T559/rvbt25sdEgA3iIiIUNeuXSVJixYtMjkaAICvo6YEfA/1JADAk6gnAd9kZk0Z4NGjAQAumUOHDqlXr146ceKEVq9eTaEI+Jjo6GhJUlpamsmRAAB8GTUl4LuoJwEAnkA9Cfg2s2pKrtAGAB+wf/9+de/eXdnZ2friiy/KFYr79+/XqVOnTIoOwPmkpaUpPj5e69evP++4zMxMSVJkZKQnwgIA1EDUlIB3op4EAFgF9STgvaxeU9LQBgAvt3fvXnXv3l1FRUVau3atEhISyo2Ji4vTvHnzTIgOwIUUFhZq9+7d2rRpU6Vj8vLytHHjRklSYmKip0IDANQg1JSA96KeBABYAfUk4N2sXlPS0AYAL7Zr1y716NFDgYGBWrdunVq2bGl2SAAu0muvvabDhw9XeN8TTzyh48ePy2azady4cR6ODADg66gpAd9APQkAMAv1JOA7rFpTsoZ2DXbkyBEdOXJEUtm57vfs2VM67UdcXJzCwsJMiQ/A+e3bt089e/ZURkaGgoKC1KZNG7NDAnARgoKCZLfbdejQISUkJOixxx5Tp06dFB0drf379+vf//63PvvsM9ntdk2fPl3XXnut2SEDZVBTAt6NmhLwftST8HbUk4B3o54EfIPVa0oa2jXYjBkz9Pzzz5fbfv3115f+efXq1erZs6cHowLgqu3btysjI0OSdPr0aZ0+fdrkiABcjMaNGystLU3z5s3T8uXL9e6772rixIkqKChQeHi4WrZsqXHjxunBBx9UixYtzA4XKIeaEvBu1JSA96OehLejngS8G/Uk4BusXlPaDMMwPH5UAAAAAAAAAAAAAAAugDW0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWFGB2AABqrqKiIhUVFZkdBgAAAAAAAIBLzM/PT4GBgbLZbGaHAgDwMjS0AXhcbm6ujh49qpycHLNDAQAAAAAAAOAhgYGBCg8PV7169eTv7292OAAAL2EzDMMwOwgANcfp06eVmpqqwMBA1alTR3a7nbMyAQAAAAAAAB9mGIaKi4t16tQpZWZmym63KzY2lqY2AMAlNLQBeNShQ4eUn5+vuLg4ClYAAAAAAACghsnLy9OBAwcUFRWl6Ohos8MBAHgBP7MDAFBzGIah3NxcRUZG0swGAAAAAAAAaqCQkBBFREQoOztbXG8HAHAFDW0AHlNYWKji4mKFhISYHQoAAAAAAAAAk4SHh6uwsFCFhYVmhwIA8AI0tAF4jMPhkCSuzgYAAAAAAABqMOf3g87vCwEAOB8a2gA8zmazmR0CAAAAAAAAAJPw/SAAoCpoaAMAAAAAAAAAAAAALImGNgAAAAAAAAAAAADAkmhoAwAAAAAAAAAAAAAsiYY2APiQ2bNny2azlf4899xzZocEXDK+nO+HDh1Sv379ZLPZNHv2bLPDgQX4cr4Dv0W+o6apCTm/aNGi0se3f/9+s8OBiWpCvgNO5DsAAO5DQxsALOyrr77Sn/70J7Vp00ZRUVEKCgpSdHS0unfvrnHjxmn58uUqKioqHT9kyBClp6crOTnZxKjdb/fu3Ro2bJgaNWqk4OBgtWjRQuPGjVNmZqbZocGNyPcSb775pq688kotXbrU7FBwCdX0fM/OztYbb7yh/v37q2HDhgoMDFRUVJQSExM1efJk5efnmx0i3Kim53tOTo4++eQT3X///UpISFBoaKiCgoIUExOjQYMGacWKFWaHCDer6Tn/W5mZmRo5cqTZYeASqen5vn///jINy4p+pkyZYnaYcJOanu9OhmHovffeU58+fdSgQQPZ7XbFxMSoZ8+eGj9+vLKzs80OEQDggwLMDgAALqX8wmIt2Z6uZTsP62TuaUWFBqlPm2j1b9tIwYH+ZodXqby8PD300EN65513NHDgQE2aNEnx8fFyOBz6+eeftWDBAk2bNk0vv/yy6tevr5UrV6pt27YKCQlRSEiIatWqZfZDcJsvvvhC/fv3V5MmTTR79my1atVKX3zxhR555BHNnz9f69evV6NGjcwO0xoK86Vdn0g/LJZyT0ihtaX4G6SEgVJgsNnRVYp8L1FYWKgBAwZo7dq1mjBhgubPn6+1a9eaHZZlFRQXaNn+ZVp1YJVOFpxUlD1KSU2S1KdZH9n97WaHVynyvaS517RpU504cUK33367PvroI8XExOjnn3/WxIkTlZycrNmzZ2vFihVq0KCB2eFagqOgQNlLlyp7xUoVZ56Uf2SUwq/rpfC+feVnJ9+tbvz48XrllVd0zTXX6B//+IeuuOIK5ebmavXq1XrmmWe0YMECvfLKKxo7dqzZoVpGUWGx9n19RD9tO6r8nEIFhwWqeft6atGhgQKo4b3O448/roAAvn6qTNHp09qzab1+3LJJeaeyFFIrQi07dVWrrt0UEBRkdniVIt/Lat26daX31alTx4ORWJtR6FDu9gzl7zym4twi+YcGKLhNXYW2rS9boHWvuyLfz8rNzdXAgQO1Y8cOPfvss/rnP/+poKAgff3110pOTtaaNWt01113KTw83OxQAQA+hk8UAHzW8l2HlTz3W2XlFcnPJjkMyc8mLd35q55L2anJg6/SdQnRZodZTmFhofr27au1a9dq2rRpGjVqVJn7W7Vqpd69e2vkyJHq1q2bMjIydOzYMZOivbROnjypwYMHyzAMLVmyRM2bN5ckxcXFyW63a+jQobr77ru1fPlykyO1gB+WSJ+MlPJPSjY/yXCU3H6fIn32F+nm16XW/cyOshzy/aycnBzl5+dr+/btat68uRYsWGB2SJa1+sBqPb3haWWdzpKf/OSQQ37y04oDKzRx80S92O1F9YztaXaY5ZDvJQoLC3XixAkNGjRIH3zwQen25s2bq0ePHkpMTNTmzZs1ZswYvf/++yZGag3Zq1bpl78+IUdWluTnJzkckp+fspcvl9+LE9R44kSFJ/3e7DDLId/LatCggZYtW6awsLDSbVdeeaXCw8N177336tlnn9WoUaNkt/AJCp6Sui1DK9/+XgW5RZJNkiHJJv30TYbWfbRXvYYnKK5dPbPDLIecr9jq1as1a9YsLVmyRP36Wa8WNduPX32ppTNeVUHOKdlsNhmGIZvNpr2b/6dVs2eq36gxatGhi9lhlkO+l/fDDz+YHYLl5e06puNz98jIK/v+nrfzmE6m/KQ6g1spJKGu2WGWQ76Xdc899+jLL7/Ut99+q7i4uNLtzZs3V/369XX77bdzEhMA4JKw7qlvAFANy3cd1h/f/UrZeSVTPTkMlbnNzivSiHe/0vJdh02KsHJPPvmk1q5dqwEDBpT7oHSutm3b+vz6S1OnTtXRo0d10003lTaznW6//XY1btxYK1as0IYNG0yK0CJ+WCLNuVPKPzMFu+Eoe5ufKX1wR8k4iyHfz4qMjNSqVavK5TrKWn1gtR5d/aiyT5dMY+eQo8xt9ulsPbLqEa0+sNq0GCtDvpd1//33l9vm5+enBx54QJI0f/58FRcXezosS8letUqHRj0sh3PaRoejzK0jO1uHRo1S9qpVJkVYOfL9rGHDhmnu3LllmtlOHTp0kFRyUlNOTo6nQ7Oc1G0ZWvL69pJmtlTS7DjntiC3SEv+9Z1St2WYEt/5kPPl5eXlacSIERo6dKj69u1rdjiW8+NXX2rhyy+o4Mxr3zCMMrcFOTn65B8v6MevvjQtxsqQ76iqvF3HdOzdXSXNbKnc+7uRV6Rj7+5S3i7rNYLJ97NWrFihefPmadSoUWWa2U49e/bUr7/+qmbNmnk+OACAz6OhDcDn5BcWK3nut5Jx9jPSbxln/vP43G+VX2idL8t//fVXTZs2TZL06KOPXnD8sGHD1KxZMwUHuz6d9NatW/XnP/9ZHTp0UN26dRUcHKxWrVpp7NixOnr0aIW/k5ubq1deeUVXX321oqKiFBISorZt2+rxxx/X5s2by41fsWKF+vXrp5iYmNI1IgcPHqwPP/xQubm5Lsc6d+5cSVKvXr3K3efn56ekpCRJ0ocffujyPn1OYX7JldmSLpDxJeMKrbMuLflelnONPVSuoLhAT294WpJkVJLvzu1Pb3haBcUFHovtQsj3syIjI3XixIlKmxsxMTGSpPz8/Cq9hnyNo6BAv/z1iZL/MSp5fz+z/Ze/PiFHAfluxXyXpKuuukrdu3ev8L5NmzZJkv7v//6vxk9JW1RYrJVvf195OeNkSCvf/l5F1PCWzXmnZ555RllZWawfXIGi06e1dMarZz+YVqjkA+3SGa+q6PRpD0Z3fuQ7qsoodOj43D0uvb8fn7tHRqHDI3G5gnwva+bMmZLEjBsAAFPQ0Abgc5ZsT1dWXpErn5WUmVekz3akeyIslyxcuFD5+fkKCgqq9IvPc9WvX1+pqanq2rWry8e48847NWvWLI0ePVqbNm3St99+q6eeekpz585Vx44ddeTIkTLjHQ6Hrr/+ej3zzDMaOXKkvvzyS23btk2PPvqoZs+erS5dyk6BN3PmTPXu3Vv16tXTJ598or179+qdd95RRkZG6VqprsjJydHOnTslSfHx8RWOcW7fsmWLy4/f5+z6pGSacVcyPv+ktGvhJQ/JVeQ7qmrZ/mXKOp1VaTPbyZChrNNZWrZ/mYciuzDy/SybzaaoqCj5+VX8USQ9veTf5aZNm9botfeyly4tmWa8sma2k2HIkZWl7M8/90xgLiDfz8/hcCg9PV3Tpk3TmDFj1L59e82ZM+ei9+cr9n195OyV2RdQkFukfVutc5U2OV/eV199pSlTpui1115T3brWm0LYbHs2rVdBzim5UsMX5JzSni+tMyMV+V6xt956Sz169FBsbKwaNGigTp066dlnn1VGhnXeq8ySuz3j7JXZF2DkFSl3R8VNXDOQ72WtWLFCUskycNOmTVPXrl1Vr149xcTE6IYbbtCSJdabFQ4A4DtY0AKApdw4db0ysqt3hdGJ3Kqdvf7Xj7dr0me7q3XM+uF2pYzuVq19SGev0mnRosUlW3Posssu04QJEzRo0KDSbfHx8WrZsqW6deumv/3tb6VnIEvS2rVrtX79eo0aNUp//OMfS7e3atVKISEhGjZsWJn9T5gwQeHh4Xr77bdLmxVNmzZV586d1aRJE5fjTE1NlePMlKoNGzascEyjRo0kSfv27XN5v5byRg/p1JELjzufvONVG5/yiLTiueodU5JqNZAeXFOtXZDvNcuQxUN0NK96X05lFmRWafzzG5/XlK1TqnVMSaoXUk8f3lC9mSDId9c5vwg735SOVpd6y60qquSKGlcVnzxZpfHpzzyrI69MrtYxJSmgXj3FfTyvWvsg3ys3Y8YMPfrooyoqKlJERISeffZZjRkzRoGBgRe9T7N9NGGLcrOqf/Vofk5hlcavfu8HbVxQvRowNCJItz3ZqVr7kMj53yosLNT999+vvn376o477riYh2tZ7z3xmHJOnqj2fvKcS0m4aNkbU7Xuv7OrdcywqNoa9tKUau1DIt8rM2nSJD311FO66qqrlJubqwULFmjChAmaOXOmPv3009IlJrzJ4anfyJFd/ff34tyqvb+f+HiPsj5LrdYx/cKDFD366mrtQyLfz3Xw4EGdOFHy/jd06FAdPXpUL774olq1aqU9e/boySef1B/+8Ac98cQTmjBhwkU9FwAAnA8NbQCWkpFdoF+zPDslckGRw+PHrMzhwyVrekdFRV2yY6xcubLC7c4ziD/99NMyH5acZ5QfOHCg3O/0799fU6dOLbMtIyNDRUVFOnLkSJlGdK1atfTGG2+obdu2LsWZlZVV+ueQkJAKx4SGhkqSMjOr1uSyjFNHpOxfPHvMonzPH7MS5HvNcjTvqI7kVvMEjioqKC7w+DErQ767ZufOnVq0aJGuvvpqPfLII9Xen1mKjh5V0Zm/c08xCgo8fszKkO+VGzp0qHr37q2MjAwtXbpUzz33nN5//33NmTNHV1xxxUXt02y5WaeVc9LzU94XFzpMOW5FyPmyJk6cqNTUVC1evNjl3/EWOSdP6NRxz6/xW1x42pTjVoR8LysiIkJ//vOf9dRTTykiIqJ0e5cuXdSgQQMlJyfrpptu0p49e0o/v3oLR/ZpFbvhhKUqKzLMOW4FyPey+3HavHmzfvrpp9KLDBISEtS1a1fFx8frpZdeUs+ePdWnTx+X9gsAgKtoaAOwlPrh9mrv40TuaRUUub7mkj3AT7VDg6p1THfELckj6+cWFBRo+vTpmj9/vn788Ufl5OTIOGc607S0tDLjExMTFRISopSUFPXr10+jR49W7969FRgYqNq1a+vhhx8uM75Xr15KSUlR586dNW7cOA0ZMkQNGjSQJA0ePPiSPz6vUqtB9feRd7ykSe2qgGApxA1rdLohdvK9ZqkXUq/a+8gsyKzSuth2f7si7ZHVPq47YiffLywvL0933323oqKi9NFHH8lud8+/rWYIqFf9nCk+eVJGFdbFttnt8nfDl63uiJ18r1xkZKQiIyN1+eWX65prrlGnTp00YMAAJSYmatu2bWratOlF79ssoRHVq6Od8nMKVVyFdVP9A/0UHFa9K9vdFTs5f9b333+vF198UZMnT1ZsbGw1HrE1hUXVdst+8rKzVVzoesPOPzBIIdVchsNdsZPvZdWpU0eTJk2q8L4//elPeumll5SWlqb3339fI0aMqNK+zeYX7p73yOLcQqnoQtPrnyPAJv/Q6r2/uyt28v2sc9faHjx4cGkz26lhw4YaMmSIZs6cqalTp9LQBgC4HQ1tAJbijmm75289pLEfbXN5/MRb2urmq2OqfVx3iI6OliSdrOI0o67Kzc1Vz549tWXLFvXv31/vvPOOmjZtKn9/f0nS5ZdfrsLCstOBxcTE6JNPPtEDDzygpUuXaunSpYqMjFS/fv30wAMPqFevXmXGz5o1S/fdd58WL16sRx55RI899pi6dOmiYcOG6a677nJ5PdRzz27Py8ur9PFIJV8Oe6VqTtktSdo2R1rwoOvjb/yn1H5I9Y/rBuR7zVLdKbslKWVfip5c/6TL48cnjteNLW6s9nHdgXw/v6KiIt12221KTU3V6tWr1bJly4velxVUd8puScpcuFC//OWvLo9v9Pe/KXLAgGof1x3Id9fdeOON6tq1qzZt2qRXX31VU6ZMcct+PckdU3ZL0u5N6Vox+3uXx/9+WLxad6l4WRpPI+dLOBwO3X///erUqZNGjhzpvifAQtwxZbck7Vq7Sp9Nd32ZiD4PjlbCtb93y7Gri3x3XXBwsNq0aaM1a9Zow4YNXtfQdseU3ZKUs/WwTny0x+XxtW9ppbCr3XDytxuQ72edO3NeQkJChWOcU+tv3rzZ5ecAAABX+ZkdAAC4W/+2jRQREqALnUdrkxQZEqB+Vza6wEjPSUxMlFSyJnRRUZHb9z9jxgxt2bJFbdq00aJFi9SnTx+1bt1aLVu2PG/zoE+fPkpNTVVKSoqGDh0qh8OhOXPm6LrrrtPgwYNVXFxcOrZ+/fpKSUnR999/r6eeekotW7bUxo0bNWrUKLVp00bbt293Kda4uLjSs6F//fXXCsekp6dLKlnPqsZKGCgFR0muZHxwlJRw0yUPyVXkO6qqT7M+igiKkO0C+W6TTRFBEerTzDpXBZDvlSssLNSdd96pzZs3a/Xq1Wrfvv1F7cfXhPftK7+ICOlCVwbZbPKLiFD49dd7JjAXkO9V065dO0nSxo0b3bZPb9SiQwPZQ107594eGqAW/1f/EkfkOnK+xMGDB7Vx40Zt3rxZ4eHhqlWrVpkfpzZt2pRuW7duXfWeHC/Vqms32cNqyZUa3h5WS626/M4TYbmEfK8a5xTPx48fd9s+vU1o2/qyhbj2/m4LCVDoldWfLcZdyPezzr0iu06dimd9czbHnWttAwDgTjS0Afic4EB/TR58lWSr/OsB25n/vDL4KgUH+nsuuAsYMGCAQkJCdPr0aZe+3Nm7d69mz56t9evXu7T/NWtKrghOSkoqPePXVf7+/rrhhhv03nvv6ciRI5o5c6Zq1aqlefPm6c033yw3Pj4+Xi+88IJ2796tjRs3qnPnzjp48KAeeughl44XFhamNm3aSJJ++OGHCsc4t3fq5J4rg7xSYLB08+tn/ue8GV8yLjDYE1G5hHxHVdn97Xqx24uSVGlT27n9xW4vyu5vnSmryfeK5efna9CgQdqwYYPWrFlDM/scfna7Gk+cWPI/lTW1z2xvPHGi/Cw0RTv5Xtbrr7+ugwcPVnp/WFiYJOn0aWusF2qWgEB/9Rqe4NI5er2GJyiAGt4lnsz5yy67THv37tXOnTv17bfflvtxWrJkSem2jh07Vunx+IqAoCD1GzXm7AfTCpV8oO03aowCgtwzfbI7kO9lrVq1qsK1jJ2cJ2dfyjWYrc4W6Kc6g1u59P5eZ3Ar2QKt83U1+X5W48aNS6cqd64t/lvO7bVru2eJAwAAzmWdCgEA3Oi6hGjNvKujIs6cBex35oOT8zYiJED/vqujrkuINinCikVHR2vMmDGSpNdee+2C40ePHq1777230g8Tv+VwVL4u4W/XZXJav369nnvuuTLbgoODNWLECP3lL3+RJH3zzTel9w0fPlyHDh0qM75r1676+OOPy429EOd6TitXrix3n8Ph0KpVq8qMq7Fa95Nu/68UfGbqdZtf2dvgSOmOD0rGWQj5jovRM7anXvv9awoPKjn73+9MOeu8DQ8K1z+T/qmesT3NCrFC5Ht5ubm5uuGGG7R9+3atW7dO8fHxZe7v27evvvvuuyrt09eEJ/1eMdOnyc85FaSfX5lbv/BwxUyfrvAka0xD60S+lzVy5Eh99tlnld6/c+dOSfL6qfbdIa5dPfV/qO3ZK7WdzY8zt/bQAPUf2U5x7axz9Z5EzjsFBASUXlVY0Y9T06ZNS7edO4VtTdOiQxfd9PjTsp85qcU5O5Xz1h4WpoHjnlaLDl1Mi7Ei5HtZ9913X4XNQ6lkbeRdu3ZJOnulb00VklBXde9KOHul9m/e320hAap7V4JCEuqaEl9lyPeyBg4cKEnatq3iZf6cNc0111zj8j4BAHAVDW0APqt3QrS+fPI6vTqkvfokNFTX5nXUJ6GhXh3SXl8+eZ3lmtlOzz//vHr37q2FCxdq+vTplY6bPn26Pv/8c/Xt21e33HKLS/vu3LmzJGn58uXlpsuaO3duhb/z448/6pVXXqlwijTnWk5NmjQp3fb2229X+KVtRWMvZPTo0apbt64WLlyo1NTUMvfNmTNHv/zyi5KSknTttde6vE+fFd9fSt4t3TxTiv+D1Kxbye3NM0u2W6yZ7US+42L8vsnvteq2VZrQbYKSmiSpY3RHJTVJ0oRuE7TqtlWWa2Y7ke9nZWVl6frrr9eBAwe0bt06NW/evNyYzz//vEZPz+kUnpSky9etVeP/N0nhvXoptHNnhffqpcb/b5IuX7fWcs1sJ/K9rP/85z8VTlX6v//9T8uXL5ck3XPPPVXap6+Ka19fwyf9Ttfdm6DmV9VX41ZRan5VfV13b4KGT/qd5ZrZTuQ8LkbLjl300OvvqN/DyWrZKVExCW3VslOi+j2crIdef8dyzWwn8r2sDz/8UAUFBeW2v/7668rIyFC9evU0dOjQKu3TF4Uk1FXjJ7uo9pDWCkmoK3vzSIUk1FXtIa3V+MkulmtmO5HvZz3++OMKCgrSwoULy81MkJGRof/+97+y2WwaO3asy/sEAMBlBgB4SF5enrFr1y4jLy/P7FAsLzc31xg+fLghybj55puNlJQU48cffzR2795tfPrpp8agQYMMm81m9O/f38jKyirze+np6UZycrIhyUhOTjbS09ON7OxswzAM4+jRo0ZsbKwhyRgwYICxceNG44cffjAmT55sREVFGZIMSUZ6erpx7NgxwzAM46233jIkGV26dDEWL15s7Nu3z9i1a5cxdepUIzQ01GjRooVx/Pjx0hgkGREREcZrr71mfPfdd0ZqaqqxZMkSo2PHjoa/v78xf/78Kj0XK1euNIKDg43WrVsbn3/+ufHTTz8Zb775plGrVi2jWbNmRlpamhuecZiJfD/r5MmTRnp6upGenm4kJiYakowpU6aUbisoKHDDMw4zke+GkZWVZXTq1MmQZDRv3tzo0KFDhT+SjNWrV7vvyYfHke8l/P39DUlGt27djEWLFhl79uwxtm7davzjH/8watWqZUgyxo4d66ZnHWYi58s7t7Zxxrl58+YyscI7ke8lWrRoYUgyEhMTS5+DHTt2GM8995wRGBhoREVFGWvXrnXTsw6zkO9nvfPOO4afn59xxRVXGJ999pnx888/GytWrDCuuuoqw2azGS+//LLL++J7QgBAVdDQBuAxFKpVt3nzZmPEiBHG5ZdfboSGhhpBQUFGkyZNjFtvvdVISUkpN975wea3P+PHjy8dk5aWZgwfPtyIjo42AgICjAYNGhiDBg0ytm7dWuZ3evToYRhGyQewuXPnGrfddpvRpEkTIygoyIiKijLat29v/P3vfzdOnDhRJoavvvrKGDdunNG+fXsjLCzMsNvtRosWLYw777zT2Lp160U9D99//71xxx13GNHR0UZQUJARFxdnjB07ttyx4d3Id8O45557KnxMzh+ae76jJuf7N998c948J+d9T03Od8MwjIMHDxoTJ040kpKSjIYNGxqBgYGG3W43mjVrZtx+++3GqlWrqvqUwuJqes6f63y1jTNWeLeanu9Hjx41pk6davTr189o3LixERgYaISGhhpXXnmlkZycbBw6dKiqTyksrKbnu9OWLVuMW2+9tVzM69atq9J++J4QAFAVNsMwDAGAB+Tn5ys1NVVxcXEKDg42OxwAAAAAAAAAJuB7QgBAVbCGNgAAAAAAAAAAAADAkmhoAwAAAAAAAAAAAAAsiYY2AAAAAAAAAAAAAMCSaGgDAAAAAAAAAAAAACyJhjYAAAAAAAAAAAAAwJJoaAMAAAAAAAAAAAAALImGNgAAAAAAAAAAAADAkmhoAwAAAAAAAAAAAAAsiYY2AI8zDMPsEAAAAAAAAACYhO8HAQBVQUMbgMf4+/tLkgoLC02OBAAAAAAAAIBZCgoKJEkBAQEmRwIA8AY0tAF4TGBgoOx2uzIzMzkLEwAAAAAAAKiBiouLdfz4cYWFhdHQBgC4xGbQVQLgQVlZWUpLS1OtWrUUGRmpwMBA2Ww2s8MCAAAAAAAAcIkYhqHi4mLl5eUpMzNTDodDsbGxCgkJMTs0AIAXoKENwOOysrJ09OjR0qmFAAAAAAAAAPg+f39/hYaGqkGDBgoKCjI7HACAl6ChDcA0hYWFKi4uNjsMAAAAAAAAAJeYn58fszUCAC4KDW0AAAAAAAAAAAAAgCX5mR0AAAAAAAAAAAAAAAAVoaENAAAAAAAAAAAAALAkGtoAAAAAAAAAAAAAAEuioQ0AAAAAAAAAAAAAsCQa2gAAAAAAAAAAAAAAS6KhDQAAAAAAAAAAAACwJBraAAAAAAAAAAAAAABL+v9cZr9ityBQowAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_97245/14240756.py:24: UserWarning: The figure layout has changed to tight\n", + " f.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7QAAAG+CAYAAAATGjtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT1/sH8E/CCHsvURkuBFHce+Kuddtla7V1W6211latrdpvW0f9qR3WXbe2de+9t7hRcbMRkL0DSe7vD8qVCIEAYfp5v16W5J5zz32Se5N7e5+ccySCIAggIiIiIiIiIiIiIiIiIiKqYKTlHQAREREREREREREREREREVF+mNAmIiIiIiIiIiIiIiIiIqIKiQltIiIiIiIiIiIiIiIiIiKqkJjQJiIiIiIiIiIiIiIiIiKiCokJbSIiIiIiIiIiIiIiIiIiqpCY0CYiIiIiIiIiIiIiIiIiogqJCW0iIiIiIiIiIiIiIiIiIqqQmNAmIiIiIiIiIiIiIiIiIqIKiQltIiIiIiIiIiIiIiIiIiKqkJjQJiIiIqri3n//fUgkEkgkEri5uZV3OOVKEASMGjUKFhYWGDNmjNbr3bhxA59++inq1asHU1NTmJiYwN3dHd26dcOCBQsQFBRUekFXUQkJCeJxmfvfm36MUuXA47fqOXPmTL77dMSIEeUdWpWVkJCAH3/8Ea1bt4a1tTUMDQ3h5OSEpk2b4vPPP8fx48e1amfPnj3cd2+wXr165bv/eW1Wfo4cOaK2L86cOVPeIREREVEVoF/eARARERFR6Tl8+DD++eef8g6jwjh58iTWrl0LAFi9ejXee+89dO3atcB1/vjjD3zxxRdQKpWwsLBA27ZtYWNjA39/f5w8eRInT55Eeno65syZUwavoOowNDTE8OHDAQApKSnYuXNnOUdEpD0ev1WPk5OTuE+fPn2KixcvlnNEVduTJ0/g6+uLsLAwAEDz5s1Rq1YtxMbG4uzZs7h16xb27dunVVLSxcWF++4N1r17dzg5OQEAduzYgdTU1HKO6M2WlpaG8ePHl3cYREREVAUxoU1ERERURaWlpWHChAnlHUaFolKp1J4rlcoC69+7dw+TJ0+GSqWCl5cXTp48Kd40BYCpU6di8eLFpRJrVWdiYoL169cDAIKCgpgQpEqFx2/VU79+fXGfrl+/nknRUvbRRx+Jyey9e/eiX79+Ytn169fRtm1brdtq2rQp990bbOrUqeLjM2fOMKFdzubMmcPe8URERFQqmNAmIiIiqqJmz56NoKAgyGQyyOXy8g6nQujevTuGDx+OnTt3YtCgQejevXuB9Tdu3CgmwceNG6eWzAaAzz77DI8ePUK9evVKLWYiIqKq5MGDB7h27RqA7GR07mQ2kN1be9y4cUxMElUyd+7cwZIlS/j/HkRERFQqOIc2ERERURV0584dLF26FDKZTK3nyptOIpFg/fr1SE5OxoYNGyCRSAqs/+DBA/FxfknrWrVq4cCBAxg6dKjOYyUiIqqKCju3AsBvv/0mThFCRBWfSqXCmDFjoFAoMHPmzPIOh4iIiKogJrSJiIiIqpjXbyjVrVu3vEOqtHL3DpPJZOUYCRERUdXAcytR1fPnn3/i2rVr8PDwwPTp08s7HCIiIqqCmNAmIiIiqmKWLVvGG0o6IghCeYdARERUpfDcSlS1hIeH49tvvwUArFy5EoaGhuUcEREREVVFTGgTERERVSFhYWFldkPpiy++gEQiyfMvKCgoT90RI0bkWzc/jRs3LrDdPXv2oHfv3nB2doZMJkP16tXx/vvv48aNGxpjXb9+fb5tzpkzp8BYz549Ky7v0qWLVq8VyL6xN2fOHLRp0waOjo4wNDSEo6Mj2rZti7lz5yIiIkJjrHv27Mk31hEjRgAAYmNjMW/ePDRv3hx2dnZ5Xk9h60dERGDatGmoV68ejIyMYGtri969e+PIkSN5Yjl+/Dh69uwJJycnmJiYwNPTEzNmzEBCQoLG+HVFLpfj999/R+vWrWFjYwNjY2PUq1cPkydPxosXL/JdJ7/XXdDxpum4dHNz09heTllSUhLmzZsn7uOcY3HgwIE4ePBgkV7rvXv38OWXX6JRo0awsbGBTCaDs7MzfH19sXDhQsTHx2tcd8CAAfnGeebMGQDAtWvXMGrUKNStWxempqaFHr8xMTH47rvv4OPjAwsLC5iamqJWrVr4+OOPcfr0aQCFf55KegznFhcXhw0bNmDYsGHw9vaGpaUlDAwMYGdnh9atW2P69OkIDg4u8P3VtJ9z3qM9e/ZgyJAhcHV1hbGxMaytrdGyZUssWLCg2HP4Fuf4LS2avqvXr18PALh16xZGjBgBd3d38Tuhe/fu2L59u8Y2ly5dWuB7mtucOXO0PlcUdjyfPn0a/fr1g7OzMwwNDeHu7o4JEyYgLCxMrZ20tDT88ssvaNy4MczMzGBtbY3OnTvj77//Lu7biJcvX+J///sfmjZtCjs7OxgbG6N27doYO3Ys/P39i9TW4cOHMXz4cNSpUwdmZmYwNTWFm5sbBg8ejA0bNkChUGhc18rKqsDvt507d6Jfv35wcXGBoaFhnu+ukijJue3MmTNiLJ988om4PGf6j8LOzSXx4sULzJgxA15eXjAzM4OFhQWaN2+OX375BRkZGQXGmt+/zp0751nHzc1N4/eepvZyvhOfPHmCL7/8Et7e3rC2tq4yx1ZmZibWrFmDvn37ombNmjAyMoKVlRXq16+P0aNH4+TJk0V6bQcPHsSgQYNQvXp18TzZpUsXrF69GllZWUVqK0dQUBC+/PJLeHp6wtTUFBYWFvDw8MC4ceNw8+ZNAJq/w3K+Q/NTkvN6bs+ePcPXX3+Nli1bwtraGgYGBrC0tISPjw8++eQTbN26FYmJicV67bo0adIkJCUlYcSIEejUqVN5h0NERERVlH55B0BEREREujNp0iQkJyeXyQ2lli1bYvjw4QCAHTt2FJj4ad++vfh4w4YNBbbbr18/NG7cOE+7KpUKn376KbZs2YIOHTqgc+fOePbsGfz8/PDPP/9g586d2LZtG4YMGZKnzTp16oix3r59G3fu3NEq1iNHjiAqKgoAxMRubmZmZnnW/+WXXzB79mykp6fDwMAA7dq1g5OTEyIjI3Hx4kVcvnwZCxcuxA8//JDv/OYuLi5irE+fPsXFixfFshs3bmDAgAFISUlB+/bt4ebmhsuXL6slEQpa/+rVq+jXrx8cHBzQrFkzuLm54ezZszhy5AiOHDmCxYsXY8qUKQCAWbNm4Y8//kDHjh3RqVMnXLt2DQ8fPsT8+fOxa9cuXLhwAfb29hrfx5KIiopC37598fTpU3Ts2BGurq64desWnjx5gidPnuCff/7B2bNn4eHhobZezuveunWreHO7a9euqFGjRr7bydnXaWlp2L59O8zNzTFo0CDY2dmptZeSkoKdO3eK6926dQv9+vVDZGQk2rRpg65duyIqKgrnz5/Hnj17sGfPHrz77rvYuHFjgcPpKhQKfPnll1i2bBlUKhUsLS3Rvn17mJub4/nz5zh79ixOnz6Nn3/+GX/++We+c7X7+vrCysoKgPrxCgDz5s3DrFmz4OHhgaZNm8Ld3R1nzpzReOP/2LFjGDp0KGJjYwEA7u7uaNq0KVQqFU6fPo1NmzZh/PjxaNGihbhO7dq1xfcx53Nb0mM4x6pVqzBp0iRkZmYCyE4YtW/fHqampggKCsKdO3dw9epVLF68GAsXLsQXX3yR7+vS9JnOzMzEwIEDsWfPHtStWxctW7ZEVlYWrl27Bj8/P/j5+WH58uXYu3cvfHx88m07P8U9fktL7u/qCxcu4NmzZ2LZqlWrMHHiRPj4+KB169aIiYnB+fPnceLECZw4cQKTJ0/G0qVL87Tp5eUltvn6cfe6xo0ba32uKOh4nj17NubPny9+J92/fx/+/v5Yvnw5duzYgQsXLqBevXqIjY2Fr68vMjMz4ePjA2dnZ5w9e1b8d/XqVSxZskTr9w8Arly5gkGDBonHrYeHB548eYIbN25g1apV+Ouvv/Dzzz9j2rRpBbYTHR2NDz74AKdOnQKQ/Vnp1asXJBIJ7t69i127dmHXrl348ccfsWPHjnyPu6FDhyItLQ2A+vk0IyMDH374Ifbs2YPWrVujbdu2eP78Ofz8/Ir0WjUp6bnNyckp3++F3N8hOXK+S3ThypUr6N+/P8zMzNCsWTN4eHjgwoULuHHjBm7cuIHdu3fjxIkTMDExyRNrXFwc9u/fLy7/8MMPoa+vj/r16+fZzpAhQxATE4Pnz5/j/PnzqFu3Ltq2bYv27dtrfO0AsHHjRowbNw76+vpo3749GjZsWCWOratXr2Lo0KF4/vw5gOx92r59e6SmpuLKlStYs2YN1qxZg549e2Lbtm2wtrbW2JZcLsdHH32EHTt2AAAMDAzQvn17ODo6Ijw8HBMmTMDatWuxd+/eAt+j123atAnjxo0TX7OXlxe8vb2RkZGBnTt3Ys2aNfjhhx/U1vHx8RGPzzp16uRpUxfn9Rx//PEHpk6diszMTJiYmKBly5ZwdHREbGws/P39sX79eqxfvx7Gxsb48ccf8eWXXxbp9evKvn37sHv3btja2mLRokXlEgMRERG9IQQiIiIiqhL27NkjABBsbW2Fly9fisvXrVsnABAACK6urqWybVdXV3EbgYGBBdbNqafNpWjudkeOHCk0adJECA4OVqtz4MABQV9fXwAgWFlZCTExMQW2OXv2bLHN2bNnF1i3U6dOYt3Tp08XGu/EiRPF+l27dhUiIiLUyiMiIoSuXbuKdaZMmVJge7n3XZ8+fYTq1asLEydOFNLT08U6KSkpQosWLfJ9Pa+vX6NGDWHTpk1qdQICAgQ7OzsBgCCRSIQrV64Ia9euFfr27SskJiaK9RQKhTBu3DixvREjRhT6fmgrMDBQbNfFxUXo3r278NFHHwmpqaliHZVKJcydO1es1759e43tDRkyRKz3+eefF7r9tWvXCgCECRMmFBqftbW1UK1aNaFVq1Z5jvWwsDChXbt2Yt0BAwZo3KZSqRT69Okj1h0zZoza6xUEQbh//77g5eUl7pu//vqrwNeR+3gdO3asYGFhIRw8eFCtzuXLlwU9Pb08n9Xz588LMplMACDo6+sLa9asEVQqlViuUqmEP//8U9DT0xNjAiAMHz68wJhKcgx/8803AgDB2NhY2LFjh1o8gpD9eRoxYoTY/sqVKwuM5fX3qEGDBoKJiYmwY8cOtToKhUL43//+J9aztbUVnj59qrFNXR+/pWn48OFiDJ988olga2srnD17Vq3Os2fPhBo1aoj1Tpw4UWCbRfmeLMq5Ine7I0eOFOrXry88f/5crc6iRYvEOl5eXoJKpRI6d+4srF27Vq1eSEiIUKtWLa3jzH3c9ujRQ3B0dBQ+/fRTISUlRa3epUuXhGrVqol1lyxZorHNFy9eCO7u7uJnbMWKFXmO6b179woWFhYCAMHc3Fy4c+dOgXHmPp+OGTNGaNCggfDw4UO1OgsXLizx+b80z22FfYcUVe6233rrLaFatWrCb7/9plYnJSVF7ft31qxZ+baVlZWltn937dpV6PaHDRsmABD+/fffQuPz8PAQ9PX1q9yxderUKcHExEQAIDg6Ogrnz59XK8/MzFT7jm3QoEGe159DpVIJb7/9tli3Xbt2QlhYmFqdoKAgoVWrVkLnzp3VvrsK+o75559/BIlEIr4f+/btyxPjrFmzxO8Wba4bdXle379/v9jOO++8I8THx6uVy+VyYfHixeL5XNefI20lJycLNWvWFAAI69atUyvLfQxpcw1NREREVBgmtImIiIiqgKSkJPEm3us3lKpKQtvY2FgICQnJt97QoUPFen/88UeBbZZWQnvjxo1qN6lfv4mZIyUlRfDw8BDrbt26VWObufddQQnS9evX5/t6Xl9/2rRp+a6/YMECsU7//v2Fpk2b5ht/amqqYGlpKQAQZDKZkJCQoDH2osidEAQg+Pj4CFlZWXnqKZVKwc3NTax37969fNs7duyYWMfa2loteZqfVq1aCQA03uB/PT5HR0chLi4u37pxcXFqSYjXE2s55syZI9bp27evxthCQkIEc3NzAYBgYmIiPHv2TGPd3McrAGH37t351uvcubPaZzUtLU2oXbu2uN78+fM1buOnn35S20ZREtpFPYZzEtqvJ6Ne16tXLwGAYGFhkeem/+tef4+2bNmisW7uH3B06NBBYz1dH7+lKXdCG4Cwffv2fOutWrVKrDNkyJAC2yyLhLZUKhX8/f3zrZc72TRq1Cjhyy+/zLfe5s2bxXrvvfdegdt+/bjt2bNnngRhjkuXLomJMZlMJjx48CBPHZVKJfj6+ortLVq0SOO2c36clpPoUygUGuvmjtHMzEwIDQ3NUycrK0swMDAo9vm/tM9tpZnQBiB89tln+dZ7/vy52ne6UqnMt97MmTPFer169Spw23FxcYKRkZHg6OgoZGZmahVfVTu2oqKiBEdHRwGAoKenJ1y9elXjNr744gtxG2PHjs23zsqVK8U61apVK/Dc6+DgoBa3pu+YyMhIwdraWqz3999/a4xx9OjRam0WdN2oy/N6hw4dxPcwOTlZY1s5x2dBn6MtW7YI1atXF2xtbYX/+7//01ivOCZPniwAEDp37pynLPf7xoQ2ERER6QIT2kRERERVwOeffy4AEDp16pSnrKoktAvqEbxhwwax3vvvv19gm6WR0JbL5YKzs7NWSTJBUE+s1KhRQ+sb35oSrhEREcKmTZvylOdeXyKRCOHh4fmuf+vWLbXt/Pjjjxpjz91T6ujRowW+Tm29nhBcv369xrojR44U661YsSLfOiqVSq035oYNGzS2d+fOHQGA0KpVK63jW7BgQYGv55dffhHrurm55UmUREdHC0ZGRlonNidNmiTWnThxosZ6uY/XJk2aaKx34cIFYdOmTWKPuNzJSzs7uwJ/AJCeni5YWVlpnYwqyTF8/PhxYfbs2RoTGDm2bNkitr9mzZoC6+Z+jzw9PQus++LFC7H3GwDh5MmT+dbT9fFbmnIntN3d3TXWCw4OFus5OTkV2GZZJLR79OihsV5OQiXnX36JN0EQhJiYGLXEWEFeP24LSsoJgqDWK3PYsGF5yvft26e2bU3f+TkaNmwo1n99BIHccsdYUK/onTt3avyBS0HK4txW2gntgo6z3D/keb33cY7nz5+LSWWpVFpge0uXLhUACN98843W8VW1Y+vLL78U1yvsxzCRkZHiCDsGBgbCixcv1MoVCoXY+xeA8MsvvxTY3vz587Xa97l/pODt7V1gm+Hh4YJUKi30ulHX53UzMzMByP5RXkFu3LhR4OcoLS1NMDQ0VHtfnjx5UmCb2vLz8xP09PQEQ0PDfD8/ubfJhDYRERHpghREREREVKldv34df/zxBwwNDbFixYryDqfUdO/eXWNZ7nkMnz59WhbhqNmzZ484B7ChoSH69etXYP1+/frB0NAQABAWFqbVvI8uLi5o1KhRvmXVqlXDRx99pLEcADw8PODs7Jxvmbu7u9rzrl27amynVq1a4uMnT54UFHKxFbSva9euLT7WtK8lEglGjhwpPl+1apXG9lauXAkAGDt2rNbxFbZ/Bw4cKD4OCgrCmTNn1MrXrVuHjIwMAICnpycaNGhQYHu598e2bdu0irFv374ay9q1a4ePPvoIpqamANTnSu3duzeMjIw0rmtkZISePXtqFcPrinoMd+vWDXPmzClwbtWcdXNcvnxZ63gK249OTk5o06aN+Hz9+vVatVvS47esdOvWTWNZzZo1xe+oyMjIAue9Lgu+vr4ay3J/f3l4eKBGjRr51rO1tYWFhQUA4MWLF1q/JicnJ7Rs2bLAOrk/8//++684J2+O5cuXi48HDBgAAwODAtvT9Wd+0KBBGDBggFbt5FYW57bSVLduXbi5uWks1+bz6O7uLn5WVCoV1qxZo7G91atXQyKRYPTo0VrFV9WOLYVCofb+vPPOOwW26+joCG9vbwBAVlaWOEd2jtOnTyM0NFRtWwXp379/geU5cp/zcr+/+XF2dkaLFi0KbVPX5/Wc83B8fDyOHz+usZ1GjRohMDCwwLmrJRJJgbEUh1KpxJgxY6BUKjF9+nR4eHjofBtEREREr2NCm4iIiKgSy7mhpFKp8M0336B+/frlHVKpqVevnsay3AmvxMTEsghHzcmTJ8XHHh4eMDMzK7C+ubm52uvJvb4mhd0cLUzupH9+8eRWt25djXVzEkJA6bzXpqamGhPvAGBlZaXV9j/99FPo6+sDAC5evIj79+/nqZOWloYtW7bA0tIS7733nlbxyWSyAo9FIDtJkvt9unDhglr5qVOnxMetWrUqdJu5f0QQGxur1Q8JtD1e5HI5/Pz8xOdNmzYtdJ2cBERRFfcYVqlUOHfuHP7v//4PU6ZMwciRIzFixAjx34IFC8S6kZGRWrfbsGHDQuvkfj9e34/50dXxWxYKOo4lEkmFilXb76+CvruA4n1/aXO85z5O5HI5rl+/Lj5XKBQ4f/68+Lyon3ltf6RR0nNEfsri3FaaCvuu1vYYHzNmjPj4r7/+gkKhyFMn5zzTrVs3tUR5QarasXX9+nUkJSXpLJ7c37mWlpZqdfNTt25d8QcVmgQFBSE8PFx8rqtznq7P623bthUfDxo0CD/99BNiYmLytKOvrw83NzfY2dnlux1jY2P89ddfcHZ2ho2NDRYuXFjg96m2fv31V9y6dQt169bFzJkzS9weERERkTb0yzsAIiIiIiq+pUuXijeUvv322xK3t3v3bsyYMaPAOg8fPizxdorD0tJSY1nuHqWZmZllEY6a3MnS13s7a+Lu7o579+7lWV+TwnqpFqag908qVf+da0F19fT0xMel8V4XtG1A+33t5OSEvn37Yvfu3QCye2n/+uuvanX+/vtvJCYmYuLEiTAxMdEqPmtr6zzvV35cXV3h7+8PAHj06JFaWc5+B4AbN25gxIgRBbaVnJys9vz58+eFJu60PV6CgoLU3kdXV9dC17G1tdWq7eLGlNumTZswc+ZMhIWFaVW/KD2JNSUAcsv9fgQGBiIrK6vAHpC6On7LQlWJNffnsbDXVJzvr6IeJ0D2Z75jx44Asj9jKSkpYtmWLVtw+vTpAtvLndyKiIiAXC6HTCYrcJ2SniPyUxbnttKkq2O8f//+cHR0RFRUFF68eIH9+/fn6dlbnNE+qtqxlfvcBgDfffddoefL27dvi4+fP3+uVpb73KnNuUlPTw9WVlaIjo7WWOf187Guznm6Pq8vXLgQp06dQkpKClJSUjBr1izMmTMHvr6+6NevH95++22tYgeAoUOHYujQoVrV1UZwcDC+//57ANkjBBR2/BARERHpChPaRERERJVUcHAwZs+eDUB3N5QSExPz3OyrKApKIpXGcIpFERsbKz4urAdbfvXy63XzusKGES1MTm9lXdfVtcJeZ1H29ZgxY8SE9qZNm7BgwQK1BEbOUOS5e98VRtvPWe79GxcXp1aW+3jx9/cXE9/aSkhIKLSOtsdLfHy82nNtjl9jY2Ot2i5uTDlmzJiB+fPnA8ju+fndd99hwIABcHV1VeuFd+bMGXTp0gUAIAiC1u1rsy9ffz/i4uLg6Oiosb4uj9/SVpli1fY7qTS+u4p7nOTI/XkHUODwwZokJCQUeNwBJT9H5Kcszm2lSVfHuIGBgdpoEKtWrVJLaMfHx2P79u1wdHQsdFj23KrasfV6PJs2bSpyLLnlPj9pe/wVdn4qrXOers/rHh4euHr1KiZNmiT2/lYoFDh27BiOHTuGiRMnolmzZhg9ejRGjBhRpknlzz77DKmpqfjoo48KnKKGiIiISNc45DgRERFRJcUbSkQF69Gjhzh/anx8PP7991+x7O7du7h69SratGmj1dDTpeXbb7+FIAhF+qft8OiV2fnz58VktkQiweHDhzFt2jSthpQlqsiOHz9e5M98YQlHKn2jR48WE+DHjh1DUFCQWLZx40ZkZGTg008/LZUfFmiroh1bWVlZRYolICCg1GIpS7o6r3t5eeHkyZO4c+cOpk+fnmco+xs3bmDcuHFo2LBhnt7xpWXHjh04ePAgbGxssHjx4jLZJhEREVEOJrSJiIiIKqmDBw8CADZv3gyJRKLx3yeffCKuExwcnKd8zpw5YvmIESMKvelWEuU9bG1pyT0cZe7hPwuSu542w45S0UmlUowcOVJ8ntMjGyje8LBA9hym2si9f21sbNTKch8vrw87WtZeH0pWm+M3PT29tMIRrV69WnzcpUsXtGvXTufb0GZfvv5+vL4vqWgq4zmgpMfJ68MVl/dnvih4bnuldu3a8PX1BQCoVCqsWbNGLFu9ejUkEglGjx5dpDar2rGl63hyn5+0Pf4KOz+V1jmvNM/rjRo1wrx58/D06VPcvHkTX331Fezt7cXyJ0+eoEePHlqN3lJSBw4cAJA9UoCDg0OB//+RW5cuXdTKcn5sSERERFQUHHKciIiIqJIaPny4VvWePn2KixcvAgBMTU0xZMgQtfLGjRuXOJbcPZIKSliUxc228uDt7S2+x4GBgVqtk3uuSG9v71KJi4BPP/0Uc+fOhUKhwMWLF3H//n24u7tjy5YtsLKywrvvvluk9uLj46FSqQqdFzQ4OFh8XL9+fbUyb29vhIeHA9D+eCkt7u7ukMlkYmIld69DTV4fVrY03L17V3zctGnTUtmGNq8j9/tRq1atcu19WVFp+/0PZE9rUdkU9TgB1D/zbm5uMDMzExNn5f2ZLwqe29SNGTMGJ0+eBAD89ddfmDNnDq5evYr79++jZ8+eWs8znqOqHVuv7+/AwMASze3u6ekpPs59TtVEpVIVep2Zu00g+/1t0qRJgetos5/K6rzepEkTNGnSBD/88APmzp0rDoP/4sULbNq0CZMmTSq1bQNA+/btta67YcMG8XHPnj3h5OQkPq9KP3YhIiKissOENhEREVEltX79eq3r5dyQtrOz03q9orCwsBAfvz4/YW4VdX7ukurWrZvY4/fRo0dISUkpcF7G5ORkPH78WHye0+uLdM/Z2Rl9+vTB3r17AWT30vbx8UFiYiImTZpU5Pmg5XI5njx5Ag8PD411nj17hqSkJPH56zeAu3XrhqNHjwIA/Pz8IAhCoXO57tmzB7NmzYJMJsOlS5d0Nl+moaEhWrVqhXPnzgEAbt26Veg6ZTG0aUZGhvi4sCSytj33XqfNHKe534+i3Mh/k2j7/R8aGoq0tLSyCEmninqcGBkZoXnz5uJzfX19dOrUSRxV5erVq1pt99tvv8XevXvRvHnzUjlva4PnNnUDBgyAvb09Xr58iRcvXmD//v3YvXs3gOxkd1FVtWOrefPmsLS0FH+4cvXqVa1+kNSjRw9ERERg/Pjx+Oyzz8TlHTp0EB8nJibi+fPnqFWrlsZ2Hj9+XOiPalxcXODi4oKQkBAA2e9v7vnQ86PNOU/X5/UVK1agWrVq6N+/f77rGhsbY/78+fDz8xPn2L5//36hcZbUqFGjMGrUKK3q5k5oT58+HZ07dy6lqIiIiOhNwSHHiYiIiKjE6tSpIz5+9uyZxno5N/uqmv79+6NGjRoAsnso7tu3r8D6e/fuRVZWFgCgZs2aGm9Ykm7kTjRs2rQJy5YtA1D04cZzFLZ/cxIcQHYP6E6dOqmVjxgxAiYmJgCAyMhI8WZ0QVasWIH79++jRo0aOktm58g92sPhw4fVksmvk8vlZfI5zvk8AdnDqRZEmyR8fvbv319geWRkJC5fviw+zz19A71S1b//IyMj4efnV2Cd3J/59957L88PZXIn6Q4dOlRoT/XU1FTxM+/j41OMqHWD5zZ1hoaGGDFihPh80aJF2LFjB6pVq4Z+/foVub2qdmzp6+urnVe3bt1a6DpXrlzB8ePHcf/+fbRt21atrFOnTmpDU+/atavAtgo7PnPkPuflfn/z8+LFi0L3EaD78/r48ePx9ddfF9pG7h84FPRjEyIiIqKqgAltIiIiIiqxjh07io+PHTuWb52EhASxp1dVY2BgIA77CAA//PCDxp6Iqamp+N///ic+X7BgAYcxLmW9evWCi4sLgOwepDdv3kS7du3QoEGDYrW3ePFijcOaxsfHY/HixeLz2bNn5xme3M7ODt9++634/Ouvvy4wibx3714cPXoUEokEM2bMKFbMBRk6dCjq1asHAIiJicGvv/6qse6SJUvKZOqA3r17i48PHjwoDuX6uqSkJLW50Yvi/v37+OeffzSWz507F0qlEgDQuXPnMu9d1qlTJ3G+0b///rtMt10U2nz/Z2VlqX0uKpvZs2dDEIR8y65cuYJDhw4BAGQyWb6f0d69e6NHjx4AskcUKOxzPGvWLMTFxcHe3r7I8zLrEs9teY0ePVrseXvp0iWkp6fj008/hb5+8QZArGrH1rRp0+Ds7AwAuHDhAv7991+NdTMzM/HFF18AyD5Pvz70t1Qqxffffy8+X7x4scZRIBISErBkyRKtYpw0aZI45PW9e/cKPQ+oVKpC2yyN8/rjx49x586dArebu5d/7h7tuW3duhU1atSAnZ1dged3IiIiooqOCW0iIiIiKrH3338flpaWALJvnL3eEy86Ohr9+/fHoEGDyiO8MjF06FDxxuyjR4/Qr18/vHjxQq1OZGQk+vfvLw7JOmXKFHzwwQdlHeobRyqVYuTIkWrLits7u0aNGvD09MRbb72VZ07PiIgItf0+ePBgjXPdz5gxQ/w83Lx5E2+//bY4BGoOlUqF9evXi8fI9OnT0bp162LFXRAjIyNs3LhR7Pk3a9Ys/PXXX2p1BEHAqlWrMHv2bHz44Yc6j+F1Y8eOFX+EkJ6ejr59++aZlzQyMhIDBgxAWFhYsbbx8ccfY+TIkXl66CmVSvz0009YsWIFgOxExdq1a4u1jZLIPW+rvb19mW9fWz169BDnDj579izWrVunVp6SkoIPP/xQHOq3sqlfvz6OHz+OsWPHIjU1Va3sypUrGDx4sJiQ/OWXXzROR7B582bxhyPLly/HlClT8rSXkpKCqVOnYunSpdDT08P69evLvdclz23q6tatq/bjFqlUWuzEcI8ePXDz5s0qdWzZ2dnh33//FdsePnw41q1blydpHxISgrfffhtXr16Fg4MDVq9enW97n3zyiXiufPHiBfr165fnB04hISHo06cPpFIpbGxsCo3R3t4eq1evFn9sNnr0aBw4cECtjkKhwNy5c7Fp0yYMHjxYq9deGuf1QYMG5dtDPD09HfPmzcPhw4cBAG3atMHbb7+db71PPvkE4eHhiI2NxZQpUwocSYOIiIioIpMImn4KSkRERESV0sOHDzF//nzx+dOnT8U5tE1NTTFkyBCxzM7ODosWLdLJdnfs2IEPPvgACoUCEokELVu2RK1atRAXF4dz586hR48e2LZtmzgkI/Bq2Mf69etj+vTpAIA1a9bgwoULYps5N2UHDx4MMzMztG/fXpy/b/78+Xj48CFSUlKwc+fOPK9xwIABGDBgAC5cuIA1a9YAAG7fvi32ePHx8UHjxo0BZM8L2L59e7XtHzlyBFFRUQCAnj17wsnJSYx90aJFYg+f3BYtWoTvv/8e6enpMDAwQPv27eHk5ISoqCicP38eWVlZMDY2xg8//ICvvvoqz/oxMTHi8tz7rnbt2mpz+Gqa91Kb9XNiz/1ac891mLNfcr/XOcOsanr/pk+fjvr16+cbkyZfffUVYmJiNO6/nH2Se/uaXlNh2w8LC4ObmxuUSiWsra0REREBIyMjreIMCgoSE3aurq64du0a+vfvj+vXr6Nt27aoXr06oqOjcf78eXH+zvfeew8bN26EoaGhxnaVSiVmzJiBJUuWQKFQQE9PD61atYKrqyvS09Nx7do1REREwMDAALNmzVLrqZZjz5492LNnDwDNx2vu/ViQU6dO4b333kNMTAyA7OHSmzVrBpVKBT8/P0RFReGPP/6AgYGBOPz28OHD8xyLJT2Gc9y/fx9vv/02goKCAGT3Fm3Tpg1q1qyJ6Oho8dgdOnSomHB2dHREr169AKgfPzk6d+6Ms2fPAgBOnz6Ns2fPYu7cuahbty58fHygUChw5coVMWHn5uaGvXv3olGjRnniK+3j19bWFnFxcQCAqKgoODg4FPh+aZL7++/ChQtiMqNdu3aoU6eO2nkg9/GU3/dv7u/q17fRu3dvcT7zhg0bwtvbGykpKTh37hwaNGggztmb80OQnDY1bT+/4zn39rV9T3O//vxeU872c587c7c5fPhwdOvWDWPGjBG/0y0sLPD06VNcv34dQPaxOW/ePEydOrXAfREbG4thw4aJSShTU1O0a9dOnJf58uXLSE5OFn9Ekd8w1jnnPSD/720g/2O/pEp6btP0/r7+vZBz3i6Kopz3cseR3+cBKPy7adu2bRg6dCiA7J7FOftTG+vXr1f7/hw/fjwGDhyI1NTUKnVs3bp1C0OHDhXbq1atGlq0aAEzMzMEBwfj6tWrUCgU8Pb2xo4dOzQm64HsntzDhw8XR6owNDREhw4d4ODggIiICFy8eBFOTk7Yt28fBg4cmOc7Bsh/n27btg2jR48WvxMaNGgAb29vZGRk4NKlS5DL5di8eTNu3LiBuXPnAsjuUT9nzhyNserivA5kj3xx/vx58bmnpye8vLxgaGiIyMhI3L59W+yt3rVrV/z777/5JvPT0tJgbW2tNrf406dPUbt2bY2vobhyzok5ch9Dr19DF+eakYiIiAgCEREREVUpp0+fFgBo9c/V1VWn275586YwdOhQoUaNGoKhoaFgb28vdOnSRdi8ebOgUqkEQRDyjaNTp05iG8OHDy8w5uHDh4t1O3XqVGDd2bNnC4IgCOvWrSv0vVi3bp1W28/5FxgYqPF9CA8PF2bPni20atVKsLOzE/T19QU7OzuhVatWwuzZs4WwsDCN6wYGBmq1/ZKsnxN7Ud7rwto8ffq0xpg0cXV11Wqf6Gr7ffr0EQAIkydPLlKcud/TnM9MZmamsHLlSqFz586Ck5OTYGhoKFSrVk0YMGCAcPDgwSK1//jxY+Hrr78WmjZtKtjY2Aj6+vqClZWV0Lx5c+Hrr78WHj9+rHHd2bNnF/re5N6PhYmJiRG+++47oVGjRoKZmZlgZmYm1KtXT5gwYYLg7+8vCIIgrFmzRmx77NixBb5fxTmGc0tKShIWLlwotGnTRrCyshL09fUFGxsboVWrVsKsWbOE8PBwjd95uY+fHLm/M3KOmUuXLgkff/yxUKtWLcHY2FiwtLQUWrRoISxYsEBISUnRGFtpHr/Xr18Xy1q1aqXVe6VJYd9/uc8DhR1Pub+rX/f06VNh9OjRgru7uyCTyQRra2uhdevWwp9//inI5XKN71lxt6/te6rt69d0HOV8fp48eSJ88cUXQoMGDQRLS0tBJpMJ7u7uwpgxY8TPhrZOnz4tjBo1SqhXr55gbm4uGBgYCA4ODkKXLl2ERYsWCbGxsRrXLey8p+nY14WSnNu0vTbJOW8XRVHOe9rEUZiMjAzBxsZGACDs3r27SLHmPh5zjq3o6Ghh7ty5QpMmTQQbG5sqc2wpFAph06ZNwqBBgwQXFxfByMhIMDIyElxcXIQBAwYIW7ZsEbKysrRu79ChQ8LAgQOFatWqCQYGBoK9vb3QunVr4eeffxYSExMFQdD8vaxJcHCw8OWXXwr169cXTExMBAsLC6FBgwbCtGnTxGNm1qxZYjvz5s3TKtaSnNdzPHnyRFi8eLEwYMAAoW7duoK5ubmgp6cnmJmZCZ6ensLw4cOFI0eOFNrOli1bBGdnZ8HW1lb4v//7P63iL47CzokFnfOIiIiItMEe2kRERERE9EZo2bIl/Pz8cP/+fXh5eWm93us9tHN6DL+plixZgi+//BIAMHPmTPz000/lHJH2Xu+hXdbzYmtr4sSJWLZsGQDgn3/+wbvvvlvOERFRjri4ODg7O8PW1hbBwcFFmj/79R7ahfUGp/I3efJk/PbbbwCAVatWleu89kRERERvMs6hTUREREREVZ6/vz/8/PzQoUOHIiWzKa8nT56Ij/MbiptK5vLly1i+fDkAoHfv3kxmE1UwW7ZsgVwux8iRI4uUzKbKiec8IiIiooqBCW0iIiIiIqrycuZYHjt2bDlHUjHNnDkTTk5OeP78eaF1T5w4ASB7HlNfX9/SDu2NcuXKFfTp0wcqlQo+Pj7YunVreYdERK9Zu3YtpFIpRo0aVd6hUDENGzYMrq6u4vzZmqSnp4tzstvb26NZs2ZlER4RERER5YMJbSIiIiIiqjI++eQTjB8/Xm1ZcnIyNm7cCDs7OwwZMqScIqvYkpKSEBUVhb/++qvAev/884/YW23EiBGwt7cvi/DeGImJiUhLS0OfPn1w9uxZWFlZlXdIRG+kxMREdO7cGStXrlRbfuHCBdy5cwdvvfUWXFxcyik6Kqn4+HiEhIRg27ZtBdb77bffkJSUBACYMmUKe+QTERERlSMmtImIiIiIqMrw8/PD+vXrERYWJi77/vvvER8fj0mTJkEmk5VjdBXfvHnzsHz5cmRlZaktV6lU2LRpEz799FMAQL169bBw4cLyCLFK69mzJ+7du4cDBw7A0tKyvMMhemNlZWXh7NmzWLFiBZRKJQBALpfjq6++AgBMmzatPMMjHfn888+xY8cOCIKgtjwrKwuLFy/Gt99+CwBo3769uO+JiIiIqHzwp4VERERERFSlZGRkoFmzZujUqRMCAwNx/fp1NGjQoMg3o0eMGAEASElJEZfFxMSIy+vXr4/p06frKuxyldPTWqVSYcKECZg7dy68vb3h6OiIpKQkXL9+HZGRkQCATp064Z9//qk0Cdc1a9bgwoULAICHDx+Ky+fPn4/169cDABYtWgQ7O7vyCC+POnXqlHcIRPSf27dvw9vbG40aNcK1a9cQFBSETz75BB07dtS6jYcPH2L+/PkAgKdPn4rLL1y4IJ5PBgwYgAEDBugydCqAg4MDgOwhxd955x24uLigfv36sLOzQ2xsLK5du4b4+HgAwJAhQ7Bu3ToYGBiUZ8hEREREbzyJ8PrPEKnCUqlUiIiIgLm5OSQSSXmHQ0RERJWUIAhITk6Gs7MzpFIO2PMmeROuJ//3v//h8OHDCA0NRUZGBqpVq4bevXtj2rRpRU5YFpawbd++PQ4ePFiScCuUJ0+e4PDhw7hy5QoeP36MqKgopKamwsTEBI6OjmjZsiUGDx6Mbt26lXeoRTJ+/PhC56K+e/cuXF1dyygiIqro0tLSMGHCBNy6dQvR0dGQSCRwdXXFhx9+iHHjxhVp6Onz58/j7bffLrDO9OnTMWPGjJKGXeYq8zXlzZs3cejQIVy6dAmPHj1CdHQ00tPTYWZmhho1aqB9+/YYPnw42rRpU96hVkhvwjUlERERlb6iXE8yoV2JhIWFoWbNmuUdBhEREVURoaGhqFGjRnmHQWWI15NERESka7ymfPPwmpKIiIh0SZvrSQ45XomYm5sDyN6xFhYW5RwNERERVVZJSUmoWbOmeG1Bbw5eTxIREVU9089Nx7mwc1BBVWhdKaToWKMj5necX+Lt8pryzcVrSiIiItKFolxPMqFdieQM4WNhYcGLRSIiIioxDg/45uH1JBERUdWTrp8OibEEetDTur4urwN4Tfnm4TUlERER6ZI215OVa4IbIiIiIiIiIiIiElnJrCDV8hafFFJYyaxKNyAiIiIiIh1jQpuIiIiIiIiIiKiS8nXx1Wq4cQBQQQVfF99SjoiIiIiISLeY0CYiIiIiIiIiIqqkHE0ctaongQQWhhbo4dajlCOiolKpVFi2bBksLCwgkUgQFBSks7YjIiIwefJk1K5dG0ZGRnB0dMTbb7+No0eP6mwbRERERKWNCW0iIiIiIiIiIqJKyP+lPyafnlxoPQmy5yX8qf1PkOnJSjssKoL79++jffv2mDhxIpKTk3Xa9pUrV+Dt7Y3Vq1dj3LhxOHfuHP7880+EhoaiV69emDlzpk63R0RERFRamNAmIiIiIiIiIiKqZB7EPsDYE2ORkpUCAPCw9oC5oTkAiHNq5/w1NzTHb76/oXPNzuUSK+Vv9uzZaNq0KfT09DB9+nSdtv3y5Uv07dsX8fHx2Lp1K6ZNm4aWLVti8ODBOHfuHGrWrIl58+Zhw4YNOt0uERERUWlgQpuIiIiIiIiIiKgSeRT3CGOOj0FyZnaP3hZOLbDprU04/e5p/Nz+Z/i6+KK5Y3P4uvji5/Y/49S7p5jMroCWLl2KJUuW4Ny5c/Dw8NBp2z/88ANiYmLQqlUrDBgwQK3M0tISM2bMAAB88803SE9P1+m2iYiIiHRNv7wDICIiIiIiIiIiIu08S3iGMcfHIFGeCABo4tAEf/j+AWN9YwBA39p90bd23/IMkbT04MEDVK9eXeftZmZmYtOmTQCAwYMH51tn8ODBmDBhAqKionDgwAG88847Oo+DiIiISFfYQ5uIiIiIiIiIiKgSCEwMxMijIxGXEQcAaGTXCH92/RMmBiblHBkVR2kkswHg4sWLSEzM/sFDixYt8q3j4OAAFxcXAMDBgwdLJQ4iIiIiXWFCm4iIiIiIiIiIqIILTQrFqKOjEJsRCwDwsvXC8u7LYWZoVs6RUUVz9+5d8bGbm5vGejlluesTERERVUQccpyIiIiIiIiIiKgCC08Jx8hjIxGdHg0A8LD2wKruq2BhaFHOkVFFFBISIj62t7fXWC+nLDQ0tMD25HI55HK5+DwpKamEERIREREVDXtoExERERERERERVVCRqZEYeXQkXqS+AADUsaqDVT1WwVJmWc6RUUWVnJwsPjYyMtJYL6essAT1vHnzYGlpKf6rWbOmbgIlIiIi0hIT2kRERERERERERBVQdFo0Rh4difCUcACAm4UbVvdYDRsjm3KOjN4kM2bMQGJiovivsB7dRERERLrGIceJiIiIiIiIiIgqmJj0GIw6NgohydnDR7uYu2Btz7WwM7Yr58ioojM3NxcfZ2RkwNTUNN96GRkZAAALi4KHrpfJZJDJZLoLkIiIiKiIKn0PbZVKhWXLlsHCwgISiQRBQUE6azsiIgKTJ09G7dq1YWRkBEdHR7z99ts4evSoVus/evQII0eOhIuLC4yMjODs7Iz33nsP165d01mMRERERERERERUtcRnxGP0sdEITAwEAFQ3q461PdfCwcShnCOjysDFxUV8/PLlS431cso4hDgRERFVdJU6oX3//n20b98eEydOVJsbRheuXLkCb29vrF69GuPGjcO5c+fw559/IjQ0FL169cLMmTMLXH/v3r1o0qQJ9u3bh5kzZ+L8+fNYsGABrl27hrZt22L58uU6jZeIiIiIiIiIiCq/RHkixhwfg6cJTwEATqZOWNtzLZxMnco5MqosGjVqJD4uqPNPTlnu+kREREQVUaVNaM+ePRtNmzaFnp4epk+frtO2X758ib59+yI+Ph5bt27FtGnT0LJlSwwePBjnzp1DzZo1MW/ePGzYsCHf9QMCAvDBBx8gMzMThw8fxrhx49CiRQsMGzYMZ86cgYmJCSZOnIhTp07pNG4iIiIiIiIiIqq8kjKTMOb4GDyMewgAcDB2wNoea1HdrHo5R0aVSdu2bWFpaQkAuH79er51oqOjERKSPZx9nz59yiw2IiIiouKotAntpUuXYsmSJTh37hw8PDx02vYPP/yAmJgYtGrVCgMGDFArs7S0xIwZMwAA33zzDdLT0/Os//XXXyM9PR1DhgxB8+bN1cpcXV0xfvx4qFQqTJkyRadxExERERERERFR5ZSalYrxJ8bjQewDAICtkS3W9FwDFwuXQtYkUieTyTBs2DAAwM6dO/Ots2vXLgAQp1gkIiIiqsgqbUL7wYMHmDBhAiQSiU7bzczMxKZNmwAAgwcPzrdOzvKoqCgcOHBArezFixc4dOiQVuvfvXsXfn5+OombiIiIiIiIiIgqp7SsNEw4MQF3X94FAFjLrLGmxxq4W7qXc2RUUa1atQqWlpZo164dEhIS8pR///33sLOzw5UrV7Bv3z61sqSkJMyfPx8AsGDBAhgbG5dFyERERETFVmkT2tWrl85QSxcvXkRiYiIAoEWLFvnWcXBwgItL9q9jDx48qFZ25MgRqFSqAtdv3LgxDAwM8l2fiIiIiIiIiIjeHOmKdEw6NQk3o28CACxllljdYzXqWNcp58iotEVHR+PevXu4d+8ewsPDxeWPHz8Wl6empua77u+//46kpCRcunQp32kN7e3tsX//flhbW+ODDz7AokWL4Ofnh927d6Njx44IDg7GjBkzMHz48FJ7fURERES6UmkT2qXl7t274mM3NzeN9XLKctfP/VxPTw81a9bMd11DQ0NUq1Yt3/WJiIiIiIiIiOjNIFfKMfnUZFyLvAYAMDc0x6ruq+Bho9vp9ahi+vPPP9GwYUM0bNgQs2bNEpf37NlTXK5pdMeJEyfCwsICbdq0ga+vb751WrdujXv37mHkyJFYvnw5OnTogLFjx6JGjRo4cuQIfv7551J5XURERES6pl/eAVQ0ISEh4mN7e3uN9XLKQkND813f2toaenp6Ba4fEhKSZ/3c5HI55HK5+DwpKang4ImIiIiIiIiIqFLIVGZiyukpuPziMgDA1MAUK7uthJetVzlHRmVlzpw5mDNnTrHWHTt2LMaOHVtoPWdnZ/z222/47bffirUdIiIiooqAPbRfk5ycLD42MjLSWC+n7PUkc876Ba1b0Pq5zZs3D5aWluI/TT2+iYiIiIiIiIio8shSZeGrs1/hfPh5AICxvjGWd1uOhvYNyzkyIiIiIqKKhwntCmzGjBlITEwU/xXUm5uIiIiIiIiIiCo+hUqBb859g9OhpwEARnpGWNZ1GZo4NCnnyIiIiIiIKiYOOf4ac3Nz8XFGRgZMTU3zrZeRkQEAsLCwyHf9nHJNNK2fm0wmg0wmKzxoIiIiIqICLFu2DMuWLYNSqSzvUIiIiN5oSpUS3174FseDjwMADKWG+M33N7RwalHOkRERERERVVzsof0aFxcX8fHLly811sspe30Y8Jz14+PjC7xhqGl9IiIiIiJd++yzz/DgwQP4+fmVdyhERERvLJWgwveXvsehwEMAAAOpAX71/RVtnNuUc2RERERERBUbE9qvadSokfg4KChIY72cstz1cz9XKpUahwjPzMzEixcv8l2fiIiIiIiIiIiqFpWgwg+Xf8C+Z/sAAPoSfSzuvBjtq7cv58iIiIiIiCo+JrRf07ZtW1haWgIArl+/nm+d6OhohISEAAD69OmjVtarVy9IpdIC1799+zaysrLyXZ+IiIiIiIiIiKoOQRAw7+o87HyyEwCgJ9HDwk4L0blm5/INjIiIiIiokmBC+zUymQzDhg0DAOzcuTPfOrt27QIAODo64u2331Yrq1atGt566y2t1m/UqBFatOAcSUREREQlERkZidu3byMpKam8QyEiIiJSIwgCFvotxN+P/gYASCVSzOswD91du5dzZERERERElccbmdBetWoVLC0t0a5dOyQkJOQp//7772FnZ4crV65g3759amVJSUmYP38+AGDBggUwNjbOs/7ChQthbGyM7du34+bNm2ploaGhWL58OaRSKZYsWaK7F0VERET0BomPj8e3334LV1dXVK9eHc2aNVMbHadWrVqYNWsW4uPjyzFKIiIiepMJgoClN5dic8BmAIAEEvzY7kf0du9dzpEREREREVUulTahHR0djXv37uHevXsIDw8Xlz9+/Fhcnpqamu+6v//+O5KSknDp0iWcOnUqT7m9vT32798Pa2trfPDBB1i0aBH8/Pywe/dudOzYEcHBwZgxYwaGDx+eb/uenp7YunUrDA0N0bNnT6xcuRLXr1/Hli1b0KlTJ6SmpuKPP/6Ar6+vbt4MIiIiojeIv78/fHx8MH/+fISGhkIQhDx1wsLCMG/ePPj4+ODu3bvlECURERG96f688yf+uveX+HxO2znoW7tvOUb0ZkhISMB3332Hfv364aOPPsLBgwfLOyQiIiIiKiGJkN8dwEpgzpw5mDt3boF1Tp8+jc6dO+dZvnLlSnz99ddo0KABDh06BCsrq3zXj4iIwPz583Hw4EGEh4fDwsICLVu2xKRJk9CzZ89CY3z06BEWLFiAEydOICoqCjY2NujQoQO++uortGzZUpuXqSYpKQmWlpZITEyEhYVFkdcnIiIiAir3NUVaWhq8vLwQEhICfX19NG7cGA4ODjh8+DCOHz8u/mAwJCQEK1euxMKFC+Hk5IT79+9XutdaGirzviciIqpMVt1dhd9v/S4+/671d3jX491yjEj3yuu6IjU1FdWqVRM7shw+fBg9evQAkP2jxtatW+PFixdq60ybNk0ccZFKjteUREREpAtFuaaotAntNxEvFomIiEgXKvM1xeLFi/HVV1+hb9++WLFiBapVq4aYmBg4ODjgxIkTeUbAOXz4MPr06YOffvoJM2bMKKeoK47KvO+JiIgqi3X31mHxjcXi8+ktp+NDzw/LMaLSUV7XFZs3b8bHH38MIyMjDBw4ED/88ANq164NAHj33XexY8cOAICTkxPs7e3x4MEDqFQqnDt3Du3atSuzOKsyXlMSERGRLhTlmqLSDjlORERERG+effv2wcvLC7t27UK1atUAABKJRGP93r17Y+DAgdi7d29ZhUhERERvsM0PNqsls6c2m1olk9nl6ciRI5DJZLh06RK2bNkiJrPDw8Oxa9cuSCQSDBo0CMHBwbhz5w4uXLgAIyMjrFq1qpwjJyIiIqLi0i/vAIiIiIiItPXgwQNMmTIFenp6Wq/Trl07/O9//yvFqIiIiIiAfx7+gwV+C8Tnnzf5HCO8R5RpDIosJZ7diMbzOzHISM2CkakBavnYoXYzB+gbaH/9VJH5+flh2LBhaNy4sdryXbt2QaVSwcDAAL///jsMDAwAAK1atcIHH3yAs2fPlkO0RERERKQLTGgTERERUaWRmJgIZ2fnIq1jbm6O9PT0UoqIiIiICNj1ZBd+vPqj+HyczziMbjS6TGMIvPMSpzcEwDZLiWqGUhgCyATw8F4MLv77BF1GeMG9kV2ZxlQawsLC0KRJkzzL9+/fD4lEgrfeekscySeHj48Ptm7dWlYhEhEREZGOMaFNRERERJWGtbU1QkNDi7TO7du3YWtrW0oRERER0Ztu37N9mHNpjvh8pPdITPCZUKYxBN55iZtr7qGzsR4MDfUhCAIkEgkEQYCzgT4yVQJurPYHRnnD3ce+TGPTNZVKlWdZQkKC2AP7vffey1NuZGSU73pEREREVDlwDm0iIiIiqjSaNGmC9evXa93j+tmzZ9i4cSOaN29eypERERHRm+hw4GF8d/E7CBAAAMO8hmFy08mQSCRlFoMiS4m7GwPQ0kQPBv9tNmf7OX8NJEArEz3c3RgARZayzGIrDdWqVcO9e/fUlm3atAlZWVmQyWR4++2386wTEhICa2vrsgqRiIiIiHSMCW0iIiIiqjQ+/PBDPH/+HL169cLjx4811lOpVNixYwc6duyItLQ0DBs2rAyjJCIiojfB8eDjmHF+BlRCds/f9z3ex7Tm08o0mQ0Az65FouF/02Nr2nbO8oZ6wDO/qLIKrVS0bdsWW7ZswfXr1wEAAQEB+OmnnyCRSNCnTx+YmZmp1VepVPjnn3/g4eFRHuESERERkQ5wyHEiIiIiqjQ+/PBDrFixAufPn4eXlxcaN24MLy8vAMDy5cuxfft2BAcHw8/PD3FxcRAEAV26dMGQIUPKOXIiIiKqSk6HnMbXZ7+GUsju7Tyk3hDMaDWjzJPZABB3ORI1pYVvVyKRwFACRF1+AbR1LoPISsekSZOwbds2tGrVCra2toiLi4NKpYJEIsGUKVPEekqlEg8fPsR3332HZ8+e5TsUORERERFVDkxoExEREVGlIZFIsG/fPvTu3Rt+fn64desWbt26BYlEgl27don1BCF72M/WrVtj586d5RUuERERVUHnw87jy7NfQiEoAAD9a/fHd62/g1RSPgMhmibLxTmzCyMIAkyT5GUQVelp1aoVFi1ahK+//hoxMTEAsq8RZ86cibZt24r15syZg59//ll8bwYPHlxeIRMRERFRCTGhTURERESVio2NDS5cuIAlS5bg999/R3h4eJ46NWrUwOeff44vvvgC+vq85CUiIiLduBxxGV+c/gIKVXYy+y33tzC37dxyS2YDgKFE81Djr8vppV3ZTZkyBW+//TaOHj0KhUKBjh07omnTpmp1fH19xetAc3NzNG7cuBwiJSIiIqp8FFlKPLsRjed3YpCRmgUjUwPU8rFD7WYO0DfQK5eYJEJO9xWq8JKSkmBpaYnExERYWFiUdzhERERUSVW1a4qHDx/iyZMnSE5Ohrm5OerWrYv69euXd1gVUlXb90RERGXJL9IPE05MQIYyAwDQw7UHFnRcAH1p+f54LmjpDei9SNW6h7ayuhncPm9aaN3C8LrizcV9T0REVHUF3nmJkxsCIE9TABIAAsS/MhN9dB3hBfdGdjrZVlGuKdhdhYiIiIgqtfr16zOBTURERKXqVvQtfHbyMzGZ7VvTF/M7zi/XZLagFJB2IwoGCXIIReihbdum8s6fXVwvX75EQEAAOnbsWN6hEBEREVVYgXde4tAK/+wkNpDnrzxNgUPL7+KtcQ3h7mNfprGV33hIRERERERlwN/fHz/88EN5h0FERESV1N2XdzH+xHikK9IBAB1rdMQvnX6BgdSgXOIRBAHp92MQtfQG4nc9gZChFJcXtp5gKIVZY4eyCLNCOXbsGLp06VLeYRARERFVWIosJU5uCHiVxNZEAE5uCIAiS1kmceVgQpuIiIiIqrS7d+9i7ty55R0GERERVUL3Y+9j3PFxSM1KBQC0dW6LxZ0Xw1DPsFzikQcm4uXyO4jdFADFy3RxeZxCBUBzUlsQBEAigd379SEx4O1AIiIiIlL37EZ09jDjWpCnKfDs5stSjkgdhxwnIiIiokpJLpfj6dOnSExMhEKh+YI7ICCgDKMiIiKiquJR3COMOTYGyVnJAICWTi3xa5dfIdOTlXksWZGpSDwahIyAOLXlsQoVHqSrkCAB3urjDv2rERAylLmnOoQEgNRYHzbvesDYy7bMYy8t/v7+WLp0Kc6ePYuIiAjI5fLyDomIiIio0np+J+bVBWRhJMDz2y/h0cqptMMSMaFNRERERJXK7du3MXPmTJw4cQJKZdkOb0RERERvhqfxTzH62GgkZSYBAJo6NMXvvr/DSN+oTONQJMiRdDwYaTej1G4uymV6uB0rR6RCgFQqQa8x3nD1sYfQzQVp92KQcS8GqnQFpMb6MPK2g4m3XZXqmb1hwwaMGTMGCoWi0KHWc0i0nGeciIiI6E2UkZqlXTIbAIT/6pchJrSJiIiIqNK4c+cOOnTogLS0NK1vXgK8gUlERETaC0wMxKhjoxAvjwcA+Nj74M9uf8LEwKTMYlClZSHpTBhSLoUDilfXPFILQ0RZGeHy3djs3tdSCbqPbAB3H3sAgMRACtMmDjBtUnXnyX7w4AHGjBmDrKwstG7dGi1btoRMJsMvv/yCYcOGoVatWgCAlJQUXL9+HWfPnkW9evXwwQcflHPkRERERBVTQlQaEiLTtF9BAhiZGpReQPlgQpuIiIiIKo25c+ciNTUVtWvXxtChQ+Hl5QVra2vIZJqH/jx27Bjmz59fhlESERFRZRWSFIJRR0chNiMWANDAtgGWd1sOUwPTMtm+kKVE8sUIJJ8Jg5DxakoViZE+zLvUwP3oDNw8GfrfQqDbCE/UaVZ1k9f5+e2335CVlYUVK1ZgzJgxAIDY2Fj88ssvGD58OHx9fdXqb968GZ988gneeuut8giXiIiIqMLKSM3C9YNB8D8TBpVK+44jEIBaje1LL7B8MKFNRERERJXGhQsX0LRpU1y4cAFGRtoN+RkWFlak3txERET0ZgpLDsPIYyMRnR4NAKhvUx8ru6+EuaF5qW9bUApIuxmFpOPBUCZlvirQl8CsXXVYdKoBvxOhr5LZAHyHeaJey7Kbt7CiOHv2LHr06CEmswvz0UcfYc+ePfjtt9+wadOmUo6OiIiIqOJTKlW4fy4c1w4EQp766keUwn9jjkugeaRDASpk6stRw8ey1OPMjQltIiIiIqo0kpOT8fHHH2udzAaAtm3bYt26daUYFREREVV2L1JeYNSxUYhMjQQA1LGqg1XdV8FSVro36gRBQMaDOCQeDYQiOv1VgQQwaeYIi26u0LeS4fqhQFw/FCQWd/7QA55tq5VqbBVVaGgohg8frrYsZ3oZTT9i7NixI5YsWVLqsRERERFVZIIgIPheLC7tfIr4XEOM6xtIYdI8AztiNqP7kxEQIEACad71oQIAnKq9CXXDVehbu2+Zxc6ENhERERFVGjVq1ICpadGG/HR3d4e7u3spRURERESVXVRqFEYeG4nwlHAAgLulO1b3WA1rI+tS3a48KBGJh4OQGZykttzI0waWvdxg4Jh9zXPzWDCu7gsUyzu8VxcNOlQv1dgqMoVCATs7O7VlOdPPREZG5ruOIAgay4iIiIjeBLHhKbiw/QnCHsarLa/XyhGt+9fG93dmIAj+OCJdiy5PP4SR0gQqqCCFVPwr18vA6TqbEWoTgFMhp5jQJiIiIiLKz6BBg3DhwgWMHDlS63UCAwNx/vx5fPzxx6UYGREREVVGMekxGHVsFEKTs4fydrVwxdoea2FnbFfImsWXFZWKxCNByAiIU1tu6GoBy95ukLm96hV+51QoLu96Jj5vO6gOGnWpWWqxVQYODg54/Pix2jJTU1MYGRnh2rVr+PDDD/Osc+7cOejp6ZVViEREREQVRlpSJq7uf46ACxHIPZiNUy1LtH+nLhzdLSAIAkKSQ6CCCsE297Cp+XeoFdsY7nGNIFOYQK6fhkCbu3huextKafYQ5QnyhDJ9HUxoExEREVGlMXPmTLRq1Qp///033n//fa3WuXTpEj755BMmtImIiEhNXEYcRh0dhaCkIABAdbPqWNNjDexN7Etle4oEOZJOBCPtRhSQ62aivoMxLHu6w8jLRhw6GwDunQvHhX+fiM9b9auFJj1cSiW2ysTHxwfr1q3DtGnTYG//al81btwYa9aswXvvvYe2bduKyzds2IDdu3ejYcOG5REuERERUblQZClx91QYrh8OQlaGUlxubmuENgNro04zBwDA5YjLWH5nOR7Hv/rBoFKqwBP763hifz3ftqWQwkpmVarxv44JbSIiIiKqNO7cuYMffvgBX331FZYtW4b+/fvDw8MD5ubmkErzzu0DAAEBAWUcJREREVV0CRkJGH1sNJ4lZvd+rmZaDWt7roWTqZPOt6VKy0LSmTCkXIoAFCpxuZ6FISy6u8KkqSMkehK1dQIuReDs1kfi8+ZvuaH5W246j60y6tGjBw4ePIgWLVrgyy+/xPjx42FgYIB3330XV65cQadOndCyZUvUrFkTDx8+hL+/PyQSCQYOHFjeoRMRERGVOkEQ8OzmS1za9RTJsRnicgMjPTTr5QqfrjWhpy/FlRdXsPzOctyKvlXkbaiggq+Lry7DLpREEHJ3MKeKLCkpCZaWlkhMTISFhUV5h0NERESVVGW+ppBKpWo9l4pCqVQWXqmKq8z7noiISFeSMpMw6ugoBMRl/+jNwcQB63uuR00L3Q7lLWQpkXIpAkmnwyBkKMTlEiN9WHSpAbO2zpAY5B0G+9HVSJxY/0Dsxd2khwvaDKxd7Gug0lJe1xVRUVGoUaMGlEolJBIJQkND4ezsDLlcjubNm+P+/ftq75UgCKhTpw5u3LgBc3PzMouzKuM1JRERUcUUFZSEizue4MXTRHGZRAJ4tndGq761YGxugMsvLmP57eW4/fK22rpuFm6ISotChiIDAjSnjiWQwNzQHKfePQWZnqxE8RblmoI9tImIiIioUinO7zEr2g1gIiIiKh8pmSkYd3ycmMy2M7bD2h5rdZrMFpQC0m5GIel4MJRJma8K9CUwa1sdFp1rQGpikO+6T29E42SuZHYj3xoVMpldnhwdHZGamipeE8pkMvHvyZMnMWnSJOzZswdZWVkwNDRE//79sXTpUiaziYiIqMpKic/AlT3P8ehqpNryGvWt0f6durBxNs1OZF/Im8iubVkb43zGobtrd5wPP4/PT30OCST5JrUlyL4m/an9TyVOZhcVE9pEREREVKl8++236Natm9b1jx07hvnz55diRERERFQZpGWlYcLJCfCP8QcA2BjZYE2PNXCzdNNJ+4IgICMgDolHgqCITntVIAFMmjrCorsr9K003/h7fvsljq+9j5zf7nl3rI7279RlMjsfhoaG+S53cHDAP//8A7lcjri4ONja2mqsS0RERFTZZcmVuHksGLePhUCR9WpqGytHE7QbXAcu3ja4EnkFyw8XnMjWk2aPGtS5Zmf82uVXzLo4C0mZSZBCChVU4l9zQ3P81P4ndK7ZuQxfZTYmtImIiIioUvH09ESnTp20rh8WFlaK0RAREVFlkK5Ix2cnPxPnCLSSWWF1j9WobVVbJ+3LgxKReDgImcFJasuNPG1g2dMNBk6mBa4f5B+Do6vvQaXKzmZ7tq2Gju/XYzK7mGQyGapVq1beYRARERGVCkEl4NHVSFzZ8wypia9GBJKZ6qPl2+7w6uCMa9FX8d0RDYnsxuPQw7UHpBJpnra7uHTBqeqncCzoGE6FnEKCPAFWMiv4uviih1uPMu+ZnYMJbSIiIiKqND788EPUqlWrSOs0atQI33//fSlFRERERBWdXCnH56c+x/Wo6wAAc0NzrOq+CvWs65W47ayoVCQeDUbGg1i15YYu5rDs7Q6Zu2WhbYQGxOHIyntQKbOT2fVaOaLzR/UhkTKZrSt79+7FlClT8Pz58/IOhYiIiKhEIp7E48L2p3gZkiwuk0olaNi5Bpq95Ypbidcx4tgM3Hl5R229whLZucn0ZOhbuy/61u5bKq+hOJjQJiIiIqJKY9OmTUVep2HDhmjYsGEpRENEREQVXaYyE1+c/gJXXlwBAJgZmGFV91XwtPUsUbuKRDmSjgcj7UYUck8vqG9vDMte7jDystGqd3X443gc+vMulIrsISJrN3VA1489IWUyW6dSUlIQHBxc3mEQERERFVviyzRc2vUMz2+9VFvu1sgObQfVRoDyDkafm1uiRHYOlVyO5CNHkHziJJSJCdCztIJ5t64w79ULUhl7aBMRERER6dyJEyfw888/49SpU+UdChEREZWhLGUWpp6ZigvhFwAAJvomWN5tObztvIvdpiotC0lnw5ByMQJQvJqnUGphCMvurjBp6giJnnbJ6BfPEnFg2V1xvkN3Hzt0H+kFqZ52NxqruuTkZJw8eRJdunSBpeWrnu4//PBDkdu6c+dO4ZWIiIiIKiB5ugLXDwXh7ulQqBSvfklpW90M7YbURqjFI0y6OVYniWwASD51ChHTZ0CVlARIpYBKBUilSD5+HNKffobz/Pkw9+2is9enLSa0iYiIiKhKi4qKwtmzZ8s7DCIiIipDCpUC35z/BmfCzgAAjPWNsazrMjR2aFys9oQsJVIuvUDS6VAIGQpxucRID+ada8KsrTOkhnpatxcVlIQDv9+GQq4EALh626LnKG/oMZkt6tmzJ65evYoWLVrgypUr4vI5c+ZwbnEiIiKq8lRKFR5ciMDV/YHISMkSlxtbGKJVX3ckuAVhhv/kPInsOlZ1MM5nHLq7di9SIhvITmaHfTYRSokEkdZmiLQwRZaeHgyUSjglpcIpMQVhn32GGsv+gLmvr05ep7aY0CYiIiKiCkepVMLf3x/e3t7Q1391ybpx48Yit3Xp0iVdhkZEREQVnFKlxMzzM3E8+DiA7DkAf/P9Dc2dmhe5LUElIO1mFJKOB0OZmPmqQF8Cs7bOsOhcE1ITgyK1+TIkGft/u43MjOxkdk1Pa/Qa6w09Ayazc3vy5AkEQcCzZ8/ylAmCkM8aBWMSnIiIiCqLkPuxuLjzKeIiUsVlevpS+HStgSyfSPz88GvcPXVXbZ2SJLKB7GHGI6bPQJSFCe7UsIdCXw8QBEAiAQQBUVZmuK9Qwif0JaTTZ6Du+XNlOvw4E9pEREREVOEMGjQIBw4cQK9evXDw4EFx+YgRI3gzkoiIiDRSCSp8f+l7HA46DAAwkBrg1y6/onW11kVqRxAEZATEIfFoEBRRaa8KJIBJU0dYdHeBvpVRkeOLDU/Bvl9vQ56W3cvbua4Veo9vBH0D7Xt3vynWr1+PlStXYvTo0XnKNm/ejKFDh2rd1ubNmzF8+HBdhkdERESkc3ERqbi48ylC7seqLa/T3AGGbRLwR/Bs3D2v20R2juQjR/ACCtxwdXq1MOce3H9/FXpS3HBzRLOgSDgdPQrLfv2Kvb2iYkKbiIiIiCqcs2fPQhAEXLx4MU8Ze+QQERFRflSCCj9c/gH7nu0DAOhL9bGk8xK0q96uSO3Ig5OQeDgQmUFJasuNPG1g2dMNBk6mxYovPjIVe5feQkZq9pCRTrUs0eezRjAowlDlb5I+ffqgT58+OmlLIpEU6xqSiIiIqCykp2Ti2v5A3D8fAUH16prF0c0CFl3SsSF2Hu5eL51Edo6E48dxp6ZD9hNN99H+6619p6YD3I8dY0KbiIiIiN5sixYtwm+//YaJEyfmKVu6dCn69++vdVu7d+/G1KlTdRkeERERVTCCIODnqz9j55OdAAA9iR4WdVyETjU7ad1GVlQqEo8GI+OBeo8YQxdzWPZ2h8zdstjxJUSnYc+SW0hPzk5mO7ia4+1JPjA04q25olq3bh3atm1bpHXatm2LdevWlVJERERERMWjVKhw93QYrh8KQma6QlxuZi2DbScltimX4O7DvIns8T7j0c21m04S2YIgIP3GDTx9eB8KWy1+uCmRQKGvh+D4GLiWeOva41UzEREREVU4o0aNwqhRo/Its7Ozg6ur9pfM9vb2ugqLiIiIKiBBELDQbyH+efQPAEAqkWJ+x/no6tpVq/UViXIkHQ9G2o0oIFcnXn17Y1j2coORl22JRntJiknH3iW3kPbfHNx2Nc3Q9/PGkBnztlxxFGfocHd3d7i7u5dCNLohl8uxdOlS/P3333j69Cn09PTg6emJ4cOHY8yYMZBKi36zOigoSKvX/Msvv+Crr74qTthERERUTIIgIPB2DC7ueoqkl+nicn2ZHuzaAHuMV+J21C21dXSdyFampCJp/z7Eb90G+ZMneOHq+GrO7MJfAF7oqUocQ1HwypmIiIiIKo3Zs2ejUaNGRVqnUaNG+P7770spIiIiIipPgiBgyY0l2BywGQAggQQ/tvsRvdx6FbquKi0LyWfDkHwxAlC8uiEntTCEZTdXmDRzhESvZNOWJMdlYM+SW0iJlwMAbKubot/kxjAyNShRuxplZQAP9gAPDwBp8YCJNVD/bcBrAGBQ9Dm/K4uoqCgEBgYiOTkZ5ubmcHd3h6OjY3mHpZWYmBj4+vrC398fY8aMwe+//47MzEz88ccfGD9+PLZv346DBw/CyKh4+8/ExKTAH2QYGhoWN3QiIiIqhpchybiw/QkiniS8WigBbHykOGq/CTdSrgLyV0W6TmRnPH6MhL//RuKevVClpQEAsqQSJBsZapfMBgCJBErL4o9eVBxMaBMRERFRpTF79uwir9OwYUM0bNiwFKIhIiKi8vbH7T+w7v6roaTntp2LvrX7FriOkKVCyuUIJJ0OhZBraEeJkR7MO9eEWVtnSHUwr3Vqghx7l9xCcmwGAMDayQT9JjeBsVkpJRAfHgL2jAcyEgCJFBBU2X8D9gOHvwEGrgA8epfOtsuBXC7Hr7/+ijVr1uDZs2d5yuvUqYPRo0dj0qRJkMlk5RChdt555x34+/tj8uTJWLp0qbi8S5cuGDhwIPbu3Yvx48cXe8j0+/fvw83NTTfBEhERUbGlJshxZe8zPLwSqTYqkKmrBJdcd+Ny1mkg5dVyXSayhcxMJB0/jvht25B+/Ub2MgBxpkYIs7FApI05lEVqUICpi0uJYioqiSAIQuHVqCJISkqCpaUlEhMTYWFhUd7hEBERUSX1pl1TXLlyBatWrcJff/1V3qGUuzdt3xMRUdW24s4KLLu9THz+Xevv8K7HuxrrCyoBaTejkXQ8GMrEXN1e9CQwa+sM8841oaejntNpSZnYs/gm4iOze71Y2htj4NSmMLUqpcTqw0PA30OhUEnwONkOT5Ntka7Uh7GeAnXMY1HPPAb6UgF4fytQ/y2dbLI8ryueP3+OPn364PHjxwCye+q/LqdXsoeHBw4ePFghhxzfuXMnhgwZAiMjI7x48QJWVlZq5QEBAfDy8oJEIoGfnx+aNWumdds5Q44HBgbqPKHNa0oiIiLtZWUqcft4CG4eC4FC/iptbGgD3K11Amf09wO5OkbXta6L8T7j0dWla4kT2VkREYj/918kbN8BZWwsACDdQB9h1uYIt7VAmmHx+z33njgVXh26lCi+olxTsIc2EREREVVpz549w4YNG5jQJiIiqkLW+q9VS2ZPbzldYzJbEARkPIxD4pEgKKLSXhVIAJMmDrDo7gp9a90Nx52ekom9S2+JyWxzWyP0n9Kk9JLZWRnAnvF4mmyDIxF1IVcZQAIBAiSQQMCTZDucktZCb+cnqL1nPDD1UaUefjwpKQldunRBWFgYBEGAubk5vL29Ub16dRgZGSEjIwPh4eG4d+8ekpOT8fDhQ3Tp0gV3796tcMnXNWvWAAB8fX3zJLMBwNPTE56enggICMBff/1VpIQ2ERERlS9BJeCxXxSu7HkmTj8DAFIZ8Kz2FRw3/xcq6asEt64S2YJKhdSLlxC/bRtSzpwBVCooJRJEWZkhzMYcMWYmagl0AJCZmKJ2y3a4fe40DFRZrxertw8gUyqDS9PWxY6xOJjQJiIiIqIK59y5czprKyAgQGdtERERUfnbeH8jlt5cKj7/qvlX+NDzw3zryoOTkHg4EJlBSWrLjerbwLKXGwycTHUaW0ZqFvb9ehtxEakAADNrGQZMaQJzm1JMID/Yg6cvpdgb5ikuEv67DZnzV67Sx54wT/THA9R5sBfwea/04ill8+fPR2hoKGrVqoVffvkFffv2hb5+3lucCoUC+/btw9dff43AwEAsWLAAP/30UzlEnL/MzEycPHkSANCiRQuN9Vq0aIGAgAAcPHgQy5Yt01iPiIiIKo4XzxJxYfsTROe+BpUAEa73ccxuCzIMUsXFukpkK+Ljkbh7D+L//htZISEQACQZGyLUxgIR1mZQ6L02pY5EAteGjdGgczfUadEa+++9xNEAPbwddRgC8uS8AbwaKf2YvS88H8diYJMaxY63qCp1Qlsul2Pp0qX4+++/8fTpU+jp6cHT0xPDhw/HmDFjIJUWfcdLtJ3w/D+vD2l05swZdOlSeBf77du3Y8iQIUXaFhEREdGbonPnzkW+LiMiIqKqb9vDbfjl+i/i88lNJ2N4g+F56mVFpyHxSBAyHsSqLTd0MYdlL3fIalnqPLbMdAX2/34HMaHZkx+aWBqi/5QmsLAz1vm2clPc348jEfX+e6bp+kkCQMCRiHoYd38f9CtxQnv37t2oVq0arly5Ajs7O4319PX1MWjQIHTo0AGNGzfGzp07K1RCOyAgAFlZWQBQ4JDgOWXBwcFITEyEpWXRjt0jR47g0KFDuHfvHqKiosQe7YMHD8Ynn3wCI6PK21ufiIiookmKScfl3c/w9Ea02vI4hxAcq7YZCSZR4jJdJbLT/f0Rv3Ubkg4dgiCXQ64nRYSdJcJszJFsnHeEIEsHRzTo1A0NOnWFhb0DACBVrsCmy8EIMnHDQYde6BZzGkYqOVQApID4Vy6V4bi9L0JM3XD0XhQT2tqIiYmBr68v/P39MWbMGPz+++/IzMzEH3/8gfHjx2P79u04ePBgsS7KZDJZvr/szKFSqZCenl7g3DumpgX/wreg9omIiIgo/7kQi4vJcSIiospvx+Md+Pnqz+LzCT4TMKrhKLU6ykQ5kk6EIPV65KsuJAD07Y1h2dMNRg1sS+W6IDMjO5md0wvH2NwAA6Y0gZWDic639bqHz+MhV2kz97cEcpUBHj6Ph3epR1V6goODMW3atAKT2bnZ29tj5MiRWLRoUSlHVjQhISHiY3t7e431cpeFhYUVOaH91VdfYfLkyfjyyy9hbm6Ox48fY/HixZgwYQKWLVuGAwcOFDrHtlwuh1z+aqjUpKSkAmoTERG9eTLTFbhxJBh3ToZCqVCJy1PN43C6xt8Is3okLqtnXQ/jfcbD18W32IlsVXo6kg4dQvzWbci4fx8qADHmJgh1ckS0hSkEqfr1rr6hDPVatUWDzt1R08sbEqkUYfFp2H0pCCcfRuPKs1hkKrPjDjR1x1/GNVEn7TlqpT6HkUqODKkMz01r4alJLSil+oAAJKRnFiv24qq0WdV33nkH/v7+mDx5MpYuXSou79KlCwYOHIi9e/di/PjxWLduXZHbXrFiBUaMGKGxfM2aNRg9ejQ+++wzjXVSUlKKvF0iIiIieuXbb79Ft27dStzOsWPHMH/+fB1EREREROVlz9M9+OHyD+Lz0Q1HY5zPOPG5Kl2B5LOhSL4QAeS6iSg1N4RFdxeYNnOCRK90fuCWlanEoT/vIvJ5IgDAyNQA/b9oAmsdD2eer5eP8CQkBRKYi8OLF0QCAfcj9St1QtvMzKzQBOzr3N3dYWxcuj3liyo5OVl8XFCHnNxlRUkkGxkZwdfXF0uWLEGjRo3E5c2aNcPgwYPRq1cvnD59Gm+99RZu3boFmUzzHO/z5s3D3Llztd42ERHRm0KlEhBwMQJX9z1HenKWuDzTMB1Xqu9HgONlCJLsa1NdJLLlgYFI+PsfJOzeDVVSElJkBgirZoNwa3PIDfKmfKvV9YB3l+7waNMB+kYmuB2agH+OP8bJgGg8jEzOZwvZlFJ9PDKrh0dm9fItl0oAK2PDYr2G4qqUCe2dO3fizJkzMDIywpw5c9TKJBIJ5s2bh71792LDhg2YOHEimjVrptPt//777zAxMcHIkSN12i4RERERveLp6YlOnTqVuJ2wsDAdRENERETl5eDzg/j+4vcQ/utyPdxrOCY1mQSJRAIhS4WUyxFIOh0KIV0hriOR6cG8c02YtXOG1FBPU9MlpshS4vDyuwh/nAAAkJnoo9/kxrCtblZq2wQApMYCZ+cDfmuRmeWlVTIbyJ5TOzKzlGMrZd7e3mq9m7UREhICDw+PUoqoYnJychLn6H6doaEhli5dCh8fHwQEBGDdunUYN25cvnUBYMaMGfjyyy/F50lJSahZs6bOYyYiIqpMQh/G4eL2p4gNf9XBVSVV4q7TGdysfgyZ+hkASp7IFhQKpJw5g/it25B66RIUUgleWJkhrI4z4k3z/mDPxNIKXh194d25O2T21XD+8UtsOPAUZx5FIzY1/17V1SyN4G5nikvPYvMtf51KAHp6Oxb5tZREpUxor1mzBgDg6+sLKyurPOWenp7w9PREQEAA/vrrryIltP39/VGjhuYx38+dO4e7d+9i7Nix+W6biIiIiEpu+PDhqF27tk7aql27Nj7++GOdtEVERERl62jQUXx74VsxmT20/lBMbT4VEIDUm1FIOhYMZeKroZChJ4FZG2eYd6kJPVNthuEuPmWWCkdW3kNoQDwAwNBID30/bwx7F/PS26giE7i2Cji3EMjI7hFurKeABIKWSW0BMYZle/NR10aPHo2ZM2di2rRpMDEpfEj31NRUrF+/HlOnTi2D6LRnbv7qOMnIyNBYL3eZhYWFzrbfqFEjODs7IyIiAgcOHCgwoS2TyQrswU1ERPQmSYhKw8WdTxF0N0Zt+TOb27jiug/JRtlJ4ZImsrOio5GwYwcS/t2OrMhIxJsaIbSmPSItzaDUU29PqqeHWk1bwLtLd+i7eOL041isORqBK8/9kaXMf0o/n5pW6FbfAV09HeFZzRxyhQotfz6B5HQFCpoEUALAwlgfvb2rFfk1lUSlS2hnZmaKvy5s0aKFxnotWrRAQEAADh48iGXLlmndvrd3wYMu/f777wCASZMmad0mERERERVNcaaN0aR169Zo3bq1ztojIiKisnEy5CSmn5sOpaAEALxT7x180+IbZDyKR+LhQCii0l5VlgAmTRxg0d0V+taah2/WFaVShaNr7iH4XvYNS32ZHt6e1BiObrpLOKoRBODhAeDYd0B84KvlBiaIs6kHITlOy4YkyKjesFRCLCsffPABzp07h06dOmH58uVo3ry5xro3b97EhAkTULt2bUyYMKEMoyyci4uL+Pjly5ca6+UuK6gTTnFjiIiIQGBgYOGViYiI3nAZqVnwOxiIe2fCoVK9SvlGm4bgkttuRFo8B5CdyJ7gMwFdXLoUOZEtCALS/PwQv20bko+fQLpEQLi1OcLquyBNlvfHmrY1XNCgc3coajXBudAM/HkuGo+izufbtrGBHjrUtUM3T0d0rm8PB3P1a2YjAz0sfqcxRm+6DomAfJPakv/+83/vNIaRQemNgpSfSpfQDggIQFZW9jj0Bc2Xk1MWHByMxMREWFpalnjboaGh2LNnD3x9fdGgQYMC627btg1//fUXHj9+jJcvX8La2hpNmjTBBx98gPfffx96emW7o4mIiIiqqsjISERGRqJWrVo67bVCRERE5edc2Dl8dfYrKITsYcQH1BmAr50nI2a1PzID1ecRNvKwhkUvdxhWK4M5qwGolCocX/sAgXeye+XoG0jx9meNUK12ye895SviNnD0WyD4Qq6FEgg+Q3EkrRWi9u/S6gafAEAulaF1ty6lE6eOffrppwWWh4aGolWrVnB1dUXDhg1hZWUFPT09KJVKJCQk4N69ewgKCoK+vj7eeecdjB49GmvXri2j6Avn6ekJAwMDZGVlISgoSGO9nDJXV1ed3N/MTRAK6n9FREREQPYPGe+dCYffwUDI015NcZNqkICrrgfw2O46IBFKlMhWJicjce8+xP+9DenPniPawgShNe0RY24MSNRH4ZGZmKJWq/ZId2+GiwnG+O12DOIu3s+3XWdLI3T1dERXTwe0rmVbaBK6m5cjVg1rjq+230ZiugJSSfbw4jl/LYz18X/vNEY3r7If8afSJbRzz5Fjb2+vsV7usrCwMJ1c8C1fvhwKhUKr3tmTJk3C1KlTMXv2bBgZGeHOnTtYuHAhPvroI6xcuRJ79uyBjY1NgW3I5XLI5a+GzUpKSiqgNhEREVV2iiwlnt2IxvM7MchIzYKRqQFq+dihdjMH6Jfxrx4ruvj4eCxatAibN28W58g+fvw4fH19AQC1atXC0KFDMXXqVFhbW5dnqERERFREl8IvYcrpKVCosm8YfuTwHj59NhAx+++q1TOoaQ7LXm4wqm1VZrGpVAJObgzAs5vRAAA9fSnemtAI1euVwvVG0gvg1P+A21uh1kfGtT3iW0/Hqr8OQj9ku3hzL6dGfgOP55Rdqt4dUxu75FOj4lm/fj0kkoKHURcEAUFBQQgODs63DAAUCgW2bdsGABUqoW1oaIiuXbviyJEjuH79usZ6fn5+AIA+ffoUqf0BAwZg9OjRBa6Xc5+1oE5DREREbypBEBDkH4tLO58iIdfIQFnSTNxxPonbzqeg0MuEh7UHxvuML1YiO+PhQ8Rv+xuJ+/cjQVAgzMYCEV6uyNLPex/QwaMhUt2a4mJWNfwakoSsoHgA8Wp1JBLAp4YVunlmDyVe38m80Oup13X3csTVmd1w+N4LHL0XhYT0TFgZG6KntyN6e1cr857ZOSpdQjs5OVl8bGSkeQip3GW6SARnZGRg9erVcHV1Rd++fTXWs7KyQu/evbFq1Sq1YYCaN2+OIUOGoG3btjh//jzeeecdceh0TebNm4e5c+eWOHYiIiKq+ALvvMTJDQHZv/SUIPuuowR4fuslzv/7BF1HeMG9kV15h1kh+Pv7o0+fPggPDxdvVL5+cR4WFoZ58+Zh48aNOHDgABo1alQeoRIREVERXXtxDZ+f/hyZqkzYZFliunwsGj5yg1z1akhtfTvj7ER2A9si36ArCUEl4Mzmh3h8NQoAINWToNdYb9T0LLjDQpFlpgGXfgcuLgWycg2rblML6P4/HAw2x62flsE4K0UsCrJriACJE7rEnoORSg4VACkg/pVLZThh74tvPx1Ybjchi8PW1hampiXveZ+amorY2FgdRKRbo0aNwpEjR3Dy5Ml8R5h8+PAhAgICIJFICu2x/rq9e/eiRo0aGhPat2/fxosXLwAUPVlORERU1cWEpeDijicIe6ieMH5kfw3Xah5Aqiyx2IlsVWYmko8eQ/y2bUi8cxsR1uYIrWGDZGNZnroyazukuTbFBbjhbqIe8BgAEtXqmBjqoWNde/h6OqCLhwPszfO2U1RGBnoY2KQGBjbR7XQnJVHpEtrl5e+//0ZMTAy+/vrrAocLb9y4MQ4dOpRvmaWlJebNm4f+/fvj1KlTOHLkCHr16qWxrRkzZuDLL78UnyclJaFmzZrFfxFERERUIQXeeYlDK/xfdZ157a88TYFDy+/irXEN4e6jeYSaN0FaWhr69u2LsLAw6Ovro3HjxnBwcMDhw4fV6j19+hQrV67EwoUL0adPH9y/f5/DkRMREVVwN6JuYOKpidDPlOL92H4YHN8NBqpXt66k5oaw6OYC0+ZOkOiVXSIbyO6hc+7vxwi4lJ0AlEol6DnaG24NdfiDQ5UK8P8XODEXSI54tdzIEuj0DeLqf4Q/lqyAyaPzMP6vKEMqg1WPD7Hk4wE4/eglvv6nDhxiH6N26nPIVHLIpTI8M62FaNt6+OW95uUyPGRJLF26FEOHDi1xO5s3b8bw4cN1EJFuDR48GJ06dcLZs2cxd+5cLF68WCwTBAEzZ84EAAwfPhzNmjVTW3f//v349NNP4ejoiAMHDuTby3rDhg2YMmUKateurbZcLpfjiy++AADUqVOnyMlyIiKiqiotKRNX9z1HwMUI5J6Z44X5M1xy242XZqHZiezGc9GlZtES2Zlh4Uj45x/E7dyJqKwMhNmYI8rLDYJU/bpWom+A1GpeuCithYcSRyAx73VvdStjdP2vF3brWjaQ5dOju6qpdAltc3Nz8XFGRobGernLdHHz8vfff4eJiQlGjhxZona6d+8uzudz4MCBAhPaMpkMMlnJf0lBREREFZciS4mTGwLURpHMlwCc3BCAEQts3ujhx1esWIGQkBD07dsXK1asQLVq1RATEwMHBwe1ei4uLvjpp5/Qvn179OnTB8uWLcOMGTPKKWoiIiIqzO3o25h87HP0etkG78f2goXSTCyTyPRg3rkGzNpVh9Sw7K+DBEHAhe1PcO9ceHY8EqD7yAao1ViHPzQMvgQcnQlE3Hq1TKIHtBgFdJ6OvddCcG3KFNikR4vFidZueP+rb+BVJ7vzQ3cvR1ye1QuH7/ng6L0ovPhveMhx5Tw8ZEUgkUgq7HzRO3bsgK+vL5YsWYL09HR89NFHyMzMxLJly7B79274+vpi+fLledZbtWoVYmJiEBMTg127dql1igGy76EmJyejRYsWmDp1Klq2bAkbGxsEBARg8eLFuHXrFjw8PHDgwIECR8EkIiJ6EyiylLhzMhQ3DgcjS64UlyfJYnDFdR+e29yBh40Hvm28tEiJbEGlQuqFC4jfug2Rly8h3NoMYU7mkBvkna4m1cIZ1w3r4qFJbWTqqecGJRKgSU0rcT5sD8eiDyVe2VW6hLaLy6t5fl6+fKmxXu6y3EN/F8elS5dw8+ZNjB49utB5rwtjbGwMe3t7REZGIjAwsERtERERUeX37EZ09jDjWpCnKfDs5kt4tHIq5agqrn379sHLywu7du0SR80p6AK+d+/eGDhwIPbu3cuENhERUQV1P/oetm1fjV9fTIOjwvZVgZ4EZm2cYd6lJvRMDcolNkEQcHn3M9w9FZa9QAJ0+8QLdZo5FLyituICgePfAwH71JfX7Qn0+BFRsppYvHQjrO8eho2Qfc2ohBRWHfvji7EjoPdab5yKODxkcZ0+fRqenp46aat79+44ffq0TtrSNTs7O/j5+WHp0qXYtm0bNm3aBD09PXh6euLPP//E2LFjIZXmvWk+ZswYXL58GY6Ojhg0aFCe8hcvXmD37t04cuQINm/ejHnz5kEul8Pa2hqNGjXCsmXL8Mknn8DY2DjPukREVH6ELBXS/F8i434slGkK6Jnow6iBLUwa2kNiULT5malwgiDg6Y1oXN71DMlxrzrKZupl4Gb1o/Cvdg517epgqU/REtmK+Hgk7tqF6L//QWhqAsKszRFfP+8IzHJ9E9w3qYsA8/qIM1TPP5oa6qFjPXv41ndAl/oOsDN7szvAVrqEtqenJwwMDJCVlYWgoCCN9XLKXF1d88w/U1S//fYbAGDSpEklaidHRf1FKBEREZW953diXs2ZXRgJ8Pz2m53QfvDgAaZMmVLgFDCva9euHf73v/+VYlRERERUHIIg4On1u0g4+AiTMt5/VSABTBo7wKK7K/Rtyrfn6LX9gbh1LER87jusPuq11MG1WEYicG4RcHUFoMx8tdyhAdDzRwi1uuDfi49wcf10uCY/E4vlprbo/8XXaNCoQcljqOA6deqks7YcHBzyjOhTkchkMnzzzTf45ptvtF6nb9++iImJ0VhuamqKjz76CB999JEuQiQiojKQ/iAWcdsfQ0hXvLpXJAHS78ciYf9z2LxTD8ZetoU1Q1qKCkzChe2PEfk8SVymggoBjpfhV/MQ3Bxr4P98FsG3pq9WvaEFQUDGnTuI27oNwWdPIdTCGC8szaC0Ub8GUUGCIBNXPDCrj2ATF6gkr+5x1bA2RjdPR/jWd0CrN2QocW1VuoS2oaEhunbtiiNHjuD69esa6/n5+QEA+vTpU6LtRUREYNeuXejUqRMaNmxYYN3o6GiMGTMG3377LVq0aJFvnbS0NPFiM7+5bYiIiOjNkpGapV0yGwCE/+q/wRITE+Hs7FykdczNzZGenl5KEREREVFxyEOSELn/AYxDs+CKauJyg7oWsO5dG4bOZgWsXTauHwrC9UNB4vNOQz3g2bZo1yF5KBXAzfXA6Z+BtNhXy03tAd9ZQJNhCE2Q4+df/oHT7d1wVaaKVSyadMTwLybB0Ig9aomIiKqa9AexiN304NU9otf+CukKxG56ANthXkxql1ByXAYu73mGJ9ei1JaHWj7EZdc9cKhpiQU+P6FLzS5aJbJVaWlIPHgQEdu24nlMJMJszJHm5pinXpyBNR6Y18cj03pI0zcBkD2UeDMX6+z5sOs7op6j2Rs3lLi2Kl1CGwBGjRqFI0eO4OTJk0hMTMzTA/vhw4cICAiARCLBp59+WqJtrVixAllZWfj8888LrZuWloa9e/eiffv2GhPax44dg1KZPf5+SZPtREREVPkZmRoUqYe2UTkNt1lRWFtbIzQ0tEjr3L59G7a2b/b/7C1btgzLli0Tr0OJiIjKS9bLNCQdDUL6vVjk7m8SYh4Fr3faw6pexRiJ5tbxEFzd91x83v7duvDuWL1kjT45ARz7Fnj58NUyPRnQ5jOg/RSoDM2x4cJTnNm6EQ3jbyHnVqbS0ATdRk9E044dS7Z9IiIiqpCELBXitj8u/N6QAMRtfwznma04/HgxZGYocPNoMG4eD4aQa/a/eONIXHbdC5NaKsxuPF3rRLb8eSBitm7B4xNHEWqsj5fmJkA19ftPWRJ9PDSrhwCz+oiSOQASCcxk+nirnh261ndEZw972L7hQ4lrq1ImtAcPHoxOnTrh7NmzmDt3LhYvXiyWCYKAmTNnAgCGDx+OZs2aqa27f/9+fPrpp3B0dMSBAwcK7CWdmZmJVatWwcXFBf3799c6vqVLl2LkyJGwtlaf1D0hIUGcu7FDhw546623tG6TiIiIqqZaPnZ4fuuldpUFoFZj+9INqIJr0qQJ1q9fj6lTp2o139+zZ8+wceNG+Pr6lkF0Fddnn32Gzz77DElJSSWejoeIiKg4lElyJJ0IQer1SED1anmYYRRO1bqFiR98AwuZRfkFmMvd06G4tPOp+LzNoNrw8c0756HWogOAY7OApyfUl3sPBrrOBqxd8TQ6GXM27kf1O7vQKPPVMNJmtbzw4bRvYGbzZv84j4iIqCpL83+ZPcy4FoR0BdLuxcC0ScWdSqOiEVQCAi6/wPndD6FIebU8Qz8VfjUOQ+UZi6lNxmqVyBayspB86jQCt2zCk7BARFibI8sx732WcJkz7lt44pmJOxRSA9S0McaI+o7o5umIlu42MNTnDxKKqlImtAFgx44d8PX1xZIlS5Ceno6PPvoImZmZWLZsGXbv3g1fX18sX748z3qrVq1CTEwMYmJisGvXLnz55Zcat/Hvv/8iKioK8+fP12qeRkNDQ8hkMoSHh8Pb2xtff/01fHx8YGpqilu3bmHhwoV49uwZWrdujZ07d5bo9RMREVHVYGii/eWYzEQftZu+2QntDz/8EB9//DF69eqF1atXo169evnWU6lU2LVrFyZPnoy0tDQMGzasjCMlIiIiAFBlKJB8NgwpF8IhZL3KZMfpJWKz/UGEuMdjZa+VFSaZff98OM7/80R83qqfO5r2cC1eY6kx2UOL31gPCLlGSaneHOg1D6jZEllKFVacfIwTu/ehTcwFGPzXXUiQ6qHNu8PQtv8gSKS84UlERFRVCUoVUq9HFV4xl/h/HyH5RDCkFobQM//vn4Xsv+cG0LOQQc/cEBIjvTd++OqwR3E4uvU2MnK9xUqJAvecziOlYSDGNh+JzjU7F/o+ZUVFI3LrFjw4ehAhBhIkmcgAeyu1OukSY9y1bICHZh5IMbRAUxdrTPV0RDdPB9Rx4FDiJSURBEHbWRsrHLlcjqVLl2Lbtm14+vQp9PT04OnpieHDh2Ps2LGQ5nPBv3//fnzyySdwdHTEwYMHC+yh3apVK9y9exdhYWFaD1MZFxeHHTt24NixY7h9+zYiIiKgVCpha2uLpk2b4r333sMHH3wAff2i/5Ygp0dNYmIiLCwqxv/oERERUfGF3I/FoeX+UCpUhVeWAG+NbwT3RnYl3m5lvqYQBAEdOnTApUuXIJVK0bhxY3h5eWHz5s0YPHgw7OzsEBwcDD8/P8TFxUEQBHTp0gUnT54s79ArhMq874mIqHIRFCqkXH6B5NMhUKW96nGULpXjX9uj2G1zCi62rljbYy2sjawLaKnsBFx6gVMbA8Tnzd9yQ6t+tYrekEIOXF0BnFsEyJNeLbeoAXSfm90zWyKBf1giZm67gpoPDqB2WqBYzdi+GgZPnQ5H99oleTmljtcVby7ueyKi4hOUKmSGpUAemAj580RkBiVCyNTivlBx6Euhl5P0/u+vehLcEFJzQ0hN9KtcsjUhKhX7tlxF8mP15YHWd/HS5z5GtB1aaCJbEASkXL6CgA1/4UnQU0RbmEAlVa+vEiQINHGDv6U34i1d0cnDAV09HdDZwwE2poal8dLKRlYG8GAP8PAAkBYPmFgD9d8GvAYABkY620xRrilKlND+9NNPMXbsWLRq1aq4TVAR8GKRiIio6gi+F4vDK14lsx1rWSD+RSoy05UQIEACifjX0FgP3T5poJNkNlD5ryni4uLQu3dv+Pn5afwfj5xL3NatW+PQoUOwsrIqwwgrrsq+74mIqOITVALSbkcj6VgwlAnyVwVS4Lj9Nayx2I4k/VTUsqyFv3r+BVvjijGU9uNrkTi+7oE4d2WT7i5oM6h20W7uCgLwYC9w/HsgIfjVckMzoP2U7LmyDYyRkaXEkhOPcfjIOXR9eQpmylSxaoOuvdB1+CgYyHR3o7C08LrizcV9T0SkPUGhQmZ4CuTPE7IT2MFJJU5gSwylgEQCQa4svLI29CRqCW69fJLeehaGkJoYQCKt2InvjNRM7P73AmKuKSEVXo28HGMShvCGN/FB1/6FJrKVSUl4smEj7h89iEgDARmGeTuoJkstcN3KB2k1G6FTQxd083REC7cqMpT4w0PAnvFARgIgkQKC6tVfIytg4ArAo7dONlWUa4oSDTm+fv16dO/enQltIiIioiII8o/B4ZX+UCmy75jWbmIPwx4v8eulubB/UQu14hrBUGGCTP00PLe5i5fVnqOu9Vy4o3P5Bl5B2NjY4MKFC1iyZAl+//13hIeH56lTo0YNfP755/jiiy+KNTIOERERFY0gCMh4HI+kw0HIinyVoIUEkHpbYKb0F9zIvAMAcLVwxZoeaypMMvvpjWicWB8gJrMbdalR9GR2+A3g6LdAyOVcCyVA02FAl1mAuSMA4MrzWMzcfhPVnp1B/8Q7Yk0DEzO8NeEL1GnRWgeviIiIiMqLoFAhMywZ8ueJrxLYWZoT2FJzQ+hZyZAVmqz1NqwG1oVpEweoMpVQJWdCmZQJZa6/qteeFzo/t1KAMkGu/mPEfIOVQM/c4L8Etyx7eHO14c7/S3ybln3iW6lQYs++swg9nQ6DLGNIkZ3MTjVIRJjnTQx4qwu6uA4r8Pru4ZlLuLduDRJjQ5BgagSYqk9FrBKkeGJaF/IGHdGmhTeWejqgtn0VG0r84SHg76Gvngsq9b8ZicC2D4D3twL13yrT0ErUQ1sqlcLW1hYff/wxRo0aBU9PT13GRq/hrx+JiIgqv6C7MTi8Klcyu6kDDLtH44tzXwAABOS9NJMg+8L41y6/ootLlxLHUNWuKR4+fIgnT54gOTkZ5ubmqFu3LurXr1/eYVVIVW3fExFRxZAZmozEw4GQP09UW27kYQ2hszVG3ZmA54nPAQA1zGpgXa91cDJ1Ko9Q8wi88xJHVt6DSpV9DdaggzM6DfXQ/sZkYjhw8gfg7t/qy907Aj1/BpwaAgCSMrIw//BDHD5/Bz1enoBDZoxYtWbDxnhrwhSY2VSMBL+2eF3x5uK+JyJ6RVCokBn6XwI7UIsEtoUhZLUs//tnBX1bI0AhIOLnq4UnngFIjPXhPLMVJAba9wQWslTZCe7/ktyqJDmUyVn/PZdnJ8WTM6FKLXz7WpEAUjNDteHO1Xp+5wx/bmYIiV7JksGCIGD/mdN4eDAOpik24nKFJBPhtf3Rc0Bz+NbOv0d2llIFv0cv8GDDeuDBJaTIBCj1XntfBQEp+rZIa9INrbp0RBdPZ1hX5qHEC5KVAfyfR3bSOp/7k69IACNLYOqjEg8/XmY9tAHAyckJy5Ytw9KlS9GmTRuMGTMG77zzDoyNjUvaNBEREVGVEng3BkdW+kOlzL4orNPcAR0/roNuO8cCyD+ZnbNcAglmXZyFU9VPQaYnK7OYK4P69eszgU1ERFQOsl6mIeloENLvxaotN6hhBsve7sioDnx67FMxme1s6oy1PddWmGR28P1YHFn9Kpldv201dPpAy2R2Zipw8Vfg4m+AIv3Vcts6QI8fgXq9gP/aORkQhW93+cM2/Cbei7sEAyH7ZrFUXx8dPhiOZm/1h0RaBYanrMCio6Nx7949+Pr6lncoRERUyQkKFTJDkrOHEA9MhDw4GVBoTmDrWRpCVssKMvfsJLaerVHeaw0DCWzeqYfYTQ8KzSPavFOvSMlsAJAYSKFvYwR9m4KTj4JCBWVKTtI7Uz0JnrsHeGpWwXEKgCo5e52sAgMDpKYGGoc7l1r899zMEJLXhvIWBAFHbp7G9T0hsHnpAlO8SmZHOT9B+0H18HmDr/K81wlpmTj7+CWunb4Cywu7YaqMQYZMHzCRZAeUE5qgD9RtiaZD3kW7RrVg8Hqiu6pRZALX12YPM14oIbveg72Az3ulHNgrJU5oz5gxAz169MD69evx119/YcSIEZg8eTI+/PBDjB49Gj4+PrqIk4iIiKhSe377JY6uvicms+s2d0C3T7xwMOggkjKTCl1fgICkzCQcCzqGvrX7lna4RERERBopkzKRdDIYqX6RQK77t/p2xrDo6QpjbzskZSZhzLHReBL/BADgaOKINT3XwNnMuZyiVhf6MA6Hl78aNadeS0d0+ah+4cNjqlTAnW3ZvbJTIl8tN7ICOs8AWowE9AwAALEpcszd/wDHbj5D15gzqJUWJFa3ca6BPpO/hoNbLR2/MsrP8ePH8fHHH0Op1NFco0RE9MYQslTIDE0ShxCXhxSWwJbl6oFtCT2bfBLY+TD2soXtMC/EbX+c3VNbguyk8X9/Jcb6sHmnHoy9Sm9EF4m+FPpWRtC3KiTxrVRBlZKlNqz560lvZVImVCmZhSe+U7KgSslC1ovUAioCUlP97CS3uSGiVHF4HvoSegk2aCC4IkMPkAsCoi0i0XBANUxoNUZ8zwVBwLOXqTj1MAqn/MNhdeUgvP6fvfuOj6pYGzj+O1vTe6EESEJC70iT3ptUOyqI0hEsFwvqa7tXRb0qFpArWJBiBUR671Wkd0ISAoT03rad8/6xYTdLekKAwHw/H4w758w5cxLYzM4z80zGaXz0Mmgk8gpsU6eSFdx869Di8dG069oRVXWfcKjkB54z4yHrhj83luWmlu/akgrOrqo+Ae3u3bsTGBiIn58fM2bMYMaMGezatYv58+fzww8/8M0339CmTRsmTJjA448/jpub281qtyAIgiAIQrUReSQ/mJ2/+ie8XSB9nm6MSq1ia8xWVKiQKf7D0HUqrOff6wHtuLg4jEYjAIGBgej19hXrFy9e5J133uHYsWN4eHjw+OOPM2XKlLtrPyNBEARBuE3kPDOZO66QtfuqQypNlZsWjz71cG0XiKRWkWnMZNKmSZxJOQOAv7M/3/X/jjrudW5X0x3EXkhl7ZzjWPIHo+u3CaD3mMaoSgtmR++G9TMh7ri9TKWB9hOg28vgYl0ZpCgKfx2L5Z2/TuGWHMXjiVtws+TYqrTsO4juTz2DVl+5FI2CIAiCINx8ismCIabAHtiXM8BcfFRW7aV3SCGu9tZXeAzCuYkvtV7vQM7JJPJOJiHnmlE5a3Bq5odLM79yr8yuKpJahdpTj9qz5AyCiqwgZ5sc9/bOMOSv/DYVSHduArnk3ZHlbLM1JXpcDl6oaEMguNx4Vh2kDRri9v5DlkbFVZOJM5l5pKXHE5R6igfM18hScshzVluDvfk81Xqa9epPmyefQudUDbJPm42QnVBKoDrB+tVSyr7oFaXI5Q+CV1KlAtrbtm0rVNa1a1e6du3KV199xeLFi1mwYAETJ07kpZde4rHHHmPcuHF06NChMrcVBEEQBEGoNi4eSWDj/FO2YHaDDoH0HtPENmCaZkgrUzAbQEYmzZBWVU2tFlJSUggJCbEFtNetW0e/fv0AOHPmDB07diQrKwsl/4PJvn372LdvH4sXL75tbRYEQRCE6k4xy2Ttv0bm1hjkHPveipJejXu3INy61EalVwOQbcpmyuYpnEw+CYCPkw8L+i2gnke929L2G8VFprP66+OY8wPyIS396PtsE1QlpZFMvgib3oKzqx3LGw6Gvu+BX5it6Fp6Lm+uOMm2M9folHKANhnHbMec3T3oN+l5wu4T42JlERp681avZ2eXvOpLEARBuHcpJguGS/YU4saYTLCUEMD21ltTiId6og/xLDWNd3lJWhWurQNwbR1wU697O0gqyZY+vCSKrCDnmAqv8s7//9SkRAzJebibnFGXMllAyTVjyTXjDIQBYahAXxNq1HQ4z2TJQ1YZca7pg76GN2p3HYa/kzG7F0h97qFDpa90ouuyub6a+nog2haYjitclpty8+6rcQK3QHCvAWmXIDOu9DpgXaHt7H3z2lEGVfaT8PT0ZOrUqUydOpUDBw4wevRovv/+e77//nuaNWvG+PHjefLJJ/Hy8qqqJgiCIAiCINxWEf8ksPG7Uyj5weyGHWrQ64bVP156LySkYvfPLkiFCi+9V1U1t1r4448/MBgM+Pn5MX78eJo1a2Y79vzzz5OZmQlA27ZtqVWrFjt37uTnn39m1KhRDBo06HY1WxAEQRCqJUVWyDmWSMaGaCxpBVZ3qCXcOtbEvWcd1G72AcocUw5Tt0zlaOJRwNrPWdBvAaFed0Za7fjoDFZ9eRSTwZp2um5TX/qPa4a6uGB2birs/C8c+B/IBXaADGwO/d+H0O62IllWWHowhlnrzqLNTOSRxM34G5Nsx+u1aM2AKS/i5u2DUDbR0dGlniNJkm0iY2nHRcYeQRAEAUA2WjDGZBRYgV1KANvHybb/tT7UE423yLBys0kqCbWbzqFfqSgKWy9vZfHOP6gV25pamWGAGa0Eegn8wyTqN6pLTFwmSdeyMGca8VUkaigWfFCjUZUc/tSqnQAn5DgzuXGJxbdNp0LtoUflfn2vb719f+8Ce35LTuqi+xpmI2Qn2gPTmQUC1Deuqr6Zq6ld/KyBarcAa7DaLQDcahR4nX9M7wHX233sF1gxsWzXV2RodGszSFbp1IKoqCgWLFjAjz/+SFycNaqvKAonTpxg+vTpvPLKKzz44IM899xzYtW2IAiCIAh3lQuH4tn0/WlbMLtRpxr0fKpwKsumfk3ZHLO5TNeUkelVt9dNb2t1snHjRjw8PDh8+DBBQUG28oiICDZv3owkSUycOJG5c+cC1hTk7dq144cffhABbUEQBEEoI0VRMJxPJX19tON+hhK4tArAo2+9QquR8sx5TN82nX/i/wHAQ+fB/H7zCfcOv5VNL1bi5UxWfXkUY541mB3UyJuBE5uhLip1p8UEh36A7R86roBxC4Re/wetRoFKbSuOSsrm1WXHORiZTNPM03RN2YtWsa5kV2s0dB31NG0GDkWq7vsw3gZdu3YtdqX2unXrSEhIoG7dujRr1gxvb280Gg0Wi4XU1FROnjzJpUuX0Gq1PPTQQ+h0Ja8OEwRBEO5OstGC8VKBAPaVUgLYvjcEsEvZT1q4ua4Hsr8/sAjf4w1pm/ggEvY+lKmGhfj6fnx/LY1LO88C4GFKp2PyPzTIvsAZlTULj1alx0nthrPaDR/FiaAa9anZrD1qjas9/XmmEcVYctZExShjTsqFpNwSz5PUMiptHmpNFmpVKmo5EZUlFrX5CmpSUEupqKVkJLKo8Bw7tR7cA4sOTBcsc/UHtbb8128yHNa9CnnplLz5uQROntBkWAUfpGIqFdB+5plnmDhxokMw2mQysXz5chYsWMC2bdtQFMU2E9LT05MnnniC8ePHo9Vq+f7771m8eDFLly5l5MiR/Pjjj7i6ulbuiQRBEARBEG6zC3/Hs+kHezC78f016flkI6QbgtlHEo7w/Ynvy3RNCQl3nTv9gvvd9PZWJ4cPH+bpp592CGYDLFu2DABnZ2c++OADW3n9+vV54okn+Ouvv25pOwVBEAShujJeziR9XRSGyHSHcn0DbzwHBKOr5VaojsFi4IVtL3Dg2gEA3LRufNv3Wxr5NLolbS5N8tUs/vriKIb8dOm1wr0YNKUFGp3a8URFgQsbYeObkHTeXq5xgvunQecXQG9/frNFZsHuKD7fdB7JkM3gpO2E5kTbjvvUrsPg6S8TEHxnrFCvjiZOnMioUaOKLA8KCmLlypUlLpI5ePAgzz33HHFxcWzatKkqmyoIgiDcIWRDgQB2VP4K7BL2Z9b4OtlSiOtCPdGUsi+0UDWuB7K/PbwA55NBtIt9FK1s/1nkOJnYoYeTOWY4GYtGNtEkK4L2KYdxVzKsJxWYOygZcwjUWGjepzvBj41C5VT0xATZYLamOM8wIqfnYklKwZKagSU9DznThCUHLHkaFEvJAWLFosJiccGCCxAANCzmTCNqUlFLKailFFRSKmpdLmpnBbWbGpWHHrWXKyofXyT3wPyAdaA1kF1wNXVV0DrBiHnw8+Moio4cuTN5lo5YFHfUUiZO6v24qPYgSSbredpbO9mjUgHtH3/8kT59+tChQwfOnDnDggULWLRoEcnJyQC2QHaXLl0YP348Dz/8ME4F/tL897//5YMPPuC7777jlVdeYebMmXz55ZeVaZIgCIIgCMJtdf5gHJt/OM31zIdNOtekxxOFg9lbYrbw6s5XMRRIJ1Rc6nEJa933u7yPXn1vf7C6du0aTZo0KVS+evVqJEli+PDhhba0ady4MQsWLLhFLRQEQRCE6smUmEPGxkvknkhyKNcGueE5IASnMK+i61lM/Gv7v9gTuwcAF40L8/rOo6lf06pucpmkxmWz8ouj5GVZU4bXCPVg8NQWaG8MZsefgg1vQOQ2x/Lmj0Dvt8CrjkPx6dgMXll2jJNXM6iTe5m+iVtxteTYjrfsN5juT45FqxeruipKr9ejVqsLlS9dupRNmzZx4sSJUhfGtG/fnq1bt9KiRQvmzJnDtGnTqqq5giAIwm1iD2Cn5a/Azio5gO3nbFt9rQ/xRC0C2LfV9UD2vKPzsJx3o0PMw7gZvWzH8yQze/UyR/QWZBRqGOJpnXac+jmRSJJy48UIyM6jYXgTmjwzDrcWLa0TFg0ZkHQ5P923Y6pvVVY8qqwEtFlxkJNcdCO1IGv0yIoPFnywKD5YFG8sik+BMm8sii8KhSd/OtJhIRCLEmhfBJ2b/6fg1tj5+49bU5ubUbsnoPZIL5TuXOWqLTTmWCkNB5J7/6+kbJNRFDfAAqhBsZArdyZNmohPLzXODW/9gptKpxxfu3Ytc+fOZd++fYA9iO3n58fo0aMZN24cjRoVPyNXp9MxefJkkpKS+Pbbb0VAWxAEQRCEauvcgTi2/FggmN2lFj1GNSzUsfz9/O/8Z/9/kBVrWqNONTsxInwE/9n/HzKMGahQISPbvrrr3Hm/y/v0qNPjFj/RnUelUmE0Gh3K4uPjbX3RRx99tFCdogZCBUEQBEGwsmQYydhyiey/46BAxkWNrxMe/YNxbu5X7N7DJtnEyztfZseVHQA4a5yZ22cuLf1b3oqmlyotIYeVnx8hN8Padwio584D01qhcyowHJaVANveh8M/WfcCvK5OB+j/AQTd53DNPJOFr7dGMG/HRWSLmS4pB2idccx23Nndg/6Tn6d+W7G1XmXl5had2vPbb7/l6aefLnOWRzc3N8aOHcvSpUtFQFsQBOEuIBvMGKIzMF5PIX4106EPcyONv7MteK0P9UTtIQLYdwJZkdkWs41vjn1D+iUT90cPJyC7nv04Ckd0ZvY6mVHJ2bRKP0fb9JM4yfnb4RTonrrmGQk2m2nWsjY1W3ujllPg4AzYGm/t65lLThdeFirJgEq6hsbZAG4yuKvBzRnczOAmgbsTuLmi6P2tAW6DHkuWPbW5pcBXOdOInJ85qIRvEJZ0A5Z0A6YSGwYqt/wA9/Ugd4G9va9/VbnpkNSlB75zTyeTvM2lQMZxtcNXRXEjeSv41k7GuYlvqde7mSod0P75558BayBbkiT69OnD+PHjGT58OFpt2XO0e3l5kZhY/MbrgiAIgiAId7Jz+6+xZeEZWzC7addadH/cMZitKArzjs1j7rG5trLBoYP59/3/RqvW0qtuLzZGb2RrzFbSDGl46b3oVbcX/YL73fMrs68LCgri0KFDDmULFixAlmXc3d3p379/oTqRkZH4+t7aTrYgCIIg3OnkPDOZO6+Qtesqisk+Cqxy0+LRpy6u7WogqYvf89ksm3l91+tsidkCgF6t56teX9E2sG2Vt70sMpJyWfn5EbLTrcFsvzpuDJneCr1z/lCYKQ/2z4Vdn4Ex017Rqy70eReajiiU0vFQdAqvLjvOxcRsvI2p9E/cjL/RvqK9XovWDJjyIm7ePlX+fPeyU6dOMWbMmHLVCQoK4ty5c1XUIkEQBKEqyXnWAPb1FOKmsgawQ72sK7A9dLeusUKprgeyvzoyl4T4JDrGDKV+cmuHc65ps7nqFEmA4TyTkhOwZBUOSKstMrXSMmmgSSKsXhKuNYxI0j9wqgKNUutu2Je6wJ7U19N9uwWCawBoSv77JGENvJYWfFXMsjXAnVk46C0X/P9sU8nbWcsgZ1ivUWLgWwKVq7Zw0Pt6wNtdh8pFS8pv50q+H4ACKb+fp9brHZC0xX9euNkqHdBWFIVatWoxduxYnn32WYKDg8tVPy8vj59//plPPvkEb2/vyjZHEARBEAThlju77xpbfjpj6/A161abbo81cAhmm2Uz7x94nz/O/2Ere7rp07zY9kVUkrXzp1frGVJ/CEPqD7ml7a9OunfvzqJFi3jggQcYNGgQO3fu5KOPPkKSJEaOHIlO5/jBIi8vj8WLF9O06Z2R9lQQBEEQbjfFLJO1/xqZ22KQs+0rQySdGvfuQbh1qY1KX3J2E4ts4f/2/B/ro9cDoFVp+bLnl3SoeWesSs5MyWPl7CNkpVq3dvGp5crQ51vh5Kq1pp08tRw2vQPpMfZKOnfo9i/oMLnQfoDZBjOfbDjHwn3RKLJCs8xTdE3Zi0axAKDWaOg6aixtBg5BUt26Qb17VXZ2NlFRUeWqExkZSV5eXhW1SBAEQbiZ7AFsawpx09WsEgNsmgAXxxTi7iKAfcexmLFkxfHb8ZX8EL2MJGMGba72o9e1iagVe5jSSxNDC/2PJOWkc/pyAHmKFssNl/LJyqVeZhqN/BPxb5OJ1qWE2Q3O3kUEqgMLlzl5Ve3e1EWQNCo03k5ovEvenkaxyFiyTCUGvS0ZRuQsY8mBaAXkLBNylgnTtexKt1/JNZNzMgnX1gGVvlZZVTqg/dZbb/HWW2+hqmCH/erVqzz77LMA9Ot363OuC4IgCIIgVMaZvdfYusgezG7evTZdH2vgkJozz5zHKztfYdtl+56MM+6bwZim5VtZIsCLL77IwoULHVKLK4qCRqNhxowZtrKkpCQOHDjAe++9R1xcHFOnTr0dzRUEQRCEO4YiK+QcSyRjYzSW/EAvAGoJt441ce9ZB7Vb6QPAsiLz7r53WR25GgCNSsPsnrO5v/b9VdX0cslON7By9hEykqzBS69AF4a90BpnNx1cOQTrZ8KVg/YKkgrajIGer1sHNG+w43wiry8/wdW0XJwsufRO2k5oTrTtuG9QXQZNm0FAcGhVP5qQLzg4mPnz5/Pcc88REFD6IGp8fDzz588v9yIcQRAE4daQc80Yoqyrrw2R6ZhiSwlgB7rYU4jfjQFsUx6c/hPOroacVHDxhkYPQJPhhSbd3VaKAsYsyLy+J3WcNb13Zv7XrHjkzDiMGXHsUuUyz8uDCzonGiV0pF/MIJzN7rZL6UmglvQryRkpbDS4ww37UDsZzQSlZhAmJVMnLAv3hl5InuH5wekbV1Xnl7kFgKb6ZzuU1Co0nnooZa93RVaQs0z5AW5D0Su/M4xYsowlZjgoe8Mgr7oFtBs0aFDhYDZA/fr1MZmsC+Ercx1BEARBEIRb7fSeWLYtPmsPZvcMousj4Q7B7HRDOs9teY6jiUcB66Dvfzr/h8Ghg29Di6u/xo0bs3jxYp599lmysrIAcHJyYvbs2Q6rsL/44gvef/99ACRJ4pFHHrkt7RUEQRCE201RFAznU0lfH11oNYZLK388+tZD4+tc5mv9Z/9/WBGxAgCNpOG/3f9Lt6BuN73dFZGTYWTl50dIT7CmpfTwd2bYC61xkeNh2btw4nfHCqE9of/7EFg4k0tajpH3Vp9m+eGrANTJuUy/pK24WHJs57TsN5juTz2DVlf9B0urk5EjR/LBBx/Qvn17PvroI4YPH45eX/hnkJeXx59//snMmTNJTExkwoQJt6G1giAIwo3kHJNjCvGyBrBDvdCHeJRpAl61dXYt/DkZ8tKsk+4U2fr1zCpY9yqMmAcNB1ZtGyxmyEkqEJiOyw9YJ9xQlgCmnGIvIwNbXZz5xseT83pXgtIa8tCZ4fjm1gKs/UrMkbhbNpOam8kZVIA9yK2SZQLTs6mbnUfo/a3xffhB9M3aWldd3+LV1NWBpJJsKcSp7VbseYqsIOeYHIPc+f+fczwRpbS9vW0Xsk5GuZUkRVFKy4ZerEuXLhEQEICzc+kffAYMGIBGo2HChAkMHTq0ore8p2VkZODp6Ul6ejoeHh63uzmCIAiCcE87vTs/mJ2vRa8gujzsGMyOy45j0qZJXEy/CICLxoXZPWfTqVanW97egu6GPkV6ejq7du3CbDbToUMHatas6XD86NGjHDt2DAB3d3dGjhx5O5p5x7kbfvaCIAhC2RkvZ5K+LgpDZLpDub6BN579g9GVMNh1I0VRmHVwFkvPLgVAJan4uNvH9A/uf1PbXFF5WSb+/PwwyVetQXt3XydGPNcA99PfwL6vwVwg3bRfA+j3PoT3LTQgqigK607G8dbKkyRlGVEpFu5P2U/rjOO2c5zdPeg/+QXqt21/S57tTnW7+hVZWVk0b96cS5cuIUkSer2eRo0aUatWLZycnMjLyyM2NpazZ89iMBhQFIXQ0FCOHTuGq6vrLWvn3Uz0KQVBKA85x4QhqkAK8bjsEgPY2hquthTiuhBP1K7aW9fY2+nsWvhlVP6Lor5B+X2Wx5ZCo0Hlv74hs0BQOt4xMF0wUJ2dVMz9y8YWyPby5Lxeh1duAJ2ih1MvzTqBULakYTGeQiWfxmTMLFTfI8dAUEoGIf41CRw1Cs/Bg1GJ39+3RPKi0+SeTi7bj18C5ya++D7VpFL3LE+folIBbbVazaJFixg1alSp54aFhREZGYkkSfz1118MHixWJZWX6CwKgiAIwp3h1K6rbF9yzva6Ze86dH4ozCGYfSH1ApM2TyIhJwEAXydf5vaZSxPfynX0bgbRp7h3iZ+9IAjCvcGUlEvGhmhyTyQ5lGtru+E5MBinMO9yXU9RFD499CkLTy8EQELiw64f3jEZZww5JlbOPkpijHVQ1M1Lz4gB0Xgcetc6YHuds481tXjbp0FdeHA8ISOP/1t5kg2nrHW8jSkMStqCj8H+fQxu2YYBU17E1at838O70e3sV0RHR/PAAw9w+vRpAId++HXXhzybNm3K6tWrqVev3i1t491M9CkFQSiJJduEsWAK8dIC2DVdbSnE76kAdkGmPPi0IeSlU3I0UQInT/jXOWv6cdkC2Yk3rKCOt/+xpQNPAFPl902+TnHyIkfnS7zsRUSuK5cMbsQrnpx2zeOC70XynNLQm1y478oAmsR3QSXLyMYLWIwnkc1XCl1Pa7ZQOzWTOhm51O7VG+/HH8e5Vasif78LVSf7cDypv50v8/nejzasdMrx8vQpKpVyvDyx8JMnT3L06FGefvppPvzwQxHQFgRBEAShWjq58yo7ltqD2a361OH+Bx2D2YfiDjF923Qy82ea1nWvy7y+86jjXueWt1eAqKgodu3axejRo293UwRBEAShSlkyjWRsiSH7YBzI9jEbta8Tnv2DcW7mh6Qq38Cgoih8eeRLWzAb4L3O790xwWxjrpm/vjxmC2a7uMKwGh/hsX2H/SSVFjpMhG4vg7NXoWsoisLvh67w7zWnycwzg6LQPPMU3VL3oZKtqRTVGg1dR42lzcAhSGLLvNsuODiYI0eOMHfuXL7//ntOnjzpME4pSRItWrTg2WefZdKkSWi192BwRBAE4RaxBbAjCwSwiyMVXIFtTSGuchHv0Zz+05pmvFSK9byv24LZaE0NrtyMDZEBlSZ//+n8P+6BDq/T1N7sjtOwPkpm28V0stMs+RVlNO6n0PltQe0Uh0pW0yK2B20u90NnTMdi2IrJeA4w3vAoCv6ZOQSlZBLk5oXP42PwevBBND4+N+d5hHJzae5P2qpIlDKkEpecNbg087sFrbKr9B7aZeXk5ETHjh2ZNm0ab7/99q26rSAIgiAIwk1zYvsVdv5in6nYum9dOo2s7xDM3nxpM6/ufBWjbO2oN/Vtypzec/B19r3l7RWs9u7dy9ixY0VAWxAEQbhryXlmMndeIWvXVRSTfVBT5abFo3ddXNvXQFJXLAg779g8FpxYYHv9Vqe3GB42vLJNvimMeWZWf32MhOgMAJy1OQxzfhWvtAIrfxoPgT7vgm/9Iq8Rk5zDzBXH2RORDICTJZeBqTsIyoyyneMbVJfB01/Gv15I1T2MUG5arZbnn3+e559/nvT0dKKjo8nKysLNzY3g4GA8PT1vdxMFQRDuSpYso0MKcXN88fsoI4G2lhv6EGsKcX2wCGAX6exq+57ZZZFeeJVzsZw8bwhU1wC3gMJlTl5QYNKeoiicjctky5l4tvydwNHLaTiucbUGsvX+W1Dp40CB4JRmdIzsh1tmAhbD7xjllELNcc0zEpSaSe3ULPzu74z3a4/j2qULklpd9mcSqoSkVeHzcAOSF50uNVGAz8MNkLS3dpLnLQtoX5ecnEx29s1LbSAIgiAIgnArHN92hV2/2oPZbfrXpeNwx2D2r2d/5f0D76Pk9/o61+rMZz0+w0Xrcsvbe6+wWCwkJyeTl5dX7DlJSUnFHhMEQRCE6kwxy2QduEbm1hjkbPtKCkmnxr1bbdy6BqHSV3xwcMGJBcw9Ntf2+vUOr/Nwg4cr1eabxWS0sHbuca5dtO4P7qTKYJjH/+GjyR/grdkS+n8AwV2KrG+RFX7YE8WnG8+Ta7KuMKqTc5kh6dtR52XZzmvV/wG6PTkWrU5ftQ8kVIqnpyctW7a83c0QBEG4K1kD2PYV2GUKYOenENeHeKJyvuVhqOonO7n8K609aucHpgsEqG2rqq+XBYDWucyXzDNZ2B+ZzJYzCWw9m8DVtNwizpLx8juHc8BWspTLAPhl1qbb2Y54paUgm5ZjviEaqrbI1EzLIiglEz+9M94PPYTXo4+iCwoq3zMLVe76vtgpv5+3rtSWsAa3879Kzhp8Hm6Ac5Nbv3CnzO8kO3bsYMeOHYXKly9fTkRERKn1TSYTly5dYtmyZYSGhpavlYIgCIIgCLfRsa2X2f3bBdvrNgPq0XFYqC2YrSgKc47O4X/H/2c7Z0joEN7t/C5alZh5XBXWr1/PJ598wt69ezEajaVXEARBEIS7iCIr5B5LJH3TJSwpBSZ1qSXcOtTEvVcd1G66St1j4amFfHH4C9vrl+97mccbPV6pa94sZpOFdXOPcfV8GgB6KYuh3u/iq40B95rQ+y1o8ZjDKqOCzsVl8uqy4xy9bK2vUiz0yz5EeOJh2znOHp4MmPwCoW3aVfXjCIIgCMIdxZJ5QwA7oZQAdm03ewrxYA9UTiKAXWapl+DQ93Dl77LXkVTQcDA8tvimNCEx08C2swlsORvPrgtJ5BgtRZ4XHuhCg5BLRJpXcCU7kiwFaqR40elcIzzT0kA5xI0heZ+sXIJSMqmRnoV7i5Z4T38c9/79UenFRME7mXMTX2q93oGck0nknUxCzjWjctbg1MwPl2Z+t3xl9nVlfmfZvn077733XqHyFStWsGLFijLfUFEUnnnmmTKfLwiCIAiCcDsd23KZ3b/bg9ltB9ajw1B7MNssm/n3/n+z/MJy2zljm43lxTYvOqzeFm6e999/n7feesthn8TSiJ+FIAiCcDdQFAXDhTTS10VhuuaY/c65pT+e/eqh8S37KpziLDmzhP8e+q/t9QttXmB00ztj6w6LycL6z7ZyOcq68lwr5TDE+z38na9B59eg83TQuRZZ12iWmbs9gjnbIjBZrP0Ib2MKj2fvQJ0WZzsvuFVbBkx+AVcv76p/IKFSNm3axOLFizlw4ABxcXGsWLGCnj17AjB27FieeOIJ+vTpc5tbKQiCcGezZBrzg9f5KcQTi1qVm08F2trujinERQC7fGQZIrfB3wvg/Pryr8xWZOuWKhWkKApnrllTiW8+m8Cx/Al+N9KqJTqG+tKroR9OXqf57eKX7EyLQGeSaHTVkxZRgbjkGoBrjvUsEnWTUghKycBNrcVzyBC8H38Mp8aNK9xm4daTtCpcWwfg2jrgdjfFplzvNEUNGpZ1INHFxYUGDRowZswYpk+fXp7bCoIgCIIg3BZHN8ew5w97Jpr7BgXTfkiILTiaa87l5R0vs+OKPYvNK+1e4akmT1XofrLBQOb69WRu3oIlPQ21pxfufXrjPmCAmL2a78CBA7z11lsAPPbYY7Rv3x6NRsP06dN55ZVXaJz/ASkrK4tDhw6xePFiGjRowCuvvHI7my0IgiAIlWa8kkn6uigM+Sm2r9OHe+E5IARdbbebcp/fzv3GrIOzbK+ntprKs82fvSnXrizLlWNsnLufSynhAGikXIZ4/5vAdvdB77/Ao1axdY9eTuPVP45zLj7TWqAo9FQu0CJ+J7LZBIBaq6XbE2Np3f8BpGJWdwt3hvT0dEaNGsX69esB6/ikJEkO45SLFy/mp59+YsCAASxdulTsqS0IgpDPkmHEEJVmX4FdSgBbV9sdfagnulBP9PVEALvCctPg2M/WQHbyDVmPJQ1IEshmSt282MkTmgwr163zTBb2RSaz5Uw8W88kEJte9LZtvq46ejYKoHejADqH+7I/bjvfHJtFREQENZOd6HrZj+A4V9QKgKFATRUeBifCr0YRkJmFPjQU72cn4zl8GGp393K1VRCKU+Z3nrfffpu3337boUylUrF48WJGjRp10xsmCIIgCIJwOx3ZFMPeZfYPGO0GB9N+iH3blLS8NJ7b+hzHEo8BoFFp+KDLBwwMGVih+2Vu3UrsazORMzKs6TFlGVQqMjdtQvX+B9SaNQv3Xj0r91B3gTlz5iBJEqtXr2bAgAEAJCcnM336dPr160evXr0czn/66afp06cPtWvXvh3NFQRBEIRKMyflkr4xmtzjSQ7l2tpueA4Ixin85q0iXnFhBf/e/2/b6/HNxzOp5aSbdv0Ky4xD3vw+m3f4E5ln3RNbg4EHGq6k5sPfQO02xVbNNVr4dOM5vt8ThZw/Puyq5DHWsh/p8hlbakzfoLoMfv4V/OsGV+2zCJWmKAojR45k+/bttkC2p6cnGRkZDud9//33fPvtt6xbt44hQ4awY8cOkbVHEIR7kiXd4JhCPKmkALaELsieQlxXzx2VXgSwKyX+FBycD8d/BdMN6dvda8F9z0Cb0RB7GH5+HPumxTfK/x02Yh5onUq9bUJmHtvOJrD5TAK7LySRayo6lXijGu70ahRA78aBtKrjhSQpbL60mTEbviEuNoqwK248dLU2brmF/x5Ian98c51pEnUIN3Mu7r174/3447h0aC9+5wo3nXgnEgRBEARBuMHhjZfYt/yi7XW7B0Jo/0CI7XVsViyTNk8iKj0KAFetK1/0/IIONTtU6H6ZW7dyZepz9gJZdvgqZ2ZyZepUguZ8jfsNAdt7zZ49exg5cqQtmF2a7t278+STTzJv3jyRblIQBEGoViyZRjK2xJB9MA5bJBZQ+zrh2S8Y5+Z+SKqbN1C46uIq3t5rX8gwtulYprWedtOuXyGmXNj3NfLO2WxNeoaI/GC2WjIxaJiF2v3/Z13NVIy9EUm8tvwEMSn2weOuzkm0v7wRY6Z9pXur/g/Q7cmxaHUiI0518Pvvv7Nt2zaCg4P56KOPGDhwIHl5eQQEOKbEfOqpp3jqqad48803+fDDD1m8eDFPPVWxTEqCIAjViTndgDEy3ZZG3Jxc9GpcwBrArmNPIa6r54FKr751jb1bWUxwZpV1NfalPYWPB3eF9uOh4SBQa61lDQfCY0tR/pyMlJeGjIQKxfZVcfJEGjHPel4RFEXh9LUMtpxJYMuZeI5dSS/yPJ1aRcf6vvRuFECvRgHU8XEBQFZkNl/axP/+mYv5XBxhV1zpkhxU+AKSE2pdY3zynGl8djNebha8xo/B66GH0QbeOemphbtPpQLa27Zts6V1FARBEARBuBv8sz6a/X9G2l53GBrCfYPswezzqeeZvGkyCbkJAPg5+/FNn29o5NOoQveTDQZiX5tpfVHcVi6KApJE7GszCd+1855OP37t2jU6dHCcOHB91q8sF73vVLt27fjwww+rvG2CIAiCcDPIeWYyd10la9cVFKP9d5vKTYtH77q4tquBpLm56bDXR6/nzT1vouSvBnqy8ZO82PbF27eyRlHgxB+w+R2U9Ktsz5jMuTxrphqVSmbAxBbUaVmz2OrpuSY+XHuGX/6+bCtzVslMcj2L+fgOjNfLPDwZMPkFQtu0q8qnEW6ypUuX4ufnx759+wgMDATAYDAUe/5//vMfNm7cKALagiDctcxp+SuwL6ZhiErHUlIAWy2hC3LPX4GdH8DWiQD2TZMZB//8CId+gKw4x2M6N2j5GLQbBwFFx9U2yW2Zmfc1XYx7GaD+G0+ySMeN9ZZ27OZ+ZlnaUHCqfp7Jwr6LyWw+E8/WswlcKyaVuJ+bjp4NA+jdOIAu4f64FVh1LysyG6M3smTrNzifSeO+a67ozH43XEFCpamHWt8MN6MLDSJWUqehB96zXsO9Z08krbb83ytBKKdKBbS7d+9e7jpRUVHs2rWL0aNHV+bWgiAIgiAIN92hddEcWFkgmD0slPsGBtte/x33N89vfZ5Mk3XvxXoe9ZjXZx5B7kXMWC2jzPXrrWnGS6MoyBkZZG7YgOfQoRW+393A/Yb9l5ycrKm2rl69WuT5OTk5JCYmVnm7BEEQBKEyFLNM9oFrZGy9jJxtspVLOjXu3Wrj1rV2laT83HJpC6/tfA1ZsQbPH234KK+0e+X2BbNjDsCG1+HqIRQFdmZM4ExuX8C6K0v/CS0JbulfbPWNp+J488+TJGTaA5zd/S10ubqejIsxtrKQVm3pP/kFXL1uXsp24dY4dOgQzzzzjC2YXRbDhg3jyy+/rMJWCYIg3DrmtDwMF/NXYEelY0kpJYBdp0AAu64IYN90igIx+6xpxc/8lb8PdgF+DaDdeGsw28mj2MtsOh3PhEWHQFHxJ134U+7icFzKg/GLDvHJgy0wyQpbziSwJ6LkVOJ9GgfSq3EArYK8UN2Q2UdWZNadXMm6NT/gdSGPVlk6wHG8RVJ5odY1Q61vjM4iEXptM0271MTnvf+iDw1BEG6lW55yfO/evYwdO1YEtAVBEARBuKMcWhvFgb+ibK87Dg+l7YBg2+uN0Rt5bddrmGTrAHMz32bM6TMHHyefSt03c/MW+57ZpVGpyNy0+Z4OaNesWZMTJ044lLm4uODm5saOHTsYM2ZMoTobNmxAp9PdqiYKgiAIQrkoskLu8UTSN15yHJBWSbh2qIFHr7qo3avm99iOyzuYsXMGFsU6EDoyfCSvd3j99gSzUy/B5nfg1HLAOja8J3MsJ3OtaTUlCfo805TQVkUHsxMzDbyz6hRrjl+zlbnp1EyrlUDu7j/JMFnXZau1Wro9MZbWA4aIvR2rqaSkJBo2bFiuOjVr1iQtLa1qGiQIglDFzCl5BfbATsOSWnxWCtQSurrXU4h7oavrLgLYVcWYDcd/s6YVjz/peExSWdOJtx8PId1L3CIFrCut//X7UVCK3j0b8ssVmPHH8SKP69QqOtX3pU/jAHo2CiDI26XI80wmI39u/I4jW9fifVUmRJGAgn1NNWpdI9T6ZkjqWqgUC8F5J7hvYDB+w2ahcin6uoJQ1cQe2oIgCIIg3PP+XhPFwVX2YHanEfVp07+e7fXPZ3/mwwMf2tJwdqndhU+7f4qLtvKdeHNyctmC2QCyjCW96D2Q7hVt2rThxx9/5LnnnnMYyGzbti2LFy+mX79+PPbYY4B1/6j33nuPLVu2cN99992uJguCIAhCsfIupJK+LgpTbLZDuXNLfzz71UPj61xl995zdQ8vbn8Rc/4qoiGhQ3i709uopJubzrxUeRmw+zPYNxcs1gF6RYH98gscy8nPDChB76ebEH5f4RW5iqKw4shV3lt9mrQc+8r2PsEu9E7aRuy2w7Yy36C6DH7+FfzrBlfpIwlVy8XFhYyyZDgqICoqqlCWH0EQhDuRoihYUg0YItPyA9jpWNJKCGBrJHR1PGwrsPV13ZG0IoBdpZIvWoPYR5aA4YYxGhc/aDsG2o4FrzplvuTaE9fIyDWXfuIN/Nz09GrkT+/GgXQJ88O1hGw+CTHRrP3rO679fQRdHvgCYA+06xRPZNcOqHUNkCRrgLumJp7OjzQkoOtLYiKgcNuVKaD9448/Mnv2bJ577jnGjRtnK1erxRujIAiCIAjV28FVkfy9Jtr2+v6RYbTuVxewfpD86shXzD8x33Z8WP1hvH3/22hVldsfSM7OJmXxEnKP22fWWiSJOC9X4jxcManVaC0WamRkUyMtG7WigEqF2tOzUvet7gYMGMCyZcvo2LEjY8eO5YMPPsDJyYnRo0ezY8cOnnjiCf71r39Rp04dIiIiSE1NRZIkW5BbEARBEO4ExiuZpK+PxhCR5lCuD/fCc0AIutpuVXr//df28/y2522ZZwYGD+Tfnf99a4PZsgUO/wTb3ofsAluDuPjxt+fHHD5iTwXe88lGNOxQo9AlrqTm8MaKk+w4b6/v7aLl5aYK6Ru+IzY9zVbeesAQuj7xNFqdvkoeR7h1GjRowLJly3j++efLdH5OTg6LFi2iSZMmVdwyQRCE8lMUBUtKni14bYgqPYCtr2sPYOvqeCBpb/FktHuRbIELG61pxS9uKXy89n3QfgI0HQ6a8vc1Np6KRyWBXNzy7BvU93fl00da0aK2Z6FU4gUZcrI5s2cHezcsI/dyPOC4FltnsuCq1CTHpz+S1p/rf5O8XQx0eaIpddv2KvezCEJVKVNA+4UXXiAzM5MZM2Y4BLQVpYz/um4gZnIIgiAIgnC7KYrCwdVRHCoQzO78UBit+liD2SbZxHv73uPPiD9tx8c1H8f01tMr1ZeRc3NJXfozyQsWYElNtZXHe7hwrE4AZo3auixJkkBRiPdy41QtCy0vJxCYkYN73z4Vvvfd4KGHHuLdd9/FZDLxyy+/8Oqrr+Lk5MSYMWNYuHAhO3fu5Nq1a8TFxdn6qh06dGDatGm3ueWCIAjCvUAxyeScSCTvVDKWHDNqFw1OTX1xae6PpFVhTsolfWM0uceTHOppa7vhOSAYp/Cq38/5UNwhpm+djiF/NXTfen15v+v7qFW3cNHCxa2w4U1IOGUvU+ug42T+yRvF32tibcXdH29Ak861HKrLssLiA5f4aN1Zso32fSOHNvNnQO4/nPltja3MxdOL/pOfJ7R1u6p7HuGWGj58OG+88QYzZszgo48+KnHBzdWrV3nyySe5fPkyL7zwwq1rpCAIQjEKBbAj07CkG4uvoFGhr1cghXgddxHAvpVyUqwT8A59B2kxjsfUemj+MLQfB7VaV+o2iVmGMgezAfzd9bSq41XkMUWWuXz6BCe2beTc/t0oZsc9tiVFISA9B2epLom1RpCr87Ct03Z2go4PN6RRp1olBsoF4XYoU0C7c+fOrFu3js6dOxc6NnLkSJo3b17mGx4/fpw///yzzOcLgiAIgiDcbIqicHBVFIfWRtvKujwcTsve1nRQOaYcZuyYwa6ruwCQkHi1/as80fiJCt9TNhhI+/U3kuZ/iyWxwCC2JBHv5c4/dfwcygp+NatV/BNcg/sSMmjYv3+F23A38PT0JCYmplC5SqVi7dq1vPvuu/zyyy/ExcVRs2ZNHn30Uf7v//4PrbZyK+oFQRAEoTS5p5NJ+f08Sq7Zmr1RASTIPZVM2l8X0dXzwHAhzWHpjdrHCc/+9XBu7o90CwYNjyYcZcqWKeSacwHoEdSDj7p+VOnMM2WWeA42vmld4VRQk+HQ912O/qNi/5oIW3GXh8Np1j3I4dSIhCxeW3acQ5fsEwNreDjxxv1epKz5gTMx0bbykFZt6T/5BVy9qn6iwJ1CNhjIXL+ezM1bsKSnofb0wr1Pb9wHDEClvztWp0+bNo2vvvqKzz//nN9//51HHnmEsLAwAPbu3UtiYiKXLl1i7969bNy4EYPBQN26dZk0adJtbrkgCPciRVEwJ+dhiEzDeD2FeEbxAWxJq0JXzyM/gO1pDWBrRAD7lrt62JpW/MQfti1RbLzqQbtnofVT4OJTqdtEJWXz3e5IjsSkln5yPpUEXs66QuUZiQmc3L6ZUzs2k5GYUOi4W56BOsmZOFGbSyFPkO5qz36j1ki07leP1v3qonMSOxULdyZJKcMya7PZzPHjx2nevLnDYKBKpWLx4sWMGjWqzDdcsmQJo0ePxmKxlH6y4CAjIwNPT0/S09Px8PC43c0RBEEQhGpJURQOrIzkn/WXbGVdHgmnZS9rMDs1L5XntjzH8SRrKnCtSsuHXT+kf3DFAsmK0Uja8uUkfTMPc3y8/YAk4TFoEF4TxvP9f17HaMizB7KLbjg6vROTv/sZja7wB5fyEH2Ke5f42QuCIFSN3NPJJC86bQ1il4HKVYtH77q4tq9xywapTyadZPzG8WSZsgDoXLszX/b8Ep26cv2KMslOhh2z4O/vQCkwHlSrNfT/EOp14vi2K+z69bztUKcR9WnTv57ttcki8+3OSL7YfAGjRbaVj2pfhyHaKA78+iMWkzWFulqrpdsTz9B6wAP3VJbAzK1biX1tJnJGBqhUIMu2ryoPD2rNmoV7r5437X63s19x+PBhevfuTXp6eok/Y0VR8PHxYdu2beVakCOUTPQphbtZadlWSq2vKJiTch1SiMtlCWBfTyEeJALYt40pD07/CQe/hav/FD4e1gfajYfwvlCJzDaKonAwKoX5u6LYcjaeGyN0atlMWPZFQnOicJIN5Kn0RLqEEOFaH4vKGmz+/NGWjGgdhMloIOLgPk5u20TMqePceDGVbKFOciZBqZmoVb5cqP8gqT6NHc5p0D6QjsPr4+7jVOFnEoSKKk+fokxTLTQaDW3atClUXq9ePdzcyrevk5ubG3Xr1i1XHUEQBEEQhJtBURT2/xnJ4Q32YHbXRxvQoqd15c/VrKtM2jSJ6IxoANy0bnzZ60va1Sh/ikrFZCJ95UqS5n6DKTbW4Zh7v374PTcVpwYNOL1zK0ajoeRgNoAkYTQaOH9gD0263ryBSEEQBEEQKkcxyaT8fr7MwWy3HnXw6BmESn/rVr+cST7DhE0TbMHsjjU7MrvH7KoPZpuN1kHhnR9DXrq93KM29H7bmqZTpeLUrqsOwez2Q0Icgtknr6bzyh/HOX0tw1ZWz9eF9/oFk7xuIXuPHLKV+9Wpx+DpL+NXN7hKH+1Ok7l1K1emPmcvkGWHr3JmJlemTiVozte496r++2G2adOGo0ePMnnyZNavX1/seYMGDWLu3LliLFIQhDIpMdvKqkh8Hm6AcxNfhzqFAtiRaciZpmLvIWlV6IKvB7C90NV2EwHs2y3tMhz6Hg4vhJxkx2NOntDqSeuKbN/6lbqNySKz7mQcC3ZFcvxKusMxZ60Kiwy1My7SJ2kbTrIBGVABMhCWE0W3lD1s9u9Fik992jhnsXnBHM7u2YkhJ9vhWgoK3tm5hCRmEJCRg0XjSmTISGJrdgbJ/netRqgnnR8Oo0aIZ6WeSxBulUp9eoqKiip3nWHDhjFs2LDK3FYQBEEQBKHcFEVh3/KLHNlkT1fd7bEGNO9hDWafSznHpM2TSMq1pgP3d/bnmz7f0NCnYfnuY7GQsXo1iXPmYrohNbZbz574T3sOpyZNbGURf+9HkiTKkDQHSZKIOLhPBLQFQRAE4Q6ScyLROvBdRtpAl1sazD6Xco7xm8aTacwE4L7A+/iy15c4aapwFY6iwNnVsPH/ILXA2JHWBbq8CJ2eA50LAGf3XWP70nO2U9oOrEe7wSEA5JksfLHlAt/ujMSSn6pdJcH4rqGM8M9k25z/Iyc9zVa39cAhdBs1ttLZbKob2WAg9rWZ1hfF9SkVBSSJ2NdmEr5r512RfrxevXqsXbuWiIgINm/ezIULF8jMzMTd3Z3w8HD69OljS0UuCIJQmkLZVm74quSaSV50Gp8nG6P1d8EQmWYLYstZJQSwdSp0wdbV1/oQT3RBbkhqEcC+7RQFIrdb04qfWwuK7Hg8sLl1b+zmD4POtVK3ysgz8evBy/y4N5qrabkOx2p4OPF052Aeb1eXzRu2EvWLfZKW6oavetnA4Ph16HJ9+OPtlEL3UcsmQuMzCErNxNlkQZY0XA7qzaWQQZhV9t/77j5OdBpZn7C2AfdUJhuh+rvlyfCjoqLYtWsXo0ePvtW3FgRBEAThHqUoCnuXRXB082VbWfdRDWnWrTYAB68d5Pltz9tWLQV7BDOv7zxqu9Uu+z1kmcz160n8eg7GyEiHY65du+I/7TmcW7QoVC83K6NMwezrz5GblVnmNt1LFi9ezG+//cbFixfRaDQEBwczePBgxo4dK/bPFgRBEKpU3qlk+yqu0kiQdzIJ19YBVd0sAC6mXWTCpgmkG6yrgFoHtGZO7zk4a5yr7qaxR2HDG3Bpd4FCCVo9Ab3eBI+attLzf8ex9acztu9dqz516DA0FICDUSm8tuw4kUn2VUeNarjz4bBGpO5YwZqFq2zlLp5eDJj8AiGt76u657qDZa5fb00zXhpFQc7IIHPDBjyHDq36ht0iYWFhInAtCEKllDnbigIpi86UeIqkUxdYge1pXYEtAth3jrwMOPazNZCddN7xmEoDTYZZ04rX7Vh6Jr1SXEnN4Yc90fz692WyDI6TH5vU9GB8txAGN6+FTqPCbDRybdUPlHTH68dMGfZgtoKMb1YWDeIy8c7Os3VJEwLbEtnkUXIUezBeq1fTdmA9Wvaug0Zb8ZTpgnC73PKA9t69exk7dqwIaAuCIAiCcEsoisKePyI4tsUezO7xREOadrUGq9dHr+f1Xa9jkq0zqlv4teDr3l/j7eRd5utnbtpE0ldfY7hwweGYS8eO+E+fhksRW7cAZCYnkXottshjRZEkCWc39zKffzfYtWsX8+fP58SJExgMBho2bMj06dPp2dO6St1kMjF8+PBCqSZPnjzJ6tWr+eKLL9i4cSO1a5d9coIgCIIglIcl01jmdOMoIJdjNXdlRKdHM27jOFLyrIOeLfxaMLf3XFy0LlVzw4xrsPXfcHQpDt+Q4K7Q/32o2dLh9IuHE9j8wxnbguLmPYO4/8EwsgxmPlp/lsX77ZludGoV03qF8VCoho1z3iXpsn37mJDW99F/0vO4epWt73Y3yty8xb5ndmlUKjI3bb6rAtqCIAiVVd5sKwVJejX6AinEtbXckNRi1esdJ+EMHJwPx34Bk2OKbtxqwH3PQNsx4F6j0rc6ejmNBbsiWXcyzpZh5rpejQIY1zWETqG+Dqujz+/fjSE7q8z3kBQjja6mUSc1C02Be2QHt+Zi01EkZbvYumOSBI0716LD0FBcPO6tLDbC3eWmBrSzs7NJT0/HbC7+zT8pKelm3lIQBEEQBKFYiqKw+/cLHN96xVbW88lGNOlSC4AlZ5bw0cGPUPJ7+d2CuvFJt0/KNNCrKApZ27eT+NVXGE47ztB2btsW/+nTce3Qvsi6ssXCkfWr2fPbYkx5uUWeU9w9w9p3KvP51d3HH3/MzJkzHcrOnTvHqlWrWLp0KY888ghvvvkm69atK/YaZ8+e5aGHHmLfvn1V3VxBEAThHiMbLWTtvILxcjmyp0igcq76tQWXMy7z7MZnbVupNPZpzDd9v8FN53bzb2bMgb1fwZ7ZYMqxl/uEQt9/Q6PBhVY4RR1PYuOCUyj5A7BNutai6yPhbD+XyOsrTnAtPc92bpu6Xswa2ZysIzv49f++x2KyTkJUa7V0f/IZWvV/4J5Pl2lJTytbMBtAlrGkp5d+XjVmNptZuHAhx44dw8PDg4cffpiWLVuWXlEQhHtWubKtACo3Le7dgtCHeIoA9p3MYoKza6yrsaN3FT5er4s1rXijB0BducxuFllh85l4FuyK5O/oVIdjeo2KkW2CeLZLCGEBRffFzh3cg4KCVOIa7XyKQkC6kZBkex9Uur83UWEjiIyRoEC8PqiRN50fCscvqAr6gIJwi1X6U9TVq1d5//33WbVqFbGxZV9hJAiCIAiCUJUURWHXbxc4sS0/mC3lB7M710JRFL44/AXfnfzOdv6IsBG81ektNKqSu0eKopC9Zy+JX31J3rHjDsecWrSwBrI731/swOq1C+fYtGAOidEF05KX5ZOzhN7VlQYdOpdy3t3hn3/+4fXXXwcolJJdURSmTp1K165d+frrr5EkiREjRjBo0CDq1KmDxWIhOjqaP//8k40bN3Lw4EHWrl3LoEGDbsejCIIgCHcZRVbIOZpAxvpoLBnGclYGp2Z+VdOwfLFZsTy78VkSchIAaODdgG/7fouHzuPm3kiW4cRvsPldyCwwHuTkCd1fg3bjQFN4FdClU8ms//YEcn4wu1GnGrQYGsKLvx7lz6P26zhr1bwyoCEPNvZk87efEXXkkO2YX91gBk+bgV/d4Jv7TNWUyt3DOmmgLNvYqFSoPT2rvlFVyGg0ct9995GVZV3JtnDhQrp27QpAWloaPXr04MSJE7bzP/roI2bPns3UqVNvS3sFQbjzWXLMZc+2AmgDXHDvFlR1DRIqJzMeDi+EQ99D5jXHY1pXaPmotZ8S2LTSt8oxmvnjnyt8vzuK6OQch2O+rjqe6lSPpzrWw9dNX8wVrK4lXCpbMBtAkjCp1chuLniOfJTLdfpw/GAG5hj75DavQBfufzCM4Oa+9/zEP+HuUamAdlRUFB07diQpKanMez8C4h+QIAiCIAhVSlEUdv1ynhM7rloLJOj1VCMa318Lk2zinb3v8NfFv2znj28+nmmtp5XaR8nef4DEr74i959/HMr1TRrjP20abj16FHuNvOwsdv/8E8c2r7MPNkoSLfsMoHajZqz9+r/5H6CL6lNJIMHAqS+i0d0b6aHmzZuHLMt4eXnx3HPP0aFDB7RaLefOneObb77h3LlzvP322+Tl5fHrr7/y0EMPFbrGpEmT+Oqrr3j++edZvny5CGgLgiAIlWaITidtdSSmKwVSQkqASgJL6eMikrMGlyoMaMdlx/HMhme4lm0dvK3vWZ/5/ebj5eR1c290aS9seB1ij9jLJLV1cLjHa+DiU2S1y2dTWDfvBLLZ+r0KbxdIVgtP+s7eSUq2fXJA13A/PhjRHNOlUyx57f/ISU+zHWszcChdRz19z/SJSqIoCpkbNpB7+HDZgtkAsox73z5V27AqtmbNGk6ePIkkSXTs2BFvb3u6+VdffZXjx62TTjUaDa6urqSnp/Piiy/SrVs3mjdvfruaLQjCHUzlUo4wyS3KtiKUk6LA5QNw8Fs4/Rfkbytn4xtm3Ru71ePWyXeVlJCRx8J90Sw5EENajuO9wgLcGNclhOGta+NUyl7ViqIQcXAfuZfjyn5zRSHPS4fqtRVsXhNDdkya7ZDeRUO7wSE0614btUbs3S7cXSr1zvv222+TmJiIp6cnQ4cOpUmTJnh7e6PXFz/bZN++fcyfP78yt7UxGAzMnj2bX375hYiICNRqNY0bN2bMmDFMmDABlar8/2Cjo6MJCQkp9bxPPvmEGTNmFHs8NjaWjz76iNWrV3P16lU8PT1p164d06ZNo3///uVulyAIgiAIZaPICjt/Oc/JnfZgdu/RjWnUqSY5phxe2vESe67uyT8k8XqH13ms0WMlXjPn8GESv/iSnAMHHMr14eH4TZ+Ge58+xQayFUXh7J4dbP9pgcNgrH+9EPqMm0qtBo0AOJWYx/nfvkUvG5ABFdi+GlQ6Gj4ygfptO1TgO1I97d69G2dnZ3bv3k2TJk1s5f369WPcuHF06tSJxYsXM2zYsCKD2ddNmzaNJUuWcPjw4VvRbEEQBOEuZU7JI319FLnHHbdRc2rkg+fgEMyJuSQvOl3y6i4JfB5ugKStmsHFxJxExm0cx9Usax8o2COYBf0X4ONUdHC5QlKiYNNbcOYvx/IGA6zpxf0bFFs19kIaa+cex2Kyrh6q3dyH39TZbP412naOp7OW/3ugCcOa+bNr6Y8cWb/KdszF04sBk18gpPV9N+95qrHcEyeJnzWr0ETLEkkSKnd33Kv5uNSaNWtQq9X89ddfDBw40FaekpLCwoULkSSJrl27smLFCry9vVm2bBmjRo3im2++Ye7cubex5cWrijHO69LT0/n4449Zvnw5ly5dwsXFhRYtWjBhwgQee6zkz0GCcC+wZBkxJ+SUfuJ1tyDbilAOxhw48bt1f+z4E47HJBU0GGhNKx7SAyrxXnrdmWsZLNgVxV/HrmK6YTJj5zBfxnUNpXu4PypV0WNEJtnEpfRLXEi7wLljB8jZcgJ9gqF8jZAkZO39bF0aYStSqSSa9ahNu8EhOLlWLn26INypKhXQ3rJlC2FhYezduxc/v7K9iWs0mpsS0E5KSqJXr16cOHGCCRMm8NVXX2E0Gvn666+ZPHkyv//+O2vWrMHJyalC13dxcSlxlZauhJnA+/fvZ9CgQeTl5fHuu+/SvXt3Ll++zHvvvceAAQOYOXMmH3zwQYXaJQiCIAhC8RRZYccv5zlVIJjdZ0xjGnasSUpeClM3T+Vk8kkAdCods7rNom+9vsVeL/f4cRK//Irs3bsdynWhofg/NxX3AQOQSvhAlBJ7lS3fzSXm5DFbmVbvROdHn6T1gCGo1NaZuptOx/PyQTPqOqOpnxNJaHYkTrKBPJWeSNdQLrqEYjloxqNhPH2bBFb021OtXLlyhZEjRzoEs69zdnZmxowZjB492mEQsziDBg3iyy+/rIpmCoIgCHc5Oc9M5vbLZO6+Cmb7oKW2hgueg0NxCreuDNX6u+D7VBNSfj+Pkmu27yaS/1Vy1uDzcAOcm/hWSTuTcpN4duOzXMq4BEAd9zos6LcAP+ebNOCelw47/wsH5oGlQJr1wGbQ7z9Qv2eJ1eMi01n99THMRmswW1vHlbfj40k3mm3nDGpeg3eGNkVKjWPpGy+RdPmS7Vhom3b0n/Q8Lp5eN+d5qjFTfDyJn31O+sqVDuX6Rg0xnDtvfVHUau38Ma5as2ahKmEhSnVw4MABHnnkkUL9wBUrVmA0GlGpVMyfP9+2cvvBBx9kxIgRbN++/Ta0tnRVOcYZERFBr169uHr1Kq+++ipDhw4lJSWFjz/+mMcff5zVq1fz008/VSpgLgjVmfFKJsmLzmBJL3tAsaqzrQhllHzRmlL8yCJrP6UgF19oMxruewa86lb6VoqisON8Igt2RbE7wnFyo1YtMaRlLZ7tEkLTWp4OdWKzY4lIjeBC2gXOp54nIi2CqPQoPNIk2pzzJijRGYffyNf7jqWR9ChOHWynBrfw4/6R9fGu4VrJJxWEO1ulAtrJycm88MILZQ5mA7Ro0YK33nqrMrcF4OGHH+bEiRM8//zzzJ4921bes2dPRowYwcqVK5k8eTI//PBDha5/6tQpgoODy10vMTGRIUOGkJqayooVKxg+fDgA7du3p0+fPjRv3pwPP/yQhg0bMmbMmAq1TRAEQRCEwhRZYfvP5zi9y7r3oiRB76eb0LBDDS5nXmby5sm2QV53rTtf9PqCdjXaFXmtvDNnSPzyK7K2bXMo19ari//UqXgMHoykLj5tlNlo5ODK3zn45+9YzPaB2vD299NjzHg8/Pzt9zJZ+NfvR0EBs0rDObcGnHMrvLpJUmDG70c58HqfUlNW3Q2ys7Np3759scc7dLCuVg8KKn3fsjp16tj2WBQEQRCEslBkhexDcWRsvIScZU8jqXLV4tGvHq7taiDdsPLGuYkvtV7vQM7JJPJOJiHnmlE5a3Bq5odLM78qW5mdmpfK+I3jiUqPAqC2W22+6/cdga43YRKcxQyHf4RtH0BOsr3cNQB6vQmtnwRVyf2ShEsZrPryKCaDBYAUDxU/ZiRhyf/2+bnp+c/wpvRvWoMj61exc8kPWEzW77lGq6PbU8/Qqt/ge377Ojk3l+Tvvyd5wXcoubm2cl1wMAGvvoJbjx5kbdtG7GszkTMyrKvQZNn2VeXuTq1Zs3DvVfLkg+ogOjqa8ePHFypftcq6or9nz56Eh4c7HOvYsSOrV6++Je0rr6oa4zQYDAwePJjLly/z+eef88ILL9iO9enTh86dO7NkyRLCw8N5++23b9LTCEL1kX04ntTlEWC2TraSnNUouZaSK1VxthWhFLIFIjZbV2NHbCp8vHZba1rxpiNAW7GFjgXlmSysPHqVBbuiuJDgOKbg4aThiY71GNMpGL0+lwup51hy5gIXUi9wIe0CF9Mukm3KdqjjlqOh03kv6sc6Bp7T3c00jc0k0e8xDIYNpbZL6zIASdLgW9uNzg+FUafxTczGIwh3sEoFtGvUqFGuYDZA8+bNK71fzbJly9i+fTtOTk688847DsckSeLDDz9k5cqVLFy4kOeee462bdtW6n7l8d5775GUlESHDh1swezrPD09mTlzJlOmTOHVV1/lkUcewdnZ+Za1TRAEQRDuVoqssH3JWU7vse4XKUnQ55kmNGhXgzPJZ5i8eTLJedZB2ADnAL7p+w0NvAsHjfPOnyfpq6/J3OT4wUhbqxZ+U6fgOWwYkqbk7lP08SNs+W4uaXHXbGUe/gH0GjuJ+m0LB2jXnrhGRq65UHmhZwTSc82sO3mNEa1LD+LeDQruh1jcsZK2urlOp9NhMplKPU8QBEEQAPIiUklfHYUprsAgpFrCvUtt3HvWQeVUfF9A0qpwbR2Aa+uAW9BSSDekM2HTBCLSrCknA10CWdBvATXdalb+4hc2w8Y3IPGsvUyth05ToetLoHcv9RJJVzL564ujGPOsAYIYrcwyKdcWzH64bRBvDm6CxpjFilnvEHXUnj7br24wg6e/jF+depV/lmpMkWUyVq8m4bPPMcfZ99dUeXjgP3UK3o8/jpSfRdC9Vy/Cd+0kc8MGMjdtxpKejtrTE/e+fXDv37/ar8y+zmg0FhpPy8nJYdOmTUiSxOOPP16ojru7+x3ZH6zKMc6vv/6a8+fPU6tWLaZNm+ZwTKfT8d577zFo0CA++ugjxo8fT61atW7GIwnCHU+xyKSvjSJrT6ytTFfXHd8nG2O8knXbsq0IJchJgSOL4e8FkHbJ8ZhaD80etKYVr31z4kAp2UYW77/ET/uiScoqkJlGMlLLP537G5vw9komIvMPHlt/wTbeVBwng4qWEZ40iHFHrdgn6Om83Gk5cCDBu44RcSGJpLpN0WqcMOWsB8VA4b+EerQuA1Dr6hNS28CAN3oWm9pcEO5GlQpoDxo0iCNHjjB27Ngy10lMTOTMmTN069atwvddsGABAL169cLLy6vQ8caNG9O4cWPOnDnD999/f8sC2kajkUWLFgHWdEZFefDBB5kyZQrx8fGsXr2ahx9++Ja0TRAEQRDuVoqssHXxWc7uzQ9mqyT6PtOE8PsC2X9tPy9se8E2KzbEM4T/9flfoUFeQ2QUSV9/Tca6dQ4pGjWBgfhNnoTXyJG2gcLiZKelsv2nBZzds8NWplKrue+BEXQc+RjaYlIEbjwVj0oCuaQ9N69fT4INJ+PvmYB2SakP7/VVWoIgCMLNZ0rMIX1tFHlnUhzKnZv74TkgGI3vnTUhPdOYycRNEzmbYg04+zv7833/7wlyr2Q/IeEMbHzTugKqoGYPQp93ypy6Mzk2i5Wzj2LIsU7cu6y2sNzFiFmCIG9nPhzZnK7h/kQe/pv138wmN8OeLrTNoGF0fXwMmlL6X3e7nCNHiP9wFnnHj9sL1Wq8H38cv6lT0BQx+U+l1+M5dCieQ4fewpbeWgEBAZw7d86h7I8//iA3NxeNRlNogQnA1atX8fDwuEUtLLuqHOO8fu3hw4ejLiK7VL9+/XB3dyczM5MlS5bw8ssvV+whBKEasWQZSVl6FkOk/XeOa/saeA2tj6RR4dxEf1uyrQjFiD0Kf8+HE3+AOc/xmGddaPcMtB4NrjdnksHFxCy+2x3Fsn8uYVIloNLHofOPR6WPw8U1AbMqmUwUNiQACSVfq7ZbbcJdQgk5r4FDMSgFtllxcveg44hHqO/iSeLb75CdkEBS03GgyKh19VFpJyIbz2MxRaAoeUiSE2ptGCpdAyRJA4oMvrVEMFu451QqoP3666/TuXNnHnnkEbp06VKmOhs3bmT06NFYLKWk7yiG0Whky5YtALRrV3Sa0OvHzpw5w5o1a5gzZ06F7lVee/bsIT09vcS2BQQEULduXWJiYlizZo0IaAuCIAhCJciywrZFZzi7z7papWAwe13UOl7f/Tpm2fqhoaV/S77u9TVeTl62+saYGJLmzCV91SprSsZ8aj8//CZMwOvRR0pdySLLFo5vWs/uX37CkGNfyVW7URP6jJta4qois0UmIiGrTMFssAa903KNpZ8oCIIgCEKZyTkmMrbEkLXvmsMMM21tN7weCEUf4llC7dsj25TNpM2TOJV8CgBfJ18W9F9AXY9K7BOZnWRNLf7Pj6AUGLMJagf9P4A6xW8FcqPUuGxWfn6EvPx07VfVFpa5GTGr4Jn7Q/hXvwboJAtbvp/H0Q32NNAunl4MmPIiIa1uXaa9O5Hp6lUSPv2MjLVrHcpdu3cj8JVX0Nevf5tadmdo164dixYtYvr06dStW5eEhATee+89JEmid+/e+PgUTr26cuXKQmnIb7eqHOOMiori7NmzJV5brVbTunVrdu7cyZo1a0RAW7jrFdovWy3hNbQ+bh0cJ7zf6mwrwg3MBji90ppW/MrBwsfr94L2EyC8X6nbnpRGURRis2JZffYIK08fIjL9Iip9HNr6iehUjvGr4nJ8eOu9CfcOJ9w7nDCvMMK9wwl2qcvFHTvZv+xXcjMzbOdq9HruGzycNr0GkPb1HK79+qv9+k6eIFknTEiSBrW+CWp9k6JvKqkw5FUsviYI1VmlAtqyLPO///2Pp556iq5duzJ06FAaNmyIu7t7sStqkpKSKnNLzpw5Y0sRVNIe19ePXbp0ifT0dDw9y/cBdP369axdu5aTJ08SHx+Pu7s7zZo148EHH2Ts2LE4FbHK6niBGbOltS0mJsbhfEEQBEEQykeWFbb+dIZz++3B7H7PNiWsbQCLTi/i478/tp3bo04PPu72Mc4a68oq09WrJH7zDekr/oQCk+zU3t74jh+P9+OPoSrDtiDxkRFsXjCHuIsXbGVO7h50f2IsTbv3RiqmP2QwW1j2z1Xm7bhITEpOmZ9ZJYGX872zUqksq7DFSm1BEAShohSLTPb+a2RsiUHOsa+aUXno8OwfjEvrgEL7ZN8Jckw5TNk8heOJ1jEFb7038/vNJ9QztGIXNBvgwDzY+V8w2Add8axjXZHd7EHrfi5llJ6Yw+//PYwpP5h9TS3zh5uR4EA3Zj3Ygrb1vEmMieb3Lz4m+UqMrV5om3b0n/Q8Lp5eFXuOu4CcnU3S/Pmk/PAjisFgK9eF1Sfw1ddw61q2xSR3uwkTJvDnn3/SpEkTmjRpwvnz58nIyECSpEKptbOysnjjjTc4evQoL7744m1qcdGqcoyzPGOUO3fuFGOUwl3vxv2yVe46fJ9sjL7enZe54Z6VfgUO/QCHF0J2ouMxvSe0GgXtxoFfWIUun5qXSkRaBOdTz1u/plzgXMoFDLJ9TEZbwturs8aZMK8wW9D6+ldfJ1/buIQsWzi7ewe//fYlGYnxtroqtZrmvQfQ6cHHkCIucvXxUZiuXEEBMjxCSGw5jHRtKMjF3PxGEji5aivwXRCE6q1SAe3g4GDbP9YlS5awZMmSm9KoksTE2D/s+Pv7F3tewWNXrlwpd0B7xowZPP/887z00ku4u7tz/vx5PvvsM6ZMmcKcOXNYvXp1oQ5hedt2+fLlEttgMBgwFPgAk5GRUcLZgiAIgnDvkGWFLQtPc/6A9QOCSiXRb1xTQlr78dmhz/jh1A+2cx8Mf5A3O76JRqXBFB9P0rx5pP2xDArsoafy9MT3mWfwefIJVK6upd7fkJPD3t8Wc2T9ahTF/omjWc++dB31NC4eRfc7sg1mfj4Yw/xdkcRnGIo8p8TnVqB/s8By16uunnzySZ588slij0uSRJ8+fW5hiwRBEIS7gaIo5J1LJX1NJObEXFu5pFXh1i0I9+5BqHSVW/FTVXLNuUzbOo3DCYcB8NB5ML/ffMK9K7DyVFGsK6A2veW4H6XOzbpHdscpoC1fmvX4a1n8+vEh1LnW/lG8WmaFu5FJvcOZ2rM+OrWKw2tXsnPpj1jy+2IarY7uTz1Ly36D7tmJaoosk77iTxJmf44l0b4QRO3lhf/z0/F6+GEkTaWG8O4qAwYMYPr06Xz55ZccOnTIVv7kk08yaNAg2+tZs2bx5ptvIssykiQxYsSI29HcYlXlGGd5r52amkp2djauxXwWKm6MslGjRiVuEwTQpk0b/vrrL4eyoUOHcvjw4ZIfAnjppZd46aWXbK8zMzNp3LhxqfXAuiq/YIr21atXM2nSpFLrubm52Va3X/fyyy/z888/l1p38ODB/O9//3Mou++++4iLiyu17scff8yoUaNsr8+dO0fv3r1LrQfw999/U7OmfZXxt99+y3vvvVdqvQYNGrB161aHsieeeIIdO3YUU8Nu/PjxvP322w5lQUFl2/Ji8eLF9OjRw/Z6+/btJX7uK+jKlSsOr999913mz59fYh0lz0z7wOZ8NeQtwL5fdt/hAzl//nyp93zrrbeYMGGC7fW1a9dKzKpQ0JYtW2jYsKHt9dKlS3nllVdKrVejRg2H9zeAiRMnsmbNmlLrPv7443zyyScOZY0aNSIrK6vUuvPmzeOBBx6wvf7nn38YNmxYqfXAOknH3d3d9vqzzz7js88+K7Vem0b1+Gt8CJxda8sQM/TnHA5fs4BaCzpX0FqAxfl/7Ip6j2jUuBFm2Wz9o5ixyBZMsglZcYwW13u+Hs7B9n5OxtEMYhfGAhIaSY1GpXH4o5bUxBLLYbfDhd4jZsyYwZJFizDkZCPfkJlYo9Ohc3FBtfMfen27kJkZGeTpPImr259rNTvxztq3yDz9Zqnfp2EdJtAuPP89QQG808v8b068R5T8HgHQvXv3QvHNXr16ifeIG1TFe4Qsl3UmRyUD2mD9IFhelfmAkpmZafv/olZJF3WsPIFgJycnevXqxeeff06LFi1s5W3btuXBBx9kwIABbNu2zbZ/uL5AGtLytq20dn344Ye8++67ZW67IAiCINwLZIvM5h/PcOFvezC7//hm1GnpxRu732B1pD1t5aSWk5jScgqWpCTi5s8n7ZdfUYz2lN0qNzd8nn4anzGjURfoVBVHURQuHNjDth+/JSvVvr+mb1Bd+oybQlDjZkXWS8sx8uPeaH7cG01ajmOiqvtDfTl2JY0co4WSelUS4OGsYWCzmiWcdXepSD+zOPfqALkgCILgyBSXTdqaSAwX0hzKXVoH4DEgGI1nyVuN3E4Gi4EXtr3AwThr+k13rTvf9vuWhj4NS6lZhKv/wIY3IGZfgUIJ2jwFPd8E9/JPoNvyTyyHfjiLW/5i90SVzKlwPX882p7GNT3ITktl9TeziT76j62Of91gBk1/ucQtWu522QcPEj9rFobTZ+yFWi0+Tz6J3+RJqO/AfZ/vBLNnz2bo0KGsXbsWs9lM9+7dCwWsGzZsyFNPPQWAh4cHnTt3vh1NLVZVjnFW9NrFBbSLG6O8du1aqW2pU6dOobLExESuXr1aat0bn1dRlDLVA2tK94Jyc3PLVNe9iM+FqampZaqbkpJSqCwuLq5MdXNyHDN3mc3mMj/rjVt7ZmVllaluUZMjkpKSylT3+rabBZW1vQUnR1x/Xda6RbWjTD8bd+uWHAX3y46Pjy9T3RuDPBaLpcztNZvNDq9zcnIq/KwpKSllqpuamlqoLDY21uF9oTi5ubkOr41GY5nbe+Pn94yMjDLVrSPFwZmT9gKVhkTFm6uZiYAx/0/hZwK4lHCJ9dHriUiN4ELqBU7Hnib2amzZ2mtWkI1eyIYa+Ojq0sTDyG+pXwNgLjbBeOH3iNjzZzm8dRNxCcVsqp2bB+nW97JLBjVHer5CqndDW3rxzNwU0rJLz2psKrCHuN5FQ60GHuI9ogzK+h5RVGZp8R5R2O14jyio0gHtiRMn0rFjxzKfv2/fvjLNiLhdatSoYdu/5kY6nY7Zs2fTsmVLzpw5ww8//FCmmX0VNXPmTIcZRhkZGUV2AgVBEAThXlEomK22BrNrNHVl2pZp7IndYy2XVLzR4Q1G+vch4b//JXXJUpQ8e+df5eKC9+in8B07FnUZs7ikxcex9ftviCowCKvR6en00OO0HTwMtaZwuqeEjDwW7I5iyf5LZBsdP0D0bxrIlB5htKzjxebT8YxfdAhJocigtpT/n08fboWT9s5cMVYVGjVqRGBg5Vekx8fHc+7cuZvQIkEQBKG6smQZydh0ieyDcQ6/bHX1PPB6IBRdndIntt1OJouJl7a/xN7YvQC4al2Z13ceTX2blu9C6Vdhy3tw/BfH8pDu0P99qNG83G1LyzHy4fJTuO1Nxke2Ds6mqmVqDa3Lm33C0KhVRB7+m/XfzCY3wz642XbwMLo8NgaN7t7ZTqUgY0wMCZ/8l8xNmxzK3fr0JnDGDHQlpIkWrHr16kWvXr2KPT5ixIg7blV2dVXcGGXNmjVLXaFd1Apxf39/ateuXep9PW6Y0CFJUpnqgXUctyBnZ+cy1XVzcytU5u3tXaa6Re3fXqNGjVLrAbi4uDi81mg0ZX5WtdrxM6Kbm1uZ6hb1WcvPz69MdYsKdJW1vQUXiF1/Xda6RbWjyLoWBTnHxPVFuT6uXniNCHPYLzswMLDIoNuNbvw7oVary9xezQ3ZNVxcXMpUt6i/Nz4+PmWq6+3tXaisVq1aZVp96XzD1ms6na7Mz3rjJHIPD4/CdWUzGLPBlGPNFAP4u+TXcwuEtmOh7dP4H5pI7Rx7FgdZkW2rrk2KCYtswSyb+e3Sb2zdYV9BbMm1oPEuHPKSUKEoKlDUtq85VybSM6wn43qH0iHEhzVr1rCn9opSn/P634fkK5fZ/ctCIv7ej5yThaezdYKQSqNB7+yCWmsdIzJn5mAyWpBVWiz+zUn1ccwy4evtj95Fi0arwmKWycsuOpiu1Thdfxh6P90Eoz5ZvEeUQbHvETfw8/MrVCbeIwqrivcIWZbLNEEOQFIqsfRFpVKxePFih3QopVmyZAmjR48uNCukrFatWsXQoUMBa6qYwYMHF3ne119/bds35+TJkzRtWs4PeSWoXbs2sbGxDB48mNWr7avA/vWvf9nSaGRlZRU7q/Ghhx5i2bJl+Pn5kZiYWOQ5RcnIyMDT05P09PRCHTpBEARBuNvJFplNP5wm4pB11qtKLTFgQjM8GqiYumUqp5JPAaBT6fik1ds02xxJ6qJFyAVmuktOTng/MQrfcePQFNGBK4rFbOLQqhXsX/YLZpN9ln9om3b0GjsJz4DCHfyY5Bzm7bzIH4euYLTYU+eoVRLDWtVicvf6hAc6DpxvOh3PjN+Pkp5rRiVZ04tf/+rprOHTh1vRp8nNSTdeHfoUFelnFmfx4sWMGTOmwv3Pu0l1+NkLgiDcTIpZJmtPLBlbY1AM9t8Dai89noNCcG7ud8dn8TDJJmZsn8HWy9YBW2eNM/P6zKNNYJuyX8SYDXu+gD1fgrnAygrfcOj3H2jQv1z7ZF+37sQ1/rP8FP3iwS8/mJ2rl3jg+VY0CvXGZDSwc/H3HN1gT3/o4unFwCkvEtyqbXGXvatZMjNJmjeP1J8WoRTYAkffqBGBr72Ga8cOt7F15VOd+hWJiYmcOXOGbt263e6m2FTlGOdXX33F9OnTS60zY8YMPv30U6DkscwbVaefvXDvEftl32EsZji3Fg5+C9G7Ch+vez+0HweNhpBmzuFC2gUupF4gIi3C9jXLVHqgDax9pPqe9anvFYZsCORwhBPnYtxQLG7kLxVAr1HxUNsgnukSQn3/whNYSpORlMi+P5ZyavsWhy3ovGvWovOjo2nQsTNZqQZOrz3F6R2XyFF7FbqGh58TjTrVpGGHGnj4OQYIo44lsmXhGQw5ZmuTFWxf9S4aej/dhJAWhYOvglBdladPUakV2p07dyYgIKBcderXr8/o0aMrfM+6deva/r+kYHDBY2XNzV+eNsTGxhIVFVVi24rrBF5vm1htLQiCIAhlY7HIbPruNBcP5wezNRIDJzRHHZzLU+smcjnzMgABshufx/VC/8W/SS4ws1DS6fB67FH8xo9HU8Iecje6fPoEmxfMJeXqZVuZm68fvZ6eQFi7ToUGwM/FZfLN9gj+OhaLXHD1l0bFo/fVYUK3UOr4OM68v65vk0AOvN6HdSevseFkPGm5RrycdfRvFsjAZjXvqZXZN5skSTc1fbkgCIJw51MUhdyTyaSvi8KSYs/SIunUuPeqg3vn2kjaklcV3gnMspnXdr5mC2Y7qZ2Y03tO2YPZsgzHfrauys4qsIerszf0mAn3PWPdn7KcEjLyeGvlKbafiOPRLL0tmK1y0zBhZjs8fJ1JvBTFmi8/IfmKfS/f0Dbt6D/5BVw8ypYh526imM2k/fEHiV9+haVAWmK1nx8BLzyP54gRSGrR36sqGzdurNQCm6pQlWOc5b22t7d3mYPZgnCnUiwy6WujyNpjTzl9fb9stcedu6XIXSsrAQ4vhEM/QIZjWuFcnQuRjQdwoe59XJBziLi2kQun55CYW7bFf2pJTT2PeoR7hxPmFUa4dzgNvBrgpQtk2T9X+X5PNDEpjmn8/dx0jO4UzJMd6+HjWv7sMLlZmRz883eOrF+FpcCENFdvHzo9+DgNO/ci5mQqf31xlCtnUwAJCgSzNZKFsPY1adylNjXreyGpip5IGNLSn6c/8uHi4UQijyaSl23CyVVLaCt/6rfxRyPGhoR7WKUC2rt2FTGjphQdO3YsV4ryGzVu3BitVovJZCI6OrrY864fq1evXpHpDSqjuAHRgntuR0dHE1xMeqjrbSt4viAIgiAIRbMGs09x8bD1g41KIzFwYnOya8UzZd0UUvJS0BsVHj7mwtADZshcjm2OrFaL10MP4jdxItoypnoDyMlIZ+fi7zm1w74NiaRS0WbgUO5/eBQ6Z8eg9JGYVOZsu8jmM/EO5W56DU92rMczXYIJcC9+77rrnLRqRrQOYkTrmzsZrzpasWIF99133025Vo8ePVixovTUYYIgCMLdwXglk7Q1kRijCuy9KoHrfTXw6FcPtXv1SHFtkS28sfsNNl7aCFiz0HzR6wva1WhXtgtE74b1MyHuuL1MpYH2E6Dby+BSODVuaRRF4fd/rvCf1acx5Jh5JFtPQH4w29lTx4Mz2uLurefw2pXsXPqjbcBXo9XRffQ4WvYdeMeviK8KWXv2kDDrIwwXLtjKJJ0On6efxnfCBNRuIpB4L6rKMc4bxyhLu7YYoxSqO0uWkZSlZzFE2tMDF9wvW7hFFAWu/A0H58OpFZhlEzFaDRdcnInQ6bjg5kWEiwcxpgyUjENw8lCpl6zpWtMhcB3uFU6IZwg6tb0/F5eex8K90SzZv42MPMc9iRsEujGuSyhDW9Wq0EIBkyGPw2v/4u+/lmHIybaV611caTf0QWo16kHEPyksen0/xrzrk6bsfR2fvBiaDm5KoyGt0TmVLRyn0app2KEGDTuUfRxLEO4Fld5Du7z279/Pt99+y/fff1+h+jqdjt69e7N+/XoOHSr+De/vv/8GKDZdT3GGDx/O+PHjS6wXE2OdXXxjwPr++++3LY0/dOgQPXr0KFQ3ISHBVr+8bRMEQRCEe43FLLPxu1NEHrEGs9UaFQMnN+eq9zleXP8i5txshhxWGHFAwi07015RrcZr5Aj8Jk1CW459dhRZ5sS2Texa8gN52fYV3jXDGtJn/FQCgkPt5yoKeyKSmbs9gr0Xkx2u4+2i5ZnOIYzuFIynS/lXPQkwdOjQmzbgXbt27QrvtyQIgiBUH5YMA+nro8k5kuCwT7a+vieeg0PR1Sp/WsnbRVZk3t77Nmuj1gKgUWn4vOfn3F/r/tIrJ1+ETW/B2dWO5Q0HQ9/3wC+sQm26nJLD6ytOsOtCEjoFHs7WU8NiDRK4eOgY8VIbNNo8ls/6kOhj9n0v/euFMHj6y/gG1S3u0nctQ2QUCR9/TNb27Q7l7gMHEPCvGeiCRP+kJBs2bOCbb74pNE4XGhpaQq2iZWdnl37SLVaVY5whISE0atSIs2fPcujQIZ5++ulC51gsFo4cOVLuawvCncZ4JZPkRWewpBusBWoJr6H1HfbLFqqWYswh/vAPXDi+iAvZV7ig0xFRw5dIrRajw0pkBUxF70nsqfck3CvcFrxu4N2A+l71cde5F3k+wKnYdL7bFcWq47GYLI6LELuG+zGuayjdwiu2vYzFbObktk3sW/Yz2akFMqtotTTtPhA3v/u5cCSTQxtOFqrrlJtIzbgDNOoSRPDLU1A5lb7AQRCE0t3ygPbFixdZuHBhhQPaAOPGjWP9+vVs2bKF9PT0QrMTz549y5kzZ5AkiWeeeaZc1165ciVBQUHFduSOHj1q26D8xnP0ej1PPfUUX3/9NcuWLWPGjBmF6i9fvhywbij/wAMPlKttgiAIgnAvsZhlNsw/SdSxJMAazB40uTnHnffx3vo36XHYxPB9Mt4Fx6ZUKjyHDMFv6hR0dcs3aJoYE83m+XOIPX/GVqZ3daXr40/Tond/JJV1wFaWFTadiWfutgiOXXH8IFbDw4kJ3UJ5rH0dXHS3vJt1VwkMDGTIkCEMGzaMfv364SQ+AAqCIAjFkI0WsnZeIXPHFRSTfS9DjZ8znoNCcGrsU61WBSuKwr/3/5uVF1cCoJE0fNr9U7oFlbL3b24q7PwvHPgfyPZUmNRoDv0/gJCK7R1skRUW7o3mkw3nyDVZ0CrwYJaOWvnBbGd3LcNeaE3ylZNsmPcFuRn2/lHbwcPo8vjTaLT31gQ/S1oaiXPnkrr0ZzDbV4o5NWtG4MzXcGl7b+4fXl5PPfUUycnJ7NmzxyFtdkkrjktyJ74PVOUY57hx45gxYwZ//vknX375JSqV4yrVTZs2kZmZiZOTE6NGjar0swjC7ZD9TzypKy6A2RrMFPtlV710QzoXUi9wIe0CEXGHuRB7kAhDMpkqCfSA3rvE+k5qJ+p71XdYcR3uHY6fc9kCz7KssON8IvN3RRZaXKBVSwxrVZtnu4TQuGbF/g4oisKFA3vY/csiUq/ZU6VLkoqgpvej1nfk/GEZlASHempzHgGJh6kZtx8/tzxqffABrh3aV6gNgiAUTVLKuKFgWloaXl5eDmU7d+4s9w03btzIhx9+WOk9a3r06MGOHTt48cUX+eyzz2zliqLw4IMPsmLFCp5++ml++OEHh3qrVq3imWeeITAwkNWrVxdaZS1JEm5ubhw9epT69es7HDMYDPTv358dO3YQFhbGiRMnCg2uJiYm0qRJE5KSkli5ciVDhw61HcvIyKBFixZcunSJH3/8kTFjxpTrmcuzObogCIIgVGcWs8z6b08SfTw/mK21BrO3G1dy9IdPGblXxrfAgmwkCY9Bg/CbOgV9OVdsmPLy2PvHUv5Z8yeKbB8Eb9y1J92ffAZXL+uHMbNFZtXxWOZuu8iFhCyHawT7ujC5R32Gt66NXnPn72dUHfoUKpXK9mHW2dmZ/v37M2zYMB544AF8fMqfIlWwqg4/e0EQhLJSZIXcY4mkr4/Ckm60lUtOGjz61MWtY81ql2ZUURQ+PPghP5/9GbDuEflJ90/oW69v8ZUsJuv+lNs/hFz7CiLcAqH3W9DycVBVrH9yIT6TV5Yd50hMGgAaBR7Pc6KGwfo7Wu+q4YHnmnFq268c3bDGVs/Vy5sBU14kuGUZ9/q+SygmE6m//ErS119jSbcH9jUBAfi/9CKeQ4faJkneDaq6X9GxY0cOHjxI+/bt2b9/v61cpVLRtWvXcq3UjoyMZPfu3XfUHtrXVdUYp8FgoEWLFpw/f54vvviC6dOn246ZTCY6d+7M33//zTvvvMPbb79drjaLPqVwuykWmfQ1UWTtLbBfdj0PfJ9ojNqjemwtcqfLM+dxMf0iEakRXEi9QESa9WtCbkLplbH2Yep61LUFrK9/re1WG3UF+iV5Jgt/HrnKgt1RRNwwJuPprOXJjnUZ0ymYAI+KT4aPOXmMXUt/JO7iBYdyz8CmmCztkS2Fg/XemRepcWU3AYlHUctGvB5+iIBXXxPbiQhCGZWnT1GmgPbEiRNZsGABTz/9NN99952tvOBAY3lVtgOZlJREr169OHHiBJMmTeLJJ5/EaDQyZ84cli1bRq9evVizZk2hgPOQIUNYvdqaduvTTz/lpZdecjju4eFBZmYm3t7e/Otf/6J9+/b4+Phw5swZPvvsM44cOULDhg1ZvXo1YWFFp+nav38/gwYNwmAw8O6779K9e3euXLnCu+++y7Fjx5g5cyYffPBBuZ9ZdBYFQRCEe4HFJLN+vmMwe+CExuxb/yY1/9hNwA3Zqdz79cPvuak4NWhQ7ntFHDrA1h/mkZlkX/HhXbM2fcZNoW6zloD1Q9Pv/1zhfzsuciU116F+45oeTOlRn0HNa6JW3XkrPopTHfoUBw4cYMWKFaxcuZJz584B1omHarWazp07M3z4cIYPH069evVuc0url+rwsxcEQSgLw6UM0lZHYrpcYIabCtw61sK9d13UrtVvRbCiKHxy6BMWnV4EgEpS8WGXDxkUOqi4CnBhI2x8E5LO28s1TnD/dOj8POgrlmbdaJaZt+MiX2+NwGixTvhTKzBV44k+2Tp5QOesodujPuz7fS7JV2JsdUPbtqf/pOdx8SjbXr93A0VRyNqxg4SPP8EYGWkrl5yc8H32WXyffQaVi8ttbGHVqOp+RXp6Olu2bKFXr14Oi2xUKhWLFy8u16riJUuWMHr06DsyoF1VY5wAERER9OrVi9jYWF577TUeeOABUlNT+fjjj9m+fTtPPPEEP/30U6HV26URfUrhdrJkGUlechZjVIH9sjvUwGuI2C+7IsyymcuZlx2C1hFpEcRkxiArcukXAGqYLYTrfQkLup/wOl0I97buc61X6yvdvuQsA4v2X2LRvkskZxsdjgX7uvBslxAebBtUqSx58VEX2bX0Ry4dP+JQrnWui6S5H5WmlkO5h4+OWhnH8d69BOc862RCtb8fNf/9b9yL2IZWEITi3fSAtoeHB1lZWbi5uZGRkWErL29nx3ZTSbopHUiDwcDs2bP5+eefiYiIQK1W07hxY8aMGcPEiROLbN+qVasYO3YsgYGBrFmzptDsxezsbFasWMH69ev5559/uHz5MgaDAW9vb1q0aMHIkSMZO3Yszs7OJbYtNjaWWbNmsWbNGq5evYqHhwft27dn2rRp9O/fv0LPKzqLgiAIwt3OYpJZ9+0JLp2wpo3SaFV0aZlB1sJ38UjMcTjXrWdP/Kc9h1OTJuW+T0ZSAlt/+JaLh+wrPdRaLR1GPEK7oQ+h0WrJzDOx5EAM3+2OIjHT4FD/vnreTO0ZRo+G/ndk6sLSVLc+xblz5/jzzz/5888/OXjwIIqi2L7vLVq0YPjw4QwbNoxWrVrd3oZWA9XtZy8IgnAjc2oe6euiyM2f+HadU0NvPAeHog2onkFDRVH44vAXfHfSuohAQuLfnf/NsLBhRVeIPwUb3oDIbY7lzR+BPm+DZ1CF23LschqvLjvO2Tj7ZIH6vi6MxZ30i9YxIY1eRYO2cRzb8AuW/JTaGq2O7qPH0bLvwGrZP6oow4ULxM/6iOw9exzKPYYOIeDFF9HWvHv3cL1d/YqKBrSfeuopZLlswZlbrSrGOK9LT0/n448/Zvny5URHR+Pi4kLLli2ZMGECjz32WIXaK/qUwu1S5H7Zw+rj1v7ufa+9WRRFIT4n3ha0vh64vph2EaNsLP0CgIfFQrjRRLjJZP2q8yasxRO43zceXP1uansjErL4bnckyw5fxWh2fO9uH+zDs11D6NM4sFKLC9LirrH710Wc2+uYiVhS+6Fx7oJKE2Lr02j1asLaBlDX6RqWL99GTrL3RT0GDSTw//4PjXfJ6dYFQSjspge033nnHT777DNeeOEF3nvvPVu5SqXijTfeoE+fPmVu3MaNG5k1a9YdOSPyTic6i4IgCMLdzGyysP5/J7l00hrMVqsVWl/9FY+zuxzOy2wdRvOZ7+PcokW572Exmzm8diV7/1iK2WAPUtdr0Zrez07Gu0YtUrKN/Lgnih/3RpORZ3ao372BP1N7htE+pHqnvK7OfYq4uDhWrlzJihUr2L59O0aj0fYBs27durbgdrdu3So8+fJuNGfOHObMmYPFYuH8+fPV8mcvCMK9TTaYydx2hczdV2z7ZAJoAl3wGhyKU4PqPYA49+hcvjn2je31O53e4cEGDxY+MSsBtr0Ph3+Cgqum6nS07pMdVPG9mXONFj7ffJ4FuyKR87/FapXExC4hNL1kIvqYdeBWpcnFw2s3cRdO2Or61wth8PRX8A2qU+H7VzfmlBQSv/qKtF9/gwJBUudWrQh8fWaF+qrVTXXuUwqVI372wu0g9ssuu3RDusNq6+t7XmcaM0uvDOjVeurrfQjLSqNBaizhJhNhRhP+FgsSQGgPaD8BGgyo8LYmRVEUhX0Xk1mwO4qtZ2/Yo1olMbBZDcZ1DaVVHa9K3Sc7LZV9y37hxJb1yAXjVCoPtE73o9I1QpKs4wm1G3rTuFMN6oW7kPLZx6QvW25vk6cnNd5+C49BxWTTEQShVDc9oF2cuy3Fz51OdBYFQRCEu5XZZGHdvBPEnMpP1SSbaHF8Dt5p9n2LTgWrCHz+BboOHF+he1w9d4bNC+aQFBNtK3P18qbHmPE07NSV+AwD83dFsvRADLkmez9FkmBgsxpM6RFGs9p3R+rMu6VPkZmZydq1a23ZdTIyMmzBbR8fHx544AGGDh3KgAEDSs2uc6+4W372giDcOxRZIedQPOkbo5GzTLZylasGj77BuLargaSu3quBvz3+LV8d+cr2+o0Ob/BYoxtWTZryYP9c2PUZFByM9qoLfd+DJsOtnZYK2nsxiZnLT3Ap2Z4Rp0lNDz4a2ZxrG65w4ZB1UFmRo8C0GUOOvQ1tBw+ny+Nj0GirX5r3ilCMRlIWLyHpm2+QM+3fB02tmgTOmIH7wHtnhXp16lfk5uaSmJhI3bp1b3dT7grV6WcvVH9iv+zi5ZnziEyPdAhaX0i9QEJO2fa5Vkkq6nnUI8wrzLrPtc6X8JjDBB1fhjr7hmvoPaDVKGg3DvzCb+pzGM0ya07EMn9nFKevZTgcc9NreKxdHZ7uHEyQd+Uy8Rhycji0ahmH1qzEbMizH5Cc0Th1QK1vgSRp8PBzolGnmjTsWAMPX2ey9x8g9vWZmGOv2dvVvTs1/v0e2oCASrVJEO515elTlGljgY8//piZM2ciSRKnT5+mQf4elWPGjKF+/frlalz9+vUZPXp0ueoIgiAIgnD3MhstrP3mOJfPpAKgthhocXwu3ukRAJwJgtW93Zn27P9oHdC63NfPzcpk19IfObFlg71QkmjVbzBdHnuK2ByYufwEyw5fwWQpsOJLJTGidW0mdq9PWEDF9p8Uqpa7uzuPPvoojz76KCaTia1bt7JixQpWrVrFtWvXWLhwIT/99BNOTk707duXYcOGMWTIEPz8bm4qNEEQBKFq5F1MI311JKZr2fZCtYRb59p49KqDyqnieyXeKX48+aNDMPuVdq84BrMVBU4th03vQLp9n2p07tDtX9BhMmgd99Utj4w8Ex+uPcvPB+3X1mlUvNAnnHGdQ9i55BwXDiWgKCYseTsx5x2znefq5c2AKS8S3LJNhe9fnSiKQtaWLcR//AmmGPv3S3JxwW/CBHyeHoPKqeI/C6FqLV++XCywEYRqSOyXbWWRLdZ9rtMuEJEaYQtcl2ef60CXQGvQ2iuccO9wwrzCCPUKRa/SQfRuOPgtnF0Dyg3vk/6Nof14aPEo6G/u2Eh6jomlB2NYuDeauIw8h2O1PJ0Y2zmER9vXwcOpcpPmzCYTh9et5sDyXzHmZhU4okXt1BaNU1t0Ti6EtQ2gUaea1AzzRJIk5Nxc4t7/gNRFi2w1VC4uBL4+E88HH7xnJrAJwp2iTJ/+Nm3ahFar5cUXX6Rmgb1/fvjhh3LfsGPHjnTs2LHc9QRBEARBuPuYDGZWzdrFtWvWQLLanEfLE3PxSr/IhZrwazcVCJxf2wABAABJREFUCc1qMq/v/6jvVb5JdIqicHrnVnYs+o7cTPsM34CQ+vQd/xwpzoH8689zrD1xzZZWE8BJq+KxdnUZ3y2U2l5iVW91odVq6d+/P/3792fevHkcOHCAFStWsHLlSs6dO8dff/3FqlWrUKvVGI1l2x9MEARBuD1MSbmkr40i73SyQ7lzM188B4ag8b07fj8vObOET//51Pb6pbYv8VSTp+wnXDkE62fClYP2MkkFbZ+GHq+Dm3+l7r/pdDxv/nmC+Az7Niztgr2Z9WALQn1d2b7kLOf2xyGbEzHlrEGxpNjOq39fB/pNnI6Lx92RvaY0eWfOEP/hLHIOFvxZSHiOHIH/88+L1VmCIAhV4F7cL1tRFBJyEgqtuI5Mj8RgMZR+AcBd524LWtuC195heOhuWPloyITDi+DgAkg843hMUkPjB6xpxet1rlQWmKLEJOfw/Z4ofjt0mRyjYwC9RZAn47qGMrBZDbTqyk1asFjM7F++jsNrfsOYm1rgiAq1vgUapw7UaRJEo041CW3lj1ZvT5+ee+wYsa++hjE62lbm0q4dNT/8EF1Q7Uq1SxCEiilTQPvs2bNMmTKFDz/80KE8NDSU2bNnM3To0DLfUKT4EQRBEAQBIH33ftb9GEGyphaQH8w+Poc0l2jm9VVxOEwizDucRX2+oYZrjXJdO/nKZTZ/N4crp0/aynTOznR+dDRyo068viOKrWfPO9Rx12sYfX89xnYOwc9NX/kHFG6rDh060KFDB2bNmsW5c+f4888/WbFiBX///fftbpogCIJQDDnHRMbWy2Tti4UCWVO0td3wGhyCPtTr9jXuJvv17K/MOjjL9vq5Vs8xttlY64u0y7DlXTjxu2Ol+r2g3/sQ2KRS907KMvDOX6dYfdyeNtNVp+a1gY14okM9JAl2/nKeU7tjsRgOY87dDVgHmzU6PT1GP0uLPvdGWm1zYiIJX3xh3S+zwI59Lu3aETjzNZyaVO5nIZSsV69eN+1a8fHxN+1agiBUvXthv+wMYwYRqRFEpEVwPvW8bb/rDGNG6ZWx7nMd6hlaaNV1gEtAyb+jE8/D3wvg6FLHbUwAXAPgvrHWyXMetSr+cMX451IqC3ZFsuFUnMPCAkmCPo0DGd81lHbB3pXuY2Qk57Lvj82c3b0cszHR4ZhK1wjvWr1o1r0xDTpYU4oXpBiNJM6dS/K380G2rn6X9HoCXnoR76eeQlLdO5kBBOFOU6aAdmJiIs2aNStUHh0dTVZWVhE1iidS/AiCIAjCvS3n8GGufTGX/XltSfNuCIDanEuThF/4vu9l9odLIEm0CWjDl72+xFNf9pU/JkMeB1b8xt9/LUe2mG3lDTp2wanrSD76J5kDOw441PF11fFMlxCe6lSv0mmshKr3zDPPMHHiRDp06FDmOg0bNuTVV1/l1VdfJS4urgpbJwiCIFSEYlHIPniNjE2XkHPsv79V7jo8+wfj0iYASXX3BE+XX1jOfw78x/Z6YouJTGw50bpSavds2Pc1mAuk3fRrCP3fh7A+lVohpSgKK4/G8u6qU6Tm2Pcj79HQn/dHNKe2lzOKorDnjwhObDuHKXsDsvmS7Tz/4FAGT3sZ36A6FW5DdSEbDKT8uJDk//0POce+r7i2Th0CXp6Be9++90RA/3bbvn07kiShFJhMUBHXryF+ZoJw57sT9ss2WAxsjN7I1pitpBnS8NJ70atuL/oF90OvLv/kd4PFQGRa4X2u43PKNtFGJamo617XFrgO8w4j3CucOu51UKvUpV8AwGKG8+utacWjdhQ+XqejNa1446GgubnfZ4ussOFUHPN3RXIkJs3hmJNWxcNt6zC2czCh/pVLZ24yWog8ksiRjQeIPbsWxXzV4bhaF0xYh+G0GXAfNet7Fvk7Ie/ceWJfew3DGfuKdafmzan10Sz0oaGVap8gCJVXpoC2k5MTV69eLf1EQRAEQRCEYuQeP07il1+Rsfcgx5pPJs27AQAa2YBPk6M81+UIiiQBEn3q9mFWt1nl+rAYdfQftnw3l/QE+4dCz4AaePZ+lP9dduLkHxcczq/l6cTE7vV55L46OOvK+CFQuO1+/PFH+vbtW66AdkE1apRvtb8gCIJQtXLPpZC+JhJzQq69UKPCvVtt3LvXQaW/u35Hr7q4inf2vmN7/UyzZ5jaYhIc/gm2/geyCgxuO/tAz9etq6TUlZt0F5uWyxsrTrDtnH2VkreLlreGNGF4q9q2gN/+lZEcXrcdU85GUOw/k7YPjKDLY6PRaO/uyX+KopC5bh0J//0UU6w9mKJyc8Nv8mS8n3oSle7WBFQEq4YNGxIYGFjp68THx3Pu3Lmb0CJBEKrKnbBf9raYbby5500yjBmoUCEjo0LF5pjNzDo4i/e7vE+POj2Kbr9s4UrWFYegdURaBDEZMVhu3Je6GAEuAQ4rrsO9wgnxDMFJ41SxB8pKhMML4dAPkHHF8ZjGGVo8Au3GQc0WFbt+Sbc2mPnt78v8sDeKyym5Dsf83fWM6VSPJzrUw9u14r9XFUXh2sV0zu67xrn9p8lL34lsuuhwjt4tiNYDHqP90K4OKcUdrmOxkPzd9yR+9RWY8if9aTT4TZmM34QJSJoyhdEEQahiZfqX2KRJE+bMmcOwYcNo0cLxzU3MbhQEQRAEoSR5p0+T+OVXZG3fjlmt53iLKaR5hQOg1Sik97/A1ym/ANY+xaMNH2Vm+5llnmmcmZLE9oULOL9/t61Mpdbg1r4vv5gaELHfCNj3TA71d2Vy9/oMa1Ub3S36UCzcXNOnT+fQoUOMGzeOxo0b3+7mCIIgCBVgis8mbU0UhvOpDuUurfzxGBCCxuvu2/5jXdQ63tzzJgrW1aZPNn6SF7xaI33bA+JP2E9UaaHjJOg6A5y9KnVPWVZYcuASs9adJbvAHpUPtKjJO0ObOmyzsn/leQ4s/wmL4ZitzNXbhwFTXiS4RetKtaM6yD1xgvgPZ5F7+LC9UKXC65GH8Z82DY2v7+1r3D3szTffZNSoUZW+zuLFixkzZsxNaJEgCFXhTtgve1vMNp7f9rzttYzs8DXTmMn0rdOZ3XM2zfyaEZEaYQtcX0i7QGRaJHmWvCKvfaMb97kO8w4jzCusXBnqiqUocPUf62rsUyvAYnQ87h1iXY3dahQ4e1f+fje4lp7Lj3ujWXoghsw8s8OxhoHujOsawtBWtdBrKj5pMTMlj3P7r3FmXxzp8fGYc/dhMZ4G7Bk9nD0C6PzoaFr07l5iDMsYHU3sazPJPXrUVqYPD6PmrFk4N21a4TYKgnDzlSmg/cQTTzBt2jRat26Nl5cXnp72N9YXXniBN954o8w3zM7OLn8rBUEQBKGKKSaZnBOJ5J1KxpJjRu2iwampLy7N/ZG0IuhZEXnnz5P01ddkbtoEgFmt51jzKaR7hQGgc1JzqdtuVqb8YqszrfU0xjcfX6YJc7LFwtGNa9jz6yKMufbZvtqgcNa4d+ZcnDMFA9nNanswtUcY/ZrWQH0XpS29F9WoUYM5c+Ywe/ZsOnXqxIQJE3j44YdxdnYuvbIgCIJwW1myjGRsjiH74DXyx4cB0NV1x/OBUPR17569MQvadGkTM3fNRFasD/1ovQG8EnEEae0Hjic2HgJ93wOfyqe1vJiYxcxlJzgYnWIrC/TQ8+9hzejX1DFjyfYluzm8+lsU2X5u/fs60m/iNFw8bsLg+h3MFBdH4uefk77yL4dy1/vvJ+DVV3Fq2OA2tUy4mW5G6nJBEKpGkftlP9X4lvYJDBYDb+55E8A28exG18sLBr1Lo1PpqO9V37a/9fWvgS6BN3+hoCkXTi63BrKvHb3hoAQN+kO78VC/F1TBPtAnr6azYFckq49fwyw7fg+7NfBnXJcQuob7Vfi5TQYLkUcTObvvGlfOpaJYcjHnHcRiOArYJ+05u3vT+bEnaN6zLyp18UFzRZZJ/flnEv77Kcr1MSVJwvfZZ/CbPl1kZBGEO5CklKE3J8syI0eO5K+//irt1LLdVJLEHtoVkJGRgaenJ+np6Xh43J0f8gVBEG6H3NPJpPx+HiXXbF0krGD7Kjlr8Hm4Ac5NxIqMsjJERpH09ddkrFtnnRmMNZh9vO0LpLnUBUDnrOb4/7N33uFRVnkbvt8pmUnvnQQSakLvXYqKiCiChaaACvayllV0d9Xdb21rWXetq4g0AUUEBAGRDtKlk4SWUNL7pE5/vz8mmcmQ3iCBc1+XV8w5bzmThJnznuf8nmfgL2w3bABAKSl5ffDrTOo4qU73SD93ht/mfUZmUgUrKa0HewOGcEgV7ZQvOSDKj6dGdeCmRjw4XW+05jmFQqFgyZIljBkzhgULFjB//nwSEhLw9vZm+vTpzJkzh549e17rYbZYWvPvXiAQtG5ks5WiPakUbL2ErHesByh9NHjf3g7XHoHXxee0Qa9j095/sTV5B/kWPT5KLaF+nVmafQhLmYJ/jzaC10/vR2GtULUU2gtuexvaDW30GEwWK1/vSuTjzWcxmh27BqYOiGDu7TF4uzpsw2WrlbUfL+Ts/tWULwYrlGpGP/QoPW4Ze138TqrDWlpKzjfzyZk3D1nvqKhzadeOoLmv4DGi5oouQfPPKy5evEhgYCBubm6NvlZJSQlZWVm0bdu2CUYmEHNKQVPQEvKyy1l7fi2v7X6tweeX51xXFK07+tpyrlWKZrarzrsAB7+BI4uh1Nn5Bldf6P0g9HsY/KKa/NZWq8y205l8vSuRfYm5Tn0uSgUTeoUxe3g0nUM8G3T9ipbi5/7IxKS3IMsmLPrDmPUHqVjEoHFzZ8Dd99F77HjUmpot2k1paaT95S8U79lrb1NHRhL27ju49enToLEKBIKGUZ85RZ3eTRUKBatXr2bjxo1s3bqVnJwcrFYrCxcuZPjw4URH133ncGJiIrt37679QIFAIBAIrgKlcTnkLI5zuBJd8VUuNZOzOA7/B2OFqF0LxkuXyP7sc3Rr14LVsXgqB4UTN/BF8gttlpYurkr29F3OIYNtPqBVavlgxAeMiBhR6z30xUXsXr6YY7+tt4vlAKd9urLDawAGpeOhZXSXIJ4c2Z5+7fya6iUKWgAjRowgODiYgIAAXnrpJV566SV27drF119/zbfffssXX3xBnz59ePTRR5k6dSoeHh7XesgCgUBwQyPLMvpTOeRvSMKS4xANJRclnqPa4DksHEl9feRkb9v7AX9NWECBQkIhy1glCcmiR84+YD/mrhIjryf9jr0uyjMUbn4Dekxukmqpkyk6Xll5nFOpBfa2SD833p3UnSEdApyOLcrL5cd/vkNOcry9zcOvDff+5S/4t4lo9FhaKrLVSsG6dWR++BHmDEdmucLbm8CnnsR36lSk6zwrvLXQlOJzRkYGu3btYsaMGU12TYFA0HBaQl52RbZe2mrPzK4L/lp/xkePt1mG+3Yk2ju64TnXDcFqhcStcOBrOPMrXFlVHtoTBjwK3e4BddM7melNFn46nMI3uxM5n+XsyOvrpuaBQW15cHBbgjwb9jMpyCnl9L50EvalU5Blq56WZQsW40nMpftAdtxTpXah9+13MmDCfWhref6XZRndmjVkvPU21sJCe7vP1CkEv/QSCnf3Bo1XIBBcHepUoV0d5RUy9cmy+e6775gxY4ao0G4AYvejQCAQNC2yyUrq2/ttldm1ILmqCHttoLAfrwJTSgpZX3yBbtVqqPD5rvT1xevhR9mdE0vGhSIA1G4KNnefT7ziCADeGm8+Hf0pvYJ61XgPWZY5vWcn2xfNozjfseM4x8Wfrf43ka612WYqJBjXPZQnRrana9j1bY/ZGK7XOYVOp2PJkiXMmzePY8eO4e7uzpQpU5g9ezYDBw681sNrEVyvv3uBQNAyMaYUkb8u0WmxGgnc+gbjfVs7lJ7Xj5Xjtr0f8NzpBQDI1VX1yjIfZ2Zzc0kpqFxh6HMw9Flwafziqd5k4b9bzvK/nYlYymw+FRI8MiyKF27tjKuL86aBc4f2s/6TjzDpHQvCbWJv5p7XnkZ1HYu5JYePkPHOO+hPVMgsV6nwnTqVwKeeROnjc83G1hppTfMKsR7ZtLSm372g5VFVXrbvhA64Dwip+cRmZMq6KZzKOVXn4/sF9+Pbsd8244iqoTQfji6Fg19DbqJzn9IFuk602Yq36efkXNdUZBcZWLT3Ikv2XSS32DmbOyrAnUeGRXFPnzaV5h11wWSwkHgkk/i96aScdqz7yLKM1XQGs34PssXRLkkKuo26hcH3TsPTP6CqSzphzskh7Y03KNq8xd6mCg4m9K238BjWeIccgUDQMJq8Qnv79u0sWrQISZJ4++23CQ4ObtQARWaNQCAQCFoCJSey6iRmg61Su+RkNu69g5p5VK0HU0YG2V9+Sf6PK8FksrcrvL3xf/hh3O+ZzC/fnCXjgq1CSOUqsS7mc5IUtiqgUPdQvrz1S6K9a3Z6yUtLYcv8L7l4/Ijj3pKK/b79OebVHaukRK2UuKdPGx4b0Z6oALGj9kbF29ubp556iqeeeor9+/czY8YM5s+fz/z58+nWrRtz5szhgQcewEcsVgsEAkGzYikwovv1AiWHM5wKhjTR3niPj8Yl7PpyzzDodfw1YQFINYjZ2BJtXg/wY5jXEDRj/gFeYU1y/4MXcnnlx+MkZjvE6S4hnrx3Tw96Rvg4HWsy6Nmx+BuO/bahwsDciR05k7GP3X7dWmybUlLI/PBDCtZvcGr3GDGCoFdeRlMP50FBy8NisZCTk4O+gnX8lWRnZ1/FEQkEgupoCXnZFdEZdHx29LN6idkKFPhofJpvUFWRfsJWjX1iBZhKnPu82kC/h6DPTPAIbJbbn80oZN6uJFYdTXGKMwFbzNuc4dHc3CUIhaJ+8whZlkk7V8FS3OC86chivojCuhdTcapTe8cBQxg65UH8w+vmKFPw22+kv/EmllyHLbr3hLsIfu01lN6iGEIgaC3USdD+9ttvWbx4MREREfz973+3t1utdbPgqMj06dOZPn16vc8TCAQCgaCpKT1Zj0UNyXa8ELTBnJVF9tdfk7/8e2SjY0euwsMDv1mz8Js5A7NSy8//PUZmmZitdIWfunxMqottB3FH3458ecuXBLlV//M0m0wcXPMj+1f/gKWCYH7eLYqd/kMpUnniqlYydUAkc26KItS76W20BK2PpKQk5s2bx4IFC0hPTwdsD8knTpzg2Wef5eWXX+aee+7h6aefFlXbAoFA0MTIJguFO1Mo3HEZ2ehYL1D5a/EeF4021u+6FEw37f0XBXVYwJUliQKlkk3+IdzZBGJ2kcHMvzYmsGjvRXubWinxzOiOPD6iPS5XWLZmJJ1n/X/fJzc12d6mULen1+2zGDmt13X5u7EUFZPz9dfkfvut07xV07EDQa/MFRVZrZyNGzfy/vvvs2fPHoxGY+0nCASCa0ZLyssGsFgtrDy7kk+OfEK+Ib9e51qxMjpydPMMrCJmI8T/DAfnwaW9lfujRsCAOdDpdlA2fU63LMvsOZ/D17sS2X46y6lPqZC4o3sos4dH0aONT72vXZWleEXcPPOxmn4nP+20U3ub2G4MnzqLsE5d6nQfS0EB6f/8JwU/r3WM3deXkL+/ideYMfUet0AguLbU6Z1u3759jB49mo0bN6JSOU75xz/+waRJk+jWrVuzDVAgEAgEgqbAarBgSivClFKEMbUYU0ohpvSS2k8sRwZ9XA6Znx9FHe6BS5gH6nAP1MFuSMobw4bcnJtLzrxvyFu6FLlC9YPk5obfgw/i/9AslD4+6ItNrP3PUTIv2vKIFK5Wfuj0IVla2+Jpv+B+/Gf0f/ByqX4H9sUTR9nyzRfkpaXY2wqUHuz0H0aSexReWhXPDmnHrKFR+LlfP3algtp5+OGHeeyxx5zEaJPJxE8//cS8efPYtm0bsizbHYG8vb2ZPn06c+bMQa1WM3/+fJYsWcLSpUuZNGkSCxYswF3kZAkEAkGjkGWZ0mNZ6DZccNiHApJWidfNkXgMDrsmeZhXi63JO5Bkucbq7HIUsszW5O3c2ch7bjudyV9+OkGqzjEn6x3pw3v39KBTsKfTsbLVyh+/rGbXskVYLeXuRCpUbiPpNeZ2bprS6boTs2WLBd3q1WR+/DGWLMcmVqWvL4HPPYvPvfciqZp+8V9w9Xjrrbd4/fXX6+UCeb39nQsErYWWlpd9KP0Q7x54l9N5DrFUq9QiI2O0GJGvzKOugISEp4snY9o1oxhakAZ/fAt/LICiDOc+F0/oNRX6z4bAzs1ye6PZytpjqczbnUR8WoFTn6dGxdSBkcwc0o5wn/oVFVRnKV6OWqskorNEUc4OLp3Y79QX2DaK4VNn0q5X3zq/lxft/p20v/wFc4bjZ+hx882E/v1NVAG1W5QLBIKWR51m72lpabzwwgtOYjbAm2++SYcOHeolaG/evJm3336brVu31m+kAoFAIBDUEavejCm1CGNKuYBdhDmrlBqeSeqGDMZLhRgvFWI3dFRJqEPccQn3QB3mYfsa4n5dLdpa8vPJ+XYBuYsXI5c4NgFIWi2+06fh/8gjqPz8ANAXm/j5P0fJumQTs3G1sKzT++S5pQFwa9tbeWf4O2iUmirvVZyfx/ZF80j4fYfj/ig46t2DAz798PHyYO7wKKYPjMRTe/3mOwqqZ8GCBdxyyy0MHDiQ+Ph45s2bx+LFi8nJyQEc0TbDhg1jzpw53HfffWi1Wvv5H3zwAW+//TbffPMNL7/8Mq+++ir//e9/r8lrEQgEgusBw6UCdOsSMZZ/9gMowH1gKF63tEXpfv1+XsuyzJHMIxyyFNRJzAawShL5luptkWsjr9jI/62L46cjjk1/rmolf76tMzOHtEN5RaV4UW4OGz7/N5dOHLW3Scog1O7j6DaiGzdNvv7E7OL9B8h4910M8fGORrUavwcfJODxx1CKvN9Wz/79+3n99dcBmDJlCgMGDEClUtndeGJiYgAoKiri0KFDLFmyhE6dOvHyyy9fy2ELBDckLSkvO704nQ8PfcjGCxud2u+IvoPn+zxPfG48z259FgmpSlFbwvZ5+dawt6pd02gwsgwX98CBryBhHViviMcL7GITsXtOAY1n1ddoJPklRr7bf4mFey6QWWhw6gv3ceWhoe2Y3D+iXmsxtVmKI0Gbzr606+5KxrnNnNrxG1aL4xjvoGCG3v8AXYaOQFLUbZ3NWlJCxvvvk79sub1N4eFB8F//gveECdfdvEcguJGok6BtMpkwGAy1H1gHMjIy2LFjR+0HCgQCgUBQB6wlJptwXUHANufUYZFQAUpPFyy6ulvTSR5q5CKTc6NZxpRchCm5qMK1JdTBbrZK7vCySu4QdxQuyjrfqyVgKSwkd+EichcswFrkeH2Siws+UyYTMGcOqkBHPtOVYrZVa2JFpw/Ic7PZPk/pPIW5A+aiVFT+OchWK0d+28CO7xZgNTjsplI1IWwPuAnX4Da8MaI99/Vtg1bdun6OgqZn/fr1fP755+zda7NdKxexAwICmDFjBrNnz6ZLl+otyFxcXHjiiSfIzs7mq6++EoK2QCAQNABzvh7dhguUHnO2oNR29sV7XBTq4OvX/cJkNbEp6VcWH/mcU8WXoR7rogpZxkeprf3AK5BlmV9OpPHGmlPkFDvmr8M6BPDOpO5E+LlVOufcwX38+r//oi90VFcpNf1QuQ4hZnAbRk7rjFTPrMuWjPHSJTLff5/C3zY7tXveegtBL72ES9u212hkgqbms88+Q5Ik1q1bx9ixYwHIycnh2WefZcyYMYwe7WwFPGvWLG655RbCw8OvxXAFghuWlpKXrTfr+fbUt8w/MR99hU1lMX4xvDrwVXoH9QYg2D2Y/4z6D3/9/a8UGAtQoMCK1f7V08WTt4a9xciIkU03OEMRHP/eZiueGefcJymhyx02W/F2w6GZhNiLOcXM353ED4eSKTU5C849I3yYMzyKsV1DUNXDndBuKb43jYLsymt03oGudBkcSlRPT+J3/cL2hWswV9CfXL28GTRpCj1vHYtSVXcBveTwYVLnvorp0iV7m/uQwYS+9Rbq0NA6X0cgELRM6iRoR0REsHr1ap599tnmHo9AIBAIBNViKTLaK65Nybavlrw6bLhSVl1FDZD69n7kUnMtFwDJVUXYKwOQTRaMacW2cZQJ6ebsK6q/rTKmtGJMacWUHCqzNlKAKtDNMYY2HqhDPVBoWp44ay0uJnfJd+TMn49V57AEQ63G5957CHjsMdQhzrup9UUm1vznCNmXbcK3WWtgZecPyXOzvf7n+jzHI90eqXInbMq5c/z06ccY0y7Y20oVGvb4DcYY3Y+/jOrAnT3DUN8g1u6C2lm2bBlgW9yXJIlbbrmFOXPmcPfdd6NW1/1h18fHh6ysrNoPFAgEAoEdq8FC4fbLFO5KAXOFnOwgN3zGR6Pt5HsNR9e86Aw6ViR8z7JTC8g0FdZ+QhVYJYnRbUbW65yMAj1/XX2S3+IclpleWhV/HR/LfX3bVJpfmQx6ti+ax/HNjgo0SeGBym0sSnUkHfsHM2pGzHUjZlsKC8n+4ktyFy8Gk2PzqSYmhuC5c3EfOOAajk7QHPz+++9MmjTJLmbXxogRI3jggQf48ssvueWWW5p5dAKBoKXkZcuyzOZLm/ng4AekFjvG4qvx5bk+z3F3h7srbbgfFTmKreFb2XRhE1svbSXfkI+PxofRkaMZ025M01VmZ5+1idhHl4LB2dYb90DoOwv6PgTezbMRR5Zl/riYx9e7EtkUl0HF9AZJgjGxwcweHk2/tr51rmiui6V4x75BdBkcSkCEK8d+W8/y139AX1RY4RhX+o2fSL/xd+PiWnmzXnVYDQayP/mEnG/mU/5iJK2WoD+/hO/UqXWu7hYIBC2bOgnat956K19++SV9+/Zl5MiReHt72/t++uknzp07V+cbHjt2rP6jFAgEAsENhSzLWAuNDsvwMuG4TtXUKgUuoe6O6uiwspzraizA/e7rRM7iuJrtyCXbcZJagaRWoG3vg7a9j73bajBjSi12qhQ3Z5ZcIXKDOaMEc0YJHM60X1cV4OqUye0S5oHC9drk+VlLS8lbuoycefOw5FV4+FAq8Zk0kYDHH0ddRVVDaZGRNR8fJaesSt2kKWVl53+T75aBUlLy5pA3ubvD3ZXOy9cVsuTzr9Af3Y5U4YcV59EZXdfbeO62HtwaE4ziOllsFTQdsiwTFhbGQw89xCOPPEK7du3qdb5er2fZsmW8//77+Ppev8KLQCAQNCWyVabkjwx0my5gLXSIhgo3FV5j2uLePxRJeX1+ZifpklhyciE/n1+DXnbeCNnFYGSKVcuHGjNFklSj9bgky3jKMGbwn+t0X1mW+f7gZd5aH0+h3nHfsV1D+MeErgR5Va70zkg6zy//fZ+81GR7m1LTAZX2ViSFK+17B3LLrJjrYn4lm83k//gjWf/9BEturr1dGRBA0PN/wvvuu5GULW/zqKDxpKWlMXDgQKe2csHFarVWdQr9+/fnnXfeafaxCQQ3Ora87HiMSQ6R9lrkZZ/NO8t7B95jf7oji1kpKZnaZSpP9HoCL5fqq8Q1Sg13tr+TO9vf2bSDslrgzK82W/HEbZX7IwZC/zkQexeomtjSvAyzxcrGU+nM25XE0cv5Tn2uaiX392vDQ0OjaBdQN6cdm6V4PvF70zlfjaV4RBdfOg8KJbp3IEoVxO3cxtqPvqMwx7G5XKFU0XPM7QyaOBk3b596vSZ9XBypr7yC4axDo3Lt1Yuwd9/BpZ5rBQKBoGVTpxXzV199le+//54jR45w9OhRp75Vq1axatWq5hibQCAQCG4AZFnGojPYK67LBWzrldbeVSC5KFCHOmy9XcI9UAW61Wsx1TXWH/8HY8ldccZWqS1hE6LLvkquKvzu64RrrH+111BoVGiivNFEOTZ8WY0WTOkVKrlTijBllIC1gsotgzmrFHNWKaVHHRN5pb/WIXCXifLNmT9pNRjI//4Hsr/+CktWdoUXpsD7zjsJeOpJXCIjqzy3tMjImn8fJSfFJmYbNMWsivmYfNdMtEotH478kJva3OR0Tn6xkYVLf0a3fQXu5mK7S2eu2pesHuN5aOLNDO3gL3KNBNXy+uuv8/rrr6No4C7rlJQUHnnkEQDGjBnTlEMTCASC6xL9+Xx06xIxpRU7GpUSHkPC8Bodec024zUnsiyzL20fi09+y660vU59kiwzsqSUB9Wh9Bv2MlKX8fgf+DfPJnyLJMtVitpSWbXQWzEPodF6V+q/kos5xcxdeYK9iTn2tgAPDf83oSu3d69smSlbrRz6ZTW7ly3CarGJ30q1BpXbCJC6IkkS7XoEcOsjXVFcB643Rbt/J/O9d50WryUXF/weegj/OXNQely/lvcCG56ezhmyWq1tg0dKSkpVh1NSUiKceQSCZsaWlx3nKEa4BnnZOoOOz45+xg+nf8AiO8TVwaGDeWXAK7T3aX/VxmKnOAcOL4RD34LuknOfyhW632uzFQ/t2WxDKDKYWX7gEt/+foGU/FKnviBPDTOHtGP6wEh83OpWQV+QXcrp/TVYigfZLMU7DwzB00+LLMuc/+MAu5ctJCe5ws9AkogZNpKh90/HO6h+fyey2UzO11+T9dnnYLbNfSS1moBnn8H/4YfFpjaB4DqkTk+dbdq0Yf/+/fzlL39h69at5OTk2C0eZbmmkraqEQvUAoFAcGMiyzKWXH2lzGtrSR0svzVKZ8vwcA9UAa5NYpXoGutP2GsDKTmZjf5kNtZSMwpXFdpuAbh1C0BS13/RT+GiRBPp5ZQNJZusmDKKHZXnqUW2hWGL82epJUdPaY6e0hMOcVnpo3FUcrexfVV6Ns6qSzYayV+5kuwv/4c5w2FhiSThNW4cAU89iSY6utrzSwuNrPn4CDkptsXtUk0hq2P+g841Cx+ND5/d/Bk9AnvYj88qNPDNhkOkb1xKRPFFypcZzZKS3I4jue+hB+gXHVjFnQQCZzp16tRgMRugffv2mMosSRtzHYFAILjeMWeXkr8hCf2pHKd2bVd/fG6PQhXgeo1G1nwYLAbWJ65n8clvOVuQ5NTnarUysbCY6d5dibz9Fac8y5GDXuQ/ssxfExZQINmysq2SZP/qKdvE7JGDXqzx/harzPzdSXz422n0Jkel6b192/DXO2KqXGguys1hw+f/5tKJo/Y2v/B2GEw3YzHZxPPIWD/GzumG8ipWxzUHhsREMt/7F0U7dji1e427ncAXXsSljchIvhEIDQ3lxIkTTm1ubm54eHiwY8cOZs6cWemcX3/9FReXq2d1LBDcaFTKy/Zywf+Bq5eXbbFaWHl2JZ8c+YR8Q769vY1HG/7c/8+Mihh19TWJlD/gwNdw8iewXBGX59sO+s+GXtPBza/ZhpCaX8qCPRdYtv8ShYYrXGZCPJkzPJo7e4bhUof5gclg4fyRTBL2ppFyOr9Sv4tWSYd+wXQZHEpItJf9552ccIpdSxeSeto5IzyqV1+GTZ1JULvq152qw5CYSOorc9FX+CzQdOlC2Hvvoe3cqd7XEwgErYM6b6Nu3749y5cvd2pTKBQsWbKEadOm1fmGS5YsqXJiKRAIBILrC9kqY84pdapQNqYWIesttZ4ruaqcqq5dwjxQ+mmbNedPUitw7x2Ee++gZr2HSxtPXNo4qglkixVTRolD4E6xidyyydkqz5JvwJJvcFpQVni5OIn8LuEeKLxcan1Ik00mdGvWkP35F5hSU536PMeMIeDpp9B2qvkBoKTAJmbnptrE7BIXHWtiPkHnmkW4Rzhf3PIFUd5RAFzOLeGrbWc4s2UdvXMPEVHBqrM0uCPjHn2SPt061ni/GwaTHuJWQ8I6KMkDN1/oMh5i7wZ1ZVvRG5GkpCSCgur273Ts2LGoVCoeffRR7rrrLqc+pditLRAIBNViLTVTsPWSLfuywsY7dZg73ndEO0WvXC9kl2bzw+kf+D5+GbnGfKe+ULOZaboiJoXfhNdtL0FY7yqvMWrwS2ztPYdNe99na/J28i16fJRaRrcZyZjBf661MjshvYBXfjzOsWSdvS3cx5V3JnXnpk5Vb/o7e3Avm778ryN/UpLoNnI8l850wmKy/e7CO/ty++PdUTZgk2ZLwZKfT9Znn5O3bJm9CgtA2707wa/Oxa1Pn2s4OsHVpk+fPixYsICnn36azp0729v79u3LkiVLGDNmDFOmTAFsm6r/8Y9/sGXLFvr163ethiwQXLdUm5f9QEyjN+HXlUPph3j3wLuczjttb3NVuTKn+xxmdJ3RdLnXdcGkh1M/2YTs1MNXdErQ8VabrXiHW6AZN1efSNbx9a5EfjmRhsXqXEQxsnMgs4dF18kZr66W4l0GhxLVKxC1i+M5O/vSBXYtW0ji4YNOp4R26Mzw6bOIiO1e79clW63kLV5M5kf/RjaUbRJQKPB/dA6BTz6JJDYuCQTXNVfdFywpKan2gwQCgUDQqpAtMuasEufK69RiZGPt4rXCXe0QrsvttX01N4ybh6RU4BJmE+3LK5Zli4w5uwRjcs0/T2uBEX1BLvp4R2agwkPtJHBX/HnKFgsF69aR9dnnmC4521x5jBpF4DNPo42NrXXMJQVGVv/7CHlltqPFLvmsif2EAtdsOvt25otbviDQLZCzGYV8seM8B/Ye4qasHQwwOXK5ra5eDHlgNkNuvga7pFsqCeth9ROgzwdJAbLV9jV+LWx4BSZ+CZ1vv9ajvOZER0ezePHiOm2oPHfuHImJiWzYsIGff/6ZO+644yqMUCAQCFovskWm+EAaBZsvYi12iIYKTzXet7XDrU9ws24wvBaczj3N4rjFrE/8BdMV+dg99QYeLCzh5o4TUE14HgI61Ho9jdabO0f9k/qkbhrMFj7bdp7Pt53DXLboLEkwc3A7/nxbZ9w1lZduTHo92xfN4/iWjfY2D18/hk59iv1rjRhLbE4koR28uePJHqhcWudGLtlkIm/ZcrI++wyrziH0q4KDCXrxBbzGj0cSbis3HGPHjmXlypUMGjSIhx56iLfffhutVsuMGTPYsWMH06dP58UXXyQiIoJz586Rl5eHJEl2kVsgEDQNVeZlDwrFZ3z0VcnLTi9O58NDH7Lxwkan9nFR43i+7/OEuF89q3PyLsKh+XB4EZTmOvdpfaD3A9D/EfCrfzVyXbFaZbYkZDJvVyL7k5zH4KJUMLF3OI8Mj6JTsGc1V3BQX0txp3OzMvn9hyXE7doGFdx9/cLaMGzqDDr0H9ygdSBjcgppr71GyYEDjtfVrh1h772La8/ms2sXCAQtB0luiGd4GQsXLmTEiBG0a9euzuf83//9H2+++SYWS+0ih8CZgoICvL290el0eHldHbsWgUAguBLZbMWUWeKovE6tuqK4KhpaUSxofMW7QqPHcOYgposnsORfRC7OBmTchw0j8NlncO3Ro9brABTrDKz59xHy0ksAKHLJ4+eun1CgzWFAyAA+HvUxiRkWPt9+jh3HLzA0dx+xRQmO1yFJxNw8jlsfmImLq1uDfhbXJQnrYXm5QFvV1Kzs38iUpdBlXKNv15rnFPVxCNLr9Rw9epRZs2YREBDA7t27r8IIWzat+XcvEAiaF/3pXPJ/ScKcWeJoVCnwHB6O58gIFJrWKYhWhVW2sit5F4vjFrM/fb9Tn1KWubW4hAdLzPTo8SAMfgq8wpptLIcv5fHKj8c5m1lkb2sf6M6/7u1B37ZVW5BmJJ7jl08+IC812d7Wof9gBk6azYYvz1JSYMsuDY7y4q7neuGibX0Z57IsU7RjB5nv/QtjhcIISavFf/Zs/B9+CIWbmEtea67VvEKn09G9e3dMJhOSJHHkyBGCg4OxWq2MHj2anTt3AjhFJQ4cOJCdO3eiVquv2jivZ8ScUlBlXvbdHXDv3/wist6sZ8GpBXxz4hv0FofYGuMXw6sDX6V3UNVOKnWmrs5pViskboOD8+DMRtum9IqEdIcBj0K3e8Gl+T6zSo0WVh5OZv7uJBKzi536/NxdeGBQWx4c1JZAz5or1RtqKV5OSYGO/at+4NimX7BUcFPx8PNnyH3T6TriZhQNcEqTZRndypVkvPMu1mLH6/N98EGCXngehev1F4EjENxI1GdO0ainmvpah5vNZgwGQ+0HCgQCgaBFUNfM56pojsznGxlJIaEOdEMd6IZbL5vdcl0zyeVSM5ZSFaqgwaiCBtvarEbUwVq0nUORLR6YMktqzSS/UswudMnl566fUqjN4ba2t3FX+Is8uTiOXWeyiC1K4IHcvbhaHZ/7AVEdGPvYMwRHtW/qH0/rxqS3VWYDVYvZ5e2S7bgXTwv78Tqi1WoZNGgQzzzzDG+88ca1Ho5AIBC0SEyZJeh+SUR/Os+p3bVnIN63t0Plc/185pSYSvj5/M98F7+ECwUXnfo8LVbuLSxiqklFaP8nbFVUzZhpWWI08+GmM8z/PclevKRSSDw5sj1Pje6ARlV5wVe2Wjm0bhW7ly/GarHN91QaDaNmPkpk92Gs/uioXcwOjPTkzmd6tkoxW3/mDJnvvkfxnj1O7d4T7iLw+edRh1zFijtBi8Tb25tLVzhOgW3j4/r16/n73//O8uXLSU9PJzQ0lMmTJ/O3v/1NiNkCQRNxrfKyZVlmy6UtfHDoA1KKUuztvhpfnu3zLBM7TESpaOQGvLo4p7UdAkeX2oTsnHPO5yvU0PVum614xACb5UozkVmoZ/HeiyzZd5G8MmeWcqID3XlkWBT39GmDVl39z0S2yqSdr8VSPMaPLoNDiO4ZWKXji1Ffyh+/rObQ2p8wlpba27XuHgy4+z56jR2P2qVhtu+mzEzS//Y6RTt22NtUYaGEvf027oMGNeiaAoGg9XJVnmwOHDjAokWL+P7778nNza39BIFAIBBcdaxGC6a0Yidh1JRRAtY6iNf+WptwXdHm2l0sFjQ3kiSh8ndF5e8KPWy5irIsY87XU/jrfgq3HEQ2uaPwiURxRWajpHDBnGWlKMvxECi5KFCHejjll6sC3ZCUEsX5Blb/+wj5GWVitiaHn2M/pVCby/CgiZyLu5UZGw/jZ8zhnuydhBnS7dd1cXNj+NRZ9LjlNhSNfbi8HolbbXtYrhXZdlzcGug5uXnHdJ2Rk5NDcXFx7QcKBALBDYSl2ETB5osU70+DCgVFLhGeeN8Z3eyL0leT9OJ0liYs5cczP1JoLHTqizSZeEBXyASFL25DXrNZgrq4V3OlpmH32WxeXXWcy7mORd/u4d78694exIRW/XMvzM1m42f/5tLJY/a24OgOjHvmJVQaf1Z9eJjifNtGQv9wD+56rhcat9Y1Hzfn5pL13/+S/8MKW9VbGa69exP86tw6OwoJbmzc3Nx47733eO+99671UASC645rmZd9Nu8s7x14z8lZRSkpmdplKk/0egIvlyaYtzg5p+GouC7/qtfBsimg1IDliqI9zzDo9zD0nQkeQY0fSw2cTi/km92JrD6SitHiXBU+ONqf2cOjGNU5CEUNBQu1WYr7BLvRZXAInQZUthQvx2I2c2LLr+xduYwSXb69XeWioc/td9J/wr1o3T0a9iKBgg0bSH/z71gqRI54T5pE8KtzUXrWbpsuEAiuP5pN0L58+TKLFy9m8eLFnDlzxt4uy7KwlhUIBIJrjNVgxpTqXHltziypvji0HAlUAa6OyuuyrwrX1lf5cT0iyzLFv+8h65P/oj923KlP23swPvc+jMI7wrZZIbXIYQ1Wfr7RivFiAcaLjvwrVAqUga5cyijBq8iErIRUlUPM9iq5m/U7BqCy5jAk/xC9dMdRVlgV7zJ0BCNnzMbdx7dZX3urRF8A+Rdtu7qRqP0fILad4QlrbxhBe8eOHeyosBO7nJ9++olz585VcYYzJpOJixcvsnLlSqKjmy+rTCAQCFoTstlK0d5UCrZccoouUXpr8L69Ha49A6+bZ/YTWSdYHLeYTRc3YZGdK44GlOp5UFfITR6RKG5+A7rfC8rGC8B6k4X1J9LYdCqD/BIjPm4ujOkazLjuoRhMVt5aH8cPhxxW4RqVghfHdOLhoVGolFXnjZ49sIdN//sEfVGZGC9J9L9zEkMnP0BpoZVVH/5BUa5tYd031J0Jf+qFthVtLrUajeQtXkL2F19gLXJYr6vDwgj680t4jh173fxNCgQCQWvlWuVl6ww6Pjv6GT+c/sHps3xw6GBeGfAK7X2ayAGuzs5pOIvZ7YbbbMU7jwNl862NybLM7nPZfL0riZ1nspz6VAqJ8T1CmT08mm7h3tVcAYx6M4lHsmyW4mfyK/W7aJV06B9MzOBQgqMqW4rbx2K1cnrvLn7/fgn5GWn2dkmhoPuoMQy+dyoefv4Ne6GAOS+PjP/7JwXr19vblAEBhP7jH3iOHtXg6woEgtZPk77LFhcX8+OPP7Jw4UJ27txpz6mpGNMdEBBATk5OU95WIBAIBDVgLTVXsqQ255TWTbwOcnOq1lWHuqPQCPG6JVK8bz9Zn3xC6R9/OLVrYmMIfOYZPEaOrPQwYikyOqzky7K5LXlX7DI2W7GkFRMOhLvZfvdmAuif+igJVhUJJl8665Npl7UVd3O+/TTf0DBufvhJ2vbo1QyvtpVgLIb8S7b/8i7axOv8i47v61SVfQWyFUrzaj/uOmH79u384x//qNS+atUqVq1aVefryLLMww8/3JRDEwgEglaHLMvo43LQrU/CnOOoxJFcFHiOjMBzeDhSDZaUrQWz1czWS1tZHLeYo1lHnfrUssztRcU8WFBIl6BeMOEF6DQWFE2zEP9bXAYvrjhKQakZhWQzOlJIsPFUOn9dfRKVUqKg1BENMzDKj/fu6UG7gKorwk16PdsWfc2JLb/a2zz8/Ln9qReI7NbTFgfz8RF7ZZVPsBsT/tQL11YS8yPLMoWbN5P5/geYKthHK9zc8H/sMfxmzkChvX4s7wXXljVr1vD888+TmJh4rYciELQ6rkVetsVqYeXZlXxy5BPyDfn29nCPcF7u/zKjIkY17WanOjunlRE1Am5/D4Jimm4MVWAwW/j5aCrf7E4iId3ZZcZTq2LagEhmDW1HqHfVOdKyVSb1XD4Je9M4dzgLcwMsxe3XkmUuHj/CrqULybxw3qmv08ChDJ3yIH5hbRr2Qsso2rGD1L/+FUtWtr3N87bbCHnzDVS+olBCILjRabQqIcsymzdvZtGiRaxevZqSkhJ7ezm+vr5Mnz6dhx9+mJMnT9Y7e1sgEAgEdcNSbKosUOZWtg6qhEJCHezmEK7DPVCHuKOoYSIraBmUHD5M1n/+S8n+/U7tmo4dCXj2GTxvuaXahzylhwvKzn5oOzvyIa0lJvvfT0lSAbqEXNyuOE+Fio6GSDoCdwJoO2Jt054CYzb55ky8uoTT4bahaCN9mvKltjxMetAlQ/6FK0Trsv8vya71EvVGUoDrjfUQV3FOWVNbVbi5udGpUydmzpzJs88+29RDEwgEglaDMbUI3bpEDIkOy0YkcOsTjPdt7VB6tQ4BtCYKjYX8dPYnlsYvJbU41anPz2Lh/oIiJhcWEhA1GsY/D22HNmmu5W9xGTy6+JB906j1iq8lRscCsqdGxavjYpjSP6JaO9CMxHP88skH5KU6qrk7DhjCrY8+jaunF6WFRtZ8fNQeB+MVoGXCn3rj7t2wjMqrjT4ujox336PkwAFHoyThfc8kgp57DlVg4LUbnOC6pKioiIsXL17rYQgErY5rkZd9KP0Q7x54l9N5p+1tripX5nSfw4yuM9Aom+GzLmGdIzO7NiQFaL2aVczOKzby3f6LLNx7kaxC58KDNr6uPDw0ivv7R+BRTdFJQXYpCfvSOb2vZkvxzgND8PCtffNY+rkz7Fq2gEsnnd0AI7r2YPi0mYR26FyPV1cZS1Exme+9S/6KH+1tCm9vQv72N7zuGCecWgQCAdAIQTsuLo6FCxeydOlSUlNtD4tXLi5KksQ///lPXnjhBTQa2wfNqVOn6rwIKRAIBILqsRQaHZbh5RbS+YbaT1RJqEPc7VnXLmXidXNaRAmantLjx8n67ycU797t1O4SHU3g00/ZrBkbUG2kcFOj7eCLyc+VTb9dpiDfhApQuepIC91PhCmU9kWxRFo1KCo8UCgkBT6aIHw0QXAZcufF2ar8A92c/9bC3FFoW0mVv8VUJlhXEKnzLzm+L0yr/RpVISnBOxx82tr+MxRA/M91O1e2Qpc7G3bfVsgbb7zBG2+84dSmUChYsmQJ06ZNq+YsgUAgEJRjKTSi+/UCJX9kOLnzuER54zM+GpfwhucathQuF1zmu4TvWHV2FSXmEqe+DkYjD+oKuaOkFE3M3TDsTxDas8nHoDdZeHHFUZBrN0FSKSTWPjuUdv5V/+xlq5WDa3/i9++XYLXYqrlVGg2jZz1Gt1G3IkkS+mITa/5zlLy0YgA8/DRMeL43Hr4tX8w2ZWaS9Z//oPtpFVRYG3IbMIDgV+eijWneSjfB9UVGRgbr168nPj6e/Px8zGZztceKymyBoH5ci7zs9OJ0Pjz0IRsvbHRqHxc1juf7Pk+IezNUhOdftlVnn99WNzEbmtU5LSm7mPm7k1jxx2X0Jufx9I70Yc7waMbEBlcZU9JUluIVyU1N4ffliziz/3en9sB20dw0dSZte/ZptNhcfOAAaa++hiklxd7mPnw4of/8J+rg5s0jFwgErYt6rShnZWWxdOlSFi1axNGjR+3tFQXqrl27Mn36dG699Vb69+/PwIED7WI2wPTp05k+fXrjRy4QCAQ3CLIsYykwYkp2rry2FhprPVdSK1CHujsqr8M8UAe7IVWTzydo+ejj4sj67ycUbd/u1K6OjCTwqSfxGj8eSdm4yvqCnFJ++vAwxWVZjDnaLH6O+YRCSYnX6Qncmb8c96JcfFyC8NUEE+ARSXhAJ5TFElR83pLBnFliy2c/kmlvds5hd7flsLtdg5xHqwUKUp1F6oqidUFK3R9onZDAKwx8IstE60jwbev43ivcOVvLpIcPd4JeR83L4BJovSF2QgPGJBAIBIIbCdlkoXB3CoXbkpErVAYr/bX43B6Ftqt/q650kWWZPzL+YHHcYrZd3oZ8xefnsJJSHtQVMthkReo1DYY8C/5NlLFZBetPpDlZideE2Spz5FJ+lYJ2YW42Gz/7yKn6KTi6A+Oe+TN+YeEAGEpM/Pyfo+Qk27Km3X003P18H7z8q7YabSlY9XpyFywk56uvsJY4Nh6oIyMJfvnPeNx8c6v+mxRcfd58803eeeedGkXsisiyLP7GBII6Yik0krP06uVl6816FpxawDcnvkFvcVQTx/jF8OrAV+kd1Ltpb5h/GeLWwKlVkHKo/uc3sXOaLMscvJDH17sS2RyfUXG/FwoJbusawuzhUfRt61f53Ca0FK9IUW4Oe39cxoltm5CtjnUR7+AQhk5+kC6DhzeoiKIiVr2erH9/TO6iRfZNbpKbG8GvvILP/feJ92yBQFCJOgnaK1asYNGiRWzatMk+UawoYrdp04apU6cyffp0evToASBysgUCgaAByLKMJc9QKfPaWmyq9VzJRYk6zN0p81oV6IZUjY2hoHWhP3OG7E8+pfC335za1WFhBDz5BN4TJiCpGy8KJ5zL5dfPjqMqtT2w5GszWRv7KQajO/de7ovX5a0AmIFsYyrhI3rRZ8oUtO4eyCYLpvQSjCmFmFKKbRsw0ovB4rzIbM4uxZxdSumxLHub0k+LS1j55gtP1GHuKD0auevbaoWijAqC9UVnwVqXDNa6LYBVwj3IWaSu+P/ebUBVjwoptRYmfgnLpgISVYvaZf+OJ35pO/4GZtu2bcSI6i2BQCCoElmWKT2ehW7DBSfnHkmjxOvmSDyGhLVqVx6TxcTGCxtZHLeY+Nx4pz6t1cpdRcVMLygkWnKF/o/BoCfBs/nyPcvZdCrDnpldGwoJfj2ZwcTezhmTZw/sYdP/PkFfVJaPKUn0v+seht4/HaXKNscz6s2s/eQYWZdsx7h6uXD3873xDmy5YrYsyxRu2EDmBx9iSnVU+Sk8PAh48kl8H5iOwqX1W94Lri7/+9//+Mc//mH/3tvbGy8vLxQ1iCvFxcVirVIgqAPGy4XkLLk6edmyLLPl0hY+OPQBKUWO6lxfjS/P9nmWiR0molQ0URSeLtkhYicfbNy1msg5zWyxsv5kOvN2JXI8WefU5+ai5P5+ETw8NIpI/yuD4JreUrwcfXERB39eyeH1P2M2OuaSbt4+DLpnCj1uvs0+L2kMpSdOkPrKXIwV3DNc+/Ul7J13cImIaPT1BQLB9UmdBO3JkycjSVKlXOx7772XadOmcdNNN4kdMwKBQFBPZKuMOVfvZBluTClCrkN1h6RV4RLuXqHK1QOVv6sQr69DDIlJZH/6KQUbNjjZMqqCgwl44nF8Jk1CaoJFwNPphXy94TR+B/PxttoWgvK1Gfwc+ymdckMZcFaNschRLRTYLppb5zzllJMkqZW4RHjiEuFpb5PNVkwZJWV/54UYU4sxpRXZ87fKseTqKc3VU3rSscik9HZBHe7pJHQ7ZXzKMpTkVMiuvrLK+hJY6mDDXxWufs4itU8k+LazffWOAJfKD5SNovPtMGUprH4C9PmO7K7yr1pvm5jd+famvW8rZMSIEfU+JykpiV27djFjxoxmGJFAIBC0DAyXCtCtS8RYJnYCIIH7wFC8bols/Eaxa0iePo8VZ1awPGE5WaVZTn1BZjNTC4q4t7AIH60fDH8V+s8GV59mH5fFKrP7XDYHknLrJGaDTfTOL3U4LZn0erYt/IoTWzfZ2zz8/Ln9qReJ7NbDcZzBwrpPj5FRVi2n9VAz4U+98Alu4jlJE1J6/DgZ77xL6ZEjjkaFAp/J9xP4zDOo/CpXmgkEdeHLL78E4PXXX+fxxx8nJKR2oW3JkiXMnDmzuYcmELRqig9lkLf66uRln807y3sH3mN/+n57m1JSMrXLVB7v+TjeGu/G38QuYq+G5ANVHxPcDbreDZ3GwYJxV8U5rUBv4oeDl/n29wuk5Jc6D8dLw6whUUwbEIn3FU52tVqKu6ro2C+ILvWwFC/HZDRw9NdfOLDqB/TFRRWu6Uq/OyfR9467cdE2fgOdbDSS/eWXZP/vK7DYqsklFxcC//Qn/GbOaLTjoEAguL6ps+V4uTWPv78///nPf7j33ntRN0ElmEAgENwIyFYZc1aJTcyrIGDLV1oBVYHCTeWwDC8TsJV+WrGR6DrHeOkS2Z99jm7tWlulcRnKgAACHn0Un8n3o9A0Pifx8KU8Pt92noMnM5lc5IK3bBOz87QZbG/3OXfFh6NNLcGIbcevWuvKsMkP0Ou28Sjq8KAhqRS4lP39umNbaJItVkyZpZgqOhGkFiFfkQ9l0Rmx6HLQxzlEboWLHhdNOmrpLC7Go6jlOJRkUe9/DhqvypXVFa3BNZ61X6Op6TIOXjxte+BOWGvL5HL1te38jp1ww1dmN4Y9e/bw0EMPCUFbIBBcl5jzDeg2JlF61Fno1XTyxeeOKNTB7tdoZI0nMT+RxfGLWXt+LYYrNqnFGgw8qCvktuIS1N6RMPZ16P0AqJu/Wjklv5QVhy6z4lBypYXo2lBI4ONq21yQkXiOX/77Pnlpjqq0jgOHcOujz+Dq4ZiLmI0Wfvn8OGnnbNVbGjcVE/7UC/+wlpmBbkpPJ/Ojjyj4ea1Tu/vQoQS98jLaTp2u0cgE1wtnzpxh+vTpvPnmm3U+58pCHYFA4EC2WMlfl0jx3jR7W3PlZesMOj4/+jnfn/4ei+xYExsUOoi5A+bS3qeRESG6FNszddxquLy/6mOCukLXiTYhO6Cjo72ZndNS8kv5dncSyw9epsjgXMwSG+rFnJuiuKN7GC4V3HTqYikeGeNHl8GhRPUMqLOleDlWi4VTO7ewZ8VSinKy7e1KlYqeY+5g4MT7cfNqgs0F2JwHU+fOxRDncNnRdu1K2HvvounQoUnuIRAIrm/qJGivW7eOhQsXsnbtWrKzs3nsscfYuHEj06dP55ZbbqnR0kcgEAhuNCqKdcaUQkypxVWKdVWh8FTb7ZbLBWylt0aI1zcQppQUsr74At2q1fbdqgBKX1/858zBd+oUFK6NW6iVZZnfz+Xw+fZz7Dmfg49FYkqRC152MTuZRO1Cxu73QbI6Mg47DRzKyFlz8PQLaNT9JaUCl1B3XELdweAG+XrkHB3mlHRMqcUYsyWMBZ6YDKHIOL9Wq1GL3tgOPe2AWwFQoEOtOI+LdB614hwu0jmULoVIvhVF6isE6ybMu2pS1FroOdn2n0AgEAgENWA1WCjccZnCnSlgdswzVUGueN8RjWvn1ln9Kssye1L3sDh+Mb+n/O7UJ8kyo8vysfsYDEiBMTDmeeg2CZTNu+HeaLayJT6D5Qcvs/NsFg3VxawyjOkayIE1P/L790uwWmwL2iqNhtGzHqPbqFud5v4Wk5UN/ztByuk8wFZ9dddzvQhocw0239WCtaSEnG/mk/PNN8h6h/2pS1QUwXNfwV24+wmaCC8vL4YNG1avc6ZPn8706dObaUQCQevFUmgk57t4jBeaNy/bYrWw8uxKPjnyCfmGfHt7uEc4f+7/Z0ZHjG74Z0RBqsNOvEYR+26IvRsCq9lY1UzOaccu5/P1rkQ2nEzHcoWly6jOgcwZHs3g9v5Or78gu5SEvWkk7EunMKfpLMXLkWWZc4f2sXvZInJTLjs6JInY4aMYct90vIOC633dKu9lsZC7YAFZH/8H2VQWqahUEvDEEwQ89miTxOcJBIIbgzoJ2uPGjWPcuHHodDq+//57Fi1axOLFi1myZAmBgYFMnjyZadOmMXDgwOYer0AgELQoyu2UbZnBRWV2ysVOi4rVofTWlFVcu6Nu42mrvPZqvVaQgsZhysgg+8svyf9xJZgcmekKb2/8H34Yvwemo3BvXIWV1SrzW3wGn287x7GyfCYfi8TkCmJ2vnQYS/4Wupa6Ur4j2TsomNEPP0507/71v6mxBHSXq7cFL80FbPuc1WX/uZU1yBoJsxyKSW6P0doek9wBo7U9Ms4LuFa8MVj7YKAPlO0BkBRKXFw8UPsKW/7WyoIFC/j44495+umnmT17tr1dKSzIBALBDY5slSk5nInu1wtYCx3W1Qo3FV63tsV9QAiSsvVtOteb9axLXMeSuCWc15136nO3WplYWMS0gkIizBaIGAjDXoCOY6CZN9ifzyrih4OXWXk4mewio1OfQoKRnYOY1Cec1346QaHeXJtJKSEqPca1X7Ar7oS9PTi6I+OeeQm/sHCn4y1mKxu/PsmlU7b5klqj5M5nehLUtumtXxuDbLVSsHYtmR/9G3NGhr1d4e1N4NNP4ztlslisFjQpw4YNIzc391oPQyBo9VytvOw/Mv7g3QPvkpCbYG9zVbkyp/scZnSdgUbZAPe5glSI+7lMxN5X9TFBsbZK7JpE7CtpIuc0i1Vmc3wG3+xK4sAF5/crF5WCe/qE88iwKDoEOdY3jHoz5w/bLMVTz+ZXumZjLMUrkhx3kp3LFpB2JsGpPbpPf4ZNnUlgZLsGXbcqjJcukfrqa5T+8Ye9zaVDe8LefQ/Xbl2b7D4CgeDGQJIb6LeTlJTEwoULWbJkCYmJiUiSRHR0tH3Ho5+fH4GBgWzevJnRo0c39bhvSAoKCvD29kan0+Hl1bIeYAWCGwHZZMGYZqu2NqUU20TsjBKw1P42qvTTluUAe9oqr8PcW3WOoaDpMGdlkf311+Qv/x7ZWGFR2sMDv1mz8Js5A6Vn4ypwTBYra4+l8sX285zNdGQh+VgkppdocLNIyNYiig0bUekvOcagVNH/rkkMnHg/ak01D21mgy2XKv9ihezqCqJ1cWbDBq1QgXebKyqr2yJ7R2JRhGPM02BKK7HZlacUYi2uQ/a8i9LJ/cAl3ANVoNsNKXK3hjmFj48PhYWFeHp6kp+fb29vqDOQJElYLLXHPFzvtIbfvUAgqB5Doo78XxIxpTg+z1FKeAwOw2t0BAq31icaZpVksfz0clacXkGeIc+pL9xkZlpBIRMLi/CUZZuAPex5aDukWcdUarSw/kQa3x+8XGkRGiDcx5XJ/SO4t28bwnxsbjKb4zKYs/gQSouZ9sXniS5JQms1oFdoSHSL4rx7e9rqL3GnbhcWfZkDjiQx4K57GHL/dJQq59+d1WJl07xTnD9is5JXuSi489lehHXwadbXXl9KDh8m45130Z9wCPSoVPhOm0rgk0+i9PG5ZmMTND/Xal5x8uRJpk6dyu7du/H2rpsV7nfffceMGTPEfLCJEHPK1s/VyMtOL07nw0MfsvHCRqf2cVHjeL7v84S411M4L0hz2Ilf2lv1MYExDjvxwM4NGndjKDGaWflHMt/sTuJCTolTn7+7Cw8ObssDg9oS4GET8WWrTOrZMkvxI01vKV6RrItJ7Fq2kKQjh5zaQzt14aZps2gT063B174SWZbJX76cjH+9j1xaFs8iSfjNmkXgn55rkgg9gUBwfVCfOUWdM7SvJCoqijfffJM333yT3bt3s2jRIn788Uf+8Y9/8H//93/ExsZWmU+zb98+vvrqK+bPn9/QWwsEAkGzYzVYMKUVOeVdmzJLoPbCa1QBrvasa3W4Oy5hHq1ycVHQvJhzc8mZ9w15S5c6WTJKbm74Pfgg/g/NavQCoN5kYcUfyfxvx3mS85zzHfv5eTI63YLVbMFsOIpJvxuV7KgMbxPTjVtmP4l/aBgUpEBqNYJ1YRpVZ0vVgqQAr/DKVuDl33uFgaLyg5qEbfKiigB62NpkWcZSYMSUXIQx1fHvtmLVGoBstGC8UOBkpSapFahD3R059WEeqIPdWmVl2/XG0KFD2bBhA0OHDq3UN2nSJLp3717nax0/fpzVq1c34egEAoHg6mLOKUW3PonSUzlO7dpYf7zHRaEOaP7c6KYmITeBxXGLWZ+0HrPVeWNab72eB3WFjCopRSUpoOs9MOxPEFL39/6GcDJFx/cHL7P6aAqFeucxqZUSY7qGMKV/BEPbB6C4YkPcLbHBvD9AxZkf5qOxGrACCmyPDx1KkrDkbEcpW8vNZPDw82fc0y8S0bVHpXFYrTKbv42zi9lKtYI7nuzRosRsY3IKmR9+QOEGZ5HCY+RIgl5+GU101DUameBGoFu3bnzxxRdMmjSJhx56iHHjxuHn1zpjFgSCq83VyMvWm/UsOLWAb058g97iWO+I8Yth7oC59AnuU/eLFaRB/M9wanWZiF3F+kNgF0cldlCXxg6/QWQW6Fm49wLf7b9EfonJqa99oDuzh0czsXc4WrVtnUOXVcrpfc1nKV4RXWYGv/+whPjd26mYmeLfJpJhU2bQvt/AJo0EMaWnk/aXv1L8uyM6Rt2mDWHvvI1b/wY4/wkEAkEZDa7QrgqDwcCaNWtYuHAhv/32G2azGU9PT6ZOncrs2bPp16+f2BHZCMTuR4GgebDqzZhSy4TrFJsgZs4qrV2jk0AV6GYXwcorrxXaBu8VEtwAWPLzyfl2AbmLFyOXOHbrSlotvtOn4f/II6gauRhTqDfx3f5LzNuVRHaRwamvX1tfZveMIHlVIqV5KZhKtiBbHNaQrloVI3p6E+ubg6S7CLoUkBv4me0Z6ixSVxStvds0e9alpcDoJHCbUouw5BtqP1EloQ5xd/63HeLepPlh15rWMKcwm80cP36c7t27o65gU6pQKFiyZAnTpk2r87XE/NNBa/jdCwQCB1a9mYKtlyj6PdXJFUgd6o73+Gi07X2u3eAagMVqYWfyThbHL+Zg+kGnPpUsc2txCTN0hXQzGkGpgd4PwJBnwK/5xNECvYk1R1P5/uAlTqYUVOrvEOTBlP4RTOwdjr9H9dVE5w7tZ80H/yx7hqj5QaLTwKHc8ujTuHpUduGRrTJbF8WTsC8dAIVK4o4nehDZ1b9er6u5sBQVk/PVV+QuWODkLqTp2JGgua/gUcVGNMH1y7WcV1gsFhYuXMhTTz2F0WjEx8cHT0/Pat18iouLyc7OFvPBJkLMKVsnzZ2XLcsyWy5t4YNDH5BSlGJv99X48myfZ5nYYSLKKjauV6Iw3WEnXp2IHdDZUYkdFNPosVdEb7I5tWw6lUF+iREfNxfGdA1mXPdQuyBdTnxaAfN2JfHzsRRMVzg4Dmnvz5zh0YzoFIhCIV01S/FySgp07P/pe45uWo/V4tio5+kfyJD7phE7YjSKuvw+6ogsyxSsXUv6P9/CWuD4G/O5/36CXn4ZpUfjYvQEAsH1yVWp0K4KjUbD/fffz/33309mZibfffcdixcv5quvvuLrr7+me/fudOjQoSlvKRAIBPXCWmKyC1vlAra5ip2QlVCAOqhCFWe4B+pQdxSNsPoR3FhYCgvJXbiI3AULsBY5bEIlFxd8pkwmYM4cVIGBjbpHbrGRBb8nsWDPBQrsVUUygei4s62JaZ3AvySRH5amUVpwBIvhqNP53X3SGB54AdcCM1Rez62MW4CzSG3//3Y2wbqO2VLNhdLLBVcvP1y7ODYIWIpN9o0r5UK3JfeK9wCzjCm5CFNyBTtXhYQ62M35PSBEvAc0JyqVij59Ku/cb9u2LR4eHvW6loeHB5GRkU01NIFAIGh2ZItM8cF0Cn67iLXYUeWj8FDjfVs73PoGt6rIjBJTCavOreK7+O+4XHjZqc/LYuG+wiKmFBQRYrGAxguGPQUDnwDP4GYZjyzLHLqYx7IDl1h/Ig29ydmGyVWtZHyPUKYMiKBPpG+tC8pmo5GNn/+7TmK2ykXD2KdeQF2F1aYsy2xfetohZiskxj7avUWI2bLFgm7VKjI//g+W7Gx7u9LPj8Bnn8Xn3nuQVGJjr+DqoNfrmThxIps2bbI7Q+bl5ZGXl1fjeU1ZgSgQtDaaOy/7bN5Z3jvwHvvT99vblJKSqV2m8njPx/HW1BIPUJhRVom9Ci7uoWoRu1OZiD2xyUXscn6Ly+DFFUcpKDWjkMAqg0KCjafSeXPtKT66rxc3xwSx82w283YlsutsttP5KoXEXT3DeGR4FF3DvGu1FJckiGgiS/FyjPpS/li3mkPrfsJY6nDr03p4MvDu++h123hULk0bg2jOzSX9jTcp/O03e5sqMJDQt/6Jx003Nem9BALBjUuTVmhXx6lTp1iwYAHLli0jNTVVZBg2ELH7UXA9I5uslJzIQn8qB0uJGaWbCm1Xf9y6ByKpG7ZL1FJkdFRmlglYlrw6VGcqq6nObOA4BDc21uJicpd8R878+Vh1OkeHWo3PvfcQ8NhjqEMa8QApy6RnpLB2+35OnTpOkDWDCCmLNlIWEVIWkcpsXGTbA2uOqQ3LMh7CUHQQ5GL7JXw0xYwNOUe42xUqttbnCivwiqJ1JLhcH7trrSUmjGnFTpXc5uw6uDQornBpaOOBOtQDhabhD6DN8V5YFWJOceMifvcCQctHfyaP/F8SMWdUyF1USXgOb4PnyDYoNK1HNEwrSmNpwlJWnllJoanQqa+d0cQDBYXcWVSMmyyDeyAMehL6PwLaumXi1pfsIgM/HU5m+cHLJGYVV+rv2cabyf0jubNnKJ7aujvJxO3cyobPPqrz8bc//SKxw0c5tcmyzK7vz3JiezIAkkLitjldad87qM7XbS6K9x8g4913McTHOxrVavxmPEjA44+j9KxcaS64MbhW84p33nmHv/zlLwDExMTQuXPnGquzARITE9m9e7dYj2wixJyyddGcedk6g47Pj37O96e/x1LB3W1Q6CDmDphLe5/21Z9sF7FXw8XfqVHEjr3bJmI348aU3+IyeHTxIZCrXg4ov3Oot5ZUnfPGeC+tiumD2jJzcDtCvLV1shSPGRJKpwEhePg2TZ60xWzi+OaN7Pvpe0p0+fZ2lYuGvndMoN+dk9C6129zeF0o3LKFtNffwJLjiMbxGj+ekL/+pdFRegKB4PqnPnOKqyJol2O1WvnnP//J3//+dzGBbABisii4XimNyyF3xRnkUrNtdihj/yq5qvC7rxOusdVXJciyjLXQiDHZufLaUmCs9hw7KgUu5fm5YWVVl8Fu15W1sODaYC0tJW/pMnLmzcNSsVJAqcRn0kQCHn8cdXh43S6m11WZX23MTkLOv4jGWlrrJZKKo1idNhCryWH7ZVVYGdKulEHdglH6ta1sDd5Mi8mtAavBjCm12DmKILOkblEEAa5O7ykuYR4oXGsXHxr7XlgfbrQ5RVJSErt27WLGjBnXeijXnBvtdy8QtCZMmSXofklEf9q5wtC1RwDeY6NQ+V1b55P6cCzrGIvjFrP54manxW2AgaV6ZugKGFaqRwG2+cfQ56DXNFA3fRa4xSqz62wW3x+8zG9xGZitzh/mXloVE3uHM7l/JLFhDXtf/PnDtzl7cK9TLmV1SJJEh/6DuevF1+xtsiyzZ+U5jm6+XHYM3PpwVzr2b54K9bpivHiRjPffp2jzFqd2z1tvJejPL+Ei3E9ueK7VvKJr165cunSJ9evXM3z48DqdIyJomhYxp2wdNGdetsVqYeXZlXxy5BPyDfn29nCPcP7c/8+MjhhdtStCUSbErbH9d2E3VT5k+3esYCce26widjl6k4UBb2+msNRc62N/RSL93Hh4aDvu6xeBWqZ2S/H+wXQZHEJwu8ZbipcjW60k7NnJ7z8sQZeRbm+XFAp63Hwbg+6Ziodv46LtqsJSWEjGW2+jW73a3qb08SHkzTfxGntbk99PIBBcn1wzy/HaUCgUtG/fnqbS0A0GAx9//DHLly/n3LlzKJVKYmJimDlzJo8++miNOzOro7i4mJ9++om1a9dy6NAh0tLSkCSJ0NBQBg8ezKOPPspNNdhkbN++nVGjRlXbX86KFSu499576z0+geB6ozQuh5zFcY756xVf5VIzOYvj8H8wFtdYf2RZxpJvqGQZbC0yVXV5JyQXBepQh12wS7gHqkA3JKWwHRMAJj3ErYaEdVCSB26+0GW8bRdwPayzrQYD+d//QPbXX2HJqmA9pVDgfeedBDz1ZOXFP0NRmVhdUbC+4Pher6Mqan38VLli9opkR2o0Ry+VAg4x2xjhyaMvvo9/aJs6v7YbCYVGhSbKG02UQ9S3Gi2Y0oqdNs6YMkpsHmTlyGDOKsWcVUrp0Sx7s9Jf6xC4yyq6le6Oyq/6vhcK6seePXt46KGHhKAtEAhaJJZiEwWbL1K8Pw0qOF+rIzzxGR+Npm3rEArMVjObL25mcdxijmcfd+pzkWXuKCrmAV0hnUxl8/bgbjDsedtcS9n0SxMp+aWsOHSZFYeSScmvvPlvULQfU/pHMrZbSKU8zLpSWlhAwp6dXDx+pE5iNtjE69KiQqfv969JtIvZSDB6Zsw1FbMtBQVkf/EluUuWgMnxnKWJjSF47lzcBwy4ZmMTCAAuXLjA008/XWcxG0QEjeDGoznzsv/I+IN3D7xLQm6Cvc1V5crs7rOZ2XUmGuUVFcdFmc6V2LJz1AcA/h0cldjBXa+KiF2R9SfSKCi1RbcpZehsUtLRpERrBb0CzqotnFZbsJQNq52/G3Nv78ItXYJJP69j77IznD+cidno/NokCSJiyyzFezSNpXg5sixz4dhhdi1bSNaFRKe+ToOHM2zyA/iG1rGQop4U791L6mt/wZzm2CzhMWoUof/4e6Pj9AQCgaA6rrpX2cSJE0lKSmr0dbKzsxk9ejQnTpzg0Ucf5ZNPPsFoNPLpp5/yxBNPsGLFCn755Re02rqLEH/88QdjxowhNzeXrl278te//pUuXbogyzK//fYb77//Pt999x1PPvkkn376aY27qNzda7ZhVYlsKYEA2WQld8WZ2iseZchZGo9LWy/MacVYS8y1nACSRulsGR7ugSrAtVVlDQquIgnrYfUToM8HSWF7uJIUEL8WNrwCE7+EzrfXeAnZaCR/5Uqyv/wf5owMR4ck4TX2NgIeuAuNlwUyfoPTjipr8i9CSU71F64Bg6wiRQ4gXQrCPTiaDp274h4UbbcGv5SUyq//+4yCLMcDhlXpimJsR1558J8oJOFEUB8ULko0bb2chAXZZMWU4VzJbUorBovzG5slR09pjp7SExUyJ300Za4Q7hTtTq7Te2HuijOEvTZQRCBUoLi4GJ1Oh9lc/WdDdnZ2tX0CgUBwrZDNVor2plGw5RKy3vEepvR2wXtsFK49A1vF3LXAWMDKMytZmrCU9OJ0pz4/i5UpBQXcX1CEv7VsgTdyiE3I7nhrky9WG81WtsRnsPzgZXaezaqkMQd4aLi3bxsm948gKqBh0Slmk4mkwweJ27WVxMOHsFpqfzapiCRJuHo4LLoPrb/AHxsv2r8fNb0LXQaFNmhsjUU2m8lfsYKs/37i5DCkDAwg6E/P4333BCRl0y3ECwQNxc/Pj06dOtXrnAkTJjBhwoRmGpFA0LIwXi4kZ3Gcw7mwifKy04vT+ejQR2y4sMGpfVzUOJ7v+zwh7hWuX5RVIRO7GhHbr70jE/saiNgV2XQqA4UEUUYF40pc0MoSVmQUSFgtMp1MSm6WZNa7GUlUW+nh7Y5vUilLl+6jMLeypbhviBtdBjetpXhF0s6eZtfSBVyOO+HUHtm9F8OnziSkfccmvyeAtaSEzA8+JG/pUnubwt2d4Ndew3vSxCarOhcIBIKquOqqqpubG23btm30de677z5OnDjBc889x8cff2xvHzVqFBMnTmTNmjU88cQTfPvtt3W+ZlpaGrm5ufTq1Yt9+/ah0Tg+bIYOHcqAAQO44447+Pzzz4mKiuKll16q9lpFRUUNel0CwY1EyYksm7VuXTDLGM9XXaUquaqcqq5dwjxQ+mlbxQKgoAWQsB6WT3N8X/6QVf5Vr4NlU2HKUugyrtLpssmE7qeVZH/xBab0TKc+z46uBHQvRusyH9bOr//YJCWydzj5mjCOFnhxuMCLZDmQy3Igl+UgLG5BPDS8PQ8ObotXhZzH4vw8diyYT/yubRUvhsGjA6FzuvHQoEfqPxZBlUhqBS5tPHFp41iYls1WTJklTpncprRiZJPzA7wl34Al34D+VN03NMilZkpOZuPeAvI0ryUpKSm89dZbrF27ltTU1Gs9HIFAIKgXsiyjj89Ftz4Jc7ajclhSK/AcGYHH8HAUTVi901xcKrjEkvglrD63mlKzcwV0R6OZB3U6xhUXoykXlTuNtQnZkYOafCzns4r44eBlVh5OJrvIOXZIIcHIzkFM7h/B6C5BqJX13xQmyzJpZxOI27mN03t2oi9u+PO+LMt0GDAYgMO/XuTAWseG/5umdCJ2WFiDr90Yinb/TuZ772I4e87eJmk0+D00C//Zc1B6NGwDgEDQHIwbN46EhITaD6xAVlYW8fHxNbouCgTXA8WH0slbfc6el630csH/wVhcIjxrObN69GY9C08t5JuT3zh95sf4xTB3wFz6BPcpu3m2Q8S+sLsWEftum1tLCxBAdSUmzmQUEmVUMLHY4YWnKEvNLv+qkWFisQvZCiuBh4s4hPN8oLksxSuSk3KZ35cv5uyBPU7tQVHtGT5tFu169G7ye5ZTcuQIqXPnYrp4yd7mNnAgYW+/VfdIPYFAIGgErbJMeOXKlWzfvh2tVsubb77p1CdJEu+88w5r1qxh4cKFPP300/Tt27de1//b3/7mJGaXM27cOIYPH86uXbv4+OOPaxS0BQJB7ZSeynHkxNYRhbvaIVyX2/b6asQOQEHDMOltldlA9X+IZUHGqx6D+xZCYRrkX0LOvUDBnjiydmVjKnA+wyNMT2D3ArS+tW3YkMArzJZXXVZVXf7/Vu8INl1W8unOC5y86HyDMG8tT45oz/39InCtsOAtW60c3/Iru5YtwFBc7LiLMpTCgK70eaIjd8bcUacfjaDhSCoFLmG2zTXu/W1tskXGnFViF7jLv8rGKh7wa7w46G9wQTspKYlBgwaRnZ1drxgb8TkhEAhaAsbUInS/JGK4YqOmW99gvG9ri9Kr6St4mhJZljmYfpDFcYvZkbwD+Yr504gSPQ/qdAzQG2xLv5ISut8Dw/5kq7xqQkqNFtafSOP7g5c5cCG3Un8bX1cm94vg3n5tCPVuWDa3LjOduF3biNu5lfz0tEr97r5+xAwbSefBw/nxrb+Vzb9q+myS0Li702ngUI5uvsTeVeftPUPv7UD3kVc/CsaQmEjGe+9RvGOnU7vXuHEEvfiCWKAWtEj+9re/MXLkSKZOnUqfPn3qdM6mTZtEhrbguqbKvOx2XvhPb3hetizLbLm0hQ8OfUBKkSPCzFfjy7N9nmVih4koS/Pg0HybnfiFXdWI2NEOO/GQ7i1CxC4ymNkcl8G646nsOJOF1SzzZInN6VWi6vGVtwdaHeswTpbiPQNQNTDGpDYKc7PZu2IpJ7dvRrY6fsY+IaEMnfwgnQcNQ2pA/GpdsBqNZH/yKTnffANl95Y0GoJeegnf6dOa7b4CgUBwJa1S0J43bx4Ao0ePxsfHp1J/TEwMMTExxMfHM3/+/DoL2u3bt+fFF19k5MiR1R7Ts2dPdu3aRUpKCjk5Ofj7ixxLgaA+yCYL+vM69Am56BNy6yVmu0R6EvhETyFKCJqOkyttNuOA1QKFl1wpTNFiMShQaqx4huvxjCxFoZTBUABLJiLLUHBJS/ZJT4yFaqfLuYfoCexeiKt/hUx3j2CHYO0T6SRa490GVM4L1yaLldVHUvjip/MkZhU79UUHuvPEiPZM6BWOyxWZV5kXEtk87zPSzp52NEoaVK7DyfX34tanujAsakjjf2aCBiEpJdQh7qhD3KGvLRNTtsqYc0rJWRSHOatytmeVyGCtq7PFdcobb7xBVlYW3t7e3HXXXcTGxuLr61vlZsRy9u7dy9dff30VRykQCATOWAqNFGy6SPGhdKf5r0s7L3zGRzs5fbREjBYjG5I2sCR+iVNeJoArCu4q0PGArpB25fEPKi30fhCGPA2+7Zp0LCdTdCw/eIk1R1IpNDh/JqqVEmO6hjClfwRD2wegaIBjk6GkmNN7dxO3cyspCacq9as0GjoOGELs8FFEdu+JQmFbuL79qedZ/f4/Qa5ux64Eku24+D2Z/P6joxJ60N3R9Lrl6mb7mvPyyP7sc/KWLYMKAp+2Rw+C587FrU/zVXgJBI3FarXy+eefc//99zNy5EjGjRtHx44d8fT0RFGNsCIiaATXM82Rl3027yzvHXiP/en77W1KScnULlN5vOP9eJ/fDosnllViV7FRxDfKUYkd0qNFiNilRgvbTmey9lgqWxMyMZgdwnCsSYlWrvsYFW5KBt7WrtksxcvRFxVx4OcfObL+Z8wmhwuNm7cPg++dRvfRY1A2Y7SpPiGB1FfmYjjtWGvS9uxB2DvvoomOarb7CgQCQVW0OkHbaDSyZcsWAPr371/tcf379yc+Pp5ffvmFzz77rE7XjomJ4YMPPqjxGGVZXpRCocDVtWG7vAWCGw1zvr5MwM5Dfy4fzPWsSASQQOnpIsRsQfWYjVCaa8ujLin7av8+74rvy9oMtuqowhQNqft8sZoU2CuykSlMdkVx2JuwQXl4hBkoTLYJ2Qads5DtFuFC4Jho3Hp2KxOt25UJ2BGgrttnhd5k4fuDl/lqZyIp+c7iZrdwL54a2YExXUNQXrEwa9SXsueH7zi84WenXboKl1jUrjeR45PDPc/1pUd4t/r+RAXNjKSQUAe6oQ5ys1nO1mWDjwQK11Y3fWtStmzZQocOHdizZw8BAQF1OkelUglBWyAQXBNkk5XC3SkUbruMbHQs9ir9tHjfHoVrN/8WPb/N1efyw+kf+P7092SXOotBQSiZlpvNvYXFeJfPQTTeMGA2DHwcPJrOTaRAb2LN0VS+P3iJkykFlfo7BHkwpX8Ek/q0wc+9/lVoFrOZi8ePELdzK+cP7XdaMAZAkojs2p3Ym26m44DBuLi6VbpG+74DmfDSX9n4+b8xFBchSRKyLNu/atzduf2p5zHoI9i53LEpoP8d7eg7tl29x9xQZJOJvGXLyPrsc6w6h1OAKiSEoBdfwOuOO0SllaDF065dO/t7Z1JSUr3iBlsiBoOBjz/+mOXLl3Pu3DmUSiUxMTHMnDmTRx99tFqRvjYuXLhAVFTtgtP7778vXChbMU2dl60z6Pj86Od8f/p7LBWE6kFBfXnFqxsdEnbBhvdqELHvtgnZLUTENpgt7DyTzbrjqfwWl0GJsfK4g7003GxwxVqit9uL14SMTERHX/rc1vhY1eowGQ0c2bCWA2tWODnwubi60f+ue+g7bgJqrbbZ7i+bzeTM+4aszz4DU1nRhlpN4FNP4T/7EaRmFNEFAoGgOlrdO098fDymsjfRdu3aVXtced/FixfR6XR4e3s3yf3Pnj0LQN++fXFzq/wQW86yZcuYP38+Z86cISsrC19fX3r37s3UqVOZMmWKXRgXCK5HZKuM8VKBTcBOyMGUXlL1gfWxG5dB261uwoXgOsCkv0KALheo86oXrI2FDbpVYYqG5F1+FVokp69Wk0TyLj9U7mbMxc5CtmvvngT+6QXcBw5o0L3BtkC7eO9Fvv09qVLm44AoP54a1YGbOgZUWuyWZZlzB/eydcFXFOVUWGBW+qB2vQWlOpJcnxRmvDiSqMDme8gSNB5tV39bBENdEO+F5OTk8Kc//anOYjZAjx49eP3115txVAKBQOCMLMuUHs9GtyEJS77B3i5plHiNjsRjaFiDK6auBmfzzrIkfgnrzq/DaHWen3S3qngwO51bikuwz4w8gmHQk9DvYdB6NckYZFnm4IU8lh+8xPoTaehNzptiXdVKxvcIZcqACPpE+tZ7Y4Asy2ReSCRu51YSft9BiS6/0jF+4RHE3jSamGEj8QoIrPWaHfoN5PEvF3Fm/++cO7CX0qJCXD086TBgMJ0GDuX84Ry2LYm3H9/ntrb0H391qptkWaZo+3Yy//U+xiRHbrfk6or/7Efwf/hhFGLTvqAVUZ/omXJa4gai7OxsRo8ezYkTJ3j00Uf55JNPMBqNfPrppzzxxBOsWLGCX375BW0jhCs3N7caX7uLS8PsqAXXnqbMy7ZYLaw8u5JPjnxCviHf3h6u9ubPJldGH/gZSV5V+UTfdjYr8a4TIbRnixCxTRYrv5/LZt3xNH49lU6hvrLLmb+7C+O6hzKuazBBhTLbl55GXwcxG2zW46Zmck6zWiyc3L6ZvT8upSjXsU6gVKnoddt4Btx9H25eTaNzVIchKYnUuXPRHztub9N06kTYv95D26VLs95bIBAIaqLVCdqXLl2y/39gYPUPlBX7kpOTm0TQzs7OZvPmzQC8/PLLNR77zDPP8OKLL/LGG2+g1Wo5duwY//rXv3jggQf43//+x+rVq/Hz86vxGgaDAYPBsfhRUFB5J7pA0FKwlpjQn81DH5+L/kwe1pKqJ3YKTxdcu/ih7eKLS1tv0j88hFyHSaDkqsLtBhdxWi3GkirE6dxqqqnL/jMV137dxuDqC65+WAtzSd1Xbg1V3YOLrb2imK3t0YPAZ5/FfeiQBi+KZBcZ+Pb3JBbtuVjJLnN0lyCeHNmefu2q/pzQZWaw9dsvSTx80DFKpRJZ0weNy2AkSYXOL405f76NEN8bN2u5teDWPZD8tYnivbCOhISE1EvMBujevTvdu3dvphEJBAKBM8bLheSvS8R4scLzmwTuA0LwurUtSo+WKRxYZSu/p/zO4rjF7E3b69SnQOJmk8SMrFR6GoyOWZNvFAx9DnpOBXXTVAllFxn46XAyyw9erhS/AtCzjTeT+0dyZ89QPLXqKq5QM4W52cTv2k7czq3kJF+q1O/q6UWXYSOIHT6a4OgO9Z7rqVxciB0+itjho5zazx7KYMvCePuG3p43RzDo7uirIrDpz5wh8933KN6zx6nde8IEAl94HnVwcLOPQSBoah577DEGDRpU5+NbagTNfffdx4kTJ3juuef4+OOP7e2jRo1i4sSJrFmzhieeeKJRVeinTp2qsShI0Ppo6rzsPzL+4N0D7zrFirgiMTsvn5m6S2iu3D/i09ZhJx7aq0WI2BarzP6kHNYeS2PjyTTySkyVjvF2VTO2awjje4QSrVBz7mAGcV8mcLi48rE1IoHWvf5zkJqQZZlzB/aye/kiclOTK9xLoutNoxly33S8Apt3fUe2Wsn7bimZH36IrNfbGhUK/B95hIBnnkYhNr8IBIJrTKsTtAsLHRV4Ne1OrNjXVELwhx9+iNFoZOLEidx7771VHuPj48Ptt9/OV199RZs2bezt/fr1495772XIkCHs2rWL++67z26dXh3vvPMOf//735tk7AJBUyPLMubMEvQJuZQm5NoW7KpxEldHeOLa2RdtjD/qUHekCpbJfvd1ImdxXM2V2pLtOEndcqtYbghkGYzFVVt51yRYm/XNNyZJYRencfMHNz/bf07f+1f43h9cfaAs67Dwk1exmlbX+XaqAG9C/u8dPEaObPDiY0p+KV/vTGT5wUtOlUYKCcZ1D+WJke3pGlb1JiyL2cwfv6xm74/LMBsdG55cIsIxFo1Ai81SrCggk6fm3oW3R8vO4xTYkNQK8V5YD8aNG8eRI0d46KGH6nxOVlYW8fHx3HTTTc04MoFAcKNj1hko2HiBkiOZTu2ajj743BGNOsT9Go2sZkrNpaw9v5Yl8UtI0iU59XkoXJhUrGdadhrh5goWnSHdYdjzEDMBlI1fVrBYZXadzeL7g5f5LS4Ds9X5A9FLq2JSnzbc3y+C2LD6V4Ab9aWcO7CXuF3buHjiqG1eWwGlSkX7vgOJHTGadj37NiqL0myycP6PTBKPZaMvNqF1V+Pho+H49mT753z3EeEMvbf+Ynm9x5KTQ9Z/PyF/xQqoEE3j2qcPwa/OxVVs9hK0YoYPH860adPqfHxLjKBZuXIl27dvR6vV8uabbzr1SZLEO++8w5o1a1i4cCFPP/00ffv2vTYDFbQomjIvO704nY8OfcSGCxuc2scVFfN8bj4hlgqf/T6RNhE79m4I690iRGyrVebwpTzWHU/jlxNpZBUaKh3joVExJjaY8T1D6enrQdIfmZz+7jzHM6pxk6wLMkT3qt25pa5cPnWcXUsXknbutFN7+34DGTb5QQIi2zXZvarDlJJC6l/+Ssm+ffY2ddtIwt55F7c+vZv9/gKBQFAXWp2gfa3YtWsXH3zwAZ06deKbb76p9rhevXqxfv36Kvu8vb155513mDBhAlu3bmXjxo2MHTu22mu9+uqrvPDCC/bvCwoKiIiIaPiLEAgaiWyyYkjMpzQhF31CLpa8yhNFsFkpajv6oO3ij7azb427Q11j/fF/MJbcFWds1YnlNuRlXyVXFX73dcI11r9ZXtMNiyyDoaCWaukqxGmLsfZrNxRJWYUYfaUgXfF7P9D6QCMy/gpPF+D4g6sNGW3PvniOGlX7oVVwPquIL7efZ9WRFKdFWrVS4p4+bXhsRHuiAqpf6E5OOMXmrz9zqiRy9/XD0LMDxhN90GKLwTAE5/LM3Ltxc22+LCVB0yPeC+vOa6+9xtChQ7n//vsZNmxYnc7ZtGkTM2bMwFJxQUYgEAiaCKvRQuGOZIp2JiNX2KymCnTF+45otJ3rb4d9NcgozmD56eWsOLMCnUHn1NdG5cEDudncnXsZ94rib9thNiG7w81NspCdkl/KDwcvs+LQZVJ1lTdBDor2Y0r/SMZ2C0Grrl9sl9Vq4fLJE8Tt2srZ/XswGSpfP6xzLF1vGk2nQcPQeng0+HWUk3Qsiy0L4zGUVPgsv4LYoaEMn9ypWf8mrEYjeYsXk/3Fl1iLiuzt6rAwgl7+M5633dYi/yYFgroydOhQgoLqV6nYvn17ZsyY0Uwjahjz5s0DYPTo0fj4+FTqj4mJISYmhvj4eObPny8EbUGT5WXrzXoWHv2Sb+IWUSo7qpNjDEbm5uTRp9wx1DvSkYndQkRsWZY5kaJj7bFUfjmeVuX8QatWcHNMMHf2CGNIpC/Jx3M4/UsKy8/mVzpWqVYQ3SuQDn2D2LowHkMdnNM0bira92m8oJ15IZFdyxZy4egfTu3hXWIZPnUW4V1iG32P2pBlGd1Pq8h4+22sFbK6fadPJ+jFF1DUELkqEAgEV5tWJ2h7ejqqzfT66qv+KvZ5eTUuwyshIYFJkyYRHh7O5s2b8fX1bfC1br31VpRKJRaLhXXr1tUoaGs0GjQaTbX9AsHVwKIzUHo6F318LoZz+U6LdBVRBbii7eKHtosfmnZe9doV6hrrT9hrAyk5mY3+ZDbWUjMKVxXabgG4dQu44asRa8VqBYOu7uJ0eZu1efJ+AFCoK4vP1YrTvravGq9GidN1QZZlTMnJlB47TumxYxTt3U/dxGwACWthUe2HXcHJFB2fbz/HhpPpTsVArmolUwdEMuemKEK9q88rLCnQsWvpAk5u+80xEklBz9vGscdTh8e27mitNvHaGlrI06/cjYu21X28CxDvhXXFarXyv//9jwcffJDhw4dz11130blzZzw9PVFU8x6SnZ1dZbtAIBA0BtkqU3IkE92vF7AWODb9KdxUeN0cifugUCRly3vvPpVzisVxi/k16VfMsvN8sK/ajwfTLjCy8BJO8nHncTYhO2JAo+9vNFvZEp/B8oOX2Xk268piaQI8NNzXz1aNXdNmv+rIvnyRuF3biN+1zSl7shzv4BBih48mdvgofEJCG/oyKpF0LIv1X55wiNjVuK607R7g5FjVlMiyTOFvv5H5/geYLl+2tyvc3PB//HH8Zs5AIdYYBNcBb731FgA7d+4kJCSETp061XrOoEGD6mVR3twYjUa7c2P//v2rPa5///7Ex8fzyy+/8Nlnn12t4QlaIE2Rly2X5LL1wMe8f3EtKTjmAL4WC8/k5TOpsBildyT0nVAmYvdpMSJ2Qnoh646nsvZYGpdyK1dXuygVjOwcyPieYYzqGEDO+QJO701n6f8SsFSxlhneyYfOg0Jo3zsIF1fbGoqkkFj/xfFandNunhWLqp4b7SqSn5HO798vJuH3HU7t/m0iGT5tJtF9BlyVjWfmrCzSXn+Dom3b7G2qkBDC3n4L9yFDmv3+AoFAUF9a3Yp3ZGSk/f+zsrKqPa5iX0Xr7/py+vRpRo8ejbu7O1u2bGl0hbSrqyuBgYGkp6eTlJRU+wkCwVVGtsoYkwvRl1Vhm1KryTJWSmiivO0itjqgekGuLkhqBe69g3DvfYPn/VqtoM93CM+VBOkcKM2r/L3cjFWHSpcKdt2+1Vh5XyFYazxbxEOPpbCQ0uPH0R8/bhOxjx/HkpvbsIspFCi9q7YCr4oDSbl8tu0cO844f1Z5aVXMGtKOWUOj8HOv3r1AlmVObd/Mju++RV/osBILju7I8Icf4dPDPxC2dRAuZWK2so2eR18ej9ql4Q9VgmuPeC+snXbt2tkf7r/77ju+++67azwigUBwI2JI0pH/SyKm5Aqb3RQSHoND8bo5EoVb0+YqNhaL1cL2y9tZFLeIw5mHnfpUkpKxKn8euHSKrvoKmdKSEnrcb8vIDopp9BjOZRbxw6HLrPwjmZxiZ9cfhQQjOwcxuX8Eo7sEoa7nRoASXT4Jv+/g1M6tZCadr9SvcXen8+DhxA4fTVjnmCZfJDabLE752DWxdVE8kV39GrUQXhX6uDgy3nmXkoMHHY2ShM+99xD47LOoApvOGlUguNaMrBABNXPmTObPn3+NR1R/4uPjMZlslbE15VuX9128eBGdTod3PZ5Jy9m4cSPr16/n5MmTZGRk4OnpSbdu3bjnnnt46KGHaox0FFx7Gp2XXZoHCb9w7uT3vFt8mv2ujo1NSllmakEhj1s98e7+MMROhPCWIWKDbe6w7ngq646ncS6zcoGBSiExrGMAd/YI45bYIAyZek7vT2fFkvOUFlbOxfYNcaPTwBA6DQjGy7/yOmZUjwDGPd69sttK2VeNm4qbZ8US1SOgQa+nRJfP3pXLOb55I1aLY0OBZ0AgQ+9/gJjhI1Eors6aTsHGX0l/800s+fn2Nu+77yb4tVdRNrI4UCAQCJqLVidox8TEoFarMZlMXLhwodrjyvvatm3boMkewIkTJ7jlllvw9PRk69atTmJ6Y5Cv3IIuEFxjrHoz+jN5NhH7dB7W4sqTPgCFhxptZ5uAre3og6Ipq0BNeohbDQnrbLnMbr7QZbwtm0fdSh+uLOYycboOVt7l/fp8kKsJI28KVNoaBOlqqqld3FvMw0xNyGYzhrNn7dXXpcePY0xMrJSR2GCsVjxvvaXmMcgy209n8dm2cxy6mOfUF+ChYfbwKKYPjMRTW/Mid/bli2ye9zkpCafsbS6ubgybOoO2w4fwl5Vv0WnvzXYx27WtlQdfvE2I2YIbhobMpYS1qkAgaArMuXp0G5IoPeHs/KCN8cN7XBTqwJZly1hsKmbV2VV8F/8dyUXJTn3eanfut7ozJekIQZYKm61VrtBnBgx52paX2QhKjRbWn0jj+4OXOXCh8qbCNr6uTO4Xwb392tToWFMVZqOR83/sJ27nVpKO/oFsdZ5DK5RK2vXqS9ebRhPdZwAqlzos+jeQ839k2ha+64ChxMz5w1l0Hlg/e9jqMGVmkvXxf9CtWuU073UbOJDgua+gjWn8ZgSBoCWi0Wh47bXXmDBhwrUeSoO4dMmxgSiwhg0nFfuSk5MbtMb50ksv8dxzz/HCCy/g6enJmTNn+Oijj3jyySf57LPPWLduXY2iOoDBYMBgcMTOFRQU1HC0oKlocF52aR4krIdTq9Bd2MEXXu4s9/LAUkHMHmSUeSV0FB1umQnhfVvMus/l3BLWllVix6dV/jtTSDC4vT/je4QxtmsIKoOVMwfS+eVfR8hLq1yUo/VQ07F/MJ0HhhDU1rPW58KonoHMes+P84ezSDyahb7YhNZdTXSvQNr3CWzQhjRjaQmH1q3i0NpVThEoWk8vBk28n563jmvWeUpFLPn5pP/zLQrWrbO3Kf39Cf37m3jeUvOal0AgEFxrWp2g7eLiws0338zGjRs5dOhQtccdLNuVfMcddzToPocPH2bMmDEEBQWxefNmwsLC7H1ms5nk5GRCQkKcdjFmZmby6KOP8pe//KVau6CSkhK77WVtk0WBoLmQZRlzdqlNwI7PxXChAKxViwPqcA+0Xfxw7eKHOtyjeezxEtbD6idsYq6ksAm6kgLi18KGV2Dil9D59qa/b32wmKqojK7Gyru8TZ/fvGNSu5eJ0b41W3k7idMta5G1MZgyMmzC9bFj6I8dp/TUKeTS0hrPUXh749qjB649e+LasweaTp1IvPMurIWFNQvfkoTC0xPP226rsttilVl/Io3Pt5+v9MDVxteVx0a0576+bWrNfjQZ9OxbuZxD61ZhrZD123nITYycMZsCtZ4/LX+NPocmoLbaHkS92iuZ+twIVELMFtxAPPbYY/WyjNy7dy9ff/11M45IIBBc71j1Zgq2XaZodwpYHHMGdYg73uOj0HZoeCxVc5BSlMLS+KX8dPYnikzOFU3RrsE8UGpm/NmjuFac/2i9YcCjMPBxcG9Y5VE5J1N0LD94iTVHUik0OAu9aqXEmK4hTO0fyZD2/ijq8XwhyzIpp+OI27mVM3t3YyipvHAdHN2R2JtG02XoTbh5NWxze10p1hlIPZPP/rX1cF+TIPFo4wVtq15P7oIFZH/1NXKJw3pV3TaS4JdfxmP0aLGZS3DdolKpePbZZ/nrX/96rYfSYAoLC+3/X1OFdMW++orIWq2W0aNH8+9//5sePXrY2/v27cs999zD2LFj2bZtG+PGjePIkSM1xh6+8847/P3vf6/X/QWNo9552aX5cNomYnN+GxariZWeHnwSFki+0rFeEK5048+xDzO61xykZo59qytpulJ+OZ7G2uNpHLucX+Ux/dv5cmfPMG7vFoq3WknikSx2fHWKlDN5lRxSlCoF7XoE0HlQCJFd/VDW0/lFpVbSeWBIoz+rzSYTxzdvYN9P31NaoHNcX6Oh3x130+/OSWjc6h+v0lCKdu4k7a9/w5yZaW/zvPVWQv7+Jio/v6s2DoFAIGgorU7QBpg9ezYbN25ky5YtVdrtJCQkEB8fjyRJPPzww/W+/r59+xg7dixt27Zl8+bNlXZKJicnExUVxbZt2xg5cqS9vaSkhDVr1jBs2LBqBe1NmzZhKRMpGiq2CwQNQTZbMSTp7Fbi5pyqM+glFwWaDr64xvih7eyL0quZM9YS1sPyaRUGanX+qtfBsqkwZSl0Gdc09zQbasiarkqczrNlVDcnLp415Ez7Vfje3/F9a61cbwDWkhL0p05RWm4dfuwY5oyMmk9SqdB27mwXr1179kTdtm2lhb2wd98l+amnbLuRqxK1y44Pe/fdSpmDRrOVVUeS+XJHIknZzguqHYI8eHJke+7sGVYn28zEwwfZMv9LCrIcr8snOJSbH3mCdj37cCbvDH/77h0GH7vfLmb7d9Jw7zODmtyyUiBo6QwfPpxp06bVfmAZKpVKCNoCgaBByBaZ4kPpFGy66ORipPBQ4zWmLe79QpotD7m+yLLM0ayjLI5bzJZLW7Be4fozxKsDD2anMyTpIE4zE48QGPwU9HvIFhvTQHSlJn4+msLyg5c5lVpZdOkY5MHk/hFM6tOmxtiVqshLTyVu5zbid21Fl1l5DujhH0Ds8FHEDh+Nf5vGxYTVRLmAnXImj5Qz+eRnVM7wrBUZ9NU4YtXpdFmmYP16Mj/8EHOqw35W4elJwJNP4jd9GtJVqvISCK4VwcHBdcrNbmoWLVrUoHXGctavX8+YMWOacEQ1ExISYs/pvhIXFxc+/vhjevbsSXx8PN9++y2PP/54tdd69dVXeeGFF+zfFxQUNDqWUVA9xQfL8rItteRll+bD6Q1lIvZWsNo+X/7QaHjXP4QEjePzwFXhwuwejzKz2yw0ymZe66sDWYUGNpxMY+2xVA5eyKvymJ4RPtzZI5Rx3UMJ8dKSHJ/L0RXnSDyShbmKXOzQDt50HhhCh75BaK5h/ItstRL/+w5+/36J0xqPQqmk+81jGXzPFNx9rt5mSGtxMRnv/Yv8H35wjMXTk5C//RWvO+8UG+AEAkGroVUK2vfccw8jRoxgx44d/P3vf+ejjz6y98myzGuvvQbYcnT69u3rdO7atWt5+OGHCQ4OrtJSZ+fOnYwfP57OnTvz66+/4teA3Ukff/wxjzzyCL6+zh9M+fn5vPrqq4BtIXbcuCYS5wSCarAUGu0Ctv5sPrKx6pxlpZ8W17IsbE20d822RU2JSW+rzAaqD5wrC6tZ/QS8eLqyiGvS1zFnukK/sXLuTpOi8XYWp6uz8q4oTqvEolM5stWKMSnJyTrccOYMWGrOCVeHhaHt2QPXHj1x7dkTbWwMijpkgXmOHkWbzz4lde6rWAsKsEoSClm2f1V4ehL27rt4jh5lP6fEaGb5gct8vSuRNJ3z5pCebbx5clQHbo0JrlPFUWFONtsWfMXZA3vsbUqViv4T7mPA3feidtFwMP0gb/30MSNPPmAXs4O6uDHxqf5CzBbccAwdOpSgoPpljLdv354ZM2Y004gEAsH1iv5sHvnrEjFXFC1VEp7DwvEcGdG08TuNwGQ18duF31gct5iTOSed+lwULtzp3YUHLsfRIWmr84l+7W352D2ngKphC9uyLHPwQh7LD15i/Yk09FcsLruqldzZM5TJ/SPpE+lTrwXT0qJCzuzdRdzObaSeia/Ur9a60mngEGJvGk1EbPdmqTJrEgH7SiTQujdskb30+HEy3nmX0iNHHI1KJb6T7yfg6adFdZXghuGmm24iPr7y+0JNbN68mbfffputW7fWfnA1WK1We5FKQ88vx9PTIUzq9VUXHFzZ59XEubY9evQgLCyM1NRU1q1bV6OgrdFoaqzgFjQNsrksL3tfDXnZep2tOCRuNZzbYhexAdKVSj7y82GDh3PV7+1Rt/NC3xcIcW+auIuGkldsZOOpdNYdT2Xv+ZwqzSJjQ70Y3zOU8d3DiPR3Izu5iNObk/n1YAYlOmOl470DXek8KIROA0LwDqxffElTI8sySUcPsXvpQrIuXXDq6zx4OEOnPIhvSFjVJzcTJYcOkTr3VUzJjugZ96FDCX3rn6hDru3fg0AgENSXlvEE3gB+/PFHu21OaWkpDzzwAEajkc8++4xVq1YxevRovvjii0rnffXVV2RnZ5Odnc1PP/3ktLtw37593H777ZSUlHDy5MlqM7Ory210cXFBo9GQkpJCt27dePnll+nZsyfu7u4cOXKEf/3rX5w/f55BgwaxcuXKpvlBNAXXY3bxDYpslTGlFqFPyKU0IRdTcjXCrQI07bxtWdhd/FAFul6b3XinVtXRllu2HbdwPLh4OAvWpiZYVKoJV9+6WXnbxWlfUF67XaCtEXNenrN1+IkTNgvwGlC4uaHt3t1Rfd2jB6oacsdqY19IV+aO/Rs9zh9maNpJPIwlFLm48XtoN46378N7IbHcAuhKTCzae4H5vyeRV+JcWTOkvT9PjuzA0A7+dfr3ZLVYOLJxLb//8B0mvcMqPbJbD25+5En8wtoAsOnCJv6zdh63xj+M2mp7gA2L9eKuJ/qgVLcMezCB4Gqya9euep8zaNCgelmUCwSCGxtTVgm6X5LQJzhnPrv2CMB7bBQqv5bxjKQz6PjxzI8sS1hGRolz1XKA1p8p7tHcd2YvfufXOZ8Y2hOGPQ8xd4GiYRvjsgoN/HQ4me8PXiYxu7Ltd8823kzuH8mdPUPx1NZ9bmwxm0g68gdxu7aS+McBLGZnu3JJUhDZvSddbxpNh/6DUddh82J9KNYZSD2bT8rp2gVshUIiqJ0X4Z18sFpkjvx2qdpjnZAhulf95q2mtDQyP/o3BWvXOrW7DxtG8Csvo+nYsV7XEwhaOy+++CJjx47l8ccfp3379nU6JyMjgx07djTqvrNmzWLWrFmNukY5Fdccs7Kyqj2uYl+bNm2a5N5XjiM1NZWkpHpEJwiahSrzsgeH4nNHNJK5EI795KjEtjgLuwYJFgSG8427C6U4Nl108evC3AFz6RvsXPB1NSnQm/jtVAZrj6ey+2w25ipU7A5BHtzZI4zxPUNpH+hBsc7AmQMZ7NmXTk5K5bVNjZuKjv2C6TwohOAorxZRYZx6JoFdSxeQHO+8ubBtj94MnzqT4OgOV3U8VoOBrI//Q+6CBXY3QsnVleBXXsZn8uQW8TMTCASC+tJqBe2AgAAOHjzIxx9/zLJly1i8eDFKpZKYmBg+//xzHnvsMRRV7NB+9NFH2bt3L8HBwUyaNMmpb9++fZSUZU/VtDuyOsp3Nf74449s2rSJTz75hNTUVCwWC/7+/vTp04c33niDqVOnolK1kB99a8guFtSI1WDGcDaf0oRc9KdzsRZWbV+ncFOibe+Otr0WbaQShdoC5lwwZsAlg20ybDbavloMtsxoc1l7+X9V9pvKvq/YX358Lf2WyjsrayT5YMN/UJKiCnHar7JYXVGgdvVp8CKfoGqsRiOG+Hhb9fVxWwW26fLlmk+SJDQdO+LaswfasvxrTfv2SMqm+d38FpfBo4sPgSyxLaIv2yKcH/QkI8xZdIgxXYP5/VwORVfkQN4SE8yTo9rTJ7LudlFpZ0/z29efknXRsWjg5u3DyAcfocuwkfYHi2UJy1i06UduS5hjF7Mjuvlwx2O9hJgtENSDffv28dVXXzF//vxrPRSBQNCCsZaYKNh8iaJ9aVQsGVK38cBnfDSads2bx1xXknRJfBf/HT+f/5lSc6lTXxefDjyo8Gfsqd9w0R9xPrHdcBj+AkSPskeq1AeLVWbX2Sy+P3iZ3+IyKi1Ie2lVTOrThvv7RRAbVvcqQlmWyTh/llM7t5KwZyf6wsp25QERbYkdcTMxQ0fg4edf77FXh13APpNP6pk88tJrE7A9CevkS5tOvoS090atsc1HzSYLcb+nYigxV3t+ORo3Fe371E3QtpaUkDPvG3Lmz0eusEbhEh1N8NxX8LjppjpdRyC43ujTpw9ffvklY8aM4bnnnuO+++4jNDT0Wg+rXsTExKBWqzGZTFy4cKHa48r72rZtWylysSmormhHcHWpMi97fBvc3fbDD3+F81uqXEOTPUPZ2n4Q7xsukKLPgTIx21fjyzN9nmFSh0kor8G6VonRzOb4TNYdS2X76SyMlsr24G393RjfI5Q7e4bROdgTs9FK4tEs1i47x+X43EqJcAqlRNtu/nQZFErbbv4tZk0kJ/kyu5cv4tzBvU7twdEdGT5tJm2797rqYyo9cZLUuXMxnj9vb3Pt04ewd9/BpZoCPoFAIGgNSLKYubQaCgoK8Pb2RqfTNY3NkFN2cVV/BmWLHE2ZXXw9IstgtTRc1G1Av7nUjdKCSPSF0RhK21Ld3hS1lIhWcQCt8hAu0hkkqfIEslUiKa+ojq4ue7pCv9YHmsGGUFA9sixjSk6uYB1+DENcPLKp5sxAZWCA3TbctUcPtN26obzCLqup0JssDHh7M4Wl5mpN76tCIcGdPcN4YmR7uoTU/f1YX1TE7uULObZ5oyOvW5LoectYhk2ZidbDA7D97D458gkbdu1kbMJsVLJNzG7bw4/b5/RoMQ9ugtZLk88pWjjfffcdM2bMaJRF5PXCjfa7FwjqgmyxUrQ3jYItl5BLHYKk0ssFr9ujcOsZeM1zsmVZZn/6fhbHLWZn8k6nPgmJESEDmaGX6XdiHdIVIjddxtsqstv0a9C9k/NKWHEomRWHLpOqq7zxe1C0H1MHRHJb1xC09YhCKcjOJH7Xdk7t3EpeanKlfjdvH2KGjSD2ppsJbBvVJJVEDRWwwzv5EBLtjUsNNvNJx7NZ/8Xx6pOUACQY90QPonoE1DhO2WpF9/PPZH30b8yZmfZ2pbc3Ac88g+/k+5HUwhVKcO25VvOK6OhoAHJzcyksc/fy9vbGy8uryuIWgOLiYrKzs1vUfPD2229n48aN3HHHHaxbt67KY2JjY4mPj+fJJ5/ks88+q9f17777bubMmcMdd9xR7TFhYWGkpaUxbtw4fvnllzpfW8wpm45KedmuFvzbrMIldWnVhSCeoRA7gXPtBvDupQ3sT99v71JKSqZ0mcITPZ/AW3N1N+LpTRa2n85i7fFUtsZnUmqq/G8tzFvL+J5hjO8RSvdwb5Ah5Uwep/elc/5IFiZD5XOCo7zoPDCEjv2C0Xpcnc8+s9HImX27OXdwH6VFBbh6eNGh/yA6DRqGysW2PlOQncXeH5dxavtmZNmx3uobGsbQyTPoNGjoVa+Clk0msr/8H9lffmmP7ZPUagL/9Bx+s2Y1WWGIQCAQNCX1mVO0kDJhwVWnKbKLryayXEHUrapyuAlF44ZUIddLCmvIy1disMaitw5Ab+2HWY6o8jgJPRrFMbSKg2iVh1BJ2c06rlqRFKDUgNLFlhGt1NjsuFW2r8aci6iNBXUqELHIEtlBgwl+eBlovIQ43QKxFBaiP3GizD7cVoFtyc2t8RxJo0EbG+tsHR4WdtUm/etPpFFQWnslTTlKSWLygAgeuymatv51F9llWSZh93a2L/6GEl2+vT2wbRS3zH6KsE5d7G0mq4l/7P0Hhw4lMDZhDirZ9sAW1TOA2+Z0Q3m1Mu4FghZAfn4+Pj4+Tm07d+6s+uAaqG/GokAguDGQZRl9fC669UmYsx0isKRW4DmiDR43tUHhcm0X/gwWA+sT17Mkfgln8s449bmqXLk7fAQP5GQRuf8nsFaY0yhU0GOyLSM7sHO972s0W9kSn8Hyg5fZeTarUpVUgIeG+/rZqrGjAuo+JzKUlHB2/+/E7drG5VPHK/Wr1C607z+IrjeNpm2P3igaufDanAL2lUT1CGDc493ZsjDeVqktYX+kRrZVZt88K7ZWMbvk8GEy3n4H/ckKlqUqFX7TpxHw5JMom6FCUyBobVRV0Zyfn09+fn6N57U0i93Zs2ezceNGtmzZgk6nq1SBnZCQQHx8PJIk8fDDD9f7+mvWrKFNmzbVCtpHjx4lLc2W1VyT6C1oHqrMy1bE4W99G+XlfOeDPUIgdgJ0nYguKIYvTnzJ8oP/h0V2CMADQwcyt/9cOvhePWtro9nK7nNZrDuWxqa4jEqOdgCBnhru6B7KnT1D6R3hi0IhkZNaxL7V5zlzIIOiPEOlczz9tXQeGELngSH4BLtdjZdi59yh/Wz8/N8YiouQJAlZlpEkibMH9rB1wVfc/PDjZF5I5MjGtVgqFGy4+/ox+J6pdBt1K8pr4MxqOHeO1Ffmoj91yt6miY0h7N130XbqdNXHIxAIBM2BqNBuRTTp7sdjy2HVY3U/fvTfbNZ0NdpRV/j+WltTXwdYZG/01r7oLf3RW/sgU/VCkVLKRKs6glZzHK3mPJJK4SQaOwvKFf5z6i8/von7a7A1yi8x8t1X7/FU/gd1/pm8YHqSX5Uj6v2zFDQ9CquFSF06HXMv0jHnIh1zLxJekImils0dKZ6BnPNry1m/tpzxb8tFnzAs19DWXW+ylG+CrhMjOwey4KEB9bpHbmoyW775nEsnHYu2ao2WoZMfoPfYO50WaktMJby04yUunMzittOz7WJ2dK9AxszuKsRsQZPRGioqHnvsMebNm8esWbP45ptv7O0KhaLBi5EtqSLnWtEafvcCwdXAmFaM7pdEDOfyndrd+gThfVs7lN6aazOwMrJLs/nh9A98f/p7cvXOGwRD3UOZFjqcSRdP4nVmo/OJajfoMxMGPwU+VW+CrYlzmUX8cOgyK/9IJqfY+RlMIcGozkFM7h/BqC5BqJV1m5dYLRYunTjKqZ1bOXdwH2Zj5YXrNrHdiL1pNJ0GDkXj1nBnnpICIyln8kg9k09KLQK2pJAIautJeCdfwjvXX8CuDrPJwvnDWSQezUJfbELrria6VyDt+wSiqqGC3ZicQuaHH1C4wfl36jFqFEEv/xlNVFSjxyYQNDXXal6hUCgYPny4vVK7LiQmJrJ79+4WNx8cOXIkO3bs4Pnnn+ejjz6yt8uyzD333MOqVauYNWsW3377baVz165dy8MPP0xwcDDr1q2jXbt2Tv2SJOHh4cHRo0crZY0bDAZuu+02duzYQYcOHThx4gRabd0LWcScsnFYcnLJWXAEY5aLvc1duQ4f1TwkqUwUtovYd0PEICzI/HTuJ/57+L/kG/Lt54V7hPPnfv/P3nnHt1Xd/f99r7ZkWd527MRZznISJ07IYBOzKXuUESidAQotLS0Po/210KeFQPsAT4HSh04Is7QQRkoKIUBYGZA9HSd2hveSJWvr3vv7Q7JsWbItJ84+77yUK52lr4Z1zz2f8/1+76aiuOKwbNoIKyord7fx9oY6lm5poMOXGIUv02rgwqnDuLhsGHNGZ6OTJbyuIDvXNLJjVQPNe90JfYwWPSUzcpkwdxjDxjqOSHScqi9X8ebvfh31W0ptschktTHr0quYcdGlGEyH3xlMUxTannue5ieeQAt2hazXkXPLAnJuvRXJaOx/AIFAIDjCCA9twcBsf6c7Z3YqLP/vyO1E5YBFYWOSvvFeyl31ms5IqMOMv9aMf7+OYFMfEzcJjCNsmCdmYpmUi77AhiRddXjfjxRxeoNUt3ioafVQ0+KNHFu91LR46PCFMDGF+SYb6Xjob56qauDCxhJlNoGj7OLzRCHb18GE9r1MbN/DxLa9jHPuw6z0HzrcbbCwPbOY7Vkj2ZFZzI7MYjqNvXbWhqErx9OxgD9JyKy+CAeDrFr8GmvefA0l3L1LedzsUzjr5u+RnhOfO7Hd384dH9yBc2eYC3Z8D50WOUWPLc/l3O9ORpfiorFAcLzw8ssvo2kar732WpygDQeW6+9o88gRCARDjxZS8W5qxr+lFcUbRmfVY56cjXVqLlI0XYfiDuJ6fw+eNQ1x65TGUelkXDwG43D7EbI+QmV7JYu2LmLJ7iWE1Pi5VllOGTdlT+ec7R+hf7/XplBzBsy5FWYvANvgckz7ggpLNtXz6pq9rKlpT6gfnmnh2pNGcM1JIyhwpL5Q27ynOpIX+9OP8DgTx80cVkTpGRVMOu0sHHn5g7K5iwMWsMdnUDB2aATs3ugNuphXWSoonZ20/t+ztD33XPdCNGAaP578e+/BdsopQ26jQHA8cMstt3DDDTcM3DDKiy++yKeffnoILTow/vnPf1JRUcHjjz+Oz+fjxhtvJBgM8vTTT/PGG29QUVHBM888k7Tvs88+S0tLCy0tLbz++uvcddddcfV2ux23282sWbP4yU9+wuzZs8nKymLbtm089thjrFu3jgkTJvDOO+8MSswWHCABN1T+h+Dqz2itOhNF6zpfh8jUP41NvwzS8iMidunlUDw35iiytnEtC1cvZFtbd+Qpi97Cd6d+l5sn34xJd2g34qmqxpqaNt7ZWM+/N9UnbHoDsJv1nD+5gEumFXLK2GwMOplwUGH32iZ2rGpg75Y2NDX+Ok6SJUZOzmL8nAJGl+WgP4KRccLBIEv/8HjKYras1zPjwkuZfdnVWOxHZlNHcN8+6u67D9+XX8XKjGPGUPjIQixTpx4RmwQCgeBQIgTtExVve+pi9uFA0qUk+vYvKB+iellPSjGxDwA1qBCocuLf3oZ/exuKK7knumTRY56QiWViFubxmcjWoydfWrsnGBWqk4vW/RHAyE9Ct/Inw2OompZU1I7MdSV+EroVg8nCyAzLIXkdgm4MoSAjWvYwqrGakU3VjGyqIdOTuAjZE0WWqc0aTk3+aPbkjWZP/mia0/Pi/nYKD7XhB0Cd00dnkhxNyZAlyLCktrO1ZsNaPvjrMzgbukOHpefmUfGtWxk7M9HDu7azllvfvxV1j5Xzd3ynW8yekce53ykVYrbghOSuu+7iscce40c/+lFC3c9+9jPOOeeclMd67733WLhw4RBaJxAIjjZ8W1tpe60ykgO7R6hn35ZWnG/vJvPKcYRbfbg/3IfW49yvyzLjuHAUlik5R2zji6qpfFr7Kc9vfZ5V9avi6nSSjnOKz+YmczHT1v8T1vTKsWovhFPuiHhlm9IG9bybazt4Zc1e3lxXh7tXiFCjTua8yflcN6uYU8ZmI6foJdXZ3sb2Tz9i6ycf0rynOqHenGZnwilnMPmMCgpKxg/6PT8aBewDRVMUnK+/TvP//h6lpTtVlC4ri9w77yTj6qtErkuBYAhJS0ujuLj4SJuRQE5ODmvWrOGJJ57g5ZdfZtGiReh0OiZNmsQf/vAHbrnllj7zgi9YsIAvvviC/Px8rrzyyoT6+vp63njjDZYuXcoLL7zAww8/TCAQIDMzk7KyMp5++mm+9a1vYbGIdZZDRqATKpfCljegahke/+m0h78PRNb1dLSQnf4MxmllMPnfcSI2QIOngce+eox3q9+NG/bC0Rdy18y7KLCltnnqQNA0jfX7nLy9ISJiN7j8CW2sRh3nluZzcVkhZ4zPwaTXoaka9bucbF/ZwK6vmgj6E9dccovtTJgbyYttTT86PIgrV35KwNOZcvsz5n+LmRdddggt6htN03D+4zUaH3kEzds9F8q6+Rvk/vjHyGKDikAgOE4RIcePIYY0nM+rN8L2JaCphFWJSncuVe5sfIoeiy5Mib2V8fZm9HL065ExEsZfMIjQ0/15LPcWrI39hqY+3gi3+fFvb8O3vY3AbieEk/8J6vOtWCZlYZ6YhXFEOpLuyCywaZqG0xuiutXDnlYP1S1e9rR6qGmJCNcDida9kSQodFgYlWNFVeGL3a2cI3/F7wx/JEPyoGgSOkmLHZ2ajZ+EbuUDdSaPXzuNK8qHH6JXemKiqSrB6upozutI7utAZSUM4AlvKCzEPK0MS9k0LNOmYS6ddExOmF9fu5+7/rEh5fYDfQc729v46Pk/s+Pz7hy/sk7HSRdfwdyrrksafmpH2w5uXXYrttp8zqv8dkzMLjkpj3O/VYosxGzBIeBYDhEoyzIvvPDCoD1yvvGNbxx1ISaPBMfyZy8Q9IVvayuti7amGhkSAMmkI71iBGmnFMW8tw833pCXt3a9xYvbXqTGVRNXZzfYubrkcq5XzAxb8zdo2x3fObsETv0RlH09ck2VIh2+EG+tr+WVNfvYUudKqB+Xl8a1s0Zw5YzhZNlSW2AOBfxUfbmKrSuWs2fDOrReG6dlnZ4xM2ZRemYFY8pPQqdPfXOu1xWM5sBup7bSSXu9p8+2R4uArQYCuJcuxb3sA5QOJzpHBvZzzsZ+wQXIpshn5Vm5isaFCwls395tv8FA1s3fIPuWW9DZj2ykAIEgVY7UvEJRFHRiw8cRRcwp+6FLxN66GHa+D2E/mqbHGf4uHuXiWDNjegvZl+egm3hKwrpoQAnw981/5y+b/4Iv7IuVT8yayL2z72Vm/sxDYrqmaWypc/H2xjqWbKxnf7svoY1JL1MxMY9LphUyb0IelqhXtbPRy45VDexY2YC7LVH8Tss0MX52JIJJVuGBpxcZClRVweNsx93SjKulGXdLMxvef5eOpoaU+kuSRMmsk7n0J/cfYksTCTU2Uf//fo5nxSexMkNREcMeegjbnMGlyBMIBIKjARFyXDAwEy+GbW9T5c5iad14AqoBCQ0NCQmNne4clstjuLCwkrH2Npj3M5h27ZG2+phEUzSCe1z4drTh39ZGuKkPLwK9hHlsBuaJERFbn3n4xMGeonWXUF3T0iVge3D5wwMP0oOeovWobFvklmNjVLaVEVlWzNHccf6QwuyHlvGBbyZzAk9zobya83VryKATJ2n8R5nFu+psghhxWPRcOGXYoXj5JxTh9nZ8Gzbg27AB/4aN+DZtQnUn5i7qiWy1Yp46Fcu0aVimlWEpK0Ofm9tvn2OFi6YO44G3t+D2hftdA5eA9H6+g6qqsOH9d/n05ecJ+rr/xosmlnLOd28nZ8TIpP1W16/mzg/vJLtxFOdVfismZo87KY9zhJgtOMF59NFHue+++5Akia1btzJ+/HgAbr755oQcgAMxduxYvvGNbxwKMwUCwRFGC6m0vVY5KDHbNruA9HNHorMfGY+gBk8DL29/mX9W/hNXMF5ULrYXM3/cVVzubMO64k/Q2Wthddh0OP2uyPVcipuCNU1jTU07r6zZy7831eMPxQvOFoOOS6YN49pZxcwozkjJa1pTVfZv28yWFcvZueozgr7EBe9h4yZQesbZTDj5tJRDcR6YgJ1B4fhMhh0FHtju5cupu/c+VJcLZBlUFWQZ9/vvI//mIfJ+chedn3xC57IP4vrZzzuPvLt/inHE4POeCwQnIkLMFhx1BDph538inthREbsLRcugNXgfQW1yrMw2t4CMi09F0sdf82uaxvK9y/ntl7+ltrM2Vp5hyuCHM37IlSVXojsETkGVjW7e2VDH2xvrqW5JPPcadBJnjs/l4rJCzinNJ80UOd/6OoNs+rye7SsbaKpJ3ChnMOkYG82LXTQu47DlxQ54PTGh2tXSjLs1/n5nWyvqQWx21jQNX2f/a2lDjaZpuN5ZQsOvf43a0RErz7jmavLuuRdd2pHdJCAQCASHAyFon6iUXk7VK7/mzf3dIouGFHcMqHoW7y/lsjF7KCk9MiFUjlUUT4hAZTu+7W34d7Sj9SEI6xzGmIBtGpuBfAhzxWiaRrs3FA0NPvSi9egcGyOzbYzOsTI8s1u07g+zQcdj10zne4u+JKgZWayexmL1tPjnif73P9dMT2lMQTdqMEhg+3Z86zfg27gR38aNhPbu7b+TJGEaNw7LtDLMZWVYpk3DNHbscRvusOd3UNKSr4UP9B1s3F3F+396msbdO7vHtadz5vxvMfnMs5H6CA+3tGYp939yP0UtEzm38pvdYvasfM755iQhZgtOeN5//30MBgM//vGPGTasezPJ3/72t0GPNXfuXObOnTuU5gkEgqME76bmSJjxFEk/fyTp845MyNnNLZt5fuvzvF/zPmEt3uZZBbO4afSlnLl3I/KSB8DfEd959JkRIXv0mSmnQ2p2B3h97X5eXbOP3UkWp6cNd3Dd7GIuLhuG3Zya13Rr7T62ffIhWz/5EHdLc0J9em4epafPY9LpFWQVFg043rEuYPfEvXw5+2+/o7tAVeOOqstFwy8fiOtjKp1EwX33YZ016zBZKRAcn2zcuJFly5ZRVVVFR0cHDoeDkpISzjnnHMrKyo60eYLjlaAHKnuK2ImbuwLGObT5f4qiRcO66yUyLx+H7aT8hLZV7VUsXLMwLv2ITtJx3cTruG3abThMjiE1v7rFwzsb6nhnYz07GhPFWZ0sccrYbC6ZVsj5pQU4oukPlZDKrmhe7D2bWlF758WWYERpFhPmFDB6ei6GIV7rVMIhOttacbe04IoJ1U09BOuWOEeDQ4EkSVjSDl80lXB7Ow0PPIj7P/+Jlelycxj23/+N/ayzDpsdAoFAcKQ5eq7+BIeVsCaztG4C4Ccq1yQhknxuad0EbtVk8WXpB03TCDd68W2L5MIO7nX1qYwZR9gxT8rCPCELwzDbkObq6xKtq6NCdUy4jt4/UNE6IlZbD0i0HohzSvN59qaT+Olr6+nwhZGlSN7srmO6Rc//XDOdc0oTJ/uCbjRNI1RbGxWvIx7Yga3b0EL9h4TX5ebEwoZbysowT5lywu3qPNDvYMDr5bN/LGL90iVxoTWnzDuX02/4Jtb0vi82X9z2Io+sfoSRrVM5d+c30WmRv6Xxc/I5++bSlPNUCgTHM9u3b+f73/8+Dz/8cFz5mDFjeOKJJ7j00ktTHsvn89Hc3HxU5k0UCAQHh39La3fO7IGQILQ/9dyIQ0FYDbN873IWbV3E+ub1cXV6Wc9Foy/ipuHnMHHrv+Eft/ZaDJdg0iVw2o+gKLXQooqq8cnOZl5ds4/3tzYS7rXInG7Wc+WM4Xz9pBGUFqbqNd3Bjs9XsPWTD2moqkyoN1osjJ97OpPPqKBoYmmfm/kiY0UE7LrKdmp3OmmrO3YF7J6ogQB1994XeZBCVjc5J5v8u36C4/LL+n2/BAJB/+zcuZMFCxawYsWKPtuceeaZPPvss5SUlBxGywTHLUEP7HwvImJXvpdUxMaaA6WX4pEvp/0zHSiR84Iu3Uj2TaUYR8QLoR2BDp7Z8AyvbH8FRev2Gp4zbA73zrqXksyh++7ub/eyZGM9b2+sY3Ntoke1JMGc0VlcXFbIhVMKyE6LpMrQNI36XR3sWFlP1VdNBLyJ64vZw9OYOLeAcbPysTlST4fSE03T8LldEXE6zqu6BXdUtO50tqd0ru0Lc5ode04u6Tm52LO7jjm07N/HqtdfSdnOktknH7ANg8G9/EPqf/ELlJaWWFn6RReS///+H/rMzMNig0AgEBwtHJ1Xg4JDTuXKTwn4A/QtZnchEfAHWPbnpxleOhW90YjeaIoejegNxqRlOoNhSIXaoxEtpODf1YF/eySUuNIRSNpOMuswj8+MeGKPz0SXdnChDTVNo80TjPewbvXGPK3dByBaF2VYomHBe4YIj4QHN+kPvWfuuaX5fHjXqfzfa+/iqupEH9YTNoRJH5fGLddcSJY97ZDbcKyhuN34N22KeF5HPbCVtrZ++0gmE+bS0vjQ4YWFx/3faiqcW5rPqvvP4d3N9fxncyNOX5AMi5Hzp+Rz4ZRhcZs3NE2jcuVnfPjcs3jau9/z7OHFnPPd7zN80pQ+n0fTNP537f/yl81/YXTrNM7ZeXNMzJ4wp4CKmycJMVsgiNLc3MyUKYl/TzU1NXR2Dk6Qev3110UObYHgOEJTNUK1nfh3tuPf5Uw93LgG6iC8uQ8Gd9DN6ztf56VtL1HnqYuryzRl8vUJX+e67BnkfPl3+OAq6LGAjWyIpHs69UeQMy6l59vf7uW1L/fz2pf7qOtIzFt58phsrps9gvMnF6S0KTUcClG9dg1bViynet2ahLCckiwzatoMSk+fx9hZczEYky9c+9xBaitTF7BziyMCdlGXgG05NpYs3EuXRsKMp0jenXeSceUVh9AigeD4Z/Xq1Zx77rl0dnai9SNuffzxx5x00km8//77zBLREAQHQkzEXhw5hpJ4/1pzIpvQJl+BVnQyznf34llZT9ckxTgqnez5k+LSnSiqwutVr/Pk2idpD7THyovSirj7pLupKK4YkvWaRpefJRvreWdjHWv3OpO2mVGcwSXTCrlo6jDy07tTIHY0e9mxqpEdqxpwNSeK91aHMZYXO2f4wGt3oWAAd0sL7mjob1fPY1S4DgeTr6+mgk6vjxOr7T1F65xc0rNzMZiTp3gMB4Os/887BDwe+p9cSphsNsbPOfWA7UwFpbOTxocepuP112NlOoeDgl/+gvSLLjqkzy0QCARHK8fG1aFgyKlasxJJkvqd9Pdky8cfsOXjDwZu2IUkdYvdBkO84G00oetd1ocw3rNP0nGMPcoMxkMuzIWdgYiAvb2NwC4nWq/8c13o8yyYJ2ZhmZiFcWQ60iBDB/clWkc8rodStLYxIstyWETr/nhr2XJ2vuHG5m3EFKoCzQ+SGX19CX/76gPGX5nOJWfPO6I2Hkm0cJhAVVWP0OEbCO7aPeCOVOOoUT1Ch0/HPGE8kiG1cJInInpNYYK7El3TSnydLixp6ZS456LX8oDI34izoZ4P/vZHatZ/1d3PaOLkq69n5tcuQ6fv+/0NqSEe+PwB3tr1FmNap3NO5TeQo+NOnFvAvG8IMVsg6InZbKa2tnbghicQiqLwP//zPzz33HPodDqCwSDXXHMNP//5zzGZDswLQiA4Vgi3+vDvdBKoase/q2NQYcZjSCAfYoF0n3sfL217iTeq3sATihdvSzJKuHHSjXzNmI/586eg8mfxnQ02OOlbMPf74Bg4XHcwrLJsWyOvrNnHJzubE6aGuXYTV88czrUnjWBUzsAReDRNo37ndrauWM6Ozz/B70ncPJQ7agyTz6hg4qlnYstI9AoalIAtQe7I9GNSwO6Na+l/Ii8oletrWcaz4hMyr7nm0BsmEByndHZ2ctlll+F2u8nMzOSKK65g1qxZDB8+HIvFgs/nY//+/axZs4bFixfT1tbG5Zdfzo4dO0hLExvmBSkQ9EbE662LI2HFk4rY2TERm5GngU6P4g7S+rdtBHvkk7adPIyMi8fErQ2ubVzLwtUL2da2LVZm0Vv4zpTvcPPkmzHrk4uuqdLaGeDdzQ28vaGO1TVtSU9PU4scXFw2jK+VDWN4pjVW7veEqPqqicpVDdTv6kjopzfKjCnPZcKcAoZPzIqtY2iqiqfD2e1V3dIU9bJuiYnWPlfieIPBlpGJPTunh2idF/OwtufkYk13HHDkE73RyIW3/5jFv/01aH2F/5FAggtv/zF648E5LPWHZ+VK6u6/n3Bdfaws7cwzKfjvX2HIyztkzysQCARHO8fm1aLgoPF1ulIWsw8ITSMcDBzUrroDISKUG+NE7jhR3GhEZzBiMBpTE9j1RvQuHXK9CvtDaK19hG/WSZjGOLBE82Hrsy0D2totWnuoaYmGBT8I0VqWoDCjOzz40SZa98Vby5ZT/dJO8L5HSOuKGqABEqFQFfhM7H7xfN7SNC49p+IIW3t4CDU24tuwAX+X9/WWLWi+JGGseiA7HFiiOa8t08qwTJ2KLiPj8Bh8HFD15SqW/uFxAp7O2GYfSZLYufpzlv/9Wc675Ye01e5j1euvEg4FY/3GzJhFxbduxZHXf0h8b8jLXR/fxWe1nzG2pZyzd97ULWafMox5N04UYrZA0IvS0lKefvppLrvssoTchydqZInvf//7vP7663z66adMmDCB/fv3c8YZZ7Bp0yYWL158pM0TCIYU1RvCv8tJYKcTf5UTpS3R63jQaGCeknPw4/QeVtNY27SWRVsXsXzvcrReC6CnFZ3GTZNu5GSPB+mzJ2DPZ/EDWLJgzq0w+3tgzRrw+aqaOvnHl/v411f7afUE4+pkCeZNyOPaWSOYNzEPQwobazuaGti64kO2frIcZ0N9Qr0tM4tJp51F6RkV5BaPiqvzubtyYEfyYJ8IAnYs1c/atXjXrsW3bj2BHTtSH0BVUToObkFfIDjReeqpp2hsbOSmm27iqaeewm5Pnsv2lltu4YknnuCOO+7g+eef5+mnn+aee+45zNYKjhmCXqh6PxpOvA8R25IFpZdC6eUw6nTQdZ/HAntdtL2wDcUVPTcnyZfd4Gngsa8e493qd+OGvXDUhdx10l0U2AoO2PwOb4j/bGng7Y11fL6rFUVNXPedWGDn4rJhXFxWGLfZTQmr7N3Syo6VDVRvakEN9+orQWGJleET9DhyFXyuvezduJYty5tiocHdra2oyoFHwjGYzN1CdVSkTs/Ji3lYp2XnoD/EThpjZ87hsp/+POn6kKZpmGw2Lrz9x4ydOeeQPL/q89H02OO0L1oUK5OtVvLvvw/HVVedsNfBAoFA0IWkHVJVUzCUuFwuHA4HHR0dpKenlu+sL976n4eoWvNFaqK2JJE3aixTK86LitRBlFCQUDBIOBgkHAyghEKxuq6ycO+yUOR4MHlODgcG2USBZQyF1rEMs4zGpLMmbecLu6nz7aYxUEOr2oBkkNAlEdBVWUdA0+FVZDyKREdQwxmENr+GR5FQZD1hSUdY0qNI3ffDki7yWNbHHmuyntzMNEbn2hmVHZ/X+mgWrfvC4/fxxx/8BVxLB26cfgG3PvkdbOaBNwscS6g+H/4tW/Bt2IhvQ8QDO9zQ0H8nvR7zhAkx8dpcVoZx1CgxsT1Aqr5cxZu/+3V0821qv09p2TlUfHMBJbNOHvB9b/O3cfuy29ncupmSlhlU7LwJmcji8qRThzFv/kQkIWYLDjNDOac4VDz99NP84Ac/QJIkMjIycDgieelramrIzc3FZhvY27ALj8dDS0vLMR1yfNWqVcydO5dHHnmE//qv/4qVP//889x888289dZbXHLJJQOOcyx89oITEy2sEtjjIlDlxL+znVBtZ5+nZcmix1ySgakkA9NoB03PbEjJY1uy6Cm8fw6SYWhyFoeUEEtrlvLCthfY2ro1rs6sM3PJ2Eu4ccJ1jKndCJ8+AY2b4gdIL4JTfgAzvgHG/n/TfEGFJZvqeXXNXtbUtCfUj8iycO1JI7h65ggKHAN7dQW8HnZ88SlbVyyndvuWhHq9ycS42adQevo8iqdOQ5Yj1xmDFrCL7RSNz6RwfAaFJRnHpoAdDOLftg3vunX41q7Du24tSnPLwB37Qpaxn302w5/8/dAZKRAcIY7UvOKUU04hGAyyZs2alK6DNU1j9uzZ6PV6vvjii8Ng4fHPcTOnDPlgZ08RO8l5zZIV9cS+HEadESdid+FZ00D74qo+82UHlADPbXmOP2/6M74eebcnZk3k3tn3MjN/5gGZ3xkIs2xrI29vqGPFzmZCSuLkaUyOjYunFXJJ2TDG5Xdv/tA0jaYaNztWNVC5ug6/24mmudFUF5rqRlPd6A1e9AYvoYCToLfvc/5ASJJMWlZ2D6E6NyE0uNmWdtSsa4WDQSpXfUbV6i/wdbqxpNkpmX0y4+ecesg8s30bNlB3z70Ea2piZdZZsxj28MMYhw8cuUcgEAiOVQYzpzj2riYFQ0LJrLnsXP15ao01jZlfu4zS0w8+5LOmaSjhcJww3iV4h4IBlGCIcKiXMB6MCuM92nbXRYRyJU5ID3b3iZZrWvLQ4F2kG7KjAvZYcszDkaXERS5N02gL1FPn20W9dxftwcYDeg8c0dvIA+oN1ICs06M3GggZTew2Gtlr6A7BboiFaDeiM/YO297zcd+e7DqDAUOv8O6y7uDEck3T8Ct+OgIdsdvH73+F7P4wtQHcH/Lmu8XccMWlB2XHkURTVYI1NdHQ4RHxOrCjEgYQWAyFhZinlWEpm4Zl2jTMpZOQ+8j5Ixgc4WCQpX94PHUxW5KYedFlnHLNDRgtyTe79GSfex+3LbuNPa49lDTPpKLqxpiYXXpaIWfdMEGI2QJBH9x22228//77vPXWW7S3t9Pe3i3gNDc309zcPKjxhnpxRFVVnnnmGe677z7cbjfV1dWMGjVqwH6BQIAnnniCV155haqqKnQ6HZMmTeLmm29mwYIFyH2EyHvppZcAuOCCC+LKzz//fABefPHFlARtgeBoQdM0wo3eSB7snU6C1R19pvNBJ2EamY5pXAbmkkwMRWlx58+sa8bTumjrQOkOybpm/JCI2U6/k9cqX+OV7a/Q5GuKq8u15HL9xOu5ZswlZGz/Nyy6Btpr4gfImQCn/QimXA36/hdFN9d28PLqvby1vg53IF60N+pkzpucz3WzijllbPaA0V6UcJg9G9exZcVydn25EiXUK/qUJFE8uYzSMyoYN/tkjBYrvs4g1etbTygBW3E6Y+K1b906fJs2oQX6iTwmy+gLCgjX1fXdpieqiv3cc4bGWIHgBGXHjh3cf//9Kc/vJEniuuuu46GHHjrElgmOCbpE7K2LYcfSPkTszO5w4qNOB11yz2AtrOJ8Z3c0X3aEnvmyNU1j+d7l/PbL31Lb2Z1OKcOUwQ9n/JArS65EJw9uvc0XVFi+vYl3NtaxfHsTgXDi/Gl4poWLywq5ZNowJhXYCXg9uFuaqfpyK817atm3dS/Ne+oIeJ1oqgu05HmjlQCkEnvTbEuLhf225+T18rLOJS0z+6DXFQ8neqOR0tPnDcla+EBowSDNT/+B1j/9CdTIZymZTOTd9WMyb7rpgEOoCwQCwfHIsXd1KRgSxs89jeV/f5aAJ/mEpRsJk83G+DmnDsnzSpIUyYVtMEDqjlUHhaZpqEo4TuQOef2E9nSi1HjR9gaQPMnfA1VW8aZ5cVs7aJZaaPW56PT48Hiz8PutBAOR8WQ1jE4No9fC6DUFnaago38R/WBQlTBBX5jgAGGohxJJlnuEZTeATodk0KHpZTQdKDoIyyohWSEoKQSkEEFFIRQGJSyjhmVkxYJRtWFU0jAp6Vg8HjQtxbD0WoB9/97AD7avRO/QsGbpyci2kZORRa41lzxLHrmWHLLNOeiT7JY9EigdHfg3b8a/dSv+LVvxb9mC2pmYi5AeoSBliwVTaSnm0lIsU6dgLi1Fl50d19wfDMBhDud/vLLji08IJMkP2Renfv1G5l55bUptt7Vu47Zlt9Hqb2Vc80lUVM1HiorZk08v5MzrhZgtEPSHLMssXryYpUuXsnz5clpbW1FVleeee47TTz+dMWPGpDzW7t27+fTTT4fMti1btvC9731v0B4+LS0tVFRUsGnTJhYsWMCTTz5JMBjkqaee4rbbbuO1115jyZIlmJNsWvrqq68AKCkpiSvPz88nLS0tVi8QHM0orkA0D7YTf1U7qruPdD6AocCKqSQT07iIF7Zs7HsR1FKaTfZNpbS9Vhnx1O7OYANaxDM765rxWEqz+xwjFXZ37OaFrS/w9q638SvxIdAnZU3iptKbuKDgFAzrnodnTgdPvNhN0Uw47S6YcBH0szjZ4Qvx1vpaXlmzjy11roT6cXlpXDe7mCvKi8iy9S+Ia5pGU/Uutq5YzrbPPk6auzKraASlZ1Qw6bSzMJgd1O10svKt/dRVttNam7qAPawkA9MxJmBrmkawugbfuojntW/tOoK7d/fbR7bZsEyfjqW8HOuMcsxl05AMenaefgaq291/RDJJQrbbsUc3IwkEggPD4/GQlTVwioaeZGZm4vUmCSEtODEI+aBqGWxZDJVLIZhkHcCSCRMvjojYo8/oU8TuQnEHaX2x73zZu5y7WLh6ISvrV8bqdZKO6yZex23TbsNhcqRsfiCssKKyhbc31LFsWyPeYLdjhE4Nk6Z4GGEKcEq+jolpCrawG/faD1n9XjMftLYQChx46hZZp8eek0N6dpdIndvLwzonpQ3/gkT8O3ZQd8+9BLZvj5WZp06l8JGFmAZxvSsQCAQnCsfW1aZgyNAbjVx4+49Z/Ntfg9a14tMbCSS48PYfH7JwKocDSZLQ6Q3gUQlV+gltayNQ5Yx5gPSWk8IOI015ZrbbZNaEg1S3y+xpkXEHeuRkMkRvydM0AaBDpdhhYJTDSHGGkSK7nsI0HflWHVlmCUkNJ/dEj4Vnj3qsx5X18lDvVXYwuWoGQlNVQn4fIf/AIroxekvEGT/mIG3Qu1Yxan18WVv0NoisdUeOUblA7sDtAm2w7tPITXDUIEkSTdW7Umq7sn4lP/rwR3hCHsY3z2Je1Xyk6K/NlDOKOOO68ULMFghS5IILLojzSn7uuee45ZZbuOGGG1Ie48UXXxwyQfuXv/wlCxcuZPbs2dx7770sXLgw5b7XXHMNmzZt4s477+SJJ56Ilc+bN48rrriCN998k9tuu42//e1vCX2bm5vR6XRYrYmLRenp6YP2WBcIDgdqQCFQ3UEg6oUdbupbSJDtRszjMjCNy8RckoHOPrjrD0tpNoX3z8G7uQX/5hZUXxjZosc8JQfrlJwD9szWNI0v6r5g0bZFfFob/zsiIVFRXMFNpTcxwzocadUf4R+3Q6CXaDy2Ak77ccTDqw9vQk3TWF3dxqtr9rFkU32Ct5XFoOOSacO4dlYxM4ozBvRKdLe2sO3Tj9i6Yjmt+/cm1Fvs6Uw87UzGnnQGoWAWdTs7+Pczu1MSsAvHZ1J0jArYaiCAf/PmWO5r37p1KO2JIdx7YigqwjJjBtYZ5VjKyzGNG4eUxMuscOFC9t9+e+SNSiZqRz+zwoULkU2mIXk9AsGJSm5uLlu2JKZL6I8tW7aQk5NziCwSHJWE/FER+42+RWxzRnc48dFnDihid9FfvuyOQAfPfPUMr2x/BUXrFp7nDJvDvbPupSSzpI9Re5mvqHxa2cS7X+5i9eZd6LxO7OFOZoQ7sUdv6WonlnCP+dUuqE5p9G6MFjsZBfmk5/QSqqPitc2RIbyEhxhNUWj9y19pfvJJ6IqYo9eT8/3byFmwAEl/bM2vBAKB4HAhfh1PYMbOnMNlP/05S//wOAFPJ5IkoWla7Giy2bjw9h8zduacI23qAaGpGsH9bvzb2/BvbyPUR3g8RYJKA3ysBPlICbK/Q4VEx4WkyBIMz7TG5bIenWON5LTOtGLUH54JX0gJ0RHswOlrp72zFaenFWdnG25fBy6vk06vC4/PjdfXiS/gwR/wEPD7UENhdKqEXpHQqRI6RcIQ1mEOmzCGDBgVA4awDr2iQ69IyCrIKkiaAiighSNHgeAEQNM0fJ3uAdu9W/0u9396P2E1zPimWczb1S1mTz2ziNOvG3/U5IUSCI5mPvroI55//nkkSeKhhx4iPz//oMbT+vOYGwRPPPEEjz/+OLfddhvPPfdcyv3+9a9/8dFHH2E2m3nggQfi6iRJ4uGHH+bNN9/kueee44477mDmzNTz6InfFMHRQtf8O7Az4oEd3OuO5ZLsjWSUMY12RATscRno86wH/V2WDDK28jxs5XkHNQ6AP+xnye4lvLDtBaqcVXF1Vr2VK8ddyQ2TbmBEWIHPfg/rXojE5ey2Bkovi4QWLyzv83ma3QFeX7ufV9fsY3dL4vXKtBEZXDdrBBeXDcNu7n+RPej3UbX6C7asWM7ezRsSRFWdXs+o6bPJGXkSYWUEDVUutq2sB+qTjnc8CNjhlpbu8OFr1+LburV74TgZej3m0lKs5dOxlM/AUl6OIT+175O9Yh7Dn36KunvvQ3W5Il74qho7ynY7hQsXYq849OFLBYLjnblz5/KXv/yFO+64I6WUL9XV1fzlL3/hvPPOO/TGCY4sIT/s+iAiYu9YCsEk1/DmDJh0MZReAWNSF7G76Ctftq7IymuVr/Hk2idpD3RvlipKK+Luk+6morgiYa4T9Ptwt7TgbmnC1dqMq6WZ3TX7qd1fT8DZijXoJh+VA08spEeS7UhyevRox5qRw6iyUUw8eRwFJUUYjGKT1eEkWFND3b334Vu/PlZmGlfCsIULsUyefOQMEwgEgmOAY+tqVDDklJw0h1v/+DyVqz6javUX+DrdWNLslMw+mfFzTj3mPLNVfxh/ZTvOzS2EKtvR+ZOLrW2ofEGYzwmzRgvjDfY9ZpdoPSrHxqhsK6OybYzKiRyHD7FoHVbDuIIunAEnrkDk2JVv2hlwxup65qHuCHbgSZbvpzcamLCSJmVgkzOw6UeSpmZgUxzYQhnYgg7SghmYlB6eXxLd3uh9DatpQDgqbofRtDA6o4I5TcJik7HYdBgtYDBpGIwaeoOGzqACCqvefQfF7Uz5/ZFMVvKGjyMYCBMMhAgFFJSQGnnqBF/7gVGkMGE5GLnpQoTkIIocJKQLokhhZFnCpDNhxog9IGHxa5i8IfSeAFJoAG94nYycZkeXno4uPR053S7yXh+FNOyuwuvs3yunC0mSsKT1E5YBWLR1EY+ueRSACU1zOGvX9d1i9rzhnP71cUJ4EghS5G9/+xuLFi1ixIgRPPjgg7FyVR18So/58+czf/78IbFr69atFBUVDbrfn//8ZwAqKirIyMhIqJ80aRKTJk1i27Zt/PWvf00QtHNzc6msrMTr9SZ4aXd0dFBQUDBomwSCoSDc6ouEEd/Zjn9XB5q/jzmSBMbh9lgebGOxHekwbf4cDC2+Fl7Z/gr/2PGPuMVogEJbITdMuoErx12JvX0vvPcgbH4denhfIRtg+vVwyp2Qk9wDS1E1Vuxs5tXV+1i2rZGwGi88p5v1XDljONfOGsGkYen92quqCvs2b2Lrig/YufqLpCFFs4aPIz13OgH/KGp3KdTugmQi9rEuYGuqSqCqKpb72rtuHaG9id7pPZEdDqzTp2OZMQNL+XQsU6ciWywHbIO9ooJxn6zA/Z//4H5/GUpHBzqHA/u552A//3zhmS0QDBHf+ta3+Ne//sXcuXN5+OGH+frXv47NlpjXzuv18uqrr3L//ffjdrv5zne+cwSsFQyKkD+S23r7O+BtB2s0DHjp5WDoY00lJmIvhh3v9iFiO2DiJd3hxPWDX+/sL1/2Bu9mFi5ZyLa2bbE6q2zhm6Nu4ILsswjs72DN+n/hjorW7tYW3C3N+PvYNN935MMeSBJpmVnYc3KxpmcR9FvoaNHjc5tiAjaSGUmSMNsMjJuVz4Q5BeSNsot1iSOApqq0v/wyTb/7H7SuFJKSRPZ3vk3OD3+IfIytwQsEAsGR4Ni5OhUcMvRGI6Wnz6P09GNnp7imaTR3BtjT4qG+pgOqnGQ1+BjhUekK/tY7CNx2FD4nzOeE2IEaF+46mWgd8bi2HpBoragKrqArTojuuh8rC7giXtU9BOrOUOq5fHsiaTLWoB1bMANbMIO0YESgtgUd2ALd9/XaQU6OJLCmG0nLMGHLMEWOmV1Hc6zcYOo7x2FPzBkZLH/2qZSfft7N36H87MR8c0pYxd3qx9Xiw9Xio6PFj7PJQ3uzh86WAEpwkF55CqiEkJU2rN4WMlwtWH0tWPwtWHwuzP5W9Ep8DuvWXBNtY7LxTRiBXDqBtNIp5DkKybfmk2fNw6gTE9Ojka0rlvPu04+l1FbTNEpmn5y0TtVUnvjqCf62JRImeGLjXM7cfV1MzC6rGM5p1wgxWyAYDCtXrqSiooKlS5ei7xFy7Ve/+hVXXnklU6ZMOSJ2HYiYHQwG+eCDDwCYNWtWn+1mzZrFtm3bWLJkCU8//XRc3cyZM/nss8+oqqqirKwsVt7Y2EhnZ+egPLoFgoNB9YbwV3XlwXaitPWdk1GXbcZckoF5XCamMQ5k6+A8oA4n29u2s2jrIt6tfpeQGu/BW55Xzk2lNzFvxDz0+9bAa9+Bnf+JH8CYBjO/CSffDumFSZ9jf7uX177cz2tf7qOuI/F9O3lMNtfNHsH5kwswG/qfT7fs28PWTz5k2ycf0tnWmlBvsmVjtE0h4B+L15OB1wO9IytJEuSMsFM0PoOi8ZkMK3FgOoo/o96oXi++jZvwrVuLd+06fOvXR3JY94Nx1Cgs5eVYZpRjnTED4+jRQx5GVTaZcFx6KY5LLx3ScQUCQTcXXXQRl19+OYsXL+a73/0ut912GxMnTqSoqAiLxYLf72f//v3s2LGDYDCIpmlcffXVnC/y1x/dbP83LL4N/E6QZNDUyHHb2/DuPXDFH2HChZG2IT/sWh4Vv//dj4jdlRP7zAMSsbtQ3EFaX9hGcE93vmzzrFyaJ7n4/Rt3sr1mPTafntP9OaT5dOSE7Oi9Cl51Ga+z7ICeMyAbkWwZZOXnM3JkEZm5eXGhwI1WB3s2t7NjZQP7d7TH8vp1LT/JeonRU3OYMLeA4snZ6I7CjYQnCqH6eup/9jM8n38RKzMUF1O48GGsM2YcQcsEAoHg2EII2oKjli7RuqbFS02rh5oWD3tavext9uBo8TEjLHMyemYkSNcRvGh8SZjPCLOSME4ZhmdaGJmdzpxsazQ8eP+itaqpuINuGry9xOheAnVPb2lnwIk72UT6ANErhqhQ7YgJ1ragA3swA3soG1vQgSlgReLgJqayXuoWqjPN3YJ1hom0zMjR6jCi0w3dBHjq6RV89Pc/oQYDA7aVjSam9rHpQqeXyci3kpGfmFdU0zT8nSE6omK3qzkieEeOPjztyZ9bxgC6fLz2fLxJnHIlxUVQbsVpbqE+o5XWtFY6zC24TVV4nGvhi3gRPcucFRO386355Nt63I8+thkSd5QLDi3j557G8r8/S8Djof+s7hImm43xc05NqAmpIX7x2S94Z/c7AExqPJkzd18Xq59WMYJTrykRYrZAMEjq6+u566674sRsgAceeICSkpJBCdrLli3joYceYvny5UNtZkps27aNUDTEbX9hMbvq9uzZQ0dHBw6HI1Z3ww038Pvf/5733nsvTtB+7733APr0QA8EAgQC3ec6lyuyCDdx4kTkAUScGTNm8NZbb8WVXXrppaxdu7bffgB33XUXd911V+yx2+1m0qRJA/YDePPNN+ME+nfeeYdbb711wH5paWls3749ruzuu+/m5ZdfHrDv1772Nf7v//4vruykk06ioaFhwL6PPvpoXE73HTt2cPbZZw/YD2DNmjUMGzYs9vjZZ5/lV7/61YD9xo8fn/B9nj9/Ph9//PGAfb/3ve/xy1/+Mq5s+PDh/fbRwhqEVZ6c/ytmWyfGTplf7F3HD9/+dXdDGSSdjKSXkfRSZNdolP3798eN+eCDD/KnP/1pQHvPPPNMXnzxxbiyiooKKisrB+z7i1/8ggULFsQe19fXJ2wqCSgBvGEvQSU+ZFPJPSVccvIl3DTpJqbmTOGlx+5j1G8ugXCv0E6SHBGzjRpIz1FQ8B++/PLLWHUwrHLZ9Tez4oP/RPJi95puyLKExaDDatQxfP4NXLbgt3H1EydOpLMzsulV0zTCgQChgB9ViRenr5o5hcnDRyLrx6MzTWJvWyd/+scvEt4TWSej00vo9HJkYVuK/EbZ7d0T3scee4zHHht4w99h/41QVbRgkL9+/VrGNzbi374dFIWPOjt5sDHZ36qEZNAjGY1IBgP2jAy2L303roX4jUjkQH4junjhhRc466yzYo8/+ugjbrzxxpT6Hq2/EX3xwQcfMGHChNjjl156if/6r/8asF9BQUHcbwTALbfcwpIlSwbse/311/Pb3/b9G9Eff/zjH7n44otjj7/66isuu+yyAftB/78RBxI5Z6h48cUXue6663j77bcJBoNs2rSJTZs2xbXpSjlz+eWXs2jRoiNhpiBVtv8bXrmBsCpR6c6jyp2NT9Fj0YUpsbcyXm1B//L1cPpPoGNfxBM74Eocx+SIhhO/HMacdcAithIO4W5txd3ajLeqBfMaCV0osv6oaArrXMvZ9Y/I+S4TOJnsXiOE+l1hUJFx62106tNw6+y49Wl06tPwmexMKinmnJMmcF75KKzG+GshVdXYv72N1Usa2L1uG+Fg4t/gsLEOxs8poGRmHmbbsbNR7XhE0zQ6Fr9J429+g9rjtzrj+uvI/+lPkZNElhAIBAJB3whBW0BACfBezXss37scZ8BJhimDiuIKzht1HibdoQ2J1pdoXd3iYU+rB08wslCThcTJ6DkZPXeix0ryMHC1qGwyQ322CXW4jeK8NK7OtnFXtoUMm4I37KYj2BXCew/1gQ6213bQUd0R5zntDDjpCHbgCrjQ+p2CHsyLB1PYij2USZ5aRJaShyOcgz2UiTmQhsFnRec1QSA1b+f+MFr0MVG6t0jddTTbDIddcNMbjVz6o/9i8aP/PWDbS3/0XwcUAl+SJCx2Ixa7kbwCI/4t+/HVb8S3dyO+DRsINLXgN2Xhs+Tit+TgM2fjs+TgM+fgs+Sg9vE3oOnSMZBObmA0uY1AY3ddWArhNrfiMrXiMrfgMrfiMrXQYG5lp6mKsC553r40Q1pM5M6z5pFvy48TvPOt+WSYMoQwOoTojUYuvP3HLP7tr0GTSC5qSyDBhbf/OOE76A15ueuju/is7jMAJjeeyum7vx6rn37OCE65SojZAsGBEAqF4oTYg6GxsTGlRfxDxd4eIW9zc3P7bNezbv/+/XGC9pw5c/je977Ho48+yqWXXsr48eOpra3lgQce4NJLL+WSS5Jn1nv44YfjQrZ3UV+fPGduT0aMGJFQ1tzcTG1t7YB9u4TzLjRNS6kfRDzae+Lz+VLq23OxvYv29vaU+ra1tSWUNTQ0pNTX6/XGPQ6Hwym/VqWXKNnZ2ZlS357fjS5aWlpS6tvR0ZFQlqq93noXjOl+HNBCNHQ2p9Q3mR2pPG9LS0tCWWNjY0p9X1z/IsN2DYtd1yiKkvJr/WPFHzlzxqmRHJyv3YL343XUJt0IqQAd0Vs3VU2dvLpmL6+vrWX7pmq87cnfJwUIAS4i39fe1NXV4R7A6xhA1U/HmH4NkhS5xFfULTg9ie9dMrReubZdLldK79OR+o1oW7IEf4+w4H5NpTHcR6j7cAiiYT3tSc4p4jcikYP5jeh93g4EAin3TWbHof6N6C0ED+Y3ItzrO+f1eg/4tba1taXU92B+I3xd4W2jBIPBlO090N+IQ43FYuHNN9/klVde4cknn2T16tVxfzM6nY45c+Zw5513cs011xxBSwUDEvLD4tuocmextG4cAdWAhIaGhITGTncOy+UxXFhYydhPfpfY3+SAiV+DyZfDmHkDitiapuFzu3C3NONqaYoeu8OAu1qb8TjbQdMYnVbGzJxz0UmRtTlv2MVnjW/QFux/Q5PFno49J5f0nFwUawY1fgNrW2GnR0+n3o5XZ0GTIptL9bLE6eNyuKaskHMn55NuThShW2s72b6ygZ2rG/B0JOZNTM8xM2HuMCbMyceRm+jsITj8hFtbqf/lL+lc9kGsTJ+fz7Df/Ia00xKdJQQCgUAwMELQPsH5cO+H/OzTn+EOuYnkINYAiWV7l/Hwqod56PSHOGvEWQf1HJqm0ewOUNPqpabFExGuWz3UtHjjROueSMB4ZE7ByCkYmNSHF7aKRl2Gn7p8N/VFrbjS23GHuj2lv2xy0bEv8ljVDu3OYQmJdFM6GaYMHPoMsrV8MpUc7KFsrAE7Rr8NvdcCXj2KWyboUlHDBymWS2C1G+PF6kxTgqd1qiHAjwRjZ87hsrv/H+8+/RhBb2IucKPVxkV33MXYmXMGNa6mqgRravBt2Ihvw3p8GzcS2FEJvRaFdIDN14TN1wSAobAQ8/gyLGWZmMvy0YpLcLu07nDmzd2e3skuIgD0moFMXwGZvuT5TD2GjpjI7TJHRG+3qRWXuZXdwd3s7tjd5+syykbyrHkxwbvAWhC73yWG51hy0Mvi5z1Vxs6cw2U//TlL//A4AU8nkiShaVrsaLLZuPD2Hyd8B1t9rdz+we1sad0CQFnjmZyy+8pYffm5xZx85VghZgsEB8iIESNYvHgxP/zhD4+0KQdNz4Vms7mP3H+96nqLPQDPPPMMY8eO5fLLL8dgMOD3+7n++uv5+c9/3ueY9913X5wXpMvlYsSIEQwbNmxAD+1k4ntubm5KYdfT0+Pz/kqSlHK4dmOvzUMWiyWlvmlpaQllmZmZKfXNyspKKEs1L3nvnOZ6vT7l16rTxc/R0tLSUuqbn5+fUJaTk5NS32RCV1FhEVpYjd3oY9ps0hswFFgxlWRiHpdB4d4gRZ8MPgx/lx2p2JuTk5NQlp+fnyC6BZQArqALVVOjy98au3y7uP/T+1m4eiG/Oe03ZAQycOQ58IV9CdcGekmP1WDFrDcjAQU1K+CzO8AZ2ZBiNUgU2SXQ6cFoB0PiBlsNMKVncc0fP2dNTbfwJJvt6NKy0ckSVqMOi1GHnGR+kJmZGRlHVandsZWtK5ZjkUC2JPvdkEEyRAVsCZN5FJKsJ3eEncLxGYwIa7y6pghSmIb0nqukp6en9NkM5W+E2tlJYW4uWjCIFgqhhUKgJb9WMkTtNY0rwVI+g2FKmKK//hV0/V/ziN+Ig/iNSNFeU68c4SaT6YBSdXTZMZS/Ecno/Z3Q6XQp29s7gozVak2pb7LvTVZWVkp9u34jelJYWJiSh7alV254o9GY8mvt7zdCVdWUNskdSq677jquu+46Ojs7qa6uxu12Y7fbGT16dNK/e8FRyNbFVDXLvLm/O1KHFj2BdR0Dqp7F+0u5bPhWSuxtYEqPiNill8PYeaDv/v0JBfy4W1uiInVzt2Ade9xCOJR8PacLGZny7HMoSe8OB93k28vnTW/ioROPVcFjCeO1qIwePpGzJl9AXkFxJCR4dg71nSpvb6zjpY31bNvbY14fPaXLEpwyNptLygo5f3IBmbZEEd7TEWDnmka2r2ygdX/i37nJqqdkZh4T5g6jYEy6WHs4inC99x4Nv3wApcdGpPRLL6HgZz9Dl+Q8KxAIBILUkLTeWy0FRy0ulwuHw0FHR0fCAsCB8OHeD7nzwzsju22TzXm0yIXL/877X+YV959fu0u0ru7ysG6NeFhXR0Vrb4JorYEcRJK9SHovkuzFKgc5SbVwspLJnFAe2WpyL+wOnZs1aVtZnbaJtbZteHS+pO0OFAkJu9GOw+Qgw5RBuikdhzFy32FykC5HQn+b/REvatlrRPXIBF0aHmcQT7sfryvY1/pLysSFAO+Vo/pQhQA/UriXL2ffffdRJ6k0ZKQRkmUMqkqBs5NCTWbEwwuxV/T/HQy3t+PbsAH/xo0REXvTJtQkYkBPZKsV89SpWMrKsEyfhqWsDH0/nnMJzxlUcLX4o3m7IyJ3Vw5vV4sPJTT4TRRhOZjg2d0terehyH14n/R8XZJMjjknPqx5j/sF1gLybHmHPALDsUY4GKRy1WdUrf4CX6cbS5qdktknM37OqQme2ftc+7hl2S3sc+8DYGbzOcyq6vaOnHF+MXMvF2K24OhlqOcUh4Lbb7+dP/7xj0yfPp2zzjortsD+wAMPcOWVV8aF3R6IDRs2sHjx4gRPt4Pl73//O9/61rcAqK6u7jOc+EsvvRQLCb5s2bI+Q83++c9/5nvf+x4An3/+OSeffPKQ2gvHxmcvOPSoAYXA7mge7J1Owk3ePtvK6cbuPNglGejsB55/8lDRdV0D9BtdSUZG7aXWzxk2h2+UfoPTik5D9rvgy7/AymfA08ujevgsOO0uGH8B9NoMsml/B6+s2ctb6+twB+LnakadzHmT87luVjGnjM1GlvueG7TX17Lxg2Vs/eQjvM4kHt1SGjpTKTrjJGRdNkjEBOyi8ZkUHiM5sDVNI1Rbi2/tWrzr1uFbu45AZWWfAjaAZDZH5uzR3NeWadPEgrBAcBQg5hUnLkP52Ydfms8f324hoEY2afWNhkkOc+PJKt5zH8PtdMaE6p7itc/d/1rQQGRlFTHbcSGOHmHEd2TvZqHpD7Sb/QSMKkiROcQ9s+5hXOY4AOo7fCzZWM/bG+rYsD/5pprZo7K4eNowLpwyjFx74ppMKKhQvb6ZHasa2Le1LeHUKMsSI6dmM2FOAaOm5qAzHPtrgscTistFw69/jeutt2NlusxMCh58gPTzzjuClgkEAsHRy2DmFMKF7wQloAS4Z8X9qJpGn3qLBKqmcc+K+/nk+o8wysYE0bqmpZPdrU72OVvwq24knTd683Xfz/Zi7l2m8yFJCsOCuczunMLszilM7ZyGoY+v5C7TPlanbWZ12mYqLTWoUmpqsd1g7/aaNjkiN6MjJlbHykwO0g3pWBU7kseAzxWms92PxxnAUx+g0xnA4wzQ2R6gwxuOBhRUgAPLlW206OPDfvcOA55hwpx2+EOAHwncy5ez//Y7kIAiTaPI2WvXqSSx//bbGf70U9grKgDQgkH827dHhOuNkdDhoR7hXJMiSZhKSrBMn4a5rAxL2TRMJWORBvDk6A+9UUdWoY2swsScN5qq4XUFY0J3dw5vPx0tPnyuPry7VSNZvmFk+YYlrfebO+kwNdNubIqI3j3Eb7++M/p3q9Lka6Ip6nXeFxmmjATBu8BaEBfyPM2QdkJ8DyESfrz09HmU9pGrvYutrVu5bdlttPkjoSfntl7E9KrzY/UzLhjJ3MvGnDDvm0BwqLjvvvt49dVXWbduHevXr4+re+ONN3jjjTeOjGEHQM9Q2H6/v892PevEorBgKNEUjWCtm8BOJ/6d7QT3ukFNPp+WjDKmMRmYSjIwj8tAn2c9qs9pASXAzz+LRCkYKFVQl5htkA18bczXuHHSjUzImgDuRlj2IHz518R8nCXnwGk/hpGn0vPCqcMX4q31tbyyZh9b6hIXzsflpXHd7GKuKC8iK4nXVRfOxja+WrKMqjUr6GyrSdLCgGwch85YimwYQV5xekzAHjbWcUzkxuyau3vXrsW3dh2+desIN/cfql6fnx8Rr8vLsZTPwDxxApLh6H+tAoFgaNm7dy+5ubkJHuaC44vK3U4Caiq/8RIB1cBfPgM+u++AnstgtkS8qHNySc/OjYUF7zoaPUbaX96JGl2zUXUazxb+izfTlsfGKEor4u6T7qaiuILmzgDPfV7DOxvr4qKz9GTaiAwuKRvG18qGMcyRJMKLqlG708mOlfXsWttMKJC4CTd/dDoT5hRQclIelrSjb3OhADo//Yz6n/2McGN3TsK0s89m2IMPoE8STUQgEAgEg0cI2icoS3Ytxad0IklgCGvM3aYxe6dGmk+j0yKxepzEykkSIb2ET+nk1L/ejM9vQ5E6keRewnRGGF0GJEp6ieg0mcnekpiIPSKYPEybXwqy3rad1WmbWJO2BZ81FPGWNqYz2zQnNYHamB4Lu6yqGt6OIJ3OqEgdFac9zgCt7QH2Or10OtsPyKM2jmgI8GQ5qrtEa1uGCaNZ/OkBqIEAdfdGL0L68sjQNJAkan/yUxxXXkFg8xb827ahBfsPD6XLycEyLeJ1bZk2DfOUKejSUvmWDg2SLMU+78KSjIT6UECJD2He4u++3+rrMxy92Z+G2Z9GPqMT6jS9QtDWidvcRpuxgUb9/piHt9vUhirHXxQ5A06cASeV7ZV9vg6L3hKXwzsmdvcQwbPMWcjSibEr+PO6z/nxhz/GG454sp3VfiUTK8+M1c+8cCRzLhVitkAwFAwfPpxVq1bxs5/9jOXLl9Pa2hqXDmCwHMm/y+Li4tj95n5EnJ51w4cPP6Q2CY5vNE1DafXjr2rHv9NJYJcTzd9HhAIJjCPsEQG7JBNjsR1Jf+yc19+reQ9XMHVPrLOLz+bnc39OjiUH2nbD2z+C9S+B0iP3ryRHQpie9iMYNi1WrGkaq6vbeHXNPpZsqicQjr92sBh0XDJtGNfNLqZ8REbS3x2/J8T+7S1s/eQL9m/5HJ9rJ5GNsj2RkPXF6Eyl5I6exoiJ+RSNz2BYScYxIWArTmfE83rdenxr1+LbvBmtn808yDKmCRMi4vWMGVjLp6MvLBTzKYFAwOjRo1m0aBE33HDDkTZFcAipajUiEYyFFz9QJFkmLSs7Gva7S6jOw56dExOtTVZbn+cXz5oGWhdvBSVyrdFudPNA4R+otOwBwKwz892p3+Wy0dfz4XYn899bxcrdrUn3CJYOS+fiacO4eGohxdnJc1q31XvYsaqBylUNdLYHEurtWWYmzC1g/Ox8MgsO33qWYHCoHg+Nv/sdzpdfiZXJaWnk//xnOC67TMxnBAKBYAgRqtoJyitb3kXTJE6qUrj9HZU0P6gSyBqoksacHRrfWgZPXyzz1TiZgHELshEOZGnLEU5jVudkZnVOYaanFFsfocR9thDukQqh0QaMYzKZYbuQs0zX4jA5MMh9L9yEg0rEg7o9QGddgHZngH3OFjzO2pho7e0IDH0I8B45qo+3EOCHC/fSpQOGBQdA09B8PpwvvpS0WjKZMJeWRgTsaWWR0OFH+SKYwaQjuyiN7KLEnF6aquHpCCQXu1t8+NyhpGNKYR2mDgemDgc5jGZ8/KhIdoVwmg+vxYnT1ESTvpZ90m7ajY0E9N6kkb18YR81rhpqXDV9vha9rI8TunsK3l0ieI41p9+/42OBd3a/w//79P8R1iKhRC9038jI7bNi9SddNIrZl4w+qr93AsGxxtixY3nllVfiymRZ5oUXXhjUwuYLL7zAzTffPNTmpcykSZMwGAyEQiFqamr6bNdVN3LkyKQ5TAWC/lA8IQK7usKIt6MkWRjtQp9txjQuE3NJBqaxGciWY+OyUNM0Wv2t7Hbuprqjmt0du1laszTl/jIyEhI5zjpY8l+w5Q3omUtbZ4Tp8+GUH0D22FhxszvA62v38+qafexu8SSMO21EBtfNGsHFZcOwm+PnO35PiLqdTmp3tFOzcQut+75CCW4HLVHglXTZpOeVM2bGaYyeNvKYELA1TSNYU4Nv7Tq869biW7ee4K5d/faRbTYs06djKS/HOqMcc9m0w7rxVCAQHDuILIknBj59Jhr9R5jridliYuIZ58SJ1uk5udgyM5HlwUfh08Iqznd241nZnQ9+k3UnDxX9Gac+EpnxnOLzmWKezydrQ/z21U8JJ1GxS/LSuKSskIunDWNsbvL87V5XkJ1fNlK5qoGmPYlRH41mHWNn5jFxbgHDxmYg9ZOqRHDk8X71FXX33R8XNdJ2yskM+81vMAxLHnlRIBAIBAfOsbFyIRhyal0tnFSlcPc/VRRZT33+DFpyygjpbRjCHnJaNpLTvJa7/xnmt1fDV+PiRVq9ZCLNkE6GyUGONZNMc0bMWzrDmMGwzizy6u049hoxNKjJ91hKYByZjnliFpZJWQnhDDVNI+AN46oP0NnuinhVOwN42v10OoN4nH46nQECnoFzCg+E0ayL5qg2xueqzjBhyzw6Q4BrqooWDkMohBYOd99CYQiH4h5r4RD0ahNXFuqqS16mhaLloR5jhPsoi3vcV1nEbtV3YPnPjSNHxoUON08Yj2Q8fkIuSbJEWqaZtEwzReMzE+qDvjCu1mj48h5Cd0ezD3erHzVpCFEJza1H57YT+TeCEcxkZrRWZ5IwZGio9gB+qwuXuZUWQx21cg171Cq8auLibRdhNUxtZy21nbV9vyYksi3ZfQreedY88qx5WA3Jdy4fDgJKgPdq3mP53uU4A04yTBlUFFdw3qjzeGX7K/zuy9/F2l7p/S55m6fGHs/62ihmXzLmSJgtEAhSoLq6+og+v9Fo5Oyzz2bp0qV8+eWXfbZbs2YNAF/72tcOl2mCYxgtrBKocRGIemGH6jrpK+K2bNVjGpuBaVzEC1ufZT68xg4SRVWo7axld0e3cN113x08sJQ/EAk57tz7GXz81/gKox1mfRvmfh/sBVEbNFbsbObV1ftYtq0xYeHaYTFwRXkR184awaRh3SkC/J4Q9VVOanc4qd3ZTvOeOpTANpTgVjQ1MRSprLeRN3oWpWfMY+IpU4/6MKJqIIB/82Z869bhjYYPV9qTh1jtwlBUFPG8nlGOpbwc07hxB5X2RyAQnFh88sknhMMHv+7TxTe+8Y0hG0swNFjyR8PeRvrPn92Fxogp0zn727cNyXMr7iCtL2wjuKfb2eLNzA/5U/6/UCSVAvMYsvxfZ8myLN5Q6hL6j8y2xkTsCfn2pOuG4ZBCzcZWdqysZ++WtoQ1G0mWKJ6cxYQ5BYwuy0FvFOfIox01EKD597+n7a9/i0WclMxm8u7+KZnXX48kC2cngUAgOBQIQfsERRcwc/s7Ki3ZU9k+8SbCBlvEO0GSQVNpzi1HX3I1E7c/z+3vbObH3x/HX695NBbW26QzxY2nBpWIN8j2Nvzb21Bi+YHjw/BJFj3mCZmYJmSh5tvwBRSanX48W9vwfF4f86juOoaHIAS4xW6MF6jT9djseqxpOmxpMlaLhEGn9hKFfRB2oQXDaLVhlJownVGROE7wDYX6F4ZTEYATyqKCdO+yLuE6ekQ9yPfmGMQ0fjwjn38OXUbGkTbliGK06MkZbidnuD2hTlU1Otv9uFr8vXJ3R+73tQFECWgojUCjCZlcMsglg4mUEA2fnmnEmAFSephgWiceSzutxkYa5L00hGtp9DbiDDj7tFlDo8XXQouvhS2tW/psl25Mj+Xv7hK7e+b0zrfmk25MH/LNJR/u/ZCff/ZzXEEXMjIqKjIyy/Yu44HPHyCodoe4vyl4J7YN3eL1rItHM/vixBDwAoHg0PC3v/2NU0455UibMWi++93vsnTpUj744AM6OjoSPLC3b9/Otm3bkCSJb3/720fISsHRjKZphBq8BHa2469yEqzuQOtrrqyTMI1Kj3lhGwrTjkoPH3/YT42rJuJx7apmtzMiXO9x7SGkJo9IczDImkaGt7W7wJoDc2+DWd8FSwYA+9u9/OPL/bz25T7qOxK9qE8ek811s0dw/uQCzAYdfk+I6g3N1FY6qa1sp2V/J5oaQAnuRA1uRQ3vTxhDkg0UTZjB9PPPZdzsWchHsbgbbmmJCx/u37Ilstm1L/R6zKWlWMunYymfgaW8HEN+3uEzWCAQHHc8++yz/N///d8B9U123SgE7aOPMTNms3PNqhRbS4ydMWdInjew10XrC9ti+bKDUognC15mWcZK9KShNJ3HztaTiMSr7J5zFTrMXDytkEvKCplSlHx9QlM16nd1sGNlPVVrmwn6EtdicovtTJhTwLhZ+VjTj+4NbScaaiCAe+lS3Ms+QOlwonNkYD/nbOwXXEBw1y7q7rmHwM6qWHvL9OkULnwY46hRR85ogUAgOAEQgvYJyjk7HfhsU9k8ZQEyMNwgMcxgwChBUNNRH1Kp0yxsnnILUzc/y/mVOZSYR0QEVZeXUKgDpc2Hf5ebQI2XUF0gMfVblKBexa1XaFFVmr0+vF904v+o9qBz48iagknzYlY6MStuzCEXppALU6ADU9CJ0d+OyduGFA52i8JKt5He6E1wiJBlJL0eSa8HgyF2v7tMT7ihEbWzM+XxjCNHnvBi9kDIskR6toX0bAtMSPTuDnhDCSHMu+672wJoSby7NVWjszUAsfVfC2Ahk0IyKWe6VU96joW0bCO6DJVwmhef1YXT1EyzVEuTv4lGbyON3kZafC2oWt+bMVxBF66giypnVZ9tzDpzLH93MsE735pPljkLXYqhxj7c+yF3fnhn7LEavVDtOvYUs2/Tfo72VW7s8exLRjPra0LMFggOJ4MNHR4OhwkE+g69fLi46qqrOPPMM/n444958MEHeeyxx2J1mqZx//33A5HXN3PmzL6GEZxgKB0B/Dud+KvaCVQ5UTv7FhINBbaIB/a4TIyj0pGPIu8ep98Z52XddazrrEPry608CcNswxjtGM0YxxhGO0Yz2jGaqtZtPPTlb1Pqr0oSFR4vOIrh1B9C+Y1gsBAMqyzbVM8ra/bxyc7mhFRFuXYT18wcztdPGkGBxUh9lZMvF++OCdhooGkqangPSnAbarAKSFy4LpwwmSnzzmb8nFMxWY++ENuaqhLctSvieb12Ld716wjt2dtvH9nhwDp9OpYZM7CUT8cydSqyJXmKKYFAIDgQ7r//fs4555xB9+vs7OTuu+9m+/btsbJbbrllKE0TDBHDnJ3owwphnQz9bV7XNPSKin3Jf2ira46sLxmia0x6PZLegKTXxT829FiH6lHm3+6h48NmpOjyRIu+jd8UPss2yz5Cbafgbj4H1O4Icrl2E1+bOoxLpg2jfEQmch8bBZ2NXnasamDHqgbcrYkb49IyTYyfnc/4OQVkFyYPSy44sriXL6fu3vsiKRJlOeJQJMu4338f6Re/jGzsizoZSQYDOT/8Adnf/raIPiMQCASHASFon6Cc0xBk08SbKDDIlFv1GGUJTdOQpMix0KhnqkXHWm+YbRNv4op/38/2JSdBbinysBkY8yZhtGUnHVvRNJrDGo0hjcaQii+2ICSTahZuXdiHKeCM3cwBJ6agM67MEPIgDbAAptFn5MWjE0nqVwCOTLwNycu7ygw9J/J9lCVM+JOUdU36o8+X/GIg/nGc7SmE1+l4803q7rk3tfdGVbGfO/iLWEE8JquB3GIDucVJvLsVFXdbIEHo7hLAk+0oBgh4wzTvddMct95pAoaTIY9geLYZR64lInrnG5HSQwRsnbjMrbQqTTR6GmnwNtDkjdxv9Db265XlV/zsce1hj2tPn230kp4ca05ciPMCW0Fcnu88ax4aGj//7OcAAy6oz6q7AG1Pt5g957IxnHThqH77CASCI8fq1at5/vnnefXVV2lraxuycZuammhqiuT4q63tTrVQWVlJZ3ST1ujRo7HZEsWqf/7zn1RUVPD444/j8/m48cYbCQaDPP3007zxxhtUVFTwzDPPDJmtgmMPNRAmsLuDQFTEDjf1nZ5Fl27szoNdkoHOfmQ9e1RNpcHTEBGue3hcV3dU0x7oPyR1T/SynpH2kTHBekxGVLxOH52YmkTTKNvzFU8pCm5ZRutnEVzSNOyqynkTvw4X/Q50Bqqa3Ly6Ziv/WltLmycY116WoGJiHleXFVEi6WnY2cGq/9sSE7BjrzvcjBLcGs2LnZiiJXNYEaVnVDDptLNw5OWn/D4cDlSvF9/GTfjWr8O7di2+9Rsii7f9YBw1Ckt5OZYZ5VhnzMA4erQIqykQCA4pkyZN4swzzxxUn/Xr13PLLbewc+dOAOx2O88++yzXXnvtoTBRcJD4PvyYafub+WpkfiR8c7LzeXS32bR9TXi21OBZ8u8DezJJh2nqtRjHnBVzswm3VGJe83/8KhBJaxKWPiUsf4Eq69Dp9RhMRoxmI9KHkXWvGkN0PSy6DhbS26g3jWW/bgztUk7CU+okheHmFortbeSleZGr9aj79LQMuFanS23tTqfrf43uKEqfeLTjXr6c/bff0V3QFR0zetR6bJQ2TZxI4SOPYJ4w/nCaKBAIBCc0QtA+QVF1ReRY0pht69491jXB6ToaJJhj07NLb8d73uPkGI0Y+9iB6FM1GkIqjSGNlrDWl7M2AMagK06YjrtFRWu9MkhPqiQCsGQwJIq9ByoADyQKGwz97vyMK+stSPdsc4Lt5rNfcAHybx5CdbtJcIXpiSQh2+3Yzz//8Bl3AiLrZBy5Fhy5iV41sZz2PYXuZh8d0dDmne3+pB+hqmq4miNtE9FhthUzIncCU3LMpOdYSC+wkJ5jhvQQbkMbzf5mGjwNNHob4wTvJm8TnaG+vfvDWpgGTwMNnoZ+X7PNYMMT6js/eBcz9p/LzH0Xxh7PvXwMMy8YNWA/gUBweNm3bx+LFi1i0aJFVFZWxsq7Nu0NBX/4wx948MEHE8rP73GO+vDDDznrrLMS2uTk5LBmzRqeeOIJXn75ZRYtWoROp2PSpEn84Q9/4JZbbkEWwtAJhaZoBPe7u8OI73VDkmgpAJJRh2mMI+aFrc+1HJEFyqASZI9rT1xu65qOGmpcNfjCfQvwvbEZbHGe1l33h6cVYQh0gqcZOpugsxGaVkDnP8HTFC1ritWb1BC/sVj4YX4OekXH6LZyRreVYQpbCei9VGdtpDprHYoc5jct7egsLfxzfSOvrN7Ll3sShfYxDgtXjshhvGTAuaeTXSu3s6vXR6KpnSjB7ZG82EpLwhjmNDsTTjmDyWdUUFAy/qhZSA41NkY8r6O5r/3btsVFsOqNZDRinjIllvvaUl6OPivrMFosEAgEg+f3v/8999xzD8FgEE3TmD59Ov/4xz8oKSk50qYJ+kDpcJLf4WFmTQMbRuQR1uu6he3oUa+oTNvXRL7rwGMtSqZ0zLNvRZ/d/V0I7vqAwOZ/gtZ9PtRrKnpFBSUEIcCXGHdFlfS0Zk+mPv8kWu1T0OReS+yaSlb7dgoaVpPbsgFdNPJb6lv8hpCo4N29VtmHA42+95pmCmukusGsrep6jNuPw4xOd9AONAeCGghQd+99kQf9rVESmSONXPQ8Onuis4hAIBAIDh2Spg3wCy04anC5XDgcDjo6OkhPTz+osd647QWm2YsxSMlzCnXR1wKwpmm0KxoNUS9slwoSKhZdEIs+hNUQxmJUsJgUrGYNmxmsVgmLTUJvTNEzOEVRGJ3uqFkkEgwe9/IP2X/77ZEHyX6Oop/t8Kefxl4x7zBaJhgMSljF3RYRt10tUaG7S/xu9hEK9LfNJTmyPho+PceMI8dCetTLO3IzE9IFIqHMe4jcjZ7oMRrivM2fulemTtUzpnV6wiJ4uj+HWfu7xeyTrxjLjPNHDvr1CARHE0M5pzjSeDwe/vnPf/Lcc8+xYsUKuqa2Pae4OTk5tLa2ovQj3JwoHE+f/bGIpmmEW/0RAXunk8BuJ5q/j++lBMYRdkwl0TDixXYk3eHb8OAOuuNDhDurqXZVs9+9H0VL/W8p15LLGMdoRtkKGWPKZozOxmj05AV8SJ7mqEjdHBGuu0TsA8if/ZZ2KlUt38ekWFFRkZFjx4DOy7icP3CJ9BmrtVK+Hvh5rJ9JhVGantMcaRSFZHxNvqQhnjQthBqqQpYqCXTupncjWadnzIxZlJ5ZwZjyk9DpDYN+DUOJFg4TqKyM5L9euw7vurWE6+r77aPLyop4XpfPwDKjHPPkychGkdNTIBD0zdE0r2hra+Nb3/oW77zzTmweeMstt/DEE09gMpmOqG3HI0P52e//wQ9xf/ABqCqKJNHgsNHgsBHS6TAoCgUdHgo6POii4rZ5yhSybroRLRSOphgMQTTVYKxMCUM4jBoK0dzuobbFx9jMs7DoHQAoaojtdS/S1LgTfSiTXLOeHIuOdIOE1DVWuMf4oTBqOIzTXER9xjQas6YRNiRGZErr3E9B42ryG7/EFOw4qPdF0AfRFIcHJM734+gU3LsP72efpWxG4aOP4Lj00kP4QgUCgeDEYDBzCuGhfYKSkTEMozawCNxTKA4DLrOeQJYZrdCGNc/GuAwT5RkmbBkmLGkGpD48uAWCvrBXzGP4008lzU+DqiLb7RQuXCjE7KMcnV4mI89KRp41oU7TNPyeUA/Pbj8dUQ9vV4uPTmcg6cKxGtZwNnpxNibfgW2xG0jPseDITWdYTj4Tciyx0OY2hxFJlggqwZjA3dPDu+u2vXU7QTXIyLYpzKuaj7nXIviYtmlxz7lv8lfcfn7FkLxnAoHgwNE0jWXLlvH888+zePFivF5vrLyLzMxM5s+fz7e//W02b9486NzbAsFQoXhCBHY5I2HEd7ajOPuORKTPsUQF7AxMYzKQLYf2ck3TNJq8TQm5ras7qmn2Nac8jozECFMmow3pjMbEGEVjTDDIKG8H6a0NsGMTKMGBB0oVSQZrDqTlo7kbqG4bxT7nXXTJFXI0zVHX0aSY2dt4F7scIZr0RsaGZEaEZcZhIKPr43AH6O1frmka9swWUHfgrN9IOJiYC3PYuAmUnnE2E04+DYv9yIk5SmcnvvUb8K1di2/9ukj4cG//XmymcSVYymdgKS/HOqMcQ3Gx2CgsEAiOSVasWMH8+fOpq6uL/Hbb7fzpT3/i61//+pE2TZAC9nPOxv3++wDoNI0iZydFzj4ismkaWTfd2K+QqGkaW+pcvL2xjrc3b2NOxlZ+KM/DoEU2mzXr23kgazk5Zddy1bSpzJuQh8XYd8TEjmYflasb2LGygY4k0ees6QbGlWczbloG2XllaOHz0MLhbpE9JrSH+i5TlNjjWN8egn1cmaJ09wslCu+xx0o4/nGyNtFbl12xENtHM6qKFgxCMHjk0kzKMu73lwlBWyAQCA4zQtA+QckzW9G8oZQWLDRNw2PWM+EXcw+rV4jgxMFeUcG4T1bg/s9/cL+/DKWjA53Dgf3cc7Cffz6y2E19TCNJEpY0I5Y0IwWjHQn14ZCCu9WPq6dXd4883uFg8gsqnzuEzx2isTox16POIJOebY55dTty8piYO5LZOWbSx1swRC9Wf/zhj9m1vpHzdnw71rf3IngX23NXop+S+uK+QCAYerZu3cpzzz3HSy+9RF1dHRAvYkPkN+fXv/41d911V8wbZ8uWLQntBIJDhRZSCezpyoPtJFTXmXTjFoBs1UcE7JJMTOMy0GeaD4lNYTXMPve+OMG6K891Kqk3ujAjMVqVGR0KM9rXyZiAnzGhMMWhEEb2HJyRMZE6L3Kz5UFabvSYH3/fmgVy5Fy++vVn2PR+UXSQvq5VZEDjPx3/hYrMlfR9DZRdlEbWsACBzi3U7VhFS3XiuT89N4/S0+cx6fQKsgqLkoxyaNE0jVBtLb510dzXa9cRqKzsNzymZDZjKSuL5b62TJuGzpE4LxMIBIJjCU3TeOCBB3jooYdQVTUWYvy1115j7NixR9o8QYoMVTq6ykY372yo4+2N9VS3OrFmfsoPlWwu7ujOwb7Fupfdp2bz4mm/I83U97J4wBui6qsmdqxqoL4q0dNab5AZU57LhDkFDJ+YiXycrJdqqhoRtkOheNE7FIaosN4lvsce9xDn44T8ULenfILwnrRMGbhNzANf6Vuc72H7IRPoVRWlQ3jgCwQCweFGCNonKGlWPZKvdwaY5EiShMVuFGK24JAim0w4Lr1U7G48AdEbdGQW2MgsSAzXpWkaPncoSe7uyNHTkdzbSwmptDd4aW9I7plkdRhx5FiYariAUZUAElI/i9saGqPayhhXKAQxgeBw09zczEsvvcTzzz/P+vXrY+U9BerJkyczf/58zj33XGbNmsWcOXPiQkvOnz+f+fPnH06zBScQmqoRavAQqIp4YAdrXGihPhbP9BKmUY6oiJ2BoTBtSCMceUNeql1RsbpLuO7YzV73XsJqanN/gExFYXQoxJhgiNGhMGNCIcaEQhSElT4l46T0FKltub2E6Z7CdR5Ys2MidRf+kEKzO0BzZyBybA7Q7G6nubOBlmi5rrqYeZolFWPQ0CWc7bOL0igan0HOcD3ulk3sXPU2m97fmdDbaLEyfu5pTD6jgqKJpYcsf2MytFAI/7ZtEfF63Xp8a9cSbu5/k50+Pz8aPrwcS/kMzBMnIBmObBh0gUAgGEr279/P/Pnz+fTTT2PzwltvvZUnnngCo0iXcEwhm0wULlwYSUfXlTe7N1GHnMKFC+OcHqpbPLyzoY53Ntazo9ENaOjTtjKi+GN+3nQNk33dGxv2TXBz9o1f5/w+zoeKorJ3Sxs7VtZTs7EVJdxrPidB0fhMJs4tYEx5Lkbz8besLskyktEIx8nfkKaq8V7xvcX5HmVNjz6Kd82aAfNnAyDLYmOgQCAQHAGOvzOvICWs+Vb8Lb6UPbSteaksEgkEAsHQIkkS1nQj1nQjBWOSeHcHFVyt/m6ROyZ4R7y9lT4EBW9HEG9HEDCkdCKUkDArVsa0jTu4FyQQCFLmtdde4/nnn+e9994jHI4IcT1F7OHDh3P99dczf/58ysrKAGhtbT0itgpOPMIdgUge7CongSonamffOZ8Nw2yYxkW8sI2j0pH7CWmZCpqm0eZrZXfzJqpbtlDdXslu9152extpCPcRnjMJkqZRGI4K16FQVMAOMzoUIrNfbxYJbJFw3xGRupcwHROuk4vUIUWlzROMCNTuAM37AjR3umh2N8eE65ZondsfxqRBmiaRpkrYuo6qRJoGE1WJPMWMhoaEhKaFUYOVKKEqNM2PJJnRGUqQjeORpMgZPyzDjDOHUzQ+k/xRNmor17F1xT/48s01qEp8bnBJlhk1bQalZ1Qw9qQ5GIyHJ2qQ4nTiXb8e39p1kRDimzej+RPDnceQZUwTJkTE6xkzsJZPR19YKMKHCwSC45Y333yT73znO7S3t4sQ48cJ9op5tNzza8z/82vSQj4UJHRosWOn3kzgp/+PSRXz2N/uZcnGet7eWMfm2u6IbbKxEVP+20zRhfnZ/lvJCWcAoMgqtsuKOXnO6ITn1TSNpj1udqxqYOeaRvxJ5nSZBVYmzC1g/OwC7FmHJpqO4NAgyTIYjRGRfgAyrroS7+rVqQ2sqtjPPecgrRMIBALBYBGC9gmKdUoOga1tKbWVJAnr1NxDbJFAIBAMHr1RR9YwG1nDknh3qxpeVzAmdPfM4e1q8eF1DTKXpwT7NjqZcvKIIbJeIBD0x7XXXoskSQl5sa+++mpuuOEGzjjjDCHWCA4baiBMYFdHzAs7nCR/Yhe6dCOmcZmRPNhjM9DZU/Rw0TTwd4CnGTqbUNz11EU9rXd766j2t7Fb6WQ3IVyD8Oo2aBojo97WY0LhmIA9MhTGEvv7iorUjp6e0z2E6ZhwnZ9UpFZVDacv1C1S1/tpdrtpdrfQ0tlDvO4M0OYJggbmqFAdEaejR1WiQJMYq0KapsOm6jH0E0GlJ0pwFyHvUtACkdcTlbnVUBX4PsRgvQCdcSx+m8yY6QrbPvkH7z75CX5P4iaAvFFjKT2jgomnnoEtIzPl9/pA0DSNYE1NRLxevw7v2nUEd+3qt49ss2GZPj2W+9pcNg1dWuJcSCAQCI43gsEgP/nJT/jDH/4AIEKMH0e8v7WRBTtMGC74BafWbeSUus3YQ17cBiufF07hs8IygtsMjPndR+xu6ZUuRfZhyl2GMfMLznfO5fb918byZat2mWE3T8c43B7Xxd3mZ8eqBipXNSSN7GaxGxg3K58JcwrILbaL644TgKEKfS8QCASCQ4cQtE9QrFNzcb69G9UX7neJSANkix7rlJzDZZpAIBAMCZIsYcswYcswUViSkVAfCii88dhamve4UxtQA7+nbw88gUAw9GiahiRJZGdn87//+79cffXVGETIXMFhQFM0gvvdMS/s4F43qMkXtiSjDtNYB+aSDEzjMtHnWroXPbtE6s6myM3TBJ3N0NkYu+/vbGCPv4XqUAe7dRK7DXqqDQb2GPQEeoe1loE+Zu92Re32tA6FGB0MM8Zgp8icgy4tD7Lz44Xprvu2qCe1Lv7SUNM0OgPhbjG6KUDzLg/N7jZaOgNxocBbO4OEVS1OqO72pI7cn6BJzFTBpplIUyX0KQrVAyJBOFBF2PNWT+vjj1qAkOdNlOAEjN4mXvlFe8IwaZlZTDztLErPqCC3eNTQ2JYENRDAv2ULvrVr8a5dh2/dOpT2RHt6YigqinhezyjHUl6Oadw4JN3BefoLBALBscaOHTu47rrr2LhxY2zD42233cbjjz8uQowf4/hDCj95bT1oENQZ+HDETD4cMTNp23gxW2XUqC14bG8TVjzc2vB1vuY8I1ZrHJ1O9vxJ6NIi34+gL8yudU3sWNlAbaUzYWydXmb0tBwmzC1gRGkWOpF68YTiYELfCwQCgeDwIATtExTJIJN1zXhaF23tXu9J1k6CrGvGIxnEJE4gEBxfGEw67Flmmve6+/0djCGB2SaENIHgcPHOO+/w3HPP8fbbb9PS0sItt9zC0qVLmT9/Pueccw7yYcxfKzj+0TSNcIsv6oHtJLDLiRZQkjeWwVhoxTRCxpzvxWhrRPJujgjUKxsjgrWnqVvEVgIAdMhyTKzebTSw22Cg2qCn1qhHM0lARkq25isqozEwRmdjjCmL0dZCxjhGkZ0+Esme369IDb3yUrcGaK7x0+zenSBSN7sDBLpyR2pg6elRHRWq81WJsZpEmmrEpoJNGzqh2mTTY3OYsDmMWB0mbA4TVoexV5mRzV/s54Nnnk5pTDW0I+6x3mRi3OxTKD2jguIpZcjy0IvE4dbWuNzX/i1b0EL9bJDT6zFPmoxrHbcAAErCSURBVBQVr2dgKS/HkJ835HYJBALBscTf/vY3fvjDH+L1etE0jfT0dP70pz9xzTXXpDzGpk2beOONN/jFL35xCC0VHAj/3lSPyxdOuf0wh5mzp3vY5H+O3a5KMgPp/Kz2R3H5stNOKcTxtdFowJ7NrexY1UD1+mbCSdKSFY7LYMLcAsbOyMNkEUvlJzL2inkMf/op6u69D9XlAlkGVY0dZbudwoULsVfMO9KmCgQCwQmJOEufwFhKs8m+qZS21yrRfOGuyHyxo2TRk3XNeCyl2UfYUoFAIDg0jJmWw+51zak11mDMdJF+QSA4XFx00UVcdNFFdHR08Oqrr/L888+zaNEiXnjhBXJzc7n22mu54YYbmDNnzpE2VXCMonhCsRDigSonijPQZ1u9sR2TuRKztB5T6FPklnZoSWynAQ06HbuNhohwnWFlt8FBtdFA2yA8avVIjDCkM9qSz5j0YsZkjmN09mRG50/HZnYktA8pKk1deamdXXmpa+IE6lhe6kCPBWMNrBrx+ak1iYmqxEmaPipeR4Rq3RAJ1WabAVtGtyDddYwI1l1lRvSGyPulqgpKKEQ4FEIJBgmHQoSDHfjdITpbgzj3royGGU+d4inTKD2jgnGzT8ZosQ7J6wLQVJXgrl0Rz+u1a/GuX0doz95++8gOB9Zo+HDLjHIsU6ciWyxDZpNAIBAcy3R2drJgwQJeffXVmFd2eXk5//jHPwYdYnzjxo08+OCDQtA+CnlvSyOyFA2GI4XQ2zeht29B0nnRFCth92TC7qmgGZANHZgLF/Nm00oAJvpG8bP9C2L5stFLZFxegi/fxmev76JyTSO+JOnGMvKtTJiTz/jZBaTniPOuoBt7RQXjPlmB+z//wf3+MpSODnQOB/Zzz8F+/vnCM1sgEAiOIELQPsGxlGZTeP8cvJtb8G9uQfWFkS16zFNysE7JEZ7ZAoHguGbszDw++cdOAt6Bd4ObrHrGzhCCtkBwuHE4HCxYsIAFCxZQXV3Nc889xwsvvMCTTz7JU089xZgxY5g/fz7z588nKyvrSJt7QhP2uKh84ymqvlqDzx/EYjZSMnMW46+4A70t/fAbpGkQcMdCfWsdTQT2egjsB3+znZAng77Cd8t0YJI3YJbXYdKtRy81Q4+10BCw16CPell3e1zXGPT4BhE9wKq3MDp9NKMzxjDGEbmNdoxmRPoIdOjj8lLvbPPzxZ5WmjvrusOARwXrdm8wLiqiFBWqe+anztckxqoSNtUYLUtNqI4ICCoaYdAU0MLd9wlHHysYzWC0SBjNGgYTGAwaeqOGrFfR6TVkWUGSVJRwRJRWAkHa9wdpqQ4RDgW7xepQkHAwiBIKEg6GUJXUPbZSYdT0mVx134NDMpbq9eLbuCma+3otvvUbIt48/WAcORLLjBlYZpRjLS/HOGYMkog4IRAIBEmZNm0aNTU1sTQ0XSHGRQqa4wunN4iqgS5tK5bC15B0PjRNQpI0NE3CkL4FTXmLsHsi+vQttBCJdHJ++ync0Xgdei2yvC3ZjbROyOSTf++hrc6T8Dwmm57xJ+Uzfm4B+aPSRV5sQZ/IJhOOSy/FcemlR9oUgUAgEPRA0rRkCSGODQKBAE888QSvvPIKVVVV6HQ6Jk2axM0338yCBQsOKhRlR0cHjz76KK+//jp79uzBarVSVlbGggULuO666wbsX1dXxyOPPMI777xDbW0tDoeDWbNm8YMf/IDzzz//gGxyuVw4HA46OjpITz8Ci4ICgUBwHFK9sYV/P7Ox/7DjElx0Wxmjy3IOm10CwaHkeJhTfPrppzz//PP885//xOl0IkkSpaWlbN26lffee4+zzz471nblypU8++yz/PWvfz2CFh8dHKrPvmrx0yx99W0Cqj4iJHflnZMkTHKYC6+7lLGXff/gn6hLpPY0R0N6N/Zxvwmts5lQqICAWo5fnU5AnQz05VERxCRvxSSvwyyvxyDtRpI0OiUpJlhXGwzsNlupNhrYJ2v0EZA8KdnmbMZkjGFU+iiKbKPI1A/HIg0jHEyntTMYF+Y7IS81IGkqOk3BoCqkqWHsqkqaqpCmqNg0BauiYlUVzJqCWVUwaWEkTQGUmOCMFqanAI3WLUprMXG663E47vHxxPDSqVz7y4cPqG+osTEu97V/2zZQ+v4mSAYD5qlTsZRPxzojEj5cLzbeCASC44hDPaeUZTkmOqanp1NeXn7AYzU2NrJ9+3aUfn63BakzlJ/9rYu+4oO9yzEVLUKn6hjbNp3RbWWYwlYCei/VWRvZlbUeVReZk+g1HT9svpFzW7sjNbmNMp+2BAj2iigu6yVGTc1hwpwCRk7JRqcXm8gEAoFAIDiaGMyc4pgVtFtaWqioqGDTpk0sWLCAm266iWAwyFNPPcUbb7xBRUUFS5YswWw2D3rsqqoqKioqqK2t5Z577uHSSy+lra2NRx99lI8//pj58+fz/PPP9ymYr1y5kosuugi/38+DDz7ImWeeyb59+/jVr37Fxo0bue+++3jooYcGbdfxsPgsEAgERyPVG5r54LltEU/tXukXTFY9Z3+zVIjZguOK42lOEQgEePPNN3nuued4//33CYfD2O12rr/+er773e9y0kkn8eKLL/KNb3xDLGByaD77qsVP8+bL/47+dibxdNE0kOCy6y+i5PLbk9f3FKl75p9Odj/s79OWsJZNQOkSsKej9pOX2iDtwiSvx2TdhTujjeo0K7uNJqp1ErsJUh1y0RTujNoIsgo6Veq+KfH3DaqOTF0W6XI2Ns2BIWyHoBXVbybgV/H7/QQDQVDC6LQwek1BF73p1TBGTcGghTH0KJe1MLKmIJGY7/F4Q280oTcY0BmNkaPBiN5gRGc0YDAaux8bDOhjjw3sXreG9rralJ5DkiRKZp3MpT+5f8C2mqIQ2LED77p1+Nauw7tuLeG6+n776LKyop7XEfHaPGUystGYkm0CgUBwLHI4BO2cnBxsNttBj+XxeGhtbRXzwSFiKD/7V7/czX9vvI5RzrHM2zUfs2JFRUVGjh39Oi8flryAy76PhY3/RbG7e4PYroDCFp8at0e9YIyDCXMLKJmZh9kmPPoFAoFAIDhaOSEE7Xnz5vHRRx9x55138sQTT8TKNU3jiiuu4M033+Sb3/wmf/vb3wY1biAQoKysjMrKSh5//HF+9KMfxeqCwSCnnnoqX375JQ888AC//OUvE/o3NzdTWlpKS0sLb7zxBpdffnmsrqOjg6lTp7Jv3z7+/ve/c/PNNw/KtuNp8VkgEAiONsIhhV1rm9m9vhm/J4TZZmDM9FzGzsiN5fEUCI4Xjtc5RVNTEy+++CKLFi1i/fr1SJLE1KlTKSkp4Y033hALmAz9Zx/2uHjmO9cSVOXkYnYXmoZRVrjtm3PQh5zQ2Rz1qG6K3A/7BnwuVQNFkwmrMmFNRtFkQqqNsDYFhTI0piJJhX3bKntx6hto0NWxR9tLa8iJN+jDH/CihRX0St9itU6VkIYoh/TRiqzTozd2C8l6oyEqKCcXkrvE5pgQ3aNfVxud0YghyRi9x9Pp9Qcc9nPriuW8+/RjKbe/8I6fUHr6vIRypbMT3/oN+Natw7cuGj7c6+13LNO4EizTy7HMmIF1RjmG4mIRvlQgEJxQHA5B+4UXXuCGG2446LFeeOEFbr75ZjEfHCKG8rN/vfJN/rrkFS7Y8R1koMigY5hBxihBUIP6kEptSMGhk5lp10gjsllM0TQ2eBX2hSJL2+k5ZibMKWD8nAIy8qwH+xIFAoFAIBAcBo57Qftf//oXV199NWazmfr6ejIyMuLqt23bRmlpKZIksWbNGmbOnJny2P/zP//DT3/6UwoLC9m7dy86XbyI8e6773LRRRdhsVioqqqisDB+0ewHP/gBTz31FHPmzGHlypUJ4z/zzDN8//vfJz8/n+rqaiwWS8q2Ha+LzwKBQCAQCA4vJ8KcYsuWLfz973/n5Zdfpq6uDkmSxAImQ//Zb/77f/Ofd1el3H60tZUMkz8iTEfF6WT3FU2KE67DqoyKjIRElqmQAsso8i2jyDYVIkvJoyaF1ABNvr00+Gpo9NfgDrUd9Os99OhB0gM6JEkffRy5L+ujYrDRiNFkwmAxYbKYMFnNmNPMmNMsmNPMMW9mg7GXkGwwRgXkHvdj3tAGZPnY3LwVDgZ55jvXEwz4B95UYTJz219eRmcwEKqtw7dubST39br1BCorQe3bE14ym7GUlcVyX1umT0fncByCVyQQCATHDseSoC0i9gwtQ/nZ37XsJwx/Yx7FkpUZVj1GWYrlTe86hjUNGZCj53qvqrHaE8Zv0jN2Zh4T5xRQMNYhNpYJBAKBQHCMMZg5hf4w2TSk/PnPfwagoqIiQcwGmDRpEpMmTWLbtm389a9/HZSg3TX25ZdfniBmA5x33nnY7Xbcbjcvvvgid999d6wuGAyyaNEiAK666qqk41911VV8//vfp7GxkXfeeYdrrrkmZdsEAoFAIBAIBKkxefJkfvvb3/LII4/w61//mgcffPBIm3RcsmPFyr5DjSeh2psN/Tu9JmA3ZFFsG0W+ZSR5lpEY5eR5sFVNpS1QFxGwfTW0BurRBhmqW5EkFEmHih5N0qOhR5J0SOiRJD06um9Ey5F09BSeu0RpCV1MnI5/HK2XdMiyAYvDgi3dii3Tgi3DjM1hxOYwYY0ebRkmzGkGZFks0CZD1jSm7W1iTX56d/723kT3cJftrqP+rp/g37CBcHNzv+Pq8/JinteW8hmYJ05AMoiQpQKBQHA4ufnmmxk7duyQjDV27Fi+8Y1vDMlYgqFF2u1gpGRjtq17HbZLmO466nuc35vDKk0jHcw9pZBRZdkioppAIBAIBCcIx5ygHQwG+eCDDwCYNWtWn+1mzZrFtm3bWLJkCU8//XRKY1dXV7N9+/Z+x9bpdJSXl7NixQqWLFkSJ2h/9tlndHR09Ns/Ly+P4uJi9u7dy5IlS4SgLRAIBAKBQHAIkWWZsWPHcgwGJTom8LiCoEsuMB8QmoZFslBgGUm+ZRR51tFYDH17wXoCzbS7q2h37aTDvQtV8SGhYUKjSNOQNA0JDU2S0aQ0FJ0dVU5H0aWj6dJRDBmRMkM6isEBhoPP0QkgoWLGj1nyY5ICmCU/FtmLWQpglgOYdUEschCjFEKSZfBI4AWpXgakiCgrS4QlCZck4ZKiId0lCUmWerSRo3cl6GojR9v1LJOIPI8U7ZusX9fYvdpEyuPtkqLt+x5/gDY9blLX66CXDbG+dLeJjt+zTeeKT8htbGGmz8uGEXmE9bpuYTt61Csq0/Y1kefy0rlsWeIHJsuYJkyIeF6Xl2OdUY6+sFB4eQkEAsERZrBpBPtj7ty5zJ07d8jGEwwdBY1jKbdGROmBzr2KprHcVsdPfnDm4TBNIBAIBALBUcQxJ2hv27aNUCgEwKhRo/ps11W3Z88eOjo6cKQQDm7jxo0J/fsae8WKFXHtB9t/7969Cf0FAoFAIBAIBEPPFVdcQXV19ZE247jEoGggR0RDWdIxwjaRIus4TLKZgOqn1ruTfZ7tqJoCmkaWx8/EulZkTUNWNXSahowOU+YYjDmT0OeVosso7vP51IAbpXkb4aZtkWPAjdGYTobRgdVUQMDoIGByEDSmEzA6CJocBIzphA1pQ/J6JTWEKejCGOjAFOzAGHRhCnRgDHZg6lFmCHmQ6H8ThT96EwwN+S4vZ2/dQ4PDRoPDRkinw6AoFHR4KOjwoOuxqUW22bBMmxbzwDaXlaFLG5rviEAgEAgEgsExWSnAmGIkGp0kMVHKO8QWCQQCgUAgOBo55gTtvXv3xu7n5ub22a5n3f79+1MStAc7dnt7Ox6PB5vNdkD99+3bN6BNAoFAIBAIBIKDw2q1MnLkyCNtxgERCAR44okneOWVV6iqqkKn0zFp0iRuvvlmFixYgCwnzx99uMjUGamTJAqtJczJuQijzoKqqciSjKqpjLBNYEbW2axqXkKdbxcFHR5azA6saTmkZ43FkjEOW/oYZJ0x6fiqGqbT04DT00Kb302HIhM2pBMaNo9w8eUoeuuQvA5ZDfUpUhuDHZiiZfqwB+Gze/Si0zSKnJ0UOTv7bGOeMplRr76KlCS9lEAgEAgEgsNPsWxF00IpRUbRNI2R8tDM/wQCgUAgEBxbHHOCttvtjt03m819tutZ53K5DunYXYL2YPsPZFcgECAQCMQ9l0AgEAgEAoHgxKClpYWKigo2bdrEggULePLJJwkGgzz11FPcdtttvPbaayxZsqTfeeeh5sviUYxtt3Ja3qWxMlmS444G2cxp+Vex07WecLFGsWE8DrVvb9h2RaElBM1hjdawhko+mPPhAF6mziD3yEltitzPiOanTjdhzYjUmazRyyJN676pasTHOnq/q1zr3abL87dnG1UDtLi+mgZoPduoRJ+gRxstzoZYG03r1Td+/Ei/3uNH6+nZZuDxNU2DHuP32yZaFhu7x3MO2C/WJmq7qkbK4sbuOX6P95ju19f58ceEUt0oLMsYhhUKMVsgEAgEgqMIu0WP5A2n1FaSJOxWwyG2SCAQCAQCwdHIMSdon0g8/PDDPPjgg0faDIFAIBAIBALBEeCaa65h06ZN3HnnnTzxxBOx8nnz5nHFFVfw5ptvcttttw1pfsnBsisnnxv0kRyGfXnVdJWPd5RHCtT4eq+q0RzSaA6rNIc1gimkO9cbZKwZpphYHRGsjdgcxkh5uglbhhGjRT+4PMi92gpv7KOfjqlTqLvn3tQaqyr2c885tAYJBAKBQCAYFNZ8K/4WX8oe2tY8y2GwSiAQCAQCwdHGMSdo2+322H2/v++scz3r0tPTD8vYvft3eW731X8gu+677z7uuuuu2GOXy8WIESP67SMQCAQCgUAgOPb517/+xUcffYTZbOaBBx6Iq5MkiYcffpg333yT5557jjvuuIOZM2ceETtPd0/EKA/O2zWkabSEu0Xszh4Ct96kwxETqY1YY0J1T+9qE0azbnBCteC4xX7BBci/eQjV7Y56b/eBJCHb7djPP//wGScQCAQCgWBArFNyCGxtS6mtJElYp/ad5lEgEAgEAsHxyzEnaBcXF8fuNzc399muZ93w4cMPydiZmZlxonXv/n0J2l39BxKnTSYTJpNpYMMFAoFAIBAIBMcVf/7znwGoqKggIyMjoX7SpElMmjSJbdu28de//vWICdoTtEw0TUvZo6ZZUWmZmIM1w8Qwh4mSWDjwiFhtNB9zlyeCI4xsMlG4cCH7b7894mGfTNSOfj8LFy5EFtdXAoFAIDgKUVWVZ555hvvuuw+32011dTWjRo0akrHr6up45JFHeOedd6itrcXhcDBr1ix+8IMfcP5RsNHLOjUX59u7UX3hfqPjaIBs0WOdknO4TBMIBAKBQHAUIR9pAwbLpEmTMBgiuVJqamr6bNdVN3LkSBwOR0pjl5WVJfTvb+ye7Yeiv0AgEAgEAoFAEAwG+eCDDwCYNWtWn+266pYsWXJY7EpGmt6Ysqe0JEnozHDed6dw2tXjKD+3mPGzCyiakElmgU2I2YIDxl4xj+FPP4XcFTFLluOOst3O8Kefxl4x7whZKBAIBAJB32zZsoXTTjuNO+64A7fbPaRjr1y5kilTpvCnP/2JW2+9lRUrVvCHP/yBffv2ccEFF3D//fcP6fMdCJJBJuua8b0zvyS2k4i0Mxxzy9kCgUAgEAiGgGNuBmA0Gjn77LMB+PLLL/tst2bNGgC+9rWvpTz26NGjmThxYr9jK4rCunXrko59yimnxMTzvvo3NTWxd+/eQdsmEAgEAoFAIDgx2LZtG6FQCKBfz5yuuj179tDR0XEYLEvEnmtH6y/Mcw80TcOeax+4oUBwANgrKhj3yQoKH30E+9lnY509G/vZZ1P46COM+2SFELMFAoFAcFTyy1/+khkzZqDT6bj33nuHdOzm5mYuueQS2tvbeemll7j77ruZPXs2V111FStWrGDEiBE8/PDDPPfcc0P6vAeCpTSb7JtKkSzRDY5d4nb0KFn0ZN9UiqU0+4jYJxAIBAKB4MhzzAnaAN/97ncB+OCDD5Iu3m3fvp1t27YhSRLf/va3D2jsxYsXo6pqQv3777+P2+3GbDZzww03xNWZTCZuuukmIJL3MBmvv/46APn5+Vx88cWDsk0gEAgEAoFAcPzTtfkRIDe37xyBPev279+ftE0gEMDlcsXdhpLcUwoH5aGde0rRkD6/QNAT2WTCcemlDH/y94x8/jmGP/l7HJdeKsKMCwQCgeCo5YknnuDxxx9nxYoVTJgwYUjH/tWvfkVLSwtz5szh8ssvj6tzOBzcd999ANxzzz34fL4hfe4DwVKaTeH9c8i8dgKW0mxMYxxYSrPJvHYChffPEWK2QCAQCAQnOMekoH3VVVdx5pln4vf7efDBB+PqNE2Lhcu5+eabE/IJvv322+Tm5jJlypSkYcHvuOMOxo8fT21tLU899VRcXSgU4he/+AUA9957L0VFiQtyv/jFL8jJyWHlypW89dZbcXUul4uFCxcC8Mgjj2CxWAb3wgUCgUAgEAgExz09Q02azeY+2/Ws60uofvjhh3E4HLHbiBEjhs5QIG16PppBHtBLW9M0NKNM2vS8IX1+gUAgEAgEgmOZrVu38v3vfz/lDYKpEgwGWbRoERBZR01GV3ljYyPvvPPOkD7/gSIZZGzleWTfVErugjKybyrFVp4nwoz///buPLypMv3/+Cfd0lK6AGURy46AZdMvsikKFllVRBQRQWFERhlEhMowKArOCMJvVFAWHUYUUUeUfUdWZRmQoiOyCYhFFhFalrZ0o23O74+aQm0LKU1zTpv367piyjlPT+6E23An9znPAwAASmdDW5IWLFigpk2basqUKRoyZIi2bdumTZs2qXfv3lq8eLGio6P17rvv5vu9WbNmKSEhQfv27cu9WvpKdrtdK1euVI0aNTRy5EiNHTtWO3bs0OrVq9W5c2fFxsaqX79+evnllwuMq3Llylq+fLkqVKigvn376o033lBsbKwWL16su+66S7/88ovGjBmjAQMGuP01AQAAAK40ZswYJSYm5t6OHz/u1uPb/H0U0beRZLMV2tQ2DEOy2RTxaCO+jAQAALhCQRfLuMO2bdtyZ7Vs2bJlgWOqVKmimjVrSpJWrlxZInEAAAC4S6n9RikiIkKxsbGaNGmStm/fri5duqhnz546ceKEZs6cqXXr1hV4Rcuf//xnVapUSVFRUerVq1eBx65fv7727Nmj0aNHa+HChbr77rvVv39/2Ww2ffbZZ/rkk0/k41P4S9emTRvt3btXgwYN0rvvvqs777xTTz/9tCIjI7VmzRpNnDjRba8DAAAAypaQkMvrTKenpxc67sp9oaGhBY6x2+0KDQ3Nc3O3oKhKingiSj6/r3nobGs7732C/BTxBGseAgAAeMoPP/yQ+3Pt2rULHefcd+V4AAAAK/IzO4DisNvtGj16tEaPHu3y79x///1KSEi45riwsDBNmDBBEyZMuK7YqlevrnfeeUfvvPPOdf0+AAAAvJPzShlJio+PL3TclfsiIyNLNKZrCYqqpOovtVHq3gSl702QIy1LPkF+CmwSoXJNIrgyGwAAwIOOHTuW+3PlypULHefcd61ZfDIyMpSRkZH758KWuwEAACgppbqhDQAAAJQ1N998s/z9/ZWZmamjR48WOs65r1atWgoLC/NMcFfhXPMw+FbWyQYAADBTcnJy7s8FzWD5x33XalC//vrrevXVV90THAAAwHXgUgkAAADAQgICAtSxY0dJ0q5duwodFxsbK0m69957PRIXAACAN5s7d678/Pyu+7Z27Vqzn8J1GzNmjBITE3Nv17qiGwAAwN1oaAMAAAAW89RTT0mSNmzYoMTExHz7f/zxRx04cEA2m01PPvmkp8MDAADwOg6HQ9nZ2dd9czgcHos1JCQk9+f09PRCxzn3hYaGXvV4drtdoaGheW4AAACeREMbAAAAsJiHHnpI7du3V3p6er7pHQ3D0IsvvihJGjBggFq0aGFGiAAAAF5l4MCBMgzjum9du3b1WKw1a9bM/Tk+Pr7Qcc59NWrUKPGYAAAAioM1tAEAAAALWrBggaKjozVlyhSlpaWpf//+unTpkmbMmKHFixcrOjpa7777rtlhAgAAwGKaNWuW+/PRo0dVu3btAscdPXo033gAAAAr4gptAAAAwIIiIiIUGxurSZMmafv27erSpYt69uypEydOaObMmVq3bp0CAwPNDhMAAAAWc/vttyssLEyStGvXrgLHnDlzRseOHZMk3XvvvR6LDQAA4HrQ0AYAAAAsym63a/To0fr+++918eJFJSYmaseOHRoyZIh8fCjlAQAAkJ/dbtfjjz8uSVq4cGGBYxYtWiRJqlq1qu677z6PxQYAAHA9+BYMAAAAAAAAAEqRWbNmKSwsTHfccYcuXLiQb/8rr7yiiIgI7dixQ8uWLcuzLykpSZMmTZIkTZ48WUFBQZ4IGQAA4LrR0AYAAAAAAAAADztz5oz27t2rvXv36uTJk7nbDx06lLs9JSWlwN+dNm2akpKS9N///lcbN27Mt79y5cpavny5KlSooL59++qNN95QbGysFi9erLvuuku//PKLxowZowEDBpTY8wMAAHAXGtoAAAAAAAAA4GEzZ85U06ZN1bRpU40dOzZ3e5cuXXK3x8bGFvi7zz77rEJDQ9W2bVtFR0cXOKZNmzbau3evBg0apHfffVd33nmnnn76aUVGRmrNmjWaOHFiiTwvAAAAd7MZhmGYHQRck5SUpLCwMCUmJio0NNTscAAAQClFTeG9+LsHAADuQl3hvfi7BwAA7lCUmoIrtAEAAAAAAAAAAAAAluRndgBwnfNi+qSkJJMjAQAApZmzlmCiHu9DPQkAANyFmtJ7UVMCAAB3KEo9SUO7FElOTpYk1ahRw+RIAABAWZCcnKywsDCzw4AHUU8CAAB3o6b0PtSUAADAnVypJ1lDuxRxOBz69ddfFRISIpvN5vbjJyUlqUaNGjp+/Djr38A05CHMRg7CCko6Dw3DUHJysqpXry4fH1ag8SYlXU9KvI/CfOQgrIA8hNk8kYPUlN6L7yjhDchDmI0chBVY6TtKrtAuRXx8fBQZGVnijxMaGsobJExHHsJs5CCsoCTzkKtovJOn6kmJ91GYjxyEFZCHMFtJ5yA1pXfiO0p4E/IQZiMHYQVW+I6S0ycBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tJHLbrdr3LhxstvtZocCL0YewmzkIKyAPERpRv7CbOQgrIA8hNnIQZRm5C+sgDyE2chBWIGV8tBmGIZhdhAAAAAAAAAAAAAAAPwRV2gDAAAAAAAAAAAAACyJhjYAAAAAAAAAAAAAwJJoaAMAAAAAAAAAAAAALImGNgAAAAAAAAAAAADAkmhoQw6HQzNmzFBoaKhsNpuOHj1qdkjwIpmZmVq4cKGeeOIJNWrUSMHBwQoMDFTNmjX10EMPafny5WaHiDIuIyNDK1as0PPPP6+2bduqUqVK8vPzU0hIiJo1a6bnn39eR44cMTtMeKmHH35YNpuNf59RKlBTwizUk7ACakpYFfUkShPqSZiFehJWQD0JK7NCTWkzDMMw5ZFhCfv27dPgwYO1ffv23G1xcXGqXbu2eUHBa5w4cUJt2rTRyZMnVbNmTY0aNUrNmjWT3W7X1q1b9frrr+vs2bPq2bOn5s2bJ7vdbnbIKIOefPJJffjhhwoNDdWwYcPUvn17hYeH69ixY5o1a5bWrl0ru92uefPmqWfPnmaHCy8yf/58PfLII7l/5t9nWBk1JcxCPQmroKaEFVFPojShnoRZqCdhFdSTsCqr1JQ0tL3YuHHjNGnSJLVq1Urt2rXTpEmTJFEswnP27t2rpk2bKjIyUrt371bFihXz7P/hhx/UokULZWVlaejQoZo+fbpJkaIsGzhwoD766CN9/fXXuuuuu/Ltv//++7VixQqFh4fr119/VVBQkAlRwtskJCSocePGSk1N1cWLFyXx7zOsi5oSZqKehFVQU8JqqCdRmlBPwkzUk7AK6klYkZVqSqYc92JTp07VlClTtHnzZjVs2NDscODFRowYka9YlKRmzZqpb9++kqT3338/9w0TcKfIyEjdf//9BRaKktS/f39J0oULF7R3715PhgYvNmzYMGVkZGjMmDFmhwJcEzUlrIB6EmajpoTVUE+iNKGehBVQT8Js1JOwIivVlH5mBwDz7N+/XzfeeKPZYcCLRUREKCYmRg888EChY5o3b66PP/5YGRkZOnjwoFq0aOHBCOENXnvttavuv3IqqZCQkJIOB9CSJUs0b948vf/++/L19TU7HOCaqClhJupJWAU1JayEehKlDfUkzEQ9CaugnoTVWK2m5AptL0ahCLNVq1ZNb7zxhurVq1fomCvfKMuXL++JsIA8PvvsM0nSHXfcoUaNGpkcDcq68+fPa8iQIerUqZMGDRpkdjiAS6gpYSbqSZQW1JTwFOpJlEbUkzAT9SRKC+pJeJIVa0oa2gAs7fDhw5Jyisv69eubHA28xcWLF7Vt2zb16dNHX3zxhR588EEtXrzY7LDgBYYPH66LFy/q3//+t9mhAECZQT0Js1BTwgzUkwDgftSTMAv1JMxixZqSKccBWFZWVpYWLlwoSYqJibHEtBYo244cOaIGDRrI4XBIkurXr68FCxbooYceMjkyeIOVK1fq448/1rRp01SrVi2zwwGAMoF6EmagpoRZqCcBwP2oJ2EG6kmYyao1JVdoA7Cs2bNn6/Tp02rVqpWGDx9udjjwAjVq1NDu3bu1c+dOffzxx7rhhhv08MMPq1OnTjp27JjZ4aEMS0xM1NNPP60777xTQ4cONTscACgzqCdhBmpKmIF6EgBKBvUkzEA9CbNYuabkCm0AlnTo0CGNGjVKVapU0bx58+Tv7292SPACAQEBatKkiSSpZcuW6tevnwYPHqzZs2erXbt2+vbbb1W5cmWTo0RZFBMTo7Nnz2rjxo2y2WxmhwMAZQL1JMxCTQkzUE8CgPtRT8Is1JMwi5VrSq7QBmA5p0+f1r333is/Pz+tXbtWderUMTskeCmbzaa33npLwcHBOn78uF577TWzQ0IZtHbtWs2ePVt///vf1aBBA7PDAYAygXoSVkJNiZJGPQkA7kc9CSuhnoQnWL2mpKENwFJ+++03RUdH6+zZs/ryyy/VvHlzs0OClwsNDVWbNm0kScuWLTM5GpQ1ycnJGjx4sFq2bKmRI0eaHQ4AlAnUk7AiakqUFOpJAHA/6klYEfUkSlJpqCmZchyAZZw4cUIdO3bU+fPntWnTJopFWEbVqlUlSSdPnjQ5EpQ13377rY4dO6YTJ07Ibrfn228YRu7P9evXz/15wIABmj17tkdiBIDShHoSVkZNiZJAPQkA7kU9CSujnkRJKQ01JQ1tAJZw9OhRRUdHKz09XV999ZWioqLy7Y+IiFD58uVNihBl0cmTJ9WxY0e9//77ateuXaHjEhMTJUlhYWGeCg1eomXLltqzZ0+h+5cuXaqxY8dKklatWqXq1atLkipUqOCR+ACgNKGehFmoKWEm6kkAcB/qSZiFehJmKw01JQ1tAKY7fPiwOnbsKEnavHlznjN8nOrUqaMPP/xQAwcO9HB0KMsyMzN18OBB7dixo9BiMS0tTdu3b5cktW3b1pPhwQsEBwerSZMmhe7ftWtX7s8NGjRQ7dq1PRAVAJQ+1JMwEzUlzEQ9CQDuQT0JM1FPwmyloaZkDW0Aptq/f7/at28vf39/bdmypcBiEShpb7/9tk6fPl3gvjFjxujcuXOy2WwaNWqUhyMDAADXQj0Jq6CmBACgdKKehFVQTwKF4wptL3bmzBmdOXNGUt41Fw4dOqSLFy9KyjnrLDg42JT4UPYdOXJEHTp0UHx8vAICAtS4cWOzQ4KXCQgIkN1u14kTJxQVFaXnn39eLVu2VNWqVXX06FH9+9//1urVq2W32zVjxgzdeeedZocML5CSkqK4uDhJhf/7fLUzJgFPo6aEmagnYQXUlLAa6kmUNtSTMBP1JKyAehJWZLWa0mZcuZI3vMr48eP16quvXnXMpk2b1KFDB88EBK+zZMkSPfjggy6PZ0oflISzZ89qwYIFWrdunX744QedPHlSGRkZCgkJUf369XX33Xfr6aefVr169cwOFV7iq6++0t13333VMZRvsBJqSpiJehJWQU0JK6GeRGlDPQkzUU/CKqgnYTVWqylpaAMAAAAAAAAAAAAALIk1tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAluRndgAAvFdWVpaysrLMDgMAAAAAAABACfPx8ZG/v79sNpvZoQAAShka2gA8LjU1VQkJCUpJSTE7FAAAAAAAAAAe4u/vr5CQEEVERMjX19fscAAApYTNMAzD7CAAeI9Lly4pLi5O/v7+qlixoux2O2dlAgAAAAAAAGWYYRjKzs7WxYsXlZiYKLvdrho1atDUBgC4hIY2AI86ceKE0tPTVadOHQpWAAAAAAAAwMukpaXp2LFjCg8PV9WqVc0OBwBQCviYHQAA72EYhlJTUxUWFkYzGwAAAAAAAPBCQUFBCg0NVXJysrjeDgDgChraADwmMzNT2dnZCgoKMjsUAAAAAAAAACYJCQlRZmamMjMzzQ4FAFAK0NAG4DEOh0OSuDobAAAAAAAA8GLO7wed3xcCAHA1NLQBeJzNZjM7BAAAAAAAAAAm4ftBAEBR0NAGAAAAAAAAAAAAAFgSDW0AAAAAAAAAAAAAgCXR0AYAAAAAAAAAAAAAWBINbQAoQ+bMmSObzZZ7Gz9+vNkhASWmLOf7iRMn1K1bN9lsNs2ZM8fscGABZTnfgT8i3+FtvCHnly1blvv8jh49anY4MJE35DvgRL4DAOA+NLQBwMJ27dqlv/zlL2rcuLHCw8MVEBCgqlWr6q677tKoUaO0bt06ZWVl5Y7v06ePTp06pZiYGBOjdr+DBw+qf//+uuGGGxQYGKh69epp1KhRSkxMNDs0uBH5nuODDz5QkyZNtGbNGrNDQQny9nxPTk7Wv/71L3Xv3l3VqlWTv7+/wsPD1bZtW7311ltKT083O0S4kbfne0pKipYsWaJBgwYpKipK5cqVU0BAgCIjI9WrVy+tX7/e7BDhZt6e83+UmJioIUOGmB0GSoi35/vRo0fzNCwLuk2dOtXsMOEm3p7vToZh6JNPPlHnzp1VpUoV2e12RUZGqkOHDho3bpySk5PNDhEAUAb5mR0AAJSk9MxsrdpzSmv3ndaF1EsKLxegzo2rqnvTGxTo72t2eIVKS0vTM888o7lz56pnz56aPHmyGjVqJIfDoV9++UWLFy/W9OnT9cYbb6hy5crasGGDmjZtqqCgIAUFBal8+fJmPwW3+eqrr9S9e3fVrFlTc+bMUYMGDfTVV1/pueee06JFi7R161bdcMMNZodpDZnp0v4l0o8rpNTzUrkKUqP7pKiekn+g2dEVinzPkZmZqR49emjz5s2aOHGiFi1apM2bN5sdlmVlZGdo7dG12nhsoy5kXFC4PVzRNaPVuXZn2X3tZodXKPI9p7lXq1YtnT9/Xo8++qi++OILRUZG6pdfftGkSZMUExOjOXPmaP369apSpYrZ4VqCIyNDyWvWKHn9BmUnXpBvWLhC7umokK5d5WMn361u3LhxevPNN3X77bfrn//8p26++WalpqZq06ZNevnll7V48WK9+eabGjlypNmhWkZWZraOfHtGP+9OUHpKpgKD/VW3eYTqtagiP2r4UueFF16Qnx9fPxUm69IlHdqxVT/F7lDaxSQFlQ9V/ZZt1KBNO/kFBJgdXqHI97waNmxY6L6KFSt6MBJrMzIdSt0Tr/R9Z5WdmiXfcn4KbFxJ5ZpWls3futddke+XpaamqmfPntq7d69eeeUVvfPOOwoICNC3336rmJgYff3113r88ccVEhJidqgAgDKGTxQAyqx1+08rZv73SkrLko9NchiSj01as+83jV++T2/1vkX3RFU1O8x8MjMz1bVrV23evFnTp0/X0KFD8+xv0KCBOnXqpCFDhqhdu3aKj4/X2bNnTYq2ZF24cEG9e/eWYRhatWqV6tatK0mqU6eO7Ha7+vXrpyeeeELr1q0zOVIL+HGVtGSIlH5BsvlIhiPn/sByafVo6cH3pIbdzI4yH/L9spSUFKWnp2vPnj2qW7euFi9ebHZIlrXp2CaN3TZWSZeS5CMfOeSQj3y0/th6Tdo5SRPaTVCHGh3MDjMf8j1HZmamzp8/r169eumzzz7L3V63bl21b99ebdu21c6dOzVixAh9+umnJkZqDckbN+rXv42RIylJ8vGRHA7Jx0fJ69bJZ8JEVZ80SSHRd5sdZj7ke15VqlTR2rVrFRwcnLutSZMmCgkJ0Z/+9Ce98sorGjp0qOwWPkHBU+J2x2vDRweUkZol2SQZkmzSz/+L15YvDqvjwCjVaRZhdpj5kPMF27Rpk2bPnq1Vq1apWzfr1aJm+2nXN1ozc4oyUi7KZrPJMAzZbDYd3vlfbZwzS92GjlC9Fq3NDjMf8j2/H3/80ewQLC9t/1mdm39IRlre9/e0fWd1YfnPqti7gYKiKpkdZj7ke14DBgzQN998o++//1516tTJ3V63bl1VrlxZjz76KCcxAQBKhHVPfQOAYli3/7T+/PEuJaflTPXkMJTnPjktS4M/3qV1+0+bFGHhXnzxRW3evFk9evTI90HpSk2bNi3z6y9NmzZNCQkJeuCBB3Kb2U6PPvqoqlevrvXr12vbtm0mRWgRP66S5j0mpf8+BbvhyHufnih91jdnnMWQ75eFhYVp48aN+XIdeW06tknDNw1X8qWcaewccuS5T76UrOc2PqdNxzaZFmNhyPe8Bg0alG+bj4+PnnrqKUnSokWLlJ2d7emwLCV540adGPqsHM5pGx2OPPeO5GSdGDpUyRs3mhRh4cj3y/r376/58+fnaWY7tWjRQlLOSU0pKSmeDs1y4nbHa9V7e3Ka2VJOs+OK+4zULK169wfF7Y43Jb6rIefzS0tL0+DBg9WvXz917drV7HAs56dd32jpG68p4/f/9w3DyHOfkZKiJf98TT/t+sa0GAtDvqOo0vaf1dmP9+c0s6V87+9GWpbOfrxfafut1wgm3y9bv369FixYoKFDh+ZpZjt16NBBv/32m2rXru354AAAZR4NbQBlTnpmtmLmfy8Zlz8j/ZHx+39emP+90jOt82X5b7/9punTp0uShg8ffs3x/fv3V+3atRUY6Pp00t99953++te/qkWLFqpUqZICAwPVoEEDjRw5UgkJCQX+Tmpqqt58803deuutCg8PV1BQkJo2baoXXnhBO3fuzDd+/fr16tatmyIjI3PXiOzdu7c+//xzpaamuhzr/PnzJUkdO3bMt8/Hx0fR0dGSpM8//9zlY5Y5mek5V2ZLukbG54zLtM66tOR7Xs419lC4jOwMjd02VpJkFJLvzu1jt41VRnaGx2K7FvL9srCwMJ0/f77Q5kZkZKQkKT09vUj/D5U1jowM/fq3MTl/MAp5f/99+69/GyNHBvluxXyXpFtuuUV33XVXgft27NghSfq///s/r5+SNiszWxs+OlB4OeNkSBs+OqAsanjL5rzTyy+/rKSkJNYPLkDWpUtaM3PK5Q+mBcr5QLtm5hRlXbrkweiujnxHURmZDp2bf8il9/dz8w/JyHR4JC5XkO95zZo1S5KYcQMAYAoa2gDKnFV7TikpLcuVz0pKTMvS6r2nPBGWS5YuXar09HQFBAQU+sXnlSpXrqy4uDi1adPG5cd47LHHNHv2bA0bNkw7duzQ999/r5deeknz58/XbbfdpjNnzuQZ73A41KVLF7388ssaMmSIvvnmG+3evVvDhw/XnDlz1Lp13inwZs2apU6dOikiIkJLlizR4cOHNXfuXMXHx+euleqKlJQU7du3T5LUqFGjAsc4t8fGxrr8/Muc/Utyphl3JePTL0j7l5Z4SK4i31FUa4+uVdKlpEKb2U6GDCVdStLao2s9FNm1ke+X2Ww2hYeHy8en4I8ip07l/Ltcq1Ytr157L3nNmpxpxgtrZjsZhhxJSUr+8kvPBOYC8v3qHA6HTp06penTp2vEiBFq3ry55s2bd93HKyuOfHvm8pXZ15CRmqUj31nnKm1yPr9du3Zp6tSpevvtt1WpkvWmEDbboR1blZFyUa7U8BkpF3XoG+vMSEW+F+zDDz9U+/btVaNGDVWpUkUtW7bUK6+8ovh467xXmSV1T/zlK7OvwUjLUuregpu4ZiDf81q/fr2knGXgpk+frjZt2igiIkKRkZG67777tGqV9WaFAwCUHSxoAcBS7p+2VfHJxbvC6Hxq0c5e/9vCPZq8+mCxHrNyiF3Lh7Ur1jGky1fp1KtXr8TWHLrxxhs1ceJE9erVK3dbo0aNVL9+fbVr105///vfc89AlqTNmzdr69atGjp0qP785z/nbm/QoIGCgoLUv3//PMefOHGiQkJC9NFHH+U2K2rVqqVWrVqpZs2aLscZFxcnx+9TqlarVq3AMTfccIMk6ciRIy4f11L+1V66eOba464m7VzRxi9/Tlo/vniPKUnlq0hPf12sQ5Dv3qXPij5KSCvel1OJGYlFGv/q9lc19bupxXpMSYoIitDn9xVvJgjy3XXOL8KuNqWj1cU99LCyCrmixlXZFy4Uafypl1/RmTffKtZjSpJfRITqLFxQrGOQ74WbOXOmhg8frqysLIWGhuqVV17RiBEj5O/vf93HNNsXE2OVmlT8q0fTUzKLNH7TJz9q++Li1YDlQgP0yIsti3UMiZz/o8zMTA0aNEhdu3ZV3759r+fpWtYnY55XyoXzxT5OmnMpCRet/dc0bfnPnGI9ZnB4BfV/fWqxjiGR74WZPHmyXnrpJd1yyy1KTU3V4sWLNXHiRM2aNUsrV67MXWKiNDk97X9yJBf//T07tWjv7+cXHlLS6rhiPaZPSICqDru1WMeQyPcrHT9+XOfP57z/9evXTwkJCZowYYIaNGigQ4cO6cUXX9S9996rMWPGaOLEidf1WgAAcDU0tAFYSnxyhn5L8uyUyBlZDo8/ZmFOn85Z0zs8PLzEHmPDhg0FbneeQbxy5co8H5acZ5QfO3Ys3+90795d06ZNy7MtPj5eWVlZOnPmTJ5GdPny5fWvf/1LTZs2dSnOpKSk3J+DgoIKHFOuXDlJUmJi0ZpclnHxjJT8q2cfMyvd849ZCPLduySkJehMajFP4CiijOwMjz9mYch31+zbt0/Lli3Trbfequeee67YxzNLVkKCsn7/O/cUIyPD449ZGPK9cP369VOnTp0UHx+vNWvWaPz48fr00081b9483Xzzzdd1TLOlJl1SygXPT3mfnekw5XELQs7nNWnSJMXFxWnFihUu/05pkXLhvC6e8/wav9mZl0x53IKQ73mFhobqr3/9q1566SWFhobmbm/durWqVKmimJgYPfDAAzp06FDu59fSwpF8SdluOGGpyLIMcx63AOR73uM47dy5Uz///HPuRQZRUVFq06aNGjVqpNdff10dOnRQ586dXTouAACuoqENwFIqh9iLfYzzqZeUkeX6mkt2Px9VKBdQrMd0R9ySPLJ+bkZGhmbMmKFFixbpp59+UkpKiowrpjM9efJknvFt27ZVUFCQli9frm7dumnYsGHq1KmT/P39VaFCBT377LN5xnfs2FHLly9Xq1atNGrUKPXp00dVqlSRJPXu3bvEn1+pUr5K8Y+Rdi6nSe0qv0ApyA1rdLohdvLdu0QERRT7GIkZiUVaF9vua1eYPazYj+uO2Mn3a0tLS9MTTzyh8PBwffHFF7Lb3fNvqxn8IoqfM9kXLsgowrrYNrtdvm74stUdsZPvhQsLC1NYWJhuuukm3X777WrZsqV69Oihtm3bavfu3apVq9Z1H9ss5UKLV0c7padkKrsI66b6+vsoMLh4V7a7K3Zy/rIDBw5owoQJeuutt1SjRo1iPGNrCg6v4JbjpCUnKzvT9Yadr3+Agoq5DIe7Yiff86pYsaImT55c4L6//OUvev3113Xy5El9+umnGjx4cJGObTafEPe8R2anZkpZ15pe/wp+NvmWK977u7tiJ98vu3Kt7d69e+c2s52qVaumPn36aNasWZo2bRoNbQCA29HQBmAp7pi2e9F3JzTyi90uj5/0UFM9eGtksR/XHapWrSpJulDEaUZdlZqaqg4dOig2Nlbdu3fX3LlzVatWLfn6+kqSbrrpJmVm5p0OLDIyUkuWLNFTTz2lNWvWaM2aNQoLC1O3bt301FNPqWPHjnnGz549W08++aRWrFih5557Ts8//7xat26t/v376/HHH3d5PdQrz25PS0sr9PlIOV8Ol0rFnLJbkrR7nrT4adfH3/+O1LxP8R/XDch371LcKbslafmR5Xpx64sujx/Xdpzur3d/sR/XHcj3q8vKytIjjzyiuLg4bdq0SfXr17/uY1lBcafslqTEpUv16+i/uTz+hn/8XWE9ehT7cd2BfHfd/fffrzZt2mjHjh2aMmWKpk6d6pbjepI7puyWpIM7Tmn9nAMuj7+7fyM1bF3wsjSeRs7ncDgcGjRokFq2bKkhQ4a47wWwEHdM2S1J+zdv1OoZri8T0fnpYYq68263PHZxke+uCwwMVOPGjfX1119r27Ztpa6h7Y4puyUp5bvTOv/FIZfHV3iogYJvdcPJ325Avl925cx5UVFRBY5xTq2/c+dOl18DAABc5WN2AADgbt2b3qDQID9d6zxam6SwID91a3LDNUZ6Ttu2bSXlrAmdlZXl9uPPnDlTsbGxaty4sZYtW6bOnTurYcOGql+//lWbB507d1ZcXJyWL1+ufv36yeFwaN68ebrnnnvUu3dvZWdn546tXLmyli9frgMHDuill15S/fr1tX37dg0dOlSNGzfWnj17XIq1Tp06uWdD//bbbwWOOXXqlKSc9ay8VlRPKTBcciXjA8OlqAdKPCRXke8oqs61Oys0IFS2a+S7TTaFBoSqc23rXBVAvhcuMzNTjz32mHbu3KlNmzapefPm13Wcsiaka1f5hIZK17oyyGaTT2ioQrp08UxgLiDfi6ZZs2aSpO3bt7vtmKVRvRZVZC/n2jn39nJ+qvd/lUs4IteR8zmOHz+u7du3a+fOnQoJCVH58uXz3JwaN26cu23Lli3Fe3FKqQZt2skeXF6u1PD24PJq0PoOT4TlEvK9aJxTPJ87d85txyxtyjWtLFuQa+/vtiA/lWtS/Nli3IV8v+zKK7IrVix41jdnc9y51jYAAO5EQxtAmRPo76u3et8i2Qr/esD2+3/e7H2LAv19PRfcNfTo0UNBQUG6dOmSS1/uHD58WHPmzNHWrVtdOv7XX+dcERwdHZ17xq+rfH19dd999+mTTz7RmTNnNGvWLJUvX14LFizQBx98kG98o0aN9Nprr+ngwYPavn27WrVqpePHj+uZZ55x6fGCg4PVuHFjSdKPP/5Y4Bjn9pYt3XNlUKnkHyg9+N7vf7hqxueM8w/0RFQuId9RVHZfuya0myBJhTa1ndsntJsgu691pqwm3wuWnp6uXr16adu2bfr6669pZl/Bx25X9UmTcv5QWFP79+3VJ02Sj4WmaCff83rvvfd0/PjxQvcHBwdLki5dssZ6oWbx8/dVx4FRLp2j13FglPyo4V3iyZy/8cYbdfjwYe3bt0/ff/99vpvTqlWrcrfddtttRXo+ZYVfQIC6DR1x+YNpgXI+0HYbOkJ+Ae6ZPtkdyPe8Nm7cWOBaxk7Ok7NLcg1mq7P5+6hi7wYuvb9X7N1ANn/rfF1Nvl9WvXr13KnKnWuL/5Fze4UK7lniAACAK1mnQgAAN7onqqpmPX6bQn8/C9jn9w9OzvvQID/9+/HbdE9UVZMiLFjVqlU1YsQISdLbb799zfHDhg3Tn/70p0I/TPyRw1H4uoR/XJfJaevWrRo/fnyebYGBgRo8eLBGjx4tSfrf//6Xu2/gwIE6ceJEnvFt2rTRwoUL8429Fud6Ths2bMi3z+FwaOPGjXnGea2G3aRH/yMF/j71us0n731gmNT3s5xxFkK+43p0qNFBb9/9tkICcs7+9/m9nHXehwSE6J3od9ShRgezQiwQ+Z5famqq7rvvPu3Zs0dbtmxRo0aN8uzv2rWrfvjhhyIds6wJib5bkTOmy8c5FaSPT557n5AQRc6YoZBoa0xD60S+5zVkyBCtXr260P379u2TpFI/1b471GkWoe7PNL18pbaz+fH7vb2cn7oPaaY6zaxz9Z5Ezjv5+fnlXlVY0M2pVq1auduunMLW29Rr0VoPvDBW9t9PanHOTuW8twcHq+eosarXorVpMRaEfM/rySefLLB5KOWsjbx//35Jl6/09VZBUZVU6fGoy1dq/+H93Rbkp0qPRykoqpIp8RWGfM+rZ8+ekqTduwte5s9Z09x+++0uHxMAAFfR0AZQZnWKqqpvXrxHU/o0V+eoampTt6I6R1XTlD7N9c2L91iume306quvqlOnTlq6dKlmzJhR6LgZM2boyy+/VNeuXfXQQw+5dOxWrVpJktatW5dvuqz58+cX+Ds//fST3nzzzQKnSHOu5VSzZs3cbR999FGBX9oWNPZahg0bpkqVKmnp0qWKi4vLs2/evHn69ddfFR0drTvvvNPlY5ZZjbpLMQelB2dJje6VarfLuX9wVs52izWznch3XI+7a96tjY9s1MR2ExVdM1q3Vb1N0TWjNbHdRG18ZKPlmtlO5PtlSUlJ6tKli44dO6YtW7aobt26+cZ8+eWXXj09p1NIdLRu2rJZ1f/fZIV07KhyrVoppGNHVf9/k3XTls2Wa2Y7ke95vf/++wVOVfrf//5X69atkyQNGDCgSMcsq+o0r6yBk+/QPX+KUt1bKqt6g3DVvaWy7vlTlAZOvsNyzWwnch7Xo/5trfXMe3PV7dkY1W/ZVpFRTVW/ZVt1ezZGz7w313LNbCfyPa/PP/9cGRkZ+ba/9957io+PV0REhPr161ekY5ZFQVGVVP3F1qrQp6GCoirJXjdMQVGVVKFPQ1V/sbXlmtlO5PtlL7zwggICArR06dJ8MxPEx8frP//5j2w2m0aOHOnyMQEAcJkBAB6SlpZm7N+/30hLSzM7FMtLTU01Bg4caEgyHnzwQWP58uXGTz/9ZBw8eNBYuXKl0atXL8Nmsxndu3c3kpKS8vzeqVOnjJiYGEOSERMTY5w6dcpITk42DMMwEhISjBo1ahiSjB49ehjbt283fvzxR+Ott94ywsPDDUmGJOPUqVPG2bNnDcMwjA8//NCQZLRu3dpYsWKFceTIEWP//v3GtGnTjHLlyhn16tUzzp07lxuDJCM0NNR4++23jR9++MGIi4szVq1aZdx2222Gr6+vsWjRoiK9Fhs2bDACAwONhg0bGl9++aXx888/Gx988IFRvnx5o3bt2sbJkyfd8IrDTOT7ZRcuXDBOnTplnDp1ymjbtq0hyZg6dWrutoyMDDe84jAT+W4YSUlJRsuWLQ1JRt26dY0WLVoUeJNkbNq0yX0vPjyOfM/h6+trSDLatWtnLFu2zDh06JDx3XffGf/85z+N8uXLG5KMkSNHuulVh5nI+fyurG2cce7cuTNPrCidyPcc9erVMyQZbdu2zX0N9u7da4wfP97w9/c3wsPDjc2bN7vpVYdZyPfL5s6da/j4+Bg333yzsXr1auOXX34x1q9fb9xyyy2GzWYz3njjDZePxfeEAICioKENwGMoVItu586dxuDBg42bbrrJKFeunBEQEGDUrFnTePjhh43ly5fnG+/8YPPH27hx43LHnDx50hg4cKBRtWpVw8/Pz6hSpYrRq1cv47vvvsvzO+3btzcMI+cD2Pz5841HHnnEqFmzphEQEGCEh4cbzZs3N/7xj38Y58+fzxPDrl27jFGjRhnNmzc3goODDbvdbtSrV8947LHHjO++++66XocDBw4Yffv2NapWrWoEBAQYderUMUaOHJnvsVG6ke+GMWDAgAKfk/NGc6/s8OZ8/9///nfVPCfnyx5vznfDMIzjx48bkyZNMqKjo41q1aoZ/v7+ht1uN2rXrm08+uijxsaNG4v6ksLivD3nr3S12sYZK0o3b8/3hIQEY9q0aUa3bt2M6tWrG/7+/ka5cuWMJk2aGDExMcaJEyeK+pLCwrw9351iY2ONhx9+OF/MW7ZsKdJx+J4QAFAUNsMwDAGAB6SnpysuLk516tRRYGCg2eEAAAAAAAAAMAHfEwIAioI1tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AQAAAAAAAAAAAACWREMbAAAAAAAAAAAAAGBJNLQBAAAAAAAAAAAAAJZEQxsAAAAAAAAAAAAAYEk0tAEAAAAAAAAAAAAAlkRDGwAAAAAAAAAAAABgSTS0AXicYRhmhwAAAAAAAADAJHw/CAAoChraADzG19dXkpSZmWlyJAAAAAAAAADMkpGRIUny8/MzORIAQGlAQxuAx/j7+8tutysxMZGzMAEAAAAAAAAvlJ2drXPnzik4OJiGNgDAJTaDrhIAD0pKStLJkydVvnx5hYWFyd/fXzabzeywAAAAAAAAAJQQwzCUnZ2ttLQ0JSYmyuFwqEaNGgoKCjI7NABAKUBDG4DHJSUlKSEhIXdqIQAAAAAAAABln6+vr8qVK6cqVaooICDA7HAAAKUEDW0ApsnMzFR2drbZYQAAAAAAAAAoYT4+PszWCAC4LjS0AQAAAAAAAAAAAACW5GN2AAAAAAAAAAAAAAAAFISGNgAAAAAAAAAAAADAkmhoAwAAAAAAAAAAAAAsiYY2AAAAAAAAAAAAAMCSaGgDAAAAAAAAAAAAACyJhjYAAAAAAAAAAAAAwJJoaAMAAAAAAAAAAAAALOn/A+guRss+4oSqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_97245/14240756.py:24: UserWarning: The figure layout has changed to tight\n", + " f.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7QAAAG+CAYAAAATGjtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT1fsH8E/Ske49KKNlU0rZe0NBZIhM9YtMQTaIIiIgCrgA5ScoG5SNi60skb2hIKOUQlktLYXuPdPk/P4IvTS0SdOSLvi8X6/S5N5zz3mS3OZe7nPPOTIhhAAREREREREREREREREREVEZIy/tAIiIiIiIiIiIiIiIiIiIiPLDhDYREREREREREREREREREZVJTGgTEREREREREREREREREVGZxIQ2ERERERERERERERERERGVSUxoExERERERERERERERERFRmcSENhERERERERERERERERERlUlMaBMRERERERERERERERERUZnEhDYREREREREREREREREREZVJTGgTEREREREREREREREREVGZxIQ2ERERUTknk8kK9ePt7V3aIZeatWvXwsnJCR06dEBsbKxB20RERGDGjBlo0qQJ7O3tYW5ujkqVKqFly5b49NNPceHChWKO+uXUqFGjfPfPkJCQ0g6NqEDcf18++X2eVatWLe2wXloqlQobNmzA66+/Dnd3d5ibm8PJyQk+Pj4YMmQItmzZgqysrALrSUhI4Gf3CluwYEG+n/+GDRtKO7SX2oYNGwr9/48FCxaUdthERERUzpmWdgBERERERCUhLS0NkyZNQlZWFk6dOoUlS5bgq6++0rvN2bNn0atXLyQkJMDExAStW7dGpUqVEB4ejrNnz+LixYu4cOECjh8/XjIv4iXy5ptvolGjRgCA7du3IzU1tXQDIioE7r8vn+HDhwMAUlJSsGPHjlKO5uWWlpaGXr16ScfOmjVrom3btlAqlTh9+jS2bt2KrVu3ol27dgUmps3NzfnZvcLq168vff6nT5/GvXv3SjkiIiIiIiouTGgTERERvQQsLS3h6elpUNnq1asXczRlkxACQgjpuUql0ls+MzMT//vf/5CQkAALCwucOHECLVq0kNb/9ddf6NOnT7HF+7L78ssvpcfHjx9nQpDKFe6/L5+cHp0hISFMihazuXPnSsnsadOmYeHChZDLNQMIxsXFoUWLFgYnJq2srPjZvcJ69eqFXr16AQBGjBjBhHYJq1ChAuzt7Q0q6+zsXMzREBER0cuOCW0iIiKil0CLFi3YS7gA1tbWWLJkCT777DN4e3tjypQpessfOXIEYWFhAICePXtqJbMBTQ/Nt99++5W9QYCIiKiwhBDYuHEjAM0w77Nnz5aS2QDg5OSETz/9FHv27IGVlVVphUlEBpg/fz5GjBhR2mEQERHRK4IJbSIiIiJ6ZUyYMAETJkwwqOzNmzelx7Vr1863zB9//GGUuIiIiF4FsbGxiIqKAgC4u7vn27tz9OjRGD16dEmHRkREREREZZi84CJERERERK+e3EMIKxSKUoyEiIjo5cBjKxERERERFQUT2kRERERE+cg93zYRERG9OB5biYiIiIioKJjQJiIiIqJC2717N2QyWZ6fDRs25Cm7YcOGfMvmN+f3hx9+qLfeK1euYMSIEahWrRosLCzg7OyM1157Ddu2bdMZa0hISL51durUSW+s8+bNk5bPmzfPoNcKAOnp6VixYgV69OiBypUrw8LCAo6Ojqhfvz4++OADXL58WWesCQkJ+cZatWpVAEB2djbWr1+Prl27olKlSjA1NdV6PQVtn5GRgSVLlqBp06aws7ODjY0NWrRogRUrVkClUmnFcvv2bQwbNgzVq1eHhYUFqlSpguHDhyM4OFhn/Ma0e/du9OjRAxUrVoRCoUClSpXwv//9T+f716lTp3xfu679Tdd+KZPJEBISorO+kJAQqNVqbNy4ET179pQ+YxcXF3To0AErV66EUqk0+HVGR0fjm2++Qbt27eDu7g5zc3O4urqiWbNmmD59ut73e8mSJfnGOHfuXABAWFgYPvvsMzRo0ACOjo4F7r9KpRIrV65Ex44d4eLiAgsLC1SuXBk9e/bExo0boVarC/x7etF9OLesrCz8/fffmDRpElq2bAlnZ2eYmZnBwcEB9erVw+jRo3Hu3Dm976+uzznnPfrvv/8wbtw41KlTB3Z2drC2toa3tzemTp2KkJAQAz7B/BV2/y0uur6rc+Y8ffz4MWbOnAkfHx/Y2NjAzs4OzZo1w/fff4+MjIx867x69are9zS348ePG3ysKGh/vnPnDsaOHYvq1atDoVDA3d0dAwYMwPnz57XqEUJg27Zt6NChA5ydnWFjY4NGjRph/vz5Ol9TQZRKJdauXQs/Pz+tz7Rfv37Yt29foeq6ceMGpk6digYNGsDJyQkKhQIVK1aEn58fvvvuO8THx+vctm/fvnq/3y5evIj3338ftWrVgrW1dZ7vrhfxIsc2AFIc1apVk5aFhoYadGx+EZmZmVi6dClatWoFJycnWFpaonbt2pgyZQoeP36sN1ZdP88bMWKE3u89feuSkpIwf/58tG7dGu7u7i/VvnXgwAEMHz4cNWvWhI2NDaytrVG1alUMGDAAGzduRHZ2tsGvLSAgAGPHjkWNGjVgaWkJZ2dnNGnSBF999RWio6ML8zZJUlNTsXDhQrRo0QKOjo6wtLSEl5cXBg4ciN27dwPQ/R2mb97oFzmu55aQkID/+7//g5+fn1SPtbU1atasiQEDBmDZsmUIDQ0t0msnIiIiKo84hzYRERHRS0KtVuP06dM4e/YswsLCkJ2dDScnJ9SqVQudO3fWuoj8ojw9PTF8+HAAwOnTp3Hv3j2dZWvWrCmVPXjwICIjI3WWbdGihc5616xZg0mTJqFhw4Zo1aoVYmJicOrUKRw+fBiHDx/GlClTsGTJkjx12tjYSHU+efIE//zzj0GxXr16FdeuXQMANGzYEI0aNcpT9nn//PMPRo4ciYiICABAkyZN0K5dO6SkpODMmTNYunQpli1bhqFDh2LVqlWwtLTU2t7c3FxqPyUlBTt27JDWxcbGol+/frhw4QLatm2L9u3bIzAwEDdu3DBo+6ioKLzxxhsIDw9HmzZt4OnpiZMnT8Lf3x/+/v44cuQI/vzzT5iYmGDfvn1455130KJFC7Rq1QrBwcG4fPkyNm3ahB07duDQoUNo06aNzvfxRajVaowcORJbt25F+/bt0alTJ9y/fx8XL17EH3/8gR07duC3337DwIEDtbbr3r07qlatiqNHjyIsLAwAUK9ePTRr1gwAUKFCBa3yuT/rnTt3Ijk5GW+99RasrKxgY2Mj1QcA27dvl4bJTUhIwODBg3H27FnUr18fbdu2RVpaGs6cOYNTp07h1KlTWLlyJfbu3QtPT0+9r/WXX37B1KlTkZSUBDMzM7Rp0wYVK1ZEVFQUzp49i8uXL+OHH37ARx99hIULF0Iu174f2cfHJ9/9FdDsi4MGDYJCoUCrVq1QvXp1nDp1CnFxcfnGEhoaijfeeEPanxwcHPDaa6/BysoKt27dwogRI7BmzRosW7ZM2sba2lr6HLy9vQG8+D6c4/Lly3j99dcRGxsLAHByckLjxo3h4uKCiIgIBAYG4ueff8bPP/+MoUOHYs2aNbCwsMhTj66/aQCYP38+Pv/8czg6OqJ169Zo1KgRbty4gZs3b+L27dtYs2YNVq9ejcGDB+f7nuWnqPtvccn9XX337l2cOXNGWnf+/Hn06dMHNjY2aNq0KWrXro3Tp0/j8uXLuHz5Mnbt2oXDhw/DyspKq04nJyed7+nzKlSoYPCxQt/+vHfvXgwaNAh169ZFq1at8OjRI5w5cwY7d+7E7t278eeff2LAgAFQq9UYMWIE/vnnH7Rr1w6dO3fG6dOnce3aNVy7dg179+7F4cOH83z36hMZGYk+ffrg8uXLaN26NTp16oTIyEicOnUKu3fvxu7du/H2229j06ZNeofQzs7OxtSpU7F8+XKo1WrY29ujXbt2sLW1xf3793HixAkcO3YM3377LVasWIF33303Tx1+fn5wcHAAkPd4On/+fMyePRt16tRBkyZNUK1aNRw/frxQN9jo8qLHNgD5fi/k/g7JkfNdYgyRkZHo3bs37t69iw4dOsDLywtXrlzBnTt3cOfOHfzxxx84ceIE6tSpk2+sv/76q/T+denSBZUrV863nXbt2gEA0tLSsG3bNtja2qJ///5wcXHRqu/578QrV67gzTffxJMnT9C6dWt06dLlpdi3oqKiMGjQIBw9ehSA5nuoe/fukMlkuH79Onbu3ImdO3fi66+/xvbt29GwYUOdrw0AFi5ciNmzZ0sJ8KZNm6JWrVpITEzEokWLsHLlSq331RBXrlxB37598fDhQwCa76qOHTvCzMwM165dQ79+/dCnTx9MmDBB2sbd3R3du3cH8Owzf96LHtdznD59GgMGDEBUVBRkMhmaNWuG9u3bIysrC7du3ZLeww8++AADBw7En3/+WajXb0yJiYk4cOAArl27htjYWCgUCimB36FDB9jY2JRabERERPSSEURERERUrgEQXl5ewtvbWwDQ+dOjRw9x/fp1o7c/fPhwqY3169frLduxY0ep7LFjxwyu97333hPOzs7ixIkTWmXu3bsnKleuLJU7fPiw3jqPHTsmle3YsaPesnPmzJHKzpkzR29ZIYT4/fffhampqQAgqlatKi5evKi1PiMjQ3z00UdSnW3atBHp6ek663vw4IFU1tPTU3Tv3l106NBBhIeHS2XUarWYOHFivq/n+e1fe+01MXHiRJGVlSWVSUxMFG3atJHKLVy4UNy8eVP4+vqK4OBgrfq2bNkilatZs6ZQKpUFvieG8vLykuoeNWqUaNy4sQgNDdUqc+jQIWFubi4ACAcHBxETE5NvXcuWLZPqatiwYYFt3717V8hkMuHj42NQfPXq1RNubm7i+PHjWmXS09PFuHHjpHLVq1cXsbGxOutcsGCB1r7w/OuNiYkRAwYMkMoMHz5c7+vIvb++++67wtbWVnz77bciOztbKhMdHS08PT3z/K1GR0eLqlWrStuPGzcuz7554sQJ4ebmJnx8fKRyXl5eemN6kX34wIED0raff/65SEtL06o7LS1NfP/999Lf3KBBg/TG8vx7lPM6Zs+erfU3IYQQf/31l7C1tRUAhFwuFzt27NBbrzH33+K0fv16Kc6ePXsKDw8P8dNPP2mVSU5OFq+99ppUbvbs2XrrLMz3ZGGOFbnrHTRokHBzcxP//vuvVplTp04JCwsLAUAoFArx8OFD8fnnn4vRo0eLzMxMqVxaWpp48803pfrmzp2rt+3c+23lypVF586dRcuWLcWDBw+0yoWHh4u2bdtKZfv27auzTpVKJXr16iWVHTNmjEhNTdUqExgYKO2XMplMrFu3Tm+cuY+nY8eOFXZ2dmLfvn1aZc6dOydMTEwEgDzxG6o4j20FfYcUVn7HvSFDhmi912q1WsybN08q165dO531DRw4UCr3wQcfFNj+L7/8IgCICRMmFBifo6Oj8PDweOn2rcePH4tq1aoJAMLU1FSsWrVKqNVqrW337Nkj7OzsBABha2srrl27pjOW77//XorFw8NDnD17Vmt9SkqKGDVqlHBzcxPdunUz6Dvm9u3bwtHRUSr71VdfaR0rhRBix44dwsrKSuuYV9B5o7GO648ePZLeH29vb3H37t08Zfbu3Svc3d2L5e/IEDnHk/bt2wsrKyud//ewtbUVM2bMyHMMJyIiIioKJrSJiIiIyrmci0bW1tbiiy++EAEBASI1NVUkJSWJc+fOiZEjRwqZTCYACEtLS7Ft2zajtl8SCW0AOuNes2aNVGbgwIF66yyuhHZQUJCwtrYWAIS5ubm4efOmzrKDBw/WuvCsS+4L3wBElSpVRFJSUp5yISEh+b6e57dv2bJlnovKQghx4cIFreRCt27dxNWrV/ONqWvXrlLZAwcO6Iy9sHInBC0tLcXDhw/zLTds2DCp3LJly/Itk5CQoHVx9fz583rb/vTTTwUA8eOPPxoUn0wmE6dPn863nFqtFj169JDKDh06NN9yR48eFXK5XEqYJSQk5FsuOztbNG3aVKrvt99+0xlj7v0VgJgyZUq+5ebOnZvnb3XQoEHSdj169Mh3PxFCiNOnT2u1UZiEdmH34ZyEdv/+/fW2kTuBcPToUb1ln3+PRo8erbPs77//LpVzdnYWkZGROssac/8tTrkT2gDExIkT8y0XHBwslXF3dxcqlUpnnSWR0AYgli9fnm+58ePHS2WGDBki2rVrl2+8YWFh0nHQw8ND72t6fr91d3cXcXFx+ZaNi4sTHh4eUtlffvkl33I5f3cARO/evXW2/fDhQ+lmCisrK3Hv3j2dZXMfTwGIXbt25VuuU6dOeZKOhiruY1txJrQBzU1N+d18pVKptG7iuXHjRr71HTp0SCrj6OioN1EvhBAtW7YUAHQmaF/2fUutVgs/Pz9pu0WLFulsY/fu3VK5evXq5UkoCyFEQECAdCOQTCYT586dy7cutVqtlczW9x2jVqu1buQbN26czhi3bt2qVae+80ZjHtc///xzaf3+/ft1tpmzf+r7O7py5Ypo2LChsLGxEUOGDMlzA1dR5T6eNGjQQGzevFmEh4eLzMxM8eTJE/HHH3+IBg0aaP0tPnr0yChtExER0auLCW0iIiKicg6AqFixYp4etblt2rRJuqhkbm6u86JgUZREQrtatWo6y4WGhkrlKlSooLfO4kpo5+5xoy9JlhNvzkVPmUwmAgMD8y33/IVvXQlXlUolNm/eLA4dOqR3+19//TXf7dVqtXBwcJDKde3aVWfsixYtksrNnDlT7+ssjNwJwREjRugst3nzZqnc//73P53lRowYIZV77733dJbLysoSbm5uwsLCQmdS4fn4evToofe1+Pv7S2VlMpm4c+dOnjK5L2YXlNjcsWOHVLZ+/fo6y+XeX83MzHT2AL5z547YvHmzlMy4ffu2lOgDIPz9/fXG0717d4OTUS+yD9+5c0fMmTNH/Pfff3rbePTokVZCU5/c75FcLhcRERF6y/v6+krlP//8c53ljL3/FpfnE9r6Epw5PSwBiFu3buksVxIJbVtbW5GRkZFvuV27dmm9pi1btuisM/fnefv2bZ3lnt9vFy5cqDfW3D1Iq1atmidZHhUVJfUk15c8zTF58mSp7KRJk3SWy308bdy4sc5yp0+fFps3bxYpKSl6281PcR/bijuhvWHDBp1lR40aJZVbtWpVvmXUarWoXr26VG7jxo0667t27ZoANDePGRrfy7Zv/fXXX9J2Hh4eBSZP69evL5Xfvn17nvXvvvuutL5Xr1566zp//rzWe6vrOyb3TQqmpqbi8ePHeuvNPfqRvvNGYx7X33jjDWm9rhsMhdDsn/b29nr/jtq3b6/1vvz88896YzNUzvFk8ODBOj/nzMxMrZv8mjdvrvO7nIiIiMgQ+U/WQkRERETlRkBAAK5du4ZatWrpLDN06FBpzsSsrCxMnDixpMIziq5du+pcV6VKFZibmwPQzJGdM9dxSXny5Al27dolPS9oblxPT0+0aNECACCEwIoVKwxqp3fv3vkul8vlGDJkCF577TW92/v5+eW7XCaTSXNFA5p5QnWpXr269PjOnTt62ysqfa+jRo0a0uO7d+/qLDd69Gjp8R9//IHExMR8y+3evRtRUVF4++234ejoaFB8b775pt71zZo1Q5UqVQBoPt9NmzZprb948SIuX74MQPPeF7S/5P7cAgIC8p1v+nmtW7eGs7Nzvutq1qyJIUOGSJ/lpk2bIIQAoPlbyplzXJc+ffoU2L4uhdmHa9asiblz56Jx48Z66/Tw8JAenzt3zuBYmjdvrrVtfvr27Ss93rBhg0H1GmP/LQm1atXS+rt/Xs2aNaXHpR1r27Ztdc4fXK1aNa3nxfH9VdDffL9+/aTHISEhOH78uNb69evXIyMjAwBQt25d1KtXT299uV/Db7/9ZlCMuv62AM37N2TIEFhbWxtUV46SOrYVpxf9e5TJZBg1apT0fM2aNTrrW716NQBg7NixBsf3su1bK1eulNb17dsXZmZmRY4nNTUV27dvl573799fb10tW7aEu7u73jIAsHHjRulx69atUaFCBb3lDTnmGfu4bmFhIT3WNze2TCbDjRs3cPr06QJjNLa+ffsiICAAGzZs0Pk5m5ubY+PGjbC3twcA+Pv7S38nREREREXBhDYRERFROefr6wsXF5cCy33wwQfS4//++w+nTp0qzrCMqnbt2jrXyWQyODg4SM91JS+Ly7Fjx6BWq6XnBSUEny9z5MiRAstbWVnlSdwUho2Njd4Lvba2ttJjfTdG2NnZSY+L633W91kb+jm3adMGvr6+AIC0tDRs2bIl33I5yYnCJCDq169fYJncSdjnLzQfPXpUeuzl5VXgBXgHBwc4OTlJzw1J2haU1Mgtd3xNmjQpsHzO+1pYL7IP37hxA6tXr8a0adMwevRojBgxQvp57733pHJPnjwxuE5DPsfc70dYWBgePnxY4DbG2H9Lgr44AWjd4FHaseZOrj8v93eXjY2N3uRUUb6/FApFge9VjRo1tOrW9zffsmXLAtvMnXiPjY01KPlemL95Q5XEsa04WVtbo2LFijrXG/r3OHLkSJiamgIAzpw5g8DAwDxl0tLSsHXrVtjb2+Odd94xKL6Xbd/Kzs7WOq8sbDzPH9v8/f2RlZUlPTfW8ak4jnnGPq63adNGejx//nyMGjUKt27dyreuypUro3Llyjrb+umnn9CgQQNYW1tj0KBBGDp0qN7YDOXg4ABfX1/pb0MXV1dXDBo0SHr+448/GqV9IiIiejXpP/MgIiIiopdG8+bNYW1tLfVg/vfff9G+fXtp/aNHj/T2bgM0vTlzemCVpJzeHbrk7s2S+wJoSch9cdvOzk7rIqUuuRN7t2/fhkqlgomJic7yuS+8F0VB759c/uw+V31lc8dYXO+zvvYL8zmPHj0aU6ZMAQCsXbs2z6gE9+7dw5EjR+Dr66t18bgghtw84uXlJT2+ffu21rrcPbFSU1MxYsSIAuvL6YEHAPfv3y+wvKG9zZ+PL3fcuujq+V2QouzDFy5cwOTJk+Hv729Q+cKMzlDYzxHQvFeenp56tzHW/lvcyvJ36vP0xWrodxdQtO8vR0dHrTZ08fLyQkBAAAD9f/OXL18u8G8+OTlZ6/n9+/f13miUE6exlcSxrTgZax+vUKECevfuLfVWX7NmTZ6k3O+//47ExERMmjQJVlZWBsX3su1bISEhSElJkZ5v3boVx44d07tN7oR6REQEMjMzpdEYnn+txjg+ZWZmIjQ01Kh1AsY/rk+YMAHr1q3DjRs3IITAunXrsG7dOjRu3Bh9+vRB7969DUrGA0CjRo1w7do1g8oWl86dO2PVqlUANK/1/v37WjczEBERERmKCW0iIiKiV4RcLkeNGjVw/fp1AEBwcLDWeqVSmecC4vPS0tKKLT59Chq2UiaTlVAkecXGxkqPbWxsDNomdzkhBGJjY+Hm5qazfEGvvyAF9aApatnioO+1FuZzHjp0KD799FNkZGTg2rVruHDhglaPsbVr10IIgTFjxhQqPl1DH+eW+/ONi4vTWpd7f4mOjtYa/tQQCQkJBZYpzP4SHx8vPTZk/7W0tDS47qLGBAB79+5F//79oVQqIZPJMG7cOIwaNQre3t55hk4uyt9/YT9HIO9nmR9j7b/FrSx/pz7P0O+k4vjuMmQ/AQz/mw8ICJCSk4Yy9t+8oUri2FacjLmPjxkzRkpob968GQsXLtRKiOeM9lGY48nLtm/ljgXQ3DRZWAkJCVLv5tzHJsA4x6fiqBMw/nFdoVDg5MmTmD59OjZs2IDs7GwAwJUrV3DlyhXMnTsXnp6eGDZsGCZPnlxqf2OGev6mieDgYCa0iYiIqEg45DgRERHRKyT38KyGJGeIyitHR0e89dZb0vPc8zYqlUqsX78elpaWRht+syjatm0LIUShfnLPUfqySkhIwIgRI6BUKgEA33zzDVasWIGmTZsWeh5gorLks88+K/TfvKFDWFPx6datmzTnfHx8vNa8xtevX8eFCxfQunVrg6YyKC5lbd/6999/Cx2PIXNgl3XGOq47Ojpi7dq1CA0Nxf/93/+hZcuWWjdhPHz4EF9//TVq166Nbdu2leRLLLTc//cA+P8PIiIiKjomtImIiIheIbmHOHw+MVS1atUCL7p16tTphdov7aFri0Pu4ShzD7epT+5yMpmsyMM4k365e8v98ccf0jypu3fvRlRUFN55551CD4WdmZlZYJncn+/zw/Tm/qyfH/61NOQeTtaQ/Tc9Pb04wwEA7Ny5U+rxZmVlhY8++sjobRT2cwTyfpZUOOXx+9+Q/QQoX3/zhuKx7Rm5XI5Ro0ZJz3N6ZAPPbpYaO3Zsoep82fat5z/rF43n+aHOjXF8Ko46geL9HCpWrIipU6fi/PnzCA0Nxffff4+6detK6xMTEzFo0CCcPXvWqO0aU+7/ewB5//9BREREZCgmtImIiIjKqcTERHz99deFGtowIiJCelyxYkWjxJF7OMqCEhaGDG9Z3vj6+kqPk5KSDOp5knu+RG9v71KbY/Rl165dO/j4+ADQDJe/ZcsWAM+SEYVNQAB5h1XNT0hIiPTY29tba13u/SV3udKS+8K4IfEY8vpfVM60CADg4+OjNbSvsRT2cwTyfpb08n//x8fHQ61WF1gu97y8+v7mHzx4YLzgihmPbdpGjhwpDWt/5swZBAYGIi0tDVu3boWDgwPefvvtQtX3su1bVatW1RrC+0XjyX1sAoxzfFIoFFrzvBvrmFdSx/UqVapg2rRpCAwMxK+//iodG1UqFf7v//6v2Np93smTJ/H111/j6tWrBpXP/X8PwHj//yAiIqJXDxPaREREROVUfHw8Pv/8c3z33XcGlQ8PD8fjx4+l5+3btzdKHHZ2dlox6ZKdna11sftl0blzZ62L9pcuXSpwm8uXL0uP/fz8iiUu0hg9erT0eO3atbh37x6OHDmCBg0aoFWrVoWuz5A5SnNf5G3Xrp3Wuq5du0qPk5KSEBQUVGB9jx49gq+vL3x9fXHx4kXDgzVA7u+BK1euFFj+xo0bRm0/P7l7cxU0f6uhPUefZ8jnmPv98PT0RJUqVYrU1svM0O9/ALh9+3Zxh2N0mZmZuHPnjt4y9+7dQ1JSkvRc39+8v78/hBAFtrt79274+vqiadOmBvfkNTYe27RVrFgRvXr1kp6vWbMGv//+OxITEzF06FCD5lrO7WXbt0xNTdGxY0fp+YULFwza7rPPPoOvry9GjBihtbxZs2ZaNzMZcnwKDAwssExxHPOMfVz/66+/sGrVKp2fp0wmw6BBgzBr1ixpmSGv3ViOHj2Kzz//3OB50nO/PhsbGzRq1KiYIiMiIqKXHRPaREREROXcrVu3EBUVVWC5TZs2SY8dHBzQo0cPo7Rfs2ZN6fG9e/d0ljt+/HipXZgvTu7u7hgwYID0fPv27XrLP3z4ULq4J5PJMHHixGKN71U3bNgw6aL4tWvXMHbsWAghtIYjL4y//vpL7/pLly4hLCwMgGaY2uHDh2utb9asGVq0aCE9//XXXwtsc/PmzQgMDERkZCQaN25chKh1GzZsmDQvZ1hYWIFJq4JevzFUrlxZenz37l29SRpDEhL58ff3x5MnT/SW2b17t/T4vffeK1I7LztDv//v3r1bbm9oKmif37Vrl/S4WrVqWkk9ABgxYgSsrKwAAE+ePMHRo0cLbHPVqlUIDAxE5cqVoVAoihD1i+OxLa/cx43Nmzdj+fLlAIo22gfw8u1buT/z/fv3S9N86JKamirF07BhQ611VlZWeOutt6TnO3fu1FvXxYsXC/xOB6B1TD537lyB2/z9998F1mns4/oPP/yA8ePHFxhbs2bNpMe5e8eXlBMnThRYRq1WS6PjAMDAgQMLvFGNiIiISBcmtImIiIjKObVajTlz5ugtc//+fSxYsEB6PmPGDNjb2xul/Q4dOkiPDx8+rHMIzYULFxqlvbLoq6++ki4mbty4UW/vnFmzZknv0ejRo/MMq0nG5eTkpJWUOXLkCKysrDBkyJAi1XfgwAGcO3cu33VCCHzxxRfS82HDhqF69ep5yn3//fdSz8clS5boTfSFhoZKfzvTpk0z+oXgGjVqYOjQodLz3PE/79y5czh48KBR289P7pttoqOjtZI6z1u0aFGR2lCpVJg3b57O9X/88YfUM8/FxQWTJk0qUjtFNWfOHMhkMshkMowbN65E2y6MVq1aSfvkuXPndPaYz338KW9++OEHncOlx8fH44cffpCez5kzB3K59mUWFxcXfPbZZ9Lz6dOn55lTNrc9e/bgn3/+gUwmw8yZM18s+BfEY5u27t27w9PTE4Dms//vv//Qtm1b1KtXr0j1vWz7Vo8ePdCtWzcAmtEzCmpj9uzZiIuLg6urq9ZoKjlmzZolJd3379+P8+fP51uPEKLA8+Acfn5+0o0B2dnZeo8Dv//+O27evGlQvcVxXN+2bZveNnOPNKJr1KWrV6+iUaNGsLW1xfDhw6FUKvXWWRj6zody/PDDD9LoHNbW1vj888+N1j4RERG9epjQJiIiInoJrFq1CpMmTcp3jsujR4+iU6dOSE5OBqDpHTF9+nSjtV2vXj20bdsWgGbOxC+//FKrR6VSqcSUKVMQFRWFli1bGq3dsqR27dpYv349TE1NkZWVhZ49e+YZQjIzMxMff/wxtm7dCgBo3bo1fvzxx9II95XzfG/s//3vf0W+oWPo0KHo168fTp06pbU8IyMDEydOxIEDBwBoEsW5kxG5dejQQZrvMiUlBV27dsWZM2fylDtz5gw6d+6MhIQEtG/fHh9//HGRYi7IkiVLUKNGDQCaC9QTJkzIkxQ5ffo0+vfvr5X8Li5NmzZFv379pOejR4/GkSNHtMpkZGRg6tSpRe4xPmDAAGzatAlz585Fdna21rq9e/dKyRW5XI61a9fCxcWlSO0UVe55W11dXUu07cJwdHSU5g5OSUnBhx9+qJUwEULgu+++w4EDB7SGay4vnJycIJfL0bNnT625jAHNvLBvvvmmNJXHgAED8ozIkGPmzJno378/AOC///7DG2+8gYcPH2qVUavV2LBhAwYNGgRAc+NZUaZFMCYe27TJ5XKMGjVKa1lRe2dXrlwZdevWfen2rS1btqB27doAgJUrV+Kjjz5CamqqVpmUlBR8/PHHWLJkCUxMTLBhw4Z8exh7e3vj+++/B6D5LhkwYECeBGpaWhrGjRuHw4cP55ljXJd169ZJ3+mrVq3CN998A5VKpVVmz549eP/99zFs2DCD6iyO4/qMGTPw66+/5rlRVAiBPXv24JtvvgGg+R6eNm1avnV88MEHuHbtGlJSUrBp0yZs3rzZoNdjCLVajTfeeAN//vlnnpFUMjIy8OWXX0r/3zA1NcWWLVvyvcmPiIiIyFAyYcgkO0RERERU5qSmpuLjjz/Gr7/+KiWrLSws0KJFC1SqVAkZGRm4fv26NAysQqHAjBkz8MUXX+Tp5fOibt++jY4dOyIyMhKAZhjaJk2aQKlU4syZM3BycsLevXsxatQoaYjC119/HRUqVAAAbNiwAYAmafbzzz9Lj3Nib9u2LWrWrAkXFxepR+bu3bulIYG3b98uXTAdMGAAbGxs4O3tjRkzZiAmJka60PfkyRP8888/ADTDqXbv3h2AZl7K999/X6v9q1ev4tq1awCAhg0bas359/777+eZyxIA/v33X4wYMQIREREANIm5WrVqISUlBWfOnEF8fDxkMhmGDBmC1atX5zvn5rRp0xATE4OUlBTs2LEDgKZXy8CBA6UyM2bM0HnhtqDtc2LP/VoPHjwofXY5n0vu93rBggW4deuWzvevb9++6Nu3b77x6PLzzz/j9OnTAPL//HI+k9zt63pNhrTv7e0t9RI6f/58oW6uqFq1qpRwuHfvHubPn4+ff/4ZDRs2hLe3N9LS0nD69GlpDuEGDRpg7969Bc65vHXrVkyePFnazsfHBz4+PpDL5QgMDJTmxOzfvz82btyY54L/rVu3pJ6vuvbX3J+jPuHh4XjjjTekOhwdHdGuXTtYWVnh9u3buHr1KkaNGoVZs2ZJyW8vLy+EhITkqetF92EASE5ORr9+/bQS2Q0bNoSPjw/S09Nx5swZREdHY9KkSVi2bJlUJifpk3v/yTF37lypN96cOXPQrFkzDB48GAqFAm3atIGFhQVu3Lghve/W1tZYu3atlATKrbj33/79+0s90//880+toXcLI/f33927d6UES40aNaTvsEWLFsHFxUVrf8rv+xd49l2dW1RUFDp06CD9fVWqVAmtW7cGoBkGODs7G3v27MGyZcuwcePGPHXm176u/TmnfUPf09yvX9drymk/Zw7f3HV6eXlh9+7dUnKxTZs2qFSpEqKionDq1ClkZWUBAN555x1s2rQJ5ubmOj8LlUqFmTNnYvHixcjOzoaJiQlatmwJLy8vpKen4+LFi4iIiICZmRlmz56d72gJuY97+X1vA/nv+y/KGMe2/N7f578Xco7bhWXocS93HLr+Hgr6bgoPD0fVqlWhUqng6OiIiIgIrbme9QkJCUG1atUAaPatixcvok+fPrh06dJLtW/FxsZi6NCh0g1e1tbWaNu2LVxdXREdHY1z584hOTkZLi4u+OWXX/Dmm2/qre///u//MHPmTOlmmWbNmqFmzZpISkrC6dOnoVQqsXr1ahw5ciTf75j8PtPr16+jT58+0jHMw8MDrVq1gqmpKa5du4Y7d+7g888/R+fOndG5c2cAQMeOHXH8+HG9sb7ocT0n3sWLF0v7gIeHB5o2bQp7e3vExMQgKChIummhevXq2L59u87pSDp06KB1A94vv/yCkSNH6n0NBTl37hxmzZqFEydOSIns52M8e/as9H+TatWqYePGjTp7kRMREREZTBARERFRuZaamir27NkjJkyYIFq3bi3c3NyEubm5sLS0FJUqVRLdunUT3377rXj8+HGxxvH48WMxdepUUadOHWFpaSns7OxE48aNxcKFC0VSUpIQQoiOHTsKAHl+cqxfvz7f9Tk/Xl5eUtk5c+boLduxY0chhBAPHjzQWw6AGD58uEHt5/ysX79e5/uQlpYmli9fLrp37y4qVqwozM3Nhb29vahXr56YNGmS8Pf31/s+enl5Fdj+sWPHirx9TuyFea91fW45P3PmzNH7mvIzfPhwgz4TY7X//fffCwCiYcOGhY4193v64MEDIYQQBw4cEAMHDhReXl5CoVAIJycn0b59e7FixQqRlZVlcN3x8fHi+++/F506dRIVKlQQZmZmwsbGRnh7e4uRI0eK48eP69z22LFjBe4ruT/HgiiVSrFy5UrRoUMH4ezsLBQKhfD09BQDBgwQBw4cEEIIcffuXanuOnXqFPh+FWUfzqFSqcSvv/4qevToIdzc3ISpqamwtbUVPj4+YuzYseLy5ctCCFHg/pMj93dGzj7z4MED8cknn4h69eoJe3t7YWlpKerUqSM++ugjERISojO24tx/lUqlcHR0FACEQqEQCQkJBb5Xuhjy/ZezTxuyP+mSkJAg5syZIxo0aCCsra2FtbW18PHxEbNnzxaRkZF637OitG/oe1qY16/v7ycxMVF8++23olWrVsLV1VWYmZkJDw8P0bdvX7Fv375CfSbBwcFi+vTpokmTJsLJyUmYmpoKBwcH0axZMzF9+nQRHBysc9uCjnu69n1jeNFjW0FxA8+O24Vl6HHPkDgM+W7q1auXACCmTJlSqDhz7485+1ZWVpZYvXq1dAwwNzd/afatY8eOiffff1/Url1b2NraCjMzM+Hm5iY6d+4sFi1aJGJjYw2u68aNG2Ls2LGievXqwsLCQtjb2wsfHx/x4Ycfijt37gghdH/H6PpMU1NTxXfffSeaN28uff9Xr15dDBs2TJw9e1YIIcThw4elel5//XWDYn2R43qOmJgYsWHDBjF06FDRsGFD4ejoKExNTYWlpaXw8vISb775pli3bp3IyMjQW8+VK1ek7+XBgwcX6vykICEhIWL58uXi7bffFj4+PsLe3l6YmJgIe3t7Ubt2bTFkyBDx+++/C6VSabQ2iYiI6NXGHtpERERERPTSmz59Or7//nusWLEC48ePL9S2uXtoP3jwAFWrVi2GCMuHK1euoEmTJgCANm3a5Dukaln1fA/tuXPnlm5AOmzfvl3qkT1+/HisWLGilCMiotxatGgBf39/BAYGwsfHx+Dtnu+hnd8IF1S27Nq1SxrS/d1335WG1iciIiKiksc5tImIiIiI6KWWnZ2NTZs2wdraGoMHDy7tcMq1O3fuSI8bNGhQipG8nOLj4zFlyhQAQMWKFfH111+XckRElFtAQAD8/f3Rvn37QiWzqXziMY+IiIio7GBCm4iIiIiIXmp79+5FZGQkBg0aBDs7u9IOp8zZu3cvKlSogC1bthRY9vDhw9LjnDnUyTiioqLg5+eHiIgIODg4YO/evXBycirtsIgol19++QUAMHbs2FKOhIpq5cqVqFChAk6cOFFgWR7ziIiIiMoOJrSJiIiIiOil8OOPP6Jz587IyMjQWr5s2TIAwLhx40ojrDIvIyMDkZGRWLNmDfTNSPXgwQNpuFVvb2/07t27pEJ8JaSnpyM+Ph61a9fGmTNn0Lhx49IOieiV9d577+WZniI5ORmbNm2Ci4sLBg4cWEqR0YtKTU1FZGQk1q5dq7fcuXPncOTIEQBAt27d0LBhw5IIj4iIiIh0YEKbiIiIiIheCnfu3MHx48exb98+admePXtw5MgRdO7cGU2bNi3F6Mq+U6dOYezYsYiLi8uz7vz583jttdeQlpYGS0tL/Prrr5DL+d9JY/Ly8sLZs2dx5coVDmVMVMr8/f2xYcMGhIeHS8u++OILxMfHY/LkyVAoFKUYHRnD1q1bMWfOHKSlpeVZd+DAAfTp0wdqtRqurq74+eefSyFCIiIiIsrNtLQDICIiIiIiMqZ3330Xr7/+OpRKJQ4dOgQbGxupl7ahFixYgFu3bgEAYmJipOXTpk2DjY0NAGDDhg1Gi7k0OTg4wMzMDEqlEmvXrsXWrVvRpEkTVKpUCUqlEoGBgbh9+zYAwNPTE9u2bSs3vYdPnz4tJSKuXr0qLd+9ezdCQkIAAO+//z7atWtXCtHlVbFixdIOgYieysjIQNOmTdGxY0c8ePAAly5dQr169TBt2rRC1TNixAgAQEpKirQsJiZGWu7t7Y0ZM2YYK2wqgIuLC+RyOdRqNb788kv89NNPaNiwISpWrIi0tDRcvXoVoaGhAID69etjx44dqFKlSilHTUREREQyoW9MOSpT1Go1IiIiYGtrC5lMVtrhEBERUTklhEBycjIqVqzIHpavmJf9fHL79u1Ys2YN7ty5g+TkZDg7O6N58+aYMWMGfH19C1VXr169cPr0ab1lEhMTXyTcMiU2Nhb79u3D6dOncfPmTYSHhyMlJQWmpqZwdnZGw4YN0b17d7zzzjvlqmfi1q1bMWHCBL1lVqxYgcGDB5dQRERUHnz11Vc4cOAAwsLCkJGRAQ8PD/To0QOffPIJXFxcClWXvb293vXt2rXTGlmkPCmv55RhYWH466+/cOLECdy8eROPHj1CSkoKFAoF3Nzc0KJFC/Tv3x8DBw4sV6+rJL3s55RERERUMgpzPsmEdjkSHh7Ou0KJiIjIaMLCwlC5cuXSDoNKEM8niYiIyNh4Tvnq4TklERERGZMh55MccrwcsbW1BaD5YO3s7Eo5GiIiIiqvkpKSUKVKFencgl4dPJ8kIiJ6+cw4OQMnw09CDXWBZeWQo0PlDljQYcELt8tzylcXzymJiIjIGApzPsmEdjmSM4SPnZ0dTxaJiIjohXF4wFcPzyeJiIhePumm6ZBZymACE4PLG/M8gOeUrx6eUxIREZExGXI+yYlgiIiIiIiIiIiIyikHhQNkMCypLIccDgqH4g2IiIiIiMjImNAmIiIiIiIiIiIqp6rZV4OAMKisGmr4efoVc0RERERERMbFhDYREREREREREVE5tO/+Pqy/sd6gsjLIYGduh25VuxVzVFRYarUay5cvh52dHWQyGUJCQoxWd0REBKZMmYIaNWrAwsIC7u7ueOONN/DPP/8YrQ0iIiKi4saENhERERERERERUTkihMDqa6sx49QMZItsabmuocdzln/T7hsoTBQlEiMZJjAwEO3atcOkSZOQnJxs1LrPnz8PX19frF27FuPGjcPJkyexYsUKhIWFoXv37pg1a5ZR2yMiIiIqLkxoExERERERERERlRNKtRJfnP0Cy64uk5YNrD0Qizsthq25LQDNXNm5f9ua2+Inv5/QqUqnEo+XdJszZw6aNGkCExMTzJgxw6h1R0dHo3fv3oiPj8evv/6KTz75BC1atMCAAQNw8uRJVKlSBfPnz8fGjRuN2i4RERFRcTAt7QCIiIiIiIiIiIioYElZSZh6fCouPL4gLfuo6Ud4r957kMlkaF+5PQ6FHMLRh0eRkJkAB4UD/Dz90K1qN/bMLoOWLFmCxYsXY/z48UZPLH/55ZeIiYlBy5Yt0bdvX6119vb2mDlzJiZMmIBPP/0Ub7/9NiwtLY3aPhEREZExMaFNRERERERERERUxkWkRGDikYm4m3AXAGAuN8c37b9B96rdpTIKEwV61+iN3jV6l1aYVAg3b95EpUqVjF5vVlYWNm/eDAAYMGBAvmUGDBiACRMmIDIyEnv37sVbb71l9DiIiIiIjIVDjhMREREREREREZVhgTGBGLx/sJTMdlA44JfXf9FKZlP5UxzJbAA4c+YMEhMTAQDNmzfPt4ybmxs8PT0BAPv27SuWOIiIiIiMhQltIiIiIiIiIiKiMup42HG89897iEmPAQB42Xlha8+taOTWqFTjorLr+vXr0uOqVavqLJezLnd5IiIiorKIQ44TERERERERERGVQVuDtuI7/++gFmoAQBO3Jvix849wsHAo3cCoTHv48KH02NXVVWe5nHVhYWF668vMzERmZqb0PCkp6QUjJCIiIioc9tAmIiIiIiIiIiIqQ1RqFRZeXIgFFxdIyeweVXtgTbc1TGZTgZKTk6XHFhYWOsvlrCsoQT1//nzY29tLP1WqVDFOoEREREQGYkKbiIiIiIiIiIiojEhTpuGj4x9hS9AWadno+qOxoMMCKEwUpRgZvapmzpyJxMRE6aegHt1ERERExsYhx4mIiIiIiIiIiMqAmPQYTDoyCYGxgQAAE5kJvmj9BfrX6l/KkVF5YmtrKz3OyMiAtbV1vuUyMjIAAHZ2dnrrUygUUCh4MwURERGVnnLfQ1utVmP58uWws7ODTCZDSEiI0eqOiIjAlClTUKNGDVhYWMDd3R1vvPEG/vnnH4O2v337NkaNGgVPT09YWFigYsWKeOedd3Dx4kWjxUhEREREREREROXfvYR7GLxvsJTMtjGzwYquK5jMpkLz9PSUHkdHR+ssl7OOQ4gTERFRWVeuE9qBgYFo164dJk2apDU3jDGcP38evr6+WLt2LcaNG4eTJ09ixYoVCAsLQ/fu3TFr1iy92+/ZsweNGzfGX3/9hVmzZuHUqVNYuHAhLl68iDZt2mDlypVGjZeIiIiIiIiIiMqnC48vYOj+oYhIjQAAVLCugI09NqJNxTalHBmVRw0aNJAe6+v8k7Mud3kiIiKisqjcJrTnzJmDJk2awMTEBDNmzDBq3dHR0ejduzfi4+Px66+/4pNPPkGLFi0wYMAAnDx5ElWqVMH8+fOxcePGfLcPCgrCoEGDkJWVhQMHDmDcuHFo3rw5hg4diuPHj8PKygqTJk3C0aNHjRo3ERERERERERGVL3vu7sG4f8chWanprFHXqS629tyK2o61SzkyKq/atGkDe3t7AMClS5fyLRMVFYWHDx8CAHr16lVisREREREVRblNaC9ZsgSLFy/GyZMnUadOHaPW/eWXXyImJgYtW7ZE3759tdbZ29tj5syZAIBPP/0U6enpebafPn060tPTMXDgQDRr1kxrnZeXF8aPHw+1Wo2PPvrIqHETEREREREREVH5IITA8qvLMfvMbGSLbABAh8odsKH7BrhZuZVydFSeKRQKDB06FACwY8eOfMvs3LkTAKQpFomIiIjKsnKb0L558yYmTJgAmUxm1HqzsrKwefNmAMCAAQPyLZOzPDIyEnv37tVa9/jxY+zfv9+g7a9fvw5/f3+jxE1EREREREREROVDlioLn53+DKuurZKW/a/O//Bj5x9hZWZVipFRebFmzRrY29ujbdu2SEhIyLP+iy++gIuLC86fP4+//vpLa11SUhIWLFgAAFi4cCEsLS1LImQiIiKiIiu3Ce1KlSoVS71nzpxBYmIiAKB58+b5lnFzc4OnpycAYN++fVrrDh48CLVarXf7Ro0awczMLN/tiYiIiIiIiIjo5ZWYmYix/47F3/f/BgDIIMMnzT7BrJazYCo3LeXoqCRFRUXhxo0buHHjBh49eiQtDw4Olpanpqbmu+3SpUuRlJSEs2fP5jutoaurK/7++284Ojpi0KBBWLRoEfz9/bFr1y506NABoaGhmDlzJoYPH15sr4+IiIjIWHiW/Jzr169Lj6tWraqzXNWqVfHw4UOt8rm3NzExQZUqVfLd1tzcHB4eHvluT0REREREREREL6ew5DBMODwBIUkhAAALEwssaL8AXby6lG5gVCpWrFiBefPm5Vn++uuvS4+PHTuGTp065SkzadIkTJ8+HfXq1YOfn1++9bdq1Qo3btzAggULsHLlSsyePRt2dnZo0aIFFi5cqNUOERERUY4MpQr7Ax7jUGAkEtKy4GBljm713NGzvgcszExKJSYmtJ/z8OFD6bGrq6vOcjnrwsLC8t3e0dERJia6P1RXV1c8fPgwz/a5ZWZmIjMzU3qelJSkP3giIiIiIiIiIiqTrkdfx+SjkxGXEQcAcLJwwjK/ZajvWr+UI6PSMnfuXMydO7dI244dOxZjx44tsFzFihXx008/4aeffipSO0RERPRq+fdmJD7edhVJ6dmQywC1AOQy4GDgE8z9OxA/vNUIXX3cSzyucjvkeHFJTk6WHltYWOgsl7Pu+SRzzvb6ttW3fW7z58+Hvb299KOrxzcRERERkT7Lly+Hj4+PzilxiIiIqHgdDj2Mkf+MlJLZ1eyrYWvPrUxmExEREVGZ8e/NSIzZfAnJ6dkANMns3L+T07MxevMl/HszssRjY0K7DJs5cyYSExOlH329uYmIiIiIdJk4cSJu3rwJf3//0g6FiIjolSKEwMbAjZh6fCoyVZpR+JpXaI7NPTajsm3lUo6OiIiIiEgjQ6nCx9uuAgIQOsqIp/9M23YVGUpVyQUHDjmeh62trfQ4IyMD1tbW+ZbLyMgAANjZ2eW7fc56XXRtn5tCoYBCoSg4aCIiIiIiIiIiKlOy1dlYcHEB/rj9h7Ssd/XemNdmHsxMzIqlTaFUIy0gGhmBsVClZcPEyhQW9ZxhVd8VMjP2ayEiIiKi/O0PeIykpz2z9REAEtOzceDGY/RrXHI3aDKh/RxPT0/pcXR0tM6EdnR0NADkGQY8Z/v4+HioVCqd82jr2p6IiIiIiIiIiMq3NGUaPjn5CU6Gn5SWjW84HuMbjodMJiuWNtNvxiJuWzBEejYgg+ZqowxID4xFwt/34fRWbVj6OBdL20RERERUvh0KjJTmzC6IXAb8cyOyRBPavDXzOQ0aNJAeh4SE6CyXsy53+dzPVSqVziHCs7Ky8Pjx43y3JyIiIiIiIiKi8isqLQojDo6QktmmclN83fZrTGg0oViT2bGbb2qS2cCzcSKf/hbp2YjdfBPpN2OLpX0iIiIiKt8S0rIMSmYDmqR3QnpW8Qb0HCa0n9OmTRvY29sDAC5dupRvmaioKDx8+BAA0KtXL6113bt3h1wu17v91atXoVQq892eiIiIiIiIiIjKp+D4YLy7710ExQUBAGzNbLG662r0qdmn2NoUSjXitgXrnuxQKghND26luthiISIiIqLyycHKHHID772UywAHS/PiDej5Nku0tXJAoVBg6NChAIAdO3bkW2bnzp0AAHd3d7zxxhta6zw8PNCzZ0+Dtm/QoAGaN29ulLiJiIiIXlVPnjzB1atXkZSUVNqhEBER0Svs7KOzGHZgGCLTIgEAlWwqYUvPLWjh0aJY200LiH7WM7sAIj0baTdiijUeIiIiIip/utVzL1QP7dd93Ys3oOe8kgntNWvWwN7eHm3btkVCQkKe9V988QVcXFxw/vx5/PXXX1rrkpKSsGDBAgDAwoULYWlpmWf77777DpaWlti2bRv+++8/rXVhYWFYuXIl5HI5Fi9ebLwXRURERPQKiY+Px2effQYvLy9UqlQJTZs21Rodp3r16pg9ezbi4+NLMUoiIiJ6VewI3oEJRyYgVZkKAPB19sWWnltQ3aF6sbedERirmTPbEDIggwltIiIiInpOz/oesLM0LbCcDIC9pSl6+HoUf1C5lNuEdlRUFG7cuIEbN27g0aNH0vLg4GBpeWpqar7bLl26FElJSTh79iyOHj2aZ72rqyv+/vtvODo6YtCgQVi0aBH8/f2xa9cudOjQAaGhoZg5cyaGDx+eb/1169bFr7/+CnNzc7z++utYvXo1Ll26hK1bt6Jjx45ITU3FsmXL4OfnZ5w3g4iIiOgVEhAQgIYNG2LBggUICwuDEHlvHw0PD8f8+fPRsGFDXL9+vRSiJCIioleBWqjx438/Yu65uVAJFQDAr4of1nVfBxdLlxKJQZWWXfBw4zkEoDawN3d5lZCQgM8//xxvvvkmhgwZgn379pV2SERERERlnoWZCeb3q6+3jOzpP//3ViNYmJmUSFw5Ck61l1ErVqzAvHnz8ix//fXXpcfHjh1Dp06d8pSZNGkSpk+fjnr16ulMKrdq1Qo3btzAggULsHLlSsyePRt2dnZo0aIFFi5cqNVOfvr27YsrV65g4cKF+OabbxAZGQknJye0b98ev//+O1q0KN7hpoiIiIheRmlpaejduzfCw8NhamqKRo0awc3NDQcOHNAqd/fuXaxevRrfffcdevXqhcDAQNjZ2ZVS1ERERPQyylRlYvbp2TgYclBaNqTuEExrNg0m8pK7wGdiVYjLezJAbkDPm7IsNTUVHh4eUkeWAwcOoFu3bgA0NzW2atUKjx8/lsr/9ttv+OSTT6QRF4mIiIgofxEJGVrP5TLN8OI5v+0sTfF/bzVCV5+SHW4cAGQivy4tVCYlJSXB3t4eiYmJvCBLRERERVaezyl++OEHTJs2Db1798aqVavg4eGBmJgYuLm54fDhw3luVjxw4AB69eqFb775BjNnziylqMuO8vzZExERlSXxGfGYcmwKrkRdAQDIZXJ82vxTvFv33RKNQ52lQswvAcgKTTZ4G8d36sC6sdsLt11a5xVbtmzBsGHDYGFhgX79+uHLL79EjRo1AABvv/02tm/fDgCoUKECXF1dcfPmTajVapw8eRJt27YtsThfZjynJCIievmkZ6nQ/rujiEnJAgB82r0OroUlIiE9Cw6W5njd1x09fD2M2jO7MOcU5fuWTCIiIiJ6pfz111/w8fHBzp07YWKiOYGWyXRPGtmjRw/069cPe/bsYUKbiIiIjOJh0kNMODIBoUmhAABLU0t81+E7dKrSqUTjUEamInbrLWRHpRm8jczSFFa+JTMUenE5ePAgFAoFzp49i0aNGknLHz16hJ07d0Imk6Ffv3747bffYGZmhgsXLsDPzw9r1qxhQpuIiIhIh18vPpSS2b0aeGB8p5qlHJG2cjuHNhERERG9em7evInBgwdLyWxDtG3bFrdv3y7GqIiIiOhVcTXqKgbvHywls10sXbC++/oST2anXo5E1LKrz5LZpgZc4pMBTm/VhsysfF8O9Pf3x9ChQ7WS2QCwc+dOqNVqmJqaYunSpTAzMwMAtGzZEoMGDcLZs2dLIVoiIiKisi9DqcKqE/ek55P9ylYyG2BCm4iIiIjKkcTERFSsWLFQ29ja2iI9Pb2YIiIiIqJXxcGQgxj1zygkZCYAAGo61MSvPX9FPed6JRaDOkuFuG3BiN8WDKFUAwDMKljBfUpjOA/zgcxCc9NfzvyCOb9lFiZwHuoDSx/nEou1uISHh6Nx48Z5lv/999+QyWTo2bMnPDw8tNY1bNgQjx49KqkQiYiIiMqV3y8+RHRyJgCgh28FeFcoe1OKcMhxIiIiIio3HB0dERYWVqhtrl69Cmfn8n/xloiIiEqHEALrbqzDkv+WSMtaebTCD51+gK25bYnFoYxKQ+zWIGRHPhti3Lp5BTi8WR0yMxOER6TiWFI2nJUqeJjLYQZACeBxlhqxWQKdswWqlVi0xUetVudZlpCQgBMnTgAA3nnnnTzrLSws8t2OiIiI6FWXoVRhpVbv7FqlGI1u7KFNREREROVG48aNsWHDBoN7XN+7dw+bNm1Cs2bNijkyIiIiehkp1UrMOzdPK5ndr2Y/rOi6okST2alXohC17IqUzJaZy+H4Th04DqgFmZkJHlyLxv5VAUhPy0a4UsA/VYWzqSr4p6oQrhRIT8vG/pXX8eBadInFXFw8PDxw48YNrWWbN2+GUqmEQqHAG2+8kWebhw8fwtHRsaRCJCIiIio3tl0KQ2SSpnd2Nx93+FQse72zASa0iYiIiKgcGTx4MO7fv4/u3bsjODhYZzm1Wo3t27ejQ4cOSEtLw9ChQ0swSiIiInoZpGSlYPKRydhxZ4e0bHLjyZjXZh7M5GYlEoNQqhC3PRjxf9yGyNL0MDZ1t4LbpMawbuwGAMhWqnBkY9Cz8cV1VgYc2RiEbKWqmKMuXm3atMHWrVtx6dIlAEBQUBC++eYbyGQy9OrVCzY2Nlrl1Wo1/vjjD9SpU6c0wiUiIiIqszKzVVhx/Fnv7A+6lM3e2QCHHCciIiKicmTw4MFYtWoVTp06BR8fHzRq1Ag+Pj4AgJUrV2Lbtm0IDQ2Fv78/4uLiIIRA586dMXDgwFKOnIiIiMqTJ6lPMOHIBNyJvwMAMJOb4eu2X6Nn9Z4lFoMyOg1xW4OgfPJsiHGrZu5weLMG5OYm0rJ7l6OQmZZtUJ2Zadm491806rSsYPR4S8rkyZPx22+/oWXLlnB2dkZcXBzUajVkMhk++ugjqZxKpcKtW7fw+eef4969e/kORU5ERET0Ktt+ORyPEzMAAF3rusG3kn0pR6QbE9pEREREVG7IZDL89ddf6NGjB/z9/XHlyhVcuXIFMpkMO3fulMoJoemi1KpVK+zYsUNXdURERER53Iq7hYmHJyIqPQoAYK+wx4+df0RT96YlFkPa1SjE77wj9cqWmcnh0LcmrJu65yl7/1oMIEPBPbQBQAbcv1q+E9otW7bEokWLMH36dMTExADQnCPOmjULbdq0kcrNnTsX3377LYQQkMlkGDBgQGmFTERERFTmZGWrseJY+eidDTChTURERETljJOTE06fPo3Fixdj6dKlePToUZ4ylStXxgcffIAPP/wQpqY85SUiIiLDnAw/iU9OfIK0bE2v6Mo2lbGi6wpUs69WIu0LpQoJf99H6sUn0jJTNys4D/aGmbt1vttkpCoNS2YDgHhavpz76KOP8MYbb+Cff/5BdnY2OnTogCZNmmiV8fPzk84DbW1t0ahRo1KIlIiIiKhs2vlfOB4lpAMAOtdxRYPKDqUbUAF4dY+IiIiIyh0zMzNMnz4d06dPx61bt3Dnzh0kJyfD1tYWtWrVgre3d2mHSEREROXMH7f+wLcXv4VaaHpFN3BtgKV+S+Fk4VQi7Suj0xD36y0oH6dKy6yauMGhb02tIcafZ2FtVqge2hbWJTP/d3GrVasWatXS3ZOoc+fO6Ny5cwlGRERERFQ+KFVqLDt2V3pe1ntnA0xoExEREZUZGUoV9gc8xqHASCSkZcHByhzd6rmjZ30PWJjpvoj5qvP29mYCm4iIiIpMLdRYfHkxNgRukJa95vUavm33LSxMLUokhrRr0YjfcQciSwXg6RDjfWrCulneIcaf51nPGfevRBvWkACqN3J9kVDLpejoaAQFBaFDhw6lHQoRERFRqdt15RHC4zW9szvUdkVjT8dSjqhgTGgTERERlQH/3ozEx9uuIik9G3IZoBaAXAYcDHyCuX8H4oe3GqGrT8EXNCmvgIAA7Nq1C1988UVph0JERERlTEZ2BmadnoV/Q/+Vlr3n+x4+bPIh5DJ5sbcvlGok7L2H1Au5hhh3tYTz4Lowq5D/EOO5pcRn4saJcIPbU1iZokaTVy+hfejQIQwbNgwqlaq0QyEiIiIqVdkqNZbn6p09pRz0zgaA4j8zJyIiIiK9/r0ZiTGbLyE5PRuAJpmd+3dyejZGb76Ef29GllKE5dv169cxb9680g6DiIiIypjY9FiMOjRKSmabyEzweavPMbXp1BJJZmfHpCNqxVWtZLZVYze4TWpsUDI7+mEyti/wR0xYimENyoAuI3xgypF/iIiIiF5Ze65GIDQ2DQDQrqYLmnqV/d7ZAHtoExEREZWqDKUKH2+7Cgjd0x4KADIBTNt2FRdmdeXw409lZmbi7t27SExMRHZ2ts5yQUFBJRgVERERlQcPEh9gwuEJCE/R9G62MrXCoo6L0L5y+xJpP+360yHGM5/2GDaVw7FPDVg1c4dMJitw+/tXovHv+kBkZ2nm+7Z1skCjrlVwce8DZKZlP5tT++lvhZUpuozwQbUGLsX2mkpaQEAAlixZghMnTiAiIgKZmZmlHRIRERFRmZb93NzZU7qWj97ZABPaRERERKVqf8BjJKXrTsbmEAAS07Nx4MZj9GtcufgDK8OuXr2KWbNm4fDhwxw2koiIiArt0pNLmHJsCpKykgAAblZuWNFlBeo41Sn2tkW2Ggn77iP13GNpWWGGGBdC4Mqhhzi36560rEJ1O/QY1wBWdubwaV8R9/6Lxv2r0chIVcLC2gzVG7miRhPXl6pn9saNGzFmzBhkZ2dDCF23hWoz5EYBIiIiopfZ3uuP8SAmFQDQurozmld1KuWIDMeENhEREVEpOhQYKc2ZXRC5DPjnRuQrndC+du0a2rdvj7S0NIMvXgK8gElEREQae+/vxRdnvoBSrQQA1HasjeVdlqOCdYVibzs7Nh2xv96C8tGzIcItG7nCsV9NyBUFX6JTZatxfOst3Dr3bIjyWs3d4TfMW0pWm5qZoE7LCqjTsvhfT2m5efMmxowZA6VSiVatWqFFixZQKBT4/vvvMXToUFSvXh0AkJKSgkuXLuHEiROoXbs2Bg0aVMqRExEREZUelVrgp6N3pOflqXc2wIQ2ERERUalKSMsyKJkNaJLeCelZxRtQGTdv3jykpqaiRo0aePfdd+Hj4wNHR0coFAqd2xw6dAgLFiwowSiJiIiorBFCYM31NVh2dZm0rG2ltljUYRFszG2Kvf20gBjEbw/ONcS4DA5v1oB18woG3XiXnpKFg6tvIOJOgrSs5ZvV0LRH1Vfuxr2ffvoJSqUSq1atwpgxYwAAsbGx+P777zF8+HD4+flpld+yZQvee+899OzZszTCJSIiIioT9gU8xv1oTe/sFtWc0Kq6cylHVDhMaBMRERGVIgcr80L10HawNC/+oMqw06dPo0mTJjh9+jQsLCwM2iY8PLxQvbmJiIjo5aJUK/HluS+x++5uadlbtd/CrJazYCov3ktjIluNxP0PkHI2Qlpm6mIJp3e9YV7RsER6/JNU7F1+HUnR6QAAEzM5ugyvi1rN3Isl5rLuxIkT6Natm5TMLsiQIUOwe/du/PTTT9i8eXMxR0dERERU9qjVAkuPPOud/WGX8tU7G2BCm4iIiKhUdavnjoOBTwouCE3S+3XfV/PCZY7k5GQMGzbM4GQ2ALRp0wbr168vxqiIiIiorErKSsLU41Nx4fEFadnUplMxot6IYu/ZnB2Xgdhfg6AMzzXEeENXOPY3bIhxAAgLisPBNTeQlZ6t2d7OHL3GN4B7Nbtiibk8CAsLw/Dhw7WW5XyWum5i7NChAxYvXlzssRERERGVRQduPMGdKM05aTMvR7SuUb56ZwNMaBMRERGVqp71PTD370AkPb1IqYsMgJ2lKXr4epRMYGVU5cqVYW1tXahtqlWrhmrVqhVTRERERFRWRaREYOKRibibcBcAYC43x7ftv8XrVV8v9rbTb8QgbnswREauIcZ714B1C8OGGAeAGycf4eTvwRBPh/JxrmSDXhMbwNbJ8Bv7XkbZ2dlwcXHRWpYz/cyTJ/nfKCqE0LmOiIiI6GWmVgv8dER77uyCzkfVmZlIPngQyYePQJWYABN7B9h27QLb7t0h1zPtX3GSl0qrRERERAQAsDAzwWc9ffSWkT395//eagQLM5MSiaus6t+/P06fPl2obR48eIBNmzYVU0RERERUFgXGBGLw/sFSMttR4YhfXv+l2JPZIluNhL/vIXZLkJTMNnW2gNv4RrBp6WFQMlutFjj1ZzBO/HpbSmZXbeCC/p80eeWT2QDg5uaG4OBgrWXW1tawsLDAxYsX893m5MmTMDF5tc+jiYiI6NX0T+AT3I5MBgA09nRAu5ouessnHz2KO+07IOLTGUg+cgRpF/2RfOQIIj6dgTvtOyD56LGSCDsPJrSJiIiIStnpuzFaz+Uy7d92lqZYO7QZuvq82sONA8CsWbNw7tw5/P777wZvc/bsWbz33nvFGBURERGVJcceHsN7/7yHmHTNOZaXnRe29NyCRm6NirXd7LgMRK2+jpQzz+bLtqzvArfJjWFeybD5srPSs7F/xXVcPxouLWvUtQp6jKsPcwsOtAgADRs2xPr16xEdHa21vFGjRvj5559x9uxZreUbN27Erl27UKNGjZIMk4iIiKjUqdUCP+bund1Ff+/s5KNHET5xEtTJyTkVaP1WJycjfOJEJB89Wmwx68IzYSIiIqJSdDk0Dn9f01z0dLA0xSfdvXEqOAYJ6VlwsDTH677u6OHr8cr3zM5x7do1fPnll5g2bRqWL1+OPn36oE6dOrC1tYVcnv+9mkFBQSUcJREREZWWrUFbsfDiQghoejY3cWuCHzv/CAcLh2JtNz0wFnHbgiEynk4jYyKDQ+/qsDawVzYAJMWkY9+K64iLSAUAyOUydBhUG/XaVyqusMulbt26Yd++fWjevDmmTp2K8ePHw8zMDG+//TbOnz+Pjh07okWLFqhSpQpu3bqFgIAAyGQy9OvXr7RDJyIiIipR/wZF4tYTTXK6YWV7dKztqrOsOjMTETNmap4IkX8hIQCZDBEzZqLWqZMlOvy4TAhdUVFZk5SUBHt7eyQmJsLOzq60wyEiIqIXpFYL9F1xBtfDEwEAX/X1xdBWXsXebnk+p5DL5QZfFH6eSqUycjTlT3n+7ImIiPRRqVVYdGkRtgRtkZb1qNYDX7X9CgqT4rvQJrLVSDwYgpTTj6RlJk4WcB5c1+Be2QDw5H4i9q+8jvRkJQBAYWWK7mN8UdnbyegxG0tpnVdERkaicuXKUKlUkMlkCAsLQ8WKFZGZmYlmzZohMDBQ63xRCIGaNWvi8uXLsLW1LbE4X2Y8pyQiIir7hBB4Y+lpBEYkAQDWjWgGP2/doz8m7tmDiE9nGFx/xe8Wwv7NN18oxsKcU7CHNhEREVEp2XnlkZTMruNui0HNq5RyROVDUe7HLGoSnIiIiMq+NGUaZpyagWNhz+bzG11/NCY1ngS5rPhm28uOz0Dcr7eQFZYsLbP0dYbjwNqQF2J48GD/Jzi68RZU2ZqhHO3dLPHGxIZwcLcqdEwZShX2BzzGocBIJKRlwcHKHN3quaNn/ZdnxB93d3ekpqZK54SKpz2DFAoFjhw5gsmTJ2P37t1QKpUwNzdHnz59sGTJEiaziYiI6JVyJChKSmbXr2SPznXc9JZPPnwEkMsBtRoquSmiXJsgxqUBlKbWMMtOhUvMdbhF/wcTdTYglyP538MvnNAuDCa0iYiIiEpBamY2vjt4S3r+RW8fmJoU3wXXl8lnn32Grl27Glz+0KFDWLBgQTFGRERERKUlJj0Gk45MQmBsIADAVGaKL1p/gX61ind46fSgWMT9GQyRnmuI8V7VYd3a8CHGhRDw3/sA/vtCpGWV6jig+5j6sLA2K3RM/96MxMfbriIpPRtyGaAWgFwGHAx8grl/B+KHtxqhq4/uXjnlibm5eb7L3dzc8McffyAzMxNxcXFwdnbWWZaIiIjoZSWEwE9Hn82d/UEBc2cDgCoxAVCrEe1cH0HeQ5FtZg0INSCTA0KNaNfGuFNzIHxubYJL7A2oEhOL+VVoY0KbiIiIqBSsOH4XUcmZAIDXfNzRtqZLKUdUftStWxcdO3Y0uHx4eHgxRkNERESl5V7CPUw4PAERqREAABszG/xfp/9Dm4ptiq1NoVIj8Z8QpJx8bojxd71hXtnwHsDZWSoc3RSEO5eipGV123qg46A6MDEt/E2O/96MxJjNl/B06nCon/udnJ6N0ZsvYc3QZnjtJUlq66NQKODh4VHaYRARERGViuO3o6VRIX087NC1rv7e2UKthio5BdHO9RHgO+bZipzRjp7+zja1xHXfsagfuBbV7e2LJXZd2A2IiIiIqISFxaVh7akHAAAzExk+61m3lCMqPwYPHozq1asXapsGDRrgiy++KKaIiIiIqDRceHwBQ/cPlZLZFawrYGOPjcWazM5OyET06utayWyLes5wn9y4UMns1MRM7F585VkyWwa0GVATnYd4FymZnaFU4eNtVwEh5bPzEE//mbbtKjKUqkK3Ud7t2bOn0OeQREREROWREAI/HjG8d3bmnTsIHTIUabfvIMh7qGahrml7ni4PqjMEVn6Gj55oDOyhTURERFTCFhy4hayncyS+17YaqrpYl3JE5cfmzZsLvU39+vVRv379YoiGiIiISsOeu3sw9+xcZAvNcN91nepiWZdlcLPS3/PkRaTfikP8n7ehTns2xLh9j2qwaVvR4CHGASAmPAX7ll9DSrxmpB5ThQm6jfRBtYauRY5tf8BjJOUMfa6HAJCYno0DNx6jX+PKRW6vPEpJSUFoaGhph0FERERU7E7eicHVsAQAgHcFW3TTMTqPOjMTMStXIvaXdYBSiSj3FpphxgsikyPbzBpRrrXgZMS4C8KENhEREVEJunA/FvsCHgMAnK3NMcmvZilH9PI7fPgwvv32Wxw9erS0QyEiIqIXIITAimsrsOraKmlZx8od8V2H72BlZlU8barUSDoUiuQTz6YwMXFUwPndujCvYnivbAAIuR6DQ78EQpmp6SFt46hAzwkN4FrIep53KDBSmjO7IHIZ8M+NyHKR0E5OTsaRI0fQuXNn2Oca0vLLL78sdF3Xrl0zZmhEREREZZIQAj8eDpaef9ClFuTyvDdfpp47h8dz50IZ+lBaFuvZCppbIA27WfNBYAK821V50ZANxoQ2ERERUQlRqQW+3HtTej7t9TqwszArxYheDZGRkThx4kRph0FEREQvIEuVhbln5+Lv+39LywZ5D8KnzT+FidykWNrMTsxE3K+3kBWaJC2z8HGG08BakFsZfg4nhMC1I2E4s+OuNCa4m5ctek5oAGt7xQvHmZCWJSWzFchCT/kFdDO5BAekIAE2OKRqhv3qlsiEOdQCSEjPeuE2S8Lrr7+OCxcuoHnz5jh//ry0fO7cuYXqFU9ERET0qjhzNxb/PUwAANR2t0H3ehW01mfHxSFq4XdI3LPn2UIzMziNGgVVUmMgIs3gtjJSlcYI2WBMaBMRERGVkO2XwxAYobkgWtfDDm83K7m7GMsblUqFgIAA+Pr6wtT02Snrpk2bCl3X2bNnjRkaERERlbDEzER8eOxDXIq8BACQQYZPmn+CIXWHFFtiM/12HOL/yDXEuPzpEOPtCjfEuEqlxsnfg3HzVIS0rEYTN3QZURdm5sZJxDtYmUMuA/xkl7HIbBUcZKlQCRlMZAIqIUMPE3/MEZvwsXIcjommcLA0N0q7xe3OnTsQQuDevXt51glhQHf05zAJTkRERC8zzdzZz3pnT/Z71jtbCIHEXbsR9d13UCUkSGXMmrRAcv8PceRGJuKfGJ7MhgywsC7ZTjpMaBMRERGVgOQMJb7/59lJ5Rdv+MAknyF/SKN///7Yu3cvunfvjn379knLR4wYwYuRREREr5Cw5DBMODwBIUkhAAALEwssaL8AXby6FEt7QiWQ9G8oko+HSctMHBRwetcbCk+7QtWVkarEwTU38Oh2vLSsWc+qaPFGNciMeB7YrZ47soP2YY3ZD8jpAm4i0/5th1SsNfsBY5RT8brvSKO1XZw2bNiA1atXY/To0XnWbdmyBe+++67BdW3ZsgXDhw83ZnhEREREZcq5+7HwD9Gcd9Z0s0HP+h4AgMwHD/BkzlykXbwolc1w8UJcj8m4H2ODrMPxeeoSIhvqrGColHchRAZkMguYmNWE3Lw2ZDJTQADVG7mWzAt7igltIiIiohKw/Ng9xKRkAgC616uA1jWcSzmisu3EiRMQQuDMmTN51rFHDhER0avhevR1TD46GXEZcQAAJwsnLPNbhvqu9YulPVViJmJ/u4WskFxDjNd1gtNbtQs1xDgAJESmYd+K60iI1PR0kZvK4De0Luq0rFDAloXXs64jupivAoSArjy5Zo5tgf8zXwWF98dGj6E49OrVC7169TJKXTKZrEjnkERERETlxU9H7kiPJ/vVhCxbiei1axG7ajWEUgkBIN6xDp40eRtP1BWAMABQSdt41LBHdFgyMlPuQJl2EBCZ0MynLSAgg1p5F0g/BjOr7rByqIMaTZjQJiIiInqphMamYt3pBwAAcxM5ZvWsW8oRlX2LFi3CTz/9hEmTJuVZt2TJEvTp08fgunbt2oWPPy4fF26JiIhI49/QfzHz1ExkqjQ3BFazr4YVXVagsm3lYmkvIzgecX/cgjo11xDj3avCpn2lQt8Y9+h2PA6sDkDm0+HKLW3N0GNsfXjUdDBy1BoWwX/DAqma6416yGWAPVKB4L1Aw3eKJZaSsH79erRp06ZQ27Rp0wbr168vpoiIiIiISteF+7E4f19zE2h1F2v4ZUXgQd8xyLp/Hyq5OZ5UbIdwr65IVbjmzmHDxFSO2i3cUb9zZbhWscWZ7f/i/LZc82tDaP8WmVCm7kHdnlNgamac6XMMxYQ2ERERUTH7dn8QslRqAMCo9tXg6WxVyhGVfe+//z7ef//9fNe5uLjAy8vL4LpcXUv2jlEiIiIqOiEENt3chP+79H8QTy+cNa/QHIs7LYa9wt747akEkg4/HWL86XU6E/unQ4x7FW6IcQC4eSYCJ7behlqtqczRwxpvTGwAOxdLY4at7dZeqCGHHOqCy8rkwK2/y3VCuyhDh1erVg3VqlUrhmiMIzMzE0uWLMHvv/+Ou3fvwsTEBHXr1sXw4cMxZswYyOXyQtcZEhJi0Gv+/vvvMW3atKKETURERGXET0c1vbNtstLwzd3DCP/5INItnBFeox8eV2iDbDPta5E2jgr4dqwEn3YVYWljDgDIzsrClf2/GNTelf2/oOWbHWFqbm7cF6IHE9pERERExejsvRj8ExgJAHC1VWBi55qlHFH5NmfOHDRo0KBQ2zRo0ABffPFFMUVERERExpKtzsaCiwvwx+0/pGW9q/fGvDbzYGZSuCG/DaFKytIMMf4gUVpmUccRjm/XgYl14dpTqwXO77qHK/8+lJZ51nNCt/d9obAs3stvmUkxUBiSzAYAoQbS886TWN5FRkbiwYMHSE5Ohq2tLapVqwZ3d/fSDssgMTEx8PPzQ0BAAMaMGYOlS5ciKysLy5Ytw/jx47Ft2zbs27cPFhYWRarfyspK7ygD5iV4IZqIiIiM71JIHM7ciUHn8CsYF/gXsi0q4rrvGMQ419fczJiLR017NOhcBdUaucDERHtd8PnTyExNMajNzNQUBF84A5/2nY32OgrChDYRERFRMVGpBb78+6b0/JPX68BGwdOvFzFnzpxCb1O/fn3Ur188c20SERGRcaQp0/DJyU9wMvyktGxCwwkY13BcoYf8NkTGnXjE/XEb6hSlZoEcsH+9mmaIcV0TUeuQlZGNw+tv4sG1GGlZ/c6V0W5gTchNCt+ztrCCEs1QX8hgIhPIVssQnOyKu8nOSFeZwtIkGzVtY1HbNhqmcqG5qGnpWOwxlYTMzEz8+OOP+Pnnn3Hv3r0862vWrInRo0dj8uTJUCgUpRChYd566y0EBARgypQpWLJkibS8c+fO6NevH/bs2YPx48cXecj0wMBAVK1a1TjBEhERUZmzcfsZfHV+AzzkTgiqPwWp1hW11puYylGrhTsadKoMV09baXlGagqSoqM0PzFRuHLwb4PblMlkuHvxHBPaRERERC+DP/zDcOtJMgDAt5IdBjYpnjkfSb/z589jzZo1WLduXWmHQkRERPmISovCpCOTEBQXBAAwlZtiXpt5eLPGm0ZvS6ifDjF+LNcQ43bmmiHGqxZ+SPOU+AzsW3EdMWGa3iwyuQzt366F+p1K5rzv4oM4/Bbng8XmJ3E32QkHI2ojU20GGQQEZJBB4E6yC47Kq6NHxWDUsI0DvHuXSGzF6f79++jVqxeCg4MBaIaqf97du3fx6aefYt26ddi3b1+ZHHJ8x44dOH78OCwsLDB37lytdTKZDPPnz8eePXuwceNGTJo0CU2bNi2dQImIiKjMEUol/L9bC7+zjxBV8z3czjWsuBACVnYC1Roq4FpZIDP1NgKOnnyWwI6OQmZaatHbFgLpKcnGeBkGY0KbiIiIqBgkZSjxf4duS8+/eKMe5IXs7UPGce/ePWzcuJEJbSIiojIoOD4YEw5PQGSaZooWWzNbLOm8BC08Whi9LVVyFuJ+u4XM+8+GGFfUdoTTO4UfYhwAokKTsG/FdaQlZgEAzC1M8PoYX3j6OBstZn1UaoGFey5ivMkF3E12wp5wH2mdgEzrd6baFLvDfdCneihq+vQpkfiKS1JSEjp37ozw8HAIIWBrawtfX19UqlQJFhYWyMjIwKNHj3Djxg0kJyfj1q1b6Ny5M65fvw47u8LPi16cfv75ZwCAn58fHBwc8qyvW7cu6tati6CgIKxbt44JbSIiIoIQAvf2XsTlbRcRZeYI4S6HUN2EUCZCqJNhYpoCdXYi4hMyEf+w4PqKRCaDpY1tweWMiAltIiIiomKw9MgdxKZqLm72auCBFtWcSjmi8uXkyZMFFzJQUFCQ0eoqr5YvX47ly5dDpVKVdihERESSs4/OYuqJqUhVanqHVLKphBVdVqC6Q3Wjt5VxNx5xv2sPMW7XrSpsO1Qu9BDjAHD3chSObLiJbKVm7mo7Fwv0mtAQThWtjRm2XgeOHMaiuA9QRRaFVREtny7V9VpkAAQORtTBOCEv1xcEFyxYgLCwMFSvXh3ff/89evfuDVPTvK8oOzsbf/31F6ZPn44HDx5g4cKF+Oabb0oh4vxlZWXhyJEjAIDmzZvrLNe8eXMEBQVh3759WL58eUmFR0RERKVICIG0xAQkRkUiKUbTozrhyRM8Dg5F/OPHUKlSAGQDmXm3VSv11y03MYWdiyvsXF1h5+oOO1c32Lm4IfpRKC7v2WlogKjarFmhX9eLKM/nr8jMzMSSJUvw+++/4+7duzAxMUHdunUxfPhwjBkzBnJ54ecpKuy8TM8PaXT8+HF07lzwmPHbtm3DwIEDC9UWERERlQ8PYlKx4WwIAEBhKsfMHt6lG1A51KlTp2KZL/NVNXHiREycOBFJSUmwty/8cKpERETGtiN4B746/xVUQnOzla+zL5Z2WQoXSxejtiPUAslHHyLpyENpiHG5nTmcB3lDUa3wx0QhBC4fDMWFPfelZR417dFjbH1Y2pobK+wCpV76DV3OTIGlPBM3E92QqTakh7kMmRmZCL5wpkTnOzS2Xbt2wcPDA+fPn4eLi+79xdTUFP3790f79u3RqFEj7Nixo0wltIOCgqBUaq4465vjOmddaGgoEhMTC30ud/DgQezfvx83btxAZGSk1KN9wIABeO+992BhYVHUl0BERERFJNRqpCTEISk6GknRkdIw4IlPHyfHRCNbmVWkuk3MzGDn4qZJVLu6wd7V/WkC2x12bm6wdnCEXG6SZ7s9t3Yhc58K5tlyyHTeJAkICGSZqvHAPRUNihRh0ZTbhHZMTAz8/PwQEBCAMWPGYOnSpcjKysKyZcswfvx4bNu2Dfv27SvSSZlCocj3zs4carUa6enpeufesbbWf0euvvqJiIiofPtmXxCUKs0V0zEdqqOyo1UBW1B+8psLsaiYHCciIiob1EKNpVeW4ueAn6VlXTy7YH77+bA0tTRqW6rkLMT9cRuZdxOkZYrajnB6uzZMbAqffFYp1Ti25RZuX3giLavTqgI6D/aGiVnhO1UUSXYWcGg2rC+ulhZdT/WCTCYz6NxJJpPh7sVz5TqhHRoaik8++URvMjs3V1dXjBo1CosWLSrmyArn4cNnY4C6urrqLJd7XXh4eKET2tOmTcOUKVMwdepU2NraIjg4GD/88AMmTJiA5cuXY+/evXoT6oCmU1Fm5rMuYElJSYWKgYiI6FWjVquQEhf7XKL6afI6RpOwVmVnF7F2U5jAAhlQINjGDWpbJ0wb0BpO7hVg5+oGa3sHyIrQ4ff445MIbhiHzpddICDyTWqLp3eInmkYh+jHJ9HHu18RX0Phldus6ltvvYWAgABMmTIFS5YskZZ37twZ/fr1w549ezB+/HisX7++0HWvWrUKI0aM0Ln+559/xujRozFx4kSdZVJSUgrdLhEREZV/p+/E4HCQZg5IN1sFxnWsUcoRlV+fffYZunbt+sL1HDp0CAsWLDBCRERERPQiMlWZmH16Ng6GHJSWDfUZio+bfgyTfHqJvIiMewmI+/0W1MlPx1yUAXavecG2U5UiDTGenpyFA6sC8Pjes/m3W/Wtjiave5XcjXNJj4Ftw4GwC9KiXaIjlG61IRJvGVSFEALpKcnFFWGJsLGxKTAB+7xq1arB0tK4N0y8qOTkZ5+Dvg45udcVJpFsYWEBPz8/LF68GA0aPOs/1bRpUwwYMADdu3fHsWPH0LNnT1y5cgUKhUJnXfPnz8e8efMMbpuIiOhlp1apkBwbg6ToSCQ+TVprfp4mrGNjoC7itG8mZgrI5HZQq20gk9s9/bGHHJZwi3sAb/dMbPDtiJ2PNPV/1dcXvq28ivY6hBp34u/A/4k/LkVeQoJ7Go42jUa7a85QZJtADQE5ZNLvLFM1TjWMRbh7OtwyE4rUZlGVy4T2jh07cPz4cVhYWGDu3Lla62QyGebPn489e/Zg48aNmDRpEpo2bWrU9pcuXQorKyuMGjXKqPUSERFR+ZatUuPLvYHS80+7e8NaUS5Pt8qEunXromPHji9cT3h4uBGiISIiohcRnxGPKcem4ErUFQCAXCbHjBYzMMh7kFHbEWqB5GNhSDoc+myIcVtzOA+qA0V1hyLVGReRin0rriEpJgMAYGomR9f3fFCjiZuRojZAyGlg23tAahQAIFOYYm72cFTuMh5Ox9YYXI1MJoOljW1xRVkifH19tXo3G+Lhw4eoU6dOMUVUNlWoUEGao/t55ubmWLJkCRo2bIigoCCsX78e48aN01nXzJkzMXXqVOl5UlISqlSpYvSYiYiIygpVthLJMTGantVP57BOiopEUkw0EqMjkRIbCyHURarb3NIK9q5usHNzl4YGN7NwRGSIQEhAFrIyTLVumDTPTEClR6fgmXkLnjM/QphvC+xcegYAUMHOAm83q2xw2zkJ7EuRl6QkdmJmolaZMPd0/NklHF5PrOH5xBIKpQkyzVR4WCEdoRVSoTIB5JDDQeFQpNdfVOXyCuvPP2uGpfLz84ODg0Oe9XXr1kXdunURFBSEdevWFSqhHRAQgMqVdX/4J0+exPXr1zF27Nh82yYiIqJX128XHyI4UjNKS8MqDujXuFIpR1R+DR8+HDVqGKd3e40aNTBs2DCj1EVERESFF5oUigmHJ+BhsiYJaWlqie87fI+OVV78xrXcVClPhxi/kyAtU9RygNM7dYo0xDgAPAyMxT9rbyArQ9MDxsreHL0mNICbl50xQi6YEMC5ZcC/c4Cn840/Es4Yn/Uhsqy90OLyH7gfHFSI6gRqtmhdXNGWiNGjR2PWrFn45JNPYGVV8NQ+qamp2LBhAz7++OMSiM5wtrbPbizIyMjQWS73Ojs74+13DRo0QMWKFREREYG9e/fqTWgrFAq9PbiJiIjKm+ysLCTFPBsCPCk6ColPE9ZJ0ZFIiY/TnIcVgYW1jWa+alfNvNX2rm6wzZnL2tUNFtY2ADTnZRHBCbh+PBwPrkY/bc4MOblsu8T7qPLoOFxjrsL5f+/A9aM/YWJri582X5LaGt+pBhSmukc6Ugs17ibc1SSvn1zS9MI2oGe1ygS4XykV9yul5l8v1PDz9DP0LTGKcpfQzsrKku4ubN68uc5yzZs3R1BQEPbt24fly5cbXL+vr6/e9UuXLgUATJ482eA6iYiI6OWXmKbED/8GS8+/eMMH8iIMZ0kaRZk2RpdWrVqhVatWRquPiIiIDHcl6go+OPqBdOHMxdIFy7osQz3nekZtJ/N+AmJ/uw11cpZmgQyw6+oF285FG2IcAAKOh+PUH8HStUyXKjboNaEBbBx1Dw9tVJnJwJ6JwM090qKLsoYYlz4WVRMfoHPYRtxXZhWiQhkU1tao3bKt8WMtQYMGDcLJkyfRsWNHrFy5Es2aNdNZ9r///sOECRNQo0YNTJgwoQSjLJinp6f0ODo6Wme53Ov0dcIpagwRERF48OCBUeslIiIqbcrMDM2c1TFRzw0LHomk6CikJsQXuW5LWzvYubo9/dH0srZ3e/ZYUcANd8osFe5cjMT1Y2GIfaSdMJaps+EedQmVH52AXfJDKGrXhsdPW2DZqBEAIOhxEv4JfDbV4TvNtUdMEUI8S2BHXsKlJ5cQn6n7tdor7NHMvRmaV2iOBi4NMPbwWKRkpUhzZedHBhlszW3RrWo3va/T2MpdQjsoKAhKpWb+I33z5eSsCw0NRWJiIuzt7V+47bCwMOzevRt+fn6oV0//f7x+++03rFu3DsHBwYiOjoajoyMaN26MQYMG4X//+x9MTIw7NxQRERGVrh+P3EF8muYcpU+jimjq5VjKEb06njx5gidPnqB69epG7bVCREREL+bgg4P47PRnyFJrkq41HWpiRZcV8LDxMFobQi2QfCIMSYdyDzFuBqf/ecOihkOR6lSr1Di97S4Cjj+btqRaQxe8NrIezBQldD0n+jbwxxAg5tkNk+crj8THAd7oHnsQzsp45AxyaWXvAO92nfDf/j1P34P8LkDKABnQY+JHMDUvWm/1kjZy5Ei968PCwtCyZUt4eXmhfv36cHBwgImJCVQqFRISEnDjxg2EhITA1NQUb731FkaPHo1ffvmlhKIvWN26dWFmZgalUomQkBCd5XLWeXl5GeX6Zm6iiD3PiIjo1ZadlYXg86dx1/880lOSYGljh5rNW6F2q3Yldp6RlZGuNQS49hzW0UhLTChy3Vb2DlKy2t7VTTMsuJumh7WtiyvMLSyLVG9yXAZunAhH4OkIZKZma61TIB0VHxxGpYgzMFcmQ2ZhAddpH8Np+HDIzMykckuP3pEej+tYAwpTOe4l3MPFJxfh/8QflyMvIy4jTmcMduZ2UgK7eYXmqOVYC3KZXFr/bbtv8cHRDyCDLN+ktgyaG0W/afcNFCYlO3pLuUto554jx9XVVWe53OvCw8ONcsK3cuVKZGdnG9Q7e/Lkyfj4448xZ84cWFhY4Nq1a/juu+8wZMgQrF69Grt374aTk5PeOjIzM5GZmSk9T0pKeuHXQERERMZ3NyoFm86FAAAszOT4tLt36Qb0CoiPj8eiRYuwZcsWaY7sf//9F35+muGOqlevjnfffRcff/wxHB15cwEREVFJEkJg3Y11WPLfEmlZK49W+KHTD7A1N978zaqULMT9GYzM4Ge9ThQ1nw4xblu0i6mZ6dk4tPYGHt58diGwyeueaNWnRpF7ehda4C5gzyQgSzOVDRR2eNhmIdZtvoz+yX8/KyeToVG3nmj7zlBYWNugik99HFyxGJmpKZDJZBBCSL8V1tboMfEj1GjasmRegxFs2LBBa/7I/AghEBISgtDQ0HzXAUB2djZ+++03AChTCW1zc3N06dIFBw8exKVLl3SW8/f3BwD06tWrUPX37dsXo0eP1rtdznVWfZ2GiIiIcrt76UK+5xt3Lp7F0Q1rjHa+kZmWqhkGPFevas1zTcI6I7no+TJrRyfY5QwB7qI9LLidiyvMFMYbjUcIgcd3E3D9aDjuS8OKP+NsmwWPq9vhEn4e8qfTy1i3a4cKc76AeRXt3te3nyRjf8BjyM2jYe8UigDlEXT6U38C29bcViuBXduxtlYC+3mdqnTCj51/xOwzs5GUlQQ55FBDLf22NbfFN+2+QacqnYr8nhRVuUtoJycnS48tLHTvVLnXGSMRnJGRgbVr18LLywu9e/fWWc7BwQE9evTAmjVrtIYBatasGQYOHIg2bdrg1KlTeOutt6Sh03WZP38+5s2b98KxExERUfH6Zt9NZKs1Z6RjO9RARYei3alJhgkICECvXr3w6NEj6ULl8xc7w8PDMX/+fGzatAl79+5FgwYNSiNUIiKiV45SrcQ357/Bjjs7pGX9a/XH7FazYSY307Nl4WQ+SETsb7egTso1xHgXT9j6eRY58ZwUk469y68j/rFm6Ee5iQydBtdB3TYVjRW2fqps4PAczZzZT6ld6+F6xbE4tHYn6iifzaXsXr0Wur4/ARVq1JKW1WzWEuNWbULwhTO4e/Ec0lOSYWlji5otWqN2y7blpmd2bs7OzrC2tn7helJTUxEbG2uEiIzr/fffx8GDB3HkyJF8R5i8desWgoKCIJPJCuyx/rw9e/agcuXKOhPaV69exePHjwEUPllORESvpruXLmDPoq+lwWByrsnk/M5MTcXu779Gn2mzUbOZ7qS2EAIZqSlaQ4BLyeunQ4RnpuY/d3OBZDLYODk/61n9dN5qTQLbDbbOriVyTpSdpUKwfySuHw1H7KMUrXVyExmq17KA24WtsDj+LE9o4uwM91kzYdezp3SdSwiBB0kP4P/YH6svHoJ1rZuQm6YgG8Dhh8jD1swWTSs0RXP3ZwlsE3nhRhjq7NkZRysdxaGQQzj68CgSMhPgoHCAn6cfulXtVuI9s3OUu4R2afn9998RExOD6dOn6x0uvFGjRti/f3++6+zt7TF//nz06dMHR48excGDB9G9e3eddc2cORNTp06VniclJaHKc3dkEBERUek6fjsKx25r5rXzsLfAuI41Sjmil1taWhp69+6N8PBwmJqaolGjRnBzc8OBAwe0yt29exerV6/Gd999h169eiEwMJDDkRMRERWzlKwUTDsxDWcizkjLPmj8Ad6v/36BPW0NJdQCySfDkXQoBDljbsttzOD0vzqwqFn0UVke303A/lUByEjRTCGjsDZFj7H1Ual2CY30khwJbH8PCH323j2p3A+H79oh8uQ25FyJypIr4Dd0BJp37wl5PhcnTc3N4dO+M3zady6ZuIvZkiVL8O67775wPVu2bMHw4cONEJFxDRgwAB07dsSJEycwb948/PDDD9I6IQRmzZoFABg+fDiaNm2qte3ff/+NkSNHwt3dHXv37s23l/XGjRvx0UcfoUYN7f+jZGZm4sMPPwQA1KxZs9DJciIievVkZ2Xh4IrFeqY3ebpcyHBwxWIM+34p0hISpIR1Yq7hwJOiI5GVnl6kOGRyOWydXTRJapdcw4I/HSLc1tkZJqbGu4mysDTDij9C4OlHeYYVt7IzR73WbnAP2oe0tb8AKpW0zuGtt+A27WPI7ewQkhQC/yf+0k9sxrOb8uTPZXVtzGzQ1L2p1AO7jmOdQiew86MwUaB3jd7oXUN3B9+SVu4S2ra2z4amysjI0Fku9zpjXLxcunQprKysMGrUqBeq57XXXpPm89m7d6/ehLZCoYBCUTp3OhAREVHBlCo1vtp7U3o+o4c3LM1LaF7FV9SqVavw8OFD9O7dG6tWrYKHhwdiYmLg5uamVc7T0xPffPMN2rVrh169emH58uWYOXNmKUVNRET08nuS+gQTjkzAnXjNvH5mcjN83fZr9Kze02htqFKViP/zNjJu5xpivLo9nP7nDRO7ove0uX3hCY5uDoI6W3Nx1sHdCr0mNoCDm9ULx2yQh+eBP4cDKU8AABnCAqcVb+Ha4VBAxEjFgmzqoOuwkWjZsV7JxPUSyRkStSzavn07/Pz8sHjxYqSnp2PIkCHIysrC8uXLsWvXLvj5+WHlypV5tluzZg1iYmIQExODnTt3anWKATTXUJOTk9G8eXN8/PHHaNGiBZycnBAUFIQffvgBV65cQZ06dbB37169o2ASEREBQPD508hMTSm4IAQyU1OwdsJ7RWpHbmICWxfXp8nqp8OCuz57bOPkDLmeTqelQRpW/Fg47l+NgVBrn3O4V7NDg86V4Z56G9FfT0Dao0fSOvMa1YFPxuOURxouXf0G/pH+iEmPeb6JZ22pFKhqUx9v1euEZhWawdvR2ygJ7PKg3CW0PT09pcfR0dE6y+Vel3vo76I4e/Ys/vvvP4wePbrAea8LYmlpCVdXVzx58gQPHjx4obqIiIiodG09H4p70ZohkBp7OuDNhiU0HOUr7K+//oKPjw927twpjZqjr8dXjx490K9fP+zZs4cJbSIiomISFBuESUcmISo9CgBgr7DHj51/RFP3pgVsabjMkETE/XYLqsRnQ4zb+nnCrkvRhxgXaoELf9/H5QPP5l+u7O2I10f7wsK6BHr2CAFcWA0c+gxQZ0MIICirNk5EVUdaSohULNbMEcedO8C1tg/ebu9T/HGVEceOHUPdunWNUtdrr72GY8eOGaUuY3NxcYG/vz+WLFmC3377DZs3b4aJiQnq1q2LFStWYOzYsZDL8851OWbMGJw7dw7u7u7o379/nvWPHz/Grl27cPDgQWzZsgXz589HZmYmHB0d0aBBAyxfvhzvvfceLC05XRIRERXsrv95o9wgZmJqCjtXN9i6uD3tWa2dsLZ2dMx3FJqySBpW/Fg4YsPzDites5kbGnSqAmebTETOn4+I/c9GF1SbmeJqzxrY0DART0JnAqHP165hbWYNb4eGOBvogOzU6rA38cKfn3aFlXm5S+++sHL3iuvWrQszMzMolUqEhIToLJezzsvLK8/8M4X1008/AQAmT578QvXkKKt3hBIREZHh4lOzsPjwHen5nN71jDaUJul28+ZNfPTRR3qngHle27Zt8dVXXxVjVERERK+uk+EnMe3ENKRna4aNrGJbBSu6rEBV+6pGqV+oBVJOhSPxn5BnQ4xbPx1ivFbRhwNXZqlwZMNN3PvvWYeIeu0rov3/asPEJG/y0OiyUoG/PgBubAcAxGZa4XBCU4THAYDmhklTcwXOOTTDRat6UMtMsOLNepAXMXlfHnXs2NFodbm5ueUZ0acsUSgU+PTTT/Hpp58avE3v3r0RE6O7B5e1tTWGDBmCIUOGGCNEIiJ6xaWnJBUqt6WwtkGd1u00Pa3d3KU5ra0dHCHL50at8iQ5LgM3Tj7CzVMRyEhVaq2ztDOHb4dKqNe+IqxszRD/55+4s2gRkPJsTvAALxl+fl3gsfM9QHtzWJlaoYl7E7So0ALNKzSHt5M3pm+7gaxYTa/uMd1rvZLJbKAcJrTNzc3RpUsXHDx4EJcuXdJZzt/fHwDQq1evF2ovIiICO3fuRMeOHVG/fn29ZaOiojBmzBh89tlnaN68eb5l0tLSpJPN/Oa2ISIiovJhyeFgJKZrzjr7N66ERlUcSjegV0RiYiIqVixcT3hbW1ukF3FuJiIiItLtj1t/4NuL30ItNJnmhq4N8ZPfT3CyeLHR7XKoUpWI3xaMjFtx0jLzanZwHuQNE7uiT9GWmpiJ/SuuIyo0GQAgkwFtB9ZCA7/KJXODYsxd4M+hQNRNKNVynIvxxOW4Ksg9OmWtFm1wwb0dzt/QxPhW08o83yQiIqJSY2ljZ3APbZlMBs96DfDa6EklEFnJ0Awrnvh0WPHoPMOKu1XVDCteo4krHqdH4NjFdbBdvAVu956dxyZZApu6yHHSV6Y5AQVgaWqJJu5N0Ny9OVpUaIG6znVhmmui7JCYVOy+qklmO1iZYWhrrxJ4tWVTuUtoA8D777+PgwcP4siRI0hMTMzTA/vWrVsICgqCTCbDyJEjX6itVatWQalU4oMPPiiwbFpaGvbs2YN27drpTGgfOnQIqqcTvb9osp2IiIhKR3BkMrZceAgAsDQzwfTu3qUc0avD0dERYWFhhdrm6tWrcHZ2LqaIiIiIXj1qocbiy4uxIXCDtKybVzd80+4bWJgaZy7ezNAkxP16C6rETM0CGWDbqQrsunpBZlL0pHN0WDL2r7iOlHhNvWYKE3R7vx6q1ncxRtgFC9oL7B4PkZGEuynOOBZZE8nKZ/N/27tXgN97Y5HmVhtTlp0GANgqTHm+SURERKWqZvNWuHPxrEFlhRCo2aJ1MUdUMrKVKtx5Oqx4TFjeYcVrNHVDhZbmuGd+Axue7MDVbRfR7vBjvHlewFT9rOzx+jJs9pMj284Kbd2aoFmFZlIC20yue6qbZcfuSjc9jm5fHTaKcpnWNYpy+coHDBiAjh074sSJE5g3bx5++OEHaZ0QArNmzQIADB8+HE2bas/X9Pfff2PkyJFwd3fH3r179faSzsrKwpo1a+Dp6Yk+ffoYHN+SJUswatQoODpqD32VkJAgzd3Yvn179OzZ0+A6iYiIqGwQQuCrvTeheno2OaFTDVSwN86FWypY48aNsWHDBnz88ccGzfd37949bNq0CX5+fiUQHRER0csvIzsDs07Pwr+h/0rLRvqOxJQmUyCXvfjwkUIIpJx6hMSDIci5eie3NoXTO96wqF30IcYB4P7VaPy7/iayMzUdDWycFHhjYkM4V7J50bALpsoGjn4FnFmChCwLHIv0wf2UZzfcmZiaonmft9Ci70CYmplj4KpzyOkA9UGXWnC1LXqPdCIiIqIXVbtVOxz+eQWUmRkFlJRBYW2N2i3blkhcxSUlPgM3TjxC4OkIZKRojwuusDGBWf1U3PG4iJ1JZ/Dk0hMAQP0Hanzyjxoe8c/KPnGS4fTg+vDo8BpWVmgOH2cfvQns3B7GpmHXFU3vbHtLMwx7hXtnA+U0oQ0A27dvh5+fHxYvXoz09HQMGTIEWVlZWL58OXbt2gU/Pz+sXLkyz3Zr1qxBTEwMYmJisHPnTkydOlVnG3/++SciIyOxYMECg+ZpNDc3h0KhwKNHj+Dr64vp06ejYcOGsLa2xpUrV/Ddd9/h3r17aNWqFXbs2PFCr5+IiIhKx7HbUTh1RzN9SCUHS4zuUL2UI3q1DB48GMOGDUP37t2xdu1a1K5dO99yarUaO3fuxJQpU5CWloahQ4eWcKREREQvn9j0WHxw7ANcj74OADCRmWBWy1l4u87bRqlfnaZE3LZgZATlGmK86tMhxu2LntAVQuDqv2E4u+su8DRJ7F7NDj3HN4CVnbn+jY0hJRrYMRLZ907hUlwVXIipgmzx7DqTV4PG6DJyHBw9KgEAdl95hMuhmiuh1V2tMbxN1eKPkYiIiEgPVbYSJmZmBSS0ZYAM6DHxI5ial8A5lpEJIfD4XiKuH81/WPEs50QEVDiJyzbHoIYKeKxZbpsmMPywGh0Cn5VXm8ihHtIXbT6cic6WRbt5cvmxu1KHmlHtqsHWwrBE+Muq3Ca0XVxc4O/vjyVLluC3337D5s2bYWJigrp162LFihUYO3Ys5PlMLD9mzBicO3cO7u7u6N+/v942li5dCgsLC7z//vsGxVSxYkVERERg+/btOHToEJYuXYqIiAioVCo4OzujSZMmmDNnDgYNGgRT03L71hMREb2ysrLV+HpvkPR8Rg9vWJgVfNMbGc/gwYOxatUqnDp1Cj4+PmjUqBF8fHwAACtXrsS2bdsQGhoKf39/xMXFQQiBzp07Y+DAgaUcORERUfl2P/E+JhyegEcpml4iVqZWWNRxEdpXbm+U+jMfPh1iPCFTWmbbqQrsXnuxIcZV2Wqc+O02gs48lpbVauYGv2F1YWpeAudx4ZeAP4ch9HEqjjxpgvgsK2mVjaMTOg0fg9qt2kpzd6dkZuPb/c/ON794wwfmpi/e852IiIjoRZzYsg4ZKckAALmJCdQqlTSnds5vhbU1ekz8CDWatizlaAtHM6x4FK4fC8szrLhapsI95ysIqHASUbah2hsKgddumGLIURUs054lsy2bNoXHvLlQ1KxZ5JjC4tKw479wAICthSlvcAQgE4bM4K7DyJEjMXbsWLRsWb52zvIqKSkJ9vb2SExMhJ2dXWmHQ0RE9Mr5+dR9fL1Pc4GxeVVH/Dm2tXTxsTwp7+cUcXFx6NGjB/z9/XW+/zmnuK1atcL+/fvh4OBQghGWXeX9syciotJx6cklTDk2BUlZSQAANys3rOiyAnWc6rxw3UIIpJyJQOKBB4Dq6RDjVqZwfKcOLOs4vVDdGalKHFwdgEfBCdKy5m9UQ/NeVYv/HE4I4NI6pPw1G8efeOJ2kqu0SiaXo0mP3mg9cDAUVlZamy08eAsrj98DAHSt646fhzcr3jhfAM8rXl387ImIXi2hAVex/evZAAAzC0sMWbAET+4G4+7Fc0hPSYaljS1qtmiN2i3blque2SnxmbhxMhwBJ8ORlarSWpdmloyb7mdw0/0M0syTpOUKEwUauTVCB1UNNNnoD5Orz25ElNvZwe2TaXAYMACyfDrcFsbMnQH47eJDAMCULrXw0Wv5j1BY3hXmnOKFuglv2LABr/0/e/cdHkXVPXD8O1uSTdn0HkpoAUJHmiLFgHQRu6I0FVERsGDBhvB7LYhdsaAiKKjvawGkSO/SpZNACKGl955snd8fEzYJaZtOuZ/n4Unm7pS7BJLJPXPOuf12EdAWBEEQBOG6l5Zr4NPNZwCQJHhzVIdrMph9PfDy8mLXrl18/PHHfP7558TFxZXZp0mTJkyfPp1nn31WVMYRBEEQhFpYHbOaN/95E5NV6R3Y1rMtXwz6ggCXgFqf25pvIv33MxRGpNnGHJq74TW2HZpalBgHyEzKZ/WCo2QlFwCg1qgYNKE9bXr61+q8djHmY131HEe27+CflC4YrcX3IkGh7Rn02FP4hZRtW3M+NY/vd54DwEGt4o1R7et/roIgCIIgCJUwFhawceHntu3+D0/CKzAYr8Bgwvrd1ogzqxlZljl58hwHNkWTd1qNJJde20t2ucjxwO2c9T6MVWXBUe1Ib9/e9AjoQc+AnnR0a0v290tI++YbZFNxb223UaPwf+VlND4+tZ5jXGYBv/97CQC9o4ZH+7ao9TmrzVQIESvg1GrIzwBnT2g3CsLGgFbX8POhDkqOT58+nYMHD/L444/Tvr240RYEQRAE4fr08aYocgrNANzbvQmdmrg38oxubFqtlpdeeomXXnqJU6dOcebMGXJyctDr9bRp04Z27do19hQFQRAE4ZomyzILjy3kiyNf2Mb6BvflwwEf4qJ1qfX5jZdySPs5EktGcYlx1wFNcB/SHEldu4yWS6fSWb/wBIZ85d7NSa9lxFOdCWjZAPdv6THEL5zEpgiJFEMr27DOVU//RybRccDgCjN2/rMmAqPFCsDk/i1o7l37v2dBEARBEITa2PXrj2QlJwHQpH1Hugwe1sgzqr7EvET2xx7g5P5LyMc8cM8JADRcDmVbJAsxXkc4EbiDDLd4uvp35cmAKfT070kn3044qpUHLfP27yd29v0Yz52znVvbpAkBs2fj2u/WOpvvV9uiMRVVLprYNwR35wbunX1qLax4CgozQVKBbFU+Rq6Cv1+Gu76GtsMbdk7UQUA7ICCABQsW8Mknn3DzzTfzxBNPcN999+Hk5FQX8xMEQRAEQWh0pxKz+XmfUubHxUHNi8NqX15TqDvt2rUTAWxBEARBqEMmi4k5e+aw8uxK29j9ofczq/csNKraLSXJskzu7niy1l5RYvz+tji1q12JcYCTO+PY8UsUVqtybu9gF0Y83Rk37/pfpyo4vJyd377P8TTvUuOdBg2l30MTcNJXXEZx6+lkNkUmA+Dv5sjTA2vec1EoKzk5mRMnThAeHt7YUxEEQbiuySYr+cdTKDyZhiXfjNpZg66DN86dfJG0tXtgTWh4caciOLxuNQAaB0eGPDm91qW0G0JSXhIHkg5wMPEgx85H4nE2hLCkW3Azl147KtDkcCpgL+qO2XQN6cjDAW/S2bezLYB9mSUzk6T588n648/iQY0G70mT8Hn6KVR1GA9NyCrgfweU3tkuDuqGz84+tRZ+HVu8LVtLfyzMgl8eggd/hnYjGnRqtQ5oz5o1iyFDhrB48WIWLVrExIkTmTFjBg8//DCTJ0+mS5cudTFPQRAEQRCERiHLMv+3OoKiNVGmhrfGT984pXUEQRAEQRDqW7Yxm+e3Ps++xH22sedvep6JHSbWut2KtcBMxu9RFJwsUWK8mV4pMe5Ru/srq1Vm95/RHN10yTbWvJM3Qx7rgIOuftuPyGYTJxa+wI5dpym0FAezfYMDGfzk8wSFVl7R0Gi28n+rImzbr45oj4ujaJlSlzZu3Mj48eOxWCxV7ywIgiDUSEFEGum/RSEXmEECZECCgpNpZK6Kweu+UJzCvKs6jXCVMBuNrP/mM5CVBbG+9z+MZ0BQI8+qfMn5yRxIPMCBxAMcTDrIhawL+OeG0ClhAAPTH0ctq0vtn+eRhks3A/36hjIt8K0yAezLZFkme/Vqkt59D0t6um3cqUsXAubORde27vtaf73trK1iz4RbQvB0acCe5KZCJTMbUP4Dl6foP/aKp+CF0w1afrxWd8cDBgzA398fHx8fZs6cycyZM9m5cyfffvstP/zwA1999RXdu3fniSee4KGHHsLV1bWu5i0IgiAIgtAgNkYk8U+0suja1MupcfrWCKUkJiZiNBoB8Pf3x9Gx+BePs2fP8tZbb3H06FHc3Nx46KGHePrpp0W/c0EQBEGwQ3xuPE9vepqzWWcBcFA58E6/dxgaMrTW5zbG5pD28yks6YW2Mdf+wbgPDal1iXFjoZmN35/k/PHiQHmXQU255Z7WqFT1ew+QfOoImz55g4QMGVDKQTpooO8D4+k68h5UanXlJwAW7z5HTGoeAD2aezK6y9W5WCwIgiAIFSmISCPtp4jiGNgVH+UCM2k/ReA9LkwEta8Re37/mYx4JVM4oHUo3Ufe2cgzKpaSn6IEsIuysM9nnwdAZVXTOq07dyfci19es9IHqWS8wrTcMqQdzdr4VrlOZLx4kcS35pC3e3fxKVxd8X3+OTwfeADJjnu86krKLuSXA8rDmc4Oah7v17LOr1GpiBVKmfEqycp+ESuhywP1O6cSahXQ3rp1a5mxfv360a9fPz7//HOWLl3Kd999x5QpU3j++ed58MEHefzxx+ndu3dtLisIgiAIgtAgDGYLb6+NtG2/Orw9Om3d37AK9ktPT6dFixa2gPbff//NkCFDAIiMjKRPnz7k5uYiFz1BvGfPHvbs2cPSpUsbbc6CIAiCcLUwWAxsOL+BLRe3kGnIxMPRg/Bm4QwJGUJ0RjRTN08lrVAJCns6evJZ+Gd09etaq2vKskzengQy18TYSoxLTpo6y9LKSS9kzYJjpMXlKudWSfR/MJSO/YNrfe7KGPLz2f3DxxzesRuZ4gXRtqH+DHx2Hq7ePnadJzm7kE83nQFAkuCt0R3Eg3hFWrasu0XcvLy8OjuXIAiCUJpsspL+W1TFCZ22HSH9tyiCXu0tyo9f5ZJiojmwSimvrdZoGPrkDFSqxlsPS8lP4WDSQVsW9uUA9mXORjfCEvsSltwXZ5O+1Gs6Vw0d+zehQ79gXD3Lz8QuSTYaSfthMalffolsMNjG9UOH4v/qq2j9/erkPZXn6+1nMZqV7OxxNzfHq6Gys435kHAE/vnU/mMkFZxade0EtCvj7u7O1KlTmTp1Kvv27WP8+PEsWrSIRYsW0bFjRyZPnswjjzyCh4dHfU1BEARBEAShVpbsPs+FtHwAerfwYljHgEaekfD7779jMBjw8fFh8uTJdOzY0fbajBkzyMnJAeCmm24iKCiIHTt28MsvvzB27FhGjGjY3j6CIAiCcDXZenErr//zOtnGbFSosGJFhYpNFzfxf3v/D4vVgtGqPDAW4hbCl4O+pKlb01pd01poJuOPMxQcT7WNOTQtKjHuWfvyhInnslj71XEKspV5OzprGDq5I03b174Xd0VkWSZq7y62ffcZubkFUBTM9nQ0MOiRR2g+ZEK1zjdv3WnyjEoZ7Id6NaNjsHtdT/madf78+Sr3kSTJ9iBjVa+LBwUEQRDqR/7xFKXMuB3kAjP5J1Jx6VZ/QUGhdixmE+u/+gTZqgRW+9z9ID5NmzfoHFILUjmYeNCWhX0u61zZnWTwzw2hc+JAWqR1QSWXfkjCt5mezrc1oXUPPzR2JqfkHzpM4uzZGM6csY1pggIJeOMN9LfdVqv3VJXknEJ+3ncRACetmsn1lZ0ty5B2FmIPQNxB5WPiCZAtV+ymJd96K4WWPlhkPWopB516L86qXUiSSempXZBRP3OsQL025Dl37hzfffcdixcvJjExEVBu/I8fP8706dN56aWXuOeee3jmmWdE1rYgCIIgCFeV1FwDn2+OBpRsmTfvCBOLYFeBDRs24ObmxqFDh2jSpIltPDo6mk2bNiFJElOmTOHLL78ElBLkPXv25IcffhABbUEQBOGGtfXiVmZsnWHbtmIt9bHAXGB7rbtfdz697VM8dB61uqYxLpe0nyOxpJUoMX5rMO7DQpA0tc/KOnMwic1LIrGYlPfg5uvEqKmd8QxwqfW5K5IeH8eW7xdw4cQx25hGstC7pZUez3+LxiekWuc7fDGDPw4ppTzddBpmDmlbl9O9LvTr16/CTO2///6b5ORkmjVrRseOHfH09ESj0WCxWMjIyODEiRNcuHABrVbLvffei4NDA/agFARBuIEUnkwr7plth8wV0eQfSkKtd0Ctd0Cld0DtVuJzvQMqR1Edr7HsX/E7KRfPA+Ab0pKed95b79dMK0izlQ8/kHiAmKyYCvd1kB3pbxhFq9geSCnOpV6TVBKtuvvS+bamBLR0s3sdz5KdTfJHH5H563+LB1UqvMaNw3f6NFQu9Xd/ednC7TEYirKzH+nTDB/XqrPJ7VKQAXH/QuxB5U/cwSoD0QWWXqSbnkNGD1gANcgWCqx9yeQJvLQf46Q5CE6edTNHO9UqoP3oo48yZcqUUsFok8nEn3/+yXfffcfWrVuRZdn2JKS7uzsPP/wwkydPRqvVsmjRIpYuXcrPP//M3XffzeLFi3FpgH8YgiAIgiAIVflww2lyDMoTxg/2bEqHoPrPlrEaDOSsW0fOps1YsjJRu3ugHzwI/bBhqBzr6Eb2Gnfo0CEmTpxYKpgN8McffwDg5OTEO++8Yxtv1aoVDz/8MH/99VeDzlMQBEEQrhYGi4HX/3kdALmKlWaNSsMXg75A76CvdL/KyLJM3t4EMleXKDGuKyox3qH2JcZlWebg2vPsX1WcqRPUxoPhUzqhc9XW+vzlMRkN7F/xGwdW/o7FXJyB1tI1jfDbe+J+7wegqV6w1GqVeeuvk7bt528PbbiykteQKVOmMHbs2HLHmzRpwsqVKytNktm/fz/PPPMMiYmJbNy4sT6nKgiCcMOy5JvtDmYDyAYLhjOZle4jOahRuzmg0mtLB76vCH6rnDUi+aAOpV48z94/laCupFIx9MkZqDVlw4iVtbFxVFe9fpVWkGYrIX4w8SBns85WuK9G0tDBpwM93W6mycWOZB5WUZhjKrWPzlVLh35BdOwfjGs1qgDJskzOunUkvvMOlpTiikK6Dh0ImDsHpw4d7D5XbaTkGFi67wIAjhoVk/vXMDvbYobkCCXr+nLwOjWqioMk8GsPwTeBLFPwbxRpptdLvK4u9VHGhTTT63jzH5za3VGzedZQrQLaixcvZvDgwfTu3ZvIyEi+++47fvrpJ9LSlH5LlwPZt956K5MnT+a+++5Dpyv+x/TBBx/wzjvv8P333/PSSy8xa9YsPvvss9pMSRAEQRAEodZOxmfx64FLALg6anj+9vrPlsnZsoX4V2Zhzc4GlQqsVlCpyNm4EdXb7xD03nvow+u3vNG1ICEhgbCwsDLjq1evRpIkxowZU6alTfv27fnuu+8aaIaCIAiCcHXZcH4D2cZsu/Y1W81su7SNO1rVbHHKWmgm488zFBwrXhDUNnHFe2x7NF61LzFuNlnY8uMpzhxIso21vyWQAWPboq6DrO/yxBw+wJZFX5OVXHxNvaaQ8OBYWo2djdT1oRqd9/dDsRyNzQIg1N+VR/o0bCnPa4GjoyNqddkMvZ9//pmNGzdy/PjxKhNjevXqxZYtW+jcuTMLFixg2rRp9TVdQRCEG5baWVOtDG17yEYL5tQCSC2ofEe1hNrVAZWbA2pXbZlMb7W++DVJLfp2V8ZqsbD+60+xWpSH93rdeS/+LVqV2a+yNjbv7X+Pt299m4FNB5Y6Jr0w3ZZ9fTDpINGZ0RXOQy2plQC2f096+vckOL81UTtTObs6mUSrBSVjWOHT1JXOtzWlTU/7y4pfZoyNI/H/5pK3fYdtTHJ2xm/GdDwffhipnEB+ffluZwyFRVWHHu7dHD+9nffN2QnFZcNjD0L8YTDlV36Msw806QlNeih/grqDzg0AOT+f9H3bi3as6P+LCrCSbn6eoDYDaMjHSWr9FVm7di1ffvkle/bsAYqD2D4+PowfP57HH3+cdu3aVXi8g4MDTz31FKmpqSxcuFAEtAVBEARBaFSyLDN3VQSXW/FNC2+Nr75+s6NztmwhduozxQNFfYouf7Tm5BA7dSpNFnyBPjy8XudytVOpVBiNxlJjSUlJtnvRBx54oMwx5S2ECoIgCMKNYsvFLbbFxqqoULHl4pYaBbSN8bmkL4vEXLLEeN8g3Ie3qJMS4/nZRv7++hiJMUXBeQluvqsV3W5vVi+ZWdmpyWxd/C3RB/bYxlRY6eEdR5/WKrRjf4eAjjU7d6GJ99edsm2/dUcHNGKRvYyCgvKDGAsXLmTixIl2V3l0dXVl0qRJ/PzzzyKgLQiCUA90HbwpOJlm9/6e94fi1M4LS46x6I8Ja7bRtm29PJ5tRDZYKj+ZRcaSZcCSZcBU2X4SqJy1RcFurS3Tu2Tg+3LwW+VwY64h/LtmBYlnld7RXkFN6HP3g2X2qaqNTY4xh+lbpvP2rW+j0+iUHtiJB6oOYHt3oEdAD3oF9KKrX1d0OBF9KJljP13iyIWTpfaXVBKtuvnS6bYmBLZyr/Z9oGw2k77kR1K++AK5xL2Ga3g4AW+8jjYwsFrnq620XAM/7lGysx00KqYMqCA721QACceKgtdFAezs2MpPrtJCYOeiAHZPJQvbM0TprViO/FM5yLKrHbNWIcuu5J/OxaWbc9W715FaB7R/+eUXQFn8lSSJwYMHM3nyZMaMGYNWa3+pJw8PD1JSUmo7HUEQBEEQhFpZfzKRfefSAWju7czEviH1ej2rwUD8K7OUDbmCx5llGSSJ+Fdm0Wbnjhu6/HiTJk04ePBgqbHvvvsOq9WKXq9n6NChZY6JiYnB27v2JU4FQRAE4VqUaci0K5gNymJkpiGzWueXZZm8/YlkrjoL5sslxtV43RuKU0ef6k63XGlxuaxZcIycdCVYrnFQcfujHWjZ1bdOzl+SxWzm3zUr2PPHL5gNBtt4U+dMBgWcxbvTALjra3DyqPE1Ptt0htRc5QG9EZ0CuKV13fw93ShOnjzJhAkTqnVMkyZNOH36dD3NSBAE4cYlyzKmxCoyQkuQnDQ4d/JF0qpQOWvR+lf+cJLVaCkOcOcYiwLfpjLBb2ueqfIMcRmseSZlv8Qq5uioLh34Lif4fb2VO0+Pj2P3/5YpG5LE0KdmoHEo3QrFnjY2l8df3fVqhddSSSpbALunf0+6+3fHRav8O8jLMnByXRwndsZTkF06mUHnUlRWfED1yoqXVHD8OAlvzsYQGWkb0/j54f/6a+hvv71Rvp7f7TpHgUl5cGNsr2b4u+mUdcD0mKLe10UB7MTjYDVXfjL3ZkWZ10oAW/bpgNWiwVpgRi60YE0zY41NVT4vNGMtMGMtNNu2DRfsq+oEgASFJ1Jx6eZXi3dfPbUOaMuyTFBQEJMmTeKxxx4jJCSkWscXFhbyyy+/MH/+fDw9G7aBuCAIgiAIQkmFJgtvry2+qX1tRHscNfX7ZG7OunVKmfGqyDLW7Gxy1q/HffToep3T1WzAgAH89NNPjBo1ihEjRrBjxw7mzZuHJEncfffdOFzxC1dhYSFLly6lQwP1PRIEQRCEq42Ho0e1MrQ9HD3sPrfVYCbjz2gKjhYnKGiDXfEe2w6Nt1NNplvG+eOpbPj+JKZCZaHPxcORkU93xrdZzft8VyQ24gSbvv+StNiLtjFntZEB/jG0d0tFGvQa3PqC0h6mhqKTc1i8+zyg9Eh8dUT72k77hpOXl8e5c+eq3rGEmJgYCgsLq95REARBsJtslclcGU3evioixJdJ4HVfKJLW/p+jKgc1Km+nKu8rZIuMNU/J6i4V/M41Yck2lgqKY6m8NrpssGA2VLPcud4BtV5bfq9vVwck9dUb+JatVjZ88ylmkxJA7j58NEGhZe9PqtPGpiSVpCLMK4yeAT3pEdCD7n7dcXUonQWceC6LY1tiOXsoGesVXx+lrHgT2vTwR1PD7HlLbh4pn35KxrJlxVURJQnPsWPxfXYGan3d31faIyPPyI+7z6Mnn5s0MbygOwrL5kDsAeT8dGR0WHFBll2w0gar7IKMC1bZBavKE6trC2Snpli1flhV7sgmNdaLZqxRZqwFRjD/W3+Tl8FaUEWAvY7VOqD95ptv8uabb6Kq4c18XFwcjz32GABDhgyp7XQEQRAEQRBqbNE/57iUrvzC0re1N7eH+df7NXM2bS7umV0VlYqcjZtu6ID2c889x5IlS0qVFpdlGY1Gw8yZM21jqamp7Nu3j7lz55KYmMjUqVMbY7qCIAiC0Oi6+HVh08VNdu1rxUp4M/vamxgT8pQS4yUWe11vCcJ9RN2UGJdlmWNbY/nntzO2Ija+zfSMfLozLh51W60mPyuT7UsXEbFjS8kZ0NUzgb6+59G5usM9f0DrQbW6jizLzFkVgdmqvKEnB7SiiWfDlWm8XoSEhPDtt9/yzDPP4OdXdVZQUlIS3377bbWTcARBEISKyWYr6f87TcGxVNuYS68A8o+nIheYi3tqF32UnDR43ReKU1j9VE+T1BJqN0fUbpXfI8iyjFxgtpU0L87yNtnGLge/66XcuVvJLG9t6cC3vnHKnR/ZuJa4UxEAuPsHcOsD42yvWWUrF7IvEJEWwddHv67WeZvrm/NSr5fo5tcNvUPZgLHFbCX632SObY0l+XzpQLmkkmjZ1ZfOtzUhsHX1y4qXlLNpE4n/9x/MSUm2Mce2bQmcOwenLl1qfN6qyBYZ2XA5C9pSlAltxppvwpoSh5waS9rFONaYc3FVgWx1IX+rC7m0RpYnYMUFqOLfQ3rJDfsrJdQJCVRODddnHOogoB0aGlrjYDZAq1atMJmU/+61OY8gCIIgCEJtJGcXsmCL0tNHJcEbo8IapNSQJSvTvmA2gNWKJSurXudztWvfvj1Lly7lscceIzc3FwCdTscnn3xSKgv7008/5e233wZAkiTuv//+RpmvIAiCIDSmjRc28vUR+xYfJST0DnqGhFSebCDLMnkHEsn8KwbMyj2M5KjG8942OHeqmxLgFouVnf89w8kdcbaxVt18GTQpDG0dLvRarRaObVrPrl+XYMjLs40H6HIYHBCNv1MuBHWD+38Ej2a1vt6myGR2nlEW/oM9nHhyQKtan/NGdPfdd/POO+/Qq1cv5s2bx5gxY3AspyVPYWEhK1asYNasWaSkpPDEE080wmwFQRCuP1ajhbSlkRiiMpQBFXjd1xbnbn543NGK/BOpFJ5IxVpgRuWkQdfRB+eOPtXKzK4vkiQhOWurX+48+4rAty0DvLrlzvMq2bFkufPiQLdary2T9S051U2586zkJHYuW2zb7vzw/WyM38LJtJNEpEUQmR5JnqnsnLVWDf1yunNzThfcLC5kq/PYoz/KTv0hTCola9fX2Zf+TfqXOTYvy8DJnfGc3BFHfjllxcP6BdGxfzB6r5qVFb/MlJhI4n/+Q+6mzbYxSafDd9ozeI0fj1RFy2TZZFXKcheV5i5Zprv050UBa1v5bjPWAguysYoHIvBGh/KAR13WkJEc1ah0GlROaiSdpuhzDZJOXe7nKl3RtpOGwsh0Mv44Y9+FZNDVUXshe9UqoH3u3Dm7noQEGDZsGBqNhieeeILRV2QVqdUN/9SJIAiCIAhCSfPXnyav6GbzoV7NaBfg1iDXVbt7VCtDW+3uXu9zutrdd999DBkyhJ07d2I2m+nduzeBgYGl9rnnnnto3bo1AHq93va5IAiCINwIjBYjHxz8gF9O/WLX/hLKgujbt76No7rizCarwULm8jPkH6m/EuOGfBPrvz3BpcgM29hNw5rTe3RLJFXdPWyYePYMm777kqSY4kU7R41MP59oOnkkopKAmybCsHmgrd2CKiitbf5vdYRt+7WR7XFqhCys68Err7zCsmXLuHDhAmPHjsXR0ZF27doRFBSETqejsLCQ+Ph4Tp06hcFgQJZlWrZsycsvv9zYUxcEQbjmWfNNpC6JwHi5165GhffD7XBqrwTmJK0Kl25+DdpXt77YX+7cijW3OMPbknu513dxANxaH+XOS/TzVrs5oHbVlsoAV7s5oHIpv9y5VbZyIesC6z+dh8mghFPPhhSy+NQLcKryS/fO6cQL8ePRW12wYEWNCgtWbs3pxpOq+/gw6EcO6E+WaWOTdC6bY1svEf1v2bLi3k2UsuKhPWteVvwy2WIhfenPpH7xFbIZVG7BSFondF164HHPA6ic3MjZmVDcO7ooEG0ttCDbPjeDufKvVb2QZFQ6NZKTQ1GwWQk8S0WBZ+W1y58XB6Jtr+k0tbpfdu7qR+bac0qVhaqm6qTB+VoKaLds2ZKffvqJsWPHVrlvdHQ0MTEx/P333/z111+MHDmyNpcWBEEQBEGoM8djs/j9UCwAep2G528PbbBruw4aRM7GjfbtbLWiv31w/U7oGuHu7s6oUaMqfL1r16507dq14SYkCIIgCFeJS9mXmLljJhFpxcHT4SHDua3pbfxn33/INmbbempf/qh30PP2rW8zsOnACs9rSswjbVkk5pTiBVaXmwPxGNGyzjKuslLyWbPgGBmJSslElUYi/JF2tO0TWMWR9ivMy2XXrz9xdONabLXMgQ7emfT3OoWzxgRqRxj5IXQfV8mZquf7Xee4mK68r5tbejO8Y0CdnftG4+rqytatWxk1ahQREREUFhZy9OhRjh49Wmo/uejr26FDB1avXo2LS+WZeIIgCELlLDlGUr8/gakoy1hyVOMzoQOOLW/sB+8ltQq1uyNq96rLnVvzzaX6eVtzruj7XRQAt6vceaYBS6ahismBykWLxRlyHQtIUaUTKydwxnwO0rMJuaQCjTtpmiz2tkkuc7i/sz9h3mF08O5AjjGHU/sO8WbsFNvralSlPrpYnXgzdgpzm3xDeLNwLGYrZw8pZcWTzl1RVlyClt186Xxb0zJlxWWLXCLbuSjYXHhF+e6Sgeii1yw5BViy8kHVDJdB88q8n+yNKUBKmfG6IlGIRB4qKQ8VeUhFH1VSPipylW2dA1avAP5K0HDY5EuEFMi3T/UjKECPpFU1SLXICuevVeF1XyhpP0VUXnVAAq/7Qhu86kKtAtqybP8TCidOnODIkSNMnDiRd999VwS0BUEQBEG4KsiyzNzVJ23rmTMGtcHbtW77MlZ27YJjx+zbWZJQ6fXohw6t30ldh86dO8fOnTsZP358Y09FEARBEOrV+vPreWv3W+SalLYcDioHXun9Cve2uRdJkghvHs6G8xvYcnELmYZMPBw9CG8WzpCQIRVmZsuyTP7BJDL/OotsKlFi/J42OHeumxLjAPFnMvj76xMU5ilt6XSuWoY/2Ymg1h51cn5ZloncuZXtSxeRn5VpG/f2cmGwfi9NnIvGPJrB/T9BUNc6uS5AQlYBXxS1tlGrJGaPbpjWNtezkJAQDh8+zJdffsmiRYs4ceJEqXVKSZLo3Lkzjz32GE8++STaKsqKCoIgCJUzpxeS8v1xLGlKNq/KVYvPpI44BLs28syuHZIkoXbRonbRog2wo9x5iUD3lcHvy4Fva16l3buVcue5JqRc0KNBjx8t8aM/Rb2jg4p3vS+mkAKdEdlVjc7dGXdvb1w93ZWsbxctZi+ZuPjOgISK8u9jlIclZV6Mn0jmoab88c0/mPPMaCUI1kpoJAknRxWBTfT4+DuhlkHeFUvKpgulSnbLRjtb85VDUtewso5Uslx3OWW5tRZUhgRUeeeRsk+jSj+OyhBfInCdjyRdkdmsdVba1zTpAU1uh+Ae4BbIp5vO8PHFKAAe7NGUJs08avx+65pTmDfe48JI/y1KydSWUILbRR8lJw1e94XiFObd4HNrsI7dOp2OPn36MG3aNGbPnt1QlxUEQRAEQajUmuMJHDivlLRs6ePC+JtDGuS6siyT/N48Mn/+2TZmUWlI9u1Oqk9nTBoXtOY8fFKP4ZdyGLVsJui991CV0x9QqNzu3buZNGmSCGgLgiAI1y2DxcD8A/P57+n/2sZC3EL4YMAHtPVqaxtzVDtyR6s7uKPVHXad12q0kLk8mvzDxRk72kAXvB5uj9anbkqMA0TuTmDbslO28pOeAc6MnNoFd9+6uUZa7EU2ff8lsREnbGMaB0duaSPR3bIetVQUCG09GO7+Fpy96uS6l7279hQFJiXTalyf5g3W2uZ6p9VqmTFjBjNmzCArK4vz58+Tm5uLq6srISEhuItWPYIgCHXClJhHyvcnsOYo/Y7VHo74PN6pTu8FhNJUDmpUPk5oKvk7lmWZS5kXiYo9xcWEc6SkJJCbnoWzwREvszueZje8zG62z7VVhAOdrTqc83WQDySD5Uw6WaSX2seFqr/mKiRcrE64/JtKsArQl3PdhFyMCblVnqs6ZKsZ2ZQPpgJQWXAIaYLW30sJUldUsttJ6TWt0mmQHNTF5bqtFkg5DXEHIfYAxB6E5EjKpC1fmaDs3Qaa9CwKYPcEvzBQl37/2YUmvt8VAygPOk697eprkecU5k3Qq73JP5FK4YlUrAVmVE4adB19cO7o0+CZ2Zc1WED7srS0NPLyKm98LwiCIAiC0BAKTRbeXVvcHOi1ke1x0NT/TZksyyR/8AHpS5YoA5JEwT3TOJDYFLPGGWQrSCqQraT4duNMm/voN9AZffht9T63a43FYiEtLY3CwsIK90lNTW3AGQmCIAhCw7qYfZGZ22cSmR5pGxveYjizb56Ni7bmJZZNSUUlxpNLlBjvHYDHqFZ1toglW2X2rozh0PoLtrGmYV4MndwRR6faL1mZCgvZ8+ev/Lt6OVZLcenONl06MlC7Cbe8M0q2CRIMeFn5o6rbe8ED59P562g8AJ7OWp4b3HCtbW4k7u7udOnSpbGnIQiCcN0xXMwm9YeTtp66Gj8nfB7rhKaK8tpC3ZJlmUs5l4hIiyAiLYKTaSeJTIskx5RTesdynpnzc/YjzCuMrvpOhDm2wzkqn+h1W9GpXdE7e9Ouez8osCpZ39lGZGMV5c7rieSgqrRftMpJ6RF9+TVLQQ4ZS74jd8tGJZBtNSE5OODz9FN4P/ookoOD/RfPTYELB5XAdewBiDsExpzKj9F5lAhe94Dgm8DJs8pL/bj7PNmFyv+nu7sF09TL2f55NiBJq8Klmx8u3fwaeyo2dv92sH37drZv315m/M8//yQ6OrrK400mExcuXOCPP/6gZcuW1ZulIAiCIAhCPfh2Rwxxmcoibb82PoS3q/+bNFmWSfn4E9K/X2Qbs0x/lz3H9MV3ZpKq1Eezxpmt/4BTpxRadKm70p7XsnXr1jF//nx2796N0Whs7OkIgiAIQqNYd24db+15izyTkjjgqHbklV6vcE+be2pV0jrvYBKZK6OLS4w7qPG8pzXOXeruXslksLDphwhijhT3Mew0IJhb72+DSl27oLIsy0Qf3MvWxQvJSS0+v7t/AOG3daRlxDzIU/pZo3OHu7+D0CG1umZ5LFaZ2StP2rZnDm2Lu7MofS0IgiBcGwrPZJD2U4St/LO2iSs+kzqidhE/y+qTLMvE5sRyMv0kEalKADsiPYKcqgKsgJ+TH2HeYYT5KH2vw7zD8HHysb2en53F4s+foiBX6Wc9+rFX8evdqdQ5rAZLqT7flmyl3HnW3gRUVfX2LsGkAuf23jh6OBYHoi9nQ9tKeRcHqSW1ffeustVK5v/+R/KHH2HNKf47ce7Th8C3ZuMQElL5CcxGSDxeFLguCmBnnK/8GEkNAR2VkuFNeip/vFspjcCrIddg5rtd5wAlO/uZ8KsvO/tqZndAe9u2bcydO7fM+PLly1m+fLndF5RlmUcffdTu/QVBEARBEOpDUnYhX247Cyg3kW+Oaphehqmff07awoW2bd8357DioCfI5kqOAmTYvCSSifO80GjV9TzLq9vbb7/Nm2++WapPYlVEn0pBEAThemKwGHh///v8L+p/trHySoxXl9VoIXNFNPmHSpQYD3DB6+F2aH3rLnskN8PA2q+OkXJRWYSUJLj1/lA639ak1ufOTEpk6+JviDl0wDam1mjoecfd9HI5jvbfEm3wAjop/bK9WtT6uuX59cBFIhKUBeOwQDce7NmsXq5zI9u4cSNLly5l3759JCYmsnz5cm67TalqNGnSJB5++GEGDx7cyLMUBEG49uQfTyH919NQ1A7EsZU73uPDUDk2eNHf61qp4HVahBLArm7w2juMDj5lg9fl2bLoawpylHuT0N59adP7ljL7qBzVqByVcueFuSYyE/JIt4LRaMVXlu1aX5FlmXydAy3GhVW5b3UURkWROPstCg4fto2pPT3xf+Vl3EaPLjs3WYasS8Vlw2MPQsJRsBgqv5A+sHTp8MCu4FD7e+Ef95wnM1/pe35n1yCae9e8mtKNqFrffcpbNLR3IdHZ2ZnQ0FAmTJjA9OnTq3NZQRAEQRCEOjdvXXEvw0d6N6ONv77er5myYAGpX35l2/Z/8w1SWvbDsCOykqOKGfLNnD2UQtveAfU1xavevn37ePPNNwF48MEH6dWrFxqNhunTp/PSSy/Rvn17AHJzczl48CBLly4lNDSUl156qTGnLQiCIAh15nzWeWZun8npjNO2sVEtR/FGnzdw1la+0CabrOQfT6HwZBqWfDNqZw26Dt44d/LFnF5A2rJTmJPzbfu79ArA446WSHX4MF3yhWzWfnmMvCylwopWp2bo5I407+Bdq/OaTSYO/vUH+5b/D7OpuHpL887dGHT/PXjueBlO7S0+oMtYGPURaOun/2dmvpEP1hd/jebc2QG1SjxgV1eysrIYO3Ys69atA5T1SUmSSq1TLl26lB9//JFhw4bx888/i57agiAIdsrbn0jG8jO2dsG6Dt54P9iu0frmXi9kWSY2N9ZWMjwiLYLItEiyjdlVHuvr5KsErouyrsO8w/B1rl4FvzMH9nB6z04AdK56wh990vZaQY6R9Pg80hPyyEhQPqYn5FGQY7Lt00Qr4ediX0hRkiTS6rCln7WwkNQvvyJt0SIwFyeEuN91F34vvYjGs6jUtyEX4g8XB7DjDkJuUuUn1+ggqFtx8Dq4B7gH19ncL8szmPl2h9I7WyXBM1dh7+yrnd0B7dmzZzN79uxSYyqViqVLlzJ27Ng6n5ggCIIgCEJ9OXIpkz8PxQHg7qTl2QboZZj69dekfv6Fbdv/tdfwGjuWfd8cV3o32vOMoAQxR27sgPaCBQuQJInVq1czbNgwANLS0pg+fTpDhgwhPDy81P4TJ05k8ODBBAfX/S8jgiAIgtDQ1sasZc6eOeSblaCzo9qR13q/xpjWY6rMlimISCP9tyilB+blew8JCk6mkbk8Gtkq27KwJAcVnne1wbmOe+adPZzMph8iMBeVLtV76xg5tTPeQa61Ou+FY0fYvOgrMhLibGOunl4MnPAEoQEg/X4f5BVlnasdYPg8uGlStctEVsfHG6PIKJGB0zPEq96udaORZZm7776bbdu22QLZ7u7uZGeXDggsWrSIhQsX8vfff3PHHXewfft2UbVHEAShCjnbL5H193nbtvNN/nje3cbuctCComTwumTPa3uC1z5OPrbA9eWP1Q1eX6kwN5fN331p227d614OrE0mI+Ec6Ql5FOaaKjlaEW+S6WSV0UqVV8GTZRmTDPmeulrN+bLcf/4h8a05mC5dso05hIQQ8NZsXFp5wvk1sKsogJ0cAbK18hN6tSqdfe3fAdT1X0Z/6d4LtnvD0V2CaOlbu/vfG5GoDyEIgiAIwg1FlmXmriruZfjs4DZ4ujjU6zVTF35Lyief2rb9XnkZr3GPAFCYZ7IvmA0gF+1/A/vnn3+4++67bcHsqgwYMIBHHnmEr7/+WpSbFARBEK5ZheZC5h2Yx+9Rv9vGWri34MMBH9LGs02VxxdEpJH2U0TxPccVHy/3ygbQ+Dvj/XB7tH51V2JclmUOrb/A3hUxtrGAlu6MeKoTTvqa34flpqex7cfvbNlGAJJKRffhd3DzPWNxPPoD/PgmyEX9Ht2awAM/QvBNNb6mPU4lZvPT3gsAODuomTW8fb1e70bz22+/sXXrVkJCQpg3bx7Dhw+nsLAQP7/SD2CMGzeOcePG8frrr/Puu++ydOlSxo0b10izFgRBuLrJskz2uvPkbI+1jbn2C8Z9RAvxMFAVZFkmLjfOlnV9+Y+9wesrM6/9nGv3QKEsy+RnGW1Z1ukJeUTtXkZeZgYAKm0LzhzyQJLiKj2Pk16LV5ALXgEueAa6kJtp4NCmi/R2UdseKCvv2gCH8i106l6792FOSyPpvXlkr1pVPKhR4zMkDO+Ohai23g/rsio/ic5due+73Pc6+CZwbviHDPONZhYWZWdLEjwTXvX9u1BWrQLaW7dutZV1FARBEARBuBb8dTSeQxczAWjt58ojfZrX6/XSvl9Eykcf2bb9XnwR74kTbds652o8BSqBzqX+nxq9miUkJNC7d+9SY5d/ibJay38Kt2fPnrz77rv1PjdBEARBqA/nss4xc/tMojKibGOjW43mtd6vVVliHJRgdfpvUfY9QKeW8H2iM+o6vN+wmKxsW3aKU3sTbWOhvf257ZF2aGpYytxqsXBk/Wr++d9SjAUFtvGg0PYMeuwp/AJ9YeXTELGi+KCWA+GeReBSu9LmVZFlmTl/RWAt+vueeltrAtzrJkNJUPz888/4+PiwZ88e/P39ATAYKu6F+Z///IcNGzaIgLYgCEIFZKtM5vJo8g4U/6x2GxqCfmCT6gezTYXKz99TqyE/A5w9od0oCBsD2mv/5+Hl4HWpzOv0SLIMVQRWKQ5elwxg1yZ4LcsyeZkGJWgdf7lUeD4ZiXkY8ovLcltM5zHlXu457YDWeXCpr6uzuwNegUrQ2qvoj2egM06upR86NJssnNwRx/48C92c1ThIpVt+SJKESVaC2ZkOalp1r1lWuSzLZP3+G8nvz8eSk2sbd/I1ENgjC0e3S3CxnAMllZJtHdyjOIDt3RpUjV8q/+d9F0nLU1rijOocRGs/kZ1dE7UKaA8YMKDax5w7d46dO3cyfvz42lxaEARBEASh2gqMFt77+5Rt+/WR7dGq6+/GNm3xYpLnz7dt+77wPN6PPWrbLswzkZ1aUN6h5ZOhZdfalZm6Huj1pfud63TKL8VxceU/XZyfn09KSkq9z0sQBEEQ6trqmNXM3TOXArNyv6BT63itj1Ji3F75x1OUMuP2sMgURmXgUkelxgtyjfz99XESoosXeXuPbslNw5vXONsrPiqSTd99ScqFc7Yxnd6N/g9PpOOAwUhpZ+DbcEgtfgCAfi/Aba+Bqu56gVfk7xOJ7IlJA6CZlzOP3dqi3q95ozl48CCPPvqoLZhtjzvvvJPPPvusHmclCIJwbZLNVtL/e5qC46nKgAQed7bGtU9g9U92ai2seAoKM5XgomxVPkaugr9fhru+hrbD63T+9UmWZeLz4jmZWiLzOj3CruC1t86bDj5FWddexZnXNbn/kWWZ3AxDmR7XGQl5GAstVRxrxJS/0bbt12o4LbqG4RnobAti25s4odGqGTQxjLVfHWN9tpkgrUSgVoVWUkqMJ5gsxJtkrBKMmBhm/4OLsgzZcRB7AMO/W0n8cQf5scUPqqkcrPh3yca9ZX7pbjGu/qVLhwd2BcerL1BcYLTw9fbi7Oxp4aJ3dk01eMnx3bt3M2nSJBHQFgRBEAShwX2z4ywJWYUA3NbWl4Ft67YvZEnpPy0l+b15tm3fZ2fgM3mybTs1Noe/vz5Odmqh3ed0dNbU+AnX60VgYCDHjx8vNebs7Iyrqyvbt29nwoQJZY5Zv349Dg71W1ZeEARBEOpSobmQ9/a/xx9n/rCNtXRvyYcDPqS1Z/UWwQpPphX3zK6KBIUnUuskoJ2ekMeaBUdt9zpqrYrBE8NofVPNzl2Qk83OnxdzfMuGUuOdBg2l30MTcNK7wckVsHIqGIuyeRzdlMXzdiNr81bsn6PRwttrIm3bb4wKQ1fDLHShYqmpqbRt27ZaxwQGBpKZmVk/ExIEQbhGWQ0W0pZGYDiTqQyoJLweaItzlxqsO5xaC7+OLd6+3Mf48sfCLPjlIXjwZ2g3olbzrg+Xg9e2zOvUk9UKXpeXeV3d4LVslclJL7SVCc+4nHmdmI/JUHnguiRXT0clWB3kQsKplVw8ngNAs45duPf1x2tVQr5FZx9GjDKyeY2JWJMLsSYjoAYsgBpHVR6DRjnQorNPxScx5kH8EYg9AHEHIfYg1swE0iL0pEW6IluL5+fWPB//btloXLQQ1Lu4bHiTnuDeBK6Bcvi/7L9Iaq4SoB/RMZBQf30VRwgVET20BUEQBEG4IcRnFvD19rMAaFQSr40Mq7drpf/8M0lvv23b9nnmGXyefNK2fWpvAtuWncZS1K9S66iu+pcTCQZV5wnX61T37t1ZvHgxzzzzTKmFzJtuuomlS5cyZMgQHnzwQaCoX/rcuWzevJkePXo01pQFQRAEoVpismKYuX0mZzLO2MbubHUnr/Z+1a4S41ey5BjtC2YDyGC1N5u7Epci0ln37QmMRedydnNgxNOd8Q9xq/a5ZKuVE9s2sePnxRTmFPei9A1pyeDHniYotB1YzLD+NdjzRfGBfmHwwFLwblXr92Ovr7efJS5TyabvH+rL4Pb19/DkjczZ2Zns7Kr7kpZ07ty5MlV+BEEQbmTWfBOpP5zEeEkJdkpaFd6PtEfXtgb9hU2FSmY2UPFNhwxIyn4vnG7U8uOyLJOQl1Cm53WmIbPKY710XqX6XYd5h+Hv7F+tILFslclOK1DKgxcFrdMT8shIzMNsLL+VWnn0Xjq8gi6XCnfGK9AVzwBnHJyUsF9sxAn2/bYNAI2jI0OmTKt9P/RTa2lxYCwTfbWcLbyZmMLeFMqu6KRcWur20Uq3B81+E7QsenDBaoX0s0rwOvYAxB6EpJMgF6+B5SU5kHjQD2NOcbhS6wYBd3fA9bYh0OQm8O8EmmsvUaHQZLGtRQJMGySys2vDroD24sWL+eSTT3jmmWd4/PHHbeNq9Y29oCoIgiAIwrVj3rpTFBYFkMfd3Lze+tVk/Pd/JM39P9u2z9NP4fvMVEDpIbnrtzOc2FFcGtuvuZ6hT3QkLTaXzUsilT5Hl7Ooij46OmsYNDGs8idcbxDDhg3jjz/+oE+fPkyaNIl33nkHnU7H+PHj2b59Ow8//DAvvPACTZs2JTo6moyMDCRJsgW5BUEQBOFqtursKv5v7//ZSow7aZx4rfdr3Nn6zmqfy5SUR86OOIwXc+w/SAKVU+1yH05sj2XHf88gFzWR9m7iysinO6P3qv7CdfL5GDZ9/yUJUcUtYxycnOj7wDi6DhmJSq2G3GT4bRJc2FV8YKf74Y5PwMGlVu+lOi6l55d6ePLNUWG1XzQWyhUaGsoff/zBjBkz7No/Pz+fn376ibCw+nugVRAE4VpiyTaQ8v0JzEn5AEg6DT4Tw3AMca/ZCSNWKGXGqyQr+0WshC4P1Oxa1XQ5eF2y53V1gtdXZl5XJ3httcpkpxSUzrhOyCMzMR+zyc7AtQRu3rrSPa6DXPDwd8ZBV/E9m8lQyPpvPrVt93toAu5+AfZds8KTFj+4oJGMtHXaTlun7eVP+vdJ0LQPJByp8N+G2SCRfMSdrHMlHthUq/Ae9xA+M15A5eRUu/leBf574BLJOUp29rAOAbQLqP7DnUIxu35LefbZZ8nJyWHmzJmlAtqybO8jvqWJG3pBEARBEBrSvxcyWHkkHgBPZy3PDgqtl+tk/v47ibNn27a9n3gCn2nTAMhJL2TdwhMkny/OJgnrF0S/+9ug0apx83Zi4jwvzh5KIeZICoV5JnQuWlp29aVVd98bPjP7snvvvZc5c+ZgMpn49ddfefnll9HpdEyYMIElS5awY8cOEhISSExMtN2r9u7dm2lFXwdBEARBuBoVmAt4d9+7LI9ebhtr7dGaDwZ8QCsP+zOMZVnGcDaL3J2xFJ7OqP5EZNB1rNkDdFaLlX9+j+bY1ljbWEhnH25/NKzSBdfyGPLz2f3bMg6vW4VsLV7wbdd3AAPGPYarZ1H22MV98NsEyElQtlUaGPYe9Hy8wUtQvrM2EoNZmeukviH19vCkAGPGjOG1115j5syZzJs3r9KEm7i4OB555BEuXbrEs88+23CTFARBuEqZUwtI+f44lgwlyKZy1eLzWCccAmvxENip1cU9s+3x1zOw/lXlGEml/My+/DlSie0rx0vuL5UZlyVIlOCkZCZCMil/MJIhVT0vL9SEqZwJU7kQpnKhg9oFf5UOKcsM2SfgfESF17XKKrIKXMnI0ZOe40p6rp70HBcyc5yxWO1dy5Fx1xvxdDfg5WHAy8OIl4cRD3czWgeK3zcSpKggtfK/n382HSAzUbk/CmrqT7dmEpxaU87+UqXnKTUevdH+BxfMhXBuW9mXJBWyb3uyk4NJ2nQWS06B7SWnrl0JmDMHXdv6WbNraAazha+2iezsumTXbxR9+/bl77//pm/fvmVeu/vuu+nUqZPdFzx27BgrVqywe39BEARBEITasFpl5q6OsG0/f3so7s7aOr9O5p/LSXjjTdu212OP4vvcs0iSxKVT6Wz47iSFuSYA1BoVA8aG0v6WoFLn0GjVtO0dQNvetXxq9jrm7u7OxYsXy4yrVCrWrl3LnDlz+PXXX0lMTCQwMJAHHniAN954A6227r/mgiAIglAXzmaeZeb2mURnRtvG7mp9F7N6z8JJY19mimyxUnA8lZydcZjicku/6KgCiwzmqpMSJCcNzjUIaBsLzKz/7iQXT6bZxrre3oyb72qFSlWNEpyyTNTeXWxb8i25Gem2cc/AYAY99hTNO3W9vCPsX6gshluLSqTrA+G+JdCsd7XnX1u7o1P5+0QiAD6uDkwb1KbB53AjmTZtGp9//jkff/wxv/32G/fffz+tWyuLxLt37yYlJYULFy6we/duNmzYgMFgoFmzZjxZogWQIAjCjciYkEfq98exXl6b8NLh+1hHNN61zITNz7A/mA1gMUJ+aq0uKQOJajURjg6cdHQgwsGBCEcHMuyoKuxlsdDeYCTMaKSDQfnjb7FQ1R2LRVaTZQkk3dyUDHNT0s1NSDc3I9MchBX71hwkLLirE/HUXMKr6I+n5hKemng0khHMQGrRnxpKKNBz6HwXQEItWRmiXYP02+81P2FtuPgq/a6b9IAmPTGafUh89wPydu+x7aJydcXvhefxeOABJJWqceZZD/53MJbE7EIAbg/zp0NQDSsgCDZ2BbRXrlzJsWPHyg1c33333YwdO9buCy5btkwEtAVBEARBaDArjsRx9FImAG399TzUq1mdXyNr5UoSXntNWVwFvCZMwG/mTAD+XXeefStjLr+E3lvH8Cmd8G0mevjVNWdnZ+bNm8e8efMaeypXnQULFrBgwQIslip6tQuCIAgN6q+zf/Gfvf8pVWL8jT5vcEerO+w63mowk7c/idx/4rBkGkq9pvZwxPXWYFx6+mM4m0XaTxGV99KWwOu+UCRt9RYSs1MLWPPlMdLj8wBQqSQGPNyWsL5BVRxZWnp8HFt++JoLxw7bxjRaB3rf/QA97rgbzeWH04x5sGoGHP+t+ODmt8J9P4Brw/esNlusvLXqpG37pWHtcNM13oN0VoOBnHXryNm0GUtWJmp3D/SDB6EfNgyVo2Ojzasuubi4sGrVKgYNGsSlS5f46KOPAKUi5OwS1ZJAeUjCy8uLv/76C52u8fq1CoIgNDbD+SxSF59ELlR+J9T4O+P7WEfUbrX82SDLpfohGyTY4OLMFmdnMlUqPKxWwvPzGZKXj+Pl+xCts/IzW7Yq9yaytSggLhd/Lhd/LssyiWqI0Kg4qVUTodUQ4aAhQ131PYunxUJYieB1mMFIQBXBa4usIdMcRLq5iRK4tjQl3dyULHMQVvtCakhY8FAn4KW5iKcmtih4fREPTTxqyWzXOWrCbJVYH98Guegd3uxzAW/HgiqOqifBPeDxTSBJyEYjaYsWkfrlV8hGo20X/bBh+L86C61fw9/D1SeD2cJXW4sfVp0hHnasE3b979NoNHTv3r3MePPmzXF1rV4JJVdXV5o1q/uFZEEQBEEQhCvlGczMW1fcc/H1Ue3R2PELT3VkrVpN/KxXbcFsz3Hj8HvlZYyFFjYvjuDc0eLHapt18Ob2R8PQuZS/yGk2Gonau4voA3spyM3GydWN1j37ENrnVjQODnU6b+HGMnXqVKZOnUp2djbu7uKpYEEQhMaWb8rnnX3vsPLsSttYa4/WfDjwQ1q6t6zyeEuWgZzd8eTtS7AtTF+mDXZF3z8Yp46+SGplMdMpzBvvcWGk/xaFXGAGCWUBueij5KTB675QnMK8q/U+EmOyWPvVMQpylEwvR2cNw6d0Iritp93nMBkN7F/xGwdW/o7FXLzA27J7T8InTSnd7zHtLPz3EUgurr7DLdNg0Fugrl3v75pauvcCUUlKVnyXJu7c271Jo8wDIGfLFuJfmYU1OxtUKrBaQaUiZ+NGVG+/Q9B776EPv63R5leXunfvzpEjR3jqqadYt25dhfuNGDGCL7/8UqxFCoJwQys8nU7a0kjkor7NDs30+EzsgKo21etkGWK2wfb34aKSbbvV2YnXfbzIVqtRyTJWSUIly2xyceY9Lwtvp6QzsKAARn1SYQ9tWZZJyk/iZNpJTqaeJCI9gsi0SNIL08vdvyRPR0/CvNsT5hVGB692hHm1I8DJVwntlgmay1hMFjKSCshIKiQ9qZD0xEIykoxkphntTjhXqcDDW42njwovHxWeviq8fMDDE9SqNiC3qiBYL1caxC85z/LHy9tfZt+uCNKMZwDw93Oj5/2TQSXVzbXPrIeM8/b9xUgqcAsESSL/0CESZ8/GcKY4wKsJCiTgzTfRDxxo3/muMb//G0t8lpKdPaidHx2DxTpMXZDkmjbCFhrc5QXIrKws3NxE83hBEARBqMqHG07z+Rblhnlwez++m9CzTs+fvXYtcTNfVBYLAc+xD+H/xhukx+fx9zfHyUouegpWgp4jW9BzRAhSBWU3ow/uY92XH2PIy0WSJGRZtn10dHFl+NTnaHVT3ZTQFPcUNy7xtRcEQWh80RnRzNw+k7NZxT317mlzDy/3ernKEuOmxDxydsSSfzRFKSNegq6tJ679m+DY0h2pgv7RsslK/olUCk+kYi0wo3LSoOvog3NHn2pnZkftT2TLj6ewFPWN9vB3ZuTTnfHwd7b7HDGHD7Bl0ddkJSfZxvQ+voRPnEKrHr1Lv49Ta2D5k2DIVrYdXOHOBdBhTLXmXZfScg3c9sE2sguVQPzyp2+hWzP7g/l1KWfLFmKnPqNslLfUV/R32WTBF+jDw+vkmlfLfUV0dDSbNm3izJkz5OTkoNfradOmDYMHD7aVIhfq1tXytRcEoWr5R5NJ/28UWJWfDY5tPPAeF4bKwd7ezleQZYjeDNvnQex+2/BWZydm+CltS+Ry7kOkop9Nn2YUcNszJ0GrKxW8jkiLsP2xJ3jt4ehBB+8OhHmHEeYdRgfvDgS4BJR7D2Q2WshIyicjIY/0+DzSE/LISMwnKzm/3B+Z5VFpJDz9nfEMdMGr6I9noAvufk6o6zhxoqaSz8ew7NXnsFosqNRqHn7nY/xCqn5Q0m5Hf4XlU+ze3TLkU5LXnyfzv/8tHlSp8JowAd9npqJyqUXf9quY0Wzltg+2EZeprAmunNqXLk09GndSV7Hq3FM0+OOr586dY+fOnYwfP76hLy0IgiAIwg0kNiOfhTtiANCqJV4bGVan589ev4G4F1+yBbM9HngA/9df58yBJLYuPYXZqIw7Omu4/dEONO9YccZT9MF9rPzgP7YyoJefN7z80ZCXx4r5/+HOma/TukfD94W8FixdupT//e9/nD17Fo1GQ0hICCNHjmTSpEmif7YgCIJw1VgRvYK3975NoUXJ2HDSOPHmzW8yquWoCo+RZRlDdCY5O+MwRGWUflEt4dzND32/YLT+VS8KSloVLt38cOlW87KOsiyzf/U5Dq45bxsLbuvBsCc6VViF5krZqclsXfwt0QdK9E9Uq+kx6i763P0g2pKloa0W2PIf2PVR8ZhPW3hgKfiG1vh91IUPNkTZgtn33tSk0YLZVoOB+FdmKRsVrczLMkgS8a/Mos3OHddN+XGA1q1bi8C1IAhCOXL3JpC5Mtq21uDUyQevB9oiaWoQgJVliFqnBLLjD5d6yeATyutuFrAayw1mgxLklmSZl308eOjYV0RlRFUreH05aH05gB3oElgmeG0yWshMzCc9Ppf0hHwlcJ2QR3Zqgd2Ba7VGhUeAsy1orQSunXH3dUJ1lQSuy2Mxm1n/1adYi9qM9Rpzf90GswHCxsDfL0NhFlaLTM5FJ3LidFgMKtSOVvTBheibFSCpJHISvUh88TssaWm2w3UdOxI4dw66sLpdn7va/Hko1hbMHtjWVwSz61CDB7R3797NpEmTREBbEARBEIR69d7fpzAUZQxNvCWEFj519+Rn9saNxL3wAhT9ouBx3734vvY6O3+L5vjWWNt+Pk1dGT6lE24+FWdbmY1G1n35cdEvmBX9hiWDLLHuy4958usfb6jy4zt37uTbb7/l+PHjGAwG2rZty/Tp07ntNqVcpslkYsyYMWVKTZ44cYLVq1fz6aefsmHDBoKDgxtj+oIgCIIAKCXG3973Nn+d/cs21sazDR8O+JAW7i3KPUa2WCk4lkrOjlhMCXmlXpOcNLj2CcT15iDUbg13X2A2Wtj8YyTRB5NtY2G3BtH/oVC7spMsZjP/rlnBnj9+wWwo7vndNKwTgx57Cu8mV5SFzkuF3x+Fc9uLxzrcBaO/AMfqtcCrayfisvj1wEUAXB01vDSsbaPNJWfdOqXMeFVkGWt2Njnr1+M+enT9T0wQBEFoFLIsk7PtEtnrL9jGXHoF4DGmdYVV4ypktcLpNUpp8cRjpV/zC4P+L7JBpyb7n9dBklBbNbRM60qL9M44mp0xaPI553WMGO8jWFRmCqxGFp1YVOHl3B3dy2ReXxm8NhaaSbmYU5xtnaB8zE4rrHhZ5QpqrQrPAGe8goqC1gEueAW54ObjhKq6f0dXgYOr/iT5vFL9x7tJM/rcfX/dX0Srg7u+JueDicTv9cBqUlGyh01OrBOqQ+5oXc0YMhwAJZitcnbG99ln8Xx4LJK6hpUBrhEmi5UF24pLq08XvbPrVJ0GtPPy8sjKysJsrripfWpqaoWvCYIgCIIg1IUD59NZfSwBAG8XB6bV4Q1kzpYtxD33PBTd77jfdReuz73Kyk+OkBhTvJDY/pZA+j8YiqaKMl5Re3dhyMu148oyhrxcovb9Q1i/66P3YVXef/99Zs2aVWrs9OnTrFq1ip9//pn777+f119/nb///rvCc5w6dYp7772XPXv2VLiPIAiCINSnMxlneGH7C5zLOmcbuzf0Xl7u+TI6ja7M/tZCM3n7E8n9Jw5LlrHUa2pPR/S3BuPcIwCVY8MuCOZlGVj71XGSzxfd70jQ957WdBnUtMIS5yXFRpxg0/dfkhZ70Tbm7O7BwHGP0e7WgWXPEfsv/G8cZMcVXU8NQ/4P+jxtK5/dWGRZ5q2/TtqyvaYPao2fvuzXsqHkbNpc3DO7KioVORs3XdcBbbPZzJIlSzh69Chubm7cd999dOnSpbGnJQiC0CBkWSZrzTlyd8XZxvQDm+A2NMSun9c2VitEroTt8yH5ZOnX/DvBgJeg3ShQqdiy9TlUqGiaHsZt0Q+jszhjxYoKFVastEzvQt9z97C19VIueBWfy93RXel37VMcwA5yCbLN01hoJj0hj1PHEkhPKC4ZnpNeaPfb0DiobOXBS37Ue+uuycB1edJiL7Hnj18AkCQVQ5+agVpTP5XqcuIcid3lTXGTcanUR6tJKgpmK1wHDSLg9dfQBgbWy3yuNssPx3EpXcnO7tfGh+6NVL3nelXrgHZcXBxvv/02q1atIj4+vi7mJAiCIAiCUGNWq8zcVRG27ReGtMVNVzc38jnbthE749niYPado7GOf4Hf3j1IQY4JUPoqDXiwLWG3BlV6roKcbBKjo9i34je7ry9JEtH799wQAe1///2XV199FSguvX6ZLMtMnTqVfv368cUXXyBJEnfddRcjRoygadOmWCwWzp8/z4oVK9iwYQP79+9n7dq1jBgxojHeiiAIgnCDkmWZ5dHLeXffu7YS484aZ2bfPJsRLcv+TDJnGcj9J468fYnIBkup17RNXNH3b4JTBx8kdcMvvqbG5rBmwTFyM5Ssao2jmiGPdaBFZ58qj83PymT70kVE7NhSPChJdB0ygr4PjEPnckWmtSzDwUWw7hWwFAX0XfzgvsUQ0reO3lHt/HU0noMXlPLvLX1cmHhL+Vn2DcWSlWlfMBvAasWSlVWv86lvRqORHj16kJurPBS6ZMkS+vXrB0BmZiYDBw7k+PHjtv3nzZvHJ598wtSpUxtlvoIgCA1Ftshk/HmG/H+TbGPuw1ugH9DE/pNYLXByOeyYDymnSr8W2BUGvAxth5d6uCzTkEnT9DCGnX7MNqZCVeqjo0XHsNOPs67t92haFLBg8AJb8NpQYFaC1UfzOJcQTUZR5vXl+w57aB3VRcHq0n2u9V666melX0OsVgvrv/kUi0lZk7pp1BgCW9dP1ZhSLU6o6O+0aFySCPrwA9xvoHUYs8XKgq3F2dnPDhbZ2XWtVgHtc+fO0adPH1JTU8ssNFamWk8CCYIgCIIgVMPvh2I5Hqcs0rUL0PNAz6Z1ct7cnTuJmzYdin5J0I8cRWL4U+z9/BiyVbkPcvVyZNgTnfAPcSt1rNloJPl8DInRp0mIjiIxOorMpIRqz0GWZQpyc2r/Zq4BX3/9NVarFQ8PD5555hl69+6NVqvl9OnTfPXVV5w+fZrZs2dTWFjIf//7X+69994y53jyySf5/PPPmTFjBn/++acIaAuCIAgNJt+Uz//t/T9Wx6y2jbX1bMsHAz4gxD2k1L7G+Fxyd8aRfzQFrKXXVnTtvdD3a4JDC7dGW0s5dyyVDd+fxFwUZHf1dGTk1M74NNFXepzVauHYpvXs+nUJhrzikukBrdow+PGp+Lcsp+exqQBWPw9Hfy4ea9pHCWa7XR2ZPXkGM++sjbRtv3lHGA416UVah1Ru7tXYWYXavRr7X4XWrFnDiRMnkCSJPn364OlZnP308ssvc+yYUhJXo9Hg4uJCVlYWzz33HP3796dTp06NNW1BEIR6JZuspP1yisKIop7FEnje1QaXXgH2ncBihhO/w44PIO1M6deCeyiB7Da3l1slxVPjRafo24ouW/7PRAkVMlYGnRlHpksUMWvz+DfhCOkJ+eRl2h+4dtCpiwPWQcUZ166ejjdk3OnIutUkRCkPHngGBnHL/Q/X27XsbnECygOKlVRyvh6tPBLPhbR8AG5t7cNNzb0aeUbXn1oFtGfPnk1KSgru7u6MHj2asLAwPD09cXR0rPCYPXv28O2339bmsjYGg4FPPvmEX3/9lejoaNRqNe3bt2fChAk88cQTqFTV/4Xi/PnztGhR9ZO18+fPZ+bMmRW+Hh8fz7x581i9ejVxcXG4u7vTs2dPpk2bxtChQ6s9L0EQBEEQqpZrMDN//Wnb9pt3hKGugydxc//5h9ipzyAXBbOdho/ieJtxxCyPse3TNMyL2x8NQ+esIS3uEonRUUXB69OkXDiH1WKp6PR2kyQJJ9fKF4+vF7t27cLJyYldu3YRFhZmGx8yZAiPP/44N998M0uXLuXOO+8sN5h92bRp01i2bBmHDh1qiGkLgiAIAlEZUbyw7QXOZ5+3jd0fej8v9XoJR7WyXiLLMoYzmeTsjMVwJrP0CdQSLt39ce0XjNbPueEmfgVZljm6+RL//BFt60fpF+LGiKc64eJe8boPQOLZM2z67kuSYooXxB1dXOj30AQ6DRqKSlVOufT0c0qJ8cTizFp6P6WUGVfXT9nMmliwNZqkbGXhfXB7Pwa29WvU+ZiSkjCcja56x8usVvS3D66/CTWANWvWoFar+euvvxg+fLhtPD09nSVLliBJEv369WP58uV4enryxx9/MHbsWL766iu+/PLLRpx5xepjjfOyrKws3n//ff78808uXLiAs7MznTt35oknnuDBBx+sw3chCEJjsRrMpP0YgeFsUQUOtYTXg+1w7lR1JRUsJjj2XyWQnXGu9GtNeyuB7Fbhlbb76JY7gGxL1fcsEiocrDr8DnXmGLGV7uvgpLEFrZVS4c54Bbrg4nFjBq7Lk5mYwM5ffrRtD5kyHa1D5fdotSFanFTMYpX5YqvonV3fahXQ3rx5M61bt2b37t34+NjxzRHl6ci6CGinpqYSHh7O8ePHeeKJJ/j8888xGo188cUXPPXUU/z222+sWbMGna5mPYycnZ0r/cbo4OBQ4Wt79+5lxIgRFBYWMmfOHAYMGMClS5eYO3cuw4YNY9asWbzzzjs1mpcgCIIgCBX7cms0KTnKAuPQDv7c0sq++5PK5O3dS+zTU5GNSslL+fZ7+MdtJJlHUpVtax4tu1jQe11i9ce/kXj2DMaC/ErPqdE64NeiFQGtQ7GYTBzduNauuciyTOteN9fuDV0jYmNjufvuu0sFsy9zcnJi5syZjB8/vtQiZkVGjBjBZ599Vh/TFARBEAQbWZb548wfvLf/PQwW5X7ERevCWze/xbAWw5R9zFbyj6WQuyMOU2JeqeNVzhpc+gTienMQan3Faw4NwWKxsuOXKCJ2FbeWa32TH4MmtEfjUHHv7sK8XHb9+pNyb1Oikl+HAYPo//AknN09yj8wagP8+TgUFi3Ea51h9OfQqeKH1hrD+dQ8vtupLPY7qFW8PrLsfUpDyt25i/iXXsKSkWHfAZKESq9Hf40nWuzbt4/777+/zH3g8uXLMRqNqFQqvv32W1vm9j333MNdd93Ftm3bGmG2VavPNc7o6GjCw8OJi4vj5ZdfZvTo0aSnp/P+++/z0EMPsXr1an788cdaBcwFQWhcljwTqT+cwBSrtGGQHFR4jwtD16aK3r1mIxz9BXZ+CJkXSr/W/FalR3aL/pUGsgESchOIPpyED8628uLV4eiisZUHL5l57ezmIALXlZBlmQ0LP8dsVO45uw4dSZP2Hev1mjdai5PqWHU0nnOpyr39zS296dVCZGfXh1oFtNPS0nj22WftDmYDdO7cmTfffLM2lwXgvvvu4/jx48yYMYNPPvnENn7bbbdx1113sXLlSp566il++OGHGp3/5MmThISEVPu4lJQU7rjjDjIyMli+fDljxowBoFevXgwePJhOnTrx7rvv0rZtWyZMmFCjuQmCIAiCUNal9Hy+21W8wPjaiNovMObt28+lJ59CNii/IGSEP8IRUzNMF3ZgNSciWxORLTlE7qjkJJKEd3BTAlqFEtA6lMDWofg0C0GtUW7DzEYjp3bvKCrFWVkLFwlHFxdCe18dvSPrW15eHr169arw9d69ewPQpEnVvcCaNm1q67EoCIIgCPUhz5TH3D1zWXuu+CG19l7t+WDABzRza4a10EzevkRy/4nDkm0sdazaS4f+1mCce/ijqiRY3FAK80ysW3iCuNPFQdIeI0PoNbJFhT0oZVkmcudWti9dRH5Wpm3cu0kzBj/2NE3CKlhgtVpg+zzlj+2g1vDAUvBrXxdvp079Z00ERouykPt4vxaE+Lg0yjxks5mUL74g7ZuFtgcHVJ6eWDMzi3Yo556yKCgQ9N57qCqprHgtOH/+PJMnTy4zvmrVKkBZG2zTpnRmVJ8+fVi9enWZY64G9bXGaTAYGDlyJJcuXeLjjz/m2Weftb02ePBg+vbty7Jly2jTpg2zZ8+uo3cjCEJDMmcaSP3+OOaUAgAkJw0+kzrg2MytkoMMcHgp7PoYsi6Vfq3FACWQHXKrXdc/knyEGVtn0LdgbLWC2e6+Tgx8pB1egS446bUicF0Dxzev59JJpcWGm68f/R6q/1iTyrka9z3XQYsTe1msMp9vKa5KJLKz60+tAtoBAQHVCmYDdOrUqdb9av744w+2bduGTqfjrbfeKvWaJEm8++67rFy5kiVLlvDMM89w00031ep61TF37lxSU1Pp3bu3LZh9mbu7O7NmzeLpp5/m5Zdf5v7778fJyanB5iYIgiAI17N31kZiNCsLjI/e2oJm3rUr0Zm7fx8R06eR4awl09eNFN8gDGl7gT2VHufi6UVg61ACWoUS2KYt/i1b41jJTb/GwYHhU59jxfz/Q5ZlJMr+IicjI0kwfOpzaCqpEnO9KdkPsaLXKmt1c5mDgwOmonLxgiAIglDXTqefZub2maVKjD/Q9gFe7Pki6hyZzNUx5B1IRDaUbj+ibapH3z8Ypw4+FQaKG1pmUj5rvjxGZpJSbUatUXHbuHa07V1x/8202Its+v5LYiNO2Ma0jjpuvm8s3YePtj3EV0Z+OvzxOJzdXDzWbhSM+Qp0lSzEN5Jtp5PZFJkMgL+bI1NvK6cHeAMwJScT/8JM8g8csI25DOhP0HvvUXD4MPGvzFL6W14uCVr0UaXXE/Tee+jDb2uUedclo9FYZj0tPz+fjRs3IkkSDz30UJlj9Hr9VXk/WJ9rnF988QVRUVEEBQUxbdq0Uq85ODgwd+5cRowYwbx585g8eTJBQUF18ZYEQWggppR8Ur8/gaWo/7TKzQHfxzqi9a9g/cFUCId+VALZOfGlX2s1SAlkN+tj9/VXRq9kzp45mKwmDJp8ZKwV9s8uRQLvJq40aVtFBrlQoezUFLYv/d62ffvkZ3Bwqt82NQVHj1Jw5Ij9B1wHLU7steZ4AmdTlOzsXi28uLmVdyPP6PpVq4D2iBEjOHz4MJMmTbL7mJSUFCIjI+nfv3+Nr/vdd98BEB4ejoeHR5nX27dvT/v27YmMjGTRokUNFtA2Go389NNPgFLOqDz33HMPTz/9NElJSaxevZr77ruvQeYmCIIgCNezvTFp/H0iEQAfV0em3taqWsfLskxOaorS8/psFHGH/yX54jksISV6Ilpyyhyn1TkR0LJ1UeZ1WwJah6L3rn6Z84u++WzpnkLfo144mtVYkVEh2T4aNVZ2dUmnu28+1Xtn17bKSh+KJ7gFQRCExibLMr9F/ca8/fMwWpWsaxetC3NumcNt2r7k/naO/GMpULIyowS69t7o+wfj0NytwX+emU0Wzv6bTMzRVArzTOhctLTs4kOrm/xIisnm72+OY8g3A+Ck1zL8yc4Etio/u8ZUWMieP3/l39XLsVqKg/Vtet/CwPGTcfPxrXgi8Yfhv+Mh66KyLalg0GzoO6PK0qaNwWi2Mnd1hG171vD2uDjWakmtRvJ27ybuxZewpKUpA2o1fs89i9ejjyKpVOjDw2mzcwc569eTs3ETlqws1O7u6G8fjH7o0Gs+M/syPz8/Tp8+XWrs999/p6CgAI1GUybBBCAuLg43t6vvQYn6XOO8fO4xY8agVpet/jBkyBD0ej05OTksW7aMF198sWZvQhCEBmeMyyV10QmsecqDOmpvHb6PdULjVU5rAmM+/LsY/vkUchNLv9ZmqBLIbtLD7mtbrBY+/vdjlkQssY2pWuQhpduZoS1Dy66V3CMIlZJlmU3fLcBYoGTld7ztdkK6dK+/61mtpC9eQvJHH4HZbN9B10mLE3tYrTKfby7Ozp4hsrPrVa3uvl999VX69u3L/fffz6232leGYsOGDYwfPx6LxVL1zuUwGo1s3qw8vduzZ88K9+vZsyeRkZGsWbOGBQsW1Oha1fXPP/+QVdQXoKK5+fn50axZMy5evMiaNWtEQFsQBEEQaslilZmzqniB8cWhoeh12kqPKczLJfHsGRKjo0iIPk1idFSp8piAks1SioSk9iG4bTvC+nUjsHUoXk2aolLVrjSowWLg9X9eJ8e/gP8NiqV5ogvNEp1wNKkxaC1cDCjgQkAeVrXE6/+8zpbgLTiqr4/FSEEQBEG4VuUac5mzZw7rzq+zjbX3bM+HTf8P3SYjydGHSx+gkXDp7o9rv2C0vvWbQVORc0dT2LwkUglYSyidTiSIOZzCtp9PYzFZbZWqvYJcGPl0Z9x8ylaVk2WZ6IN72bp4ITmpKbZxd/8ABk16khbdqlgUP/QTrHkBivqM4+wD9y6ClgPq5o3WgyW7zxNTlHlzU3NP7uzasJmsssVC6oIvSf3qK1s5cY2/P8EffYjzFQFOlaMj7qNH4z56dIPOsSH17NmTn376ienTp9OsWTOSk5OZO3cukiQxaNAgvLzK9q1cuXJlmTLkja0+1zjPnTvHqVOnKj23Wq2mW7du7NixgzVr1oiAtiBcIwwxWaQuOWmr/KINcMHnsY6o9VdUczPkwsHvYffnkJdS+rW2I2HAixDUrVrXzjHm8PKOl9kZt9M29kDbB3i+60yWHNmD1VJZGzWFo7OGVt1FQLumIndu5dzhg4BSIXDAuMfq7VrmjAwSXplF7vbttjGHli0xnlPa/V3vLU7s8feJRM4kKy3uejT35BaRnV2vahXQtlqtfPPNN4wbN45+/foxevRo2rZti16vrzCjJjU1tTaXJDIy0lYiqLIe15dfu3DhAllZWbhXs17/unXrWLt2LSdOnCApKQm9Xk/Hjh255557mDRpEjpd2aedjh07Vub6Fc3t4sWLpfYXBEEQBKFmfjt4iciEbAA6BLlx701NS71uMZtIOX+OhLNRJJ45TcLZM2TEx1Z5Xq1FjVXXEkkThEoTgN67KcOe7EZAi7rtAbTh/Aayjcr8LWqICc4jJjivnD1lso3ZbDi/gTta3VGnc7ha2ZO1JjK1BUEQhIYWmRbJzO0zuZijZBdrZDWvOE+j/9kuWHYnYyixr8pZg8vNQbjeHIjatfHahpw7msLar48rQWwo89FsLE4jb9bBm6GPd8DBqeySUWZSIlsXf0PMoeJy12qNhp533kevMfeidahk4dJUCH+/BIeKM7oI7gH3/wjuwTV8Z/UvOaeQT4sybyQJ5ozu0KD3H+aUFOJefIn8vXttYy79+hE07z005QRubwRPPPEEK1asICwsjLCwMKKiosjOzkaSpDKltXNzc3nttdc4cuQIzz33XCPNuHz1ucZZnTXKHTt2iDVKQbhGFESmkbbsFBS1W3No7obPxA6oSv7MLsyGA9/C7i+gIL30CdqPhv4vQmDnal/7YvZFpm2ZRkxWDAAaScMrvV7hgXYPsG9VjF3BbCQYNDEMjbZ2iQE3qrzMDLYuXmjbHvz4VHQurvVyrfyDB4l7YSbmpCTbmPcTT+A77Rlyd+68IVqcVMVaTu9ssUZVv2oV0A4JCbF9gZYtW8ayZcvqZFKVuXjxou1zX9+Kn+Qp+VpsbGy1A9ozZ85kxowZPP/88+j1eqKiovjoo494+umnWbBgAatXry5zQ1jduV26dKnSORgMBgyG4l+Fs7Ozq/UeBEEQBOF6l1No4oMNxeUG3xwVRnZSfFHmdRSJ0VEknz+LpYqySI4uLvj5B6H79wiu2QUkB40ize8WLv+KFdzWkyGPdcDZre4Xordc3IIKFdZS9UjLp0LFlotbbpiA9iOPPMIjjzxS4euSJDF48I3Rk0kQBEFofLIs87/T/+P9A+9jtBpxsTgxJnsQD+QMR5snYaHAtq/aW4e+XzDO3f1ROTTuoq3ZZGHzksjiIHYl1BqJoZPDcNCVXi4ym0wc/OsP9i3/H2aT0TbevHM3Bj36JJ6BVQSkMy/Cf8dBwpHisZ6Pw9B3QHN1Z++8v+40uQblXvLBns3oGFy3DzdWJm/vXuJmvojlcnKIWo3vjBl4P/4YUiWtWa53w4YNY/r06Xz22WccPHjQNv7II48wYsQI2/Z7773H66+/jtVqRZIk7rrrrsaYboXqc42zuufOyMggLy8PF5fye+9WtEbZrl27StsEAXTv3p2//vqr1Njo0aM5dOhQ5W8CeP7553n++edt2zk5ObRv377K40DJyi9Zon316tU8+eSTVR7n6upqy26/7MUXX+SXX36p8tiRI0fyzTfflBrr0aMHiYmJFRxR7P3332fs2LG27dOnTzNo0KAqjwM4cOAAgYGBtu2FCxcyd+7cKo8LDQ1ly5YtpcYefvhhtpfIxqzI5MmTmT17dqmxJk2a2DXfpUuXMnDgQNv2tm3bKv29r6TY2NIPp8+ZM4dvv/22yuMGDBhQJnYRHh5OVFRUlce++eabPPHEE7bthISESqsqlLR582batm1r2/7555956aWXqjwuICCg1Pc3gMfuGc/ajetsP88lrYTKWQtvF+0gy2DM5aH2MvPDSwbVJNp9K5MrO4FqK7C1wut+/fXXjBo1yrb977//cuedd2K0GskyZGGVlXULlaTC3dGdF1QvMMP4LIZ8M6/f/wM6B2c0DirMRiubj/3G1mO/l5iGhM5Zw7urSn/PEN8j7P8e4Zp4nsI8JRvYpVV7Bo4pv+3tlar7PcKal4c1N5cQBwd+aNoMtZcXQfPm4drv1lLfI+TCQqyFhcq/PUlCpdMh5ebA+HE3xPeIQpOVzHwj7n0fov/oB+nXRmlB2FjfI6ZMmcKaNWuqPPahhx5i/vz5pcbatWtHbm5ulcdW9D3CHpGRkej1etv2Rx99xEcffYTVWvV66GW1bvgjl1dWoAq1eUohJ6e4f2V5WdLlvVadQLBOpyM8PJyPP/6Yzp2Ln1S66aabuOeeexg2bBhbt2619Q93LFE2obpzq2pe7777LnPmzLF77oIgCIJwo/li7RFck8/QypBER20WB//zE7vyKr8BU2s0+Ia0tPW8Dmwdii49k4uPPkaO0ZETHaeR51J8o999aHN6j26BSl0/i4aZhky7gtkAVqxkGjLrZR5Xo5rcZ1ZEPCUrCIIg1EaOMYc5e+aw/vx6/ExejEm/jeFZ/dBZSj/s5tBMj75/E3Rh3kiqq+Nnz9l/k219satiMcucO5pG294BtrELx46wedFXZCTE2cZcPb0YOOEJQvv0rfpnbPRm+OMxKMhQtjVOcMcn0OXB6r6VBnf4Yga//6ssjOp1GmYOCW2Q68oWC6lff03qgi+VrCdA4+enlBjvYX+f0+vZJ598wujRo1m7di1ms5kBAwaUCVi3bduWcePGAeDm5kbfvn0bY6oVqs81zpqeu6KAdkVrlAkJCVXOpWnTpmXGUlJSiIuLK2fv0q58v7Is23UcKCXdSyooKLDr2JKL7ZdlZGTYdWx6enqZscTERLuOzc/PL7VtNpvtfq9XtvbMzc2169jyHo5ITU2169jLbTdLsne+JR+OuLxt77HlzcOeY8urGpuUlGTXsVcGeSwWi93zNV/xcH1+fn6N3mvuP3EknbxEYs4VpcMzyu6bkasFnEBSQcd7of9M4j/qSU5OUtmdr1BQUFBqu7KvTQql5yIjc+t9bejQP4izh1LY/X+QmXfF33s5yzXie4R93yPOnTiK7uxJAJz0bvS48x7i3v2gyuOg5t8jXFUqnHv1Imj+fLT+fkAV3yPyiqsN3kjfI2RjQans7Mb4HgHKvy97js3IKPuNIz4+vtS9Q0Wu/B5hNBrtnu+Va3zZ2dnVfq+1DmhPmTKFPn362L3/nj177HoiorEEBATY+tdcycHBgU8++YQuXboQGRnJDz/8YNdTOzU1a9asUk8YZWdnl/sNXhAEQRBuBCZDIcnnYmw9ry9FncYhLZmSucqF5RznGRhMYOvQouB1W3yat0CjLe6xXXjqFBcffYxEbQsiOz2CRaP0inTQqRk0MYyWXeuvt9PF7Isk5FW9CHSZChUejh71Np+rTbt27fD396/1eZKSkjh9+nTVOwqCIAhCOSLSIpi5fSYOyfBS+iT6Z3dHTYmsawl0Yd7o+zfBsblb4020AjFHU4t7ZldFgpgjKbTtHUBuehrbfvyO03uK+2RKKhXdh4/mlvvG4uBURS9wqxV2fghb3y6+uGcIPLAUAjrV8N00HKtV5q1VEbbt528Pxdu1/rPJzWlpxL/4Inm799jGXPr2Jej9eWi8RV/GksLDwwkPD6/w9bvuuuuqy8q+VlW0RhkYGFhlhnZ5GeK+vr4EB1fdasDNrfT3VEmS7DoOlHXckpycnOw61tW1bPleT09Pu44tr397QEBAOXuW5exc+nuqRqOx+72q1aUrgbi6utp1bHm/a/n4+Nh1bHnBcHvn63hFX11HR0e7jy1vHvYc6+PjU2bM39+/3KDbla78N6FWq+2er0ZTOvzi7Oxs17GX/93IskzO5otkb7qIh05PgKsvkqMKlU4DshWMeWDMLdXL2NNJBV3GQr8XwKc1AEFBQXZlXzo5Odk+N1lN/Hj6RzSexe/BUe2Iu6M7EhJWi0xBTnFQuMttTegySIldtO0dwE3hbdh+pOr3Kr5HVP09QpZlzu7dRQdfTwDCH30SycO+a4J93yNkoxFLVpbtQTqAwObNafbDIqQSx4vvEQqD2UpGnvLvv6m/FwNDi/8dN+T3iJK8vLzsOtbT07PMWE2+R4Dy/8je93rlQ7Bubm4EBwdjtVrtekAOQJJrkfqiUqlYunRpqXIoVVm2bBnjx48v81SIvVatWsXo0aMBpQzEyJEjy93viy++sPXNOXHiBB06dKjR9coTHBxMfHw8I0eOZPXq1bbxF154gY8++ghQnnKp6KnGe++9lz/++AMfHx9SUlLK3ac82dnZuLu7k5WVVeabtSAIgiBcT6xWC+lxsbbgdUJ0FKkXzyNXUYbG2d1DCVy3CiWgTVsCWrZBV84vG5cVno7i/IRJnPHqz8Vmt9vGvYJcGD6lEx7+VSzU1tCxlGMsPrmYTRc2Idu1ulzsnVvfqXXJ8WvhnqIm95kVWbp0KRMmTKjx/ef15Fr42guCIFwtZFnm11O/smXrGu5MHUjX/Lald9CocLnJD9dbg9H61s89Q11Y/tEh4qMy7d4/sI2ekPbx/PO/pRhLZGEEhbZn8ONP49u8RdUnKciE5VMgal3xWOgwuOtrcCq7iHY1+u3gJV78XekrHOrvyprp/dDWU8Wey/L27yf+hZmYL68VqVT4Tp+G9xNPXJUlxq+l+4qUlBQiIyPp379/Y0/Fpj7XOD///HOmT59e5TEzZ87kww8/BCpfy7zStfS1F4RrlWyVyVodQ+7ueNuYPrwpbjc7I+1dAPu/BVNxRiwqDXR5CPo9D14ta3XtjMIMnt/2PAeTiksaT+o4iRndZqBWqclMyueP+f9SmGsCoE0PP25/tMNVU53mevP3Fx8SsVMpFd+qRx/unPlanVWhky0WUr/8itQvv7Q9GKH29SF4/nxcqpHIeiORZZk7vtjFiTilQsD3E3owqH3tkzFuVNW5p6hVhnbfvn3x8/Or1jGtWrVi/PjxNb5ms2bNbJ9XFgwu+Zq9tfmrM4f4+HjOnTtX6dwqugm8PDeRbS0IgiAIipz0VBLPRJFwVul7nRRzptQCanlMkoZkB19y9IFMe3AQIe3ao/fxtfum3hAdzZnJz3Cs+TgyPYvLR7bp6c9tj7RD61i3/S6tspWdsTv54eQP/Jv0b7WPl5DQO+gZEjKkTud1I5AkqU7LlwuCIAjXv+z8LH77czHtogKYbZxS6jWViwbXm4Nw6ROI2tWhgjNcPRydipd+ZNmM1RiFxRSNLBciSTrU2taoHEKRJA1WczzxEds5t784S0Knd2PAw5PoMGCQfUHVxONKv+yMy2smEoS/Bre+AFdhULY82YUm5q0rru4y+44O9RrMlq1W0hYuJOWzz22ZUWpfH4I/+BCX3r3q7bo3kg0bNtQqwaY+1OcaZ3XP7enpaXcwWxCE+idbrGT8fob8w8m2MffbfdGbv4XPFoGpRIl6lRa6PQK3PgeezWt97eiMaJ7Z8gxxuUopYK1Ky5xb5tgerM/PNrLq8yO2YHZwqAeDJoSJYHY9iTl0wBbMdnRxYfBjT9VZMNuUlEz8iy+Sv3+/bczllluUqjDlZCwLii2nkm3B7I7BboS3q16MVKi5WgW0d+7cWfVOV+jTp0+1SpRfqX379mi1WkwmE+fPn69wv8uvNW/evNzyBrVR0YJoyZ7b58+fJyQkpNK5ldxfEARBEG4Uhvx8kmLOkBCtBK8To0+Tm1G2j1BJkqTCu2kzAlqF4t+qDf/Zn8e/2Y7IkooP7utC55uq9/CaISaGo0+9wdFWT2IsKuGtUkn0va81nQY2qdN+y0aLkTUxa1h8cjExWTGlXvNx8uHh9g8T6BLIrJ2zAMrN2JZQ5vP2rW/jqK7/UpdXg+XLl9OjjnpEDhw4kOXLl9fJuQRBEITrmzXfRMzWoxTuTWGoqXup19TeOvT9m+DS3Q9JW7cPvtWXSxHpJMYopRItxrOY8teBbOByDXIZCaspGvK3otL4YzVfLHV850HDuPWh8Tjp7czAPPorrHoWzEUPJjp5wj3fQ+tBdfaeGsLnm8+Qmqv0bxzeMYC+retvUdecnk78Sy+Tt2uXbcz55j4Ez58vFpOvc/W5xnnlGmVV5xZrlIJw9ZBNFtJ+PkVhZNE6iQSeoUdw2fMfMJdotKZ2gO4T4NZnwb1uEvq2XdrGyzteJt+sBMy9dd58Gv4pXXy7AGAsNLNmwVGyU5V5eAW5MPzJTqi118YDa9caQ34eG7/9wrY9cNzjuHrVTfuR3J27iH/5ZSyX+3qr1fhOn4735MevyqowVwtZlvls8xnb9vTwNnW6hihUrtY9tKtr7969LFy4kEWLFtXoeAcHBwYNGsS6des4ePBghfsdOHAAoMJyPRUZM2YMkydPrvS4ixeVX/CuDFjfcsstttT4gwcPMnDgwDLHJicn246v7twEQRAE4VpjMZtJvXiexLNRtgB2WtylUv2dyqP39iWgdRsCW7cloHUo/i1b46BT+rQs3XuBgzknQILOTdy5u1v1+ugUno1h1/MLiGoxCVml3Ao5u2kZ9kQnAlt71Oh9lifHmMNvUb+xNGIpKQWlsyJC3EKY1HESo1qOwkGtZHY5a5x5/Z/XyTZmo0KFFavto95Bz9u3vs3ApgPrbH5Xu9GjR9fZLwXBwcE17rckCIIg3BjM6YXk7Iole38cOrMKHcUtS/IDrDS9vSO69l7XTPZRXpaBf36P5syBJKAomJ23ssQe8hUfDaWC2b4hLRn82NMEhbaz74JmA6ybBQe/Lx4L6gb3/wgezSo+7ioUnZzLD/+cB8BRo+LVEe3r7Vr5Bw8S9/wLmJOLMvAkCZ9npuLz5JOl+lXeqNavX89XX31VZp2uZcvql9LNy8ureqcGVp9rnC1atKBdu3acOnWKgwcPMnHixDL7WCwWDh8+XO1zC4JQf6yFZlKXnMR4Tsn+RLLg7TAfpwvFDz2h0cFNk6DvdHALqpPryrLMohOL+PTQp7aH7Nt7teez8M8IcFF69VosVtZ/e5LkCzkAuHo6cse0Ljg6a+tkDkJZO5b+QG56GgDNO3ejw8DBtT6nbDaT8ulnpH37rW1M4+9P8Ecf4nzTTbU+//VuW1QKR2OVh0XbB7pxe5goNd6QGjygffbsWZYsWVLjgDbA448/zrp169i8eTNZWVllnk48deoUkZGRSJLEo48+Wq1zr1y5kiZNmlR4I3fkyBFbg/Ir93F0dGTcuHF88cUX/PHHH8ycObPM8X/++SegNJQfNWpUteYmCIIgCFczWZbJTkki4cxpJYB9Jorkc2cxm4yVHufg5ExAqzYEtmlLQKtQAlqH4urpVe6+WQUmPtoYZdt+c1QYqmosLOedOcf6N/4iIbD4Z3hgC1eGPtkFF/e6yXxOzEtkWeQyfov6jTxT6YWzbn7dmNRhEgOaDkAllX7i9bZmt7EleAsbzm9gy8UtZBoy8XD0ILxZOENChtwwmdmX+fv7c8cdd3DnnXcyZMgQdDpdY09JEARBuA4ZY3PI2RFLwfFUkEGN8vPZipWT3ufodEc/Qtu1auRZ2s9qlTm5I469K85iLFRKK8uyGXPBervP0f+RR7lpxJ2o7A2oZsXB/8ZDXImAXPcJMPx90F5bP79lWWbu6gjMVmUxf8qAVjT1qvv+6LLVStp335Py6adQVAJb7eND8AeiX2VJ48aNIy0tjX/++adU2ezKMo4rczVmUNXnGufjjz/OzJkzWbFiBZ999hmqKzLuNm7cSE5ODjqdjrFjx9b6vQiCUDuWXCOpi05gilfWESQK8NbMRScdV3bQOEHPx+CW6aCvuyCawWLgrd1vsTpmtW1saMhQ/q/v/+GkURILZFlm+7LTXDypBFcdnTWMmtYFV89r6+f8teTiiaMc27wOAK3OiSFPTKv1zzFTQgJxL8yk4NAh25jrgAEEvvcuGk/PWp37RiDLMp9uKs7OnjGo9VV5b3E9szugnZmZiYeHR6mxHTt2VPuCkZGR1T7mSvfccw8DBgxg+/btzJkzh48++sj2mizLvPrqqwBMmDCBm654qmTVqlU8+uij+Pv7s3r16nLLgi9ZsoTnnnuOVq1K/9JqMBh49tlnAWjdunW5N5Jvvvkmv/76K3v37uWvv/5i9OjRtteys7N57733AJg3bx5OTk41ev+CIAiCcDUoyM0pKhkeRUL0aRKjoyjIya70GJVajW/zFgS0bktgayV47RUYbHc5o882nyE9TwmQ39EliB4h5Qe+y5NyJJq1nxwk16O4nF7nfn70fTAMVR30RDyTcYbFJxezNmYtZtlsG5eQCG8WzsQOE+nq17XScziqHbmj1R223lQ3stTUVBYvXszixYtxcnJi6NCh3HnnnYwaNQovL/u/7oIgCIJwJdkqU3g6nZwdcRjPZZV6rVAyssFjN6peHjzW/0m06msn6yjlYg7blp2yZU4B6Fy0NA/L4OiGwkqOLM3Fw9P+YHbMdvj9UchPVbbVjjDyA+g+vjpTv2psjkxmR5QSOA1y1/HUgLp/mMGckUH8yy+Tt6O4jZ9z794EfzAfja9vnV/vWtayZUtSU1PLrM8B9OvXr1qZ2jExMewqUdb9alGfa5zPK4dFZQABAABJREFUPPMMCxcuJCoqii+++ILp06fbXjOZTLz55psAvPLKK6KakSA0MnNGIakLD2POUNYSVGTh4zAbB1U0aF2g12S4+RlwrdufEyn5KczYOoPjqcdtY1O7TmVK5ymlAnX7V58jcreS5KfSSAx/shPeQa5lzifUDVNhIRu++cy23X/sRNx8a9enOWfrVhJemYUlq+jeV6PB7/nn8Zo4QZQYt9POM6kcuZQJQLsAPUPCAhp3QjcguwLaU6ZM4bvvvmPixIl8/31x+aiBAwc22hMIv//+O+Hh4Xz88ccUFBTwyCOPYDQaWbBgAcuXLyc8PJyvvvqqzHELFy4kNTWV1NRU/vzzT55//vlSr+v1enJycujZsycvvPACvXr1wsvLi8jISD766CMOHz5M27ZtWb16dbmZQr6+vqxatYoRI0bw0EMPMWfOHAYMGEBsbCxz5szhwoULzJo1iwkTJtTb340gCIIg1DWz0Ujy+ZiizGslAzszMaHK4zz8AwloHVoUvG6LX0hLNA4ONZpDTEouS3afB0CnVfHKcDtLYAJRm0+x9dcYzDrlFwC11Uj4I6GE9q9+ucKSZFnmYNJBFp1YxK640gtkDioHRrcezYSwCYS4h9TqOjeiPXv2sHz5clauXMnp06dZvnw5K1asQK1W07dvX8aMGcOYMWNo3rx5Y09VEARBuEbIJiv5h5PJ2RmLOaWg1GuZ6hz+8tzGDv/DvDzgVW5rdlsjzbL6jIVm9v91jmNbL5Xq6tLulkBuubsVG7/5AEmSkKto+QJKBmv0/j2E9avi/csy/PMpbJ4DslUZ82imlBgP6laLd9N4Ck0W5q6OsG2/NjIMJ4e6Lfudf+iQUmI8MVEZkCR8nnoKn6lPixLj5Vi/fj2bN28mPDy8zGtTpkypVlbxsmXLrsqANtTfGqejoyNr1qwhPDyc559/nuTkZEaNGkVGRgbvv/8+Bw4c4OGHH+aNN95oqLcqCEI5TKcjSV12AYvRBQA1Kfg4vIFWlwW9Z0Kfp8Glbvoml3Qy9STTt04nOV9pe+GkceKdW99hcPPSZa1P7ozj4JrzyoYEgyeGERwqsnnr065ffyQrWWkb06R9R7rcPrzG55KNRpI/+pj0xYttY9qgIII/+hCnrl1rOdMbhyzLfFqid/a08DbVqhgp1A1JtuM3Gjc3N3Jzc3F1dSU7uzjz6spSNXZfVJKwFJVUqg2DwcAnn3zCL7/8QnR0NGq1mvbt2zNhwgSmTJlS7vxWrVrFpEmT8Pf3Z82aNWWeXszLy2P58uWsW7eOf//9l0uXLmEwGPD09KRz587cfffdTJo0qcrs6vj4eN577z3WrFlDXFwcbm5u9OrVi2nTpjF06NAavd/s7Gxbj243N7canUMQBEEQqiJbraQnxBVlXisZ2CkXzmG1mCs9Tqd3UwLXrUKLyoe3wUlfdz+vHlt8gM2nlF+0pg9qw/O3h1Z5jNUqs2fZUY78k24bczGlMfLFW/BtV/MsBIvVwqaLm/jhxA+cTDtZ6jU3BzceaPsAY9uPxcfJp8bXqE/X2j3F6dOnWbFiBStWrGD//v3Ismx7qLJz586MGTOGO++8k67il7EqXWtfe0EQhLpgyTORty+B3N3xWHNNpV675JDIn16b2eK+n3b+7Znffz5BrnXTj7K+ybJMzOEUdv7vDHmZBtu4Z4AzAx9uS1AbZbH5v3NeITbihN3nbRLWiQdmv1vxDoXZsOIpOFVcmpTWg+Hub8H52q2ismBrNPPXnwagT0svfpncp86SOGSrlfRFi0j++JPiEuNeXgTNfx/Xvn3r5BqNobHuK1QqFUuXLq12QHvcuHFYrdZ6nFnN1cca52VZWVm8//77/Pnnn5w/fx5nZ2e6dOnCE088wYMPPlij+Yp7SkGoAymnMf79A6kR/bCi/D/SSLH4uL6P5pb7ofeUevu5uu7cOl7/53UMFuX+IdAlkM/CP6OdV+nEgfPHUln71THbA3O33teGLoOa1sucBEXc6Uh+nf0SyDIarQPj53+OZ2DN1q+MsbHEPf8ChceO2cb0tw8m8D//QX1Fiwuhcv9Ep/Lwd/sAaOPnyvpn+4uAdh2pzj2FXQHtt956i48++ohnn32WuXPn2sZVKhWvvfYagwfb34x+w4YNvPfee3US0L7RiJtFQRAEoT7kZWYUBa5PkxAdRdLZMxjy8yo9RqN1wK9Fq1LZ1+5+/vVWuWVHVArjF+0HIMBNx5aZA3B2qLzQTEGOkfVfHSYupvi9BOSdZvh7d+McXLN+UwXmAlZGr2TJySXE5saWei3QJZDxYeO5u83dOGvrvtdiXbqW7ykSExNZuXIly5cvZ9u2bRiNRtu/u2bNmtmC2/3796/xw5fXs2v5ay8IglBd5rQCcnbFkX8wCdlUOogV5XqRnz3WsN/1BLIkM7HDRKZ3n45WdW2UGM9OLWDHr1FcOJFmG9NoVfQYGULXwc1Qa4p/Bv714TtEH9hjd4Z26543M/qFV8vfITkS/vsIpEUXjw14BQa8BKprN8M4IauA8A+2U2CyoJJg7Yx+tAuom5+T5owMEl6ZRe727bYx5x49CPrwQ7T+tSsf2tjEfcWNS3ztBaEWkiJgx3wKj0WTZnodGWX9QKs+j8+AVNT9HwVd/QQbrbKVBUcWsPDYQttYN79ufDzwY7ydSmeBJ57LYuVHhzEX3UN1HdyUvve2qZd5CQqz0ciPL08nI15Zb+r/yKP0vOPuGp0re8MGEl57HWuO0opG0mrxe/llPB8eK/o+V5MsyzzwzV72n1eSZT57qBuju1wbD8BeC6pzT2FXyfG33nqLt956q9zX2rdvz4ABA+yeXGxsbNU7CYIgCIJQhtloJGrvLqIP7KUgNxsnVzda9+xDaJ9b7S7jbSwsIDnmLAlno0g8c5qEs1HkpKZUfpAk4R3ctCjzWsnA9mkWglpj121ErZktVv6vRPnHl4e3rTKYnXQum7+/PkpelpKFJckW2mZsp9/n03Dwr34wO6Mwg19P/covp34hw5BR6rV2Xu2Y2GEiQ0KGXDOL4NeygIAApkyZwpQpU8jJyWHt2rW26joXLlzgs88+47PPPsPLy4tRo0YxevRohg0bVmV1HUEQBOH6YbyUQ86OWApOpELJGK4ESc1yeV/6hginswC4O7rzzq3v0L9J/8aZbDVZzFaObLrIwTXnbQvMAM06eDPgoVDcfMr+vGt5Uy/O7N9t1/llWaZ1r5vLf/H47/DXNDDlK9s6dyUrO7RmVeiuJu/9fYoCk5J4Ma5P8zoLZhccOULsc89jTihu1eP95BR8n3kGqYHupQVFQUEBKSkpNGvWrLGnIgjCjSrhGOyYD5F/UWDpQ5rpLUBZy3HwysbniVGoPOqvlHe+KZ9Xd73K5oubbWNjWo/hjT5v4KAuvaaUmZTPmgXHbPcabXr4ccvdrettboJizx+/2ILZAa1DuWnkndU+h9VgIPn9+WQsW2Yb0zZrRvBHH+HUsUOdzfVGsjcm3RbMbuXrwshOgY08oxuXXXfP77//PrNmzUKSJCIiIggNVUp8TpgwgVatWlXrgq1atWL8+PHVn6kgCIIg3MCiD+5j3ZcfY8jLtfVAlCSJM/t3s2XxQoZPfY5WN/UudYzVYiEt9iIJ0adJLCodnnrpIrJceZk9F08vW9Z1YOtQ/Fu2xtHZpT7fXqWW7bvImeRcALo29eDOLhWXWpJlmZM749n53yisFmUF28GQRZf01XRb+A7aagazL2VfYknEElZGr6TQUljqtZsDb2Zix4ncHHizeLq1kej1eh544AEeeOABTCYTW7ZsYfny5axatYqEhASWLFnCjz/+iE6n4/bbb+fOO+/kjjvuwMfn6iwFLwiCINScbJUpPJVOzo5YjOezS70maVVounvyufZHVqatsY139e3K/AHzCXAJaOjp1kj8mQy2/RxFRkJx9RkXdwf6PRBKy26+5d6PWC0WYg4dsPMKEo4uLoT2vqIEtsUEG96AfSV6+Pp3ggd+Aq8WNXgnV5eD59NZeSQeAE9nLc/Z0damKrIsk/7DYpI/+gjMStsetacnQe+/j2u/W2t9fqH6/vzzT8aPHy8qRgqC0PDiD8P2+XBauQfJMw8iwzwdUCqb6ELd8B53C5K2/iqdxOfGM23LNKIyogBQSSpeuOkFxoWNK3P/kJ9tZNXnRygsatMS3NaDQRPCkER55XqVFBPNgb/+AECl1jD0yRmoqln9xnjhArHPPYchItI25jZiOAFz56J2da3T+d5IPt0cZft8Wngb1OL/QqOxK6C9ceNGtFotzz33HIGBxU8f/PDDD9W+YJ8+fejTp0+1jxMEQRCEG1X0wX2s/OA/tgyjy+UiL3805OWxYv5/GPLEMzg6u9j6XifGnMFsMFR0WgC0OicCWrYmoE1bAluFEtA6FL331RPsy8w38vGm4hvH2XeEVdijxmy0sP3n05zam2gbc8+Mplvm34Qu/qpawewTqSf44cQPbLq4CWuJBwDUkpqhIUOZ2GEi7b3b1+AdCfVFq9UydOhQhg4dytdff82+fftYvnw5K1eu5PTp0/z111+sWrUKtVqN0Whs7OkKgiAIdUQ2Wcg7lEzuzjjMqQWlXlO5anG9JYjzrdOZuf9ZErKLs2QndZzEtG7TronqKgW5Rnb/eZZTu4vnL0nQ+bam9LqjBQ5O5S/tWMxm1n7+AWf2/WPHVSSQYPjU50pX/slJhP9NgEt7i8e6jIVRH4H22q9+YrHKzP7rpG37hSFt8XC2r/JRhefMyiJ+1qvkbtliG3O66SaCP/wAbcC18fCEIAiCUAdiD8L29+HMettQjvlOssyTbdvO3fzwvLcNkrr+2mUdSjrEc9ueI71QyTB11boyf8B8bg0u+4CVsdDMmgVHyU5VHuj3DnZh+JROqLWinVd9sphNrP/qE2Srsv7U554H8GnavFrnyFqzhsQ3Z2PNUx58lBwc8H/tNTzuv08kYdTCvpg09sYo/3da+rhwhyg13qjsCmifOnWKp59+mnfffbfUeMuWLfnkk08YPXq03RcUJX4EQRAEwX5mo5F1X35cFMyuqO+hDDJs+ObzSs8lqVT4NAspyr4OJbBVKF5Nmlb7ic+G9MmmM2TmK08F39UtmG7Nyi+/lZVSwLqFx0m9lGsba3ppC+0K99Pip8V2LR7KsszOuJ0sPrmYA4mlM5mcNE7c0+YexoWNI8hV3LxeC3r37k3v3r157733OH36NCtWrGD58uUcOGBvlpogCIJwNbPkmcjbm0Du7niseaZSr2l8ndD3b4JTF19+OrOUT7Z9gllWsmQ9HD14+9a3r4kS47JVJnJPArv/jMaQZ7aN+zXXM/Dhdvg201d4rMVsZu1n84kqCmarNRp6jr6Xw+tXl6n4I8syji4uZSv+nP8HfpsIecnKttoBhs+DmyYpEfXrwH8PXOJkvJLR3z7QjYd61W6tquDYMeKefQ5TfLxtzHvyZHxnTBclxmsgPDy8zs6VlJRUZ+cSBEGo1MV9sH0enC0u7S3LkK1+ihzzSNuY6y1BuI9qWa+Zz3+e+ZP/2/t/mK3KfUQzfTM+H/Q5Ld1bltnXYrGy/tuTJF9Qei67ev4/e+cdHkXVxeF3Wza994QOAULvSO8foqIgoIiiKKIooICCFQUVBAtYUGxItaECUkRAegepKfRASO91s9k23x8TNgkkkEoSct/n4Qlz7sydsym7d+4553e03D+pDVr76p/8V9M5sv53EiOvAOBVrwGdHxxZ4mstej3xH8wlbc0aq82mQQMCFi3EtmnTina11vH5jgvW/0/q11hUZ1cxJVpNJyYm0rJly5vsV65cISsrq4grikdI/AgEAoFAUHLOH9pHbnbpPmuv4+zlYw1e+zYOwqdBIzRa2wr2sPK4mJDJykNXAbDTqJgxuOiF+JUzSWz/MYxcXZ6cozmXZudWE6COod6KlWj8bx2ANpqNbI7YzLLQZVxMu1hozN3WnTHNx/BI00dw0bpUwKsSlJenn36a5557ji5dutz+5DyaNm3KzJkzmTlzJnFxcbe/QCAQCATVFlNSDpn7otH9F49kLNxGxaaBC069A7ENciPdkM7MvS+xO2q3dbyddzsW9FpQIyTGk2Oy2P3TOWIvplttNrYquj7UiBa9AopVrAE5mL3p8wVcOCz3zVap1Qx95U0atutEl2GjOH94PxePHCQnKxM7Rycad76HoC7d8yuzJQkOfSXLjEt5ezfOgTBqBQR2qLTXfKdJ1xn56J+z1uPZQ1uUeZNSkiRSV6wg/uNPwCgnWKhcXfFfMB/HXtU/eaK6smvXLmvSRXkomMAhEAgElcaV/XIgO2J3IbPkXJc0x7lkX3a12pwH1MWpf91Ke18yWUx8cuwTVoWvstq6+nXl494fF7m3IUkSu1afIzI0GQCtvZr7J7fB0a3m7CHVVJIir3Doj18BuRDlf8+/hKqESXC5ly4R/fJUci/kB11dHhyK76xZKB2qrnXg3cKxKynsvyj/TdT3sGeoqM6uckr0l2Fra0t0dHRl+yIQCAQCgeAGLh49VKpNHHf/QHo9/jR+jYOwd3GtXOcqmfc2hmO2yK/7+d6N8HMpLGtpsUgc3RjBsc1XrDZ7XTwtQ77D1QXqLV+OTWDx/bazDFn8fv53VoavJEGXUGisvnN9xrYYy9BGQ9GqtBX3ogTlZtmyZQwcOLBUAe2C+AqpT4FAIKiR5EZmkLU7ipyw5MKiNQqwa+WJU89AbOrIFcsnE07y6p5XicvOT2Ia32o8L7Z9EbWyelfJGg1mjm26wsltkVgs+S+0SUdvuo9sgoPLrdclZpORjYsWcPHoQQBUGg0PvvIWDdrKgWi1jQ3BPfsS3LNv0RPkZsFfkyB0bb6tQW8YsRQcqk9bmopg4fbzpOYpAQ1t40/nBu5lmseckUHsm2+SuW271WbXrh0Bn36CpkDbPkHZaNq0KT6laB1UHPHx8Zw7d64CPBIIBIICSBJE7JGlxa/uKzzmWhep+yuknO9EzpnkfPPQRjh2q7zAWIYhgxm7Z7A/Jr/lyJjmY3il4yvFroOObIywtjZRqhXc+3wrPPxFz+XKxmI288+Sz7CY5QKNTkMfxqdh4xJdm7Z2HXFz5iDlyC13FHZ2+L79Nq7Dh1Wav7WNz/7NTxR4sW9j1JXYGkBQMkr0JBccHMzixYt58MEHad26daExkd0oEAgEAkHlkZOVUaqKBHtXNxp16FyJHt0Zdp5NYPf5RAD8XWyZ0KuwHJY+y8i2paFEhqVYbV6JJ2h+dhW2ni7UW7Ycmzp1ipw7QZfAqvBVrDm3hixj4er3Nl5tGNdyHH3r9EWpEAvV6sqUKVM4duwY48ePp3lz0ctcIBAI7lYki4Q+PJnMPdEYrmYUGlPYKHHo5Itj9wDU7nL1kEWysDx0OZ8d/wxzXmWxm9aNuT3nFtknsrpx5UwSe345T2ay3mpz9rKj9+gg6gZ73PZ6OZg9n4tH5X7XKo2Gh155i/ptC1RVG/UQtg7ObgRdKti7QbP7IfghSIuEXx+HpAJBvx7ToN9bUI1b1JSFc3GFlYBeH9KsTPPknAkheupUjFFRVpv7M0/j/fLLKDRCorUieOutt3jsscfKPc+qVat48sknK8AjgUAgQA5kX9ohB7KvHSo85tYAer2CpdkIUn65iP5cXjBbCe4jm2LfzrvS3LqSfoXJOyZzJeMKAGqFmje7vsmIoBHFXhO6N5pjm+TzUcCAp4IJCCq63ZugYvlv83riLslBU3f/QO55ePRtr7HodMTNeY/0deusNm2TxgQsXIi2ccmC4YLbczwylb0XkgCo427HQ+2KL5gR3DlKFNAeM2YMkydPpl27dri6uuLiki9L8fLLL/Pmm2+W+IbZeU3pBQKBQCAQ3B6tfcklghQKBXaOxfdSrCkYzRbe2xRmPX5tSHPsbPI3UROuZrDlmxAyU/I2eyULjS6vp+617Wi8vKi77Eds6tW7ad5LaZdYFrqMjZc3WvtHXadvnb6MazmOdt7tKudFCSoUX19fFi9ezKJFi7jnnnuYMGECI0eOxM7O7vYXCwQCgaDaIxnNZP+XQNa+aExJOYXGlE4aHLsF4NjFF2WBno6p+lTe3Pcme6P3Wm3tvduzoNcCfBzKX91ZmWSl6tn72wUun0i02pRqBe3/V48Og+uh1tw+mGw2GdmwcD6Xjsmb6mqNDQ+++hb127TPP+nsZlg3EfRpoFCCZJG/hm+AjVPlY1Pe+krrDMOWQLP7br5ZDUeSJGZvCLUqAb3Y92YloJLMkbpqNfELFlglxpUuLvh/OA+nvsVUvwuqlIqQLhcIBAIkCS5sk6XFo48VHvNoDL1ehZYjsBggaVlofkKeWonHmGbYNb99glpZORB9gFf2vEKmQe6B7aZ149M+n9LRt2Ox11w5ncTun/IT2XqMaEKTjtV73XS3kBobzYFf8yThFQoGPf9SfvuXYtCfO0/01KkYLl+22lxHjsDnjTdQiv2QCuXzAtXZk/o2RiOqs6sFJQpoT5w4kW3btvHXX3+RmppKamqqdSwxMZHExMRbXH0zoqpbIBAIBILbk52WSlLk1RKfL0kSjTvfU4ke3RlWHrzK5UQ5Aa5jPTceaJ0v1Ri2L4Y9v5zHbJJ7ZtpYcmhx+hvc0i6g8vSk7vJlaBs0sJ4vSRL/xf/HstBlhXpoAmiUGoY2GsrYFmNp6FK4AlxQvXn99dcZNGgQy5YtY+nSpTz11FO89NJLjBkzhmeffZY2bdpUtYsCgUAgKAPmLAPZh2LJOhiDJbtw8pna2x6nXgHYt/VGoS68oXQi4QSv7n6VeF08AAoUjG81nhfavlCtJcYtZgtndkVz+K/LGHPNVntAUzd6jw7CzbdkiY0mo5ENC+dx+b8jgBzMfmjGLOq1bpt/0tnN8EuBKlfJUvirUZc/5h0Mj6wCj0ZleVnVni0hcRy4JFfL1XG3Y3zP0q0DzZmZxL71Npn//GO12bVpQ8DCT9H4i96KFUlERAReXl4VMtewYcOIiIiokLkEAkEtRJLg3N9yIDv2ZOExz6bQewa0GAZKFeZMA0lLQzDGyvsaCq0KzydboG14c+/qinFNYnX4aj469hGWvM/1xq6N+aLfFwQ6BRZ7XVxEOv98F8L1XJ+2A+rQpn/RSneCikWyWPhnyeeYjAYA2g9+gICmxavPSZJE2po1xH8wFyk3FwClvT2+s2fj8sD9d8Tn2sSpa2nsOifHPANc7RjWrvi/I8GdpURPdkqlknXr1rFlyxZ27NhBcnIyFouF5cuX07NnTxo2LPni//Lly+zbt+/2JwoEAoFAUItJirzC2gVzyEhMuP3JACjQOjgQ1KV7pfpV2aRkG1i0/bz1eNYDwSgUCkxGM3t+OU/4/ljrmKspnuCjn2Obm4bKw4N6y35Em7cmMVvM7Li2g2UhyziddLrQPZw0TjzS7BEea/YYXvYVs0EmuHP07t0bHx8fPD09eeWVV3jllVfYu3cv3333HT/++CNff/017du3Z8KECYwePRpHR9H3SyAQCKo7xqQcsvZGkf1fAuQlrV1H28gFx16B2Aa53ZQcb5EsLA1ZypcnvrRKjLvbujOvxzy6BXS7Y/6XhfiIDHb9dJaka/ntT+ycNHQf0YSgzj4lLgQwGY1s+HQul48fBUBto+WhGW9Tr1Xb/JOMerkyGyjcgLwIVBp4aiPYV14FWVWSYzDz/qZw6/Hb9wVjW4IKeOv1oaFET52GMTLSanN/6im8p01FcZuqKkHpqVeE6lJZiY+PZ+/evYwdO7bC5hQIBLUAi0Vu07F7AcSfKTzm3QJ6vwrNHwSlnGxnStGT+MMZzHntQ5QOGjyfbolNQOU8lxrNRj44/AF/XPjDautTpw8f9vwQB03xiXFp8To2LT6NySivu5p09KbbcCFXfac4te1vos+GAuDi7UOPR4v/bDJnZRE36x0yNm+22rTNmxPw6SeFCjoEFcfnN/TOtlGL6uzqQqlSlQcPHszgwYOtx8uXL+e5554rVS+b1atXi4C2QCAQCAS3IOLkf2xc9CGGHFli09bJCX1WVt7+Y1GbkApQwL0vTr2tPFF1Z+G282To5Yqsh9sH0jrQlYykHLZ8G0JiZKb1vHq5oTQ49A1KyYzKzY26Py5F27gxepOevy79xfLQ5URmRhaa29fBlyeaP8HDQQ/f8sFOUL3ZuXPnTbaePXvSs2dPvvjiC1atWsX333/Pc889x7Rp03j00UcZP348Xbp0qQJvBQKBQHArcq9mkLknCn1YcuEljhLsWnnh1DMAm8Ci26mk6FN4Y98b7I/eb7V19OnI/F7z8bavvN6U5SVXZ+TQusuE7I0u9Jpb9PSn60ONsHUoed9lk8HAX5/OJeKELHmqttEybOYs6ra8QakkbJ0sM14SzEa4sB3aPFJiP2oS3+y5RHSavMbu2cSTgcElk1WVJInUn38mYd6HSNclxp2d8Z83F6f+/SvNX0HFceDAAcaNGycC2gKBoGRYzBC2HvZ8BAlhhcd8W0HvmdD0PmsgG8AYn03iDyFYMuSqW5WrFs9nWqLxsq8UF1P0KUzdOZXjCcettvGtxjO53WSUiuIDcLoMAxu+OIk+S/48C2jqSv8ng1EoharunSAjMYE9Py2zHg96bgoaW9siz9WHhRE1dSrGq/n7W26PjcZ75kyUWm1lu1orCYlO59+zcnGRv4stIzqI6uzqRIkC2rt27WLFihUoFArmzp2Lj0/5+iiInjUCgUAgEBTNyX82sePHb5DyZKJ8GjbmoRmziLt0gS1fLSQ3O8va/+36V62DA/e+OJVGHWp2wO5cXCarD8sS6/Y2KmYMbsrV0GS2LQ0lN092VK1R0jJjB+6H1wCgcnWl7rIf0df1ZtmpJfx89mdS9CmF5g1yC+KpFk8xuMFgNMqSbxILah4uLi68+OKLvPjiixw+fJixY8eydOlSli5dSsuWLXn22Wd5/PHHcXV1rWpXBQKBoNYiWST0Yclk7onCUCBZDUBho8Khsy+O3f1RuxW9sQfwX/x/zNgzgwSdvNmkQMGzrZ9lYpuJ1VZiXJIkLhyLZ9+ai+TkbXQDeAQ40mdMU3xLKUNqMhj465MPiDj5HwBqrZbhM9+hTovWN598dmN+z+zboVDC2Q13ZUA7KlXH17suAaBWKngnTwnodpizsoh9+20y/95itdm2bk3Ap59iExhQaf4KSo7ZbCY5ORm9Xl/sOUlJSXfQI4FAUGOxmCHkTzmQnXSu8Jh/OzmQHTQYbvj8yI3MIHlZKBZd3t6Flx2e41uhdqmcoOO5lHNM2TGFmOwYAGyUNszpPof7Gt53y+sMehMbvzxFRpL8fukR4MC9z7VCpREVqHcCSZLY+u0XGPVycl3r/oNvTkTMOy/1p59I+HB+fiKdoyN+77+P8+D/3VGfaxufFajOniiqs6sdJXrS+/HHH1m5ciV16tRh9uzZVrvFUoKHoRsYM2YMY8aMKfV1AoFAIBDczVgsZnav+IHjf/9ltTXudA9DJk1HY2tL445deH7JCs4f3s/FIwfJycrEztGJxp3vIahL9xpfmS1JEu9tDMOSl/P2Yp9GRO6N5cjGCGv1kounLW0if0V9ZCsAShcXtF/OY2Han6w9tpYcU06hObv4dWFci3F08+9WYtlOQc0nIiKC77//nmXLlhEXFwfIv19nzpxhypQpzJgxg4cffphJkyaJqm2BQCC4g1gMZnT/xZO5L9oqw3kdpZMNjt39cezih9Ku+G2K4iTGP+z5Iff431Op/peHtHgdu38+R9TZVKtNrVXR+f4GtOkXiFJVuo0yk8HA+k8+4ErBYPZr71InuNXNJ2clQHxoyYLZIJ+Xk3r782ogczeHk5snaf9Ut/o09i66+r8g+vBwol5+uXBl1Ngn8HnlFSExXg3YsmULH330EQcOHMBgMNz+AoFAICgOswnOrIG9H0PyxcJjAR2hz2vQeMBNgWwA/YVUkleGIRnkzxhNoCOe41qiKoXqSmnYEbmD1/a+Zt0D8bLz4rO+n9HKq4h1QAHMZgv/fBdqVb9zdNNy/6Q2aO1F4v+dInTXdq6ePgGAo4cnvR4fd9M55owMYt98i8xt26w225YtCVj4KTZ1RI/zyiQ0Jp1tYfEA+DrbMqqjqM6ubpQooH3o0CH69evHli1bUKvzL5kzZw7Dhw+nZcuWleagQCAQCAR3O4YcHZs+/8ja+xCg09CH6Tn6SRQF5KvUNjYE9+xLcM++VeFmpfJveAL7LspVEw2c7agTms2R0PxK6/ot3Wh69CuMR+S2JZKTA2sntebnsJewFNigVSqU/K/e/3iq5VMEewTf2RchuCM8/fTTPPfcc4WC0UajkT///JPvv/+enTt3IkmSVRHIxcWFMWPG8Oyzz6LRaFi6dCmrVq3ip59+Yvjw4SxbtgwHByFBLxAIBJWFOctA1oEYsg/FWquWrqP2scepVyD2bbxQ3Kb6ITknmTf3vcn+mHyJ8U6+nZjfcz5e9l6V4nt5MRst/PfPVY5vuYq5QG/wBm086flIEE7uxVehF4fRkMv6j963boZqtLYMf+1dAoML7MvoM+DsJjjzG1zeVfJgNsgV2nZupfarunPgUhKbz8iJbp6ONkwZ0OSW50uSRNqvvxE/dy5SXqBU6eSE39wPcB44sNL9FdyeDz74gFmzZpVKBVIkuQoEgpswG+HUL3IgO/VK4bG690DvGdCwb5GBbADdmURSfjkHZvm9SNvIBY+xwSi1Fa8YI0kS3535ji9OfGG1tfBowWd9P8PH4daKupIksWv1OSJDk2U/7dXcP7kNjrdQxBFULFkpyexa8b31eOCzL6K1L7wXkXP6NNFTp2GMjrba3J8ci/f06SKR7g7wxb/5ySwT+zRCq1ZVoTeCoijRO2tsbCzTpk0rFMwGePfdd2ncuHGpAtrbt29n7ty57Nixo3SeCgQCgUBwF5KRlMi6+bNJjLwCgFKlYsD4F2nVb1DVOnYHMZgsfLA5HABvk4JH0zRci5SD2QoFdB5SF6+1c9EdPgiA3k7F7OF6LlkOWuewU9sxrPEwngh+gkAnkUF5N7Ns2TIGDBhAly5dCA8P5/vvv2flypUkJ8sP5tc3NXv06MGzzz7LyJEjsS3Qj+rjjz9m7ty5/PDDD8yYMYPXX3+dzz//vEpei0AgENzNGBN1ZO2NJvt4PJgKB5y0jV1x6hWItolriQJMR+OOMnPPTBJzEgFZYvz5Ns/zXOvnUCmr50bTtbMp7Pn5PGnxOqvN0V1Lr0eCaNCmbAH4IoPZr79LYPOWYDLAxW1yddm5v8FUvPTyLZEs0OyBsl1bTTGZLcz+K7//6Yz/NcPZtvhqNHNWNnHvvEPGpk1Wm22LFgQsWigqo6oJhw8fZtasWQA8+uijdO7cGbVabVXjad68OQBZWVkcO3aMVatWERQUxIwZM6rSbYFAUJ0wGeDkatj3KaRFFh6r31MOZNfvWWwgGyD7SBypay9YVeVsgz3wGN0MRSXId+tNembtn8XfV/622u5tcC9zus3BVn37oPSRjRGcPRALgFKtYMjEVnj4O1a4n4KikSSJ7T98Ra4uG4Dgnn1p2K5TofGUZctJ+OQTMMkJoEoXF/znzcWpX78q8bm2cTYugy2hcvKjt5OWRzqJNV91pEQBbaPRSG5uboXcMD4+nt27d1fIXAKBQCAQ1GTiLl1g3YI5ZKfJso5aBweGTnuTui2L6H14F7P8wBUikrJpkavif3obTJLcH8jWUcPAsUFIn7+B7oAcvNbZwPsj4ZK//FDpbuvO6GajebTpo7jaulbVSxDcYTZv3sxXX33FwYPy78X1ILanpydjx45l/PjxNGvWrNjrbWxsmDhxIklJSXz77bcioC0QCAQVhCRJGK5kkLknCn14SuFBJdi39sKxZyA2ASXbQLVIFr4/8z2LTy62KrJ42HrwYa8P6erXtaLdrxB0GQb2/36B80firTaFUkHb/nXodH8DNNqyBeCNuXrWffQ+kWdOAqCxtWP4zHcItEuDv6ZA2HrQp918oWs9aDEMjv0AuVlYd92LRAG2LhD8YJl8rK6sPhzJuXhZXrV1oAsjOhSf/Kg/d47ol17GcOWK1eY2ZgzeM2egFJVR1YbFixejUCjYuHEjgwcPBiA5OZkpU6YwaNAg+t2w+f/UU08xYMAAAgJEz3OBoNZj1MOJlbBvEWREFR5r2Ad6zYD63W87Tebua6T/fcV6bN/BB7fhTVCoKl4JIj47npd2vkRocqjV9lL7l3im5TMlSgwM3RvNsU15vipg4LgW+De5+9RYqjPnDuzh0rHDANi7uNLnyWetY6bUVGJff4OsXbusNru2bQn49BM0/v532tVaS8Hq7Od7N8JWUz2TZms7JQpo16lTh3Xr1jFlypTK9kcgEAgEglrBhcMH2PzlJ5gMcsKYq48fw157B3f/2lVdnJSVy5fbLzBQp6GtIX9Z4l3PiZ5P1CVixjO4Hr8EQI4NzH1ExcUABXWd6vJkiycZ2mhoibKRBXcXP//8MyAHThQKBQMGDODZZ5/loYceQqMpef8vV1dXEhMTK8tNgUAgqDVIFomc0CSy9kRjuJZZaEyhVeHQ2RfH7v6oXUv+mZ2ck8zre1/nYGy+IksX3y582OtDPO08K8z3ikKySITui+HQukvkFpBW923oQp8xTfEoYRC/KIy5etYteI/IkFMA2Gi1DB8QSMCWUZARffMF9h7QYji0Ggl1OsvVZXW7ws+jAQVFB7XzNsSHLQHN3bO2Ssk28MnWc9bjd4e2QKm8efNfkiTSfv+d+Pc/QMor6FA6OuL3/vs4D/7fHfNXUDL279/P8OHDrcHs29G7d28ef/xxlixZwoABAyrZO4FAUC0x5sB/y2H/IsiMLTzWeIAcyK7bpchLCyJJEhlbrpC5Oz8Y7tgjAJchDVAU8flSXs4knuGlnS9ZVWrs1HZ82PND+tUtWdXuldNJ7P4p/3Owx4gmNO7gXeF+CopHl5HOjh+/sR73f2Yidk7O8tjx40RPfwVTbP7vpMez4/GaMgVFKfY2BOXjfHwmm0Pkn4Gno5bHutStYo8ExVGigPbAgQNZsmQJHTp0oE+fPri4uFjH/vzzTy5evHiLqwtz6tSp0nspEAgEAsFdgiRJHP3rD/b+tMxqC2jWgqHT38De2aX4C+9SPvsrnAeSVfiZ8yW5GnVz51zjHex8YRltz8vV2noNzB2lwrZtGxa2HEffOn2rrcSooPKRJAl/f3/GjRvHM888Q/369Ut1vV6v5+eff+ajjz7CzU1kpgsEAkFZsRjM6I7Fk7kvGnNKYYlrlbMNjj0CcOjsi9K2dH0ki5IYn9h2IhNaTaiWn/9JUZnsWn2O+IgMq01rr6bb8MY07+ZXrg1uo17P2gVzuBZ6GgAblYWHfQ/jf2l74RM1DtDsPmg9Sq4wU92wCdr0Xnj0J1g3Ua7kVihlefHrX21d5GB203vL7Gt15OOt58jQywkGD7cPpH3dmz/3LdnZxM6eTcZfG6w2bXBzAhcuxKZevTvmq6DkxMbG0qVL4cDT9SpFi6XonvGdOnVi3rx5le6bQCCoZhiy4diPsP8zyE4oPBY0WA5kB3Yo0VSSRSJt3UWyj8RZbc7/q4dTnzolqpQuLZsub2LW/lkYLAYAAhwD+Lzf5wS5BZXo+riIdP75LoQ8QTPaDqhDm/5CRvlOs+PHb8jJlNeITbp0I6hLdySLheTvfyDxs8/AbAZA5eaG/4L5OPbsWZXu1kq+2HHR+nfyfO+Gojq7GlOip8rXX3+dX3/9lRMnTnDy5MlCY2vXrmXt2rWV4ZtAIBAIBHcVZpOR7d9/RcjObVZbcM++DHxuCupamHm5f38ULnuTsZPkYLZCDemdz/K25TsmfZhL2/PyalKvgc0vtuf1YdNo792+Uh4UBTWLWbNmMWvWLJTKsvUmi46O5plnngFg0KDa069eIBAIbodktKA7k4g+NBmzzoTKXo1tCw/sW3kV6gdpzjSQdTCG7EOxWApUIwNofB1w7BWAfWsvFOrSvU+bLWa+PfMtS04tsUqMe9p5Mr/nfDr7dS7/C6xgDHoTRzZGcHpHFJIlv+q5WVdfuj3cGDun8klUG1OiWTv3Ta5dSwLARmni4Toh+NvlVcEr1XJVWauRciDaxuHWEzYbAtPPyfLkZzdATirYuck9s4MfvKsqswFCotP5+YjcF9VRq2bm4KY3naM/f57ol6diuHzZanMd/Sg+r72GUqu9Y74KSo+Tk1OhY1tb+fc3OroI1QJAp9MJZR6BoDaRmwVHv4cDX4AuqfBYs/uh16vg37bE00kmCym/niPnTN5cCnB9sDGOXf0qzuc8LJKFz49/zg8hP1ht7b3bs7DvQtxt3Us0R1q8jk2LT2MyyuupJh296Ta8cYX7Krg1F48e4tyBPQDYOjrR/+mJmJKTiZn5Gtn79lnPs+/YEf9PPkbj41NVrtZaLiZksfF0DAAeDjaiOruaU6KAdmBgIIcPH+bNN99kx44dJCcnWyUer/csLA1iI1ogEAgEtQ19VhZ/fTrXWl0D0H3U43QZ/kit+1yULBL/bbnCib8isMuTt9TZZrIp6GvSTFG8tN5C57xgtslGhePC93iz/7CqdFlQzQgKCipzMBugUaNGGI1y9X955hEIBIK7iZywZFLWnEfKMeWrUisgJzSZtA2XcR8ZhNrTjqy90WSfiAdT4b0AbRNXnHoFom3sWqa1TVJOEq/tfY3DsYettq5+XZnXc161kxiXJImIU0ns/fU8Wam5Vrurjz19HmtKQNNyqH/kZsG5zRiO/8ra3QlE6WQFHxuliRF1Q/Czy4S698hB7OCHwMGjdPNrbKHNI/K/uxhJkpi9IdRabTO5X2O8nQsH7NP++JO4995D0svqAkoHB/zem4PzkCF32l1BKfHz8+PMmTOFbPb29jg6OrJ7926efPLJm675559/sBF90AWCux99Bhz5Fg4uhpyUwmPBD8qBbN9WpZrSkmsmeVUYuRfSZINSgfsjTbFv41UxPhcg25jNa3tfY9e1XVbbw00e5s0ub6K5UX2lGHQZBjZ8cRJ9lvzMG9DUlf5PBleKJLqgePTZWWz/4Svrcd8nn4VzF4h45RVM1xOsFAo8J07E84WJKNSlUzQSVAxf7rhgXS9O6NUQexvxc6jOlPin06hRI3755ZdCNqVSyapVq3jsscdKfMNVq1YVubAUCAQCgeBuJTUuhrUfziY1Vq4WUGk0DH5hKs269apiz+48uToj25eFc+V00vVOjVx1DeXfJisxKXVM+ctC13N5K0mtDQ2//hqHbt2qzF9B9SMiIgJv75L1/Bo8eDBqtZoJEyYwdOjQQmMqlZCQEggEguvkhCWTvDIsv7XyDV+lHBPJK8JuvlCpwL6NF449A7DxL3uP6MOxh5m5ZybJ+uS8aZW80OYFxrcaX+0kxjOSc9j76wWunM6v9lJplHS8tz7tBtZFpSlDopTZCBf/hTNr5GB2rp4/I1sSnSMHs7VKEw+3ycav+zRoNQJcReXI7fjrVAxHr6QC0NDTgXHdG1jHLDodcXPeI33dOqtN27w5gQs/xaaUbUwEVUP79u1ZtmwZkyZNomnT/Mr7Dh06sGrVKgYNGsSjjz4KyMkNc+bM4d9//6Vjx45V5bJAIKhsctLg8DdwaDHo0wsMKKDlcOj5CvgEl3pai85I0rJQDJGyOopCo8Tj8ebYNi1ZpXRpiMqMYvKOyVxMk9u7KhVKZnSawWPNHitxsqBBb2Ljl6fISJKTtTwCHLj3+dZlW58IysXulT+QnSonVTRo2wHPU2FEfv015LXGUHl6EvDRAhzuuacq3azVXE7M4q9TcnW2u4MNj3cVrWaqO3c83SAiIuJO31IgEAgEgiojKjyE9R9/gD5Lfvixd3HlwVfewj+oWRV7dudJisri7yWnrQ9WEhaO1vmb4wHbUEgWXt1sQ8fwHAAUNjYELv5KBLMFN9GwYUNWrlxZooTKixcvcvnyZf7++2/++usv7rvvvjvgoUAgENQsJKOFlDXn84PYJUChVeHQxQ/H7v6oXcouy2y2mPnm9DcsObUEKc8BLzsv5veaTyffTmWetzIwmy2c2n6No5siMBnye/TWDXan1+ggXLzsSzehxQLXDstB7NC11ioyg1nFn9cKBLNtVIyYPAnfzoMr7LXc7WTnmpi3+az1+O0HgrHJk7/PvXiRqJdfxnDxknXc9ZFH8HnjdSExXoMYPHgwf/zxB127dmXcuHHMnTsXW1tbxo4dy+7duxkzZgzTp0+nTp06XLx4kdTUVBQKhTXILRAI7iJ0KXDoazi8BHIz8u0Kpaxm0vMV8CpZz+kbMWfkkvhDCKZ4nTylrRrPp4LR1nepCM8LcTTuKNN2TSMtNw0AJxsnPu79Md38S74nYjZb+Oe7UBLzgu+Oblrun9QWrZ2oOL3TXDl13NpuUGNrS/PwCJKP/GYdd+h2D/4LFqD2rF4qRLWNL3de5HrXoPE9G+CgFX8r1Z1y/YR+/PFHuomNZoFAIBAIiiRszw7+WfI5FrPcW9IjsC7DZr6Di3ft64lzYt9lDvxyGUzyZqJenc32JiuIcj1LE+dGzNxqj/OZEwAoNBoCv/gcxx7dq9JlQTWlNO1uQkJCOHnyJE899RTz5s0TAW2BQCAoAt2ZRFlmvITYtfHCbVhjlLbl2/BJykli5p6ZHIk7YrXd43cP83rOw8OulDLalUzsxTR2/XSOlJhsq83exYYeI5vQuIN36STW48PgzG9w5g9Ijyw0ZDCr+CO6DTE5ci9srYMDI958H99GTSrkddQWvtp1kbgMOYGyfzNv+jaVlV3S1q0jbvYcpBw5gVJpb4/vnDm43C/WBzWNESNGMHv2bIxGI7/88gszZ87E1taWJ598kuXLl7Nnzx5iY2OJi4uzrh27dOnC5MmTq9hzgUBQYWQnw8EvZXlxQ1a+XaGCNo9Cz+ng0ajM05uSc0j8IQRzSl5bCkcNns+0wsbPobye38Sa82uYe2guJklej9V3rs8X/b6gvkv9Es8hSRK7Vp8jMlRWu9Haq7l/chsc3USy1p3GkKNj23dfWo+bx6ZAZKh8oFTiNWUyHs8+i0KoxlUpV5KyWX9Srs52tdcw9p76VeuQoESU6wm0tNLhJpOJ3Nzc258oEAgEglIjGS3oziSiD03GrDOhsldj28ID+1ZeKIS00B1FsljY/9tqDq/91Wqr17odD0x9Da19xT/8VGei0qJZs3wPNuE+gPx7mOhwja1BS0kzu/JWmwX0/mUPGTvXyRdoNAR89hmOvXtXmc+CuwdbW1u6du3K5MmTeeedd6raHYFAIKiW6EOT83tm3w4FYLKUO5h9MOYgr+19jRS9XJWsVCiZ1HYSz7R6BqWi+qxb9VlGDq69SNj+2HyjAlr1CaTL0IYlr3hKuwYhv8PpNZAQevO42o7cRoP58z81MdlxANg6ODLirffxadi4Al5J7eFqcjbf7ZGVAW1USt6+PxhLTg5x779P+h9/Ws/TBgURsGgR2oYNiptKUI1xcXEhMjLyJrtSqWTz5s3Mnj2bX375hbi4OPz8/HjkkUd4++230WhK1n9WIBBUY7IS4MAXcPQHMOYnmqFUQ9vHoMc0cC/fe7shNpukpWewZMo9qFXutng90xK1h1255r0Rk8XEgqML+Pnsz1Zbd//uLOi9AGcb51LNdWRDBGcPyOsVpVrBkImt8ChHOxhB2dn783IyEhMA8MjMISBS/rmovb0J+ORj7DtVLxWi2srinRcx55Vnj+/RAEdRnV0juCM/pSNHjrBixQp+/fVXUlJS7sQtBQKBoFaRE5ZMyprzcnXN9Q1JBeSEJpO24TLuI4OwC65elS53K0ZDLlu+WsT5g3uttjYDh9Bv3HMoa1H25dmUs6w48hPq7fXxyapvtYd7H2Snx1lyYkfzaKt76PP7mvz+hWo1gYsW4tSvb5X4XC0w6iFsHZzdCLpUsHeDZvdD8EOgsa1q72osycnJZGdn3/5EgUAgqIWYdaaSy41LYClFNfdN97KY+frU13x7+lurxLi3nTfze82no2/16W0rSRLnDsWx/4+L6LOMVrtXXSf6jGmKd70SbDLrUmQp8TO/Q+SBm8cVKmjUF1qNIrdeX/74ZAGx12SZbFtHJzmY3aDslWW1lfc2hmMwy5LwT/dogF9GPFfGvUzuhQvWc1xHjsDnzTdR2oq11d2Ivb098+fPZ/78+VXtikAgqEgy42D/53BsKZhy8u1KDbR/AnpMBde65b5N7tUMkn4MRdLL6x21jz1ez7RE5Vyxlc7puelM3z2dw7GHrbYngp9gWodpqJWlC9mE7o3m2OYr8oECBo5rgX8Ttwr0VlBSosJCOPnPJgBUZgutohJQAA69euL/4Yeo3Su+97qg9EQm6/jzRDQAzrZqxnarX7UOCUpMpQW0r127xsqVK1m5ciXnz5+32iVJKp0cl0AgEAhuSU5YMskrw/I3Im/4KuWYSF4ZhscTwSKoXclkp6Wy/qP3ib14TjYoFPQdO5529w6tFZ99kiRxMPYgP4b8SOTZJAZceAp7oxMAZoWRlPaX2XytDpbYtjjbKHn22BrS1/4hX6xSEfDpJzj171+Fr6CKObsZ1k0EfZrc70uyyF/DN8DfM2HYEmh6b1V7eUfZvXs3u3fvvsn+559/cvHixdtebzQauXr1Kn/88QcNGzasDBdrDIsXL2bx4sWYzeaqdkUgEFQzFKpSrFEUoCxjH8YEXQIz98zkWPwxq627f3fm9pyLu2312dxLic1m90/niLmQZrVpbFV0fbARLXsHoFTe4vtl0MG5zXJf7IvbwVJE8D+ws9zTs8UwcPQiV5fNH3NnEXtBXj/aOjox8u0P8K5fuz+3ysLu84lsD48HwNtJy7ics0SMeA9Jl9f71M4Ov9nv4jJ0aFW6KRAIBILSkB4N+z+D/5aBuYDyq0oLHZ6E7i+BS2CF3Ep/LoXkVeFIRjkxyqauE55PtUBpX7HqDpfTLzP538lEZspKE2qlmlldZzGsybBSzxVxOondP52zHvcYIbdDEdx5jLl6/l70ofU4KC4Fewt4v/oK7uPGoVBWHxWi2s5Xu/Krs5/p0RBnW6HgUlOo0IB2dnY2v//+u7VfzfU+NQV7HXp6epKcnFyRtxUIBIJai2S0kLLm/O2raiRIWXMe/ze6CPnxSiIp8gprF8yxygpptLbc99KrNOrQpYo9q3yMFiNbr2xlWegyziafpW1MP+6PfBFlnsQ4jkaGTGjBGzudsRhSQJJYFL8d/e7N8rhKRcAnH+M8aFDVvYiq5uxm+OWx/GPJUvirPh1+Hg2P/gTNhtx5/6qIXbt2MWfOnJvsa9euZe3atSWeR5Iknn766Yp0rcbx4osv8uKLL5KRkYGLi0tVuyMQCKoBkkUia180uZfTSnER2Lb0LPW9DkQf4PV9r1slxlUKFZPaTeLplk9XG4lxk8HMsb+vcGJrJBZz/uK6cQdveoxsgoNrMZVZZhNc3iX3xQ7fWFj+9DqeTaH1SGg5opAMqj47iz/mziLuolwEYOvkzMi33hfB7DJgMFmYvUGWc7cxG/ksegcpKzdbx7VNGssS441E1XttZf369UydOpXLly9XtSsCQe2mpKpkaddg30I4sRLMhny72hY6Pg3dpoCzX4W5pTuVSMpv5yBvDaBt4orH48EotRWrtLc3ai8z9swgyyj3/Xa3dWdhn4W092lf6rniItLZ+l0I10MvbQfWpU3/OhXprqCESEYj2159mYz0NABcs/U0trEncOXX2LdrV7XOCQpxLUXH7/9FAeBkq+ap7vWr1iFBqSh3QFuSJLZv386KFStYt24durzM14JBbDc3N8aMGcPTTz9NSEhIqXtvCwQCgaBodGcSZZnxEiDlmNCFJOHQTmRqVjRXTv7HhkUfYsiRZa8cPTwZNmPWXb8ZqTPq+PPCn6wIW0Fsdiwak5ZBl56mYUob6zkBzV0Y/ExrdkQkcSRCDmbPuLAJv7Bd8glKJf4L5uM8eHDVvIjqgFEvV2YDxWen5PURWDcRpp+rVfLjBdeUt7IVhb29PUFBQTz55JNMmTKlol0TCASCGosxUUfq7xcwXM0o1XUKOzX2pQhomywmvjr5Fd+f+T5fYtzem496fVSmjdvK4mpoMnt+PkdGkt5qc/a0pdfoptRrUYTCkSRB1FG5EjvkT9Al3XyOkz+0ehhajQLfVnCDWo8+O4s/PnibuEuyFLadkzMj3/4Ar3qip3NZWHHwCpcTswnITOD9k6txTY62jrkMH47v22+htKvY3qeCmkVWVhZXr16tajcEgtpNSVTJvJvD3k/h5E9gyW/7gcYeOj0D90wGJ58KdSvrUCxp6y9aH8ftWnni/khTFOqKS7qTJIkVYSv49L9PseQlrjd1a8rn/T7H39G/1POlxevYtPg0prxq8iYdvek2TCRtVQWGqGjOTH+JcCkHFAqUFgtdAxrSaP4CVK6uVe2e4Aa+3n0JU1519rjuDXCxE9XZNYkyB7TDwsJYvnw5P/30EzExMcDNm4sKhYL333+fadOmodXK2cyhoaEl3oQUCAQCwa3Rhybn98y+HQrQi4B2hXNy62Z2/LgEySI/RPg0bMxDr76No/vdK++elJPET+E/8eu5X8kwyBvhbjpf/nfuaVz1+Q+WHe+rT6f7GmAwW5i7ORwkiQkhf9H3Ul5/cYUC//kf4nLffVXxMqoPYevkB/rbIsnnha2HNo9Urk/VhHfeeYd33nmnkE2pVLJq1Soee+yxYq4SCAQCQXFIFomsAzGkb7kCpjwVEAXYNnNHH55y64sV4D4yqMRqP/HZ8czcO5P/4v+z2noE9GBuj7m42VaPvo7Zabns/e0Cl44nWG1KlYJ2g+rS8d76qG1uqMpKPAenf5MD2WlFBMZsXeQKs1YjoV53KEZaUp+Vxe8fvE385QLB7Flz8apbv4JeWe0iIVPPou0X6B11giknf8feJEvSKmxt8X3nHVyHPVS1Dgoqjfj4eDZv3kx4eDhpaWmYTMUne4vKbIGgiimRKtmjgBKw5J9n4widn4V7JoFD6VViboUkSWTuukbGP/mf6Q6dfHEd1hjFrVqMlBKD2cCcg3NYf2m91da/bn/m9piLvca+1PPpMgxs+OIk+iw54B/Q1JX+TwZXqM+CkpGxbRtRb77FMV8XsLMBoF3zNgTPnlsrWg/WNKLTclhz7BoAjlo1z3QXiaQ1jVIFtBMTE/npp59YsWIFJ0+etNoLBqhbtGjBmDFjGDhwIJ06daJLly7WYDbAmDFjGDNmTPk9FwgEAgGmtNySBbNBjoVdTCNtwyVs6jphU8cZlZtWLLDKiMViZveKHzj+919WW+NO9zBk0nQ0tndn9WxEegTLQ5ez4dIGDJZ8ya9GSe3of/lxlGZ5WaG1VzNgXDD1W8kPmz/sjiAqRcf40I0MKxDM9ps7F5cHHrjjr6PacXZjfnb67VAo4eyGWhPQFggEAkHFYUrKIeX38xiu5FdlqzxscR8ZhLa+CzlhyaSsOS+r/1xPmMz7qrBT4z4yCLvgkiXs7Y/ez+t7Xyc1N1W+j0LFlPZTeKrFU9VCYtxikQjZHcWh9Zcx6s1Wu38TV3o/1hR3P4f8k9OjIeQPWVI87szNk6ltIWgwtB4FjQeAuhhp8jzkYPZbxF++CICdswuj3v4ATxHMLjOfbjjDU4d/4b4rh6w2m0aNCFy0EG2TJlXomaAyeffdd5k3b94tg9gFkSRJPPsKBFVFiVXJwBrM1jpDl+eg6wtg717hLkmSRPqmCLL25St6OPUOxHlw/Qp9r0jKSWLqzqmcTDxptT3X+jleaPtCmdZEBr2JjV+esqrKeAQ4cO/zrVGJ9oJ3FIvBQMKCj0hdtYoLPm5k5QWzvXwD6DnrPfF5U01ZsusSxry2Ak91q4+LvajOrmmUKKC9Zs0aVqxYwdatW60LxYJB7MDAQEaPHs2YMWNo3bo1gOiTLRAIBJWEZJHQn0sha38Mxuis0l2bayZrfwzsl4+Vjhps6jrnBbidsAl0qvD+QHcjhhwdmz7/iMvHj1ptnYY+TM/RT6IophKnJnMy4SQ/hvzIzms7rXKhABpseCR1Mo4X6lptHoGO3PtcK1y8ZEnH+Aw9i3dcYFzYZh6+uNt6nt/774lqmevokksWzAb5vJzUyvWnmrNz506aN29e1W4IBAJBjUGySGQflKuyJWP+541jN3+cB9dHmVeFbBfsgf8bXdCFJKEPScKSY0Jpp8a2pSf2LT1LVJltsphYfHIx35/53mrzsffho94f0c67evQPTLiawa7V50iMzLTabB01dB/RmKZdfOUNyJxUCPtLrsS+so+bNt8VSmjYR67EbnY/2DqX6N45WZn8/v5bJERcAsDexZWRb3+AZ516FfTqah+nDp6hx6LXaJQRY7W5PPggvu/MQmlf+qo3Qc3gm2++Yc6cOdZjFxcXnJ2dUd7iWSw7O1vsVQoEVUWJVcnyaPYAPPgF2FWOootklkj98wK6/+KtNpd76+PUu2L7T59NOcvkHZOJy44DwFZly3vd32Nwg7K1XDObLfzzXYh1DePopuX+SW3R2pW7q6ygFBiuXiV66jT0YWFk2NpwyUf+PVWqVAyeOhOVWvw8qiOx6Tn8elSuznawUfFMD1GdXRMp0V/XI488gkKhuKkv9ogRI3jsscfo1auXyDoRCASCSsaSa0b3XzxZB2IwJeVUzJxZRvRhyejD8h7sFaDxdZCD23WdsKnrjNrTTsgWFSAjKZF182eTGHkFkBesA8a/SKt+g6rWsQrGIlnYfW03P4b+yImEE4XGHDQOjAwcTcDBziRH5P8uNuvqS+/HmhaS5/xoy1lGnNrEqAs7rTbfObNxffjhyn8R1Z3E83BiBUQdK/k1CmWlPdTXFHr37l3qayIiIti7dy9jx46tBI8EAoGg+mJKziHl9wsYItKtNpW7Le4jmqBt6HrT+QqNEod23mVqUROXHcfMPTM5nnDcausV2IsPun+Aq+3N97rT5OaYOLz+Mmd2RxWKTwf38OeehxphqzXJG+5nfocLW8FsuHmSgA5yELvF8FL378zJzGDN+2+ReEWWPbZ3cWXUrLl4BNa9zZWC4kjbtBnLa2/SyChXqVk0NgS8OwuX4cPFHtVdzpIlSwCYNWsWzz//PL6+vre9ZtWqVTz55JOV7ZpAICiK0qqSKai8YLbRQvLPZwvtg7kNa4JD59u/j5SGbVe38ea+N8kxyXsm3vbefN7vc1p4tCjTfJIksWv1OSJD5RYxWns1909ug6PbrZVhBBVLxt9/E/vW21iys7EAp+v6IOWtOTo/NBLv+g2r1kFBsXyz+zIGs/weNLZbfdwcbKrYI0FZKHG6yHVpHg8PDz777DNGjBiBRiNK8gUCgaCyMaXoyToYQ/bROKQCkogASnctUqaxULVNcSjs1Pi83B5jXDaGyEwMkRkYrmUWnlMCY2w2xthsso/IGaQKW1VegFuu5NbWcUJZSyVZ4i5dYN2COWSnyRWyWgcHhk57g7ot21SxZxWHwWxg4+WNLAtdRkR6RKExbztvxgSPoZdyMHuWXSY5Q34wU6oV9BwVRIue/oU2D09HpaFdvZTR5/+12nzffQe3UaPuzIupjuRmQehaOLESrh0u/fWSRc5WF5SKAwcOMG7cOBHQFggEtQbJIpF9JJb0zRFIhvx1osM9frgMblDhijx7o/byxr43SMtNA0CtUPNS+5cY22JslUuMS5LExf8S2PfbBXQZ+UFqd38H+jzaGD/VKdj2GYRvAEPmzRN4NIZWo6DVCPBoVCYfig5mz8MjsGIrwWoLltxcEubPJ/Wnn7ne6CfexYeOy5bg2LxZlfomuDOcP3+eMWPG8O6775b4mhsLdQQCwR1El1otVMksuSaSV4SReykv0U+lwP3Rpti38qqwe0iSxJLTS/jq5FdWW2vP1izquwgv+7Lf58iGCM4eiAXkPZghE1vh4e9Ybn8FJcOi1xM/70PSfv3Vaots2oAMW3md6xFYly7DRGu46kp8hp6fjkQCYG+j4tmeIvGgplKigPbGjRtZvnw5GzZsICkpieeee44tW7YwZswYBgwYcEtJH4FAIBCUHkmSMFzJIGtfNDlhyTepHGobueDYPQDbZu7oz6aQvDLs1r20FeA+Mgi1ixa1ixa7pnL/IckiYUrKkQPc1zIwRGZijMsuNJekN5N7IY3cC2lWm9rTLq+CW+7FrfF1QKG6u6sgLhw+wOYvP8FkyAXA1cePh2bOwiPg7tiITM9NZ835NawOX01STlKhsUYujXiyxZMMaTCE8F3xbP3zHJJF/iVxdNMyeEIrfBoUltqUJIk9b83n8XPbrDaft9/C7dFHK//FVDckCaKOwvEVcjDbcEOrAIUaFAqwmLjtH7KtCwQ/WJneCgQCgaCGY0rVk/rHBXIvplltKlctbiOCsG3sWqH3MlqMfHniS5aGLLXafB18+ajXR7T1bluh9yoL6Yk69vx8nsiwFKtNbaOkU08b2tivQ7X+d8hOuPlCR19o+TC0Hgl+beXP6TKiy0jn9/ffIvGqnCjo4OrGyFlz75o15J3GEBlJ9MtT0YeFWW07AtvT5tN5ODYX1e61BWdnZ3r06FGqa8aMGcOYMWMqySOBQFAsKZch7WrJz68kVTJztpGkH0MwRsnP4wobJR5PBGPbpOLulWPK4a19b7H16lar7YGGD/BOt3fQqspeSR26N5pjm6/IBwoYOK4F/hXot+DW5F6+TPTUaeSeO5dvHDyIc4mRYDKiUCj53/MvoRbFn9WWb3ZfxmCSk2qe6FoPd1GdXWMpUUB7yJAhDBkyhPT0dH799VdWrFjBypUrWbVqFV5eXjzyyCM89thjdOnSpbL9FQgEgrsayWRBdzqx6P7YagX2bb1x7B6AjZ+D1WwX7IHHE8GkrDmPlGOSpZkkrF8VdmrcRwZhF+xx0/0USgUab3s03vY4dJRlEy25ZgxRmRiuZVoruS1ZxkLXmZJyMCXloDsubwAqNEo0AY7Y1HVGmxfoVjnfHbJHkiRx9K8/2PvTMqstoFkwQ6e/ib2zS9U5VkHEZsWyMnwlf5z/A51JV2isg08Hnm75ND0CemDKtbBj6VkuHc/f9A1s5sagZ1pg53TzQnDf7E/of2id9djztddwr20bSFmJcPoXOL4Sks7dPO4dDO2egNaPQNQR+Hk0+X/AN5K3kT5sCWhsixi/+1i2bBmLFi1i0qRJjB8/3mpXqSq2qlAgEAjuFiRJIvtIHOmbIpAM+Qo8Dl18cRnSAKW2Yvv5xWXH8eruVzmZeNJq6xPYh/d7vI+LtmrXSGajhRPbrnLs76uYCygZ1fdPpaf9VziHFtHuQ+sMwUNlSfH6PUFZ/s8bXUY6a957k6S8VjUObu6MmjUXd//Acs9dG8n4Zyuxb76JJUt+TjIo1Xzd+iEY8iAvthbB7NpEjx49SElJuf2JAoGg6ki9Ans+gpM/g2S+7elWKkGVzJSeS9IPZzAlyCpzCjs1nuNaoK3rfJsrS05cdhxTdkwhPCVcvgcKXu7wMuNajCtXG4yI00ns/il/P6HHiCY07lD61jCCspG+fj2xs+cg6eT9MoWtLd5vvsGWU4cxx8p7pR3ufwi/Jk2r0k3BLUjI1LP6sJxUY6tR8mwvUZ1dk1FIZdTbiYiIYPny5axatYrLly+jUCho2LChNePR3d0dLy8vtm/fTr9+/Sra71pJRkYGLi4upKen4+xccR+4AoGg6jFnGcg+FEvW4VgsmYWDx0onDY5d/XHo4ovKsfgMMsloQReShD4kCUuOCaWdGtuWnti39EShKbuShiRJmFNzrRXchmuZGKKzwHzrjw+Viza/iruuMzb+juXyoyowm4xs//5rQnbmZ9c279mXQc9NqfGZl+dSzrEsdBlbIrZgkkxWuwIFA+oN4KkWT9HaqzUAqXHZ/L3kDKlx+QHvDoPr0XloQ5RF9FeP++Y7Uhd+aj3OGPcCXWZOrsRXU42wmOHiv3Jv7HN/51VdF8DGCVo9DO3GQkD7whVfZzfDuomgT8vvL3b9q62rHMxuem+FuFkT1hSurq5kZmbi5OREWlqa1V5WZSCFQoHZXIqNlLuUmvCzFwgEpceUlkvqH+cLKeqoXLS4PdwE26CKr+DZE7WHN/a9QXquLNmpVqh5ucPLjA0eW+W9i6PPpbL753OF1i2OmnR6OnxFA+2RwsXWKhsI+p8cxG7yvwpNGtOlp8nB7GvyBpqjmzsjZ83D3T+gwu5RW7AYDCQs+IjUVaustihHL+Z2eoIYj0C2T+tNHXf7KvSw9lJV64qQkBBGjx7Nvn37cHEpWQLN6tWrGTt2rFgPVhBiTSkolrRI2PMxnFx9w/NwccnbFD7H1gWmn6uwz2Rjoo6kH0Iwp8lqe0pnG7yeaYnGx+E2V5acU4mneGnHSyTr5b7c9mp7FvRaQO86vcs1b9zldNYvPIEpLzmv7cC6dH+4cbn9Fdwei05H3Hvvk752rdVm07gRgQsXEnohjJ3LvwPA1dePsQu+QKOtHYUHNZEPNoXx3V5ZKWl8jwa8dX9wFXskuJHSrCnKnKLdoEED3n33Xd5991327dvHihUr+P3335kzZw7vvfcewcHBRfanOXToEN9++y1Lly4tZmaBQCCoPRhissjaH4PuVAKYCr9fagIccewRgH0rTxTq2wdwFBolDu28cWhXsZmaCoUCtbstandb7NvIc0smC4aYrPwAd2QG5tTcQteZ03PJOZNLzpk8+WqVAo2fA9q6znk9uZ1QudtW+aZnceizsvjr07lcCz1ttXUf9Thdhj9SbX2+HZIkcTjuMMtClrE/Zn+hMa1Ky0ONH2Js8FjqOudXuFz8L4EdK8Ix5sobPza2Kvo/FUzDtkX3fkr+cVmhYPbO3qN4oTYEs1Mi4MQqOPkTZMbcPF63G7R/QpYLtynmwbnZEKQp4ei2bkcfnorZoEJlY8a2uRv2gwagsK9dG7Xdu3fn77//pnv37jeNDR8+nFatWpV4rtOnT7Nu3boK9E4gEAiqB5IkoTsWT9rGy0i5BaqyO/nicl8DlLYVW5VttBj54vgX/Bj6o9Xm7+DPgt4LaOPVpkLvVVp0GQYO/HmRc4firDYFZtrYb6CT46/YKPVWKw16yn2xmz8Adq4V70t6Gr/NeYPkKLlXn6O7B6NmzcXNTwSzS4shKkqWGA8JsdrCmnXhrUYPkKOxZUqvhiKYXQtp2bIlX3/9NcOHD2fcuHEMGTIEd3f3qnZLIKjdpEfB3k9khTJLgUINrQvc8yJ4NII/ritv3RlVMkN0FklLQ7Bky/6oPGzxeqYVaveKCz7+dekv3j3wLsa81xzoGMgX/b6gsVv5As9p8To2fXXaGsxu0tGbbsMaldtfwe3JvXCBqKlTMVy8ZLW5PDwc37feIiMjnb2/rLDa//fcSyKYXY1Jyspl5SE5uVSrVjKht6jOrulUyNNtjx496NGjB1988QXr169n+fLlbNu2DUmSGD58OKNHj2b8+PF07NiRS5cusXz5chHQFggEtRbJIqE/m0LWvmhyL6cXHlSAXUtPHLv7Y1PPudoGThVqJdq6zoXkmcyZhkK9uA1RmUiGfIlHzBLGqCxrvyIApYMamzrO+ZXcgU4VvvFaFlLjYlg7fw6pMVEAqDQaBr8wlWbdelWxZ2XDZDGx7eo2fgz50Sp/dR0XrQujm43m0aaP4mGXL0tvMVs4uPYSJ7dfs9o8AhwYPKEVrj5FbxqmrFhJwvz51uPlLYYw/r1XKvjVVCOMORC+Qe6NfWXvzeOOPtBmtCwr7nn7h9mcsOS81gFuoHCTn/H1kHMI0k6dKrZ1wN3K+vXrOX36dJGB6+HDh/PYY4+VeK7Vq1eLgLZAILjrMKXnyr2yz6dabSpnG1wfboJd07IFdnLNuWy9spUdkTtIy03DVetKv7r9GFR/ECk5Kby651VOJZ6ynt+3Tl/e6/5elUqMSxaJsD2RHFx7kdzc/LWzj+YcfZyX4Km5Ihv82sqV2C0fBme/SvMnOy2VNe+9mR/M9vCUg9m+/pV2z7uVjG3biH3jTSyZmQAobGxIfXoS02P9QKHA38WWiX1EpVpt5Z577mHMmDE8++yzGAwGXF1dcXJyKlbNJzs7+w57KBDUEjJiYO+ncHw5mA35dq0zdJ0IXV/ITx7T2N9ClcylQlXJciPSSVoWak340/g64PlMS1RFtEwrC2aLmc+Of1Yoya+Tbyc+6f0JbrblU8fRZRjY8MVJ9Hnt/wKautL/yWAURSjkCSoOSZJI/+MP4t7/AEkvJ0Iq7O3xe/cdXIYORZIktn38HqZcuaCnzaD7CAxuWZUuC27Dd3svo89LCnmsS128nUTyQU2nQqMGWq2WUaNGMWrUKBISEli9ejUrV67k22+/5bvvvqNVq1Y0biweNgQCQe3EojeRfSyerAMxmFP0hcYUtiocOvvieI8/area+eGqcrLBroUHdi3kgJtkljAm6DBEZlgD3df7FV3Hkm1CfzYF/dm8/mcKUHvby1XceUFutZf9HV20R4WHsP6TuegzMwCwc3bhoVffwj+o+R3zoaLQGXWsvbiWlWEric6KLjQW4BjA2OCxPNT4Iew1hQPU2em5bP0+lJgCsqVBnX3oM6YZGm3R/SRTVq8mfu5c6/GKZv/D9smnaeztVHEvqLoQcxJOrITTayD3xqQUlSxd2u4JaDIQVCWTps8JSyZ5ZVh+ovoNX6UcE8krw/B4IrjWBLXVajXt27e/yV6vXj0cHR1LNZejoyN164remgKB4O5AkiR0xxNI23AJSZ9flW3fwQfX+xuitCvbY/7OyJ28tf8tMgwZKFFiwYISJdsjt/PeofcAyDHJazm1Us20DtN4vPnjVZeAaTGTfHQvu9YmEJfmyfXKLq0ii65OK2lhtw2Fe31oPRNajgCvoEp3KTstld/mvEFKtJwQ6OjhySOz5uHqW3kB9LsRyWAg4ZNPSFmeXwGlqVcX748/4bktiaCQ5eTfuK85djbl73UuqHno9XqGDRvG1q1brcqQqamppKam3vK66powLhDUSDLjYN9COPYjmAso9tk4Qpfn5aps+xsS7JoNkeXEw9bD2Q2Qkwp2bnLP7OAHK6wyO+dsCsmrwsEkB7Js6jnj+VSLMq+RbiTLkMXMvTPZE7XHahsVNIrXuryGRlm+9nQGvYmNX54iI0neN/QIcODe51ujqmEt/Goa5qxs4mbPJmPDBqtN27QpAQsXom3YAIAzO/4hMkRWcXTy9KLXY09Wia+CkpGSbWDlQbk620at5PneQuHgbqDSyuC8vb2ZOnUqU6dOJTQ0lGXLlvHzzz9z+vRpsYAUCAS1ClNyDlkHYsg+Fl9IChJA7WmHY3d/7Nv7oCwmUFhTUagU2Pg5YOPnAF3kTTxLjskqUW64lkluZCZSToGeShKY4nWY4nVkH5XlIhValSxRnidTblPH6Za9xMtD2J4d/LPkcyxm2SePwLoMmzkLF2/fSrlfablV1ZRWpbWel5yTzM9nf+aXc79Ye1teJ9gjmHEtxjGg3gDUypuXAbEX09jyXQi6dDmzWqlS0GNkE1r2Dij28zv1l1+If+996/HqpgP5u/0Qdg1oUhEvu3qgS4Eza+RAdtyZm8fdG8mS4m1Gg1Ppfl8ko4WUNedv305MgpQ15/F/o0uN60dfkURERJT6mgcffJAHH3ywErwRCASCO4s5I5fUPy/mJwMCSicb3IY3xq552ROedkbu5KWdL1mPLVgKfb0eyAY5Ke6jXh/RyqvkrR8qDEmC2FMYT/zB0X0mTqb2Q8LTOhxku4vuPhuwbzsIWm2HgA5wh/YfslJTWDPnDVLyFH6cPLwYNWuuCGaXEkNUNNHTpqE/nd/2x2nwYPzef49vjsVxNVkOZndp4M59rcT3traycOFC/vnnHwCaN29O06ZNb1mdDXD58mX27dt3p1wUCO5eshJg3yI49gOYChRraBygywS4ZzI43GJNorGFNo/I/yoB3YkE+fnaIj9g2zZ1w31Mc5QVlAAVmRHJ5B2TuZx+GQCVQsVrnV/j0WaPlntus9nCP9+FkBgpK5M4umm5f1JbtBUUiBcUjT48nOiXp2K4etVqc330EXxeew2lrZxkkZmcxO6VP1jHB02YjI2daHlSnfl+72V0BnkffnSnOvg418wCMkFh7si7YYsWLfjoo4+YP38+77//PrNnz74TtxUIBIIqQ5IkDBHpZO6LQR+efFOgStvEFcfuAdgGudUqySClnRrbIDdsg2T5JUmSMCXl5AW55X7cxtgsKKBULuWayb2YRu7FNKtN5WGLto4TNnmV3BpfhxL1GS8OyWLhwJrVHPrzV6utXut2PDD1NbT2xfQ7vsPcqmrqwyMf8kGPD2jo0pDloctZf2k9uebCPc27B3RnXItxdPbtXGRgWpIkzuyKYv+ai1jyHvwcXGwY/FwrfBsWLyOaumYNce/mf67/EtSfVc0GMXtAEK72lZN4cMewWCBitxzEDt9YOOscZLm04IfkQHbde8q8Ya47k1g4seMWSDkmdCFJOLTzLtO9aisRERHs3buXsWPHVrUrAoFAUCYkSSLnZCKpf10q9Jlh384b1wcaorQvezVQrjmXt/a/Jd/nNtlVaoWaFfeuwNv+Dn8OpVyGM7/D6d+IiHZlT8Z4siz5PriqY+nd9hyBfXpDg1mgurMbv1mpKfw25w1ruxonTy9GzZqHq0/1SIqsKWTu2EHMa69jyZCVkhQaDd6vv4bb6NHEZ+Ty5Y6LACgV8O7QFqJYohazatUqHBwc2Lx5Mz179izRNatXrxYBbYGgPGQnwf5FcOR7KJDohsYeOo2H7i+Bg2exl98Jsg7EkPZXft9juzZeuI8MKtd+UUEOxx5m+u7p1sIBZxtnPu3zKV38upR7bkmS2LX6HJGhctKi1l7N/ZPb4Oimvc2VgrIiSRKpP/9MwofzkQx5RR2Ojvi9Nwfne+8tdN62777EkCP/3rfoM4D6bW5WkxNUH1KzDSw/cAUAG5WS5/uI6uy7hTv6lKdUKmnUqJFVDqi85ObmsmjRIn755RcuXryISqWiefPmPPnkk0yYMOGWmZnFkZ2dzZ9//smGDRs4duwYsbGxKBQK/Pz8uOeee5gwYQK9ehXfQ3XXrl307dv3tvdZs2YNI0aMKLV/AoGgeiMZLehOJZK1Pxpj7A09utRKHNp749jdH41P9QiSVjUKhQKNlz0aL3sc2vsAYDGYMUZnyQHuyAxyIzOxZBoKXWdO1qNL1qM7mSgb1EpsAhzze3HXdUbtUrJFv9GQyz9fLeLcwfweyG0G3ku/cc+jVFWPqvnbVU1lGDKYvGPyTdepFWrubXAvT7Z4kqbuTYud35hrZueqs1w4Gm+1BQS5Mmh8S+ydiw9Kp/3xJ3Gz3rEe/9akL8ubD6aJjxNjutRgeef0KDixGk6ugrTIm8cDOsiS4i0fBlvnm8dvg2SRsGQZMKcbMKfnkrknquQXK0AvAtql5sCBA4wbN04EtAUCQY3EnGkgde1F9GHJVpvSUYPbsCbWVi/lYeuVrWQYMkp0rkkycTj2MA80eqDc970tWQkQ8qeskBJ9jEyzJ3szxhORm79prFKY6NDJSPtHH0JVRUmIWSnJcjA7Vm7v4uzlzahZc6uNwk9NQDIaSfh0ISk/5vch1dSpQ8DChdi1bAHAh3+HW6tsHu9aj+Z+pV+DCe4erly5wqRJk0oczAbRgkYgKDO6FDjwORz+FowF9rnUtvmBbMeqfT6VJInMfyPJ2J7//O7Q1Q/XoY0qrIjkl7O/8OGRDzFL8mdRQ5eGfNHvC+o6V8z7ypENEZw9EAuAUq1gyMRWePiXrtWWoOSYMzOJfettMvPUPgBsW7QgYOGn2NzwWRG+bxcRJ44B4ODqRp8nxt9RXwWlZ+n+CLLz1o2jOgXi52JXxR4JKoo7rlcxbNiwMklF3khSUhL9+vXjzJkzTJgwgS+++AKDwcCXX37JxIkTWbNmDZs2bcLWtuRSAv/99x+DBg0iJSWFFi1a8NZbb9GsWTM5C2fbNj766CNWr17NCy+8wJdffnnLbGAHh1s/TKvVQipEILibMGcayDoUS/bhWCxZxkJjSmcbHO/xx6GzLyqH8vXSqQ0obVRoG7igbSBXBUuShDndUKAXdyaG6EwwFUiOMlkwXM3AcDV/M1bpbFO4ijvA8SaJqey0VNZ//D6xF87JBoWCPk+Mp/2QodWm4qM0VVPXsVfbMyJoBE8EP4Gvw603U9Pidfz9zRlSYvIfTNsNqkvXBxuiVBWfGJa2bh2xb70lS38CW4L78WOTe0Gh4O37g1Hf4tpqiSkXzm2G4yvh0g5uklWwc4c2j8qBbJ/gYqeRzBbMGXKg2pxuwJyRaw1cW22ZuYVUCEqFJEv3C/LJzs4mPT0dk6n470tSUtId9EggEAgqBkmSyDmdSNr6S1h0+e9xdm28cB3aqMLWlTsid1jVX26HEiU7IndUXkBbnwFnN8GZ3+DyLpAsmCUVp3VDOZL1KCYpfzOqTpATvca0wNWn6uQeM1OSWDPnDVJjYwBw9vLJC2b7VJlPNQ1jTAzRU6eRc+qU1eY0aBB+H7yPyskJgGNXUlh3Uv4eu9prmDaw8vuhC6o37u7uBAWV7vdAtKARCEqJLgUOLobDS8CQlW9XaaHj09Dj5VK326oMJItE+sbLZB2Isdqc+tXBeWC9CtnXMVqMzD8yn1/P5Sv69Qzoyfxe83GycSr3/AAhe6I5tvmKfKCAgeNa4N/ErULmFtxMzpkzRE+dhjEqv7jAbewTeL/yCkqbwkUd2Wmp7Fz2rfV4wPgXsXUUiQbVmXSdkWX7rwCgUSmY2Kdx1TokqFDueFTV3t6eevXqlXuekSNHcubMGV566SUWLVpktfft25dhw4axfv16Jk6cyI8FMnxvR2xsLCkpKbRt25ZDhw6h1eZX93Xv3p3OnTtz33338dVXX9GgQQNeeeWVYufKysoqdkwgENw9GKKzyNofje5UIpgLB8A0dZxw6u6PXStPFDUtuFeNUCgUqF21qF29sG/tBYBksmCMy86v4r6WiTlZX+g6S4aBnNBkckLzqpmUoPFztPbiztZksv6buWQkJgCg0dpy30uv0qhD+aWiKpLSVE0B/K/e/5jVbRbONrevWrl8IpF/l4dh0MtZixpbFf3HNqdR+1tnV6dv2EDs629Yg9lX+jzAZy69QKGgfzNvegV5ldjfKic+TJYUP/0r6JJvGFRAo36ypHjTIUiSRg5QX07DnG7AVDBInSH/35JlvH0v7PKgkKX7azvR0dF88MEHbNiwgZiYmNtfIBAIBDUMc5aBtHUXyQkpUJXtoMFtWGPsWlasnGdablqJgtkgq8Ok5aZV6P0xGeDiNrkS+9zfhfpxxhmasivjOZJNDaw2O2cbeo5sQuOO3lWagJiZnMRvc14nLU6upnL28uGRd+bh7CVUVEpK5s6dssR4uizdikaDz4wZuD0+xvqzNVsk3t0Qar1m+qCmNb+tjaDcDBkyhLNnz5bqmsTERMLDw2+puigQCICcNDj0FRz6GnIL7EWobKDDU9BjKjj7V5V3hZDMFlJ/v4DuRILV5nJfQ5x6BlTI/Gn6NKbvns6RuCNW21MtnuLl9i+jUlaMol/E6ST2/HzOetxjRBMadxBricpAkiRSV6wg/uNPwCgXIymdnfGf+wFOAwYUec2OpUvQZ8k9zZve05PGnbreMX8FZWPp/ggyc+Vk4BEd6hDgKqqz7yZq5I7oH3/8wa5du7C1teXdd98tNKZQKJg3bx7r169n+fLlTJo0iQ4dOpRq/rfffrtQMPs6Q4YMoWfPnuzdu5dFixbdMqAtEAjuXiSLhD4smcz90Rgibgg0KsGupSeOPQLQ1hUyeJWFQq3EJtAJm0An6CY/SJmzDIV6cRuuZSLlmvMvsoAxOgtjdBbZh+SNx352j5LsE0OmMo0WDw/CO7j6VXuUtmrKLJlvG8y2mC0c/usyx//Jl+Ny83Pg3uda4uZ7a4WR9E2biJn5mjWYrRnxCC9LncEsoVYqePO+5iV4VVWMPgNC/5SrsaNl2SiLZItZCsAseWK2C8Ls0wezY0vMORrM23Mx/3kcS3b5K6OVjhpULlpUzjbyVxctplQ9uiNxJZtAAtsKDmTUNCIiIujatStJSUmlamNTXVQXBAKB4HboTieStv5ioc8du9aeclW2Y8UG8rIMWSTllFzFQokSV61r+W9ssUDkATj9G4StB31aoWG9xYGDhhcIS+uWb1RAy14BdH2wIdpy9AyvCDKTk/ht9uukxctrShdvH0a9Mw9nT7EBXRIko5GERYtI+WGp1aYJCCBg0ULsWrUqdO5vx64REi0/czX3c+axzkIyWiDv2/Xp04fRo0fTvn3J+phu3bqVsWPHYjabb3+yQFAb0afDoSVyVXZej2gAlBo5ybvndHAJrDr/bkAymkn+6Sz6cLnnNApwezgIh44Vo5JyKe0Sk/6dRFSWXMWrUWp45553eLBxxSk9xF1OZ+t3Ide3V2g7sC5t+tepsPkF+ZjT0oh5402yduyw2uzatCHg00/QBBSdAHH+8H7OH94vn+vkTL+nn78jvgrKTnqOkaX7ZXVotVLBC6J39l1HjQxof//99wD069cPV1fXm8abN29O8+bNCQ8PZ+nSpSUOaDdq1Ijp06fTp0+fYs9p06YNe/fuJTo6muTkZDw8yt+zTCAQ1AwsehPZR+PJOhCNOTW30JjCTo1jZ18c7vFH7Vqy3s2CikXlaINdcw/smsvvy5JFwpSgwxCZSW5kBoZrmZgSdIWqZ7UqO/zt5cWNaVMyMZsOova2w6aOs7UXt8bHvsJ6LpWGVH0qO6/t5EjckQqtmtJlGNj6QyjR51KttsYdven7eDNsbG+9LMjYsoWYGTPlTWjAdfSjzG3yALmn5c3cJ7vVp6FX9ZJekiQJSW/GnKbHfPEU5vCDmKOuYja7YJLuxyw9hVnyRKKA30YgAyCz5DdSgNJJDlKrCwSrVS4F/u9sg0J9s1qDZLSQcyYJqQRS4go7Nfa1PKD9zjvvkJiYiIuLC0OHDiU4OBg3N7cikxGvc/DgQb777rs76KVAIBCUHnO2kbT1F8k5nR9gVtqrcX2osVWlpqIwmo38dv43vjn1Dam5qbe/IA8LFvrV7Ve2m0oSxIfIQeyQPyAj+uZT7Dw47zqJ/efakaPLX7R51nGkz2PN8GlQ9QmjGUmJrJnzRn4w28eXUbPm4exZgxRqqhBjbCzR06aTc+KE1eY4oD/+H3yAysWl0LnpOiMf/ZNftfbuA8GoqmBdLqh+WCwWvvrqK0aNGkWfPn0YMmQITZo0wcnJCaWyaHU00YJGICiG3ExZVvzAl4UTzJRqaDsGer0CrtUrmciiN5G0PDS/yESlwOOxZti1qJhn5T1Re5ixZwbZeT3DPWw9WNR3EW2921bI/CC3f9v01WlMRnl/pUknH7oNE8G3ykB3/ATR06djio212tyfeRrvl19GoSk6STInM4N/f/jaetxv3HPYO7sUea6g+rBs/xUy9fLe2sPtA6njXnWtiQSVQ40LaBsMBv79918AOnXqVOx5nTp1Ijw8nE2bNrF48eISzd28eXM+/vjjW56jUslyIkqlEjs7IVcgENQGTEk5ZB2IIftYPJKhcDa32ssOx+4B2Lf3vqk/s6BqUSgVaHwd0Pg64NDZF4vFzN4ffyRyzwk8tP542Prj7VAXjVS40smUkIMpIQfdf/HyPDYqbAIdrb24beo4oXKqHJnD5Jxk/o38l21Xt3E07ihmqXTVA7ermoqLSOefb0PIykvIUCoVdHu4Ma37Bd62ejVj61aip78CeRUNriNHEjP2RTZ8cxgAdwcbpvRvUip/y4skSVh0psL9qa///3of6zQ9krFgFW+XvH+lQKkoUFFtg8q5iGC1k6bMrQUUGiXuI4NIXhl2a7lyBbiPDEKhqd0tDP79918aN27MgQMH8PQs2YaFWq0WAW2BQFCtyQlJInXdRbl1RR62LTxwe6hxha47JEnin6v/8Pnxz7mWea1U1ypQ4GTjxKD6g0p309QrcOZ3WVI8sQiJYI0DNLuP1MBR7N7vTvSJdK5/IGq0KroMbUirPgEoq0ELn4ykBH6b8wbp8bKyiquPH6PemYeTR+1ONispWXv2EDNjJua0NNmgVuPz6iu4jR1b5Fp04fbzpGQbAHigjT9dGoqCAoFM/fr1rb8zERERpWo3WB3Jzc1l0aJF/PLLL1y8eBGVSkXz5s158sknmTBhQrFB+ttx5coVGjRocNvzPvroI6FCWRvJzYIj38KBzyGnQHKbQgVtR0OvV8GtfpW5VxzmLANJS0MwxsjBZoWNCo+xwdg2di333JIksSx0GQv/W4iUtxZp7t6cz/t9jq9DxfUL12UY2PDFSfR5676Apq70H9u8Soop7mYki4WUpUtJWLjIupelcnXFf/6HOPbufctrdy3/Dl16GgCNOnahaTfRrqK6k6k38sO+ywColApe7Ct6Z9+N1LiAdnh4OMa8Hgf169cv9rzrY1evXiU9PR0Xl4rJoLlw4QIAHTp0wN6++AyPn3/+maVLl3L+/HkSExNxc3OjXbt2jB49mkcffdQaGBcIBNUTSZLIvZRO1v5o9GdTbgoyaYPccOoRgLaxq1hw1gAMOTo2ff4Rl48fBSBBf5VOvR+m3qN9sKQZClVxG2OywZL/A5cMZnIvp5N7OV9yS+VuK/fizuvHbePvWGTlbUlI0CVYg9j/xf+HRSpZNXZRFFc1JUkSoXui2fvbBSx5vd7tnW3434SW+JfgoS/z33+Jnjbd+gDg8vBwvN95h+eWHLSeM21gEC52FSf/KVkkLNnGIoPVpgI9qzGVs2G1WpFXPa1F7VJ0ZbXSQVPpf+d2wR54PBFMyprzcqW2Avl9J++rwk6N+8gg7ILFRm5ycjIvv/xyiYPZAK1bt2bWrFmV6JVAIBCUDXO2kbQNl8g5mWi1Ke3VuA5thF0brwptl3A07igL/1vImaQzhez3NriXzr6dmXNwDoB1A7cgCmQ/PujxAVpVCdSIspMgdK0cxL52+OZxpRoaD4BWIzE1+B//7Ujk+MqrWEz5661G7bzoMSoIR7fqoX6UkZjAb3NeJz1BTnp09c0LZruLYPbtkEwmEj/7nOQCyWVqfz8CFy7Erk2bIq85F5fJykNXAbDTqHj93mZ3xFdBzaE0rWeuUx1b0CQlJdGvXz/OnDnDhAkT+OKLLzAYDHz55ZdMnDiRNWvWsGnTJmxtbct8D3t7+1u+dhsb0Ze+VmHIhqPfw/7PQJecb1coofWj0PtVcG9Ydf7dAlOanqTvQzAl5QDymslzXEts6jiVe+5ccy6zD8xmw+UNVtugeoN4r/t72GsqrsrToDex8ctTZCTpAfAIcODe51ujquWJ6xWNKSWFmNdeI3vPXqvNrmMHAj7+GI3vrZMTLp84StjenQBo7R0Y8MwL1fLzQ1CY5QeukJFXnT2sXQB1PUR19t1IjQtoR0bm9/v08ipe0qvgWFRUVIUEtJOSkti+fTsAM2bMuOW5kydPZvr06bzzzjvY2tpy6tQpFixYwOOPP84333zDunXrcHd3v+Ucubm55ObmyxpnZGTc4myB4BYY9RC2Ds5uBF0q2LtBs/sh+CHQlP2h6G5EMlrQnUwga380xjhdoTGFRol9e28cuweg8RYfijWFjKRE1i2YQ+JVuYeKUqWi/zMv0Lr//+RjDzvUHnbYt5N7HkpGM4aYbAyRGXI/7shMOXBaAHOKnpwUPTmn8jafVQpsAhzzAtxyJbfKVVvsgjcuO45tV7ex7eo2TiacLHLjONAxkIH1B9InsA+Td0wm05BZ5HnXKa5qymgws3v1Oc4dzu/R7NfYhf892xIHl9tvEGfu3EnUy1PBJC8KXR56CL/33uOPEzGcjpI3nZv5OvFop5L3eZLMEubMIqqpCwauMwyFEgvKgoIcVIokVIpkVCShcrNH1SAYVdMOqDyc5WC1vbraPJjYBXvg/0YXdCFJ6EOSsOSYUNqpsW3piX1Lz1pfmX0dX1/fUgWzAVq1akWrG3pyCgQCQVWTE5ZM6toLWDILVGU3d8dteJMKrcq+mHqRRccXsTtqdyF7Z9/OTOswjRaeLQBZTvOt/W+RYchAiRILFutXJxsnPujxAX3q9Cn+RrlZcG6zHMS++C8UpTRT9x5oNVJ+DnHwIDIsmd3zQ8hIzLGe4uRhS69Hg6jfqvoEitMT4vltzhtkJMrBbDc/f0bOmiuC2SXAGB9P9PTp5Bz7z2pz7NsX/3lzURXRQg7kQOXsDaGY89aCL/RphL+rUMgTFOa5556ja9euJT6/uragGTlyJGfOnOGll15i0aJFVnvfvn0ZNmwY69evZ+LEieWqQg8NDb1lUZCglmDQwbGlsH8RZOcn0qFQyp/NvWaAZ/WtaDQm6Ej64QzmdFm5Q+Vig+czrSpkfy5Rl8jLO1/mdNJpq+2Fti/wfOvnK3S/wGy28M93ISRGyu3NHN203D+pLVq7Gheiqdbojh4levormBISZINCgcfzz+H14oso1Lf+XufqdGz7Ll/tt/fYZ3B0F4UF1Z2sXBPf78vb91XAJFGdfddS494tMzPz+1neKjux4FhFBYI/+eQTDAYDw4YNY8SIEUWe4+rqyr333su3335LYGCg1d6xY0dGjBhBt27d2Lt3LyNHjrRKpxfHvHnzmD17doX4LqjFnN0M6ybKfXAUSpAs8tfwDfD3TBi2BJreW9VeVjnmDANZh2LIPhyLJbtwH1uViw2O3fxx6OSL0r7iKlAFlU/85YusXTCH7NQUQM6sfGDa69Rr1bbYaxQaFdp6zmjr5fdoNKfnYriWSW5kJobIDIzRWUjGApXUZska/GZ/DABKJ421F7e2rhOJLhlsj93BtqvbCj0kFaSecz0G1RvEwHoDaebezPrg9EGPD5iyYwoKFKWqmkpP1PH3khCSo7Ostjb963DP8EaoSiDbmbVnD9FTXoI8ZRTnoQ/g98H76IwWFmzJlwyddX8w6rz5JJOl6AB1ei6mPLsl03Brae0SoLBVy1XUTmrUlhhU6SdQpR+Xg9eKZFSKJBRko3D2g7aPQdux4FH9+1EpNEoc2nnjkJdgIbiZIUOGcOLECcaNG1fiaxITEwkPD6dXLyETJhAIqh6LzkjahsvoTiRYbQpbNa4PNsK+bcVVZcdnx/PVqa9Yd3FdIQWYxq6NmdZhGj0CehS6V9+6fdnhvZmtBxewI2o3aWY9ripb+gX2ZtA9M9DaFpEkbjbCpR1yX+xzm8Gou/kc72B5o7zVCGsPzuz0XPZ/H8KFY/nfA6VSQdtBdek4pD6aatTKRw5mv05Gouyrm18Ao2bNFZubJSBr7z5iZszAnJonZatW4z1tGu7jnrrl7/k/oXEcuCRXDdZxt+PZXtWzUlBQtfTs2ZPHHnusxOdXxxY0f/zxB7t27cLW1pZ333230JhCoWDevHmsX7+e5cuXM2nSJDp06FA1jgpqNsYc+G8Z7FsIWfEFBhTQ8mHoPRO8gqrKuxJhiMok6ccQ636d2tMOz/EtUbuWv0gnNDmUKTumkKCTP+ft1HZ80OMDBtYbWO65CyJJErtWnSUy9Pr+lJr7J7epNko0dwOS2Uzyt9+S+MWXYJHXvioPD/wXzMexe/cSzbFn9VKykpMAqNe6HS37VOzvgaByWHHwCmk6ee/yobYB1Pd0qGKPBJVFjQtoVxV79+7l448/JigoiB9++KHY89q2bcvmzZuLHHNxcWHevHk8+OCD7Nixgy1btjB48OBi53r99deZNm2a9TgjI4M6dUpeAScQcHYz/FLgAe/6Rtb1r/p0+Hk0PPoTNBty5/2rBhiiMsnaH4PudCKYC0fYbOo64dgjALsWHmXujSuoOi4cOcDmLz7BZJCrq118fBk28x08Akr/Pqpy0WLnosWupVyFI5ktGON0GK7lV3Ffl7y6jiXTiD4sGX2YvBlnxkIDrQ297FrgbWfPWbsIom0SaOTWiAH1BjCw3kCauDYpcnOvT50+fNb3M2bvfZc2yY3pltkWJ7M9mSodB5xOcsrjIu/2ml2oairidBLbfwzDkJP3wKdV0e+JZjTp6FOi15y1bz9RkyYjXQ9m33cfvrPfx5Rq4PftF2iXacELGzq4ORC0P574v6/JweoCvT/LitJBXXSf6uv/d7JBmXwKjq+EkD8gNy9x7fqqRqmGoMHQfiw06g8qsdy5m3jjjTfo3r07o0aNokePHiW6ZuvWrYwdOxazuXR96QUCgaCiyTmbQuqfF7BkGKw222buuA1vjMq5YjY0Mw2Z/BjyIyvDVqI36612H3sfJrWbxAMNH0ClLCJgfHYz2nUTeUCfxgMFE2EvnYHDq/ITYS0WWUb8zBpZVjwn5ea5XOrIm+StR4FPC6vZYpHboBxadwmDPv892a+xC70fa4qHv2OFfA8qivSEOH6d/TqZSXIlm5t/oBzMdru12lptRzKZSPzyS5K/+RbyZKHVfn4EfPoJ9u3a3fJavdHMexvDrcdv3ReMrab6JDgIqgfdu3fH27t0CaCNGjVi7NixleRR2fj+++8B6NevH65FKBY0b96c5s2bEx4eztKlS0VAW1A6jHo4vgL2fgJZcYXHWgyD3q+Bd/Vv56C/lEby8jAkg7xu0Pg74Pl0S1SO5Vez2XJlC2/ve9u6XvJ18OWLfl/QzL3ivy9HNkRw9qD8c1CqFQyZ2KrarXtqMqbERKJnzEB38JDVZt+1K/4L5qMp4edFZMhpTm/fAoBGa8vAZydVG0U/QfFk55r4fm+B6ux+ojr7bqbG7fA6OeX3xNDr9cWeV3DM2dm52PNKwtmzZxk+fDgBAQFs374dNze3Ms81cOBAVCoVZrOZjRs33jKgrdVq0WpFlpagjBj1cmU2UHwpZF6D1nUTYfq5WiM/LpklcsKSyNofg+HKDQoOSgV2rTxx7O6Ptm753jsEVYMkSRzb8Cd7flpm3UALaBbM0OlvYu9c/vYTAAqVUpYYD3CEPJU7c7YRQ1QmCecjSb4Ui2OiBntz/nu4CiWNcuvQKLcO96X1lH3VKrC1uGJj74TWzglJa0JRjApA16zWrL4wD0lvxoKEEgUWJLpntkWRosK9XVNA3ig+suEy//191Xqtm689gye0wt2/+AxFi95krazW/RdK6m8bsGk+CqWdG2rvOuDgSexsuQdmf6A/ebKPqWb0qUVsZBf5jQOlo8bas/p6gFpdMFjtbIOiuE1LXQqcXi4HshNCbx73DIJ2T0CbR8FRVDjfrVgsFr755hueeOIJevbsydChQ2natClOTk4olUUnHyUlJd1hLwUCgaAwlhwTaRsvo/svvzJKoVXh+kAj7Dt4V8hmmdFs5Lfzv/HNqW9IzU212h01joxvNZ4xzcdgqy5mvV/SRNjmD0DMSUiPvGkK7NzkDfJWI6FOV7jhPTkxMpNdq8+ScLWA6pqDhm4PN6LZPX7VbsMwLT6O32a/TmayHMx29w9k1DvzcHAt+35AbcCYkEDM9FfQHT1qtTn27o3fh/NQl2Av5Zvdl4lOkxNFezbxZFBwyZIxBbWLDz74AIA9e/bg6+tLUNDtq0u7du1aKonyysZgMFiVGzt16lTseZ06dSI8PJxNmzaxePHiYs8TCKyYcuHEStj7KWREFx5rPhT6vFYo2aw6kxOaTPLP4WCS93ZsGjjj+WQLlLblC2lYJAtfnfyKb05/Y7W18WrDor6L8LSr+HYiIXuiObb5inyggIHjWuDfRKwnKorsAweInjET8/XnfqUSz0kv4vnccyhUJUuKM+r1bP32c+txzzFP4eIt1iA1gVWHrpKSLScLD23jT0MvkShyN1PjAtp169a1/j8xMbHY8wqOFZT+Li3nzp2jX79+ODg48O+//5a7QtrOzg4vLy/i4uKIiIgo11wCwS0JWyfLjN8WST7v2PfQ9nHQOt+0+XS3YMkxkX00jqwDMZjTCvdEVtqrcejih2NXP1Ql6CssqJ6YTSb+/eErzuzYarU179mXQc9NQa2pHLl4SZK4kHZB7ol9ZRuX0i+BGyhcFQQafGiWU59mOQ1oa2iOX44HCil/s1aRK5F7PpXc86lc39pVe9kV6sWt8XFAfy6F5JVh1twUZZ7E+PWvkt5M8sownEYGsXtvDNfC8zexG7XzpM/IJihzLeScTSksBZ6R/38pt3Dlqjbo/sKvM6ewFP9NKEHlVExFdV6gWuVkg0JdyvcXiwUu75QfyM9uArOh8LjGAVoOg3ZjoU5nqGab4YKKp379+tagx+rVq1m9enUVeyQQCAS3Rn8+ldQ/zlt7PgJog9xwe7gJ6gpYd0qSxD9X/+Gz/z4jKivKalcr1YxuNpoJrSbgauta/AQlToQFwv8qbFbbyUpPrUZBo36gvrlaypBj4vCGy5zZGXU91xCA5t38uGd4I+wqoMKqokmLi+XXOa9bJSfdA+owatZcEcy+DdkHDhD96gzMybJCESoV3tOm4j5uHIoSPGNGper4atdFANRKBe88EFztEh0E1YM+ffpYfzeefPJJli5dWsUelZ7w8HCMeWpYt+pvfX3s6tWrpKen4+JS+iTtLVu2sHnzZkJCQoiPj8fJyYmWLVvy8MMPM27cuFu2dBTUIMxGOLka9nwM6dcKjzW7Xw5k+7aqGt/KQPZ/8aT+cR7ycutsm7njMaZZ8QnwJURn1PHmvjfZHrndanuw0YPMumcWNqqKX5NEnE5iz8/nrMc9RjahcQeRgF8RSCYTiYsXk7zkm3xFGG9v/D/+CIfOnUs1175fV5IeL1fQBzRrQduBtVPJtKaRYzDz7Z7LgLwdKKqz735qXEC7efPmaDQajEYjV65cKfa862P16tUr02IP4MyZMwwYMAAnJyd27NhRKJheHiSpnI1DBYLbYcyRZYVQUOJGtf+8Kf9DAbbOYOsCtq7yVzvXAseuNxzfMF4Nq7yNiTqyDsSg+y8eyWApNKb2tsexhz/2bb1RVqNefYLSo8/KYsPCuUSG5Pen7jZqDF2HP1rhG2GSJBGeEi4Hsa9u42rG1ZvPUUi4BXrTpl4P+tftT6BTIJZcM4aoTAzXMvOkyjNukug2JeZgSsxBdzyvp6RaARbp9n/KEqT9dh4nvZn29ipsleDmZIMmKpOkBcfK94JVClQuWnQ2SvbEpZOABZ2NkpceaoGjlz0qFxuUjjYolBX4fU6LhBOr5QfyGx/GAQI7Q/sn5EowrdPN44K7mrKspcSGuEAguNNY9CbSN0eQfSRf5lOhVeF6f0PsO/pUyPvS0bijfHrsU0KSQwrZ721wL1PaTSHQqQTJ3SVOhL2OAhr3l4PYze4DbdFVEJIkcel4Ivt+O092gWC+m58DfR5rin8T11Lc886RGhfDb7NfJytFDsp6BNZl5NsfiGD2LZDMZpIWf0XS11/nbyj7+BCw8FPs27cv8TzzNp8l1yQ/rz3ZrT6NvcUaT1A8Wq2WN954gwcffLCqXSkTkZH5ShdeXl7FnldwLCoqqkx7nK+88govvfQS06ZNw8nJifPnz/Ppp5/ywgsvsHjxYjZu3HjLoDpAbm4uubn5hQEZGRm3OFtwRzEb4dQvsGeB/BxdkKB75UC2f9sqca2sZO6LJn3jZeuxfTtv3EY0KXc7wJisGKbsmMK5VDnArFQomdZhGmODx1bK82Lc5XS2fhdiTehrO7AubfqJdqIVgTE+XlaEOZa/3+XQsyf+8z9E7V661jAx58M5/rectKnW2DDouSklSsQTVD2rD18lOa86+/7W/mLtWAuocQFtGxsb+vfvz5YtWzh2rPgN+qN58lb33Xdfme5z/PhxBg0ahLe3N9u3b8ff3986ZjKZiIqKwtfXt1AWY0JCAhMmTODNN98sVi5Ip9NZZS9vt1gUCEpMRozcx+7aEflf7CmwlLWPrSRLCurTgSKkBG+HSnvrgPetjrUuFVYdLkkSuRfTyNoXjf5c6k3jts3cZVnxxq4iyHEXkBoXw9r5c0iNkauSVBoNgye+TLPuvSvsHpIkEZIUwrar29h6dSvRWdE3naNAQTvvdgysN5AB9Qbg6+BbaFypVWHbyBXbRq7WOc2puYV6cRtisgr3czeVPHCnAprYFkjMyDHdNg6u0ChlVQJFLjmnDmPJTETSp6JtXAfv6S+g9nRAaa/BAgz9ch+hyBKQH97fCvf2FSy/ZMqFsxtlSfHLu7gpim/vKcuJt3uiRvT6ElQezz33XKkkIw8ePMh3331XiR4JBAJBYfQXUkn940IhVSBtY1fcRjRB7Vr+BNCLqRdZeHwhe6L2FLJ38e3C1I5TaeFRCinRsxvlXtmS5fbnooAmg2DMb7c8Kz0xhz2/nCcyNNlqU2uUdLyvPm0H1EVVWsWWO0RqbDS/zXmjUDB71Ky52Lu4Vq1j1RhTYiLRr85Adyi/Z6VDz574L5hfIonx6xy4lMSmM7EAeDjYMKV/kwr3VXD3oFarmTJlCm+99VZVu1JmMjMLtF+4RYV0wbHSBpFtbW3p168fCxcupHXr1lZ7hw4dePjhhxk8eDA7d+5kyJAhnDhx4pZtD+fNm8fs2bNLdX9BJWM2wZnfYPd8SL1SeKzJIDmQHVCz+q5LkkTGtqtk7shPanfs5o/L/Q3LnUB/IuEEL+98mRS93DLNUePIgl4L6BnYs1zzFkdavI5Ni09jMsrrqyadfOg2rFGl3Ku2kbVnDzEzX8Ocmrffq1Lh9fJLeDzzTKkD0SaDgX++/syakNdt1Bjc/QMq2mVBJaA3mlmyO786e7Kozq4V1LiANsD48ePZsmUL//77b5FyO2fPniU8PByFQsHTTz9d6vkPHTrE4MGDqVevHtu3b78pUzIqKooGDRqwc+dO+vTpY7XrdDrWr19Pjx49ig1ob926FbNZlnUta7BdUMsxGyHuTF7w+jBEHS26erG0OPnLASJ9OuSk5QW108ByG5nhm/zLhax4+V+pUciS53YuRQS8XW8fENfYIRnNZJ9IIGt/DKZ4XeHZNUrsO/rg2M0fjZd9GfwTVEeiwkNY/8lc9Jnyw72dswsPvfoW/kHNyz23RbJwKvGUtRI7LjvupnOUCiUdfDowsN5A+tftj7d9yaWjFAoFandb1O622LeRr5OMFgyxWXJw+1omOWHJYCzJBnMR82tVN0t/W3tVa1G72KCwU5Nz8iTXnpmCRSf/zTj07kXAJ6+itMmX2/r9aCShMfL3ONjPmZEdKzCrOC5ElhQ//Svk3JCAolBC4wFyEDtocJFSpoLaR8+ePXnsscduf2IearVaBLQFAsEdwZKbV5V9uEBVto0Kl/sa4NDZt9yJlPHZ8Sw+uZj1l9ZjKRCAbuLWhGkdptHdv3vJ7yFJEHkIrh0tYTAbQAJjdrGjZpOFk9sjObrpCuYC65d6LT3o9WgQzp52JbzPnSclJpo1c14nK1Xe6PasU4+Rs+Zi71w2xbfaQPahQ0S/8mp+z0qVCq+XXsJjfOk2lE1mC3M2hFmPZwxuiotd5bQLEtwd+Pj4lKhvdkWzYsWKMu0zXmfz5s0MGjSoAj26Nb6+vtY+3TdiY2PDokWLaNOmDeHh4fz44488//zzxc71+uuvM23aNOtxRkZGudsyCsqIxQxnfpcD2SmXCo816g99Xoc6xfdlr2okowXdmUT0ocmYdSZU9mpsW3hg18KT9L8jyD4Uaz3XeUBdnPrXLff6ae2Ftcw5NAdT3h5nHac6fNnvSxq6NizXvMWhyzCw4YuT6LPlYqOApq70H9u8YlXtaiGS0UjiZ5+R/P0PVpvaz4+ATz7Bvn27Ms156M9fSMkrjvFt1IQO9z1UEa4K7gA/HY4kKUtOHh7S0o8gH1GdXRuokQHthx9+mN69e7N7925mz57Np59+ah2TJIk33ngDkPvodOhQOBNtw4YNPP300/j4+BQpqbNnzx7uv/9+mjZtyj///IN7KSUqABYtWsQzzzyD2w3ZyGlpabz++uuAvBE7ZIjoxSAoAdnJEHUkvwI7+jiYcm59jWeQXMkYeaDk9xnwLrR5pLBNksCoKxzgvjHgfatjQyalQ4LcdPlfKTFLHmRZhpJtGoRFKvwBptLqcKwbg0NDHUpnR0h0hcwbAuJaZ1DWcMlxo16WjDy7EXSpYO8m90kKfqhaSsFXBGF7d7J1yWeYTfJDiUdgXYbNnIWLt+9triwes8XM8YTjbLu6jX+v/ktCTsJN56gUKjr7dmZg/YH0q9MPDzuPMt/vRhQaJdq6zmjrOgOQsOQUhislz8RXedvh+XgwKmcblLa3/5jPOXWKa+OfzQ9m9+hB4OefFwpmZ+qNfPTPeevxrAeCUZX3QUyfLj+En1gJMSduHnerD+0ehzaPgYvIjhXk0717d7y9S9dzrFGjRowdO7aSPBIIBAIZ/aU0Un8/jzm1QFV2QxfcRgShdi/fWizTkMmPIT+yMmwlerPeavex92FSu0k80PABVCVdyyZdlJPITv8KaTe3TbklCiXYFV11G3MhlV2rz5Eal59U6uCqpecjTWjY1qtaqyKlxETx25w3yL4ezK5bn5FvfyCC2cUgmc0kLVlC0uKvwCInLqi9vQn49BPsO3Ys9Xw/HYnkbJz87Ng60IWRHUSQTHBrevXqRXh4eKmu2b59O3PnzmXHjh1lvq/FYrEWqZT1+us4OeXvW+j1+qJOv2nM2dm5zPcuitatW+Pv709MTAwbN268ZUBbq9XesoJbcAewmCF0Lez6EJIvFB5r2Af6vAF1u1SJayUlJyyZlDXnkXJM+V0SFZATmkyq6kIhtTrXBxri2L18ewEmi4lP//uUlWErrbYufl34pPcnuGgr5zPeoDex8ctTZCTJf7seAQ7c+3xrVJrqqU5TUzBGRxM9bTo5p05ZbY59++I394NSKcIUJP7yRY6s/x0ApUrN/55/CaWqhu8N1xLk6uz8hJ7J/UV1dm2hRga0AX7//XerbE5OTg6PP/44BoOBxYsXs3btWvr168fXX39903XffvstSUlJJCUl8eeffxbKLjx06BD33nsvOp2OkJCQYntmF9e30cbGBq1WS3R0NC1btmTGjBm0adMGBwcHTpw4wYIFC7h06RJdu3bljz/+qJhvhODuwmKBxLMF5MMP35xteSMae1lCqE4XqNMZAjuBvbsc3PykaZ50+K1EhxVyUDe4iL5TCgXYOMj/yhJQMpsgN0OuuCx1QDytRNXhBksQmaah5Fh6cONbmo0iFEf1euw4hOKaBW5ZyJ5XHW7rklch7ppfBV4SyXS1rfz9qirOboZ1E+Xv23XJSIUSwjfA3zNh2BJoem/V+VfBSJLEgTWrOfTHL1ZbvdbteGDqa2jtHUo9n8li4lj8MbZd2cb2yO1WCaqCqJVquvp1ZVC9QfSt0xdXW9fyvIQSo8s1o5KkEm0CS5JErlqJxrtkCgQ5Z0KIHP8slmy50sqh2z0EfvkFyhs2KhbvvGTNery3pS9dG5YxgC9JcHW/LCketv7m5By1LTQfKvfGrtejwloQCO4u9u7dW+prunbtWiqJcoFAICgNllwz6VsiyD6YX1Gk0ChxGdIAhy5+5arGMZqN/Hb+N5acWkJabprV7qRx4plWzzCm+Rhs1SUIlmcnQcifcPoXiP6vzP4gWaDZA4VMOVkGDvx5ibMHCrx+BbTuV4fODzTApgQJdlVJcvQ11sx5g+w0WSXGq259RohgdrGYkpKImTGD7AMHrTaH7t1liXGP0q8RU7INfLI1P3HynQdaoBQVbILbMH36dAYPHszzzz9Po0Ylk/CNj49n9+7d5brvU089xVNPPVWuOa5TcM8xMTGx2PMKjgUGBlbIvW/0IyYmhoiIiAqfW1BBWCxy8cKuDyHpXOGx+j2h7xtQr1uVuFYacsKSSV4Zlr9FeePX68FsBbiNaopDu9IlMd9IhiGDGbtnsD9mv9U2utloXu30Khpl5aiAmM0W/vkuhMRIOUnL0U3L/ZPaorWr3muh6k7mv/8S88abWNLzCqA0GnxemY7b2LL3PjebTPyz5DOkvESjrsMfwbNu/QryWFDZ/Hr0GgmZ8j7l4Ba+NPOt2IQvQfWlxr6benp6cvToURYtWsTPP//MypUrUalUNG/enK+++ornnnsOZREb4RMmTODgwYP4+PgwfPjwQmOHDh1Cl1ehdqvsyOK4ntX4+++/s3XrVr744gtiYmIwm814eHjQvn173nnnHUaPHo1aXWO/9YKKRJ8B0ccKyIcfkwPAt8K1bl7wuoscvPZpCaoifp80tnIQ8+fR5Kc93kjeh/6wJZVTwatSy8F1+9IrHVirw4sIeEvZaeRcVZMV4Y0h48YsPBP2moM4Kv7ARnmxNDfMrw4vfYE4qGxK3zPcGjR3KV91+NnN8EsB6d3rkpHXv+rT5d+DR3+CZjVfGcJkMLDl60WcO5DfM7LNwHvpN+75UmVSGs1GDscdZtvVbeyI3FFok/g6NkobugV0Y2C9gfQO7F1pGby3Ilpvpl4JF+gKhYJYo0T9EpybExpK5DPPYMnr3WbfpQuBixejvKF/29XkbJbukzc3bNRK3hhSBin3jFg49ROcWAUpl28e92sjS4q3GlFs1ZdAUB4OHTrEt99+y9KlS6vaFYFAcJeRezmdlN/PY07Jf360aeCM+4gg1B5ll9eWJIl/rvzDZ8c/IyorymrXKDU82uxRJrSacPvkOmMOnPtbrsS+uP3mZFGFUq7oavEwbH1DfjYpRSKsZJEIPxjLgT8vkpudP7d3PSf6jGmGV93qL/uXHHWNNe8VCGbXb8jIt97HzklsihVF9uEjRL8yHXNinsS4UonXlMl4TJhQ6p6V1/lk6znSc2RJ1uHtA+hQT6wFBbenffv2LFmyhEGDBvHSSy8xcuRI/Pz8qtqtUtG8eXM0Gg1Go5ErV64Ue971sXr16t3UcrEiKK5oR1ANsFjg7AY5kJ0QVnisbjfo+zo06FU1vpUSyWghZc35Wy8z8lBolNi39CzX/a5mXGXSv5O4knEFALVCzetdXmdU01HlmvdWSJLErlVniQyVCyS09moemNwWRzehbFBWJIOB+I8/JnVFfoW9JjCQgIWfYteqVbnmPrr+dxKvyntdXnXr0/mhEeWaT3DnyDWZ+XqXqM6urdToqKpWq2XmzJnMnDmzxNc88MADJF3v73QDL7/8Mi+//HK5fHJ3d2fChAlMmDChXPMI7kIkSQ7kXCsgH54Qxi1Xcyob8GsrV15fr8B2KoWUctN75SBmUZW7kkXekKqulbsFq8Od/QGw6IxkHYkj+2As5vTcQqcrHdQ4dPHDsasfKue+YJ4hJwfo08ommW4xls5fswGyE+R/ZUHrXLaAuFor/3yB4n+X8jSc1k2E6edqtPy4Lj2NdR+/T+z5s7JBoaDPE+NpP2RoibIyDWYDB2MOsvXqVnZe20lmEbL4WpWWngE9GVhvIL0Ce+Fo41jRL6NY9NlGEq9mkhCZQcLVTBKuZqBLycXPWY1GwS1foyRJGCUoSfd6fXg4kU8/gyVDTqCx79SJOl9/hdLu5o33uZvDMZjl5IjxPRpQx72E/efNRjj/jywpfmHrzb05bV2g9SNyINuvdcnmFAjKyKVLl1i+fLkIaAsEggrDYjCT8c8Vsg7EWJdgCo0S58H1cbzHv1xV2UfjjvLpsU8JSQ4pZB/SYAiT200m0OkWFXoWi6yGcvoXCPur6GRZ31bQ+lE5kez6s4WDR6kSYZNjstj90zliL+ZngtrYqbnnoYYE9wyoERW2yVGR/DbnDXTpaQB412/EiLfeE8HsIpAsFpK/+YbEL760SoyrvDwJ+PgTHLp0LvO8oTHp/HQkEgAHGxWvDW5WIf4K7n4aNpT73qakpDB16lSmTp2Ki4sLzs7ORRa3AGTnqVJVF2xsbOjfvz9btmzh2LFjxZ539OhRAO67775S3+Ohhx7i2WefveW1kZHy3+CNLRkFVYgkwdlNsGsexBdeC1Cni1yR3aB31aoElhLdmURZZrwESAYLupCkMldoH4g5wCu7X7Hu97hqXfm0z6d08q3cvuJHNkRw9mAcACq1kiETW+PuX3oFQYGM4do1oqdOQx+S/zfgNGgQfu+/h6qc7ReSrl3lYJ7io0Kp5H8TX0alrpyqfUHF89uxKOIy5GTigcE+tPAXqkq1iRod0BYIqjUGndwXNupIfhBbl3zraxx9CgSvu8hVi+pyZvI1GyIHMcPWy5mdOalyBWSzB+TqihoQ3DQm6MjaH43ueAKSsXBQTONrj2P3AOzbeqHQFKjOLXd1eE7pe4ZfP75dlX1R5GbI/8pSHV4iJNm/sPU390qvISRdu8ra+XPISJRDthqtLfe99CqNOty6R5TepGd/9H62RW5j17VdZBtv3siwU9vRK7AXA+sNpGdAT+w1JQzaloPcHBOJkXLQOjEveH29x9KNHNeZ6eKgQipGevx6Vv3xHDMOjjY3jRdEf+4ckeOetko12XXoQJ0lX6O0v/k1H7iUxD+h8vfby0nLC31LkPWYeF4OYp/6pegEjwa9+T97Zx0mV3m34fuM+7pkLe5CPECAOBIIHiwtVkhwCi2lUL4ibYFCC0EClOLBnSbBYkSAuLvvZt1nx+2c748zO7uzvsludjc593XNdebovLMy8573eZ/nx8jr5fruXeDzR6FjqaysJDY2NmrbypUrGz64CVpbY1FBQUGhKXxH7FR8to9gWS1Xdncb8TP7oUk8dlf2/or9PL/xeVblRZdWGJc6jvtG38fghMGNn1y8Rxaxt30GVbn199vSYehMeTJZyqD6+8MTYYNf3s1B+2AO+U7HK5oxqFz00q+hd8xONFe8TKDnuWz46iBbFucgijXCd98xKYy/sg/mmK7hQio9ms1nf/tLtJj9f3/HaOn8rvITTbC8nPwH/oTr55rIVtMZp5P+7LNoEo/dQSdJEo//bxfV5tC7p/Ql2ab0DRVaRkOO5srKSiorK5s871ijaduLW265he+//56lS5dit9vrObD37NnD7t27EQSBm2++udXX/+abb8jIyGhU0N6yZQsFBXK5iGMRzBXaGEmCfd/D8iehcFv0vvTRspDde3KXErKr8e4sa3zOXF0E8B6DoC1JEh/u+ZBn1z9LSJJr3feJ7cOLk18k05rZ+ka3gh0r89jw7RF5RYCpNw0irW9su77myUzV999T8Mj/ITqdAAhaLckP/Zm4a6897s9xUQzxw2svIIbkCRZjZlxOSi/F4dtV8AdFXl1ek8h6z+S+HdgahY5AEbQVFNoKe27Yeb1eXhZua7oGtKCGlME14nXmWDlOvD06plqDLGJ2ISFTkiR8+ytxrM7Dt68ieqcAhgHxWMano+8d0/Y3pYIAOpP8CLvDW0V17fBjEcSPxR3eGhb9AXZ+CbHdIa579NLQed0oR7ZsZMHcf+L3yGUhLPEJXPbgoyT36NXg8e6Am1V5q1icvZiVuSvx1K3VDJi1ZiZmTmRa92mMTxvfsvqTx4jfG6T0qJPibNl5XZLjoLLI3ex5Wr0ac6yeoiI361whRpjU6AQiwnb1MiDJondRUGLq8KRGr+fdt4+cG28iFB7oMQ4fTuZ//oPKXH/WcEiUeGJBTazZA+f1x6JvpNvgc8o1vTbNh6Nr6u+3pcPwWTBiFsT1aPZ9KygAzJkzhzfeeIMbb7yRN998M7J94sSJnW4wUkFB4dRACoSw/5CN8+e8mgFZjYqY83pgGX/sruxCVyGvbHmFbw5+g1gr0aRvXF/uH3U/49PGN/y55yiCHZ/LkeIFW+vv11nlCazDroIeZzVb4uawbwxLS97C5wkBIqACRA55T2eVX83QvZnsfW8tjlpCfkySkQnX9idz0DFMIu0gSnOO8Onf/oKnSp7cl9KrD1f85W+KmN0A7g0byLv/DwSLw5MUBYHEu+4k8bbbEFpR6qchFmwrYN0ROZa1Z6KZm8b3OM7WKpxqnH322RGndks4dOgQq1evbscWtZ4rrriCCRMmsGLFCh5//HGee+65yD5Jknj44YcBuOGGGxg1alS98xcsWMDNN99MSkoKCxcubNBl/e6773LffffVqzXu8/kiKZV9+vQ5JsFcoY2QJNi/GH56UjbG1CZtBEz6C/SZ2iWF7GpC7kDLxGwACcQWurmrCYQC/GPtP/hi/xeRbRMzJvLU2U+1e+re4a0lrPyoprb5WTP70mfU8dX/PlURfT6Knn6ayo8+jmzTde9O+vPPYRjUwITMY2DTom8oPLAPgLi0DM648rpmzlDoTHy+MZd8u3wvMmVAMkMzFHf2qYYiaCsoHAtBPxRuD7uvw/HhVXlNn2OIDbuvww7stJGgP3FRxl0F0R/CvakY5895BEuiRUhBp8Y8OgXLmWnH5X5pd9rEHd5CAfzwKrnud0vxO+QZvw1hjGtA6O4hL2MyO8xNu+XHb1n29mtI4XjD5J69uexPf8USnxB1nNPvZGXuShZnL2Z13mq8ofpuZ6vOyqTMSZzb/VzOSDsDnbppN/OxEPSHKM11ysJ1dhXFOQ4qClw0V5pMo1WRmGklubuV5B42krtbiU02EQqJvPPgzxS6g/xQFSRNK9BNq0IryBHjBYEQ+QEJEblGU++RDQvavoMHybnpZkIV8gQRw2nDyHzjv6gtDUdgfbL+KHsK5YiuoekxXDmyTrypJEHuBtj8Huz4EvzO6P0qrZwQMeJ66D3p+OrEK5ySfPTRR0iSxGeffRYlaMOx1fpTRHAFBYXjwZdTRcWn+wiW1vRPdVlW4mb2Q5t0bMkuDr+Dt3a8xfxd8/GFasrppJhSuHvE3VzU6yLUdb8//S45hnTbJ3BwWf2SHoJaHvQedhX0ny5P0GwBh7eW8O1r22sNNquilj5PqMZ5BKg0AqPO687I87uj0Xad7/iSnCN8FiVm9+XKv/wNg0W5L6uNJIqU/fcNSl58EUKyy02dmEj6v57FfPrpx319tz/Ik4tq0lP+etEg9Jqu83ek0DmYM2cO113XciHigw8+6HSCNsDnn3/O5MmTef755/F4PPzmN7/B7/czb948vvrqKyZPnsyrr77a4Lmvv/46paWllJaW8uWXX3L//fdH7bdarTgcDsaMGcMf/vAHxo4dS3x8PLt37+a5555j8+bN9O/fn4ULF2IwKAkJJxxJgoNLYflTkFcndj51mCxk9zuvSwvZwUovrvVF+I86mz+4GgFUxpZLFhXeCu776T42Fm2MbPvdkN9x94i76/ej2pjCQ3Z+fGNnZLxn+LQsTpvcvm7wkxXf4cPk3Xc/vj17IttsF11E6mOPNTpu1VoqCvL4+ZP35RVB4Lw596DRtf24oEL7EAiJzKvtzp6iuLNPRRRBW0GhJThLakWHr4P8TRBsOBo4QtIAyBhT48BO6AON1HJSgGClD9ev+TjXFdarq6OO02M5Mx3zmBRUhpP8YyvKHd6t+eM/+Y08qFl3MLPxF6DRabGeCvlRsKXh/dZuDTu747rLDtw2vlEQxRAr5r/Fpm+/iWzrM+Z0pt/1R7Thm+0qfxU/Hf2JxUcW80v+L/hFf73rxOpjmZw1mWndpzEudRxaddvVxQkFRMrynZF618XZDsrzXUhi02KbSiOQmBEWr7tbSe5uIy7VhEpd/zNCo1Iz5cZBfPvqNkQJcgMSuYFQ/YsKMOXGQQ0OKvsOHSb7xhsJlcllDwxDh5L1xhuoGxm8rfIG+PePNTOM/zpjUE0tTFepHCe+eT6U7Kl/ctJAGPlbOdLUfOwxlAoK999/P88991zEOVKbv/zlL0ydOrXF1/rxxx95+umn27B1CgoKpwpSQMS+JBvnytxarmyBmHN7YDkr/Zhc2YFQgE/2fsJ/tv2HSl9lZLtVa+WWYbdw3YDropNjxBAcXgHbPoXdC+pPIgN5suywq2HIFWBpPK2lIYKBEEvf3d1i51Ra31gmzupPXGrXqgtZkn1YFrMdcnmg1N59ueIvf8NgVsTs2gQrKsh/8EFcK2ui703jxpH+r2fRJLXub6sxXll+MFL7cPKAZCYNUJxsCu2PxWIhKyuro5tRj8TERNavX8/cuXP56KOPmD9/Pmq1moEDB/LKK68wZ86cRuuCz549m19//ZWUlBQuv/zyevsLCgr46quv+P7773n//fd56qmn8Pl8xMXFMWzYMObNm8dNN92E0diJDQMnI5IEh36Sa2QfXRu9L2UoTHpInpTWRYVsKSTi3VOOa10h3n0VLXdmRy4AhiEtG0vYV7GPe5bdQ55TNhnpVDoeO/MxZvSe0coXbT2VRW4WzdtGMFwase+YFM68rHczZyk0hH3BAgoefQzJLScZCno9qf/3CDFXXNFmE9MlUeTH/7xEMCCPG444/yLSB7SN61vhxPDlplzyKuXJxRP7J3FaZmzHNkihQzjJlSEFhWNADEHxbrlTmRuODy8/1PQ5WjNkjK5xX2eMlt2uCs3iy6nCuToPz45SOdmwFrqeNqzj0zEMSjjmCMeTngEXyQObLeXSV6HXBKjIhsrs+suqvMbFcUeB/GgoUlqlgZiMOkJ3j5p1c1Krbsb8Xg+LXniGQ5vWR7aNnnE551x3I3Z/Fcv3f8eP2T+ypmANwQai/eMN8UzNmsq0HtMYnTIajer4v+5CIZHyfFek3nVxtoOyPCdiqBnxWiWQkGEhqbuV5CxZvI5PM6PWtHyCS89hiUy/bShL392Nzx2smZcQXupNGqbcOIiew+rf9PmPHCHnhhsIlZQCYBg0iKw3/ova2nis5ktL91Pmkjv5Fw3rxpisGDkCbdN7sPe7+rH4Oos8gD7yekgf1WVvvBU6F4899hiPPfZYg/sGDhzIhAkTWnyt3NwG6skqKCgoNIP/qIPyz/YSLK5xZWszrcTP7Ic2ufWubFES+eHID7y46UVynTWfS1qVlmsHXMutQ28l1hBbc0LhDrku9vbP5T5YXWKyZCf2sKshqV+r21PNwY3Fcv+ihQwc363LidnFRw7x2d8fwVstZvfpxxUPP3FKitmiz4fj++9xLFlKyF6JOiYW69QpWM8/H+/OnXLEeGGhfLAgkHj77STeecdxR4xXk13m4vWV8v21Vi3wfxcpg8kKrScQCKBu5d/kJZdcwiWXXNJOLTo+9Ho9Dz74IA8++GCrzpsxYwalpaWN7jebzfzmN7/hN7/5zfE2UaGtOLxKrpGd80v09uRBMPHPMGBGlzXDBMs8uNYX4dpYiOhooJSeSoBmJv8DCEYNphYI2stylvHQqodwB2URNMmYxNxJcxmWNKzVbW8t7io/C17agtclv8/0/nFMuX6gMnbZSkSPh8J//AP75zVR8breveWI8X7H3rdtiK1Lvid39w4AYpJTOPuaG9r0+grtSyAk8rLizlZAEbQVFOT45rwNNe7r3A1yLHNTxPUIC9dhB3byIDlmWqFFSCERz/ZSHD/nEzha52etFjCdloRlfDq69FNvgKnVDLoUvntQjiBvctqrAIYYGHyZHB1uS4PuZ9Q/LOiHqtzGBW9XScOXF4NQcUR+HG5gv9Yk14hvzOFtqKl54igr5atnnqDkiDzQpVKrOf3668ntJTJnyW2sK1xHSKrvUE4yJjG1+1SmdZ/GyOSRxxUtJYoSFYVh8fqIHBteetRJKNi0E14QID7NTFJ3GyndrSR1t5GQbm6TKM6epyVx4z/jObiphENbSvC6AhjMWnoNT6L3yKQGX8Ofk0P2DTcSLJF/b/qBA8l6603UMY3XmDlc6uKdX44A0FtTwpOx62Dubxouq5B1Boz4LQy+FHRda2BbofPzzDPP8NBDDyEIArt27aJf+Ib2hhtuqFcDsDl69+7N9ddf3x7NVFBQOAmRgiJVS3JwrDha071SC9imdcd6dgaCuvWDlesK1vHcxufYWbYzavuFvS7k7hF3k25JlzdU5cP2z2DrJ1C8s/6F9DHy9+5p10Dm6W0y6H1oa2mTIT5RCHB4aykDTm9BklAnofjIIT7721/wOuX7jm59+nPFX55Abzr1+i6OZcvI//NDiFVV8t+OKIJKhWPxYoS/PooUCMjbAHV8PGnPPoNl/Pg2bcPfF+3GH5Jf4+azetIz8dT7PSgcP60VsxUUOpwjP8uO7COrorcnDYAJD8pjO11QyJaCIp5dZbjWFeI7UFlvvzpWj3l0CqYxqQTynJTN39Xs0FX8zH4I2sZ/FpIk8eaON3lx04tI4YsNThjMC5NeIMWccpzvqHn83iALX95KVamcNJKQbuGC24aibqLNCvXx7d9P3v3349tfI1LGXHYZqf/3CCrTsZXzaYyqkmJWfvB2ZH3a7LsjyY8KXYOvN+dxtFyeZHx230RGZilGwlMVRYFTOLWQJCg7GK57HXZgF++myd6UWg9pI2rqX2eMBWv7d5BORkKuAK51BTh/LUCsio6GVlm0mMd1w3J6N9RWpX5Ji9Ea4LLX4KNraXwkMjzoetlrzdfB1uggvpf8aAi/CypzGhe8fVUNnxdwy/HUDUVUg1xjPq47RVI6X6314Aq7hAS9hkMTTLxT/ARiUX0xOdWcyrTu05jWfRqnJZ2GSmj9DYQkSlQWu8M1rx0U51RRkuMg6G8mxl2AuBQTyd1tsvu6u43ETAtaXfsNrmi0avqPS6X/uNRmj/Xn5spidlERAPr+/WUxOza2yfOeWbCFC6TVXK39ifHqnbCuzgHmZBh+rSxkJyozIhXaj8WLF6PVarnvvvvo1q1GOHn77bebOKthTj/9dE5vg5qfCgoKJz/+XAfln+0jWOSObNOmW2RX9jG4kvdV7GPuxrmsyosewB7XbRz3j7qfQQmDwOeALR/KJT0Or6Ref06lhb7nwmlXQ9/zmu/PtRJ3lb/lcaASETdSV6Do8EE+//sjNWJ2vwFc8dAT6Nt4oLQr4Fi2jNw776rZEBauq5eSr6aOu2n0aNL+/W+0KW0bBb5yXwmLd8l90ySrnrsnK31JhbZh27ZtLFmyhAMHDmC324mJiaFPnz5MnTqVYcPa362poNAoOWtkR/bhFdHbE/rKjuzBl7V5+bYTQaDEjWtdIe5NRYiuOikvKgHjwHjMY1PR942LuJY1MXoSfjuI8s/2yaUG6yTPCUYN8TP7YRyU0OjreoNeHv3lUb49/G1k2wU9LuCJ8U9El2tpJ0IhkR9e30FJjtyvsMTpueiu09C3oub3qUBTaTCCTof9y68o/NvfkLzypADBaCT10b8Se+mlbd4WSZJY/N+XCXhlMXTolPPoPnR4m7+OQvsRrFM7+17FnX1Ko3zaKpzc+N1yveuja2sc2J7yps+xdqsVHT4Wug0Djf7EtPckJVDkwvlzPq5NxVDH4artZsZyVjqm05IQWhHBrFCL/hfANR/C17eDtxIElRwbXr00xMhidv8Ljv+1dGZIHig/6iJJcg3uhoTuimxZCA/56p8H4K1k/z41i/LMhCT5Zs5hDLBkTB52TTBqkDVdbebcuMFMy5jAkMxzEGIyWpyQIEkSVaWecM1rByXZsvs64G2gJnUdYpKNJHe3RepeJ2Za0XXSmu7+3Dxyrr+BYIEcT6rv24est99CE9fEDMaCreQv/y9PH/mCGJ07ep+glgfSR/5WXrZhHXIFhcbYs2cPd9xxB0899VTU9l69ejF37lwuvvjiFl/L4/FQUlLSKesmKigodA6koEjVshwcPx2tKYOjFrBNycI6IQNB3bp+aqGrkHlb5vHNgW8i7iGAfnH9uH/U/ZyZMhbh8E+w/N+wZxEEPfUvkjFWFrEHXw6m+GN/c41Qludk20+5FB2yt/wkAQzmrtEPKDp0QBazXXLN8bR+A7n8ocdPSTFb9PnI//ND8orU9OwFQacj4z+voTa3rXM6EBJ5fEFN6sBDFwzAou+cfWmFrsP+/fuZPXs2K1eubPSYCRMm8Prrr9OnT58T2DKFU56j6+GnJ+Hgsujt8b1lR/bQK7uckC0FQrh3lOFaV4D/cH0zgzrBgHlMKuZRKY0aVYyDEkh7eBzuHaV4d5QieoKojBoMQxIxDUls0pld7C7m3mX3sqNsR2Tb3SPu5taht7ZZneWmkCSJn97fQ84ueVxZb9Iw4+7hWOKUMePaNJUGo/r7P9APHIBnXU15QX2/fqTPfR59r0aMNcfJzhVLObJ1EwCW+AQm/Obmdnkdhfbjf1vzOVImj1OO75PA6B5tf1+k0HVQ7h4UTh4kCey5tcTrtVC0Q45CbgxBDalDZfG62oEdk6nUf20DJFHCu68C5895+PZXRu8UwDAwAetZaeh6xpyQjudJz4Dp8Ie9sOsb2LNAFpaNcXL9pUGXtLmTp0EEQR5sNcXLqQZ1EUVwFtUTuo9WHGDhPieu3FiEsJu8KM7LslEl+HTyiHL3QIBpLjfTXG4G+gMI7Ib1n8vXVWnAll4nyrwHUmwWDtIoKdFRnOOkOFt2XrekRqQt0UBSVo14nZRlRW/qGoO3gfx8cm68kUB+PiDXH8p6+2008Q10+DwVcl3OTe9B4TbSIGLoB2Sn/ojfwmnXgq3rRIsqnByUlJQwZMiQetuPHDmC0+ls1bW+/PJLrr/+ekKh5ievKCgonHr4851UfLqPQKErsk3bzUzcVf3RdWudqOfwO3hz+5u8v/t9fLUm8qWaU7l7+F1caMxAve0z2HFDw6Vc4nrKceJDZ0JC68ortARRlDiyrZRty4+St7ey9ReQoNfwpDZvV1tTdOgAn/39L/hc8u80rf8grnjoMXTGU0/MBnB8/708sNwCJL8f59KlxLRi4lhLePeXIxwskX8fI7NiuXR4epteX+HUY926dUybNg2n04nUxESNFStWMHr0aBYvXsyYMWNOYAsVTknyNsLyp+DA4ujtcT3CQvZVXa5kYaDQhWtdIa7NxbKzujZqAeOQRMxjUtH3imlRDWlBq8I8IhnziJangOwo3cG9y+6l2FMMgFFj5KmznmJK9ymtei/Hw7oFh9nzayEAao2K6bcPIz5NKZtRm+bSYESHI0rMjr36alIe+jOqdor/dlaU89N7/42sT7v1rlOy5ExXJiRKvLysVu1sJd3nlKdrfYMqKNQm6IfCbTXx4UfXgaOg6XOMcbXE63Gy6KbUfW1TRF8I96YinD/nEyyNdpoIejXmMalYzuiGJsHYQS08idEaZBfPaVd3dEsaRqWSRVFbN7Jju7E428ES+wZidnrpdzQuoqMeTHPy89AyeuptTBMsTHN76VuRj+BqxD0kBqEyG1dZFcUBD8WBIMUBgeKABq/kavicWlji9CRlyZHhyT2sJGfZMFi6hnhdl0BhIdk33kQgNxcAXc+edH/nbTSJiTUHiaJct2vzfNj1v3queY+k41fD2Uy85n5UPcYrE3wUOgyDwUBeXgO12xUUFBTaCCkk4lh+lKplR0EMiyEqAdvkTKyTMlvlyvaH/Hy691P+s+0/VPoqI9utWiu39p3JtS4fhu//AaV7659sjIMhV8CwqyFjTLt893pdAXb9nM+On/JwlHuj9ml0KkRRQgw2nzuuN2noPbJzC9qFB/fz+T8eiYjZ6QMGcfmfT10xG6BqyRL576oZdzYQdlEtaVNBu8Th44Ul+wG5GY9dPBhVC0QPBYXGcDqdXHLJJTgcDuLi4rjssssYM2YMGRkZGI1GPB4Pubm5rF+/nq+//pry8nIuvfRS9u7di8Vi6ejmK5yM5G+Ra2Tv+z56e2wWnPMnebJaF0o6E/0hPFtLcK0vxB+O166NJsmIeWwqppEpqNs5ueXbQ9/y11/+GpkomGZO48XJL9I/vn+7vm5tdqzMY8O3R+QVAabeNIi0vrEn7PW7Aq1JgwHo9vRT7RIxXo0kSSx545VIf3Dg2ZPoNVKZ1NTVWLgtn0Ol8u/w9F7xjOvVeEkChVMDRdBW6Do4i2uc10fXQf7mxuOLARAgaUCNeJ05TnY5KOJMuxCs8OL8NR/XukKkOvHN6gQDljPTMI9KQdVJI5oV2p9DlYdYnL2YxdmL2VuxF11AxcRNiaSVWSPH5AxTM/TCq/lDj3PpHVvHleR3y7Hlldm483MpzrZTUhCiuNxMsSsFd6iJOO0wRlUFKdoDJGkPkKw5SJL2IGazBEJ3cHSHo93B2aOW0zsLtF1j8kWgqJicG24kkJMDgK57d7LeeQdNUnjQ2Z4n1+fcPF92x9dhB735MDCRBaEzePd3U1FlNf/zVFBoTwYNGsS8efO45JJL6tU+VJI9FBQUjhd/gYuKz/YSyK/lyk41ETezP7r0losdoiTyw5EfeGHTC+Q5aybhaFVaros7jVtLCohZ9Fj9E9U6uRzMsKuhzzTQNBzNebyU5TnZtjyXfWsLCQaiS//EJBsZNimDAad3I29/Jd++uq3pWtoCTLlxEBpt541ILTywj8//8X/43NVi9mAuf+gxdIau0Z9rSyS/H9f69TiXLsX504qWidkAokjI3ooY+hbw7A97cPhkV9/VozMZlhHbptdXOPV4+eWXKSoq4re//S0vv/wyVqu1wePmzJnD3Llzueuuu3jvvfeYN28eDz744AlurcJJTcE2+Olp2LsoentMJpzzRzjtunb7jm8P/HlOXOsKcG8pQfLVSbfSqDANTcQ8LhVdd1u735OJksjLm1/mv9trHLYjk0fy3MTnSDCeOFHr8NYSVn5UMyHxrJl96TOq5e7yU4XWpMEACKr2LTu599dVHNywBgBTTCyTbri1XV9Poe0JiRIvLt0fWb9HqZ2tgCJoK3RWxBAU7YTcdTUidsWRps/RWSFjVI0DO300GGNPRGtPWSRJwp9dhfPnfDw7SusNgOl7xWA5Kx3DgPgWxQ4pnFxIksT+yv2yiH1kMQftByP7rC4NUzckE+MKz+RVqxh38w38YeoV9a7jdQYozqkK17wOUJxtwVnRs9nXN2j9JFsKSNYcIEncTLJqN2ZVef05LV7ktIfCbQ1fyJJSS+Cus7S1vH53mxDwwq6vYc9CcFeAKQ4GXEQgaTw5N8/Gny0L1dqsLLLeexdtQqwcQ79pPhxcKtdUr40xDoZdw2uOM3l6kzw4fcnwNEYqYrZCJ2DWrFncfffdjBgxgtjYWGJiYiL7fv/73/OXv/ylxddyuZpPa1BQUDg1kEISjhVHqVqaA6FqVzZYJ2Zim5yFoGn54Nq6gnX8e+O/2VW2K2r7heo47s7ZR/rBg/VP6j4ehl0Fgy5tt3sVMSRyZFuZHCu+r7Le/qzBCQybnEHWwJo+es9hiUy/bShL390tl2cRkPv24aXepGHKjYPoOSyx3vU6CwX79/L5P/4Pv0eusZcxaAiXPfjoKSVmh5wuXKtX4ViyFOeKFYiO+q66ZlGpUNf6zj1eth6t5NMNcnqQ1aDhj+edOEedwsnL//73P0aOHMk777zTrKhmsVh4++232blzJ19//bUiaCu0DUU7ZUf27gXR223pcPYf5NJdXUTIFr1B3FtLcK0rJJBXv7STNtUsu7GHJ6E6QaXYXAEXD616iOVHl0e2Xd73ch4Z9wjaE+h0Lzxk58c3dkbmhI2YlsVpkzNP2Ot3dqRgkEBBAf6cHMreebflJ7ZDGkxt3FV2lr39n8j6lJtvw2i1tctrKbQf324viJSrGdsjnjMUd7YCiqCt0FnwVEDuhhrxOm8j+JupjxnfCzLG1jiwkweCqvO6BU4mpKCIe3spztV59Tu7GgHT8GQs49NbXXNQoesjSRJ7yvdEnNhHqo7UOya5XM+5m7uh8cl3BEZbDJc+8Ahp/Qbi8wQpyZbF6+JsByU5VVSVeutdoy56k6YmNry7laTuVqzxhprBDVEEV3FU7W4qj9Ss2/NAaqS2rrNIfuSuq79PUENMelTt7ijB25LSdqkQe75F/Px2HPt9OPKMhHwCar2EKXkp5QdsBKrkAXhtRgbd//1/aLe8CFs/Bndp3UZD70nyDfaACzlQHuBfc1cCEgatigfPH9A27VVQOE5uv/12Fi9ezP/+9z8qKiqoqKiI7CspKaGkpIHas02guLoVFBQCRS7KP90X1X/VpJiIn9kPXUbD7r6G2Fexj+c3Ps/qvNVR28f5gtxfWsIgf070CQl95ZIwQ6+S+wfthNcVYNfqfLavyMVZHp1kpTWoGXhGN4ZOzCA2peHo7Z6nJXHjP+M5uKmEQ1tK8LoCGMxaeg1PovfIpE7tzM7ft4cvnvxrRMzOHDSUyx58FG071WTsTARLSnAsW45j6RLcv65BCgTqH6RWQ6iRvm5dRBHrtKlt0jZRlHhswc7I+u+n9iPRom+Tayuc2uzdu5eHH364xf07QRC45pprePLJJ9u5ZQonPcV7YMXTsPOr6O3WbrKQPfJ60HT+zzlJkvAfdeBaV4hnawlSnRQXQafCOCwJy7huaDMsJ/ReKteRyz3L72F/hezMVAkqHhj9ALMGzjqh7agscrNo3rZIwk3fMSmccVnvZs46+RA9HvxHjxI4ehR/zlH8OdkEco7K2/LzIRhs/iL1Ltr2aTC1Wf7O63iq5Ov3HXsm/U4/q91eS6F9EEWJl5ZFu7OVMR0FUARthY5AkqB0vyxcVzuwS/Y0fY7GAGkjIXOMLF5njAVL567ddjIScvpxrS3EuSYf0RE9UKKyarGcnoZ5XCpqS9eYharQNkiSxI7SHRERO9eZW+8YAYHhycM5294X54aNiOEOry05nSGT5rBjlcjyD9ZQWeRu9vW0enVYvJYF7KTuVmKSjE13bFQqsKbKj6xx9feHAlCVV0fwrrV0FjXy5kPhGPQcuS51XTQGOba8MYe3sYVO6D3f4vj3TeSviUUMmKhtmXLk1gzUauOMdL8ggPaLC+tfIyYLRsyC4dfJbQrzj0VbCYbrht42oTdpsaeOi0mhc6NSqfj666/5/vvvWbZsGWVlZYiiyLvvvsvZZ59Nr169WnytQ4cOsXr16uYPVFBQOCmRQhKOVblULc6ucWULYJ2QiW1qy13Zha5C5m2ZxzcHvkGqFU3U3+fnvopKzvR4ifRGTIkw9Eo5UjxtRLuWPSrNdbJ9+VH2rSuqFysem2Ji6MQMBpyeis7Y/O2/Rqum/7hU+o9Lba/mtjn5+3aHxWwPAJmDh3HZn/56UovZvsOHcS5dimPJUjxbtzYYJ66y2bBMnIB18hSMY8Zw6IILZMd2U9HjgoDKasV63nlt0s6vNuexOacSgD7JFq4/o/0mdCicWrhcLuLj41t1TlxcHG538/ebCgoNUrIPVvwTdnxBVDyhJQXOuh9G3Qjazv+9I7oDuDcX41xXSLCB8RdtukV2Y5+W1G4lA30hHz8e+ZFlOcuo9FUSq49lctZkzu1xLttLtnP/T/dT4ZMnM1u1Vp6d8Czj08e3S1saw2X3seClLXhd8thnev84plw/8KRMn5QkiVBlJYGcHFmwPppTI1jn5BBs5UTyFtHGaTC1ObBhLXt+XgGAwWxhyu9ub5fXUWhfvt9ZyL4ieRLyqO5xjO+juLMVZBRBW6H98btkx/XRtXB0vSxieyqaPseaJotOGWH3derQLhPVczLiL3Dh/DkP95ZiCEYPgGjTLVjGp2EaltSqiEaFro0oiWwr2caP2T+yJHsJBa6CeseoBBWjUkYxrfs0zkmZyM5Pv2X7sppZzCpNd3z+i9j0Y2Wjr6PRqkjKkh3X1e7r2GRT299EqLUQ10N+NETAI4vWEaH7SLTg7W1kZmnQC6X75EdD6GMgrlrw7hEteMdmgc4EAS+OF+8id1Vt8VuoswSQSOhdgNZRK95UrYMBF8HI30LPibKwX4uf9hazfK98c5IWY2DOOafebGOFzs/555/P+eefH1l/9913mTNnDtddd12Lr/HBBx8ograCwilKoNhN+Wf7CBytiV7WJBmJv6o/usyWubKr/FW8tf0t3t81H5/oj2xPDQa5u8LOhU4XapAnsg24EIZdI6ehtGMkphgSObytlG3LcsnfX1lvf/chCQydFB0rfjKSt3c3Xz5VI2ZnDRnGpX/6K1p95xcVWoMkinh37MCxZCmOpUvxNxRnD2hSU7FOmYJ16hRMo0cjaGv+BtOefprcO++UJ1c0JGqHJ12kPf00Kv3xuwsd3gBPf18zcf3RGYPQqpX7RYW2ISkpiZ07dzZ/YC127txJYmLnLZug0EkpOygL2ds/iy7hZU6C8b+H0TfL9+2dGEmS8B+pwrWuEPf2UgjWcWPr1ZhGJGMek4ou3dKubVmes5xHfn6EKn8VKlSIiKhQsSRnCU/8+gT+kB8RuX09bD14cfKL9IxpvuRcW+L3Blk0b1skLTAh3cIFtw1Fre2632FSKESwsBD/0aP4c3Jq3NZh8Vp0NpOS2gAqkwltVha6zEy0WZmEyiuwf/VV8ydCm6bB1MbrcrLkjXmR9Yk33Io5Vimp19UQ69TOvldxZyvUQhG0FRqtycqgS1s/u1CSZNHn6Lqw+3otFO5oPMoXQKWB1GHh2tdhB3ZMxvG8I4U2QBIlvHvKcf6ch+9gHbFOAOPgBCxnpaPrblO+VE4RQmKIzcWbWZy9mCXZSyj2FNc7Ri2oGZs0jgmm8+gdGIw7X6RoTQWfHfgXIf/emuN0w9CYJiEINdGVao2KxEwLyVlWksLidVyqCVVnGPjSGiGpv/xoCE9lw87u6mWwkdh0nx0Kt8uPhjAnI6pM5K+qHoxs+n+teKuNmJ5uVGlD5EjxYVeBqWHnQiAk8reFNTU/H7xgAEZd540SVTj1+Omnn3jvvfcQBIEnn3ySlJSU47qe1JQjTUFB4aRDEiWcq/Ow/3ikZkKmAJZzMoiZ2h2hBYOS/pCfT3Z/wH+2vIo95Ilst4ZEbrXbua7KgV4SoOc5sog9cAYY2rc+n9cZYNfPTcSKn9mNoRMajxU/mcjbs4svnnqUgDcsZg8dzqUPPHLSiNmS349r3XocS5fgXLqMYHH9vjeAvm9fLFOnYJ0yFcPgQY3em1knTyJj3svk//khxKoqeaKjKEaWKquVtKefxjp5Upu0/+VlByhxyH+j5w1O4ey+SsKaQttx+umn8+abb3LXXXfRo0ePZo8/fPgwb775Jueee277N07h5KD8EKx4FrZ9HC1kmxJg/L0w5hbQde4yeyGnH/emYlzrCwmWeOrt12VZMY/thnFYIqoTMBawPGc59y6/N7JeLVxXL72hmnGTM9PO5JlzniFG3z4u3sYIhUR+eH0HJTnyREhLnJ6L7joNfQtSbjoa0ecjkJsbLViH48EDeXkNlyRpBnViIrrMTHRZmWgzs8LLTHRZWajj46P6HKLPh2Pp0hOeBlObFfPfwlVRDkDP4aMYdM7kNn8Nhfbnx11F7CmU/weHZ8Zydl9lMppCDZ3/01ihfdnzLXx9O3grQVDJnTRBBbsXwHcPwmWvQf8LGj8/6IOCrWH3dTg+3FnY9GuaEsLi9VjZgZ02otPPZuzqSAER9/YSvDvLCLmDqE0aDIMTMA1NqjeYJ/qCuDcU4fwln2BZtAgnGNSYx6RiOSMNTfzJMVCk0DRBMciGog0sPrKYJTlLKPeWR+1XiSqSPJmM0ZxDv+BQ9OWx2Nd6qQxJbCQPSXTjd36DFKpxcGuME9CaRpGYER0bHp9mRt0ZxOtjwRgrP7qdVn+fJIGzuOHa3RXZYM+NmvQjSSAGBUS/ilBFOVU5HsRASxxkAmJAwOEZTsxtPzUbbfrBmmwOlrgAGJkVy8WnpbX03SoonBDefvtt5s+fT2ZmJo8//nhkuyiKTZzVMLNmzWLWrFlt2TwFBYVOTKDETcVn+/Dn1HJlJxqJm9kPfffmBWdRDPH9hpd5ce/75Ik1/WGtJHFdlYNbK6uISRwAU66GoTMhJr1d3kdtSnMdbFuey751RYQaixU/IxVdO8WDdjZyd+/gy6ceI+CTfz/dh43gkgceQavr/HVLmyLkdOJauRLHkqU4V65s2DElCBhHjpSd2FMmo+ve8hhv6+TJ9F21EscPP+BYvISQ3Y46JgbrtKlYzzuvTZzZAAdLnLz182EAdBoVj1w4qE2uq6BQzU033cQXX3zB6aefzlNPPcVVV12F2VxfXHS73XzyySc8/PDDOBwOfve733VAaxW6FBVHYOWzsOWjaHOOMQ7OvAfGzgZ9+7qYjwdJlPAdqpRrY+8sqym1EkYwajCPlN3Y2tQTJ8j7Qj4e+fkRuY00PdFYp9Lx3MTnMGtP7IQBSZL46f095OySx730Jg0z7h6OJa7z9C1Cdjv+nKMEjtaPBw8WFTUtJDeEWo22W7dagnUW2ixZsNZlZKBq4HO1MVR6/QlPg6nNkW2b2bH8RwB0RiNTb71LMWB1QSSpjjt7quLOVojm1LjbVWiYPd/Cx7XiOqtnHFYvvXb46Fq45kMYMF3e5igMC9drIXc95G+GkJ/GESB5kCxeV4vY8b3atYacQjSeXWWUf7YPyROsLrkLAnh2llG54BDxM/thHJRAsNyL85d8XOsLkXzRjnpNolGOFR+ZgkqvODhPdgJigHUF61icvZilOUup9FUCIEgq4jzdSHZmkuLqQU//QIz2OAjJ/89uwE3NrF8xVErA+TWSWAWASq3jtHN/x+CJZ5OQbkajPTn/liRJQvJ6CVVVIVZVEXI4ap5X+REdFkJVWYQcsYj2nvK+yjJC9kpCDiei29f6m5CaV8exz0lMM5+xFS4/zy+p6SA+OmOw0kFU6HSsWbOGyZMn8/3336PR1HRZn3jiCS6//HKGDBnSga1TUFDojEiihPPnfOw/HKmJ0xTAMj6dmPO6IzTX9yg9wNp1L/BcwU/sqnOnfJHTxV0+LemDfyPXxU4d2u73NGJI5PDWUrYtbyRWfGgCwyZmkHmSx4rXJXfXDr58+uQRswPFxTiXLcexdCmuNWugAQeVoNNhPvNMrFOnYJk0CU3CsdcRVOn1xFx8MTEXX3w8zW6Svy3cRSAsosw5pxeZ8coEdoW2Zfr06Vx66aV8/fXX3HLLLdx+++0MGDCA9PR0jEYjXq+X3Nxc9u7di9/vR5IkrrzySs5rB0egwklCZQ6s/Bds+QDEYM12QyyceReMndPuKSzHQ8jhx7WhCNf6QkLl9RPidD1jsIxLxTg4sUUpNW3Nj0d+pMpf1aJj/aKfZTnLmNF7Rju3Kpp1Cw6z51fZpKXWqJh++zDi006wqC6KBIuLo1zWNeL1UUR7I+XumkAwGMKx4DXx4Lpqt3VaWlR5kuPlRKfBVOP3elj8+kuR9XNm3YwtUUmG6Yos2V3MrgL5s2JYRgwT+ym/R4VoFEH7VCXglZ3ZAI3OjAsrn5/fLLu08zbKjsKm0NsgY3SNeJ0+CgwnNh5GoQbPrjLK5u+q+RXXWUqeIGXv7UKbaSWQ66j3p6DvE4vlrHQM/eJOqUGyrkowEOLgxmIObS3F6wpgMGvpdVoivUclNyse+0N+fs3/lR+zf+Snoz9R5XMQ600iydmHQc5MklxZJLoy0IrN1LIXIC7VjNFUQM62T5HCriZLfAKX/umvpPTsGjWaRb8/LEA7EB1VhKrkh+hwyNuq7ISqHIQcVYhVDkIOB6LdLovXDkeDA5EnBoGQv/mb07lL9mH3yG28fGQ6p2XGtnO7FBRaT0FBAffff3+UmA3w2GOP0adPn1YJ2kuWLOHJJ59k2bJlbd1MBQWFTkKw1EP55/vwH6kZLNUkGGRXdo8m7kdcpbDjC/Zt/4DnA/msNhmj7pJP9/q5P340A8ffDL0mgqr9J+R5nH52rc5nx4o8nBXRseI6g5oBp1CseF2O7trOl08/RtAn/1x6DB/FJX/4CxpdM33UTobv0GE5SnzJUjxbtzZ4jMpmwzJxAtYpU7GcNb5VLqmOZNmeIn7aWwJAtxgDt0/sGv1/ha7HBx98wDXXXMOCBQvw+/1s376d7dujSzlVl5y59NJLmT9/fkc0U6GzY8+FVf+GTfNBrHUfr4+BM+6E02/rtOOakijh3V+Ba10h3t3lIEYP6qnMWkyjUjCPSUGb1LF9hqU5SxEQmnVnA6hQnXBBe8fKPDZ8e0ReEWDqTYNI6xvbLq8l+f348/II5NR3WQdyc5F8vuYvUgd1XFy0UF0rHlyTlHRCDQwnKg2mNqs+fJeqErk0S+bgYQybokxe6opIksQLS/dF1pXa2QoNoQjapyq7vpZjxptFgqAHdn7Z8O743jXideY4ub7sCRjkUWgeKSBS/tm+xucr1CJwtCaOEY0K84hkLOPTTmj8kMLxcXhrCUve2YXfE0JCitwoHNpcwspP9jH1psH0HBZdc8Qb9PJz/s8sPrKYjfu3Y65MIMmZxUTX9SS6MtGFmo+Vj00xkZRVEx2emGlh96ofWfrWW0jhWODknr259E//hzX+xNU8kYJBWWSOEqWrBeg626rsNaJ02FEteRuped1eqNWobTZUNitqqw21zYrKFoPaasW1aimBwjKaq58tI6FOzmzyiH1FDt5fmwOASafmwfMHHH/7FRTagUAggO8YbuYboqioiBUrVrTJtTqSUCjEv//9b959913UajV+v5+ZM2fyyCOPoG+HgQEFha6AJEq4fs3H/v0RpFpR3JbxadjO69FwTciAB/Z+C9s+pfDwMl6OsfA/ixlJa4wc0h8d9/e6gjPH3nPCokVLjjrYvjyXfesbjhUfNimD/qefOrHidTm6cxtf/vPxiJjdc/goLu4iYrYkini3b8exZCmOpUvxHzrU4HGabt3kKPGpUzCNGtWmrqkTgS8Y4okFuyLrD08fiEl3av69KrQ/RqORb775ho8//piXXnqJdevWEQrVpM2p1WrGjRvHvffey8yZMzuwpQqdkqp8WPUcbHo3OnlSb4PTb4fT75DLinVCgpU+3BsKcW0oIlRZ/35J3zcW85hUjIMSEDQdU9ZNlEQOVB5gU9EmNhVtYmXuyhaJ2SDX1K5OCjwRHN5awsqP9kbWz5rZlz6jko/rmiGns2HBOieHQGGh7FpuDYKApltqjWCdlVVLvM5EbW1JmboTx4lIg6kmd/cOtvywEACNTs+5s+9GUHXRcoanOMv3FrMjT56cPCTdxuQBx/d/qHByotxZnKrsWVhTM7ulaIyy4zpzjCxeZ4wB84kTqBRah3t7iRwz3kIEgxrrhAzMY7uhNnetgZNTncNbS/j21e1IiAioEMLCZ/XS5wnw7SvbmH77UJIHmvhp98+s276NoiNVxDm6kew8i0tD5zb7OrZEA0lZNpJ7hOteZ1nRG2u+RkQxxMr332Ljom8i2/qMOZ3pd/0RraF1NdclUUR0OhsRnmu5ous6pcPR3qLb3arXO24EAZXVitpqRWWzobaFRWmrLbzNitoWU7PNVus4qxXBZGp01qH9y2HkP/x/LW0I1ksbrxMsSRJ/W7iLUHjm9h0Te5Nia93vRkHhRJGZmcnXX3/NPffc09FN6TTccccdfPnll6xevZr+/fuTm5vLOeecw/bt2/n66687unkKCiecYJmH8s/34z9cE7+ojjcQf2Vf9L1iow8WRcheDds+gV3/oyrg4M0YGx+kJeOrNeiVqrFwz/A7uHDQLFRC+w+GiSGRQ1tK2f5TA7HiAnQfksCwSRlkDji1YsXrkrNjK1/98wmC/rCYPWK0LGZ3YsFX8vtxrV0nO7GXLiNYUtLgcfp+/eQo8SlTMAwa1KWdKG+tPsKRMrkfPrZnPBcN69bBLVI4Fbjmmmu45pprcDqdHD58GIfDgdVqpWfPnlgsnbfWsUIH4SiE1c/DhrchVEsM1llg3G2yK9sU33HtawQpJOHdU45rfSHeveX1zCsqqw7z6BTMY1LRxJ/4e/xAKMDOsp1sLNrI5uLNbC7e3OKI8bqoUBGrj23bBjZC4SE7P76xM1L1bcS0LE6b3LRJAOSxlWBJSQOx4LJ4HaqoaHVbBJ0ObWZm/VjwzCy0GemousAEvhNNwO/jx/+8GFk/65rriU1V+h5dEUmSeKFWacR7JivubIWGUQTtUxV3RevE7G7D4ZYloO68AwanKlJQJFTlJ2T3hR/yc/f20lZdR98rFtukrHZqpUJ7EQyE+P7tGjG7IQRUSEgsfG0rfpUbQ8hCMiNpap6bJU4vi9bdw+7rLBsGS+P//36vh0UvPsuhjesi20adP4Mzz5tBKCeHQFOu6Mi2mprTosNxHHWkjw2VySSLzFYrqhhbjVPaaotyTzcoTlss7TYD1HrhDFT/eBLR5aZpl7aEymzCeuFFjR6xfG8xq/bLnw3psUZuObtX2zZWQaENmTZtGq+99hqjRo1i4sSJxMTURP19+eWXHDhwoMXX2tpInGtXYu3atbz++uv885//pH///gBkZGTw2GOPccMNN7BgwQJmzDixdeYUFDoKSZRwrS3A/t1hJH/NPY35jG7EnN8Tlb6WK7t4N2z9GLZ/BlV5+IGPbVZeT0nDrq45zqoxM/u027h24LXo1e2feNBcrPjAM9MYMjGd2ORTL1a8Ltnbt/D1M3+LiNm9Ro5hxv0Pd0oxO+Rw4Fy5EufSpThXrkJ0OusfJAgYR43EOmUq1imT0WWdHPdgRVVeXlomD0SqBHhsxmBlIFLhhGKxWBg6dGhHN0Ohs+IshtVzYcObEKyVyKY1w7jZcMbdYE7osOY1RrDci2u97MYWHf7onQIY+sdjHpOKYUA8gvrEfea6Ai62FG+JCNjbS7fjCzWerqVVaQmILSvNJiIyOWtyWzW1USqL3Cyat41gOBWn75gUzrispkyGFAgQKCjAn51Tz2Xtz81F8nha/ZqqmBh0mZn1YsF1WVlokpMVZ3Er+eXTD6goyAegW78BjLig8fEwhc7Nin0lbM2VJykP7GZj2qCUDm6RQmdFEbRPVUxxEYd2UNJy0Hsmh7zj8EoWDIKTXoa19Db8gkYIyMfFZipidgcg+kMNitUhuy+yXXS2Ta1eydtyN7dC52HP+nxEL42K2dUICAiSgCFUf4a6xgJpPeNJ7RETjg+3YbLpEH0+QnY7oqOS0P4cnOH60XWd0o6KclaV5VIpyn9DgiQxOL+MlH/O5eA/57bH2274Per1NWJztSvaakMdY6sRnq2NOKWtVgRN5/xKVOn1pD37b3LvvDM8Eamhm1QJBBVpz/670XpE/qDI3xfujqw/NH0AhmZqqysodCQPPfQQn3zyCZs3b2bLli1R+7766iu++uqrjmlYGFEUefXVV3nooYdwOBwcPnyYHj16NHuez+dj7ty5fPzxxxw4cAC1Ws3AgQO54YYbmD17NqpGBjE+/PBDAM4///yo7eedJ9cH++CDDxRBW+GUIFjupeKLffgO1nJlx+mJu7Ifht6x8gZHEez4XBayC7cBIALfmU28FBdLnrbmO1+r0jJr4CxuGXoLMfr2r5EZiRVfV0QoGD3BOC7VxNCJp3aseF2yt23h62eeIBiQB/F7jRrLjPse6lRidqCoGOfyZTiWLMW1di0E6t+fCTod5vHjZSf2xIloEjqfaHK8PP3dHtx+Oe551rjuDEqzdXCLFE4GcnJySEpKwmg0Nn+wgkJDuErh5xdg3X/lkorVaE0w5hYYf2+nS5+UgiKeXWW41hfiq5veAqhj9JjHpGAanYom9sSUHSr1lLKpaBObizezsWgjeyv2IjZhlIrTxzEieQQjU0YyKmUUPWJ6cN7n5+HwO5qMHhcQsOqsnNuj+RTB48Fl97HgpS14XfJ3dmqSxHBxLYVPfFYjXOfnQ60yBi1Fk5ISdlnLgrUuKysiXqtjOmc99q5I4YF9bFz4NQBqjYbz5tyLSimD2iWRa2fXuLPvndJHmRSp0CjKXfKpyoCLYPcCDnvHsNR+Dz7JAoQANRDikO8MVlXdwpSYF+hp2AADlAHStkb0BhsVqUN2P6EqH6L7+ERmSZJa9AUgSSKCXpkF2NkJiSGcASdVvipKKyopzrazd1EFaskELfyiFwmiMxSSYgqSpQ8RGyxB7yojtMWBuLKKUFUVueFa0pLf3+z17EYdG3p2wxceGNaEQow8UkSis/UzVdFoIhHcjTqlY2xhUdoWFe+tslobFXJPBqyTJ5Ex72Xy//xnxCqHrGlLRJYqm420p/+JdfKkRq/x3q9HOFTqAmBsj3guHKrEMCl0bjIyMli7di1/+ctfWLZsGWVlZZHvNekYEhza8oZo586d3Hrrrfz666+tOq+0tJTJkyezfft2Zs+ezUsvvYTf7+fll1/m9ttv57PPPmPRokUYGijTsHHjRgD69OkTtT0lJQWLxRLZr6BwsiJJEq51hdgXHUby1wwumselEjO9JyrBB9s+lUXsQ8uj0qjWGPQ8Fx/Hbn1NVKOAwEW9LuKuEXeRZklr17ZXx4pvW36UggP26J0C9BiSwLBJmWQMjFMGb2pxZNtmvnnmbxExu/fo05lx34OoNR0vZvsOHQrXw16Cd+u2Bo9RxcRgnTgBy5QpWMaPR2U2n+BWnjg2Zpfz1eY8AGKMWu6f1q+DW6RwstCzZ0/mz5/Pdddd19FNUehquMvhlxdh7esQcNVs1xhqhGxL56rPGihx41pfhHtjEaKrzuQoFRgGJmAem4qhb1y7liGRJIlcRy4bizfKNbCLN5Fdld3kOemWdEYmj2RkykhGJo+kZ0zPen2af5z1D+5Zdg+6IIzbLTJ2v4TFI+E0CqzrK7B2oIqARj6urdJyJEkiVF6OPycnEg/uzsljZcVwqtTyRAaLM5d+q56nLORt5mphtFp06en1YsF1WZloMzJQtbLknkLrCQUD/PDaC0jh/v4ZV15HQkbzUfEKnZPVB0rZnFMJQP8UK+cOSu3YBil0ahRB+1Rl0KUc/uIjvq28u9ZGddTSJ5n4tvIhpie/RM9Bl5zwJnZVJElC8gQJ1haqa4nU1c8lX+tn+UWhArVVjzpGhzpGH37Iz1UGqPxmBcGylsVzCIKKys/nUfHW7uYPVjguJCQkSUKURCTCS0lCRGx0e0BlwGVMx23KxG3qjsechV8vd7zVmJtOoa5DfMUhRm59IbLuCz+OhUKbia1ZKYTU8mQIky/AmFInsbEJqLLqO6Wjo7rDorTNVuOQNhqVQdwmsE6eTN9Vq3D88AOOxUsI2e2oY2KwTpuK9bzzmhT0y5y+yGxHQYC/zuja9RkVTh169+7Nxx9/HLVNpVLx/vvvt2pg8/333+eGG25okzY9+uijPP3004wdO5Y///nPPP300y0+d+bMmWzfvp17772XuXPnRrZPmjSJyy67jG+++Ybbb7+dt99+u965JSUlqNVqTKb68cM2m42SRmqzKiicDAQrvVR8sT/KpaSO0RN3eW8Mmq2w6F+we0H0gDWwV6vl+bQsflZFDwqf0e0M7ht1HwMTBrZru5uMFTdqGHhmN4ZOTCcmSYkVr8uRLRv5+l9/JxR2O/cZczoX/b7jxGxJFPFu24Zj6VIcS5biP3y4weM0ad3CUeJTMI0aidCJnOTtRUiUeOx/uyLrfzy3H3Fmpc6nQttwLJMYFU5x3OXw6zxY+xr4a5V9UOth9M1w1u/B2nnEEikg4tlRinNdIf7D9nr71fEGzGNSMY9KQW1rn8/WkBhif+V+NhZtjLiwSzyN31sICPSJ68PIZNl9PSJ5BKnm5n+mEzMn8prhd+ie+g9mr4QogEoCUZAYt1fi5iUS/odv48zMia1qvxQKESgoJJCTHVXH2n/0KIGjRxFdNf1DUVCxbejtVMXLY2p6bzmnbXsFTR0xW2Wx1BGsZae1LjMTTWoqglpxAncka7/6lNKj8iSL5B69GT3j8g5ukcKxUq929pS+qNpxwo5C10cRtE9Rgmj5oaJazG7MmasCRH6ouJtb0Cp/LMj1+kR3INpV3YDDWgq0oj55Q6gFWaC2RYvVmvBzwSggVpUQyM8nkHeEQG4u3o15+PNyCeTlEyotBZUGy/nPgtaIIDTuvpYkEQIeAgdXg6jEjp9IBGqmkVQTVOtxWDJxWLNwWLOosmbhMbVR3RBJRBt0NXmIymyOCMy1xeZqJ7TaZkWwWNmZvZ9Na1dFzkvr05+LH3gEc2xc27RVoUFUej0xF19MzMUXt+q85xbvwxEuKzBzVAZD0pWYK4VTi8ONCA/Hwty5c3n++ee5/fbbeffdd1t83hdffMFPP/2EwWDgsccei9onCAJPPfUU33zzDe+++y533XUXo0aNavG1lQkqCicrkiTh3lBE5cJDUZNBzUN0xMQtRLXgE3AW1juvMC6Ll9J6sMCdjUSNmN0/rj/3j7qfM9PPbNd2l+Q42PZTLvsbiRUfNimDfuOUWPHGOLxlI99EidlnhMXsE/vzEv1+3GvWyE7s5csIlZQ2eJy+f3+sU6ZgnToF/cCBp9xn8mcbjrI9TxZhBqRauXbsyVETXKHzsGrVKoLBthuruP7669vsWgqdCE8lrHkF1rwKvqqa7WodjLoRzroPbO2byNIaAkUuXOsKcW8urp/OqBYwDpbd2PpesW3uxvaFfOwo3cGmok1sLN7I1uKtOAPORo/XqDQMSRgScV8PTx5+TGVaHMuWEffYfyLrKil6afaB+dHXcCQOwTo5uoa26PXKDuujR2W3de161vn5DZb7qIsE7Ok/i/L4QfL7CnkYF1xOwgUTZfE6q7ssXmdloY6NPeW+z7sKJdmHWfvVpwCo1GrOu/3eE95HVGg7fj1YxobsCgD6Jlu4YEjnmXCk0DlR/ttPUXavKyIUaEnEtIpQAPasL2LImZ2n49ceSKKE6PATrC1SV9UXrAkd3wxhQauKclM3JFwLWggWFxHIyyOQdwD//lz5eW4egbw8gsXF0NxMZTGIZ9PbGMfdIUeKNyBqV0ezeDa9DWoBTVIbCaddgOZc0dXPJUTEWsdIkthEtZ/WIQpaPKaMiOvabcrCZ0iR69Y3gSrkw+zJw+LJQwpIFKad07IXFFSYvbtJ/dsT9epIq202VBZLs3WkQ8EgS998he21xOyBZ03k3Dn3oNEpTozOyJ7CKj5alwOAWafmj+f17+AWKSgcH2+//TZnntm+YlRT7Nq1i/T09Faf98YbbwAwefJkYmNj6+0fOHAgAwcOZPfu3bz11lv1BO2kpCT27duH2+2u59K22+2kpio3fgonF0G7T3Zl76uIbFMb/MRZ52M48FX9EwwxVA28iDesRj7I+wm/+0hkVzdzN+4ecTcX9roQVTP9rGMlFBI53FSs+NBEhk3KIGOAEiveFIc3b5DF7LB41XfcmVx4z59O2EBlyOHAuWIljqVLcK1cFeXqiqBSYRo5EsvUKVinTEGXeepGXNo9AZ75YW9k/bGLB6NRK6WsFNqW119/nf/85z/NH9gADX3eKoL2SYbXDmtek13ZvlrfvyotjPwtnP0HiMnouPbVQvSH8GwrxbWuAH+Oo95+TZIR85hUTCOTUVvabnylyl/FluItEff19tLtBMTGBWCz1szwpOGRGthDE4di0BxfjLbo85H/54fklcbGM8Pb8/7wRxJuvolAfkHEbR0sLm79i2o0aNPSwvWsM9kjDKUwPxYAtUZgxh/Gk9b3wmN4NwodhRgK8cNrLyCGa5uPveRKknv06uBWKRwPc2vVzr5bcWcrtABF0D5FWbcqFxEJVQuyiiUkfvn+CBm9Y7ElGbvkB4sUFAk5/E3UrPYRcvjhOI3Vgl5dX6wOP9eEhWvBqAFRJFgkC9b+3Dw8+/MI5MqitT8vl2BhEYjH1hhNUhLajAwCBQUEC7fhWfsqxpE3gs4cEbYjAnfAg2fT24SKd2CdMoWMl148vh/ACSQkhnD4HTj8Dqr8Vdj9dqr8VVT5qiLbGlz3y+ui1NqfrxB+tH6AxqA2EKOJJc3Xk2RXd+KqumGuTEBjtyBITf8/qTUqEjMtJHe3kdzdSlJ3K3Gp5sj/4dqbr6E0MIqgxti0EC6JaIIeElOcxM2c2er3AOB1Olnw/FPk7Nga2XbmzFmcfsU1ysBsJ0WSJP62cBdi+H7xzsl9SLYq9ZwUujatjQ4PBoP4fMdaXKE+xyJm+/1+li5dCsCYMWMaPW7MmDHs3r2bRYsWMW/evKh9o0aN4ueff+bAgQMMGzYssr2oqAin09kqR7eCQmdGkiTcm4qpXHAQyVvjyjapFxMrvYHKUUtgVGmh33n4h1zOR2Il/931NvbKmsFsq87KnGFzuGbANW1Wi7EuHoefnavz2bmykVjx8d0YOkGJFW8Jhzav53//+kdEzO43bjzT73mg3cXsQFERzmXLcCxZimvdugZdXoJej3n8eKxTpmCZNBFNfHy7tqmrMHfJPspdco3zi4Z14/ReCR3cIoWTkYcffpipU6e2+jyn08kDDzzAnj17ItvmzJnTlk1TaA8CXtj1NexZCO4KMMXBgItg0KWgrXUv63PIseK/vAzeyprtKg0MnwXn/BFiO0dihD/PiWu97MauV35Qo8I0NBHzmFR0PW1tMrZS7C6O1L7eVLSJfRX7kJqwZsQb4hmVMipSA7tfXD80qrb97q1a9C1iVVXzBwKSx0PpvFdadKxgMqHLzIyuYx2OB9d26xYxbexYmceuD8MTsASYetNg0vrGHstbUehANiz8iqJDBwBIyMhi3OXXdHCLFI6HNYfKWHe4HIDeSWYuHNqtg1uk0BVQBO1TlNJyD5YWFt4VEAgUe/ng0TUIGgFLkpGENDOpmVYS0izEp5mxxhvaPAKnpUgBMao2dbCBmtWiM8Dx2mpVJk2DburaLmtVODZQEkWCJaVhh3Uu3k15+HNruawLCuAYI7PUCQlo09PRZaSjTa9+ZISXaZE6uvZvviH/wT8TKtyK8/sH0KSNQpM2AkFrRgq4COZvJpi/MRIzbp3W+hvE4yUQCrRKiK69rak4pPbArDVj09mw6WxYdVb5ub7hdYvailBuwF+kwpkXoizHRVmeE7EZd79KLZCQbiG5u5Xk7jaSuluJTzOjbsLl0HvGTPz/eo9tQ+aAJDYsaofF+0F73qP3A9ce0/uvLCzgq38+Tnl+LgBqrZbzbv89A8dPOKbrKZwYFu8q4ucDZQBkxhu5eXzPDm6RgsKJY926dbz33nt88sknlJeXd2hbdu/eTSAskPTo0aPR46r3ZWdnY7fbiYmpifK77rrrePHFF/nxxx+jBO0ff/wRgFmzZjV4TZ/PFyXoV4UHkgYMGIBK1fQkrZEjR/K///0vatvFF1/Mpk2bmjwP4P777+f++++PrDscDgYObFm94m+++SZKoF+4cCG33XZbs+dZLJaoQWuABx54gI8++qjZcy+88MJ67q/Ro0dTWFg/zrouzzzzTFRN97179zJlypRmzwNYv3493brV3Li//vrrPPHEE82e169fP5YtWxa1bdasWaxYsaLZc2+99VYeffTRqG0ZGS1zLr3//vtMnDgxsv7TTz/xm9/8pkXn5ubmRq0//vjj/Pe//40+SALRE0AK1PSZzsgayAeXazCqN0S2Tf5Yzb4KCTQ6vOIPOP1fEJJqBogFBExaE4//9XFuGFwzCaagoKDJSSW1Wbp0Kf3716SafPjhh/zpT3+KrIshiYAvRNAfPTBtNcbz9J3vRsWKz5kzh0WLFjX7mtdeey3PPvts1LYBAwbgdDbf733ttde46KKLIusbN27kkksuafY8kD+jrFZrZP25557jueeea/a8tvyM2LpyORPOnx5Z1+h0GH7eAs/Nq3fu8X5GSJKE/9AhHEuW8vBzz/G/QwcbPkEQEPR6VAYDF158Ma+/Et2WU/0zIihKlDp9IIEgwBdWPVemfdC+nxENMGHCBD744IOobZMnT2bfvn3NnvvXv/6V2bNnR9bb8jOiMVJTU9mwYUPUtq78GSEe40T81jBw4EAmTGjdfeeWLVuYM2cO+/fLzi+r1crrr7/O1Vdf3R5NVGgr9nwLX98uC9SCqmaMY/cC+O5BuOw16HE2rHsdfnkRPDUpLghqGH4tnPMAxPXoqHcQQfQFcW8pwbW+kEBu/f9RbapJdmOPSEZl0h7z60iSxJGqI2wu3hypgZ3rzG3ynCxrFiOSR8gidspIsqxZxyWkiy4XgaJigsVFsnmnMLwsLiIYfh4sabwmd3Oo4+PDLmu5hrWue1ZEvFYnJDTb9sNbS1j5UU2ayFkz+9JnVPIxt0ehYyjPz+WXz+Tve0FQcd5t96LRHvv/jkLHU7t29t2T+6LugiZKhROPImifongFCVPYoa0C0rQC3bQqdAL4JSgIiOQHpHqGZSko4Shw4yhwc2RjTWckpIKQRYM6Toc5yUh8mpluWVYy0q0kWfXoNXUrBbcM0ReqX6u6Tgx4vVozx4DKom1UpNZEYsBr3oMkSYTKywnk5uLfL7usZbE6LFrn5yP5/cfUFnVMjCxOZ4RF6rBwrcvIQJuWhsrUMneH9fzzEf/2ODg9qMQgwdy1BHPX1jtOBLCYsJ53XqvbKkkSnqCnvhAdcFDla1iIrn2MJ+hp9WseKwJCPeE5IkbXWo88am2z6CyNzk4VQyIVhW6Ks6soznZQlO1gV66dULCiweMj7VEJxKeZI+J1cnd5goha2zoHePz0i4j/x5MM2fE6ewb8lqDWXHPTF15qgh4G7HmPeN8h4i9ofZxS3p5dfPOvv+NxyCKI0RbDJX98hPT+LRMmFDoGXzDEP77dHVn/y/SBGLTH9lmsoNBVOHr0KPPnz2f+/PlRA9mSJHVokkROTk7keVJSUqPH1d6Xm5sbJWiPGzeOW2+9lWeeeYaLL76Yfv36kZeXx2OPPcbFF1/MjBkzGrzmU089xeOPP15ve0FBQbPtzmwgRrekpIS8vLxmz62q48CQJKlF54HsaK+Nx+Np0bm1B9urqaioaNG5DU16KCwsbNG5brc7aj0YDLb4vYZC0WKo0+ls0bm1/zaqKS0tbdG5dru93raWtrdu2oHP52vxuQ21oyXnOr12jGoDxPeCYVfDsKso+mwGecW7gMrGr4+dUB0XVCgUanF769ZrdbvdLTrXYNFy7aPjoj5zysvLW3RuRUX9/mN+fj4OR/1Y0rp4PNH9ar/f3+L3KtWJ/qyqqmrRuW31GXFw41q+felf2D3emgM8XrA37OQ65s8Is5miZ5/FuWQp/uxsAMqLCilqaqJxIABOJxUNuMqUz4hoCh0d8xlRWlq/tnlRUVHLPl/qCMEn4jOiIU7Wz4iO4sUXX+TBBx/E7/cjSRLDhw/n008/pU+fPh3dNIWm2PMtfFwz+ad6Yn5k6bXDR9eAzgr+Wn/zggqGXQMTHpD7Ch2IJEkEcp041xbg2VaC5I8eVRW0KoynJWEem4ou03pM9ydBMcjeir2yAzvswi73Nj55V0Cgf3z/iPt6ZPJIkkyN349EvR9RJFRRIYvTRUW1lsXh54UEi4oRW/AZ1Fp0ffqQ/uwzaDOzUFvMx3ydwkN2fnxjZyTlfMS0LE6bfOqWCumqiGKIH159gVB4kvjICy+hW1+lnF5XZt3hcn49JBtweiaauWiY4s5WaBmKoH2K4k5Sk2gXSdUIjDCp0amEyGCvJEmk6TQMFSU2uUMUBSX2aQNIqEgMCcSJQr2ocrUI6qogVAXxZrvJp4x84BckStUiVTqBgEWNKlaHMdFAQryebiY9aSo1SaiIDYHFL6J1B6NiwGvHDB4TAqitukZjwNW2cAy4JlpElCQJ0W7Hn5uH+0B0HLjsus5H8hybGKuyWCJidZTLOrxNbbEc33sOE9DAvIvU3PmxLFo3JJNWd61fvlDgT958fC5fPSE6yiEdjuuuvT0oHv+EgpaiUWmiRGer3tqkEF1brDZrzcddM1ESJSqL3RRnO2QB+4iD0qMOgoFmZqULEN/NTHKWlaSweJ2YYUGjO35xUaXXk/XMvxDuvJO4Xx+mLGkEJYmnEdCY0QZdJJVuJaFkMxopROa8eREHf0vZvWo5P7z2QiT6MT49k8v//CgxyUqt1s7OOz8fIbtMHkA9vVc85w1WfmcKJycul4vPP/+cd999l5UrV0YGXWsPviYmJlJWVtZRTYwaaDYYGo/9r72vriAM8Oqrr9K7d28uvfRStFotXq+Xa6+9lkceeaTRaz700ENRLsiqqioyMzPp1q1bsw7thsT3pKSkFsWu22y2qHVBEFoc167TRdcMNBqNLTrX0kAfKi4urkXnxjcQH9zSuuR1a5prNJoWv1e1OrovYLFYWnRuSkpKvW2JiYktOrchoaul7dXX6Ufo9fpjiuGvbkd6Wir4PYg+AUmq7bAQUQlOBCFIUmYv+N17kDEaBIG95Xup1FaiiYu+ldWr9Vi00ZMQ6/5NqNXqFrdXUyvm2uPwU7jPRZwlqZ6wgyCg1anQ6tUIKoHU1NR6A9Tx8fEtet24uLh629LS0lrkvjQajVHrOp2uxe+1bnttNluLzm2Lz4gD69ew4PmnEUMhYowG2ZltqT85pTat+YyQfD4knw/R58MUCFD+5lvR7VCpSTUYEPQGBIM+Ek1aF+UzIvo8b0Ck0i1PLFCrBBKtegTa4TOiBecmJibW25aSktKgMF+XtvqMAPn33JJzG/q76cqfEaIotmiS3LHSGgd4eXk5N910EwsXLox8Vs+ZM4e5c+fW+9tU6GQEvLIzG2g8XjG8vVrMFlQwdCac8ydI7NjJCqIniHtzMa51hQQKXfX2a9MtmMemYjotKZLs2FI8QQ87SndE3NdbS7biDrobPV6n0jEkcUjEfX1a0mlYdfW/VyW/n0BxST1XdbC49vNipAbKcLQKQUCTmIjo87U4chyVCn3PnhhamO7UGJVFbhbN2xYZs+s7JoUzLut9XNdU6Bi2/LCI/H2yYSM2tRvjr2o4nUyh6/BirdrZd03qg6aJdFIFhdoIUr07coXOSlVVFTExMdjt9nqDhK3l0R/fZcDCFM4yyjfXDc0KrP7TWO1x88qoV4gxxuEPiQT9AgaHFYsrFqs7llh3PPG+eGL8NoSw0K0TwKgCgyBgVAkYVGBUCRgFMITXtcfplAoJIRx6D1UGNw69myqDmyp9zXOH3o1T50VSNfwnrvMEsZV55Ue5t95z/TGK6QGdCnuCAUe8AXuCgao6D59RI2eytTPF7mL2V+xn1H6ROxeKWLwgCqCSapZOA8y7SMXGvifuS8OgNjTrkm7MSW3UGE+Yw06SJOwlHkqqxetsByVHHQRa8HcRm2IiKcsacV8nZlrQtfKmpbU4li0j/89/Rqxy1Ps9q2xW0p7+J9bJk1p8PUmS+OWzD1nzRU1Ma/dhI7jo9w9iMLfNpAuF9qPE4WPSv37C6QsiCLDw7rMYnFZ/cFLh1KUt+xQdgSRJLFmyhPfee4+vv/464n6r3a2Ni4tj1qxZ3HzzzezYsYMbbrihntPteHnnnXe46aabADh8+HCjceIffvhhJBJ8yZIljUbNvvHGG9x6660A/PLLL5xxxhlt2l7o+r97hZMATyXs+gZp6yd4DqupDNyGSM3folG9ktjBR1CPvAz6TAWNLF4WOAt4ecvLLDi4IKoO5ID4Adw36j7OTDuzzZtakuNg27Kj7N9QTCgYLarEdTPLseJjU9q9n3eysn/9ryx8/p+IIXni5IDxE7jgzvtRqY990meoqgrnipU4li7FtXIloruBQX+VCtOoUVinTsEyZQq6FkbuK8h4AyGmPreC3Ap5gvdrvxnF+UOUiZOnKp2lX7Fy5UpmzZpFfn4+kiRhtVr573//y1VXXdVhbTrZadPf/daP4atW1DfPGAOXvAJJ/Y7vdY8DSZLwZ1fhWleIe1sp1OknCHo1puFJmMd2Q5fe8jEUu8/O5uLNbCraxMbijewq29WkkcSqtTI8eTgjU0YyKmUUg+IHofH4a9zUhWGROvw8UCw7rENtMNlX0OvRpKSgTUlBk5KCJiUZbUpqeFuyvC0xEUGrjZRFbClpz/yTmIsvPua2uew+vnx2I1WlcvpLev84Ztx9GmqNIpp1NezFhbzzxzsJhlNgrnr0KTIHDe3gVikcDxuzy7ni1V8B6J5gYun9ExRB+xSnNX0K5c77FKVK2MpI8wUgNixmAxG39kizGpd4lErPYVSSQEzQilETR5zJTqKuikRLFYmBSpIC8ST5E4gPWdEe559WgBCVKhelmkoK9cUU68oo1VRQqq2MLO1qJ5LQgFgdBJygL5dIskNyZXhpl0i2Q1KlvLR465/aEvxqKImB4lghehkjUBwLDiMg+AE/UGf2YUX4cQLZ2FfFnLsFTt8jMXafhNkj4TIKrOsnsGaAQEDTeoHYorW0Soiuva5T65p/gROMJEk4yryyaJ0TFq9zHPhaEGdvSzRE6l0nd7eRlGVFbzzxH63WyZPpu2oVjh9+wLF4CSG7HXVMDNZpU7Ged16rnNlBv58fXnuBPT/X1NgbNvV8Jt90G+pGXCsKnYvnFu/F6ZP/fq8Zk6mI2QonDbt27eLdd9/lww8/JD8/H6gfgykIAn//+9+5//77I26cnTt31ndVnkBqR2F7vY13QGrvU8RmhZOKoB8OLIFtH8Pe7wkFDVQG7sAjjo8colK7iBvrwHjunWCMjWy3++y8ueNNPtj1AX6xJmo6zZzGXSPu4sJeFx53Ck9tQiGRQ5tL2L48l4KDdRyeAvQYmsiwyRlk9I/r0FIGXZ39635h4dx/IoYnGg08exLn3/F7VKrWi9mBwkIcy5bhXLIU17p10ECEuKDXYz7rLKxTpmCZNBFNA05XhZbx+spDETH7rD6JnDe4vhtcQeFEIUkSjz32GE8++SSiKEYixj/77DN691acmF2GPQtryqY1iwqsqR0mZodcAdybinCtLyRYXD+5UZdlxTwmFeNpSahakMpX6CqMuK83FW/iQOWBRo8VRIneYiLjNH0ZSjq9/THElYqEtpYQKPqZYNGXHCkqangyVytRx8TIgnRqWLBOrvU8LGKrYmJa3Beynn8+qn88KceTN3VfJgiorNZjKotYjd8bZNG8bRExOyHdwgW3DVXE7C6IJEn8+J+XImL2adOmK2L2ScALS2s+5+5U3NkKrURRJk5RuufFY5YM0Ey/QxAEzJKBVw79Ba2kISEYi4bji0n2SyE8koQvpMIjgleS5KUo4RElPBIEJABj+NGNoK4SyViAYCpEbSpAZ1Rh1PmIdfoiAnWyPVrAjjnG/ltQJQvWJTE1gnVxWLAuiQW7GaQuNngV0AisGiKwakjjx8Tp45jSfUqDQnSMLiayral60l0BSZJwVfopzq6iJMdB8RFZwPa6mo9RssTrI/Wuk7Nk8dpg0TZ73olCpdcTc/HFxzWL1W2v5Ot//Z2CfXvkDYLAhN/czKgLL1UGbbsIO/PtfLz+KABWvYY/nKvUFVLo2pSUlPDhhx/y3nvvsWXLlsj22gL14MGDmTVrFtOmTWPMmDGMGzcuKlpy1qxZEYd0R5CVlRV5XlJS0uhxtfdlKI5Bhc5IwAu7vpYHnt0VYIqDARfBoEtBWydOX5Igd4MsYu/4EjxyfUd3aDyVgTsQqZlsZRxgIvbKcagtNRMf/SE/H+35iNe3vU6Vv2aSqE1nY/aw2Vwz4Br06raLkHVX+dm1Oo8dK/Jw2aNrNOtNGgae2Y0hEzKISTI2cgWFlrJv7c8seuGZiJg96OxJnNcKMVuSJPwHD+JYshTH0qV4t29v8Dh1TAyWSZOwTp2C+cwzUdWJ/lZoPXmVHl75SR6EVKsEHp0xSLlHUOgwcnNzmTVrFqtXr470C2+77Tbmzp1brzSBQifHXdFCMRtABM+JdYpIooTvkB3X+kI8O0ohVGdCrVGDeUQy5rGpaFMbr/csSRKH7IdkAbt4E5uLNpPvkifpaoMS8Q4Y6IB4h/w83iGR6TWR5jEQUxVEW+6AUBFQJF8PaLx6diOo1WiSkmq5qlPQpoYF65RktKmpaJKTUTVRJulYUOn1pD39NLl33imnVjYkaoe/T9KefrrV5fKqCYVEfnh9ByU5cjS9JU7PjLtP6xDjicLxs33Zj+Ts2AqANTGJc2bd2LENUjhuNudUsHKfPO6RGW/kshHHVppG4dRF+TQ/RRlW3ocQIuoGKyvXJyPQwlnXRjUqmxaVTYtQvYzRorLpatYN8kCFzx3EXuihssCLVODBW+DBX+gh4Kg/o97ij8XijyXTHl0/xeAtw+wqwOzKDy8LMLsLUYuNi5MhQUWJ0UaRKY4icxxFplgKw0tnfBLqxAQSbSYSLDoSLXqSLDr6W/Xh53oSLHpijBpUqs594/7wqodZlbsKkeZvClSoGJUyikfPePQEtOzE4q7y10SGh5fuKn+z55lsOpJ7yOK1HB9uw2Q7uW+Ky3Jz+PLpx6kqkW+OtHoD0+95gD6jx3VwyxRaiiRJPLFgV+Te8O4pfUi0KPXiFLomn332Ge+99x4//vgjwbDbrraInZGRwbXXXsusWbMYNmwYQIfWyW6KgQMHotVqCQQCHDlypNHjqvd17969wRqmCgodyp5v5fqW3soaF5Wggt0L4LsH4bLXoP8FUH4Itn0K2z6Rn4cJSTYqA7fhEc+JbFOZNcRe0gfTsJpazKIk8u3hb3lp00uRQV6Qa0LOGjiL3w39HTH6tvv/KM6uYvvyXPZtKEIMRg+uxqeZGToxg/7jUtHqj29Sr4LMvjWrWfjCM0jhuriDzpnMebff26yYLYVCeLZuxbFkKc6lS/FnZzd4nDYtDeu0qVgmT8E0amSjNbEVjo0nv92NN1yL9PozutM3pel65woK7cU333zD7373OyoqKpSI8ZMBU1zLHdqCCownJmUj5PDj2ii7sUNl9VOWdD1tmMd2wzQkAUFb/3ssIAbYXbqLbYd+5cD+tRQe2YW+3Em8A9KdEkOrIN4pi9e2+mbvMK7wo3kEk6mWgzq5nqtak5KCJiEB4ThKexwP1smTyJj3Mvl/fkiup61SgShGliqrlbSnn25VubzaSJLET/P3kLNLlvn1Jg0z7h6OOVYZE+mKOMpKWTH/zcj6ubfehc6oTE7s6tSunX3nxD5oFXe2QitR7u5OUbqpk1ssZlejsmhR23SoY/Thhw61rdbzGH2L4nSqkVRBYiweupnKCOhzCWjzCKhycTjLqCwPUuUz4DJ1w2nuhsvcjaC2/ixHryEBryGBsoRa1mNJRO+vQBu0I+LGoQqSp4a9Kg35xjhKjTGITQ2YlMKhUg/QaG8SrVqQBW6rnmSrvEyy6EmyGeRlre2GBjq1J4LzepzHitwVzR8IiIhMzprczi1qfzxOf7jmtSPiwHZW+Jo9z2DR1jivw9Hhp1qH98i2zSx47in8HjnawBKfwKV/+ispPZWYtq7EDzsLWXtYvnnrkWDixjN7dnCLFBSOnauvvjpS/qSauLg4rrzySq677jrOOeecLuMK0+l0TJkyhe+//54NGzY0etz69esBuPDCC09U0xQUWsaeb+Hj62rWqwecq5deO3x0LST0gbL99U73MIGK0F2IYo272Tg4gdjL+kS5sn/N/5XnNz7P7vLdkW0CAjN6z+Cu4XfRzdKtTd5OKCRyaFMJ25bnUniofqx4z2GJDJuUQboSK96m7P11NYterBGzB0+Yyrm33d2omC36fLh+/RXn0qU4li1vtN6nfuBArFOmYJ06BX3//srvrJ349WAZi7YVABBv1vH7qR1Xu1bh1MXv9/OHP/yBV155BUCJGD9ZGHCRPEGuJUgiDJjRbk2RRAnf/gpc6wrx7C4HMXqym8qswTQqBfOYVDRxOoKlpXh37SBQWIS74CiFR3ZScfQggaJCtOUO4qokRgVh1HG2Sx0fL4vTyXVd1eHnKSmoLJZO/x0ol8tb2Sbl8uqybsFh9qwpBECtUTH99mHEpzXumFfovEiSxJI35kXGKAdPmEqP4cf7X6TQ0Ww9WsnyvbI7Oz3WyOUjlVQ6hdajCNqnKAnxyXgLylC1QNQWETEMjCf5htbVqJBCIYIlJQRycwnk5eHPzSWQlx9ZDxQWQjhmri628CNyLcCvs1/nQPAAAHkcSURBVOEyd8Nl6oY7sRcuawZOTTxB6kQ+Cyp8+gR8+gQA1EAW0F0Fllgj+gQ9xGjxmdQ49ALFUpASt58Sh49ih4/iKh+eQMPtqiYQkiiweymwN1+I22rQ1IjeVkOUAJ5sqxa/DcQatW3q+j63x7k8ve5pqvwO5J9gYwjYdFbO7XFum732icDnDsiR4WHxujjbgaOBGbN10Zs0sus6ImDbsMTpO32nvz3Zuvg7lr71amRwMblHby598P+wxid2cMsUWoM3EOIf39YIAA9PH4hOqRGl0MWRJAlBEEhISOCFF17gyiuvRKvtPKUeWsMtt9zC999/z9KlS7Hb7fUc2Hv27GH37t0IgsDNN9/cQa1UUGiAgFd2ZgON9ynD26PEbIFQ5rlU+m7Gk1MzmKgyaYi9pDfGYUmR/tfe8r08v/F5fs7/Oeqq49PGc9+o++gf3zblM5qNFR+fxtAJ6dgSlVjxtmbPLyv59qV/RfqbQyZN49zZdyOoovsqIbsd58qVshN71SqkhuqAqlSYRo/GOnUKlslT0GUoUYXtTTAk8viCnZH1P53Xnxhj1/w+Vui67N27l2uuuYZt27ZFJjzefvvtPP/880rEeBfH228GPu7HKrkIhrTszJ/IYf9Y/IIFneSkp24dg9N+QqMO4BDM6PtdRNsGYkPQ7sO9IezGrqxvjFAZXSBmEyraScXbhZQ8XUSwtFR2GNdCD6S25oW1WrTJyWEHdbIsWKemyg7rlBQ0KalokpNQnUR/421RLq8uO1bmseHbI/KKAFNvGkRa39g2u77CiWXP6p84tEme7G2OjWPi9bd0cIsU2oKXltXcK94xqbcyZqlwTCiC9imKeXAS/p0tqzmjQoV5WP3IcUmSCJWW1heq83Lx5+URyC+AQPN1iRtCHR+PNj0dbUY6uvR0tBkZ8np6Otq0tEgtF0mScFb4KC9wUZ7norzASXm+i/ICF0F/dKdSEsFR4sFREu28TlULDEgxEZ9mI36QmYQ0C4ZEPV69ilJXtdDtjQjeJeFHscNHmcvXYNmX2ji8QRzeIAdLmo4I0qhk13eyTV/P5V1XDG+J61uv1jOz+wO8se+vQKQUTfTPJNz2md0faNMahG2N3xuk9Gi1eC0L2Pbixh301WgNapKzaovXVmyJxlNavK6NKIZY+f5bbFz0TWRb79Gnc+Hdf0TbxvWSFNqft34+zNFy+f9ifJ8Epg1qYakIBYVOysKFC3n33XdZsGABpaWlzJkzh++//55Zs2YxdepUVKqudfNzxRVXMGHCBFasWMHjjz/Oc889F9knSRIPP/wwADfccAOjRimzzxU6Eds/k2PGW4otDcbOwWOYTsX35YjOmvsBw6AE4i7rg9oqD8oWOAt4ecvLLDi4AKmWWD4gfgD3jbqPM9PObJO3UJxdxbbluexvJFZ82KQM+o1VYsXbi90/r+C7l/6NJFWL2edy7uy7ImJ2oKAAx7JlOJcuxbVuPQTrl6ASDAbMZ43HOmUqlokT0MSdmLhZBZmP1uWwp1CuRzo0PYaZozM7uEUKpxpvv/0299xzD263G0mSsNls/Pe//2XmzJktvsb27dv56quv+Otf/9qOLVU4Fr7dXcEi/23cX7KG1eLtBHVm0IqRGPICYTTrCm7gLNUrPJd0BhfuruDykcfmvJUkiVBFBcGiIvz5hfgO2AnkaxB9NiB6rEj02glk/0wg+2ckd0mrX8ujF/DGW9CkJGNL70F8Zp9wjeoaV7U6Lq7e5C6F1nFoSwkrP9obWT/7qr70GZXcgS1SOB5clRUse+f1yPqUW+7AYLF0YIsU2oIdeXaW7C4GIC3GwJWjFHe2wrGhCNqnKIZ+NkJBDyq1oUlxT5IkxKCHQPYayjYWy0J1bl5YuM5D8jUf59wQqpgYtOlp6NLDQnVGhryekSEL1uaWdUwFQcAab8Aab6D74ISadosSjnIvZfkuyvOdsuCd76KiwE0oGC10iyFJFsHzowVntVZFXKqJ+G5mhqWZiU9LJL6bGVuCASHspA6GRMrdfoqrfJQ4a8TuGtG7Rgh3+5t2fQdFicIqL4VVLXN917i8DTVu72oh3KbHZtDw1o9GvJrfYkj7DNQeJElAEKTIEtGIN38mb2cbuW1MqMPi0WsT8IcoPeqUI8PD4nVFkbtpkzmg0ankWtdZNpLC4nVssinyu1KIxu/1sOjFZzm0cV1k2+gZl3P2dTc0W8NQofNRXOVl3rIDAKgE+L+LBikTNxS6PNOnT2f69OnY7XY++eQT3nvvPebPn8/7779PUlISV199Nddddx3jxo07oe0qLi6muFi+EcvLy4ts37dvH06nE4CePXtibqAv8/nnnzN58mSef/55PB4Pv/nNb/D7/cybN4+vvvqKyZMn8+qrr56YN6KgABD0gyMfqvLBngdV4Uft567WDOCqEFPOoDLvAtybiyJbBaOG2It7Yxouu7LtPjtvbn+TD3Z/gF+scUqnmdO4e+TdTO85HZVwfIO7NbHiRyk8VBW1TxCgx7BEhk3OJL1frPKd2Y7sXv0T3738XETMHjr5XKbecie+AwfkKPGly/Du2NHguerYWCyTJmGdOgXzmWeiMirO+Y6gwuXnXz/ui6w/dvEg1Mo9lsIJwul0Mnv2bD755JOIK3vEiBF8+umnrY4Y37ZtG48//rgiaHdCftxZhKEwhZ+09xMJkqzuB4SXQY2Rn/gDuoKD/OHTrTz93R7iTDrizNrwUke8DlICLhLclcS5KzE7KjBWlaMtL4XSYoJFxQSLikBrQ9t9PNqs8aiMCVFtkSSRUNFOAtmrCBZuB6n+WJ4IVFqg3AIVVoEyK5RbBTTJyaT0GEjPvqMZOmAiA5N7teNPTQGg8JCdxW/ujBh2RkzLYtgkZdJVV2bZ2//B65Qn0fU/42z6jjmjg1uk0BbUrp19+8Te6DXK2LPCsaEI2qcolT9+y9rinzij28xInGddqm8W1pYsZNBDS1E3Z0WuhcpsrnFVN+CyVlutbfZeGkJQCdgSjdgSjfQcVhObLIoSVSWesIvbGRa8XVQWuRFD0e8vFBApPeqk9KgzartGpyK+m5n4NDPx3SzEp5npnmZmcJqtycEwly9Yx+XtrXnu9EVE8TKnr26JnnpUu74PNeP6lhmEc//DaKw70Fh3IKg9SCEjQccQgo4hIGmxE+T9X7OZOToTi0FzwgYoQgGR0jwnJdlVFGU7KMmuorzAjdTMD0CtUZGYaYnUvU7qbiUu1dymke0nM46yUr565glKjhwCQFCpmPq7Oxg29fwObpnCsfLsD3txhSfNXDcuiwGptmbOUFDoOsTExDB79mxmz57N4cOHeffdd3n//fd56aWXePnll+nVqxezZs1i1qxZxMfHt3t7XnnlFR5//PF6288777zI8+XLlzNx4sR6xyQmJrJ+/Xrmzp3LRx99xPz581Gr1QwcOJBXXnmFOXPmdDnnuUInJhSQheqq/IaFanseuIpbdUlJ0uIWz8IbOp2QZEUtODCo12BSrUYQAnhCI6nYfSVisOa6hgHxxF3eB7VNjy/k4+M9H/P6ttep8teIzDadjdnDZnPNgGuOOzXIXeVn56o8dq5sOFZ80Pg0hiix4ieE3auW89285yNi9qDTRjGswsOhC6YTyMlp8BxterocJT5lCqaRIxE0ypBFR/PvxXuxe+SkhctHpDOqe/t/1yooVHPaaadx5MiRyLhVdcR4Vy1Bo9AwzkonZwnphKBGyK5L2K19miod6fA6Yv1VJHrsJHjtJHjsJHrtxPmc9U4Lhh8IajTdTsMw+grUyQMR6ryO6C4nkPMz3txfsRucFJuClAwUKbMKlFsFysOidbkVKs0gaLQMShjEyJSRjEweyYjkEcQaYtv2B6PQJJVFbhbN20YwIPcz+o5J4YzLWjfRRaFzsX/tL+xbsxoAg9XG5Jtv6+AWKbQFu/Kr+HGXPNk51WbgqjHKpBOFY0eQpFaolJ0Mn8/H3Llz+fjjjzlw4EBkQPCGG25g9uzZxzUgaLfbeeaZZ/jyyy/Jzs7GZDIxbNgwZs+ezTXXXNPs+fn5+fzzn/9k4cKF5OXlERMTw5gxY7j77rujBjxbQ1VVFTExMdjtdmy24xMrVt9yE2sdJaSZ+jAucTo6tRFRElEJqsjSH/KwtmQR+Z6DnJZdRHplTcdQMBrRpqehTU+v47JOR5eRjiompks5HUIhEXuRh/ICF2X5TirCseWVxZ5mxdVqdAZ1WOQ2E58mC93xaWZMNl2rfhYhUaLMFR1tXtf5LQvg3oiA1dZY9RpsRi1Wg4YYoxabUYvNoMVmDK8bqrfV2h9et+g1Db7fUEikPM8l17vOcVCS7aAsz1lvIkFdVGqBhHRLpN51Uncr8Wlm1GplwP9YKDp0gK+feQJnRTkAepOZGfc9RPdhwzu2YQrHzPZcOxfPW40kyekNKx6YRLz55KmvpdA+tGWfoqNYvXo17733Hp9//jmVlZUIgsCgQYPYtWsXP/74I1OmTIkcu2bNGl5//XXeeuutDmxx5+Bk+N0rIIvVjsKwMJ3bgGidD84imo24aQpBBdZuEHCDpwJPaCzlgfuQsAIhQB1ZCjjRqvbjF0fUnG5QEzujN6aRyUhILDq0iJc3v0y+Kz9yjE6lY9bAWfxu6O+I0cfUbUGrKM6uYtuyXPZvbCJWfFwqWp3iBjgR7Fq5jO9fmRsRs7s7fQw6mEtDd0X6QQOxTpmCdepU9P36dan7yJOdnfl2Zry0GlECk07N8j9OJMWmlCZSqKG9+xUqlSrymWCz2RgxYkQzZzROUVERe/bsIRRqn3GUU422/N2/8Pt30XhbLnAM2v0OqUXrW3SsYE5G2/0stFlnojJEt1OURA4EDrFas5a18WsojwniNNJgzT5B0mMTepOkHUh382D62AaRbLERZ9YRZ9KGlzpijFolxeIE4LL7+PLZjVSVyimX6f3jmHH3aaiVmrxdFo/TwTv3347bXgnA9HseYOD4CR3bKIU24fb3N/LdjkIAHpsxiBvH9+zgFil0NlrTp+iygnZpaSmTJ09m+/btzJ49m9/+9rf4/X5efvnlSGTjokWLMBxDHdgDBw4wefJk8vLyePDBB7n44ospLy/nmWeeYcWKFcyaNYv33nuvUcF8zZo1TJ8+Ha/Xy+OPP86ECRM4evQoTzzxBNu2beOhhx7iySefbHW72rKz+PG1l5EX8oMgoBLUZJr6k27uh15lwCd6yXPt46h7L6IUAklCAEwWK3qTCZ3Fit5qQ280oTUa0RtN6IxGdEZT+GGMWtber9Zqu9QARSggUlHklmtz57nCgreLqlJPi8cH9WZNROROiAjeZozW4xecql3f1XHnxVXeyPMfdhZFZtKfSFQCxBi0ZKg1pIlqkgICMR4JozuEIDZ9rqCC+LQa8Tq5u5WENAtqrdIhbQv2r/+Vb1/6F8FwqYCYlFQu+9OjJGQoM+O6KpIkcdV/fmX9kQoAHrlwILecrcSaKTTPySRq+nw+vvnmG959910WL15MMBjEarVy7bXXcssttzB69Gg++OADrr/+emUAk5Prd3/SEgqCs7DxCPCqfFnMPl6x2pIq17uOSQdb9SMNYjLk55YUUGtg68d4Pn+TssAj4ZMb6pdJ1K47qe8XR9wVfdHE6Pk1/1ee3/g8u8t317w8AjN6z+Cu4XfRzdLtmN9GKChycHMx25fnNhgr3vO0JIZNyiBNiRU/YYTsdja9/V9W/vpTZFtWqZ3BeaU1fyFqNabRo2URe8pktOnpHdFUhWaQJImr/7OGdUfkibAPnj+A2ycqzjeFaE6EoJ2YmNhgKZfW4nK5KCsrU/qDbURb/u4/uOVdKtXpjbuz66AK+YmpOoTJXYzRU4zJW4pRH0Bj0eCPicVtS0Jl7kWsOp14sX7t3QJNBd/HrmJJ7K+Ua+0NvoYYNBNy9yDk6UHI3QPRm4Y8ma9pBAFijFriTTpiTVrizTpiTbrwsnq7vF4thMcatWgU00aL8XuDfP3cZkpy5FjqhHQLl/1xJHqjkurSlflu3nPsWrkMgF6jxnLpA/+n9N9PAvYUVnH+3FUAJFv1rPzTpE5R8lShc9GaPkWX/aSfOXMm27dv595772Xu3LmR7ZMmTeKyyy7jm2++4fbbb+ftt99u1XV9Ph8XXnghR48e5fnnn+f3v/99ZN/UqVMZP348H3zwAX379uXRRx+td35JSQkzZsygoqKCr776iksvvRSAsWPHMnXqVIYOHcpTTz1F//79ueGGG47lrbcJfrUaRPlLQZRCZLt2ke3a1fDBgoAEuFxOXC4nlLQumrA2KrW6CeHbWLPNYERnqnOcwSgL6uFtak37R0yptSoSMywkZlhgTM32gD9EZaGbsnxnpP52eb4LR3n9+tc+V5CCA3YKDkR3ko1WbVRsebW722Bu+fsy6zWY9Rp6JNa/uavybOTHXYXNxpdXkxpjoH+KFbsnQJU3QJUnSJUngD/UjAotQbwokBpSkRJU0S0kkFyhQn4Xjd8oSkiUqiSK1CKFGpFCtUiJWkLweInJtmMr0mLdLru+bUZtLWe4BptBW8s5Hr1fp8zGrIckSWxc+BUrPnib6sJCaf0Hcckf/4LJdnxuKIWOZdH2goiY3SvRzPVn9OjYBikodAB6vZ6rrrqKq666iuLiYj744APmz5/P66+/zn//+1+GDh1Knz59OrqZCgoyoaDsnK7rpq7KreWsLgSpmf5XkwiyGB0TFqhtGdHPbWlgTQV1y/qcUt+LKQ9W9xca62dVDzZJxM7ojvnMLPZW7OX5xc/zS/4vUUeOTxvPfaPuo398/2N6d1ATK75jZR7uhmLFzwrHiicoseKtRfT5cHz/PY4lSwnZK1HHxGKdOgXr+eej0jccBx8oKMCxdBmOpUvYt28329ITIu627qV2BuWVojIYsJx9FpYpU7BMmIAmLu5Evi2FY2DhtoKImN0jwcTNZ/Xo2AYpnLLMnTuX66677riv8/7773foOJxC46jQtFjMBhDVOiriBlARNyBqu00j0MempQegESW52HWYAEF+tW7lu7jVbDXtQxKiB8titCkkawdipS/aQG98oUQqCVAh+akQ/biaGN+qjSRBpTtApbt1BhObQdOg+F3t/K7tAq+uG67toiK4NxDi2+0F/LiziEq3n1iTjnMHpzB9aLdmha5QSOSH13dExGxLvJ4Zd5+miNldnMObN0TEbL3JzNRb7lDE7JOEl5YdiDyfM6G3ImYrHDdd0qH9xRdfcOWVV2IwGCgoKCA2NjZq/+7duxk0aBCCILB+/XpGjRrV4mv/+9//5o9//CNpaWnk5OSgVkf/k3333XdMnz4do9HIgQMHSEtLi9p/99138/LLLzNu3DjWrFlT7/qvvvoqd9xxBykpKRw+fBijseWDLG05+/GLP97FkZzDDcbo1EOS0Gi16C1W/B4PAV990bYjUGu10cJ3WPDWGsKucVNYGK8jmmsj4nmNOK5St82Hqd8bpLwgLHAX1Ajdrkpfi69hjtGFBe5ooVtnaF3n7MtNudz/6VYAdKEgZzkO09N9GE3IS1Bt4LCpJ6utPfGr5es+f/VpXDYio951vIEQVWGRu9IdoKzIRflRJ858N/4SL1K5H6GZ2HCAcpUsWheqRQo1EsVqkUA79E0MWlWTgne1IN7QNqtB06VnxTpdHr74YhFHNq5F9LpQGcz0GDGGRFcee1YujRw3YPwEzrvtXjQ6JZa6q1H7xq/c5WdbXiXecL2ot24czeQBKR3cQoWuwqng0t25cyfvvPMOH330Efn5+QiCoDhyODV+9x2GGJLF6rpu6tqR4I5CkI7n71AAS3IdN3WavF793NqtxWJ1S3BtKqLi030tb+ElycwLvsvCQwuRarnIB8YP5L5R93FG2hnH3JaiI1VsW36UAxuL68WKJ6SbGTYpk75jU5RY8WPEsWwZ+X9+CLGqClQqEMXIUmWzkfb001gnT0KSJHz79uNcthTHkqV4d+4E4Gicle2ZSZF7zJ5VHsYNH4dt2lTMZ5yBqhX3vgodi9sfZMq/V1Bgl+/9lX6mQmOcCIf2+++/3yaCtpLY07a05e/+y9vfp0BMBUGFCkjTCnTTqtAJ4JegICCSH5BkfVqSEAQJKTzJTh0+vrteRUIDBgdnSOKIX+RIwEuxoRS7oQS7oQRDgkB6RjJDe/djdI8RpFpSm2yjLxii0h2gwu2n3OWn0h0IL/2UuwLy0u2nwh2gwuWnwu3H4Q0e18+lOax6DbHmuq7vhsXvapFcr+nYPtLiXUX84bMtVHmCqAQQJSJLm1HDczOHM3VQw983kiSx7N3d7FkjRxfrTRou/+Mo4tOOP8FBoePwud2888c7cJaVAnDunHsYOvncDm6VQluwv8jBuXNXIkmQaNGz6k+TMCr3aQoNcNI7tN944w0AJk+eXE/MBhg4cCADBw5k9+7dvPXWW60StKuvfemll9YTswHOPfdcrFYrDoeDDz74gAceeCCyz+/3M3/+fACuuOKKBq9/xRVXcMcdd1BUVMTChQuZOXNmi9vWlvSfPoMj/3mpZQcLAlN/dweDw18mohgi4PXic7vxe9z4PR556fXgr7XN53ET8HpqjvN68Ls9+L3hc9xuggF/My/eOKFAAE8ggMdR1fzBzaDR6cOid01Memvj1HVGI1qDgdSeMaT2jHa9+tyBiMhdFnF0O/E46s/YdNn9uOx+ju6uiNpuideTkGaJRJbHp5mJ62ZudMBu+tBuPLZgJ0OKDjKqfClIPmT3jIQuKDDYd5DBlXo2xE9hV0pvLhgSHfcoSRKOMi/F2Q5KcqrCSwc+d3SHvCFN2pZokOtdZ1mxpZvRJurxIEVc31XegOwE9wTDbvBAtDM8vP9YOv/egIg3INcePxYsek1EBLc14wqv2SavW3QaVB1UK+nzr35g36evoxd9mJD9UyJQ+t1uSmsdd+bMWZx+xTXKTMcuSEM3ftVoVAKhlsYxKCicIgwePJhnn32Wf/7zn/z973/n8ccf7+gmKXRlxBA4i+u4qWuL1nngKDhOsRowJzcSAR4Wra3dQNO2E9IkUUL0BBFdAUIOP6IrgOgMEHL6EZ0BPLvLW3wtEYk1yxazIGNBZFuaOY17Rt7DBT0vQNUK91U1oaDIwU3FbFueS9HhBmLFh4djxfsqseLHg2PZMnLvvKtmgyhGLUWHg9w778QyaRK+/fsJHD0adf7ReCvbM2rE7KEjxzH1/j+j0rZ/qpZC2/PqTwcjYvak/kmKmK3QYdxwww307t02Ufe9e/fm+uuvb5NrKbQtPYfGUbBNRapGYIRJjU4lIEkSgiAv03QahooSm9whioIwdpgbYUwynjWldCswoRejh7dDkkR+QCLbJ1IWMWDoSHCnkeAOG5Pyge2QDRQY9xGbfJSYZBOxKSZik43EppiISTZFnL96jZoUm5oUW8tLW/qDIpWe+uJ3hdsfFr3Dz2utt6Z0oMMXxOELcrTc0+JzzDp1tAs8IoLXiN91hfC2clQu3lXE7PkbIlVzxDpLhyfIrfM38PpvRzOtAVF77f8ORcRstUbF9NuHKWL2ScCqD9+OiNlZQ4czZNK0Dm6RQlvx0rID1UGhzDmnlyJmK7QJXU7Q9vv9LF0qOw3HjBnT6HFjxoxh9+7dLFq0iHnz5rXo2ocPH2bPnj1NXlutVjNixAhWrlzJokWLogTtn3/+Gbvd3uT5ycnJZGVlkZOTw6JFizpM0B5w1iSWv/06fp+3aZe2JKHTG+h/1sTIJpVKjd5kRm86/k5DKBjE7/UQCAvgfndY+K4llPsa2Bb9XBbNxdCxz3wM+n0E/T7c9srjfk9ag7FOTHqdGHWDkW49THQfZAJBi9+twuMUcNslHBUS9tIAfo8aiK437iz34Sz3kb2jrObFBLAlGiMid0JY6I5NMWHQqnkw2U3hrm9rtU6KXko+Rpd9y4VDfkfQGeRQdjklOQ6Kj8gCttfVfEfaEq+P1LtOzrKR1N3aqtj0pgiJEk5fsEHBu8oTfngbF8ld/tYPKjt9QZy+IPn21icRqASw1naB1xa8a7vCG3GJG7XqYxqI/fyrHzjy8UtUD2+r6ixB/o0nnX4uZ1x5bauvr9DxNHbjV01IlJg9f2OjN34KCqcyKpWK3r170wVDiRROFKIIruLGI8CrwmK1eJwuG3NS4xHgMdVidcORzq1FCoiEXAFEp5+QM1qgFl01z0Ph9RbXqGkGFQLmkOzCtelszB42m2sHXItO3XoR3mX3sXNVPjtX5uGuqhMrbtYw+Kw0Bp+jxIq3BaLPR/6fH5JXGvusDG93LltWb1fB4P5s19T8f4ycfgkTr79FmWDQRckpc/OflYcA0KoF/u+iQR3cIoVTmdaWEWyK008/ndNPP73NrqfQdvSZNZ4jO9Yw2myKbKv+DqleagUYZ1aT7fHjKLLT94tYINrFdUSfz3cxq9lqO0J/03D6CoPpFshA6zDjKPFhL/EgNpAw6PcEKc52UJztqLfPaNWGRW4TMWGhOzbZREySEU0z4oxOoyLZaiDZ2nIRPBgSsXuqhW5ZCI8Sv8Pu79pO8EpPoNGv77q4/CFcfg95lS0XwY1adR3Xd9gFXscNXlskrzu+5Q2E+MNnW0CCxpoqAYIEf/xsC2sfnholpO9YmcfG77LlFQGm3TyItL6xLX4PCp2Tozu3sXXxdwBo9QbOnX230n88SThQ7GTBtnwAEsw6Zp2e1cEtUjhZ6HKC9u7duwkEZJGtR48ejR5XvS87Oxu73U5MTPN1Yrdt21bv/MauvXLlyqjjW3t+Tk5OvfNPJBqdjum//xNfP/M3eXCioS+L8Pbpv/9Tu0UTqzUajBYrRov1uK8VDASaFL39Hje+OutRrvLwc5/HjSQee93CgNdDwOvBVdFyN0vDCKi1elRqPaBFDGmRJC0IOgRBD4IWBD3lR3WU5+oQ0IEgP1QqHeY4E+U581v0SkUr3+edrWYEoemPBFOMrka8DjuwTbb2i61WqwRiwqJv5jGcHwiJOJoQvBt3isvn+IKt+zsQJbB7qmfUtvzmoBqNSqglcmtqOcQbEsHl/VopxL5PX0dHw2752uStW4HTdSsWszLw25U43hs/BQUFuOyyyzh8+HBHN+PkJ+CFXV/DnoXgrgBTHAy4CAZdCtqWD+S1KaIIrpLGI8DteeDIP36x2pTYeAR4tbP6OH4GkiQheYI14rSrliBdS7SudllLvo6JUw0h4lJ7uGnITfxuyO+I0Td/D1aXosNVbPvpKAc2FNcbdE5ItzBscgZ9xyix4lIohOTzIfp8SH6//Ki97vMj+euvSz4fYvW6z4fk9+Hdu1eOGW8pgoBp3DisU6aQbVSz+bMPIrtGXXgpE377O2Uwsgvz90W78Ifvg24e35NeSZYObpGCgsLJzorCVQwNi76NfX9Uu7V7mPTg6x7Z7hV8rI3bQX5fJ2n9e/KblDt4Iq4falX9foIYEnGU+6gsdmMvdlNZ5KGy2E1lkRtHubfBG26PI4DHYafggL1Og8ASpyc24uquEbxtCQZUx1jOTqNWkWDRk2Bp+STHkChR5QlQ7m7EBe7y19rnj0Snt3Q+oycQwmMPtcr4odOowlHossDt8gWp8jTf35YAuyfIdzsKImURD20pYeVHeyPHnH1VX3qPTG5xWxQ6JwGvlx/+82Jk/ezrbiAmWTFonCzMW17jzr71nF6YdF1OhlTopHS5v6ScnJzI86SkpEaPq70vNze3RYJ2a69dUVGBy+XCbDYf0/lH68S0nWh6jxrHJQ/8H9/Pew6f21Vvv95s4YK77qf3qHEd0LrWo9Fq0WhjMNlaP3BWG0mSCAb8NW7xOoK3PxyjHvBWu8prxajXjlsPL1s8TbJ+S/j/9u47Pqoq/R/4597pkwqkCNJBSqguHVEwSLXRbbhgQxFRAVkX1xX0tyK6q6KCq6wFdfcrK9KkSBMEZUFABKlSDC2UJJRkkulzz++PKcmkTsgkM5n5vF+vYTJ3ztx5kntInrnPPee4HFa4HNe2ZrmtMjOxCxtsuZ+4C+UekixBrZWh1qig1shQaWVITgnZJ4DsE8DBa4oqfOgAJHtuZRFwfzBQhICiCLgEPPeiyD2gCOFr59umCL91I6vK5LllFtuuVWyIUyqeXl0CoFNseHjWR7jaoGPQ4qLql+e56KIipX3wIyI3o9GIJk2aVNyQrt2RNcDyiYD1KiDJgFDc94dXAt8+Dwz/AGg9JLjvqSiA+VKx0dRnC6cA946sdl37EjcAAGO9kqOpvVOCJ1wPxDW4pmK1cHpHURcbSV1gh2JylBhhHaxR1D4qCapYDeRYLeQYje9r970GKs/2n3dvQ6Ptxor3B0AFGYmdGmBMlxGVCsXlVHD85yzs/770acWbd05GhzCaVlw4nYWFYU8h2V1M9jwuo3As7HZ3G7/HtsI2jiKPvQVqe/HH7nuEag1YSUJs375o9ME/sW/DGmz66H3fU13uGI6+Yx8Oi2NE1+aHY9lYf+giACA5Toen0luGOCIiigbndh9DZ6nsWTi9iv59yY7PQ0F7GY17tsX9yf0D+tsjq2QkJBuQkGwA2tXze87pcCEv2+oucGeZkXvRjKtZ7oK3ObeUXFIUzqR49oj/koGyLCE+2YDEFIPfNOYJKUbEJuogBXmpOpUsuUdJxwQ+4ERRBExWp2fdb//id+E06P5F8qtmO5wB5qN2p4ILeVZcyLu2c5pvrP0NBzPzkGQDXJsu+i42aN33erTry/MdkWDbV18g96J7Cvnr26Sh88DbQxwRBcvv2flYsdd9BruOUYMHe/JcDAVPrStom0yF07/o9WWfOCr6XF6AV5tf6769Be3Kvr6iuGw2G2y2wkJVoN9HZbTs2gNPfPgFjv60Dcd3bocl3wRDbBxadu+FVj1uqraR2eFMkiRotDpotDrEoE6V9iWEgNNmcxe+Sx0xXnJbWSPLHdbKj/itXLD5ECK/8KEC2J1AFU8BRzQZ/tN6hzsFQL2co9ipah7qUKiayBKw7sBFFrSJqGYdWQMsuh82pwaHzg1Ahr077FIstCIfzbQ7kdZgC3Rf3gfc+39Am6GB7VMId7HabzR1ka+9o62rWqw21Ck2BXiRQrV3DWtNYDObCCEgrC73dN4FDrhMDihljKR25TsgrFUcFV4KSa/2FaTlWA2EUYbTIGDXu2DVOWDR2ZGvMcOkKUAeClDgKkC+PR9mpxkFjgL3zVaA/Px8mB2ebVcv40vH3yCpDZDKWQNbCAXCacF3qq0YiMAK2hVPK3492ve9HnF19Z73EBAOh7so7ChaSLZB2B2+QrJfobiiwrG3fYnCsf/jogXskBWTw4EQUMxm7F2/Bt99XFjM7nrnCNzywEMsZtdiDpeCl1ce8j3+8+A2iNNzDXQiqn5NzidDgQI5gDMsAgIZiedxy5/vCWoMao0KdT3L+BVntzqRm1U4mts9wtuCqxfNsJlL5nOKItztLpoBXPJ7Tq2R3UXuFAMSPCO7vWt262M1NfZ3VJYlJBg1SDBq0AyBLSkphIDJ5ixR/PaO+i4+Ctx7b3dVfhbM87lWLNlyEvfn62AU7p/JIY0Tf997HPKvx1EvVofkWB2S4tz3yXHuW1KsFslxOqTE6ZAUq0OCoeZ+phS4c0eP4Oc13wAA1BotBj7+DCS5Np1hpfLM33zCdy32ozc3R4yu1pUgKYyxN4Wx1157DS+//HK1v49aq0Xazbci7eZbq/29oo0kSdDo9dDo9UCdulXal1AU2K1W92hwc8mp023FRpLv37wFirPkyPtyonXHSWFEQHimmXYP9C98DHhO6jodkAMcCS4D0Cs2xET5FJ21jcXhCnhQniKAqxZehkJENchhBZZPxMHM3vhRmQinNgbQKL5R2uelrth5fhz6yO+j3fKJwLTf3OtEmy8XGU1dbApwX7G64hlIyqVPLDYFeJGR1d5itbb8kcfCpUDJs5VYh9qvQF1kJDVKWZexKoQMKAbAYRCw65yw6h0o0FqRr7EgT12Aq+o8XFblIUe6gmzpEvJcJuQ7PMVoZwEUk+Ke4qUKbj6iwPrzpzD0eBJCKKUWtYVwn6i0/vwp0gqykCevL72Q7Bm9nJOnxfHcZJy1JUMUO3kd78xB44J9qH/2IOR9Bbjwlg3nioyERhWWBqp11GrIWi0krRaSTgdJp4Os00LSFD6WdFpPG89jrQayTlfksdb9Gu82rdb9Gs9zklaH7HfegXnnzsBmlpJl/K4B9hQpZne7exRuvm8cTxjXcp9vP4XjWe4LnG9snIjhN14f4oiIKFrEO40BFbMBQIIETQ2fztbq1UhuHIfkxv7LJQohYC1w+IrbV4uM6s7NMsNpL5mzOB0KLmXm41JmfonndEY1EpI963SneqYwT3EXvbWG0J/ClyTJvRSeXoMm9SpuD7h/RgV2Fyb9Zw+2HssOeBLLGAUYVaD1FbNPqV341ugAJPd5j2yTDdkmG3C+/P1oVbKvyJ3kV/gu/NpbGI/RqpjL1ACnw4F1H7zjyzt7j3kAdRsw54gUpy4VYLlndHaiUYNxvZuGNiCKOKH/a1hJcXGFyYPVWva0JUWfi4+Pr5F9F3+9d+R2Wa+vKK4ZM2Zg6tSpvsd5eXlo1OhaVhKmSCDJMnRGI3RGIxBAbfz3vadgyj6Eslfd9ds74pLTMGHe61UNk2rYy89Mh/HC4YA++ikAEhMTcPCVwdUdFgXRE1/8jPWHLgRU1JYlINEQfTNrEEUym82GuXPnYtGiRTh+/DhUKhXatm2LcePGYcKECZBDfSX7oeU4dCIN38tTIctAQ42E+hoNtBJgFyqcdyg4Jwz4HtMgnXgTaXPbAzYT4Ly26Qd99AllTwHuK1aXzMWFEBA2l7sQfc4OJT+nsDhd4F+0VgocUEoZdVNVNrUDZq0NJo0Zuep85Mp5uIKruIrLuKRcQj5MKEAezDDBrligUgTUVkBdIKB2AWoF7nvPTeO5v94FNPFuV4RfG99NKb6t9H26t0nQuACdXcApfoXlp3/C8IfxgDbGV9j2FbgdFlj2fArXhV/R/QKQ+f0zJb5vRVIhK/kPONuwH/Lim/o9JwkXkrL3oWHmFiTmHocEwOW5hYxGU6yYrIXsKwi7H0taz7byHpdWSNbpPEXpIo89xWXZ8zpJq4WkrpmP64kjhsP8008BtT1ZNxaH8gtHm3UfNhp97v0jTwDXcjn5NszdcBSAe5r/WXe2gxzkKXGJiMqihxqKUCCXMxOMlyIU6MPkdLYkSTDEamGI1eK65v7LHwohUHDV7hvVnZvlKXZfNCMvxwKllIsgbWYnsk6ZkHWq5NWIhnitbyS3t8idkOqePl2tCd9BC5IkIVanxt2dG2DL0eyAXqMRwJOqBEBxX6wv19Ei+aa6GG11Ijvf5itm5+TbKpwC3e5ScC7XGtD63waNqsRI7+RYPZLitMVGgeugD+OfebjbsWQRLme6l2FNbX4Dutw+LLQBUVDN33wcLs//y0duaoZYjs6mIKt1Papx48a+r7Ozy/5DWPS5hg0Dm3q1svuuU6eOX9G6+OvLKmh7X19RcVqn00Gn05XbhqgsLf7QA3vXBbrStUCLLj2rNR6qHk279EDO6sMBtZUBNOvK41zbDGyXirUHLwTUVhHAoPap1RwREdWUnJwcpKenY//+/ZgwYQLee+892O12zJs3DxMnTsTixYuxevXqcpe6qW6Wvavwg/IkrtPJuNGohlaWIISAJLnvG2jV6GBQYY/ZiR8sT6Jl7kPQqh3l71SXUMYU4EXWsdbF+poLl4BidsBlck/1rZxxwJl3GUreOfc2b7G6wAnF4gp6lVQRLjhc+XA48uBwmuB0mOCy58Flz4OwmyCsJghbHmA1QbaaoHI4oHYBcS6gTlgPNvY/Qei6sA/5a6dD3aAL1A1uhKSJgXAUwHnuFzjP/QwopRf/bdp4ZDbog3MNboZd639Br8aRjwbntuH6cz9Abytcf1LSaAqLvDpdtYxSLnysLdJGV1hMVkXPicq4wYMhvzobislU7ijtk0kJOHR9ku9xj+FjcNM9D7KYHQH+vvY3mGzu/8NjujRCp0aJoQ2IKAopioJ//vOfmDFjBkwmEzIyMtC0adOg7PvcuXN4/fXXsWrVKmRmZiIhIQHdunXD5MmTMWjQoKC8R1WYnBeRLAU2q6EsyTh3YT/y/+8KtMYY6Iwx0BkMnq+N0BqM7m3GGGgNBsgh+nsuSRJi6+gQW0eHhq39lzNUXApMl624etFSpNhtxtWLFpiuWEsdl2LJs8OSZ8f547nF3giIq6NHYqpnve6UwtHd8fX0kFXhMY3z0A71MWvlQZgsznKH3agEMNKqA2zuYnZsXR1G/akrYhJLnh9XFIFciwPZ+TbkmGx+xW7/wrcdlwpsFY4OtzhcOH3ZjNOXzRV+P3F6tf9I7+L3nlvdGC00YXIMwsHFjBPYuWIxAEBWqTFo4jMh+z9KwXfmshlL97hHZ8fr1Rh3U9PQBkQRqdYVtNu2bQuNRgOHw4GTJ0+W2c77XJMmTZCQkFBmu6I6duxY4vXl7bto+9JeX1biWdbriYLppnuGYO/6/wAigOk6JR1uGsNRu7XRyJG3491vv4RWsaG8U4kCgF3WYcSIANcupbAR6Ac/CUC8QY0h7evXVGhEVM1Gjx6N/fv345lnnsHcuXN922+99VYMHz4cK1aswMSJE/Hpp5+GLMZffopHkiEW3WMKT0R4i1vee40E9IhRYydisfPIEFxn2AsrjLDCCBuMsElGOIUeDkkHF7SQFAlaAWglLbTQQCuZoJF/h1rOhEq1HypZD5XaAFlthEoTC1kT2Lp/lSEcVncx2pYHxea+d99MnluRr+0F8J55VKMWfsACAI3GXUQu5ea4eBFKfj4kAHYJOKiyIsuyFy6bApUiI0VlxQ0SoIX7p6Bt3hx1Ro7AJVssjl6Mw5ksHRThn6XUradCuz/EoUX7xtDEdIGse67IKGUt19CrYbJOhwZz5uDspElwyTIuJBhxIT4GDpUKGpcL1+UVwKpW4bcGhcXsniPuQe8xY1nMroWsDhfW7D+P9Qcv4qrZDkmSsP1396j7OJ0a0we3DnGERNHn4MGDeOyxx7B9+/ag73vHjh0YOnQorFYrXn75ZfTt2xdnzpzBK6+8gsGDB2PGjBmYPXt20N+3Mi44T6Khqyk0sr7cvytCCDgUK45e2AVlxY6A9q3R6d2FbmMMdAYjtEajp9ht9MyC6F8I1xqNnnae7UYj1BptUP/eySoZCclGJCQb0aS9/9zdTocLudkW5F70rNntG+FtgTmvlOXFBGC6bIXpshVnDl/xe0qWJcQnG0pdrzsmQQepBmfi0GtUeGt0Zzz2xW5IovS5JCUBDLRo0MjuzgN1RjXufKpzqcVswP391YnRok6MFq1S40pt4+V0KbhstvsK3EVHeRctgufk23DVXMHFtwBMVidMVid+z654qce6MVrPtOYlR3oX/bquURvRs6O4nE6s++AdCM/yQT2Gj0Fy46ahDYqC6v3vj/tmTXi4TzPE6zUhjogiUa0736LVatG/f3+sXbsWu3fvLrPdrl27AAC33357wPtu1qwZ2rRpgyNHjmD37t0YP358iTYulwu//PJLqfvu3bs3EhISkJubi927d6Nfv34lXp+VlYXTp09XOjaiytLHGNBr1BPYvvidCtv2GvUE9DGGGoiKgi02xoDWYyYgY9F7EECpRW3vB4XWYyYglse51gnog5/nnzdHd+bUV0QRYsmSJfj++++h1+sxa9Ysv+ckScJrr72GFStW4LPPPsNTTz2FLl26hCTOM6Y26Fbfv4BdnHe09o1GCf9LeQjnZAk6KNBLAnooMEqATga0suy5qaAKckFTCAXCnu8bLS1s3tHT7nvFVvi1sJkAVyknDCtJAeBSyXCpVHCpVFBUarhUaihqDYRKA0WtAVRaCLUaQq3x3cN7r3F/7b4vLDBDo4as0bhHKGs1kL1TY2s0UGndX8taredrDdQ6HVRaDVRaLdQ6902l1UKj9zzWaqHRqKCWpVKPYfbSZch54QUcvb4tjicBQD4ATxFflnAqUeBU4g24IQdoce4Yrg59Er9kpZSYLlOSJTTvnISOtzZC/ZYJLISGmbj0W3Fs/ARk7FoPp0p2j9SWJEAIXEyM9Wvbc+R96D36fh7DWmjDoYuYtngv8ixOyJ51SIsa0uE6JMVyljiimjRz5kzMmTMH3bt3x5///GfMmTMnaPvOzs7GnXfeiStXrmDZsmUYNmwYAKB79+647bbb0KFDB7z22mto3bo1xo0bF7T3rSx9XCx+OrUGfVJG+Gb6KU54htf+lL0aigh8uh2HzQqHzQpcuXzN8ckqta/47S2Ea/1GhrtHg3uL4yXaGY3Q6g0BXbCn1qhQr0Es6jWILfGc3eL0rM9t8RW6vdOY2y0lZ8pRFOFb2xv7L/k9p9a6i+qJqe51uhM8I7sTUw3Qx2iq5W/8bWmpWPBgV8xYtBsds46hmTkDapcVTpUeGcZmUBlbo73dXapQqWUMndgRdRsE58JVtUpGSpweKXEVz2xlc7pwKd/uX+z2Fr/zbX5F8XxbxcsTXS6w43KBHb9dLL+dSpZQL6ac9b6L3Mcb1GGdh+UXWLBkyWqc/PknKNYCyPoYpMTrYT75OwAgqXFT9Bg+OsRRUlUVvUjyYp4Ve89cBQDEalV46KZmoQ2OIlatK2gDwKOPPoq1a9fiu+++Q25ubokR2EeOHMHhw4chSRIefvjhSu/7ueeew/Lly/Huu++WWJdww4YNMJlM0Ov1uP/++/2e0+l0ePDBBzFv3jwsWbIEzz33XIn9L126FACQmpqKO+64o1KxEVVW71EDIITAjiUfekZqS4Cv7CkASYdeo55A71EDQhsoVcnI4YPwNYCjXy2ATrFBgXt6ce+9Xdah9ZgJGDk89FOJ0bXxfvB7bvFe5BY5Aem9jzeo8ebozrgtjdONE0WKjz76CACQnp6OxMTEEs+3bdsWbdu2xeHDh/HJJ5+ErKAdZ0iBVq74QhpJkqCVVOgXH7yLbpxCwKYANiFgE4Dd+3WRbTbF85wAAAMAA4SmLqBxQggnACcUuCCECwoUKHB5/hWeG+AE4JQkOCHDIWQ4JBlOSYZdAhySDLsswS5JsMsSbJIKNlmCTVbBLktwSu4Zzp2Sez/lTqcSCAHA7rmVK6BGJcgSoJZlqFUSVLLkLnI7NJjRuCNO1yk6AkUUu7fjWBJwquHjkA8YABQWs10aCdZGBjiaxeCXWDUO/H4R6lNZ0KhkaFQS1LL7XqOSoS51W8nHGpUMtSx59uHZJsvQqAvbhvNJvnD09bJ1OLlnI6CSPRfKeX5+xX6OCe2646YxD9R4fFR1Gw5dxIQvdvv+25a27Ojin89iQNp1GMCckqjGzJ07F2+//TYmTpyIzz77LKj7fuWVV5CTk4MePXr4itleCQkJmDFjBp588kk8//zzGDNmDAyG0FwA37JbT3y78y38mLUUPZKGQqsy+NbU9t47FCt+yl6Nc5YT6D36AVzfJg02cwFsZjPsFnOxr82wmwtgMxfAbrH4nnNYLdcUn+JywmLKg8WUd+3fpCRBqzeUKH6XNTK8+Chy98hyI1KaxCOlif8SLkIIWPMdvuK2u+jtnsI8N8sMp6PkGjdOu4JLmfm4lJlf4jmdUe0pcBt863V7pzHX6qtWSjAe3If7jn7id45S65TQznYCuPoDXMbBUOlaYMDDaWhwQ2KV3uta6dQqNEg0oEFixf8fzHYnckz2winOS5n+3FsYtznLX2vIpQhkmWzIMlU806ZWJfuv9e0pdCcVm/Y8KVaHmBpew/jrZet85yeNKDw/aS6ykt6gJ56BSs3Ru7VZeRdJOhSBXRmXeY6SqoUkREUrSISnfv36YcuWLZgyZQreeust33YhBEaOHIlly5Zh/PjxJaZgXLlyJR5++GGkpqZi1apVJaYFt9ls6NixI44ePYp33nkHTz/9tO85h8OBm266Cbt27cKsWbMwc+bMEnFlZ2cjLS0NOTk5WLFiBe666y7fc3l5eejYsSNOnTqFhQsXVvrqx7y8PN8I8Pj4+IpfQORhLbBg21drceLnHXBYC6DRx6BFl564acxgjsyOIPkFFixdugYZu3f4roBs1rUnRowYypHZEcLqcOHbA+ex7sBFXLXYkWjQYlD7VAxpX58js6lSmFOEN7vdjtjYWDgcDsycObPECG2vcePG4fPPP0eTJk3KXS6nqGAf+51PL8Z1hhTIUtVHVAshYFfssCpW2Fx2WBUbbIodVpfds90Om+KATXHAqjjgEp6L9CQZgAQJ7ntA9hThvI8L2wAypFLbeB8XbpNKbPO0LfY6qfh+/N6vyP4kCU4IOAG4JLi/llCk6C08xfPC54pvL/lYwOFXNC/7dddaTNe6nHj8zOcBL2OjS3gckqTGRZWCPVonjmhdcIagtuwtyGu9RXGVDI0sQaMuLIZ7i+MauVib4oVztXu72rNdq5J9hX9fAb5IG02xorvvfTxtCx+X3aYmi/L5BRa8++jYgJewefqjfzO3rGWsDhe6z94Y8BI2P71wG3NLCghzyqrLzMzE9ddfDwBYuHAhHnroIQCo8hradrsdKSkpyM3NxRtvvIHp06eXaJOVlYXUVHfB4auvvsLo0YGPmAzmsXfa7fjgiT/CVlAAWZLRyNga18e0gk7Ww6ZYkVlwFGfMv0ERCnQxMXjig8+h1mor/T6K4oLdYoHdbIbNUwS3mz33nkJ4WV/bPUVxm7nAN2VyKKg1Wl9xW2sovm64seSU6XojXC4N7BYJZpOEglzAdMmJ3Gwr8rItUEq7uqkcxnitr7hdtNCdkGyAuoK/G9sWr8eOr9+t8D2adxuP4c+NqlRc4U4IAZPN6S52l1n4tvsK4M5KHpfyGLWqwpHeZU55rkVSrK7Kf/u/XrYOJxe9B6Dsjx4CQNN7J2MUB93UWkUvkixvFskFD3blRZIUkMrkFLVyhDYAfP3110hPT8fbb78Ni8WCsWPHwm63Y/78+Vi2bBnS09Pxz3/+s8TrFixYgJycHOTk5GDp0qWYOnWq3/M6nQ6rV69Geno6pk6diqysLNxxxx24cuUK3njjDezatQsPPPAA/vrXv5YaV3JyMlauXImhQ4fivvvu861Pc/bsWbz88ss4deoUZsyYEdKpfCj66GMM6P/QcPR/aHioQ6FqFBtjwB8fHAk8ODLUoVA10WtUGH5jQwy/sWGoQyGianT48GE4HO6128o7kel97tSpU6XOWlQTVCpXpYrZFmc+MvL3w+Yyw+oq8Ny7v7YrFohySy21neS7qSBDJcnQFSt6Q/IW3Esrjvs/lsoo2BfdVrSNkGRAliEgQUjux+6bBEWSoUgyhAS4IEORJLgkCS7I0JvPB1bMBgBhQ671e+yLuQ6XJQE4gKYVL0MYEk7PzRrqQMqhkiWoZEAlyZBlQCW7C+AqWfKNpld5Hpe4SeVvU8sSZM/jSycOI16p+BhLAHSKDW//62vcmN6/+n8AFDQ7My4jr5TpaIsTAHItTnx74DzzTaIa4i1mB9u2bduQm5sLAOjWrVupbVJSUtC4cWOcPn0aq1evrlRBO5jUWi2GTJqC5X//GxSh4FTBIZwqOFSslQRIwJBJU66pmA0AsqyCPiYW+piS03kHSggBp91WxsjwsgrklhLtnLYAc6tinA47nLl2mHOvXvP3IEkytEYDtIYY6A0GyCodIGmhKBo4HRo4bDIcNjUALSRJC0g6SJIOkHTIv6JFwVUtMo/qIBX9DCABcXX17jW6U4yFa3anGhBXVw+71eaePTIAv+/+EtaC2yNqAI4kSYjXaxCv16B5cvn9T1EEci2OUkd5Z5uKTntuw6UCOyoaqmi2u3DqkhmnLpkrjDNery57yvMio7/rxWihVvl/BswvsODoVwugRcXX0R79agHyB97CCyRrIavDhWmL95ZZzAY8c8MK4LnFe3mRJAVdrS1oJyUlYdeuXZg7dy6+/PJLfPHFF1CpVGjbti3ef/99PP744yWmCweACRMmYPv27UhNTcWIESNK3XfLli2xf/9+vPHGG1iyZAnefPNNGI1GdOrUCV9++SXuvffecmPr2bMnDhw4gDlz5uCf//wnXnzxRcTHx6N79+54/fXXMWgQr0AiIiIiotKdPn3a93VycnKZ7Yo+d/bs2VIL2jabDbYiJ8zy8qowVWIprCqLbyrIiihCQY4tE/uvbA1qDLWHQOHHflfpZwDKOTFQ2t6qwls2B4BgnmLQW39FD+uvQdwjVRfFc6vMuDoFwLl9O/HxhbrVExSFnCwB6w5cZEGbqJb79dfCv8UVXSB5+vRpv/ah0KJLD9z93ItY+/7bsBXkQ5Ik33raQgjoYmIwZNIUtOjSI6RxSpIEjU4PjU4P1Ln2v4UupxN2i7nskeGeUeT2MqdVL4DdbIEQlR8tLoQCW0EBbAUFFTcul7pIsVsLe54Ol05pfY+9RXBZpYWEnEpdILntq7VROyhHliXUidGiTowWrVLjym3rdCm4bLYXW+vbXuoo8FxLxVeZ5lmdyLM6cSK7/L4hSUBdo/963+LYbjSqxAWSS5eucQ/KoVplzf7zvEiSQqrWFrQB92jq559/Hs8//3zAr7nzzjuRk5NTYbuEhAS8+uqrePXVV68ptgYNGuDdd9/Fu+9WPJUKEREREZGXyVS4/rBery+zXdHnyipUv/baa3j55ZeDF1wxV4yX0MTeMqC2siTjUp0rmPrON1AUBcJzUxQFiuIq8tgF4VI8bVzue5er2GuKPXa5fPsKrI0LiqvI/kvEUNje7zXF9lf8/YrGUPr7Fe7Hu73o+/m18f4MROE2olCTAegDOFlJtZcigKsWe6jDIKIqquwFkmfOnCl3f9V9kSQAtOzaA0988DmO/rQNx3duhyXfBENsHFp274VWPW665pHZ4UilVsMQFw9D3LVP1y6EgMNq8RS+/QvhpX5tNsNu8V9r3GYugMtxrdPpOAHhhBDu4mcw51nau/Zj7F37cRD3GF1iPLemIY6jLAqA7Zu+x0sHy/6sS7UfL5Kk6lCrC9pERERERFS2GTNm+C2xk5eXh0aNGgVt/436doB9rQUaWV/uer9CCDgUKxr36wRJlqEqZSYlqphfwbyMAnogRfuir1GcLjgdLjgdTjjtTjgdTrgc7m0uuxM/f7sCDvP5gGPUxaSi18g7q/GnQMUJIeAS7ikqXULApQjf14qA/2PF87wQcCnumROO/bgZMebsgJZZVwBojLF48fa21f1tURB9/fNZ/HbBFFCxQZaAREPkFI2IolVlL5CsqEBd3RdJeqm1WqTdfCvSbr612t+rtpMkCVqDew1tVGHiFKfDUWzKdDNsliJFcHOBX9G8eMHc7plWnShQvEAyOvAiSaoOLGgTEREREYWRuLjCqeWs1rJX+C36XHx86aM7dDoddDpd8IIrpt3Nt2LJVy+gd+JdvmkhixOehd125a3HyD6zqy2WaBCKiwGs+XbsXfdJwO3b3nwHutw+rPoCoqD7TGNEzuqFAbWVAbTvfRP+eHPzao2JgqtujBZTv9oXUFtFAIPap1ZzRES10+eff46HH374ml+/Zs0aDBw4MIgR1ZzqvkiSQket0UCtSYAxvuTyRYESigK71VKiKO4uiJvxw/99DZv5YsD7k9UGpDZtfM3xUM0QABQh4HApyD57FiqnNeALJF0aAzo3SqzeACnoMnIKApq+HuBFklQ9WNAmIiIiIgojjRsXnrzJzs4us13R5xo2DM00XmqtFl0njMaP875Ej6Sh0KoMvjW1vfcOxYqfclaj+1P3R9RUkdHipnuGYO/6/wS27qGkw01jBld/UBRUI0fejne//RJaxVbuSUgBwC7rMGLE0JoKjYJkaIf6mLXyIEwWZ7mjtCUA8QY1hrSvX1OhEdUqiqLA5br2JUAUpfLrHV+r4hdIxsTElNrOe4FkWRdHelX3RZJUu0myDJ0xBjpj6f0s54ylUhdIdrzt/qhdQ7u2+uzzryt1gWTXvrfg3QdvqtaYKPiW7jnLiyQppDjXHxERERFRGGnbti00Gg0A4OTJk2W28z7XpEkTJCRc+4iKqmrRpQe6TboPay8txI6slcg0H0OW5RQyzcewI2sl1l5aiO5P3Y8WXXqELEa6dvoYA3qNeiKgtr1GPQF9jKGaI6Jgi40xoPWYCQDKXv/Su731mAmI5TGudfQaFd4a3RmQUOZFC5LnnzdHd4Zeo6q54IhqkfHjx0MIcc23wYNr7qKvyl4gydHWVJ1uumcIIAV4QQQvkKyVRo68HTZZV+HyJgKAjRdI1lpDO9RHvEFd4Uh8CUACL5KkasCCNhERERFRGNFqtejfvz8AYPfu3WW227VrFwDg9ttvr5G4ytOyaw9M+GAh0h4aguymWThW9yCym2Yh7aEhmPDBQhaza7neowag56ini5yIlPzvJR16jX4GvUcNCEV4FAQjhw9C03snwy67j7F3DKH33i7r0OzeyRg5fFBI4qOquy0tFQse7Ip4g3uiPtnz39d7H29Q418PdsVtaRxJQxQJOnbs6Ps6kAski7YnCjZeIBn5eIFkdOBFkhRqnHKciIiIiCjMPProo1i7di2+++475ObmlhiBfeTIERw+fBiSJFVpLcdgUmu1SLv5VqTdfGuoQ6FqcNPogegy9GZs+2otTvy8Aw5rATT6GLTo0hM3jRnME48RYNTwQcgfeAuWLl2DjN07oFgLIOtj0KxrT4wYMZQnHiPAgLRU/PTCbfj2wHmsO3ARVy12JBq0GNQ+FUPa1+dJR6II0rt3byQkJCA3Nxe7d+9Gv379SrTJysrC6dOnAYTHBZIU2XqPGgAhBHYs+dCzlI0Ed4nTcy/p0GvUE7xAshYbOXwQvgZw9KsF0Ck2KHCPpvTe22UdWo+ZwAskaznvRZLPLd6LXIsTsuSeXtx7H29Q483RnXmRJFULSQhR0UwQFCby8vJ8yWhFa9sQERERlYU5Re3Qr18/bNmyBVOmTMFbb73l2y6EwMiRI7Fs2TKMHz8en376acD75LEnIiKiYGFeEVwLFy7EQw89BADIyMhA06ZNq7S/yZMnY968eejZsye2b99e4vkPPvgAEydORGpqKjIyMmAwBH7hEo89XStrgYUXSEa4/AILL5CMAlaHixdJUlBUJqdgQbsWYbJIREREwcCconbIyclBeno69u/fjyeeeAJjx46F3W7H/PnzsWTJEqSnp2P16tXQ6/UB75PHnoiIiIKFeUVwVbagvWDBAkyfPh3t27fH6tWrkZiY6Pd8dnY20tLSkJOTgxUrVuCuu+7yPZeXl4eOHTvi1KlTWLhwIcaNG1epWHnsiYiIKBgqk1NwDW0iIiIiojCUlJSEXbt2Yc6cOdi+fTsGDRqEYcOG4ezZs3j//fexYcOGShWziYiIiCi8ZGVl4cCBAzhw4AAyMzN9248ePerbXlBQUOpr33vvPeTl5eF///sfNm3aVOL55ORkrFy5EnXq1MF9992Hf/zjH9i1axeWLVuGW265BadOncKMGTMqXcwmIiIiCgWO0K5FePUjERERBQNziujFY09ERETBwryi6mbNmoWXX3653DabN28udQ3sDz/8EH/605/Qrl07rFmzpsQIba9z585hzpw5WL16NTIzMxEfH4/u3btj8uTJGDTo2tay5bEnIiKiYOCU4xGKySIREREFA3OK6MVjT0RERMHCvCJ68dgTERFRMHDKcSIiIiIiIiIiIiIiIiIiqvXUoQ6AAucdTJ+XlxfiSIiIiKg28+YSnKgn+jCfJCIiomBhThm9mFMSERFRMFQmn2RBuxYxmUwAgEaNGoU4EiIiIooEJpMJCQkJoQ6DahDzSSIiIgo25pTRhzklERERBVMg+STX0K5FFEXBuXPnEBcXB0mSgr7/vLw8NGrUCGfOnOH6NxGKxzg68DhHPh7jyFfdx1gIAZPJhAYNGkCWuQJNNKnufBLg76howGMc+XiMIx+PceSriWPMnDJ68RwlVRWPceTjMY4OPM6RL5zOUXKEdi0iyzIaNmxY7e8THx/PXz4Rjsc4OvA4Rz4e48hXnceYo2iiU03lkwB/R0UDHuPIx2Mc+XiMI191H2PmlNGJ5ygpWHiMIx+PcXTgcY584XCOkpdPEhERERERERERERERERFRWGJBm4iIiIiIiIiIiIiIiIiIwhIL2uSj0+kwc+ZM6HS6UIdC1YTHODrwOEc+HuPIx2NMtRn7b+TjMY58PMaRj8c48vEYU23G/hv5eIwjH49xdOBxjnzhdIwlIYQIdRBERERERERERERERERERETFcYQ2ERERERERERERERERERGFJRa0iYiIiIiIiIiIiIiIiIgoLLGgTUREREREREREREREREREYYkFbSIiIiIiIiIiIiIiIiIiCkssaBMURcH8+fMRHx8PSZJw8uTJUIdEQeJwOLBkyRL88Y9/RJs2bRATEwO9Xo/GjRtj5MiRWLlyZahDpCCw2WxYtWoVnn32WfTq1Qv16tWDWq1GXFwcOnbsiGeffRYnTpwIdZhUDUaNGgVJkvi7OwJ4j2N5t6eeeirUYRKVizllZGI+GR2YT0Yv5pORhTkl1XbMJyMXc8rIx3wyejGfjCzhnE+qQ/KuFDYOHjyIxx57DNu3bw91KBRkZ8+eRc+ePZGZmYnGjRtj+vTp6NixI3Q6HX788Ue89tprWLp0KYYNG4ZFixZBp9OFOmS6RhMnTsSnn36K+Ph4TJ48Ga+88goSExNx+vRpLFiwAO+88w4++OADLFq0CMOGDQt1uBQkixcvxpIlS0IdBgWRXq+HSqUq83n+nqZwxpwyMjGfjB7MJ6MT88nIxJySaivmk5GLOWV0YD4ZnZhPRqZwzSclIYQIyTtTyM2cORNz5sxB9+7d0adPH8yZMwcAkJGRgaZNm4Y2OKqyAwcOoEOHDmjYsCH27duHunXr+j3/66+/okuXLnA6nZg0aRLmzZsXokipqsaPH4/PPvsMW7ZswS233FLi+TvvvBOrVq1CYmIizp07B4PBEIIoKZhycnLQrl07mM1m5OfnA+Dv7tpOkiRs3rwZ/fr1C3UoRJXGnDJyMZ+MHswnow/zycjEnJJqK+aTkY05ZXRgPhl9mE9GpnDOJznleBSbO3cu3n77bWzduhWtW7cOdThUTaZMmVIiUQSAjh074r777gMAfPTRR74/OlT7NGzYEHfeeWepySIAjB07FgBw9epVHDhwoCZDo2oyefJk2Gw2zJgxI9ShEBExp4wCzCcjH/PJ6MN8kojCCfPJ6MCcMrIxn4w+zCeppnHK8Sh26NAhXH/99aEOg6pJUlISpk2bhrvvvrvMNp06dcIXX3wBm82G3377DV26dKnBCClY/va3v5X7fNEpQOLi4qo7HKpmy5cvx6JFi/DRRx+VO/ULEVFNYU4ZuZhPRg/mk9GF+SQRhRvmk5GNOWV0YD4ZXZhPUihwhHYUY6IY2a677jr84x//QIsWLcpsU/SPTWxsbE2ERSHw5ZdfAgBuuukmtGnTJsTRUFVcuXIFEydOxIABA/DII4+EOhwiIgDMKSMZ80nyYj4ZOZhPElE4Yj4Z2ZhTEsB8MpIwn6RQYUGbKIodO3YMgDuxbNmyZYijoWDKz8/Htm3bcM899+Crr77C8OHDsWzZslCHRVX0zDPPID8/H//6179CHQpVg+3bt+O+++5Dq1atEBsbi+TkZPTp0wdvvPEGcnNzQx0eEVGpmE9GLuaTkYn5ZORjTklEtRFzysjEfDIyMZ+MfOGaT7KgTRSlnE4nlixZAgCYNm0apwaJECdOnIBKpUJcXBz69OmDPXv24Ouvv8bSpUuRnJwc6vCoClavXo0vvvgCr732Gpo0aRLqcKgazJw5E/Xq1cP8+fOxdetWfPjhhzAajXj++efRvn17/PLLL6EOkYjID/PJyMR8MnIxn4wOzCmJqLZhThl5mE9GLuaT0SFc80kWtImi1Mcff4yLFy+ie/fueOaZZ0IdDgVJo0aNsG/fPuzcuRNffPEF6tevj1GjRmHAgAE4ffp0qMOja5Sbm4vHH38cN998MyZNmhTqcKga9OvXD99++y3mzZuHAQMG4A9/+ANGjBiBdevWYezYsTh79iyGDBmC7OzsUIdKROTDfDIyMZ+MTMwnowNzSiKqjZhTRh7mk5GJ+WR0COd8kgVtoih09OhRTJ8+HSkpKVi0aBE0Gk2oQ6Ig0Wq1aN++Pbp164axY8diy5YteOSRR7Bx40b06dOHJy5qqWnTpuHSpUv46KOPIElSqMOharB582b079+/xHZJkvD2229Dq9Xi4sWLePPNN0MQHRFRScwnIxfzycjEfDI6MKckotqGOWVkYj4ZmZhPRodwzidZ0CaKMhcvXsTtt98OtVqN9evXo1mzZqEOiaqRJEl46623EBMTgzNnzuBvf/tbqEOiSlq/fj0+/vhjvPLKK2jVqlWow6EQSEpKQteuXQEAq1atCnE0RETMJ6MN88naj/kkAcwpiSj8MKeMHswnaz/mkwSEPp9kQZsoily4cAHp6em4dOkS1q1bh06dOoU6JKoB8fHx6NmzJwDgm2++CXE0VBkmkwmPPfYYunXrhqlTp4Y6HAqhxo0bAwAyMjJCHAkRRTvmk9GJ+WTtxXySimJOSUThgjll9GE+WXsxn6SiQplPqmv8HYkoJM6ePYv+/fvjypUr2Lx5MxPFKJOamgoAyMzMDHEkVBk///wzTp8+jbNnz0Kn05V4Xgjh+7ply5a+r8eNG4ePP/64RmKkmlH0WBMRhQrzyejGfLJ2Yj5JRTGnJKJwwJwyejGfrJ2YT1JRocwnWdAmigInT55Eeno6rFYrvv/+e6SlpZV4PikpCbGxsSGKkK5VZmYm+vfvj48++gh9+vQps11ubi4AICEhoaZCoyDo1q0b9u/fX+bzK1aswIsvvggAWLNmDRo0aAAAqFOnTo3ER8ExYcIE9OrVCw899FCZbU6fPg0AaNq0aQ1FRUTkj/lk5GI+GdmYT0YP5pREVBswp4xMzCcjG/PJ6BHu+SQL2kQR7tixY+jfvz8AYOvWrX5XSXk1a9YMn376KcaPH1/D0VFVORwO/Pbbb9ixY0eZCaPFYsH27dsBAL169arJ8KiKYmJi0L59+zKf3717t+/rVq1a8cRULbV+/XqcO3euzGQxKyvLd6xvv/32mgyNiAgA88lIx3wysjGfjB7MKYko3DGnjFzMJyMb88noEe75JNfQJopghw4dQt++faHRaPDDDz+UmihSZHjnnXdw8eLFUp+bMWMGLl++DEmSMH369BqOjIgCsXbtWvzvf/8rsV0IgWeffRYOhwNJSUmYNm1aCKIjomjGfDJ6MJ8kqv2YUxJRuGJOGR2YTxLVfuGcT3KEdhTLyspCVlYWAP91K44ePYr8/HwA7qviYmJiQhIfVc2JEyfQr18/ZGdnQ6vVol27dqEOiaqBVquFTqfD2bNnkZaWhmeffRbdunVDamoqTp48iX/961/49ttvodPpMH/+fNx8882hDpmqqKCgABkZGQDK/t1d3lWTFH7i4+Phcrlw22234emnn0bfvn2RmpqKjIwMvP/++9i0aRMaNGiAZcuW+dabIgonzCkjF/PJ6MB8Mvown4xMzCmpNmM+GdmYU0Y+5pPRh/lkZAr3fFISoVzBm0Jq1qxZePnll8tts3nzZvTr169mAqKgWr58OYYPHx5we07nU3tdunQJX3/9NTZs2IBff/0VmZmZsNlsiIuLQ8uWLXHrrbfi8ccfR4sWLUIdKgXB999/j1tvvbXcNvzTXrvY7XasXr0aq1evxs6dO3Hy5ElYLBbEx8ejbdu2uPPOOzFhwgSuPURhizll5GI+GT2YT0YX5pORiTkl1WbMJyMbc8rowHwyujCfjEzhnk+yoE1ERERERERERERERERERGGJa2gTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSV1qAMgoujldDrhdDpDHQYRERERERERERFVM1mWodFoIElSqEMhIqJahgVtIqpxZrMZOTk5KCgoCHUoREREREREREREVEM0Gg3i4uKQlJQElUoV6nCIiKiWkIQQItRBEFH0sNvtyMjIgEajQd26daHT6XhVJhERERERERERUQQTQsDlciE/Px+5ubnQ6XRo1KgRi9pERBQQFrSJqEadPXsWVqsVzZo1Y8JKREREREREREQUZSwWC06fPo3ExESkpqaGOhwiIqoF5FAHQETRQwgBs9mMhIQEFrOJiIiIiIiIiIiikMFgQHx8PEwmEzjejoiIAsGCNhHVGIfDAZfLBYPBEOpQiIiIiIiIiIiIKETi4uLgcDjgcDhCHQoREdUCLGgTUY1RFAUAODqbiIiIiIiIiIgoinnPD3rPFxIREZWHBW0iqnGSJIU6BCIiIiIiIiIiIgoRnh8kIqLKYEGbiIiIiIiIiIiIiIiIiIjCEgvaREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhFRBFm4cCEkSfLdZs2aFeqQiKpNJPf3s2fPYsiQIZAkCQsXLgx1OBQGIrm/ExXH/k7RJhr6/DfffOP7/k6ePBnqcCiEoqG/E3mxvxMREQUPC9pERGFs9+7dePLJJ9GuXTskJiZCq9UiNTUVt9xyC6ZPn44NGzbA6XT62t9zzz04f/48pk2bFsKog++3337D2LFjUb9+fej1erRo0QLTp09Hbm5uqEOjIGJ/d/vkk0/Qvn17rF27NtShUDWK9v5uMpnw4YcfYujQobjuuuug0WiQmJiIXr164a233oLVag11iBRE0d7fCwoKsHz5cjzyyCNIS0uD0WiEVqtFw4YNMWLECGzcuDHUIVKQRXufLy43NxcTJ04MdRhUTaK9v588edKvYFnabe7cuaEOk4Ik2vu7lxAC//73vzFw4ECkpKRAp9OhYcOG6NevH2bOnAmTyRTqEImIKAKpQx0AEVF1sjpcWLP/PNYfvIirZjsSjVoMbJeKoR3qQ69RhTq8MlksFjzxxBP4/PPPMWzYMLz++uto06YNFEXBqVOnsGzZMsybNw//+Mc/kJycjO+++w4dOnSAwWCAwWBAbGxsqL+FoPn+++8xdOhQNG7cGAsXLkSrVq3w/fff4+mnn8bSpUvx448/on79+qEOMzw4rMCh5cCRVYD5CmCsA7S5A0gbBmj0oY6uTOzvbg6HA3fddRe2bt2K2bNnY+nSpdi6dWuowwpbNpcN60+ux6bTm3DVdhWJukSkN07HwKYDoVPpQh1emdjf3cW9Jk2a4MqVK7j33nvx1VdfoWHDhjh16hTmzJmDadOmYeHChdi4cSNSUlJCHW5YUGw2mNauhWnjd3DlXoUqIRFxt/VH3ODBkHXs7+Fu5syZePPNN9G7d2/8/e9/R9u2bWE2m7F582b89a9/xbJly/Dmm29i6tSpoQ41bDgdLpz4OQu/78uBtcABfYwGzTsloUWXFKiZw9c6zz33HNRqnn4qi9Nux9EdP+L4rh2w5OfBEBuPlt16olXPPlBrtaEOr0zs7/5at25d5nN169atwUjCm3AoMO/PhvXgJbjMTqiMaujb1YOxQzIkTfiOu2J/L2Q2mzFs2DAcOHAAL730Et59911otVr8/PPPmDZtGrZs2YIHH3wQcXFxoQ6ViIgiDD9REFHE2nDoIqYt3os8ixOyBCgCkCVg7cELmLXyIN4a3Rm3paWGOswSHA4HBg8ejK1bt2LevHmYNGmS3/OtWrXCgAEDMHHiRPTp0wfZ2dm4dOlSiKKtXlevXsXo0aMhhMCaNWvQvHlzAECzZs2g0+nwwAMP4I9//CM2bNgQ4kjDwJE1wPKJgPUqIMmAUNz3h1cC3z4PDP8AaD0k1FGWwP5eqKCgAFarFfv370fz5s2xbNmyUIcUtjaf3owXt72IPHseZMhQoECGjI2nN2LOzjl4tc+r6NeoX6jDLIH93c3hcODKlSsYMWIEvvzyS9/25s2bo2/fvujVqxd27tyJKVOm4D//+U8IIw0Ppk2bcO7PM6Dk5QGyDCgKIMswbdgA+dXZaDBnDuLSbw11mCWwv/tLSUnB+vXrERMT49vWvn17xMXF4aGHHsJLL72ESZMmQRfGFyjUlIx92fjus8OwmZ2ABEAAkIDff8nGD18dQ//xaWjWMSnUYZbAPl+6zZs34+OPP8aaNWswZEj45aKhdnz3T1j7/tuwFeRDkiQIISBJEo7t/B82LVyAIZOmoEWXHqEOswT295KOHDkS6hDCnuXQJVxefBTC4v/73XLwEq6u/B11R7eCIa1eqMMsgf3d37hx4/DTTz9h7969aNasmW978+bNkZycjHvvvZcXMRERUbUI30vfiIiqYMOhi5jwxW6YLO6pnhQBv3uTxYnHvtiNDYcuhijCsr3wwgvYunUr7rrrrhIflIrq0KFDxK+/9N577yEnJwd33323r5jtde+996JBgwbYuHEjtm3bFqIIw8SRNcCi+wGrZwp2ofjfW3OBL+9ztwsz7O+FEhISsGnTphJ9nfxtPr0Zz2x+Bia7exo7BYrfvcluwtObnsbm05tDFmNZ2N/9PfLIIyW2ybKMRx99FACwdOlSuFyumg4rrJg2bcLZSU9B8U7bqCh+94rJhLOTJsG0aVOIIiwb+3uhsWPHYvHixX7FbK8uXboAcF/UVFBQUNOhhZ2MfdlY88F+dzEbcBc7itzbzE6s+eevyNiXHZL4ysM+X5LFYsFjjz2GBx54AIMHDw51OGHn+O6fsOIff4PN839fCOF3bysowPK//w3Hd/8UshjLwv5OlWU5dAmXvjjkLmYDJX6/C4sTl744BMuh8CsEs78X2rhxI77++mtMmjTJr5jt1a9fP1y4cAFNmzat+eCIiCjisaBNRBHH6nBh2uK9gCj8jFSc8Pzz3OK9sDrC52T5hQsXMG/ePADAM888U2H7sWPHomnTptDrA59Oes+ePfjTn/6ELl26oF69etDr9WjVqhWmTp2KnJycUl9jNpvx5ptv4sYbb0RiYiIMBgM6dOiA5557Djt37izRfuPGjRgyZAgaNmzoWyNy9OjR+O9//wuz2RxwrIsXLwYA9O/fv8RzsiwjPT0dAPDf//434H1GHIfVPTIbQAU93t3OET7r0rK/+/OusUdls7lseHHbiwAAUUZ/925/cduLsLlsNRZbRdjfCyUkJODKlStlFjcaNmwIALBarZX6PxRpFJsN5/48w/1AlPH73bP93J9nQLGxv4djfweAzp0745Zbbin1uR07dgAA/vCHP0T9lLROhwvffXa47HTGSwDffXYYTubwYdvnvf76178iLy+P6weXwmm3Y+37bxd+MC2V+wPt2vffhtNur8Hoysf+TpUlHAouLz4a0O/3y4uPQjiUGokrEOzv/hYsWAAAnHGDiIhCggVtIoo4a/afR57FGchnJeRanPj2wPmaCCsgK1asgNVqhVarLfPEZ1HJycnIyMhAz549A36P+++/Hx9//DEmT56MHTt2YO/evfjLX/6CxYsXo2vXrsjKyvJrrygKBg0ahL/+9a+YOHEifvrpJ+zbtw/PPPMMFi5ciB49/KfAW7BgAQYMGICkpCQsX74cx44dw+eff47s7GzfWqmBKCgowMGDBwEAbdq0KbWNd/uuXbsC/v4jzqHl7mnGA+nx1qvAoRXVHlKg2N+pstafXI88e16ZxWwvAYE8ex7Wn1xfQ5FVjP29kCRJSExMhCyX/lHk/Hn33+UmTZpE9dp7prVr3dOMl1XM9hICSl4eTOvW1UxgAWB/L5+iKDh//jzmzZuHKVOmoFOnTli0aNE17y9SnPg5q3BkdgVsZidO7AmfUdrs8yXt3r0bc+fOxTvvvIN69cJvCuFQO7rjR9gK8hFIDm8ryMfRn8JnRir299J9+umn6Nu3Lxo1aoSUlBR069YNL730ErKzw+d3VaiY92cXjsyugLA4YT5QehE3FNjf/W3cuBGAexm4efPmoWfPnkhKSkLDhg1xxx13YM2a8JsVjoiIIgcXtCCisHLnez8i21S1EUZXzJW7ev3PS/bj9W9/q9J7JsfpsHJynyrtAygcpdOiRYtqW3Po+uuvx+zZszFixAjftjZt2qBly5bo06cPXnnlFd8VyACwdetW/Pjjj5g0aRImTJjg296qVSsYDAaMHTvWb/+zZ89GXFwcPvvsM1+xokmTJujevTsaN24ccJwZGRlQPFOqXnfddaW2qV+/PgDgxIkTAe83rHzYF8jPqrhdeSyXK9d+5dPAxllVe08AiE0BHt9SpV2wv0eXe1bdgxxL1U5O5dpyK9X+5e0vY+6euVV6TwBIMiThv3dUbSYI9vfAeU+ElTelY7jLGDkKzjJG1ATKdfVqpdqf/+tLyHrzrSq9JwCok5LQbMnXVdoH+3vZ3n//fTzzzDNwOp2Ij4/HSy+9hClTpkCj0VzzPkPtq9m7YM6r+uhRa4GjUu03//sIti+rWg5ojNdizAvdqrQPgH2+OIfDgUceeQSDBw/Gfffddy3fbtj694xnUXD1SpX3Y/EuJRGg9R++hx/+b2GV3jMmsQ7Gvja3SvsA2N/L8vrrr+Mvf/kLOnfuDLPZjGXLlmH27NlYsGABVq9e7Vtioja5+N4vUExV//3uMlfu9/uVJUeR921Gld5TjtMidfKNVdoHwP5e1JkzZ3Dlivv33wMPPICcnBy8+uqraNWqFY4ePYoXXngBt99+O2bMmIHZs2df08+CiIioPCxoE1FYyTbZcCGvZqdEtjmVGn/Psly86F7TOzExsdre47vvvit1u/cK4tWrV/t9WPJeUX769OkSrxk6dCjee+89v23Z2dlwOp3IysryK0THxsbiww8/RIcOHQKKMy8vz/e1wWAotY3RaAQA5OZWrsgVNvKzANO5mn1Pp7Xm37MM7O/RJceSgyxzFS/gqCSby1bj71kW9vfAHDx4EN988w1uvPFGPP3001XeX6g4c3Lg9BzzmiJsthp/z7Kwv5ftgQcewIABA5CdnY21a9di1qxZ+M9//oNFixahbdu217TPUDPn2VFwteanvHc5lJC8b2nY5/3NmTMHGRkZWLVqVcCvqS0Krl5B/uWaX+PX5bCH5H1Lw/7uLz4+Hn/605/wl7/8BfHx8b7tPXr0QEpKCqZNm4a7774bR48e9X1+rS0Ukx2uIFywVGlOEZr3LQX7u/9+vHbu3Inff//dN8ggLS0NPXv2RJs2bfDaa6+hX79+GDhwYED7JSIiChQL2kQUVpLjdFXexxWzHTZn4Gsu6dQy6hi1VXrPYMQNoEbWz7XZbJg/fz6WLl2K48ePo6CgAKLIdKaZmZl+7Xv16gWDwYCVK1diyJAhmDx5MgYMGACNRoM6dergqaee8mvfv39/rFy5Et27d8f06dNxzz33ICUlBQAwevToav/+apXYlKrvw3LZXaQOlFoPGIKwRmcQYmd/jy5JhqQq7yPXllupdbF1Kh0SdAlVft9gxM7+XjGLxYI//vGPSExMxFdffQWdLjh/W0NBnVT1PuO6ehWiEutiSzodVEE42RqM2Nnfy5aQkICEhATccMMN6N27N7p164a77roLvXr1wr59+9CkSZNr3neoGOOrlkd7WQsccFVi3VSVRoY+pmoj24MVO/t8ocOHD+PVV1/FW2+9hUaNGlXhOw5PMYl1grIfi8kElyPwgp1Ko4WhistwBCt29nd/devWxeuvv17qc08++SRee+01ZGZm4j//+Q8ee+yxSu071OS44PyOdJkdgLOi6fWLUEtQGav2+z1YsbO/Fyq61vbo0aN9xWyv6667Dvfccw8WLFiA9957jwVtIiIKOha0iSisBGPa7qV7zmLqV/sCbj9nZAcMv7Fhld83GFJTUwEAVys5zWigzGYz+vXrh127dmHo0KH4/PPP0aRJE6hUKgDADTfcAIfDfzqwhg0bYvny5Xj00Uexdu1arF27FgkJCRgyZAgeffRR9O/f36/9xx9/jIcffhirVq3C008/jWeffRY9evTA2LFj8eCDDwa8HmrRq9stFkuZ3w/gPjlcK1Vxym4AwL5FwLLHA29/57tAp3uq/r5BwP4eXao6ZTcArDyxEi/8+ELA7Wf2mok7W9xZ5fcNBvb38jmdTowZMwYZGRnYvHkzWrZsec37CgdVnbIbAHJXrMC55/8ccPv6/+8VJNx1V5XfNxjY3wN35513omfPntixYwfefvttzJ07Nyj7rUnBmLIbAH7bcR4bFx4OuP2tY9ugdY/Sl6Wpaezzboqi4JFHHkG3bt0wceLE4P0AwkgwpuwGgENbN+Hb+YEvEzHw8clIu/nWoLx3VbG/B06v16Ndu3bYsmULtm3bVusK2sGYshsACvZcxJWvjgbcvs7IVoi5MQgXfwcB+3uhojPnpaWlldrGO7X+zp07A/4ZEBERBUoOdQBERME2tEN9xBvUqOg6WglAgkGNIe3rV9Cy5vTq1QuAe01op9MZ9P2///772LVrF9q1a4dvvvkGAwcOROvWrdGyZctyiwcDBw5ERkYGVq5ciQceeACKomDRokW47bbbMHr0aLhcLl/b5ORkrFy5EocPH8Zf/vIXtGzZEtu3b8ekSZPQrl077N+/P6BYmzVr5rsa+sKFC6W2OX/+PAD3elZRK20YoE8EAunx+kQg7e5qDylQ7O9UWQObDkS8Nh5SBf1dgoR4bTwGNg2fUQHs72VzOBy4//77sXPnTmzevBmdOnW6pv1EmrjBgyHHxwMVjQySJMjx8YgbNKhmAgsA+3vldOzYEQCwffv2oO2zNmrRJQU6Y2DX3OuMarT4Q3I1RxQ49nm3M2fOYPv27di5cyfi4uIQGxvrd/Nq166db9sPP/xQtR9OLdWqZx/oYmIRSA6vi4lFqx431URYAWF/rxzvFM+XL18O2j5rG2OHZEiGwH6/SwY1jO2rPltMsLC/Fyo6Irtu3dJnffMWx71rbRMREQUTC9pEFHH0GhXeGt0ZkMo+PSB5/nlzdGfoNaqaC64Cd911FwwGA+x2e0And44dO4aFCxfixx9/DGj/W7a4RwSnp6f7rvgNlEqlwh133IF///vfyMrKwoIFCxAbG4uvv/4an3zySYn2bdq0wd/+9jf89ttv2L59O7p3744zZ87giSeeCOj9YmJi0K5dOwDAkSNHSm3j3d6tW3BGBtVKGj0w/APPg3J7vLudRl8TUQWE/Z0qS6fS4dU+rwJAmUVt7/ZX+7wKnSp8pqxmfy+d1WrFiBEjsG3bNmzZsoXF7CJknQ4N5sxxPyirqO3Z3mDOHMhhNEU7+7u/Dz74AGfOnCnz+ZiYGACA3R4e64WGilqjQv/xaQFdo9d/fBrUzOEDUpN9/vrrr8exY8dw8OBB7N27t8TNa82aNb5tXbt2rdT3EynUWi2GTJpS+MG0VO4PtEMmTYFaG5zpk4OB/d3fpk2bSl3L2Mt7cXZ1rsEc7iSNjLqjWwX0+73u6FaQNOFzupr9vVCDBg18U5V71xYvzru9Tp3gLHFARERUVPhkCEREQXRbWioWPNgV8Z6rgGXPByfvfbxBjX892BW3paWGKMLSpaamYsqUKQCAd955p8L2kydPxkMPPVTmh4niFKXsdQmLr8vk9eOPP2LWrFl+2/R6PR577DE8//zzAIBffvnF99z48eNx9uxZv/Y9e/bEkiVLSrStiHc9p++++67Ec4qiYNOmTX7tolbrIcC9/wfoPVOvS7L/vT4BuO9Ld7swwv5O16Jfo35459Z3EKd1X/0ve9JZ732cNg7vpr+Lfo36hSrEUrG/l2Q2m3HHHXdg//79+OGHH9CmTRu/5wcPHoxff/21UvuMNHHpt6Lh/HmQvVNByrLfvRwXh4bz5yMuPTymofVif/c3ceJEfPvtt2U+f/DgQQCo9VPtB0OzjkkY+kSHwpHa3uKH515nVGPoxI5o1jF8Ru8B7PNearXaN6qwtJtXkyZNfNuKTmEbbVp06YG7n3sROs9FLd7Zqbz3upgYDJv+Ilp06RGyGEvD/u7v4YcfLrV4CLjXRj506BCAwpG+0cqQVg/1HkwrHKld7Pe7ZFCj3oNpMKTVC0l8ZWF/9zds2DAAwL59pS/z581pevfuHfA+iYiIAsWCNhFFrAFpqfjphdvw9j2dMDDtOvRsXhcD067D2/d0wk8v3BZ2xWyvl19+GQMGDMCKFSswf/78MtvNnz8f69atw+DBgzFy5MiA9t29e3cAwIYNG0pMl7V48eJSX3P8+HG8+eabpU6R5l3LqXHjxr5tn332WaknbUtrW5HJkyejXr16WLFiBTIyMvyeW7RoEc6dO4f09HTcfPPNAe8zYrUZCkz7DRi+AGhzO9C0j/t++AL39jArZnuxv9O1uLXxrdg0ZhNm95mN9Mbp6JraFemN0zG7z2xsGrMp7IrZXuzvhfLy8jBo0CCcPn0aP/zwA5o3b16izbp166J6ek6vuPR03PDDVjR443XE9e8PY/fuiOvfHw3eeB03/LA17IrZXuzv/j766KNSpyr93//+hw0bNgAAxo0bV6l9RqpmnZIx/vWbcNtDaWjeORkNWiWieedk3PZQGsa/flPYFbO92OfpWrTs2gNPfPA5hjw1DS279ULDtA5o2a0Xhjw1DU988HnYFbO92N/9/fe//4XNZiux/YMPPkB2djaSkpLwwAMPVGqfkciQVg8NXuiBOve0hiGtHnTNE2BIq4c697RGgxd6hF0x24v9vdBzzz0HrVaLFStWlJiZIDs7G//3f/8HSZIwderUgPdJREQUMEFEVEMsFos4dOiQsFgsoQ4l7JnNZjF+/HgBQAwfPlysXLlSHD9+XPz2229i9erVYsSIEUKSJDF06FCRl5fn97rz58+LadOmCQBi2rRp4vz588JkMgkhhMjJyRGNGjUSAMRdd90ltm/fLo4cOSLeeustkZiYKAAIAOL8+fPi0qVLQgghPv30UwFA9OjRQ6xatUqcOHFCHDp0SLz33nvCaDSKFi1aiMuXL/tiACDi4+PFO++8I3799VeRkZEh1qxZI7p27SpUKpVYunRppX4W3333ndDr9aJ169Zi3bp14vfffxeffPKJiI2NFU2bNhWZmZlB+IlTKLG/F7p69ao4f/68OH/+vOjVq5cAIObOnevbZrPZgvATp1BifxciLy9PdOvWTQAQzZs3F126dCn1BkBs3rw5eD98qnHs724qlUoAEH369BHffPONOHr0qNizZ4/4+9//LmJjYwUAMXXq1CD91CmU2OdLKprbeOPcuXOnX6xUO7G/u7Vo0UIAEL169fL9DA4cOCBmzZolNBqNSExMFFu3bg3ST51Chf290Oeffy5kWRZt27YV3377rTh16pTYuHGj6Ny5s5AkSfzjH/8IeF88T0hERJXBgjYR1RgmqpW3c+dO8dhjj4kbbrhBGI1GodVqRePGjcWoUaPEypUrS7T3frApfps5c6avTWZmphg/frxITU0VarVapKSkiBEjRog9e/b4vaZv375CCPcHsMWLF4sxY8aIxo0bC61WKxITE0WnTp3E//t//09cuXLFL4bdu3eL6dOni06dOomYmBih0+lEixYtxP333y/27NlzTT+Hw4cPi/vuu0+kpqYKrVYrmjVrJqZOnVrival2Y38XYty4caV+T94bi3uRI5r7+y+//FJuP2efjzzR3N+FEOLMmTNizpw5Ij09XVx33XVCo9EInU4nmjZtKu69916xadOmyv5IKcxFe58vqrzcxhsr1W7R3t9zcnLEe++9J4YMGSIaNGggNBqNMBqNon379mLatGni7Nmzlf2RUhiL9v7utWvXLjFq1KgSMf/www+V2g/PExIRUWVIQggBIqIaYLVakZGRgWbNmkGv14c6HCIiIiIiIiIiIgoBnickIqLK4BraREREREREREREREREREQUlljQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFYYkGbiIiIiIiIiIiIiIiIiIjCEgvaRFTjhBChDoGIiIiIiIiIiIhChOcHiYioMljQJqIao1KpAAAOhyPEkRAREREREREREVGo2Gw2AIBarQ5xJEREVBuwoE1ENUaj0UCn0yE3N5dXYRIREREREREREUUhl8uFy5cvIyYmhgVtIiIKiCRYVSKiGpSXl4fMzEzExsYiISEBGo0GkiSFOiwiIiIiIiIiIiKqJkIIuFwuWCwW5ObmQlEUNGrUCAaDIdShERFRLcCCNhHVuLy8POTk5PimFiIiIiIiIiIiIqLIp1KpYDQakZKSAq1WG+pwiIiolmBBm4hCxuFwwOVyhToMIiIiIiIiIiIiqmayLHO2RiIiuiYsaBMRERERERERERERERERUViSQx0AERERERERERERERERERFRaVjQJiIiIiIiIiIiIiIiIiKisMSCNhERERERERERERERERERhSUWtImIiIiIiIiIiIiIiIiIKCyxoE1ERERERERERERERERERGGJBW0iIiIiIiIiIiIiIiIiIgpLLGgTEREREREREREREREREVFY+v9sf56YfHxuRAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique_labels = torch.unique(data.y).numpy()\n", + "figures = []\n", + "for key in data.group_combinatorial_homophily.keys():\n", + " max_k = int(key.strip('he_card='))\n", + " Dt, Bt, number_of_he = data.group_combinatorial_homophily[key]['Dt'], data.group_combinatorial_homophily[key]['Bt'], data.group_combinatorial_homophily[key]['num_hyperedges']\n", + "\n", + " settings = {\n", + " 'font.family': 'serif',\n", + " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", + " 'figure.figsize': (20, 4),\n", + " 'figure.constrained_layout.use': True,\n", + " 'figure.autolayout': False,\n", + " 'font.size': 16,\n", + " 'axes.labelsize': 18,\n", + " 'legend.fontsize': 24,\n", + " 'xtick.labelsize': 18,\n", + " 'ytick.labelsize': 18,\n", + " 'axes.titlesize': 18}\n", + " with plt.rc_context(settings):\n", + " f, (ax1, ax2, ax3) = plt.subplots(1, 3)\n", + " figures.append(make_plot(Dt, Bt, max_k, max_k, ax=ax1, plot_type='affinity'))\n", + " figures.append(make_plot(Dt, Bt, max_k, max_k, ax=ax2, plot_type='affinity/baseline', plot_tyitle=True))\n", + " figures.append(make_plot(Dt, Bt, max_k, max_k, ax=ax3, plot_type='normalised'))\n", + " f.tight_layout()\n", + "\n", + " if Dt.shape[0]>4 and Dt.shape[0]<= 20:\n", + " f.legend(['Class {}'.format(i) for i in range(len(unique_labels))], fontsize=16,\n", + " ncol=Dt.shape[0], \n", + " bbox_to_anchor=(0.8, .0))\n", + " \n", + " \n", + " elif len(unique_labels)> 20:\n", + " pass\n", + " else:\n", + " f.legend(['Class {}'.format(i) for i in range(len(unique_labels))], fontsize=16,\n", + " ncol=Dt.shape[0], \n", + " bbox_to_anchor=(0.65, .0))\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Message-Passing Homophily" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Download complete.\n", + "Transform parameters are the same, using existing data_dir: /home/lev/projects/TopoBenchmark/datasets/hypergraph/coauthorship/coauthorship_cora/mp_homophily/2005719047\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Extracting /home/lev/projects/TopoBenchmark/datasets/hypergraph/coauthorship/coauthorship_cora/raw/coauthorship_cora.zip\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torch_geometric/data/in_memory_dataset.py:300: UserWarning: It is not recommended to directly access the internal storage format `data` of an 'InMemoryDataset'. If you are absolutely certain what you are doing, access the internal storage via `InMemoryDataset._data` instead to suppress this warning. Alternatively, you can access stacked individual attributes of every graph via `dataset.{attr_name}`.\n", + " warnings.warn(msg)\n" + ] + } + ], + "source": [ + "cfg = hydra.compose(config_name=\"run.yaml\", overrides=[\"model=hypergraph/unignn2\",\"dataset=hypergraph/coauthorship_cora\"], return_hydra_config=True)\n", + "loader = hydra.utils.instantiate(cfg.dataset.loader)\n", + "dataset, dataset_dir = loader.load()\n", + "\n", + "data = dataset.data\n", + "\n", + "# Create transform config\n", + "transform_config = {\"mp_homophily\" :\n", + " {\n", + " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", + " 'transform_name': 'MessagePassingHomophily',\n", + " 'transform_type': 'data manipulation',\n", + " 'num_steps': 3,\n", + " 'incidence_field': \"incidence_hyperedges\",\n", + " }\n", + "}\n", + "\n", + "# Apply transform\n", + "processed_dataset = PreProcessor(dataset, dataset_dir, transform_config)\n", + "data = processed_dataset.data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_homophily_scatter(avr_class_type1, labels, non_isolated_nodes, type1, step, save_to=None):\n", + " \n", + "\n", + " colors = np.array([\n", + " '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',\n", + " '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf',\n", + " '#aec7e8', '#ffbb78', '#98df8a', '#ff9896', '#c5b0d5',\n", + " '#c49c94', '#f7b6d2', '#c7c7c7', '#dbdb8d', '#9edae5',\n", + " '#393b79', '#637939', '#8c6d31', '#843c39', '#7b4173',\n", + " '#d6616b', '#d1e5f0', '#e7ba52', '#d6616b', '#ad494a',\n", + " '#8c6d31', '#e7969c', '#7b4173', '#aec7e8', '#ff9896',\n", + " '#98df8a', '#d62728', '#ffbb78', '#1f77b4', '#ff7f0e',\n", + " '#2ca02c', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',\n", + " '#bcbd22', '#17becf', '#c5b0d5', '#c49c94', '#f7b6d2',\n", + " '#393b79', '#637939', '#8c6d31', '#843c39', '#7b4173',\n", + " '#d6616b', '#d1e5f0', '#e7ba52', '#d6616b', '#ad494a',\n", + " '#8c6d31', '#e7969c', '#7b4173', '#aec7e8', '#ff9896',\n", + " '#98df8a', '#d62728', '#ffbb78', '#1f77b4', '#ff7f0e',\n", + " '#2ca02c', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',\n", + " '#bcbd22', '#17becf', '#c5b0d5', '#c49c94', '#f7b6d2'\n", + "]) \n", + " right_shift_points = 0\n", + "\n", + " \n", + " shift = int(np.mean(np.unique(labels[non_isolated_nodes], return_counts=True)[1]) * 0.1) #+ int(np.std(np.unique(labels, return_counts=True)[1]) * 0.1)\n", + " \n", + " plt.figure(figsize=(10, 6))\n", + "\n", + " for i in range(len(avr_class_type1)):\n", + " x_left = np.where(labels[non_isolated_nodes] == i)[0][0] + right_shift_points\n", + " x_right = np.where(labels[non_isolated_nodes] == i)[0][-1] + right_shift_points\n", + " plt.plot([x_left, x_right],\n", + " [avr_class_type1[i], avr_class_type1[i]],\n", + " color=colors[i],\n", + " linewidth=2)\n", + "\n", + " plt.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False)\n", + "\n", + " plt.vlines(x=[x_left, x_right],\n", + " ymin=[avr_class_type1[i]-0.01, avr_class_type1[i]-0.01],\n", + " ymax=[avr_class_type1[i]+0.01, avr_class_type1[i]+0.01],\n", + " colors=colors[i], ls='-', lw=1)\n", + " \n", + " if len(np.unique(labels)) < 20:\n", + " text_fontsize = 20\n", + " else:\n", + " text_fontsize = 10\n", + " \n", + " plt.text(x_left + (x_right - x_left)/2,\n", + " avr_class_type1[i] + 0.03,\n", + " np.where(labels[non_isolated_nodes] == i)[0].shape[0],\n", + " horizontalalignment='center',\n", + " verticalalignment='center',\n", + " color='black', weight='bold',\n", + " fontsize=text_fontsize)\n", + " \n", + " right_shift_points += shift\n", + "\n", + " # if len(np.unique(labels))< 20:\n", + " # leg = [mlines.Line2D([], [], color=colors[i], label=f'Class {i}') for i in range(len(avr_class_type1))]\n", + "\n", + " # plt.legend(handles=leg, loc='upper center', bbox_to_anchor=(0.5, -0.0), ncol=len(avr_class_type1), fontsize=10)\n", + "\n", + " right_shift_points = 0\n", + "\n", + " \n", + " x = np.arange(len(type1))\n", + " for i in range(len(avr_class_type1)):\n", + " plt.scatter(x[np.where(labels[non_isolated_nodes] == i)[0]] + right_shift_points, type1[np.where(labels[non_isolated_nodes] == i)[0]],\n", + " c=colors[i], s=10, marker='+', alpha=.75, label=f'Class {i}')\n", + "\n", + " \n", + " \n", + " most_right_point = x[np.where(labels[non_isolated_nodes] == i)[0]][-1] + right_shift_points\n", + " plt.scatter([most_right_point] * shift + np.arange(shift), [1]*shift,\n", + " c=colors[i], s=10, marker='+', alpha=.0)\n", + " \n", + " \n", + " right_shift_points += shift\n", + "\n", + " \n", + " if step>0:\n", + " # get rid of y ticks\n", + " plt.yticks(np.arange(0, 1.05, 0.1), alpha=0.0)\n", + " plt.ylim(0, 1.05)\n", + "\n", + " else:\n", + " plt.ylabel('Homophily', fontsize=28)\n", + " plt.yticks(np.arange(0, 1.05, 0.1))\n", + " plt.ylim(0, 1.05)\n", + " plt.grid(axis='x', color='white', linestyle='-')\n", + "\n", + "\n", + " if save_to is not None:\n", + " plt.savefig(save_to, dpi=600)\n", + " fig = plt.gcf()\n", + " plt.close()\n", + "\n", + " return fig\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjfklEQVR4nOzdd1xTVxsH8F8S9hZFREQUqyiuOqtWbdW27l3FhfN1tWqttcPavtW3rVprHdXWPdEqat27VWtVrAP33oqggggJeyT3/SMlEhIgQOBm/L6fTz6ee3PHE0DIk3POcySCIAggIiIiIiIiIrMhFTsAIiIiIiIiIiocJvNEREREREREZobJPBEREREREZGZYTJPREREREREZGaYzBMRERERERGZGSbzRERERERERGaGyTwRERERERGRmbEROwAyLpVKhejoaLi6ukIikYgdDhERERERERWCIAhITExExYoVIZXm3f/OZN7CREdHw8/PT+wwiIiIiIiIqBgiIyNRqVKlPJ9nMm9hXF1dAai/8W5ubiJHQ0RERERERIWhUCjg5+enye3ywmTewmQPrXdzc2MyT0REREREZKYKmjbNAnhEREREREREZobJPBEREREREZGZYTJPREREREREZGaYzBMRERERERGZGSbzRERERERERGaGyTwRERERERGRmWEyT0RERERERGRmmMwTERERERERmRkm80RERERERERmhsk8ERERERERkZlhMk9ERERERERkZpjMExEREREREZkZJvNEREREREREZsZqk/nY2FgEBwdDIpFAIpHgr7/+KvF7ZmVlYePGjejcuTP8/f3h4OAAX19ftG3bFsuWLUNKSkqJx0BERERERETmzyqT+Y0bNyIoKAibN28utXs+ePAALVu2xIABA7Bv3z54enqie/fuqFy5Mo4ePYrRo0ejYcOGuHDhQqnFRERERERERObJRuwAStPTp08xZswY7Nq1CzY2pffSY2Ji0KZNGzx69AjOzs7YvHkzOnXqpHn+zJkz6Nq1K27duoV27drh1KlTCAwMLLX4iIiIiIiIyLxYTc/8mjVrEBQUhF27dqFhw4Y4e/Zsqd17wIABePToEQBg+fLlWok8ADRt2hTbtm2DRCJBfHw8evTogaysrFKLj4iIiIiIiMyL1STzEydORGpqKmbMmIHTp0/j9ddfL5X77t27F4cPHwYANGjQAP3799d73Jtvvolu3boBAG7evInly5eXSnxERERERERkfqwmmW/ZsiUuXryIKVOmlOoQ+zlz5mjaISEh+R47ePBgvecRERERERER5WQ1yfyePXtQs2bNUr1nTEwM/v77b812u3bt8j2+TZs2mvb9+/dx/vz5EouNiIiIiIiIzJfVJPNi+OOPP6BSqQAADg4OqF27dr7HlylTBtWqVdNsHzhwoETjIyIiIiIiIvPEZL4EXblyRdOuXLkyZDJZgedUrVpV7/lERERERERE2ZjMl6Dr169r2r6+vgadk/O4nOcTERERERERZbOqdeZLW2xsrKbt4eFh0Dk5j3vx4oWRI6Kiuv5Ujk4LTogdhiikEmDPhJYI8nEXOxTT8OwKsKSl2FEAFRsAITsAR48SubwiQ4GRB0fi+ktxP1R0snHCtu7b4Oti2AeiZD5Sb93Cw+49xA7DZEmdnREYcQ63GjWGKjlZ7HAK5LdhPVwaNRI7jAIp4lLx2/R/oMwQxA6l0CQSoO/UJihXyVXsUMxGzKMHCP1svNhhGJV3QHW8/9W3cHB2ETuUUqFKzcLzZZehfGrg70EJUH5CA9j5WMfXhz3zJSgxMVHTtre3N+gcBwcHvefnJT09HQqFQutBxtd14UmxQxCNSrDu169j2VtiR6AWfQEIG1Ril594dKLoiTwApGSloM/uPmKHQSXgYa/eYodARhQ5sOR+HxlT2HdnzTKRBwBBADbPOCd2GGZl/RcfiR2C0T2/fwe75nwvdhilJi70uuGJPAAIQMzCCyUXkIlhMl+CUlNTNW07OzuDzsl5XEpKSoHHz5w5E+7u7pqHn59f4QMlIiIiIiIis8JkvgQ5Ojpq2hkZGQadk/M4JyenAo+fMmUK5HK55hEZGVn4QKlAu8e/KXYIopFKrPv16xh1TOwI1Co2AILXl9jl57eZjyDPoBK7vqGcbJywpesWscMgI8uIigIMHLFG5sFvQ8n9PjKm4K+aQGYnETuMIpFIgL5fNhY7DLMyaNYCsUMwOu+A6ug2earYYZSasiFBkPk4G36CBCg/vkHJBWRiOGe+BLm6vprTlJ6ebtA5aWlpes/Pi729vcFD+Knognzc8XBWZ7HDIFNQoS4wTS52FCXOzc4NYV3DxA6DLNSDHj0hlcmAf//OBZ49I3JEpiswgsOqjcmtrCPG/NxG7DCoFKQlJ+GvNcvgF1QX3SZPtZo55pZG6mgDn48aih2GyWLPfAny8vLStBMSEgw6Ry5/lSSUK1fO2CEREREREVm8nPPKrWmOOVkXJvMlKCjo1RDVqKgog87JeVzO84mIiCxF1R3b9baJiIxFpVIi5uF9xDy8D5VKKXY4RCWCw+xLUN26dTXtx48fQ6lUQiaT5XvO/fv39Z5PRCYg/hGwtJW6Pfo4UMZf3HiIzJTM1RUOtWpp2kRERifk0SayIOyZL0HvvvsupFL1lzgtLQ3Xrl3L9/j4+Hjcu3dPs92hQ4cSjY+ICik7kc/dJqJCeTJuvN42EZGxSGUylK8SgPJVAtQ1OogsEJP5ElS+fHm0bt1as3348OF8jz969KimHRAQgIYNWeyByKQIApCRpH4I/JifqCgyoqKQEhGBlIgIqAwsDktEVFjtP5ioGWbf/oOJYodDVCKYzJewyZMna9qhoaH5Hrtu3TpN+5NPPimxmIioCOIfAemJgEqpHq5XLlDsiIjM0oPuPdQfhimVSLt6FZUWLRQ7JCKyQAd/na/pmT/463yxwyEqEUzmiyAhIQGdO3eGi4sLWrdune/a7p07d0bbtm0BABcuXMCmTZv0Hnfy5Ens2rULAFCzZk2MGjXK+IETUdEtbQVIpYBUBkgA2DqIHRGRWVKlpqoXzP532KvMzU3kiIiIiMwTk/kimDt3Lvbt24fk5GQcP34cU6dOzff43377Df7+6kJZ//nPf7Bv3z6t58+cOYNevXpBEAR4eHhgx44dsLFhbUIik2Pr/KodvF68OIjMmEPt2nrbRETG1G3yVL1tIktiNRnjzZs3MWvWrDyfnzVrFtasWaPZ7tGjB3r06GHQtSUSSb7Pe3t748iRI+jfvz/OnDmDzp07o0GDBqhevToiIyPxzz//QBAE1KhRAxs3bkRgIIfvmpLrT+XouvAkAGD3+DcR5OMuckQkitHH1b3zdi7qtqOH2BERmaXKK5Zrit5xiD0RlRQHZxf0/Wam2GEQlSirSeafPXuGtWvX5vn8wYMHtbarVKmSZzI/adIkRERE4K+//kKjRo3w3XffFXj/gIAAnDx5Eps3b0ZoaCiuXr2Ka9euoWzZsmjdujX69++PkJAQODk5Fep1UcnLTuSz2/dmdBIxGip18Y+AX1sAmUnqbTsXceMhMlMZUVG417UbkJICAHCoU0fkiIiIiMybRBBYktmSKBQKuLu7Qy6Xw43zEI2i2pfa0yKYzFuZWZWBNLn2Pgd34IvH4sRDZKZuNW4CVVKS1j6npk3hvy7vD9qJiIiskaE5ndX0zBMV1e7xb2oNsyciosJTpaaKHQIRWbC05CRs/fYrPH9wV2u/d0B1vP/Vt3Bw5sg6sjwsgEeUD3lqJv674yqc7WRoUNkDvh6cBmF1hu7V3s6eM09EhZK72J1DnTqcM09ERrNrzvc6iTwAPL9/B7vmfC9CREQljz3zRHmQp2bizVmHkZSuBADcfJqI0aHnsGlUc5Ejo1KTmgCs6aweVl++FiC1BYbuETsqIrOjVCggsbGB1NUV9jWqw2/xYi5JR0TF8uTmNYR987nYYRCJisk8UR5Gh57TJPIAkJSeJWI0JIqNwUDGv3N8n18HfOqLGw+RmXoybjwkNjZwqFULANeWJ6KiyWsofX68A6pzaTqyWEzmifIhlQCqf0tEyiTA0pDG4gZEpSvmhnpt+cxk9YNryxMREYkmr6H0uUmkUkzauKsUIiISF5N5ojz82Kc+Os47hqQMFVzsbbB/Yiu4O9qKHRaVJs8AIPqCul2xAdeWJyoEpUKBR8OGI/3atVc7pVJU2b5NvKCIyOJJpFIMmrVA7DCISgWTeSI95KmZ6DT/OFKzBLg62CCwgiv8yrD4ndWJuwdIZa/aVkSRocDEoxMBAPPbzIebHYdFk+GUCgXutmkLVXKy9hMqFR4PCkHg2TPiBEZEZq3b5Klaw+yzE/fy/lVFjoxIHEzmifQYuvoMEv+dI5+SrsTtZ4kiR0SlLjVBPbQeUA+1l0hEDae0ZSfy2e1V7VeJFwyZnSfjxusm8kRExeTg7IJBs+aLHQaRyeDSdER6XH4i17SVgoAa3lyb1OqEDQJ8Gqrbmclcjo6oEFTp6Xr3S5ycUHXH9lKOhoiIyDKxZ55ID0EQtLZXDm0qUiQkKlsHoHILdbuMv7ixlLL5beZrDbMnKoz0e/fUo1n+/V1a7fCfsPP1FTkqIiIiy8JkniiX60/lmgr2UglQr5IbC99Zo+D16t757LaVcbNz49B6KjKJRAKJy6sRTUzkiYiIjI/JPFEOkfEp6LTghGZbJQBrhzcTMSISjaMHMHSP2FEQmZ2MqCioVCogORlSZ2dU3bVT7JCINNJTMrF/yRUAQMcxdWHvxA/rich8cc48UQ6dF2jPi5ZJJeyVtzbxj4DvfYFp7urHDF/1PiIyyINu3YEcxe/YK0+mJDuRz90mIjJHTOaJcnG2fVW1fPf4N0WMhESxtBWQmfRqOyNJvY+IDJKzij0r2hMREZUcJvNEOWwa3QxpSnWP/L6PWiLIx13skKi05Sp+SESGUyoU2ss4OjuLFwyRHm2H1EJsZBJiI5PQdkgtscMhIioWJvNEOfxv93U0qVIGTaqUwf92Xxc7HBJDuUDtbTsXLktHZKAn48bDoW5dQCYDZDJU43x5MjFH1t6Al58LvPxccGTtDbHDISIqFhbAIyLKlpoAxN0GHNyB8rUAqS2L4BEZSKlQIO3aNfXQepkMDnXqcL48ERlNWnISts34Bs/u34GtgwMGz14Idy9vscMiEhV75olyWBrSWG+brETYIMArSN2OuWGVS9IRFdWTceOhSk1VbyiV6rXmiUxMxzF19bbJ9O2a8z2e3b8DAMhMS0PoZxNEjohIfOyZJ8rB3dEWm0Y1FzsMEpPMBqhQT9129BA1FCKzI5Goh9hDvdY8kSlRxKUi7LuzAIDgr5pwWTozkpachGf370JQqQAAEin7I4kA9swTaUTGp6DetIOoN+0gIuNTxA6HxJCzJ5698kSFUmnRQjjUrg0AkDo6ouqO7SJHRKQtO5HP3SbTt2vO98hMS9VsCyoVQmb/LGJERKaBPfNE/8q5xnznBcdxeVp7EaMhUaTJgWeXX7XZM09kMGViIjIePIDUyQlVd2znfHkyKekpmchMz4KgAiRSwNZOJnZIlIeYRw8Q+tn4fI+RSKWcL08E9syTFYiOjsbGjRvxySefoGPHjqhfvz78/Pzg7OwMOzs7lC1bFg0bNsSTXfOQeOcshHyWJhs6dCgkEonBjzp16hQ63uvXr8POzk7nWn/99VcxvgpkkJzryXNteaJCedCjp942kSnYv+QKZLbqt72CCihTwUnkiEiftOSkAhN5ABg0a0EpRENk+tgzTxZvwoQJ+P333wEANjY2aNeuHd58803ExMTg+PHjiImJwcuXLwEA8RcOwrFiDfy5b4do8X744YfIzMwU7f5ERESWSCqVws5RndDbsGfeJO2a832Bx9g7OaO8f9VSiIbI9LFnnqyGt7c3Ll26hAMHDuDXX3/F1q1bcffuXfTsqd2DlBp9G0P7dEdycnKpx/jbb7+xB15MOdeT59ryRAbLiIqCSqWCKjERUKk4X55MTscxdVG2oro3vmxFZ1ayN0Exjx4g8vqVfI+xdXDkXHmiHNgzT1Zj3rx5CAoK0trn6uqKFStWYN++fUhPT9fsv3PnDjZv3oxhw4aVWnyJiYmYPHkyAHXvgerfiq1UihzcX1Wyd3AXNxYiM/Kgew8gLU1dyV4i4Xx5Mjn2Trbo9SmXnDVl67/4SHuHRIJPNu0WJxgiM8GeebJ4VatWRYMGDdC5c2e9z3t6eqJqtdd09l+8eDHPawqCYNDj6tWrBsf5zTff4OnTp3jvvffg5+dn8HlkJPGPgB8DgMfhQFaaes15CyIIAlatWoWyZctq1WJ4++23Czx32rRphaoV4eLiYnBcV65cwddff40WLVqgUqVKcHBwgJubGwICAvDmm2/iww8/xMqVKxEVFVWMV08lKSMqCqqkJECpBATh1VrzRETFwOUtrVtWfBqefH0cT75QP6K+CUdWfJrYYZkcJvNk8X788UecP38ebm5ueR7z4LlcZ5+dnV1JhqXl6tWrWLhwIezs7LBw4cJSuy/lkLPgXfR58eIoAdevX8dbb72FESNGaOpDiE0ulyMkJAT169fHd999h3/++Qd+fn4YMmQI+vXrh3LlyiE8PBy//vor/vOf/2DLli1ih0x5eNCjp3p9eQBQqTTL0xERFUbOonYSqZRF7qzc8wXngRwlpIR0pXofaeEwe7J6z549Q3r8U5397733XqnF8OGHHyIrKwuff/45atSoUWr3pVxsnYHMf2slWMA686mpqfjuu+/w448/IjMzExUqVMCzZ8/EDgsxMTF49913cfmyehnAMmXKYOfOnWjVSnsFgZ07d6Jv377IyMgQI0wqBImzM4R/e+Qrr1gucjREZI7K+1fFJ2F7xA6DyKxYZc/8nj170KdPHwQEBMDR0REVKlRAixYtMG/evBLttbp48SImTpyIBg0aoFy5crC3t4evry9at25d4vcm/V68eIHgAYMAlVJr/+DBg/Huu+/meV5cXBy+//57NGvWDO7u7rCzs0P58uXRrFkzTJ48GTdu3DA4hvXr1+Pvv/9GpUqV8PXXXxf5tVAxjT6u7l20cwHGX7CINeb/+9//YsaMGShXrhw2btyImTNnih0SAGD48OGaRB4Afv31V51EHgC6d++OSZMmlWZoVARVd2yHRCKB1MkJ1Q4dhCyfUVBERESG8P6oIWD7altiL1PvIy1W1TP/4sULDBkyBPv27QMABAYGokuXLoiNjcWJEydw6tQp/PjjjwgNDUW7du2Mdt/ExESMHj0aGzduBAA4OzujZcuW8PT0xKNHj3Dy5EkcP34cP/zwA5YtW4Zu3boZ7d6k6/jx4wgLC8PVW3fx999/Q8h4Nb/TtlxllG/eE2vWzMv3GjVq1ICrqyvatWuHhg0bIjw8HJcuXUJsbCxOnz6Nn376CaNGjcK8efPg5JT3WrYKhQKffvopAOCnn36Cs7OzcV4kFU78I2BJS3WvfMWGFlP8ThAETJgwAd9++y3c3NywZs0ag89VZCgw8ehEAIC30hsA8ODBA1SpUqVYMe3cuRN79+7VbHt5eaFv3755Hv/ZZ5+hXbt2CAwMLNZ9ybiUCgUeDRuO9GvXNPuk/P1FJiw9JRP7l6grpXccUxf2TrYFnEGlKebRA00BvEGzFnDpOSuX9jABL/79/2pb0RleI+tB6mhVaavBrKZnPiUlBR06dMC+ffsgk8mwcuVK3Lx5E1u2bMFff/2FGzduoEaNGnj69Ck6deqE48eNsyxVYmIiWrVqpUnkhw0bhqdPn+LAgQP47bffcPLkSdy4cQP169fH8+fP0atXL+zatcso9yb9IiIi8Msvv+DYnwe1EnmZuzccAxojqH6jAouu/Oc//8Hdu3excuVK/Prrr7h48aJOr2f2BzP5DRH+73//i2fPnqFt27b5JjRUwpa2ejW8Pvq8xRS/+/bbb7FgwYJ860XkJTuRB4ADDw4YLabFixdrbbdq1QpSad5/isqUKYN33nmHRSFNzJNx47USeQBQJSer588TmaDsRD53m0xDzkr2OlXtyeq8yPF/NDM6GXGh10WMxrRZTTI/YcIEREREAFC/wR0+fLjW89WrV8f+/fvh4OCAjIwM9OrVCwkJCcW+75gxY3Dp0iUAQMeOHbFy5Uq4urpqHVOjRg0cOnQInp6eUCqVGDhwIJ4+1Z3DTcYxceJEZGVlofK4tfBsPw4yF08AgFL+HIoz23B4xlBMnDgRSqVS59wJEybg4MGD+OGHH2Bjo/0J4RdffIE333xTa9/hw4cxe/ZsvXFcvnwZixYtgo2NDYveUYlwdHQUOwQtL1++xB9//KG1r3r16iJFQ0RERGTerCKZv3LlClavXg0A8Pb2xieffKL3uICAAIwePRqAekh+ceeXXrp0SdMjDwDfffddnj2+5cuXx8cffwwASEpKwtSpU4t1b8qfTCbD/i+7w/X1DqgQ8hOkTh6a51QqFRYsWIAvv/xS57yGDRvmWxhv0CDdHt25c+fqfDAgCAI+/PBDKJVKTJgwAUFBQUV/MVR8o4+ri98B6mH2FlD8rrjmt5mvaXeo2gGAeoTTggUL8NZbb8HT0xO2trYoW7YsGjZsiA8//BBnzpzJ95oRERFQqVRa+zw8PPDnn38iODgYlStXhr29Pdzd3VG/fn18+umnXJLORFVatBD2uarWS52dUXXHdpEiIspfxzF19bbJNOSsXM8q9lQux/9R24rOKBvC98l5EqzA0KFDBQACAGHChAn5HhsREaE51tnZWUhJSSnyfb/88kvNtXx9fQs8/vr165rjHRwcBLlcXuh7yuVyAUCRzrUm16IThIApe4WAKXuFa9EJwoIFCzRf++yHnZ2d8OzZs0JdNzw8XOc6AIR//vlH67g1a9YIAAQfHx9BoVDoXMff31/nGkePHi3OSyYSVq9erfNz9dZbbxV43jfffCMAEDw9PYXy5csLgwcPFj788EOhRYsWOtfr0aOHEBsbq/c6c+bM0Tnex8dHACA0a9ZM+PDDD4U33nhD63knJyfh999/N/JXgoiIiMh0GZrTWXzPfGZmJnbu3KnZLqiwXYMGDeDh4QEASE5Oxv79+4t87/DwcE27Tp06BR4fGBgIBwcHAEBaWhrnzpegrgtParW7dOmic0xGRgaOHDlSqOuWLVtW7/4nT55o2nK5HJ999hkAYPbs2TrTLohMVefOnfHgwQOsXbsWixYtwsmTJ7F+/XqtOe87duxA27ZtER8fr3N+bGyszr6nT5+iT58+CA8Px6JFi3Dq1Cn06tVL83xKSgr69euHU6dOlcyLoiLJiIrCrSZNcatJU2Rw9AQREZEoLD6ZP3PmjNabykaNGuV7vEQi0TrmwIGiF356/vy5pu3p6Vng8VKpVOu4f/75p8j3Jv2uP5Wjyhd7oVQJmgcAVKpUSe/xjx8/LtT1BUEocP+uXbsQExMDAAgJCYFEItF5PHr0SOcabdq00Tw/dOjQQsVFVBz9+vXDrl27sGbNGp3VGQYOHIj+/ftr7bty5YpmlYac5HK53ut//PHHmilIEolEM+UoW2Zmps4+ElfOQncsekdERCQOi6/xf+XKq2qI2eu6F6Rq1VfLYeQ8v7DySuzyk7OoWnHuTWoxMTEYPnw4OnfujLFjx2r1yGer5eOSZ8V5Ozs7TfvQoUM4dOgQpkyZkmcPfFxcnN79OX/uatWqlWfdhmzLly+HQqHQ2te3b19NRe8mTZrkez6RMdWsWRM1a9bM8/lBgwZhw4YNWvtWr16NWbNmoVy5cpp9+opKSiQSNGyovW5s48aNIZFItH6Hnj59Grdu3eISdUREFiYtOQm75nwPAOg2eSocnF1EjojIfFh8Mn/9+qulDCpWrGjQOTkTr5znF5aXlxdu3rwJQF3F2RA5K+g/fPiwyPcmtZSUFOzduxdyuRwDhv5H0xOfk4u9bZ4fnORMYMLDw/HTTz+hT58+eSbz2SsX5OTm5obGjRtrths3bqy1rc/WrVt1kvmxY8fi7bffzvc8IjHUr19fZ59KpcLhw4cRHBys2adviTxPT0/Y29tr7XNwcICHh4fOUP0zZ84wmTcBSoUCdlWrIu3aNUgdHVF15w6xQyIiExQdHY1jx47h3LlzuH79OqKjo/Hy5Uu8fPkSmZmZcHV1hb+/PzygxBtBgXj9tQDsmvM9+n6jvwC1SqXC7t27sX37dly4cAGRkZFITEyEra0t3N3dERgYiJYtWyIkJMSgvxVnz57Fb7/9htOnT+Pu3btQKBRQqVRwdXVFQEAAGjdujODgYL73IpNm8cl8zjma2XPhC5LzOIVCgczMTNja2hb63o0aNdKsV3/16tUCj3/y5IlWApc7maOiO336NIJnhaGOb2VcjUrU7K9XyR1LQxpj/OgROudUrFgR77zzjs7+Q4cO4Y033tB7n/Xrdaugjxs3rkg/P1RKUhOA3/oBsdeB8rWA/mGAo4fYUZkVQ2pFAOoPOHPLPWw/m7Ozs04ynz09hUrP22+/jWPHjuV/UB7TlOLj4zV/T9PS0hAeHo5Tp07hypUrePDgAeLi4vDy5UsoFAo4OTmhfPnyCAoKQvv27TFw4ECD/2YD6lFRn376qWblmmyrV6/mtCSCIi4Vm749g6wMFcr7u6Lr+Pqwd+Lf5ZI2YcIE/P777wDUI0/btWuHN998EzExMTh+/DhiYmI0nV1HL1yGn6cHPunfW++17t+/j969e+PixYuafZUqVUKvXr3w8uVL7Nq1C8+ePcOxY8cwa9YsTJw4EbNnz9aq6ZItJSUFw4cPR1hYmGafs7MzevbsCTs7O+zZswfnzp3DuXPnsGTJErz33nvYuHGjQVNmiUqbxc+ZT0x8lbjl7v3JS3YROn3XKIxu3bpp2lFRUZp17vOye/dure2kpKQC75Geng6FQqH1IF2ZmZk4vfp/kKXJ0SzAE80CPPFwVmfs+KAFli2aj9DQUK3j7ezssHr1ar1J+OzZs3Ho0CGtfYIg4LvvvtMqeggAb7zxBpcZNHVhg9SJPADE3FBvU6EYUisCAF5//fUinwuol5Qk8/Tnn3+iXbt2+OqrrxAWFoaUlBS0bt0a3bt3R7169ZCYmIh79+5h9+7dGDduHKpUqYLffvvNoGuvWbMGgYGBOok8Ubaw784iK0O9LGbMo0TsX8JpjKXJ29sbly5dwoEDB/Drr79i69atuHv3Lnr21K63EfkyAd+HhiE5OVlrf2JiItq2bauVyHt5eeHChQtYsWIFtm3bhmXLlmmeUyqV+OmnnzBlyhS98QwaNEgrkQeAvXv3YuPGjVi7di1Onjyp9f7v0KFD6NKli87SqlQysuLTEDUtHFHTwpEVnyZ2OCbP4pP51NRUTTvn/Of85D4uJSWlSPdu06YNmjdvrtn++uuv83zjmpiYiFmzZuUbhz4zZ86Eu7u75pE9p5rUcn4imxB5B3un9sGJxV/A49JvGDZsGF577TVNZflsgYGBOHTokM568tmJRFJSEtq3b48WLVrgP//5D8aMGYPatWvj66+/1jp+wIABOHjwYJ49j7nNmDEDkydPxuTJk/VWAl+8eLHm+Xv37hl0TaLiOnfuHCZPnow7d+7keYwhtSIA9Ydbhv5+1bff0KlSZNp++uknXL58GatWrcLq1atx/vx5nQ9U5XI5Bg0ahIMHD+Z5nZs3b+Ltt9/GsGHDkJSUVKiefCIqPfPmzUNQkPY64a6urlixYgVscvWcxyqSsHnzZq19K1as0CkM/N5772nVZOnfv79OL/y8efN0prleuHAB27dv19rn6+uLt956S7Nds2ZNnemQp06dwt69e/N7mWQkzxec19sm/Sw+mXd0dNS08ypyllvu4wxNxvRZv369ZljO/v37MWLECJ2e/sePH6NTp054/Pix1ptVffNLc5syZQrkcrnmERkZWeRYLVHlypURHR2N3377DR9//DHebt0S9oon2LBuDdatW4fo6Gh4eXnhjTfewOjRo7F7925cvXpV65d6tq+++grnzp3DnDlz0K9fP6SmpmLHjh1YvXo17t69i3LlyuGNN97ApEmTcPHiRWzYsAHu7u4Gx7ps2TL89NNP+Omnn/SOsNi8ebPmeX6fjajDTCA9EUiTA54BQLDuVAlrdvXqVfz00084fz7vP6j6akVIJBK0adNGa5+Hhwd69OihtS8+Ph7p6ela+1JTU/V+oNW6detCRE5isrGx0fuB9HvvvYdJkyZpVi/INmjQIPTp00drnyAImDFjRp73aNWqFY4dO4b33nsPV65c0Vu7gQgAgr9qAhs79Vve8v6u6DimrsgRWYeqVauiQYMG6Ny5s97nPT09Ub1GdZ39OXvgAeDkSd3ixbk7rxwdHXWmcmVmZuosa2rItQD1+8fc/v77b519ZFxZ8WkQ0pTqR7pu0VzSZfFz5nOu4Z37DWNe0tK0h3QUZx3wgIAAhIeHo1evXrh+/TpWr16NLVu2oGXLlihTpgyioqIQHh4OQRDwySefoEqVKhg/fjwAw+b429vbGzx9wFr5+Pigf//+6NTjfYwOPYdyAJaGNIa7Y+Hmy2UvW1jQ8oZFxYKHIlnTGbD/9//4y/ucL5+HQ4cOaRWzy0lfrYj+/fujQoUKOvunTp2K7du3IzMzE4A6YTt//rzWKCZ9U5J69uyp93pUOv54rTp8ZTJAJoPU0RGB587qHHPr1i0EBQVBpVJh4MCBWh+Eu7u7o379+hg8eHCe92jWrBm2bNmitS/3m/qcypcvj19++QV9+/Yt/Asiq+JW1hGj5ut+SE8l68cffyzwGKVSd+h67g8C9U131TcNUt8HiLk7R4x5LTI+rZ54AbDxKnqHqrWw+J75nJ/S5awUn5+cayG7ubkVu3hZYGAgLl++jPXr16Nnz54oU6YM/vrrL+zevRsxMTEYPXo0Lly4gDlz5mhNC2DVZuMaHXpOb5uICrZ27Vq9SfvatWuxceNGrX3VqlXD3Llz9V6nXr16Om/w5s+fr5mCJAgC5s2bp/W8l5dXntejUqL6t4dEqYQqx9+pnGbOnAmVSgWpVIovvvhC67lWrVrh4sWLGDhwYJ630Dd6Lr/pZufOnWMib0UiIyMRFhaGjz76CC1btkTlypXh7OwMGxsbuLm5ISAgAN26dcPPP/+sVfxYn2nTpkEikRj8cHEpeKm0+/fvY8qUKWjRogXKly8POzs7lClTBrVq1cLIkSN1au0Q8OzZM73TBnNPc9T3flhfUq4v2X7ttddK7FpUQqSvHlJbi09Vi83ie+ZzztGJjo426JyoqCi95xeHTCbDwIED830jA2jHqK9YFBVdlkrA7WfqX9g1KhR9tAVZkPhHgEoFZCSqe+fH6A6/M2fx8fH4/vvvNdvXrl3TOebevXuYPHmyZrtJkyZaPfDZtSKUSiVCQkIwZ84c1K9fHy4uLjh79izOntXuoX333XexZs0aeHt75xnXRx99BBcXF0yaNAkKhQKbN29GZGQkGjVqhLNnz+L06dOaY2vVqoXNmzejSpUqhX79VHz+3t54zd4etjmGxTvUrq1z3OPHjzUF63r16qW1rKeh9A1/zf2mPqec0+jI8tWqVUtTGM3e3h7t2rVD1apV8eTJExw8eBAPHjzAgwcPsHv3bkydOhXTp0/HpEmTSjwuQRDw7bff4n//+x+USvWHXk5OTujXrx/s7Ozw+++/Y8WKFVixYgXatWuHjRs36l3Zw9q8ePECIYMGQZmrqNzgwYPx7rvvau0bM2YMli5dqvWBX+4lhSMjI7U64wD137MmTZpo7evcuTOqVaum9SHC7du3kZ6erjXSNff1XV1dMWgQC+SWNO+PGuLZ/AggUwW7Sq4oG2KcPMyiCRbuxIkTAgDN48mTJwWe065dO83xI0eOLIUoX+nSpYvm3gcPHiz0+XK5XAAgyOXyEoiu+J7LU4W5h24Jz+WppX7v3r+eEOp+c0Co+80BofevJ0r9/uZIzO9XqZjpp/2wMA8ePND6/WfIY8iQIYI8XS4MOzBMGHZgmCBPlwvXrl0TFi5cKISEhAiNGzcWypcvL9jb2ws2NjaCp6en0KBBA2Hs2LHC8ePHCxVfbGysMGvWLKFNmzZCxYoVBTs7O8HJyUmoUqWK0Lt3b2HDhg1CRkZGCX11yBA3GzcRrgfWfPUIqi1k6fn78uGHH2p+hs6fP1+oeyiVSmHhwoU6P4u+vr7Co0ePDL7OW2+9pXON1atXFyoWMl3Ozs4CACEgIEC4efOm1nO3b98W/Pz8dL7/X3zxhSAIgpCWnCFs/ylC2P5ThJCWnCF88803hfq96OzsnGdcX331lc7xf/31l+b5a9euCXZ2dprnatSoIbx8+bJkvkgm7u+//xY+/PBDoUuXLoKrq6vW18zHw034ddFCQaVS6T13+/btgru7u+Z4qVQqLFmyREhISBAePHig9f4ZgFC7dm3h4cOHeq918+ZNITAwUOv4kSNHCtHR0UJsbKzOz0eZMmWEQ4cOleSXhkiHoTmdRBDyKK9uITIzM+Ht7a0pprRz506tJeNyEwQBnp6emiH5v//+O3r16lUaoUKlUsHb2xsvXrxA+fLlERUVBRubwg2eUCgUcHd3h1wuN6iAXmm7GiVHl4UnsGd8S9TxNbw4nDH0W6ZdBGXTqOZ5HEnZxPx+lYpZuQrcfPFYnDhMzPCDw7W2V7VfJVIkJLZbTZpClWMIqtTVFYFnz2gdExMTgypVqiA1NRUdO3bEvn37CrxuWloapk6diujoaJw/fx63b9/WPOfh4YGBAwfiv//9L8qXL29wrG+//TaOHTumtY/rzFsOFxcXJCcn4/Dhw2jbtq3O8zt37tQpsCmRSBAREYFHR7Xf6l5U7ML06dMNvrezs7Pe5YJv3ryJOnXqaHrkAfWoygsXLmgd17lzZ63/F4MGDdJZwcEazJ8/Hx9//LHOfi8PdzQLCsTMZatQW8/In2wvXrzA4sWLMW/ePL1FUgGgQYMGGDduHAYNGpTvNJ2MjAxs3LgRM2bM0Pr9k5OPjw8+/PBDjB49WqtyPpWMjKdJiPn5AiAAtpVc4DWiLqSOFj+IPE+G5nQWPxHB1tYW3bt312wfPnw43+MvXLigSeSdnZ3RsWPHYt0/IyMDSUlJWr/o8/LPP//gxYsXAICQkJBCJ/KUv6UhjfW2yYqNPq6/TUQAgKo7tgPOzgAAqbOzejuXuXPnauq9fPnllwZdNy0tDXPnzsWmTZu03kjb29ujffv2aNu2LcqWLWuEV0CWxNfXV28iDwBdunTRKVgsCAI2bNiQ5/UePHgAQRAKfOhL5AFgzZo1Ou/vGjRooHNcw4YNtbbXr1+fZwJpySZOnIisrCw8efIEy5Yt0xQ1jU2QY3f4GdSrVw8TJ07U+5752bNn+PzzzzFz5kxNIl+rVi2MGDECvXv31iQ7Fy5cwC+//KJTTDOn9PR0zJ49G59//rnm++Dt7Y3+/ftjyJAh8Pf3BwA8ffoUS5cuxeLFi7VqWlHJiFmoTuQBIPNJEuJCr4sbkJmw+GQeAD7++GPN2pNhYWH5LlG3bt06TfuDDz4o9py8SZMmwdXVFYsWLSrw2OyiUOXKlTP4DREZRp6aqSl6V5RK9mShyvire+O/eKxuEwBgfpv5ettkXTKionC/ew8gLQ0O9evjtaNHYOfrq3VMQkICFi9eDEC9dGDLli0NuraHhwcEQYBcLseRI0c0c+PT09MRFhaG3r17o3Hjxnjw4IFRXxOZr/Xr12PTpk15Pi+TyVC9uu4yZ7du3dJais6Yy9KFh4fr7NO36oa+fatWWeeIJ5lMBl9fX4wcORJnzpzRGn2jUqmwYMECnffA9+7dQ6NGjbBq1SpNUt2zZ09cvnwZK1aswNatW3HmzBnNcsDnz5/HoEGD8J///Efn/unp6Xjvvffw9ddf4/nz5wDURVsvXbqE3377DWvWrMGVK1c0c+0jIyPx3//+Fy1bttSZk09kCqyi67devXoYNmwYVq5ciefPn2Pu3Lk6lXYBdSXSpUuXAlAn1FOmTNF7vczMTAwfPhw7duzAa6+9hrVr16JevXr5xrBhwwaMGzdOU0xK3/M7duwAoB6GlL02vaWZuOkiAGDIqjOwlZXeZ0kvk18tS9jkuz/g6czl/AyR+e+SMRM3XcSfn3BZH3MTmxKLLbe3oE+NPvByMrzgkpudm0kMrS9q/GQcD3r0hPDvG+e0q1fxZNx4+K9bq3XMokWLNFWfi/IhtJubG9q0aYO3334bgwYN0hTRA9TL0r3zzju4dOmSQdXEybLlHkKvj74OGJVKBXsnW/SY1FDPGcUTExOjs8/BwcGguE6cOGH0eMyNn58fpk6dio8++khr//z58zFp0iRNIdXhw4frFLGePHmy1gjWwMBAvP/++1i5cqVm38qVK9G2bVsMGDBAs2/GjBk668UPHz5cq2irq6srJkyYgJCQEM2+8+fP49NPP8WyZcuK8YopP+XHN9AaZs/id4aximQeAH7++WdcuHAB58+fx9dffw1vb28MGzZM8/ydO3fQpUsXpKWlwc7ODtu2bUOZMmX0Xis0NFSzRNPFixcxbtw4nV8MuZ09exYjR47E3LlztdaPT05Oxvz58zVzt3788ccCK96bs/gU9aiIuOS8R0eUhmeKNFHvb26yv28WJ/4RsLSVuj36uMX1zsemxmLxpcV42+9ts0yGzT1+sycIQPZwVz0fRKekpGDBggUAgEaNGqF9+/ZFvpVEIsH8+fPx+++/Iz391Yev9+/fx/Lly/XOsyXKLXuqYk516tTJ8/jsn+Ft27bhypUrSExMhJubG/z9/dG8eXMMGTIETZs2zfN8fdMhVSrdddOzsrJ09l28eDHP61qTLl266CTzGRkZOHLkCPr37487d+7ofY+tb269vu/10qVLtZL5nMl+Ya+1bt06LFiwgCtplBA7HxdUmtlK7DDMjtUk805OTjhw4ACGDBmC/fv3Y/jw4Zg9ezbq1q2L2NhYnDhxAllZWfDx8cG6devQqpXhP0ySHEv25Gf16tXYtm0bGjZsCG9vb8TExOD06dNITk6Gj48PFi5ciN69exf1JZqFMk52iEvOQFlnu1LtmY9LTkeWUj0Rx0YmQVn2zBskU6lCXHIGyjjlXUTGrC1tpd1mATwiDbuAAKRdvQqoVJA6OKDSooVazy9dulSTPBljapiXlxeaNm2K48e161ccOHCAyTwVSKFQ4O7du1r7JBJJvh0krVq1go2NDTp06IC6deviwoULCA8Px8uXL3HhwgX8+uuv6NGjB5YvX663AJqfn5/Okp/61ifXt455cnIyUlJS4OTkZOhLtEiVKlXSu//xY/Xf48uXL+s8J5FINEPqc8rZWZYt54cmcXFxWstP53eevn3p6em4efOm3roIRGKxmmQeUL9R2LdvH3bv3o01a9bg/Pnz2LVrF9zc3NC4cWO8//77GDZsWIFD3ENCQnDkyBHs2LED1atXx8KFC/M8dubMmejUqROOHj2K8PBw3Lt3DydOnICdnR0qVKiAtm3bolevXujdu7dO4RZLNL/f6+iy8ATWDm9aqtXR318SrrXG/NYxLUrt3uYsu5r9/H6vix2K8T27AqT9O//NzgWQ6p8CY20UGQqM+WMMrsddh6ONI7Z22wpfF9+CTySLknrrFtL+fRPtUKcOpE5OkOWoppuRkYGffvoJABAUFISePXsa5b763thnv6knys/mzZt1CqeNHz8eVXyrY9nEY8jKUKG8vyu6jq+veb5z585YsmSJVkK9YcMGDB48WNPDvmPHDty7dw/Hjh3TGbHZpk0bHDhwQGufvjoPedV+kMvlFpvMx8TEYPjw4ejcuTPGjh2r2f/k5jWEffO5Zjs9U3fUAgBNJXp9oxqyCxPm7kzTt0BXzjpZ+q6V13l5LfaVX90tKpqs+DQ8++ks8O+3p9yYunCo4iFqTObEqpL5bF27dkXXrl2LfL6tra1mmH1BXF1d0alTJ3Tq1KnI9yMjyPlL2bJXYyRDLXsLgASAAGQkAR/pfvpvjSYenYjrceoKsqlZqeizuw/C++sWeSLL9rBXb0AqBVQqpF29ihpnTms9v3btWk0P1xdffFHgCLUpU6bgzp072Lp1a77H6XujnN/yUkSAupf722+/1drXt29fzJ07F6smn0RWhjoxj3mUiP1LrqBfv35o1KgROnfurCmQnG3gwIHYv3+/VhX8K1eu4NNPP8WKFSu0jh0xYgS+++47rZ7348ePIz09Hfb26hGAgiDkuZJSXnWULEFKSgr27t0LuVyulcznTOQB4Klcd9QCANSsWRMANJXlc0tISND5cEXfcnU5z/fy8oKTkxNSUlIKPC+vpe8qV66sdz8V3fMF5zWJPAC8WHIFlWZxuL2hrDKZJ+tjI5MiqGLeazSSlcr5Js7C5ssDwBfH1YU+x/w5BrZSw1ZwiE+Lh1J41buVlJGEdlvalUh8BclUZQJQv45dPXaJEoNVk0g0c+Vz9sorlUrMnj0bAFC1alX079+/wEudOnUKx44dw71791CtWrU8j7ty5YrOvuw39UT6qFQqDB48WDOCQyKR4PPPP8f333+vk6hnq1mzZr4/V4MGDdJZ0m716tWYNWuW1nD7smXLYuXKlejXr5+mJz8uLg5jxozB7NmzYWtrixkzZuDmzZt676NvqLilOX36NK5evZpn7YJT9x7p7KtYsSLeeecdAEDTpk1RuXJlnRE6V65cQevWrbX2Xb16VedavXr10rSlUil69uyp8729cuWKzugifddq3rw5fHx89L4OIrFYxdJ0RFxjnnSMOqa/bUES0hMAqBP0mJQYgx7ZCXQ2AYLB5xr7EZ8Wr/U6qPT4rVurLn6nVKrbOWzevFkzN/mzzz7TWwQsL/qKT2U7cuSI3rW3hwwZYvD1ybpkZmZi4MCB2LZtGwD1EnC7d+/GzJkzNYl88FdNYGOnbpf3dzVoabr69evr7FOpVHp72Pv06YN9+/bhtdde0+xbs2YNypcvjzJlyuCXX37Bl19+qTPCxMXFRdN7b8kyMzMREhKCp0+fAgCCp/8AAFAJAo7evIeIR9pz2O3s7LB69WrY2qo/gJZKpVi8eLHOKIYff/xRayTPzZs38fvvv2sdU61aNZ3Vq2bNmgUvL+2CqqtWrdLEB6jrHuSeQuvo6JjvtFoqOu+PGmp1L5cz4vKR1oA981Sqyrva46N21VHetXT/gLk72mLTqOalek9LINb3q1RUqAv896XYUZQoD3sPxKfFo4xDGYN75gVB0CTPHvYeBhf4LAmZqkzEp8XDw95DtBisUeqtW4gcOAiAer583IKf4fJvQi8IAmbNmgUA8PHx0VoVxhA//vgjmjVrhm7dumntP3/+vNYyUNmGDBnCaWqkV2xsLHr37q0pmNivXz8sWrQIZcuW1TrOrawjRs0v3NKqua+R7cmTJ3r3t2/fHjdv3sTJkydx9uxZxMXFwdHRETVr1sS7774LNzc3zJgxQ+ucgpY0Nnc5R0VcvHgR1apVwzvt2iEr9ilS0jPwKCERDx8+1DonMDAQS5cuxVtvaX+/OnXqhF27dmHUqFGa6T179uxB/fr18eabb0Iul+PQoUNaxQffeecdhIaGws1Ne1RmpUqVcPLkSQwaNAhnzpwBADx69Aivv/463nnnHdja2uLo0aNaIwGqV6+OtWvXolGjRkb52pA2mzIOqPQdh9UXFZN5KlXl3Rzw8bs1xA6DDMTvl3mb1WoWgvcEY8k7SxBU1rD1WocfHK61LeZ689fjriN4TzBmtZolWgzW6GGvV6uqpF29CqccS3Pt2bNHU136k08+MbhnMfuNfVZWFrp3744mTZqgcePGkEqluHr1Kv7++2+tglOOjo74/PPP8fXXX+d5zUOHDuHQoUOa7Xv37ukcExYWpjVcduzYsfkO8yfzcOTIEYSEhCA6Oho+Pj5YsmSJzgdEALBixQq4uroiODi4UNfPq/hZXvsB9fz31q1b6wz9BoBnz57p7Gvc2LJHCVauXBnR0dH466+/cPbsWVy+fBlnTp6APDkF6ZmZsJFK4eXlhYCAALz++uvo0qULOnTokOdIn06dOuHOnTvYvn079u7di8uXL+PJkydYu3YtZDIZ3Nzc0Lx5czRt2hR9+vTBm2++mWds1atXxz///IPDhw9j27ZtiIiIwP3797F161YIggAXFxfUq1cPDRo0QLdu3dC1a1fNSAEiU8Nkniza9adydFpwQrNdr5I7Qke8AXdH/lImIspNqVC8Wlv+XzmXpJs5cyYAwNPTE6NHjzb4uvv27UN4eDjCw8Nx8eJF3LlzB2FhYUhMTIQgCHBzc0OFChVQu3ZttG3bFu+//z68vb3zvWZ4eLimon5eDhw4oFVtvEuXLkzmzVhGRga+/vprzJkzByqVCkOGDMH8+fP1LiMGACNHjoS/v79WMn/u3Dls2rQJo0ePRvXq1fWeFxcXp3e/r2/RVvbQN32ksB8wmCMfHx/0799fU1dj0zef4cVj9Rz5cpX90W/67EJdz9HREQMGDNBaN76oJBIJ3nnnHc3cfCJzxWSeLFrXhSe1ti8/kWN06DkOuSfKw/w28zHx6ERNm6zLk3HjYV+7NtL/XTu7ys4dWsXvwsOLtrKBg4MD2rZti7Zt2xolTgCYNm0apk2bZrTrkWm7fPkyQkJCcPnyZfj5+WHZsmXo0KFDoa9z9epV/PTTT2jSpEmeyfylS5d09kkkErRp00Zn/6+//oq0tDRMmjQpz3vmnmtfp04dtGhhhUvkCnm0iajImMwTEVkoL0cvjK0/Fl6OXgUf/C83OzdRh9bnVJT4qfhkzs6aofWOgYEiR0OkHqbepEkTTcGzyMhIdOzYsVjXPHToUJ694/qWH+7fvz8qVKigs//XX3/FtWvX8Pbbb6Nhw4Y6z6empmotaSeRSLBkyZJiRG6+pDIZylcJEDsMIovCavZkseSpmajl46K1r14ld1azt3bxj4DvfYFp7sB0T+CZ7lJYlsLLyQsfvP4BvJzMMxk29/jNSeqtW7hRsxZSzpxRP86dQ/mpX4odFhEAIC0tTatyeWEkxqXhlzFHsGXmWaSnvFqtY+3atXqT9rVr12Ljxo1a+6pVq4a5c+fme5+BAwfqFMhTKBTo168foqOjAagT+blz5+Y7n9sYkuJfInzLBiTFm1aR126Tp+ptk+FM9XtbVKrULMQsvoSoaeGIWXIJqtSsgk8iLeyZJ4s1OvQcXOxt0SzAEwA4tJ7UlrYCMpPUbUEJLHvL4qvaW4PMmBgkhG2GR3Bf2JYvL3Y4Zidn0TsAgEqFx4NCEHj2jDgBkdkwl/97MY8SsX/JFci81EucKZVKhISEYM6cOahfvz5cXFxw9uxZnD17Vuu8d999F2vWrCmwhsPNmzdRvXp1tG/fHn5+foiNjcWhQ4cQH69eYtPHxwfz5s0rlbnyyfEvcWrrRlRr9AZcyniW+P0M5eDsgr7fzBQ7DLNmqt/boooLvY7M58kAgMxnyYgLvQ6vUZa90oOxMZknIiKzlxUbixe//AKXtm1MOqEwNRlRUbjXtZtO0TsiQ5nb/72QkBA0atQIR44cwZkzZ3Djxg0cOHAAcrkcSqUSnp6e8Pf3R7NmzTBgwAC0bNky3+stWbIEJ06cQEREBG7duoXTp09j//79cHBwgJeXF9q2bYsOHTpgwIABcHJyKqVXSUTWgsk8WaylIY0xOvScpk0EABh9HPi1hbp3XiIDRh0TOyIi0Tzo0RNISdHZL3V2RtUd20WIiEhXlSpV8l0WLrcXTxIR9p12D3t5f1d0HFMXABAUFISgIMOW6yxIy5YtC0z4iUi/siFBeLHmGjKfJ8O2gjPKhhjn/6U1YTJPFkuRlonr0QpNm8vREeIfAUtaAspUoFITYOBWwNFD7KhMiiJDoVXN3s3OLf8TyGwpFQqo9CTyTk2bwn/dWhEiIjIOV08H+NbwAAB0HFMX9k78+09kqiQyCewquqBsSBCkjkxNC0siFOajTjJ5CoUC7u7ukMvlcHOz3jfh8tRMNPz2DwCAk50MEgCXp7UXNygS36zKQEbSq+3KLYChe8SLxwQNPzhca9tUKtsX5F6nzsi4fx8yT09IbPnG3RDKly8hZGUBOd8G2NjAxrMMIGF9XDKMkJkJ5cuXsAsIQLV9e/M9Nlmejmt/R6F2a184u9uXWEw75p7X2u4xSbfKvLkpzNdu9aQxeBn1BI5u7pDZMDmyJMqsLKQq5PD0rYRhc81/VYTYZZe1tjlf/hVDczr+DyeLlD28HgBSMpRwtpOJGA0RlTRlQoL635csZlgsWVnIiokVOwoyQ9n/B/OTIs/A2b0PUbW+V4km85aoMF+71MRE9b8KeWmERiLI/h4TMZkni1XX1xVXotS/7PZ+1ErkaMgkjD6uHmafmQxUbAgE6y5LZO3mt5mvNczeXMg8PKB8+ZI984UgZGVBGRen3mCPPBVRds+8zMND7FA0Oo6pi/1Lrmja1sbR1RWpCjl75i1Qds+8o6ur2KEYRZk+NfB8gXokjfdH5j+CRgz8H04WKbv4XZMqZbA0pDHny5NaGX9gSqTYUZg0Nzs3sxlan1PFH2fjYe/34bd8GRxr1xY7HLNwq0lTSHO8Iaz+998iRkPmKvXaNTzs/T4q/jhb7FA07J1sLWJofVF1GjcZ66dMRO8p0+Ed8JrY4ZARPb9/F+unTESncZPFDsUo4rfchl1FF02bw+wLj8k8WSR3R1uuK09ERERERBaLyTxZJHlqptaydOyZJyLSVnXHdvXSdP+2iUraoVXXAAC7fr4ImQ2ndBSGMksFQP01HDitmcjREBlH2ZAgxIVe17Sp8JjMk0XKWQBvdOg59tITEeVi5+uLwLNnxA6DrEhaUqbWv1R4hnztnMt4ovn7/eFcxrMUIqLSZGnfW6mjDYfWFxOTeSIiMns2Xl4o9+GHsPHyEjsUIqtSmP97Di62SEvKhIOLLXvmC0mZpdJ87QriUsYTLfoMLIWoqLTxe0u5cZ15C2Pt68xffypHpwUnNNtSCbBnQksE+biLGBWZhGdXgCWtAAiAnQswNlxdEI8AAIoMBUYeHInrL9XD3WqXrY1l7y2Dm531/R6xdBlRUbjXpSuQmgoA8NuwHi6NGokcFVmD2MeJ2DzjLPp+2QRelY1fjVsRl4rfpv8DZYYAiRTo+2UTlKtkGVW/S/prVxrSkpOwa873AIBuk6fCwdlF5IhITKrULK0h9lJH9jHnZGhOx49FyaJ0XXhSa1slAP2W/iNSNGQyUhPUS9Lh388uM5KApVyuMKeJRydqEnkAuBZ3TbNEHVmWBz16ahJ5AIgcOEjEaIiMJ+y7s1BmqH/PCypg84xzBZxBpSk7kc/dJuuUncjnblPhMJknIssXxmSFiIiIiCwLk3myKLvHv6m17Wwvw96P2ANLAHwavGrbuQCjj4sXiwma32Y+gjxfVZKtXbY25reZL15AVGIqrw/V2vbbsF6kSMjaOLnboUnnKnBytyuR6wd/1QQyOwkA/DvMvnGJ3EcMJf21Kw3dJk/V2ybrlLN6PSvZFx3nzFsYa58zT5YjMjIS4eHhCA8PR0REBB4/foy4uDikp6fDyckJ5cqVQ506dfDOO++gf//+8Mqv+FJqAhA2CCfvvMTapzVw6mwEnjx5guTkZHh4eKBy5cpo164dhgwZgqCgvP+gPHz4EFWrVi3S6+nevTt27NhRpHOJjOnR4CFa2/7r1ooUCRFZi5hHD7D+i48AAINmLUB5/6L9LSWyFobmdEzmLQyTebIULi4uSE5OBgDY29ujXbt2qFq1Kp48eYKDBw8iLS1N69jp06dj0qRJeq+lUCgwfPhw/P7775p9vr6+6NatG2JiYrBjxw4olUrIZDJ8+OGHmDt3LmQymc51mMyTJWAyT0SlbW7/blrbkzbuEikSIvNgaE7HsoFEZNICAgKwb98+BAYGavbduXMH7dq1Q2RkJAAgKSkJn3zyCWJjYzFz5kyt87OystCjRw8cPXpUs8/LywsXLlzQ9OavWLECI0eOhFKpxM8//4ynT59i8+bNpfDqiEpfpUUL8WTceE2biKikxDx6gNDPxmu2JVLO8CUyJv6PIiKTtnz5cq1EHgCqV6+OhQt1k5AffvgBFy5c0Nq3Zs0arUQeAAYOHKg1LH/o0KFwd3+1fOGWLVuwcuVKY4Sv4ezsbNTrERWFUqHQSuRlHMFFRCUoe2h9NkGlwqBZC0SKhkyJKjULscsuI3bZZahSs8QOx2wxmScik+Xr64u2bdvqfa5Lly5wddVea1cQBGzYsEFr34oVK3TObdCggda2jY0N6tatq7Vv+vTpUCqVeu/91ltvQRCEAh9ffvml5pyRI0fm/UKJSknk2LFIu3EDaTduIHLsWLHDISIrI5FKOV+eAHBpOmOxymR+z5496NOnDwICAuDo6IgKFSqgRYsWmDdvHl6+fFli942IiMCECRPQqFEjeHp6wtbWFu7u7qhVqxaGDh2KQ4cOgSUMiNTWr1+PTZs25fm8TCZD9erVdfbfunVL087MzMS5c7rrDFeoUKHAfZGRkfjjjz8KE7IWuVyOX375BQDQvHlzvP3220W+FpExZERFITXiPFSJiVAlJyP91m2xQyIiC5ezF14ilbJXnsjIrGrO/IsXLzBkyBDs27cPABAYGIguXbogNjYWJ06cwKlTp/Djjz8iNDQU7dq1M9p9U1NTMWbMGKxbtw4AYGdnh2bNmqFSpUpISEhAeHg41q5di7Vr16Jt27bYsGGD3mSDyJr06NGjwGMcHR119qlUKk07Li5Ob++6g4ODQdc6ceIEOnTooNm2s7ND7dq1DSqC98svv0AulwMApk7lEjwkvgc9er7aUKnAj46JqKSV96+KT8L2iB0GmaCyIUGaHnkuTVd0VpPMp6SkoEOHDoiIiIBMJsOyZcswfPhwzfN37txBly5dcPv2bXTq1Al//vknWrUq/vrkgiCgd+/e2L9/PwCgRYsW2LRpE/z8/DTHJCcn49NPP8XixYtx5MgRtGvXDqdPn4aLi0ux709kyV68eKGzr06dOpq2jY3+X3E5E/5sWVm687Vyz7+vWLEirl69WmBcqampmD9/PgCgfv366Ny5c4HnEJUKqRT49+ffoUYNkYMhIiJrJXW0gdeoemKHYfasZpj9hAkTEBERAQD49ttvtRJ5QF1Qa//+/XBwcEBGRgZ69eqFhISEYt938+bNmkS+bNmy2LNnj1YiD6gLY/3yyy+aucHXr1/HrFmzin1vIkumUChw9+5drX0SiQQDBw7UbHt6euotPKdQKHT2JSYm6uyLjY0tUmzLly/XnJtz3rwpU2QoMPzgcAw/OByKDN2vD5m/qju2Q+LkBMhkcKhfH35LFosdEhERERWDVSTzV65cwerVqwEA3t7e+OSTT/QeFxAQgNGjRwNQ9/jlXuKqKHLO+e3fvz/KlCmj9ziJRIIPPvhAsx0aGlrse1sTeWomuiz8G1W+2ItqX+7D9adysUOiErZ582adIfTjx49HvXqvPuWVSqVo3bq1zrkPHjwwaF/2MPnCyMzMxJw5cwAANWrUwPvvv1/oa4hh4tGJettkOex8fVHz3FnUunYVVcM2sZI9ERGRmbOKZH7u3LmaYbXBwcGws7PL89jBgwdr2r/88gtSU1OLde87d+5o2kFB+c8Hyfn848eP9fYekn6jQ8/hapS6Z1WpEtB14UmRI6KSlJycjG+//VZrX9++fTF37lydYydOnKizL3dhu6ioKNy4cUPnOJlMVujYQkNDERkZCQD44osvIOWaukREREQaqtQsxCy+hKhp4YhZcolL0xWDxb/LzMzMxM6dOzXbBRW2a9CgATw8PACoE4bsIfJFVZzq9MnJycW6N5ElUqlUGDx4MB4/fgxAParliy++wMaNG/Um3++99x7Gjx+vtW/v3r1YtGgRUlJS8OjRIwwbNkzvPPqca88bGtsPP/wAAKhcuTIGDRpUqPPFNL/NfL1tMl9KhQL3e7+PGzVraT3u9+wFJT8sJiIikcSFXkfmc3Wek/ksmUvTFYPFJ/NnzpxBfHy8ZrtRo0b5Hi+RSLSOOXDgQLHun3PI7/Xr+f+g5nze0dERXl5exbq3NVka0hh1fNVrjsukEuwe/6bIEVFJyMzMxMCBA7Ft2zYA6uXkdu/ejZkzZ+bbA/7zzz/jp59+0nxQB6iH5Ds7O6NKlSq4du0aPv74Y53zypUrV6j4tm7ditu31ct9ffrpp7C1tS3U+WJys3PDqvarsKr9KrjZcfi1JYgcOxbp167p7E+/cQNPxo3XcwaR+UpPycS2H89h+cd/Y9uPEUhPyRQ7JCLSIys+DekP5BDSlBDSlODSKsVj8dXsr1y5omnb29vD19e3wHNyLjuV8/yi+PDDDxEWFgZBELBx40b873//0ztvXhAE/Prrr5rtLl265FmJm3S5O9piz3jdudFkOWJjY9G7d28cP34cANCvXz8sWrQIZcuWNej8SZMmYdSoUThy5AiuXbsGhUIBDw8PNGzYEG+//TZOnDiBefPmaZ2T88M4Q8yYMQMAUL58eYwYMaJQ5xIZW/rtOwUfRGQh9i+5grjoFABAXHQy9i+5gh6TGoocFRHl9nzBea0EXkhXcmm6YrD4bDFnb3fFihUNOidnwl9Qb3pBWrZsiR9++AGff/454uLi0LVrV2zatAmVKlXSHJOSkoLJkyfjyJEjANRDe41RfI/IUhw5cgQhISGIjo6Gj48PlixZgm7duukct2LFCri6uiI4OFjvdVxcXNCtWze95z5//lxnX+PGjQ2Oce/evbh06RIA9QcH+tatJypN9tWrI/XmTSAlRXt/rVqotGihSFERERHlIFUvU0dFY/FfuZxLS+UcYpufnMcpFApkZmYWa7jsp59+ijfeeAMzZszA4cOHUa1aNTRv3hyVKlVCQkICTp48qVkGr1atWvjtt99QrVq1It+PyFJkZGTg66+/xpw5c6BSqTBkyBDMnz8/z//LI0eOhL+/v24yH/8IWNpK3R59HCjjr3Nu9vD4bO7u7ujQoYPBsWZ/AOfh4aG1MoW5UGQoNFXs57eZz6H2Zi711i2knj+v3pBKUWX7NjgGBoobFFEJatm3OsK+PwsIQHl/V3QcU1fskKyOPPY5Vk/6AMqMdJ3nvAOq4/2vvoWDs4sIkZGpUKVmQVbWEVlRSeodEqD8+AbiBmXmLH7OfM61o+3t7Q06x8HBIc9rFFXdunXRuXNnvPXWW8jMzMSxY8ewYcMG7N27FwkJCWjQoAHCwsJw5coVvP766wZfNz09HQqFQutBZAkuX76MJk2aYPbs2fD19cX+/fuxZs0agz+Uy5aSkoJpfeph29V/eyezk/pcDh8+rLUdEhJicO/6sWPHcPKkegWF8ePHw9XVtVAxmgIuTWc5lAoFHnbv8WqHSoXHg0JEi4eoNGz/6QLsHGxg52iDhJhU2DuZT80SSxH62QS9iTwAPL9/B7vmfF/KEZGpiQu9DmVcKiQOMkgcZLCv6g