-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlime_cough.py
662 lines (603 loc) · 34.9 KB
/
lime_cough.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
from functools import partial
import numpy as np
import sklearn
from sklearn.utils import check_random_state
from tqdm.auto import tqdm
import librosa
import matplotlib.pyplot as plt
from skimage.segmentation import mark_boundaries
import matplotlib.patches as mpatches
from lime import lime_base
import sys
class CoughExplanation(object):
def __init__(self, decomposition):
"""
init function for Cough Explanation object
:param decomposition: object, chosen decomposition for the explanation, possibilities:
temporal, spectral, loudness, ls (loudness-spectral), nmf
"""
self.decomposition = decomposition
self.intercept = {}
self.local_exp = {}
self.local_pred = {}
self.score = {}
def get_exp_components(self, label, positive_components=True, negative_components=True, num_components='all',
min_abs_weight=0.0, return_indices=False):
"""
function that returns the audio made of the num_components most important components
:param label: class for which to explain the prediction
:param positive_components: bool, whether to include components with positive weights
:param negative_components: bool, whether to include components with negative weights
:param num_components: int, how many components to return
:param min_abs_weight: float, min abs weight that the components needs to have in order to be included in return
:param return_indices: bool, whether to also return the indices
:return: audio that is made of the most important num_components for the explanation, possibly also indices
"""
used_features, _ = self.get_used_indices(label, positive_components, negative_components,
num_components, min_abs_weight)
audio = self.decomposition.return_components(used_features)
if return_indices:
return audio, used_features
return audio
def get_used_indices(self, label, positive_components=True, negative_components=False, num_components='all',
min_abs_weight=0.0):
"""
returns the indices of the num_components most important components of the explanation and their weights in the
explanation
:param label: class for which to explain the prediction
:param positive_components: bool, whether to include components with positive weights
:param negative_components: bool, whether to include components with negative weights
:param num_components: int, how many components to return
:param min_abs_weight: float, min abs weight that the components needs to have in order to be included in return
:param return_indices: bool, whether to also return the indices
:return: audio that is made of the most important num_components for the explanation, possibly also indices
"""
if label not in self.local_exp:
print('Error: Label not in explanation')
sys.exit()
if positive_components is False and negative_components is False:
print('Error: positive_components, negative_components or both must be True')
sys.exit()
exp = self.local_exp[label]
w = [[x[0], x[1]] for x in exp]
used_features, weights = np.array(w, dtype=int)[:, 0], np.array(w)[:, 1]
if not negative_components:
pos_weights = np.argwhere(weights > 0)[:, 0]
used_features = used_features[pos_weights]
weights = weights[pos_weights]
elif not positive_components:
neg_weights = np.argwhere(weights < 0)[:, 0]
used_features = used_features[neg_weights]
weights = weights[neg_weights]
if min_abs_weight != 0.0:
abs_weights = np.argwhere(abs(weights) >= min_abs_weight)[:, 0]
used_features = used_features[abs_weights]
weights = weights[abs_weights]
used_features = used_features[:num_components]
return used_features, weights
def weighted_audio(self, label, positive_components=True, negative_components=False, num_components='all',
min_abs_weight=0.0, return_indices=False):
"""
return weighted audio made of num_components most important components, weighted by importance of components
:param label: class for which to explain the prediction
:param positive_components: bool, whether to include components with positive weights
:param negative_components: bool, whether to include components with negative weights
:param num_components: int, how many components to return
:param min_abs_weight: float, min abs weight that the components needs to have in order to be included in return
:param return_indices: bool, whether to also return the indices
:return: array, weighted audio of the most important num_components for the explanation,
possibly also indices as list
"""
# returns weighted audio (weighted by abs value of components)
used_features, weights = self.get_used_indices(label, positive_components, negative_components,
num_components, min_abs_weight)
used_features = used_features[:num_components]
weights = weights[:num_components]
audio = self.decomposition.return_weighted_components(used_features, weights)
if return_indices:
return audio, used_features
return audio
def normalize(self, weights):
"""
