-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNMF_decomposition.py
128 lines (119 loc) · 5.55 KB
/
NMF_decomposition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import librosa
import matplotlib.pyplot as plt
class NMFDecomposition(object):
""" decomposes the cough audio array according Non-negative matrix factorization components"""
def __init__(self, audio, fs, num_components=6):
"""
Init function
:param audio: np.array((n,)), audio to be decomposed
:param fs: int, sample rate
:param num_components: int, number of components to generate with NMF
"""
# TODO
self.audio = audio
self.fs = fs
self.decomposition_type = 'nmf'
# components are stored self.W (spectral activations, shape (n, num_components)) and self.H (temporal
# activations, shape (num_components, n))
self.num_components = num_components
self.W, self.H, self.phase, self.V = self.initialize_components()
def get_number_components(self):
"""
:return: int, number of components generated during the decomposition
"""
return self.num_components
def initialize_components(self):
"""
initializes the interpretable components
:return: length_components, temp_components, indices_min, loudness
length_components: number of components generated
temp_components: generated components
indices_min: indices of the minima of the power array -> splitting indices of decomposition
loudness: 1d numpy array, power array, same length as audio array
"""
s = librosa.stft(self.audio)
x, x_phase = librosa.magphase(s)
spectral, temporal = librosa.decompose.decompose(x, n_components=self.num_components)
return spectral, temporal, x_phase, x
def get_components_mask(self, mask):
"""
return components for a mask, set to original audio component for true and fudged for false
:param mask: 1D np.array of false and true
:return: concatenated fudged and original audio components
"""
# TODO
# mask: array of false and true, length of num_components
# get components for true and fudged for false
# check if only one value is set to True
if mask.sum() == 1:
# only one component, need to calculate slighty different
reconstructed_x = np.outer(self.W[:, mask], self.H[mask, :]) * self.phase
else:
reconstructed_x = np.dot(self.W[:, mask], self.H[mask, :]) * self.phase
reconstructed_audio = librosa.istft(reconstructed_x)
return reconstructed_audio
def return_components(self, indices):
"""
return audio array for given component indices, all other components set to 0
:param indices: list of indices for which to return the original audio components
:return: audio
"""
# make mask setting true for indices
mask = np.zeros((self.num_components,)).astype(bool)
mask[indices] = True
audio = self.get_components_mask(mask)
return audio
def return_weighted_components(self, used_features, weights):
"""
return audio with loudness components weighted according to their absolute importance
:param used_features: array of indices of features to include
:param weights: array of their corresponding weights
:return: 1d array with weighted audio
"""
# normalize weights
sum_weights = np.sum(np.abs(weights))
weights = np.abs(weights) / sum_weights
mask_weights = np.zeros((self.num_components,))
mask_include = np.zeros((self.num_components,)).astype(bool)
for index, feature in enumerate(used_features):
mask_weights[feature] = weights[index]
mask_include[feature] = True
if mask_include.sum() == 1:
# only one component, need to calculate slighty different
reconstructed_x = np.outer(self.W[:, mask_include], self.H[mask_include, :]) * self.phase
else:
a = np.array([0,1,2])
weights_stretched = np.tile(mask_weights, (np.shape(self.W)[0], 1))
W_weighted = np.multiply(self.W, weights_stretched)
reconstructed_x = np.dot(W_weighted[:, mask_include], self.H[mask_include, :]) * self.phase
reconstructed_audio = librosa.istft(reconstructed_x)
return reconstructed_audio
def visualize_decomp(self, save_path=None):
"""
visualize the calculated decomposition and the loudness level
:param save_path: if not None, path for where to save the generated figure
"""
# spectral profiles
fig, ax = plt.subplots(1, self.num_components, figsize=(7, 8))
fig.suptitle("NMF Decomposition into 6 Components\nSpectral Profiles")
logw = np.log10(self.W)
for i in range(self.num_components):
x = list(range(len(-logw[:, i])))
ax[i].plot(logw[:, i], x)
ax[i].set_xlabel(f"Component {i+1}", rotation=90)
plt.tight_layout()
if save_path is not None:
plt.savefig(f'{save_path}/nmf_spectral.png')
plt.show()
# temporal activations
fig, ax = plt.subplots(self.num_components, 1, figsize=(7, 7))
fig.suptitle("NMF Decomposition into 6 Components\nTemporal Activations")
for i in range(self.num_components):
ax[i].plot(self.H[i])
ax[i].set_ylabel(f"Component {i+1}", rotation=90)
plt.tight_layout()
if save_path is not None:
plt.savefig(f"{save_path}/nmf_temporal.png")
plt.show()
print("visualized :) ")