|
| 1 | +import numpy as np |
| 2 | +import numpy.testing as npt |
| 3 | + |
| 4 | +import glass.grf |
| 5 | + |
| 6 | + |
| 7 | +def test_lognormal(rng): |
| 8 | + t1 = glass.grf.Lognormal() |
| 9 | + t2 = glass.grf.Lognormal() |
| 10 | + |
| 11 | + gl0 = rng.random() |
| 12 | + |
| 13 | + lmax = 100 |
| 14 | + ell = np.arange(lmax + 1) |
| 15 | + cl = 1e-2 / (2 * ell + 1) ** 2 |
| 16 | + |
| 17 | + cltol = 1e-7 |
| 18 | + |
| 19 | + gl, cl_, info = glass.grf.solve(cl, t1, t2, monopole=gl0, cltol=cltol) |
| 20 | + |
| 21 | + assert info > 0 |
| 22 | + |
| 23 | + npt.assert_allclose(cl_[1 : cl.size], cl[1:], atol=0.0, rtol=cltol) |
| 24 | + |
| 25 | + gl_ = glass.grf.compute(cl_, t1, t2) |
| 26 | + |
| 27 | + assert gl[0] == gl0 |
| 28 | + npt.assert_allclose(gl_[1 : gl.size], gl[1:]) |
| 29 | + |
| 30 | + |
| 31 | +def test_monopole(rng): |
| 32 | + t = glass.grf.Normal() |
| 33 | + x = rng.random(100) |
| 34 | + |
| 35 | + y, x_, _ = glass.grf.solve(x, t, monopole=None) |
| 36 | + |
| 37 | + npt.assert_allclose(y, x) |
| 38 | + npt.assert_allclose(x_, x) |
| 39 | + |
| 40 | + y, x_, _ = glass.grf.solve(x, t, monopole=0.0) |
| 41 | + |
| 42 | + assert y[0] == 0.0 |
| 43 | + |
| 44 | + npt.assert_allclose(y[1:], x[1:]) |
| 45 | + npt.assert_allclose(x_[1:], x[1:]) |
| 46 | + |
| 47 | + y, x_, _ = glass.grf.solve(x, t, monopole=1.0) |
| 48 | + |
| 49 | + assert y[0] == 1.0 |
| 50 | + |
| 51 | + npt.assert_allclose(y[1:], x[1:]) |
| 52 | + npt.assert_allclose(x_[1:], x[1:]) |
0 commit comments