-
Notifications
You must be signed in to change notification settings - Fork 1
/
linkage_dag.py
686 lines (647 loc) · 26.6 KB
/
linkage_dag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
import json
import os
from datetime import datetime
from airflow import DAG
from airflow.composer.data_lineage.entities import BigQueryTable
from airflow.operators.bash import BashOperator
from airflow.operators.dummy import DummyOperator
from airflow.operators.python import PythonOperator
from airflow.operators.trigger_dagrun import TriggerDagRunOperator
from airflow.providers.google.cloud.operators.bigquery import (
BigQueryCheckOperator,
BigQueryInsertJobOperator,
)
from airflow.providers.google.cloud.operators.compute import (
ComputeEngineStartInstanceOperator,
ComputeEngineStopInstanceOperator,
)
from airflow.providers.google.cloud.operators.dataflow import (
DataflowCreatePythonJobOperator,
)
from airflow.providers.google.cloud.operators.gcs import GCSDeleteObjectsOperator
from airflow.providers.google.cloud.sensors.gcs import GCSObjectExistenceSensor
from airflow.providers.google.cloud.transfers.bigquery_to_bigquery import (
BigQueryToBigQueryOperator,
)
from airflow.providers.google.cloud.transfers.bigquery_to_gcs import (
BigQueryToGCSOperator,
)
from airflow.providers.google.cloud.transfers.gcs_to_bigquery import (
GCSToBigQueryOperator,
)
from dataloader.airflow_utils.defaults import (
DAGS_DIR,
DATA_BUCKET,
GCP_ZONE,
PROJECT_ID,
get_default_args,
get_post_success,
)
from dataloader.airflow_utils.utils import clear_gcs_dir
from dataloader.scripts.populate_documentation import update_table_descriptions
production_dataset = "literature"
staging_dataset = f"staging_{production_dataset}"
args = get_default_args(pocs=["Jennifer"])
args["retries"] = 1
with DAG(
"article_linkage_updater",
default_args=args,
description="Links articles across our scholarly lit holdings.",
schedule_interval=None,
user_defined_macros={
"staging_dataset": staging_dataset,
"production_dataset": production_dataset,
},
) as dag:
bucket = DATA_BUCKET
gcs_folder = "article_linkage"
tmp_dir = f"{gcs_folder}/tmp"
raw_data_dir = f"{gcs_folder}/data"
schema_dir = f"{gcs_folder}/schemas"
sql_dir = f"sql/{gcs_folder}"
backup_dataset = production_dataset + "_backups"
project_id = PROJECT_ID
gce_zone = GCP_ZONE
gce_resource_id = "godzilla-of-article-linkage"
# We keep several intermediate outputs in a tmp dir on gcs, so clean it out at the start of each run. We clean at
# the start of the run so if the run fails we can examine the failed data
clear_tmp_dir = GCSDeleteObjectsOperator(
task_id="clear_tmp_gcs_dir", bucket_name=bucket, prefix=tmp_dir + "/"
)
# Next, we'll run a different set of queries for each dataset to convert the metadata we use in the match to a
# standard format
metadata_sequences_start = []
metadata_sequences_end = []
for dataset in ["arxiv", "wos", "papers_with_code", "openalex", "s2", "lens"]:
ds_commands = []
query_list = [
t.strip()
for t in open(
f"{DAGS_DIR}/sequences/" f"{gcs_folder}/generate_{dataset}_metadata.tsv"
)
]
# run the queries needed to generate the metadata tables
for query_name in query_list:
ds_commands.append(
BigQueryInsertJobOperator(
task_id=query_name,
configuration={
"query": {
"query": "{% include '"
+ f"{sql_dir}/{query_name}.sql"
+ "' %}",
"useLegacySql": False,
"destinationTable": {
"projectId": project_id,