normalizes an array of weights to be in a certain range to obtain better transparency values for the images
:param weights: array of weights to be normalized
:return: array of normalized weights
"""
abs_weights = np.abs(np.array(weights))
minimum = min(abs_weights) - 0.2 * max(abs_weights)
maximum = max(abs_weights) + 0.4 * max(abs_weights)
normalized = np.zeros(np.shape(abs_weights))
for i, _ in enumerate(abs_weights):
normalized[i] = (abs_weights[i] - minimum) / (maximum - minimum) # zi = (xi – min(x)) / (max(x) – min(x))
return normalized
def show_image_mask_spectrogram(self, label, positive_only=True, negative_only=False, hide_rest=True,
num_features=5, min_weight=0., save_path=None,
show_colors=False, show_loudness=True):
"""
generates an image of the decomposition with the most important components highlighted in green and red
:param label: class for which to explain the prediction
:param positive_only: bool, whether to include only components with positive weights
:param negative_only: bool, whether to include only components with negative weights
:param hide_rest: bool, whether to hide the other components that are not among the most important
:param num_features: int, how many components to return
:param min_weight: float, min abs weight that the components needs to have in order to be included in return
:param save_path: if not None: path to save the generated image
:param show_colors: bool, whether to show the components in red and green or just highlight them without colors
:param show_loudness: bool, for loudness decomposition, whether to include an image of the power array
:return: nothing, shows and possibly saves image
"""
if self.decomposition.decomposition_type == 'spectral':
self.image_spectral(label, positive_only=positive_only, negative_only=negative_only,
hide_rest=hide_rest, num_features=num_features, min_weight=min_weight,
save_path=save_path, show_colors=show_colors)
elif self.decomposition.decomposition_type == 'loudness':
self.image_loudness(label, positive_only=positive_only, negative_only=negative_only,
hide_rest=hide_rest, num_features=num_features, min_weight=min_weight,
save_path=save_path, show_colors=show_colors, show_loudness=show_loudness)
elif self.decomposition.decomposition_type == 'temporal':
self.image_temporal(label, positive_only=positive_only, negative_only=negative_only,
hide_rest=hide_rest, num_features=num_features, min_weight=min_weight,
save_path=save_path, show_colors=show_colors)
elif self.decomposition.decomposition_type == 'nmf':
self.image_nmf(label, positive_only=positive_only, negative_only=negative_only,
hide_rest=hide_rest, num_features=num_features, min_weight=min_weight,
save_path=save_path, show_colors=show_colors)
elif self.decomposition.decomposition_type == 'ls':
self.image_ls(label, positive_only=positive_only, negative_only=negative_only,
hide_rest=hide_rest, num_features=num_features, min_weight=min_weight,
save_path=save_path, show_colors=show_colors)
def get_indices(self, label, positive_only=True, negative_only=False, hide_rest=True,
num_features=5, min_weight=0., get_mask=True):
""" helper function to return image with highlighted most important components returning the corresponding
component indices
:param label: class for which to explain the prediction
:param positive_only: bool, whether to include only components with positive weights
:param negative_only: bool, whether to include only components with negative weights
:param hide_rest: bool, whether to hide unused features in image
:param num_features: int, how many components to return
:param get_mask: bool, whether to also return the generated mask for the image (for scikit mark_boundaries)
:param min_weight: float, min abs weight that the components needs to have in order to be included in return
:return: indices of components to include, indices of important components (array(k,)), corresponding weights
(array(k,)), mask to use to highlight components
"""
decomposition = self.decomposition
explanation = self.local_exp[label]
if positive_only:
indices_comp = [x[0] for x in explanation if x[1] > 0 and x[1] > min_weight][:num_features]
weights = [x[1] for x in explanation if x[1] > 0 and x[1] > min_weight][:num_features]
mask = decomposition.return_mask_boundaries(indices_comp, [])
if negative_only:
indices_comp = [x[0] for x in explanation if x[1] < 0 and abs(x[1]) > min_weight][:num_features]
weights = [x[1] for x in explanation if x[1] < 0 and abs(x[1]) > min_weight][:num_features]
if get_mask:
mask = decomposition.return_mask_boundaries([], indices_comp)
if positive_only or negative_only:
if hide_rest:
indices_show = indices_comp
else:
indices_show = range(decomposition.get_number_components())
else:
comp_pos, comp_neg = [], []
indices_comp, weights = [], []
for x in explanation[:num_features]:
indices_comp.append(x[0])
weights.append(x[1])
if x[1] > 0 and x[1] > min_weight:
comp_pos.append(x[0])
elif x[1] < 0 and np.abs(x[1]) > min_weight:
