forked from omerdr/ensemble-regression
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdrug_response.m
211 lines (189 loc) · 9.94 KB
/
drug_response.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
need to align with main.m
clear all; close all; close all hidden;
addpath Ensemble_Regressors;
addpath HelperFunctions;
%ROOT = './Datasets/RealWorld/CCLE/mydata/EC50/';
ROOT = './Datasets/RealWorld/CCLE/mydata/ActAreaWithVal/';
files = dir([ROOT '*.mat']);
m=7;
Wstar = zeros(m,length(files));
Wrstar = zeros(m,length(files));
Wnnstar = zeros(m,length(files));
Wnnsum1star = zeros(m,length(files));
MSE_orig = zeros(m,length(files));
results_summary = {};
for file_idx=1:length(files)
%for file_idx = [1]
load([ROOT files(file_idx).name]);
fprintf('DRUG FILE: %s\n', files(file_idx).name);
%%
y_true = y;
clear y;
y_true = y_true - mean(y_true);
Z = bsxfun(@minus, Z, mean(Z,2));
[m n] = size(Z);
Ey = mean(y_true);
Ey2 = mean(y_true.^2);
var_y = Ey2 - Ey.^2;
mse = @(x) mean((y_true' - x).^2 / var_y);
for i=1:m
MSE_orig(i,file_idx) = mse(Z(i,:)');
end;
%% Estimators
[y_oracle2, w_oracle2] = ER_Oracle_2_Unbiased(y_true, Z); Wstar(:,file_idx) = w_oracle2;
%[y_oracle_rho, w_oracle_rho] = ER_Oracle_Rho(y_true,Z); Wrstar(:,file_idx) = w_oracle_rho;
%[y_oracle_nonneg, w_oracle_nonneg] = ER_Oracle_2_NonNegWeights(y_true,Z); Wnnstar(:,file_idx) = w_oracle_nonneg;
%[y_oracle_nonnegsum1, w_oracle_nonnegsum1] = ER_Oracle_2_NonNegSum1Weights(y_true,Z); Wnnsum1star(:,file_idx) = w_oracle_nonnegsum1;
[y_MEAN,w_mean] = ER_MeanWithBiasCorrection(Z, Ey);
y_MED = ER_MedianWithBiasCorrection(Z, Ey);
[y_DGEM,w_dgem] = ER_UnsupervisedDiagonalGEM(Z, Ey);
%[y_gem,w_gem] = ER_UnsupervisedGEM(Z, Ey,Ey2);
%[y_gem_with_rho_estimation,w_gem_with_rho_estimation] = ER_UnsupervisedGEM_with_rho_estimation(Z, Ey);
[y_UPCR,w_upcr] = ER_SpectralApproachGivenDeltaStar(Z, Ey, Ey2, mse(y_oracle2));
[y_UPCR_d0,w_upcr_d0] = ER_SpectralApproach(Z, Ey, Ey2);
[y_UPCR_MRE,w_upcr_MRE] = ER_SpectralApproachDeltaMinMRE(Z, Ey, Ey2, mse(y_oracle2));
[y_UPCR_WMRE,w_upcr_WMRE] = ER_SpectralApproachDeltaMinWMRE(Z, Ey, Ey2, mse(y_oracle2));
[y_UPCR_t1,w_upcr_t1] = ER_SpectralApproachWeightsSum1(Z, Ey, Ey2);
%figure('Name',[files(file_idx).name ' Residuals']);
% [y_IND,w_ind] = ER_IndependentMisfits(Z,Ey, Ey2);
%
% figure('Name',files(file_idx).name); imagesc(cov(Z') ./ var_y); title(['Covariance \delta^*=' num2str(mse(y_oracle2))]); colorbar;
%
% g2_list = linspace(0,Ey2,100);
% a_vec = zeros(m,length(g2_list));
% rhoINDB = zeros(m,length(g2_list));
% yINDB = zeros(n,length(g2_list));
% wINDB = zeros(m,length(g2_list));
% MSE = zeros(length(g2_list),1);
% SCORE = zeros(length(g2_list),1);
% for i=1:length(g2_list);
% [yINDB(:,i), wINDB(:,i),rhoINDB(:,i),a_vec(:,i)] = ER_IndependentMisfitsBayes(y_true, Z, Ey, g2_list(i));
% MSE(i) = mse(yINDB(:,i));
% SCORE(i) = mean(mean((abs(Z - repmat(yINDB(:,i)',m,1)))));
% end;
% %figure(223); plot(g2_list/Ey2,log(sum(wINDB.^2))); grid on;
% figure(223); plot(g2_list/Ey2,log(SCORE)); grid on;
% [val g2_opt_indx] = min(SCORE); %min(sum(wINDB.^2));
% figure(222); clf; set(gca,'fontsize',24);
% plot(g2_list/Ey2,MSE,'.-', ...
% [0 1], [mse(y_oracle2),mse(y_oracle2)],'k--', ...
% [0 1], [mse(y_UPCR),mse(y_UPCR)],'m--', ...
