-
Notifications
You must be signed in to change notification settings - Fork 5
/
eval_spot.py
220 lines (175 loc) · 11.1 KB
/
eval_spot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import copy
import os.path
import argparse
import pandas as pd
from tqdm import tqdm
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.utils as vutils
from torchvision.utils import save_image
from spot import SPOT
from datasets import PascalVOC, COCO2017, MOVi
from ocl_metrics import UnsupervisedMaskIoUMetric, ARIMetric
from utils_spot import inv_normalize, visualize, bool_flag
import models_vit
parser = argparse.ArgumentParser()
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--image_size', type=int, default=224)
parser.add_argument('--val_image_size', type=int, default=224)
parser.add_argument('--val_mask_size', type=int, default=320)
parser.add_argument('--eval_batch_size', type=int, default=32)
parser.add_argument('--viz_resolution_factor', type=float, default=0.5)
parser.add_argument('--checkpoint_path', default='checkpoint.pt.tar')
parser.add_argument('--log_path', default='results')
parser.add_argument('--dataset', default='coco', help='coco or voc')
parser.add_argument('--data_path', type=str, help='dataset path')
parser.add_argument('--num_dec_blocks', type=int, default=4)
parser.add_argument('--d_model', type=int, default=768)
parser.add_argument('--num_heads', type=int, default=6)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--num_iterations', type=int, default=3)
parser.add_argument('--num_slots', type=int, default=7)
parser.add_argument('--slot_size', type=int, default=256)
parser.add_argument('--mlp_hidden_size', type=int, default=1024)
parser.add_argument('--img_channels', type=int, default=3)
parser.add_argument('--pos_channels', type=int, default=4)
parser.add_argument('--num_cross_heads', type=int, default=None)
parser.add_argument('--dec_type', type=str, default='transformer', help='type of decoder transformer or mlp')
parser.add_argument('--cappa', type=float, default=-1)
parser.add_argument('--mlp_dec_hidden', type=int, default=2048, help='Dimension of decoder mlp hidden layers')
parser.add_argument('--use_slot_proj', type=bool_flag, default=True, help='Use an extra projection before MLP decoder')
parser.add_argument('--which_encoder', type=str, default='dino_vitb16', help='dino_vitb16, dino_vits8, dinov2_vitb14_reg, dinov2_vits14_reg, dinov2_vitb14, dinov2_vits14, mae_vitb16')
parser.add_argument('--finetune_blocks_after', type=int, default=100, help='just use a large number')
parser.add_argument('--encoder_final_norm', type=bool_flag, default=False)
parser.add_argument('--truncate', type=str, default='bi-level', help='bi-level or fixed-point or none')
parser.add_argument('--init_method', default='embedding', help='embedding or shared_gaussian')
parser.add_argument('--use_second_encoder', type= bool_flag, default = True, help='different encoder for input and target of decoder')
parser.add_argument('--train_permutations', type=str, default='random', help='it is just for the initialization')
parser.add_argument('--eval_permutations', type=str, default='standard', help='standard, random, or all')
args = parser.parse_args()
torch.manual_seed(args.seed)
arg_str_list = ['{}={}'.format(k, v) for k, v in vars(args).items()]
arg_str = '__'.join(arg_str_list)
log_dir = os.path.join(args.log_path, os.path.basename(os.path.dirname(args.checkpoint_path)))
os.makedirs(log_dir, exist_ok=True)
if args.dataset == 'voc':