comp_neg.append(x[0])
if get_mask:
mask = decomposition.return_mask_boundaries(comp_pos, comp_neg)
if hide_rest:
indices_show = comp_pos + comp_neg
else:
indices_show = range(decomposition.get_number_components())
if get_mask:
return indices_show, indices_comp, mask, weights
else:
return indices_show, indices_comp, weights
def make_masked_image(self, mask):
"""
helper function to show image with most important components highlighted
:param mask: 2d array, where -1: show in red, where 1, show in green
:return: image with red and green components
"""
image = np.ones(np.shape(mask) + (4,))
mask_negative = np.zeros(np.shape(mask))
mask_negative[np.where(mask == 0)] = 1
mask_negative_green = np.ones(np.shape(mask))
mask_negative_green[np.where(mask == -1)] = 0
mask_negative_red = np.ones(np.shape(mask))
mask_negative_red[np.where(mask == 1)] = 0
image[:, :, 0] = mask_negative_red # 0 for red, 1 for green
image[:, :, 1] = mask_negative_green
image[:, :, 2] = mask_negative
image[:, :, 3] = np.abs(mask)
return image
def image_spectral(self, label, positive_only=True, negative_only=False, hide_rest=True, num_features=5,
min_weight=0., save_path=None, show_colors=False):
"""
generates the image highlighting the num_components most important components for the spectral decomposition
:param label: class for which to explain the prediction
:param positive_only: bool, whether to include components with positive weights
:param negative_only: bool, whether to include components with negative weights
:param hide_rest: bool, whether to hide or show less important components
:param num_features: int, how many components to highlight
:param min_weight: float, min abs weight that the components needs to have in order to be highlighted
:param save_path: if not None: path where to save the generated image
:param show_colors: bool, whether to highlight the components in green or red or just mark them
:return: nothing, shows and saves image if save_path is specified
"""
spectrogram_indices, indices_comp, mask, weights = self.get_indices(label, positive_only=positive_only,
negative_only=negative_only,
hide_rest=hide_rest,
num_features=num_features,
min_weight=min_weight)
spectrogram = self.decomposition.return_spectrogram_indices(spectrogram_indices)
spec_db = librosa.power_to_db(spectrogram, ref=np.max)
marked = mark_boundaries(spec_db, mask)
plt.imshow(marked[:, :, 2], origin="lower", cmap=plt.get_cmap("magma"))
plt.colorbar(format='%+2.0f dB')
if show_colors:
normalized_weights = self.normalize(weights)
for index, comp in enumerate(indices_comp):
if weights[index] < 0:
mask = self.decomposition.return_mask_boundaries([], [comp])
else:
mask = self.decomposition.return_mask_boundaries([comp], [])
image_array = self.make_masked_image(mask)
plt.imshow(image_array, origin="lower", interpolation="nearest", alpha=normalized_weights[index])
plt.xlabel("Time")
plt.ylabel("Frequency")
ax = plt.gca()
ax.axes.xaxis.set_ticks([])
ax.axes.yaxis.set_ticks([])
plt.title("Most important components for local\nprediction of class COVID-positive")
if save_path is not None:
plt.savefig(save_path)
plt.show()
plt.close()
def image_loudness(self, label, positive_only=True, negative_only=False, hide_rest=True, num_features=5,
min_weight=0., save_path=None, show_colors=False, show_loudness=True):
"""
generates the image highlighting the num_components most important components for the loudness decomposition
:param label: class for which to explain the prediction
:param positive_only: bool, whether to include components with positive weights
:param negative_only: bool, whether to include components with negative weights
:param hide_rest: bool, whether to hide or show less important components
:param num_features: int, how many components to highlight
:param min_weight: float, min abs weight that the components needs to have in order to be highlighted
:param save_path: if not None: path where to save the generated image
:param show_colors: bool, whether to highlight the components in green or red or just mark them
:param show_loudness: bool, whether to also show the components in the dB power curve
:return: nothing, shows and saves image if save_path is specified
"""
image_indices, indices_comp, mask, weights = self.get_indices(label, positive_only=positive_only,
negative_only=negative_only,
hide_rest=hide_rest,
num_features=num_features,
min_weight=min_weight)
# return the loudness waveform and decibels array for the corresponding image_indices
waveform, loudness = self.decomposition.return_components(image_indices, loudness=True)
if hide_rest:
waveform[np.where(waveform == 0)] = np.nan
loudness[np.where(loudness == 0)] = np.nan
if show_loudness:
fig, (ax1, ax2) = plt.subplots(2)
else:
fig = plt.figure(figsize=(7, 4))
ax1 = fig.add_subplot(111)
fig.suptitle('Loudness Decomposition')
ax1.plot(waveform, color='c')
component_indices = [0] + self.decomposition.indices_components + [np.size(waveform)]