"datasetId": staging_dataset,
"tableId": query_name,
},
"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE",
}
},
)
)
start = ds_commands[0]
curr = ds_commands[0]
for c in ds_commands[1:]:
curr >> c
curr = c
metadata_sequences_end.append(curr)
metadata_sequences_start.append(start)
# check that the ids are unique across corpora
union_ids = BigQueryInsertJobOperator(
task_id="union_ids",
configuration={
"query": {
"query": "{% include '" + f"{sql_dir}/union_ids.sql" + "' %}",
"useLegacySql": False,
"destinationTable": {
"projectId": project_id,
"datasetId": staging_dataset,
"tableId": "union_ids",
},
"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE",
}
},
)
check_unique_input_ids = BigQueryCheckOperator(
task_id="check_unique_input_ids",
sql=(
f"select count(distinct(id)) = count(id) from {staging_dataset}.union_ids"
),
use_legacy_sql=False,
)
# We now take the union of all the metadata and export it to GCS for normalization via Dataflow. We then run
# the Dataflow job, and import the outputs back into BQ
union_metadata = BigQueryInsertJobOperator(
task_id="union_metadata",
configuration={
"query": {
"query": "{% include '" + f"{sql_dir}/union_metadata.sql" + "' %}",
"useLegacySql": False,
"destinationTable": {
"projectId": project_id,
"datasetId": staging_dataset,
"tableId": "union_metadata",
},
"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE",
}
},
)
export_metadata = BigQueryToGCSOperator(
task_id="export_metadata",
source_project_dataset_table=f"{staging_dataset}.union_metadata",
destination_cloud_storage_uris=f"gs://{bucket}/{tmp_dir}/union_meta/union*.jsonl",
export_format="NEWLINE_DELIMITED_JSON",
)
dataflow_options = {
"project": "gcp-cset-projects",
"runner": "DataflowRunner",
"disk_size_gb": "30",
"max_num_workers": "100",
"region": "us-east1",
"temp_location": f"gs://{bucket}/{tmp_dir}/clean_dataflow",
"save_main_session": True,
"requirements_file": f"{DAGS_DIR}/requirements/article_linkage_text_clean_requirements.txt",
}
clean_corpus = DataflowCreatePythonJobOperator(
py_file=f"{DAGS_DIR}/linkage_scripts/clean_corpus.py",
job_name="article_linkage_clean_corpus",
task_id="clean_corpus",
dataflow_default_options=dataflow_options,
options={
"input_dir": f"gs://{bucket}/{tmp_dir}/union_meta/union*",
"output_dir": f"gs://{bucket}/{tmp_dir}/cleaned_meta/clean",
"fields_to_clean": "title,abstract,last_names",
"region": "us-east1",
},
on_retry_callback=clear_gcs_dir(DATA_BUCKET, f"{tmp_dir}/cleaned_meta/clean"),
on_execute_callback=clear_gcs_dir(DATA_BUCKET, f"{tmp_dir}/cleaned_meta/clean"),
)
import_clean_metadata = GCSToBigQueryOperator(
task_id="import_clean_metadata",
bucket=bucket,
source_objects=[f"{tmp_dir}/cleaned_meta/clean*"],
schema_object=f"{schema_dir}/all_metadata_norm.json",
destination_project_dataset_table=f"{staging_dataset}.all_metadata_norm",
source_format="NEWLINE_DELIMITED_JSON",
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
)
filter_norm_metadata = BigQueryInsertJobOperator(
task_id="filter_norm_metadata",
configuration={
"query": {
"query": "{% include '"
+ f"{sql_dir}/all_metadata_norm_filt.sql"
+ "' %}",
"useLegacySql": False,
"destinationTable": {
"projectId": project_id,
"datasetId": staging_dataset,
"tableId": "all_metadata_norm_filt",
},
"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE",
}
},
)
