-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwavtools.py
424 lines (324 loc) · 16.9 KB
/
wavtools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import os
import re
import collections
import numpy as np
import pydub
from pydub import AudioSegment
from pydub.utils import mediainfo
import librosa
# from monkey import configuration
import configuration
from common.data_sample import Sample
def get_features_and_stats(waveform, orig_sr=48000, verbose=False):
waveform = librosa.core.resample(waveform, orig_sr=orig_sr, target_sr=16000)
spectrogram = np.abs(librosa.stft(waveform, n_fft=2048, hop_length=10 * 16)) ** 1.0
logmel_spectrogram = librosa.power_to_db(
librosa.feature.melspectrogram(y=waveform, sr=16000, S=spectrogram))
spectrogram = spectrogram.transpose()[:-1, :]
logmel_spectrogram = logmel_spectrogram.transpose()[:-1, :]
if verbose:
if logmel_spectrogram.shape[0] != 300:
print(logmel_spectrogram.shape)
custom_stats = dict()
x_dict = dict()
x_dict["waveform"] = waveform
x_dict["logmel_spectrogram"] = logmel_spectrogram
for x_name, x in x_dict.items():
custom_stats[x_name] = dict()
custom_stats[x_name]["mean"] = np.mean(x, axis=0)
custom_stats[x_name]["std"] = np.std(x, axis=0)
custom_stats[x_name]["max_abs"] = np.max(np.abs(x))
# Waveform needs padding here.
if x_dict["waveform"].size % 640 != 0:
x_dict["waveform"] = np.concatenate([x_dict["waveform"],
x_dict["waveform"][-1] * np.ones((640 - (x_dict["waveform"].size % 640), ))])
x_dict["waveform"] = x_dict["waveform"].reshape((-1, 640))
return x_dict, custom_stats
def clip_whinnies(praat_files,
desired_duration_sec,
unclipped_folder_location,
clipped_folder_location,
number_of_versions,
partition):
print("Now processing:", unclipped_folder_location)
processed_filenames = list()
unprocessed_filenames = list()
desired_duration_msec = desired_duration_sec * 1000
for file in praat_files:
start_times = whinny_starttimes_from_praatfile(configuration.DATA_FOLDER + '/praat-files/' + file)
end_times = whinny_endtimes_from_praatfile(configuration.DATA_FOLDER + '/praat-files/' + file)
wav_name = end_times[0]
# following try-except accounts for praat files missing corresponding
# audio files
try:
wavfile = AudioSegment.from_wav(unclipped_folder_location + '/' + wav_name + '.WAV')
except IOError:
# print("error: no wav file named " + wav_name + ".WAV at path " + unclipped_folder_location)
continue
if len(wavfile) < desired_duration_msec:
unprocessed_filenames.append(unclipped_folder_location + '/' + wav_name + '.WAV')
continue
info = mediainfo(unclipped_folder_location + '/' + wav_name + '.WAV')
if info["sample_rate"] != "48000":
print(info["sample_rate"])
waveform = np.array(wavfile.get_array_of_samples(), dtype=np.float32)
_, custom_stats = get_features_and_stats(waveform, orig_sr=int(info["sample_rate"]))
for idx, time in enumerate(end_times[1]):
whinny_start = start_times[1][idx]
whinny_end = time
earliest_clip_start = whinny_end - desired_duration_msec + 1
if earliest_clip_start < 0:
earliest_clip_start = 0
latest_clip_start = whinny_start
if whinny_start + desired_duration_msec > len(wavfile):
latest_clip_start = len(wavfile) - desired_duration_msec
if latest_clip_start < earliest_clip_start:
unprocessed_filenames.append(unclipped_folder_location + '/' + wav_name + '.WAV')
continue
for version_id in range(number_of_versions):
actual_clip_start = np.random.uniform(earliest_clip_start, latest_clip_start)
actual_clip_end = actual_clip_start + desired_duration_msec
clip = wavfile[actual_clip_start:actual_clip_end]
# Save clipped file to separate folder
# name = wav_name + '_' + str(idx) + "_" + repr(version_id)
name = wav_name + '_' + str(idx) + "_" + repr(version_id) + "_" + repr(int(actual_clip_start))
clip.export(clipped_folder_location + '/' + name + '.WAV', format="wav")
waveform, sr = librosa.core.load(clipped_folder_location + '/' + name + '.WAV',
sr=48000,
duration=3.00)
# waveform = np.array(clip.get_array_of_samples(), dtype=np.float32)
x_dict, _ = get_features_and_stats(waveform)
id_dict = collections.OrderedDict()
id_dict["segment_id"] = idx
id_dict["version_id"] = version_id
y_dict = dict()
y_dict["whinny_single"] = np.zeros((2,), dtype=np.float32)
y_dict["whinny_single"][1] = 1.0
length_milliseconds = actual_clip_end - actual_clip_start
# whinny_length = clip_end - clip_start
support = np.ones((x_dict["logmel_spectrogram"].shape[0], 1), dtype=np.float32)