# only mark the important components!!
for i in indices_comp:
left = component_indices[i]
bottom = -0.98
width = component_indices[i + 1] - component_indices[i]
height = 1.96
rect = mpatches.Rectangle((left, bottom), width, height,
fill=False,
color="purple",
linewidth=2)
ax1.add_patch(rect)
ax1.set(xlabel='Time', ylabel='Amplitude', xlim=[0, np.size(waveform)], ylim=[-1, 1])
if show_loudness:
ax2.plot(loudness, color='c')
for i in indices_comp:
left = component_indices[i]
bottom = 1
width = component_indices[i + 1] - component_indices[i]
height = 148
rect = mpatches.Rectangle((left, bottom), width, height,
fill=False,
color="purple",
linewidth=2)
ax2.add_patch(rect)
ax2.set(xlabel='Time', ylabel='Power (db)', xlim=[0, np.size(waveform)], ylim=[0, 150])
if show_colors:
normalized_weights = self.normalize(weights)
for index, comp in enumerate(indices_comp):
if weights[index] < 0:
ax1.axvspan(component_indices[comp], component_indices[comp+1], facecolor='red',
alpha=normalized_weights[index])
if show_loudness:
ax2.axvspan(component_indices[comp], component_indices[comp+1], facecolor='red',
alpha=normalized_weights[index])
else:
ax1.axvspan(component_indices[comp], component_indices[comp+1], facecolor='green',
alpha=normalized_weights[index])
if show_loudness:
ax2.axvspan(component_indices[comp], component_indices[comp+1], facecolor='green',
alpha=normalized_weights[index])
if save_path is not None:
plt.savefig(save_path)
plt.show()
plt.close()
def image_temporal(self, label, positive_only=True, negative_only=False, hide_rest=False, num_features=3,
min_weight=0.0, save_path=None, show_colors=True):
"""
generates the image highlighting the num_components most important components for the temporal decomposition
:param label: class for which to explain the prediction
:param positive_only: bool, whether to include components with positive weights
:param negative_only: bool, whether to include components with negative weights
:param hide_rest: bool, whether to hide or show less important components
:param num_features: int, how many components to highlight
:param min_weight: float, min abs weight that the components needs to have in order to be highlighted
:param save_path: if not None: path where to save the generated image
:param show_colors: bool, whether to highlight the components in green or red or just mark them
"""
image_indices, indices_comp, mask, weights = self.get_indices(label, positive_only=positive_only,
negative_only=negative_only,
hide_rest=hide_rest,
num_features=num_features,
min_weight=min_weight)
waveform = self.decomposition.return_components(image_indices)
if hide_rest:
waveform[np.where(waveform == 0)] = np.nan
length_audio = np.shape(waveform)[0]
distance = int(length_audio/self.decomposition.num_components)
indices = np.array(range(self.decomposition.num_components))
indices = indices * distance
indices = np.append(indices, [length_audio])
fig = plt.figure(figsize=(7, 3))
ax1 = fig.add_subplot(111)
fig.suptitle('Temporal Decomposition')
ax1.plot(waveform, color='c')