# It's now time to create the match pairs that can be found using combinations of one "strong" indicator
# and one other indicator
strong_indicators = ["title_norm", "abstract_norm", "clean_doi", "references"]
weak_indicators = ["year", "last_names_norm"]
combine_queries = []
combine_tables = []
for strong in strong_indicators:
for other in strong_indicators + weak_indicators:
if strong == other:
continue
table_name = f"{strong}_{other}"
combine_tables.append(table_name)
additional_checks = ""
if other != "year":
additional_checks += f' and (a.{other} != "")'
if "references" in [strong, other]:
additional_checks += ' and array_length(split(a.references, ",")) > 2'
combine_queries.append(
BigQueryInsertJobOperator(
task_id=table_name,
configuration={
"query": {
"query": "{% include '"
+ f"{sql_dir}/match_template.sql"
+ "' %}",
"useLegacySql": False,
"destinationTable": {
"projectId": project_id,
"datasetId": staging_dataset,
"tableId": table_name,
},
"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE",
}
},
params={
"strong": strong,
"other": other,
"additional_checks": additional_checks,
},
)
)
wait_for_combine = DummyOperator(task_id="wait_for_combine")
merge_combine_query_list = [
t.strip()
for t in open(
f"{DAGS_DIR}/sequences/" f"{gcs_folder}/merge_combined_metadata.tsv"
)
]
last_combination_query = wait_for_combine
meta_match_queries = "\nunion all\n".join(
[
f"select all1_id, all2_id from {staging_dataset}.{table}\nunion all\nselect all2_id as all1_id, all1_id as all2_id from {staging_dataset}.{table}"
for table in combine_tables
]
)
for query_name in merge_combine_query_list:
next = BigQueryInsertJobOperator(
task_id=query_name,
configuration={
"query": {
"query": "{% include '" + f"{sql_dir}/{query_name}.sql" + "' %}",
"useLegacySql": False,
"destinationTable": {
"projectId": project_id,
"datasetId": staging_dataset,
"tableId": query_name,
},
"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE",
}
},
params={"tables": meta_match_queries},
)
last_combination_query >> next
last_combination_query = next
# Now, we need to prep some inputs for RAM and CPU-intensive code that will run on "godzilla of article linkage".
heavy_compute_inputs = [
BigQueryToGCSOperator(
task_id="export_old_cset_ids",
source_project_dataset_table=f"{production_dataset}.sources",
destination_cloud_storage_uris=f"gs://{bucket}/{tmp_dir}/prev_id_mapping/prev_id_mapping*.jsonl",
export_format="NEWLINE_DELIMITED_JSON",
),
BigQueryToGCSOperator(
task_id="export_article_pairs",
source_project_dataset_table=f"{staging_dataset}.all_match_pairs_with_um",
destination_cloud_storage_uris=f"gs://{bucket}/{tmp_dir}/exact_matches/article_pairs*.jsonl",
export_format="NEWLINE_DELIMITED_JSON",
),
BigQueryToGCSOperator(
task_id="export_lid_input",
source_project_dataset_table=f"{staging_dataset}.lid_input",
destination_cloud_storage_uris=f"gs://{bucket}/{tmp_dir}/lid_input/lid_input*.jsonl",
export_format="NEWLINE_DELIMITED_JSON",
),
BigQueryToGCSOperator(
task_id="export_unlink",
source_project_dataset_table=f"{staging_dataset}.unlink",
destination_cloud_storage_uris=f"gs://{bucket}/{tmp_dir}/unlink/data*.jsonl",
export_format="NEWLINE_DELIMITED_JSON",
),
BigQueryToGCSOperator(
task_id="export_ids_to_drop",
source_project_dataset_table=f"{staging_dataset}.ids_to_drop",
destination_cloud_storage_uris=f"gs://{bucket}/{tmp_dir}/ids_to_drop/data*.jsonl",
export_format="NEWLINE_DELIMITED_JSON",
),
]
