-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_disc.py
338 lines (283 loc) · 13.7 KB
/
train_disc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import json
import options
import pprint
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, ConcatDataset
from torch.autograd import Variable
from pytorch_transformers.optimization import AdamW
from dataloader.dataloader_visdial_disc import VisdialDataset
from models.visual_dialog_encoder import VisualDialogEncoder
from utils.data_utils import sequence_mask, batch_iter
from utils.logger import Logger
from utils.optim_utils import WarmupLinearScheduleNonZero
from time import gmtime, strftime
from timeit import default_timer as timer
def forward(dialog_encoder, batch, params):
next_sentence_labels = None
image_target = None
image_label = None
tokens = batch['tokens']
segments = batch['segments']
sep_indices = batch['sep_indices']
mask = batch['mask']
hist_len = batch['hist_len']
# image stuff
orig_features = batch['image_feat']
orig_spatials = batch['image_loc']
orig_image_mask = batch['image_mask']
tokens = tokens.view(-1,tokens.shape[-1])
segments = segments.view(-1, segments.shape[-1])
sep_indices = sep_indices.view(-1,sep_indices.shape[-1])
mask = mask.view(-1, mask.shape[-1])
hist_len = hist_len.view(-1)
features = orig_features.view(-1, orig_features.shape[-2], orig_features.shape[-1])
spatials = orig_spatials.view(-1, orig_spatials.shape[-2], orig_spatials.shape[-1])
image_mask = orig_image_mask.view(-1, orig_image_mask.shape[-1])
if 'train' in params['mode']:
sample_indices = torch.randperm(hist_len.shape[0])
sample_indices = sample_indices[:params['batch_size']]
else:
sample_indices = torch.arange(hist_len.shape[0])
tokens = tokens[sample_indices, :]
segments = segments[sample_indices, :]
sep_indices = sep_indices[sample_indices, :]
mask = mask[sample_indices, :]
hist_len = hist_len[sample_indices]
features = features[sample_indices, : , :]
spatials = spatials[sample_indices, :, :]
image_mask = image_mask[sample_indices, :]
if 'train' in params['mode']:
next_sentence_labels = batch['next_sentence_labels']
next_sentence_labels = next_sentence_labels.view(-1, next_sentence_labels.shape[-1])
next_sentence_labels = next_sentence_labels[sample_indices, :]
next_sentence_labels = next_sentence_labels.to(params['device'])
orig_image_target = batch['image_target']
orig_image_label = batch['image_label']
image_target = orig_image_target.view(-1, orig_image_target.shape[-2], orig_image_target.shape[-1])
image_label = orig_image_label.view(-1, orig_image_label.shape[-1])
image_target = image_target[sample_indices, : , :]
image_label = image_label[sample_indices, :]
image_target = image_target.to(params['device'])
image_label = image_label.to(params['device'])
tokens = tokens.to(params['device'])
segments = segments.to(params['device'])
sep_indices = sep_indices.to(params['device'])
mask = mask.to(params['device'])
hist_len = hist_len.to(params['device'])
features = features.to(params['device'])
spatials = spatials.to(params['device'])
image_mask = image_mask.to(params['device'])
sequence_lengths = torch.gather(sep_indices,1,hist_len.view(-1,1)) + 1
sequence_lengths = sequence_lengths.squeeze(1)
attention_mask_lm_nsp = sequence_mask(sequence_lengths, params, max_len=tokens.shape[1])
lm_loss, img_loss, nsp_loss, nsp_scores, lm_scores, _, _ = dialog_encoder(
tokens,
features,
spatials,
sep_indices=sep_indices,
token_type_ids=segments,
masked_lm_labels=mask,
attention_mask=attention_mask_lm_nsp,
next_sentence_label=next_sentence_labels,
image_attention_mask=image_mask,
image_label=image_label,
image_target=image_target
)
loss = None
if 'train' in params['mode']:
lm_loss = lm_loss.mean()
nsp_loss = nsp_loss.mean()
img_loss = img_loss.mean()
lm_loss = params['lm_loss_coeff'] * lm_loss