47H37AUxwWn8znXFouvyXpcsp9XEquIYqFtWnTJlSrVg0TJkzAxYsXMXfuXDx48ADp6emIiYlBWFgY0tPT8Z///AcffPABnj59avC1Z86cCXd3d83Dz8+vWLESmYJnz56hSZMmuHz5MgAgMjISHTt2hEQiyfehT0rcU0w/rMDYHS+RlqFbsR4ALl68qJmLD6gL6/3vf/8zON7sufLOzs746KOPDD6PqCREjh0rdghEZIUEVjKjAggqAUKGEkKGUuxQLIbFJ/M5e9YyMjIMOif3cU5OTkW+/4YNGzBgwADEx8fD09MT4eHhmDhxIqpUqQI7Ozt4eXmhb9++OH36NIKCgrBs2TLUq1cPp0+fNuj6U6ZMgVwu1zyy17cmMmdpaWkG/38t0A51YhOTLGDI5hikhBzSevru3bvo27evZhlJNzc3bN68WW+hSn0iIiJw6JD6mqNHjza4IJ+p4dJ0liP99h0gx98tqbMzqu7YLmJERCUv+KsmettUespWzLtDyTugOrpNnlqK0ZBJEgDYSjVtFr4rPoufM59zuGt6uv6hP7mlpaXleY3CiI+Px9ixYzVJwvfff48aNWroPdbFxQWrVq1CnTp18OLFC3Tr1g1Xr14tcHk6e3t7g6cPEFm7zdcycazR22jbti3Kli2Le/fu4fDhw5oPDho1aoQVK1YUaqpLdq+8vb09Pvnkk5IIu1RkL01H5k2pUEBQqdRF72QyONSpjaphYWKHRVSiFHGpCPvuLAB1Iu9WlgVIxWBjZwe/oFe1Cvp+w2LOpE0ik8De91VexcJ3xWfxPfM5k+HsInMFkcvlmrabm1uRi99t2LBBM9/exsYGgwYNyvf4oKAgNG3aFAAQExODuXPnFum+RPSKx9DfsG1cI0zt8ho6vNsOHh4eOHToEJYsWYIzZ87gtddew8iRI7Fr1y6cPXu2UIn8zZs3sWPHDgDAkCFDDF4xg6ikPBk3HpBIAJkMACCR8Y0SWb7sRD53m0pXzp539sKTPjl74tkrbxwW/1c+KOjVD0p0dLRB50RFRek9v7DCw8M17Ro1asDFpeACDw0aNNAMsd+9ezeXqCOrVKVKFc2IluKycS2HngvPoadRrqatZs2aUCo574tMi0QigeTfYfYSG4v/M09EJsLB2YW98ZQvqaMNvEbVEzsMi2LxPfN1674a7pOenq6VqOfl/v37es8vrBcvXmjahs6/9fT01LQfPHhQ5HsTEZH1KT/1S6iSk6FKTISdvz/XkyerwPny4npy8xp+Cu6Cn4K7YG7/boh5xPevRKXF4pP5pk2baiXSERER+R4vCILWMYVZZzo3Z2dnTTv3PPy85DxOKrX4bw9ZksRnwNGZ6n+pZPFrTXooFQo87NUbkEggdXFBxqNHkLm5iR0WUYlzK+uIkfNaY+S81pwvL4Kwbz7XtAWVCuu/4KoupJ8qNQuxyy4jdtllqFKzxA7HIlh8tmhra4vu3btrtnOvJZ3bhQsXNHPrnZ2d0bFjxyLfu0qVKpr2vXv3DBo2fOfOHU3b19e3yPe2NvLUTPRbdgr9lp2CPDVT7HCsU+Iz4NgsJpilgV9r0iNy7FhAqQSUSqhyLMtKRERkCuJCr+ttU9FZfDIPAB9//LGmlzssLCzfJa/WrVunaX/wwQdaS9sVVvv27TXthIQEnDhxIt/jk5OTcezYMc12u3btinxvayJPzcSbsw7jn/svcfZhPIauPiN2SEREpS791m118TsAUCq5HB0RlYrg6T9o2hKpFINmLRAxGiLrYhXJfL169TBs2DAAwPPnz/OsEn///n0sXboUAFCuXDlMmTJF73GZmZkICQmBq6srGjRogMuXL+s97r333kO9eq+KPHz11VdQqVR5xjljxgwoFAoA6ur348aNK/jFEUaHnkNSuroImVIl4PITeQFnEBFZHgEApFJAJoPExQV2HN1FRKWgUs3a+CRsDz4J24NJG3ehvH9VsUMiE8Vq9sZnFck8APz8889o2LAhAODrr7/G6tWrtZ6/c+cOOnbsiLS0NNjZ2WHbtm15Fq0LDQ3F+vXrkZSUhIsXL+aZdEulUoSGhsLd3R0A8Pfff6NPnz6IiYnROi4jIwP/+9//tCrXz5o1C7Vq1Sry67U2UsmrtpOt1fxYU35SE4DFLYFp7urHjIpA/COxoyIqEam3bkFISlIPsxcE2FcLEDskolKjiEvF8o//xvKP/4YijlNMSkvMowcsfEcGebb4Ip58cRzR008h/YEc7l0DuMa8kUgEY63/ZAZiY2MxZMgQ7N+/H4B6Wam6desiNjYWJ06cQFZWFnx8fLBu3Tq88847eV5n1apVGDFihGa7devWWsPjc7t69SoGDRqES5cuAQDs7e3RvHlzVKxYEXK5HKdOncLLly8BqNe1nzdvHoYPH16k16hQKODu7g65XA43Kyl8JE/NxJBV/+BKVCKc7GTY91Er+JVxEjss67OoCfDiNuBUDpDZiR0NkBoHZKXn2ikBXH1ECceolBlAygugXA1gXPHXVFZkKDDx6EQAwPw28+FmZx2/OyyFUqHA7aZvaO1zbNgQVX7bIFJERKVHEZeK0KmnAAC2DjJIJBKMnNda5Kisw9z+3SDkGHEqkUoxaeMuESMiUxX1TTiE9BxL+UqBSjNaiReQGTA0p7Oqj0S8vLywb98+7N69G2vWrMH58+exa9cuuLm5oXHjxnj//fcxbNgwreXh9AkJCcGRI0ewY8cOVK9eHQsX5r/0T506dXD+/HkcOHAAW7duxZkzZ3Dx4kUcP34cjo6OKFeuHFq1aoV3330XAwcOhIeHhxFfteVzd7TFjg/5C0F0KS///fdF/seJSgASo8UOwniyv+bFlJ3IZ7dXtV9llOtS6XgybrzOPq4vT9Yi7LtXH2hmpilhx94+IrIiVvkbr2vXrujatWuRz7e1tcX69esLdY5UKkWnTp3QqVOnIt+XyKQ5eaoTeVPpmRdU6nhU2UufSAAXL0BiAb/2snvmnfL/4JGsh33t2ki/dg0A4FCnDteXJ+uRa4Ap15kvPYNmLUDoZ+oPE1n4jvIjq+CErEeJ6g0JUH58A3EDsiBWNczeGljjMHsyEdEXgWVvAaOOARVfFzsay2bkrzWH2Zs3pUKh6Z2vtGgh15Ynq7J11lnEPE4CAJSv7IL3v2AyT2RqXqy+CiFThbIhQZwrbyAOsyciIoO42blxaL0Zk7m5wX/dWrHDIBKFjZ0MFV9zFzsMIjJAXOh1eI2qV/CBZDCW/SYiIjJDSoUC93u/jxs1a+FGzVq41agxMqKixA6LqFR1HFNXb5uIyBqwZ56IjMO1AvDWF+p/qWTxa00AIseO1cyTBwBVcjIe9OiJwLNnRIyKqHTZO9mix6SGYodBRAbg2vLGx2SezJ48NROjQ88BAJaGNIa7o63IEVkp1wpAmyliR2Ed+LUmAOm374gdAhFZqbTkJOya8z0AoNvkqXBwdhE5IjJl5YbVETsEi8Vh9mT2Rqw9i+vRClyPVmDE2uKvuU1EZA7sq1cHnJw021JnZ1TdsV3EiIjIWmQn8rnbRFS6mMyT2bv9LFFvm4jIknl/818gPR2QyVBl5w4ERpyDna+v2GERERFRKWEyT2avhreL3jYRkSXKLnz3sHsPQKmE1MEBjweFiB0WEVmRbpOn6m0TUeniOvMWxhrXmeeceSKyJo8GD0HKGe0id1JXVxa+IyIishBcZ56shrujLTaNai52GGRqUhOAsEHqdvB6wNFDzGiIjEaVnq6zj3PliYiIrA+H2RORZdo28lU7O6knsgDp9+5pbVfZuYNz5YmIiKwQe+bJ7MhTMzFwxSlcjXpV7E4qAfZMaIkgH3cRIyOTkJqg7oV/fApITwTsXIAKXBIlP4oMBSYenQgAmN9mPtzsrGOKjinLiIrCvS5dgdTUPI+ROjsDUikcAwNLMTIicSniUrFh2imoMl/tk0iAvlOboFwlV/ECsxJpyUnYPG0KYh8/AADYOjhgyJxf4O7lLXJkZGpUqVmIXXsN3mPqI+qbcNh4OcJrRF1IHZl+GhN75snsjA49p5XIA4BKALouPClSRGRStg7T3s5IAgSJOLGYiexEPnebxPOgR898E3kAUCUnc3g9WZ2w785qJfIAIAjA5hnnxAnIyuya870mkQeAzLQ0hH42QcSIyFTFhV5H1tNkzXbmkyTEhV4XMSLLxGSeiCxL7C3dfTJ+CkwWSCbj8HoiIiIrxmSezM7SkMao46s9lE4qAXaPf1OkiMiklKupvV2xgboAHuVpfpv5etsknsrrQ/M/QCpFlW2/l04wRCYk+KsmkOZatEYiAfp+2VicgKxMt8lT4VW5qmbb1sEBIbN/FjEiMlVlQ4Jg4+Os2bat5IKyIUEiRmSZuDSdhbGGpem4FB3lK3vO/IY+QK/lrGJPZunR4CFa2/7r1ooUCRHRK/LY55ph9SGzf+ZceaISYmhOx555MjvZiXzuNhGAV8n7wC1M5ImIiIwo5/x4zpUnEh+TeTI7WSoB16MVuB6tQJaKA0uIyPJUWrRQb5uIiIgoG5N5Mj85Z4ZwlgjllJoArOulbof2VG8TmRGlQoH7vd/H7aZvICUiAuWnfgmZhU6ZIiLzk3N+POfKU35UqVl4sfqqpk0lg8k8mR0bmRRBFd0QVNENNjL+CFMOYYOAFzfV7dhb6m0iMxI5dizSr11TbyiVeNirt7gBERHl4O7ljXGrwzBudRjny1O+ci5D93LTTREjsWzMhMjsLA1prLdNRGTu0m/fETsEIiIiMhNM5snsuDvaYtOo5tg0qjkr2ZO24PWvlqbzCuSSdGR27KtXB5ycNNtcfo6ITEVachI2T5+CzdOnIC05SexwyMTlXIbOs1/NfI6k4uDSdBbGGpamIyKyVEqFAk/GjQegLnzH+fJEZCo2T5+itd33m5kiRUJk+QzN6WxKMSaiYouMT0HnBccBAHs/agW/Mk4FnEFWIf4R8GsLIDMJsHcFpjwBnl8DvGuLHRlRocjc3LimPBERlYjIyEiEh4cjPDwcERERePz4MeLi4pCeng4nJyeUK1cOderUwTvvvIP+/fvDy8urwGsKgoAdO3Zg69atOH36NJ49ewYAqFChApo2bYr3338fPXv2hEQiyfMa586dQ3h4OC5duoTbt2/jxYsXiIuLQ0JCAmxtbVGmTBnUqFEDb731FgYOHIjXXnvNaF8Tc8eeeQtj6T3z9aYd1Nq+PK29SJGQSZlVGUiTq9vZyfwsf+CLR+LGRVQISoUCkWPGIv3OHdjXqA6/xYvZM09EJiMtOQm75nwPAOg2eSocnF1EjogKy8XFBcnJyQAAe3t7tGvXDlWrVsWTJ09w8OBBpKWlaR07ffp0TJo0Kc/rPX78GP3790d4eDgAoEyZMujZsycEQcD27duRkJAAAGjRogU2btyIypUr61wjKSkJrq6umm0fHx+0bt0aZcqUwZ07d3D06FGoVCrN8zKZDJMmTcLMmTMhk8mK9fUwZeyZJyIiMiNPxo1H+h11Abz023fwZNx49tITkclwcHbh0HoLERAQgH379iEwMFCz786dO2jXrh0iIyMBqJPsTz75BLGxsZg5U/f7/uTJE7z11lt4+PAhAMDV1RXnz59HlSpVAABTp05F/fr1kZycjPDwcLz11ls4ceIEfH1984wrODgYq1atglOO2jGXLl1Cu3btEBcXBwBQKpX48ccfYWNjgxkzZhT3S2H2WACPzMrej1rpbZOVG30csM3VQzBsnzixEBEREZmw5cuXayXyAFC9enUsXLhQ59gffvgBFy5c0Nk/evRoTSIPAAMGDNAk8gBQrVo19O/fX7P98OFDjBkzJs+YPD09sXLlSq1EHgDq16+P//3vfzrHL1iwQDPKwJoxmSez4lfGCZentcflae05X55ecXAHfBsAVVoBE6+q93G+PJmZSosWqqvZA7CvUR2VFum+qSIiIioOX19ftG3bVu9zXbp00RryDqjnxG/YsEFr35EjR7Bvn3anScOGDXWul3vfnj17cPToUa19MpkM9evXx+DBg+Hs7Kw3rmbNmunsS0lJwe3bt/Ueb02sMpnfs2cP+vTpg4CAADg6OqJChQpo0aIF5s2bh5cvXxrtPn/99RckEkmRH2+//bbRYiGyaGGDXrW3jRQvDqJikLm5ocpvGxB49gyqbNjA+fJERGRU69evx6ZNm/J8XiaTofq/HyrndOvWLa3tVatW6RxTqVIlnX1+fn46+3Kf6+joiIsXL2LevHl5xpWRkaF3v52dXZ7nWAurmjP/4sULDBkyRPNJUmBgILp06YLY2FicOHECp06dwo8//ojQ0FC0a9dO5Ghh0UUdiIiIiAorPSUT+5dcAQB0HFMX9k62IkdEZD569OhR4DGOjo46+3IWoAOA/fv36xxTtmxZnX2enp46+3L36Bvi5MmTOvsqVaqEWrVqFfpalsZqkvmUlBR06NABERERkMlkWLZsGYYPH655/s6dO+jSpQtu376NTp064c8//0SrVsaZk+3m5gYfHx+Djs3IyMCDBw8AAJ07dzbK/S2JPDUTo0PPAQCWhjSGuyP/iBOA4PWveud7LRc3FqIiUCoUeDRsONKvXQNkMlTZ9jscc81nJCJoEvnsdo9JukN7iajoXrx4obOvTp06mvbDhw/1jmR2cXlVuygrPg3P5kcgJfa+znEvX77E48eP9Va21+fkyZOYPn261j57e3ssW7YMUqlVDjLXYjXJ/IQJExAREQEA+Pbbb7USeUBd9GH//v2oXbs20tLS0KtXL9y5cwceHh7FvnfPnj2xZs0ag45dvnw5Ro0aBQcHBwwdOrTY97Y02Yl8dnvTqOYiRkMmw9EDGLpH7CiIiuzJuPHqRB4AlEo87NUbta5dFTcoIiKyKgqFAnfv3tXaJ5FIMHDgQM32vXv39J5rb2+vaT9fcB7IVMFepr/T7d69e/km8/PmzcPly5dx69YtnDp1SrPfzs4OHTt2xLRp0/D6668b8pIsntE/znj8+DGioqKMfdliuXLlClavXg0A8Pb2xieffKL3uICAAIwePRqA+lMpfcswlLTFixcDUC/NoG9oChEREZG16jimrt42ERXf5s2boVQqtfaNHz8e9erV02zL5XK95+pMD1YBMon+KcN5XSPb2rVrsWbNGq1EHgBatmyJ9957DwEBAfmeb02MnsxXqVIFTZs2NfZli2Xu3LmauR7BwcH5FksYPHiwpv3LL78gNTW1yPe1s7ODt7c33N3dDTr+9OnTmqUfxo4dW+T7WrKlIY31tomIzFmlRQthX/vfFRj+HWZPRLrsnWzRY1JD9JjUkPPliYwoOTkZ3377rda+vn37Yu7cuVr7UlJS9J4vkUg0bRsvJ0ACSCDRe2xSUlK+sVy8eBGpqam4ePEixo0bp7n2kSNH8OGHH6J69eo4ePBgga/JGpTIRANBEEriskWSmZmJnTt3arYLKmzXoEEDzdD65ORkvQUeDNWiRQs8e/YMCxYsMOj47F75Bg0a4I033ijyfS0V58uTXo/CgWnu6sejcLGjISqUjKgo3GjYCLebvoH0a9cgdXZGtUMHOV+eSI/0lEzsmHseO+aeR3pKptjhEFkMlUqFwYMH4/HjxwDUifkXX3yBjRs36vS4514HPlvO/E8ik0BiLwPs9aeaeS1Bl5ODgwPq16+PhQsXYsmSJVrPxcTEoFu3brh48WKB17F0JZLMv3jxAqNGjdL0MovpzJkziI+P12w3atQo3+MlEonWMQcOHCix2HKKj4/H5s2bAbBXPi+558sTAQBWd9TfJjIDD3r0BHL0cqiSk9X7iEhH7uJ3RFR8mZmZGDhwILZt2wYAqFChAnbv3o2ZM2fqLTCX14hjreH5/+b1WSql3mMNHbWcbdSoUWjQoIHWvoyMDHzzzTeFuo4lKpFkXqlUYuXKlWjcuDGaN2+OdevWIT09vSRuVaArV179sre3t4evr2+B51StWlXv+SVpzZo1SE1NhZubGwYMGFAq9zQ3WSoB16MVuB6tQJbKdEZ/EBEVhVKhgCo5WewwiIjISsXGxqJdu3aatef79euHq1ev5ruiVrVq1fTuz5nrSWQS2FV0geChf858XtfIT5cuXXT2/fnnn8jKyir0tSxJiSTzLi4u6Ny5MyQSCU6fPo1hw4bB19cXn376qU6FxJJ2/fp1TbtixYoGnZMz4c95fkkRBEEzfGTw4MEGDT2xSjmnb5jQVA4S2bD9+ttEJi5y7Fgg19q9UmdnVN2xXaSIiEwbi98RGc+RI0fw+uuv4/jx4/Dx8cHOnTuxceNGnfXiV6xYgbCwMM12lSpVUKZMGZ3r5ZwHXzYkCACQnKY7v97T0xP+/v6FjrdSpUo6+1JSUhAXF1foa1mSEknmnZ2dsWvXLty/fx+ff/45vLy88PLlS8ydOxc1a9ZE+/btsXPnTk1RupIUGxuraRu6zFzO4xQKBTIzS3Ze1pEjR3D79m0AwJgxY0r0Xubq+lM5zj1KgCItC0npWVAylycAeHYFWNsFkMqAMScA/xZiR0RkEKVCgdSLl7T2SV1dERhxDnYGjCAjskYsfkdUfBkZGfj888/x7rvvIjo6GkOGDMH169fRrVs3vcePHDkSn3/+uda+Dh066ByXM6mWOtrAa1Q9qFroJv25z/3tt9/QpUsXTS6UX9z65FfY3BqUSDKfrXLlypg5cyYiIyOxfv16NG/eHCqVCn/88Qd69eoFf39/fPvtt3j69GmJxZCYmKhp51z/MD8ODg55XqMkZBe+a926NWpnVzM2UHp6OhQKhdbDEnVdeFLTVgnA3ecl+z0hM7HsLf1tIhP3ZNx4nRFG7JEnIqKSdPnyZTRp0gSzZ8+Gr68v9u/fjzVr1hjc4Zlt2LBhOvuePHmisy8yMlJn3/Dhw7W2b9++jb179+L48eP53lPf1Gdvb2+9owSsidGT+W+++UZnHXdbW1sMGDAAJ06cwKVLlzB69Gg4OzsjKioK06ZNQ5UqVdC3b18cOXLE2OFoLS1n6Cc3uY/LawkGY4iOjtZU2y9K4buZM2fC3d1d8/Dz8zN2iKKLjE+BMtcc+ZzLXxARmSOJkxMgkwEyGRwbNmSPPBERlZhnz56hSZMmuHz5MgB1ot2xY0dIJJJ8H/q8++67aN++vda+8+fP6xyXuxh6hw4d8lxZbPXq1XmuiPby5UtNofCcci4pbq1KJZnPqW7duli8eDGio6OxcOFCBAUFITMzE1u3bsW7776LWrVq4eeff4ZcLjdKPI6Ojpp2XsMzcst9XF5LMBjDihUrkJWVhfLly6NXr16FPn/KlCmQy+Wah75PwMxd5wXH4Wz76peJs70Mez9qJWJEZDJGHdPfJjJx5ad+CSElBVAq4VCrFvyWLBY7JCIismBpaWkG50KGWL58OSpXrqzZ3rhxIx4+fKjZfvjwITZu3KjZrly5MpYtW5bn9U6ePImpU6dqV8WHehm6nj17IiEhQWt/7dq18d///rd4L8IClOgw+/y4uLjgww8/xJUrV/DXX38hODgYNjY2uHXrFj7++GP4+vriP//5D86dK94SZK6urpq2oRX109LS8ryGMSmVSixfvhwAMGLEiCLN+bC3t4ebm5vWwxLJZDK4OdjAzcEG16Z3gF+ZkvuAhcxIhbrAf1+qHxVYDInMx+NBIZA6O0Pq6oqMR48gs9Df3UREZJn8/Pxw7NgxNGvWDIC6zlijRo0wYsQIjBgxAo0aNdJMVW7WrBmOHTumdwRxzuXvZs6ciddeew3Dhw/HRx99hB49eiAgIAB///235hiJRILg4GAcP34cLi4uJfwqTZ+N2AEAQKtWrRAfH4/79+/j7NmzEAQBKSkpWL16NVavXo3GjRtj7Nix6Nevn8589oJ4eXlp2rk/0clLzlEBbm5usLUtmSIru3fvxpMnTyCVSjFq1KgSuYcl2PtRK3RecFzTJiLjUWQoMO7wONxNuIvXPF7DonaL4GbHxJKIiIjyV6VKFYSHh2P79u3YsmULTp8+rVnmztvbG++++y769OmDXr165Tlk/6uvvkKXLl1w/PhxnD9/Hjdv3sT+/fuRkJCAjIwMODk5wd/fHzVr1kSLFi3Qp08f1KpVqzRfpkmTCHlNTigFz549w4oVK7B8+XK9RRNyhiaRSODu7q75pMbQueFLlizRzEW3t7fX6XXXZ9SoUZoe82bNmuHUqVMG3auwOnTogIMHD6Jz587Ys2ePUa6pUCjg7u4OuVxusb30RGQ8g/cPxuVY9fw5RxtH1CpbC6varxI5KsuXERWFBz16AlAXvuN8eSIiIspmaE5n9GH269atw5YtW/I95siRI+jbty/8/f3xzTffIDIyUpO4C4IAQRDQoEEDLF++HDdu3MDXX38NX19fJCQkYN68eahRowb+97//5VkkIae6dV8NvU1PT0dUVFSB59y/f1/v+cZ07949HDp0CEDRCt8RWb3UBGBNF/UjNUHsaMzW3YS7mnZqVmo+R5Ix2fn6IvDsGQSePcNEnoiILIYqNQuxyy4jdtllqFKzxA7H4hk9mR86dCgmTpyosz8hIQHz589HzZo18e677+L333/XrN+ePezCwcEBw4YNw+nTp3Hu3DmMGDECgYGBmD59Oh4+fIhdu3ahTZs2SE9Px/Tp0zFp0qQC42natKnWkgURERH5Hi8IgtYx+tZRNIalS5dCEAT4+/ujY8eOJXIPIosWNkh/mwrlNY/X4GijLhTqaOOI+W3mixsQERERma240Oua9stNN0WMxDqUSAG8nD3mZ8+exfDhw+Hr64tPPvkEt2/f1npeEAQEBgZi/vz5iI6OxsqVK9GkSRPdQKVSdOnSBX/++Se2b98OOzs7LF68uMCedltbW3Tv3l2zffjw4XyPv3DhgmZuvbOzc4kk2unp6Vi9ejUAYPTo0VqFH4iIStOidotQq2wtNPRuiIPvH+R8eSIiIjOnVGRA/scjKBXGq15vDqzxdZdIFpmVlYWVK1eicePGaNasGdauXatZ7z27F97GxgZ9+/bF0aNHcf36dUyYMAHu7u4GXb979+4YNmwYMjMztaob5uXjjz/WJMxhYWH5Lsuwbt06TfuDDz7QWtrOWLZs2YIXL17Azs4OI0aMMPr1iaxC8Hr9bSoUNzs3rGq/Cqvar2IiT0REZAGUiRlIPPwYysTST2rLhgRp2p79apbqvcV83WIpkWQ+Li4Oo0aNwvnz53V64StXrozvv/8ekZGR2LRpE956660i3SMwMBCCIBg0B75evXoYNmwYAOD58+eYO3eu3uPu37+PpUuXAgDKlSuHKVOm6D0uMzMTISEhcHV1RYMGDXD58uVCxb54sXo94V69eqF8+fKFOpeI/uXoAQzdo344eogdDREREZHVkzrawGtUPXiNqgepo0ksnGbRSmx8tyAIml54iUSiqdh+//59TJkypdhJbEREBCQSCWxsDPsh+fnnn9GwYUMAwNdff60Z5p7tzp076NixI9LS0mBnZ4dt27ZpzbXPKTQ0FOvXr0dSUhIuXryIcePGGRz35cuXER4eDoCF74iKhQXwiIiIiMiKlejHJeXLl8eIESMwatQoVK5c2SjX/OOPP7BlyxZs2LBBcw9DODk54cCBAxgyZAj279+P4cOHY/bs2ahbty5iY2Nx4sQJZGVlwcfHB+vWrUOrVoavZ57Xuon6ZPfKBwUFoXXr1gafR0S55C6AN9Q4yzsSERERmbPswnMvVl2BRGY9tbkEpQqA+vVX+KSxyNGUjhJJ5p2cnLBq1Sr07NnT4J5zQ3322We4dOkSAHUS/frrrxt8rpeXF/bt24fdu3djzZo1OH/+PHbt2gU3Nzc0btwY77//PoYNGwZPT898rxMSEoIjR45gx44dqF69OhYuXGjQ/RMTE7F+vXpuL3vliYpJlQnE3FC3y9cSNxYiIipRirhUbPzfaWSlq2DrIEO/r5vCrazx6xpR3tKSk7BrzvcAgG6Tp8LB2UXkiCgvqhT1imGqZOtcGi779VsDiWDIYu2FIJVKUaFCBURHRxvzshq//vornj59qrnX9OnTS+Q+5kqhUMDd3R1yuRxubixmRRYqNQGYXxfITAZsnYHytYERB8SOioiISsjyj/9GRo41q+0cbTByHkc4lqbN07VrSfX9ZqZIkVBBnv10DlmxqZA621hdz7wqOQs2Xo5m3zNvaE5n9J75ypUrw9vb29iX1fjggw9K7NpEZCbCBgESCWD3b6+AjAVWiIiIiAB1FfmYhRdQbnhd2PlazwiKjKgkxCy8UOpV9MVk9I9qHj58iNOnTxf7OlFRUXj8+LERIiIii+T1aukTLk1HRGTZgr9qAht79dtWWwcZgr9qInJE1qfb5Kl620QkHpPtzmrcuDFiY2ORlWWdcz0IkKdmYuCKU7galQgAqFfJHaEj3oC7o63IkZFosivYP7+i3pZIgdF/c2m6Irr18hb67O4DAQKcbJywrfs2+Lr4ih2WRcuIisK9rt2AlBRAKkWV7dvgGBgodlhEJi36bjy2z7kAACjn54IeHzeAvRPfC5QGeexzrJ70AZQZ6Zp93gHVRYyITFXG0yTELLig2ZbYy+A9sSFsyjiIGJXlM+lJFEaezk9mZnToOU0iDwCXn8gxOvSciBGR6MIGvUrkAUBQAWs6ixePmQveEwwB6t+zKVkp6LO7j8gRWb4HPXqqE3kAUKnwsFdvcQMiMgPZiTwAvIhMwv4lV/I5mowp9LMJWok8ADy/f0dTCI8oW8zCC1rbQroSMUsuiRSN9TDpZJ6IiIiIiIgMJ3O1g2u7ypC52okdSqmyxtddqGr2AQEBJRmLlsePH0MQBCiVylK7pyWwpGr2HGZPOnIPs7dzBsaeAsr4ixqWueIw+9KXFBGByIGD1BscZk9kEA6zF09ew+zf/+pbLk1HWjjM3rgMzekKlcxLpVJIJJISH/6efQ+JRMJkvpAsKZknIrIkGVFRuNfuHQCA1NkZkEoRePaMyFEREeWNa8sTicPQnM4kh9lzrjwREVmaBz16atqq5GQRIyEiMkzOufGcJ09kegpdzd7BwQF9+/YtiVi0hIWFIT09veADiYiITFzqrVtQJSZq7au6Y7tI0RAREZElKPQw+woVKiA6OrokYwIA+Pj4ICYmhsPsC4nD7ImITM+N2nWAHH/PHOrVQ9XNYSJGRERUMA6zJxKHoTmdya4zT0REZAmUCoVWIg8AUgcWBCIi0+fg7IK+38wUOwwiyoNJzpkHOG+eiIgsw5Nx42Ffu7Zm26FOHVRatFDEiIiICpaWnITN06dg8/QpSEtOEjscItKjUMm8SqUqlSH2APDs2TMOsbdy8tRM9Ft2Cv2WnYI8NVPscIiIikzm7Aynpk3h1LQpqm7dAhmnQRGRiWPxOyLTZ7I980SjQ8/pbRMRmZOcvfDskSciIiJjMdlk3sfHBzY2nNJPRETmTebmBv91a+G/bi175InIbHSbPFVvm4hMh8km8wDnzVu7pSGN9baJiIiIqGSlpyQj5uF9xDy8j/SUZLHDISI9CrU0XWni0nRFw6XpiIiIiKi4Fg0L1toet5rLaVLeVKlZiAu9DgAoGxIEqSNHWBdHiSxNd+PGDRw8eBDt2rVD3bp19R7Ttm3bwkWah5cvXxrlOmS+5KmZmrnyS0Maw93RVuSISHSpCUDYIHU7eD3g6CFmNEREVMLSUzKxf8kVAEDHMXVh78T3AkSmKDuRz257jaonYjTWw+Ce+Zs3b6JRo0ZIS0uDnZ0dIiIiEBQUpHOcVCqFRCIpdmCCIEAikbBnvpAsqWe+37JTWtubRjUXKRIyGWu6aG8P3SNOHEREVCp2zD2vtd1jUkORIrE+8tjnCP1sAgAgZPbPcPfyFjkiMmWxyy5rbTOZLx6j98zv27cPqampAICMjAwcOHBAbzKfzURH7xMREZWapIgIRA5UjyaRODkhYPcu2Pn6ihwVEVHB3L28ObSeDFY2JEhrmD2VDoOT+QYNGmht169fP89jbW1t0bx58XpRw8PDkZWVVaxrkHn7sU99dF5wHACw96NWIkdDJqH7L8DSf38WRh8XNxYiA2Qn8gAgpKTgQY+eCDx7RsSIiMxLxzF1tYbZE5HpyXiahJiFFwAA5cc34Hz5UlSoAngrV67Erl270LFjR4wZM0bvMVKpFBUqVEB0dHSxAmMBvKLhMHuySPGPgF9bAJlJ6u2KDQA7Fw6zJ5N3o2YtrW2pqyuTeSIisihPvtTuYKk0g51wxWVoTleopelGjBiBnTt35pnIExGViKWtXiXyABB9QbxYiArBb8N6TVvi5ISqO7aLGA0RkWHksc+xaFgwFg0Lhjz2udjhEFEeTHadec65J64zT/kKXl/wMUQiUioUiFvwM5yaNkWNM6dR83wE58sTkVnILnyXu02UW1Z8GiADoAIgqIfZU+kx+oSGBw8eQCaTFfs6586d4xB7K+fuaMuh9aQ2dC+wpKW6LZEBo49xWToyeU/Gjddq+69bK2I0RERExvd8wXlIZDJ1Qg/AzsdF3ICsjNGTeX9/f6Ncp1KlSka5DpmnyPgUreJ3fmWcRI6IRPPsyqtEPnuufAUWQSqOqKQo9NrRCynKFEglUmzushmBnoFih2VRlAoF0q5dgyo5GZDJ4FCnjtghEZklRVwqwr47CwAI/qoJ3Mo6ihyRdQiZ/bPWsnREuWXFp+HZ3LNA5r87JIDEvvgdulQ4JjvMfsuWLVi3bp3YYZBIshP53G2yQsveetXmXHmj6LO7D1KUKQAAlaBC8J5gkSOyPI9HjlIn8gCgVCL93j1xAyIyU9mJfO42lazsZenGrQ7j+vKk1/MF518l8gAgADZe7HwrbSabzE+YMAHDhw8XOwwiMgWSHL+qOFeezEDa1ata2xKJRKRIiIiISofU1mRTS4tl0l9xFsGzXjnXleca81Zu1DFAIgGkMmDMCc6VN4ItXbfASab+9FwqkSKsS5jIEVkeiaOj+uf2X6xiT1Q0wV810dumkpWWnITN06dg8/QpSEtOKvgEsjreHzUEbF9t21ZyQdmQIPECslKFWme+qB4+fIiXL18iOTnZ4AS9Z8+eSEhIKJEieHv27MHatWsRERGBp0+fwt3dHQEBAejTpw+GDBkCT09Po98zm0qlwoEDB7B161acOXMGz549g1wuh6urK6pUqYK6devizTffRKdOnYpUN8CS1pknIjJXGVFReNCjJwB1Is8q9kRkTjZPn6K13febmSJFQmSdDM3pSiyZ37ZtG5YvX47jx48jNTW10OcLggCJRGLUZP7FixcYMmQI9u3bBwAIDAxE3bp1ERsbixMnTkCpVMLHxwehoaFo166d0e6b7dKlSxg5ciTOnj0LGxsbNGnSBH5+fkhKSsL169fx8OFDzbG1a9fG1VzDNA3BZJ6IiIgsQXpKJvYvuQIA6DimLuydbAs4g4yFyTyRuAzN6Yw+zD4zMxM9e/ZEnz59cOjQIaSkpEAQhEI9SkJKSgo6dOiAffv2QSaTYeXKlbh58ya2bNmCv/76Czdu3ECNGjXw9OlTdOrUCcePG7fo2l9//YXmzZvj7NmzGDNmDJ4+fYrw8HCEhYVh7969uH//PjZs2AA7Ozuj3peIKCdFhgKD9w9Gi40tMHj/YCgyFGKHZHGUCgUeDR6CR4OHQKng15eoqLIT+dxtKnndJk/V2yYi02L0pek+//xz7Ny5E0DRC/6UREI/YcIEREREAAC+/fZbneJ61atXx/79+1G7dm2kpaWhV69euHPnDjw8PIp972vXrqFr165ITU3FN998g2nTpukcI5FIMGDAAERGRuKLL74o9j2JiPSZeHQi7ibcBQDcTbiLiUcnYlX7VSJHZf4yoqJwr2s3ICXl1U6pFI9HjkLVsE3iBUZEVAQOzi7sjad8qVKzEBd6HQBQNiQIUkejp5VkAKN+1ePj4/Hrr79qknhBENCsWTO89957eO2111C2bFk4OjoWmOQLgoDevXsjISHBKHFduXIFq1evBgB4e3vjk08+0XtcQEAARo8ejQULFuDFixeYOXMmfvjhh2Lf/4MPPkBSUhLq1q2L//73v/keO2DAABw9ehRVqlQp9n3NmTw1E6NDzwEAloY0hrsjh9YRkel60KOndiIPACqVTlV7IjJcxzF1tYbZE5HpyE7ks9teo+qJGI31Mmoyf+zYMWRkZAAApFIpfvvtNwQHF239YmMON587dy5UKhUAIDg4ON9rDx48GAsWLAAA/PLLL5g2bRocHR2LfO+dO3fi77//BgBMmjQJUmn+Mxv8/Pxw4MCBIt/PUmQn8tntTaOaixgNkeWY32Y+xh0eh7sJd/Gax2uY32a+2CFZhjxGlEmK8feDyNrZO9mix6SGYodBRGSyjJrMZxdwk0gk6NGjR5ETecB4Q+0zMzM1w/4BFFjYrkGDBvDw8EBCQgKSk5Oxf/9+9OrVq8j3zx4RIJFI0Llz5yJfx5pExqfg7MN4AEC9Su6wtzHpFRSppKUmAGGD1O3g9Vyarpjc7NywruM6scOwKEqFAio9f7MkTk4I2Lmj9AMiIiIqYWVDgrSG2ZM4jJol5axa37Zt22Jda/v27Thy5EhxQ8KZM2cQHx+v2W7UqFG+x0skEq1jitNLLpfLsX//fgDqHncvL68iX8uadF5wHE626h/Ny0/kWBrSWOSISFTZiXzuNpGJeDxyFJCcDACQOjvDqWlT1Lp5AzXPR3BJOiIiskhSRxt4jaoHr1H1OF9eREb9yudcF724y6I1b26cYdVXrryqfmpvbw9fA95YVa1aVe/5hRUREaGZdlCjRg3N/vv372Pfvn148OABkpKSUK5cOdStWxfvvPMOypUrV+T7WRKJRAJnOxkAcL48EZm0tKtXAakUUKmgSk5GpUULxQ6JiIiIrIBRk/l33nkHMpkMKpUKUVFRxrx0kV2//qo4Q8WKFQ06J2fCn/P8wrp48aKmXaZMGTx9+hQTJ07E5s2b9R5vb2+PsWPH4vvvv4eTk1OR72vu9n7UCp0XHNe0ycoFr9ceZk9kYiSOjhBSUwGZDBJHR8iK+WE2ERERkSGMOszex8cHw4YNgyAI2LFjR7Gu9fHHH2PEiBHFjik2NlbTNnSZuZzHKRQKZGZmFunet2/f1rSfPXuGZs2aYfPmzRg0aBDOnj2LlJQUxMfHY9euXahXrx7S09Mxf/58tG7dWmtqgDWRp2bi400XAAA1KrjCzYG98lYt/hGwoB7w7DLQ/RfOlyeTcqtRY9yoWQtCUhKgVEJib8858kRGlJ6SiR1zz2PH3PNITynaezEqPHnscywaFoxFw4Ihj30udjhkglSpWYhZfAlR08IRs+QSVKlZYodktYxeWWz+/Plo3Lgxzpw5g3nz5hX5Ops2bcKaNWuKHU9iYqKmbW9vb9A5Dg4OeV6jMHIurXf8+HE8fvwYX375JUJDQ9G4cWM4OjrCw8MDXbt2xalTp9CkSRMA6uH5Q4YMMege6enpUCgUWg9zNjr0HG4/TwIA3H6WqFXVnqzQ0lb620QmSEhJ4Rx5IiPKXpYud5tKVuhnE/S2iQB1Iv901hlkPFJASFMi82my1jJ1VLqMnsw7OTnh6NGjGDp0KD799FMMHTq0WEPViytnUT5Dl7vLfVxK7rWDDZQ7sa5WrRqmTZum91gnJycsW7ZMs717926DCgDOnDkT7u7umoefn1+RYiUySYIAZCSpH0Za4YKIiIj0k8c+R3pKsuYhCCqxQyITExd6HUK6UrOds02lr1Bz5ocPH16oi9etWxehoaEIDQ2Fn58fgoKCUKZMGYN6yOVyeaHulZeca8RnF6MrSO7jijp/Pfd1Bg4cCFvbvIeNv/7662jUqBEiIiIAAMuWLStwVYApU6Zg0qRJmm2FQmHWCf3SkMYYseYMbj9PQo0Krqxkb+3KBQJPz79qE5kwvw2s6UBkTB3H1NX0yHccU1fkaKxD7p54fo5OuQmqXD8UEi5NJ6ZCJfNr1qyBRCIp1A2y14t//PgxIiMjC3VeYe+lj6urq6adnp5u0DlpaWl5XqMwXFxctLabNWtW4DktWrTQJPPHjh0r8Hh7e3uDpw+YA3dHW2wd+6bYYZCpsHUAKrcQOwoivQIjOA2IqCTZO9mix6SGYodhNbJ75XOSSo0+iJfMnQDATgJkCIAEqPBZEy5NJ6Ii/Q8VBMHgh0Qi0TwMPdeYcq7tnnMOe35yjgpwc3PLtzc9P7mX5zOkxzwgIEDTfvbsmdY0ASKrk7N6PSvZk4lQ/juF6vGo0Zo2EZG5W/fZeK1tiVSKkNk/ixQNmaKs+DRkPFYAGQIk9jLY+bvBpoxDwSdSiSn0xyhSqVRrPfmSEhkZaZTEPijo1bCP6Ohog87JuaxezvMLy9/fX2s755D/vOTuzY+PjzfoPCKL5OgBDN0jdhREWqImf4rKy5YCAJ6MGw//dWtFjoiIqPgyc41MrVSzNty9vEWKhkzR8wXnNW0hXanupSdRFTqZ9/LywoMHD0oiFi0+Pj6IiYkp9nXq1n01xyo9PR1RUVFa68jrc//+fb3nF+feAAzqZc89FSB3ck9EREREZGwVAqrj6b3bgCDAztER3SZPFTskMkWSfx8AJLLiT4mm4rH4iTBNmzZFmTJlNNvZ89HzIgiC1jEdOnQo8r1zz5E3ZGRAzg8wXFxcdIbqExGRuHzn/KhpV1q0UMRIiIiMp9eX0+FXqw78gupi5C+r4eDMDiXS5v1RQ8BWnT7aVXJl4TsTYLLJvLHmztva2qJ79+6a7cOHD+d7/IULFzRz652dndGxY8ci37ty5cp44403NNvnz5/P52i1ixcvatqtW7cu8r3NlTw1E/2WnUK/ZacgT80UOxwSU/wjYFZl9SP+kdjRWAxFhgLDDw7H8IPDocjgfO+ikP37IWvlZUs1bSIyvvSUTOyYex475p5HegrfE5Q0B2cX9P1mJvp+M5OJPOkldbCBva8r7Ku4o9ywOix8ZwIKlcxfuHABf/75Z0nFouXZs2dQKo2zbuHHH3+sqcYZFhaW7xJ169at07Q/+OCDYs9XHz16tKa9devWfI9VKBT4448/NNuDBg0q1r3N0ejQc3rbZIWWttLfpmKZeHSi3jYRkanJXpYud5uIxBEXel1vm8RTqGS+fv36xSoIJ5Z69eph2LBhAIDnz59j7ty5eo+7f/8+li5VFzUqV64cpkyZove4zMxMhISEwNXVFQ0aNMDly5fzvPeQIUPQoEEDAOoh/lu2bMnz2O+++04zr75hw4YIDg4u+MURWaLUBCA9CUiTq//lQrckMqVCgfu938eNmrVwq1FjAMDtVq2RkaNgKhEREVFpMtlh9sb2888/o2FD9VqlX3/9NVavXq31/J07d9CxY0ekpaXBzs4O27Zt05prn1NoaCjWr1+PpKQkXLx4EePGjcvzvlKpFGFhYShfvjwAYPjw4dixY4fWMUqlErNmzcKPP6rnYXp7e+P333+3yrU9l4Y01tsmK7MxGBBU6ragBMoFihuPBZnfZr7eNuUvcuxYpF+7prVPSEnBgx49RYqIyLKlp2RCpVQhNjIJKqWAjmOKXpCYiIwj5xx5zpc3DaU20SEtLQ3nzp3DkydPEB8fD4lEgjJlyqBSpUpo1KgRHBxKdo1CJycnHDhwAEOGDMH+/fsxfPhwzJ49G3Xr1kVsbCxOnDiBrKws+Pj4YN26dWjVyvBhvRJJ/pUcq1evjiNHjmDQoEG4ePEievbsicDAQNSvXx8ZGRk4deoUnj9/DgB48803sXHjRoPWpLdE7o622DSqudhhkNieX4dmvROJDLDlGqbG4mbnhlXtV4kdhtlJv3Vb7BCIrMr+JVcglUnh5aeeu23vZCtyREQkdbSB16h6YodBOZRoMi8IArZu3YrFixfj5MmTyMrK0h+EjQ1atWqFsWPHolevXgUmx0Xl5eWFffv2Yffu3VizZg3Onz+PXbt2wc3NDY0bN8b777+PYcOGwdPTM9/rhISE4MiRI9ixYweqV6+OhQsLrmZcu3ZtnD17FmFhYdi8eTMuXbqEnTt3ws7ODhUqVEDHjh0RHBxcrOr5RBZFIn3VOx+8XtxYyOrpm+ghcXJClU0bSz0WIiJjS0tOwq453wMAuk2eygJ4pCMrPk2zzrz3Rw1hU4YdLaZAIhirbHwu165dw7BhwzTLvBV0m+wEvkmTJli9ejVq1apVEmFZPIVCAXd3d8jlci5rR+Yp/hHw8+vqRN7eFShfBxhxQOyoyMo9HDAQ6XfuAAAc6tWD/8oVIkdEZNkUcakI++4sACD4qyZwK1u8gsSUv83TtetE9f1mpkiRkKmKmhaute07rYVIkVgHQ3O6EpmUfeLECbRo0QIRERGaJD6/3vbs5wRBwJkzZ9CsWTOcPHmyJEIjIlO3tBVg5wJIZUBmCjBgk9gRkZXLiIpC2u3bUKWkwC4gAJXm6S+iSkTGc2TtDXj5ucDLzwVH1t4QOxwiIpNk9GH2jx8/RufOnZGYmKiVpHt4eCAwMBAVKlSAs7MzBEFAcnIynj59itu3b0MulwNQJ/aJiYno1KkTrl69arVzx4msmkSiTugBwNFD1FCIHvToCYlEAomTEzLu3+fa8kRkcbpNnqo1zJ4oN++PGmoNsyfTYPRh9j179sTOnTshkUjg7OyMsWPHYsCAAahfv36+5124cAHr16/HsmXLkJycDIlEgh49euD33383ZngWj8PsyezFP3q1rvzo40AZf3HjIat3q3ETqP5dNlTq6IjAc2dFjojI8qWnZGrWlu84pi4L4BGRVTE0pzNqMh8TEwNfX1+oVCoEBQVh9+7dqFKlSqGucf/+fXTt2hU3btyATCZDVFSUZlk3KhiTeSIi43rQNxhp/y5L51C7NqpuDhM5IiIiIrJkosyZ/+uvv6BUKuHg4ICdO3cWOpEHgICAAOzYsQMODg5QqVT466+/jBkiERFRoUgdHODUqBGcGjWCtISXUSUiIiIylFGT+SdPngAAunfvjoCAgCJfp3r16ujevTsAICoqyiixEZGZSE0A1nRRP1ITxI6GCJUWLdTbJiIiIhKTUZP57IJ3r7/+erGv1bAhCysQWaWwQfrbRCKRubnBf91a+K9by+J3REREZDKMmsxXrFgRAGBrW/wiJTY26kL7Pj4+xb4WERERERERkSUx6tJ0jRo1AgDcvHmz2NfKvgZ76ImsTPdftKvZE4koIyoK97v3gJCaCoc6dVB5+TL2zhMRkdXIik/Ds7lngUz1tsReBu+JDWFThjVkTIHRl6Zr3rw57t27h7t37xa5mrpCoUC1atXg7++Pc+fO6T2md+/eSEhIwOHDh4sTrsVhNXsye2u6aG8P3SNOHEQAbjVpClVKimbbqVEj+K9bK2JEREREpSdqWjiENKXWPomDDL7TWogUkXUQpZo9ACxcuBAKhQJDhw5FVlZWoc9XKpUYNmwY5HI5fv755zyPCw8PZ6V7IiIiIiIiskpGT+YbN26M9evX448//kDz5s3xxx9//L+9Ow+Pujz3P/6Z7AskLEEIi0gwRcBQQaSCjULxdwREUGRrBULSc8AqICrtMaVWcUORIgpUoJUloT2AVRGRYItClYJFA0oqWKhIZBPCkkyWSTJJ5vdHzJCJQ5gkM/PNzLxf1zXXub/k+T7PneIB7jybXJ383759uwYOHKisrCz98Y9/1KBB/MQHCCgXc6XTn0vf7JYqSqUJ64zOCAGu26a3ZIqMlCRFXH89p9kDAAJG+emi78/Khwer/UNsg24u3L7M/qmnnpJUved9/fr1MplMiouLU//+/XXttdcqJibGfkCe1WqV2WzWV199pU8//VR5eXmSpLvuuuuKe+VffPFFlZSUqLKyst52gYZl9vBpz1/t+PzYN8bkAQAAEMCqLBU6NW+Pw6+FJ8Sq3bQ+BmUUWFyt6dxezAcFBdmvqKvddc2vXU5D2ta0N5lMFPN1UMzDp1HMAwAAGC5v5QGVHS1w+LWOTwxUUKRbz0/HZRi2Z742k8lk/7izLQA/Vfv0ek6yBwAAMExIpxb2+KqH+lLIN0Me+x1x84Q/AH9nyZfenF4dX9VTiog1NB0AAIBA1XZyL53PPKjghFi1ndyLQr6Z8sjvSvv27XXq1ClPdG0XHx+vs2fPenQMAF60YZKUd7A6Pnuo+plr6QAAALwuKDKE/fE+gB+xAGgeqqxSeVF1HBptbC7AdyrNZp2YMVOS1HnpEgVzFgkAP1RaXKTNC5+VJI2aM1cR0S2u8Ab8XZWlQuczqydZmJlvvjy6Z96TWMYP+BmbybGI51o6GKzSbNZ/ht6u0kOHZKussBf1AOBvNi14SmePHdXZY0e1acFTRqeDZqCmkK8bo3lx+49YVq9ercjv7uT1pFdeeUUWi8Xj4wDwkuAQKf6Hl54jWxmWCiDJoXgvO3xEET17GpgNAHjOuW9yncYAmje3F/MpKSnu7tKp8ePHe2UcAF5gyZespdLpfdWz8/fvMjojQJIUnpiosiNHJFUvswcAf5P3zTGVlRRLkkIjInVV124GZ4TmoOYAvJoYzZPb75mHsbhnHj5pzUjp2wOXnjv04fA7GI798gACwdK0CSorKZG+KwkeXLWePfOAwVyt6bx2koHFYtGePXuUm5ur8+fPy2QyqW3bturatasGDhyoiIgIb6UCoLnh8DsAAAxjMpkkk0mSKOQBH+LxYn7Hjh1asGCBPvjgA1VUVDhtExoaqttvv12//OUvddttt3k6JQDNTc3hd9bqZX4cfofmoPae+RMzZqprxloDswEAz7jnsSe1/vFfSpImzHvB4GzQHFRZKpS36l+yniyUKSxY7R/qp5DWTLw2Rx47zb6oqEjjx4/X7bffrr/+9a+yWq2y2WxOP+Xl5crKytJPfvITTZw4UYWFhZ5KC0BzVHP43dWDqv8vh98BAOAV/3xjg7r0SlKXXknavYEfpqP69Hrryep6zFZeqTMv7zM4I1yOR4r5/Px8DRw4UG+88Yb9CjnTd0t3nKn5ms1m0+uvv65bbrlFBQUFnkgNQHNUeyaeWXk0E/Hzn1PpoUMqPXRI8fOfMzodAAC8wlZlk6pU/UGz5pED8IYMGaK///3vMplM9mK+ffv26tWrl+Lj49WiRQvZbDYVFxfr5MmT+vLLL3XmzJnqhL4r7AcPHqz333/f3an5PQ7AAwD3yJ3ieDsLy+wB+KPS4iJtXvisJGnUnLnsmYfOvvq5yk8XSuU2ySR1+NVNLLP3MsMOwPvTn/5kL+QjIiL04IMPKiUlRb179673vX/9619au3atXn31VZWUlGjnzp3685//rJ/97GfuThEAAADNVFmJVe8u+1znT5Wobcdo3flgH4VHhRqdlt+KiG6h8U/MNzoNNCOmYJPCO18qICnkmy+3L7N/7rnqpYjdu3fXZ599pgULFlyxkJek66+/Xi+++KL27dun7t27y2az2ftyty1btmjcuHFKSEhQZGSkOnTooEGDBumll17ShQsX3D6eyWRq0Oe6665zew4AgIapfa88d8wD3pO1PEfnT5VIks6fKlbW8hyDMwICS+175bljvnlz6zL7Y8eOKSEhQWFhYfr00091/fXXN6qfnJwc9e/fXxUVFfrqq690zTXXuCW/c+fOKSUlRVu3bpUk9ejRQ0lJScrLy9OuXbtUWVmp+Ph4ZWZmaujQoW4ZU6r/vABnevTooS+//LJRY7HMHj7nYq60/MfVJ9l37Cfd9xcOwAOAALZp0T7lHS+yP7fr0kJ3P9LPwIwAwLsMWWb/z3/+U5I0bNiwRhfykpSUlKRhw4Zpy5Yt+uc//+mWYr6kpETDhg1Tdna2goODtXLlSqWlpdm/fuTIEY0cOVKHDx/WiBEjtH37diUnJzd53BqRkZG6+uqrXWqbkJDgtnGBZm9F8qUr6U7tkzZMkqZuMTYnAIBhht+f5LDMfvj9SUanBASM8tNFOvvKfskmhXZuoXY/T1JQpMdvM0cjufV3puYQuwEDBjS5rx/96EfasmWLvc+mmjVrlrKzsyVJTz/9tEMhL0mJiYnKyspS7969VVpaqjFjxujIkSNq1aqVW8YfMGCAdu7c6Za+AAAA/FV4VKjG/LK/0WkAAenskupCXpKsJ4p0PvOg2k3rY2xSuCy37pm3WCwymUxq0aLpp2DWnHhvsVia3FdOTo5Wr14tqfpU/UcffdRpu4SEBE2fPl1S9ZL8+fM5DATwuOkfSaHR1XHHflxNBwAAALjArcV8XFycbDabcnNzm9xXbm6uTCaT4uLimtzXokWLVFVVfVHihAkTFBYWdtm2U6ZMscfLli1zyw8TANSjdVcp/bj02wvSf29nvzyahUqzWblTUpQ7JUWVZrPR6QAA4BVXzewrfXfcV2jnFhyA18y5tZjv1q2bJOntt99WU87Vq6ys1FtvveXQZ2NZrVa9/fbb9ucrHWzXt29f+9L64uJiZWVlNWl8AIDvOTFjptMYAPzNm/Of1MZ56SotLrpyY/i9sPgW6jw/WZ2fT1b7GX3ZL9/MubWYv+WWWxQVFaWvv/5a8+bNa3Q/v/3tb3Xs2DFFRUXpxz/+cZNy2rt3ry5evGh/vvHGG+ttbzKZHNps27atSeMDAAAAzd3mhc8anQKABnLrj1rCw8N17733KjMzU08//bTy8vL0zDPPqHXr1i69f/78eaWnp+uPf/yjTCaTxo0bV++SeFfk5Fy6mzQ8PFydOnW64ju1VwPUfr+pqqqqtGvXLu3evVvHjx9XRUWF2rRpo8TERA0ZMqTJqxAAAO7ReekS+4w8d8wDAIDmyO3rJp566ilt3LhR5eXlWr58udatW6cRI0Zo6NCh6tmzpzp27Kjo6GjZbDYVFRXp1KlTOnTokLZv366srCyVlJRIkiIiIpo0u1/j4MGD9rhjx44uvVO74K/9flMcO3ZMvXv3rvf++OHDh+uFF15QUhJXsACAkYJjYtQ1Y63RaQCA14yaM9foFAA0kNuL+a5du+oPf/iDpkyZIpPJpMLCQm3cuFEbN2684rs1++yDgoL02muvqUuXLk3OJy8vzx67es1c7XZms1lWq1WhoaFNyiM3N1fR0dH67W9/q3HjxikhIUGVlZX64osv9Ic//EGrV69WVlaWdu7cqYyMDI0dO7ZJ4/mivcfOa/zyjyVJvTvG6M//c7NiI5v2vzuaOUu+tG6sdHpf9Yn29++qPhAPbney6KTGbBqjksrqH5hGhUTpzdFvqlOLK69W8mflJ0/qq5F3SZc57NQUFaWEdzYrzIVVXQCa5tyJQm145hP7s8kkjZ97k+I6tzQwK/9TWlykvzz9G1389qRmrnldJ//9hWw2qaykWBHRTb+RCr6lylKhs3/MUcXJWmcmmKSrZvVVWDz/PTR3bt0zX2PSpElatmyZQkJCZDJVH4dos9nq/dQICwvTq6++qokTJ7oll8LCQnscHh7u0jsRERGX7aOxOnbsqP3792vevHm6/vrrFRUVpZYtW+rmm2/Wa6+9prVrq2eALBaL7rvvPn388ccu9VtWViaz2ezw8VU1hbwkfXHKrOmZnxqYDbxiw6TqQl6SrMXSimRj8/Fj494ZZy/kJamkokTj3hlnYEbNw9d333PZQl6SbCUl1W0AeNzG5xz/3rfZvv9raLrNC5/Vma//4/Br1lKLMn81y6CMYKTzmQcdC3lJsn133zyaPY8U85L0i1/8Qh999JF+9KMfORTrJpPJ4VPDZrPplltu0T/+8Q/9z//8j9vyqH21nKv77+u2q1n631g5OTn6/PPPlZiYeNk2kydP1s9+9jNJUnl5uR588EGX+p4/f75iY2PtH3esZgAAAAAANG8eK+YlacCAAdq9e7d27dql//3f/9XAgQMVHx+v8PBwhYeHq2PHjho0aJAee+wx7dmzRx999NEVT5tvqMjISHtcXl7u0jt120VFRTUph+uvv15xcXFXbDdr1qWfiO7bt08fffTRFd9JT09XQUGB/XP8+PEm5WqkjfffbI97d4zRisn9DcwGXjFhnRTfrzoOjZamX/m/eTTO63e9rqjgS3+WRYVE6fW7Xjcwo+ah26a3pFp/T9RlioqqbgPA48b/2vHvfZPp+7+Gphs1Z67ad7vW4ddCIyI1ecErBmUEI7Wd3Eshneospzd9d988mj2TrSkXwvuAn/70p1q/fr2k6jvk9+3bd8V3Fi9erIcfftj+XF5e3uQ9866oqqpSTEyMiouLJUmPP/64nnrqqQb1YTabFRsbq4KCAsXExHgiTQAAAACAh7ha03l0Zr45aNeunT3Oz8936Z2CggJ7HBMT45VCXqo++K979+7258OHD3tlXMAwlnxpzcjqjyXf6GwAAAAAn+H3xXyvXr3s8alTp1x65+TJk07f94aWLS+d2HrhwgWvjg143YZJzmMAAAAA9Wq2xXx8fLxCQpp+c17tO9vLysocCvXLOXr0qNP3vaG0tNQeR0dHe3VsAAAAAIBvaLbFvCS5Yzv/gAED1Lp1a/tzdnb2Fces3WbYsGGNHrugoEDPPPOM/do5V9RePdCxY8dGjw34hAnrnMcAAAAA6tWsi3l3CA0N1ejRo+3P77//fr3t9+/fb99bHx0dreHDhzd67IsXL+rxxx/XggULXGp/4sQJnT592v6cnMyd2/Bzka2kqVuqP5GtjM4GAAAA8BlNX8d+GeXl5dq8ebN27NihL774QhcuXFBxcbHLs+15eXluy+Xhhx9WRkaGqqqqtGHDBr344ouXvXM+IyPDHj/wwAMOV9s11pdffqmzZ8/qqquuqrdd7bFbtWrVpB8kAAAAAHUV5J1R5q9mKTQiUtNfXWN0OgCawCPF/DvvvKNf/OIXDrPMkuvL5k0mk2w2m0wmk1vy6dOnj1JTU/Xaa6/pzJkzWrRokR577LHvtTt69KhWrFghSYqLi1N6errT/qxWq9LS0rRp0yZde+21Wrt2rfr06XPZ8auqqvTEE0/o1VdfvWybo0eP6vnnn7c/P/bYY4qNjXX1WwQAAACuKONXM2UtLZXc889sAAZy+zL7zZs3695779WpU6fsxbvNZmvQ/nd37JWv65VXXlG/fv0kVd/fvnr1aoevHzlyRMOHD1dpaanCwsL05ptvOuy1ry0zM1Pr1q1TUVGRPvvsM82YMeOK4y9fvlwzZsxwekL9Bx98oMGDB6uwsFCSNHbsWP3qV79q6LcIAAAA1Mta67BlAL7NrTPzFRUVmjFjhioqKuyz6zabTT179lT37t0VGxvr8gn1GzZsUFlZmdtyi4qK0rZt25SSkqKsrCylpaVpwYIFSkpKUl5ennbt2qWKigrFx8crIyOjQfvVL7eCoF27dpo+fbr+/Oc/q7CwUMuWLdNrr72mAQMGqFOnTiotLdWBAwf01VdfSZLCw8P12GOP6be//a3bViUAzZol/9KVdBPWsW8eXldpNuvEjJmSpM5Llyg4JsbgjADAszokJOrbo0eMTgOAG5hsbpwG37lzp37yk5/YC9F7771Xv/vd79SlS5cG9xUfH6+zZ8+qsrLSXenZvfPOO1qzZo327dun06dPKyYmRt27d9fYsWOVmpqqNm3a1Pu+1WpVamqqNm3apMTExCsusy8pKdH27dv13nvvaf/+/frqq6+Un5+v4OBgtWnTRr1799bgwYOVmpqqDh06NOl7M5vNio2NVUFBgWJ86B+lxy+W6M6XP5IkvftQsrq0jjI4I3jFmpGOz1O3GJMHAk6l2azc1DSVffGFJCni+usVFBWlrhmu3z4CAL6otLhImxc+q5CwcI1Jf9LodGCwKkuFzmcelCS1ndxLQZEeO1INDeBqTefWYn7ZsmWaOXOmTCaT+vXrp08++aTRfXmymPdnvlrM93nyPYfnA0/eYVAm8CqKeRgkd0qKSvbudfi1qAEDKOYBAAHl7PLPZf22WJIU2iFaV93/Q4MzguR6TefWH72YzWZ7PGHChCb1NX78eIf+APihCescl9kDXmKrrPjer3VeusSATAAAME5NIV83hm9wazFf++q1pi4Xf/nll5uaDnzIuw8lOyyzR4CouWce8DabpKgoqaREknTN25vYLw8ACDih7aNlPVNsj+Fb3FrMDx482B5/++237uwafq5L6yiW1gPwGlNIiKKuv97+HNmjh4HZAABgjLipvR32zMO3uPVquu7du+uee+6RzWbTW2+91aS+7r33Xg0dOtRNmQEAcEntJfUsrwcABKqgyBC1m9ZH7ab14fA7H+TWA/Ak6dy5c7r55pv19ddf65lnnlF6enqj+uEAvMbx1QPwAHiWudys2TtmS5IWD1msmDD+fACAQFNzkr0kjZozVxHRLQzOCIAzrtZ0bp2Zl6S4uDj94x//0G233aa5c+fqrrvu0o4dOyjKAcBANYV83RgAEDg2LXhKZ48d1dljR7Xl5ReMTgdAE3lkLUX79u31wQcf6Je//KV+97vfaevWrQoLC1NCQoJat26tsLCwK/Zx4cIFT6QGAAAABKRz3+Ta4/PHjxuYCZoD7pj3fR75HTt06JDS0tK097s7fG02m8rKynTo0CGZTCaX+rDZbC63BQDUb/GQxQ7L7ANdpdmsEzNmSqreM89J9gACQVyXrjp3vLqgb9u5i8HZwGjn1n5hv47u3NovuGPeB7l9z/yhQ4f04x//WPn5+d8ryBs6lMlkYnl+A7FnHgCuLHdKisNz14y1BmUCAN7DnnnUdvLJ3Q7PnZ4cZFAmqMvVms7tM/P//d//rYsXL9qLeJvNppYtWyohIUEtW7ZUcHCwS/3s3r1bFRUV7k4PAAAACEgR0S00/on5RqeBZoI75n2fW4v5nJwc7dmzx17IDxw4UAsWLNCgQYMavGS+5jR7AADcrfPSJQ7L7AEACDTcMe/73FrM79mzxx53795dH3zwgcLDw905BAAATRYcE8PSeqAZKSuxKmt5jiRp+P1JCo8KNTgjwP/V3DEP3+XWq+nOnTtnj6dMmdKkQr5z5866+uqr3ZEWAAAAmrGaQr5uDAC4PLfOzLdu3doeX3PNNU3q65NPPmliNgAAAAAA+Ce3zszfeuut9rigoMCdXQMAAMBP/SSlp/KOFynveJF+ktLT6HQAwCe4tZjv3bu3RowYIZvNpvfff79JfS1atEhPPfWUmzIDAABAc/XB2kNq16WF2nVpoQ/WHjI6HQDwCW4t5iVpzZo1uv7667V582b99a9/bXQ/L774oubNm+fGzAAAAAAA8A9uL+bj4uK0Y8cOjRgxQnfffbcWLFigoqIidw8DAAAAPzH8/iSnMQDg8kw2m83mzg5rL43PysrS3r17FR4erptvvlk9e/ZU69atFRYWdsV+XnzxRZWUlKiystKd6fk9s9ms2NhYFRQUKCYmxuh0gMuz5EsbJlXHE9ZJka2MzAYAAABoFlyt6dxezAcFBclkMtmfa7qv/WuusNlsMplMFPMNRDEPn7FmpOPz1C3G5AEAAAA0I67WdG5fZl+jdhHf0EIeAABPqTSblTslRblTUlRpNhudDgAAQKN4rJiXqgv6xn4A+LkJ65zHgIedmDHTaQwAAOBLQjzV8fr16zV+/PhGvx8fH6+zZ8+6MSMAzUpkK5bWAwAAGKDKUqG8Vf+S9WShTGHBav9QP4W0jjA6LTSQR2fmAeCyLPnV++bXjKyOAS/pvHSJ0xiAMcpKrPrL85/o9w/s0B9m/13m8xajUwL83vnMg7KeLJQk2cordeblfQZnhMZotsU8S+0BP1dzkn3dGPCw4JgYdc1Yq64ZaxXMQaGA4bKW5+jsN9XXGFvLq7ThmU8Mzgjwf7Yqm1Sl6g98ltuX2b/11luSpJtuuqlJ/Xz66aecZA8AAAAA7maTFGaSym2STWr/UD+jM0IjuL2YHz16tFv66dy5s1v6AdBMTVjneM88ACAgDb8/Se+88pnOflOk0LAgTfhN0yaEAFyZKdik8M6XVqexX943eewAPACoFwfgAQAkhUeFauxjFPCAt1RcLFXZCbNUbpMpPFjtZzMr76u8WsyXlZXp1KlTOn/+vEwmk9q2bav4+HiFh4d7Mw0AAAAACEhnXt4nVdikIMlmrdTF1w+r3bQ+RqeFRvD4AXhms1kvvPCCfvzjHys2NlbXXnutfvSjH2nAgAHq3r27YmNjlZycrIULF8psNns6HUnSli1bNG7cOCUkJCgyMlIdOnTQoEGD9NJLL+nChQteyaHGxIkTZTKZZDKZdM0113h17OakwGLVxJV7NHHlHhVYrEanA0+z5EuvDZOev1padQen2XuYudystPfSlPZemszl3vlztjmrNJuVOyVFuVNSVOmlv3cAoDkoLS7Sxnnp2jgvXaXFRUanA6CJTDYPHhv/+9//Xr/+9a9VWPjdtQeXGcpkMkmSWrZsqfnz5+sXv/iFR/I5d+6cUlJStHXrVklSjx49lJSUpLy8PO3atUuVlZWKj49XZmamhg4d6pEcasvKytKIESPsz127dtWxY8ea1KfZbFZsbKwKCgoU40OnNE9cucfhef20gQZlAq9YM1L69sCl5w59WHLvQWnvpTk8r7pjlUGZNA+5U1IcnrtmrDUoEwDwro3z0u1xSFi4xqQ/aVwyMEzFxVJ9uzhbslYprHNLxaVer6BIdl83J67WdB75XbPZbEpJSdGf/vQnewFfM/tcH7PZrBkzZujjjz/W2rXu/cdVSUmJhg0bpuzsbAUHB2vlypVKS7v0D9wjR45o5MiROnz4sEaMGKHt27crOTnZrTnUzeeBBx7wWP9As1Zllcq/mxEIjTY2FwAAgAAS0jpCnefdYnQacAOPLLN/9NFHtW6d4+nUNptNISEhio+PV2Jioq699lrFx8crODhYNptNNptNJpNJNptN69at05w5c9ya06xZs5SdnS1Jevrppx0KeUlKTExUVlaWIiIiVF5erjFjxig/P9+tOdT2xBNP6NixY5wX8J0Vk/s7jeGnbCbHIp7T7D1q8ZDFTuNA1XnpEqcxAPi7UXPm2uMRs9z7b20A3uf2ZfZ79uzRLbfcYi/Mb7rpJk2ZMkW33367rr32WgUHBzu0r6io0H/+8x9t375dGRkZ+vTTT6sTM5m0e/du/ehHP2pyTjk5ObrhhhtUVVWl9u3b65tvvlFYWJjTtrNnz9bLL78sSfrVr36lF154ocnj1/X555+rf//+Cg4O1qOPPqrnnntOUuAusy+wWDU9s/r3fcXk/oqNDDU4I3jcqjuks4eq46t6SmnvGZsPAAAA0Ey4WtO5fWb+8ccflyRFRkYqMzNT//znP/Xggw+qR48e3yvkJSkkJETXXXedZsyYob179yojI0ORkZEOfTXVokWLVFVVJUmaMGHCZQt5SZoyZYo9XrZsmSwWi1tyqFFVVaVp06apoqJCv/71r5WYmOjW/n1RTSFfN4Yfs5mcx4AXcAAegEDE4XeA/3FrMX/x4kXt3LlTJpNJmZmZuu+++xrcx6RJk5SRkSGbzaYdO3Y0eam71WrV22+/bX++0sF2ffv2VatWrSRJxcXFysrKatL4dS1btkx79+5Vjx499Nhjj7m1b8BnBIdUH3rXoU91DHjRiRkzncYA4M82L3zWaQzAd7m1mP/oo49UVVWlAQMG6J577ml0P/fee68GDBigqqoqffjhh03Kae/evbp48aL9+cYbb6y3vclkcmizbdu2Jo1f24kTJzR3bvVepRUrVtS7QiCQsF8+ANXeI89+eQAAAKDB3FrMnzx5UpL0X//1X03u64477nDos7FycnLscXh4uDp16nTFd7p16+b0/aaaOXOmCgsLNXXqVN12221u69fXxUaGav20gVo/bSD75QNFZKvqq+imbqmOAS/iADwAgaj24Xe1YwC+y63rW/Pz82UymRQXF9fkvuLi4mSz2Zq8zP7gwYP2uGPHji69U7vgr/1+U7z99tvatGmT2rZtqxdffNEtfQIAGi44Joa75QEEnIjoFhr/xHyj0wDgRm4t5lu1aiWbzaZz5841ua9z587JZDLZ9683Vl5enj12ta/a7cxms6xWq0JDGz9jXFhYqBkzZkiSFi5c6JYfdvgTTrMPMBdzpRXJ1fH0j6TWXY3NBwGn0my275XvvHSJgn3k5g8AAJqqylKhc2u+kPVMsUI7RCsupbeCIjm/yFe5dZl9zYz29u3bm9zXe++959BnYxUWFtpjV+90j4iIuGwfjfGb3/xGJ06c0G233aapU6c2qa+6ysrKZDabHT6+htPsA0xNIV83BryEA/AAAIHqfOZBWc8US5Ks3xbrfKZ7ViHDGG4t5pOTkxUUFKSPP/5YmzdvbnQ/b7zxhvbu3augoCDdeuutTcqp9tVyrh44V7ddSUlJo8f/9NNPtXTpUoWFhWn58uWN7udy5s+fr9jYWPunS5cubh8DAPxFpdms0kOHVHrokGyVFUanAwAA0GhuLeZbt26t2267TTabTffdd59ef/31Bvfx5z//WSkpKTKZTBo8eHCTl9nX3FkvSeXl5S69U7ddVFRUo8aurKzUtGnTVFVVpf/93//Vdddd16h+6pOenq6CggL75/jx424fw9M4zT7ATH1XKi+q/kx91+hsEGBOzJip8MRESVLZ4SMcgAcACChtJ/dSaPtoSVJoh2i1ndzL4IzQFG7fIPHUU08pOTlZJSUlmjhxohYvXqwpU6Zo6NCh6t69u0wmk0P7qqoq/ec//9H27duVkZGhTz75RDabTSaTSU899VST82nZsqU9Lisrc+md0tLSy/bREIsXL9b+/fuVmJhov5LO3cLDw13ePtBc1ZxmjwCxLV26etCleOoWY/NBwDGFhCiiZ09JYr88ACCgBEWG6Kpf/NDoNOAmbi/mb7nlFs2YMUNLly6VyWTSxx9/rI8//lhS9fL1q666StHR0bLZbCoqKlJeXp6sVqv9/ZpC/qGHHtLAgU0v8Nq1a2ePXT0Zv6CgwB7HxMQ06vC73NxcPfHEE5KkV1991ecLbgDwB52XLnE4/A4AAMBXeeTowpdffllnz57Vxo0bZTKZZLPZJFXPjNe3DLxm1v6+++7TokWL3JJLr16Xlo6cOnXKpXdq321f+/2GePDBB1VcXKxJkyZp6NChjeoD8EsT1kkbJl2KAS+qLCxU6aFD9piZeQAA4Kvcume+hslk0vr167Vo0SKH/eYmk8npp0Z0dLReeeUVZWRkuC2XpKQke1xWVuZQqF/O0aNHnb7fEO++W70XeN26dZf9vk0mk1JTU+3v5Obmfu/rTz75ZKPGB5qtyFbVS+unbqmOAS/6+u57nMYAAASCKkuF8lYeUN7KA6qycBCsr/PopYKzZ89WSkqKfv/732vLli3Kzs5WRYXjfzQhISHq37+/Ro8erenTpzf5wLu6BgwYoNatW+vixYuSpOzs7Hqvu7PZbMrOzrY/Dxs2rFHjpqSkuNTuP//5j/7xj39Iqv5hxtixYx2+fsMNNzRqfF/CPfMAAACA59W+iu585kG1m9bHwGzQVCZbzRp4L7BYLDp58qQuXLggSWrbtq06der0vXvd3S01NVVr1qyRJM2aNUsvv/zyZdvu27dPN954o6Tq4jovL8/hRHx3W7NmjX12vmvXrjp27FiT+jObzYqNjVVBQYFifGT56MSVexyeOQwPgKeUnzxpn5HvtukthdXzw10AAPxN3soDDs8U882TqzWdR5bZX05kZKSuvfZaDRgwQAMGDFD37t09XshL0sMPP6ygoOpvdcOGDfVeUVd7if8DDzzg0UIeAOBdYZ06qccne9Xjk70U8gCAgFP7KjqupfN9Xi3mjdKnTx/77PeZM2cue7je0aNHtWLFCklSXFyc0tPTnbazWq2aPHmyWrZsqb59++rAgQNO28E13DMPAAAAeF5QZIjaTeujdtP6KCjSozuu4QUNKuZ/8pOfaNy4cZ7KxcG9997r1lPgX3nlFfXr10+S9Pjjj2v16tUOXz9y5IiGDx+u0tJShYWF6c0331Tr1q2d9pWZmal169apqKhIn332mWbMmOG2PANRzT3z66cNZL88AAAA4CEcgOdfGvTjmJ07d6pDhw6eysXB7t27dfbsWbf1FxUVpW3btiklJUVZWVlKS0vTggULlJSUpLy8PO3atUsVFRWKj49XRkaGkpOTXe679on8V/Lll1/q+eeftz//5z//scfnzp3T1KlT7c9xcXFauHChy30DzZ4lX/rzRCnvoHRVT+mnGzjR3gvM5WbN3jFbkrR4yGLFhPnGeRoAAPcpLS7S5oXPSpJGzZmriOgWBmcEI3AAnn9p0AF4QUFB6tChg8v3tTdFfHy8zp49q8rKSrf3/c4772jNmjXat2+fTp8+rZiYGHXv3l1jx45Vamqq2rRpU+/7VqtVqamp2rRpkxITE7V27Vr16ePa/yPs3LlTQ4YMcaltYw7E88UD8BBA1oyUvq21LaVDn+or6uBRae+lOTyvumOVQZkAAIyycZ7j9tHxT8w3KBMYiQPwfIOrNV2DN0pUVlbq+PHj8vQh+J4o4mvcdddduuuuuxr9fmhoqNatW9eodwcPHuzx/+0AAAAAoK62k3vZZ+c5AM/3NXhmviFLypvCZrPJZDJ5tKj3R8zMo1ljmb0hWGYPAGCZPeA7XK3pGlXMe2tmmWK+4SjmAQCALykrsSpreY4kafj9SQqP4jBcAIGtWdwzbzKZGjWT763ZfwBeZsmv3je/ZmR1DHhRpdms3Ckpyp2Sokqz2eh0AHynppCvGwNwL06y9z8N3jMfGhqqgQMHutT273//u8LCwlxuX9vu3btVUcF/ZIBf2TDJMebwO3jRiRkzHeKuGWsNzAYAAO/iJHv/0+Bivk2bNtqxY4dLbYOCghrUvraa0+wB+ImLuVLubslWKYW3lNr3NjojAEAzMPz+JIdl9gAA13h0mT1wJQUWqyau3KOJK/eowGI1Oh140opkSd+dt1FWKNnYTgPv6rx0idMYgLHCo0J19yP9dPcj/dgvD3hQ7dPrOcnePzR4Zt5buL4tMEzP/NQhXj+t4Vsy4ENMJskUXB0HN9s/fuCngmNiWFoPNEMcgOcdnGaPoMgQltb7mQbNzK9evVqLFy/2UCqOXnnlFa1atcorYwHwgukfSaHR1XHHftKEdcbmE0DM5WalvZemtPfSZC7n4DcAzQsH4HlHTSFfN0bg4AA8/9OgqbGUlBRP5fE948eP99pYMM6Kyf3ts/MrJvc3OBt4VOuuUvpxo7MISDV3zNfEq+7gB6UAAAQaDsDzP+yZh6FiI0O1ftpArZ82ULGRLKsDACDQ1D70jgPwPGfUnLlOYwC+y2Tz4Ob0oKAgdejQQadOnfLUEKjDbDYrNjZWBQUFiomJMTodAM2Audxsn51fPGSxYsL4swFA88B+ecB7qiwV9tn5tpN7KSiS84uaK1drOop5P0Mxj2bLkn/pnvkJ66TIVkZmgwBUaTbb75rvvHSJgvkzEjDcmy9m6/ypYklS247RGvPLGw3OCACM52pNxzJ7AN5RU8jXjQEvqSnk68YAjFNTyNeNAQBXRjEPwPMs+dK3B6o/VVajswEANBNtO0Y5jQEAV9agYv7DDz/Uxx9/7KlcHHz88cf68MMPvTIWAA/bMElq16s6PnuIa+lgiPj5z6n00CGVHjqk+PnPGZ0OAEl3PvhDtevSQu26tNCdD/7Q6HQAv8bVdP6nQXvmg4KCFB8fr5MnT7rcvrF75uPj45WXl6eKCv5Dawj2zKNZWjPS8XnqFmPyQEDLneJ4vWrXjLUGZQIAgPflrTzg8MzVdM2Xx/bMe/C8PEPHAuBBtWfimZUHAADwOluVTeWnilR+qki2Kuosf8CeeQCeV1pwac98aYHR2SBAdV66xGkMAEBAsF0mhs9q8OWCBQUFSktL81j72u8B8BMrkh3jx74xLhcEpPKTJ/X13fdIkrpteotr6QAAAccUbFJYxxZGpwE3avCeeZPJ5HLnNputQe2dvVtZWdmo9wMVe+bRLD1/teMzxTy87N83DXB47vHJXoMyAQDAGFWWCp3PPChJaju5l4IiGzyvCy9xtabz6O9gYwt5BI4Ci1XTMz+VJK2Y3F+xkaEGZwS3+zbn0tJ6U7A0/e/G5hNgThad1Lh3xkmSXr/rdXVq0cngjLzP8u9/q6qwsPohKEhBUVx/BTQH5vMWrX96ryrKq3RV15a6a+YPFR7FvwM8oSDvjDJ/NUuSNHnBK4pt197gjOBNVZYKnf1jjipOFklB0lUz+1LI+4lG7Zm32Wwe/yAw1BTydWP4kZW3XYptldK2dONyCUA1hXzdOJAcG3PvpYeqKoUlJBiXDAC7Dc98ooryKknS2dxCZS3PMTgj/1VTyNeNERjOZx6sLuQlqUo6u2S/sQnBbRr8I5nWrVvrjTfe8EQudjabTffee6/y8/M9Og4AIPAERUQYnQIAAECTNXjPfGPvjW+o+Ph4nT17lj3zDeRre+ZZZh8Avs2RVtwq2aqkjn2lyZukyFZGZxUwWGZfvcz+2D1jpKoqRVx/va5e9RoH4AEGO3eiUBue+cT+fFXXlhr10A0ss/cQltkHNmfL7MPiOQivOXO1pqOY9zO+VswDAIDA8/sHdjjcc93pB6109yP9DMwIAJoPjxyAd/XVV6t9e+/8JK9z586KYCkkAAAAAADf06CZeTR/zMwDAIDm7tyJQm149hPJxhJ7AKirWVxNBwAAANQV17mlHnz1J0anAQA+rVFX0/m6LVu2aNy4cUpISFBkZKQ6dOigQYMG6aWXXtKFCxfcPl55ebk++OADPf744xo2bJi6du2q6OhohYWFKS4uTjfffLMeeeQRffbZZ24fGwAAAADgfwJqmf25c+eUkpKirVu3SpJ69OihpKQk5eXladeuXaqsrFR8fLwyMzM1dOhQt4yZnp6u5cuX26/ZCwsLU+/evdWtWzcFBwfr3//+tw4cOGBvn5KSouXLlzf6vACW2aPZ+DZHWv7j6tgULE3/u9QhydicAhCn2QMASouLtHnhs5KkUXPmKiKak8yB5swjp9n7spKSEt16663Kzs5WcHCwVq5cqbS0NPvXjxw5opEjR+rw4cMKCwvT9u3blZyc3ORxb7jhBn3++eeSpIkTJ2rBggXq0qWLQ5vPPvtM9913nw4ePChJGjFihN59991GjUcxj2bjqTZSVa3bKIKCpd+6f+UL6jfo/wY5PO/+6W6DMgEAGGXjvHSH5/FPzDcoEwCucLWmC5hl9rNmzVJ2drYk6emnn3Yo5CUpMTFRWVlZioiIUHl5ucaMGWOfTXeHwYMHa926dd8r5KXqgr9mbEnaunWr3n77bbeN3VwVWKwa++o/1OfJ9zR2+W4VWKxGpwR3seQ7FvKAQSrNZh372X36900DdOy++1RpNhudEgB4XVVVpc4eO6qzx46qir+fAb8REMV8Tk6OVq9eLUlq3769Hn30UaftEhISNH36dEnVS/Lnz3ffTy3nzJmj4ODgy3796quv1p133ml/3rx5s9vGbq6mZ36qw2eKJEmHvy3U9MxPDc4IbrNhkhTf99KzKVia9nfj8glgr9/1utM4UJyYMVNlR45IksoOH9GJGTMNzgiAJJWVWLVp0T5tWrRPZSX8MN/jbJeJAfi0gCjmFy1apKqqKknShAkTFBYWdtm2U6ZMscfLli2TxWJp0tjjxo3T9OnTddttt12xbWJioj0+ceJEk8YFDBfeQromufrzxAX2yxukU4tO2v3T3dr9090BuV++qqxMVYWFqioslL77ewCA8bKW5ziN4RlBwcG66poEXXVNgoLqmVwC4Fv8vpi3Wq0OS9avdLBd37591apVK0lScXGxsrKymjT+3LlztXz5crVoceWDRkpLS+1xTQ7+bMXk/vpB++r/XX7QoaVWTO5vcEZwmwnrnMeAl5V99ZUUVP1XXVVpqTovXWJwRgDgfaPmzHUaA/Btfn/P/N69e3Xx4kX784033lhve5PJpBtvvFHvv/++JGnbtm0aM2aMR3OssXfvXnvsrtP0m7PYyFD95Re3GJ0GAD9mMplkio62PwdzMCjQLAy/P8k+Iz/8flZueVpEdAsOvQP8kN/PzOfkXFq6FR4erk6drrzMtFu3bk7f96SsrCzt3l19yvQPfvADh+X+gM/ZMMl5DHhZt01vOY0BGCs8KlR3P9JPdz/ST+FRoUanAwA+ye9n5muue5Okjh07uvRO7YK/9vueUFJSolWrVumxxx6TJPXo0UNbt25t9D3zAIBLwjp1Uo9P9l65IQAAgI/x+2I+Ly/PHru6D712O7PZLKvVqtBQ9/zUuKCgQA899JAsFotOnDihzz77TCUlJUpKSlJaWpp+8YtfKDw83C1jAYaZsO7SjDx75mGQSrPZfnp956VLWGIPAAhIVZYKnc+snqBsO7mXgiL9vgQMGH7/O1lYWGiPXS2S686KFxYWqk2bNm7Jx2KxaO3atQ6/1qpVK1177bVq06aNbLaG3RdSVlamsrIy+7OZO5TRHES2kqZuMToLBLja19CdmDFTXTPW1tMaAAD/VFPI18TtpvUxMBu4k9/vma99tVx9V9LVVrddSUmJ2/Lp0KGDbDabKioqlJeXp7/97W8aOXKkNm3apJSUFPXs2VMffvihy/3Nnz9fsbGx9k+XLl3clisA32YuNyvtvTSlvZcmczk/6AMAAPAnfl/MR0ZG2uPy8nKX3qnbLioqyq05SVJwcLDi4uJ0++23KzMzU2+99ZaCg4N17Ngx/b//9/+0Y8cOl/pJT09XQUGB/XP8+HG35wrAN83eMdtpHChqX0PHlXQAgEDVdnIvpzF8n98vs2/ZsqU9rr0cvT6173uv24enjB49WnPmzNELL7yg8vJyTZo0SV999dUVD8ILDw9njz0AOBEcE8PSegBAwAuKDGFpvZ/y+5n5du3a2eP8/HyX3ikoKLDHMTExbjv87kpmzZplj0+dOqXXX3/dK+MapcBi1cSVezRx5R4VWKxGpwP4ncVDFjuNA0Wl2azcKSnKnZKiSs4TARCgSouLtHFeujbOS1dpcZHR6QBwI78v5nv1urSU5NSpUy69c/LkSafve1rHjh11zTXX2J937tzptbGNMD3zU6cxAPeICYvRqjtWadUdqxQTFngnudc9AA8AAtHmhc86jQH4Pr8v5pOSkuxxWVmZQ6F+OUePHnX6vjd06NDBHrv6wwcAAAAAQGDx+2J+wIABat26tf05Ozu73vY2m82hzbBhwxo99u7du7Vw4ULl5OS4/I7Vemm5uaun7/uqF8f9UAdPmXXwlFkvjvuh0enAnSz50pqR1R9LvtHZIEBxAB4ASKPmzHUaA/B9fl/Mh4aGavTo0fbn999/v972+/fvt++tj46O1vDhwxs99l//+lf98pe/1LZt21xqX1VVpa+++sr+7O/XzP3y9c/Vq2OMenWM0S9f/9zodOBOGyY5jwEAgFdFRLfQ+Cfma/wT8xUR3cLodAC4kd8X85L08MMPKyio+lvdsGFDvVfUZWRk2OMHHnjA4Wq7xnJ17/vf/vY3h0P67rjjjiaPDQCBij3zAADAnwVEMd+nTx+lpqZKks6cOaNFixY5bXf06FGtWLFCkhQXF6f09HSn7axWqyZPnqyWLVuqb9++OnDgQL3jZ2Vl6e9//3u9bYqKivTII4845DxixIh63/F1Kyb3dxrDD0xY5zwGAAAA4BYBUcxL0iuvvKJ+/fpJkh5//HGtXr3a4etHjhzR8OHDVVpaqrCwML355psOe+1ry8zM1Lp161RUVKTPPvtMM2bMqHdsm82mUaNG6bXXXnO6KiA7O1vJyck6ePCgpOofJPzpT39ScHBwY75VnxEbGar10wZq/bSBio30zvV/8JLIVtLULdWfyFZGZxOwzOVmpb2XprT30mQuD7yr2dgzDwAA/JnJZrPZjE7CW/Ly8pSSkqKsrCxJ0nXXXaekpCTl5eVp165dqqioUHx8vDIyMnT77bdftp9Vq1bp5z//uf351ltvdTrzvmfPHqWnpzt8rVWrVurfv7+uuuoqlZWV6eDBgzp06JBDX3/84x+VmJjYqO/RbDYrNjZWBQUFiokJvKuoAFyS9l6aw/OqO1YZlAkAwCilxUX2K+lGzZnLvnnAB7ha0wVUMV/jnXfe0Zo1a7Rv3z6dPn1aMTEx6t69u8aOHavU1FS1adOm3vetVqtSU1O1adMmJSYmau3aterTp89l2x87dkzvvvuuPvroIx08eFAnTpxQYWGhQkJCFBsbq2uvvVY33XSTJkyYoJtvvrlJ3xvFPIAaFPMAgI3zHLeNjn9ivkGZAHAVxXyAopgHUMNcbtbsHbMlSYuHLFZMGH8mAECgoZgHfA/FfICimAcAAEANltkDvodiPkBRzKNZsORful9+wjoOwYPXVZrN9uvoOi9domD+PAQAAD7C1ZouYE6zB+BFNYV83RjwEu6YBwAA/o5iHgAAAAAAH0MxD0MUWKwa++o/1OfJ9zR2+W4VWKxGpwR3mrDOeQx4CXfMAwAAf8eeeT/jK3vmU1fvVXbuRftzr44xWj9toIEZAQAAAIDx2DMPAAAAAICfopiHIRZP7KsftK++GuUHHVpqxeT+BmcEAAAA+J8qS4XyVh5Q3soDqrJUGJ0O3Ihl9n7GV5bZAwAAAPC8vJUHHJ7bTetjUCZwFcvsAQAAAADwUxTzAAAAAOCn2k7u5TSG7wsxOgEEpp+u3K29x/IVFRasrQ8lq0vrKKNTgrtY8qUNk6rjCeukyFZGZhPQzOVmzd4xW5K0eMhixYQFxtab8pMn9dWo0VJxsYKio9Vt89sK69TJ6LQAfMd83qINz3wiSZrwm5sU0zbS4Iz8V2lxkTa98JTOHc9V3NVddfevfquI6BZGpwUvqrhYqjMv75MktX+on4IiKf/8CTPzMMTB00WSpJLySt358kcGZwO3qink68bwuppCvm7s776++x6puFiSVFVcXP0MoNmoKeTrxnC/zQuf1bnjuZKkc9/kavPCZw3OCN5WU8jXjeEfKOYBAAAAAPAxFPMwRK/46iVeUWHBevehZIOzgVuNXiZ9e6D6M3qZ0dkEtMVDFjuN/V23TW9J0dGSVL3MftNbBmcEoLZ7Hu0ra1mlrGWVuufRvkan49dGzZmruC5dJUlxV3fVqDlzDc4I3tb+oX5OY/gHrqbzM1xNB8OtGen4PHWLMXkAAJqlTYscl/re/QgFBgDUxtV0AICAVGk2K3dKinKnpKjSbDY6HQAwTGlxkTbOS9fGeekqLS4yOh0AbkYxD8C9JqxzHgNecmLGTKcxgOZh+P1JTmO4X+0D7zj8DvA/3E0AwL0iW7G0HgBwWeFRoSytBwA3YGYeAOBXOi9d4jQGgEBT+8A7Dr8D/A8H4PkZDsADAAAAAN/FAXgAAAAAAPgpinkA8EPmcrPS3ktT2ntpMpdzojsAAIC/oZgHAD80e8dspzEAAAgcVZYK5a08oLyVB1RlqTA6HbgZxTwA97LkS2tGVn8s+UZnAwAAELDOZx50GsM/UMwDcK8Nk5zH8KrFQxY7jQEAQGCoslSo/FSRyk8VyVbFmef+iHvmAcAPxYTFaNUdq4xOAwAAGOTc2i9ks9kka5Ws3xYr/n8HGJ0S3IyZeQDuY8mXKiukbw9IVVZpwjqjMwIAAAhI1m+LZTKZZAoLliQFRTKP628o5gG4z4ZJUnCI1KGPFBQqRbYyOiMAAICAFNo+2mkM/xGQxfyWLVs0btw4JSQkKDIyUh06dNCgQYP00ksv6cKFC24fr7S0VG+++aamTZumvn37qm3btgoNDVXr1q3Vu3dvTZ06Ve+++66qqqrcPjYAAACAwBM3tbfCOrZQWMcWipva2+h04AEmm80WMKchnDt3TikpKdq6daskqUePHkpKSlJeXp527dqlyspKxcfHKzMzU0OHDm3yeKdPn9bvfvc7rVy5UoWFhZKkjh076sYbb1TLli317bffas+ePbJYLJKkG264QRkZGUpKSmr0mGazWbGxsSooKFBMTEyTvwegQSz5lw69m7COmXkAAACggVyt6QKmmC8pKdGtt96q7OxsBQcHa+XKlUpLS7N//ciRIxo5cqQOHz6ssLAwbd++XcnJyU0a88knn9S8efMkSa1bt9aKFSs0duxYmUwme5sLFy5o9uzZyszMlCTFxsbqgw8+UL9+/Ro1JsU8AAAAgCpLhf06uraTe7Fn3oe4WtMFzDL7WbNmKTs7W5L09NNPOxTykpSYmKisrCxFRESovLxcY8aMUX5+vtvGf/PNNzVu3DiHQl6S2rRpo4yMDI0aNUqSVFBQoJ/97GeyWq1uGxsAAABAYDm39gv71XTn1n5hdDrwgIAo5nNycrR69WpJUvv27fXoo486bZeQkKDp06dLql6SP3/+fLeMf/vtt2vw4MH1tqk91r///W+9/fbbbhkbAAAAgacg74yWTB2vRT8dpT//5lGVFhcZnRK8zPptsdMY/iMgivlFixbZD5ebMGGCwsLCLtt2ypQp9njZsmX2/exNcccdd1yxTa9evdSpUyf789/+9rcmjwt4nSVfWjOy+mPJNzobAAACUmlxkV6b9T8qt5TIVlWlb786os0LnzU6LXhRxcVS2coqZSutlGycZu+v/L6Yt1qtDrPcVzrYrm/fvmrVqpUkqbi4WFlZWY0ee9KkScrKytJ9993nUvsuXbrY4xMnTjR6XMAwNYff1Y0BAIDXbF74rGy1bkmycWNSwDnz8j4pLEgKkmzWSk6z91N+X8zv3btXFy9etD/feOON9bY3mUwObbZt29bosa+99loNGzZM8fHxLrWvfTVdSAgHVAAAAKBxQiMi7XFYZKRGzZlrYDYwgslkkiksWKawYA6/81N+X8zn5OTY4/DwcIel7JfTrVs3p+972jfffGOP+/bt67VxAbew5EvWUumb3dLpz6XRy4zOCACAgDRqzlxd1bWbwqOi1em6XvqfZasVEd3C6LTgRe0f6uc0hn/x+x/RHDx40B537NjRpXdqF/y13/ekr7/+Wt9++639ecKECV4ZF3CbDZOk84elsO/+sfD2g9LULcbmBABAAIqIbqGJTy0wOg0YKKR1hDo9OcjoNOBhfj8zn5eXZ49r9sJfSe12ZrPZK9fE/d///Z89HjNmjHr27OnxMQHA31SazTr2s/v075sG6Nh996nSbDY6JQAAvK7KUqG8lQeUt/KAqiwVRqcDD/H7Yr6wsNAeh4eHu/RORETEZfvwhKKiIi1ZskSSFB0drd/97ncuv1tWViaz2ezwAQwxYZ3Urld1fFXP6mfAy07MmKmyI0ckSWWHj+jEjJkGZwQAgPedzzzoNIZ/8ftl9rWvlqvvSrra6rYrKSlRmzZt3JpXbY8//rh9if2yZct0zTXXuPzu/PnzNW/ePA9lBjRAZCvp540/MBIAAACA6/x+Zj4y8tJJnuXl5S69U7ddVFSUW3OqbevWrXr55ZclSQ8++KBSUlIa9H56eroKCgrsn+PHj3siTbcpsFRvWfjhvL8q6cn3dPxiicEZwW24Yx7NQOelSxSemChJCv9BojovXWJwRgAAeF/byb2cxvAvfj8z37JlS3tcVlbm0julpaWX7cOd/vWvf+mnP/2pbDab7rnnHntR3xDh4eEubx9oDmav36/VqQMkSSXllbrz5Y904Mk7DM4KblH3jnkOv4MBgmNidM2f/2R0GgAAGCooMkTtpvUxOg14mN8X8+3atbPH+fn5Lr1TUFBgj2NiYhQaGurutHT06FH913/9l8xms4YPH67169crODjY7eMAAAAgsJQWF2nzwmclVV9Tx7V0gH/y+2X2vXpdWlZy6tQpl945efKk0/fd5euvv9aQIUN0+vRp3XnnnXrrrbdc3s/v6xZP7GuPo8KC9e5DyQZmA7eqfeAdh98BAGCYmkK+bgzAv/j9zHxSUpI9Lisr08mTJx3ukXfm6NGjTt93h6+//lqDBw/WN998oxEjRuiNN97wqWXyTRUbWb3K4fMn/svgTOB2ka1YWg8AAAB4id/PzA8YMECtW7e2P2dnZ9fb3mazObQZNmyY23I5duyYhgwZYi/k33zzzYAq5AEAAOB5o+bMdRoD8C9+X8yHhoZq9OjR9uf333+/3vb79++3762Pjo7W8OHD3ZLHsWPHNHjwYOXm5mr48OH1FvKTJk3S7bff7pZxASCQlJ88qX/fNED/vmmAymttmQKAQBIR3ULjn5iv8U/MZ7884Mf8vpiXpIcfflhBQdXf6oYNG+q9oi4jI8MeP/DAAw5X2zVWbm6uhgwZotzcXA0bNkxvvfVWvTPyu3btuuIPHQAA3/f13fc4jQEAAPxNQBTzffr0UWpqqiTpzJkzWrRokdN2R48e1YoVKyRJcXFxSk9Pd9rOarVq8uTJatmypfr27asDBw5cduzc3FwNHjxYx44d07Bhw7Rp0yaW1gMAAAAAmsRks9lsRifhDSUlJUpOTta+ffsUEhKilStX2gt8STpy5IhGjhypw4cPKywsTNu3b1dysvOT1letWqWf//zn9ufk5GR9+OGH32v3zTffaPDgwfr6668lSbfffrtLhfwHH3wgi8WixvzWmM1mxcbGqqCgQDExMQ1+HwB8WfnJk/YZ+W6b3lLYFQ48BQAAaG5cren8/jT7GlFRUdq2bZtSUlKUlZWltLQ0LViwQElJScrLy9OuXbtUUVGh+Ph4ZWRkXLaQd8ZkMjn99Tlz5tgLeUnavn17k78PoFmy5Et/nijlHZSu6in9dEP16faAl4V16qQen+w1Og0AAACPC4hl9jXatWunrVu3avPmzRozZoxKS0u1efNmffHFF+rfv78WLlyof/3rX1c8fG7y5Mm67777FB0drRtuuEFLlixx2q6+vfmAX/nTWOn4Hqm0QDrzhbRhktEZAQAAAH4tYJbZBwqW2cMQT7WRqiovPV+TzJ3zAAAAQCO4WtMF1Mw8AA8JjZZM3/1xYgqWJqwzNh8AAADAz1HMA2i6+3dJ4S2liFhp1n72ywMAAAAeFjAH4AHwoNZdpce+MToLBLBKs1m5qWkq++ILKThY17z5hiJ79DA6LQB1mM9btOGZTyRJE35zk2LaRhqckX8qLS7S5oXPSpJGzZmriOgWBmcEwBOYmQcA+LwTM2ZWF/KSVFmpY2PuNTYhAE7VFPJ1Y7hXTSFfNwbgXyjm4VUFFqskKXX1XnsMAAAAAGgYinl41ez1++3x9MxPDcwEgD/pvHSJwnv3rn74bpk9gOZnwm9uchrDvUbNmes0BuBf2DMPAPB5wTExSnjjL0anAeAKYtpG6n9eutXoNPxeRHQLjX9ivtFpAPAwZubhVYsn9rXHKyb3NzATAAAAAPBdzMzDq2IjQyVJq1MHGJwJAAAAAPguinkAgM+rNJt1YsZMSdX754NjYgzOCEBdZSVWvbvsc50/VaK2HaN154N9FB4VanRaAOCzWGYPAPB5NYV83RhA85G1PEfnT5VIks6fKlbW8hyDMwIA30YxDwAAAACAj6GYBwD4vPj5z6n00CGVHjqk+PnPGZ0OACeG35+kth2jJEltO0Zr+P1JBmcEAL7NZLPZbEYnAfcxm82KjY1VQUGBYtgzCiBA5E5JcXjumrHWoEwAAACaxtWajpl5AAAAAAB8DMU8vKrAYpUkpa7ea48BoKlYZg80f+bzFv3h4Q/1h4c/lPm8xeh0/FppcZE2zkvXxnnpKi0uMjodAB5CMQ+vmr1+vz2envmpgZkA8Cen03+tiJ49FdGzp06n/9rodAA4seGZT5zGcL/NC591GgPwLxTzAAAAAAD4GIp5eNXiiX3t8YrJ/Q3MBIA/6bx0idMYQPMx4Tc3OY3hfqPmzHUaA/AvnGbvZzjNHgAAAAB8l6s1XYgXcwIAAADgQaXFRfZ98qPmzFVEdAuDMwLgKSyzBwAAAPwEh98BgYNiHgAAAAAAH0MxDwAAAPgJDr8DAgd75gEAAOBRZSVWZS3PkSQNvz9J4VGhBmcEAL6PmXkAAAB4VE0hXzeG+7FnHggcFPMAAAAAAPgYinkAAAB41PD7k5zGcD/2zAOBw2Sz2WxGJ+FtW7Zs0dq1a5Wdna3Tp08rNjZWCQkJGjdunFJSUtSmTRuPjp+Xl6cZM2Zo48aNkqQdO3Zo8ODBbunbbDYrNjZWBQUFiomJcUufAAAAAADvcLWmC6iZ+XPnzunOO+/UXXfdpb/85S8KCwvTyJEjdd1112nv3r165JFHdP311+v999/3WA7/93//p169etkLeQAAAAAAGipgivmSkhINGzZMW7duVXBwsF577TV9+eWXev3117Vz504dOnRIP/jBD3T69GmNGDFCH330kVvHP336tEaPHq2f/exnys/Pd2vfAAAAAIDAEjDF/KxZs5SdnS1Jevrpp5WWlubw9cTERGVlZSkiIkLl5eUaM2aM24ruNWvWqFevXtq8ebP69eunTz75xC39AgAAAAACU0AU8zk5OVq9erUkqX379nr00UedtktISND06dMlVS/Jnz9/vlvGnz17tiwWi5577jn985//1A033OCWfgEAUqXZrNwpKcqdkqJKs9nodADAUKXFRdo4L10b56WrtLjI6HQAeFBAFPOLFi1SVVWVJGnChAkKCwu7bNspU6bY42XLlslisTR5/B//+Mf67LPPlJ6erpCQkCb3BwC45MSMmU5jAAhE3DMPBA6/L+atVqvefvtt+/PQoUPrbd+3b1+1atVKklRcXKysrKwm57BlyxZdd911Te7H1xVYrEpdvdceAwCAwFBWYtWmRfu0adE+lZXwbwAAcAe/L+b37t2rixcv2p9vvPHGetubTCaHNtu2bfNYboFmeuan9nj2+v0GZgLAn3ReusRpDKD5yFqe4zSG+3HPPBA4/H7Nd07Opb8wwsPD1alTpyu+061bN6fvAwCan+CYGHXNWGt0GgDQLEREt9D4J9xz7hOA5s3vZ+YPHjxojzt27OjSO7UL/trvo2lWTO5vjxdP7GtgJgAAwJuG35/kNAYANJ7fz8zn5eXZ45q98FdSu53ZbJbValVoaKibMwMAuEOl2Ww/+K7z0iUKjokxOCMAdYVHheruR/oZnQYQEKosFTqfWT0h2XZyLwVF+n3JF7D8fma+sLDQHoeHh7v0TkRExGX7aG7KyspkNpsdPs0Ve+YBeAKn2QMAcElNIV83hv/x+2K+9tVy9V1JV1vddiUlJW7NyZ3mz5+v2NhY+6dLly5GpwQAAAAA8DC/L+YjIyPtcXl5uUvv1G0XFRXl1pzcKT09XQUFBfbP8ePHjU7pstgzD8ATOM0eAIBL2k7u5TSG//H7DRQtW7a0x2VlZS69U1paetk+mpvw8HCXtw8YLTYyVKtTB9hjAHAHTrMHAOCSoMgQtZvWx+g04AV+PzPfrl07e5yfn+/SOwUFBfY4JiaGw+/cpMBiVerqvfYYAAAAANA4fl/M9+p1aWnJqVOnXHrn5MmTTt9H03AAHgAAAAC4h98X80lJl+4yLSsrcyjUL+fo0aNO3wcAAAAAoDnw+2J+wIABat26tf05Ozu73vY2m82hzbBhwzyWW6DhADwAAAAAcA+/L+ZDQ0M1evRo+/P7779fb/v9+/fb99ZHR0dr+PDhnkwvoHAAHgAAAAC4h98X85L08MMPKyio+lvdsGFDvVfUZWRk2OMHHnjA4Wo7AAAAAACag4Ao5vv06aPU1FRJ0pkzZ7Ro0SKn7Y4ePaoVK1ZIkuLi4pSenu60ndVq1eTJk9WyZUv17dtXBw4c8EziAAAAAAA4ERDFvCS98sor6tevnyTp8ccf1+rVqx2+fuTIEQ0fPlylpaUKCwvTm2++6bDXvrbMzEytW7dORUVF+uyzzzRjxgyP5w8AAAAAQI0QoxPwlqioKG3btk0pKSnKyspSWlqaFixYoKSkJOXl5WnXrl2qqKhQfHy8MjIylJyc7HLfJpOp3q9/+eWXev755y/79eeff15r1qyxP9999926++67XR4fAAAAKC0u0uaFz0qSRs2Zq4joFgZnBMCTTDabzWZ0Et72zjvvaM2aNdq3b59Onz6tmJgYde/eXWPHjlVqaqratGlT7/tWq1WpqanatGmTEhMTtXbtWvXp0+ey7Xfu3KkhQ4a4nN8TTzyhJ5980uX2tZnNZsXGxqqgoEAxMTGN6gMAAAC+Z+M8xy2i45+Yb1AmAJrC1ZouYGbma7vrrrt01113Nfr90NBQrVu3zuX2gwcPVgD+zAQAAAAA4CEBs2ceAOCfKs1m5U5JUe6UFFWazUanAwCGueOB2Tp77KjOHjuqOx6YbXQ6ADyMYh4A4NNOzJjpNAaAQPPe7xfrqmsSdNU1CXrv94uNTgeAhwXkMnsAAAAA8EdVlgqdzzwoSWo7uZeCIin5/BUz8wAAn9Z56RKnMQAEmlFz5jqNEVhqCvm6MfwPP6YBAPi04JgYdc1Ya3QaAGC4iOgWnGAPBBBm5gEAAADAT7Sd3MtpDP/DzDwAAAAA+ImgyBC1m9bH6DTgBczMAwAAAADgYyjmAQAAAADwMRTzAAAAAAD4GIp5AAAAAAB8DMU8AAAAAAA+hmIeAAAAAAAfw9V0AAAAAOAnqiwVOp95UFL1PfNBkZR8/oqZeQAAAADwEzWFfN0Y/odiHgAAAAAAH0MxDwAAAAB+oMpSIVulTeWnimSrsqnt5F5GpwQPYgMFAAAAAPiB85kHZQo2KaxjC0liv7yfY2YeAAAAAAAfQzEPAAAAAH6g9rJ6ltj7P9ZdAAAAAIAfCIoMUbtpfYxOA17CzDwAAAAAAD6GYh4AAAAAAB9DMQ8AAAAAgI+hmAcAAAAAwMdQzAMAAAAA4GMo5gEAAAAA8DEU8wAAAAAA+BiKeQAAAAAAfExAFvNbtmzRuHHjlJCQoMjISHXo0EGDBg3SSy+9pAsXLvjt2AAAAAAA/2Cy2Ww2o5PwlnPnziklJUVbt26VJPXo0UNJSUnKy8vTrl27VFlZqfj4eGVmZmro0KE+ObbZbFZsbKwKCgoUExPjrvQBAAAAAF7gak0XMMV8SUmJbr31VmVnZys4OFgrV65UWlqa/etHjhzRyJEjdfjwYYWFhWn79u1KTk72ubEp5gEAAADAd7la0wXMMvtZs2YpOztbkvT00087FNOSlJiYqKysLEVERKi8vFxjxoxRfn6+z48NAAAAAPA/AVHM5+TkaPXq1ZKk9u3b69FHH3XaLiEhQdOnT5dUvSx+/vz5Pj02AAAAAMA/BUQxv2jRIlVVVUmSJkyYoLCwsMu2nTJlij1etmyZLBaLz44NAAAAAPBPfl/MW61Wvf322/bnKx0u17dvX7Vq1UqSVFxcrKysLJ8cGwAAAADgv/y+mN+7d68uXrxof77xxhvrbW8ymRzabNu2zSfHBgAAAAD4L78v5nNycuxxeHi4OnXqdMV3unXr5vR9XxobAAAAAOC//L6YP3jwoD3u2LGjS+/ULrprv+9LYwMAAAAA/JffF/N5eXn2uGY/+pXUbmc2m2W1Wn1ubAAAAACA/woxOgFPKywstMfh4eEuvRMREfG9Ptq0adMsxy4rK1NZWZn9uaCgQFL1DwIAAAAAAL6lppaz2Wz1tvP7Yr729W71XQtXW912JSUljSrmvTH2/PnzNW/evO/9epcuXVzMEgAAAADQ3BQWFio2NvayX/f7Yj4yMtIel5eXu/RO3XZRUVHNduz09HQ98sgj9ueqqipduHBBbdu2lclkakC2AAAAAACj2Ww2FRYWXvHcNb8v5lu2bGmPay9Hr09paell+2huY4eHh39vCb+r+/MBAAAAAM1PfTPyNfz+ALx27drZ4/z8fJfeqdl3LkkxMTEKDQ31ubEBAAAAAP7L74v5Xr162eNTp0659M7Jkyedvu9LYwMAAAAA/JffF/NJSUn2uKyszKFYvpyjR486fd+XxgYAAAAA+C+/L+YHDBig1q1b25+zs7PrbW+z2RzaDBs2zCfHBgAAAAD4L78v5kNDQzV69Gj78/vvv19v+/3799v3t0dHR2v48OE+OTYAAAAAwH/5fTEvSQ8//LCCgqq/1Q0bNtR7TVxGRoY9fuCBBxyul/O1sQEAAAAA/ikgivk+ffooNTVVknTmzBktWrTIabujR49qxYoVkqS4uDilp6c7bWe1WjV58mS1bNlSffv21YEDB7w2NgAAAAAAJpvNZjM6CW8oKSlRcnKy9u3bp5CQEK1cudJeZEvSkSNHNHLkSB0+fFhhYWHavn27kpOTnfa1atUq/fznP7c/Jycn68MPP/TK2AAAAAAABMTMvCRFRUVp27ZtGj58uCoqKpSWlqaePXtq/PjxGjJkiHr16qXDhw8rPj5e7777boOKaZPJZNjYAAAAAIDAEzAz87W98847WrNmjfbt26fTp08rJiZG3bt319ixY5Wamqo2bdrU+77ValVqaqo2bdqkxMRErV27Vn369PHK2AAAAAAABGQxDwAAAACALwuYZfYAAAAAAPgLinkAAAAAAHwMxTwAAAAAAD6GYh4AAAAAAB9DMQ8AAAAAgI+hmAcAAAAAwMdQzAMAAAAA4GMo5gEAAAAA8DEU8wAAAAAA+BiKeQAAAAAAfAzFPAAAAAAAPoZiHgAAAAAAH0MxDwAAAACAj6GYBwAAAADAx1DMAwAAAADgY/4/NaGq+1c6coEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "H = data.incidence_hyperedges.to_dense().numpy()\n", + "labels = data.y.numpy()\n", + "n_steps=11\n", + "Ep, Np = data['mp_homophily']['Ep'].numpy(), data['mp_homophily']['Np'].numpy()\n", + "num_steps = transform_config['mp_homophily']['num_steps']\n", + "\n", + "\n", + "isolated_nodes = np.where(H.sum(0) == 1)[0]\n", + "# Get non-isolated nodes\n", + "non_isolated_nodes = np.array(list(set(np.arange(H.shape[0])) - set(isolated_nodes)))\n", + "\n", + "# Sort non-isolated nodes by their class node\n", + "non_isolated_nodes = non_isolated_nodes[np.argsort(labels[non_isolated_nodes])]\n", + "\n", + "# Extract the class node probability distribution for non-isolated nodes\n", + "sorted_labels = labels[non_isolated_nodes]\n", + "avr_class_homophily_types = []\n", + "types = []\n", + "for step in range(num_steps):\n", + " type = Np[step, non_isolated_nodes, sorted_labels]\n", + "\n", + " # Within every class, sort the nodes by their class node probability distribution\n", + " avr_class_type = []\n", + " \n", + " for i in np.unique(sorted_labels):\n", + " idx = np.where(sorted_labels == i)[0]\n", + " type[idx] = type[idx][np.argsort(type[idx])]\n", + " avr_class_type.append(np.mean(type[idx]))\n", + " \n", + " avr_class_homophily_types.append(avr_class_type)\n", + " types.append(type)\n", + "\n", + "\n", + "settings = {\n", + " 'font.family': 'serif',\n", + " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", + " 'figure.figsize': (5.5, 3.399186938124422),\n", + " 'figure.constrained_layout.use': True,\n", + " 'figure.autolayout': False,\n", + " 'font.size': 16,\n", + " 'axes.labelsize': 24,\n", + " 'legend.fontsize': 24,\n", + " 'xtick.labelsize': 24,\n", + " 'ytick.labelsize': 24,\n", + " 'axes.titlesize': 24}\n", + "\n", + "step = 0 \n", + "\n", + "with plt.rc_context(settings):\n", + " fig = plot_homophily_scatter(avr_class_homophily_types[step], data.y, non_isolated_nodes, types[step], step=step, save_to=None)\n", + " plt.close()\n", + "fig\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MP Homophily for cell-complex" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transform parameters are the same, using existing data_dir: /home/lev/projects/TopoBenchmark/datasets/graph/cocitation/Cora/graph2cell_lifting_mp_homophily/1963906553\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torch_geometric/data/in_memory_dataset.py:300: UserWarning: It is not recommended to directly access the internal storage format `data` of an 'InMemoryDataset'. If you are absolutely certain what you are doing, access the internal storage via `InMemoryDataset._data` instead to suppress this warning. Alternatively, you can access stacked individual attributes of every graph via `dataset.{attr_name}`.\n", + " warnings.warn(msg)\n" + ] + } + ], + "source": [ + "from omegaconf import OmegaConf, open_dict\n", + "# Recompose config with additional override of model equivalent to \"\"model=cell/cwn\"\" which will force to load approriate tranforms\n", + "cfg = hydra.compose(config_name=\"run.yaml\", overrides=[\"dataset=graph/cocitation_cora\", \"model=cell/cwn\"], return_hydra_config=True)\n", + "loader = hydra.utils.instantiate(cfg.dataset.loader)\n", + "dataset, dataset_dir = loader.load()\n", + "\n", + "data = dataset.data\n", + "\n", + "# Create transform config\n", + "\n", + "# Add one more transform into Omegaconf dict\n", + "\n", + "new_transform = {\n", + " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", + " 'transform_name': 'MessagePassingHomophily',\n", + " 'transform_type': 'data manipulation',\n", + " 'num_steps': 3,\n", + " 'incidence_field': \"incidence_1\",\n", + " }\n", + "# Use open_dict to temporarily disable struct mode\n", + "with open_dict(cfg.transforms):\n", + " cfg.transforms[\"mp_homophily\"] = OmegaConf.create(new_transform)\n", + "\n", + "# Apply transform\n", + "processed_dataset = PreProcessor(dataset, dataset_dir, cfg.transforms)\n", + "data = processed_dataset.data\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxiElEQVR4nOzdeVhU1f8H8PewL7IqIqCCuKOYW66ppVbuu+KOYKmZmktZ5q+vmZVWaqaWu6JoiSbuornvK7gvaYobqKDCDDsDc39/EDeGGWAYZhhmeL+eZ57OvXPuOR9Qic+cTSIIggAiIiIiIiIiMhpmhg6AiIiIiIiIiIqHyTwRERERERGRkWEyT0RERERERGRkmMwTERERERERGRkm80RERERERERGhsk8ERERERERkZFhMk9ERERERERkZCwMHQDplkKhQGxsLBwcHCCRSAwdDhERERERERWDIAhISkqCp6cnzMwKHn9nMm9iYmNjUa1aNUOHQURERERERCXw5MkTVK1atcD3mcybGAcHBwA5f/COjo4GjoaIiIiIiIiKQyaToVq1amJuVxAm8yYmd2q9o6Mjk3kiIiIiIiIjVdSyaW6AR0RERERERGRkmMwTERERERERGRkm80RERERERERGhsk8ERERERERkZFhMk9ERERERERkZJjMExERERERERkZJvNERERERERERobJPBEREREREZGRYTJPREREREREZGSYzBMREREREREZGSbzREREREREREaGyTwRERERERGRkWEyT0RERERERGRkym0yHx8fj4CAAEgkEkgkEhw7dkzvfWZlZeGPP/5A9+7d4e3tDRsbG3h5eaFjx45YuXIlUlNT9R4DERERERERGb9ymcz/8ccf8PPzw5YtW0qtz+joaLz11lsYOnQo9u3bB1dXV/Tu3RvVq1fH0aNHMXbsWDRt2hSXL18utZiIiIiIiIjIOFkYOoDS9OzZM4wbNw67du2ChUXpfelxcXF455138OjRI9jb22PLli3o1q2b+P6FCxfQs2dP/P333+jUqRPOnj2LunXrllp8REREREREZFzKzch8SEgI/Pz8sGvXLjRt2hQXL14stb6HDh2KR48eAQBWrVqllMgDQIsWLRAeHg6JRIKEhAT06dMHWVlZpRYfERERERERGZdyk8xPnjwZaWlp+P7773H+/Hk0bty4VPrdu3cvDh8+DABo0qQJhgwZorZe27Zt0atXLwDAnTt3sGrVqlKJj4iIiIiIiIxPuUnm33rrLVy5cgUzZswo1Sn28+fPF8sjRowotO7IkSPVPkdEpM6wYcPETTxzX2+//bbGz586dQoNGjRQaaM4bt++jZkzZ6JDhw7w8PCAnZ0dLC0t4erqisaNGyMoKAi7d++GIAjF/OqIiIiIqDDlZs38nj17Sr3PuLg4nDhxQrzu1KlTofXfeecdsfzgwQNERUWhadOmeouPiIzXsWPH8Pvvv2v17OvXrzF9+nSsXbtW6yQ7OzsbU6dOxdKlS6FQKAAAFhYW6NWrF5ydnXHgwAFcvXoVV69eRUhICJo1a4Zt27bB29tbq/6IiIiISFm5GZk3hIMHD4q/5NrY2KBBgwaF1ndxcUHNmjXF6/379+s1PiIyTllZWZgwYYJWz4aGhqJevXpYs2YN3N3dtY7hs88+w+LFi8WfcQCwevVqbNu2DWvWrEFUVBQqVqwovhcZGYmOHTsiJSVF6z6JiIiI6D9M5vXo+vXrYrl69eowNzcv8pkaNWqofZ6IKNeiRYtw8+ZNmJkV70f43r17MXLkSCQlJeHrr7/GsWPHtOo/Pj4eS5YsUbpnbm6OgIAA8bpy5cp47733lOo8ePAAa9eu1apPIiIiIlLGZF6Pbt26JZa9vLw0eiZvvbzPExEBQGxsLGbPng2JRILRo0cX61m5XI73338fN27cwKxZs2Btba1VDOfPn1c5ccPNzQ02NjZK96pXr67ybN6lR0RERESkvXKzZt4Q4uPjxbKzs7NGz+St9/LlSx1HRNqQpskxbPVZ3IhJMnQoJdbA0xG/f9gKTraWhg5F2fPrwLquwIynwNyqQEYpfq+rNAICdwO2zqXXZz5RL6IQuD9Qo7pPfnuC5ORkOLd1xj7FPpX3Lz6/CP/1/mqfVWQqYDbEDH1O9QFOAZnxmWrrFfR8rsRziSr3XmW+Unnuxe0XKvX239lfZPvq2Fva49zQc2j1eyukyLWbqm8mMcOWHltQ17WuVs+XR8mRkXgybLihwyiUmb096kZewt/NmkPBZRxGy8zeHjV27YSVhoMfpe3l0ySEfVt6xxqXF30/bQLPWi6GDkOt9JRkbPl6BuIfRxs6FJ0ImP0DqtYrfMmvrmUlpOP5gotAKZ+4XWmcP2x8nEu3UwPhyLweJSX9l5BoOgKWd2Qr7/MFycjIgEwmU3qRbo0NvWQSiTwA3IyVYWzoJUOHoWplB8P1/fwaEGbYZEXTRD75VjKkF6QwszVDlUFVit2PmZVufuRbV1H9eZadnq1yT5GmULlnVdlKJzFoQyEoELAnoOiKJCrriTyZDkVKCqL79DV0GAXa8n0Z/H+nCdg+/7KhQyjQrvnfmUwiDwBhsz4v9T5f/BJV6ok8ALxcXn6WKjOZ16O0tDSxbGWl2S+weeulpqYWWX/u3LlwcnISX9WqVSt+oERU5glZAp5tfAYAqNy3MiycDDexytbHFnZ17JTuKVIVyHylPNKf/jRd+UFzwKVD2RyBISIiIjI2TOb1yNbWVixnZqqfzppf3np2dnaF1MwxY8YMSKVS8fXkyZPiB0qFWjGiORp6ORg6DJ1o4OmIFSOaGzoMVWOOG67vKo2AgI2G6x/A+i7ri6zz8q+XyIjNgHVVa1TsVLHI+vpWbXw12PraKt17tuEZMuMzkZ2ajddHXyPlzn9TniVWEngFe8HW2zZ/U6XGTGKGsB5hBuvfGFXbZNh/G1R+mNnbo8aO7YYOo0CDviyD/+80AX0/bWLoEArU69OZcKteo+iKRiJg9g+l3qf7J00Nsqi70rjiL+czVhJB20OGTYBEIhHLR48exdtvv63T9lu3bo1z584BAPr27Yvw8PAin5k8eTJ++eUXAICnpydiYmKK1adMJoOTkxOkUikcHR2LHzQRlTlPnz5F/fr1kZycjOPHj6N9+/YAgJCQEAQFBSnV7dChg8a71D98+FDpBI1cmv5vQaFQYOfOnfjuu+8QGRmpto6zszPGjh2L8ePHq90Qj4iIiIiUaZrTcQM8PXJzcxPLiYmJGj0jlUrFcqVKlXQdEhEZoSlTpiA5ORlDhw4VE3lDUygUWL58OebPn4/o6Jw1hU5OTujcuTOcnZ1x+vRp3LlzB4mJiVizZg2ysrIwc+ZMuLhwmj0RERGRLnCavR75+fmJZU1H2PPWy/s8EZVPBw8exJ9//gkHBwf89NNPhg4HQM7I/dChQ/Hxxx+LibyLiwsuXbqEP//8E6tXr8a1a9fQq1cvADkncyxYsADNmjXD48ePDRk6ERERkclgMq9H/v7/rdd4/PgxsrNVd3vO78GDB2qfJ6LyJzMzExMnTgQA/O9//4Onp6eBI8oREhKCsDDltecDBgxArVq1xGtLS0t89tlnSnWio6PxwQcflEqMRERERKaOybwevfvuuzAzy/kWp6en4+bNm4XWT0hIwP3798XrLl266DU+IirbFixYgL///hv169fHJ598YuhwRKtXr1a516CB6tm1DRs2VLl38OBBcTSfiIiIiLTHZF6PKleurLS+9fDhw4XWP3r0qFj29fVF06ZN9RYbEZV9uUnz7du3YWVlBYlEovTKv/kdABw/flypzsOHD3Ue17Vr11TuOTs7q9xzcnJS+/yVK1d0HBERERFR+cMN8PTs008/FXeWDg0NxZQpUwqsu2HDBrE8bdo0fYdGRGXc6NGj8fr16wLfv3nzJvbv3690r2rVqggICBCvC0qoSyIrK0vlXnEORtH0qE4iIiIiKhiTeS0kJiZi2LBhOH78OJo2bYpNmzahWrVqaut2794dHTt2xJEjR3D58mVs3rwZgwcPVql3+vRp7Nq1CwBQr149jBkzRq9fA2lOmibH2NBLAHLOnHeytTRwRGRKZJkyTD46GQCw6J1FcLT67/iRL7/8stBnQ0JCVJL5mjVrYv78+TqPMy9vb2/8/fffSvcSEhJU6qm7l/s8EREREZUMp9lrYeHChdi3bx9SUlJw8uRJzJw5s9D6v//+u/jL6wcffIB9+/YpvX/hwgX069cPgiDA2dkZO3bsgIUFP2cpK3IT+fxlIl3ITeTzl8uyAQMGqNy7fv26yr0bN26o3KtatSpatGihl7iIiIiIypNykzHeuXMH8+bNK/D9efPmISQkRLzu06cP+vTpo1HbEomk0Pfd3d1x5MgRDBkyBBcuXED37t3RpEkT1K5dG0+ePMG5c+cgCALq1KmDP/74A3Xr1tWoXyodWQoBd58nAQDqVHEwcDQmKC0RCBsOWNoCw7YaOhrSwBdffIEtW7bg3r174r1t27Zh+vTpqFevHoCcqfQ//vij0nPm5ub47bffxI1BiYiIiEh75SaZf/78OdavX1/g+wcOHFC69vHxKTCZnzp1KiIjI3Hs2DE0a9YM3377bZH9+/r64vTp09iyZQtCQ0Nx48YN3Lx5ExUrVkT79u0xZMgQjBgxAnZ2dsX6uqgU5F0LXIx1waShsOGGjsCgFr2zSGmafVEuXbqEzZs3A4DaEzLu37+PTz/9FEDOlPuPPvpI6f3vv/9eXIcvk8nU9pH7PAC4urqqTPevUKECTp48iVGjRonT/GUyGVq2bIn33nsPTk5OOH36NO7cuSM+4+npieXLl6Nnz55Ffo1ERMZm2LBh+P3335XudejQQdw3Ka/ExEScPXsWZ8+exfnz5/HgwQO8ePECqampsLKygouLC+rWrYu2bdti2LBh4oekmrp+/Tq2bNmCw4cP4/Hjx3j58iWsrKxQqVIleHh4oHHjxmjatCm6dOkCLy+vknzZRGRgEqE4uxZRmSeTyeDk5ASpVApHR8eiH6AiDV55Vul685jWBorERIX0yPkvR+Y1EhISonYXe3XU/SLp4+ODR48eadyft7d3oTvinzt3Dlu3bsX58+fxzz//QCqVQi6Xo0KFCvDy8kKjRo3QrVs39O/fnx9WEpFJOnbsGN555x2V+wUl8z169MDevXvF67Zt28Lf3x/Jyck4cOAA4uPjxfdyTy5ZsmRJkT9DpVIpJkyYgE2bNkEQBEgkErRs2RKNGjWCIAi4cuUKLl68KNb/+eefMXny5OJ/wUSkd5rmdOVmZJ5IWytGNFfaAI90LGBjuR+dL45Ro0Zh1KhRWj+v66PqWrVqhVatWum0TTJdycnJ+OOPP7Bv3z7cuHFDHI20tbVFpUqV4Ofnh/feew/Dhw9HxYoVNWrz1KlTGDt2LG7duqV0vzhjFbdv38bGjRtx6tQp3L17V/xQysHBAdWrV0eTJk3Qr18/9OjRo8ildWSaMlLliFieszdI13H+sLbL2Qw3KysLEyZM0KpNKysrhIeHo3v37uK9pKQk9O/fHwcPHgSQ8/d47dq1uHfvHo4cOVLgnkpxcXF49913xaNDXVxcsHPnTrRr106p3s6dOzFo0CCeKkJkIrhwkagITraW2DymNTaPac2d7PXB1hkYtYej8kQmLiIiAjVr1sSYMWOwY8cO/PPPP6hVqxY++OADvPHGG3j48CH27duHyZMno2bNmti0aVOh7b1+/RoffPAB2rdvr5LIayo7OxuffPIJGjZsiO+//x4nTpzAy5cv0bVrV4wcORJ2dna4evUqQkJC0KtXL7z55pvFmtlCpiM3kc9fXrRoEW7evKnVXiCff/65UiIPAA4ODggNDYW1tbXS/ZMnT+LXX38tsK3g4GAxkQeA3377TSWRB4DevXtj6tSpxY6ViMomJvNERAYky5Qh+EAwgg8EQ5apfg07kSFky2R4NDIQj0YGIruA/RU0FRkZiV69eiEuLk6817lzZ1y8eBHLly/HqVOnMGLECPE9qVSKESNGqJz+kis0NBT16tXDmjVr4O7urnVcn332GRYvXgyFQiHeW716NbZt24Y1a9YgKipKaYZAZGQkOnbsiJSUFK37JNMRGxuL2bNnQyKRYPTo0cV+fuTIkWrvu7u7o1OnTir3Q0ND1dbfuXOn0rR9Nzc3DBo0qMB+p0+fjoMHD6J///7FjJiIyhom80RkWGmJOevmNw00dCQFik+Nx29XfkN8anzRlYvJGI+mM0b6/DM0VU8nTFRb1sY333yDrKwspXsBAQEwNzcXr4cPV15uIwgCvvrqK5W29u7di5EjRyIpKQlff/212jXJmoiPj8eSJUuU7pmbmyMgIEC8rly5Mt577z2lOg8ePMDatWu16pOMV9dx/irlqVOnIjk5GSNHjkSbNm00bmvGjBkIDw9HrVq1CqyjbtO7v//+W23dZcuWKV23a9eu0JkCLi4u6Ny5M6pVq6ZhxERUVjGZJyLDMoL18vFp8Vh2dRni05gIGiv+GRrW6dOnVe7lTySqV6+uUicqKkplFFwul+P999/HjRs3MGvWLJXpyJo6f/68ygcMbm5usLGxKTKuEydOaNUnGS9rO0v0mdoUfaY2hbWdJY4cOYKwsDA4OTnhhx9+KFZbbdu2Rd++fQutY2trq3Iv7wySXK9fvxbX1+eqXbt2seIhIuPFZJ6IyIDmtJ2DO6/v4M7rO5jTdo6hwyESVV26RG1ZG0lJSSr3LC2V9yCxsrJS+2z+IxTff/997N+/HzVr1tR7TAXFVdCxjlQ+yOVycdO72bNnl2ipR0Fevnypcq9hw4Yq9yIjI1WSfGdnZxw6dAgBAQGoXr06rK2t4eTkhDfeeAOfffYZYmJidB4vERkGk3kiMqzevwLPrwEvVM9MLw9mnJyhtkxkaOaOjvDesB7eG9bDvIRHndatW1flXv5kWl2C7ODggMqVKyvdUzdiqa+YCoqrsOnRZHpkr9KwasoJrJpyArJXafj5559x+/Zt+Pv74+OPP9ZLn5GRkSr38u4rkSvvpne5Fi9ejHfffRePHz9Gr1690KRJE8hkMly7dg3z589HnTp1EB4erpe4iah08Wg6IjKsnR8DVRrlnDNfRn1x8gsAwLhD42BpptsTDfKu4b4SdwWdtqpuekQlJ1fIAeT8We7qs8vA0ZQ/n3zyCT744AOle9evX0fv3r2VrvMbO3as0rp6XWratCneeustnDp1SryXmJiIJ0+eKC0ByB+XhYUFPvzwQ73ERGVT2Lf/nc2+/PO9mBOWM4tq6dKlBR4VVxL37t1TSeabN2+OsWPHqtTNeyZ9rmfPnmHgwIEICwuDRCKBIAgYMGCAmMCnpqZi8ODBOH78OFq3bq3z+Imo9DCZJyIqQmJGIgAgIT1B733FpcYVXYm0lvtnSUXLlsnEje+qLl1SotH50aNH4+HDh5g7dy6ys7MB5Iwetm7dGq1atcLt27fxzTffKD3Tv39/fPvtt9p/ARrYunUr+vTpg/Pnz4v3xo8fjyVLlsDFxQWbN2/G0aNHxfdsbW2xYsUKNG7cWK9xUdkVdmIpkpOTMXToULRv314vfcyYMQOCIIjXDRo0wO7du9UuA5FKpWrbmDJlCiQSCQBAIpFgypQpSqPxcrkcU6ZMwblz53QcPRGVJibzRGRYARvL/CZ4ztbOSEhPgIuNi05H5nM/HMhS5GzCVcm2kvjLF+mWXCFHQnoCnK2dDR2K0Xjy0UfIuHtPLPsUce57UebMmYNhw4Zh/vz5WL9+PeLj49G5c2elOhKJBD179sSECRPw7rvvlqg/TVSpUgVnzpzBzp078d133yEyMhJ79uzBnj17lOo5Oztj7NixGD9+vNoN8ci0Bfzfmwj79iJuPbqIqHvH4eDggJ9++kkvfS1atAjbtm0Tr7t06YLff/8dLi4uauvnfjiWl0QiQdOmTZXuNW/eXBylz3X+/Hn8/fffapecEJFxYDJPRIZl6wyM2lNkNUOa124eAvYEYHnn5fCr6KezdoMPBCtdr32fx13py61XtxCwJwDz2s0zdChGIzeRz1/W1qVLl/Dll1/i0KFDYkLRvn17+Pn5ITo6GgcPHoRCocC+ffsgl8vh4OCAVq1albjfwigUCixfvhzz589HdHQ0AMDJyQmdO3eGs7MzTp8+jTt37iAxMRFr1qxBVlYWZs6cWWBiRabJsaItAn9ohUaNxgAA/ve//8HT01Pn/SxZsgRTp04FkLPx4jfffIPp06cX+iGvo5oZM66uriqnPNjY2MDZ2RkJCcozzC5cuMBknsiIcQM8oiJI0+QYvPIsBq88C2ma3NDhmJa0RGBNF2BedSC08GN6TNGidxapLROVBdZ5jreyLuFRVzt37kSbNm1w8OBBMZGfP38+jh8/jmXLlmH//v34/fffAQBZWVmIiIhA27ZtERISUqJ+CyMIAoYOHYqPP/5YTORdXFxw6dIl/Pnnn1i9ejWuXbuGXr16AcjZXXzBggVo1qwZHj9+rLe4qOzJSJVjdN+p+Pvvv1GvXj188sknOm0/KysLEydOxKRJkyAIApo1a4ZLly7h888/L3K2lpubm8o9Ozs7tXXt7e1V7sXFcWkXkTFjMk9UhLGhl9SWSQfChgPxt3LK8X8bNhYDcLRyxNr312Lt+2vhaFWy3cKJdClbJoOQlQVFaiogCPD86Uet20pMTERgYCDk8v8+DLW3t8ekSZOU6gUEBCgdN6dQKDBu3Dgx0da1kJAQhIWFKd0bMGCA0k71lpaW+Oyzz5TqREdHq2zmR6YtYvl1HDy/AwBw584dWFlZQSKRKL2CgoJUnjt+/LhSnYcPH6rUefjwIdq3b4+lS5fC2toa33//Pc6dOwd/f3+lenv37sXq1auRnJysdF/d/g15p9IXdV9fG0wSUengNHsiIiJS8nTCRGRGR8Ps3xG+ZzO+hPeG9Vq1tXXrVpVNumrXrq12M6+GDRvi/v374nVGRgZCQkIwe/ZsrfouzOrVq1XuNWjQQG1M+R08eBDR0dGoUaOGzuOisqlziz5ITs35e1yrueq58jdv3sT+/fuV7lWtWhUBAQHitZOTk9L7GzduxIQJEyCVStGqVSusXbsW9evXV9v/Tz/9hOPHj6Nz586oUKGCeL9ly5awsrJCZmameC81NVVtG+ru62O5ABGVHibzRIWQpsmRla3A3RfJqFPFAWsC3zR0SKYlYCPw++Cc0Xm3srtmz83WDR+98RHcbFWnM5Jx4J9h8SgyMqD498x1MzVTc4tD3TnYzs7Oauuqu3/lypUS9V8QTePKn4DlunLlCpP5ciAjVQ5FtgId6g5CRU97dP+4EaztVD+ICgkJUUnma9asifnz56vUffXqFcaNG4c///wTtra2WLBgASZPngwzs+JPmHV2dkafPn2wZcsW8V5CQgIyMjKU1s2npaWprJcHoLcd+cn4CYKAdevW4bPPPsPr16/F+x06dMCxY8c0auPgzv3YMGc5rsXewdP0eCQlJ8HMzAyOjo6oVasWWrdujaFDh6JZs2YatXfx4kWEhobiyJEjiI2NRWpqKipXrgw/Pz/06tULo0aNKnCZialiMk9UiLGhl2BhbgY/z5wp0E62uj1jvNyzdQZG7y+ymqG52blhfOPxhg6DSoB/hsWTcf8+YGYGKBRQpKej6tIlWreVlZWlcq8404DzjjjqUnHiUkdfcVHZErH8OszMzeBWLWc0XF0iX1wdO3YUP0xKS0vDtGnTMG3aNK3bmzlzJrZv3y4uZREEAVFRUUpnyOc/tx4A+vbtiypVqmjdrzF48uQJzpw5gzNnziAyMhKPHz/Gq1evkJGRATs7O1SqVAkNGzZE586dMWTIELV7EOR3+vRprF+/HmfPnsXTp0+RkpICZ2dnVK9eHZ06dUJgYCD8/DTbLPf27dvYuHEjTp06hbt370IqlYobgFavXh1NmjRBv3790KNHj1I97ebWrVsYN24cTp48qdXzL1++REBAAI4cOSLec7F1wpAhQ5CRkYHdu3fj7NmzOHv2LBYuXIjhw4dj1apVsLGxUdteRkYGxo8fj3Xr1kEQBFhaWqJnz55wd3fHwYMHceDAARw4cADz5s1DSEgIOnbsqFXcxojJPFEhshQC7j7PGZ2qU8XBwNEQEZUOiUQCSZ4R+ZKcMe/t7a1yT90IYUH31T2vC97e3vj7b+W9OtT1X1Cs+oqLTF9BZ8Nrq1GjRvjpp58wefJk8d6iRYvQqlUr8Ti6n3/+WekZNzc3LFy4UKdxlEX169dHSkoKAMDa2hqdOnVCjRo18PTpUxw4cADR0dGIjo7G7t27MXPmTMyePVs8USA/mUyG4OBgpaMDvby8MGTIEMTFxWHHjh2IjIzEggUL8PHHH2PhwoUF7kmQnZ2NqVOnYunSpVAoFAAACwsL9OrVC87Ozjhw4ACuXr2Kq1evIiQkBM2aNcO2bdv0/nMnLS0N3377LX766SfI5XJUqVIFz58/L1YbWVlZ6NatGy5evCjeszK3xM7RK9BuSc6ykyNHjqBTp07i+xs3bkRmZqbKPia57fXp00dp5svmzZvRr18/Mea33noLUVFRePLkCbp37449e/YotW/SBDIpUqlUACBIpVJDh2IS+v92SvCftV/wn7Vf6P/bKUOHQ0Skd1lSqfBg4CDhll8D4U6z5kLG06clau/vv/8WzMzMBADiy9bWVkhPT1epW6NGDaV6AIQDBw4U2n50dLTKM5r8ejNz5kyVZ4KCglTqHT9+XKVe1apVhezsbM2/CWS00lMyhe0LIoXtCyKF9JRMpfcuXrwoTJs2TZg2bZrQpUsXtX9Pct//7bffxOe8vb3V/p3V5BUdHV1grKtXrxYcHR3Fuq1btxYmTJggtGzZUqmN+vXrC9evX9fXt6xMsbe3FwAIvr6+wp07d5Teu3v3rlCtWjWV7/EXX3yh0o5cLhfeeecdpXpubm5CXFycWGfVqlVK7w8cOLDAuKZMmaLSb0hIiPj+ixcvhIoVKyq97+vrKyQnJ+vgu1KwTz/9VAAgeHh4CH/88Yewbt06lTg7dOhQaBvh4eEqz7xZrZEgf52mVM/Dw0Ol3rVr11Ta++GHH5Tq1K1bV6XOxo0blep4enoafS6kaU7HZN7EMJnXrYAVZ5RepGOpCYKwrnvOKzXB0NGUOmmGVAjaHyQE7Q8SpBn8N0tlw4P+A4RbdesJt+rWEx70H6CTNr/44guVX9q+//57pTqbNm1SqVPYL8O5tE3mk5KShNq1ays94+joKNy+fVusk5GRIXTv3l2pjrm5ubBr167ifxPI5KhLdAp65U2A9JXMC4IgxMfHC/PmzRPeeecdwdPTU7CyshLs7OwEHx8foX///sKmTZuEzMzMQtswJbnJ/OHDh9W+v2PHDpXvsUQiEaKiooTEuOfCklGDhCWjBgmLFy5QqTd58mSltuRyueDk5KRUZ/Xq1Sp9xsXFCRYWFio/V9LSlJPdIUOGqPS5ePFi3X1z1Jg2bZowadIkMY/QJpmfNm2ayjMB/VR/luf/kAmAsHTpUqU6UqlU/DPMfQ0ZMkSlrVu3bqm09b///U/7b0QZoGlOx2n2RIVYMaK5eBzdihHNDRyNYehjvVmuGwt6Y+z66zjzTwIQ5CLej46Oho+PT6HPart27I033tDbhlrFNfnoZKXy2vfXGi4Yon+l37ihtlwSc+fOhZOTE+bMmSPuqP3ll18iIiICDRo0QHR0NP766y+xvrm5OcaPH48FCxaobe/7778XN2SSyWRq63z66adi2dXVFV9++aXS+xUqVMDJkycxatQocfqmTCZDy5Yt8d5778HJyQmnT5/GnTt3xGc8PT2xfPly9OzZU4vvApmaUaNGYdSoUcV+Tt0RdbpSqVIlfP755/j888/11oex8fLyKnANdY8ePeDg4ICkfzf8BABBELBp0yZ4v3oMeXo6AGDx99+pPNukSROlawsLC/j7++PUqVPivdmzZ2PUqFFK0+3Pnz+vsmeHm5ubynrx6tWrq/R54sQJTJw4saAvtcTmzJkDW1vbErWR93uZK+sf1XtWVlYq9/L/PN+yZYu4TCJX1apVVZ6rVq2ayr2QkBB8/fXXpbrXgCEwmScqhJOtJTaPaV10RROmy/VmudLS0jB79mwsmH8SWdlCaXwZRKSpfze+E8s68sUXX2DUqFHYvHkzjhw5gps3b+LKlSs4c+YMrK2t4eXlhXr16qFDhw4YMmSI0pnz+a1cuRKPHj0qtL+8HwR4e3urJPMA4O7ujoiICJw7dw5bt27F+fPn8c8//2DPnj2Qy+WoUKEC/Pz80KhRI3Tr1g39+/cvdzslExmzjRs3olKlSgW+b25ujtq1ayMqKkrp/t9//w3PCjlJYLZCgSevElSeVbd5YP57T548wcGDB9GlSxfxnrpkV91RnZoku7pW0kQeAOrWVT2dKDk9ReWeuq+lVq1aStcREREqdSpWrKhyr0KFCrC0tBQ3gQSAx48f48aNG/D399cobmPFZJ6INOLr64t9+/Yp/ZC+d+8eOnXqhCdPngAAkpOTMW3aNMTHx2Pu3Llq24mIiMDHH3+M6OhoVHF3x/MXL0ol/rJo0TuLxNH5Re8sMmgsRLl8tofjYb/+OeXwbUXULp4qVapg8uTJSht1aUPXI5utWrVCq1atdNom6V6KNAM3T8SgQXsv2DtZF/0AlVml9WfZp0+fIuuoS2AVCgWq+NbD8wf3kJKRCYWaky7U7byurq1Tp04pJfPqkl11Cb4myW5ZNGLECHz77bdKm4f+/fqhUp2MjAzcu3dP6V61atXQo0cPpXvqTmGoUKGC2n4dHByUjtADgMuXL5t8Mq+7j9yJyKStWrVK5X9AtWvXxpIlqkdW/fDDD7h8+bLK/Rs3bqBbt254/PgxJkyYgDv5dpIuDfYlPDNblxytHLH2/bVY+/5aOFppv1s4kS7Z1q2L+jdvoP7NG7BV80snkaGkSjNxce9DpEp5LKCxK0t/li9fvlS517BhQ/T7cjaq1muAqnXqq30udxf6vNQdeZn/96GmTZvirbfeUrqXmJgoDozkun79utK1hYUFPvzwQ/VfRBni5uaGPXv2wKOKh3jv4csn+Prrr/Hy5Us8e/YMEydOFJdcATlT53ft2qX0YUhWVpbaGVjW1uo//FF3//79+yX5UowCk3miAkjT5Ojz60nU/HIf/L8+gCcJqUU/ZKI0WW+WV+56s/yysrLQokULXLhwAUuWLIGTVcmm2Ht7e0PI2ciz0NfKlSvFZ8rS/whlmTIEHwhG8IFgyDL1O3WOSBPJkZG4Xa8+bterj2Q1IyJE5U1Gqhw7FkZhx8IoZKTKi36AjIpMJsM///yjdE8ikWDYsGGwsa+AQbPmInjez2oHAtSNnKsbYY+Pj1e5t3XrVrRs2VLp3vjx4/Hw4UNIpVKsWLECR48eFd+ztbXF2rVr0bhxY02/NINqXqMRjg5bh9mdJ8Hz36R+9uzZcHNzg6enJ1atWgUgZ1Bo0aJFuH37tsrXVtCSgoKO+7OwUJ1wrutjIMsiJvNEBRgbegnXY3J+KKdmZqP7LycNHJFhbNy4EZs3by7w/dz1ZvnlP78ZyFl/f/bsWTRt2jTnRthwncVZkOzsbPzwww8AcjaTGTZsmN771FT+DfCobJDHxSF+yVLI4+IMHUqpezJsuNoykT6V5X9zEcuvqy2TadiyZQuys7OV7k2cOBGNGjUSr83MzNC+fXuVZ6OjozW6py6hrFKlCs6cOYPw8HA0a9YMALBnzx7UqFEDzs7OGDduHARBgLOzMz7//HPcuXMHI0aMKPbXZyj355/CgpNrseDkWsQ+fwYA8PHxQWBgIIYMGYLKlSsDyFmuuWzZMoSEhKj8OeQduc+roA3t1N1PTk4uyZdhFJjME1Gh+vTpozIdLL+C1pvlZ21tDbO8G2optB/laNCggdp1Z/mFhYWJ06ymT5+udpMZoryy4uPx8tdfkaVmNIWIdK8s/5tTZAuIf5KM+CfJUHDDVpOSkpKCOXPmKN0bNGgQFi5cqFJX3T4fBw8eVLqOiYnB7du3VeqpG0lWKBRYvnw5pk2bJq4Ld3JyQv/+/TF69GjUq1cPQM70+zVr1mDx4sVKa9DLslevXqH3+nFYdWELZBk5yXSrVq1w/fp1hISE4Pfff8fVq1dRo0YNADmDPxMnTkT37t2VNrAraLNRQc3+BQXdL0tLK/WFG+CRSYiNjcXx48dx6dIl3Lp1C7GxsXj9+jVev34NuVwOBwcHeHt7o2nTpujfvz+6dOlS4Cd7o0aNwvr169W+J5mteq9Bgwa4oeHxTblrxXfv3q10/+jRo3j77bc1aqMsKmi9WaHSEoEXt7TuU5PvuSAImDdvHoCcXatHjx6tdX/6wA3wqKyptmmjOCJfbdNGA0dDpOyvtTcBALsWX4G5RemMR6UlZYpJ/IuHMoR8cbpU+jV12Vk5H/j/tfYmhn1d+ptPKhQKjBw5Eo8fPwaQM6r7+eef47vvvlMedPjXe++9h4kTJyrtE7R3714sXboUwcHBiI+Px4cffqh2IMPJyUnpWhAEDB06FGFhYeI9FxcXXLhwQdzgTi6XY8CAAdi1axdevnyJBQsWIDw8HMeOHVN7ZF1ZMnXqVNx7pbzWfeLEiUob11WpUgXBwcH46quvxHsHDhzATz/9JJ484uiofi+h/CP4udTtV5D/e2+KmMyTSZg0aRK2bcvZddnCwgKdOnVC27ZtERcXh5MnTyIuLg6vX7/G5cuXsWbNGrz55pvYsmVLkWeZ60pWVhYWLVqEr7/+WuW8TGNX2HqzQoUNB/R89ufu3bvFDWSmTp2qdudZQ8rdAI+orKjQrBnq31EdWSIqC9KT5Ur/LW2KbAEpiRkG6dtUGeLPUi6XY+TIkQgPDweQk1iuXr0a3bt3L/S5xYsXw8fHB3PmzEFiYiKAnCQ199x3T09PTJkyBT///LPSc/mPxgsJCVFK5AFgwIABSjvVW1pa4rPPPsOuXbvEe9HR0fjggw/w119/Fe8LLkWpqan4448/VO43aNBA5Z66QZ8VK1aIybyFhQW8vb1VNsHLyFD/b1Dd/cKOODUV5TKZ37NnD9avX4/IyEg8e/YMTk5O8PX1xcCBAxEYGAhXV1e99HvlyhWEhITg+PHjePLkCZKSklCpUiXUrFkTffv21Wvf5YW7uzuOHDkCPz8/8V5SUhICAwOxfft28d7Fixfx3nvv4fLly3qfgnP+/HmMHTsWV69ehaOjI2xtbZGWlqbXPkuTJuvNCuTmB+BJkdW0lXs8nouLCz766CO99UNERPpnU8ES6cly2FSwLLWReUEQkJ6Sk3Da2FsWOKuPiic7SyH+WZam+Ph49O/fHydP5uyDNHjwYCxdulTt2eXqTJ06FWPGjMGRI0dw8+ZNyGQyODs7o2nTpnj77bdx6tQplWQ+/+9Dq1evVmlX02T34MGDiI6OFqeolzW3b99Wmiqfy9nZWaN7jx8/RkJCAlxcXADk7PyfP5kvaB28uvviHk0mrFwl8y9fvkRgYCD27dsHIOecxx49eiA+Ph6nTp3C2bNn8dNPPyE0NBSdOnXSWb9JSUkYO3as+EmVvb093nrrLbi6uuLRo0c4ffo0Tp48iR9++AErV65Er169dNZ3efPzzz8rJfJAzrmTq1evxr59+5Q+tbt37x62bNmCoKAgvcUjk8nQpk0bKBQKDBkyBAsXLkSrVq3UHrVhjIqz3kxJwiMg5jIg19/GJEeOHMG5c+cA5Hy4kH/HfUOLSY7BwN0DAQBbe26FVwUvA0dEuWI/mw4AePLhGEjK0R4LQnY2sl+9AgCYV6wISQE7BhPpmvDvL/+xn01HzX17C6z3XnADbPn+InpNagy36vr/mS57lYbNcy5AUACVvR3Qc+IbsLYrPz8T9Cn+cRK2fH8R7wWrJrH6cuTIEYwYMQKxsbHw8PDA8uXL1f7OvXr1apgL2Ug5cwQAMOLHxXBycxffr1ChAnr16qX22RcvXqjca968udL1tWvXVOqoS2wLmiJ+5cqVMpvMq5vqDqhfz17Q2vfMzP+OK+zSpYvSYByQsyY/v5SUFKXngJxz69V9SGJqyk0yn5qaii5duiAyMhLm5uZYuXIlgoODxffv3buHHj164O7du+jWrRsOHTqEdu3albjfpKQktGvXDlevXgUABAUF4ZdfflFKLO7evYtBgwbh6tWr6NevH8LDw5nQF1ONGjXQpEmTAqdIubq6ok6dOipndl65cqXANr0/3yOWHW0scO3r94sdl0KhQK1atfDbb7/p9AOisqC4682UrGin10QeAL7//nsAOR+effLJJ3rtSxu5iXxu+cyQMwaMhvLK/nf6ZPbr14YNxICy1eyDQaRvuf/2yoqwby8iKzNnDXTcoyRELL+OPlNNf6TP1GRmZuKrr77C/PnzoVAoEBgYiEWLFqlNoIGcI2xd7e0we2APAEDo9EmYsC5Mbd387t69q3Tt5OSELl26KN1Tl/AWlNiqkz9pLUu8vb3V3k9ISFBZ2qpuQz87Ozu4ubmJ1wEBAZgyZYrSzvZPnz5Vee7JE9VZnoGBgUX/PmoCyk0yP2nSJHG3yDlz5igl8kDOOYcRERFo0KAB0tPT0a9fP9y7d6/Af+iaGjdunJjId+3aFWvWrFGZolWnTh389ddfqF+/Pl6/fo1hw4bh7t278PDwKFHf5clPP/1UZB11P/ysrKz0EY7IwcEB169f13s/pU3b9Wal5cKFCzh8+DCAnH+DXL5CxWHu7Izs169h7uparkbms/IdC2bx79FBRPomyOU5/+ZK+DsXUX7Xrl3DiBEjcO3aNVSrVg0rV65USa41kZqaih9//BGNGjVCv379CqyX+7tHrhEjRqic+OPt7a1yfK+6xLag3esLSpjLgipVqqBt27Y4fVp5o8jr16+jSZMmSvfUbWTcu3dvpQTcyckJ//d//yeuoweAqKgolecuX76sEse0adO0+hqMjlAOXLt2TTAzMxMACO7u7kJGRkaBdT/55BMBgABAmD59eon6vXLliiCRSMT2IiMjC60/Z84csW5QUJBWfUqlUgGAIJVKtXreVD179kywsLAQv7+5r7/++kulbmBgoABAaPDVPsH78z1Cg//tFx6/TtFZLN7e3ipxHD16VGft61tcXJzQrl07MfbBgwcLL1++LF4jz64JwiwnQZjlqPK9ACBER0eXKMZevXoJAARra2shNja2RG3py9Okp0Lr31sLrX9vLTxNemrocCiP1Bs3hFt16wmpN24YOpRSlfH0qXCn+ZvCneZvChlP+XeSSo+m/+aSE9OF87vuC8mJ6aUSl/RlqrDik2PCrx8dEbbOuyikp2SWSr/lQWn8WT579kywsrJS+3tGUa9q1aoKS0YNEpaMGiQkxj0X4uPjBQBC5cqVhbS0NLX9Xb58Wen3/ipVqgivX79WqTdz5kyV/tT93n/8+HGVelWrVhWys7N1/r0qyLp161Ri6NChQ6HPREVFCXZ2dkrPNG/eXCk3iY2NVfl9uGLFisLjx49V2svMzBTeffddpbrbtm0T309LSxPefPNN8T1ra2vhwIEDOvseGIqmOV25SOZHjRol/gFPmjSp0LqRkZFiXXt7eyE1NVXrfr/88kuxLS8vryLr37p1S6xvY2OjVULOZF5VfHy88N5776n8MBo5cqTa+rnJ/MuXL4Vvv/1WaNmypeDo6ChYWloKbm5uQsuWLYVp06YJt27d0ioeY07mDx8+LHh6egoABA8PD2Hnzp1q661atUrYvHlzwQ2teU8Q5lYThLnVdJ7MX79+Xfyf6bhx47Ruh8qv8pjMZ0mlQvSQocKd5m8K0UOHCln8fwiVovL4b470Lzo6WqtEHoBQvXp1IezrL4Swr78Q0pKTxGQegDBo0CAhJUV5kOfevXtC7dq1xTqOjo7CiRMn1MaVlJSkVDe3/u3bt8U6GRkZQvfu3ZXqmJubC7t27dLr9+z169fCtGnTxFeXLl3UfqCQt4663/fOnTsn1KtXT+V7GhgYKAwdOlSoXLmy0nvNmjUT7ty5U2BcaWlp4u/nAARLS0uhf//+wvjx44U6deooxXbw4EF9fotKDZP5f2VmZgouLi7iH3JByUcuhUIhODs7q/3kp7jefvttsZ3333+/yPrZ2dmCjY2N+ExoaGix+2Qyn+PEiRPCxx9/LPTo0UNwcHBQ+oHRoEEDYdWqVYJCoVD7bO4PC1dXV8Hb21sIDg4WPvroI+GNN95Q+YE2ZswYlR/oRTHGZD4jI0OYPn26OMMlMDBQSEhIKLA+AMHb27vgBv9N5PWRzA8dOlQAIFhYWAgPHjzQuh0qv8pjYvFwxEhxVP5O8zeFhyPUf9hJpA/l8d8c6V9Jknk3J0cxmQ/7+gulZB7Imek7ZMgQYcKECULXrl2VZgA0a9ZMuHz5cqGxPX/+XCVRdnR0FAYMGCCMHj1aJRH29PTUeyKv7fcsMDBQbVtyuVzYsWOHEBQUJDRu3FhwdXUVLC0tBUtLS6FixYpC8+bNhbFjxwr79+8v8Hfy/M6fPy98/PHHgp+fn+Ds7CxYWVkJXl5ewrvvvissWbJESE5O1uF3w7A0zelMfs38hQsXlNacNGvWrND6EokEzZo1E9e87N+/v9C1MYXJu6OlJmt2zczM4OrqitjYWADAuXPnMHz4cK36Lu8iIyPx66+/qtz38fFB165d0bp16yKPl/nggw/w3XffwcLiv38m8+bNw4wZM8TrlStX4v79+9i3b5/JrYvPpav1Zkrc/ID4W7oJMI8HDx6IZ7cOGTKkzO72SmWbhZsbKn38MSzybMJDRPrDf3NU1jk7OyM8PByRkZGIjIxEdHQ0/vrrL0ilUjg5OaFWrVpo27YtevbsiR49ehT5O6a7uzsiIiJw7tw5bN26FefPn8c///yDPXv2QC6Xo0KFCvDz80OjRo3QrVs39O/fH3Z2dnr/On18fIq1GV9hLCws0Lt3b/Tu3Vsn7QFAixYt0KJFC521ZxJK57MFw1m2bJn4yZG1tbVGz3zwwQfiM61atdK677yfqg0ZMkSjZ6pXry4+0759+2L3yZH5/2RlZQlPnz4VVq5cKXh4eCh9imhmZiZ88sknQlZWlspzkZGRha61adu2rcqnknPmzNE4LmMamS/JerNCR+ZTEwRhXXdBWNdd7bPajsyPGTNGACBIJBKtl0EQlUecZk9E9J+05CSlafZEpY0j8/+6deu/0T9PT0+NnvHy+u+857zPF5ebmxvu3LkDAHit4RFHiXmOZXn48KHWfRNgbm4OLy8vfPjhh+jSpQuaN2+OuH93a1YoFPjll19gbW2NH374Qem5pk0LP3Zm+PDhKrt0Lly4EDNmzIC5iZ3LnJ6erp8jUGydgVH/Hv0XVPin15qKjY3F+vXrAQB9+/ZF/fr1ddIuUXlg7ugIn983GToMIqIywca+AgbNmmvoMIiKZPLJfHx8vFjW9Ji5vPVkMhnkcjkstTieqFmzZjh58iQA9ccv5Pf06VPIZDKlvkk3qlWrhpkzZ6qcN75o0SJMnToV7u7uAIAnCal4f8FRpP57BKidlTkOTGmPai7/TW164403VNpPSEjApUuX0LJlS/19Ecbs+XVg+VsAgGUXM3E/IefcXjTsr7b6999/D0dHR/F6/vz5RXaxYMECZGRkAIDSESZlhSxThuCIYPydqHwcjZ2FHcJ7h8OrglcBTxLpXrZMhocjA5H57wfOIjMz+GwPh23duoYJjKgMePk0CWHfXhSvLa3NMfh/LeBY0baQp8gUSONfIGTax8jKSAcAuPvWxoD/mwMb+woGjqx0ZMsykXz+GSq09IC5o3bLRzOfJSNuyWUAQOWJTWDlUXrfO13Eb2zMiq5i3JKSksSytbW1Rs/Y2NgU2EZx9OrVSyzHxMSI59wXZPfu3UrXycnJRfaRkZEBmUym9CL1evTooXIvMzMTR44cEa+7/3JSTOQBIDUzG91/Oan0TMWKFdW2//TpU90EaopWdhCLYTflWHA2M+e16g+11VetWoUFCxaIr6K8fv0aK1euBAC89957Re6NYQiTj05WSeQBIDUrFQN3DzRARFSePZ0wUTWRBwCFAg/7qf+Qjai82PL9JaVreUa2UnJPpSs54TXObN2E5ATNZrmWROj0SWIiDwAvHtzDrvnf6b1ffSrO9y87KRNJhx8jO0n7WZm5iXz+cmnQRfzGxuST+bS0NLGs6QZl+eulpqZq1fc777yD1q1bi9dfffVVgZtKJCUlYd68eYXGoc7cuXPh5OQkvqpVq6ZVrOVB1apV1d5//Phxsdop6M+woPvGLHcjFG1eBS0TOTbKHsIsx/9eGrRVFFdXVyQlJUEQBBw4cEDH3wUiIiIylJSE1zj75x9IKYVk3hTx+2faTD6Zt7X9b0qUpmt/89crye6RGzduFHeyj4iIwOjRo1VG+h8/foxu3brh8ePHSuv6804zLsiMGTMglUrF15MnT7SO1VjFxcWhR48eWLZsWaH1Cvrzz/uhyef+GUg6tgbZaTkzHOyszLH3k3ZK9V+9eqW2nbx7LVA+Y46rvx8UUbpxGNCidxahrrPq1GU7Czts7bnVABFReVZ16RJY1aun+oaZGXzCt5V+QERlyKAvmytdW1qbI+D/3jRQNFSaRvy4GBbW/83QdfetjV6fzjRgRMan8sQmasukHya/Zt7BwUEs566nLUp6errSdd42isvX1xdnzpxBv379cOvWLaxbtw5bt27FW2+9BRcXF8TExODMmTMQBAHTpk2Dj48PJk6cCECzNf7W1tYaLx8wVampqdi7dy+kUik++uijAutdv35d7f16eX6hvXc9Cq/Pb8e+Xz4vcP371atXVe45OjqiefPmamoTAKCKP/C11NBRGJSjlSP+7P2nocMgApCz4V3NHdsNHQZRmVSpqgM+Xt7R0GGQATi5ueOTDeX3/9WvN+csv3q59jok5tqP+ZpXyBkoe7Xupk7i0pSQnbMn0+vNd1BlWvn4vdzkk3m3PGeW5t0pvjBS6X9Jh6Ojo1ab3+VVt25dXLt2DZs3b8a2bdtw6dIlHDt2DBYWFqhatSrGjh2LsWPHwt/fHz/99JPSc6S58+fP48aNG2jYsKHa99WN3Ht6eqJz584q9//6668Ck/mNGzeq3JswYUKJ/56UGUnPgUvrgOZBgEMVQ0ejX+XpayUiIjJC+5bmbIK7be4smFuYfOqic9lZOZtB7Vs6H0ELlxdaV5Eqz/lvSlah9cq63K+jPDD5fxF+fn5iOTY2VqNnYmJi1D5fEubm5hg2bBiGDRtWaL28MTZu3FgnfZcXcrkcI0aMwL59++Dh4SHeVygUWLBgAUJDQ5XqW1lZYd26dWqT8B9//BEtW7bEe++9J94TBAHfffcdzpw5o1S3ZcuWmDnThKZgJT0Hjs8D6nY1/QS3PH2tRERERijt3+WpabLyPcOvpNI02NDbzM4SipQsmNlblGhk3lCEbEVO/HYmMsCmAZNP5v39/cVyRkYGYmJiilzb/ODBA7XPl4Z//vlHLLdp06ZU+zZWZmb//bC5cuUKatasiffffx/Vq1eHTCbD8ePHER0drfRM3bp1sWLFCnTo0EHpfu458cnJyXj//ffRunVr+Pn5wcLCAidOnMDt27eV6g8dOhS//fZbofsqhIWF4eLF/3bBTUhIUKmzbNky7NmzR7yeOXMmXFxcNPjqiYiIiEyXrYMD0mRS2Do66X1kPv8HBraOTnrtrzRkZ2XlfP80WDbsOrge4pZcRqVgf1h5Gd9xfJkxOcfiuQ5WsyeMiTL5ZL5FixZwcXERE6jIyMhCk3lBEJSOkOvSpYveY8ylUChw7tw5AEDlypXRsSPXa2mievXqiI2NxbFjx3Dx4kVcu3YN165dw6FDh5CamgpLS0u4ubnB19cXjRs3Ro8ePdClSxdYqPkfwsRpn+NkelXE3Y1CLUkc7t+7ix07dog7pVeqVAk1a9ZE27ZtMXLkSLVnzucXERGB9evXF1pny5YtStcTJkxgMm9iZJkyTD46GUDOZniOVkVvcEmkL9kyGZ5OyNmfperSJTDXYMNVIiJD6DbhU2ycMRn9Z8yGu28tvfa1ZfYMpetBs+bqtb/S8OLBP9g4YzK6TfjU0KGQHph8Mm9paYnevXsjJCQEAHD48GGl89/zu3z5sri23t7eHl27di1R/5mZmcjMzIStra046luQc+fO4eXLlwCAESNGqE02ST0PDw8MGTIEQ4YMKVE74zZGwtW7Hly9cz7Ru7yldRFPFC0kJET8+0flV24in1te+/5awwVD5V5uIp9b9t5Q+AeORETlQa9PZ4rnynMXezIG5SJbnDJlCjZs2ACFQoGwsDD89NNPBZ7hvmHDBrE8fvx4paPttDF16lT8+uuvWLRoET755JNC6+ZuflepUiV8+eWXJeqXSGvhH+b8d2N/wFz9vxOTkf3vcYXhHwITLhZel4iIiEyajX0FkxiNp/LD+HY20EKjRo0QFBQEAHjx4gUWLlyott6DBw+wYsUKADkJ9YwZM9TWy91ozcHBAU2aNMG1a9eKjGHTpk3Izs4u9P0dO3YAABYtWiSeTU+la8WI5mrL5Urq63//+xJIijXtV+pL5a9Zjxa9s0htmcgQqi5dorZMRFTW2Lu4ovWAIbB34e/G2ijO98/cwQoOnarD3ME4B3OMPX5tSARBEAwdRGlITU1Fu3btEBUVBQsLC6xcuVJM8AHg3r176NGjB+7evQsrKyscOnQI7dq1U9vW2rVrMXr0aPG6Xbt2OHHihNq6EyZMwK+//goACAoKwsKFC5XOj09JScGiRYswe/ZsyOVy/PTTT/j0U+3XtMhkMjg5OUEqlcKxDK6BjJOlY9P5xxjWsjoqO9oYOpxyRePv/dI3gZd3AbtK5WNkPvUlUKkOR+aJiIiIqEzQNKcrF9PsAcDOzg779+9HYGAgIiIiEBwcjB9//BH+/v6Ij4/HqVOnkJWVBQ8PD2zYsKHARF4diUSiUb1169YhPDwcTZs2hbu7O+Li4nD+/HmkpKTAw8MDS5YsQf/+/bX9Eo1CXFIGfjl8D+/6uTOZL2Uaf+/7rQJWdgCGbwM8G5dafAYReyXna+23ytCREBEREREVS7lJ5gHAzc0N+/btw+7duxESEoKoqCjs2rULjo6OaN68OQYMGICgoKAip7iPGDECR44cwY4dO1C7dm0sWVLwFMW5c+eiW7duOHr0KM6cOYP79+/j1KlTsLKyQpUqVdCxY0f069cP/fv3h4MGR0aQ7kjT5Bi2+ixuxKieu7llXCu08KlogKhMyKMzwLp8G0h6NgFG7ABsnQ0RUamKSY5B3+19kaZIU7pvZ2GH8N7h8KpQ+BGZRCWR9vffeNi7T5H1JHZ28N29C1ZFHNlKVF7E/pOA7fMvAwAqVauAPlOawLocnVldHsU/fogNn01QulfZxxcD//c9bOyN73g2Q8lKSMfzhRcBec61ZdUKcBvtDzPbcpVulrpyM82+vCjr0+xvxEjRY8kp7Jn4Fhp6GfbszsErz+Lcg4LXSj+c170Uo9E/jb/3uaPVY46XbGT+6wL68GkHjNqjfbu6pKuvVY02f7RBUqbqB0UA4GDlgDNDzui0P6K8bjdoCBSyT0teZg4OqHvxgp4jIjIOv447onTtVccZfaY2NVA0VBqWBgcgIyVF5X41P39uhlcMMV+fgZCu/P8da18nuI1pZKCIjJumOV252ACPiIrBoQrQ4Yuc/5q68vS1EhEREZFJ4ci8iSnrI/OdFxzHP/HJqGhvBUtzw36WpBAEvE7JRJZC9Z+Aq70VrAwcn67JsxV4lZKJWm4VcGhaB/13yGn2nGZPBpEtk+FRUDAybt4ssi6n2RMp4zT78ofT7HWD0+x1S9Ocjsm8iSnryXyzOQfxKiXT0GGUaxXtrRD51buGDoOI9OTRyECla+8N6w0UCREREWmDu9lTmeRiZ4VXKZllYmS+vMkdmXexM/Hj5oiIiIiIygEm81SqFg1ujB5LTmF9cAuDb4BX3uRugLdocGP9d5aWCIQNzykHbCwX0+rzkmXKMOHwBPyT+A9qOdfC0k5L4WhV9mbKkGmqunQJnk6YKJaJiIjINHFolIh0LzeRz18uJyYfnYx/Ev8BAPyT+A8mH51s2ICoXDF3dIT3hvXw3rAe5mVwuRURERHpBpN5IiIiIiIiIiPDZJ5KVWUHa3zSqTYqO1gbOpRyp1S/913mAo/P5Ly6lL8zWue0nQNBEJAqT0UNpxpY9M4iQ4dERERFyEiVY8fCKOxYGIWMVLmhw6FS8ud3X2FpUAA2z5qO9JRkQ4dDVCzczd7ElPXd7KmcmFdd+fqLx4aJw0CCDwQrXa99f62BIiEiIk3tWBildN1nalMDRUKlacVHoyBPzzlGtrKPLwbNKn+DEFT2aJrTcWSeiIiIiIiIyMgwmSci3Rt7Un25nMg7rZ5T7ImIjEPXcf5qy2TaKlatBgCoVN0bvT6daeBoiIqH0+xNDKfZExGVb9kymdLRdNzRnoiIyLhwmj0REVE5lJvI5y8TERGRaWEyT+WWNE2OwSvPYvDKs5CmcddanUpLBEJ65LzSEg0dDRERERGRyWEyT+XW2NBLasukA2HD1ZeJSO+qLl2itkxERESmxcLQARAREZHumDs6wnvDekOHQURERHrGkXkqt1aMaK62TDoQsFF9mYiIiIiIdIK72ZsY7mZPRERERERkvLibPREREREREZGJYjJPREREREREZGS4AR6ZvCcJqeiy8BhS5OpXlNhZmePAlPao5mJXypGZiLREYEMf4Nll5fsSM2DsCaCKvyGiKjUxyTHou70v0hRpKu/ZWdghvHc4vCp4GSAyMlVpf/+Nh737FFlPYmcH3927YOXFv39E6shepWHT12ehyHc6raW1OQb/rwUcK9oaJjDSu7hH0QibNR0TQ7ZiyaiBkGdkYPi8X1DZu4ahQzMaWQnpeL7gIpClfF9iZQb3Kc1g4WJjmMDKGY7Mk8nr/svJAhN5AEjNzEb3X06WYkQmJmy4aiIPAIICWNmh9OMpZQN3D1SbyANAalYqBu4eWMoRkal72K+/RvWE1FRE9+mr52iIjFfYtxdVEnkAkGdkI+zbi6UfEJWajV98onQtKBQq96hwL36JUknkAUDIVOS8R6WCyTwRERERERGRkWEyTyZv7yftYG8pKfB9Oytz7P2kXSlGZGICNgIeTVTvS8yAMcdLP55StrXnVtiaqZ+KaWdhh609t5ZyRGTqfMK3aVRPYmeHGju26zkaIuMV8H9vwsxS9b6ltTkC/u/N0g+ISs3web8oXUvMzFTuUeHcP2mqdsG2xMos5z0qFTyazsTwaDoiIiIiIiLjxaPpiIiIiIiIiEwUk3kiIiIiIiIiI8NknoiIyIhky2R4NDIQj0YGIlsmM3Q4REREZCBM5omIiIzI0wkT1ZaJiIiofCmXyfyePXswcOBA+Pr6wtbWFlWqVEGbNm3w888/4/Xr13rrNzIyEpMmTUKzZs3g6uoKS0tLODk5oX79+hg1ahT++usvcD9CIiIiIiIiKkq52s3+5cuXCAwMxL59+wAAdevWhb+/P+Lj43Hq1ClkZ2fDw8MDoaGh6NSpk876TUtLw7hx47BhwwYAgJWVFVq1aoWqVasiMTERZ86cQWJiIgCgY8eO2LRpE6pUqaJVX9zNnojItGXLZOKIfNWlS2DOn/VEREQmRdOcrtwk86mpqWjfvj0iIyNhbm6OlStXIjg4WHz/3r176NGjB+7evQsrKyscOnQI7dqV/OxxQRDQvXt3REREAADatGmDzZs3o1q1amKdlJQUfPbZZ1i2bBkAwM/PD+fPn0eFChWK3R+TeSIiIiIiIuPFo+nymTRpEiIjIwEAc+bMUUrkAaB27dqIiIiAjY0NMjMz0a9fP3G0vCS2bNkiJvIVK1bEnj17lBJ5ALC3t8evv/6Kjh07AgBu3bqFefPmlbhvolKRlgiE9Mh5pSUaOhoiIiKNZKTKsWNhFHYsjEJGqtzQ4RAZFUVaFuJXXkP8ymtQpGUZOpxyq1wk89evX8e6desAAO7u7pg2bZraer6+vhg7diyAnCn5c+fOLXHfmzdvFstDhgyBi4uL2noSiQTjx48Xr0NDQ0vcN1GpCBuuvkxERFSGRSy/rrZMREV7FXpLbZlKV7lI5hcuXAiFQgEACAgIgJWVVYF1R44cKZZ//fVXpKWllajve/fuiWU/P79C6+Z9//Hjx5DxyCEiIiIiIiJSw+STeblcjp07d4rXRW1s16RJEzg7OwPIWcueO0VeWyXZkiAlJaVEfROVioCN6stERERlWNdx/mrLRFS0iiP81JapdFkYOgB9u3DhAhISEsTrZs2aFVpfIpGgWbNmOHz4MABg//796Nevn9b9N2rUCLdu5Uw9yf1vQfK+b2trCzc3N637JSo1ts7AqD2GjoKIiKhYrO0s0WdqU0OHQWSUzGwt4DamkaHDKPdMfmT++vX/1kBZW1vDy8uryGdq1Kih9nltfPzxx5BIJACAP/74Q+mDhbwEQcBvv/0mXvfo0QMWFib/WQsRERERERFpweST+byj3Z6enho9kzfhL2o0vShvvfUWfvjhB0gkErx69Qo9e/bE06dPleqkpqbi448/xpEjRwAATk5OOtl8j4iIiIiIiEyTyQ/9xsfHi+XctfBFyVtPJpNBLpfD0tJS6xg+++wztGzZEt9//z0OHz6MmjVronXr1qhatSoSExNx+vRp8Ri8+vXr4/fff0fNmjW17o/+c+uZFN1/OQUBgL21OfZPbo9qLnaGDsu0JDwCVrTLKY89Cbh4GzaeUiTLlGHcwXG49eoWbC1s8WevP+FVoejZP0TaSI6MxJNh/54YYWYGn+3hsK1b17BBERkp2as0hH17EQAQ8H9vwrGirYEjotIgjX+BdVPHIzszA1a2tpgYshXpKcmwsa9g6NCMSlZCOp4vigTkClhVdUCloIYwszX5tLJMMvmR+aSkJLFsbW2t0TM2NjYFtqEtf39/dO/eHR06dIBcLsfx48exadMm7N27F4mJiWjSpAnCwsJw/fp1NG7cWON2MzIyIJPJlF70n55LTiN3C8KUjGx0/+WkQeMxSbmJfP5yOTD56GTcepUzeyctKw0Ddw80cERkysREHgAUCjzs199wwRAZudxEPn+ZTFvo9EnIzsxQurdv8XwDRWO8XvwSBchzTgrLfJrEo+kMyOST+bxHyxV2JF1e+eulpqaWKIbNmzejZs2amDRpEq5cuYKFCxciOjoaGRkZiIuLQ1hYGDIyMvDBBx9g/PjxePbsmcZtz507F05OTuKrWrVqJYqViIiIiIiIyj6TT+Ztbf+bNpWZmanRM/nr2dlpPy1706ZNGDp0KBISEuDq6oozZ85g8uTJ8PHxgZWVFdzc3DBo0CCcP38efn5+WLlyJRo1aoTz589r1P6MGTMglUrF15MnT7SO1RT9MaalWLazMsfeT8rXyHGpGHtSfbkcWPTOIvhVzDmOxdbCFlt7bjVwRGTKqm3Kc/SjmRl8wrcZLhgiIxfwf2+qLZNpG/HjYphbKc/U7TbpUwNFY7zcP2kKWOakkVZVHXg0nQFJhJIchG4EhgwZgs2bNwPIOUM+KiqqyGcWLVqEKVOmiNeZmZlarZlPSEiAt7e3OE1/2bJlGDduXIH1b926hYYNG0IQBFSuXBk3btwo9vF0MpkMTk5OkEqlcHR0LHbMpkSaJke7H3I2FaxTxQEWZhJsHtPawFGZmLREIOzfqb8BG3OOqSMiIiIiIq1pmtOZ/Mh83mQ4d5O5okilUrHs6Oio9eZ3mzZtEhN5CwsLDB8+vND6fn5+aNGiBQAgLi4OCxcu1KpfyjE29JJYvvu85PsekBphw9WXiYiIiIhIr0w+mffz+2/aR2xsrEbPxMTEqH2+uM6cOSOW69SpgwoVit4ps0mTJmJ59+7dWvdNOeq4//c9XzGiuQEjISIiIiIi0h2TT+b9/f3FckZGhlKiXpAHDx6ofb64Xr58KZZdXFw0esbV1VUsR0dHa903Af/r6YfLT6RIyczG5rGt4GSr/fGCVICAjerLRKRT2TIZHo0MxKORgcjmqSVEJZaRKseOhVHYsTAKGalyQ4dDpSA9JRmb/zcdS4MCsHnWdKSnJBs6JKISM/lkvkWLFkqJdGRkZKH1BUFQqtOlSxet+7a3txfL6enpGj2Tt56Zmcn/8ejV4BXnYG9lDnsrcwxecc7Q4ZgmW2dg1J6cF9fLE+nN0wkT1ZaJSDsRy6+rLZPp2jX/O7x88ggA8PLxIx5JRybB5LNFS0tL9O7dW7w+fPhwofUvX74srq23t7dH165dte7bx8dHLN+/fx+a7DV47949sezl5aV130RERERERGS6TD6ZB4ApU6aIo9xhYWGFHlG3YcMGsTx+/Hilo+2K6/333xfLiYmJOHXqVKH1U1JScPz4cfG6U6dOWvdNUDqGjkfSEZExq7p0idoyEWmnY2B9xD9JRvyTZHQMrG/ocKgU9Pp0JipV8wYAVKruzSPpyCSY/NF0uT744AOsWbMGADB37lx88cUXKnUePHiABg0aID09HZUqVcLdu3fVrnWXy+UIDg7Gjh07UKtWLaxfvx6NGjVSqadQKNCkSRNcu3YNANC+fXscPXq0wOnzM2fOxPfffw8gZ/f7a9euoX794v0PhkfTERERERVux0Llo4r7TG1qoEiIiFTxaLp8Fi9ejKZNc35Qf/XVV1i3bp3S+/fu3UPXrl2Rnp4OKysrhIeHF7hpXWhoKDZu3Ijk5GRcuXIFEyZMUFvPzMwMoaGhcHJyAgCcOHECAwcORFxcnFK9zMxMfPPNN5g7d654b968ecVO5ImIiIiIiKh8KDfJvJ2dHfbv34+uXbsiKysLwcHBqF+/PgYNGoR33nkHfn5+uHv3Ljw8PLB37160a6f5tGyJRFLge40aNcKpU6fwxhtvAADCw8NRvXp1vPPOOxg2bBh69OgBDw8PzJo1C4IgwNHREWvWrMG0adNK/DUTERERkaqu4/zVlomIjEm5mWaf1+7duxESEoKoqCg8e/YMjo6OqFmzJgYMGICgoCCl4+HUkcvlCAoKwo4dO1C7du0Cp9nnpVAosH//fvz555+4cOECYmJikJSUBFtbW1SqVAlvvPEG3n33XQwbNgzOzs5af22cZk9ERERERGS8NM3pymUyb8qYzBMRERERERkvrpknIiIiIiIiMlFM5omIiIiIiIiMjIWhAyAiIiIiIiLjoEjLwqvQWwCAiiP8YGbLlNJQODJPREREREREGslN5POXqfQxmSciIiIiIiIyMkzmiYiIiIiISCMVR/ipLVPp4wIHIiIiIiIi0oiZrQXcxjQydBgEjswTERERERERGR0m80RERERERERGhsk8ERERERERkZFhMk9ERERERERkZLgBHhkdaZocg1eewe1nyRrV3zKuFVr4VNRzVOVEWiIQ0gN4cV35vsQcGHscqOJvkLBKW9SLKATuDxSv7SzsEN47HF4VvAwYFZV1yZGReDJseMkaMTODz/Zw2Natq5ugiEyY7HUaHF1tsXLyccjTs9XW6ftpE3jWcinlyEjf0lOSseXrGYh/HK3ynsTMDMPn/YLK3jUMEJnxUaRlIW71dWTFqP7ebVm1AtxG+8PMlimloXBknozO2NBLGifyADBo+Tk9RlPOhA1XTeQBQMgGVnYo/XgMJG8iDwCpWakYuHuggaIhY1HiRB4AFAo87Ne/5O0QlQPhP0YVWWf7/MulEAmVtl3zv1ObyAOAoFBg4xeflHJExutV6C21iTwAyJ8m41XorVKOiPJiMk9ERERERERkZJjMk9FZMaI56ntU0Lj+lnGt9BhNOROwEXBXM5VeYg6MOV768RjI+i7rla7tLOywtedWA0VDxqLapo0lb8TMDD7h20reDlE50G960yLr9P20SSlEQqWt16cz4VZd/TT63Gn2pJmKI/xg4aX+927LqhVQcYRfKUdEeUkEQRAMHQTpjkwmg5OTE6RSKRwdHQ0dDhERERERERWDpjkdR+aJiIiIiIiIjAyTeSIiIiIiIiIjw2SeiIiIiIiIyMgwmSciIiIiIiIyMkzmiYiIiIiIiIwMk3kiIiIiIiIiI8NknoiIiIiIiMjIWBg6ACIiIiIiIl1JT0nGrvnfAQB6fToTNvYVDBwRkX5wZJ6IiIiIiExGbiKfv0xkapjMExERERERERkZJvNkdKRpcgxeeRaDV56FNE1u6HCIiIiIqAx5f/xkxD18gLiHD/D++MmGDodIb5jMk9EZG3pJbZmIiIiI6MBvi1DZxxeVfXxx4LdFhg6HSG/KZTK/Z88eDBw4EL6+vrC1tUWVKlXQpk0b/Pzzz3j9+rXO+jl27BgkEonWr7fffltnsRAREREREZHpKFfJ/MuXL9G9e3f07NkTf/75J6ysrNCjRw/Uq1cPFy5cwNSpU9GwYUMcPnzY0KECAMzNzQ0dQpm0YkRztWUiIiIiol6fzlRbJjI15eZoutTUVHTp0gWRkZEwNzfHypUrERwcLL5/79499OjRA3fv3kW3bt1w6NAhtGvXTid9Ozo6wsPDQ6O6mZmZiI6OBgB0795dJ/2bEmmaHKNDLuDui2TUqeJg6HCoHJJlyjD56GQAwKJ3FsHRytGwAZFRyJbJ8HTCRABA1aVLYO7IvzdE+iZ7nQZHV1uEfHEa/T5rCseKtoYOicjoKNKy8Cr0FgCg4gg/mNmWm/TRKJSbkflJkyYhMjISADBnzhylRB4AateujYiICNjY2CAzMxP9+vVDYmKiTvru27cv7ty5o9FrxowZAAAbGxuMGjVKJ/2bkrGhl3D3RTIA4O7zJK6Zp1KXm8jnLxMVJjeRz18mIv0J/zFKLId9e9GAkVBp49F0upObyOcvU9mg82T+8ePHiImJ0XWzJXL9+nWsW7cOAODu7o5p06aprefr64uxY8cCyJmSP3fu3FKLMdeyZcsAAAEBAXB1dS31/omIiIiIiKjs03ky7+PjgxYtWui62RJZuHAhFAoFgJwk2crKqsC6I0eOFMu//vor0tLStO7XysoK7u7ucHJy0qj++fPncfnyZQDARx99pHW/pmzFiOao414BAFCnigPXzFOpW/TOIrVlosJUXbpEbZmI9Kff9KZiOeD/3jRgJFTauGZedyqO8FNbprJBIgiCoMsGzczMUKVKFcTGxuqyWa3J5XK4u7sjISEBALBz50706tWrwPqCIMDV1VWcYr9t2zb069evNELFqFGjsH79ejRp0gRRUVFFP6CGTCaDk5MTpFIpHLkmk3QtLREIG55TDtgI2DobMhoiIiIiIpOjaU6nlzXzL1++xJgxY8RRZkO6cOGCmMgDQLNmzQqtL5FIlOrs379fb7HllZCQgC1btgDgqDyVYbmJfP4yERERERGVKr0k89nZ2VizZg2aN2+O1q1bY8OGDcjIyNBHV0W6fv26WLa2toaXl1eRz9SoUUPt8/oUEhKCtLQ0ODo6YujQoaXSJxERERERERknvSTzFSpUQPfu3SGRSHD+/HkEBQXBy8sLn332Gf755x99dFmgW7f+23XR09NTo2fyJvx5n9cXQRCwfPlyADlr9u3t7fXeJ5FWAjaqLxMRERERUanSSzJvb2+PXbt24cGDB/j888/h5uaG169fY+HChahXrx7ef/997Ny5U9yUTp/i4+PFsrOzs0bP5K0nk8kgl8t1HJWyI0eO4O7duwCAcePG6bUvY3brmRQ+X+yFzxd74TtjL249kxo6JCqHZJkyBB8IRvCBYMgyZYYOh4xEZkwM/n6zBf5+swUyy9iJL0SmRvYqDcsnHcXKyccBAK9ikgwcEZWmuEfRWDikFxYO6YW4R9GGDodIr/R6znz16tUxd+5cPHnyBBs3bkTr1q2hUChw8OBB9OvXD97e3pgzZw6ePXumtxiSkv77AW5tba3RMzY2NgW2oQ+5x9G1b98eDRo0KNazGRkZkMlkSi9T1XPJabGsEJSvqZRwzTzPmSetRPfpq7ZMRLoX9u1FZGf+t79z+ALD7+FEpWfjF5+oLROZIp0n87NmzVI5x93S0hJDhw7FqVOncPXqVYwdOxb29vaIiYnB119/DR8fHwwaNAhHjhzRdThKR8sVdiRdXvnrpaam6jSmvGJjY7Fz504A2m18N3fuXDg5OYmvatWq6TpEIiIiIiIiKmNKJZnPy9/fH8uWLUNsbCyWLFkCPz8/yOVy/Pnnn3j33XdRv359LF68GFKpbqZQ29raiuXMzEyNnslfz87OTiexqLN69WpkZWWhcuXKWh2BN2PGDEilUvH15MkTPURZNuye2FYsm0mUr6mUcM08z5knrdTYsV1tmYh0L+D/3oS5lUS87jetiQGjodI2fN4vastEpkjn58xr48SJE1i2bBnCw8Mhl8shkUhga2uLwYMHY9y4cWjevLnWbQ8ZMgSbN28GAI3Pb1+0aBGmTJkiXmdmZsLS0lLrGAqSnZ0NHx8fPH36FDNmzMD3339f4jZ5zjwREREREZHxMug588XVrl07DB48GI0bNwaQs7t7amoq1q1bh5YtW6Jly5YICQlBenp6sdt2c3MTy4mJiRo9k3dWgKOjo14SeQDYvXs3nj59CjMzM4wZM0YvfZgSaZocg1eexeCVZyFN0++mhERERERERGWZQZP558+f49tvv4WPjw/69euHS5cuQSKRiC9BECAIAi5evIjRo0fD09MTn376abGmkvv5+Ynl2NhYjZ6JybPTcN7ndS33OLquXbvCx8dHb/2YirGhl9SWiYiIiIiIyhudJ/MbNmzA1q1bC61z5MgRDBo0CN7e3pg1axaePHmC3Nn+uQl8kyZNsGrVKty+fRtfffUVvLy8kJiYiJ9//hl16tTBN998A01WCPj7+4vljIwMpUS9IA8ePFD7vC7dv38ff/31FwDtNr4jIsPg0XSkjWyZDI9GBuLRyEBkm/CpI0RERFR6dL5m3szMDB4eHipJc2JiIkJCQrB8+XLcu3cPQE7iLpFIxHLedfJvvvmm0vMKhQL79u3DokWLcOTIEUgkEkyaNAk///xzofHI5XK4u7sjISEBALBz50706tWrwPqCIMDV1VWckr9t2zatNqYryvTp0/HTTz/B29sbDx48gJmZbj5XMeU189I0uTgiv2JEczjZ6mf5A1Fhgg8EK12vfX+tgSIhY/JoZKDStfeG9QaKhIiIiMo6g66Zz/v5wMWLFxEcHAwvLy9MmzYNd+/eVXpfEATUrVsXixYtQmxsLNasWaOSyAM5HxL06NEDhw4dwvbt22FlZYVly5YVOdJuaWmJ3r17i9eHDx8utP7ly5fFRN7e3h5du3bV5EsuloyMDKxbtw4AMHbsWJ0l8qbOydYSm8e0xuYxrZnIExERERFRuaaXLDIrKwtr1qxB8+bN0apVK6xfv1487z13JN7CwgKDBg3C0aNHcevWLUyaNAlOTk4atd+7d28EBQVBLpfjxIkTRdafMmWKmDCHhYUVekTdhg0bxPL48eOVjrbTla1bt+Lly5ewsrLC6NGjdd4+EekPj6YjbVRdukRtmYiIiEhbeknmX716hTFjxiAqKkplFL569er47rvv8OTJE2zevBkdOnTQqo+6detCEASN1sA3atQIQUFBAIAXL15g4cKFaus9ePAAK1asAABUqlQJM2bMUFtPLpdjxIgRcHBwQJMmTXDt2rVixb5s2TIAQL9+/VC5cuViPUtEhuVo5Yi176/F2vfXwtHKtJaykP6YOzrCe8N6eG9YD3MTWwJFREREhqG3+d1518NLJBJ0794de/bswYMHDzBjxowSJ7GRkZGQSCSwsLDQqP7ixYvRtGlTAMBXX30lTnPPde/ePXTt2hXp6emwsrJCeHg4XFxc1LYVGhqKjRs3Ijk5GVeuXMGECRM0jvvatWs4c+YMAG58R0RERERERNrRLBPWUuXKlTF69GiMGTMG1atX10mbBw8exNatW7Fp0yaxD03Y2dlh//79CAwMREREBIKDg/Hjjz/C398f8fHxOHXqFLKysuDh4YENGzagXbt2GseU+6GFJnJH5f38/NC+fXuNnyMiIiIiIiLKpZfd7O3t7bF27Vr07dtX45FzTTVp0gRXr14FkJNEX79+vdhnwe/evRshISGIiorCs2fP4OjoiJo1a2LAgAEICgqCq6troc/L5XIEBQVhx44dqF27NtavX49GjRoV2W9SUhI8PT2RnJyMJUuWFGtEX1OmvJs9ERERERGRqdM0p9NLMl+lShXExsbqslnRb7/9hmfPnol9zZ49Wy/9GCsm80RERERERMZL05xO59Psq1evDnd3d103Kxo/frze2iYiIiIiIiIyBjpP5h8+fKiTdmJiYpCdna2ztfZEREREREREpkKvG+CVRPPmzREfH4+srCxDh0IGIE2TY/DKM7j9LFnpvpkE2DPpLfh5OBkosnLs0RlgXdecclAE4N3GsPEYQExyDAbuHggA2NpzK7wqeBk4IiqrMmNicL9HTyAtTel+tU0bUaFZMwNFRWT6ZK/S8Mc355GVoYCdkxWCfnjL0CGRnqSnJGPL1zMQ/zha7fsBs39A1XoNSjkq05GVkI7nCy4C/6ZiEiszuE9pBgsXG8MGRkr0djSdLuh4OT8ZkbGhl1QSeQBQCEDPJacNEBGJiXz+cjmSm8jnLxPlF92nr0oiDwBPhg03QDRE5UfYtxeRlaEAAMgzsg0cDenTrvnfFZjIA0DYrM9LMRrT8+KXKDGRBwAhU5Fzj8qUMp3MExEREREREZGqYu1m7+vrq89YlDx+/BiCICA7m5+qFoep7GbPafZlEKfZc5o9aYzT7IkMg9Psyw9Os9cvTrM3LL0cTWdmZgaJRKL36e+5fUgkEibzxWQqyTwREREREVF5pGlOVyan2XOtPBEREREREVHBir2bvY2NDQYNGqSPWJSEhYUhIyND7/0QERERERERGZtiJ/NOTk5Yt26dPmJRsn//fsTFxem9HyqbpGlyjA29BABYMaI5nGwtDRwRERERERFR2VEmp9kT5Sby+ctERERERESkxch8aeG6+fItSyHg7vMkAECdKg4GjoaIiIiIiKhsKVYyr1Ao9BWHiufPn5daX1QG5f0whx/sEBERERERKSmzI/NUvlmYm8HPk0frEREREZGq9JRk7Jr/HQCg16czYWNfwcAREZW+Mrtm3sPDAxYW/KyhvFoxornaMhERERFRbiKfv0xUnpTpbJnr5ssvJ1tLbB7T2tBhEBFpJTMmBtF9+gIAauzYDisvLwNHRERERKamzI7MExERGavcRD5/mYiIdKPXpzPVlonKk2KNzN++fRsHDhxAp06d4O/vr7ZOx44ddRLY69evddIOGR+eMU9EREREhbGxr4BBs+YaOgwig5IIGs5lv3PnDpo1a4b09HRYWVkhMjISfn5+KvXMzMwgkUhKHJggCJBIJMjOzi5xW+WJTCaDk5MTpFIpHB2NcwO5wSvPKl1zuj0RGRtOsyciIiJtaZrTaTwyv2/fPqSlpQEAMjMzsX//frXJfC6udydt8Yx5IjJ2Vl5eqHvxgqHDICIiIhOmcTLfpEkTpes33nijwLqWlpZo3bpko6lnzpxBVlZWidogI8Uz5omIiIiIiAqlcTL/zjvvYNWqVdi1axe6du2KTp06FVjX1dUVR48eLVFgHh4eiIuLK1EbZJx4xjwRERERkeEo0rLwKvQWAKDiCD+Y2ZbpQ9DKLY3XzGvKzMwMVapUQWxsbInayU3muWa+eExhzTw3wCMiIiIiMpz4ldeUrt3GNDJQJOWTztfMlzauuS+/eMY8ERERERFR4XSezEdHR8Pc3LzE7Vy6dImj8kRERERERKWs4gg/pWn2VDbpPJn39vbWSTtVq1bVSTtkPJ4kpOL9BUeR+u++h3ZW5jgwpT2qudgZNjACEh4BK9rllMeeBFx08++cyJRkxsTgfo+ewL8nv8DMDD7bw2Fbt65hAyMqJ14+TULYtxcBAJbW5hg8qwUcXW0NHBXpQ3pKMsK/n4XnD+7B0sYGI39cAic3d0OHZTKyEtLx4pcoAID7J025Xr4MMzN0AAXZunUrNmzYYOgwqBR1/+WkmMgDQGpmNrr/ctJwAdF/chP5/GUiEkX36ftfIg8ACgUe9utvuICIypkt318Sy/KMbIT/GGXAaEifds3/Ds8f3AMAyNPTETp9koEjMi25iXz+MpU9ZTaZnzRpEoKDgw0dBhEREREREVGZU2aTeYCb4JU3ez9pB7s8s3jsrMyx9xOOApcJY0+qLxORqMaO7YBtnim9ZmbwCd9muICIyplBXzYXy5bW5ug3vakBoyF96vXpTFTxrQ0AsLSxwYgfFxs4ItPi/klTtWUqe3R+NJ06Dx8+xOvXr5GSkqJxgt63b18kJibqZRO8PXv2YP369YiMjMSzZ8/g5OQEX19fDBw4EIGBgXB1ddV5n7kUCgX279+PP//8ExcuXMDz588hlUrh4OAAHx8f+Pv7o23btujWrZtW+waYwtF0RERERERE5ZWmOZ3ekvnw8HCsWrUKJ0+eRFreNYQaEgQBEolEp8n8y5cvERgYiH379gEA6tatC39/f8THx+PUqVPIzs6Gh4cHQkND0alTJ531m+vq1av48MMPcfHiRVhYWODNN99EtWrVkJycjFu3buHhw4di3QYNGuDGjRvF7oPJPBERERERkfEy2DnzcrkcgwYNwq5duwBoN1VeIpHoOiykpqaiS5cuiIyMhLm5OVauXKm0Jv/evXvo0aMH7t69i27duuHQoUNo1053U7yPHTuGbt26IS0tDePGjcOcOXNQqVIl8X1BEPDHH38gKCgImZmZOuuXiIiIiIiITI/O18x//vnn2LlzZ4nWu+tjssCkSZMQGRkJAJgzZ47K5nq1a9dGREQEbGxskJmZiX79+iExMVEnfd+8eRM9e/ZEWloaZs2ahWXLlikl8kDOBxhDhw7FN998o5M+jZE0TY7BK89i8MqzkKbJDR0OEVGxZMtkeDQyEI9GBiJbJjN0OERERFpRpGUhfuU1xK+8BkVaVtEPkMHodJp9QkICPDw8IJfnJGKCIKBVq1Z47733UKtWLVSsWBG2trZFjrwLgoD+/fvrbM389evX0bhxYygUCri7u+Px48ewsrJSW3fy5Mn45ZdfAADTp0/HDz/8UOL+O3TogBMnTsDf3x9XrlyBmVnBn6E8efIEH374IXx8fLB8+fJi92XM0+wHrzyrdL15TGsDRUJEVHyPRgYqXXtvWG+gSIiIiLQXv/Ka0rXbmEYGiqT8Msg0++PHj4tTxM3MzPD7778jICBAq7YKSra1sXDhQigUCgBAQEBAoW2PHDlSTOZ//fVXfP3117DNuztxMe3cuRMnTpwAAEydOrXQRB4AqlWrhv3792vdHxEREREREZk+nU6zz93ATSKRoE+fPlon8oDuptrL5XLs3LlTvC5qY7smTZrA2dkZAJCSkoKIiIgS9b9u3ToAOd+T7t27l6gtU7diRHO1ZSIiY1B16RK1ZSIiImNScYSf2jKVPTodmc+7a33Hjh1L1Nb27dt1shHchQsXkJCQIF43a9as0PoSiQTNmjXD4cOHAQD79+9Hv379tOpbKpWKHwZUq1YNbm5uWrVTXjjZWnJqPREZLXNHR06tJyIio2dma8Gp9UZCp8l83nPRS7peu3Vr3SR1169fF8vW1tbw8vIq8pkaNWqofb64IiMjxQ8k6tSpI95/8OAB9u3bh+joaCQnJ6NSpUrw9/dH586dVTbGIyIiIiIiIspPp8l8586dYW5uDoVCgZiYGF02rbVbt26JZU9PT42eyZvw532+uK5cuSKWXVxc8OzZM0yePBlbtmxRW9/a2hofffQRvvvuO9jZ2WndLxEREREREZk2na6Z9/DwQFBQEARBwI4dO0rU1pQpUzB69OgSxxQfHy+Wc9fCFyVvPZlMJu7OX1x3794Vy8+fP0erVq2wZcsWDB8+HBcvXkRqaioSEhKwa9cuNGrUCBkZGVi0aBHat2+vtDSgPLjw8BV8vtgLny/24sLDV4YOh/JLSwRCeuS80hINHY3BxCTHoM0fbdDmjzaISS4bH1hS2cGj6YgMR/YqDSsnH8dv44/izx8uISOVR9yasvSUZGyZPQNbZs9AekqyocMhMhidnzO/aNEiNG/eHBcuXMDPP/+sdTubN29GSEhIieNJSkoSy9bW1ho9Y2NjU2AbxZH3nPqTJ0/i8ePH+PLLLxEaGormzZvD1tYWzs7O6NmzJ86ePYs333wTQM70/MDAwAJaVZaRkQGZTKb0MkaDlp9TW6YyImy4+nI5M3D3QLVlIgB4OmGi2jIR6V/YtxeRlZlzclHcoyRELNd+mSSVfbvmf6e2TFTe6DyZt7Ozw9GjRzFq1Ch89tlnGDVqVImmqpdU3k35ND3uLn+91NRUrfrOn1jXrFkTX3/9tdq6dnZ2WLlypXi9e/duHDlypMg+5s6dCycnJ/FVrVo1rWIlIiIiIiIi41GsNfPBwcHFatzf3x+hoaEIDQ1FtWrV4OfnBxcXF41GyKVSabH6KkjeM+I13R0/fz1t16/nb2fYsGGwtLQssH7jxo3RrFkzREZGAgBWrlxZ5KkAM2bMwNSpU8VrmUxmlAn9lnGtxBH5LeNaGTgaUhGw8b8R+YCNho3FgLb23CqOyG/tudXA0VBZU3XpEnFEnkfTEZWugP97E5vnXEBWpgKVvR3QdZy/oUMiPer16UxxRL7XpzMNHA2R4RQrmQ8JCYFEIilWB7nnxT9+/BhPnjwp1nPF7UsdBwcHsZyRkaHRM+np6QW2URwVKlRQum7VqugktU2bNmIyf/z48SLrW1tba7x8oCxr4VMRD+d1N3QYVBBbZ2DUHkNHYXBeFbxwZsgZQ4dBZRSPpiMyHMeKthizqIOhw6BSYmNfAYNmzTV0GEQGp9Vu9rkJuibyJ+SaPKuLJD5X3rPd865hL0zeWQGOjo6FjqYXJv/xfJqMmPv6+orl58+fIy0tTWl2AREREREREVGxk3kzMzOl8+T15cmTJ8X60KAgfn5+Yjk2NlajZ/Ieq5f3+eLy9vZWutYkKc8/mp+QkMBknoiIiIiIiJQUO5l3c3NDdHS0PmJR4uHhgbi4uBK34+//35qpjIwMxMTEKJ0jr86DBw/UPl+SvgHlzfgKkn8pQP7k3hRJ0+QYG3oJALBiRHM42Wo3E4KIiIiIiKi80Plu9mVNixYt4OLiIl7nrkcviCAISnW6dOmidd/518hrMjMg7wcYFSpUUJmqb4pyE/n8ZSIiIiIiIlKvzCbzuphiDwCWlpbo3bu3eH348OFC61++fFlcW29vb4+uXbtq3Xf16tXRsmVL8ToqKqrIZ65cuSKW27dvr3XfxiRLIeBWrAy3YmXIUujmz52IqDSl/f03bjdoiNsNGiLt778NHQ5RuZORKseOhVHYsTAKGalyQ4dDepSekozN/5uOpUEB2DxrOtJTkg0dkslRpGUhfuU1xK+8BkValqHDoUIUK5m/fPkyDh06pK9YlDx//hzZ2dk6aWvKlCkwM8v5UsPCwgo9om7Dhg1iefz48SVerz527Fix/OeffxZaVyaT4eDBg+L18OHDS9S30cj7wY2OPsQhIipND/v1V1smotIRsfy62jKZnl3zv8PLJ48AAC8fPxKPqCPdeRV6S22Zyp5iJfNvvPFGiTaEM5RGjRohKCgIAPDixQssXLhQbb0HDx5gxYoVAIBKlSphxowZauvJ5XKMGDECDg4OaNKkCa5du1Zg34GBgWjSpAmAnCn+W7cWfDb1t99+K66rb9q0KQICAor+4kyAhbkZ/Dwd4efpCAvzMjtZhIiIiIiIqMwoN5nT4sWL0bRpUwDAV199hXXr1im9f+/ePXTt2hXp6emwsrJCeHi40lr7vEJDQ7Fx40YkJyfjypUrmDBhQoH9mpmZISwsDJUrVwYABAcHY8eOHUp1srOzMW/ePPz0008AAHd3d2zbtk2cTWDqVoxorrZMRGQsfMK3qS0TUenoOs5fbZlMT69PZ6JStZwToypV90avT2caOCLTU3GEn9oylT0SQVeL04uQnp6OS5cu4enTp0hISIBEIoGLiwuqVq2KZs2awcbGRu8xxMfHIzAwEBEREQCAevXqwd/fH/Hx8Th16hSysrLg4eGBDRs2oHPnzgW2s3btWowePVq8bt++PY4fP15o3zdv3sTw4cPFNfF169bFG2+8gczMTJw9exYvXrwAALRt2xZ//PGHRmfSqyOTyeDk5ASpVFouNs8jIiIiIiIyJZrmdHpN5gVBwJ9//olly5bh9OnTyMpSv4GChYUF2rVrh48++gj9+vWDRCLRV0gAgN27dyMkJARRUVF49uwZHB0dUbNmTQwYMABBQUFwdXUt9Hm5XI6goCDs2LEDtWvXxvr169GoUaMi+83KykJYWBi2bNmCq1ev4vnz57CyskKVKlXQtm1bBAQElGj3fIDJPBERERERkTEzeDJ/8+ZNBAUFice8FdVNbgL/5ptvYt26dahfv74+wjJ5xpjM85x5IjJm2TIZnk6YCACounQJzI3kZy+RqchIlYub3nUd5w9rO/4eQUTGTdOcTi+Lsk+dOoU2bdogMjJSTOILG23PfU8QBFy4cAGtWrXC6dOn9REalUE8Z56IjFluIp+/TESlgzvZE1F5ZaHrBh8/fozu3bsjKSlJKUl3dnZG3bp1UaVKFdjb20MQBKSkpODZs2e4e/cupFIpgJzEPikpCd26dcONGze0XjtOREREREREZKp0Ps2+b9++2LlzJyQSCezt7fHRRx9h6NCheOONNwp97vLly9i4cSNWrlyJlJQUSCQS9OnTB9u2cVfg4uA0eyKi0sVp9kSGxWn2RGRqDLJmPi4uDl5eXlAoFPDz88Pu3bvh4+NTrDYePHiAnj174vbt2zA3N0dMTIx4rBsVzRiTeSIiIiIiIsphkDXzx44dQ3Z2NmxsbLBz585iJ/IA4Ovrix07dsDGxgYKhQLHjh3TZYhERFqRZcoQfCAYwQeCIcuUGTocIiKicik9JRlbZs/AltkzkJ6SbOhwiAxKp8n806dPAQC9e/eGr6+v1u3Url0bvXv3BgDExMToJDYiopKYfHSy2jIRERGVnl3zv1NbJiqPdJrM525417hx4xK31bRp0xK3QURERERERGSKdJrMe3p6AgAsLUu+8YiFRc5G+x4eHiVui4iopBa9s0htmYiIiEpPr09nqi0TlUc6PZquWbNmAIA7d+6UuK3cNjhCT0RlgaOVI9a+v9bQYRAREZVrNvYVMGjWXEOHQVQm6HRkvlatWmjZsiW2b98OmUz7DaJkMhnCw8PRpEkT1KlTR22d/v37o1OnTlr3QURERERERGSsdJrMA8CSJUsgk8kwatQoZGVlFfv57OxsBAUFQSqVYvHixQXWO3PmDHe6JyIiIiIionJJ58l88+bNsXHjRhw8eBCtW7fGwYMHoelR9ocOHULr1q0RERGB1atXo02bNroOj4iIiIiIiMjo6XTNPAB88803AICePXti8+bN6NKlCypVqoTmzZujVq1acHR0FDfIk8vlkMlkuH//Pi5duoT4+Hjx2YcPH4ptqZOczHMliYiIiIiIqHySCJoOm2vIzMxMPKIub9O59wpSnLq59SUSCbKzs7WM1DTJZDI4OTlBKpXC0dHR0OEQERERERFRMWia0+l8ZD4vTZJybeoSERERERERlWd6S+Z1POBPRERERERERP/S+QZ4AODu7g6FQqHXl7u7uz5CJyIiIiIiIirz9JLMExEREREREZH+GG0yz2n8REREREREVF7pfM38unXrYGtrq+tmVSxevBhpaWl674eIiIiIiIiorNH50XRkWDyajoiIiIiIyHhpmtMZ7TR7IiIiIiIiovJKr+fM55WWloazZ8/i0aNHePXqFSQSCSpWrAhvb2+0bt0aNjY2pRUKERERERERkVHTezJ/9OhR/Pjjjzhy5AiysrLU1rG0tETnzp3x2WefoUOHDvoOiYiIiIiIiMio6W2afXJyMgYNGoTOnTvjr7/+glwuhyAIal+ZmZmIiIhAx44dMXjwYCQlJekrLCIiIiIiIiKjp5dkPjExEa1bt8a2bdvEI+QkEkmB9XPfEwQBW7duRdu2bSGVSvURGhEREREREZHR08s0+759++LmzZtKSbq7uzv8/Pzg4eGBChUqQBAEpKSkICYmBnfu3MGLFy/E52/evIl+/frh8OHD+giPiIiIiIiIyKjpPJnftGkTjh8/DolEAhsbG3z88ccIDAxEgwYNCn3uxo0bWL9+PZYtW4bU1FQcO3YMv//+O4YOHarrEImIiIiIiIiMms7PmW/QoAFu376NWrVqYe/evahdu3axnr979y66d++O+/fvw8/PDzdu3NBleACAPXv2YP369YiMjMSzZ8/g5OQEX19fDBw4EIGBgXB1ddVpf4UtMVCnbt26uHPnjlZ98Zx5IiIiIiIi42WQc+YfPnyI27dvw8rKCuHh4cVO5AGgTp06CA8Ph6WlJW7fvo2HDx/qLL6XL1+ie/fu6NmzJ/78809YWVmhR48eqFevHi5cuICpU6eiYcOGnN5PREREREREZZpOp9mfP38eANClSxc0bNhQ63b8/f3RpUsX7NmzB+fPn4ePj0+JY0tNTUWXLl0QGRkJc3NzrFy5EsHBweL79+7dQ48ePXD37l1069YNhw4dQrt27Urcby5bW1tUr15do7q+vr4665eIiIiIiIhMj06T+dxN7Fq0aFHitlq2bIk9e/YobYxXEpMmTUJkZCQAYM6cOUqJPADUrl0bERERaNCgAdLT09GvXz/cu3cPzs7OOum/RYsWOHbsmE7aIiIiIiIiovJNp9Ps09LSIJFIUKFChRK3lbvjfVpaWonbun79OtatWwcAcHd3x7Rp09TW8/X1xdixYwHkTMmfO3duifsmIiIiIiIi0jWdJvOVKlWCIAh49OhRidt69OgRJBIJKlWqVOK2Fi5cCIVCAQAICAiAlZVVgXVHjhwpln/99VedfJhAREREREREpEs6TeZr1KgBANi5cydKskl+dnY2tm/frtSmtuRyOXbu3Cled+rUqdD6TZo0EafWp6SkICIiokT9ExEREREREemaTpP5tm3bws7ODtHR0Zg9e7bW7fzvf//Dw4cPYWdnh7feeqtEMV24cAEJCQnidbNmzQqtL5FIlOrs37+/RP0TERERERER6ZpON8CztrZG//79ERoaijlz5iA+Ph7ffvstXFxcNHr+1atXmDFjBlavXg2JRIKBAwcWOiVeE9evX1eKz8vLq8hn8s4GyPt8SSkUCpw6dQpnzpzBkydPkJWVBVdXV9SuXRvvvPNOiWchEBERERERUfmg02QeAL755hts2bIFmZmZWL58OTZu3Ihu3bqhU6dOqF+/Pjw9PWFvbw9BEJCcnIzY2Fjcvn0bhw4dQkREBFJTUwEANjY2JRrdz3Xr1i2x7OnpqdEzeRP+vM+XxMOHD9GgQQPcuXOnwDpdu3bFDz/8AH9/f530SURERERERKZJ58m8t7c3Vq1ahZEjR0IikSApKQlbtmzBli1binw2d529mZkZ1qxZg2rVqpU4nvj4eLGs6TFzeevJZDLI5XJYWlqWKI5Hjx7B3t4e//vf/zBw4ED4+voiOzsbN2/exKpVq7Bu3TpERETg2LFj2LBhAwYMGFCi/sqiW8+kGLT8HG7Mfh8NZx1AckaW0vuNqjohdHRLONmW7HtNJZDwCPitDSBPVv9+lUZA4G7A1rlUwzKkmOQY9NvRD6nZOR80mknMsKXHFtR1rWvgyEgfkiMj8WTYcO0eNjODz/Zw2Nbl3w0iXctIlWP7gii8ikkpsI5EAgya+SYqVXUoxchIn6TxL7Bu6nhkZ2aovGdpY4PA+b/Cyc3dAJGZnqyEdDxfcBHI8+t5pXH+sPFxNlhMVDSdrpnPNXz4cPz666+wsLCARCIBkJOoF/bKZWVlhWXLlmHw4ME6iSUpKUksW1tba/SMjY1NgW1oy9PTE5cvX8bs2bPRsGFD2NnZwcHBAa1atcKaNWuwfv16ADnH+w0bNgznzp3TqN2MjAzIZDKlV1nVc8npQt+/9lSKsaGXSikaUmtFu4ITeQB4fg0I0zLRMVIDdw8UE3kAUAgKBOwJMGBEpE9aJ/IAoFDgYb/+uguGiEQRy68XmsgDgCAAW77n7xGmJHT6JLWJPADI09MROn1SKUdkul78EqWUyAPAy+W6W25M+qGXZB4APvroI5w8eRItW7ZUStYlEonSK5cgCGjbti1Onz6NDz/8UGdx5D1aTtP19/nr5U7919b169dx9epV1K5du8A6I0aMwNChQwEAmZmZ+PjjjzVqe+7cuXBychJfupjNQERERERERGWb3pJ5AGjRogXOnDmDU6dO4fPPP0fr1q3h4eEBa2trWFtbw9PTE23atMEXX3yBs2fP4uTJk0XuNl9ctra2YjkzM1OjZ/LXs7OzK1EMDRs2RKVKlYqsN2nSf58uRkVF4eTJk0U+M2PGDEilUvH15MmTEsWqT7snti30/UZVnbBiRPNSiobUGnsSsKxQ8PtVGgEBG0svnjJga8+tsDP/72eAmcQMYT3CDBgR6VO1TSX4+21mBp/wbboLhohEXcf5o6KXfaF1JBJg0Jf8PcKUjPhxMcyt1M+stbSxwYgfF5dyRKbL/ZOmKguwK43jPl5lnUQoyYHwRmDIkCHYvHkzgJwz5KOioop8ZtGiRZgyZYp4nZmZWeI185pQKBRwdHRESkrONLKvvvoK33zzTbHakMlkcHJyglQqhaOjoz7CJCIiIiIiIj3RNKfT68h8WeDm5iaWExMTNXpGKpWKZUdHx1JJ5IGcjf9q1qwpXt+9e7dU+iUiIiIiIiLjYvLJvJ+fn1iOjY3V6JmYmBi1z5cGB4f/dmB9/fp1qfZNRERERERExqHMJvMeHh6wsCj5yXl5z2zPyMhQStQL8uDBA7XPl4b09HSxbG9f+NowIiIiIiIiKp/KbDIPALpYzt+iRQu4uLiI15GRkUX2mbdOly5dtO5bKpXi22+/FY+d00Te2QOenp5a901ERERERESmq0wn87pgaWmJ3r17i9eHDx8utP7ly5fFtfX29vbo2rWr1n0nJCTgq6++wo8//qhR/adPn+LZs2fidbt27bTum4iIiIiIiExXyeexFyAzMxO7du3C0aNHcfPmTbx+/RopKSkaj7bHx8frLJYpU6Zgw4YNUCgUCAsLw08//VTgmfMbNmwQy+PHj1c62k5bd+7cQVxcHCpXrlxovbx9Ozs7l+iDBCIiIiIiIjJdeknmd+/ejY8++khplBnQfNq8RCKBIAiQSCQ6iadRo0YICgrCmjVr8OLFCyxcuBBffPGFSr0HDx5gxYoVAIBKlSphxowZatuTy+UIDg7Gjh07UKtWLaxfvx6NGjUqsH+FQoFZs2Zh2bJlBdZ58OAB5s2bJ15/8cUXcHJy0vRLJCIiIiIionJE59Psd+3ahf79+yM2NlZM3gVBKNb6d12slc9v8eLFaNq0KYCc89vXrVun9P69e/fQtWtXpKenw8rKCuHh4Upr7fMKDQ3Fxo0bkZycjCtXrmDChAlF9r98+XJMmDBB7Q71R44cwdtvv42kpCQAwIABAzB9+vTifolERERERERUTkgEHWbOWVlZ8PX1xdOnT8XRdQCoX78+atasCScnJ413qA8LC0NGRgays7N1FR7i4+MRGBiIiIgIAEC9evXg7++P+Ph4nDp1CllZWfDw8MCGDRvQuXPnAttZu3YtRo8eLV63b98ex48fV6mXkpKCadOm4ffffxcTdRsbG7Ro0QJeXl5IT0/HtWvXcP/+fQCAtbU1vvjiC/zvf/+DmZl2n7PIZDI4OTlBKpXC0dFRqzaIiIiIiIjIMDTN6XSazB87dgwdO3YUp8f3798fCxYsQLVq1YrdloeHB+Li4nSazOfavXs3QkJCEBUVhWfPnsHR0RE1a9bEgAEDEBQUBFdX10Kfl8vlCAoKwo4dO1C7du0ip9mnpqbi0KFDOHDgAC5fvoz79+8jMTER5ubmcHV1RYMGDfD2228jKCgIVapUKdHXxmSeiIiIiIjIeBkkmf/1118xceJESCQSNG3aFBcvXtS6LX0m86aMyTwREREREZHx0jSn0+kGeDKZTCwHBASUqK1BgwYptUdEREREREREOXSazOc9eq2k08V/+eWXkoZDREREREREZJJ0upv922+/LZafP3+uy6aJiIiIiIiI6F86TeZr1qyJvn37QhAEbN++vURt9e/fH506ddJRZERERERERESmQ+fnzK9YsQK+vr44d+4c5s6dq3U7Z86cwbFjx3QXGBEREREREZGJ0HkyX6lSJZw+fRodOnTAzJkz0bNnTxw9epS70hMRERERERHpiE43wMvl7u6OI0eO4LPPPsOCBQuwb98+WFlZwdfXFy4uLrCysiqyjdevX+sjNCIiIiIiIiKjp5dk/vbt2wgODsaFCxcAAIIgICMjA7dv34ZEItGoDUEQNK5LREREREREVJ7oPJm/ffs23nrrLSQmJqok5IIgQBAEXXdJREREREREVK7oPJn/4IMPkJCQICbxgiDAwcEBvr6+cHBwgLm5uUbtnDlzBllZWboOj4iIiIiIiMjo6TSZv379Os6ePSsm8q1bt8aPP/6INm3aFHvKvIeHB+Li4nQZHhEREREREZFJ0Gkyf/bsWbFcs2ZNHDlyBNbW1rrsgoiIiIiIiKjc02ky//LlS7E8cuTIEiXyVatWhY2NjS7CIiIiIiIiIjIpOk3mXVxcxLKPj0+J2rp48WIJoyEiIiIiIiIyTWa6bKx9+/ZiWSqV6rJpIiIiIiIiIvqXTpP5Bg0aoFu3bhAEAYcPHy5RWwsXLsQ333yjo8iIiIiIiIiITIdE0PHB7y9fvkTHjh1x69Yt7Nu3D++9955W7eTuZp+dna3L8EyeTCaDk5MTpFIpHB0dDR0OERERERERFYOmOZ1OR+YBoFKlSjh69Ci6deuGPn364Mcff0RycrKuuyEiIiIiIiIqt3S6AR4AcWp88+bNER8fjxkzZuDrr79Gq1atUL9+fbi4uMDKyqrIdvgBABEREREREZF6Op9mb2ZmBolEIl7nNp/3niYEQYBEIuE0+2LiNHsiIiIiIiLjZbBp9rnyJvHFTeSJiIiIiIiIqGA6n2afl44H/YmIiIiIiIgIehyZ37x5MxQKhdYvd3d3fYVGREREREREZNT0lswTERERERERkX6U2WSeU/SJiIiIiIiI1NP5mvnt27cDAN58880StXPp0iXuZE9ERERERESkhs6T+d69e+uknapVq+qkHSIiIiIiIiJTU2an2RMRERERERGReno9mi6/jIwMxMbG4tWrV5BIJKhYsSI8PDxgbW1dmmEQERERERERGTW9j8zLZDL88MMPeOutt+Dk5IRatWqhZcuWaNGiBWrWrAknJye0a9cO8+fPh0wm03c4AIA9e/Zg4MCB8PX1ha2tLapUqYI2bdrg559/xuvXr0slhlyDBw+GRCKBRCKBj49PqfZNRERERERExkki6HHb+N9++w1ffvklkpKSABS8Q71EIgEAODg4YO7cufjoo4/0Es/Lly8RGBiIffv2AQDq1q0Lf39/xMfH49SpU8jOzoaHhwdCQ0PRqVMnvcSQV0REBLp16yZee3t74+HDhyVqUyaTwcnJCVKpFI6OjiWMkIiIiIiIiEqTpjmdXkbmBUHAyJEjMXHiRMhkMjGJzx2Bzv/KG/SECRMQGBio85hSU1PRpUsX7Nu3D+bm5lizZg3u3LmDrVu34tixY7h9+zbq1KmDZ8+eoVu3bjh58qTOY8gfz/jx4/Xax/+3d/9BUd93HsdfC7L8GhYheIKebSRSE1ocUcukaYl6pg0ktjZGa1t/ELibOGc8G2Nu7mjr9IczRyaXYmJiG51pUbA/bBqjRl3aaGKNZw0tykmPJpojmPgjZj1lF+XXIt/7w/E7rAIusIt+v/t8zOzM58t+Pp/3Z/988f18vx8AAAAAgD2FJcyvWrVKW7ZsCfibYRgaMWKEMjIylJWVpQkTJigjI0PR0dEyDEOGYcjhcMgwDG3ZskVPP/10SNe0YsUK1dbWSpLWrFmjkpKSgO+zsrLkdrsVFxenzs5OzZ07V83NzSFdQ08/+MEP1NTUxPsCAAAAAAADFvIw/6c//UnPP/+8Gcw///nP68UXX9Tf/vY3tba26tSpU3r33Xf13nvv6dSpU2ptbVVDQ4PWrVunqVOnSroa/NeuXat33nknJGuqr69XRUWFJGn06NFatWpVr/0yMzO1dOlSSVe35JeVlYWk/vX++7//W88//7xiY2P7XAsAAAAAAH0JeZhfvXq1JCk+Pl5VVVV655139MQTT2jixImKjo6+of+IESN09913a/ny5aqpqVFlZaXi4+MD5hqq8vJydXd3S5IWLFggp9PZZ98lS5aY7fXr16utrS0ka7imu7tbjz/+uLq6uvTd735XWVlZIZ0fAAAAAGB/IQ3zFy9e1P79++VwOFRVVaWFCxcOeI5FixapsrJShmHorbfeGvJWd7/frx07dpjXN3uxXW5urkaOHClJunz5stxu95DqX2/9+vWqqanRxIkT9e///u8hnRsAAAAAEBlCGubffvttdXd3Ky8vT4888sig53n00UeVl5en7u5uHThwYEhrqqmp0cWLF83ra1v5++JwOAL6VFdXD6l+T6dOndL3vvc9SdKGDRv63SEAAAAAAEBfQhrmT58+LUn6yle+MuS5HnzwwYA5B6u+vt5sx8bGauzYsTcdM378+F7HD9W//Mu/qKWlRY899pimT58esnkBAAAAAJElpGG+ublZDodDaWlpQ54rLS1NhmEMeZt9Q0OD2R4zZkxQY3oG/p7jh2LHjh3avn277rjjDv3nf/5nSOYEAAAAAESmkIb5kSNHyjAMnT9/fshznT9/Xg6Hw3x+fbA8Ho/ZDnaunv18Pp/8fv+Q1tDS0qLly5dLkp577rmQ/LMDAAAAABC5Qhrmr93R3rt375Dn+v3vfx8w52C1tLSY7WDPdI+Li+tzjsH4/ve/r1OnTmn69Ol67LHHhjTX9To6OuTz+QI+AAAAAAB7C2mYz8/PV1RUlA4fPqydO3cOep5XX31VNTU1ioqK0v333z+kNfU8Wi7YF85d36+1tXXQ9f/yl7/opZdektPp1MsvvzzoefpSVlam5ORk8zNu3LiQ1wAAAAAA3F5CGuZTUlI0ffp0GYahhQsX6pVXXhnwHL/61a9UVFQkh8OhGTNmDHmb/bUz6yWps7MzqDHX90tISBhU7StXrujxxx9Xd3e3/u3f/k133333oObpT2lpqbxer/n56KOPQl4DAAAAAHB7CWmYl6Qf//jHkq7ezf7mN7+pL37xi9qwYYPef/99GYZxQ//u7m4dP35cP/3pT3Xvvfdq8eLF5p3wa3MNRVJSktnu6OgIakx7e3ufcwzE888/r6NHjyorK8s8ki7UYmNj5XK5Aj4AAAAAAHsbEeoJv/jFL2r58uV66aWX5HA4dPjwYR0+fFjS1e3rf/d3f6fExEQZhqFLly7J4/EEvGDOMAw5HA595zvf0Re+8IUhr2fUqFFmO9g343u9XrPtcrkUExMz4LonT57UD37wA0nSz372s6Cf1wcAAAAA4GZCHuYl6YUXXtAnn3yi3/72t3I4HOYd+Y6Ojn63gTscDknSwoULVV5eHpK1ZGdnm+0zZ84ENabn2fY9xw/EE088ocuXL2vRokWaNWvWoOYAAAAAAKA3Id9mL10N5b/5zW9UXl4e8Ly5w+Ho9XNNYmKi1q1bp8rKypCtJScnx2x3dHQEBPW+NDY29jp+IHbv3i1J2rJlS5+/2+FwqLi42Bxz8uTJG77/4Q9/OKj6AAAAAAD7Csud+WuefPJJFRUV6ac//al27dql2tpadXV1BS5gxAhNmzZNc+bM0dKlS4f8wrvr5eXlKSUlRRcvXpQk1dbW9nvcnWEYqq2tNa8LCgoGVbeoqCiofu+//77+67/+S9LVf2bMmzcv4PvJkycPqj4AAAAAwL4cRm9vpQuTtrY2nT59WhcuXJAk3XHHHRo7duwN57qHWnFxsTZt2iRJWrFihV544YU++x45ckRTp06VdDVcezyegDfih9qmTZvMu/Of/vSn1dTUNKT5fD6fkpOT5fV6eRkeAAAAAFhMsJkuLNvs+xIfH68JEyYoLy9PeXl5uuuuu8Ie5CVp5cqVioq6+lO3bt3a7xF1Pbf4L1u2LKxBHgAAAACAwRjWMH+rTJo0ybz7fe7cuT5frtfY2KgNGzZIktLS0lRaWtprP7/fr8WLFyspKUm5ubk6duxYeBYOAAAAAEAvBhTm/+Ef/kHz588P11oCPProoyF9C/y6des0ZcoUSdLq1atVUVER8P2JEydUWFio9vZ2OZ1Obdu2TSkpKb3OVVVVpS1btujSpUuqq6vT8uXLQ7ZOAAAAAABuZkAvwNu/f7/S09PDtZYAhw4d0ieffBKy+RISElRdXa2ioiK53W6VlJTo2WefVU5Ojjwejw4ePKiuri5lZGSosrJS+fn5Qc/d8438N/Puu+/qmWeeMa/ff/99s33+/Hk99thj5nVaWpqee+65oOcGAAAAAESGAb0ALyoqSunp6UGf1z4UGRkZ+uSTT3TlypWQz/36669r06ZNOnLkiM6ePSuXy6W77rpL8+bNU3FxsVJTU/sd7/f7VVxcrO3btysrK0ubN2/WpEmTgqq9f/9+zZw5M6i+g3khHi/AAwAAAADrCjbTDTjMjxo1Sn/5y18U7pfgT5s2Tf/3f/8XljBvZ4R5AAAAALCuYDPdgM+ZP3/+vO68886hrC0ohmEMaPs6AAAAAACRYsBhXlLY78oDAAAAAIC+hfVoOofDMai769yRBwAAAACgbwO+Mx8TE6MvfOELQfX94x//KKfTGXT/ng4dOqSurq4BjwMAAAAAwO4GHOZTU1P11ltvBdU3KipqQP17uvY2ewAAAAAAECis2+wBAAAAAEDo3bZhnpfsAQAAAADQuwFts6+oqFB8fHy41hJg3bp1amtrG5ZaAAAAAABYicMI4y3wqKgopaen68yZM+Eqgev4fD4lJyfL6/XK5XLd6uUAAAAAAAYg2Ex3226zBwAAAAAAvSPMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALCYAYX5AwcO6PDhw+FaS4DDhw/rwIEDw1ILAAAAAAArGdA58zNmzFBGRoZOnz4drvWYHnnkEXk8HnV1dYW9FgAAAAAAVjLgbfZhPJb+ltYCAAAAAMAqeGYeAAAAAACLGdA2e0nyer0qKSkJW/+e4wAAAAAAwI0cxgD2skdFRcnhcAQ9uWEYA+rf29grV64Manyk8vl8Sk5OltfrlcvlutXLAQAAAAAMQLCZLqzb7Acb5AEAAAAAQN8GvM1e4sV0AAAAAADcSgMO8ykpKXr11VfDsRaTYRh69NFH1dzcHNY6AAAAAABY0YDDvNPp1PTp08OxlhvqAAAAAACAG3E0HQAAAAAAFjOgO/Of+tSnNHr06HCtJcDf//3fKy4ublhqAQAAAABgJQMK801NTWFaxo3+/Oc/D1stAAAAAACshG32AAAAAABYTESG+V27dmn+/PnKzMxUfHy80tPTdd9992nt2rW6cOFCyOt1dnbqzTff1OrVq1VQUKBPf/rTSkxMlNPpVFpamu6991499dRTqqurC3ltAAAAAID9OIwIOjT+/PnzKioq0p49eyRJEydOVE5Ojjwejw4ePKgrV64oIyNDVVVVmjVrVkhqlpaW6uWXXzaP2XM6nfrsZz+r8ePHKzo6Wu+9956OHTtm9i8qKtLLL7886PcF+Hw+JScny+v1yuVyheInAAAAAACGSbCZbsBH01lVa2urCgoKVFtbq+joaG3cuFElJSXm9ydOnNDs2bN1/PhxPfTQQ9q7d6/y8/OHXNftdptB/pvf/KaeffZZjRs3LqBPXV2dFi5cqIaGBm3evFkej0e7d+8ecm0AAAAAgD1FzDb7FStWqLa2VpK0Zs2agCAvSVlZWXK73YqLi1NnZ6fmzp1rhvBQmDFjhrZs2XJDkJekyZMnm7Ulac+ePdqxY0fIagMAAAAA7CUiwnx9fb0qKiokSaNHj9aqVat67ZeZmamlS5dKurolv6ysLGRrePrppxUdHd3n95/61Kf08MMPm9c7d+4MWW0AAAAAgL1ERJgvLy9Xd3e3JGnBggVyOp199l2yZInZXr9+vdra2oZUe/78+Vq6dKmmT59+075ZWVlm+9SpU0OqCwAAAACwL9s/M+/3+wO2rN/sxXa5ubkaOXKkmpubdfnyZbndbs2dO3fQ9b/3ve8F3be9vd1sjxw5ctA1AQAAAAD2Zvs78zU1Nbp48aJ5PXXq1H77OxyOgD7V1dVhW9v1ampqzHao3qYPAAAAALAf24f5+vp6sx0bG6uxY8fedMz48eN7HR9Obrdbhw4dkiR95jOfCdjuDwAAAABAT7YP8w0NDWZ7zJgxQY3pGfh7jg+H1tZWvfTSS5o/f74kaeLEiQFvtgcAAAAA4Hq2f2be4/GY7WCfQ+/Zz+fzye/3KyYmJiTr8Xq9+s53vqO2tjadOnVKdXV1am1tVU5OjkpKSvTP//zPio2NDUktAAAAAIA92T7Mt7S0mO1gQ/L1d8VbWlqUmpoakvW0tbVp8+bNAX8bOXKkJkyYoNTUVBmGMaD5Ojo61NHRYV77fL6QrBMAAAAAcPuy/Tb7nkfL9XckXU/X92ttbQ3ZetLT02UYhrq6uuTxePTGG29o9uzZ2r59u4qKinTPPffowIEDQc9XVlam5ORk8zNu3LiQrRUAAAAAcHuyfZiPj483252dnUGNub5fQkJCSNckSdHR0UpLS9MDDzygqqoqvfbaa4qOjlZTU5O+/OUv66233gpqntLSUnm9XvPz0UcfhXytAAAAAIDbi+3DfFJSktnuuR29Pz3Pe79+jnCZM2eOnn76aUlX/5mwaNGiG9bRm9jYWLlcroAPAAAAAMDebB/mR40aZbabm5uDGuP1es22y+UK2cvvbmbFihVm+8yZM3rllVeGpS4AAAAAwFpsH+azs7PN9pkzZ4Iac/r06V7Hh9uYMWN05513mtf79+8fttoAAAAAAOuwfZjPyckx2x0dHQFBvS+NjY29jh8O6enpZjvYfz4AAAAAACKL7cN8Xl6eUlJSzOva2tp++xuGEdCnoKBg0LUPHTqk5557TvX19UGP8fv9ZjvYt+8DAAAAACKL7cN8TEyM5syZY17v27ev3/5Hjx41n61PTExUYWHhoGv/4Q9/0L/+67+quro6qP7d3d363//9X/OaY+YAAAAAAL2xfZiXpJUrVyoq6upP3bp1a79H1FVWVprtZcuWBRxtN1jBPvv+xhtvBLyk78EHHxxybQAAAACA/UREmJ80aZKKi4slSefOnVN5eXmv/RobG7VhwwZJUlpamkpLS3vt5/f7tXjxYiUlJSk3N1fHjh3rt77b7dYf//jHfvtcunRJTz31VMCaH3rooX7HAAAAAAAiU0SEeUlat26dpkyZIklavXq1KioqAr4/ceKECgsL1d7eLqfTqW3btgU8a99TVVWVtmzZokuXLqmurk7Lly/vt7ZhGPra176mn//8573uCqitrVV+fr4aGhokXf1Hwi9/+UtFR0cP5qcCAAAAAGwuYsJ8QkKCqqurVVhYqK6uLpWUlOiee+7RN77xDc2cOVPZ2dk6fvy4MjIytHv3buXn5wc9t8Ph6PXvDz74oKZPny5J8vl8+qd/+ieNHj1aX/7yl7Vw4ULNmzdP2dnZmjZtmurq6iRJ999/vw4dOqTPfe5zQ/7NAAAAAAB7chiGYdzqRQy3119/XZs2bdKRI0d09uxZuVwu3XXXXZo3b56Ki4uVmpra73i/36/i4mJt375dWVlZ2rx5syZNmtRn/6amJu3evVtvv/22GhoadOrUKbW0tGjEiBFKTk7WhAkT9PnPf14LFizQvffeO6Tf5vP5lJycLK/XK5fLNaS5AAAAAADDK9hMF5Fh3s4I8wAAAABgXcFmuojZZg8AAAAAgF0Q5gEAAAAAsBjCPAAAAAAAFkOYBwAAAADAYgjzAAAAAABYDGEeAAAAAACLIcwDAAAAAGAxhHkAAAAAACyGMA8AAAAAgMUQ5gEAAAAAsBjCPAAAAAAAFkOYBwAAAADAYgjzAAAAAABYDGEeAAAAAACLIcwDAAAAAGAxhHkAAAAAACyGMA8AAAAAgMUQ5gEAAAAAsBjCPAAAAAAAFkOYBwAAAADAYgjzAAAAAABYDGEeAAAAAACLIcwDAAAAAGAxhHkAAAAAACyGMA8AAAAAgMUQ5gEAAAAAsBjCPAAAAAAAFkOYBwAAAADAYgjzAAAAAABYTESG+V27dmn+/PnKzMxUfHy80tPTdd9992nt2rW6cOFCyOu1t7dr27Ztevzxx5Wbm6s77rhDMTExSklJ0Wc/+1k99thj2r17t7q7u0NeGwAAAABgPw7DMIxbvYjhcv78eRUVFWnPnj2SpIkTJyonJ0cej0cHDx7UlStXlJGRoaqqKs2aNWvI9c6ePauf/OQn2rhxo1paWiRJY8aM0dSpU5WUlKSPP/5Yf/rTn9TW1iZJmjx5siorK5WTkzPomj6fT8nJyfJ6vXK5XEP+DQAAAACA4RNspouYMN/a2qr7779ftbW1io6O1saNG1VSUmJ+f+LECc2ePVvHjx+X0+nU3r17lZ+fP6SaP/zhD/WjH/1IkpSSkqINGzZo3rx5cjgcZp8LFy7oySefVFVVlSQpOTlZb775pqZMmTKomoR5AAAAALCuYDNdxGyzX7FihWprayVJa9asCQjykpSVlSW32624uDh1dnZq7ty5am5uDln9bdu2af78+QFBXpJSU1NVWVmpr33ta5Ikr9erb3/72/L7/SGrDQAAAACwl4gI8/X19aqoqJAkjR49WqtWreq1X2ZmppYuXSrp6pb8srKykNR/4IEHNGPGjH779Kz13nvvaceOHSGpDQAAAACwn4gI8+Xl5ebL5RYsWCCn09ln3yVLlpjt9evXm8+zD8WDDz540z7Z2dkaO3asef3GG28MuS4AAAAAwJ5sH+b9fn/AXe6bvdguNzdXI0eOlCRdvnxZbrd70LUXLVokt9uthQsXBtV/3LhxZvvUqVODrgsAAAAAsDfbh/mamhpdvHjRvJ46dWq//R0OR0Cf6urqQdeeMGGCCgoKlJGREVT/nkfTjRgxYtB1AQAAAAD2ZvswX19fb7ZjY2MDtrL3Zfz48b2OD7cPP/zQbOfm5g5bXQAAAACAtdg+zDc0NJjtMWPGBDWmZ+DvOT6cPvjgA3388cfm9YIFC4alLgAAAADAemwf5j0ej9m+9iz8zfTs5/P5huWYuF//+tdme+7cubrnnnvCXhMAAAAAYE22fzC7paXFbMfGxgY1Ji4u7oY5UlNTQ7quni5duqQXX3xRkpSYmKif/OQnQY/t6OhQR0eHee3z+UK+PgAAAADA7cX2d+Z7Hi3X35F0PV3fr7W1NaRrut7q1avNLfbr16/XnXfeGfTYsrIyJScnm5+eb8QHAAAAANiT7cN8fHy82e7s7AxqzPX9EhISQrqmnvbs2aMXXnhBkvTEE0+oqKhoQONLS0vl9XrNz0cffRSOZQIAAAAAbiO232aflJRktntuR+9Pe3t7n3OE0l//+ld961vfkmEYeuSRR8xQPxCxsbFBPz4AAAAAALAH29+ZHzVqlNlubm4OaozX6zXbLpdLMTExoV6WGhsb9ZWvfEU+n0+FhYX6zW9+o+jo6JDXAQAAAADYj+3DfHZ2ttk+c+ZMUGNOnz7d6/hQ+eCDDzRz5kydPXtWDz/8sF577bWgn+cHAAAAAMD2YT4nJ8dsd3R0BAT1vjQ2NvY6PhQ++OADzZgxQx9++KEeeughvfrqq2yTBwAAAAAMiO3DfF5enlJSUszr2trafvsbhhHQp6CgIGRraWpq0syZM80gv23bNoI8AAAAAGDAbB/mY2JiNGfOHPN63759/fY/evSo+Wx9YmKiCgsLQ7KOpqYmzZgxQydPnlRhYWG/QX7RokV64IEHQlIXAAAAAGA/tg/zkrRy5UpFRV39qVu3bu33iLrKykqzvWzZsoCj7Qbr5MmTmjlzpk6ePKmCggK99tpr/d6RP3jw4E3/6QAAAAAAiFwREeYnTZqk4uJiSdK5c+dUXl7ea7/GxkZt2LBBkpSWlqbS0tJe+/n9fi1evFhJSUnKzc3VsWPH+qx98uRJzZgxQ01NTSooKND27dvZWg8AAAAAGBLbnzN/zbp163T06FEdOXJEq1ev1ujRo82AL0knTpzQ7Nmz1d7eLqfTqW3btgU8a99TVVWVtmzZIkmqq6vT8uXLdeDAgRv6ffjhh5o5c6aampokSV1dXXr00UdvutZPPvlkEL8QAAAAABApIibMJyQkqLq6WkVFRXK73SopKdGzzz6rnJwceTweHTx4UF1dXcrIyFBlZaXy8/ODntvhcPT696effloffPCBeb13794h/w4AAAAAACJim/01o0aN0p49e7Rz507NnTtX7e3t2rlzp/7nf/5H06ZN03PPPae//vWvN3353OLFi7Vw4UIlJiZq8uTJevHFF3vt19+z+QAAAAAADJbDMAzjVi8CoePz+ZScnCyv1yuXy3WrlwMAAAAAGIBgM11E3ZkHAAAAAMAOCPMAAAAAAFgMYR4AAAAAAIshzAMAAAAAYDGEeQAAAAAALIYwDwAAAACAxRDmAQAAAACwGMI8AAAAAAAWQ5gHAAAAAMBiCPMAAAAAAFgMYR4AAAAAAIshzAMAAAAAYDGEeQAAAAAALIYwDwAAAACAxRDmAQAAAACwGMI8AAAAAAAWQ5gHAAAAAMBiCPMAAAAAAFgMYR4AAAAAAIshzAMAAAAAYDGEeQAAAAAALIYwDwAAAACAxRDmAQAAAACwGMI8AAAAAAAWQ5gHAAAAAMBiCPMAAAAAAFgMYR4AAAAAAIshzAMAAAAAYDERGeZ37dql+fPnKzMzU/Hx8UpPT9d9992ntWvX6sKFC2Gv7/F4tGDBAjkcDjkcDu3fvz/sNQEAAAAA9hFRYf78+fN6+OGH9dWvflW/+93v5HQ6NXv2bN19992qqanRU089pc997nPat29f2Nbw61//WtnZ2frtb38bthoAAAAAAHuLmDDf2tqqgoIC7dmzR9HR0fr5z3+ud999V6+88or279+vv/3tb/rMZz6js2fP6qGHHtLbb78d0vpnz57VnDlz9O1vf1vNzc0hnRsAAAAAEFkiJsyvWLFCtbW1kqQ1a9aopKQk4PusrCy53W7FxcWps7NTc+fODVno3rRpk7Kzs7Vz505NmTJFf/7zn0MyLwAAAAAgMkVEmK+vr1dFRYUkafTo0Vq1alWv/TIzM7V06VJJV7fkl5WVhaT+k08+qba2Nv3Hf/yH3nnnHU2ePDkk8wIAAAAAIlNEhPny8nJ1d3dLkhYsWCCn09ln3yVLlpjt9evXq62tbcj1v/SlL6murk6lpaUaMWLEkOcDAAAAAEQ224d5v9+vHTt2mNezZs3qt39ubq5GjhwpSbp8+bLcbveQ17Br1y7dfffdQ54HAAAAAAApAsJ8TU2NLl68aF5PnTq13/4OhyOgT3V1ddjWBgAAAADAYNg+zNfX15vt2NhYjR079qZjxo8f3+t4AAAAAABuB7YP8w0NDWZ7zJgxQY3pGfh7jgcAAAAA4HZg+zDv8XjM9rVn4W+mZz+fzye/3x/iVQEAAAAAMHi2f7V6S0uL2Y6NjQ1qTFxc3A1zpKamhnRdodLR0aGOjg7z2ufz3cLVAAAAAACGg+3vzPc8Wq6/I+l6ur5fa2trSNcUSmVlZUpOTjY/48aNu9VLAgAAAACEme3DfHx8vNnu7OwMasz1/RISEkK6plAqLS2V1+s1Px999NGtXhIAAAAAIMxsv80+KSnJbPfcjt6f9vb2Pue43cTGxgb9+AAAAAAAwB5sf2d+1KhRZru5uTmoMV6v12y7XC7FxMSEelkAAAAAAAya7cN8dna22T5z5kxQY06fPt3reAAAAAAAbge2D/M5OTlmu6OjIyCo96WxsbHX8QAAAAAA3A5sH+bz8vKUkpJiXtfW1vbb3zCMgD4FBQVhWxsAAAAAAINh+zAfExOjOXPmmNf79u3rt//Ro0fNZ+sTExNVWFgYzuUBAAAAADBgtg/zkrRy5UpFRV39qVu3bu33iLrKykqzvWzZsoCj7QAAAAAAuB1ERJifNGmSiouLJUnnzp1TeXl5r/0aGxu1YcMGSVJaWppKS0t77ef3+7V48WIlJSUpNzdXx44dC8/CAQAAAADoRUSEeUlat26dpkyZIklavXq1KioqAr4/ceKECgsL1d7eLqfTqW3btgU8a99TVVWVtmzZokuXLqmurk7Lly8P+/oBAAAAALhmxK1ewHBJSEhQdXW1ioqK5Ha7VVJSomeffVY5OTnyeDw6ePCgurq6lJGRocrKSuXn5wc9t8Ph6Pf7d999V88880yf3z/zzDPatGmTef31r39dX//614OuDwAAAACILBET5iVp1KhR2rNnj15//XVt2rRJR44c0c6dO+VyuTRt2jTNmzdPxcXFSk1N7XeexYsX680339T27duVlZWlF198sd/+H3/8sTZv3tzn97///e8Dru+8807CPAAAAACgTw7DMIxbvQiEjs/nU3Jysrxer1wu161eDgAAAABgAILNdBHzzDwAAAAAAHZBmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALAYwjwAAAAAABZDmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALAYwjwAAAAAABZDmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALAYwjwAAAAAABZDmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMREZ5nft2qX58+crMzNT8fHxSk9P13333ae1a9fqwoULtq0NAAAAALAHh2EYxq1exHA5f/68ioqKtGfPHknSxIkTlZOTI4/Ho4MHD+rKlSvKyMhQVVWVZs2aZcnaPp9PycnJ8nq9crlcoVo+AAAAAGAYBJvpIibMt7a26v7771dtba2io6O1ceNGlZSUmN+fOHFCs2fP1vHjx+V0OrV3717l5+dbrjZhHgAAAACsK9hMFzHb7FesWKHa2lpJ0po1awLCtCRlZWXJ7XYrLi5OnZ2dmjt3rpqbmy1fGwAAAABgPxER5uvr61VRUSFJGj16tFatWtVrv8zMTC1dulTS1W3xZWVllq4NAAAAALCniAjz5eXl6u7uliQtWLBATqezz75Lliwx2+vXr1dbW5tlawMAAAAA7Mn2Yd7v92vHjh3m9c1eLpebm6uRI0dKki5fviy3223J2gAAAAAA+7J9mK+pqdHFixfN66lTp/bb3+FwBPSprq62ZG0AAAAAgH3ZPszX19eb7djYWI0dO/amY8aPH9/reCvVBgAAAADYl+3DfENDg9keM2ZMUGN6hu6e461UGwAAAABgX7YP8x6Px2xfex79Znr28/l88vv9lqsNAAAAALCvEbd6AeHW0tJitmNjY4MaExcXd8Mcqampt2Xtjo4OdXR0mNder1fS1X8EAAAAAACs5VqWMwyj3362D/M9j3fr71i4nq7v19raOqgwPxy1y8rK9KMf/eiGv48bNy7IVQIAAAAAbjctLS1KTk7u83vbh/n4+Hiz3dnZGdSY6/slJCTctrVLS0v11FNPmdfd3d26cOGC7rjjDjkcjgGsFgAAAABwqxmGoZaWlpu+d832YT4pKcls99yO3p/29vY+57jdasfGxt6whT/Y5/MBAAAAALef/u7IX2P7F+CNGjXKbDc3Nwc15tpz55LkcrkUExNjudoAAAAAAPuyfZjPzs4222fOnAlqzOnTp3sdb6XaAAAAAAD7sn2Yz8nJMdsdHR0BYbkvjY2NvY63Um0AAAAAgH3ZPszn5eUpJSXFvK6tre23v2EYAX0KCgosWRsAAAAAYF+2D/MxMTGaM2eOeb1v375++x89etR8vj0xMVGFhYWWrA0AAAAAsC/bh3lJWrlypaKirv7UrVu39ntMXGVlpdletmxZwPFyVqsNAAAAALCniAjzkyZNUnFxsSTp3LlzKi8v77VfY2OjNmzYIElKS0tTaWlpr/38fr8WL16spKQk5ebm6tixY8NWGwAAAAAAh2EYxq1exHBobW1Vfn6+jhw5ohEjRmjjxo1myJakEydOaPbs2Tp+/LicTqf27t2r/Pz8Xuf6xS9+oX/8x380r/Pz83XgwIFhqQ0AAAAAQETcmZekhIQEVVdXq7CwUF1dXSopKdE999yjb3zjG5o5c6ays7N1/PhxZWRkaPfu3QMK0w6H45bVBgAAAABEnoi5M9/T66+/rk2bNunIkSM6e/asXC6X7rrrLs2bN0/FxcVKTU3td7zf71dxcbG2b9+urKwsbd68WZMmTRqW2gAAAAAARGSYBwAAAADAyiJmmz0AAAAAAHZBmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDFEOYBAAAAALAYwjwAAAAAABZDmAcAAAAAwGII8wAAAAAAWAxhHgAAAAAAiyHMAwAAAABgMYR5AAAAAAAshjAPAAAAAIDF/D8fCG7YEVZ5DgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "H = data.incidence_1.to_dense().numpy()\n", + "labels = data.y.numpy()\n", + "n_steps=11\n", + "Ep, Np = data['mp_homophily']['Ep'].numpy(), data['mp_homophily']['Np'].numpy()\n", + "num_steps = transform_config['mp_homophily']['num_steps']\n", + "\n", + "\n", + "isolated_nodes = np.where(H.sum(0) == 1)[0]\n", + "# Get non-isolated nodes\n", + "non_isolated_nodes = np.array(list(set(np.arange(H.shape[0])) - set(isolated_nodes)))\n", + "\n", + "# Sort non-isolated nodes by their class node\n", + "non_isolated_nodes = non_isolated_nodes[np.argsort(labels[non_isolated_nodes])]\n", + "\n", + "# Extract the class node probability distribution for non-isolated nodes\n", + "sorted_labels = labels[non_isolated_nodes]\n", + "avr_class_homophily_types = []\n", + "types = []\n", + "for step in range(num_steps):\n", + " type = Np[step, non_isolated_nodes, sorted_labels]\n", + "\n", + " # Within every class, sort the nodes by their class node probability distribution\n", + " avr_class_type = []\n", + " \n", + " for i in np.unique(sorted_labels):\n", + " idx = np.where(sorted_labels == i)[0]\n", + " type[idx] = type[idx][np.argsort(type[idx])]\n", + " avr_class_type.append(np.mean(type[idx]))\n", + " \n", + " avr_class_homophily_types.append(avr_class_type)\n", + " types.append(type)\n", + "\n", + "\n", + "settings = {\n", + " 'font.family': 'serif',\n", + " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", + " 'figure.figsize': (5.5, 3.399186938124422),\n", + " 'figure.constrained_layout.use': True,\n", + " 'figure.autolayout': False,\n", + " 'font.size': 16,\n", + " 'axes.labelsize': 24,\n", + " 'legend.fontsize': 24,\n", + " 'xtick.labelsize': 24,\n", + " 'ytick.labelsize': 24,\n", + " 'axes.titlesize': 24}\n", + "\n", + "step = 0 \n", + "\n", + "with plt.rc_context(settings):\n", + " fig = plot_homophily_scatter(avr_class_homophily_types[step], data.y, non_isolated_nodes, types[step], step=step, save_to=None)\n", + " plt.close()\n", + "fig\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Hypergraph" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transform parameters are the same, using existing data_dir: /home/lev/projects/TopoBenchmark/datasets/graph/cocitation/Cora/graph2hypergraph_lifting_mp_homophily/1975368801\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torch_geometric/data/in_memory_dataset.py:300: UserWarning: It is not recommended to directly access the internal storage format `data` of an 'InMemoryDataset'. If you are absolutely certain what you are doing, access the internal storage via `InMemoryDataset._data` instead to suppress this warning. Alternatively, you can access stacked individual attributes of every graph via `dataset.{attr_name}`.\n", + " warnings.warn(msg)\n" + ] + } + ], + "source": [ + "from omegaconf import OmegaConf, open_dict\n", + "# Recompose config with additional override of model equivalent to \"\"model=hypergraph/unignn2\"\" which will force to load approriate tranforms\n", + "cfg = hydra.compose(config_name=\"run.yaml\", overrides=[\"dataset=graph/cocitation_cora\", \"model=hypergraph/unignn2\"], return_hydra_config=True)\n", + "loader = hydra.utils.instantiate(cfg.dataset.loader)\n", + "dataset, dataset_dir = loader.load()\n", + "\n", + "data = dataset.data\n", + "\n", + "# Create transform config\n", + "\n", + "# Add one more transform into Omegaconf dict\n", + "\n", + "new_transform = {\n", + " '_target_': 'topobenchmark.transforms.data_transform.DataTransform',\n", + " 'transform_name': 'MessagePassingHomophily',\n", + " 'transform_type': 'data manipulation',\n", + " 'num_steps': 3,\n", + " 'incidence_field': \"incidence_hyperedges\",\n", + " }\n", + "\n", + "# Use open_dict to temporarily disable struct mode\n", + "with open_dict(cfg.transforms):\n", + " cfg.transforms[\"mp_homophily\"] = OmegaConf.create(new_transform)\n", + "\n", + "# # Apply transform\n", + "processed_dataset = PreProcessor(dataset, dataset_dir, cfg.transforms)\n", + "data = processed_dataset.data\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAJjCAYAAABA7UFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT5/cH8M/NYk9Zgjhw46ir2taqX7XDXevCUZx11r1a66+11qodal1t3aNoFVfdo62jtWodOHBPEARlCQTITu7vj0ggJECAJJck5/168fLemzsOqMDJ8zznMCzLsiCEEEIIIYQQQojN4HEdACGEEEIIIYQQQsqGknlCCCGEEEIIIcTGUDJPCCGEEEIIIYTYGErmCSGEEEIIIYQQG0PJPCGEEEIIIYQQYmMomSeEEEIIIYQQQmwMJfOEEEIIIYQQQoiNEXAdADEvjUaD5ORkeHh4gGEYrsMhhBBCCCGEEFIGLMsiJycHwcHB4PGKH3+nZN7OJCcnIzQ0lOswCCGEEEIIIYRUQGJiIqpVq1bs65TM2xkPDw8A2r94T09PjqMhhBBCCCGEEFIWYrEYoaGhutyuOJTM25n8qfWenp6UzBNCCCGEEEKIjSpt2TQVwCOEEEIIIYQQQmwMJfOEEEIIIYQQQoiNoWSeEEIIIYQQQgixMZTME0IIIYQQQgghNoaSeUIIIYQQQgghxMZQMk8IIYQQQgghhNgYSuYJIYQQQgghhBAbQ8k8IYQQQgghhBBiYyiZJ4QQQgghhBBCbAwl84QQQgghhBBCiI2hZJ4QQgghhBBCCLExlMwTQgghhBBCCCE2hpJ5QgghhBBCCCHExjhsMp+WloaIiAgwDAOGYXDmzBmLP1OlUmHHjh3o3r07atSoAWdnZ4SEhKBTp05Yt24dJBKJxWMghBBCCCGEEGL7HDKZ37FjB8LDw7Fr1y6rPTMuLg5vv/02Bg8ejKNHj8LX1xcffPABqlevjtOnT2Ps2LFo0aIFrl27ZrWYCCGEEEIIIYTYJgHXAVjT8+fPMW7cOBw8eBACgfU+9dTUVHTs2BFPnz6Fm5sbdu3ahW7duulev3TpEnr27In79++jc+fOuHDhAurXr2+1+AghhBBCCCGE2BaHGZnfsmULwsPDcfDgQbRo0QKXL1+22rMHDx6Mp0+fAgDWr1+vl8gDQOvWrbFv3z4wDIPMzEz07t0bKpXKavERQgghhBBCCLEtDpPMT506FVKpFIsWLcLFixfRrFkzqzz3yJEjOHnyJACgefPmGDRokNHz2rZti169egEA7t27h/Xr11slPkIIIYQQQgghtsdhkvm3334b169fx5w5c6w6xX7JkiW67cjIyBLPHTp0qNHrCCGEEEIIIYSQwhwmmT98+DAaNGhg1Wempqbin3/+0e137ty5xPM7duyo237y5AmuXr1qsdgIIYQQQgghhNguh0nmufDnn39Co9EAAJydndGoUaMSz/fx8UHt2rV1+8ePH7dofIQQQgghhBBCbBMl8xZ08+ZN3Xb16tXB5/NLvaZWrVpGryeEEEIIIYQQQvJRMm9Bd+7c0W2HhISYdE3h8wpfTwghhBBCCCGE5HOoPvPWlpaWptv29vY26ZrC56Wnp5s5ImKL7jzPRrcV/5rlXo2CPfHb6Dfg5SI0y/1szoubwJq39Y8FNQWGHQJcvDkJyZ6IFWKMPjEad16a/41IN6Eb/hv8H9747Q3kKfPKdQ8ew8OuHrtQ37e+maMjBMiNiUHikI+4DsNm8dzcUOvgAYhMHPywZ3KJEr8vvYqMpPJ9r7MlH85sjuA6PlyHYXXP7t1G9LxPrfrMiPnfoVqDkpf8ck2VKcOLpZeBCnbo9hvXBM41vc0SU2VHI/MWlJOTo9t2cnIy6RpnZ2ej1xdHLpdDLBbrfRD70nPVObPd63ayGGOjrpjtfjZnXQfDYy9igWj6Bdwcpp6eapFE3lw0rAYRhyO4DoPYKUrkK0aTl4e43h9yHUalcGzNTYdI5AHg9yXXuA6BE9ZO5Ll6ZlmlrLha4UQeANLXOM5SZUrmLUgqleq2RSKRSdcUPk8ikZR6/uLFi+Hl5aX7CA0NLXughBBiBiqNGX4CE0IIIYQQk1Ayb0EuLi66bYVCYdI1hc9zdXUt9fw5c+YgOztb95GYmFj2QEmllS1Vwrn0uokmaxTsibWRrcx3Q1sz5m/DY0FNgYht1o/FziTlJuF66nWuwygRj+Ehukc012EQO6QWiyGycvtbe8Nzc0Ot/b9zHUal0GlYQ/AcZDXchzObcx0CJyLmf+cQzyyrwCktzLII3G9ck4rfxEbQmnkL8vDw0G3L5XKTrpHJZEavL46Tk5PJU/iJ7Rm19TJkaoDPY+Aq4qNRsCd2jnmT67BsV1AT4KtsrqOwO2KFGN32dQMLVneMz/Bxfeh1sz/rv8H/mf2ehFRU4vjxUCUlgefhAad6dVFz+3auQyI27NTWu6hay1u333t6C+6CIRZRrUEjzIg+zHUYlY7AxxnVvmnHdRg2hZJ5C/L399dtZ2VlmXRNdnZBouHn52fukIgNScyU4Ep8pm5folA79qg6qbSmnp4KDavRO+YicCnmbELsj/zefWjy8nTbhBBCiDXQNHsLCg8P120nJSWZdE3h8wpfTxxLtlSJ/31/Wu+Yq5DnuFXoSaWVlJuEmJQYg+N7eu3hIBpCrE8tFusSeQDQFKqXQ0h5dBrWEGmJuUhLzEWnYQ25DocQUolRMm9BTZoUrNdISEiAWq0u9ZonT54YvZ44lsiNF6Fm9Y/VDyp92QUh1pKUm4TWUa3RZW8Xg1H5432PI8Sd2ksRx5AweozePmNCvRtCiiOXKBG94BKUcjXAsvhrU+XtEEII4R5Ns7egd999FzweDxqNBjKZDLdv30bTpk2LPT8zMxOPHz/W7Xfp0sUaYZJKJluqROwz/XXdfAbYOLw1RxHZiRc3gbXtAVYDBDcHIvdTb/kyuP/yPvod6lfqeR4iD0rkiUNQi8WIHzoMinv39I6HHdjPTUDELhxadQMKmXbwR6lQIyPZMVrUORJZXi4OLlkIAOg1cy6c3dw5jojYMhqZt6CAgAC0b99et3/y5MkSzz99umBadVhYGFq0oIInjshYH/gzszvSFPuKWtdBm8gDQPI16i1vovwReFMSeQDY3XO3hSMipHJIHD/eIJFn3N0hCqE3s0j5iDOkSIkT6/ZZDVAlmGZ62Jv8RL7oNiHlQSPzFjZz5kycOXMGABAVFYVp06YVe+6vv/6q254xY4alQyOVlEShvxzj6JS3EepDP8yJ5YkVYow8NhL3s8pewMtV4Ip9H+yjUXniENRiMaTXrhscp1F5Ul7pz3IQ/c1lg+PdP3mNg2iIJWk0aqQnPAUA+FWvwXE0xNbRyHw5ZGVloXv37nB3d0f79u1L7O3evXt3dOrUCQBw7do17Ny50+h5586dw8GDBwEADRo0wJgxY4yeR+xbYqZEb4o9jwHCq3pxGJEdGfM3wLz6lhfcnHrLGzH+r/FlTuRdBa443vc4Lg65SIk8cQhqsRiPOnYCNPq1IkK3b6NReVJuuxYZJvKBNT3g5Eqz8uyNSqGAXJIHuSQPKoWC63CIjaOR+XJYtmwZjh49CgA4e/Ys5s6dqzeqXtRvv/2GNm3a4OnTp/j444/h6emJbt266V6/dOkS+vTpA5Zl4e3tjf3790MgoL8aR5OYKUG77/Qr2DMMw1E0diioCTAvs/TzHJRYIUZsWmyp523tshUtAmkJEHEsuTExSBxS/NIcxt0d7i1bWjEiYm+K1BGF0JmPnpObcRILsZzstBSkPHkEAGB4PKTGPynlCseikaqQEaUt+lglMhw8F8qHSuMwX6F79+7h22+/Lfb1b7/9Flu2bNHt9+7dG7179zbp3qUlXIGBgTh16hQGDRqES5cuoXv37mjevDnq1q2LxMRE/Pfff2BZFvXq1cOOHTtQv359k55L7Eu3FWcNjh2a1JaDSIijMaW4HU2jJ45IkZSExz16AqW0m6Pp9aQixBn6/76ETnwMW/QWjcrboV9nT9JtsxoNRC60jDKf4nkuUldcAwAIq7kjI+oO/McUXzicaDlMMv/ixQts3bq12NdPnDiht1+zZs1ik/np06cjJiYGZ86cQcuWLfHNN9+U+vywsDCcO3cOu3btQlRUFG7duoXbt2+jSpUqaN++PQYNGoTIyEi4Uksbh1V0rXyzUE+aYk/MQqwQY/SJ0bjz0vQWR9Rejjg6tViMx+++ZzCdvqjaJ/+i6fWk3OQSJbZ9cUG3z/CAYYspkbdXSplMb3/oD6s4iqTySV11TbetfJYLpzD6HdgUDpPM/+9//wPLsqWfaAJvb28cOXKkzNcJBAIMHjwYgwcPNkscxH5kS5XQaAr+ffIZYOvINziMiNiTMX+MKVMizwOPEnnisIprOWeAx0PN3/dRIk/KTS5RYuvn5/Wm2LMaUCJvp57duw321ZuDDI+HoLC68PIP5DiqSoYB8OrX4SqR4ZyGYiscJpknpDIbvvlS/vcu8BkGzat7USs6YhZJuUm4nXG7TNfs6rnLQtEQUnlJ799H/Ae9SzwndPs2WhtPzObYmptQyvRn5QmcqDa1vYqe96lum9Vo0Ofz+RxGU7moMmXasuwq7b7fuCa0Xt5E9FUipBIoXMFezbLYOLw1h9EQe9LvoGn94QGgUZVGWPfeOniKPC0YESGVhykJfD6aTk/MTaM2nDE66Ms2HERCLC07LcXgmLObOweRVE4pK64CGuj6rOX8kQDnMd5chmQzKJknhGOJmRKoC02x5zGgUXlzk2YBvw0E0u4AAQ2BQdGAizfXUVmFVKVfWGlPzz2o70tFNgkxNZFnXF0RduggJfLEAlgInHhQyTVgeMBHC96EZxUXroMiFlC48B0ARMz/jqNIiL2huTyEcChbqsT/vj+jd6xpNRoVNbvt/YDEC4AsG0i5DUQX32LK3jjznXXbbgI3SuQJgbZKfamJPI+Hmgf2o8HVGErkiYUw4PF4ELkIEFTLixJ5OyXLy4VCItHtMzweqjVoxGFElU/glBaAUJuWiqp50Hr5MqBknhAORW68CHWRwoxU+M4Ckq8WbMtzuIvDzIYMGQKGYfQ+/ve//+leT8pN0o3MuwndUM+3nt71//77Lxo1amRwj7K4e/cu5s6diw4dOqBq1apwdXWFUCiEr68vmjVrhhEjRuDQoUNmK0BKSEUpkpLwuPM7xb7u1LAh6l26iIZ3bsOFWsUSC9KoWSjlaijlaqNT7ol92Ld4nt6+QOTEUSSVl8DHGdXmt0W1Re0QMKEZrZcvA/pKEcKhwmvlAW07OppibwECV0DxKoln+EDENm7jMYMzZ87gt99+M/qasVZ0UpUUqzuvBgC8fPkSs2fPxqZNm8qdZKvVakyfPh2rV6+G5lV1XoFAgF69esHb2xsnTpzAjRs3cOPGDWzZsgUtW7bE3r17UaNGjXI9jxBzKC6RZ1xdUffMafA9aWYUsazkR5n4fck1vWNCJz4yUyTFXEFsWerTODx/eF/vWECNWhxFQ+wRJfOEcORSfIbBMRqVN7PMp8DPbwHKXO0+wweCW9j8enmVSoWJEycW+/rEkxMNWtFpWA08RZ6IiorCjBkzkJaWhqCgILx48aJcMcyaNQsrV67UO7ZhwwYMGzYMAJCamorw8HBkZGj/ncfExKBTp06IjY2Fm5tbuZ5JSHkpkpLwuEdPQCo1eI3n5oY6p09RIk8sKv1ZDqK/uWz0NaVcjaq16d+fPdr22RS9fYbHQ+9Pv+QomspLlSnTFsGDdsq9wMe5lCtIPppmTwgHsqVKDFjzn96xo1PeplF5c1vTtiCRBwBWDQht/wfE8uXLcfv2bfB4xr+FP8x8aHDMTeCGI0eOYOjQocjJycFXX32FM2fOlOv5aWlpWLVqld4xPp+PiIgI3X5AQADee+89vXOePHmCTZs2leuZhJSXbjTeSCIPHo8SeWJxcomy2EQ+X/dPXrNSNMSa8vvK5xu1cj1VsTciP5Evuk1KR8k8IRwYG3XF4Fh4VS8OIrFjmU+Nr4+38Sn2ycnJmD9/PhiGwahRo4yeU3TqvKvAFXs/2AulUon3338ft27dwrx58+DkVL51excvXoRKpdI75u/vD2dn/TdKqlevbnDtP//8U65nElIeuTExJa6Pr/3nH5TIE4s7uOJ6ia9/OLM5nFzpzXx7I8vLhcCp4OdiYK068PIP5DCiykmVKQMrU4OVqQEqHVFmNM2eEI40rOqOu8+1o8a7xtH0erNb87bhsXH/2vwU++nTpyM3NxfDhg3DW2+9hfXr1+u9nqvIhVwlBwDwGB5cBa64MPgCAMD3fV/07t27wjHk5Bi+SSIUGv4iKhKJDI6JxeIKP5+Q4qjFYsQPHQbFvXslnkft5oi1yCVKpD41/J754czmCK7jw0FExFoOLlmIwJphSE98CgDo98U3HEdUOaWsuAqIGEDBgpWrEfTp61yHZFNoZJ4QDnzZMxwPUvLA5zE4OuVttK5ZheuQ7I8iT39/SiwQ1ISbWMzk1KlTiI6OhpeXF777zniP2rsv7+q2NawGdX3q6vZdXMzT9qi+kQrfxhJ8Y4l7nTp1zBIDIcYkjB5TciLP46HepYvUbo5YzbE1N/UPMMAnazpRIu8geHw+AmqGIaBmGE2vLwHD44Fx5oNx5tN6+TKiZJ4QK0vMlKDbin+h1rBwEfIxcO1/pV9EyubFTe36+HwiD8DHtquoK5VKXdG7+fPnIzDQtKl6+RXszalFixZ4+239mQ9ZWVlITEzUO3bzpv4vsQKBAKNHjzZ7PMSxKZKTAQD3W7aC7MaNYs9jXF1pWj2xOpVSf810xFwadXQUb0V8hMQ7N5F45ybeiviI63AqJY1UBX4VF+00e4Ua/mObch2SzaFknhAr677irG47V64q4UxSbus66O8HNuYmDjP68ccfcffuXTRp0gSffPKJSdds7bIVniLLJC67d+9GmzZt9I5NmDAB8fHxyM7Oxtq1a3H69Gnday4uLti0aROaNWtmkXiI41EkJeFu8xaI69mr5BN5PNQ8sJ9G4wknXj7PA8NjwPAYCJ358KvmwXVIxEp2zZ+jHXHm8bBr/hyuw6mUMqLuQJ0h1Y7Ki/jIPvSE65BsDq2ZJ8TKWAAMCmp8HJnSjsNo7FDmU0Cj1j82eCc3sZjJs2fPsGDBAgDA6tWrIRCU/q17T889qO9rOB3eXIKCgnD+/HkcOHAACxcuRExMDA4fPozDhw/rneft7Y2xY8diwoQJRgviEVJecR/01laoL6bVYe2Tf1HyTjjHMAyETnyuwyCE2CkamSfEiu48z0aOTKVL5BuHeCLUx5XTmOxO0cJ3dlD0btq0acjNzcXgwYPRvn37Us/f2mWrRRN5ANBoNFizZg1mzJiBmJgYAICXlxf69u2LUaNGoUGDBgC00+83btyIlStXIjMz06IxEcchvX8fmtzcYl8P3b6NEnnCufRnOVBIVVBIVVDKVPhwRnOuQyJWkPo0DksjeoDVaHSt6T76dgXHUVVOPv3rgWVZsAo1hAGuqBIZznVINodG5gmxop6rzuntJ2RIOIrETkmzAHmhomsM3+aL3v3555/Ys2cPPDw88MMPP5R6PgMGLQJbWDQmlmUxePBgREdH6475+Pjg0qVLugJ3SqUS/fr1w8GDB5Geno6lS5di3759OHPmDI3QkwpRJCUh/oPeBsdF9euj+ppfaE08qTR2LSpoQ8uywL+7HqL3dMt+fybc2/bZFINjATVqcRBJ5Ze5+wGcQgqWnvBcKDUtKxqZJ8SK1Br9Bpr1AqmyqVlFfwTtIoZXhLY960GhUGDSpEkAgC+//BLBwcF6r0tVUoNreDzLf1vfsmWLXiIPAP369dOrVC8UCjFr1iy9c+Li4vDxxx9bPD5i3+KMJPIAUOu37ZTIk0pDLlGC1VDTbEeTnZaiG40nJdNIVVAk5UL+JBvy+GywKvq6lQcl84RYSbZUCTdhQaLpJuJj4/DWHEZkp5w8AB5f+2Hjhe+WLl2K+/fvo2HDhpgyxfCd/l9v/2pwrFGVRhaPa8OGDYbPbWT43MaNDb/+f/75J+Li4iwSF7F/iqQkg+n1jKttv2lH7NOxNTfBFxX8zBc68dF1nG3PFCOli5o92eAYTbE3LiPqDljFqxpHGkCRklfyBcQomstAiJWMjbqChsFeeJCi/UX07Ked4OUi5DgqOyLN0p9mH9TU5gvf5SfNd+/ehUgkMuma//79DwxT8AtkXFwcatasada4YmNjDY55e3sbHPPy8jJ6/fXr11GrFk05JGUX1+sDvX2emxtqHzlczNmEcIvP54Pvot32D3WHkyv9zLc32Wkp2Dx9AtQKucFrDI+HCRt+o/7yxdAo1AXVoBno/e5CTEfJPCFWJODzEB6snQZKibyZbe8HpBTqa5562+YL340aNQovX740OC5Xy7Hj3g7Ik+TIvak/SlmtWjVERETo9otLqCtCpTJsqciypk8nVSgU5gyHOIjcmBho8vRHbuqcPkVT60ml1HVcExz56QYykiWoEuxGo/J26tfZk4wm8gAgEDlRIl8CZVKh319YIHAK1ZMoD0rmCbGSH/q/pusxT+3oLCD5KtcRmN3nn3+uty9WiDHy2Ejcz7qPqs2qIvNspkEyX7t2bSxZssSicdWoUQP379/XO2asUn1x1etr1KhhkbiI/VGLxYgfOgyKe/cMX3Rzo0SeVGo8Pg/+oe7oOq4JjcrbodSncVBIii9kbI0aNrZKI1UVjMq/+jIJfJw5i8eW0b8yQqwgMVOC/31/GmKZChoWmBZ9neuQ7Is0S1squLAxf3MSiiVNPDkR97Pul36ihfXr18/g2M2bNw2O3bp1y+BYtWrV0Lo11YogpkkYPcZ4Ig+g9sEDVo6GENMdW3PT6DaxD7K8XETNnlTs60JnZ0R+v9KKEdmWjKg7EIS8mrWgAQImUdvG8qJknhAr6L7iLNSvcs1cuQoPXuRwG5A9kWYBPzYC2FdVUBk+MCXW5lvSGfMo6xHXIQAAPvvsM9StW1fv2N69e3GvUNKlUCjw/fff653D5/Px888/02gFMYkiKQmyGzeMvkZ95AkhXNr//dcGx0Lqh2NG9GHMiD6MyVv3wMs/kIPIbAOrYaHOkIJx5kNU0xOiqrQcobxomj0hFnYpPgNimf4aY2pJZ0Y7IgBF4XVXasDHPqdxV/eojitXriDrYhYAQJVsuHb98ePHmDlzJgDtlPvx48frvb5o0SLdOnyxWGz0OfnXA4Cvr6/BdH93d3ecPXsWw4cPx/Hjx3X3atOmDd577z14eXnh3Llzesl9cHAw1qxZg549e5bxsyaOymgLOh4PNX/fB5f69a0eDyFl0XVcE92IPK2Xtz/pCU8hcHKGSi4DAASG1UXvT7/kOCobwhazTcqMknlCLChbqsSANf/pHeMzoJZ05pRyW3+fsc9R36TcJNzOuA3ZMxkyjmcUe96zZ8+wdOlSAECHDh0Mkvl169bh6dOnJT4r/3pAu769aDIPAIGBgTh27Bj+++8/7N69GxcvXsSjR49w+PBhKJVKuLu7Izw8HE2bNkW3bt3Qt29fuFILMWKi3JgYgxZ0zk2botauaI4iIsR0colSr/gdsT9+oTWQnvgUfFc3+IXWwMCvvy/9IlKAKWablBkl84RY0Kitlw2OuTkJqJK9uWQ+BeRFliyM/YebWCys30HtOnWfdj7waecDD5EHzg86X+b7xMfHmzWuN954A2+88YZZ70lI4pCP9PZ5bm6ovmE9R9EQUjaHVt1ASpx25lN6Ui6OrbmJ3tOpUrc96f3plzi4ZCEAoNfMuRxHY1s0UhUUz3MBpQaMiE8j8xVEyTwhFnTvuX6i6SriUyV7c1rTVn/fydMu18oDgFQlBQMG7Kufert77uY4IkIsQ21k+Qe1oCO2JPVpwc9+pUzNYSTEUpzd3DFg3mKuw7BJGVF3tD3lRXwAAMOnofmKsM/5qIRUEhJFwZpmHgPc+boLQn1oqrFZSLMMR+XH/ctJKNZQ36e+LpEP9w1HiDsV/yL2KWHkKL390O3bKJEnNkUg4ummDjM8WjNPSFHCwILlJ1UiwzmMxPY5ZDJ/+PBh9O/fH2FhYXBxcUFQUBDeeust/Pjjj7rCUJZw/fp1TJ06Fc2bN4efnx+cnJwQEhKC9u3bW/zZxPoSMyXQvJo6xGcYuL16B5KYyY4I/X2Rh8UK36VJ0vDz9Z+RJkmzyP1Lk5SbhHsvtcXk3IRucBI4cRKHLeP675CYRi0WQ1akpaF7y5YcRUNI+Qz8ojVEzgKIXAT4aMGb1GPeDmWnpWD1iAisHhGB7LQUrsOxKT7960GZkgcACJzSAjwXmiheEQ6VzKenp6N79+7o2bMn9uzZA5FIhB49eqBBgwa4dOkSpk+fjsaNG+PkyZNmfW5OTg4GDx6M5s2bY8WKFXj48CFatWqFvn37ombNmjh37hymT5+O8PBwHDx40KzPJtzptuKsrqaHmmVxdGp7TuOxK9IsILFIPYLx5yz2uDRpGn658QvSpNZPBJNyk9BlbxdooG29J1PJIODRD76y4vLvkJRMev8+7jZoiLsNGuJB6zb6L1IbQ2JD5BIldi64iKi5F6CQquDp5wwnSlTsiiwvF7/OmoQNE0dBLsmDRqNG1OzJXIdlMzRSFVKWXwUrU4NVqPFyx73SLyIlcpifkhKJBF26dMHRo0fB5/OxceNG3Lt3D7t378aZM2dw9+5d1KtXD8+fP0e3bt1w9uxZszw3JycH7dq1w44dOwAAI0aMwPPnz3H8+HH89ttvOHfuHO7evYvXXnsNKSkp6NOnDyX0diBbqkSOTAUWAJ/HgM9jaHq9OUV/BL2KKU6edtuOLr/wXT41q8byjsu5CYYQM8pP4uONtaB7pebv+6wXECEVdGzNTWQk5en20xNzde3piH04uGQh0hLidPtKmYzDaGxPRtQdsPJXdSQ0gOJZTskXkFI5TDI/efJkxMTEAAAWLFiAkSNH6r1et25dHDt2DM7OzlAoFOjTpw+ysrIq/Nxx48bhxo0bAICuXbti48aN8PDw0DunXr16+OOPP+Dr6wu1Wo0hQ4bg+fPnFX424c7YqCtwF2n/e6k1LJqEeJRyBSkzkTvA42s/AhpxHY3FSFVSvf0mfk3gKaL1w8S2KZKSSkziAYBxd6d+8oSQSi/y+5Vch2BbCte7EzpMKmoxDMuydt8Q4ObNm2jWrBk0Gg0CAwORkJAAkUhk9NypU6dixYoVAIDZs2fju+++K/dzb9y4gebNmyP/SxwTE4MWLYpvTfLNN9/giy++AKAdwd+0aVOZnykWi+Hl5YXs7Gx4UsEgzgxcdwEqtQYPUrR9ks9+2ona0ZmLNAvY0gNIeTXaEdQUGHYIcPG22CN77e+FuOw4+Dj7QMiz3t8jy7IG08L9Xfy1VWBJmSg1SmTKMlHLqxYO9qbZT1y73+p1gz7yhTGurgg7dBCiECr0SGyHXKLE70uv6kbn/ULd0Xtac1ozb0ey01KwefoEqBVyAEDE/O9QrYH9DiiYm0aqQtqmW1Am5YAR8RE4pQUEPs5ch1UpmZrTOUQyP2LECGzZsgWAdoQ+P1k35urVq2j5qtiOm5sb0tLS4OLiUq7nzp07F4sWLQIAhISE4NmzZyWef/fuXYSHays6Ojs7IyUlpcwJOSXzlUO2VImxUVcAAGsjW1Eib06b3gcS/ivY5/GBLy1bPLJ9dHtkyjIt+gxiHT7OPvgn4h+uw3BoiqQkPO78jsFx58aNUX3TRqpcT2zSkCFD8Ntvv+kd69ChA86cOWNwblZWFi5cuIALFy7g4sWLePLkCVJSUiCRSCASieDj44P69eujbdu2GDJkCBo0aFCmWG7evIldu3bh5MmTSEhIQHp6OkQiEfz8/FC1alU0a9YMLVq0QJcuXRBCb5iVya75c/T2qT0dsRRTczq7r8qhVCpx4MAB3X7nzp1LPL958+bw9vZGVlYW8vLycOzYMfTp06dczz5//rxuu3HjxqWeX79+fTg7O0Mmk0Emk+HgwYP46KOPyvVswi0vFyF2jnmT6zDsU8odqz/S28kbmbJMq4/Mv5S9hEqjbW/IgIGfix+NypdT/si8t5M316E4vLii0+t5PNT77wIl8cRmnTlzxiCRL8lHH32EI0eO6Pbbtm2Ld955B7m5uThx4gSSk5ORnJyM06dPY+HChRgxYgRWrVoFV9eSa+9kZ2dj4sSJ2L59O1iWBcMwaNOmDbp37w6WZXH9+nWcP39e9/vpjz/+iKlTp5brcyaEVA52n8xfunQJmZkFI2otS2lxwzAMWrZsqatof/z48XIn8ykpBa0qfH19Sz2fx+PB19cXycnJAID//vuPknkbded5Nnqu0lZXPzSpLcKrenEckZ14cROQi/WPjfnb4o/9tt23iDgcgTXvrEF4Fev0Q82vYp+PAYNTA05Z5dn26E7GHUQcjsC37b7lOhSHlhsTYzC93qVZM0rkic1SqVSYOHFiua4ViUTYt28funfvrjuWk5ODvn374s8//wSgXW61adMmPHz4EKdOnYJAYPxX99TUVLz77ruIjY0FAPj4+ODAgQNo166d3nkHDhzAgAEDoFAoyhWzo3t/wlRd9XpaK192qkwZUlZcBQCaYm8mdl914ObNgiqi+X3dS1OrVi2j15dVeVYwFP4mXZFnE27lJ/JFt0kFreugv+/kCQQ14SYWCytaxZ5G5Ik9uDdoMHZnZWFS0jN0efIYrz98gDq7ouHh4YFatWqhe/fuWLFiBTIyMky+57///otGjRqBYRi9j7K4e/cu5s6diw4dOqBq1apwdXWFUCiEr68vmjVrhhEjRuDQoUPl+rlO7Nvy5ctx+/ZtMEzZf6X+9NNP9RJ5APDw8EBUVBScnJz0jp89exY//fRTsfcaOXKkLpEHgJ9//tkgkQeADz74ANOnTy9zrETrxM/LEVAzDAE1w3Di5+Vch2Nz8hP5otuk/Ow+mb9zp2BKbnBwsEnXFE74C19fVv7+/rrtly9NW9NbuIJ+fHx8uZ9NuJOYKYFaw0KtYfW6p5EKenET0Kj1j9lpFXuxQoxcpf7oZXSPaI6iIcQ8jh07hi5PHmNeyguczM1FglKJeo0b4+OPP8Zrr72G+Ph4HD16FFOnTkXt2rWxffv2Eu/38uVLfPzxx2jfvn25f1ar1WpMmTIFjRs3xqJFi/DPP/8gPT0dXbt2xdChQ+Hq6oobN25gy5Yt6NWrF15//XU8ffq0XM8i9ic5ORnz588HwzB4s37XMl8/dOhQo8cDAwONLguNiooyev6BAwf0pu37+/tjwIABxT539uzZ+PPPP9G3b98yRkwIqWzsPplPSyuoBO3t7W3SNYXPE4vFUCqV5Xp24Sn9t27dKvX8Z8+eQSwumEJceJvYhsRMCdp9d1q3r2ZZHJrUlsOI7IQ0C1jztv6x4ObA4J2chGNp4/8ar7ffxK8J6vtSiy5iu87t3Yte3bohQ13whlzH1q1x+epVrFmzBv/++y8iIyN1r2VnZyMyMhJHjx41er+oqCg0aNAAGzduRGBgYLnjmjVrFlauXAmNRqM7tmHDBuzduxcbN27E1atXUaVKFd1rMTEx6NSpE/Ly8ozdjjiY6dOnIzc3F+2bd0NYkOlLsObMmYN9+/ahTp06xZ5jrOjd/fv3jZ77yy+/6O23a9cOPF7xv+L7+PjgnXfeQWhoqIkRk3y9Zs41uk1MEzilhdFtUn52n8zn5OTototOWSqOs7P++o3C9yiLXr166baTkpJ0fe6Lc+jQIb393BLa9uSTy+UQi8V6H4Q73VecNThG6+XNYEeE4bExZyzajq4wfxd/jH9tPPxd/Es/2Qxup9/W21/z7hqrPNeeWfvvkOj7YvgIqIocGzx6NPh8vm6/aI0YlmV17VoLO3LkCIYOHYqcnBx89dVXRquFmyItLQ2rVq3SO8bn8xERUfD9JiAgAO+9957eOU+ePClX61hiX06dOoXo6Gh4eXmhS5MRZbq2bdu2+PDDD0s8x1gnpcJvOuV7+fKlbn19vrp165YpHmI6Zzd3DJi3GAPmLYazmzvX4dgcgY8zQr56CyFfvUXr5c3E7pN5qVSq2y6ut3xRRc+TSCTlenbHjh3x5psFFc2/+OKLYtfb5eTk4Ntv9QszmRLv4sWL4eXlpfugd1m5VfRv111k9//FrKNoBfuqza36eH9Xf0xoNgH+rtZJBAt/n+CBB08RFQerKGv/HZICiqQkXJMa/hwt+vOqevXqBudcvXrVYBRcqVTi/fffx61btzBv3jyT36gv6uLFi1Cp9N9i8Pf3N3hD31hc//xD7Q0dmVKp1BW9mz9/Pny9qpRyRdmlp6cbHDPWGSkmJsYgyff29sZff/2FiIgIVK9eHU5OTvDy8sJrr72GWbNmISkpyezxEkK4YfeZRuF3Nk2t3Fn0vNJagZRk27Ztukr2x44dw6hRowxG+hMSEtCtWzckJCTores3pU/8nDlzkJ2drftITEwsd6yk4mr7uyK/7BKfAY5N61Di+cREhd8EY/jA0P2chWINjfwagc/wwWf4aORnn3UBiOOI6/UB8oyMKAqF+m0ei3sDu+iMs/fffx/Hjx9H7dq1KxSXsVl3RWMqLi6aBefYfvzxR9y9exdNmjTBJ598At+qboCZi5Qam81ZeClKvsJF7/KtXLkS7777LhISEtCrVy80b94cYrEYsbGxWLJkCerVq4d9+/aZNV5CTKGRqpC2LhZp62KhkRadr0XKw+6TeQ8PD922XC436RqZTFbsPcoqLCwM58+fR3i4di3V5s2bERwcjK5du2Lw4MHo0KEDateujQsXLmDGjBmYM2eO7lpT1vg7OTnB09NT74Nw41J8Bq4nisECaBTsiddr+SLUp/xvBJFCGAbg8bUfIjerTa/nQlJuEuKy4wBok3qaYk9smVoshiYvD7WEhglx0WTaWILs4eGBgIAAvWPGph+XR/36hnUojCX4xuIqaa0zsW/Pnj3DggULAACrV6+GQCCAQMSHT4B5/l0CwMOHDw2S+VatWmHs2LEG5xauDZXv+fPn6N+/P86fP4/Vq1fjwoULem2WJRIJBg4ciAsXLpgtZkJMkRF1x+g2KT+7T+YLV5QvXCm+JNnZ2bptT09Po+/Ul0X9+vURGxuLbdu24cMPP4SPjw/OnDmDQ4cOITU1FWPHjsW1a9ewZMkSvWUBxn7RIJVTtlSJAWv+0+3fThZjbWQrDiOyMwGNAJG79sNOK9jn63+oPxiGgavQFXHZcTTFnti0hJGjAACRPj4GrxVtv2qsHevYsWP11tWbU4sWLfD22/qFNbOysgxmuBWNSyAQYPTo0RaJiVR+06ZNQ25uLgYPHoz27dsDALqOM2+L1Dlz5ugtt2rUqBEOHTpk9PfRwr+zFo0zv0UjwzCYNm2a3utKpdLgGCmZLC8Xu+bPwa75cyDLK72uFdGnkaqgSM6FIjkXrIbaPZmL3Sfz+SPigLaFiCkKryUqfH1F8Pl8DBkyBPv27UNCQgKkUilycnJw9+5drF69Gk2aNDGIsVmzZmZ5NrG8sVFXDI55uVTsTSDyijSrYDugod1WsAe0LenylHnIUeQgR5EDDWs4NZkQW6AWi/G494eQverk0tfbG+OqVNFLzFeuXImTJ08iLy8PV65cwddff613j759++Kbb76xaJy7d+9GmzZt9I5NmDAB8fHxyM7Oxtq1a3H6dEGHEhcXF2zatIl+PjuoP//8E3v27IGHhwd++OEHAIBcosSxNYZvRJXX8uXLsXfvXt1+ly5dcPbsWQQFBRk9X61WGxxjGAYtWuhXCm/VqpUuuc938eLFYivkE0P7v/8aqfFPkBr/BPu//7r0C4iejKg7EAa6AQCUL/JQJdI8OZajs/tkPj9JBrTT7E0p+vHkyROj11vDo0ePdNtvvfWWVZ9NKqZh1YKqprvGvcFhJHYm+iOALwCCmgI8oV1PsZ96eqp+kUx645rYqMTx46G4d0/v2OSAQNy6dQujRo2CQCBAWloa3nnnHbi7u+P111/Ho0ePwDAMevXqhT/++AN79uwpd3E7UwUFBeH8+fPYt2+frp3s4cOHUatWLXh7e2PcuHFgWRbe3t749NNPce/ePaPrlon9UygUmDRpEgDgyy+/1NU4Mmciv2rVKkyfPh2AtlbDt99+i6NHj8LHyMyWfMaWV/r6+hr833F2dja6fPPSpUsVC9qBpCc8NbpNTMfwGYiC3SEKdgfPRcB1OHbB7r+KrVu3ho+PDzIzMwFoC4qEhIQUez7LsnrrlLp06WLxGPNpNBr89592qnZAQAA6depktWeTilkb2Qpjo67gjTBfrI1sRaPy5qRRAql3tdsBDbmNxcJUGhXYVxk8n+GX2CeYkMpKev8+pDFXDY5nfD0fX0+ejL/++kv3plX79u0RHh6OuLg4/Pnnn9BoNDh69CiUSiU8PDzwxhuWfWNUo9FgzZo1WLJkCeLitLUqvLy88M4778Db2xvnzp3DvXv3kJWVhY0bN0KlUmHu3LklJlfEPi1duhT3799Hw4YNMWXKFLPeW6VSYdq0aVi9ejUAoGXLlti8ebNJA0qFl5PmK65ws5ubm+734XypqanliNgx+YZUw4vHDwEAQbWp/V9ZVYkM162Tp1F587H7ZF4oFOKDDz7Ali1bAAAnT57U6/9e1LVr13Rr693c3NC1a9cKPV+hUEChUMDFxaXUdX///fefrhVJZGQkBAK7/+uxG14uQuwc82bpJ5KyYxnj23bKTeCGPJW2Fdfunrs5joaQssmNiUHikI8Mjt8Y/TGGDh4MpVKpO7ZkyRLMmDFDtx8dHY2BAwdCpVLh2LFjOHHiBDZu3Ijhw4dbJFaWZTF48GBER0frjvn4+ODSpUu6AndKpRL9+vXDwYMHkZ6ejqVLl2Lfvn04c+aM0ZZ1xH5t2LABAHD37l2TWx3//fffelPb4+LiULNmTb1z4uPjMXjwYFy4cAFOTk6YN28eZs2aZfA74JEjR/D8+XMMHDgQ7u4FMwGNLfkorg2yseOWqklBCLEOh8gWp02bhl9//RUajQbR0dH44Ycfiv1G/Ouvv+q2J0yYUOGqudOnT8dPP/2E5cuXl/pObv76Kz8/P3z++ecVei6xrmypUrdunkbmzSx/ir2D4PF48BB5oI53HYS4Fz+LiJDKRpGUZDSRVzZujHELFugl8m5ubpg8ebLeeREREZg7dy4eP34MQDtqPm7cOHTo0AG1atUye7xbtmzRS+QBoF+/fnqV6oVCIWbNmoWDBw/qjsXFxeHjjz/GH3/8YfaYSOU1atQovHz50uC4WqlB3I00JKQ8wbV75/Veq1atGiIiInT7Xl5eeq9v27YNEydORHZ2Nt544w1s2rQJDRsan4H2ww8/4O+//9YtTcnXpk0biEQivbbKEonE6D2MHS/cEpkUT5aXqxuVFzo742XSM44jsj1FK9n7j3Gc3+0sySHmcDZt2hQjRowAAKSkpGDZsmVGz3vy5AnWrl0LQJtQF24TV5hSqURkZCQ8PDzQvHlzoz0+i9q+fbvRIiWFX9+/fz8AbfGT/N70xDYULoBnrBgeKSdpFqCUAQnngec3gA9+4joiQkgx4np/aHCMcXXFhfbtDCpu161b12hl7saNG+vty+Vy3cw6c8sfaS2sUSPDbhlFYwK0hdDyp+UTx/D5559jyZIlBh8danyE4b2m4e3X3jW4pnbt2nrn5i/PyMjIQP/+/REZGQmFQoGlS5fi3LlzxSbyJfH29kbv3r31jmVmZhq0Y5ZKpQZT7AHoKvKTkh1cshBCJ2cAgFImg19oDY4jIkTLIZJ5QFs1N7+y5xdffIHNmzfrvf7w4UN07doVMpkMIpEI+/btK3ZNXFRUFLZt24bc3Fxcv34dEydOLPX5ly9fxujRow3a4+Xl5WHhwoW6Nxt++OEHDBkypByfISF2aEcE8LzQ2tsDn3AXi4WJFWI8ytIWwKzjXQcCnkNMnCJ2QpGUBE2RHu1ODRui7pnTuPXwocH5xgpxFXf8+vXrZojQkLE34o09v+hoaj5LxUVsi0bNIi0xFzkv5aWf/EqnTp2wZ88eANoke8aMGeDz+WAYptiPv//+u9j7zZ07V+/NMZZlcfWqft2Kon3rAeDDDz8stko+MeRfvSZEzi4QObug96dfch2OzSm8Tp7WzJuPwyTzrq6uOH78OLp27QqVSoWRI0eiYcOGGDBgADp27Ijw8HA8ePAAVatWxZEjR9CuXTuT71201UdxNm/ejJo1a6JTp04YNGgQOnfujMDAQPzf//0f/Pz8sGfPHsycObO8nyLhUOGe8tRf3oxS7gAatfZDkcd1NBY19fRU1PHWTu99lPUIyzsu5zYgQkykFovx+N339I45N22KsN/3ge/pCZVKZXBNWdb0Fp4+bE5licsYS8VFbE3Z244U1xu+vJo2bapbqplv+fLlun/PLMvixx9/1Hvd39+/2JmqxFCvmXPB4/MRUDMMH6/eCGc399IvIsQKHGrox9/fH0ePHsWhQ4ewZcsWXL16FQcPHoSnpydatWqFfv36YcSIEaVOcY+MjMSpU6ewf/9+1K1bF6tWrSr23MWLF6Nbt244ffo0zp8/j8ePH+Pff/+FSCRCUFAQOnXqhD59+qBv377w8PAw96dMrEQsU+JOsli3TWvmzeDpeUAu1j8WsY2bWKxApVHpjcx7igzbDRFSmajFYjwdMRLy27cNXuM5O+u2a9QwnI5qbLpvcceNXW8ONWrUMOixbez5xcVqqbiIbZBLlFgyfTtOXTgKAMiQGq6hfvz4sW6Qpnbt2hg/frzF4pkyZQrc3d0xffp0iMVi7Nq1C4mJiWjZsiUuX76Mixcv6s5t2LAhdu3aZVCMjxBLojXzlsGwZXkbmlR6YrEYXl5eyM7ONtp7lFhG069O6O3HfvU+R5HYCWkW8F2RX5SdPIE5iZyEYw0DDw/E7QxtUtSoSiPs7LGT44gIKVn8kCFGW9CBx0O9/y6A/+pn0IMHD9CwYUNoNBrdKS4uLsjMzDTohR0WFmawFv3EiRN47z39kX+9OOLjjRbIK+3Xm//7v//DwoUL9Y6NGDECmzZt0jv2zz//oEOHDnrHqlWrhqdPn1L7SAe2f9lV7D20E9vO/FD6yQA6dOiAM2fOAABq1qyJp0/L16fcWEX8wtLT07Fx40acOHEC9+/fR3p6OgQCAQICAtCyZUv06dMH/fv3N1qzghRv57zZut7yftVrYOD87zmOyPakrrkB5QvtLEthkBsCxr3GcUSVm6k5nUONzBNCbMT2fobHAgwLU9kLsUKsS+T5DB/3Xt7jOCJCSqYWiyG9dt3oa7X//EOXyANAvXr1MHv2bHz77be6Y1KpFMuWLdMrNPvbb78ZJPL9+/cvMZGviM8++wy7du3Cw0Jr+vfu3YvZs2ejQYMGALRT6b//Xv+Xdj6fj59//pkSeYI36nfBG/W76PY/WdPJpOvi4+MtFJG2gPOnn36KTz/91GLPcET5iXzRbVIGbDHbpEIomSfEDI5MaYfuK87qtkkFJRcZ7QtqCgy235HqiScLimiqWTXchbQWj1RuiePHA4VG2gEAPB5q/r4PohDDloqLFy+Gl5cXFixYoGuP9fnnn+PYsWNo1KgR4uLi9Fq98fl8TJgwAUuXLjX6/EWLFunahInFYqPnFK5B4+vra9Dy1d3dHWfPnsXw4cNx/Phx3b3atGmD9957D15eXjh37hzu3St4cy04OBhr1qxBz549i/vSEAfRaVhDbP/qAjSvOi5+OLM5twERi/ILrYH0xKe6bVJ2DJ+BKJh+vzE3mmZvZ2iaPbF50izg+1oAqwEYPiBys+vp9QDw5m9vIk+ZB/bVW9XH+x6nHvOk0lKLxXjwxpt6yTzj7o4GVy6Xeu2LFy+wc+dOnDp1Crdv30ZaWhokEgmcnJzg6+uLBg0aoEOHDhg0aBBq165d7H3KOk25Ro0aJY6G/vfff9i9ezcuXryIR48eITs7G0qlEu7u7ggJCUHTpk3RrVs39O3bF66uriY/l5hXXrYct/9JQqP2IXDzcir9Agva90MMMpK1U4arBLuhz6yWnMZjayrT36UpZHm5OLhEuyyn18y5VACvHDRSlW7dfJXIcPBcaEy5JDTNnhBim/aMAIRugOJVm6tx/3IbjxWwLKtL5N0EbpTIk0rt2cRJBqPyYQf2m3RtUFAQpk6diqlTp1YoBnNPU37jjTfwxhtvmPWexPwk2QpcPhKPWq/5c54AZiTlQqnQ6LZJ2VSmv0tTOLu5Y8C8xVyHYdN4LgIqemcBlMwTQiqX1HuASgLw+Nqk3se+p7OJFWJIVVIA2vXypra6JIQLarEYsiLV6xl3d6NT6wmxV+IMKRQyNQCA4dHyX0dAI/OksqLqLYSQykWRU9Bb3gFWAU09PRWuQlfwGT4AoK5PXY4jIsrUVKStWg1lairXoVQ6CSNHQZOXp3fM1FF5Qopja//nohdc0m2zGsAvxI3DaIg15CfyRbeJaTRSFdLWxSJtXSw0UhXX4dgVSuYJIZWXg4xS1/WpC1ehK1yFrljdeTXX4Tg8VVoa0n/6Caq0NK5DqVQUSUmQ3bqld4zn4UGj8qTCbOn/nFyi1I3K5+v+CbXYIqQkRXvME/OhafaEVNCd59noueocAODQpLYIr+rFcUQ2SpoFuHjrH7PjdnT5FrRdgP6H+gMAdvfcDU8RFa4klVPcB70NjtXa/7v1AyEO649N2iUeB1deB1/AzXiUNFdhcGzH15eMnElKolZp6w38sek2hnxV+etV9Jo5V2+aPSGVBSXzhFRAtlSJbiu0Bdr4PAY9V53D40XdOI7KRu0cDIw4WrDP8O26HV2+2f/MhkQp0W1v77ad44gIMaQWi6HJ1S/yVfPAfhqVJ1Yly1Xq/VlZ5GXJuQ7BZlW2v8viUAG8ivHqGYbUVdcAAAGTqI2jOVEyT0gFjI26ottWa1jweY4xLdzspFnAi1j9Y9VaG47U25mk3CTEpmk/bx7Dw+3026VcQQg3EseP1z/g5gaX+vW5CYY4LGd3IWS5Sji7CzkbmWdZFrJcJTRqFjw+A2d3IRUuLQe1SqP7u6zsqPhdxWikKl0iz4j4SFsbi5Cv3uI4KvtByTwhFdQ4xAO3krRt1A5NastxNDZqR4ThMQcYlc+fXg8AGlYDdyH9glAZJM+aDQBIHD0GjLDy/6JpDaqihckUCjzs8D9OYiH2h1VqR2eTZ81G7aNHij3vvZGNsGvRZfSa3Az+1T2sFZ4euUSJY2tuAgC6jmsCJ1f6HlEeaQk52LXoMt4badnldImJiTh//jzOnz+PmJgYJCQkICMjA3K5HK6urvDz80Pjxo3xzjvvYNCgQfD39ze4R9HidyHv9MDWrVtx4cIFPHv2DHl5efD29kb16tXRuXNnDBs2DOHh4SbFd/fuXWzbtg3//vsvHjx4gOzsbCiVSnh4eKB69epo3rw5+vTpgx49etjsm0aF18izCjUYEZ/DaOwPJfOEVMAP/V9D9xVn4ekswJEp7RDq48p1SLYp9S4gKFQNeNy/dj8qn89N4IY8lbY6+J5eeziOhgCAOitL++fLl9wGUpkplVClpHAdBbEz+f/3KrMjP8UiIzlPt91nVkuOIyIladiwIfJedeBwcnJC586dUatWLTx79gwnTpxAXFwc4uLicOjQIcydOxfz58/H9OnT9e6hUirw4vFDyJRK7L/9GJe/+lb3WkhICAYNGoTU1FTs378fMTExWLp0KT755BMsW7YMfL7xxFWtVmP69OlYvXo1NBpt/QCBQIBevXrB29sbJ06cwI0bN3Djxg1s2bIFLVu2xN69e1Gjhm226xWGeED5auArcEoLjqOxL5TME1IB06Kv623vGUfThsrFPxzITtBuh7QGgppwG4+V7O65G/0P9YeHyAO7e+5GiDutP64M+N7eUL98Cb6vL43Mv6JKTS1oFckwEAQEcBsQsSusUqn9P+ftzXUopcpP5Ituk8otLCwMR48eRf1Cy4MePnyIzp07IzExEQCQm5uLGTNmIC0tDYsXF6yPz3iWCLVGg81nL+NRaobuuL+/P65du6Ybzd+wYQNGjx4NtVqNlStX4vnz59i1a5fReGbNmoWVK1fqHduwYQOGDRsGAEhNTUV4eDgyMrTPi4mJQadOnRAbGws3N+u0QmRZFps3b8asWbPwstCb2x06dMCZM2dMusepU6cQfWknLv55DgkZSchVSMBbxoOnpyfq1KmDN998E4MHD0bLlqa9KXb58mVERUXh1KlTSE5OhkQiQUBAAMLDw9GrVy8MHz4crq6ONbDGsKwDNHJ2IGKxGF5eXsjOzoanJ1XFtrQmX52ARKFtUeMq4uPmV+9zHJGNkmYB+0YDQ3Ybr2pvp8QKMaaengoAWN5xOVWyrySkt28jvm8/1Ny7By6N7L+jginuv95ab7/+ZareTczH1P9zedly3P4nCY3ah8DNy8mKERbY98MVZCRri5ZWCXZFn1mtOInD1lnr79Ld3R15eXk4efIkOnXqZPD6gQMH0Lt3b71jDMMgJiYGzZs3hywvFz9/PBj/PX6K3Zf1a/tMnToVP/74o25fpVLBz88P2dnZumMbNmzAqFGj9K5LS0tDcHAwVKqCfut8Ph+5ublwdnbWHRs8eDB27Nihd+3KlSsxadIk078A5XTnzh2MGzcOZ8+eNXjNlGQ+PT0dEREROHXqlO5YlSpV0L17d8jlchw6dAgSiUT32kcffYT169frff6FyeVyTJgwAZs3bwbLshAKhejZsycCAwPx559/4tGjRwCA0NBQbNmyxejfta0xNaejPvOEVETh98LofTFSRvmJfNFtQioLtViMJ337QZOTA01ODqDRUDs6whk3Lye07hnGWSIPaHvK+4e6wz/UnfrLV4A1/y5DQkKKTe569OgBDw/9+gssy2L7dm1nmYNLFiIorC4uPkkwuLZ5c/2q7AKBAE2a6M8snD9/PtRqtd6xixcv6iXygHaUv2giW716dYNn/vPPP0Y/D3ORSqWYO3cumjVrhrNnzyIoKKjM91CpVOjWrZteIi8SiXDhwgVs3boVO3fuxKFDh/Su2bZtm25WgrH79e7dG5s2bUL+GPTOnTuxd+9e/Pzzz4iNjUWLFtqp+4mJiejevTtOnjxZ5rhtFSXzhJRTtrSgnYqriI/6QdwU47F50ixgRVMg5VUl932jOQ2HEFLg2cRJkN8u6LKgkcmoHR1xaE6uQvSe3gK9p7eg4nc2YNu2bdi5s/iCunw+H3Xr1jU4fv/+/cIn4dnLbINzjCW6RY8lJibizz//1DuWk5NjcJ3QyJIukUhkcEwsFhscM6cvv/wSixYtgp+fH3bs2KG33MBUhw4dwuXLl/WOvf7663pf506dOqFq1ap65+zatQs3b940uN+yZctw/Phx3X79+vXRp08f3b6Li4tenQOZTIahQ4da/GtVWVAyT0g5jY26gvpBHnAT8cEA2Di8danXECN2RACKXEDhWGsPk3KTcDfjLq6mXIVcLcfyjsu5Dom8IvD3h98nn0BgpKoxIcT86P8csZTevXvj7bffLvEcFxcXg2P5Rel6zZyLXIkUGiOzL41NCTd2r3///Vdvv76Rtp7GEnxjyWidOnUMjpkTy7KYPHky7t27h4EDB5brHufOnTM4FhoaanDMlJkHYrEYX3/9td6x/FH4ko4lJydj6dKlJsVr6yiZJ6QCBHwewoM9ER7sCS8Xeoe+XFLuaJcosK+mofVZz208VtL/UH8wDANXoSvisuNovXwlIgwIgP+kiRBSkTdUXbwIyC8mxOOh5r693AZE7BL9nyNcSk9PNzjWuHFjAICzmzv6fDbP6HX5CX9hRafPA8C1a9f09lu0aGHwBkNWVpauEF++oqPUAoEAo0dbdvbiggULsGLFigrV3TLnzINdu3bpuhHkq1atmsF1xt4s2LJlCxyhNBwl84SU05c9w3E5PhOX4zPxZU/T+omSYjAMwLxq3+IAxe/ECjHylHnIUeQgR5EDDWv4CwEhlUHy7Nng8fngeXjApXkzuBgZUSKEEFslFot1xdPyMQyDIUOG6PZ9fX2NVpA3NnJuLJFNS0szOLZ79260adNG79iECRMQHx+P7OxsrF27FqdPn9a95uLigk2bNqFZs2alfk4VYWxmQVmZc+bBsWPHDM6pUqWKwTF3d3eDNwwSEhJw69atUuO1dZTME1JOA9f+BzcRH24iPgau/Y/rcGxXQCNA5A6IrNNqpTKYenqq/rvF9v/GMbFR8vsPoJFIoJFIIL//gOtwCCHErHbt2mVQoG7SpElo2rSpbp/H46F9+/YG18bFxZl0rHB1+3xBQUE4f/489u3bp2vLdvjwYdSqVQve3t4YN24cWJaFt7c3Pv30U9y7dw+RkZFl/vy4EBkZCR8fH71jRWcZyOVyPHz4UO9YaGgoevTooXcsJibG4P7u7u5Gn1u0kCFgOCvCHlEyT0g5JGZKIJapIJapkCdXUy5WEX3Wch2BVYkVYtxOvw321b8aHsMDj0ffiknloUhKwt0WLXG3QUNocnMBtRpgWfo+RxyeOEOK9dP+wfpp/0CcIeU6HFJBeXl5WLBggd6xAQMGYNmyZbp9WV4uds2fg+ZVDKedFy1sl5SUhLt37xqcx+fzDY5pNBqsWbMGM2bM0CWsXl5e6Nu3L0aNGoUGDRoA0E6/37hxI1auXInMzMyyf5Ic8Pf3x+HDh/UK3D1+/BjT241A8q14PH/+HJMmTdJrTVetWjUcPHhQb2aASqXC06dPDe7v5GS8A4Kx448fP67Ip2IT6DdIQsqh+4qzYF5tq1kWtf1dOY3HZkmzgLXttNv+jjF9d+LJiZCoCn6AaVgNdvfczWFEhOiL6/0hUOiXLACARgPnevW4CYiQSiL6m8tGt4nt0Wg0GDp0KBIStC3nGIbBZ599hh07dugl3weXLAQAvFanFrq0bql3jyNHjmD16tWQSCR4+vQpRowYYXQdvZeXl94+y7IYPHgwPvnkE91Ivo+PD65cuYI9e/Zgw4YNiI2NRa9evQBo1/QvXboULVu21MVb2b311lt48OABVqxYgUB3PwDAj/9uQUiTWggODsb69dr6SHXr1sXy5ctx9+5dgyUExVWjN/bmCKCtKVCUsVkR9oaSeULKgUXBzGg+j4Gz0PAbCDFB9EcF22n3iz/PjjzK0l+bx2f4CHGnVl+kEjHyyygAhK75xcqBEFLJsCyUcjWUcu1sFWKblEolhgwZgn379gHQTnk/dOgQFi9ebDBTTqNRIzX+CVLjn2BYl05YunQpvL29da9PmjQJbm5uqFmzJm7fvo1p06YZPM/Pz09vf8uWLYiOjtY71q9fP7314kKhELNmzdI7Jy4uDh9//HG5PmdrE4vFmDdvHr788kuk5GoLDIZ6BaFfky4YNGgQAl4Vu3z48CF++eUXbNmyxWC5g6Tom8qvMAxj8vHc3NyKfBo2gTIQQsooW6qERl3wy66zgIe1ka04jMjG+YcDaXe4jsJq6njXwf2M+5CotT+kontEl3IFIdZlLJUP3b4N/ApUNybEHvgEuSI1IVe3TWxPWloa+vbti7NnzwIABg4ciNWrVxstqgZAv6YNC0yfPh1jxozBqVOncPv2bYjFYnh7e6NFixb43//+h3///Rc//vij3i0Kr78HgA0bNhg8plGjRgbH8ivqF/bnn38iLi4OtWrVKuUz5U5GRgbatWunt+SgRXAj/DZoKWrNaAtRVXe8ePECb731FuLi4nD//n1MmjQJhw8fxqFDh3SF7Fxdjf8fK65CvbHjxgoX2htK5gkpo7FRVyBTs+DztO8A8nkMtaUrr4ht2tH5oKbabQewuN1i9D/UHx58D+zuuZtG5UmlokhKAl61AeK5uQE8HupfvsRxVIRUDjw+D0Invm6b2JZTp04hMjISycnJqFq1KtasWaObyl7Yhg0b4OHhgYiICPD4fATUDNN73d3dHb169TJ6bUpKisGxVq30B3xiY2MNzik82p+v6PT8fNevX6/Uyfz06dMNagfM+OFz1B/8vm4/KCgII0eOxBdffKE7duLECfzwww/4/PPPAaDY9nhFR/DzGWsLWNzX0J7QdyJCysFVWPBfp16g8aqaxASybOBFrPZDZnxtlD25//I+uuztghxFDqp7VMcX574o/SJCrCiu1we6bU1eHmrt/53DaAipPOQSJdKTcgtNsadp9rZCoVDg008/xbvvvovk5GQMGzYMd+7cMZqMA8Do0aPx6aefAgB6zZyrO154uzgPHuh3/fDy8kKXLl30jhlLOsvSD12hUJh8rrVJJBLs2LHD4Lj/P0qoMmV6x4zNPFi7tqAoskAgQI0aNQzOkcvlRp9t7Hjt2rVLjdnWUTJPSBn90P813XbTal7YOLw1h9FYXmJiIqKjozFlyhS8/fbbqF69Otzc3CAQCODp6YmwsDD06tULK1euNNpLtSS35rdB2zUpYOYkgvGtAYZhwDAM4uPjS702/9yyfli6R2tJIg5H6LZvZ9zmLA5CjFEkJUHzalQ+nyiEZo4QAgBHfoqFSlGwCIVG5m1DbGwsXn/9dXz//fcICQnBsWPHsGXLFqMj4SWRK5T4ZuEi3Tr74pw8eVJvPzIy0qB3u7EE1Vil+uKq1xu7vrK4e/culEqlwXEPvitSVlzVO2bs7yAhIUHv827RooXBOcWtgzd23Nj19oam2RNSRrN230CjkIJpO/Y+xb5hw4bIe/ULvpOTEzp37oxatWrh2bNnOHHiBOLi4hAXF4dDhw5h7ty5mD9/PqZPn17iPaVSKebPn4+lq1KgMl5ry+6IFWKoWf2pYcs7LucmGEKKUIvFePze+/oHHWCtISGmykjK1Y6esoBSoUbXcU24DomU4sWLF3j99dd1I9mJiYno2rWrydfL8nKxYeIoAIDIzx8LlyxFQEAAunXrBmdnZ4Pzr1+/rluLD2inkn/99dcG5/Xr1w8LFy7UO1a0DzsA3Lp1y+BYtWrV0Lp15R1EMjbrANDOPGAVaoNjxhSeedClSxf8/rv+DLGMjAyDa/Ly8gxmLISGhhqtRWBv6G1FQohJwsLCcOPGDV0rlv379yM2NhahoaG6c3JzczFjxgzMmTOn2PscO3YMjRo1wnfffQc/d5E1Qq8Upp6eCld+QTGXcN9weIqooBipHJ5NnKTtJ19I7YMHOIqGkMonP5EHAIGQBydX+34j3x7IZLIKTUnf//3XUMikUMikyHiWCABITU3FsGHDDCqtP3r0CAMGDNAlqJ6enti1axd8fHwM7vvZZ5+hbt26esf27t2Le/fu6fYVCgW+//57vXP4fD5+/vlng4r7lUlxswayZTkQhnjoHTM288DV1RX+/v66/YiICINCeM+ePTO4LjEx0eDYsGHDKvXXylzs/zM04vDhw+jfvz/CwsLg4uKCoKAgvPXWW/jxxx/x8uVLiz03JiYGkydPRsuWLeHr6wuhUAgvLy80bNgQw4cPxx9//FGmNTOEG4Ur1ztSFfv169ejfn39XvB169bFqlWrDM797rvvcO3aNYPjt27dQrdu3ZCQkICJnWvg3jR/g3MsjcvKpvWr1IeHyAMeIg+sf389Z3EQUpgiKQmSK1f0jjk3bUpT7Al5RZwhhVKunUbG8AAU0xqL2Je0hHjtiLJGA6W8YL33rl27EBYWhsGDB2PSpEno1q0bGjVqhIcPHwIAWrZsib///hvt2rUzel93d3ecPXtWby29WCxGmzZt0L9/f3z88cd47bXXcOTIEd3rwcHB+P3339GzZ08LfbbmERQUhLZt2xocf8S+gP9I/TXyxmYefPDBB3oJuJeXF/7v//5P75yrV68Wvczgd86goCDMmDGjTLHbKodK5tPT09G9e3f07NkTe/bsgUgkQo8ePdCgQQNcunQJ06dPR+PGjQ3Wu1SUVCrFsGHD0KpVK6xatQq3bt1CkyZNMGDAALz99tt48eIFtm7divfffx/vvPMOXrx4YdbnE/PychFi55g3sXPMm3Y/xT5fSEgIOnXqZPS1Hj16wMND/91WlmWxfft2g3NVKhVat26NS5cuYdVHjeHlXLFvQTVq1ND+oC3lY926dbprRo8eXaFnltfyjssh4AnQwLcBjvc9TqPypNKI+6C3QW/56hvozSZC8kV/cxl4lb+zGsAvhJagOAT2VX0eHg+e7h7Yt28f5s6diy5dusDb2xt//PEH1qxZg0uXLqFOnToYPXo0Dh48iMuXL5danycwMBDHjh3DhQsXMH36dLRt2xYuLi44fPgwtmzZgufPnyM8PBwDBw7Er7/+iocPH1b6RD7fqlWrDEbTt97aj1xlwWyG58+fY9OmTXrnVKlSBd99953B/WbOnIl3331Xt3///n292gUymUyvHaCTkxO2bt1a5roItophHWQoWCKRoH379oiJiQGfz8e6deswcuRI3esPHz5Ejx498ODBA4hEIvz111/FvqNWFizLonv37jh27BgA4K233sLOnTv1pibn5eVh1qxZ+OWXXwAA4eHhuHjxItzdy14lXSwWw8vLC9nZ2cW2dCAVky1VYmyUdhRrbWQru0/o9+/fDz8/P7z99tvFntOyZUuDd0p79OiBQ4cO6R2Ty+UQCoXad12lWcBvA8F8fMLgfnFxcahZs2aJcTEMgxo1apRaLE+tVqN+/fp4/PgxqlevjkePHul6mBLi6KT37yP+g976B/l8NLxtOGJCiKNaP+0fsCyrK4A3asnbNM3eAez8cjbSE58CAPxCa2Dg19+XcoXty8zM1FvPf/v2bRw/flzvnGrVqiEioqCg7+uvv663DwAXL17E8OHD9ZYOVA+tjo6dOkKpVOKvv/5Camqq7rWWLVti+/btBjNA88lkMowbNw5bt24FAAiFQvTq1QuBgYH466+/dF0EqlWrhs2bN+Odd94p51eg8jA1p3OYZP7jjz/Gxo0bAQCLFi0yuqb3yZMnaNSoEWQyGfz8/PDw4cMKv6sTHR2NgQMHAtC+4/Tw4UOj62dYlsU777yDU6dOAQDmzp2Lb775pszPo2Te8gauu6C3v3PMmxxFUnm8/fbbOHfunN6xbt266U0RMyDNAqI/AjPC8BxTkvnGjRsjJCQEJ04YvhlQ2G+//YYhQ4YAAFavXo1PPvmkxPMtRawQY+rpqQC0o/Q0Mk+4phaL8aB1G4PjNQ/sh0sxv1AR4ojEGVLt6DyAiP97HZ5VXEq5gtgDWV4uDi7RJra9Zs6Fs5v9tyKOj48vcw/7YcOGYcuWLQbHFTkybBu9An/cP4vb6Y+QlPkCuQrt6Lynpydq1aqFli1b4sMPP8R7770HxoTlK5cuXcKvv/6K06dPIzk5GRKJBP7+/ggPD0evXr0wYsQITpdTmhMl84XcvHkTzZo1g0ajQWBgIBISEiASGS+8NXXqVKxYsQIAMHv2bKPTPcriww8/xP79+wEAEydONLq+ON/evXvRr18/AED16tXx9OnTMj+PknnLo2TeUIMGDXD//n29Y6X+/9nSAwDKncybgmVZvPbaa7h58yYCAwMRHx9vtAKtpYkVYry35z3kKfPAZ/ho5NcI27sZLkMgxJrihwyBNEZ/Ro1Lixao+Rv92ySEEFIxaetioUguaBcnCnaH/5imHEZkW0zN6RxizfyyZcugebUeMCIiothEHgCGDh2q2/7pp58glUor9Oz8YhiAdvp8SQq/npCQALFYXKFnE/PLliqhUmtwJ1kMlYZ1qAJ4xRGLxXj06JHeMYZhdKPhRkmzgOc3gITzFo3t0KFDunYv06dP5ySRB7SV7POU2vZ+alaN2+nUY55wT/7gIVBoXaNz48YIXfMLhxERQoih3MyXOL97O3IzLVek2hhZXi52zZ+DXfPnQJZnvLe5LeDq6wcAwsCCUfIqkSXnQaR87D6ZVyqVOHCgoL1O586dSzy/efPmuqn1eXl5urXu5VWRiQ/5vb1J5TE26goEfB7Cgz0h4DF2v17eFLt27YK6SEurSZMmoWnTEt59jf7IwlFpLV68GADg4+OD8ePHW+WZxeEV+nbrIqApmoR7orBagFwO8Plwfq0pau3ZDT7N6CKEVDJ5mS9xYc8O5FkxGc3vMZ8a/wQajVo33d4WcfH1A7TJO8NnIAp2R9VPW4PnIrDq8x2F3Sfzly5d0utj2LJlyxLPZxhG75yiRR/KqnBCc+fOnRLPLfy6i4uLXp9FUjmoNCzuJIt1I/OOLi8vDwsWLNA7NmDAACxbtqzkC1UyQC4GNOqSz6uAU6dO4b///gOgfXOhaMV9a1recTka+TUCn+HDXeiOPb32cBYLIYSQspFLlNi/7Cr2L7sKuUTJdTjECgon7+kJZV/2aqvUYgWy/3wKtVhR4XvxXATwH9MU/mOaWi2RN2f8tsLuk/n8KbaAtlVBiAl9cwsXfih8fXl88sknuoIOO3bs0HtjoTCWZfHzzz/r9nv06AGBgN7BqnQKz7Sw/3ITJdJoNBg6dCgSEhIAaN8I++yzz7Bjxw7w+fySL067/6pZr+UsWrQIgLav/JQpUyz6rNLkKHIQL46Hq9AVe3rtQYg79e8m3FM8iQPP1RU8V1consRxHQ4hldaxNTeNbhP75hdaQ7fda+ZcDiOxHnWOAjknE6DOsc1k2NbjLw+7T+YLj3YHBwebdE3hhL+00fTSvP322/juu+/AMAwyMjLQs2dPPHv2TO8ciUSCTz75RFfJ3svLSzc9mFQu+VPsw4M9IeDb/X+fYimVSgwZMkTX5zMoKAiHDh3C4sWLtW3nTMEwAK+UpL+cLl26hJMnTwIAxo0bB19fX4s8x1T9D/U3uk0IV9RiMViWhUYiAVgWTnXrch0SIYRUGr1mzgWPz0dAzTB8vHqjQ1SyNzeNVIW0dbFIWxcLjVTFdTh2y+6HftPS0nTbpraZK3yeWCyGUqmsUF/qWbNmoU2bNli0aBFOnjyJ2rVr480330S1atWQlZWFc+fOISsrCwDQsGFD/Pbbb6hdu3a5n+eIkpOT8ffff+PKlSu4c+cOkpOT8fLlS7x8+RJKpRIeHh6oUaMGWrRogb59+6JLly7FtsAYPny4ro9laaLHAo0aNcKtW6b1ZE5ISMDEiRMN+q+fPn0a//vf/0y6B9fS0tLQt29fnD17FgAwcOBArF69GlWqVDHtBtIs7awGjRpgLJPM5/dIdXJywowZMyzyDEJsWcLoMWAlEkCjAViWCt8RUoKu45roRuS7jmvCcTSO5+jqJQCAvYvngW+lWassy0KWoy1EvWXGBJPaplVWapU2kT66eglGLFtjtedmRN3R26ZK9pZh98l8Tk6ObtvJycmka4pWvM7JyanwyF6TJk3QvXt3qFQqnDp1Cn///bfe682bN8dnn32Gvn37lj5FuRC5XA65XK7bd9QK+JMnT8bevXsBAAKBAJ07d0bbtm2RmpqKs2fPIjU1FS9fvsS1a9ewceNGvP7669i1a5dZ2p+ZQqVSYfny5fjqq69surDhqVOnEBkZieTkZFStWhVr1qxBr169DM7bsGEDPDw8EBERYXiTHRGASqIdlRe6ATC+9KS8bt26pXuzZMSIEahatapZ718eu3vu1o3I7+65m+NoCAFkt25pZ8fw+dDIZFT4jpBiyCVKvUTeyZUK31qb9NXv8lJxNifPt3bhOEuRFsqJivNy5z0AQPqmm2AqOANVnadfX+L5oosVup8pWLW2e9nLnfcQNMMxOk7ZfTJfuLVcSS3pCit6nkQiqVAyv3PnTkyYMAGZmZmoUqUKli1bht69eyM4OBjZ2dk4ffo05s+fj48//hgnT57EV199ZXICsnjxYsyfP7/csdmbwMBAnDp1Sq/NX05ODoYNG4bff/9dd+zy5ct47733cO3aNbi5uRm7ldlcvHgRY8eOxY0bN+Dp6QkXF5cKtzy0NoVCgS+++AJLliyBRqPBsGHDsHz58mJnu4wePRo1atQwnsyn3tUm8co87YeZLV68GCzLQiAQYPbs2Wa/f3mEuIfg/CDLtuEjxFRqsfjV7BjtLz2Mhb8HEmLLDq26gdSnObrtfp86RoJQmbh4eEAqzoaLp5fVRuaLvnHg4ullledaglql0n79TCgErHlV4FGTZ/5p8dYsSqdxoEKVdp/Mu7gUtIBSKEz7R1T0PNdCfXjLavv27YiMjATLsvD19cX58+dRr1493ev+/v4YMGAAunXrhnfeeQfr1q3Dvn37cPjwYbRp06bU+8+ZMwfTp0/X7YvFYoSGhpY7Xlv3448/6iXyAODh4YENGzbg6NGjerMYHj58iF27dmHEiBEWi0csFuOtt96CRqPBoEGDsGzZMrzxxht4+tR2KqPGxsYiMjISsbGxCA0Nxbp169ClS5fy39A/HEi7A4jctds4YbZYnzx5gujoaADAoEGD9IpZEkK0nk2cBLi4AK9mCTnRsi5CipWfyBfdJtbTbeJMbJszFX3nzEdgWB2rPDM7LQVRsycDACK/Xwkv/0CrPNcSUp48wrY5U9Ft4sxSz+W5CqHJU4HnJqjwyDwXWLVGG78DzaCx+2S+cDuqwolcSWQyWbH3KIvMzEyMHz9e12t+4cKFeol8Ye7u7ti0aRMaN26M9PR09OrVC7du3Sq1PZ2Tk5PJywfsWa1atdC8eXN0797d6Ou+vr6oV6+eQXeC69evF3vP/L+3bKkSr83/Q+81T2cBYr96v9S4NBoN6tSpg59//hmdO3cu9fzK5sWLF3j99dd1b3AlJiaia9euFbvp4J0FfeYjtgEf+1QwygLfffcd1Go1GIbBnDlzzHbfihArxJh6eioAbYs6TxFNZybc4/F4wKufbbwiS8sIIQUEIh5UCo1umziGEz8vR0DNMN32gHmOUZjad2ADpK66Br+RTSAKqVjRP41UpVs3XyUy3Crt6RRJuUhddQ2+AxtY/FmVhd1/VyqcDOcXmStNdnbB1BpPT89yF7/bvn27bs2+QCDARx99VOL54eHhaN26NQAgNTW19F7dROeHH37A1atX4VnCuk9jMzNMWXoxNuqKwbEjU9qZFJeHhwdu3rxpk4k8oH1jy9QZLSZz8QaGH9Z+uHib7bbJycm6woUffvghGjZsaLZ7V8TEkxNx7+U93Ht5DxNPTuQ6HEJQdfEiXSV7UVgYqq1exXVIhFRaA79oDaETH0InPgZ+0ZrrcAixGUUL4BHLsPuR+cJTrpOTk026Jikpyej1ZXX+fMEa2Xr16sHdvfR3uJo3b46LF7UFIvJbfZGKe/HiBR4/fmxw/L333jPp+sYhHriVpH1j5uiUtxHqY9rSCz6fX6aCho7gl19+Mfp3UdiiRYv03phZsmRJqfddunSpbvbN559/XrEgzehR1iOj24Rw5fmcz+FS6GcbFb8jpHieVVww+sf2XIfh0Nx8fPFmv0Fw87Fem9leM+fi4JKFum1bxsXXj1iP3SfzTZoUtBCRy+VISkrS6yNvzJMnT4xeX1bp6em6bR8f06YSFy60FxcXV+5nkwLp6ekYNmwYVCr9Yh5Dhw7Fu+++W+x1GRkZWLNmDR4fOIgbN29DrZTD19cHI8+E4e2338aoUaMqzeivLYnesR1/nz1X4jnr16/X2y8tmX/58iXWrVsHQPsGTcuWLSsWpBnV8a6jS+LreFtnrR8hJdHI5dpq9gCcGzfmOBpCCCmZu48v3uo/xKrPdHZzt5up9WX5+vE9RPDoXB18D9OKhhdHI1WBVbNQpuRBGOQGv2GNKnQ/U5krflti98l869at4ePjg8xMbfurmJiYEpN5lmURExOj269Ioa/CVdKLrsMvTuHzeDy7XwVhMWfPnkV0dDSePn2Kv//+W69FYaNGjTB16lSMGjWqxHvUq1cPHh4e6Ny5M15v1RLnz5/HjRs3kJ6WhosXL2Lp0qUYM2YMfvzxxwoVSazMatasqasdYC5nRnoDIwvVNhh+uML39PX11fs7rkxWd16tt2aeEC6pxWLIbt7UVrLn8yEvZZYMIYQQx8H3FMHr3RoVvk/61ttQphR0LLLGennAfPHbErtP5oVCIT744ANs2bIFAHDy5EmjfbHzXbt2Tbe23s3NrULFvgr3MH/8+DFYlgXDMCVe8/DhQ912aTMISPFiYmLw008/GRyvWbMmunbtijfffLPUv4uPP/4YCxcuhKBQG5Rvv/1Wr7DaunXr8PjxYxw9etTk1ocOTZoFPL+hbUkndAMCy7+MxVZ4ijyx6f1NXIdBCKT37yP+g94FB0z4mUSIo6M+84SUnfJFntFtYn4OMfQ7bdo03Sh3dHR0iQW9fv31V932hAkT9FrbldX77xdUO8/KysK///5b4vl5eXn4+++/dfu2WjStMpg6dSpUKhWePXuGdevWoWrVqgCA+Ph4LFmyBE2bNsXUqVOhVqsNrp08eTJOnDiB7777DgKBANlSJQauu4CB6y5g/JQZaNu2rd75J0+exPfff2+Vz8vm7YgAFLmARg0o8gDW/hMJsUKMkSdGYuSJkRArxFyHQxxYfJ+++gc0GtTa/zs3wRBiI/IT+aLbxL7J8nKxa/4c7Jo/B7K8XK7DsTnCQDej28T8HCKZb9q0qa6XeEpKSrFV4p88eYK1a9cCAPz8/IptbaVUKhEZGQkPDw80b94csbGxRs9777330LRpU93+//3f/0Gj0RQb56JFiyAWa3/ZFwgEmDiRKl9XBJ/PR0hICEaPHo2LFy8iICBA95pGo8GKFSuMFkpr0aKFXmG8UVsv406yGHeSxRi19bLRrgTLli0z+saATcp5AZxerP3T3FLuAGyh/wN8jicHWfJzfSV/in3RbUK4xri7Q0QzwAghRI8sLxcbJo5CavwTaDRqXSE8Yjq/4Y0gCnaHKNgdfsOts17eUTlEMg8AK1euRIsWLQAAX3zxBTZv3qz3+sOHD9G1a1fIZDKIRCLs27ev2KJ1UVFR2LZtG3Jzc3H9+vVik24ej4eoqCh4eXkBAP755x/0798fqampeucpFAp8/fXXepXrv/32WyquZkahoaGYO9ewGuny5cuRkpJS7HWX4jNwJT4TYpkKuXIV7r/IwWuvvWZwXmZmJq5cMWxhZ5NyXgB/f2v+BDfzKSAvMjIdsc28zygrS32uryTlJuFqylVcfnEZdzLuQKVRlX4RIRagFoshqltXt8+4uiLswH7uAiLEBsglSmjUGqQl5kKjZtF1XPmLIhPbUTh5T094ymEktovnIoD/mKbwH9PUauvlHZXDJPOurq44fvw4unbtCpVKhZEjR6Jhw4YYMGAAOnbsiPDwcDx48ABVq1bFkSNH0K6daX3EAZS45rBp06b4999/dQngvn37UL16dXTs2BFDhgxBjx49ULVqVcybNw8sy8LT0xMbN27EjBkzKvw5E309evQwOKZQKHDq1Cmj5ydmSjBgzX+6fQ0LgGVRpUoVo+c/e/bMLHHarbXtAKbQt5xqrc3aZ74y6newH9SsdsZGnpLWjBHuJIwcBcW9ewAAnpsbXBo3plF5QkpxbM1N8Pg8+Ie6g8dnaL28A/ELLSiiZuut6bigkaqQti4WaetioZHSQIYlOUwyDwD+/v44evQoDh48iD59+kAmk+HgwYO4ffs2WrVqhSVLluDWrVt45513SrxPZGQkhgwZAjc3NzRr1gyrVq0q8fzGjRvj6tWrOHLkCEaMGIE6derg+vXriI6Oxt9//w1PT0988MEHWL16NZ4+fYqRI0ea89Mmr1SrVs3o8YSEBKPHu604a3CsfpBHsdXdzV313e4U/vowfGDwTu5isRKpSqq3L+DRu9OEG/mt6ABAk0dvLBFiCo2aRVpirm5knjiGXjPngsfnI6BmGD5evRHObu5ch2RzMqLuGN0m5ueQv1n27NkTPXv2LPf1QqEQ27aVbXowj8dDt27d0K1bt3I/lxiXmpqKkSNHonv37hg/fnyx5xVX+LBwFfo//vgDf/zxBz6ZOhM5Mv13EhsFe2Lj8Na4fe2y0fvYTfeBfaO1f27rC/DNWKFfKS1YL8/wgJ/fNN+9y0v96t/EvtHARON/r+UlVojhxHOCRC0BALgKXKk1HeGEWmxYeLHa6pLfhCaEaJN5pVyt2yaEkMrGIZN5Yl8kEgmOHDmC7OzsEpP5mzeNV6Ft0KCBbvv8+fNYunQprvLrg2GCkf+ju1moJ/Z/ol16cePGDYN7eHp6olWrVuX/JCoTyctXf6Zb7hkaJZCTbLn7l1X+52xGU09PBY/HA1/DBwDU960PT5Gn2Z9DSGmeTZwEp0aNIL99GwBQ88B+8D3p3yIhpcks1FIrk9prOYzCa+YPLlmIAfMWl3A2MaZKZLhuRL5KpP23IeYSJfPEbly8eBG3bt1C48aNjb7+yy+/GBwLDg42uqzi9qWzCGg/GBKldiR568g3dK8Zm5UxceJECIV2spbO1VebyLv6mW9kPuc5gEKjGnyR9v5cUytefa6+Frk9wzBwFboCoCn2hFt8Nze4tm4NAHCpX5/jaAip/OQSJRRyNcBqJ5PRuDwhpDKi3y6J3chvGXj06FFdX3lA24Zu6dKliIqK0jtfJBJh8+bNRpPwjAt7gIC6cKnVAk2qecLLRQiWZbFw4UKcP39e79w2bdoYrZRvs/qsB9Z1AD7aCwQ3M889F4dq+8uzGu16+ZkPK0fxu+Tr2s+1z3qz33p5x+WYeHIiHmU9Qh3vOjTFnnAmYO7nuh7zNfft5TgaQmzDkZ/02w77hVCvbEfRa+Zc3eg8Fb8rn6Jr5v3HNC3hbFIRlMwTm8fjFdRxvH79OmrXro33338f1atXh1gsxt9//424uDi9a+rXr4+1a9eiQ4cOesf5fO2UaLVcitRdX8IppAHEATUw7lZN/PPPP7h7967e+YMHD8bPP/8MV1fXYuOLjo7G5csF67EzMzMNzvnll19w+PBh3f7cuXOLbY1ok6qEaRNnAKjapHIk8hbmKfLEr11/5ToM4uDUYrEukee5uCDho0jUv3yJ46gIqfwyknL19rt/YtiWltgnZzd3mlpfARqpCopk7f8fYZAbGF7xXb9IxVEyT2xe9erVkZycjDNnzuDy5cuIjY1FbGws/vrrL0gkEgiFQvj7+yMsLAzNmjVDjx490KVLFwgEhv/8/+///g9nZdUQ8985yJ8/hPLlM4jvXcDm26fBsiz8/PxQu3ZttG3bFkOHDjXac76oY8eOYevWrSWes2vXLr39iRMn2lcy/zIOcPYq2CaEWMWziZN02xqpFLwS3ngkhGiJM6RQyLSF7xgeIBDxqS2dA5Hl5eqNzFM1+7JJ33pb2+FJqYHyRR6qftqa65DsGiXzxC5UrVoVgwYNwqBBgyp0H4Zh4BlaH1X5QchVaMDnMTgz638I9Sn/L8BbtmzBli1bKhSXTZNmadvSKfMAoRsQ0IjriKxCrBBj6umpALRT7qn4HeGKc6NGkL0qfldr/+8cR0NI5Rf9zWWAAcBqV4fRFHvHQgXwKkb5Ig8MwwAi7WxXngulm5bkUH3mCTGFSq2BVMWCz2PQJMSzQom8TfIIAjp8pv3THKI/0ibwIneAYSpXf3lzf66F5CfyRbcJsRa1WAyVWAxZbCygViP0160Q2UsLTUIsTOjEB8NjwPAYmmJPSBkIA92MbhPLoGSekCKepOXBTcSHm4iPJ2kO2IrGIwjoOMe8CS5fAAQ11X5UpvXylvhcCakkEsePh+LevYL9ocM4jIYQ2xHxf6+DYRgInfj4aMEbNMXewRQuekcF8MrOb3gjiILdIQp2h99wx5iNySVK5olVpYpl+PHPB0gVy7gOpVhh/m7IU6iRp1AjzN9+3lHk7Gsfsc34tp0rXL2eKtkTLsjvP+A6BEJskpOLAP6h7vAPdYcTTRF2OPkF8AbMW0zr5cuB5yKA/5im8B/TlKbYWwEl88SqUnPkWHHyIVJz5FyHYlRipgSxz7Kh1rBwEfIhsKMKnJx97V28geGHtR+VaVSeEDtXtC82taUjxDTH1tw0uk0IKZ0qU4akr84j6avzUGVW3sE7e0HJPCGFdF9xFgzDgM9jIFWqIeDTfxFSdvdf3kfbHW1x+cVlSJQSWjNPOOFcrx54Hh7geXjApUULuNSvz3VIhBBC7FzKiqtGt4llUKZCSBGuwoL/FmsjW3EYiZ2QZgFbemg/pFlcR2MVEYcjdNu3M25zGAlxVNL79yG9dg2anBxAo0HwD99zHRIhNkGcIUXKUzGSHmQhNSEHnYY15DokYkXZaSlYPSICq0dEIDsthetwbI5GqgKrUINVqLkOxWEwLMsWnYlHbJhYLIaXlxeys7Ph6Vn5WmG9s/RvPErLRRU3EYSVcNRbrWGRnqudhu7n7gS+HU2zV6o1yMhToI6/O/6a0cF6D97SQ39/+GHrPZsjzX5tBjVb8IPs3KBz1JqOWI1aLMaD1m30jrm2bo0av27lKCJCbMf6af9AKS/4/h1cxwu9p7fgMCJiTatGDIBSpp0aLnR2xqTNuziOyLakrYuFRqmBMikHABA063UIfJw5jso2mZrTUVUCYlWZEgUAICNPwXEkpUvLrZzr+isq/++AWE59n/q48/IOACDcN5wSeWJViePHcx0CIYTYpPxEvug2MQ2rYaFKk4AR8SEMcqNE3goomSdW5eMqQkaeotKOzGtYFlmvkl1vVxF4jP2NzPu4iqz74A9+Ata2026PPWvdZ3NArBAjMTcRHiIP1PGuAwGPvs0S6ypaxd65cWNUW72Ko2gIsS0R//c6di64BJVCg4AaHug6rgnXIRErCqgZhpQnjwAAgWF1OI7GBrHFbBOLod8yiVUtH9gMPVb9i60jW6NxiBfX4ejJlirR7rtTcBbyUS/IAwIeg51j3uQ6LLO5lZSNHqv+xfKBzaz74AOfaPvL52/b+TT7qaenoo53HTzKeoRHWY9wvO9xrkMiDoYFAD4fAMC4uKDWnt2cxkOILfGs4oIxy624FI1UKgKhCE6ubrptUjYMn4EomNr5WVPlGxolhCOjtl7W9Ze//yKH63Dsw4ubQPxZ7Ycil+torEbAE6CBbwM08G1AU+yJ1TnXqweeqyt4rq5wrleP63AIIcRm8Ph8BNQMQ0DNMPBevSlKTOfTvx4UyblQJOfCpz/9/LEGSuYJeeXBixxdJXuJQk2V7M1hbaHRjeRrQMQ27mKxkgVtF+Dey3u49/IeFrRdwHU4xMGoxWKwKhU0EgnAslTFnhBCTCTLy4VGrUZq/BNoNGr0mjmX65BsTubuBxAFu0MU7I7M3Q9Kv4BUGCXzhLwS5u8GiVIDAGgS4gkvFyHHEdkBtkhrEhdvTsKwpi/OfaEblf/i3Bdch0McTOL48ZDdLmiH+HzO5xxGQ4jtkUuU2L/sKvYvuwq5RMl1OMSKDi5ZqBuZ5/H4cHaj6eKk8qNknlhVgIcTpnSuiwAPJ65DMSDgMXAT8eEm4kNgRy3p8ln9ay/NAoSFfhBWbW6d5xLiwOQPHuq2NVIph5EQYpuO/BSLtMRcpCXm4shPsVyHQ4hNqRIZbnSbWA4VwCNWFeDpjGnvVs41NAI+D+HB9ru+2epf++iPgKAmQJq2RRuG7rfeszm0oO0C9D/UHwCwuycVHiPWJQqrBdnNW4BGA56bG1WxJ6SMMpLzjG4T+/f+hKmImj0ZABD5/UqOo7FNPBcB/Mc05ToMh0Ij84S88kP/13AnWYw7yWL80P81rsOxfSoZkHRJW/jOr55DTLEHgDln5xjdJsRqGAbg8yGqUxt8T/t9g5IQc5NLlGBZFkq5GmBZVAl25TokYkUnfl6uK3534uflXIdDiEkomSfklVm7byA82BPhwZ6YtfsG1+HYvrT7xrft3KOsR0a3CbE0tVgM2S3tenmeiwsUT+I4jogQ23JszU34hbhB6MQHGAbdP6E39gkhlRsl84QQ85NmAYo8QKN+1fTacdTxrmN0mxBLSxw/HmBZQK2GRiqFU926XIdEiM3h8XnwD3WHf6g7nFypEK4jKVy9nirZl51GqkLaulikrYuFRqriOhyHQck8IQASMyW4nZSNy/GZkKs01JauonZEAKy2MwBYNeBXn9t4rGh159W6avarO6/mOhziQOT39dsAha75haNICLFNXcc1MbpNHIOzmzsGzFuMAfMWUyX7ckjbeBPyJ9mQP8lG2sabXIfjMKgAHiEAuq04q2tL9yg1l9rSVVTKHeiG5Bk+IHTmNBxr8hR5YtP7m7gOgzgY6f370OTmand4PDAuLrRenpAycnIVovf0FlyHQYhNUj7LNbpNLIuSeUIASBRqo9uknNgic+sjtnETByEOQHr/PuI/6F1wQKOBc73K2TWEkMpKLlHi0MrrSE3IhVDEQ8QXreFZxYXrsIgVZael6FWz9/IP5Dgi22Ewrd7+OjxXWjTNnhAATUI8jG6TcmIYgMfXfojcHKaSPSHWphaL9RP5V2iKPSFlc2zNTaQmaEcTlQoNor+5zHFExNryE/mi26R0GVF3IAgpWJoQMLk5h9E4FodM5g8fPoz+/fsjLCwMLi4uCAoKwltvvYUff/wRL1++NNtzzpw5A4Zhyv3xv//9z2yxkOLdeZ6NG4liqDUsnIU8rBrckuuQbJs0q2Bb6AYENOIsFGsTK8QYeWIkRp4YCbFCzHU4xAE8mzjJ4JhTo0Y0xZ6QMtKoWbAa7YfDVW4lpIJYDQt1hhSMMx+imp4QVaWaA9biUMl8eno6unfvjp49e2LPnj0QiUTo0aMHGjRogEuXLmH69Olo3LgxTp48yXWoAAA+n891CA6h56pzuh/beXI1taWrqOiPtAm8yF07Qj94J9cRWc3U01ONbhNiKRq5XG+fcXVFjc1Us4GQsmMhcCr4tTji/17nMBbChcjvVxrdJiZgi9kmFucwa+YlEgm6dOmCmJgY8Pl8rFu3DiNHjtS9/vDhQ/To0QMPHjxAt27d8Ndff6Fdu3ZmebanpyeqVq1q0rkKhQJxcdrewN27dzfL8wmxOr4ACGqq3XagKfYqjUrXW57a0hFrkD96VLDD46HumdM0Kk9IOfD4PATWKPi/Q+vlHY+XfyAmbo7mOgybxPAZiIJpNJ4LDpPMT548GTExMQCABQsW6CXyAFC3bl0cO3YMjRo1gkwmQ58+ffDw4UN4e3tX+NkffvghtmzZYtK569evx5gxY+Ds7Izhw4dX+NmkZImZEjjxWEhedVFrFOxJbekq6oOfgLWv3ggbe5bbWKxMoVYgR5Gj2ybEktRiMdi8PO3Oq5lclMgTUj5vD6iLXYuuAAAGfE6/BzgaWV4uDi5ZCEDbY55a05WNT/96SFlxFQAQOIU6QliT2afZJyQkICkpydy3rZCbN29i8+bNAIDAwEDMmDHD6HlhYWEYO3YsAO2U/MWLF1stxny//KItWhQREQFfX1+rP9/RdF9xFnINAz5P++HhLKC2dBV14BPtqHxQU+22A7n38h74DB98ho97L+9xHQ6xc4njx2uXsgCAWg3nRo5Tn4IQc/t96TUInfgQOvHx+9JrXIdDrGz/918jNf4JUuOfYP/3X3Mdjs3J3P0AomB3iILdkbn7AdfhOBSzJ/M1a9ZE69atzX3bClm2bBk0Gu3Qa0REBEQiUbHnDh06VLf9008/QSqVlvu5IpEIgYGB8PLyMun8ixcv4to17Q+Q8ePHl/u5hBDrEyvEYFkWalbb2tBFQFM0iWXJHzwE4+amHZXn81F9w3quQyKEEJuUlhAPhUwKhUyKtIR4rsMhxGQWKYDHFu0xzSGlUokDBw7o9jt37lzi+c2bN9dNrc/Ly8OxY8fK/ey33noLL168wIoVK0w6P39Uvnnz5mjTpk25n0tMd2RKO7gKtf8Nmlbzoin25lC4p7wD9ZefeHKiXgK/p9ceDqMhjkAUVgvsqzecnRtTBtCyiv9WQ4UUhUUUhVYDUvF7xwRFXCrkCqR4Ua3ieVZZM18eno6xowZg/Hjx6N5c277DF66dAmZmZm6/ZYtS247xjAMWrZsqatof/z4cfTp08eiMQJAZmYmdu3aBYBG5a0p1McVN+d34ToM++LiDQw/zHUUVvco6xF4PB48RB4AgBD3EI4jIvZMLRZD/vgJAIDn4gKG7zAlcAgxu12LroDhaZesqJQaKn7ngPyr10R64lMAgF9oDY6jsT08FwH8xzTlOgyHZJGRebVajY0bN6JVq1Z488038euvv0JepH2Otdy8eVO37eTkhJCQ0n/BrlWrltHrLWnLli2QSqXw9PTE4MGDrfJMAmRLlRi47gIGrruAbKmS63CIDStcvZ4q2RNLezZxEhiGAc/VFWAYMAJK5gkhpDxkebm6bb/qNdD70y85jIaQsrFIMu/u7o7u3buDYRhcvHgRI0aMQEhICGbNmoVHhdvoWMGdO3d028HBwSZdUzjhL3y9pbAsizVr1gDQrtl3c3Oz+DOJ1tioK0a3SQVIs4AtPbQf0iyuo7Ga1Z1Xo4FvAzTwbYDVnVdzHQ5xAE516+q2q61exWEkhNi2wtXrqZK94zm6cgl4fD4CaoaBx+NTJXtiUyySzLu5ueHgwYN48uQJPv30U/j7++Ply5dYtmwZGjRogPfffx8HDhzQFaWzpLS0NN22qW3mCp8nFouhVFp2xPbUqVN48EBb+XHcuHEWfRYpkC1V4k6yGHeSxVBpaIGU2UR/ZHzbznmKPLHp/U3Y9P4meIpo7TKxrCpTJkN69So0OTkIWfMLrZcnpAL8qnlgws8dMeHnjvCr5sF1OITYHI1UhbR1sUhbFwuNVMV1OA7FIsl8vurVq2Px4sVITEzEtm3b8Oabb0Kj0eDPP/9Enz59UKNGDSxYsADPnz+3WAw5OTm6bScnJ5OucXZ2LvYelpBf+K59+/ZoVMbWQnK5HGKxWO+DmGZs1BXUC9S++/rgRQ4VvyOE2IzEocN0VewThw7jOhxCbJpcosT+ZVexf9lVyCW05M7RdJs8U7fda+ZcDiOxXRlRd4xuE8szezI/b948gz7uQqEQgwcPxr///osbN25g7NixcHNzQ1JSEr766ivUrFkTAwYMwKlTp8wdjl5ruZJa0hVW9DyJRGLWmApLTk7WVdsvT+G7xYsXw8vLS/cRGhpq7hDtllylwbXEbOQp1Kgd4E795c3FQavZixVijDwxEiNPjIRYQW+qEctRi8WAWq39IIRU2LE1N41uE8fg7OaOAfMWY8C8xTTFntgcqyTzhTVp0gS//PILkpOTsWrVKoSHh0OpVGLPnj1499130bBhQ6xcuRLZ2dlmicfFpaAiqUKhMOmaoue5urqaJRZjNmzYAJVKhYCAgHJVzZ8zZw6ys7N1H4mJiRaI0j49Sskxuk0qQJpVMLU+Ypu2sr2DmHp6qtFtQswtYfSYgh21GjX37eUuGEJsnFyiRFpiLtISc6FR05I7QspKlSmDPCkH8vhssCoNtaazMotOsy+Ju7s7PvnkE9y8eRNnzpxBREQEBAIB7t+/j2nTpiEkJAQff/wxrlypWFEyD4+CtU+mVtSXyWTF3sOc1Go11q9fDwAYNWqUyTMHCnNycoKnp6feBzENwzBwE/HhJuKDYRiuw7EPDrpenhBrUYvFkN24UXCAz4dL/frcBUSIjTu25iaqBGsHbTKS89B1XBOOIyLEtqSsuAqGYcCI+FCmSsBzoe4q1sRZMl9Yu3btMHDgQDRr1gyAtrq7RCLB5s2b0aZNG7Rp0wZbtmwxSLJN4e/vr9vOysoy6ZrCswI8PT0hFFpm+vWhQ4fw7Nkz8Hg8jBkzpvQLiFkdmdLO6DYhZSVWiKHSqHDv5T2oNCos77ic65CInUosuhyLpZFEQiqKx+fBP9Qd/qHucHKlJXeOJi0hHssG9cKyQb2Q+jSO63BsEqtQg1XQ0i8ucJrMv3jxAt988w1q1qyJPn364MqVK9p3dl59sCwLlmVx+fJljBo1CsHBwZg5c2aZppKHhxdM9UhOTjbpmqSkJKPXm1t+O7quXbuiZs2aFnsOMc7TWYjwYE+EB3vC05l+eJtFl8VAwnntR5fFXEdjNRNPTsSjrIK2m1TNnliK/MFDoNBMIufGjTmMhhDbV3gknkblHVP0V5/qtrd9NoXDSGyPRqoCq9EArxqUCfwttzSZGGf2ZP7XX3/F7t27Szzn1KlTGDBgAGrUqIF58+YhMTER7KvRhfwEvnnz5li/fj3u3r2LL774AiEhIcjKysKPP/6IevXq4euvv9ZdU5ImTQq+Mcvlcr1EvThPnjwxer05PX78GH/88QeA8hW+IxWTLVWi3XendG3pqMe8mWzpDojctR9bunMdjdUUTuQLbxNibk5164JxcwP4fPDc3VF9w3quQyLEpjm5CtF7egv0nt6CRuUdFKvRaBNSUmYZUXfA8HhgnPlgRHzwhJVi0rdDMftXfPjw4Zg6darB8aysLCxfvhwNGjTAu+++i7179+r6t+evV3Z2dsaIESNw8eJFXLlyBaNGjUL9+vUxf/58xMfH4+DBg+jYsSPkcjnmz5+P6dOnlxpP69at4ePjo9uPiYkp8XyWZfXO6dKliymfdpmtXbsWLMuiRo0a6Nq1q0WeQYpXOHl/8IKK35GKqeNdx+g2IeYWuuYXuISHw7VlS9Q5dZL6yxNCSAUF1AgDoE3qP/p2BcfR2B5hoJtum4rfWZ9F3j4pPGJ++fJljBw5EiEhIZgxYwYePHig9zrLsqhfvz6WL1+O5ORkbNy4Ea+//rphoDweevTogb/++gu///47RCIRfvnll1JH2oVCIT744APd/smTJ0s8/9q1a7q19W5ubhZJtOVyOTZv3gwAGDt2LHg8eheLC/k95gFQj3lzkGYBPmGALBuQ5wLDj3AdkdWs7rwaDXwboIFvA6zuvJrrcAghhBBiorTEeDA8HqrWrY+AGrW4DsemVIkMB8NnIAp2R9VPW1PxOw5YJItUqVTYuHEjWrVqhTfeeANbt27V9XvPH4UXCAQYMGAATp8+jTt37mDy5Mnw8vIy6f4ffPABRowYAaVSiX/++afU86dNm6ZLmKOjo0tsUffrr7/qtidMmKDX2s5cdu/ejfT0dIhEIowaNcrs9yel+7JnuK7H/M6xb1CPeXOI/gjIfAI4ewFO7sDxOVxHRIhdUYvFeNT5Hcju3gWrVuHZxElch0QIIXYj4xm1dy4rjUwFRXIuFMm50MhUXIfjkCySzGdkZGDMmDG4evWqwSh89erVsXDhQiQmJmLnzp3o0KFDuZ5Rv359sCxr0hr4pk2bYsSIEQCAlJQULFu2zOh5T548wdq1awEAfn5+mDPHeDKiVCoRGRkJDw8PNG/eHLGxsWWK/ZdffgEA9OnTBwEBAWW6lpjHwLX/6drSDVz7H9fh2AeNElDkaj8crMI29Zgn1pA4fjw0Egk0Egnk9x9wHQ4hhNgFoZMLRM4u1Ka4HFJWXDW6TazHYvO7WZbV/adgGAbdu3fH4cOH8eTJE8yZM6fCSWxMTAwYhoFAYNp0jpUrV6JFixYAgC+++EI3zT3fw4cP0bVrV8hkMohEIuzbt09vrX1hUVFR2LZtG3Jzc3H9+nVMnDjR5LhjY2Nx/vx5AFT4jtgZlgGEBeumELGNu1gIsUPye/cBtRpQq6GRSFBt9SquQyKEELsR+f1KrkMgpMwsulg7ICAAn3/+OZ48eYJDhw6hW7duFX7X688//8SYMWOwfft23TNM4erqiuPHj6Nr165QqVQYOXIkGjZsiAEDBqBjx44IDw/HgwcPULVqVRw5cgTt2pned7wsn1P+qHx4eDjat29v8nXEvKjHvAUwrLZllsgdCAwHXLy5jshqFrRdgHsv7+Hey3tY0HYB1+EQO6QWi6HJy9M7RsXvCCGk4sb+sgUTN0fDyz+Q61Bsjv/Yproe8/5jm3IdjkOySJUCV1dXbNq0CR9++KHJI+emmj17Nm7cuAFAm0Q3a9bM5Gv9/f1x9OhRHDp0CFu2bMHVq1dx8OBBeHp6olWrVujXrx9GjBgBX1/fEu8TGRmJU6dOYf/+/ahbty5WrTJtdCQnJwfbtmlHK2lUnlv5Pebzt0kFSbOAF7cBRQ7A8AGNY62b+uLcF2jg20C3ven9TRxHROzNs4mTAB4PeNU+iXGlXr6EEGIO+xZ/BZVCjl4z58LZzb30CwgAbY/5tLWxYER8CIPckH3oCfzHUEJvbRZJ5j08PNC/f39L3BqjR4/G8+fPAWgr3IeHl70FQs+ePdGzZ89yxyAUCnVJeVl4eHggJ4faoHEtv8c8ANQL8sDYqCvYOeZNjqOycTsitIl8vvSH3MVCiB3SyOUFtSh4PIQd2M9pPIQQYm8OLlmIAfMWcx2GzciIuqPbVr7IgyiY3gjhgtmT+erVqyMw0HLTVCZMmGCxexPHMHzzJYhfVdy89zwHjUNoqmqFpd4FGB7AagBWDfg7Vp/R5R2X6wrfLe+4nNNYiH2SP36sHZkHwLi4QBQSwnFEhBBCHJ0w0A3KFO0SMOoxzw2zJ/Px8fFmuU9SUhLUajWqV69ulvsRAmhH5a8lZOn2c+Uq6jFvDv7hQOptQJmnLYI3eCfXEVmVp8iTptYTi2IYhqbWE2IBcokSx9bcBAB0HdcETq609M5R9Zo5l+sQbEqVyHBkRN2BKNgdVSLDqcc8RyxaAK8iWrVqhbCwMK7DIHZm1NbLevseTnzqMW8Og3cCVV8Dqr8FTL3pUMXvxAoxRp4YiZEnRkKsEHMdDrFD0vv3ocnJ0X7k5aH6tiiuQyLEbhz5KRZpiblIS8zFkZ/K1mqY2La0hHgAQPLDu/jf8DG0Xp7YpEqbzAPQ61FPiDk8eJEDd1HBP/ujU6mjgFm4eAPDD2s/HCiRB6jHPLEstViM+A96FxzQaJC6cBFn8RBibzKS84xuE/sX/dWnuu1tn03hMBLbVHjNfOFtYl2VOpknxNxq+LkiV6GtBt2kmidCfWjaqllIs4AtPbQf0iyuo7EquVqOqylXcTXlKuRqOdfhEDvzbOIkrkMgxK5VCXY1uk0IIbagTIsbrDntPS0tzWrPIo4hW6rE7STtNGg+j0F8Gr0DbxYvbgJr3tZuBzcHoj/SjtA7iCdZT4xuE2IOGolEb9+5cWNUW21aO1RCSOneGdkI0d9c1m0TxyDLy4V/aE3d/kffruAuGBuVv2Y+f5two0zJfHx8PBiGsfj09/xnMAxj0ecQxzI26goYhgH/1T8r+vdlJus6FGwnXwNqtuMuFg4wDANXIY3mEPNTi8WQ3bpVcIDHQ609u7kLiBA7k/4sR5fIB9TwwKmtd9F7eguOoyLWcHDJQgidXQAAwXUbIqBGLY4jsj08FwH1la8EKuU0e1orTyylSYiHbvvIFMdKOi2KKfStJGIbd3FwYHfP3Ua3Cakogyn29AYkIWa1a9EV3Xbq0xwOIyHEtmikKqT8dB3PPj+LpK/OQ5Up4zokh1XmHgLOzs4YMGCAJWLREx0dDbmc1p8S8/mh/2vovuIs3ER8HJnSjtbLm8uYv7Wj8wxfu+1gBfBC3ENwftB5rsMgdohVqwBXV+DVVPua+/ZyHBEhdogB8GoMqeu4JpyGQqzn/QlTsfNLbQG8zqMncByN7cmIugNlkvYNMFahRsqKqwj56i2Oo3JMZU7mvby8sHnzZkvEouf48eNITU21+HOI45gWfV1ve884+qZjFkFNgC9fch0FZ8QKsa6K/fKOy+Ep8uQ2IGI3NHKFLpF3atwYLvXrcxwRIfZlwOettKPzjHabesw7jhM/L4d/9ZoAgJPrf0afOV9xGg8h5VUpp9kTYgkPXuQY3SYV5MCV7AFqTUcsQ5GUBHn+enkeD/K7d7kNiBA75FfNAxN+7ogJP3eEXzWP0i8ghADQFrwTvlq6yoj4CJxCtSa4UmmTeVo3T8ytXqC70W1SQdEfGd8mhJRbXJHe8oyLC2exEEKIvek1c65uu9vkmRxGYpt4LgIEftIM1Ra1Q8hXb0Hg48x1SA6rTMm8RqNBcnKypWLR8+LFC6jVaqs8iziGHwc2N7pNSEUs77jc6DYh5aUWi6HJzdU7FnZgPzfBEEKIHXJ2c9dNrXd2owGeslJlypD01XkqflcJVNqReULMbdbuGwgP9kR4sCdm7b7BdTj2QZoFqFXAi1hAo3S4Sva0Xp5YQsLoMfoH3NwgCgnhJhhC7JRcosT+ZVexf9lVyCVKrsMhxKakrLgKVqHWFb8j3Km0yXzVqlUhEJS5Ph8hxJqiPwL4AiCoKcATOlwl+4knJ+Ley3u49/IeJp6cyHU4xE7o9ZYHqPAdIRZwbM1No9vEMWSnpWDt+OHa7XQquF0WqkwZWJka0ABgtdXsCXcqbTIP0Lp5Yl5rI1sZ3SakvB5lPTK6TUhFMC4uAO/Vj2c+H6FrfuE2IEIIsTNRsyfrtnd+MZvDSGyP3kg8C10hPMKNSp3ME2IuiZkStPvuFO4ki/FD/9fg5ULtZ8yi8LR6B5tiDwB1vOsY3SakIsIO7AfPzQ08Dw/U/uME+J60fIMQcyvcU576yxNSRsyrP3mA/8jGnIbi6Mo0j/3u3bs4ceIEOnfujCZNjH/j69Spk1kCe/nScftWE/PrtuIsJK+mAXVbcRY3v3qf44iIPVjdebXemnlCKkqRlIS43h8CAGrt/53WyhNiIU6uQvSeTu20HJEsLxe+wdXw8vkzAMDABd9zHJHt0EhVYDUagAXA047K81xoWTSXTP7q37t3D61atYJMJoNIJEJMTAzCw8MNzjtz5gwYhjFyh7JhWdYs9yEkW6pEjkwFAODzGF1ST8ygaFu64Ye5i4UDniJPbHp/E9dhEDuSn8jnb9e/fInDaAghxP4cXLIQApEIwXUbAgC8/AI4jsh2ZETdAcPjAa860fGENMmbayb/DRw9ehRSqRQsy0KhUOD48eMlns+ybIU+CDGXsVFX4C7S/lNXa1g0obU9hJDKimWhkUigkUgA+llICCGkkhEGuum2q0QaDuwS6zJ5ZL55c/2+3K+99lqx5wqFQrz55pvljwrA+fPnoVKpKnQPQvI1qOqJBynavs1bR77BcTR2JGJbwei8A66ZJ8TchDVrQH7rtm6bEGIZcolSV8W+67gmcHKlWjqOotfMuTi4ZCHXYdikKpHhyIi6A1GwO6pEhtMU+0rA5L+Bjh07Yv369Th48CC6du2Kzp07F3uur68vTp8+XaHAqlatitRUahVBKm5tZCuMjbqC8GBPrI1sRcXvzMnF2+Gm1hNiScqnCeB5eOi2CSGWUbQ1Ha2fJ6R0PBcB/Mc05ToMUkiZ3k4ZNWoURo0aZalYCLEILxchdo6p2EwRQgixNEVSEjR5eYBGA56bG5yovzwhFqNRs8hIzgMAVAl2K+VsYk/2f/810hOeQujswnUohFRYpZ0bQevmCSGEOJK43h+CcXUFK5VCI5NRf3lCLEijZqGUq3XbxHGkJcRDKZMVtFcjxIaZPZmPi4sDn8+v8H2uXLkCtZqqjpOKy5YqMTbqCgDQNHtzy3wKrG2n3R57FvChNb6EVATDMGBcXQGA+ssTYiFyiRKpCTkAAKGIh8wUCccREWuR5eVCIZVSgVFiN8zeT6BGjRqoVq1ahe9TrVo11KhBiQGpmGypEm2/PYn/nrzE5fhMDN9MbZ7MKj+RL7pNCCmzkDW/QJOTA01ODkJoVJ4Qizm25iYEr7rcKBUaVAl25TgiYi37Fs+jRJ7YlUrbHHD37t349ddfuQ6D2LjIjReR+2oanVrDIvZZNscREXsiVogx8sRIjDwxEmKFmOtwiA1Ti8VIHDoM4PPBc3dH0rjxXIdEiN0qPK1eKOKh+yfFd2gi9uXF44cAo51fz2o0HEdjezRSFdLWxSJtXSw0Uuo6VhlU2mR+8uTJGDlyJNdhEBtXNHl3FVbaf/K2aexZ49sOYurpqUa3CSmrxPHjAbUaUKuhkUq5DocQu6ZRs1AptImcT5AbtaVzELK8XG1NLpYFw+NB6EwzMsoqI+qO0W3Cnf9v797joqrz/4G/zgzMMKCDKKioeEHxgmJ5LTUr17bELM289CsRoV3NMjNrt6i1e9laS+ZlU9u8gLurVopmYt80rUxbFDXNS1qIF7xh6gwww1zP74+JI0MDDDDDmcvr+XjMY98nzjmft22Z7/l8Pu+PzzbAA9gEjxpOIQD2Sv8YbZl1u3zJBKKoDsDzPD6LqKFMP51wzBaJImCzoVPOBrlTIgpY1y4ZEKpWSjEFh03vvonYzl1xseAkAOD/vfGOzBkRNVyjFPOFhYW4evUqysrK3C7QzWaz1/LZvHkzVq1ahfz8fFy4cAGRkZGIj4/H+PHjkZqaiubNm3ttbLvdjq1bt+KTTz5BXl4eLl68CJ1Oh6ZNm6Jjx45ISkrCkCFDMHLkSI/0Hgh2m2fehvsWfgcA+OzJIYiL4rew5Dnzh82XZuTnD5svay7kv2x6PewGg6OQVyohaDRQtW0rd1pEASuqVbjUAK9l+6YyZ0ONxW634er5c1CFaRDdvgMio1vKnZLfaZGSKM3It0hJlDkbArxYzK9fvx4ffvghvv32WxjrsWRQFEUIgmfPjLhy5QpSU1OxZcsWAEC3bt0watQoFBcXY9euXdizZw/eeecdZGdnY/jw4R4dGwB++OEH/PnPf8bevXsREhKCAQMGoGfPnigtLcXRo0dx4MABHDhwAFlZWejZsyd+/PFHj+cQTHRGC1777CgGdIxiF3vyCq1Ki+X3LJc7DfJzZ6c7748P69pVpkyIgoNCCWlmXtHwA5jIX4jVxOQ2hSYEMVN7y50GVeLxYt5isWDChAnYtGkTgPotlfd0EQ8ABoMBI0aMQH5+PpRKJZYtW+a0J//kyZMYNWoUTpw4gZEjR2Lbtm0YOtRz3bl37tyJkSNHwmg04rHHHsPrr7+O6Oho6eeiKOK///0v0tLSvLoqIZhUHEdXEa+ZOkjGbAIQj6Uj8gjTiZPS+fIAeL48kZcplArExDWROw1qZAqlEi07xsudBpFHebwb2HPPPYeNGzc2aL+7N/bKz5w5E/n5+QCA119//XfN9RISEpCbm4uwsDCYzWaMHTsW169f98jYR44cwX333Qej0YiXX34ZH3zwgVMhDzi+wHj44Yfx2muveWRMAqx2EUfP63H0vB5WO7+C9bggP5aOnezJU1TxnaRCPqxXT54vT+RFJoMFdpsdxWdLYbeJSH4sSe6UqJHc/+yLLmNyH7vZ+x6Pzsxfu3YN//znP6WZdVEUceutt+Luu+9Gly5d0KJFC2g0mlpn3kVRxIMPPuixYvrw4cNYsWIFAKBVq1Z45plnXN4XHx+PadOm4f3338eVK1cwd+5c/P3vf2/w+I8//jhKS0uRlJSEl156qcZ7H374YezYsQMdO3Zs8LhBr/KXQmym6FnG64CpFBBtgKAEVBFyZ9Toqnay53J7qi9BGQJFeLgUE5H35C457DQzz072wSMsogkmvDxX7jT8WtVu9lxyLz+P/qnh66+/lpaIKxQK/Oc//8HEiRPr9S6VSuWxvDIzM2H/7SzJiRMn1vjuyZMn4/333wcALF68GK+88go0Gk29x964cSO++eYbAMDs2bOhUNS8GCIuLg5bt26t93hUSeUvjbywdSOorZ0EhIYD5hJHQR/dTe6MiPyWEBKCsB495E6DiCig6YovIfuvMwEAKfMWIDKmlcwZETWcR5fZFxYWAnAsGR8zZky9C3nAc0vtLRYLNm7cKF3X1tiuT58+aNasGQCgrKwMubm5DRq/YkWAIAi49957G/QuqiPOzHuP3QJYDY7OQWotEBomd0aNrnL3enayp4Zot2ihy5iIPK/ysnousQ8uFYV81ZjcV7mDPbvZ+waPzsxX7lr/hz/8oUHv2rBhg0caweXl5eHatWvSdb9+/Wq8XxAE9OvXD9u3bwcAbN26FWPHjq3X2DqdTvoyIC4uDjExMfV6D9Xd2WsGHDirAwD0bheJEKXH20MEN1EAQiMAS5njeuJqefMh8mNKrRYdslbJnQZRUFCHh2LM7L5yp0GNrLysFOZyR50SGhYGAVyxWR/sZu97PFrMVz4XXdvABj6DBnmm8/jhw4elWK1Wo60bZ/d26tTJ5fN1lZ+fL30h0bXSUUMFBQXYsmULTp06hdLSUkRHRyMpKQl33XXX7xrjUf3c+/63CA9VwGCx49A5HfbP+aPcKQUWZQgQe9ONa00z2VKRC/fMExER+Yecea8hRKWGpdwIS3k5Hl3wodwpEXmER4v5u+66C0qlEna7HUVFRZ58db0dPXqjUUObNm3ceqZywV/5+bo6ePCgFEdFReHChQuYNWsW1q1b5/J+tVqN6dOn480330T4b82QqP4EQUCEynGALM+Y97DRi52PpSMiIiLyUcVnCmE1myAoFAgNC+N+eQoYHl17HBsbi7S0NIiiiJycnAa96+mnn8ajjz7a4JyKi4uluGIvfG0q36fX62GxWOo19okTJ6T44sWLuPXWW7Fu3TpMmjQJe/fuhcFgwLVr17Bp0yb07t0bJpMJ8+fPx+233+60NYDq7vOnhrqMyUM2PgG07u34bHxC7mxk8fqQ13H86nEcv3ocrw95Xe50iIiIqDpiNTGRn/P4RuL58+ejf//+yMvLw3vvvVfv96xZswYrV65scD4lJSVSrFar3XomLMy5mVfld9RF5aP1vv32W5w5cwYvvPACsrOz0b9/f2g0GjRr1gz33Xcf9uzZgwEDBgBwLM9PTU11awyTyQS9Xu/0ISAuKhyHXrkHh165B3FRXOXgcXYLcPGQ42Ov35dd/m7Od3PQvXl3dG/eHXO+myN3OkRERFSNFu3iXMZE/s7jxXx4eDh27NiBKVOm4C9/+QumTJnSoKXqDVW5KZ+7x91Vvc9gMNRr7KqFdefOnfHKK6+4vDc8PBzLli2Trj/77DN89dVXtY4xd+5cREZGSp+4OP4GRY1AFFzHRFQnNr0ehQ8/gp8GDEThI4/Axi9kiYg8TqFQQhWmgSpMA4VCKXc6RB5Tpz3z6enpdXp5UlISsrOzkZ2djbi4OCQmJiIqKsqtGXKdTlensapT+Yx4d7vjV72vvvvXq77nkUceQWho9Xu3b775ZvTr1w/5+fkAgGXLltV6KkBGRgZmz54tXev1ehb0AHRGC6Zl7wMALE3pzz3znqYMcSyxD2Lzh82XmuDxaDqqr3MznoTp5EkAgOnESZyb8SQ72xMReZhCqUTLjvFyp0HkcXUq5leuXAlBqNssXMV58WfOnMHZs2fr9Fxdx3KladOmUmwymdx6pry8vNp31EWTJk2crm+99dZanxk8eLBUzH/99de13q9Wq93ePhAsdEYLbnv7KxgsNoSrlHh01V588thgudMKLBNXA2sn3YiDkFalZQd7IiIiH1deVgq7zYYrZ08jun0HjPnrS3Kn5LfsRit+zXasuG6RkgiFxqO91Kke6rXMXhRFtz+CIEgfd5/1pMpnu1few16TyqsCtFptjbPpNal6PJ87M+bx8Te+Nbx48aLTNgFyz7TsfTBYbAAAg9mGExfr1/OAqmG87lzIB+GxdESe0m7RQqgTEgAA6q4JaLdoocwZEREFlk3vvinNzCsUSoRFNKn9IXKpopCvGpN86vx1ikKhcDpP3lvOnj3rkcI+MTFRis+fP+/WM5WP1av8fF116NDB6brykv/qVJ3Nv3btmlvP0Q1Wu+NLIbsIKBUCurbib9oeVVHIV8RTNsuXC1EAEEJCENajB9otWghllS+BicizTAYLcpccBgAkP5YEdTi34QU6u92GK2dOAwCi23eo5W6qjt1ohfl8KQAgtHUEBAV7JvmCOhfzMTExOHXqlDdycRIbG4vLly83+D1JSUlSbDKZUFRU5HSOvCsFBQUun2/I2ADcmmWvuhWganFPbhBFRKiUMFjsCA9V4qMpA+XOiIjIpbPTp8N04qQUd/z3v2XOiCiwfb74EH49XybFY//ST+aMyOt4LJ1H/Jp9FKGtImC5VAbLxTLEPsc/X/sCj3ez9zUDBw5EVFSUdF2xH706oig63TNixIh6j111j7w7KwMqf4HRpEmT3y3Vp9qFKBXo2TYSAzpGoWdbLZvfeVrlPfJBul+eyFMqCvmqMRF5R0UhXzWmwFWxxL5lx3golOxk3xCCUoCqTROo2jThfnkf4bPFvKf2zoeGhmL06NHS9fbt22u8/8CBA9Le+oiICCQnJ9d77Pbt2+OWW26Rrvfv31/rMwcPHpTi22+/vd5jB7N3xt+Eo+f1OHpej3fG3yR3OoGnXHfjjPlyz5w6QRSMbHo9RLsd9pIS2A0GqOI7yZ0SUUA7//M1mI1WmI1WiHYRLdrU77Qi8i/3P/uiy5jqJmp8V5jPl8J8vhRR47vKnQ79pk7F/IEDB7Bt2zZv5eLk4sWLsNlsHnnX008/DYXC8Utdu3ZtjUfUZWVlSfHjjz/e4P3q06ZNk+JPPvmkxnv1ej2+/PJL6XrSpEk13E3VeXrtQZcxeciS2wBzqeOz5Da5syHyW2f+PBVi2W8zg6IIQclZDiJvMRks2PDuAenaYrLh3if4hX8wCItoggkvz8WEl+ey+V0DXPv4hDQrf+3jE3KnQ7+pUzF/0003NaghnFx69+6NtLQ0AMClS5eQmZnp8r6CggIsXboUABAdHY2MjAyX91ksFqSkpKBp06bo06cPDh06VO3Yqamp6NOnDwDHEv+PP/642nvfeOMNaV993759MXHixNp/cfQ7lbvXs5O9F1jKXMdEVCflP/5448JuhxDCYp7IWyqa3lXG5ndE5O98dpm9py1YsAB9+/YFAMyZMwcrVqxw+vnJkyeRnJyM8vJyqFQqrF+/3mmvfWXZ2dlYvXo1SktLcfDgQcyYMaPacRUKBdauXYuWLVsCANLT05GTk+N0j81mw9tvv4133nkHANCqVSt8+umn0moCqpvK3evZyd4LYvu6jonIbTa9Hqi8nUyp5LF0RF7Wom2EFD/wbB8ZMyHyPy1SEl3GJC9B9PTB7tUoLy/Hvn37cO7cOVy7dg2CICAqKgrt2rVDv379EBYW5vUciouLkZqaitzcXABA9+7dkZSUhOLiYuzatQtWqxWxsbHIysrCXXfdVe17li9fjkcffVS6vv322/H111/XOPaRI0cwadIkaU98t27dcNNNN8FsNmPPnj24dOkSAGDIkCH473//69aZ9K7o9XpERkZCp9MFbfM8ndGCadn7AABLU/qzAZ6n8Zx5ogY7PTkV9vJylB85AgDo/H9fQFXLSStEVH88ko6I/Im7NZ1Xi3lRFPHJJ5/ggw8+wHfffQer1eryvpCQEAwdOhTTp0/H2LFjIQjePbfws88+w8qVK7F//35cuHABWq0WnTt3xrhx45CWlobmzZvX+LzFYkFaWhpycnKQkJCAVatWoXfv3rWOa7VasXbtWqxbtw4//PADLl68CJVKhdatW2PIkCGYOHFig7rnAyzmiYj8wenJqU7XHbJWyZQJUXBgMU9E/kT2Yv7IkSNIS0uTjnmrbZiKAn7AgAFYsWIFevTo4Y20Al6wF/NHL+hw38LvAACfPTkEibGRMmdERPR75qIinBrzAACgU84GzsoTeVlOpvOJQmNmc5tYsCgvK8Wmd98E4OhmzyZ45A/crem8sil7165dGDx4MPLz86UivqbZ9oqfiaKIvLw83Hrrrfjuu++8kRoFuIpCvmpM5Gl6sx7pX6Qj/Yt06M16udMhP3Mh4wWE9eiBsB49cCHjBbnTISIKWDnzXsPlwgJcLixAzrzX5E7Hb9mNVhQvO4TiZYdgN7pebU2Nz+Otc8+cOYN7770XJSUlTkV6s2bN0K1bN7Ru3RoREREQRRFlZWW4cOECTpw4AZ3OcV61IAgoKSnByJEj8eOPP9Z77zgFH53RApv9xgoQpcK72zUouM3aMcspXn7PcvmSISKiGiU/luS0zJ6CQ3lZKc6fOA4ACA0Lw5Uzp2XOyH/9mn3UKY6ZWvsWY/I+jxfzTz31lFTIR0REYPr06Xj44Ydx0001n+V54MABrF69GsuWLUNZWRlKS0sxa9YsfPrpp55OkQLUtOx9iAgVUGZxFPQ9YrmMioh8U7tFC3FuxpNSTETeZTJaUXy2VIq5Zz445Mx7zbFKWBRhKS9Hm4TucqdE5FEeXWZ/+fJlbN68GYIgIDExEYcOHcLf//73Wgt5AOjTpw/+8Y9/4IcffkCPHj0giiI2bdqEy5cvezJFCnBKpRLasBBow0LQRM3/UJP3zB8232VM5A5bSQnKjx1D+bFjsJWUyJ0OUUAzGSxYPed7WEw2QBSx9o29cqdEjeTKmdNQhWkg/Hbc85jnXpI5I//Fo+l8k0eL+Z07d8JmsyEsLAwbN25Ex44d6/yO+Ph45OTkICwsDHa7HTt37vRkihTA3hl/k2P7htmGzi2bYGlKf7lTogCmVWmx/J7lWH7PcmhVwddskurPXFSEX4bfBXtJCWC3S43wiMg7vlx+RIotZruMmVBja962HSymcgBA684JbH7XAApNCGKm9kbM1N5QaDy+uJvqyaPF/Llz5wAAo0ePRnx8fL3fk5CQgNGjRwMAioqKPJIbBb6/fPwDeraNxICOUVCHKHi+PBH5pFOjx0ixvaxMvkSIgkjL9jeKuIl/GyBjJtSYFAolVGEaqMI0UCiUcqdD5HEeLeYrGt7dfPPNDX5X3748MoTqxmoXcfS8HkfP62G1e+XERSKiBrMbjUClE1465WyQMRuiwHf7w91w7ZIRoWolJr1+K7QtNHKnRI1EoVSiZcd4tOwYD4WSxTwFHo8W823atAEAhIY2fEY0JMSxfCM2NrbB76IgIYquYyIiHxLWsyegUABKJcJ69+YZ80Re9s1/fkJMXBPExDXBV6uOyZ0ONaL7n33RZUwUKDy64aFfv34AgOPHjzf4XRXv4Aw9uUNntODEJUeX2q6tmyKEx9KRF+nNeulouvnD5nPPPNVJ+399yE72RI3oytlSGEosCFUp0KIt90wHk7CIJpjw8ly50yDyGo/OzHfp0gW33HILNmzYAL1eX+/36PV6rF+/Hn369EHXrl1d3vPggw9i+PDh9R6DAsu07H3o2srxH+gTF0vY/I68quoZ80RE5Lsq1uo5mt9x5R4RBQ6PFvMAsHDhQuj1ekyZMgVWq7XOz9tsNqSlpUGn02HBggXV3rd79252uicnIUoFEttokdhGy+Z35FVWuxXHrx7H8avHYbXX/fc5Cm4Vs/JVYyLyDkEQEKpWIlSthELp8T/6EhHJxuO/o/Xv3x+rV6/Gl19+iUGDBuHLL7+E6Ob+5W3btmHQoEHIzc3Fv/71LwwePNjT6VGAqjwTz1l5IvJV5qIiGPLzYcjPh91kkjsdoqDQPNbR8K5FmwgkP5YkczZERJ7j8UMCX3vtNQDAfffdhzVr1mDEiBGIjo5G//790aVLF2i1WqlBnsVigV6vxy+//IJ9+/ahuLhYerawsFB6lyulpaWeTp2IyC0hihB0b95d7jTID50aPcbRoNNuR/mPP6Lrnt1yp0QU8BRKBWLimiD5sSSow7lyL1iUl5Vi07tvAnA0v+MZ8xSIBNHdaXM3KRQK6Yi6yq8WhJobktXl3or7BUGAzWarZ6aBSa/XIzIyEjqdDlpt8DTlemjZHqfrNVMHyZQJBQM2wKP6Otazl9N1jyM/ypQJUfDYvOggrGY7AGDMbDZWDhb/+dszuPjLSQBA684JePiNf8icEZH73K3pvLpxSBAE6ePJe4mq4hnzROQPwnr2dBkTEZHnlJeV4sLJnyDa7RDtdqmoJwo0XivmRVH06ofICc+Yp0bEbvZUX+3/9SHC+/VDeL9+aP+vD+VOhygoXCjQ4/zPOtw2IUHuVKiRVCyvr8DagQKVV4r5Vq1awW63e/XTqlUrb6RO/qryig6u7iAiH6XUatEhaxU6ZK2CMoi2QhHJKVTl6GS/4R8H5E6FGlFomEaKYzu7Puqa3Gc3WlG87BCKlx2C3ciTfHwFz+cgv6czWvDTBT3KzDbH6bH89pW87PUhr0tH070+5HW50yEiIqJK7n/2RbTs0Anq8Ai07Z6IsS+8KndKfu/X7KMuY5KXx7vZNxYul6EK07L3QRAERKiUABznzRN505zv5kjd7Od8NwfL71kuc0bkD8xFRTg15gEAQKecDVC1bStzRkSBzWSwQB0eCovZBogiJs4ZKHdK1EjCIprgodfmyZ0Gkdd5vJhfsWIFNBpN7Tc20IIFC2A0Gr0+DvmHrq2a4MQlx3GFPGeeiHzRqftHw15WJsXd8vfJnBFRYPty+RGMmnEzYuO1sJrt0Lbw/p9PiQKR9Vo5TEUlgMUOVbumiE7rVftD1Cg8XsynpqZ6+pUuTZgwoVHGId/3zvibcO/73wIAPn9qKCI1PEOWvGv+sPlOR9MR1cam10uFPACnmIiIyJdden+/48QxlRKWywYoNH67uDvg8P8J8nsz/3sAZWabFG94fIjMGVGg06q0XFpPdXJ2+nTnvxARIU8iREHkj+k3jn9MfixJxkyIiLyj0Yp5o9GIPXv24PTp0/j1118hCAJatGiBDh06YNCgQQgLC2usVCjAHDqncxkTEfkK04mTjgL+txn5zps2ypwRUeBThztW6o2acbO8iRD5uVZP9cWl9/dLMfkOrxfzO3bswLx58/DVV1/BanV9jEFoaCjuuusu/OUvf8Edd9zh7ZQogOiMFoiiCLsIKBUCwkPZ/I68S2/WOy2x16p4vBjVTp2QANPJk0DTplAnJLD5HRER+Y2QqDC0fWWw3GmQC16rfEpLSzFhwgTcdddd+L//+z9YLI6iy9XHbDYjNzcXf/jDH/DQQw+hpKTEW2lRgJmWvQ+922mhVDjOlt8y63aZM6JAV1HIV42JatLmnXkuYyIiIqL68koxf/36dQwaNAiffvqpdIScIAjV3l/xM1EU8fHHH2PIkCHQ6bhcmmpntYsoKDYgQqVEn/bNEBcVLndKRES/c/6vf3UZExGR5+mKL2FR2kQsSpsIXfEludMh8hqvLLN/4IEHcOTIEacivVWrVkhMTERsbCyaNGkCURRRVlaGoqIiHD9+HJcu3fgX7ciRIxg7diy2b9/ujfQoQOiMFhw/r0ep2QalQoDVZpc7JQoC7GRPdWUuKoIx37HXUBER4dg/T0ReV3HO/OZFB/HH9J7SHnoKfNl/nekUz1ixVsZsiLzH48X8v//9b3z99dcQBAFhYWF44oknkJqaip49e9b43I8//ohVq1bhgw8+gMFgwM6dO/Gf//wHDz/8sKdTpAAxLXsfjFa7tMS+oJhHPZH3sZM91dWpMQ8ACgVgt8NeVgZNXzYPImoMFefMA0DuksMYM5v/7hFRYPH4Mvu33noLANC5c2ccPHgQ8+bNq7WQB4BevXrhnXfewf79+9G5c2eIoii9y9M2b96M8ePHIz4+HhqNBq1bt8bgwYPx3nvv4erVqx4fTxCEOn26d+/u8RwCVeWGd11bNZExEwoWerMe6V+kI/2LdOjNernTIX/w23YzAIBSibglH8iXCxFREEiZt8BlTBRoBFGs/KeMhiksLER8fDxUKhX27duHXr161es9hw8fRv/+/WG1WvHLL7+gY8eOHsnvypUrSE1NxZYtWwAA3bp1Q1JSEoqLi7Fr1y7YbDbExsYiOzsbw4cP98iYQM39Alzp1q0bjh8/Xq+x9Ho9IiMjodPpoNUGdpdtndGCR1fm4cSlUnRt3RQfpQ5ApIZL6Mi70r9Id7rmLD3VpmDcOJh+PAIAUPfqifhPPpE5I6LgwGX2ROSv3K3pPLrM/n//+x8AYMSIEfUu5AEgKSkJI0aMwObNm/G///3PI8W8wWDAiBEjkJ+fD6VSiWXLliE9/cYfyk+ePIlRo0bhxIkTGDlyJLZt24ahQ4c2eNwKGo0G7du3d+ve+Ph4j40byCI1ofhk+hC50yAiqpHl9BkomjaVYiIiIn9iN1rxa/ZRAECLlEQoNF4/3Zzc5NFl9hVN7AYOHNjgd91yyy1O72yomTNnIj8/HwDw+uuvOxXyAJCQkIDc3FyEhYXBbDZj7NixuH79ukfGBhx/T44fP+7Wp2LlAJHPuXYaeLu943PttNzZyKJy0zs2wKPa2PR6iKIIu8EAiCLUCQlyp0QUNL5cfkSKc5ccljETIv9WUchXjUl+Hi3mjUYjBEFAkyYN37tc0fHeaDQ2+F2HDx/GihUrAACtWrXCM8884/K++Ph4TJs2DYBjSf7cuXMbPDZRQFk61HUcRCoa4C2/Zzm0qsDeykINd27Gkwjr2hWK8HBAELhfnqgR2W2OnaRXzpVJMQWH8rJSrHs1A+tezUB5Wanc6RB5jUeL+ejoaIiiiNOnGz5jd/r0aQiCgOjo6Aa/KzMzE3a749iyiRMnQqVSVXvv5MmTpXjx4sUe+TKBvENntOChZXvw0LI90BktcqdDROSSEBKCsB49ENajB5QB3suEyLeI1cQU6Da9+6bLmOqnRUqiy5jk59FivlOnTgCAjRs3oiF99Ww2GzZs2OD0zvqyWCzYuHGjdF1bY7s+ffqgWbNmAICysjLk5uY2aHzynmnZ+1zG5EXTvnUdE5FL7RYtdBkTkXeZDBZcveCYkGkeGw6F0uMHOJGPKi8rxeXCAlwuLIDdbpM7Hb/H/fK+zaO/sw0ZMgTh4eE4deoUXn311Xq/56WXXkJhYSHCw8Nx2223NSinvLw8XLt2Tbru169fjfcLguB0z9atWxs0PlFAieoAPH/G8YnqIHc2RD5PqdWiQ9YqdMhaxVl5okaUu+QwmsdqAABXLxiQ/FiSzBlRY1k/92WYjAaYDGUoPn0K9z/7otwp+TXul/dtHv1qRa1W48EHH0R2djZef/11FBcX44033kBUVJRbz//666/IyMjAv/71LwiCgPHjx9e4JN4dhw/faHiiVqvRtm3bWp+pvBqg8vMNZbfbsWvXLuzevRtnz56F1WpF8+bNkZCQgGHDhjV4FUKweWf8Tbj3fcfs8OdPBef+bWp8erMes3bMAuBogMd980REvqliNj66XQSPpQsC5WWlWPdKBorPnAIACAoFLCYTwiIa3suLyFd59Jx5wLHXvXv37jCbzQAcjexGjhyJ4cOHo0ePHmjTpg0iIiIgiiJKS0tx/vx5HDt2DNu2bUNubi4MBgNEUYRGo8Hx48cRFxfXoHxmzpyJhQsdSxs7deqEgoKCWp955ZVXpJUFWq0WOp2uQTkIgoAOHTpIv6bqJCcn4+9//zuSkur/7XEwnTP/0LI9Ttdrpg6SKZMgYrwOrJ3kiCeuBjTN5MxGFjxnnurCptfj3IwnATiW2XN2nqhxmAwWfLn8CEbNuFk6b54C27pXM3D2qPMknEoTjidXrpMpo8DAZfbykOWceQDo0KEDPvzwQ0yePBmCIKCkpATr1q3DunW1/4tU8b2CQqHARx991OBCHgCKi4uluGIvfG0q36fX62GxWBAa2rD/CJw+fRoRERF46aWXMH78eMTHx8Nms+HIkSP48MMPsWLFCuTm5mLnzp3IysrCuHHjGjReoNMZLThSpIfBYkO4SolurZvKnVLgu3gYWPLbtpc2fRxF/ZTN8ubUyPRmPY5fdXwh16VZF4Qo+B80qp65qAi/3H0PYLNBERGBs9Ono+O//y13WkQB78q5Eqx9Yy9Cw5QAAFO5lcV8ELBazL/7a5PfYa+ShrKXW2E+XyrFLOZ9i1e6gUyaNAmLFy9GSEgIBEEA4CjUa/pUUKlU+OCDD/DQQw95JJeSkhIpVqvVbj0TFhZW7Tvqq02bNjhw4ABeffVV9OrVC+Hh4WjatCluvfVWfPTRR1i1ahUAx/F+jzzyCL7//nu33msymaDX650+wcDR8M7xz43BbAM8u8CEXFl2x434/AH58pDRrB2z0KVZFwDAz9d/5jnzVKNTo8cANkfzJXtZGUwnTsqbEFGQWPfWXqfr9fP2y5QJNaZfz511up746t8RGdNKpmwCx6X397uMyTd4rbXn9OnT8e233+KWW25xKtYFQXD6VBBFEUOGDMF3332HP//5zx7Lo/LRcu7uv696n8FgaFAOhw8fxg8//ICEhIRq70lJScHDDz8MADCbzXjiiSfcevfcuXMRGRkpfTyxmsFfCIKACJUSESolQtiltnEIlf4+T1wtXx4yClGEoHvz7ujevDv3y1ON7FWONlXX8N8AIvIc0S53BiQHQRCgDo+QPu2695Q7JSKv82oFNHDgQOzevRu7du3Cc889h0GDBiE2NhZqtRpqtRpt2rTB4MGD8fzzz2PPnj349ttva+02X1cajUaKK/bx16bqfeHh4Q3KoVevXoiOjq71vpkzZ0rx/v378e23tR/9lZGRAZ1OJ33Onj1b6zOB4J3xN0EURZSZbejcsgmWpvSXO6XAN/VrQBAAhRJ4bFdQ7pevPBPPWXmqTVjPnoDC8Z9ZRUQE4pZ8IHNGRMEhJs654dnYv/aVKRNqTCnzFriMqWFaPdXXZUy+oVE2PQwePBiDBw9ujKF+p2nTG3upTSaTW8+Ul5dX+w5vGjBgACIiIlBWVgYA+PLLLzF0aM1d2iu+GAk2T689KM3MKxUCIjXcC+d1rZOAl67KnYWstCotG96RW2wVW54EAYomTdBpYw6b3xE1ktFP90HuksMIUTm+TNM219TyBAUCdXgEWnaMl2LyjJCoMLR9RZ46jmoX8GuTY2JipPj69etuPVO5e71Wq21w8zt3KRQKdO7cWbo+ceJEo4zrj366WIIysw1lZht+utjwngZERJ50bsaTMJ86BUV4OCAIuJDxgtwpEQUNdXgoxszui1EzbpY7FWpEm95902VMFMgCvh1hYmKiFJ8/f96tZ4qKilw+3xgqrwK4ejW4Z0Grc/aaASXlVgCAUhDY/I6IiIgoiJWXleJyoeP46ej2HaBQKGXOiKhx+OzMfGxsLEJCGv5dQ+Uz200mk1OhXp3KZ9E35Mz3+qi8xD8igkuEXBn5/o1eAjZR5LF0RORz2i1aKDW8U3dNQLtFPB6JqDHofzXiw6e/wYdPfwP9VWPtD1BA2PTum4iO6wAAuHLmNO5/9kWZMyJqHD5bzANw6oJfXwMHDkRUVJR0nZ+fX+uYle8ZMWJEvcfW6XR44403pGPn3FF59UCbNm3qPXagqjwrX+GjKQNlyoaIqHpCSAjCevRA3AcfcL88USNZ+8aNY+l4JF1wUSiVaNkxHi07xiMsokntDxAFAJ8u5j0hNDQUo0ePlq63b99e4/0HDhyQ9tZHREQgOTm53mNfu3YNc+bMwbx589y6/9y5c7hw4YJ0XVvzu2B07/vfQqh0fXOcls3viMjnnJ0+HeXHjqH82DGcnT5d7nSIiAJa5Zl4zspTMPHannmz2YxNmzZhx44dOHLkCK5evYqysjK3Z9uLi4s9lsvTTz+NrKws2O12rF27Fu+88061Z85nZWVJ8eOPP+50tF19HT9+HJcvX0bLli1rvK/y2M2aNWvQFwmBrIlaCYPFcYjsqvRbZc6GiOj3TCdOuoyJyLsm/m2ANDvPI+mCR1hEE0x4ea7caRA1Oq8U85999hmmT5/uNMsMuL9sXhAEiKIIQRBqv9kNvXv3RlpaGj766CNcunQJmZmZeP755393X0FBAZYuXQoAiI6ORkZGhsv3WSwWpKenIycnB126dMGqVavQu3fvase32+14+eWX8cEH1Z8xXFBQgLffflu6fv755xEZGenuLzFo/GtKf0xY8j0AYN1jt3JWnoh8kiq+E8p/PAIACOvVU+ZsiIKHtoUGf37vdrnTICJqFB5fZr9p0yY8+OCDOH/+vFS8i6JYp/3vntgrX9WCBQvQt6/jG9o5c+ZgxYoVTj8/efIkkpOTUV5eDpVKhfXr1zvtta8sOzsbq1evRmlpKQ4ePIgZM2bUOv6SJUswY8YMlx3qv/rqK9x5550oKXEcsTZu3Dj89a9/resvMSj8aeU+aMNCoA0LwZ9W7pM7neBhvA58NAJ4uz2w/B7HNRFVS1CGQBEeDkV4OARlwB8cQ+QzTAYLcjL3IydzP0wGi9zpEPk9u9GK4mWHULzsEOxGa+0PUKPy6J8wrFYrZsyYAavVKs2ui6KIHj16oHPnzoiMjHS7Q/3atWthMpk8llt4eDi2bt2K1NRU5ObmIj09HfPmzUNSUhKKi4uxa9cuWK1WxMbGIisrq0771atbQRATE4Np06bhP//5D0pKSrB48WJ89NFHGDhwINq2bYvy8nIcOnQIv/zyCwBArVbj+eefx0svveSxVQlEHrF2ElB81BFfPua4nrJZ3pyIfFhF8zsialy5Sw5L8ZfLj/CseaIG+jX7qFMcM7X61cjU+DxazO/atQvnzp2TCtFx48bhH//4B+Li4ur8rq1bt+Ly5cueTA8xMTHYsmULPvvsM6xcuRL79+/Hpk2boNVq0b9/f4wbNw5paWlo3rx5je9JSUnBV199hZycHCQkJGDhQtdHDkVERGDJkiXIzMzEtm3b8MUXX+DAgQM4fvw4vv/+eyiVSjRv3hx333037rzzTqSlpaF169Ye/TUHkqMXdCgpt0IEEKFWYussLqMjIt9j0+shWq0wnTwJddcExNWwxYqIiIiovgTRg2vaFy9ejCeffBKCIKBv377Yu3dv7Q9VIzY2FpcvX4bNZvNUekFBr9cjMjISOp0O2gA7CqnzC1tgszv+cVUqBPzy1kiZMwoixuvAfx5yzM637AH8v7WAppncWRH5pNOTU52uO2S5fzwpETWMyWCRZueTH0uCOpy9dYgawm60SrPzLVISodBw61hjcLem8+j/G3q9XoonTpzYoHdNmDDB6X1EFYV81ZgagaYZ8OhWubMgIiKqkTo8FGNms4s9kacoNCFcWu/DPFrMVz56raHLxd9///2GpkMBplfbpvixqESKiYh8Uezct3BqzAMAgE45G2TOhoiIiAKVR7vZ33nnnVJ88eJFT76aCP/+0yDcGt8ct8Y3x7//NEjudIiIXDpf6TSS8zyZhKhRsZs9EQUTjxbznTt3xgMPPABRFLFhQ8NmIx588EEMHz7cQ5mRv9MZLZiW7TiKbmlKf54vT0Q+y3TipMuYiLyvajd7IqJA5vFz5pcuXYr4+Hh8//33mDt3br3fs3v3buzcudNziZHf0hktGPL2dnxfcBV7C69hyoo8uVMiIqqWOiHBZUxERETkSR4v5qOjo/Hdd9/hjjvuwIsvvoj77rsPO3bsYFd6qrdHV+1Fqcnxz4/NLuLQOZ3MGRERVS9uyQcI69EDYT16IG4Jj6UjakzJjyVJ8R/Te8qYCRGR93n0aLqq/vKXv+Af//gHBEGASqVCfHw8oqKioFKpan32u+++g9Vq5ZcAdRSIR9P1fuUL6Mut0nVTtRKHXx0hY0ZByHgdWDvJEU9czWPpiIiIiIi8RJaj6SocO3YM6enpyMtzLIcWRREmkwnHjh2DIAhuvUMURbfvpcDWtVUTHL+gR6nZDqUgYMus2+VOKfhUFPIV8ZTN8uVCREREVEl5WSk2vfsmAOD+Z19EWEQTmTMiahweX2Z/7Ngx3HbbbcjLy5MK8ooP4CjS3fkQVfhoykD0atcMt8Y3x/6X/oi4qHC5UyIicsmm1+P05FScnpwKm14vdzpEREEhZ95ruFxYgMuFBciZ95rc6RA1Go/PzP/pT3/CtWvXnIr3pk2bIj4+Hk2bNoVSqXTrPbt374bVaq39Rgp4kZpQrJnKo+hkNXG18zJ7InLp7PTpUgf7s9Ono+O//y1zRkREge/KmdMuY6JA59Fi/vDhw9izZ49UyA8aNAjz5s3D4MGD67xkPjY2FpcvX/ZkeuSneCwdEfkL008nYDcapZiIiLwvOq4Drpw9LcXkGXajFb9mHwUAtEhJhELjlR3a1AAeXWa/Z88eKe7cuTO++uorDBkyhHvfqd50Rgtue/sr7C28hiPn9Xh01V65UwpOVffME5FLoigCNhtgs3HLGBFRIxnz3