-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft_main.cu
178 lines (157 loc) · 6.07 KB
/
fft_main.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
//Do NOT MODIFY THIS FILE
#include "fft.h"
// ===========================> Functions Prototype <===============================
void fill(float* data, int size);
double calc_mse(float* data1_r, float* data1_i, float* data2_r, float* data2_i, int size);
void get_inputs(int argc, char *argv[], unsigned int& N, unsigned int& M);
void cpuKernel(float* X_serial_r, float* X_serial_i, int n, float* tmp_r, float* tmp_i);
void gpuKernels(float* x_r, float* x_i, float* X_r, float* X_i, unsigned int N, unsigned int M, double* gpu_kernel_time);
// =================================================================================
int main(int argc, char *argv[]) {
struct cudaDeviceProp p;
cudaGetDeviceProperties(&p, 0);
printf("Device Name: %s\n", p.name);
// get parameters from command line
unsigned int N, M;
get_inputs(argc, argv, N, M);
// allocate memory in CPU for calculation
float* x_r; // real part
float* x_i; // imaginary part
float* X_serial_r;
float* X_serial_i;
float* X_r;
float* X_i;
x_r = (float*) malloc(N * sizeof(float));
x_i = (float*) malloc(N * sizeof(float));
X_serial_r = (float*) malloc(N * sizeof(float));
X_serial_i = (float*) malloc(N * sizeof(float));
X_r = (float*) malloc(N * sizeof(float));
X_i = (float*) malloc(N * sizeof(float));
// fill x_r and x_i arrays with random values between -8.0f and 8.0f
srand(0);
fill(x_r, N);
fill(x_i, N);
int i; for (i = 0; i < N; i++) {
X_serial_r[i] = x_r[i];
X_serial_i[i] = x_i[i];
}
// time measurement for CPU calculation
float *tmp_r, *tmp_i;
tmp_r = (float*) malloc(N * sizeof(float));
tmp_i = (float*) malloc(N * sizeof(float));
clock_t t0 = clock();
cpuKernel(X_serial_r, X_serial_i, N, tmp_r, tmp_i);
clock_t t1 = clock();
free(tmp_r); free(tmp_i);
// time measurement for GPU calculation
double gpu_kernel_time = 0.0;
clock_t t2 = clock();
gpuKernels(x_r, x_i, X_r, X_i, N, M, &gpu_kernel_time);
clock_t t3 = clock();
// check correctness of calculation
double mse = calc_mse(X_serial_r, X_serial_i, X_r, X_i, N);
printf("m=%d n=%d CPU=%g ms GPU=%g ms GPU-Kernels=%g ms mse=%g\n",
M, N, (t1-t0)/1000.0, (t3-t2)/1000.0, gpu_kernel_time, mse);
/*
for (i = 0; i<N; i++) {
printf("%f\t%f\n", x_r[i], x_i[i]);
}
printf("\n");
for (i = 0; i<N; i++) {
printf("%f\t%f\n", X_serial_r[i], X_serial_i[i]);
}
*/
// free allocated memory for later use
free(x_r);
free(x_i);
free(X_serial_r);
free(X_serial_i);
free(X_r);
free(X_i);
return 0;
}
//-----------------------------------------------------------------------------
void gpuKernels(float* x_r, float* x_i, float* X_r, float* X_i, unsigned int N, unsigned int M, double* gpu_kernel_time) {
float* x_r_d;
float* x_i_d;
//float* X_r_d;
//float* X_i_d;
HANDLE_ERROR(cudaMalloc((void**)&x_r_d, N * sizeof(float)));
HANDLE_ERROR(cudaMalloc((void**)&x_i_d, N * sizeof(float)));
//HANDLE_ERROR(cudaMalloc((void**)&X_r_d, N * sizeof(float)));
//HANDLE_ERROR(cudaMalloc((void**)&X_i_d, N * sizeof(float)));
HANDLE_ERROR(cudaMemcpy(x_r_d, x_r, N * sizeof(float), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(x_i_d, x_i, N * sizeof(float), cudaMemcpyHostToDevice));
GpuTimer timer;
timer.Start();
gpuKernel(x_r_d, x_i_d, N, M);/*<<<dim3(32,1,1),dim3(32,1,1)>>>(x_r_d, x_i_d, N, M);*/
timer.Stop();
*gpu_kernel_time = timer.Elapsed();
//HANDLE_ERROR(cudaMemcpy(X_r, X_r_d, N * sizeof(float), cudaMemcpyDeviceToHost));
//HANDLE_ERROR(cudaMemcpy(X_i, X_i_d, N * sizeof(float), cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaMemcpy(X_r, x_r_d, N * sizeof(float), cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaMemcpy(X_i, x_i_d, N * sizeof(float), cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaFree(x_r_d));
HANDLE_ERROR(cudaFree(x_i_d));
//HANDLE_ERROR(cudaFree(X_r_d));
//HANDLE_ERROR(cudaFree(X_i_d));
}
//-----------------------------------------------------------------------------
void cpuKernel(float* X_serial_r, float* X_serial_i, int n, float* tmp_r, float* tmp_i) {
if(n > 1) { // otherwise, do nothing and return
int k, m;
float z_r, z_i, w_r, w_i;
float *vo_r, *vo_i, *ve_r, *ve_i;
ve_r = tmp_r; ve_i = tmp_i;
vo_r = tmp_r + n/2; vo_i = tmp_i + n/2;
for(k=0; k<n/2; k++) {
ve_r[k] = X_serial_r[2*k]; ve_i[k] = X_serial_i[2*k];
vo_r[k] = X_serial_r[2*k+1]; vo_i[k] = X_serial_i[2*k+1];
}
cpuKernel(ve_r, ve_i, n/2, X_serial_r, X_serial_i); // FFT on even-indexed elements of v[]
cpuKernel(vo_r, vo_i, n/2, X_serial_r, X_serial_i); // FFT on odd-indexed elements of v[]
for(m=0; m<n/2; m++) {
w_r = cos((2*PI*m)/n);
w_i = -sin((2*PI*m)/n);
z_r = w_r*vo_r[m] - w_i*vo_i[m]; // Re(w*vo[m])
z_i = w_r*vo_i[m] + w_i*vo_r[m]; // Im(w*vo[m])
X_serial_r[ m ] = ve_r[m] + z_r;
X_serial_i[ m ] = ve_i[m] + z_i;
X_serial_r[m+n/2] = ve_r[m] - z_r;
X_serial_i[m+n/2] = ve_i[m] - z_i;
}
}
return;
}
//-----------------------------------------------------------------------------
void get_inputs(int argc, char *argv[], unsigned int& N, unsigned int& M)
{
if (
argc != 2 ||
atoi(argv[1]) < 0 || atoi(argv[1]) > 26
) {
printf("<< Error >>\n");
printf("Enter the following command:\n");
printf("\t./a.out M\n");
printf("\t\tM must be between 0 and 26\n");
exit(-1);
}
M = atoi(argv[1]);
N = (1 << M);
}
//-----------------------------------------------------------------------------
void fill(float* data, int size) {
for (int i = 0; i < size; i++)
data[i] = (float)(rand() % 17 - 8);
}
double calc_mse(float* data1_r, float* data1_i, float* data2_r, float* data2_i, int size) {
double mse = 0.0;
int i;
for (i = 0; i < size; i++) {
double e_r = data1_r[i] - data2_r[i];
double e_i = data1_i[i] - data2_i[i];
double e = e_r * e_r + e_i * e_i;
mse += e;
}
return mse/size;
}