-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlfwL2.m
196 lines (174 loc) · 6.18 KB
/
lfwL2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
function [] = lfwL2()
load feature/lfw_feats_sphereface_iter_22000.mat
% load feature/lfw_feats_sphereface3_28000.mat
% load feature/lfw_feats_normface.mat
% load feature/lfw_feats_center_author.mat
% load feature/lfw_feats_casia10_0_200000_gray.mat
% load lfw_feats_nir10_0_10000_gray.mat
% load lfw_feats_casia10_0_600000_gray_lefteye0.6.mat
% load lfw_feats_casia14_0_460000_gray_leftmouth0.8.mat
% load lfw_feats_casia10_0_200000_gray.mat
% load lfw_feats_casia10_1_600000_gray.mat
% load lfw_feats_casia10_center2_430000_gray.mat
% load lfw_feats_casia11_0_400000_gray.mat
% load lfw_feats_casia10_center2_10000_gray
% load lfw_feats_casia14_0_460000_gray_leftmouth0.8.mat
% load lfw_feats_casia12_0_320000_gray.mat
% load lfw_feats_casia9_1_340000.mat
% load coeff_casia7_0.mat
load lfw/lfw_MTCNN_pairs.mat
libsvm_path = './libsvm-3.21/matlab'
addpath(genpath(libsvm_path));
F1 = double(F1);
F2 = double(F2);
% Mirror trick
F1 = max(F1(:,1:512), F1(:, 513:end));
F2 = max(F2(:,1:512) , F2(:, 513:end));
%10-folders cross validation
same_label = ones(6000,1);
same_label(3001:6000) = 0;
% F1 = bsxfun(@rdivide, F1, sqrt(sum(F1.^2,2)));
% F2 = bsxfun(@rdivide, F2, sqrt(sum(F2.^2,2)));
%% Plot the distribution of distance
thresh = zeros(size(F1,1),1);
for j = 1:size(F1,1)
% thresh(j) = sqrt(sum((F1(j,:)-F2(j,:)).^2));
thresh(j) = F1(j,:)*F2(j,:)'/(norm(F1(j,:))*norm(F2(j,:)));
end
hist(thresh(1:3000),200);
hold on;
hist(thresh(3001:6000),200);
hold off;
title('The distribution of cosine distance ');
%% Plot ROC Curve
MAX = max(thresh);
MIN = min(thresh);
roc_x = [];
roc_y = [];
for t = MIN:0.001:MAX
positive=find(thresh<=t);
negtive = find(thresh>t);
FP = find(positive>3000);
TP = find(positive<=3000);
FPR = length(FP)/3000;
TPR = length(TP)/3000;
roc_x = [roc_x FPR];
roc_y = [roc_y TPR];
end
plot(roc_x,roc_y);
title('ROC');
xlabel('FPR');
ylabel('TPR');
accuracies = zeros(10,1);
accs = zeros(10,1);
for i = 1:10
test_idx = [(i-1) * 300 + 1:i*300, (i-1) * 300 + 3001:i*300 + 3000];
train_idx = 1:6000;
train_idx(test_idx) = [];
train = [F1(train_idx,:);F2(train_idx,:)];
% PCA
[coeff,score,latent,tsquared,explained, mu] = pca(train);
F1_score = (F1 - repmat(mu, length(F1) ,1))*coeff;
F2_score = (F2 - repmat(mu, length(F2) ,1))*coeff;
sum_var = cumsum(explained);
dims = find(sum_var>99.5, 1, 'first')
F1_pca = F1_score(:,1:dims);
F2_pca = F2_score(:,1:dims);
for j = 1:size(F1,1)
thresh(j) = 1- F1_pca(j,:)*F2_pca(j,:)'/(norm(F1_pca(j,:))*norm(F2_pca(j,:)));
end
thr = getThreshold(thresh(train_idx), same_label(train_idx), 0.001);
accs(i) = getAccuracy(thresh(test_idx), same_label(test_idx), thr)
% hist(thresh(1:3000),200);
% hold on;
% hist(thresh(3001:6000),200);
% train_labels = [lfw_labels(train_idx,1);lfw_labels(train_idx,2)];