nsp_loss = params['nsp_loss_coeff'] * nsp_loss
img_loss = params['img_loss_coeff'] * img_loss
loss = lm_loss + nsp_loss + img_loss
return loss, lm_loss, nsp_loss, img_loss, nsp_scores, lm_scores
if __name__ == '__main__':
params = options.read_command_line()
if not os.path.exists(params['save_path']):
os.makedirs(params['save_path'], exist_ok=True)
pprint.pprint(params)
logger = Logger(os.path.join(params['save_path'], 'log.txt'))
logger.write(str(params))
# select mode (train vd or cc12m)
mode = params['mode']
assert mode == 'vd_train'
assert params['model'] == 'enc_only_a'
datasets = VisdialDataset(params)
datasets.mode = 'vd_train'
num_iter_epoch = datasets.numDataPoints[mode] // params['batch_size']
step_total = num_iter_epoch * 100
warmup_steps = 10000
dataloader = DataLoader(
datasets,
batch_size= params['batch_size'],
shuffle=True,
num_workers=params['num_workers'],
drop_last=True,
pin_memory=False
)
if isinstance(params["gpu_ids"], int):
params["gpu_ids"] = [params["gpu_ids"]]
device = (
torch.device("cuda", params["gpu_ids"][0])
if params["gpu_ids"][0] >= 0
else torch.device("cpu")
)
params['device'] = device
dialog_encoder = VisualDialogEncoder(params)
named_params = dict(dialog_encoder.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
langauge_weights = None
with open('config/language_weights.json') as f:
langauge_weights = json.load(f)
optimizer_grouped_parameters = []
for key, value in named_params.items():
if value.requires_grad:
if key in langauge_weights:
lr = params['lr']
else:
lr = params['image_lr']
if any(nd in key for nd in no_decay):
optimizer_grouped_parameters += [
{"params": [value], "lr": lr, "weight_decay": 0}
]
if not any(nd in key for nd in no_decay):
optimizer_grouped_parameters += [
{"params": [value], "lr": lr, "weight_decay": 0.01}
]
logger.write('\n%d iter per epoch.' % num_iter_epoch)
logger.write('\n%d total step.' % step_total)
optimizer = AdamW(optimizer_grouped_parameters, lr=params['lr'])
scheduler = WarmupLinearScheduleNonZero(optimizer, warmup_steps=warmup_steps, t_total=step_total)
start_iter_id = 0
start_epoch_id = 0
if params['start_path']:
pretrained_dict = torch.load(params['start_path'], map_location=device)
if params['continue']:
if 'start' in params['start_path']:
model_dict = dialog_encoder.state_dict()
pretrained_dict_model = pretrained_dict['model_state_dict']
# extract pretrained weights of the encoder-decoder model for generative VisDial!
pretrained_dict_model = {k.split('.', 1)[1]: v for k, v in pretrained_dict_model.items() if k.split('.', 1)[1] in model_dict}
model_dict.update(pretrained_dict_model)
dialog_encoder.load_state_dict(model_dict)
del pretrained_dict, model_dict, pretrained_dict_model
else:
model_dict = dialog_encoder.state_dict()
optimizer_dict = optimizer.state_dict()
pretrained_dict_model = pretrained_dict['model_state_dict']
pretrained_dict_optimizer = pretrained_dict['optimizer_state_dict']
pretrained_dict_scheduler = pretrained_dict['scheduler_state_dict']
pretrained_dict_model = {k: v for k, v in pretrained_dict_model.items() if k in model_dict}
pretrained_dict_optimizer = {k: v for k, v in pretrained_dict_optimizer.items() if k in optimizer_dict}
model_dict.update(pretrained_dict_model)
optimizer_dict.update(pretrained_dict_optimizer)
dialog_encoder.load_state_dict(model_dict)
optimizer.load_state_dict(optimizer_dict)
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
if mode in params['start_path']:
# load the scheduler when start checkpoint and mode are the same
scheduler = WarmupLinearScheduleNonZero(optimizer, warmup_steps=warmup_steps, \
t_total=step_total, last_epoch=pretrained_dict["iter_id"])
scheduler.load_state_dict(pretrained_dict_scheduler)
start_iter_id = pretrained_dict['iter_id']
start_epoch_id = start_iter_id // num_iter_epoch
