-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathlp_parser.cc
469 lines (416 loc) · 16.5 KB
/
lp_parser.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/lp_data/lp_parser.h"
#include <algorithm>
#include <set>
#include <string>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/container/flat_hash_set.h"
#include "absl/log/check.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/match.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.pb.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/proto_utils.h"
#if defined(USE_LP_PARSER)
#include "re2/re2.h"
#endif // defined(USE_LP_PARSER)
#if defined(USE_LP_PARSER)
namespace operations_research {
namespace glop {
namespace {
using StringPiece = ::re2::StringPiece;
using ::absl::StatusOr;
enum class TokenType {
ERROR,
END,
ADDAND,
VALUE,
INF,
NAME,
SIGN_LE,
SIGN_EQ,
SIGN_GE,
COMA,
};
bool TokenIsBound(TokenType token_type) {
if (token_type == TokenType::VALUE || token_type == TokenType::INF) {
return true;
}
return false;
}
// Not thread safe.
class LPParser {
public:
// Accepts the string in LP file format (used by LinearProgram::Dump()).
// On success, populates the linear program *lp and returns true. Otherwise,
// returns false and leaves *lp in an unspecified state.
ABSL_MUST_USE_RESULT bool Parse(absl::string_view model, LinearProgram* lp);
private:
bool ParseEmptyLine(StringPiece line);
bool ParseObjective(StringPiece objective);
bool ParseIntegerVariablesList(StringPiece line);
bool ParseConstraint(StringPiece constraint);
TokenType ConsumeToken(StringPiece* sp);
bool SetVariableBounds(ColIndex col, Fractional lb, Fractional ub);
// Linear program populated by the Parse() method. Not owned.
LinearProgram* lp_;
// Contains the last consumed coefficient and name. The name can be the
// optimization direction, a constraint name, or a variable name.
Fractional consumed_coeff_;
std::string consumed_name_;
// To remember whether the variable bounds had already been set.
std::set<ColIndex> bounded_variables_;
};
bool LPParser::Parse(absl::string_view model, LinearProgram* lp) {
lp_ = lp;
bounded_variables_.clear();
lp_->Clear();
std::vector<StringPiece> lines =
absl::StrSplit(model, ';', absl::SkipEmpty());
bool has_objective = false;
for (StringPiece line : lines) {
if (!has_objective && ParseObjective(line)) {
has_objective = true;
} else if (!ParseConstraint(line) && !ParseIntegerVariablesList(line) &&
!ParseEmptyLine(line)) {
LOG(INFO) << "Error in line: " << line;
return false;
}
}
// Bound the non-bounded variables between -inf and +inf. We need to do this,
// as glop bounds a variable by default between 0 and +inf.
for (ColIndex col(0); col < lp_->num_variables(); ++col) {
if (bounded_variables_.find(col) == bounded_variables_.end()) {
lp_->SetVariableBounds(col, -kInfinity, +kInfinity);
}
}
lp_->CleanUp();
return true;
}
bool LPParser::ParseEmptyLine(StringPiece line) {
if (ConsumeToken(&line) == TokenType::END) return true;
return false;
}
bool LPParser::ParseObjective(StringPiece objective) {
// Get the required optimization direction.
if (ConsumeToken(&objective) != TokenType::NAME) return false;
if (absl::EqualsIgnoreCase(consumed_name_, "min")) {
lp_->SetMaximizationProblem(false);
} else if (absl::EqualsIgnoreCase(consumed_name_, "max")) {
lp_->SetMaximizationProblem(true);
} else {
return false;
}
// Get the optional offset.
TokenType token_type = ConsumeToken(&objective);
if (token_type == TokenType::VALUE) {
lp_->SetObjectiveOffset(consumed_coeff_);
token_type = ConsumeToken(&objective);
} else {
lp_->SetObjectiveOffset(0.0);
}
// Get the addands.
while (token_type == TokenType::ADDAND) {
const ColIndex col = lp_->FindOrCreateVariable(consumed_name_);
if (lp_->objective_coefficients()[col] != 0.0) return false;
lp_->SetObjectiveCoefficient(col, consumed_coeff_);
token_type = ConsumeToken(&objective);
}
return token_type == TokenType::END;
}
bool LPParser::ParseIntegerVariablesList(StringPiece line) {
// Get the required "int" or "bin" keyword.
bool binary_list = false;
if (ConsumeToken(&line) != TokenType::NAME) return false;
if (absl::EqualsIgnoreCase(consumed_name_, "bin")) {
binary_list = true;
} else if (!absl::EqualsIgnoreCase(consumed_name_, "int")) {
return false;
}
// Get the list of integer variables, separated by optional comas.