# Make DataSample.
sample = Sample(name="pos_" + name,
id_dict=id_dict,
partition=partition,
x_dict=x_dict,
y_dict=y_dict,
support=support,
is_time_continuous=False,
custom_stats=custom_stats)
processed_filenames.append(unclipped_folder_location + '/' + wav_name + '.WAV')
yield sample
def clip_noncall_sections(praat_files, desired_duration_sec, unclipped_folder_location, clipped_folder_location, partition):
processed_filenames = list()
unprocessed_filenames = list()
desired_duration_msec = desired_duration_sec * 1000
for file in praat_files:
start_times = non_starttimes_from_praatfile(configuration.DATA_FOLDER + '/praat-files/' + file)
end_times = non_endtimes_from_praatfile(configuration.DATA_FOLDER + '/praat-files/' + file)
wav_name = end_times[0]
# Following try-except accounts for praat files missing corresponding
# audio files
try:
wavfile = AudioSegment.from_wav(unclipped_folder_location + '/' + wav_name + '.WAV')
except IOError:
# print("error: no wav file named",wav_name,".WAV at path /home/dgabutler/Work/CMEEProject/Data/unclipped-whinnies")
continue
info = mediainfo(unclipped_folder_location + '/' + wav_name + '.WAV')
if info["sample_rate"] != "48000":
print(info["sample_rate"])
waveform = np.array(wavfile.get_array_of_samples(), dtype=np.float32)
_, custom_stats = get_features_and_stats(waveform, orig_sr=int(info["sample_rate"]))
for idx, time in enumerate(end_times[1]):
segment_start = start_times[1][idx]
segment_end = end_times[1][idx]
segment = wavfile[segment_start:segment_end]
# Save clipped file to separate folder
# clip.export(clipped_folder_location + wav_name + '_' + str(idx) + '.WAV', format="wav")
#
# wavfile = AudioSegment.from_wav(clipped_folder_location + wav_name + '_' + str(idx) + '.WAV')
if segment.duration_seconds < desired_duration_sec:
# print(idx, file)
unprocessed_filenames.append(unclipped_folder_location + '/' + wav_name + '.WAV')
continue
else:
number_to_extract = int(segment.duration_seconds // desired_duration_sec)
for i in range(number_to_extract):
pos = i * desired_duration_msec
if pos + desired_duration_msec > segment.duration_seconds * 1000:
unprocessed_filenames.append(unclipped_folder_location + '/' + wav_name + '.WAV')
continue
clip = segment[pos:pos + desired_duration_msec]
# Save clipped file to separate folder
# name = os.path.basename(os.path.splitext(file)[0])
name = wav_name + '_' + str(idx) + "_" + repr(i) + "_" + repr(int(segment_start + pos))
clip.export(clipped_folder_location + '/' + name + '.WAV',
format="wav")
waveform, sr = librosa.core.load(clipped_folder_location + '/' + name + '.WAV',
sr=48000,
duration=3.00)
# waveform = np.array(clip.get_array_of_samples(), dtype=np.float32)
x_dict, _ = get_features_and_stats(waveform)
id_dict = collections.OrderedDict()
id_dict["segment_id"] = idx
id_dict["version_id"] = i
y_dict = dict()
y_dict["whinny_single"] = np.zeros((2,), dtype=np.float32)
y_dict["whinny_single"][0] = 1.0
support = np.ones((x_dict["logmel_spectrogram"].shape[0], 1), dtype=np.float32)
# Make DataSample.
sample = Sample(name="neg_" + name,
id_dict=id_dict,
partition=partition,
x_dict=x_dict,
y_dict=y_dict,
support=support,
is_time_continuous=False,
custom_stats=custom_stats)
processed_filenames.append(unclipped_folder_location + '/' + wav_name + '.WAV')
yield sample
def generate_negative_examples(noncall_files, desired_duration_sec, store_folder_location, partition):
print("Now processing pure negative recordings.")
processed_filenames = list()
unprocessed_filenames = list()
desired_duration_msec = desired_duration_sec * 1000
for idx, file in enumerate(noncall_files):
try:
wavfile = AudioSegment.from_wav(file)
wav_name = file.split("/")[-1][:-4]
except pydub.exceptions.CouldntDecodeError as e:
unprocessed_filenames.append(file)
print('Could not decode:', file)
continue
# raise e
except FileNotFoundError as e:
unprocessed_filenames.append(file)
print("File not found error.")