val_dataset = PascalVOC(root=args.data_path, split='val', image_size=args.val_image_size, mask_size = args.val_mask_size)
elif args.dataset == 'coco':
val_dataset = COCO2017(root=args.data_path, split='val', image_size=args.val_image_size, mask_size = args.val_mask_size)
elif args.dataset == 'movi':
val_dataset = MOVi(root=os.path.join(args.data_path, 'validation'), split='validation', image_size=args.val_image_size, mask_size = args.val_mask_size)
args.max_tokens = int((args.val_image_size/16)**2)
val_sampler = None
loader_kwargs = {
'num_workers': args.num_workers,
'pin_memory': True,
}
val_loader = DataLoader(val_dataset, sampler=val_sampler, shuffle=False, drop_last = False, batch_size=args.eval_batch_size, **loader_kwargs)
val_epoch_size = len(val_loader)
if args.which_encoder == 'dino_vitb16':
args.max_tokens = int((args.val_image_size/16)**2)
encoder = torch.hub.load('facebookresearch/dino:main', 'dino_vitb16')
elif args.which_encoder == 'dino_vits8':
args.max_tokens = int((args.val_image_size/8)**2)
encoder = torch.hub.load('facebookresearch/dino:main', 'dino_vits8')
elif args.which_encoder == 'dino_vitb8':
args.max_tokens = int((args.val_image_size/8)**2)
encoder = torch.hub.load('facebookresearch/dino:main', 'dino_vitb8')
elif args.which_encoder == 'dinov2_vitb14':
args.max_tokens = int((args.val_image_size/14)**2)
encoder = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14')
elif args.which_encoder == 'dinov2_vits14':
args.max_tokens = int((args.val_image_size/14)**2)
encoder = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
elif args.which_encoder == 'dinov2_vitb14_reg':
args.max_tokens = int((args.val_image_size/14)**2)
encoder = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14_reg')
elif args.which_encoder == 'dinov2_vits14_reg':
args.max_tokens = int((args.val_image_size/14)**2)
encoder = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_reg')
elif args.which_encoder == 'mae_vitb16':
args.max_tokens = int((args.val_image_size/16)**2)
encoder = models_vit.__dict__["vit_base_patch16"](num_classes=0, global_pool=False, drop_path_rate=0)
else:
raise
encoder = encoder.eval()
if args.use_second_encoder:
encoder_second = copy.deepcopy(encoder).eval()
else:
encoder_second = None
if args.num_cross_heads is None:
args.num_cross_heads = args.num_heads
model = SPOT(encoder, args, encoder_second)
checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
checkpoint['model'] = {k.replace("tf_dec.", "dec."): v for k, v in checkpoint['model'].items()} # compatibility with older runs
model.load_state_dict(checkpoint['model'], strict = True)
model = model.cuda()
MBO_c_metric = UnsupervisedMaskIoUMetric(matching="best_overlap", ignore_background = True, ignore_overlaps = True).cuda()
MBO_i_metric = UnsupervisedMaskIoUMetric(matching="best_overlap", ignore_background = True, ignore_overlaps = True).cuda()
miou_metric = UnsupervisedMaskIoUMetric(matching="hungarian", ignore_background = True, ignore_overlaps = True).cuda()
ari_metric = ARIMetric(foreground = True, ignore_overlaps = True).cuda()
MBO_c_slot_metric = UnsupervisedMaskIoUMetric(matching="best_overlap", ignore_background = True, ignore_overlaps = True).cuda()
MBO_i_slot_metric = UnsupervisedMaskIoUMetric(matching="best_overlap", ignore_background = True, ignore_overlaps = True).cuda()
miou_slot_metric = UnsupervisedMaskIoUMetric(matching="hungarian", ignore_background = True, ignore_overlaps = True).cuda()
ari_slot_metric = ARIMetric(foreground = True, ignore_overlaps = True).cuda()
with torch.no_grad():
model.eval()
val_mse = 0.