del pretrained_dict, model_dict, optimizer_dict, pretrained_dict_model, pretrained_dict_optimizer, pretrained_dict_scheduler
with torch.cuda.device("cuda:%s" % params["gpu_ids"][0]):
torch.cuda.empty_cache()
else:
if 'model_state_dict' in pretrained_dict:
pretrained_dict = pretrained_dict['model_state_dict']
model_dict = dialog_encoder.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
print("number of keys transferred", len(pretrained_dict))
assert len(pretrained_dict.keys()) > 0
model_dict.update(pretrained_dict)
dialog_encoder.load_state_dict(model_dict)
del pretrained_dict, model_dict
start_t = timer()
dialog_encoder = dialog_encoder.to(device)
dialog_encoder = nn.DataParallel(dialog_encoder, params["gpu_ids"])
for epoch_id, idx, batch in batch_iter(dataloader, params, start_epoch_id):
iter_id = idx + (epoch_id * num_iter_epoch)
dialog_encoder.train()
# expand image features,
orig_features = batch['image_feat']
orig_spatials = batch['image_loc']
orig_image_mask = batch['image_mask']
orig_image_target = batch['image_target']
orig_image_label = batch['image_label']
num_rounds = batch["tokens"].shape[1]
num_samples = batch["tokens"].shape[2]
features = orig_features.unsqueeze(1).unsqueeze(1).expand(orig_features.shape[0], num_rounds, num_samples, orig_features.shape[1], orig_features.shape[2]).contiguous()
spatials = orig_spatials.unsqueeze(1).unsqueeze(1).expand(orig_spatials.shape[0], num_rounds, num_samples, orig_spatials.shape[1], orig_spatials.shape[2]).contiguous()
image_label = orig_image_label.unsqueeze(1).unsqueeze(1).expand(orig_image_label.shape[0], num_rounds, num_samples, orig_image_label.shape[1]).contiguous()
image_mask = orig_image_mask.unsqueeze(1).unsqueeze(1).expand(orig_image_mask.shape[0], num_rounds, num_samples, orig_image_mask.shape[1]).contiguous()
image_target = orig_image_target.unsqueeze(1).unsqueeze(1).expand(orig_image_target.shape[0], num_rounds, num_samples, orig_image_target.shape[1], orig_image_target.shape[2]).contiguous()
batch['image_feat'] = features.contiguous()
batch['image_loc'] = spatials.contiguous()
batch['image_mask'] = image_mask.contiguous()
batch['image_target'] = image_target.contiguous()
batch['image_label'] = image_label.contiguous()
loss = None
lm_loss = None
nsp_loss = None
img_loss = None
nsp_loss = None
nsp_scores = None
loss, lm_loss, nsp_loss, img_loss, _, _ = forward(dialog_encoder, batch, params)
lm_nsp_loss = None
if lm_loss is not None and nsp_loss is not None:
lm_nsp_loss = lm_loss + nsp_loss
loss.backward()
if iter_id > 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if iter_id % 10 == 0:
end_t = timer()
cur_lr = optimizer.param_groups[0]['lr']
cur_epoch = float(iter_id) / num_iter_epoch
timestamp = strftime('%a %d %b %y %X', gmtime())
print_lm_loss = 0
print_nsp_loss = 0
print_lm_nsp_loss = 0
print_img_loss = 0
if lm_loss is not None:
print_lm_loss = lm_loss.item()
if nsp_loss is not None:
print_nsp_loss = nsp_loss.item()
if lm_nsp_loss is not None:
print_lm_nsp_loss = lm_nsp_loss.item()
if img_loss is not None:
print_img_loss = img_loss.item()
print_format = '[%s][LR: %.7f][Ep: %.2f][Iter: %d][Time: %5.2fs][NSP + LM Loss: %.3g][LM Loss: %.3g][NSP Loss: %.3g][IMG Loss: %.3g]'
print_info = [
timestamp, cur_lr, cur_epoch, iter_id, end_t - start_t, print_lm_nsp_loss, print_lm_loss, print_nsp_loss, print_img_loss
]
logger.write(print_format % tuple(print_info))
start_t = end_t
if iter_id % num_iter_epoch == 0 and iter_id != start_iter_id:
torch.save(
{
'model_state_dict' : dialog_encoder.module.state_dict(),
'scheduler_state_dict':scheduler.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'iter_id':iter_id
},
os.path.join(
params['save_path'],
'%s_%s_%d.ckpt'%(mode, params['chunk'], epoch_id)
)
)
logger.write('\n%d epoch ended.' % epoch_id)