# Start up godzilla of article linkage, create the merged ids
gce_instance_start = ComputeEngineStartInstanceOperator(
project_id=project_id,
zone=gce_zone,
resource_id=gce_resource_id,
task_id="start-" + gce_resource_id,
)
prep_environment_script_sequence = [
f"/snap/bin/gsutil cp gs://{bucket}/{gcs_folder}/vm_scripts/*.sh .",
"cd /mnt/disks/data",
"rm -rf run",
"mkdir run",
"cd run",
f"/snap/bin/gsutil cp gs://{bucket}/{gcs_folder}/vm_scripts/* .",
"rm -rf input_data",
"rm -rf current_ids",
"mkdir input_data",
"mkdir current_ids",
f"/snap/bin/gsutil -m cp -r gs://{bucket}/{tmp_dir}/exact_matches .",
f"/snap/bin/gsutil -m cp -r gs://{bucket}/{tmp_dir}/unlink .",
f"/snap/bin/gsutil -m cp -r gs://{bucket}/{tmp_dir}/ids_to_drop .",
f"/snap/bin/gsutil -m cp -r gs://{bucket}/{tmp_dir}/prev_id_mapping .",
]
prep_environment_vm_script = " && ".join(prep_environment_script_sequence)
prep_environment = BashOperator(
task_id="prep_environment",
bash_command=f'gcloud compute ssh jm3312@{gce_resource_id} --zone {gce_zone} --command "{prep_environment_vm_script}"',
)
create_cset_ids = BashOperator(
task_id="create_cset_ids",
bash_command=f'gcloud compute ssh jm3312@{gce_resource_id} --zone {gce_zone} --command "bash run_ids_scripts.sh &> log &"',
inlets=[
BigQueryTable(
project_id=project_id, dataset_id=production_dataset, table_id="sources"
),
BigQueryTable(
project_id=project_id,
dataset_id=staging_dataset,
table_id="all_match_pairs_with_um",
),
BigQueryTable(
project_id=project_id, dataset_id=staging_dataset, table_id="unlink"
),
BigQueryTable(
project_id=project_id,
dataset_id=staging_dataset,
table_id="ids_to_drop",
),
],
outlets=[
BigQueryTable(
project_id=project_id, dataset_id=staging_dataset, table_id="id_mapping"
),
],
)
wait_for_cset_ids = GCSObjectExistenceSensor(
task_id="wait_for_cset_ids",
bucket=DATA_BUCKET,
object=f"{tmp_dir}/done_files/ids_are_done",
deferrable=True,
)
# while the carticle ids are updating, run lid on the titles and abstracts
lid_dataflow_options = {
"project": project_id,
"runner": "DataflowRunner",
"disk_size_gb": "30",
"max_num_workers": "100",
"region": "us-east1",
"temp_location": f"gs://{bucket}/{tmp_dir}/run_lid",
"save_main_session": True,
"requirements_file": f"{DAGS_DIR}/requirements/article_linkage_lid_dataflow_requirements.txt",
}
run_lid = DataflowCreatePythonJobOperator(
py_file=f"{DAGS_DIR}/linkage_scripts/run_lid.py",
job_name="article_linkage_lid",
task_id="run_lid",
dataflow_default_options=lid_dataflow_options,
options={
"input_dir": f"gs://{bucket}/{tmp_dir}/lid_input/lid_input*",
"output_dir": f"gs://{bucket}/{tmp_dir}/lid_output/lid",
"fields_to_lid": "title,abstract",
"region": "us-east1",
},
inlets=[
BigQueryTable(
project_id=project_id, dataset_id=staging_dataset, table_id="lid_input"
)
],
outlets=[
BigQueryTable(
project_id=project_id,
dataset_id=staging_dataset,
table_id="all_metadata_with_cld2_lid",
)
],
on_retry_callback=clear_gcs_dir(DATA_BUCKET, f"{tmp_dir}/lid_output/lid"),
on_execute_callback=clear_gcs_dir(DATA_BUCKET, f"{tmp_dir}/lid_output/lid"),
)
# turn off the expensive godzilla of article linkage when we're done with it, then import the id mappings and
# lid back into BQ
gce_instance_stop = ComputeEngineStopInstanceOperator(
project_id=project_id,
zone=gce_zone,
resource_id=gce_resource_id,
task_id="stop-" + gce_resource_id,
)
import_id_mapping = GCSToBigQueryOperator(