counter = 0
for batch, (image, true_mask_i, true_mask_c, mask_ignore) in enumerate(tqdm(val_loader)):
image = image.cuda()
true_mask_i = true_mask_i.cuda()
true_mask_c = true_mask_c.cuda()
mask_ignore = mask_ignore.cuda()
batch_size = image.shape[0]
counter += batch_size
mse, default_slots_attns, dec_slots_attns, _, _, _ = model(image)
# DINOSAUR uses as attention masks the attenton maps of the decoder
# over the slots, which bilinearly resizes to match the image resolution
# dec_slots_attns shape: [B, num_slots, H_enc, W_enc]
default_attns = F.interpolate(default_slots_attns, size=args.val_mask_size, mode='bilinear')
dec_attns = F.interpolate(dec_slots_attns, size=args.val_mask_size, mode='bilinear')
# dec_attns shape [B, num_slots, H, W]
default_attns = default_attns.unsqueeze(2)
dec_attns = dec_attns.unsqueeze(2) # shape [B, num_slots, 1, H, W]
pred_default_mask = default_attns.argmax(1).squeeze(1)
pred_dec_mask = dec_attns.argmax(1).squeeze(1)
val_mse += mse.item()
# Compute ARI, MBO_i and MBO_c, miou scores for both slot attention and decoder
true_mask_i_reshaped = torch.nn.functional.one_hot(true_mask_i).to(torch.float32).permute(0,3,1,2).cuda()
true_mask_c_reshaped = torch.nn.functional.one_hot(true_mask_c).to(torch.float32).permute(0,3,1,2).cuda()
pred_dec_mask_reshaped = torch.nn.functional.one_hot(pred_dec_mask).to(torch.float32).permute(0,3,1,2).cuda()
pred_default_mask_reshaped = torch.nn.functional.one_hot(pred_default_mask).to(torch.float32).permute(0,3,1,2).cuda()
MBO_i_metric.update(pred_dec_mask_reshaped, true_mask_i_reshaped, mask_ignore)
MBO_c_metric.update(pred_dec_mask_reshaped, true_mask_c_reshaped, mask_ignore)
miou_metric.update(pred_dec_mask_reshaped, true_mask_i_reshaped, mask_ignore)
ari_metric.update(pred_dec_mask_reshaped, true_mask_i_reshaped, mask_ignore)
MBO_i_slot_metric.update(pred_default_mask_reshaped, true_mask_i_reshaped, mask_ignore)
MBO_c_slot_metric.update(pred_default_mask_reshaped, true_mask_c_reshaped, mask_ignore)
miou_slot_metric.update(pred_default_mask_reshaped, true_mask_i_reshaped, mask_ignore)
ari_slot_metric.update(pred_default_mask_reshaped, true_mask_i_reshaped, mask_ignore)
val_mse /= (val_epoch_size)
ari = 100 * ari_metric.compute()
ari_slot = 100 * ari_slot_metric.compute()
mbo_c = 100 * MBO_c_metric.compute()
mbo_i = 100 * MBO_i_metric.compute()
miou = 100 * miou_metric.compute()
mbo_c_slot = 100 * MBO_c_slot_metric.compute()
mbo_i_slot = 100 * MBO_i_slot_metric.compute()
miou_slot = 100 * miou_slot_metric.compute()
val_loss = val_mse
df_results = pd.DataFrame([[mbo_i.item(), mbo_c.item(), ari.item(), val_mse, mbo_i_slot.item(), mbo_c_slot.item(), ari_slot.item(), miou.item(), miou_slot.item()]],
columns=['mBO_i', 'mBO_c', 'FG-ARI', 'MSE', 'mBO_i_slots', 'mBO_c_slots', 'FG-ARI_slots', 'miou', 'miou_slots'])
print(args.checkpoint_path)
print(df_results)
# For plotting
image = inv_normalize(image)
image = F.interpolate(image, size=args.val_mask_size, mode='bilinear')
rgb_default_attns = image.unsqueeze(1) * default_attns + 1. - default_attns
rgb_dec_attns = image.unsqueeze(1) * dec_attns + 1. - dec_attns
vis_recon = visualize(image, true_mask_c, pred_dec_mask, rgb_dec_attns, pred_default_mask, rgb_default_attns, N=32)
grid = vutils.make_grid(vis_recon, nrow=2*args.num_slots + 4, pad_value=0.2)[:, 2:-2, 2:-2]
grid = F.interpolate(grid.unsqueeze(1), scale_factor=args.viz_resolution_factor, mode='bilinear').squeeze() # Lower resolution
save_image(grid, os.path.join(log_dir,'output.png'))