-
Notifications
You must be signed in to change notification settings - Fork 0
/
baselines_attack_eval.py
250 lines (204 loc) · 10.3 KB
/
baselines_attack_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import math
import sys
import librosa
from random import shuffle
import math
import time
from numpy import genfromtxt
import torch
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torch.autograd import Variable
from torchsummary import summary
import soundfile as sf
import os, glob
pd.set_option('display.max_rows', 500)
import h5py
import pickle
from sklearn import preprocessing
import argparse
import logging
from sklearn.preprocessing import label_binarize
from statistics import mean, variance, median
from collections import Counter
import config
torch.backends.cudnn.enabled=False
sys.path.insert(1, os.path.join(sys.path[0], './utils'))
from utilities import (read_audio, create_folder,
get_filename, create_logging, calculate_accuracy,
print_accuracy, calculate_confusion_matrix,
move_data_to_gpu, audio_unify,
CWLoss_iemocap, get_model_iemocap, normalize_function,
CrossEntropyLoss, get_lr, set_lr, set_cyclic_lr)
# generator
sys.path.insert(1, os.path.join(sys.path[0], './audio_models/waveunet'))
# from seanet import GeneratorSEANt
# from gnet import AudioGeneratorResnet
from waveunet import Waveunet
# audio pre-processing
from transformers import Wav2Vec2FeatureExtractor, AutoConfig, PretrainedConfig
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
# hugging models
from transformers import AutoModelForAudioClassification, HubertForSequenceClassification, WavLMForSequenceClassification
# end2you audio models
from audio_rnn_model import AudioRNNModel
# Other attacks
import torchattacks
from onepixel import PixelAttacker
# For pytorch dataset
from torch.utils.data import TensorDataset, DataLoader
from datasets.dataset_dict import DatasetDict
from datasets import Dataset, load_metric
metric = load_metric("recall")
batch_size = config.batch_size
class_num = config.iemocap_num_classes
audio_len = config.iemocap_audio_samples
models_menu = config.iemocap_models_menu
criterion = CWLoss_iemocap
'''
class TensorDataset(torch.utils.data.Dataset):
def __init__(self, data_tensor, target_tensor):
self.data_tensor = data_tensor
self.target_tensor = target_tensor
def __getitem__(self, index):
return self.data_tensor[index], self.target_tensor[index]
def __len__(self):
return self.data_tensor.size(0)
'''
def data_generater(hdf5_path):
'''Read data into a dict'''
with h5py.File(hdf5_path, 'r') as hf:
x_org = hf['x_org'][:]
x_adv = hf['x_adv'][:]
y = hf['y'][:]
hf.close()
# d = Dataset.from_dict({'label': y, 'x_org': x_org, 'x_adv': x_adv})
d = {'y': y, 'x_org': x_org, 'x_adv': x_adv}
return d
def forward_evaluate(model_t, data_loader, source_model_name, target_model_name, eps, cuda, z):
# z is True if model_t is not zhao19 or emo18
adv_acc = 0
clean_acc = 0
fool_rate = 0
target_rate = 0
norm = 0
distortion = 0
save_five = 0
test_size = len(data_loader.dataset)
assert data_loader.batch_size == 1
for (idx, (batch_x_org, batch_x_adv, batch_y)) in enumerate(data_loader, 0):
batch_x_org = move_data_to_gpu(batch_x_org, cuda)
batch_x_adv = move_data_to_gpu(batch_x_adv, cuda)
batch_y = move_data_to_gpu(batch_y, cuda)
model_t.eval()
if z:
clean_out = model_t(normalize_function(batch_x_org.clone().detach()))[0]
else:
clean_out = model_t(normalize_function(batch_x_org.clone().detach()))
clean_acc += torch.sum(clean_out.argmax(dim=-1) == batch_y).item()
if z:
adv_out = model_t(normalize_function(batch_x_adv.clone().detach()))[0]
else:
adv_out = model_t(normalize_function(batch_x_adv.clone().detach()))
adv_acc +=torch.sum(adv_out.argmax(dim=-1) == batch_y).item()
fool_rate += torch.sum(adv_out.argmax(dim=-1) != clean_out.argmax(dim=-1)).item()
if args.target != -1:
target = torch.LongTensor(batch_y.size(0))
target.fill_(args.target)
target = target.cuda()
target_rate += torch.sum(adv_out.argmax(dim=-1) == target).item()
# calculate the distortion
# only take the success ones into SNR and norm; only save successful adversarial audios
if torch.sum(adv_out.argmax(dim=-1) != clean_out.argmax(dim=-1)).item() > 0:
per = torch.squeeze(batch_x_adv.clone().detach() - batch_x_org.clone().detach())
i_dis = torch.log10(torch.max(torch.abs(batch_x_org), dim=-1).values / torch.max(torch.abs(per), dim=-1).values)
i_dis_no_inf = torch.where(i_dis == float('inf'), torch.tensor(0.0).cuda().detach(), i_dis.detach())
distortion += torch.sum(20 * i_dis_no_inf).item()
norm += torch.norm(per, 0)
# Save some audio samples for human evaluation
if save_five < 10 and test_size == 1151:
cur_dis = torch.sum(20 * i_dis_no_inf).item() / 1
