forked from ycanerol/pymer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOMBanalyzer.py
218 lines (191 loc) · 8.83 KB
/
OMBanalyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 7 14:54:08 2018
@author: ycan
"""
import os
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats.mstats import mquantiles
from randpy import randpy
import analysis_scripts as asc
import plotfuncs as plf
import iofuncs as iof
import nonlinearity as nlt
def calc_covar(stim_small):
"""
Calculate the covariance matrix for a given 1-D stimulus snippet.
"""
# To be able to transpose with .T method
stim = stim_small[np.newaxis, :]
covar = np.dot(stim.T, stim)
return covar
def OMBanalyzer(exp_name, stimnr, plotall=False, nr_bins=20):
"""
Analyze responses to object moving background stimulus. STA and STC
are calculated.
Note that there are additional functions that make use of the
OMB class. This function was written before the OMB class existed
"""
# TODO
# Add iteration over multiple stimuli
exp_dir = iof.exp_dir_fixer(exp_name)
exp_name = os.path.split(exp_dir)[-1]
stimname = iof.getstimname(exp_dir, stimnr)
parameters = asc.read_parameters(exp_name, stimnr)
assert parameters['stimulus_type'] == 'objectsmovingbackground'
stimframes = parameters.get('stimFrames', 108000)
preframes = parameters.get('preFrames', 200)
nblinks = parameters.get('Nblinks', 2)
seed = parameters.get('seed', -10000)
seed2 = parameters.get('objseed', -1000)
stepsize = parameters.get('stepsize', 2)
ntotal = int(stimframes / nblinks)
clusters, metadata = asc.read_spikesheet(exp_name)
refresh_rate = metadata['refresh_rate']
filter_length, frametimings = asc.ft_nblinks(exp_name, stimnr, nblinks,
refresh_rate)
frame_duration = np.ediff1d(frametimings).mean()
frametimings = frametimings[:-1]
if ntotal != frametimings.shape[0]:
print(f'For {exp_name}\nstimulus {stimname} :\n'
f'Number of frames specified in the parameters file ({ntotal}'
f' frames) and frametimings ({frametimings.shape[0]}) do not'
' agree!'
' The stimulus was possibly interrupted during recording.'
' ntotal is changed to match actual frametimings.')
ntotal = frametimings.shape[0]
# Generate the numbers to be used for reconstructing the motion
# ObjectsMovingBackground.cpp line 174, steps are generated in an
# alternating fashion. We can generate all of the numbers at once
# (total lengths is defined by stimFrames) and then assign
# to x and y directions. Although there is more
# stuff around line 538
randnrs, seed = randpy.gasdev(seed, ntotal*2)
randnrs = np.array(randnrs)*stepsize
xsteps = randnrs[::2]
ysteps = randnrs[1::2]
clusterids = plf.clusters_to_ids(clusters)
all_spikes = np.empty((clusters.shape[0], ntotal))
for i, (cluster, channel, _) in enumerate(clusters):
spiketimes = asc.read_raster(exp_name, stimnr, cluster, channel)
spikes = asc.binspikes(spiketimes, frametimings)
all_spikes[i, :] = spikes
# Collect STA for x and y movement in one array
stas = np.zeros((clusters.shape[0], 2, filter_length))
stc_x = np.zeros((clusters.shape[0], filter_length, filter_length))
stc_y = np.zeros((clusters.shape[0], filter_length, filter_length))
t = np.arange(filter_length)*1000/refresh_rate*nblinks
for k in range(filter_length, ntotal-filter_length+1):
x_mini = xsteps[k-filter_length+1:k+1][::-1]
y_mini = ysteps[k-filter_length+1:k+1][::-1]
for i, (cluster, channel, _) in enumerate(clusters):
if all_spikes[i, k] != 0:
stas[i, 0, :] += all_spikes[i, k]*x_mini
stas[i, 1, :] += all_spikes[i, k]*y_mini
# Calculate non-centered STC (Cantrell et al., 2010)
stc_x[i, :, :] += all_spikes[i, k]*calc_covar(x_mini)
stc_y[i, :, :] += all_spikes[i, k]*calc_covar(y_mini)
eigvals_x = np.zeros((clusters.shape[0], filter_length))
eigvals_y = np.zeros((clusters.shape[0], filter_length))
eigvecs_x = np.zeros((clusters.shape[0], filter_length, filter_length))
