forked from StonyBrookNLP/ircot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
123 lines (103 loc) · 4.86 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import json
import os
import subprocess
def main():
parser = argparse.ArgumentParser(description="Wrapper around run.py to make experimentation easier.")
parser.add_argument("system", type=str, choices=("ircot", "ircot_qa", "nor_qa", "oner", "oner_qa"))
parser.add_argument("model", type=str, choices=("codex", "flan-t5-xxl", "flan-t5-xl", "flan-t5-large", "flan-t5-base", "none"))
all_datasets = ["hotpotqa", "2wikimultihopqa", "musique", "iirc"]
all_datasets += ["_to_".join([dataset_a, dataset_b]) for dataset_a in all_datasets for dataset_b in all_datasets]
parser.add_argument("dataset", type=str, choices=all_datasets)
parser.add_argument(
"command",
type=str,
help="command",
choices={
"print",
"write",
"verify",
"predict",
"evaluate",
"track",
"summarize",
"ground_truth_check",
"backup",
"print_backup",
"recover_backup",
"delete_predictions",
},
)
parser.add_argument(
"--prompt_set",
type=str,
help="prompt_set",
choices={"1", "2", "3", "aggregate"},
default="1",
)
parser.add_argument("--dry_run", action="store_true", default=False, help="dry_run")
parser.add_argument("--use_backup", action="store_true", default=False, help="pass --use_backup flag")
parser.add_argument("--skip_evaluation_path", action="store_true", default=False, help="skip_evaluation_path")
parser.add_argument("--eval_test", action="store_true", default=False, help="eval_test")
parser.add_argument("--best", action="store_true", default=False, help="pass --best flag")
parser.add_argument("--skip_if_exists", action="store_true", default=False, help="skip evaluation of it exists.")
parser.add_argument(
"--only_print", action="store_true", default=False, help="print only for eval, ignore otherwise."
)
parser.add_argument("--force", action="store_true", default=False, help="force predict if it exists")
parser.add_argument(
"--official", action="store_true", default=False, help="use official evaluation for evaluate and summarize."
)
args = parser.parse_args()
if "_to_" in args.dataset:
train_dataset, eval_dataset = args.dataset.split("_to_")
else:
train_dataset = eval_dataset = args.dataset
experiment_name = "_".join([args.system, args.model.replace("-", "_"), args.dataset])
if args.model == "none":
experiment_name = "_".join([args.system, args.dataset])
instantiation_scheme = args.system
run_command_array = [
f"python run.py {args.command} {experiment_name} --instantiation_scheme {instantiation_scheme} --prompt_set {args.prompt_set}",
]
if args.command in ("write", "predict", "evaluate", "print", "summarize") and args.best:
run_command_array += ["--best"]
if args.command == "write":
run_command_array += ["--no_diff"]
if (
args.command in ("predict", "evaluate", "track", "summarize", "ground_truth_check")
and not args.skip_evaluation_path
) or args.best:
set_name = "test" if args.eval_test else "dev"
evaluation_path = os.path.join("processed_data", eval_dataset, f"{set_name}_subsampled.jsonl")
run_command_array += [f"--evaluation_path {evaluation_path}"]
if (
args.command in ("predict", "summarize") or (args.command == "write" and args.best)
) and train_dataset != eval_dataset:
variable_replacements = {"retrieval_corpus_name": f'"{eval_dataset}"'}
variable_replacements_str = json.dumps(variable_replacements).replace(" ", "")
run_command_array += ["--variable_replacements", f"'{variable_replacements_str}'"]
if args.command in ("predict"):
run_command_array.append("--skip_if_exists --silent")
if args.command in ("predict", "evaluate", "track", "summarize", "ground_truth_check") and args.use_backup:
run_command_array += ["--use_backup"]
if args.command == "predict" and args.force:
run_command_array += ["--force"]
if args.command == "evaluate" and args.skip_if_exists:
run_command_array += ["--skip_if_exists"]
if args.command == "evaluate" and args.only_print:
run_command_array += ["--only_print"]
if args.command in ("evaluate", "summarize") and args.official:
run_command_array += ["--official"]
assert train_dataset in experiment_name
print("", flush=True)
message = f"Experiment Name: {experiment_name}"
print("*" * len(message), flush=True)
print(message, flush=True)
print("*" * len(message), flush=True)
run_command_str = " ".join(run_command_array)
print(run_command_str + "\n", flush=True)
if not args.dry_run:
subprocess.call(run_command_str, shell=True)
if __name__ == "__main__":
main()