-
Notifications
You must be signed in to change notification settings - Fork 425
/
Copy pathoptimization.py
168 lines (136 loc) · 6.21 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import theano
import theano.tensor as T
floatX = theano.config.floatX
device = theano.config.device
class Optimization:
def __init__(self, clip=None):
"""
Initialization
"""
self.clip = clip
def get_gradients(self, cost, params):
"""
Compute the gradients, and clip them if required.
"""
if self.clip is None:
return T.grad(cost, params)
else:
assert self.clip > 0
return T.grad(
theano.gradient.grad_clip(cost, -1 * self.clip, self.clip),
params
)
def get_updates(self, method, cost, params, *args, **kwargs):
"""
Compute the updates for different optimizers.
"""
if method == 'sgd':
updates = self.sgd(cost, params, **kwargs)
elif method == 'sgdmomentum':
updates = self.sgdmomentum(cost, params, **kwargs)
elif method == 'adagrad':
updates = self.adagrad(cost, params, **kwargs)
elif method == 'adadelta':
updates = self.adadelta(cost, params, **kwargs)
elif method == 'adam':
updates = self.adam(cost, params, **kwargs)
elif method == 'rmsprop':
updates = self.rmsprop(cost, params, **kwargs)
else:
raise("Not implemented learning method: %s" % method)
return updates
def sgd(self, cost, params, lr=0.01):
"""
Stochatic gradient descent.
"""
lr = theano.shared(np.float32(lr).astype(floatX))
gradients = self.get_gradients(cost, params)
updates = []
for p, g in zip(params, gradients):
updates.append((p, p - lr * g))
return updates
def sgdmomentum(self, cost, params, lr=0.01, momentum=0.9):
"""
Stochatic gradient descent with momentum. Momentum has to be in [0, 1)
"""
# Check that the momentum is a correct value
assert 0 <= momentum < 1
lr = theano.shared(np.float32(lr).astype(floatX))
momentum = theano.shared(np.float32(momentum).astype(floatX))
gradients = self.get_gradients(cost, params)
velocities = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]
updates = []
for param, gradient, velocity in zip(params, gradients, velocities):
new_velocity = momentum * velocity - lr * gradient
updates.append((velocity, new_velocity))
updates.append((param, param + new_velocity))
return updates
def adagrad(self, cost, params, lr=1.0, epsilon=1e-6):
"""
Adagrad. Based on http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf
"""
lr = theano.shared(np.float32(lr).astype(floatX))
epsilon = theano.shared(np.float32(epsilon).astype(floatX))
gradients = self.get_gradients(cost, params)
gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]
updates = []
for param, gradient, gsum in zip(params, gradients, gsums):
new_gsum = gsum + gradient ** 2.
updates.append((gsum, new_gsum))
updates.append((param, param - lr * gradient / (T.sqrt(gsum + epsilon))))
return updates
def adadelta(self, cost, params, rho=0.95, epsilon=1e-6):
"""
Adadelta. Based on:
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
"""
rho = theano.shared(np.float32(rho).astype(floatX))
epsilon = theano.shared(np.float32(epsilon).astype(floatX))
gradients = self.get_gradients(cost, params)
accu_gradients = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]
accu_deltas = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]
updates = []
for param, gradient, accu_gradient, accu_delta in zip(params, gradients, accu_gradients, accu_deltas):
new_accu_gradient = rho * accu_gradient + (1. - rho) * gradient ** 2.
delta_x = - T.sqrt((accu_delta + epsilon) / (new_accu_gradient + epsilon)) * gradient
new_accu_delta = rho * accu_delta + (1. - rho) * delta_x ** 2.
updates.append((accu_gradient, new_accu_gradient))
updates.append((accu_delta, new_accu_delta))
updates.append((param, param + delta_x))
return updates
def adam(self, cost, params, lr=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
"""
Adam. Based on http://arxiv.org/pdf/1412.6980v4.pdf
"""
updates = []
gradients = self.get_gradients(cost, params)
t = theano.shared(np.float32(1.).astype(floatX))
for param, gradient in zip(params, gradients):
value = param.get_value(borrow=True)
m_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)
v_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)
m = beta1 * m_prev + (1. - beta1) * gradient
v = beta2 * v_prev + (1. - beta2) * gradient ** 2.
m_hat = m / (1. - beta1 ** t)
v_hat = v / (1. - beta2 ** t)
theta = param - (lr * m_hat) / (T.sqrt(v_hat) + epsilon)
updates.append((m_prev, m))
updates.append((v_prev, v))
updates.append((param, theta))
updates.append((t, t + 1.))
return updates
def rmsprop(self, cost, params, lr=0.001, rho=0.9, eps=1e-6):
"""
RMSProp.
"""
lr = theano.shared(np.float32(lr).astype(floatX))
gradients = self.get_gradients(cost, params)
accumulators = [theano.shared(np.zeros_like(p.get_value()).astype(floatX)) for p in params]
updates = []
for param, gradient, accumulator in zip(params, gradients, accumulators):
new_accumulator = rho * accumulator + (1 - rho) * gradient ** 2
updates.append((accumulator, new_accumulator))
new_param = param - lr * gradient / T.sqrt(new_accumulator + eps)
updates.append((param, new_param))
return updates