-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgenerate_FID.py
80 lines (66 loc) · 2.43 KB
/
generate_FID.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import argparse
from torchvision import transforms
import torchvision.datasets as datasets
import torchvision.utils as tu
import util
from ipdb import set_trace as debug
parser = argparse.ArgumentParser()
parser.add_argument("--problem-name")
parser.add_argument("--sde-type", type=str, default='ve', choices=['ve', 'vp'])
parser.add_argument("--FID-type", type=str, default='jpg', choices=['jpg', 'png'], help="choose which type of FID to eval")
def generate_cifar10_dataset(opt, load_train=True):
transforms_list=[
transforms.Resize(32),
transforms.ToTensor(), #Convert to [0,1]
]
if util.use_vp_sde(opt):
transforms_list+=[transforms.Lambda(lambda t: (t * 2) - 1),]
return datasets.CIFAR10(
'data',
train=load_train,
download=load_train,
transform=transforms.Compose(transforms_list)
)
def generate_celebA32_dataset(opt):
transforms_list=[
transforms.Resize(32),
transforms.CenterCrop(32),
transforms.ToTensor(),
]
if util.use_vp_sde(opt):
transforms_list+=[transforms.Lambda(lambda t: (t * 2) - 1),]
return datasets.ImageFolder(
root='data/celebA/img_align_celeba/',
transform=transforms.Compose(transforms_list)
)
def generate_celebA64_dataset(opt):
transforms_list=[ #Normal Data preprocessing
transforms.Resize([64,64]), #DSB type resizing
transforms.ToTensor(),
]
if util.use_vp_sde(opt):
transforms_list+=[transforms.Lambda(lambda t: (t * 2) - 1),]
return datasets.ImageFolder(
root='data/celebA/img_align_celeba/',
transform=transforms.Compose(transforms_list)
)
def save_img_png_jpg(dataset, name, type):
data_path='data/'+name+'-test/'
os.makedirs(data_path, exist_ok=True)
for i in range(len(dataset)):
data,_=dataset[i]
tu.save_image(data, data_path+'img{}.{}'.format(i,type))
print(i)
return data_path
opt = parser.parse_args()
FID_ref_name = input('Naming your FID reference:')
name, dataset_generator = {
'celebA32': ['celebA32', generate_celebA32_dataset],
'celebA64': ['celebA64', generate_celebA64_dataset],
'cifar10': ['cifar10', generate_cifar10_dataset],
}.get(opt.problem_name)
dataset = dataset_generator(opt)
sample_path = save_img_png_jpg(dataset, name, opt.FID_type)
root='checkpoint/{}/'.format(opt.problem_name)
util.calculate_fid_npz(sample_path, root, FID_ref_name)