cur_norm = torch.norm(per.detach(), 0) / 1
audio_dir = os.path.join('/home/ychang/sparse_attack/workspace/audios_listen/IEMOCAP/baselines', '{}_{}'.format(source_model_name, target_model_name))
create_folder(audio_dir)
audio_org = os.path.join(audio_dir, '{:.4f}_{:.4f}_org.wav'.format(cur_dis, cur_norm))
audio_adv = os.path.join(audio_dir, '{:.4f}_{:.4f}_adv.wav'.format(cur_dis, cur_norm))
audio_per = os.path.join(audio_dir, '{:.4f}_{:.4f}_per.wav'.format(cur_dis, cur_norm))
for i in range(1):
if batch_y[i] != torch.argmax(adv_out[i], dim=-1):
sf.write(audio_org, batch_x_org[i].clone().detach().cpu().numpy(), 16000)
sf.write(audio_adv, batch_x_adv[i].clone().detach().cpu().numpy(), 16000)
per = np.squeeze(batch_x_adv[i].clone().detach().cpu().numpy() - batch_x_org[i].clone().detach().cpu().numpy())
sf.write(audio_per, per, 16000)
save_five += 1
break
if fool_rate != 0:
logging.info('L0 norm: {:.4f}, distortion: {:.4f}'.format(norm/fool_rate, distortion/fool_rate))
if args.target != -1:
logging.info('Clean: {0:.4%} Adversarial: {1:.4%} Fooling Rate: {2:.4%} Target Success Rate:{3:.4%}'.format(clean_acc/test_size, adv_acc/test_size, fool_rate/test_size, target_rate/test_size))
else:
# logging.info('Clean: {0:.3%} Adversarial: {1:.3%} Fooling Rate:{2:.3%}'.format(clean_acc/test_size, adv_acc/test_size, fool_rate/test_size))
logging.info('fool rate: {:.4%}'.format(fool_rate/test_size))
def train(args):
workspace = args.workspace
validation = args.validation
cuda = args.cuda
source_model_name = args.source_model_name
target_model_name = args.target_model_name
rnn_name = args.rnn_name
target = args.target
eps = args.eps
attack_type = args.attack_type
pixel_counts = args.pixel_counts
# adv samples preparation
hdf5_adv = os.path.join(workspace, 'sparse_attack', 'sparse_adv', attack_type, 'iemocap_source_{}_val_{}_pixel_{}.h5'.format(source_model_name, validation, pixel_counts))
data = data_generater(hdf5_adv)
dataset = DatasetDict(data)
# dataset = dataset.map(preprocess_function, remove_columns=["audio"], batched=True, batch_size=batch_size)
dataset_eval = TensorDataset(torch.Tensor(dataset['x_org']), torch.Tensor(dataset['x_adv']), torch.LongTensor(dataset['y']))
dataloader_eval = DataLoader(dataset_eval, batch_size=1, shuffle=False, num_workers=2)
del data
del dataset
logging.info('{} adv samples loaded from {}'.format(len(dataloader_eval.dataset), hdf5_adv))
# models loading
target_model, target_model_path = get_model_iemocap(target_model_name, validation, workspace)
if 'finetune' not in target_model_path:
target_model = AudioRNNModel(input_size=audio_len, num_outs=class_num, model_name=target_model_name, rnn_name=rnn_name)
target_model.load_state_dict(torch.load(target_model_path))
logging.info('the target eval model is {} and located in {}'.format(target_model_name, target_model_path))
if cuda:
target_model.cuda()
target_model.eval()
forward_evaluate(target_model, dataloader_eval, source_model_name, target_model_name, eps, cuda, target_model_name not in ['emo18', 'zhao19'])
logging.info('finished evaluation for {}'.format(target_model_name))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of parser. ')
subparsers = parser.add_subparsers(dest='mode')
parser_eval = subparsers.add_parser('eval')
parser_eval.add_argument('--workspace', type=str, default='/storage/home/ychang/IEMOCAP')
parser_eval.add_argument('--validation', action='store_true', default=False)
parser_eval.add_argument('--eps', type=float, default=0.01, help='perturbation budget')
parser_eval.add_argument('--cuda', action='store_true', default=False)
parser_eval.add_argument('--source_model_name', type=str, choices=['wav2vec2', 'hubert', 'wavlm', 'zhao19', 'emo18'], required=True)
parser_eval.add_argument('--target_model_name', type=str, choices=['wav2vec2', 'hubert', 'wavlm', 'zhao19', 'emo18'], required=True)
parser_eval.add_argument('--rnn_name', type=str, default='lstm', choices=['gru', 'lstm'])
parser_eval.add_argument('--target', type=int, default=-1, help='-1 if untargeted')
parser_eval.add_argument('--attack_type', type=str, choices=['sparsefool', 'onepixel', 'pgd'], required=True)
parser_eval.add_argument('--pixel_counts', type=int, choices=[1, 6500, 26000, 35000], required=True)
args = parser.parse_args()
args.filename = get_filename(__file__)
# Create log
logs_dir = os.path.join(args.workspace, 'sparse_attack', args.filename, args.attack_type)
create_folder(logs_dir)
custom = 'val_{}_pixel_{}_{}_{}'.format(args.validation, args.pixel_counts, args.source_model_name, args.target_model_name)
create_logging(logs_dir, custom, filemode='w')
logging.info(args)
if args.mode == 'eval':
train(args)
else:
raise Exception('Error argument!')