continue
# raise e
if wavfile.duration_seconds < desired_duration_sec:
# print(idx, file)
continue
else:
number_to_extract = int(wavfile.duration_seconds // desired_duration_sec)
for i in range(number_to_extract):
pos = i * desired_duration_msec
if pos+desired_duration_msec > wavfile.duration_seconds*1000:
unprocessed_filenames.append(file)
continue
clip = wavfile[pos:pos+desired_duration_msec]
# Save clipped file to separate folder
# name = os.path.basename(os.path.splitext(file)[0])
name = wav_name + '_' + str(idx) + "_" + repr(i) + "_" + repr(int(pos))
clip.export(store_folder_location + '/' + name + '.WAV',
format="wav")
waveform, sr = librosa.core.load(store_folder_location + '/' + name + '.WAV',
sr=48000,
duration=3.00)
# waveform = np.array(clip.get_array_of_samples(), dtype=np.float32)
x_dict, custom_stats = get_features_and_stats(waveform)
id_dict = collections.OrderedDict()
id_dict["segment_id"] = idx
id_dict["version_id"] = i
y_dict = dict()
y_dict["whinny_single"] = np.zeros((2,), dtype=np.float32)
y_dict["whinny_single"][0] = 1.0
support = np.ones((x_dict["logmel_spectrogram"].shape[0], 1), dtype=np.float32)
# Make DataSample.
sample = Sample(name="neg_" + name,
id_dict=id_dict,
partition=partition,
x_dict=x_dict,
y_dict=y_dict,
support=support,
is_time_continuous=False,
custom_stats=custom_stats)
processed_filenames.append(file)
yield sample
def whinny_starttimes_from_praatfile(praat_file):
"""
Extracts whinny start times (in milliseconds) from praat text file
Output is tuple containing .wav file name and then all times (in ms)
"""
start_times = [] # empty list to store any hits
with open(praat_file, "rt") as f:
praat_contents = f.readlines()
# - WAVNAME NOW FOUND USING NAME OF PRAAT FILE, NOT BY READING PRAAT FILE
# line_with_wavname = praat_contents[10]
# result = re.search('"(.*)"', line_with_wavname)
# wav_name = result.group(1)
wav_name = os.path.basename(os.path.splitext(praat_file)[0])
for idx, line in enumerate(praat_contents):
if "Whinny" in line and "intervals" in praat_contents[idx + 1]:
time_line = praat_contents[idx - 2]
start_times.extend(re.findall("(?<=xmin\s=\s)(\d+\.?\d*)(?=\s)", time_line))
start_times = map(float, start_times) # converts time to number, not
# character string
# Comment line below if time in seconds is wanted:
start_times = [times * 1000 for times in start_times]
return wav_name, start_times
def whinny_endtimes_from_praatfile(praat_file):
"""
Extracts whinny end times (in milliseconds) from praat text file
Output is tuple containing .wav file name and then all times in ms
"""
end_times = [] # empty list to store any hits
with open(praat_file, "rt") as f:
praat_contents = f.readlines()
# - WAVNAME NOW FOUND USING NAME OF PRAAT FILE, NOT BY READING PRAAT FILE
# line_with_wavname = praat_contents[10]
# result = re.search('"(.*)"', line_with_wavname)
# wav_name = result.group(1)
wav_name = os.path.basename(os.path.splitext(praat_file)[0])
for idx, line in enumerate(praat_contents):
if "Whinny" in line and "intervals" in praat_contents[idx + 1]:
time_line = praat_contents[idx - 1]
end_times.extend(re.findall("\d+\.\d+", time_line))
end_times = map(float, end_times) # converts time to number, not
# character string
# Comment line below if time in seconds is wanted:
end_times = [times * 1000 for times in end_times]
return wav_name, end_times
def non_starttimes_from_praatfile(praat_file):
"""
Extracts start time of region known to not contain a spider
monkey whinny from praat text file (for generating negatives)
Output is tuple containing .wav file name and then all times (in ms)
"""
start_times = [] # empty list to store any hits
with open(praat_file, "rt") as f:
praat_contents = f.readlines()
line_with_wavname = praat_contents[10]
result = re.search('"(.*)"', line_with_wavname)
wav_name = result.group(1)
for idx, line in enumerate(praat_contents):
if "Non Call" in line:
# if "Whinny" not in line:
time_line = praat_contents[idx - 2]
start_times.extend(re.findall("\d+\.\d+|\d", time_line))
start_times = map(float, start_times) # converts time to number, not
# character string
# Comment line below if time in seconds is wanted:
start_times = [times * 1000 for times in start_times]
return wav_name, start_times
def non_endtimes_from_praatfile(praat_file):
"""
Extracts end time of region known to not contain a spider
monkey whinny from praat text file (for generating negatives)
Output is tuple containing .wav file name and then all times in ms
"""
end_times = [] # empty list to store any hits
with open(praat_file, "rt") as f:
praat_contents = f.readlines()
line_with_wavname = praat_contents[10]
result = re.search('"(.*)"', line_with_wavname)
wav_name = result.group(1)
for idx, line in enumerate(praat_contents):
if "Non Call" in line:
# if "Whinny" not in line:
time_line = praat_contents[idx - 1]
end_times.extend(re.findall("\d+\.\d+|\d{2}", time_line))
end_times = map(float, end_times) # converts time to number, not
# character string
# Comment line below if time in seconds is wanted:
end_times = [times * 1000 for times in end_times]
return wav_name, end_times