% [0 1], [mse(y_IND),mse(y_IND)],'g--');
% hold on;
% plot(g2_list(g2_opt_indx)/Ey2,MSE(g2_opt_indx),'rs','markersize',9);
% title('INDB MSE as a function of g_2'); xlabel('g_2'); ylabel('MSE / Var(Y)'); grid on;
% axis([ 0 0.3 0 var_y]);
% pause;
%
% %[y_lrm,~,y_oracle_rho] = ER_LowRankMisfitCVX(Z, Ey, Ey2, y_true);
% %[y_rank1,w_rank1,Cstar_rank1_offdiag] = ER_Rank1Misfit(Z,Ey, Ey2);
% %[y_rank2,w_rank2,Cstar_rank2_offdiag] = ER_Rank2Misfit(Z,Ey, Ey2);
%% Bayes Optimal Methods
rho_true = mean(Z .* repmat(y_true,m,1),2);
figure(300); clf; hold on; ylabel('ALL');
[y_IND,w_IND,rho_IND] = ER_IndependentMisfits(Z,Ey, Ey2);
[y_INDB, w_INDB,rho_INDB, MSE_hat_INDB] = ER_IndependentMisfitsBayes(y_true, Z, Ey, Ey2,'l2',1);
[inlier_idx,outlier_idx, MSE_ss] = subset_selection(y_true,Z,Ey,Ey2,'rho');
[y_MEAN_ss, w_MEAN_ss] = ER_MeanWithBiasCorrection(Z(inlier_idx,:), Ey);
[y_UPCRrhoINDB, w_UPCRrhoINDB] = ER_UPCRgivenRho(Z,Ey,Ey2,rho_INDB);
[y_UPCRrhoOracle, w_UPCRrhoOracle] = ER_UPCRgivenRho(Z,Ey,Ey2,rho_true);
figure(301); hold on; ylabel('SUBSET SELECTION');
[y_INDB_ss, w_INDB_ss,rho_INDB_ss, ~] = ER_IndependentMisfitsBayes(y_true, Z(inlier_idx,:), Ey, Ey2,'l2',1);
[y_UPCRrhoINDB_ss, w_UPCRrhoINDB_ss] = ER_UPCRgivenRho(Z(inlier_idx,:),Ey,Ey2,rho_INDB_ss);
figure(130); clf; set(gca,'fontsize',24);
plot(rho_true/var_y,rho_IND/var_y,'rs',rho_true/var_y,rho_true/var_y,'k-'); grid on; xlabel('RHO TRUE'); ylabel('RHO EST');
hold on;
plot(rho_true/var_y,rho_INDB/var_y,'bo');
plot(rho_true(outlier_idx)/var_y, rho_INDB(outlier_idx)/var_y,'k>','markersize',20);
plot(rho_true(inlier_idx)/var_y, rho_INDB_ss/var_y,'cd');
figure(400); plot(sort(eig(cov(Z')),'descend') / trace(cov(Z')), 'ko-');
%% Print results
C = cov(Z');
results = {files(file_idx).name, 'best',min(mean((Z - repmat(y_true,m,1)).^2,2)),median(sum(C)) / min(sum(C))}; % best individual regressor
for alg=who('y_*')'
if ~strcmp(alg{1}, 'y_true')
results = [results; {files(file_idx).name, alg{1}, mse(eval(alg{1})), median(sum(C)) / min(sum(C))}];
end;
end;
results_summary = [results_summary; results];
results,
fprintf('PAUSE\n'); pause;
%% Plot principal components
% figure('Name',files(i).name);
% W = [w_oracle2 w_oracle_rho w_mean(2:end), w_dgem, w_gem(2:end), w_gem_with_rho_estimation, w_spectral];
% [pc,score,latent,tsquare] = princomp(W);
% biplot(pc(:,1:2),'Scores',score(:,1:2),'VarLabels',{'oracle2','oracle rho','mean', 'dgem', 'gem', 'gem with rho estimation', 'spectral'}, 'MarkerSize',10);
%% Plot misfit covariance matrix
Cstar = cov((Z - repmat(y_true,m,1))'); labels = {'1','2','3','4','5','6','7'};
%figure('Name',[files(file_idx).name ' Cstar']); imagesc(Cstar); colorbar; title('Cstar');
% Cstar = Cstar - Cstar_rank1_offdiag;
% Cstar_norm = zeros(m); for i=1:m; for j=1:m; Cstar_norm(i,j) = Cstar(i,j) ./ sqrt(Cstar(i,i) * Cstar(j,j)); end; end;
% a=HeatMap(Cstar_norm,'Colormap','redbluecmap','LabelsWithMarkers','true','DisplayRange',1, ...
