-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgebra.hpp
498 lines (432 loc) · 9.42 KB
/
algebra.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
//---------------------------------------------------------------------------
//
// CS488 -- Introduction to Computer Graphics
//
// algebra.hpp/algebra.cpp
//
// Classes and functions for manipulating points, vectors, matrices,
// and colours. You probably won't need to modify anything in these
// two files.
//
// University of Waterloo Computer Graphics Lab / 2003
//
//---------------------------------------------------------------------------
#ifndef CS488_ALGEBRA_HPP
#define CS488_ALGEBRA_HPP
#include <iostream>
#include <algorithm>
#include <cmath>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
static double unif()
{
return rand()/double(RAND_MAX);
}
class Point2D
{
public:
Point2D()
{
v_[0] = 0.0;
v_[1] = 0.0;
}
Point2D(double x, double y)
{
v_[0] = x;
v_[1] = y;
}
Point2D(const Point2D& other)
{
v_[0] = other.v_[0];
v_[1] = other.v_[1];
}
Point2D& operator =(const Point2D& other)
{
v_[0] = other.v_[0];
v_[1] = other.v_[1];
return *this;
}
double& operator[](size_t idx)
{
return v_[ idx ];
}
double operator[](size_t idx) const
{
return v_[ idx ];
}
private:
double v_[2];
};
class Point3D
{
public:
double &x, &y, &z;
Point3D() : x(v_[0]), y(v_[1]), z(v_[2])
{
v_[0] = 0.0;
v_[1] = 0.0;
v_[2] = 0.0;
}
Point3D(double x, double y, double z) : x(v_[0]), y(v_[1]), z(v_[2])
{
v_[0] = x;
v_[1] = y;
v_[2] = z;
}
Point3D(const Point3D& other) : x(v_[0]), y(v_[1]), z(v_[2])
{
v_[0] = other.v_[0];
v_[1] = other.v_[1];
v_[2] = other.v_[2];
}
Point3D& operator =(const Point3D& other)
{
v_[0] = other.v_[0];
v_[1] = other.v_[1];
v_[2] = other.v_[2];
return *this;
}
double& operator[](size_t idx)
{
return v_[ idx ];
}
double operator[](size_t idx) const
{
return v_[ idx ];
}
private:
double v_[3];
};
class Vector3D
{
public:
Vector3D()
{
v_[0] = 0.0;
v_[1] = 0.0;
v_[2] = 0.0;
}
Vector3D(double x, double y, double z)
{
v_[0] = x;
v_[1] = y;
v_[2] = z;
}
Vector3D(const Vector3D& other)
{
v_[0] = other.v_[0];
v_[1] = other.v_[1];
v_[2] = other.v_[2];
}
Vector3D& operator =(const Vector3D& other)
{
v_[0] = other.v_[0];
v_[1] = other.v_[1];
v_[2] = other.v_[2];
return *this;
}
double& operator[](size_t idx)
{
return v_[ idx ];
}
double operator[](size_t idx) const
{
return v_[ idx ];
}
double dot(const Vector3D& other) const
{
return v_[0]*other.v_[0] + v_[1]*other.v_[1] + v_[2]*other.v_[2];
}
double length2() const
{
return v_[0]*v_[0] + v_[1]*v_[1] + v_[2]*v_[2];
}
double length() const
{
return sqrt(length2());
}
double normalize();
Vector3D cross(const Vector3D& other) const
{
return Vector3D(
v_[1]*other[2] - v_[2]*other[1],
v_[2]*other[0] - v_[0]*other[2],
v_[0]*other[1] - v_[1]*other[0]);
}
private:
double v_[3];
};