# only mark the important components!!
for i in indices_comp:
left = indices[i]
bottom = -0.98
width = indices[i + 1] - indices[i]
height = 1.96
rect = mpatches.Rectangle((left, bottom), width, height,
fill=False,
color="purple",
linewidth=2)
ax1.add_patch(rect)
ax1.set(xlabel='Time', ylabel='Amplitude', xlim=[0, np.size(waveform)], ylim=[-1, 1])
if show_colors:
normalized_weights = self.normalize(weights)
for index, comp in enumerate(indices_comp):
if weights[index] < 0:
ax1.axvspan(indices[comp], indices[comp+1], facecolor='red',
alpha=normalized_weights[index])
else:
ax1.axvspan(indices[comp], indices[comp+1], facecolor='green',
alpha=normalized_weights[index])
if save_path is not None:
plt.savefig(save_path)
plt.show()
plt.close()
def image_nmf(self, label, positive_only=False, negative_only=False,
hide_rest=False, num_features=3, min_weight=0.0,
save_path=None, show_colors=True):
"""
generates the image highlighting the num_components most important components for the nmf decomposition
:param label: class for which to explain the prediction
:param positive_only: bool, whether to include components with positive weights
:param negative_only: bool, whether to include components with negative weights
:param hide_rest: bool, whether to hide or show less important components
:param num_features: int, how many components to highlight
:param min_weight: float, min abs weight that the components needs to have in order to be highlighted
:param save_path: if not None: path where to save the generated image
:param show_colors: bool, whether to highlight the components in green or red or just mark them
"""
indices_show, indices_comp, weights = self.get_indices(label, positive_only, negative_only, hide_rest,
num_features, min_weight, get_mask=False)
num_c = self.decomposition.num_components
w = self.decomposition.W
h = self.decomposition.H
fig, ax = plt.subplots(1, num_c, figsize=(7, 8))
fig.suptitle("NMF Decomposition into 6 Components\nSpectral Profiles")
logw = np.log10(w)
normalized_weights = self.normalize(weights)
for i in range(num_c):
if i in indices_show:
x = list(range(len(-logw[:, i])))
ax[i].plot(logw[:, i], x)
ax[i].set_xlabel(f"Component {i+1}", rotation=90)
if i in indices_comp:
w_i = indices_comp.index(i)
if weights[w_i] > 0:
ax[i].set_facecolor((0.0, 1.0, 0.0, normalized_weights[w_i]))
else:
ax[i].set_facecolor((1.0, 0.0, 0.0, normalized_weights[w_i]))
plt.tight_layout()
if save_path is not None:
plt.savefig(f'{save_path}/nmf_spectral.png')
plt.show()
plt.close()
# temporal activations
fig, ax = plt.subplots(num_c, 1, figsize=(7, 7))
fig.suptitle("NMF Decomposition into 6 Components\nTemporal Activations")
for i in range(num_c):
if i in indices_show:
ax[i].plot(h[i])
ax[i].set_ylabel(f"Component {i+1}", rotation=90)
if i in indices_comp:
w_i = indices_comp.index(i)
if weights[w_i] > 0:
ax[i].set_facecolor((0.0, 1.0, 0.0, normalized_weights[w_i]))
else:
ax[i].set_facecolor((1.0, 0.0, 0.0, normalized_weights[w_i]))
plt.tight_layout()
if save_path is not None:
plt.savefig(f"{save_path}/nmf_temporal.png")
plt.show()
print("visualized :) ")
plt.close()
def image_ls(self, label, positive_only=False, negative_only=False,
hide_rest=False, num_features=3, min_weight=0.0,
save_path=None, show_colors=True):
"""
generates the image highlighting the num_components most important components for the loudness-spectral
decomposition
:param label: class for which to explain the prediction
:param positive_only: bool, whether to include components with positive weights
:param negative_only: bool, whether to include components with negative weights
:param hide_rest: bool, whether to hide or show the other components
:param num_features: int, how many components to show
:param min_weight: float, min abs weight that the components needs to have in order to be highlighted
:param save_path: if not None: path where to save the generated image
:param show_colors:bool, whether to highlight the components in green or red or just mark them
"""
image_indices, indices_comp, mask, weights = self.get_indices(label, positive_only=positive_only,
negative_only=negative_only,
hide_rest=hide_rest,
num_features=num_features,
min_weight=min_weight)
fig, (ax1) = plt.subplots(1)
mask_s = np.zeros(self.decomposition.num_components).astype(bool)
mask_s[image_indices] = True
spectrogram = self.decomposition.get_components_mask(mask_s, spec=True)
spec_db = librosa.power_to_db(spectrogram, ref=np.max)
marked = mark_boundaries(spec_db, mask)
img = ax1.imshow(marked[:, :, 2], origin="lower", cmap=plt.get_cmap("magma"))
fig.colorbar(img, ax=ax1)
normalized_weights = self.normalize(weights)
for index, comp in enumerate(indices_comp):
if weights[index] < 0:
mask = self.decomposition.return_mask_boundaries([], [comp])
else:
mask = self.decomposition.return_mask_boundaries([comp], [])
image_array = self.make_masked_image(mask)
ax1.imshow(image_array, origin="lower", interpolation="nearest", alpha=normalized_weights[index])
ax1.set_xlabel("Time")
ax1.set_ylabel("Frequency")
ax1.axes.xaxis.set_ticks([])
ax1.axes.yaxis.set_ticks([])
fig.suptitle('Spectral-Loudness Decomposition')
if save_path is not None:
plt.savefig(save_path)
plt.show()
plt.close()
class LimeCoughExplainer(object):
"""Explains predictions on Cough audio (1D array) data """
def __init__(self, kernel_width=.25, kernel=None, verbose=False,
feature_selection='auto', random_state=None):
"""
Init function
:param kernel_width: kernel width for the exponential kernel.
