forked from StonyBrookNLP/ircot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreproduce.sh
executable file
·76 lines (63 loc) · 3.55 KB
/
reproduce.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env bash
# Expected command line argument values.
valid_systems=("ircot" "ircot_qa" "oner" "oner_qa" "nor_qa")
valid_models=("codex" "flan-t5-xxl" "flan-t5-xl" "flan-t5-large" "flan-t5-base" "none")
valid_datasets=("hotpotqa" "2wikimultihopqa" "musique" "iirc")
# Function to check if an argument is valid
check_argument() {
local arg="$1"
local position="$2"
local valid_values=("${!3}")
if ! [[ " ${valid_values[*]} " =~ " $arg " ]]; then
echo "argument number $position is not a valid. Please provide one of: ${valid_values[*]}"
exit 1
fi
if [[ $position -eq 2 && $arg == "none" && $1 != "oner" ]]; then
echo "The model argument can only be 'none' only if the system argument is 'oner'."
exit 1
fi
}
# Check the number of arguments
if [[ $# -ne 3 ]]; then
echo "Error: Invalid number of arguments. Expected format: ./reproduce.sh SYSTEM MODEL DATASET"
exit 1
fi
# Check the validity of arguments
check_argument "$1" 1 valid_systems[*]
check_argument "$2" 2 valid_models[*]
check_argument "$3" 3 valid_datasets[*]
echo ">>>> Instantiate experiment configs with different HPs and write them in files. <<<<"
python runner.py $1 $2 $3 write --prompt_set 1
python runner.py $1 $2 $3 write --prompt_set 2
python runner.py $1 $2 $3 write --prompt_set 3
## if you make a change to base_configs, the above steps need to be rerun to
## regenerate instantiated experiment configs (with HPs populated)
echo ">>>> Run experiments for different HPs on the dev set. <<<<"
python runner.py $1 $2 $3 predict --prompt_set 1
## If prediction files already exist, it won't redo them. Pass --force if you want to redo.
echo ">>>> Run evaluation for different HPs on the dev set. <<<<"
python runner.py $1 $2 $3 evaluate --prompt_set 1
## This runs by default after prediction. This is mainly to show a standalone option.
echo ">>>> Show results for experiments with different HPs <<<<"
python runner.py $1 $2 $3 summarize --prompt_set 1
## Not necessary as such, it'll just show you the results using different HPs in a nice table.
echo ">>>> Pick the best HP and save the config with that HP. <<<<"
python runner.py $1 $2 $3 write --prompt_set 1 --best
python runner.py $1 $2 $3 write --prompt_set 2 --best
python runner.py $1 $2 $3 write --prompt_set 3 --best
echo ">>>> Run the experiment with best HP on the test set <<<<"
python runner.py $1 $2 $3 predict --prompt_set 1 --best --eval_test --official
python runner.py $1 $2 $3 predict --prompt_set 2 --best --eval_test --official
python runner.py $1 $2 $3 predict --prompt_set 3 --best --eval_test --official
## If prediction files already exist, it won't redo them. Pass --force if you want to redo.
echo ">>>> Run evaluation for the best HP on the test set <<<<"
python runner.py $1 $2 $3 evaluate --prompt_set 1 --best --eval_test --official
python runner.py $1 $2 $3 evaluate --prompt_set 2 --best --eval_test --official
python runner.py $1 $2 $3 evaluate --prompt_set 3 --best --eval_test --official
## This runs by default after prediction. This is mainly to show a standalone option.
echo ">>>> Summarize best test results for individual prompts and aggregate (mean +- std) of them) <<<<"
python runner.py $1 $2 $3 summarize --prompt_set 1 --best --eval_test --official
python runner.py $1 $2 $3 summarize --prompt_set 2 --best --eval_test --official
python runner.py $1 $2 $3 summarize --prompt_set 3 --best --eval_test --official
python runner.py $1 $2 $3 summarize --prompt_set aggregate --best --eval_test --official
## The mean and std in the final command is what we reported in the paper.