-
Notifications
You must be signed in to change notification settings - Fork 39
/
config.py
67 lines (48 loc) · 1.78 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
from easydict import EasyDict as edict
import time
import torch
# init
__C = edict()
cfg = __C
__C.DATA = edict()
__C.TRAIN = edict()
__C.VAL = edict()
__C.VIS = edict()
#------------------------------DATA------------------------
__C.DATA.STD_SIZE = (768,1024)
__C.DATA.DATA_PATH = '/media/D/DataSet/CC/UCF-qnrf/768x1024_1221'
__C.DATA.MEAN_STD = ([0.413525998592, 0.378520160913, 0.371616870165], [0.284849464893, 0.277046442032, 0.281509846449]) # UCF QNRF
__C.DATA.LABEL_FACTOR = 1
__C.DATA.LOG_PARA = 100.
#------------------------------TRAIN------------------------
__C.TRAIN.INPUT_SIZE = (576,768)
__C.TRAIN.SEED = 3035
__C.TRAIN.BATCH_SIZE = 6
__C.TRAIN.PRE_GCC = False
__C.TRAIN.PRE_GCC_MODEL = './pre/Pretrained_GCC.pth'
__C.TRAIN.GPU_ID = [0,1]
# learning rate settings
__C.TRAIN.LR = 1e-5
__C.TRAIN.LR_DECAY = 0.995
__C.TRAIN.LR_DECAY_START = -1
__C.TRAIN.NUM_EPOCH_LR_DECAY = 1 # epoches
__C.TRAIN.MAX_EPOCH = 1000
# output
__C.TRAIN.PRINT_FREQ = 20
now = time.strftime("%m-%d_%H-%M", time.localtime())
__C.TRAIN.EXP_NAME = now \
+ '_resSFCN_'\
+ '_' + str(__C.TRAIN.LR) \
+ '_GCC' + str(__C.TRAIN.PRE_GCC)
__C.TRAIN.EXP_PATH = './exp'
#------------------------------VAL------------------------
__C.VAL.BATCH_SIZE = 2 # imgs
__C.VAL.DENSE_START = 50
__C.VAL.FREQ = 5 # After 300 epoches, the freq is set as 1
#------------------------------VIS------------------------
__C.VIS.VISIBLE_NUM_IMGS = 2
#------------------------------MISC------------------------
#================================================================================
#================================================================================
#================================================================================