-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspm_A_reduce.m
60 lines (52 loc) · 1.75 KB
/
spm_A_reduce.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function [J,z,v,s] = spm_A_reduce(J,x,T,N)
% Reduction of Markovian partition
% FORMAT [J,z,v,s] = spm_A_reduce(J,x,T,N)
% J - Jacobian (x)
% x - {3 x n} particular partition of states
% T - eigenvalue threshold to retain eigenvectors [default: 8]
% N - maximum number to retain [default: 8]
%
% J - Jacobian (z)
% z - {1 x n} partition of states at the next level
% v - {1 x n} eigenvector (adiabatic) operator
% s - {1 x n} eigenvalues
%
% Adiabatic reduction operator (R)
%__________________________________________________________________________
% Karl Friston
% Copyright (C) 2019-2022 Wellcome Centre for Human Neuroimaging
% preliminaries
%--------------------------------------------------------------------------
nx = size(x,2); % number of partitions
if nargin < 3
T = 8; % adiabatic threshold (Hz)
end
if nargin < 4
N = 8; % maximum number
end
% reduction
%--------------------------------------------------------------------------
for i = 1:nx
% Lyapunov exponents (eigensolution) for this partition
%----------------------------------------------------------------------
y{i} = spm_vec(x(1:2,i));
Jii = full(J(y{i},y{i}));
[e,r] = eig(Jii);
r = diag(r);
[d,j] = sort(real(r),'descend');
% Adiabatic threshold
%----------------------------------------------------------------------
t = max(-T,d(min(end,N + 1)));
n(i) = sum(d > t);
s{i} = r( j(1:n(i)));
v{i} = e(:,j(1:n(i)));
u{i} = pinv(v{i});
end
for i = 1:nx
for j = 1:nx
Jij = full(J(spm_vec(x(1:2,i)),spm_vec(x(1:2,j))));
A{i,j} = u{i}*Jij*v{j};
end
z{i} = sum(n(1:(i - 1))) + (1:n(i));
end
J = spm_cat(A);