eigvecs_y = np.zeros((clusters.shape[0], filter_length, filter_length))
bins_x = np.zeros((clusters.shape[0], nr_bins))
bins_y = np.zeros((clusters.shape[0], nr_bins))
spikecount_x = np.zeros(bins_x.shape)
spikecount_y = np.zeros(bins_x.shape)
generators_x = np.zeros(all_spikes.shape)
generators_y = np.zeros(all_spikes.shape)
# Normalize STAs and STCs with respect to spike numbers
for i in range(clusters.shape[0]):
totalspikes = all_spikes.sum(axis=1)[i]
stas[i, :, :] = stas[i, :, :] / totalspikes
stc_x[i, :, :] = stc_x[i, :, :] / totalspikes
stc_y[i, :, :] = stc_y[i, :, :] / totalspikes
try:
eigvals_x[i, :], eigvecs_x[i, :, :] = np.linalg.eigh(stc_x[i, :, :])
eigvals_y[i, :], eigvecs_y[i, :, :] = np.linalg.eigh(stc_y[i, :, :])
except np.linalg.LinAlgError:
continue
# Calculate the generator signals and nonlinearities
generators_x[i, :] = np.convolve(eigvecs_x[i, :, -1], xsteps,
mode='full')[:-filter_length+1]
generators_y[i, :] = np.convolve(eigvecs_y[i, :, -1], ysteps,
mode='full')[:-filter_length+1]
spikecount_x[i, :], bins_x[i, :] = nlt.calc_nonlin(all_spikes[i, :],
generators_x[i, :],
nr_bins)
spikecount_y[i, :], bins_y[i, :] = nlt.calc_nonlin(all_spikes[i, :],
generators_y[i, :],
nr_bins)
savepath = os.path.join(exp_dir, 'data_analysis', stimname)
if not os.path.isdir(savepath):
os.makedirs(savepath, exist_ok=True)
# Calculated based on last eigenvector
magx = eigvecs_x[:, :, -1].sum(axis=1)
magy = eigvecs_y[:, :, -1].sum(axis=1)
r_ = np.sqrt(magx**2 + magy**2)
theta_ = np.arctan2(magy, magx)
# To draw the vectors starting from origin, insert zeros every other element
r = np.zeros(r_.shape[0]*2)
theta = np.zeros(theta_.shape[0]*2)
r[1::2] = r_
theta[1::2] = theta_
plt.polar(theta, r)
plt.gca().set_xticks(np.pi/180 * np.array([0, 90, 180, 270]))
plt.title(f'Population plot for motion STAs\n{exp_name}')
plt.savefig(os.path.join(savepath, 'population.svg'))
if plotall:
plt.show()
plt.close()
for i in range(stas.shape[0]):
stax = stas[i, 0, :]
stay = stas[i, 1, :]
ax1 = plt.subplot(211)
ax1.plot(t, stax, label=r'STA$_{\rm X}$')
ax1.plot(t, stay, label=r'STA$_{\rm Y}$')
ax1.plot(t, eigvecs_x[i, :, -1], label='Eigenvector_X 0')
ax1.plot(t, eigvecs_y[i, :, -1], label='Eigenvector_Y 0')
plt.legend(fontsize='x-small')
ax2 = plt.subplot(4, 4, 9)
ax3 = plt.subplot(4, 4, 13)
ax2.set_yticks([])
ax2.set_xticklabels([])
ax3.set_yticks([])
ax2.set_title('Eigenvalues', size='small')
ax2.plot(eigvals_x[i, :], 'o', markerfacecolor='C0', markersize=4,
markeredgewidth=0)
ax3.plot(eigvals_y[i, :], 'o', markerfacecolor='C1', markersize=4,
markeredgewidth=0)
ax4 = plt.subplot(2, 3, 5)
ax4.plot(bins_x[i, :], spikecount_x[i, :]/frame_duration)
ax4.plot(bins_y[i, :], spikecount_y[i, :]/frame_duration)
ax4.set_ylabel('Firing rate [Hz]')
ax4.set_title('Nonlinearities', size='small')
plf.spineless([ax1, ax2, ax3, ax4], 'tr')
ax5 = plt.subplot(2, 3, 6, projection='polar')
ax5.plot(theta, r, color='k', alpha=.3)
ax5.plot(theta[2*i:2*i+2], r[2*i:2*i+2], lw=3)
ax5.set_xticklabels(['0', '', '', '', '180', '', '270', ''])
ax5.set_title('Vector sum of X and Y STCs', size='small')
plt.suptitle(f'{exp_name}\n{stimname}\n{clusterids[i]}')
plt.subplots_adjust(hspace=.4)
plt.savefig(os.path.join(savepath, clusterids[i]+'.svg'),
bbox_inches='tight')
if plotall:
plt.show()
plt.close()
keystosave = ['nblinks', 'all_spikes', 'clusters', 'frame_duration',
'eigvals_x', 'eigvals_y',
'eigvecs_x', 'eigvecs_y',
'filter_length', 'magx', 'magy',
'ntotal', 'r', 'theta', 'stas',
'stc_x', 'stc_y', 'bins_x', 'bins_y', 'nr_bins',
'spikecount_x', 'spikecount_y',
'generators_x', 'generators_y', 't']
datadict = {}
for key in keystosave:
datadict[key] = locals()[key]
npzfpath = os.path.join(savepath, str(stimnr)+'_data')
np.savez(npzfpath, **datadict)