forked from kahst/BirdNET-Analyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
389 lines (284 loc) · 10.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""Contains functions to use the BirdNET models.
"""
import os
import warnings
import numpy as np
import config as cfg
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
os.environ["CUDA_VISIBLE_DEVICES"] = ""
warnings.filterwarnings("ignore")
# Import TFLite from runtime or Tensorflow;
# import Keras if protobuf model;
# NOTE: we have to use TFLite if we want to use
# the metadata model or want to extract embeddings
try:
import tflite_runtime.interpreter as tflite
except ModuleNotFoundError:
from tensorflow import lite as tflite
if not cfg.MODEL_PATH.endswith(".tflite"):
from tensorflow import keras
INTERPRETER: tflite.Interpreter = None
C_INTERPRETER: tflite.Interpreter = None
M_INTERPRETER: tflite.Interpreter = None
PBMODEL = None
def loadModel(class_output=True):
"""Initializes the BirdNET Model.
Args:
class_output: Omits the last layer when False.
"""
global PBMODEL
global INTERPRETER
global INPUT_LAYER_INDEX
global OUTPUT_LAYER_INDEX
# Do we have to load the tflite or protobuf model?
if cfg.MODEL_PATH.endswith(".tflite"):
# Load TFLite model and allocate tensors.
INTERPRETER = tflite.Interpreter(model_path=cfg.MODEL_PATH, num_threads=cfg.TFLITE_THREADS)
INTERPRETER.allocate_tensors()
# Get input and output tensors.
input_details = INTERPRETER.get_input_details()
output_details = INTERPRETER.get_output_details()
# Get input tensor index
INPUT_LAYER_INDEX = input_details[0]["index"]
# Get classification output or feature embeddings
if class_output:
OUTPUT_LAYER_INDEX = output_details[0]["index"]
else:
OUTPUT_LAYER_INDEX = output_details[0]["index"] - 1
else:
# Load protobuf model
# Note: This will throw a bunch of warnings about custom gradients
# which we will ignore until TF lets us block them
PBMODEL = keras.models.load_model(cfg.MODEL_PATH, compile=False)
def loadCustomClassifier():
"""Loads the custom classifier."""
global C_INTERPRETER
global C_INPUT_LAYER_INDEX
global C_OUTPUT_LAYER_INDEX
# Load TFLite model and allocate tensors.
C_INTERPRETER = tflite.Interpreter(model_path=cfg.CUSTOM_CLASSIFIER, num_threads=cfg.TFLITE_THREADS)
C_INTERPRETER.allocate_tensors()
# Get input and output tensors.
input_details = C_INTERPRETER.get_input_details()
output_details = C_INTERPRETER.get_output_details()
# Get input tensor index
C_INPUT_LAYER_INDEX = input_details[0]["index"]
# Get classification output
C_OUTPUT_LAYER_INDEX = output_details[0]["index"]
def loadMetaModel():
"""Loads the model for species prediction.
Initializes the model used to predict species list, based on coordinates and week of year.
"""
global M_INTERPRETER
global M_INPUT_LAYER_INDEX
global M_OUTPUT_LAYER_INDEX
# Load TFLite model and allocate tensors.
M_INTERPRETER = tflite.Interpreter(model_path=cfg.MDATA_MODEL_PATH, num_threads=cfg.TFLITE_THREADS)
M_INTERPRETER.allocate_tensors()
# Get input and output tensors.
input_details = M_INTERPRETER.get_input_details()
output_details = M_INTERPRETER.get_output_details()
# Get input tensor index
M_INPUT_LAYER_INDEX = input_details[0]["index"]
M_OUTPUT_LAYER_INDEX = output_details[0]["index"]
def buildLinearClassifier(num_labels, input_size, hidden_units=0):
"""Builds a classifier.
Args:
num_labels: Output size.
input_size: Size of the input.
hidden_units: If > 0, creates another hidden layer with the given number of units.
Returns:
A new classifier.
"""
# import keras
from tensorflow import keras
# Build a simple one- or two-layer linear classifier
model = keras.Sequential()
# Input layer
model.add(keras.layers.InputLayer(input_shape=(input_size,)))
# Hidden layer
if hidden_units > 0:
model.add(keras.layers.Dense(hidden_units, activation="relu"))
# Classification layer
model.add(keras.layers.Dense(num_labels))
# Activation layer
model.add(keras.layers.Activation("sigmoid"))
return model
def trainLinearClassifier(classifier, x_train, y_train, epochs, batch_size, learning_rate, on_epoch_end=None):
"""Trains a custom classifier.
Trains a new classifier for BirdNET based on the given data.
Args:
classifier: The classifier to be trained.
x_train: Samples.
y_train: Labels.
epochs: Number of epochs to train.
batch_size: Batch size.
learning_rate: The learning rate during training.
on_epoch_end: Optional callback `function(epoch, logs)`.