task_id="import_id_mapping",
bucket=bucket,
source_objects=[f"{tmp_dir}/new_id_mappings/*"],
schema_object=f"{schema_dir}/id_mapping.json",
destination_project_dataset_table=f"{staging_dataset}.id_mapping",
source_format="NEWLINE_DELIMITED_JSON",
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
)
import_lid = GCSToBigQueryOperator(
task_id="import_lid",
bucket=bucket,
source_objects=[f"{tmp_dir}/lid_output/lid*"],
schema_object=f"{schema_dir}/all_metadata_with_cld2_lid.json",
destination_project_dataset_table=f"{staging_dataset}.all_metadata_with_cld2_lid",
source_format="NEWLINE_DELIMITED_JSON",
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
)
# generate the rest of the tables that will be copied to the production dataset
start_final_transform_queries = DummyOperator(task_id="start_final_transform")
final_transform_queries = [
t.strip()
for t in open(
f"{DAGS_DIR}/sequences/" f"{gcs_folder}/generate_merged_metadata.tsv"
)
]
last_transform_query = start_final_transform_queries
for query_name in final_transform_queries:
next = BigQueryInsertJobOperator(
task_id=query_name,
configuration={
"query": {
"query": "{% include '" + f"{sql_dir}/{query_name}.sql" + "' %}",
"useLegacySql": False,
"destinationTable": {
"projectId": project_id,
"datasetId": staging_dataset,
"tableId": query_name,
},
"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE",
}
},
)
last_transform_query >> next
last_transform_query = next
# we're about to copy tables from staging to production, so do checks to make sure we haven't broken anything
# along the way
check_queries = []
all_metadata_table = "all_metadata_with_cld2_lid"
staging_tables = ["sources", "references", all_metadata_table]
production_tables = ["sources", "references"]
for table_name in staging_tables:
compare_table_name = (
table_name
if table_name != all_metadata_table
else all_metadata_table + "_last_run"
)
compare_dataset = (
production_dataset if table_name != all_metadata_table else staging_dataset
)
check_queries.append(
BigQueryCheckOperator(
task_id="check_monotonic_increase_" + table_name.lower(),
sql=(
f"select (select count(0) from {staging_dataset}.{table_name}) >= "
f"(select 0.8*count(0) from {compare_dataset}.{compare_table_name})"
),
use_legacy_sql=False,
)
)
check_queries.extend(
[
BigQueryCheckOperator(
task_id="check_pks_are_unique_sources",
sql=f"select count(orig_id) = count(distinct(orig_id)) from {staging_dataset}.sources",
use_legacy_sql=False,
),
BigQueryCheckOperator(
task_id="all_ids_survived",
sql=(
f"select count(0) = 0 from (select id from {staging_dataset}.union_ids "
f"where id not in (select orig_id from {staging_dataset}.sources))"
),
use_legacy_sql=False,
),
BigQueryCheckOperator(
task_id="all_trivial_matches_survived",
sql=f"""
-- check that all article pairs generated by exact matches make it through the
-- merged id assignment, except ones we've deliberately unlinked
select
count(0) = 0
from
{staging_dataset}.metadata_match
left join
{staging_dataset}.sources as links1
on all1_id = links1.orig_id
left join
{staging_dataset}.sources as links2
on (links1.merged_id = links2.merged_id) and (all2_id = links2.orig_id)
-- don't count pairs which we've deliberately unlinked
left join
{staging_dataset}.unlink
on (all1_id = id1) and (all2_id = id2)
where ((links1.orig_id is null) or (links2.orig_id is null)) and ((id1 is null) and (id2 is null))