Eto2TEeLTvGY8xzL8mdTsCoKOSrxuQ7PPr1ypUrV6R48uTJUKvV9X5Xu3btEBYW5om0yI89umovSkyO7RYGsw0nLpbInBERkWs2vR7ib7PyUCoBfpFNROR1bH5HwcyjM/NRUVFS3LFjxwa9a+/evTh16lQDMyJ/91Ol4t1mF9G1FX+DlkXlffLcM0/k0tnp052uw7p2lSkTouBkMliQk7kfOZn7YTJY5E6HGgmb33lPi5RElzH5Do/OzN9++40jw3Q6nSdfTcFKFKEQALsIKAVHZ3uSgaYZj6MjqoXpxEkI4eHS7Hzckg9kzogouHy28AdcPl0ixeOe6y9zRtQY2PzOexSaEMRM7S13GlQDj87M9+zZEyNHjoQoiti+fXuD3pWZmYnXXuO3a8GuW+umaKIOgTYsBH3aN2PzOyLyWeqEBAiCAEV4ODQ33QSlVit3SkRBpaKQrxpTYKvc8I7N7yjYCKKHO/RcuXIFf/jDH3D06FFs2bIFd999d73eU9HN3mazeTK9gKfX6xEZGQmdTgdtAPxBkp3sichf2PR6nJvxJACg3aKFLOaJGtmyWV/DarYDAEJUCkydf4fMGVFj4J55CkTu1nQeL+YB4Ndff0VaWhq2bduGV155BY8//jiaNKnbv1gs5usn0Ip58hHG687nzGuayZkNERHR7+h/NWLtG45Tbyb+bQC0LTQyZ0REVD+yFfOVl8bn5uYiLy8ParUat956K3r06IGoqCioVKpa3/POO+/AYDCwmK+jQCvmOTPvI1aOcr7m/nmi3+HMPBEREXmCbMW8QqFwOle+4vV1PWteFEUIgsBivo4CqZjXGS0Y+vevAABdWzdFiELAmqmDZM4qSLGYJ6pV4SOPwHTiJABA3TUBHf/9b5kzIiIiqj+70SqdL98iJREKjUd7p1MN3K3pPNoAr7LKRXxdC3kiANKMPACeLy83Hk0HANCb9Uj/Ih3pX6RDb9bLnQ75mIpCvmpMRETkjyoK+aox+Q6vFfOAo6Cv74fIanf8s1BmtkGEY5k9yaTiaLopm4N6v/ysHbNcxkQ2vR6iKMJuMACiCHVCgtwpERERNYhoF2E+Xwrz+VKIdtZnvshrxfyaNWtgt9vr/WnVqpW3UiM/YbLaUGKywWYX0TE6nPvlichnnZvxJMK6doUiPBwQBJ4xT0RE/k+sJiaf4dWZeaKGOHq+BEqFAKVCwNHzXGZP8ps/bL7LmEi0WWE6eWO/PJvfERGR3xOqicln+GwXAy61p/BQBQwWuxQTyU2r0mL5PcvlToN8EWcviIgo0PC/bT7P48X8hg0bAAADBgxo0Hv27dvHTvZBbsus23Hv+98CAD5/aqjM2RARVU8ICUFYjx5yp0FEROQxglKAqk0TudOgGnj8aDqSVyAdTUdE5A9sej3O/OnPKD9yBAqNBp025kDVtq3caRERETUIj6aTj2znzJO8AqWYP3vN4DQrHxcVLnNGRESunZ6civJjx6TrsB490CFrlYwZERERkT+T/Zx5V0wmE06dOoV9+/YhPz8fhYWFMJlMjZkC+YmKQr5qTCQnnjNPRERERL7C68W8Xq/H3//+d9x2222IjIxEly5dcMstt2DgwIHo3LkzIiMjMXToULz77rvQ6xvnD8ebN2/G+PHjER8fD41Gg9atW2Pw4MF47733cPXq1UbJocJDDz0EQRAgCAI6duzYqGP7qrPXDNCXW6Evt6LMZGO/DbkZrwMrRzk+xutyZyMbvVmPez65B/sv7cexX49hxvYZcqdEMrPp9fhlzAMw5OXBXlICe0kJQtu1Q7tFC+VOjYgoKJSXleI/Lz6DzP93PxamTYCu+JLcKQUMu9GK4mWHULzsEOxGq9zpUDW8Wsz/85//RPv27fHCCy9gz549MJvNEEXR6WM2m7F7924899xzaN++PT74wHtn8165cgX33nsv7rvvPnzyySdQqVQYNWoUunfvjry8PMyePRu9evXC9u3bvZZDZbm5uVi7dm2jjOVPkuffmIm3iSI6x3CJvazWTnIdB5lZO2bBaDUCAIxWI36+/rPMGZHczs14Eubjx53+munECR5LR0TUSDa9+yYuFjiOBbWUlyP7rzNlzihwVOyVrxqTb/FKMS+KIiZPnownn3wSer1eOmauYga66qeCXq/HjBkzkJqa6vGcDAYDRowYgS1btkCpVOKjjz7C8ePH8fHHH2Pnzp04duwYunbtigsXLmDkyJH49lvvLu02GAx4/PHHvTqGP9IZLSg1OX/7FxbKZhvkGzQhGinu0qyLjJmQLxBtnKkgIpKT3W6DaLdDtNvlToVIFl4p5p955hmsXr3a6a+JooiQkBDExsYiISEBXbp0QWxsLJRKpTRLLwgCRFHE6tWr8eyzz3o0p5kzZyI/Px8A8PrrryM9Pd3p5wkJCcjNzUVYWBjMZjPGjh2L69evezSHyl5++WUUFhZCrVZ7bQx/NC17H4RK10oBWJrSX7Z8CMDoxcDFQ47P6MVyZyOb+cPmIyEqAeGh4egd0xuLhi+SOyWSmwhAc+MLHigU6Lj+U9nSIQp2JoMFOZn7kZO5HyaDRe50qDGIQGjYjd+HU+YtkDGZwBI1vivM50thPl+KqPFd5U6HquHxbvZ79uzBkCFDpMJ8wIABmDx5Mu666y506dIFSqXS6X6r1Yqff/4Z27ZtQ1ZWFvbt2+dITBCwe/du3HLLLQ3O6fDhw7j55ptht9vRqlUrnDlzBiqVyuW9s2bNwvvvvw8A+Otf/4q///3vDR6/qh9++AH9+/eHUqnEM888g7feegsA0KFDBxQWFjbo3f7ezf6hZXtQbrHicFEJAGDnX+5kJ3u5rRzlfD1lszx5EPmY05OdV5Gxgz2RvHIy9ztdj5ndV6ZMqLGsezXD6XrCy3NlyiTwFC875HQdM7W3TJkEJ9m62c+ZMwcAoNFokJ2djf/973944okn0K1bt98V8gAQEhKC7t27Y8aMGcjLy0NWVhY0v810VLyroTIzM2H/bfnNxIkTqy3kAWDy5MlSvHjxYhiNRo/kUMFut2Pq1KmwWq144YUXkJCQ4NH3+7uX7kuUCvnPnhzCQp6IfFblRndsekdE1PjunDIV544fwbnjR3DnlKlypxNQRLsozcyLdraj9lUeLeavXbuGnTt3QhAEZGdn45FHHqnzOyZNmoSsrCyIoogdO3Y0eKm7xWLBxo0bpevhw4fXeH+fPn3QrFkzAEBZWRlyc3MbNH5VixcvRl5eHrp164bnn3/eo+8OBBOXfu8yJhlNXO06JgpySq0WHbJWoUPWKja9I5KZ/lcjLp8pwfmfdbBa7Eh+LEnulMjLystKsfr5pwAAoWFhWPcK/1ztUWI1MfkUjxbz3377Lex2OwYOHIgHHnig3u958MEHMXDgQNjtdnzzzTcNyikvLw/Xrl2Trvv161fj/YIgON2zdevWBo1f2blz5/Diiy8CAJYuXVrjCoFgZTDbXMZERL7Gptfj9ORUnJ6cClsjHa1KRK6tfWMvBEFAqFqJaxcNUIeHyp0SeVnOvNek5neW8nK50wk4glKAqk0TqNo0gaAUan+AZOHRYr6oqAgAcPfddzf4Xffcc4/TO+vr8OHDUqxWq9G2bdtan+nUqZPL5xvqySefRElJCaZMmYI77rjDY+8NJEltm7qMSUY8mo7IpXMznnQZExGR9105c1pqfifa7Wx+52EtUhJdxuRbPFrMX79+HYIgIDo6usHvio6OhiiKDV5mf/TojXMR27Rp49YzlQv+ys83xMaNG5GTk4MWLVrgnXfe8cg7A43OaEGIQoEIlRJ92jfDqvRb5U6JiMglm16P8mPHUH7sGI+oI/IBDzzTBxaTDRaTDQ8800fudKgRRMd1gEKhgDo8Am27JSIyppXcKQUUhSYEMVN7I2Zqbyg0PCbaV3m0mG/WrBlEUcSVK1ca/K4rV65AEARp/3p9FRcXS7G776p8n16vh8XSsONNSkpKMGPGDADAu+++65EvOwLRtOx9CFEqkNhGixCFgEgNl8j5BB5NR/Q752Y8CfVvDUxNJ06yAR6RjPS/GrHuLcdpSC07NMWudSdlzogaQ/KTz7iMqeHsRiuKlx1C8bJDsBv5hbUv82gxXzGjvW3btga/64svvnB6Z32VlJRIsbtnuoeFhVX7jvr429/+hnPnzuGOO+7AlClTGvSuqkwmE/R6vdOHyKM2PgG07u34bHxC7myIfIJos8J00lEwqLsmsAEekYzWvrFXii+fbtif2ch/fPHP+WjZMR4tO8bji3/OlzudgPJr9lGXMfkejxbzQ4cOhUKhwPfff49NmzbV+z2ffvop8vLyoFAocPvttzcop8pHy7nbcK7qfQaDod7j79u3D4sWLYJKpcKSJUvq/Z7qzJ07F5GRkdInLi7O42M0lqUp/V3GRL5Ab9Yj/Yt0pH+RDr2ZX5oFPXb5JfIpIaobf6RlJ3siChYeLeajoqJwxx13QBRFPPLII/j444/r/I7//Oc/SE1NhSAIuPPOOxu8zL7izHoAMJvNbj1T9b7w8PqddW6z2TB16lTY7XY899xz6N69e73eU5OMjAzodDrpc/bsWY+P0VgiNaFYM3UQ1kwdxCX2voRH0wEAZu2Y5TKm4CTabLAbDLAbDBBtPHmDSE4T/zZA6mQ/6fVb2ck+SNz/7IsuY2o4Nr/zHx7vZvDaa69h6NChMBgMeOihhzB//nxMnjwZw4cPR+fOnSEIzkcb2O12/Pzzz9i2bRuysrKwd+9eiKIIQRDw2muvNTifpk1vdEQ3mUxuPVNe5XiLyu+oi/nz5+PAgQNISEiQjqTzNLVa7fb2AaJ60TQDpmyWOwsin2L65ReXMRE1Pm0LDf78XsNWcpL/CYtoggkvz5U7jYBU0fyOfJ/Hi/khQ4ZgxowZWLRoEQRBwPfff4/vv/8egGP5esuWLREREQFRFFFaWori4mKnBnMVhfxTTz2FQYMGNTifmJgYKXa3M75Op5NirVaL0NC6f8N7+vRpvPzyywCADz74gAU3kZ+bP2y+NCM/f9h8WXMh+QmCAKGeq7aIyLNMBgtylziOEk5+LIkz80QUNLxyzsD777+Py5cvY926dRAEAaLo2FBoMplqXAZeMWv/yCOPIDMz0yO5JCbeWBpy/vx5t56pfLZ95efr4oknnkBZWRkmTZqE4cOH1+sdwUZntGBatqMb7dKU/lxq7wuM12+cLT9xtWOWPkhpVVosv2e53GmQj+iUswGnxjwgxUQkn4pCviIeM7uvjNkQETUej+6ZryAIAtasWYPMzEyn/eaCILj8VIiIiMCCBQuQlZXlsVySkm40QTGZTE6FenUKCgpcPl8Xn3/+OQBg9erV1f66BUFAWlqa9Mzp06d/9/NXXnmlXuP7o4pCvmpMMqoo5KvGREHMptfjQsYLCOvRA122b4OqgaeuEBEREdWHV2bmK8yaNQupqan45z//ic2bNyM/Px9Wq/NZhSEhIejfvz9Gjx6NadOmNbjhXVUDBw5EVFQUrl27BgDIz8+v8bg7URSRn58vXY8YMaJe46amprp1388//4zvvvsOgOPLjHHjxjn9/Oabb67X+P7Iahdx4qLjSJmurevXp4CIyNvOzXjSKe6QtUrGbIgo+bEkp2X2FBzKy0qx6d03ATga4IVFNJE5I6LGJ4gVa+AbgdFoRFFREa5evQoAaNGiBdq2bfu7c909LS0tDStXrgQAzJw5E++//3619+7fvx/9+vUD4Ciui4uLnTrie9rKlSul2fkOHTqgsLCwQe/T6/WIjIyETqeD1o/OPdYZLbjt7e0wWOwIVynRrVUTfDJ9iNxpEZfZE/3O6cnOX9aymCcianzrXs1wumYzPAok7tZ0XllmXx2NRoMuXbpg4MCBGDhwIDp37uz1Qh4Ann76aSgUjl/q2rVrazyirvIS/8cff9yrhTzdMC17HwRBQIRKCQFAiLJR/9Gk6lR0sp+ymYU80W/aLVroMiYiosZRXlaKy4UFuFxYALudx4NS8AqKiql3797S7PelS5eqba5XUFCApUuXAgCio6ORkZHh8j6LxYKUlBQ0bdoUffr0waFDh7yTeJDp2urG8qilKf1lzISIqHpKrRYdslahQ9YqKP1oBRQRUaDY9O6biI7rAAC4cuY0z5mnoFWnYv4Pf/gDxo8f761cnDz44IMe7QK/YMEC9O3r6G46Z84crFixwunnJ0+eRHJyMsrLy6FSqbB+/XpERUW5fFd2djZWr16N0tJSHDx4EDNmzPBYnsFqaUp/hCgVSGyjxbfP/YGd7InIZ9n0epyenIrTk1Nh0+vlToeIKCgplEq07BiPlh3juV+egladGuDt3LkTrVu39lYuTnbv3o3Lly977H3h4eHYunUrUlNTkZubi/T0dMybNw9JSUkoLi7Grl27YLVaERsbi6ysLAwdOtTtd1fuyF+b48eP4+2335auf/75Zym+cuUKpkyZIl1HR0fj3Xffdfvd/qzougF7C69JcaQmUuaMCABw7TSw9Ld/F6Z9C0R1kDcfIh9w5s9TUf7jj1Lcae0amTMiCm48Zz743P/si07N78iz7EYrfs0+CgBokZIIhcarPdOpAerUAE+hUKB169Zun9feELGxsbh8+TJsNs/vg/nss8+wcuVK7N+/HxcuXIBWq0Xnzp0xbtw4pKWloXnz5jU+b7FYkJaWhpycHCQkJGDVqlXo3bu3W2Pv3LkTw4YNc+ve+jTE89cGeJ1f2OJ0/ctbI2XKhJy83d75+vkz8uRB5EOO9ezldN3jyI8yZUJEAJCTud/pmufMEzVM8TLnLcQxU92rc8hz3K3p6vw1i81mw9mzZ+HtJvjeKOIr3Hfffbjvvvvq/XxoaChWr15dr2fvvPNOr/+98zdnrxlgszv+nigFAXB/oQMRUaMTNBqIRqMUExEREcmhzjPzdVlS3hCiKEIQBK8W9YHIH2fme7/yBWw2G8osjn8Utzx1GxJjuczeJ3CZPdHvmIuKcGrMAwCATjkboGrbVuaMiIIbl9kTeRaX2cvPazPzADizTB6nVCqhVTpiFvI+JKoDl9YTVaFq2xbd9ubJnQYR/UYdHsql9UQUlLx6NJ0gCPWayW+s2X/yDWum3Yoysw1lZhvWTLtV7nSIiIiIiIJWxax81Zh8T51n5kNDQzFo0CC37v3666+hUqncvr+y3bt3w2q11vk58j+vfXYUAzpGSfGaqXX/54WIiIiIiCiY1LmYb968OXbs2OHWvQqFok73V1bRzZ6IyBfozXrM2jELADB/2HxoVf7Rk4KIiCjQlJeVOh1Nx3PmPatFSqLTnnnyXV5dZk/kjqUp/V3GRL6kopCvGlNwMf70E4717IVjPXvB+NNPcqdDFPRMBgtyMvcjJ3M/TAaL3OlQI8mZ9xouFxbgcmEBcua9Jnc6AUehCUHM1N6Imdqbze98nM8W82yyFzwiNaFYM3UQ1kwdhEgNO9ASke8qHPugy5iI5PH54kMoPluK4rOl+HzxodofIL9XXlaK8yeOw1xuhAgRV86cljulgGM3WlG87BCKlx2C3chtz76sTl+1rFixAppGOlN3wYIFMP52ji8RkdzmD5vvtMyeiIjk9+v5MpcxBa5N776JUHUYLKZyWMrL0Sahu9wpBZyqDfBipvaWMRuqSZ2K+dTUVG/l8TsTJkxotLFIXjqjBdOy9wFwLLPn7Dz5Iq1Ki+X3LJc7DZJZx/WfSjPyHdd/KnM2RBTVKhyXz5QAAFq2bypzNtRYYtp3xJWzjhn5Mc+9JHM2RPLx2WX2FDwqCvmqMRGRr9F064YeR35EjyM/QtOtm9zpEAU9hRIIVSsRqlZCoZQ7G2oM9zw+SyrkU+YtYPM7L6jc9I4N8Hwbi3mSlc5owdHzehw9r4fVzj4JRERE5D6FUoGYuCaIiWsChZJ/rA0GuYv+4TImz2EDPP/B3/VIVtOy96FrK8c3qiculrCbPRH5NJtej9OTU3F6cipser3c6RAFvT+k9pAa4P0htYfc6VAjKD5TCHO5EeZyI4rPFMqdDpGsWMyT7EKUCiS20SKxjZb75YnIp52b8aTLmIjk8dWqY9LM/FerjsmdDjUGsZqYKAixmCdZ8Yx5IiIiInJXTPuOUIVpoArTIKZ9R7nTIZJVnYr5b775Bt9//723cnHy/fff45tvvmmUsYiIaqM365H+RTrSv0iH3szl1cGq3aKFLmMikkfyY0kuYwpcY557CS07xqNlx3h2sqegJ4ii6PYCFYVCgdjYWBQVFbl9f+vWrXH+/Pk6JxYbG4vi4mJYrdY6PxvM9Ho9IiMjodPpoNVq5U6nVg8t2+N0vWbqIJkyIapZ+hfpTtc8po6IiKhx6YovIfuvMwE4OtlHxrSSOSMi73C3pqvzMvs61P4N1phjERER1YTN74iI5FVRyFeNyXPsRiuKlx1C8bJDsBs5qerruGeeZMU98+Qv5g+b7zKm4MHmd0REFOh+zT7qMibfVOeDA3U6HdLT02u/sZ73V36OAl+kJpRL633VtdPA0qGOeNq3QFQHefORmVal5dJ6IiIiGaXMW+C0zJ4o2NV5z7wgCG6/XBTFOt3v6lmbzVav54OVv+2ZJx/2dnvn6+fPyJMHkY8w/vQTCsc+CADouP5TaLp1kzkjIqLgUl5Wik3vvgkAuP/ZFxEW0UTmjAKP3WiVZuRbpCRCoanz3C95gNf2zNdFfQt5Cg5nrxmQ9PJWdH5hCx7453fQGS1yp0SViXagXOf4iHa5syGSlbmoCIWjxwA2GxRhYTgzKUXulIiIgk5FIV81Js9RaEIQM7U3Yqb2ZiHvB+pVzIui6PUPBb7k+d+ixGSDzS7i0FkdpmXvkzslqkysJiYKQqfGPCDF9rIyGTMhIiIicqjz1y1RUVH49NNPvZGLRBRFPPjgg7h+/bpXxyH56IwWlJpudMi08Qsc36NQAGGRcmdB5DsiIoDfCvlOORtkToaITAYLcpccBuA4Y14dHipzRuRt9z/7otMye6JgV+c98/U9N76uYmNjcfnyZe6ZryN/2TOftiIPO38qliZ8lQKw/6W7Eanhf4h9BhvgEUnMRUXS7HynnA1QtW0rc0ZElJO53+l6zOy+MmVCRORZ7tZ03AhBsrDaRUSoFCg126FUCNj5lztZyPuaqA5sekf0G1Xbtui2N0/uNIiIiIgkddoz3759e8TFxXkrFyft2rVD+/bta7+R/JMoQqFQQBsWgj5xkYiLCpc7IyIiIvIjyY8luYyJqP7sRiuKlx1C8bJDsButtT9AsqrTzHxhYaGX0vi9vXv3NtpY1PhClAoktvHdbQBERJXZ9Hqcm/EkAKDdooVQ+vA2JiKiQMWj6byv4li6ijhmam8Zs6HaePVoOqLqzH+ojxQvTekvYyZEtdOb9Uj/Ih3pX6RDb9bLnQ7JoKKQrxoTkXwqmt9VjSlw8Wg67xPtIsznS2E+XwrRzgbVvi4oi/nNmzdj/PjxiI+Ph0ajQevWrTF48GC89957uHr1qsfHM5vN+OqrrzBnzhyMGDECHTp0QEREBFQqFaKjo3Hrrbdi9uzZOHjwoMfH9lWRmlCsmToIa6YO4l558nmzdsxyGRMRkXzsNhHFZ0tRfLYUdhuLDiKP4NHEfiWoivkrV67g3nvvxX333YdPPvkEKpUKo0aNQvfu3ZGXl4fZs2ejV69e2L59u8fGzMjIQKtWrTB8+HC88cYb2LFjB1q0aIERI0ZgzJgxaNu2Lf73v//hvffeQ58+fTBlyhSUl5d7bHwiImq4dosWuoyJSE6sOoJN5ePoeDSddwhKAao2TaBq0wSCUpA7HapF0HSzNxgMGDFiBPLz86FUKrFs2TKkp6dLPz958iRGjRqFEydOYOTIkdi2bRuGDh3a4HFzc3Nx/fp1AMBDDz2EefPm/a6J4MGDB/HII4/g6NGjWLVqFYqLi/H55583eGwi8oz5w+ZLM/Lzh82XNRciInJQKBWIieOe6WASFtEEE16eK3caAa1FSqK0b75FSqLM2VBt6nTOvD/705/+hI8++ggA8NZbbyEjI+N39xQUFKBnz54oLy9HdHQ0Tp48iWbNmjVo3Jtvvhk//PAD7rzzTmzbtg1KpdLlfWfOnEG3bt2kWfmcnByMHj26zuP5yznzRET+wqbX4+fhdwEA1F0TIChD0CFrlcxZEZHJYJH2yic/lgR1OLftEVFgcLemC4pl9ocPH8aKFSsAAK1atcIzzzzj8r74+HhMmzYNgGNJ/ty5nvvm79lnn622kAccx/7de++90vWmTZs8NjYREdVf5YZ3phMnZcyEiCpTh4dizOy+GDO7Lwt5IgpKQVHMZ2Zmwm63AwAmTpwIlUpV7b2TJ0+W4sWLF8NoNDZo7PHjx2PatGm44447ar03ISFBis+dO9egcYmIyHPUlX5/5p55IiIi8gUBX8xbLBZs3LhRuh4+fHiN9/fp00daWl9WVobc3NwGjf/iiy9iyZIlaNKk9j1dlRvfNXR5v6/TGS14aNkePLRsD3RGi9zpEBFVK3buWzCddMzId8rZwDPmiYiIyCcEfDGfl5eHa9euSdf9+vWr8X5BEJzu2bp1q9dyqyovL0+Ka/vSwd/NWnNAiqdl75MxE3LJeB1YOcrxMV6XOxsiWRXNfgZ2gwF2gwFFs11v0yIiIiJqbAFfzB8+fFiK1Wo12rZtW+sznTp1cvm8N+Xm5mL37t0AgK5duzot9ydqdGsnuY6DlN6sR/oX6Uj/Ih16s17udKiRlf/4o8uYiIiISE4BX8wfPXpUitu0aePWM5UL/srPe4PBYMCiRYswfvx4AEC3bt2Qm5uLsLAwr44rt/kP9ZHipSn9ZcyEqHYzts/A8avHcfzqcczYPkPudKiRCRqNy5iIiBpPeVkp1r2agXWvZqC8rFTudIh8QsCfM19cXCzF7u5Dr3yfXq+HxWJBaKhnuqTqdDo89dRTMBqNOHfuHA4ePAiDwYCkpCSkp6dj+vTpUKvVHhnLl0VqQrFm6iC506DqTFx9Y0Z+4mp5c/EBP1//2WVMgc+m10MdH4/yI0eg0GjQaWOO3CkREQWlTe++6RTzvHnvsButTufMKzQBXy76tYD/f6ekpESK3S2Sq86Kl5SUoHnz5h7Jx2g0YtUq5/OJmzVrhi5duqB58+YQRbFO7zOZTDCZTNK1Xs8lwOQBmmbAlM1yZ+EzujTrIhXxXZp1kTkbakznZjwJRVgYwn/rpaJyY6sWERGRv6oo5CvimKm9ZcyGahPwy+wrHy1X05F0lVW9z2AweCyf1q1bQxRFWK1WFBcX48svv8SoUaOQk5OD1NRU9OjRA998843b75s7dy4iIyOlT1xcnMdy9SZ2syd/smj4InRv3h3dm3fHouGL5E6HiIgo6Nz/7IsuY6JgFvDFvKbS/kaz2ezWM1XvCw8P92hOAKBUKhEdHY277roL2dnZ2LBhA5RKJQoLC/HHP/4RO3bscOs9GRkZ0Ol00ufs2bMez9Ub2M2e/IlWpcXye5Zj+T3LoVXxWLJgUvlMeZ4vT0REga5FSqLLmHxTwBfzTZs2leLKy9FrUvm896rv8JbRo0fj2WefBeD4MmHSpEm/y8MVtVoNrVbr9CEiIs9QarXokLUKHbJW8Xx5IiIZ5cx7DZcLC3C5sAA5816TO52ApdCEIGZqb8RM7c398n4g4Iv5mJgYKb5+/bpbz+h0OinWarUea35Xm5kzZ0rx+fPn8fHHHzfKuHKw2uw4el4Pq11kN3si8lnmoiL8NGAgfhowEOaiIrnTIaLfmAwW5GTuR07mfpgM3K4XDK6cOe0yJs+xG60oXnYIxcsOwW60yp0OuSHgi/nExBvLQ86fP+/WM0WV/sBW+Xlva9OmDTp27Chd79y5s9HGbmw/F984UiRS0zhflhAR1YVNr8cvd98Du8EAiCJOjXlA7pSI6De5Sw67jClwRcd1cBmT51Rtfke+L+CL+aSkJCk2mUxOhXp1CgoKXD7fGFq3bi3F7n754M9OXCyp/SYiIhmcm/GkFNsrNVMlIvnZbSKKz5ai+Gwp7La6nQRE/mnMcy+hZcd4tOwYjzHPvSR3OkQ+IeA3QgwcOBBRUVG4du0aACA/Px9tazhaSBRF5OfnS9cjRoyo99i7d+/G7t27cc8997j9pYDFcmOpmLvd9/1Z11ZN5E6BiMgl0WYFwsKAsjJAqUSnnA1yp0REErGamAJVWEQTni3vZS1SEp3OmCffF/Az86GhoRg9erR0vX379hrvP3DggLS3PiIiAsnJyfUe+//+7//wl7/8BVu3bnXrfrvdjl9++UW69pdj5uqje2stEtto8dGUgXKnQq4YrwMrRzk+xutyZyMrvVmP9C/Skf5FOvRmvdzpUGMSAYVCAUXTptDcdBPPmCfyIQqlAjFxTRAT1wQKZcD/cZaoUbD5nf8Jit/9nn76aSgUjl/q2rVrazyiLisrS4off/xxp6Pt6svdve9ffvmlU5O+e+65p8Fj+6oVaQOxZuog7pf3VWsnuY6D0Kwds1zGFPiEkBCE9eiBsB49IITwDzVEviT5sSSXMRFRMAmKYr53795IS0sDAFy6dAmZmZku7ysoKMDSpUsBANHR0cjIyHB5n8ViQUpKCpo2bYo+ffrg0KFDNY6fm5uLr7/+usZ7SktLMXv2bKecR44cWeMzRETkPTxjnsh3qcNDMWZ2X4yZ3RfqcE4MEFFwCopiHgAWLFiAvn37AgDmzJmDFStWOP385MmTSE5ORnl5OVQqFdavX4+oqCiX78rOzsbq1atRWlqKgwcPYsaMGTWOLYoi7r//fnz00UcuVwXk5+dj6NChOHrUsUclOjoa//73v6FUKuvzSyVquNGLgYuHHJ/Ri+XORlbzh813GVPg4xnzRES+QVd8CYvSJmJR2kToii/JnQ6RzxBEUQyariHFxcVITU1Fbm4uAKB79+5ISkpCcXExdu3aBavVitjYWGRlZeGuu+6q9j3Lly/Ho48+Kl3ffvvtLmfe9+zZg4yMDKefNWvWDP3790fLli1hMplw9OhRHDt2zOld//rXv5CQkFCvX6Ner0dkZCR0Oh20PvyHz7QVeTBabFia0p9L7X3RylHO11M2y5MHERERBb1FaROdrmesWCtTJkSNw92aLqg2AcbExGDLli347LPPsHLlSuzfvx+bNm2CVqtF//79MW7cOKSlpaF58+Y1viclJQVfffUVcnJykJCQgIULXS+/HDRoEHbu3InCwkJ8/vnn+Pbbb3H06FHk5+ejpKQEISEhiIyMxJAhQzBgwABMnDgRt956qzd+6T5rWvY+rJk6SO40qCq7Bbj825dMLXvImwsREVEVJoNFOl8++bEkLrUnoqAUVDPzwcDfZuYBsJj3NcbrwPwkwFIGhEYALXsCj7p3IgMREVFjyMnc73Q9ZnZfmTKhxnD59Cmsfv4pAMCkt99Hyw6dZM6IyLvcremCZs88+aalKf3lToGqWjsJEARA1cTxv8qgWsBDJDEXFeGnAQPx04CBMBcVyZ0OEVHQ2rlyGdp174l23Xti58plcqdD5DNYzJMseDSdj4tJvBFPXC1fHkQysen1+OXue2A3GABRxKkxD8idEhFV8ofUHig+W4ris6X4Qyq3gxFRcGIxT0TOJq52zMa37g08dQjQNJM7I6JGd27Gk1JsNxplzISIXPlq1THExDVBTFwTfLXqWO0PkF+7/9kXXcZEwY7rZ0kW7GbvwzTN2L2eCEBYz54oP3IEANApZ4PM2RARBa+wiCaY8PJcudMg8jmcmSdZTcveJ3cKRES/027RQijCwhDerx+67tkNVdu2cqdERJUkP5bkMiYiCiacmSciIqpCqdWiQ9YqudMgIhf0vxqx9o29AICJfxvAY+mIPMRutOLX7KMAgBYpiVBoWCr6Os7Mk6zYzZ6IfJFNr8fpyak4PTkVNr1e7nSIqJKKQr5qTIGrvKwU617NwLpXM1BeVip3OgGropCvGpPvYjFPsmA3eyLyZZUb4FWOiYiocZWXleJfMx7F5cIC2O02bHr3TblTIvIZLOaJiIiIyG9M/NsAlzEFpsrF+5Uzp2XMJPC1SEl0GZPvEkRRFOVOgjxHr9cjMjISOp0OWq1W7nSIiPySuahIOlu+U84GNsAjIpLJulczYLfZcOWso5D/06KPEBbRROasiLzL3ZqOxXyAYTFPRNRwpyenOl2zGR6R7zAZLMhdchiAo5M9G+AFtvKyUml2/v5nX2QhT0HB3ZqOLQqJiIiIyG98vvgQfj1fJsVj/9JP5ozIm3jGPFH1uGeeiIioinaLFrqMiUh+FYV81ZiIKNhwZp6IiKgKnjNP5LtatAnHr+cNUkxEFKw4M0+NSme0AADSVuRJMREREZG77n3iJsTENUFMXBPc+8RNcqdDRCQbFvPUqGb8Zz8A4PhFPR5dtVfmbIiIiMjfqMNDMWZ2X4yZ3ZfN74g8yG60onjZIRQvOwS70Sp3OuQGFvPUqH6+XCLFJy6W1HAnEREREQW78rJSrHs1A+tezUB5Wanc6QS0X7OPuozJd7GYp0bVJebGcSJdW/FoESIiIiKqXsWxdFVjImIxT41s0SOO42O6t9bioykDZc6GiIiIiIgAoEVKosuYfJcgiqIodxLkOXq9HpGRkdDpdNBqtXKnQ/7IeB1YO8kRT1wNaJrJmQ0REREFsfKyUmlG/v5nX0RYBFd2UuBzt6ZjMR9gfL2Y1xktiNSEIm1FHuY/1AeRGjau8TkrRzlfT9ksTx5ERERVmAwW5C45DABIfiyJDfCIKCC5W9NxmT01qllrDkjxtOx9MmZCRERE/qaikK8aU+BiAzyi6rGYJyJnE1e7joOU3qxH+hfpSP8iHXqzXu50iIiIggob4BFVj8U8Nar5D/WR4qUp/WXMhKqlaeZYWj9lM/fLA5i1Y5bLmIiIGl/yY0kuYyKiYMRinhpVxR75FWkDuV+eiIiI6kQdHooxs/tizOy+3C8fJO5/9kWXMRGxAV7A8fUGeET+Rm/WSzPy84fNh1bFf6+IiOTCBnhEFAzYzT5IsZgnIiKiQJWTud/peszsvjJlQkTkPe7WdCGNmBMR+QOeM09ERD7KbhPx6/kyAECLNhEyZ0NEJC/umSciZxWFfNWYKEjY9HoUPvwIfhowEIWPPAKbnqcYEPkOsZqYiCj4BGUxv3nzZowfPx7x8fHQaDRo3bo1Bg8ejPfeew9Xr171+Hjl5eVYv349pk6dij59+qBFixYIDQ1FVFQUevbsiSlTpuDzzz+H3W73+NhERFQ352Y8CdPJkwAA04mTODfjSZkzIqIKCqUCMXFNEBPXBAplUP4xlohIElS/C165cgX33nsv7rvvPnzyySdQqVQYNWoUunfvjry8PMyePRu9evXC9u3bPTLehQsX8Oyzz6Jly5Z48MEH8eGHH+Ly5csYMmQIJkyYgL59++LUqVNYtWoVRo0ahX79+uHw4cMeGdsX6YwWpK3Ik2LyUTxnnoiIfBSPpgs+5WWlWPdqBta9moHyslK50yHyKUHTAM9gMOD2229Hfn4+lEolli1bhvT0dOnnJ0+exKhRo3DixAmoVCps27YNQ4cObdCYr7zyCl599VUAQFRUFJYuXYpx48ZBEATpnqtXr2LWrFnIzs4GAERGRuKrr75C3771a+jiyw3wHlq2B5pQJVakDUTaijysSBsod0pERL9jLipCwegxEI1GhPXqhfYfLoPSx34/JSIKFutezXC6nvDyXJkyIWo87tZ0QTMzP3PmTOTn5wMAXn/9dadCHgASEhKQm5uLsLAwmM1mjB07FtevX/fY+OvXr8f48eOdCnkAaN68ObKysnD//fcDAHQ6HR5++GFYLJy5JiKSw4WMF6BJTER4v35QqNUs5ImIiMgnBUUxf/jwYaxYsQIA0KpVKzzzzDMu74uPj8e0adMAOJbkz53rmW/+7rrrLtx555013lN5rJ9++gkbN270yNi+ZGlKfyme/1AfGTMhIqqeaLOi/NgxlB87BtFmlTsdIqKgdv+zL7qMiShIivnMzEypudzEiROhUqmqvXfy5MlSvHjxYhiNxgaPf88999R6T2JiItq2bStdf/nllw0e19dEakKlpfWRmlCZsyEiqgabZRMR+YywiCaY8PJcTHh5LsIimsidDpFPCfhi3mKxOM1yDx8+vMb7+/Tpg2bNmgEAysrKkJubW++xJ02ahNzcXDzyyCNu3R8XFyfF586dq/e4RERUP+aiIhh/+AF2gwGq+HgIISFyp0RERETkUsAX83l5ebh27Zp03a9fvxrvFwTB6Z6tW7fWe+wuXbpgxIgRiI2Ndev+ykfThfAPkEREje7U6DGAKAI2G8p//BHtFi2UOyUioqDFTvZENQv4Yr7yUW9qtdppKXt1OnXq5PJ5bztz5owU9+kTeHvKeTQdEfk6u9EICAKgVAIAm98REclo07tvuoyJyCHgi/mjR49KcZs2bdx6pnLBX/l5bzp16hQuXrwoXU+cOLFRxm1M07L3SfGsNQdkzISIyLWwnj1dxkRERES+JuCL+eLiYimu2Atfm8r36fX6Rjkm7r///a8Ujx07Fj169PD6mERE5Kz9vz5EeL9+CO/XD+3/9aHc6RBRJSaDBTmZ+5GTuR8mA1f4BQN2sieqWcBvzC4pKZFitVrt1jNhYWG/e0fz5s09mldlpaWlWLjQsS8zIiIC//jHP9x+1mQywWQySdd6vd7j+XnK0pT+0ow8j6YjIl+k1GrRIWuV3GkQkQu5Sw47xWNm95UxG2oMFZ3sici1gJ+Zr3y0XE1H0lVW9T6DweDRnKqaM2eOtMR+8eLF6Nixo9vPzp07F5GRkdKnckd8X8Oj6YiIiIiIiDwj4It5jUYjxWaz2a1nqt4XHh7u0Zwq27JlC95//30AwBNPPIHU1NQ6PZ+RkQGdTid9zp496400iYiIiGSV/FiSy5iIKFgF/DL7pk2bSnHl5eg1KS8vr/YdnvTjjz/i//2//wdRFPHAAw9IRX1dqNVqt7cPEBEREfkrdXgol9YTEVUS8DPzMTExUnz9+nW3ntHpdFKs1WoRGur5JeEFBQW4++67odfrkZycjDVr1kD521FIRERERERERDUJ+GI+MTFRis+fP+/WM0VFRS6f95RTp05h2LBhuHDhAu69915s2LDB7f38RERERERERAFfzCcl3dhTZTKZnAr16hQUFLh83hNOnTqFO++8E2fOnMHIkSPx6aefcpk8ERERERHJym60onjZIRQvOwS70Sp3OuSGgC/mBw4ciKioKOk6Pz+/xvtFUXS6Z8SIER7LpbCwEMOGDZMK+fXr17OQJyIiIiIi2f2afdRlTL4r4Iv50NBQjB49Wrrevn17jfcfOHBA2lsfERGB5ORkj+RRWFiIO++8E6dPn0ZycnKNhfykSZNw1113eWRcIiIiIiIiCjwBX8wDwNNPPw2FwvFLXbt2bY1H1GVlZUnx448/7nS0XX2dPn0aw4YNw+nTpzFixAhs2LChxhn5Xbt21fqlAxERERERkae0SEl0GZPvCopivnfv3khLSwMAXLp0CZmZmS7vKygowNKlSwEA0dHRyMjIcHmfxWJBSkoKmjZtij59+uDQoUPVjn369GnceeedKCwsxIgRI5CTk8Ol9URERERE5FMUmhDETO2NmKm9odAE/AnmASFo/l9asGABDhw4gP3792POnDlo1aqVVOADwMmTJzFq1CiUl5dDpVJh/fr1TnvtK8vOzsbq1asBAAcPHsSMGTPwzTff/O6+M2fOYNiwYSgsLAQAWK1WPPjgg7Xmevny5Xr8ComIiIiIiChYBE0xHx4ejq1btyI1NRW5ublIT0/HvHnzkJSUhOLiYuzatQtWqxWxsbHIysrC0KFD3X63IAgu//qzzz6LU6dOSdfbtm1r8K+DiIiIiIjIk+xGq9T0rkVKImfm/URQLLOvEBMTgy1btmDTpk0YO3YsysvLsWnTJhw5cgT9+/fHu+++ix9//LHW5nMpKSl45JFHEBERgZtvvhkLFy50eV9Ne/OJiIiIiIh8ATvZ+ydBFEVR7iTIc/R6PSIjI6HT6aDVauVOh4iIiIiIfFzxMuceYDFTe8uUCQHu13RBNTNPRLUwXgdWjnJ8jNflzoaIiIiIGgE72fsnzswHGM7MU4OsHOV8PWWzPHkQycSm1+PcjCcBAO0WLYSSv48S+QyTwYLcJYcBAMmPJUEdHipzRkRE3sGZeSIiojqqKOSrxkQkv4pCvmpMRBSsWMwT0Q0TV7uOiYiIiIjIp7CYJ6IbNM0cS+unbHbEREGm3aKFLmMikl/yY0kuYyKiYMU98wGGe+aJiIiIiIj8F/fME1HdsZs9EREREZFfYDFPRDesneQ6JiIiIiIin8JinoiIiIiIiMjPsJgnohvYzZ6IiHyUyWBBTuZ+5GTuh8lgkTsdIiLZsZgnohvYzZ6IiHwUz5knInLGYp6IiIiIiIjIz7CYJyIiIiKfx3PmiYichcidABERERFRbdThoRgzu6/caRAR+QzOzBMRERERERH5GRbzRERERERERH6Gy+yJiIiIyOeZDBapi33yY0lQh4fKnBERkbw4M09EREREPo9H0xEROePMPBERERER+ZzyslJsevdNAMD9z76IsIgmMmdE5Fs4M09EREREPs1ksMBus6P4bCnsNpFH0wWJikK+akxEDpyZJyIiIiKflrvkMBRKBWLiHDOz3C9PRMSZeSIiIiIi8kH3P/uiy5iIHARRFEW5kyDP0ev1iIyMhE6ng1arlTsdIiIiogZjJ3siCibu1nRcZk9EREREPk0dHooxs/vKnQYRkU/hMnsiIiIiIiIiP8NinhqNzmhB2oo8KSYiIiIiIqL6YTFPjWZa9j4pnrXmgIyZEBERERER+TfumSciIiIiIgpidqMVv2YfBQC0SEmEQsMy0R8E5cz85s2bMX78eMTHx0Oj0aB169YYPHgw3nvvPVy9etXr4xcXF2PixIkQBAGCIGDnzp1eH9MXLE3pL8XzH+ojYyZERERERFShopCvGpNvC6pi/sqVK7j33ntx33334ZNPPoFKpcKoUaPQvXt35OXlYfbs2ejVqxe2b9/utRz++9//IjExEevWrfPaGL4qUhOKFWkDpZiIiIiIiIjqJ2iKeYPBgBEjRmDLli1QKpX46KOPcPz4cXz88cfYuXMnjh07hq5du+LChQsYOXIkvv32W4+Of+HCBYwePRoPP/wwrl+/7tF3ExERERER1VeLlESXMfm2oCnmZ86cifz8fADA66+/jvT0dKefJyQkIDc3F2FhYTCbzRg7dqzHiu6VK1ciMTERmzZtQt++fbF3716PvJeIiIiIiKihFJoQxEztjZipvblf3o8ERTF/+PBhrFixAgDQqlUrPPPMMy7vi4+Px7Rp0wA4luTPnTvXI+PPmjULRqMRb731Fv73v//h5ptv9sh7iYiIiIiIKDgFRTGfmZkJu90OAJg4cSJUKlW1906ePFmKFy9eDKPR2ODxb7vtNhw8eBAZGRkICeE3XURERERERNQwAV/MWywWbNy4UboePnx4jff36dMHzZo1AwCUlZUhNze3wTls3rwZ3bt3b/B7iIiIiIiIiIAgKObz8vJw7do16bpfv3413i8IgtM9W7du9VpuRERERERERPUR8MX84cOHpVitVqNt27a1PtOpUyeXzxMRERERERH5goAv5o8ePSrFbdq0ceuZygV/5eeJiIiIiIiIfEHAF/PFxcVSXLEXvjaV79Pr9bBYLB7OioiIiIiIiKj+Ar61eklJiRSr1Wq3ngkLC/vdO5o3b+7RvDzFZDLBZDJJ13q9XsZsiIiIiIiIqDEE/Mx85aPlajqSrrKq9xkMBo/m5Elz585FZGSk9ImLi5M7JSIiIiIiIvKygC/mNRqNFJvNZreeqXpfeHi4R3PypIyMDOh0Oulz9uxZuVMiIiIiIiIiLwv4ZfZNmzaV4srL0WtSXl5e7Tt8jVqtdnv7ABEREREREQWGgJ+Zj4mJkeLr16+79YxOp5NirVaL0NBQT6dFREREREREVG8BX8wnJiZK8fnz5916pqioyOXzRERERERERL4g4Iv5pKQkKTaZTE6FenUKCgpcPk9ERERERETkCwK+mB84cCCioqKk6/z8/BrvF0XR6Z4RI0Z4LTciIiIiIiKi+gj4Yj40NBSjR4+Wrrdv317j/QcOHJD21kdERCA5Odmb6RERERERERHVWcAX8wDw9NNPQ6Fw/FLXrl1b4xF1WVlZUvz44487HW1HRERERERE5AuCopjv3bs30tLSAACXLl1CZmamy/sKCgqwdOlSAEB0dDQyMjJc3mexWJCSkoKmTZuiT58+OHTokHcSJyIiIiIiInIhKIp5AFiwYAH69u0LAJgzZw5WrFjh9POTJ08iOTkZ5eXlUKlUWL9+vdNe+8qys7OxevVqlJaW4uDBg5gxY4bX8yciIiIiIiKqECJ3Ao0lPDwcW7duRWpqKnJzc5Geno558+YhKSkJxcXF2LVrF6xWK2JjY5GVlYWhQ4e6/W5BEGr8+fHjx/H2229X+/O3334bK1eulK7HjBmDMWPGuD0+ERERERERBZegKeYBICYmBlu2bMFnn32GlStXYv/+/di0aRO0Wi369++PcePGIS0tDc2bN6/xPSkpKfjqq6+Qk5ODhIQELFy4sMb7L168iFWrVlX78y+++MLpumPHjizmiYiIiIiIqFqCKIqi3EmQ5+j1ekRGRkKn00Gr1cqdDhEREREREdWBuzVd0OyZJyIiIiIiIgoULOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyM0FZzG/evBnjx49HfHw8NBoNWrdujcGDB+O9997D1atXA3ZsIiIiIiIiCgyCKIqi3Ek0litXriA1NRVbtmwBAHTr1g1JSUkoLi7Grl27YLPZEBsbi+zsbAwfPtwvx9br9YiMjIROp4NWq/VU+kRERERERNQI3K3pgqaYNxgMuP3225Gfnw+lUolly5YhPT1d+vnJkycxatQonDhxAiqVCtu2bcPQoUP9bmwW80RERERERP7L3ZouaJbZz5w5E/n5+QCA119/3amYBoCEhATk5uYiLCwMZrMZY8eOxfXr1/1+bCIiIiIiIgo8QVHMHz58GCtWrAAAtGrVCs8884zL++Lj4zFt2jQAjmXxc+fO9euxiYiIiIiIKDAFRTGfmZkJu90OAJg4cSJUKlW1906ePFmKFy9eDKPR6LdjExERERERUWAK+GLeYrFg48aN0nVtzeX69OmDZs2aAQDKysqQm5vrl2MTERERERFR4Ar4Yj4vLw/Xrl2Trvv161fj/YIgON2zdetWvxybiIiIiIiIAlfAF/OHDx+WYrVajbZt29b6TKdOnVw+709jExERERERUeAK+GL+6NGjUtymTRu3nqlcdFd+3p/GJiIiIiIiosAV8MV8cXGxFFfsR69N5fv0ej0sFovfjU1ERERERESBK0TuBLytpKREitVqtVvPhIWF/e4dzZs398mxTSYTTCaTdK3T6QA4vgggIiIiIiIi/1JRy4miWON9AV/MVz7eraZj4Sqrep/BYKhXMd8YY8+dOxevvvrqWVZETAAAAyVJREFU7/56XFycm1kSERERERGRrykpKUFkZGS1Pw/4Yl6j0Uix2Wx265mq94WHh/vs2BkZGZg9e7Z0bbfbcfXqVbRo0QKCINQhWyIiIiIiIpKbKIooKSmpte9awBfzTZs2leLKy9FrUl5eXu07fG1stVr9uyX87u7PJyIiIiIiIt9T04x8hYBvgBcTEyPF169fd+uZin3nAKDVahEaGup3YxMREREREVHgCvhiPjExUYrPnz/v1jNFRUUun/ensYmIiIiIiChwBXwxn5SUJMUmk8mpWK5OQUGBy+f9aWwiIiIiIiIKXAFfzA8cOBBRUVHSdX5+fo33i6LodM+IESP8cmwiIiIiIiIKXAFfzIeGhmL06NHS9fbt22u8/8CBA9L+9oiICCQnJ/vl2ERERERERBS4Ar6YB4Cnn34aCoXjl7p27doaj4nLysqS4scff9zpeDl/G5uIiIiIiIgCU1AU871790ZaWhoA4NKlS8jMzHR5X0FBAZYuXQoAiI6ORkZGhsv7LBYLUlJS0LRpU/Tp0weHDh1qtLGJiIiIiIiIBFEURbmTaAwGgwFDhw7F/v37ERISgmXLlklFNgCcPHkSo0aNwokTJ6BSqbBt2zYMHTrU5buWL1+ORx99VLoeOnQovvnmm0YZm4iIiIiIiCgoZuYBIDw8HFu3bkVycjKsVivS09PRo0cPTJgwAcOGDUNiYiJOnDiB2NhYfP7553UqpgVBkG1sIiIiIiIiCj5BMzNf2WeffYaVK1di//79uHDhArRaLTp37oxx48YhLS0NzZs3r/F5i8WCtLQ05OTkICEhAatWrULv3r0bZWwiIiIiIiKioCzmiYiIiIiIiPxZ0CyzJyIiIiIiIgoULOaJiIiIiIiI/AyLeSIiIiIiIiI/w2KeiIiIiIiIyM+wmCciIiIiIiLyMyzmiYiIiIiIiPwMi3kiIiIiIiIiP8NinoiIiIiIiMjPsJgnIiIiIiIi8jMs5omIiIiIiIj8DIt5IiIiIiIiIj/DYp6IiIiIiIjIz7CYJyIiIiIiIvIzLOaJiIiIiIiI/AyLeSIiIiIiIiI/8/8BRo5tJKqIneEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "H = data.incidence_hyperedges.to_dense().numpy()\n", + "labels = data.y.numpy()\n", + "n_steps=11\n", + "Ep, Np = data['mp_homophily']['Ep'].numpy(), data['mp_homophily']['Np'].numpy()\n", + "num_steps = transform_config['mp_homophily']['num_steps']\n", + "\n", + "\n", + "isolated_nodes = np.where(H.sum(0) == 1)[0]\n", + "# Get non-isolated nodes\n", + "non_isolated_nodes = np.array(list(set(np.arange(H.shape[0])) - set(isolated_nodes)))\n", + "\n", + "# Sort non-isolated nodes by their class node\n", + "non_isolated_nodes = non_isolated_nodes[np.argsort(labels[non_isolated_nodes])]\n", + "\n", + "# Extract the class node probability distribution for non-isolated nodes\n", + "sorted_labels = labels[non_isolated_nodes]\n", + "avr_class_homophily_types = []\n", + "types = []\n", + "for step in range(num_steps):\n", + " type = Np[step, non_isolated_nodes, sorted_labels]\n", + "\n", + " # Within every class, sort the nodes by their class node probability distribution\n", + " avr_class_type = []\n", + " \n", + " for i in np.unique(sorted_labels):\n", + " idx = np.where(sorted_labels == i)[0]\n", + " type[idx] = type[idx][np.argsort(type[idx])]\n", + " avr_class_type.append(np.mean(type[idx]))\n", + " \n", + " avr_class_homophily_types.append(avr_class_type)\n", + " types.append(type)\n", + "\n", + "\n", + "settings = {\n", + " 'font.family': 'serif',\n", + " 'text.latex.preamble': '\\\\renewcommand{\\\\rmdefault}{ptm}\\\\renewcommand{\\\\sfdefault}{phv}',\n", + " 'figure.figsize': (5.5, 3.399186938124422),\n", + " 'figure.constrained_layout.use': True,\n", + " 'figure.autolayout': False,\n", + " 'font.size': 16,\n", + " 'axes.labelsize': 24,\n", + " 'legend.fontsize': 24,\n", + " 'xtick.labelsize': 24,\n", + " 'ytick.labelsize': 24,\n", + " 'axes.titlesize': 24}\n", + "\n", + "step = 0 \n", + "\n", + "with plt.rc_context(settings):\n", + " fig = plot_homophily_scatter(avr_class_homophily_types[step], data.y, non_isolated_nodes, types[step], step=step, save_to=None)\n", + " plt.close()\n", + "fig" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tb", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorials/tutorial_add_custom_dataset.ipynb b/tutorials/tutorial_add_custom_dataset.ipynb new file mode 100644 index 00000000..df4103ba --- /dev/null +++ b/tutorials/tutorial_add_custom_dataset.ipynb @@ -0,0 +1,883 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 📚 Adding a Custom Dataset Tutorial\n", + "\n", + "## 🎯 Tutorial Overview\n", + "\n", + "This comprehensive guide walks you through the process of integrating your custom dataset into our library. The process is divided into three main steps:\n", + "\n", + "1. **Dataset Creation** 🔨\n", + " - Implement data loading mechanisms\n", + " - Define preprocessing steps\n", + " - Structure data in the required format\n", + "\n", + "2. **Integrate with Dataset APIs** 🔄\n", + " - Add dataset to the library framework\n", + " - Ensure compatibility with existing systems\n", + " - Set up proper inheritance structure\n", + "\n", + "3. **Configuration Setup** ⚙️\n", + " - Define dataset parameters\n", + " - Specify data paths and formats\n", + " - Configure preprocessing options\n", + "\n", + "## 📋 Tutorial Structure\n", + "\n", + "This tutorial follows a unique structure to provide the clearest possible learning experience:\n", + "\n", + "> 💡 **Main Notebook (Current File)**\n", + "> - High-level concepts and explanations\n", + "> - Step-by-step workflow description\n", + "> - References to implementation files\n", + "\n", + "> 📁 **Supporting Files**\n", + "> - Detailed code implementations\n", + "> - Specific examples and use cases\n", + "> - Technical documentation\n", + "\n", + "### 🛠️ Technical Framework\n", + "\n", + "This tutorial demonstrates custom dataset integration using:\n", + "- `torch_geometric.data.InMemoryDataset` as the base class\n", + "- library's dataset management system\n", + "\n", + "### 🎓 Important Notes\n", + "\n", + "- To make the learning process concrete, we'll work with a practical toy \"language\" dataset example:\n", + "- While we use the \"language\" dataset as an example, all file references use the generic `` format for better generalization\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Create a Dataset 🛠️\n", + "\n", + "## Overview\n", + "\n", + "Adding your custom dataset to requires implementing specific loading and preprocessing functionality. We utilize the `torch_geometric.data.InMemoryDataset` interface to make this process straightforward.\n", + "\n", + "## Required Methods\n", + "\n", + "To implement your dataset, you need to override two key methods from the `torch_geometric.data.InMemoryDataset` class:\n", + "\n", + "- `download()`: Handles dataset acquisition\n", + "- `process()`: Manages data preprocessing\n", + "\n", + "> 💡 **Reference Implementation**: For a complete example, check `topobenchmark/data/datasets/language_dataset.py`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Deep Dive: The Download Method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `download()` method is responsible for acquiring dataset files from external resources. Let's examine its implementation using our language dataset example, where we store data in a GoogleDrive-hosted zip file.\n", + "\n", + "#### Implementation Steps\n", + "\n", + "1. **Download Data** 📥\n", + " - Fetch data from the specified source URL\n", + " - Save to the raw directory\n", + "\n", + "2. **Extract Content** 📦\n", + " - Unzip the downloaded file\n", + " - Place contents in appropriate directory\n", + "\n", + "3. **Organize Files** 📂\n", + " - Move extracted files to named folders\n", + " - Clean up temporary files and directories\n", + "\n", + "#### Code Implementation\n", + "\n", + "```python\n", + "def download(self) -> None:\n", + " r\"\"\"Download the dataset from a URL and saves it to the raw directory.\n", + "\n", + " Raises:\n", + " FileNotFoundError: If the dataset URL is not found.\n", + " \"\"\"\n", + " # Step 1: Download data from the source\n", + " self.url = self.URLS[self.name]\n", + " self.file_format = self.FILE_FORMAT[self.name]\n", + " download_file_from_drive(\n", + " file_link=self.url,\n", + " path_to_save=self.raw_dir,\n", + " dataset_name=self.name,\n", + " file_format=self.file_format,\n", + " )\n", + " \n", + " # Step 2: extract zip file\n", + " folder = self.raw_dir\n", + " filename = f\"{self.name}.{self.file_format}\"\n", + " path = osp.join(folder, filename)\n", + " extract_zip(path, folder)\n", + " # Delete zip file\n", + " os.unlink(path)\n", + " \n", + " # Step 3: organize files\n", + " # Move files from osp.join(folder, name_download) to folder\n", + " for file in os.listdir(osp.join(folder, self.name)):\n", + " shutil.move(osp.join(folder, self.name, file), folder)\n", + " # Delete osp.join(folder, self.name) dir\n", + " shutil.rmtree(osp.join(folder, self.name))\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Deep Dive: The Process Method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `process()` method handles data preprocessing and organization. Here's the method's structure:\n", + "\n", + "```python\n", + "def process(self) -> None:\n", + " r\"\"\"Handle the data for the dataset.\n", + " \n", + " This method loads the Language dataset, applies preprocessing \n", + " transformations, and saves processed data.\"\"\"\n", + "\n", + " # Step 1: extract the data\n", + " ... # Convert raw data to list of torch_geometric.data.Data objects\n", + "\n", + " # Step 2: collate the graphs\n", + " self.data, self.slices = self.collate(graph_sentences)\n", + "\n", + " # Step 3: save processed data\n", + " fs.torch_save(\n", + " (self._data.to_dict(), self.slices, {}, self._data.__class__),\n", + " self.processed_paths[0],\n", + " )\n", + "\n", + "\n", + "```self.collate``` -- Collates a list of Data or HeteroData objects to the internal storage format; meaning that it transforms a list of torch.data.Data objectis into one torch.data.BaseData.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Integrate with Dataset APIs 🔄\n", + "\n", + "Now that we have created a dataset class, we need to integrate it with the library. In this section we describe where to add the dataset files and how to make it available through data loaders." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here's how to structure your files, the files highlighted with ** are going to be updated: \n", + "```yaml\n", + "topobenchmark/\n", + "├── data/\n", + "│ ├── datasets/\n", + "│ │ ├── **init.py**\n", + "│ │ ├── base.py\n", + "│ │ ├── .py # Your dataset file\n", + "│ │ └── ...\n", + "│ ├── loaders/\n", + "│ │ ├── init.py\n", + "│ │ ├── base.py\n", + "│ │ ├── graph/\n", + "│ │ │ ├── .py # Your loader file\n", + "│ │ ├── hypergraph/\n", + "│ │ │ ├── .py # Your loader file\n", + "│ │ ├── .../\n", + "```\n", + "\n", + "To make your dataset available to library:\n", + "\n", + "The file ```.py``` has been created during the previous steps (`us_county_demos_dataset.py` in our case) and should be placed in the `topobenchmark/data/datasets/` directory. \n", + "\n", + "\n", + "The registry `topobenchmark/data/datasets/__init__.py` discovers the files in `topobenchmark/data/datasets` and updates `__all__` variable of `topobenchmark/data/datasets/__init__.py` automatically. Hence there is no need to update the `__init__.py` file manually to allow your dataset to be loaded by the library. Simply creare a file `.py` and place it in the `topobenchmark/data/datasets/` directory.\n", + "\n", + "------------------------------------------------------------------------------------------------\n", + "\n", + "Next it is required to update the data loader system. Modify the loader file (`topobenchmark/data/loaders/loaders.py`:) to include your custom dataset:\n", + "\n", + "For the the example dataset we add the following into the file ```topobenchmark/data/loaders/graph/us_county_demos_dataset_loader.py``` which consist of the following:\n", + "\n", + "```python\n", + "class USCountyDemosDatasetLoader(AbstractLoader):\n", + " \"\"\"Load US County Demos dataset with configurable year and task variable.\n", + "\n", + " Parameters\n", + " ----------\n", + " parameters : DictConfig\n", + " Configuration parameters containing:\n", + " - data_dir: Root directory for data\n", + " - data_name: Name of the dataset\n", + " - year: Year of the dataset (if applicable)\n", + " - task_variable: Task variable for the dataset\n", + " \"\"\"\n", + "\n", + " def __init__(self, parameters: DictConfig) -> None:\n", + " super().__init__(parameters)\n", + "\n", + " def load_dataset(self) -> USCountyDemosDataset:\n", + " \"\"\"Load the US County Demos dataset.\n", + "\n", + " Returns\n", + " -------\n", + " USCountyDemosDataset\n", + " The loaded US County Demos dataset with the appropriate `data_dir`.\n", + "\n", + " Raises\n", + " ------\n", + " RuntimeError\n", + " If dataset loading fails.\n", + " \"\"\"\n", + "\n", + " dataset = self._initialize_dataset()\n", + " self.data_dir = self._redefine_data_dir(dataset)\n", + " return dataset\n", + "\n", + " def _initialize_dataset(self) -> USCountyDemosDataset:\n", + " \"\"\"Initialize the US County Demos dataset.\n", + "\n", + " Returns\n", + " -------\n", + " USCountyDemosDataset\n", + " The initialized dataset instance.\n", + " \"\"\"\n", + " return USCountyDemosDataset(\n", + " root=str(self.root_data_dir),\n", + " name=self.parameters.data_name,\n", + " parameters=self.parameters,\n", + " )\n", + "\n", + " def _redefine_data_dir(self, dataset: USCountyDemosDataset) -> Path:\n", + " \"\"\"Redefine the data directory based on the chosen (year, task_variable) pair.\n", + "\n", + " Parameters\n", + " ----------\n", + " dataset : USCountyDemosDataset\n", + " The dataset instance.\n", + "\n", + " Returns\n", + " -------\n", + " Path\n", + " The redefined data directory path.\n", + " \"\"\"\n", + " return dataset.processed_root\n", + "```\n", + "where the method ```load_dataset``` is required while other methods are optional used for convenience and structure.\n", + "\n", + "### Notes:\n", + "- The ```load_dataset``` of ```AbstractLoader``` class requires to return ```torch.utils.data.Dataset``` object. \n", + "- **Important:** to allow the automatic registering of the loader, make sure to include \"DatasetLoader\" into name of loader class (Example: USCountyDemos**DatasetLoader**)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Define Configuration 🔧" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we've integrated our dataset, we need to define its configuration parameters. In this section, we'll explain how to create and structure the configuration file for your dataset.\n", + "\n", + "## Configuration File Structure\n", + "Create a new YAML file for your dataset in `configs/dataset/.yaml` with the following structure:\n", + "\n", + "\n", + "### While creating a configuration file, you will need to specify: \n", + "\n", + "1) Loader class (`topobenchmark.data.loaders.USCountyDemosDatasetLoader`) for automatic instantialization inside the provided pipeline and the parameters for the loader.\n", + "```yaml\n", + "# Dataset loader config\n", + "loader:\n", + " _target_: topobenchmark.data.loaders.USCountyDemosDatasetLoader\n", + " parameters: \n", + " data_domain: graph # Primary data domain. Options: ['graph', 'hypergrpah', 'cell, 'simplicial']\n", + " data_type: cornel # Data type. String emphasizing from where dataset come from. \n", + " data_name: US-county-demos # Name of the dataset\n", + " year: 2012 # In the case of US-county-demos there are multiple version of this dataset. Options:[2012, 2016]\n", + " task_variable: 'Election' # Different target variable used as target. Options: ['Election', 'MedianIncome', 'MigraRate', 'BirthRate', 'DeathRate', 'BachelorRate', 'UnemploymentRate']\n", + " data_dir: ${paths.data_dir}/${dataset.loader.parameters.data_domain}/${dataset.loader.parameters.data_type}\n", + "``` \n", + "\n", + "2) The dataset parameters: \n", + "\n", + "```yaml\n", + "# Dataset parameters\n", + "parameters:\n", + " num_features: 6 # Number of features in the dataset\n", + " num_classes: 1 # Dimentuin of the target variable\n", + " task: regression # Dataset task. Options: [classification, regression]\n", + " loss_type: mse # Task-specific loss function\n", + " monitor_metric: mae # Metric to monitor during training\n", + " task_level: node # Task level. Options: [classification, regression]\n", + "```\n", + "\n", + "3) The dataset split parameters: \n", + "```yaml\n", + "#splits\n", + "split_params:\n", + " learning_setting: transductive # Type of learning. Options:['transductive', 'inductive']\n", + " data_seed: 0 # Seed for data splitting\n", + " split_type: random # Type of splitting. Options: ['k-fold', 'random']\n", + " k: 10 # Number of folds in case of \"k-fold\" cross-validation\n", + " train_prop: 0.5 # Training proportion in case of 'random' splitting strategy\n", + " standardize: True # Standardize the data or not. Options: [True, False]\n", + " data_split_dir: ${paths.data_dir}/data_splits/${dataset.loader.parameters.data_name}\n", + "```\n", + "\n", + "4) Finally the dataloader parameters:\n", + "\n", + "```yaml\n", + "# Dataloader parameters\n", + "dataloader_params:\n", + " batch_size: 1 # Number of graphs per batch. In sace of transductive always 1 as there is only one graph. \n", + " num_workers: 0 # Number of workers for data loading\n", + " pin_memory: False # Pin memory for data loading\n", + "```\n", + "\n", + "### Notes:\n", + "- The `paths` section in the configuration file is automatically populated with the paths to the data directory and the data splits directory.\n", + "- Some of the dataset parameters are used to configure the model.yaml and other files. Hence we suggest always include the above parameters in the dataset configuration file.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here's the markdown for easy copying:\n", + "\n", + "\n", + "## Preparing to Load the Custom Dataset: Understanding Configuration Imports\n", + "\n", + "Before loading our dataset, it's crucial to understand the configuration imports, particularly those from the `topobenchmark.utils.config_resolvers` module. These utility functions play a key role in dynamically configuring your machine learning pipeline.\n", + "\n", + "### Key Imports for Dynamic Configuration\n", + "\n", + "Let's import the essential configuration resolver functions:\n", + "\n", + "```python\n", + "from topobenchmark.utils.config_resolvers import (\n", + " get_default_transform,\n", + " get_monitor_metric,\n", + " get_monitor_mode,\n", + " infer_in_channels,\n", + ")\n", + "```\n", + "\n", + "### Why These Imports Matter\n", + "\n", + "In our previous step, we explored configuration variables that use dynamic lookups, such as:\n", + "\n", + "```yaml\n", + "data_dir: ${paths.data_dir}/${dataset.loader.parameters.data_domain}/${dataset.loader.parameters.data_type}\n", + "```\n", + "\n", + "However, some configurations require more advanced automation, which is where these imported functions become invaluable.\n", + "\n", + "### Practical Example: Dynamic Transforms\n", + "\n", + "Consider the configuration in `projects/TopoBenchmark/configs/run.yaml`, where the `transforms` parameter uses the `get_default_transform` function:\n", + "\n", + "```yaml\n", + "transforms: ${get_default_transform:${dataset},${model}}\n", + "```\n", + "\n", + "This syntax allows for automatic transformation selection based on the dataset and model, demonstrating the power of these configuration resolver functions.\n", + "\n", + "By importing and utilizing these functions, you gain:\n", + "- Flexible configuration management\n", + "- Automatic parameter inference\n", + "- Reduced manual configuration overhead\n", + "\n", + "These facilitate seamless dataset loading and preprocessing for multiple topological domains and provide an easy and intuitive interface for incorporating novel functionality.\n", + "```\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_1170891/1713955081.py:14: UserWarning: \n", + "The version_base parameter is not specified.\n", + "Please specify a compatability version level, or None.\n", + "Will assume defaults for version 1.1\n", + " initialize(config_path=\"../configs\", job_name=\"job\")\n" + ] + } + ], + "source": [ + "from hydra import compose, initialize\n", + "from hydra.utils import instantiate\n", + "\n", + "\n", + "\n", + "from topobenchmark.utils.config_resolvers import (\n", + " get_default_transform,\n", + " get_monitor_metric,\n", + " get_monitor_mode,\n", + " infer_in_channels,\n", + ")\n", + "\n", + "\n", + "initialize(config_path=\"../configs\", job_name=\"job\")\n", + "cfg = compose(\n", + " config_name=\"run.yaml\",\n", + " overrides=[\n", + " \"model=hypergraph/unignn2\",\n", + " \"dataset=graph/US-county-demos\",\n", + " ], \n", + " return_hydra_config=True\n", + ")\n", + "loader = instantiate(cfg.dataset.loader)\n", + "\n", + "\n", + "dataset, dataset_dir = loader.load()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "US-county-demos(self.root=/home/lev/projects/TopoBenchmark/datasets/graph/cornel, self.name=US-county-demos, self.parameters={'data_domain': 'graph', 'data_type': 'cornel', 'data_name': 'US-county-demos', 'year': 2012, 'task_variable': 'Election', 'data_dir': '/home/lev/projects/TopoBenchmark/datasets/graph/cornel'}, self.force_reload=False)\n" + ] + } + ], + "source": [ + "print(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data(x=[3224, 6], edge_index=[2, 18966], y=[3224])\n" + ] + } + ], + "source": [ + "print(dataset[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4.1: Default Data Transformations ⚙️" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While most datasets can be used directly after integration, some require specific preprocessing transformations. These transformations might vary depending on the task, model, or other conditions.\n", + "\n", + "## Example Case: US-county-demos Dataset\n", + "\n", + "Let's look at our language dataset's structure the `compose` function. \n", + "```python\n", + "cfg = compose(\n", + " config_name=\"run.yaml\",\n", + " overrides=[\n", + " \"model=hypergraph/unignn2\",\n", + " \"dataset=graph/US-county-demos\",\n", + " ], \n", + " return_hydra_config=True\n", + ")\n", + "```\n", + "we can see that the model is `hypergraph/unignn2` from hypergraph domain while the dataset is from graph domain.\n", + "This implied that the discussed above `get_default_transform` function:\n", + "\n", + "```yaml\n", + "transforms: ${get_default_transform:${dataset},${model}}\n", + "```\n", + "Inferred a default transform from graph to hypegraph domain." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transform name: dict_keys(['graph2hypergraph_lifting'])\n", + "Transform parameters: {'_target_': 'topobenchmark.transforms.data_transform.DataTransform', 'transform_type': 'lifting', 'transform_name': 'HypergraphKHopLifting', 'k_value': 1, 'feature_lifting': 'ProjectionSum', 'neighborhoods': '${oc.select:model.backbone.neighborhoods,null}'}\n" + ] + } + ], + "source": [ + "print('Transform name:', cfg.transforms.keys())\n", + "print('Transform parameters:', cfg.transforms['graph2hypergraph_lifting'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Some datasets require might require default transforms which are applied whenever it is nedded to model the data. \n", + "\n", + "The topobenchmark library provides a simple way to define custom transformations and apply them to the dataset.\n", + "Take a look at `TopoBenchmark/configs/transforms/dataset_defaults` folder where you can find some default transformations for different datasets.\n", + "\n", + "For example, REDDIT-BINARY does not have initial node features and it is a common practice to define initial features as gaussian noise.\n", + "Hence the `TopoBenchmark/configs/transforms/dataset_defaults/REDDIT-BINARY.yaml` file incorporates the `gaussian_noise` transform by default. \n", + "Hence whenver you choose to uplodad the REDDIT-BINARY dataset (and do not modify ```transforms``` parameter), the `gaussian_noise` transform will be applied to the dataset.\n", + "\n", + "```yaml\n", + "defaults:\n", + " - data_manipulations: equal_gaus_features\n", + " - liftings@_here_: ${get_required_lifting:graph,${model}}\n", + "```\n", + "\n", + "\n", + "\n", + "\n", + "Below we provide an quick tutorial on how to create a data transformations and create a sequence of default transformations that will be executed whener you use the defined dataset config file.\n", + "\n", + "\n", + "\n", + "Below we provide an quick tutorial on how to create a data transformations and create a sequence of default transformations that will be executed whener you use the defined dataset config file." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Avoid override transforms\n", + "cfg = compose(\n", + " config_name=\"run.yaml\",\n", + " overrides=[\n", + " \"model=hypergraph/unignn2\",\n", + " \"dataset=graph/REDDIT-BINARY\",\n", + " ], \n", + " return_hydra_config=True\n", + ")\n", + "loader = instantiate(cfg.dataset.loader)\n", + "\n", + "\n", + "dataset, dataset_dir = loader.load()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "REDDIT_BINARY dataset does not have any initial node features" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Data(edge_index=[2, 480], y=[1], num_nodes=218)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Take a look at the default transforms and the parameters of `equal_gaus_features` transform" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transform name: dict_keys(['equal_gaus_features', 'graph2hypergraph_lifting'])\n", + "Transform parameters: {'_target_': 'topobenchmark.transforms.data_transform.DataTransform', 'transform_name': 'EqualGausFeatures', 'transform_type': 'data manipulation', 'mean': 0, 'std': 0.1, 'num_features': '${dataset.parameters.num_features}'}\n" + ] + } + ], + "source": [ + "print('Transform name:', cfg.transforms.keys())\n", + "print('Transform parameters:', cfg.transforms['equal_gaus_features'])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processing...\n", + "Done!\n" + ] + } + ], + "source": [ + "from topobenchmark.data.preprocessor import PreProcessor\n", + "preprocessed_dataset = PreProcessor(dataset, dataset_dir, cfg['transforms'])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Data(x=[218, 10], edge_index=[2, 480], y=[1], incidence_hyperedges=[218, 218], num_hyperedges=[1], x_0=[218, 10], x_hyperedges=[218, 10], num_nodes=218)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preprocessed_dataset[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The preprocessed dataset has the features generated by the preprocessor. And the connectivity of the dataset has been transformed into hypegraph domain. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating your own default transforms\n", + "\n", + "Now when we have seen how to add custom dataset and how does the default transform works. One might want to reate your own default transforms for new dataset that will be executed always whenwever the dataset under default configuration is used.\n", + "\n", + "\n", + "**To configure** the deafult transform navigate to `configs/transforms/dataset_defaults` create `` and the follwoing `.yaml` file: \n", + "\n", + "```yaml\n", + "defaults:\n", + " - transform_1: transform_1\n", + " - transform_2: transform_2\n", + " - transform_3: transform_3\n", + "```\n", + "\n", + "\n", + "**Important**\n", + "There are different types of transforms, including `data_manipulation`, `liftings`, and `feature_liftings`. In case you want to use multiple transforms from the same categoty, let's say from `data_manipulation`, then it is required to stick to a special syntaxis. [See hydra configuration for more information]() or the example below: \n", + "\n", + "```yaml\n", + "defaults:\n", + " - data_manipulation@first_usage: transform_1\n", + " - data_manipulation@second_usage: transform_2\n", + "```\n", + "\n", + "\n", + "### Notes: \n", + "\n", + "- **Transforms from the same category:** If There are a two transforms from the same catgory, for example, `data_manipulations`, it is required to use operator `@` to assign new diffrerent names `first_usage` and `second_usage` to each transform.\n", + "\n", + "- In the case of `equal_gaus_features` we have to override the initial number of features as the `equal_gaus_features.yaml` which uses a special register to infer the feature dimension (the registed logic descrived in Step 3.) However by some reason we want to specify `num_features` parameter we can override it in the default file without the need to change the transform config file. \n", + "\n", + "```yaml\n", + "defaults:\n", + " - data_manipulations@equal_gaus_features: equal_gaus_features\n", + " - data_manipulations@some_transform: some_transform\n", + " - liftings@_here_: ${get_required_lifting:graph,${model}}\n", + "\n", + "equal_gaus_features:\n", + " num_features: 100\n", + "some_transform:\n", + " some_param: bla\n", + "```\n", + "\n", + "- We recommend to always add `liftings@_here_: ${get_required_lifting:graph,${model}}` so that a default lifting is applied to run any domain-specific topological model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4.2: Custom Data Transformations ⚙️" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating a Transform\n", + "\n", + "In general any transfom in the library inherits `torch_geometric.transforms.BaseTransform` class, which allow to apply a sequency of transforms to the data. Our inderface requires to implement the `forward` method. The important part of all transforms is that it takes `torch_geometric.data.Data` object and returns updated `torch_geometric.data.Data` object.\n", + "\n", + "\n", + "\n", + "For language dataset, we have generated the `equal_gaus_features` transfroms that is a data_manipulation transform hence we place it into `topobenchmark/transforms/data_manipulation/` folder. \n", + "Below you can see th `EqualGausFeatures` class: \n", + "\n", + "\n", + "```python\n", + " class EqualGausFeatures(torch_geometric.transforms.BaseTransform):\n", + " r\"\"\"A transform that generates equal Gaussian features for all nodes.\n", + "\n", + " Parameters\n", + " ----------\n", + " **kwargs : optional\n", + " Additional arguments for the class. It should contain the following keys:\n", + " - mean (float): The mean of the Gaussian distribution.\n", + " - std (float): The standard deviation of the Gaussian distribution.\n", + " - num_features (int): The number of features to generate.\n", + " \"\"\"\n", + "\n", + " def __init__(self, **kwargs):\n", + " super().__init__()\n", + " self.type = \"generate_non_informative_features\"\n", + "\n", + " # Torch generate feature vector from gaus distribution\n", + " self.mean = kwargs[\"mean\"]\n", + " self.std = kwargs[\"std\"]\n", + " self.feature_vector = kwargs[\"num_features\"]\n", + " self.feature_vector = torch.normal(\n", + " mean=self.mean, std=self.std, size=(1, self.feature_vector)\n", + " )\n", + "\n", + " def __repr__(self) -> str:\n", + " return f\"{self.__class__.__name__}(type={self.type!r}, mean={self.mean!r}, std={self.std!r}, feature_vector={self.feature_vector!r})\"\n", + "\n", + " def forward(self, data: torch_geometric.data.Data):\n", + " r\"\"\"Apply the transform to the input data.\n", + "\n", + " Parameters\n", + " ----------\n", + " data : torch_geometric.data.Data\n", + " The input data.\n", + "\n", + " Returns\n", + " -------\n", + " torch_geometric.data.Data\n", + " The transformed data.\n", + " \"\"\"\n", + " data.x = self.feature_vector.expand(data.num_nodes, -1)\n", + " return data\n", + "\n", + "```\n", + "\n", + "As we said above the `forward` function takes as input the `torch_geometric.data.Data` object, modifies it, and returns it." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Register the Transform\n", + "\n", + "Similarly to adding dataset the transformations you have created and placed at right folder are automatically registered.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a configuration file \n", + "Now as we have registered the transform we can finally create the configuration file and use it in the framework: \n", + "\n", + "``` yaml\n", + "_target_: topobenchmark.transforms.data_transform.DataTransform\n", + "transform_name: \"EqualGausFeatures\"\n", + "transform_type: \"data manipulation\"\n", + "\n", + "mean: 0\n", + "std: 0.1\n", + "num_features: ${dataset.parameters.num_features}\n", + "``` \n", + "Please refer to `configs/transforms/dataset_defaults/equal_gaus_features.yaml` for the example. \n", + "\n", + "**Notes:**\n", + "\n", + "- You might notice an interesting key `_target_` in the configuration file. In general for any new transform you the `_target_` is always `topobenchmark.transforms.data_transform.DataTransform`. [For more information please refer to hydra documentation \"Instantiating objects with Hydra\" section.](https://hydra.cc/docs/advanced/instantiate_objects/overview/). " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tb", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorials/tutorial_dataset.ipynb b/tutorials/tutorial_dataset.ipynb new file mode 100644 index 00000000..2b2b008c --- /dev/null +++ b/tutorials/tutorial_dataset.ipynb @@ -0,0 +1,454 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using a new dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial we show how you can use a dataset not present in the library.\n", + "\n", + "This particular example uses the ENZIMES dataset, uses a simplicial lifting to create simplicial complexes, and trains the SCN2 model. We train the model using the appropriate training and validation datasets, and finally test it on the test dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Table of contents\n", + " [1. Imports](##sec1)\n", + "\n", + " [2. Configurations and utilities](##sec2)\n", + "\n", + " [3. Loading the data](##sec3)\n", + "\n", + " [4. Model initialization](##sec4)\n", + "\n", + " [5. Training](##sec5)\n", + "\n", + " [6. Testing the model](##sec6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Imports " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import lightning as pl\n", + "import torch\n", + "from omegaconf import OmegaConf\n", + "from topomodelx.nn.simplicial.scn2 import SCN2\n", + "from torch_geometric.datasets import TUDataset\n", + "\n", + "from topobenchmark.data.preprocessor import PreProcessor\n", + "from topobenchmark.dataloader.dataloader import TBDataloader\n", + "from topobenchmark.evaluator.evaluator import TBEvaluator\n", + "from topobenchmark.loss.loss import TBLoss\n", + "from topobenchmark.model.model import TBModel\n", + "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", + "from topobenchmark.nn.readouts import PropagateSignalDown\n", + "from topobenchmark.nn.wrappers.simplicial import SCNWrapper\n", + "from topobenchmark.optimizer import TBOptimizer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Configurations and utilities " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Configurations can be specified using yaml files or directly specified in your code like in this example." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "transform_config = { \"clique_lifting\":\n", + " {\"transform_type\": \"lifting\",\n", + " \"transform_name\": \"SimplicialCliqueLifting\",\n", + " \"complex_dim\": 3,}\n", + "}\n", + "\n", + "split_config = {\n", + " \"learning_setting\": \"inductive\",\n", + " \"split_type\": \"random\",\n", + " \"data_seed\": 0,\n", + " \"data_split_dir\": \"./data/ENZYMES/splits/\",\n", + " \"train_prop\": 0.5,\n", + "}\n", + "\n", + "in_channels = 3\n", + "out_channels = 6\n", + "dim_hidden = 16\n", + "\n", + "wrapper_config = {\n", + " \"out_channels\": dim_hidden,\n", + " \"num_cell_dimensions\": 3,\n", + "}\n", + "\n", + "readout_config = {\n", + " \"readout_name\": \"PropagateSignalDown\",\n", + " \"num_cell_dimensions\": 1,\n", + " \"hidden_dim\": dim_hidden,\n", + " \"out_channels\": out_channels,\n", + " \"task_level\": \"graph\",\n", + " \"pooling_type\": \"sum\",\n", + "}\n", + "\n", + "loss_config = {\n", + " \"dataset_loss\": \n", + " {\n", + " \"task\": \"classification\", \n", + " \"loss_type\": \"cross_entropy\"\n", + " }\n", + "}\n", + "\n", + "evaluator_config = {\"task\": \"classification\",\n", + " \"num_classes\": out_channels,\n", + " \"metrics\": [\"accuracy\", \"precision\", \"recall\"]}\n", + "\n", + "optimizer_config = {\"optimizer_id\": \"Adam\",\n", + " \"parameters\":\n", + " {\"lr\": 0.001,\"weight_decay\": 0.0005}\n", + " }\n", + "\n", + "transform_config = OmegaConf.create(transform_config)\n", + "split_config = OmegaConf.create(split_config)\n", + "readout_config = OmegaConf.create(readout_config)\n", + "loss_config = OmegaConf.create(loss_config)\n", + "evaluator_config = OmegaConf.create(evaluator_config)\n", + "optimizer_config = OmegaConf.create(optimizer_config)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def wrapper(**factory_kwargs):\n", + " def factory(backbone):\n", + " return SCNWrapper(backbone, **factory_kwargs)\n", + " return factory" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Loading the data " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we use the ENZYMES dataset. It is a graph dataset and we use the clique lifting to transform the graphs into simplicial complexes. We invite you to check out the README of the [repository](https://github.com/pyt-team/TopoBenchmarkX) to learn more about the various liftings offered." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transform parameters are the same, using existing data_dir: ./data/ENZYMES/clique_lifting/3206123057\n" + ] + } + ], + "source": [ + "dataset_dir = \"./data/ENZYMES/\"\n", + "dataset = TUDataset(root=dataset_dir, name=\"ENZYMES\")\n", + "\n", + "preprocessor = PreProcessor(dataset, dataset_dir, transform_config)\n", + "dataset_train, dataset_val, dataset_test = preprocessor.load_dataset_splits(split_config)\n", + "datamodule = TBDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Model initialization " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can create the backbone by instantiating the SCN2 model from TopoModelX. Then the `SCNWrapper` and the `TBModel` take care of the rest." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "backbone = SCN2(in_channels_0=dim_hidden, in_channels_1=dim_hidden, in_channels_2=dim_hidden)\n", + "wrapper = wrapper(**wrapper_config)\n", + "\n", + "readout = PropagateSignalDown(**readout_config)\n", + "loss = TBLoss(**loss_config)\n", + "feature_encoder = AllCellFeatureEncoder(in_channels=[in_channels, in_channels, in_channels], out_channels=dim_hidden)\n", + "\n", + "evaluator = TBEvaluator(**evaluator_config)\n", + "optimizer = TBOptimizer(**optimizer_config)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model = TBModel(backbone=backbone,\n", + " backbone_wrapper=wrapper,\n", + " readout=readout,\n", + " loss=loss,\n", + " feature_encoder=feature_encoder,\n", + " evaluator=evaluator,\n", + " optimizer=optimizer,\n", + " compile=False,)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Training " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can use the `lightning` trainer to train the model." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: True (cuda), used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "HPU available: False, using: 0 HPUs\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/setup.py:177: GPU available but not used. You can set it by doing `Trainer(accelerator='gpu')`.\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:75: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/utilities/parsing.py:44: Attribute 'backbone_wrapper' removed from hparams because it cannot be pickled. You can suppress this warning by setting `self.save_hyperparameters(ignore=['backbone_wrapper'])`.\n", + "\n", + " | Name | Type | Params | Mode \n", + "------------------------------------------------------------------\n", + "0 | feature_encoder | AllCellFeatureEncoder | 1.2 K | train\n", + "1 | backbone | SCNWrapper | 1.6 K | train\n", + "2 | readout | PropagateSignalDown | 102 | train\n", + "3 | val_acc_best | MeanMetric | 0 | train\n", + "------------------------------------------------------------------\n", + "2.9 K Trainable params\n", + "0 Non-trainable params\n", + "2.9 K Total params\n", + "0.012 Total estimated model params size (MB)\n", + "36 Modules in train mode\n", + "0 Modules in eval mode\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassAccuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", + " warnings.warn(*args, **kwargs) # noqa: B028\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassPrecision was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", + " warnings.warn(*args, **kwargs) # noqa: B028\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassRecall was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", + " warnings.warn(*args, **kwargs) # noqa: B028\n", + "/home/lev/projects/TopoBenchmark/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)\n", + " normalized_matrix = diag_matrix @ (matrix @ diag_matrix)\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/loops/fit_loop.py:298: The number of training batches (10) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", + "`Trainer.fit` stopped: `max_epochs=5` reached.\n" + ] + } + ], + "source": [ + "#%%capture\n", + "# Increase the number of epochs to get better results\n", + "trainer = pl.Trainer(max_epochs=5, accelerator=\"cpu\", enable_progress_bar=False)\n", + "\n", + "trainer.fit(model, datamodule)\n", + "train_metrics = trainer.callback_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Training metrics\n", + " --------------------------\n", + "train/accuracy: 0.1567\n", + "train/precision: 0.1365\n", + "train/recall: 0.1525\n", + "val/loss: 2.3835\n", + "val/accuracy: 0.1400\n", + "val/precision: 0.1269\n", + "val/recall: 0.1830\n", + "train/loss: 2.3218\n" + ] + } + ], + "source": [ + "print(' Training metrics\\n', '-'*26)\n", + "for key in train_metrics:\n", + " print('{:<21s} {:>5.4f}'.format(key+':', train_metrics[key].item()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6. Testing the model " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can test the model and obtain the results." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n" + ] + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
+       "┃        Test metric               DataLoader 0        ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
+       "│       test/accuracy           0.1666666716337204     │\n",
+       "│         test/loss              2.021564483642578     │\n",
+       "│      test/precision           0.08934479206800461    │\n",
+       "│        test/recall            0.15170806646347046    │\n",
+       "└───────────────────────────┴───────────────────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", + "│\u001b[36m \u001b[0m\u001b[36m test/accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1666666716337204 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.021564483642578 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/precision \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.08934479206800461 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/recall \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.15170806646347046 \u001b[0m\u001b[35m \u001b[0m│\n", + "└───────────────────────────┴───────────────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "trainer.test(model, datamodule)\n", + "test_metrics = trainer.callback_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Testing metrics\n", + " -------------------------\n", + "test/loss: 2.0216\n", + "test/accuracy: 0.1667\n", + "test/precision: 0.0893\n", + "test/recall: 0.1517\n" + ] + } + ], + "source": [ + "print(' Testing metrics\\n', '-'*25)\n", + "for key in test_metrics:\n", + " print('{:<20s} {:>5.4f}'.format(key+':', test_metrics[key].item()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tb", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorials/tutorial_lifting.ipynb b/tutorials/tutorial_lifting.ipynb new file mode 100644 index 00000000..d1a77003 --- /dev/null +++ b/tutorials/tutorial_lifting.ipynb @@ -0,0 +1,543 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Implementing your own lifting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial we show how you can implement your own lifting and test it on a dataset. \n", + "\n", + "This particular example uses the MUTAG dataset. The lifting for this example is similar to the SimplicialCliqueLifting but discards the cliques that are bigger than the maximum simplices we want to consider.\n", + "\n", + "We test this lifting using the SCN2 model from `TopoModelX`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Table of contents\n", + " [1. Imports](##sec1)\n", + "\n", + " [2. Configurations and utilities](##sec2)\n", + "\n", + " [3. Defining the lifting](##sec2)\n", + "\n", + " [4. Loading the data](##sec3)\n", + "\n", + " [5. Model initialization](##sec4)\n", + "\n", + " [6. Training](##sec5)\n", + "\n", + " [7. Testing the model](##sec6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Imports " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from itertools import combinations\n", + "from typing import Any\n", + "\n", + "import lightning as pl\n", + "import networkx as nx\n", + "import hydra\n", + "import torch_geometric\n", + "from omegaconf import OmegaConf\n", + "from topomodelx.nn.simplicial.scn2 import SCN2\n", + "from toponetx.classes import SimplicialComplex\n", + "\n", + "from topobenchmark.data.loaders.graph import *\n", + "from topobenchmark.data.preprocessor import PreProcessor\n", + "from topobenchmark.dataloader import TBDataloader\n", + "from topobenchmark.evaluator import TBEvaluator\n", + "from topobenchmark.loss import TBLoss\n", + "from topobenchmark.model import TBModel\n", + "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", + "from topobenchmark.nn.readouts import PropagateSignalDown\n", + "from topobenchmark.nn.wrappers.simplicial import SCNWrapper\n", + "from topobenchmark.optimizer import TBOptimizer\n", + "from topobenchmark.transforms.liftings.graph2simplicial import (\n", + " Graph2SimplicialLifting,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Configurations and utilities " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Configurations can be specified using yaml files or directly specified in your code like in this example. To keep the notebook clean here we already define the configuration for the lifting, which is defined later in the notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "loader_config = {\n", + " \"data_domain\": \"graph\",\n", + " \"data_type\": \"TUDataset\",\n", + " \"data_name\": \"MUTAG\",\n", + " \"data_dir\": \"./data/MUTAG/\"}\n", + "\n", + "\n", + "transform_config = { \"clique_lifting\":\n", + " {\"_target_\": \"__main__.SimplicialCliquesLEQLifting\",\n", + " \"transform_name\": \"SimplicialCliquesLEQLifting\",\n", + " \"transform_type\": \"lifting\",\n", + " \"complex_dim\": 3,}\n", + "}\n", + "\n", + "split_config = {\n", + " \"learning_setting\": \"inductive\",\n", + " \"split_type\": \"k-fold\",\n", + " \"data_seed\": 0,\n", + " \"data_split_dir\": \"./data/MUTAG/splits/\",\n", + " \"k\": 10,\n", + "}\n", + "\n", + "in_channels = 7\n", + "out_channels = 2\n", + "dim_hidden = 128\n", + "\n", + "wrapper_config = {\n", + " \"out_channels\": dim_hidden,\n", + " \"num_cell_dimensions\": 3,\n", + "}\n", + "\n", + "readout_config = {\n", + " \"readout_name\": \"PropagateSignalDown\",\n", + " \"num_cell_dimensions\": 1,\n", + " \"hidden_dim\": dim_hidden,\n", + " \"out_channels\": out_channels,\n", + " \"task_level\": \"graph\",\n", + " \"pooling_type\": \"sum\",\n", + "}\n", + "\n", + "loss_config = {\n", + " \"dataset_loss\": \n", + " {\n", + " \"task\": \"classification\", \n", + " \"loss_type\": \"cross_entropy\"\n", + " }\n", + "}\n", + "\n", + "evaluator_config = {\"task\": \"classification\",\n", + " \"num_classes\": out_channels,\n", + " \"metrics\": [\"accuracy\", \"precision\", \"recall\"]}\n", + "\n", + "optimizer_config = {\"optimizer_id\": \"Adam\",\n", + " \"parameters\":\n", + " {\"lr\": 0.001,\"weight_decay\": 0.0005}\n", + " }\n", + "\n", + "\n", + "loader_config = OmegaConf.create(loader_config)\n", + "transform_config = OmegaConf.create(transform_config)\n", + "split_config = OmegaConf.create(split_config)\n", + "wrapper_config = OmegaConf.create(wrapper_config)\n", + "readout_config = OmegaConf.create(readout_config)\n", + "loss_config = OmegaConf.create(loss_config)\n", + "evaluator_config = OmegaConf.create(evaluator_config)\n", + "optimizer_config = OmegaConf.create(optimizer_config)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def wrapper(**factory_kwargs):\n", + " def factory(backbone):\n", + " return SCNWrapper(backbone, **factory_kwargs)\n", + " return factory" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Defining the lifting " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we define the lifting we intend on using. The `SimplicialCliquesLEQLifting` finds the cliques that have a number of nodes less or equal to the maximum simplices we want to consider and creates simplices from them. The configuration for the lifting was already defined with the other configurations." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class SimplicialCliquesLEQLifting(Graph2SimplicialLifting):\n", + " r\"\"\"Lifts graphs to simplicial complex domain by identifying the cliques as k-simplices. Only the cliques with size smaller or equal to the max complex dimension are considered.\n", + " \n", + " Args:\n", + " kwargs (optional): Additional arguments for the class.\n", + " \"\"\"\n", + " def __init__(self, **kwargs):\n", + " super().__init__(**kwargs)\n", + "\n", + " def lift_topology(self, data: torch_geometric.data.Data) -> dict:\n", + " r\"\"\"Lifts the topology of a graph to a simplicial complex by identifying the cliques as k-simplices. Only the cliques with size smaller or equal to the max complex dimension are considered.\n", + "\n", + " Args:\n", + " data (torch_geometric.data.Data): The input data to be lifted.\n", + " Returns:\n", + " dict: The lifted topology.\n", + " \"\"\"\n", + " graph = self._generate_graph_from_data(data)\n", + " simplicial_complex = SimplicialComplex(graph)\n", + " cliques = nx.find_cliques(graph)\n", + " \n", + " simplices: list[set[tuple[Any, ...]]] = [set() for _ in range(2, self.complex_dim + 1)]\n", + " for clique in cliques:\n", + " if len(clique) <= self.complex_dim + 1:\n", + " for i in range(2, self.complex_dim + 1):\n", + " for c in combinations(clique, i + 1):\n", + " simplices[i - 2].add(tuple(c))\n", + "\n", + " for set_k_simplices in simplices:\n", + " simplicial_complex.add_simplices_from(list(set_k_simplices))\n", + "\n", + " return self._get_lifted_topology(simplicial_complex, graph)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Loading the data " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we use the MUTAG dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from topobenchmark.transforms import TRANSFORMS\n", + "\n", + "TRANSFORMS[\"SimplicialCliquesLEQLifting\"] = SimplicialCliquesLEQLifting" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transform parameters are the same, using existing data_dir: data/MUTAG/MUTAG/clique_lifting/458544608\n" + ] + } + ], + "source": [ + "graph_loader = TUDatasetLoader(loader_config)\n", + "\n", + "dataset, dataset_dir = graph_loader.load()\n", + "\n", + "preprocessor = PreProcessor(dataset, dataset_dir, transform_config)\n", + "dataset_train, dataset_val, dataset_test = preprocessor.load_dataset_splits(split_config)\n", + "datamodule = TBDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Model initialization " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can create the backbone by instantiating the SCN2 model form TopoModelX. Then the `SCNWrapper` and the `TBModel` take care of the rest." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "backbone = SCN2(in_channels_0=dim_hidden,in_channels_1=dim_hidden,in_channels_2=dim_hidden)\n", + "backbone_wrapper = wrapper(**wrapper_config)\n", + "\n", + "readout = PropagateSignalDown(**readout_config)\n", + "loss = TBLoss(**loss_config)\n", + "feature_encoder = AllCellFeatureEncoder(in_channels=[in_channels, in_channels, in_channels], out_channels=dim_hidden)\n", + "\n", + "evaluator = TBEvaluator(**evaluator_config)\n", + "optimizer = TBOptimizer(**optimizer_config)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model = TBModel(backbone=backbone,\n", + " backbone_wrapper=backbone_wrapper,\n", + " readout=readout,\n", + " loss=loss,\n", + " feature_encoder=feature_encoder,\n", + " evaluator=evaluator,\n", + " optimizer=optimizer,\n", + " compile=False,)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6. Training " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can use the `lightning` trainer to train the model. We are prompted to connet a Wandb account to monitor training, but we can also obtain the final training metrics from the trainer directly." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: True (cuda), used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "HPU available: False, using: 0 HPUs\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/setup.py:177: GPU available but not used. You can set it by doing `Trainer(accelerator='gpu')`.\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:75: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/utilities/parsing.py:44: Attribute 'backbone_wrapper' removed from hparams because it cannot be pickled. You can suppress this warning by setting `self.save_hyperparameters(ignore=['backbone_wrapper'])`.\n", + "\n", + " | Name | Type | Params | Mode \n", + "------------------------------------------------------------------\n", + "0 | feature_encoder | AllCellFeatureEncoder | 53.8 K | train\n", + "1 | backbone | SCNWrapper | 99.1 K | train\n", + "2 | readout | PropagateSignalDown | 258 | train\n", + "3 | val_acc_best | MeanMetric | 0 | train\n", + "------------------------------------------------------------------\n", + "153 K Trainable params\n", + "0 Non-trainable params\n", + "153 K Total params\n", + "0.612 Total estimated model params size (MB)\n", + "36 Modules in train mode\n", + "0 Modules in eval mode\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassAccuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", + " warnings.warn(*args, **kwargs) # noqa: B028\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassPrecision was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", + " warnings.warn(*args, **kwargs) # noqa: B028\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassRecall was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", + " warnings.warn(*args, **kwargs) # noqa: B028\n", + "/home/lev/projects/TopoBenchmark/topobenchmark/nn/wrappers/simplicial/scn_wrapper.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)\n", + " normalized_matrix = diag_matrix @ (matrix @ diag_matrix)\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/loops/fit_loop.py:298: The number of training batches (6) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", + "`Trainer.fit` stopped: `max_epochs=50` reached.\n" + ] + } + ], + "source": [ + "# Increase the number of epochs to get better results\n", + "trainer = pl.Trainer(max_epochs=50, accelerator=\"cpu\", enable_progress_bar=False)\n", + "\n", + "trainer.fit(model, datamodule)\n", + "train_metrics = trainer.callback_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Training metrics\n", + " --------------------------\n", + "train/accuracy: 0.7633\n", + "train/precision: 0.7353\n", + "train/recall: 0.7353\n", + "val/loss: 0.6774\n", + "val/accuracy: 0.7895\n", + "val/precision: 0.7750\n", + "val/recall: 0.7115\n", + "train/loss: 0.5690\n" + ] + } + ], + "source": [ + "print(' Training metrics\\n', '-'*26)\n", + "for key in train_metrics:\n", + " print('{:<21s} {:>5.4f}'.format(key+':', train_metrics[key].item()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7. Testing the model " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can test the model and obtain the results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n" + ] + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
+       "┃        Test metric               DataLoader 0        ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
+       "│       test/accuracy           0.7894737124443054     │\n",
+       "│         test/loss             0.6774305701255798     │\n",
+       "│      test/precision           0.7749999761581421     │\n",
+       "│        test/recall            0.7115384340286255     │\n",
+       "└───────────────────────────┴───────────────────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", + "│\u001b[36m \u001b[0m\u001b[36m test/accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7894737124443054 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6774305701255798 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/precision \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7749999761581421 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/recall \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7115384340286255 \u001b[0m\u001b[35m \u001b[0m│\n", + "└───────────────────────────┴───────────────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "trainer.test(model, datamodule)\n", + "test_metrics = trainer.callback_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Testing metrics\n", + " -------------------------\n", + "test/loss: 0.6774\n", + "test/accuracy: 0.7895\n", + "test/precision: 0.7750\n", + "test/recall: 0.7115\n" + ] + } + ], + "source": [ + "print(' Testing metrics\\n', '-'*25)\n", + "for key in test_metrics:\n", + " print('{:<20s} {:>5.4f}'.format(key+':', test_metrics[key].item()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "topox", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorials/tutorial_model.ipynb b/tutorials/tutorial_model.ipynb new file mode 100644 index 00000000..a628e497 --- /dev/null +++ b/tutorials/tutorial_model.ipynb @@ -0,0 +1,499 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Implementing your own model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial we show how to implement your own model and test it on a dataset. \n", + "\n", + "This particular example uses the MUTAG dataset, uses an hypergraph lifting to create hypergraphs, and defines a model to work on them. \n", + "\n", + "We train the model using the appropriate training and validation datasets, and finally test it on the test dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Table of contents\n", + " [1. Imports](##sec1)\n", + "\n", + " [2. Configurations and utilities](##sec2)\n", + "\n", + " [3. Loading the data](##sec3)\n", + "\n", + " [4. Backbone definition](##sec4)\n", + "\n", + " [5. Model initialization](##sec5)\n", + "\n", + " [6. Training](##sec6)\n", + "\n", + " [7. Testing the model](##sec7)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Imports " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import lightning as pl\n", + "import torch\n", + "from omegaconf import OmegaConf\n", + "\n", + "from topobenchmark.data.loaders.graph import *\n", + "from topobenchmark.data.preprocessor import PreProcessor\n", + "from topobenchmark.dataloader import TBDataloader\n", + "from topobenchmark.evaluator import TBEvaluator\n", + "from topobenchmark.loss import TBLoss\n", + "from topobenchmark.model import TBModel\n", + "from topobenchmark.nn.encoders import AllCellFeatureEncoder\n", + "from topobenchmark.nn.readouts import PropagateSignalDown\n", + "from topobenchmark.optimizer import TBOptimizer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Configurations and utilities " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Configurations can be specified using yaml files or directly specified in your code like in this example." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "loader_config = {\n", + " \"data_domain\": \"graph\",\n", + " \"data_type\": \"TUDataset\",\n", + " \"data_name\": \"MUTAG\",\n", + " \"data_dir\": \"./data/MUTAG/\"}\n", + "\n", + "transform_config = { \"khop_lifting\":\n", + " {\"transform_type\": \"lifting\",\n", + " \"transform_name\": \"HypergraphKHopLifting\",\n", + " \"k_value\": 1,}\n", + "}\n", + "\n", + "split_config = {\n", + " \"learning_setting\": \"inductive\",\n", + " \"split_type\": \"random\",\n", + " \"data_seed\": 0,\n", + " \"data_split_dir\": \"./data/MUTAG/splits/\",\n", + " \"train_prop\": 0.5,\n", + "}\n", + "\n", + "in_channels = 7\n", + "out_channels = 2\n", + "dim_hidden = 16\n", + "\n", + "readout_config = {\n", + " \"readout_name\": \"PropagateSignalDown\",\n", + " \"num_cell_dimensions\": 1,\n", + " \"hidden_dim\": dim_hidden,\n", + " \"out_channels\": out_channels,\n", + " \"task_level\": \"graph\",\n", + " \"pooling_type\": \"sum\",\n", + "}\n", + "\n", + "loss_config = {\n", + " \"dataset_loss\": \n", + " {\n", + " \"task\": \"classification\", \n", + " \"loss_type\": \"cross_entropy\"\n", + " }\n", + "}\n", + "\n", + "evaluator_config = {\"task\": \"classification\",\n", + " \"num_classes\": out_channels,\n", + " \"metrics\": [\"accuracy\", \"precision\", \"recall\"]}\n", + "\n", + "optimizer_config = {\"optimizer_id\": \"Adam\",\n", + " \"parameters\":\n", + " {\"lr\": 0.001,\"weight_decay\": 0.0005}\n", + " }\n", + "\n", + "loader_config = OmegaConf.create(loader_config)\n", + "transform_config = OmegaConf.create(transform_config)\n", + "split_config = OmegaConf.create(split_config)\n", + "readout_config = OmegaConf.create(readout_config)\n", + "loss_config = OmegaConf.create(loss_config)\n", + "evaluator_config = OmegaConf.create(evaluator_config)\n", + "optimizer_config = OmegaConf.create(optimizer_config)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Loading the data " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we use the MUTAG dataset. It is a graph dataset and we use the k-hop lifting to transform the graphs into hypergraphs. \n", + "\n", + "We invite you to check out the README of the [repository](https://github.com/pyt-team/TopoBenchmarkX) to learn more about the various liftings offered." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transform parameters are the same, using existing data_dir: data/MUTAG/MUTAG/khop_lifting/1116229528\n" + ] + } + ], + "source": [ + "graph_loader = TUDatasetLoader(loader_config)\n", + "\n", + "dataset, dataset_dir = graph_loader.load()\n", + "\n", + "preprocessor = PreProcessor(dataset, dataset_dir, transform_config)\n", + "dataset_train, dataset_val, dataset_test = preprocessor.load_dataset_splits(split_config)\n", + "datamodule = TBDataloader(dataset_train, dataset_val, dataset_test, batch_size=32)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Backbone definition " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To implement a new model we only need to define the forward method.\n", + "\n", + "With a hypergraph with $n$ nodes and $m$ hyperedges this model simply calculates the hyperedge features as $X_1 = B_1 \\cdot X_0$ where $B_1 \\in \\mathbb{R}^{n \\times m}$ is the incidence matrix, where $B_{ij}=1$ if node $i$ belongs to hyperedge $j$ and is 0 otherwise.\n", + "\n", + "Then the outputs are computed as $X^{'}_0=\\text{ReLU}(W_0 \\cdot X_0 + B_0)$ and $X^{'}_1=\\text{ReLU}(W_1 \\cdot X_1 + B_1)$, by simply using two linear layers with ReLU activation." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class myModel(pl.LightningModule):\n", + " def __init__(self, dim_hidden):\n", + " super().__init__()\n", + " self.dim_hidden = dim_hidden\n", + " self.linear_0 = torch.nn.Linear(dim_hidden, dim_hidden)\n", + " self.linear_1 = torch.nn.Linear(dim_hidden, dim_hidden)\n", + "\n", + " def forward(self, batch):\n", + " x_0 = batch.x_0\n", + " incidence_hyperedges = batch.incidence_hyperedges\n", + " x_1 = torch.sparse.mm(incidence_hyperedges, x_0)\n", + " \n", + " x_0 = self.linear_0(x_0)\n", + " x_0 = torch.relu(x_0)\n", + " x_1 = self.linear_1(x_1)\n", + " x_1 = torch.relu(x_1)\n", + " \n", + " model_out = {\"labels\": batch.y, \"batch_0\": batch.batch_0}\n", + " model_out[\"x_0\"] = x_0\n", + " model_out[\"hyperedge\"] = x_1\n", + " return model_out" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Model initialization " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the model is defined we can create the TBModel, which takes care of implementing everything else that is needed to train the model. \n", + "\n", + "First we need to implement a few classes to specify the behaviour of the model." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "backbone = myModel(dim_hidden)\n", + "\n", + "readout = PropagateSignalDown(**readout_config)\n", + "loss = TBLoss(**loss_config)\n", + "feature_encoder = AllCellFeatureEncoder(in_channels=[in_channels], out_channels=dim_hidden)\n", + "\n", + "evaluator = TBEvaluator(**evaluator_config)\n", + "optimizer = TBOptimizer(**optimizer_config)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can instantiate the TBModel." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model = TBModel(backbone=backbone,\n", + " backbone_wrapper=None,\n", + " readout=readout,\n", + " loss=loss,\n", + " feature_encoder=feature_encoder,\n", + " evaluator=evaluator,\n", + " optimizer=optimizer,\n", + " compile=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6. Training " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can use the `lightning` trainer to train the model." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: True (cuda), used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "HPU available: False, using: 0 HPUs\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/setup.py:177: GPU available but not used. You can set it by doing `Trainer(accelerator='gpu')`.\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:75: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", + "\n", + " | Name | Type | Params | Mode \n", + "------------------------------------------------------------------\n", + "0 | feature_encoder | AllCellFeatureEncoder | 448 | train\n", + "1 | backbone | myModel | 544 | train\n", + "2 | readout | PropagateSignalDown | 34 | train\n", + "3 | val_acc_best | MeanMetric | 0 | train\n", + "------------------------------------------------------------------\n", + "1.0 K Trainable params\n", + "0 Non-trainable params\n", + "1.0 K Total params\n", + "0.004 Total estimated model params size (MB)\n", + "13 Modules in train mode\n", + "0 Modules in eval mode\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassAccuracy was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", + " warnings.warn(*args, **kwargs) # noqa: B028\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassPrecision was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", + " warnings.warn(*args, **kwargs) # noqa: B028\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: The ``compute`` method of metric MulticlassRecall was called before the ``update`` method which may lead to errors, as metric states have not yet been updated.\n", + " warnings.warn(*args, **kwargs) # noqa: B028\n", + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", + "`Trainer.fit` stopped: `max_epochs=50` reached.\n" + ] + } + ], + "source": [ + "# Increase the number of epochs to get better results\n", + "trainer = pl.Trainer(max_epochs=50, accelerator=\"cpu\", enable_progress_bar=False, log_every_n_steps=1)\n", + "\n", + "trainer.fit(model, datamodule)\n", + "train_metrics = trainer.callback_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Training metrics\n", + " --------------------------\n", + "train/accuracy: 0.7872\n", + "train/precision: 0.7782\n", + "train/recall: 0.7184\n", + "val/loss: 0.4973\n", + "val/accuracy: 0.7447\n", + "val/precision: 0.7321\n", + "val/recall: 0.6354\n", + "train/loss: 0.4405\n" + ] + } + ], + "source": [ + "print(' Training metrics\\n', '-'*26)\n", + "for key in train_metrics:\n", + " print('{:<21s} {:>5.4f}'.format(key+':', train_metrics[key].item()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7. Testing the model " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can test the model and obtain the results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/lev/miniconda3/envs/tb/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n" + ] + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
+       "┃        Test metric               DataLoader 0        ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
+       "│       test/accuracy           0.7234042286872864     │\n",
+       "│         test/loss             0.4853072166442871     │\n",
+       "│      test/precision           0.7339743375778198     │\n",
+       "│        test/recall            0.6431372761726379     │\n",
+       "└───────────────────────────┴───────────────────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", + "│\u001b[36m \u001b[0m\u001b[36m test/accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7234042286872864 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.4853072166442871 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/precision \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7339743375778198 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test/recall \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6431372761726379 \u001b[0m\u001b[35m \u001b[0m│\n", + "└───────────────────────────┴───────────────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "trainer.test(model, datamodule)\n", + "test_metrics = trainer.callback_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Testing metrics\n", + " -------------------------\n", + "test/loss: 0.4853\n", + "test/accuracy: 0.7234\n", + "test/precision: 0.7340\n", + "test/recall: 0.6431\n" + ] + } + ], + "source": [ + "print(' Testing metrics\\n', '-'*25)\n", + "for key in test_metrics:\n", + " print('{:<20s} {:>5.4f}'.format(key+':', test_metrics[key].item()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "topox", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} From ebb4cfea4516e8bbcfbf466e0f11de0db04779ab Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Guillermo=20Bern=C3=A1rdez?= Date: Wed, 4 Dec 2024 17:01:01 -0800 Subject: [PATCH 15/15] Revert bad commit --- codecov.yml | 3 ++- topobenchmark/data/utils/io_utils.py | 2 -- 2 files changed, 2 insertions(+), 3 deletions(-) diff --git a/codecov.yml b/codecov.yml index 85ba6f8b..ac4c5a9c 100644 --- a/codecov.yml +++ b/codecov.yml @@ -4,4 +4,5 @@ coverage: round: down precision: 2 ignore: - - "test/" \ No newline at end of file + - "test/" + - "topobenchmark/run.py" \ No newline at end of file diff --git a/topobenchmark/data/utils/io_utils.py b/topobenchmark/data/utils/io_utils.py index d0b0708e..2cd86386 100644 --- a/topobenchmark/data/utils/io_utils.py +++ b/topobenchmark/data/utils/io_utils.py @@ -13,7 +13,6 @@ from torch_sparse import coalesce -# Function to extract file ID from Google Drive URL def get_file_id_from_url(url): """Extract the file ID from a Google Drive file URL. @@ -47,7 +46,6 @@ def get_file_id_from_url(url): return file_id -# Function to download file from Google Drive def download_file_from_drive( file_link, path_to_save, dataset_name, file_format="tar.gz" ):