:param kernel: similarity kernel that takes euclidean distances and kernel
width as input and outputs weights in (0,1). If None, defaults to
an exponential kernel.
:param verbose: if true, print local prediction values from linear model
feature_selection:
:param feature_selection: feature selection method. can be
'forward_selection', 'lasso_path', 'none' or 'auto'.
See function 'explain_instance_with_data' in lime_base.py for
details on what each of the options does.
:param random_state: an integer or numpy.RandomState that will be used to
generate random numbers. If None, the random state will be
initialized using the internal numpy seed.
"""
kernel_width = float(kernel_width)
if kernel is None:
def kernel(d, kernel_width):
return np.sqrt(np.exp(-(d ** 2) / kernel_width ** 2))
kernel_fn = partial(kernel, kernel_width=kernel_width)
self.random_state = check_random_state(random_state)
self.feature_selection = feature_selection
self.base = lime_base.LimeBase(kernel_fn, verbose, random_state=self.random_state)
def explain_instance(self, decomposition, classifier_fn, labels=(1,), num_samples=1000,
batch_size=10, distance_metric='cosine', model_regressor=None,
random_seed=None, progress_bar=False):
"""
Generates explanations for a prediction
:param decomposition: decomposition object for the chosen audio decomposition
:param classifier_fn: classifier prediction probability function, which
takes a numpy array and outputs prediction probabilities. For
ScikitClassifiers , this is classifier.predict_proba.
:param labels: iterable with labels to be explained.
:param num_samples: size of the neighborhood to learn the linear model for the explanation
:param batch_size: number of samples processed in one batch in predict function
:param distance_metric: the distance metric to use for weights.
:param model_regressor: sklearn regressor to use in explanation. Defaults
to Ridge regression in LimeBase. Must have model_regressor.coef_
and 'sample_weight' as a parameter to model_regressor.fit()
segmentation_fn: SegmentationAlgorithm, wrapped skimage
decomposition function
:param random_seed: integer used as random seed for the decomposition
algorithm. If None, a random integer, between 0 and 1000,
will be generated using the internal random number generator.
:param progress_bar: if True, show tqdm progress bar.
:return: CoughExplanation object
"""
if random_seed is None:
random_seed = self.random_state.randint(0, high=1000)
top = labels
num_features = decomposition.get_number_components()
data, labels = self.data_labels(decomposition,
classifier_fn, num_samples,
batch_size=batch_size,
progress_bar=progress_bar)
distances = sklearn.metrics.pairwise_distances(
data,
data[0].reshape(1, -1),
metric=distance_metric
).ravel()
ret_exp = CoughExplanation(decomposition)
for label in top: # same in image and audio
(ret_exp.intercept[label],
ret_exp.local_exp[label],
ret_exp.score[label],
ret_exp.local_pred[label]) = self.base.explain_instance_with_data(
data, labels, distances, label, num_features,
model_regressor=model_regressor,
feature_selection=self.feature_selection)
return ret_exp
def data_labels(self, decomposition, classifier_fn, num_samples, batch_size=10, progress_bar=True):
"""
Generates neighborhood data and predictions for it
:param decomposition: decomposition object, decomposition of cough audio array
:param classifier_fn: function that takes a list of images and returns a
matrix of prediction probabilities
:param num_samples: size of the neighborhood to learn the linear model
:param batch_size: classifier_fn will be called on batches of this size.
:param progress_bar: if True, show tqdm progress bar.
:return: data, labels:
data: neighborhood data to train the classifier
labels: 2d array of prediction probabilities of all labels to be explained for all data points generated
"""
n_features = decomposition.get_number_components()
data = self.random_state.randint(0, 2, num_samples * n_features) \
.reshape((num_samples, n_features))
labels = []
data[0, :] = 1
audios = []
rows = tqdm(data) if progress_bar else data
for row in rows:
non_zeros = np.where(row != 0)[0]
mask = np.zeros((n_features,)).astype(bool)
mask[non_zeros] = True
temp = decomposition.get_components_mask(mask)
audios.append(temp)
if len(audios) == batch_size:
predictions = classifier_fn(np.array(audios))
labels.extend(predictions)
audios = []
if len(audios) > 0:
predictions = classifier_fn(np.array(audios))
labels.extend(predictions)
return data, np.array(labels)