""",
use_legacy_sql=False,
),
BigQueryCheckOperator(
task_id="no_null_references",
sql=f"select count(0) = 0 from {staging_dataset}.references where merged_id is null or ref_id is null",
use_legacy_sql=False,
),
BigQueryCheckOperator(
task_id="no_null_datasets",
sql=f"select count(0) = 0 from {staging_dataset}.sources where dataset is null",
use_legacy_sql=False,
),
]
)
# We're done! Checks passed, so copy to production and post success to slack
start_production_cp = DummyOperator(task_id="start_production_cp")
success_alert = get_post_success("Article linkage update succeeded!", dag)
curr_date = datetime.now().strftime("%Y%m%d")
with open(
f"{os.environ.get('DAGS_FOLDER')}/schemas/{gcs_folder}/table_descriptions.json"
) as f:
table_desc = json.loads(f.read())
trigger_org_fixes = TriggerDagRunOperator(
task_id="trigger_org_fixes",
trigger_dag_id="org_fixes",
)
for table in production_tables:
push_to_production = BigQueryToBigQueryOperator(
task_id="copy_" + table.lower(),
source_project_dataset_tables=[f"{staging_dataset}.{table}"],
destination_project_dataset_table=f"{production_dataset}.{table}",
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
)
snapshot = BigQueryToBigQueryOperator(
task_id=f"snapshot_{table}",
source_project_dataset_tables=[f"{production_dataset}.{table}"],
destination_project_dataset_table=f"{backup_dataset}.{table}_{curr_date}",
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
)
pop_descriptions = PythonOperator(
task_id="populate_column_documentation_for_" + table,
op_kwargs={
"input_schema": f"{os.environ.get('DAGS_FOLDER')}/schemas/{gcs_folder}/{table}.json",
"table_name": f"{production_dataset}.{table}",
"table_description": table_desc[table],
},
python_callable=update_table_descriptions,
)
(
start_production_cp
>> push_to_production
>> snapshot
>> pop_descriptions
>> success_alert
>> trigger_org_fixes
)
# We don't show the "all metadata" table in the production dataset, but we do need to
# be able to diff the current data from the data used in the last run in simhash_input
copy_cld2 = BigQueryToBigQueryOperator(
task_id=f"copy_{all_metadata_table}",
source_project_dataset_tables=[f"{staging_dataset}.{all_metadata_table}"],
destination_project_dataset_table=f"{staging_dataset}.{all_metadata_table}_last_run",
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
)
snapshot_cld2 = BigQueryToBigQueryOperator(
task_id=f"snapshot_{all_metadata_table}",
source_project_dataset_tables=[f"{staging_dataset}.{all_metadata_table}"],
destination_project_dataset_table=f"{backup_dataset}.{all_metadata_table}_{curr_date}",
create_disposition="CREATE_IF_NEEDED",
write_disposition="WRITE_TRUNCATE",
)
start_production_cp >> copy_cld2 >> snapshot_cld2 >> success_alert
# task structure
clear_tmp_dir >> metadata_sequences_start
(
metadata_sequences_end
>> union_ids
>> check_unique_input_ids
>> union_metadata
>> export_metadata
>> clean_corpus
>> import_clean_metadata
>> filter_norm_metadata
>> combine_queries
>> wait_for_combine
)
(
last_combination_query
>> heavy_compute_inputs
>> gce_instance_start
>> prep_environment
>> create_cset_ids
>> wait_for_cset_ids
>> gce_instance_stop
)
gce_instance_start >> run_lid >> gce_instance_stop
(
gce_instance_stop
>> [import_id_mapping, import_lid]
>> start_final_transform_queries
)
last_transform_query >> check_queries >> start_production_cp