-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
132 lines (111 loc) · 5.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import inputs
import tensorflow as tf
import model
import time
import argparse
import collections
parser = argparse.ArgumentParser()
parser.add_argument('-batch_size', type=int)
parser.add_argument('-embedding_size', type=int)
parser.add_argument('-hidden_size', type=int)
parser.add_argument('-learning_rate', type=float)
parser.add_argument('-grad_clip', type=float)
parser.add_argument('-max_epoch', type=int, default=50)
parser.add_argument('-option', type=str)
args = parser.parse_args()
batch_size = args.batch_size
embedding_size = args.embedding_size
hidden_size = args.hidden_size
learning_rate = args.learning_rate
grad_clip = args.grad_clip
max_epoch = args.max_epoch
option = args.option
class MaxEpoch(Exception):
pass
model_config = collections.OrderedDict({'embed': embedding_size,
'rh' : hidden_size,
'l' : learning_rate,
'gc' : grad_clip,
'option' : option
})
model_dir = ['{}-{}'.format(key, model_config[key]) for key in model_config.keys()]
model_dir = '_'.join(model_dir)
vocabulary_size = inputs.vocab_size + 1 # for padding
id_to_word = inputs.id_to_word
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
inputs_pl = tf.placeholder(tf.int32, shape=[None, None])
inputs_seq_len_pl = tf.placeholder(tf.int32, shape=[None])
with tf.name_scope('train'):
train_inputs, train_init_op = inputs.inputs('train', batch_size)
with tf.variable_scope('Model'):
trn_model = model.Sequential_VAE('train',
inputs_pl, inputs_seq_len_pl, vocabulary_size, embedding_size,
hidden_size, learning_rate, grad_clip)
with tf.name_scope('Test'):
test_inputs, test_init_op = inputs.inputs('test', batch_size)
with tf.variable_scope('Model', reuse=True):
test_model = model.Sequential_VAE( 'test',
inputs_pl, inputs_seq_len_pl, vocabulary_size, embedding_size,
hidden_size, learning_rate, grad_clip)
count = 0
epoch = 0
best_loss = 1e4
saver = tf.train.Saver()
if not os.path.exists('model/{}'.format(model_dir)):
os.makedirs('model/{}'.format(model_dir))
with tf.Session(config=config) as sess:
summary_writer = tf.summary.FileWriter('summary/{}'.format(model_dir), sess.graph,
flush_secs=10)
sess.run(tf.global_variables_initializer())
while(True):
sess.run(train_init_op)
sess.run(tf.local_variables_initializer())
start = time.time()
while (True):
try:
batch, seq_len = sess.run(train_inputs)
feed_dict = {inputs_pl: batch, inputs_seq_len_pl: seq_len}
_, summary_val_trn = sess.run([trn_model.train_op,
trn_model.update_op_list],
feed_dict=feed_dict)
count += 1
if count % 100 == 0:
s_id, g_norm, xent, logits, pred, sum_val \
= sess.run([trn_model.sample_id,
trn_model.global_grad_norm,
trn_model.xent_masked,
trn_model.logits,
trn_model.pred,
trn_model.summary_list],feed_dict=feed_dict)
print('epoch ', epoch, 'count ', count, 'grad_norm',g_norm)
print('sample : ', [id_to_word[x] for x in s_id[0][:seq_len[0] + 5]])
print('pred : ', [id_to_word[x] for x in pred[0][:seq_len[0] + 5]])
print('answer : ', [id_to_word[x] for x in batch[0][:seq_len[0] + 5]])
except tf.errors.OutOfRangeError:
print("epoch took {:.3f} minutes".format((time.time() - start) / 60))
sess.run(test_init_op)
while(True):
try:
batch, seq_len = sess.run(test_inputs)
feed_dict = {inputs_pl: batch, inputs_seq_len_pl: seq_len}
summary_val_test = sess.run(test_model.update_op_list,
feed_dict=feed_dict)
except tf.errors.OutOfRangeError:
print('done eval')
print('trn loss', summary_val_trn)
print('test loss ', summary_val_test)
saver.save(sess, 'model/{}/model.ckpt'.format(model_dir),
global_step=epoch)
trn_summary, test_summary = sess.run([trn_model.summary,
test_model.summary])
summary_writer.add_summary(trn_summary, epoch)
summary_writer.add_summary(test_summary, epoch)
summary = sess.run(trn_model.summary)
summary_writer.add_summary(summary, epoch)
break
break
epoch += 1
if epoch == max_epoch:
raise MaxEpoch('Max Epoch Reached')