TokenType token_type = ConsumeToken(&line);
while (token_type == TokenType::ADDAND) {
if (consumed_coeff_ != 1.0) return false;
const ColIndex col = lp_->FindOrCreateVariable(consumed_name_);
lp_->SetVariableType(col, LinearProgram::VariableType::INTEGER);
if (binary_list && !SetVariableBounds(col, 0.0, 1.0)) return false;
token_type = ConsumeToken(&line);
if (token_type == TokenType::COMA) {
token_type = ConsumeToken(&line);
}
}
// The last token must be END.
if (token_type != TokenType::END) return false;
return true;
}
bool LPParser::ParseConstraint(StringPiece constraint) {
const StatusOr<ParsedConstraint> parsed_constraint_or_status =
::operations_research::glop::ParseConstraint(constraint);
if (!parsed_constraint_or_status.ok()) return false;
const ParsedConstraint& parsed_constraint =
parsed_constraint_or_status.value();
// Set the variables bounds without creating new constraints.
if (parsed_constraint.name.empty() &&
parsed_constraint.coefficients.size() == 1 &&
parsed_constraint.coefficients[0] == 1.0) {
const ColIndex col =
lp_->FindOrCreateVariable(parsed_constraint.variable_names[0]);
if (!SetVariableBounds(col, parsed_constraint.lower_bound,
parsed_constraint.upper_bound)) {
return false;
}
} else {
const RowIndex num_constraints_before_adding_variable =
lp_->num_constraints();
// The constaint has a name, or there are more than variable, or the
// coefficient is not 1. Thus, create and fill a new constraint.
// We don't use SetConstraintName() because constraints named that way
// cannot be found via FindOrCreateConstraint() (see comment on
// SetConstraintName()), which can be useful for tests using ParseLP.
const RowIndex row =
parsed_constraint.name.empty()
? lp_->CreateNewConstraint()
: lp_->FindOrCreateConstraint(parsed_constraint.name);
if (lp_->num_constraints() == num_constraints_before_adding_variable) {
// No constraints were added, meaning we found one.
LOG(INFO) << "Two constraints with the same name: "
<< parsed_constraint.name;
return false;
}
if (!AreBoundsValid(parsed_constraint.lower_bound,
parsed_constraint.upper_bound)) {
return false;
}
lp_->SetConstraintBounds(row, parsed_constraint.lower_bound,
parsed_constraint.upper_bound);
for (int i = 0; i < parsed_constraint.variable_names.size(); ++i) {
const ColIndex variable =
lp_->FindOrCreateVariable(parsed_constraint.variable_names[i]);
lp_->SetCoefficient(row, variable, parsed_constraint.coefficients[i]);
}
}
return true;
}
bool LPParser::SetVariableBounds(ColIndex col, Fractional lb, Fractional ub) {
if (bounded_variables_.find(col) == bounded_variables_.end()) {
// The variable was not bounded yet, thus reset its bounds.
bounded_variables_.insert(col);
lp_->SetVariableBounds(col, -kInfinity, kInfinity);
}
// Set the bounds only if their stricter and valid.
lb = std::max(lb, lp_->variable_lower_bounds()[col]);
ub = std::min(ub, lp_->variable_upper_bounds()[col]);
if (!AreBoundsValid(lb, ub)) return false;
lp_->SetVariableBounds(col, lb, ub);
return true;
}
TokenType ConsumeToken(StringPiece* sp, std::string* consumed_name,
double* consumed_coeff) {
DCHECK(consumed_name != nullptr);
DCHECK(consumed_coeff != nullptr);
// We use LazyRE2 everywhere so that all the patterns are just compiled once
// when they are needed for the first time. This speed up the code
// significantly. Note that the use of LazyRE2 is thread safe.
static const LazyRE2 kEndPattern = {R"(\s*)"};
// There is nothing more to consume.