% 'Symmetric','true','RowLabels',labels,'ColumnLabels',labels);
% set(a,'Annotate','true'); addTitle(a,['Misfit Covariance C*_ij/sqrt(C*_ii C*_jj) - ' files(file_idx).name],'interpreter','none');
% %addTitle(a,['Misfit Covariance After Rank2 reduction - ' files(file_idx).name],'interpreter','none');
end;
writetable(table(results_summary), 'results/drug_response.csv')
%% Best ensemble regression algorithm
% with oracle regressors (which requires oracle knowledge)
t =pivottable(results_summary,2,1,3,@sum);
best = min(cell2mat(t(2:end,2:end)));
a =cell2mat(t(2:end,2:end));
fprintf('\nWith oracle\n');
for i=1:length(files); fprintf('%s\n',t{find(a(:,i) == best(i))+1,1}); end;
% without oracle regressors (which requires oracle knowledge)
fprintf('\n\nWithout oracles\n');
t =pivottable(results_summary,2,1,3,@sum);
t(find(strcmp(t(:,1),'best')),:) = []; t(find(strcmp(t(:,1),'y_oracle2')),:) = [];
t(find(strcmp(t(:,1),'y_oracle_rho')),:) = []; t(find(strcmp(t(:,1),'y_oracle_nonneg')),:) = [];
best = min(cell2mat(t(2:end,2:end)));
a =cell2mat(t(2:end,2:end));
for i=1:length(files); fprintf('%s\n',t{find(a(:,i) == best(i))+1,1}); end;
fprintf('\n');
p=pivottable(results_summary,2,1,3,@sum)
a=cell2mat(p(2:end,2:end))
p(:,1)
%%
% idx_orc = size(a,1);
%
% figure(1); clf; msize = 8;
% set(gca,'fontsize',20);
% hold on; grid on;
% plot(a(idx_orc,:),a(4,:),'k>'); %mean
% plot(a(idx_orc,:),a(5,:),'b.','markersize',msize); %median
% plot(a(idx_orc,:),a(2,:),'rs','markersize',msize); %D-GEM
% plot(a(idx_orc,:),a(6,:),'md','markersize',msize);
% %plot(a(11,:),a(5,:),'gp','markersize',msize); %INDEPENDENT ERRORS
%
% legend('MEAN','MED','DGEM','U-PCR','Location','NorthWest');
% plot(a(idx_orc,:),a(idx_orc,:),'b-');
% plot(a(idx_orc,:),a(idx_orc-3,:),'bo','markersize',msize+2);
%
% axis([0 0.7 0 1]);
%%
idx_orc = size(a,1); idx_mean = 4; idx_med = 5;
fig = 111;
figure(fig); clf; msize = 8;
set(gca,'fontsize',18);
hold on; grid on;
plot(a(idx_orc,:),a(idx_mean,:)-a(idx_orc,:),'ko','markerfacecolor','k'); %mean
plot(a(idx_orc,:),a(idx_med,:)-a(idx_orc,:),'k>','markersize',msize,'markerfacecolor','k'); %median
plot(a(idx_orc,:),a(2,:)-a(idx_orc,:),'d','markersize',msize,'linewidth',2,'markeredgecolor',[.9 0 0]); %D-GEM
plot(a(idx_orc,:),a(3,:)-a(idx_orc,:),'v','markersize',msize,'linewidth',2,'markeredgecolor',[0 .7 0]); %INDEPENDENT ERRORS
plot(a(idx_orc,:),a(6,:)-a(idx_orc,:),'ms','markersize',msize+1,'markerfacecolor','m'); %PCR given delta star*
plot(a(idx_orc,:),a(idx_orc-1,:)-a(idx_orc,:),'bp','markersize',msize+1,'markerfacecolor','b'); %PCR given sum(abs(w))=1
%plot(a(idx_orc,:),a(end-1,:),'bx','markersize',msize+1); %PCR delta=MRE*
%plot(a(idx_orc,:),a(end,:),'bo','markersize',msize+1); %PCR delta=WMRE*
%plot(a(idx_orc,:),a(end-3,:),'b*','markersize',msize+1); %PCR delta=0
%plot(a(idx_orc,:),a(end-4,:),'p','markersize',msize); %RANK-1
%legend('MEAN','MED','DGEM','IND','U-PCR','PCR \delta=MRE','PCR \delta=WMRE','PCR \delta=0','Location','NorthEast');
legend('MEAN','MED','DGEM','IND','U-PCR','U-PCR sum(|w|)=1','Location','NorthEast');
%plot(a(idx_orc,:),a(idx_orc,:),'b-');
xlabel('\delta_{OR}=MSE(oracle)/Var(Y)'); ylabel('MSE/Var(Y) - \delta_{or}');
%set(gca,'yscale','log'); grid minor; set(gca,'ytick',[.01 .1])
axis tight; xlim([0 1]);%axis([0 1 0 .5]);
set(fig,'PaperPositionMode','auto');
set(fig,'Position',[574 656 1045 378]);
% axis([0.2 .95 0.2 1]); set(fig,'Position',[574 656 1045 578]); % for drug response data
set(gca,'Position', [.1 .22 .89 .70]);
%saveas(fig,'plots/rf50_results.fig','fig'); saveas(fig,'plots/rf50_results.eps','psc2');