Returns:
(classifier, history)
"""
# import keras
from tensorflow import keras
class FunctionCallback(keras.callbacks.Callback):
def __init__(self, on_epoch_end=None) -> None:
super().__init__()
self.on_epoch_end_fn = on_epoch_end
def on_epoch_end(self, epoch, logs=None):
if self.on_epoch_end_fn:
self.on_epoch_end_fn(epoch, logs)
# Set random seed
np.random.seed(cfg.RANDOM_SEED)
# Shuffle data
idx = np.arange(x_train.shape[0])
np.random.shuffle(idx)
x_train = x_train[idx]
y_train = y_train[idx]
# Random val split
x_val = x_train[int(0.8 * x_train.shape[0]) :]
y_val = y_train[int(0.8 * y_train.shape[0]) :]
# Early stopping
callbacks = [
keras.callbacks.EarlyStopping(monitor="val_loss", patience=5, restore_best_weights=True),
FunctionCallback(on_epoch_end=on_epoch_end),
]
# Cosine annealing lr schedule
lr_schedule = keras.experimental.CosineDecay(learning_rate, epochs * x_train.shape[0] / batch_size)
# Compile model
classifier.compile(
optimizer=keras.optimizers.Adam(learning_rate=lr_schedule),
loss="binary_crossentropy",
metrics=keras.metrics.Precision(top_k=1, name="prec"),
)
# Train model
history = classifier.fit(
x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_val, y_val), callbacks=callbacks
)
return classifier, history
def saveLinearClassifier(classifier, model_path, labels):
"""Saves a custom classifier on the hard drive.
Saves the classifier as a tflite model, as well as the used labels in a .txt.
Args:
classifier: The custom classifier.
model_path: Path the model will be saved at.
labels: List of labels used for the classifier.
"""
# Make folders
os.makedirs(os.path.dirname(model_path), exist_ok=True)
# Remove activation layer
classifier.pop()
# Save model as tflite
converter = tflite.TFLiteConverter.from_keras_model(classifier)
tflite_model = converter.convert()
open(model_path, "wb").write(tflite_model)
# Save labels
with open(model_path.replace(".tflite", "_Labels.txt"), "w") as f:
for label in labels:
f.write(label + "\n")
def predictFilter(lat, lon, week):
"""Predicts the probability for each species.
Args:
lat: The latitude.
lon: The longitude.
week: The week of the year [1-48]. Use -1 for yearlong.
Returns:
A list of probabilities for all species.
"""
global M_INTERPRETER
# Does interpreter exist?
if M_INTERPRETER == None:
loadMetaModel()
# Prepare mdata as sample
sample = np.expand_dims(np.array([lat, lon, week], dtype="float32"), 0)
# Run inference
M_INTERPRETER.set_tensor(M_INPUT_LAYER_INDEX, sample)
M_INTERPRETER.invoke()
return M_INTERPRETER.get_tensor(M_OUTPUT_LAYER_INDEX)[0]
def explore(lat: float, lon: float, week: int):
"""Predicts the species list.
Predicts the species list based on the coordinates and week of year.
Args:
lat: The latitude.
lon: The longitude.
week: The week of the year [1-48]. Use -1 for yearlong.
Returns:
A sorted list of tuples with the score and the species.
"""
# Make filter prediction
l_filter = predictFilter(lat, lon, week)
# Apply threshold
l_filter = np.where(l_filter >= cfg.LOCATION_FILTER_THRESHOLD, l_filter, 0)
# Zip with labels
l_filter = list(zip(l_filter, cfg.LABELS))
# Sort by filter value
l_filter = sorted(l_filter, key=lambda x: x[0], reverse=True)
return l_filter
def flat_sigmoid(x, sensitivity=-1):
return 1 / (1.0 + np.exp(sensitivity * np.clip(x, -15, 15)))
def predict(sample):
"""Uses the main net to predict a sample.
Args:
sample: Audio sample.
Returns:
The prediction scores for the sample.
"""
# Has custom classifier?
if cfg.CUSTOM_CLASSIFIER != None:
return predictWithCustomClassifier(sample)
global INTERPRETER
# Does interpreter or keras model exist?
if INTERPRETER == None and PBMODEL == None:
loadModel()
if PBMODEL == None:
# Reshape input tensor
INTERPRETER.resize_tensor_input(INPUT_LAYER_INDEX, [len(sample), *sample[0].shape])
INTERPRETER.allocate_tensors()
# Make a prediction (Audio only for now)
INTERPRETER.set_tensor(INPUT_LAYER_INDEX, np.array(sample, dtype="float32"))
INTERPRETER.invoke()
prediction = INTERPRETER.get_tensor(OUTPUT_LAYER_INDEX)
return prediction
else:
# Make a prediction (Audio only for now)
prediction = PBMODEL.predict(sample)
return prediction
def predictWithCustomClassifier(sample):
"""Uses the custom classifier to make a prediction.
Args:
sample: Audio sample.
Returns:
The prediction scores for the sample.
"""
global C_INTERPRETER
# Does interpreter exist?
if C_INTERPRETER == None:
loadCustomClassifier()
# Get embeddings
feature_vector = embeddings(sample)
# Reshape input tensor
C_INTERPRETER.resize_tensor_input(C_INPUT_LAYER_INDEX, [len(feature_vector), *feature_vector[0].shape])
C_INTERPRETER.allocate_tensors()
# Make a prediction
C_INTERPRETER.set_tensor(C_INPUT_LAYER_INDEX, np.array(feature_vector, dtype="float32"))
C_INTERPRETER.invoke()
prediction = C_INTERPRETER.get_tensor(C_OUTPUT_LAYER_INDEX)
return prediction
def embeddings(sample):
"""Extracts the embeddings for a sample.
Args:
sample: Audio samples.
Returns:
The embeddings.
"""
global INTERPRETER
# Does interpreter exist?
if INTERPRETER == None:
loadModel(False)
# Reshape input tensor
INTERPRETER.resize_tensor_input(INPUT_LAYER_INDEX, [len(sample), *sample[0].shape])
INTERPRETER.allocate_tensors()
# Extract feature embeddings
INTERPRETER.set_tensor(INPUT_LAYER_INDEX, np.array(sample, dtype="float32"))
INTERPRETER.invoke()
features = INTERPRETER.get_tensor(OUTPUT_LAYER_INDEX)
return features