inline Vector3D operator *(double s, const Vector3D& v)
{
return Vector3D(s*v[0], s*v[1], s*v[2]);
}
inline Vector3D operator +(const Vector3D& a, const Vector3D& b)
{
return Vector3D(a[0]+b[0], a[1]+b[1], a[2]+b[2]);
}
inline Point3D operator +(const Point3D& a, const Vector3D& b)
{
return Point3D(a[0]+b[0], a[1]+b[1], a[2]+b[2]);
}
inline Vector3D operator -(const Point3D& a, const Point3D& b)
{
return Vector3D(a[0]-b[0], a[1]-b[1], a[2]-b[2]);
}
inline Vector3D operator -(const Vector3D& a, const Vector3D& b)
{
return Vector3D(a[0]-b[0], a[1]-b[1], a[2]-b[2]);
}
inline Vector3D operator -(const Vector3D& a)
{
return Vector3D(-a[0], -a[1], -a[2]);
}
inline Point3D operator -(const Point3D& a, const Vector3D& b)
{
return Point3D(a[0]-b[0], a[1]-b[1], a[2]-b[2]);
}
inline Vector3D cross(const Vector3D& a, const Vector3D& b)
{
return a.cross(b);
}
inline std::ostream& operator <<(std::ostream& os, const Point2D& p)
{
return os << "p<" << p[0] << "," << p[1] << ">";
}
inline std::ostream& operator <<(std::ostream& os, const Point3D& p)
{
return os << "p<" << p[0] << "," << p[1] << "," << p[2] << ">";
}
inline std::ostream& operator <<(std::ostream& os, const Vector3D& v)
{
return os << "v<" << v[0] << "," << v[1] << "," << v[2] << ">";
}
class Matrix4x4;
class Vector4D
{
public:
Vector4D()
{
v_[0] = 0.0;
v_[1] = 0.0;
v_[2] = 0.0;
v_[3] = 0.0;
}
Vector4D(double x, double y, double z, double w)
{
v_[0] = x;
v_[1] = y;
v_[2] = z;
v_[3] = w;
}
Vector4D(const Vector4D& other)
{
v_[0] = other.v_[0];
v_[1] = other.v_[1];
v_[2] = other.v_[2];
v_[3] = other.v_[3];
}
Vector4D& operator =(const Vector4D& other)
{
v_[0] = other.v_[0];
v_[1] = other.v_[1];
v_[2] = other.v_[2];
v_[3] = other.v_[3];
return *this;
}
double& operator[](size_t idx)
{
return v_[ idx ];
}
double operator[](size_t idx) const
{
return v_[ idx ];
}
private:
double v_[4];
};
class Matrix4x4
{
public:
Matrix4x4()
{
// Construct an identity matrix
std::fill(v_, v_+16, 0.0);
v_[0] = 1.0;
v_[5] = 1.0;
v_[10] = 1.0;
v_[15] = 1.0;
}
Matrix4x4(const Matrix4x4& other)
{
std::copy(other.v_, other.v_+16, v_);
}
Matrix4x4(const Vector4D row1, const Vector4D row2, const Vector4D row3,
const Vector4D row4)
{
v_[0] = row1[0];
v_[1] = row1[1];
v_[2] = row1[2];
v_[3] = row1[3];
v_[4] = row2[0];
v_[5] = row2[1];
v_[6] = row2[2];
v_[7] = row2[3];
v_[8] = row3[0];
v_[9] = row3[1];
v_[10] = row3[2];
v_[11] = row3[3];
v_[12] = row4[0];
v_[13] = row4[1];
v_[14] = row4[2];
v_[15] = row4[3];
}
Matrix4x4(double *vals)
{
std::copy(vals, vals + 16, (double*)v_);
}
Matrix4x4& operator=(const Matrix4x4& other)
{
std::copy(other.v_, other.v_+16, v_);
return *this;
}
Vector4D getRow(size_t row) const
{
return Vector4D(v_[4*row], v_[4*row+1], v_[4*row+2], v_[4*row+3]);
}
double *getRow(size_t row)
{
return (double*)v_ + 4*row;
}
Vector4D getColumn(size_t col) const
{
