-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspm_ADEM_update.m
75 lines (63 loc) · 2.25 KB
/
spm_ADEM_update.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function DEM = spm_ADEM_update(DEM,COV)
% Update ADEM structure using conditional expectations
% FORMAT DEM = spm_ADEM_update(DEM,COV)
%
% DEM - DEM structure
% COV - Covariance of parameter (P) fluctuations (E): P(i + 1) = P(i) + E
% - where cov(E) = COV*pC
%
% This routine updates posterior expectations about states and parameters
% by replacing prior expectations with posterior expectations (and
% similarly updating hidden states and causes to the final iteration). If
% called with an extra argument, the posterior variances of the
% parameters are also updated.
%__________________________________________________________________________
% Karl Friston
% Copyright (C) 2008-2022 Wellcome Centre for Human Neuroimaging
% preliminaries
%--------------------------------------------------------------------------
if nargin < 2, COV = 0; end
% update states and parameters (model)
%--------------------------------------------------------------------------
n = length(DEM.M);
C = DEM.qP.C;
for i = 1:(n - 1)
% states
%----------------------------------------------------------------------
qE = DEM.qU.x{i};
if ~isempty(qE)
DEM.M(i).x = spm_unvec(qE(:,end),DEM.M(i).x);
end
% parameters
%----------------------------------------------------------------------
qE = spm_vec(DEM.qP.P{i});
DEM.M(i).pE = spm_unvec(qE,DEM.M(i).pE);
if nargin > 1
% parameter covariance
%------------------------------------------------------------------
pC = DEM.M(i).pC;
np = length(pC);
qC = C(1:np,1:np);
C = C(np + 1:end,np + 1:end);
DEM.M(i).pC = qC + COV*pC;
end
end
for i = 1:n
if ~isempty(DEM.M(i).v)
DEM.M(i).v = spm_unvec(DEM.qU.v{i}(:,end),DEM.M(i).v);
end
end
% update states and action (process)
%--------------------------------------------------------------------------
n = length(DEM.G);
for i = 1:(n - 1)
DEM.G(i).x = spm_unvec(DEM.pU.x{i}(:,end),DEM.G(i).x);
end
for i = 1:n
if ~isempty(DEM.G(i).v)
DEM.G(i).v = spm_unvec(DEM.pU.v{i}(:,end),DEM.G(i).v);
end
end
if isfield(DEM.G,'a')
DEM.G(n).a = spm_unvec(DEM.qU.a{n}(:,end),DEM.G(n).a);
end