% [mappedx, mapping] = JointBayesian(train, train_labels)
cmd = [' -t 0 -h 0 -b 1'];
model = svmtrain(same_label(train_idx), thresh(train_idx), cmd);
[class] = svmpredict(same_label(train_idx), thresh(train_idx), model);
[class, accuracy, deci] = svmpredict(same_label(test_idx), thresh(test_idx), model,'-b 1');
accuracies(i) = accuracy(1);
% roc_label = same_label(test_idx);
% roc_label = [roc_label, 1-roc_label];
% % plotroc(roc_label',deci');
%
% fp_idx = test_idx(find(class(301:600)>0) + 300);
% fn_idx = test_idx(find(class(1:300)==0));
% same_pair(fn_idx);
% diff_pair(fp_idx);
% for k = 1:size(fn_idx,2)
% same_pair{fn_idx(k),1}
% same_pair{fn_idx(k),2}
% I1 = imread(same_pair{fn_idx(k),1});
% I2 = imread(same_pair{fn_idx(k),2});
% subplot(1,2,1);
% imshow(I1);
% subplot(1,2,2);
% imshow(I2);
% text(1,1,['Similarity: ', num2str(thresh(fn_idx(k) ) )],'FontSize',16,'color','r');
%
% end
% for k = 1:size(fp_idx,2)
% diff_pair{fp_idx(k)-3000,1}
% diff_pair{fp_idx(k)-3000,2}
% I1 = imread(diff_pair{fp_idx(k)-3000,1});
% I2 = imread(diff_pair{fp_idx(k)-3000,2});
% subplot(1,2,1);
% imshow(I1);
% subplot(1,2,2);
% imshow(I2);
% text(1,1,['Similarity: ', num2str(thresh(fp_idx(k) ) )],'FontSize',16,'color','r');
% end
end
mean(accuracies)
mean(accs)
end
function [thr] = pcaSearch(F1,F2, step)
test_idx = [randperm(300) 2700+randperm(300)]';
train_idx = 1:5400;
train_idx(test_idx) = [];
train = [F1(train_idx, :); F2(train_idx, :)];
% pca
[coeff,score,latent,tsquared,explained, mu] = pca(train);
F1_score = (F1 - repmat(mu, size(F1, 1) ,1))*coeff;
F2_score = (F2 - repmat(mu, size(F2, 1) ,1))*coeff;
sum_var = cumsum(explained);
same_label = [ones(2700, 1); zeros(2700,1)];
accuracies = [];
a = 95;
b = 100;
for pca_t = a:step:b
dims = find(sum_var>pca_t,1,'first')
F1_pca = F1_score(:,1:dims);
F2_pca = F2_score(:,1:dims);
thresh = zeros(size(F1_pca, 1), 1);
for j = 1:size(F1_pca,1)
% thresh(j) = sqrt(sum((F1_pca(j,:)-F2_pca(j,:)).^2));
thresh(j) = 1- F1_pca(j,:)*F2_pca(j,:)'/(norm(F1_pca(j,:))*norm(F2_pca(j,:)));
end
cmd = [' -t 0 -h 0 -b 1'];
model = svmtrain(same_label(train_idx), thresh(train_idx), cmd);
[class] = svmpredict(same_label(train_idx), thresh(train_idx), model);
[class, accuracy, deci] = svmpredict(same_label(test_idx), thresh(test_idx), model,'-b 1');
accuracies = [accuracies accuracy(1)];
end
[acc, ind] = max(accuracies);
thr = a + (step-1)*ind;
['Optimal pca ratio: ' num2str(thr) ' accuracy:' num2str(acc)]
end
function bestThreshold = getThreshold(scores, positive, thrstep)
a = min(scores);
b = max(scores);
thrs = a:thrstep:b;
accs = zeros(length(thrs),1);
for i = 1:length(thrs)
accs(i) = getAccuracy(scores, positive, thrs(i));
end
[~, indx] = max(accs);
bestThreshold = thrs(indx);
end
function acc = getAccuracy(scores, positive, threshold)
acc = (length(find(scores(positive==1)<threshold)) + ...
length(find(scores(positive==0)>threshold))) / length(scores);
end