return Vector4D(v_[col], v_[4+col], v_[8+col], v_[12+col]);
}
Vector4D operator[](size_t row) const
{
return getRow(row);
}
double *operator[](size_t row)
{
return getRow(row);
}
Matrix4x4 transpose() const
{
return Matrix4x4(getColumn(0), getColumn(1),
getColumn(2), getColumn(3));
}
Matrix4x4 invert() const;
const double *begin() const
{
return (double*)v_;
}
const double *end() const
{
return begin() + 16;
}
private:
double v_[16];
};
inline Matrix4x4 operator *(const Matrix4x4& a, const Matrix4x4& b)
{
Matrix4x4 ret;
for(size_t i = 0; i < 4; ++i) {
Vector4D row = a.getRow(i);
for(size_t j = 0; j < 4; ++j) {
ret[i][j] = row[0] * b[0][j] + row[1] * b[1][j] +
row[2] * b[2][j] + row[3] * b[3][j];
}
}
return ret;
}
inline Vector3D operator *(const Matrix4x4& M, const Vector3D& v)
{
return Vector3D(
v[0] * M[0][0] + v[1] * M[0][1] + v[2] * M[0][2],
v[0] * M[1][0] + v[1] * M[1][1] + v[2] * M[1][2],
v[0] * M[2][0] + v[1] * M[2][1] + v[2] * M[2][2]);
}
inline Point3D operator *(const Matrix4x4& M, const Point3D& p)
{
return Point3D(
p[0] * M[0][0] + p[1] * M[0][1] + p[2] * M[0][2] + M[0][3],
p[0] * M[1][0] + p[1] * M[1][1] + p[2] * M[1][2] + M[1][3],
p[0] * M[2][0] + p[1] * M[2][1] + p[2] * M[2][2] + M[2][3]);
}
inline Vector3D transNorm(const Matrix4x4& M, const Vector3D& n)
{
return Vector3D(
n[0] * M[0][0] + n[1] * M[1][0] + n[2] * M[2][0],
n[0] * M[0][1] + n[1] * M[1][1] + n[2] * M[2][1],
n[0] * M[0][2] + n[1] * M[1][2] + n[2] * M[2][2]);
}
inline std::ostream& operator <<(std::ostream& os, const Matrix4x4& M)
{
return os << "[" << M[0][0] << " " << M[0][1] << " "
<< M[0][2] << " " << M[0][3] << "]" << std::endl
<< "[" << M[1][0] << " " << M[1][1] << " "
<< M[1][2] << " " << M[1][3] << "]" << std::endl
<< "[" << M[2][0] << " " << M[2][1] << " "
<< M[2][2] << " " << M[2][3] << "]" << std::endl
<< "[" << M[3][0] << " " << M[3][1] << " "
<< M[3][2] << " " << M[3][3] << "]";
}
class Colour
{
public:
Colour(double r, double g, double b)
: r_(r)
, g_(g)
, b_(b)
{}
Colour(double c)
: r_(c)
, g_(c)
, b_(c)
{}
Colour(const Colour& other)
: r_(other.r_)
, g_(other.g_)
, b_(other.b_)
{}
Colour& operator =(const Colour& other)
{
r_ = other.r_;
g_ = other.g_;
b_ = other.b_;
return *this;
}
double R() const
{
return r_;
}
double G() const
{
return g_;
}
double B() const
{
return b_;
}
private:
double r_;
double g_;
double b_;
};
inline Colour operator *(double s, const Colour& a)
{
return Colour(s*a.R(), s*a.G(), s*a.B());
}
inline Colour operator *(const Colour& a, const Colour& b)
{
return Colour(a.R()*b.R(), a.G()*b.G(), a.B()*b.B());
}
inline Colour operator +(const Colour& a, const Colour& b)
{
return Colour(a.R()+b.R(), a.G()+b.G(), a.B()+b.B());
}
inline std::ostream& operator <<(std::ostream& os, const Colour& c)
{
return os << "c<" << c.R() << "," << c.G() << "," << c.B() << ">";
}
#endif // CS488_ALGEBRA_HPP