if (sp->empty() || RE2::FullMatch(*sp, *kEndPattern)) {
return TokenType::END;
}
// Return NAME if the next token is a line name, or integer variable list
// indicator.
static const LazyRE2 kNamePattern1 = {R"(\s*(\w[\w[\]]*):)"};
static const LazyRE2 kNamePattern2 = {R"((?i)\s*(int)\s*:?)"};
static const LazyRE2 kNamePattern3 = {R"((?i)\s*(bin)\s*:?)"};
if (RE2::Consume(sp, *kNamePattern1, consumed_name)) return TokenType::NAME;
if (RE2::Consume(sp, *kNamePattern2, consumed_name)) return TokenType::NAME;
if (RE2::Consume(sp, *kNamePattern3, consumed_name)) return TokenType::NAME;
// Return SIGN_* if the next token is a relation sign.
static const LazyRE2 kLePattern = {R"(\s*<=?)"};
if (RE2::Consume(sp, *kLePattern)) return TokenType::SIGN_LE;
static const LazyRE2 kEqPattern = {R"(\s*=)"};
if (RE2::Consume(sp, *kEqPattern)) return TokenType::SIGN_EQ;
static const LazyRE2 kGePattern = {R"(\s*>=?)"};
if (RE2::Consume(sp, *kGePattern)) return TokenType::SIGN_GE;
// Return COMA if the next token is a coma.
static const LazyRE2 kComaPattern = {R"(\s*\,)"};
if (RE2::Consume(sp, *kComaPattern)) return TokenType::COMA;
// Consume all plus and minus signs.
std::string sign;
int minus_count = 0;
static const LazyRE2 kSignPattern = {R"(\s*([-+]{1}))"};
while (RE2::Consume(sp, *kSignPattern, &sign)) {
if (sign == "-") minus_count++;
}
// Return INF if the next token is an infinite value.
static const LazyRE2 kInfPattern = {R"((?i)\s*inf)"};
if (RE2::Consume(sp, *kInfPattern)) {
*consumed_coeff = minus_count % 2 == 0 ? kInfinity : -kInfinity;
return TokenType::INF;
}
// Check if the next token is a value. If it is infinite return INF.
std::string coeff;
bool has_value = false;
static const LazyRE2 kValuePattern = {
R"(\s*([0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?))"};
if (RE2::Consume(sp, *kValuePattern, &coeff)) {
if (!absl::SimpleAtod(coeff, consumed_coeff)) {
// Note: If absl::SimpleAtod(), Consume(), and kValuePattern are correct,
// this should never happen.
LOG(ERROR) << "Text: " << coeff << " was matched by RE2 to be "
<< "a floating point number, but absl::SimpleAtod() failed.";
return TokenType::ERROR;
}
if (!IsFinite(*consumed_coeff)) {
VLOG(1) << "Value " << coeff << " treated as infinite.";
return TokenType::INF;
}
has_value = true;
} else {
*consumed_coeff = 1.0;
}
if (minus_count % 2 == 1) *consumed_coeff *= -1.0;
// Return ADDAND (coefficient and name) if the next token is a variable name.
// Otherwise, if we found a finite value previously, return VALUE.
// Otherwise, return ERROR.
std::string multiplication;
static const LazyRE2 kAddandPattern = {R"(\s*(\*?)\s*([a-zA-Z_)][\w[\])]*))"};
if (RE2::Consume(sp, *kAddandPattern, &multiplication, consumed_name)) {
if (!multiplication.empty() && !has_value) return TokenType::ERROR;
return TokenType::ADDAND;
} else if (has_value) {
return TokenType::VALUE;
}
return TokenType::ERROR;
}
TokenType LPParser::ConsumeToken(StringPiece* sp) {
using ::operations_research::glop::ConsumeToken;
return ConsumeToken(sp, &consumed_name_, &consumed_coeff_);
}
} // namespace
StatusOr<ParsedConstraint> ParseConstraint(absl::string_view constraint) {
ParsedConstraint parsed_constraint;
// Get the name, if present.
StringPiece constraint_copy{constraint};
std::string consumed_name;
Fractional consumed_coeff;
if (ConsumeToken(&constraint_copy, &consumed_name, &consumed_coeff) ==
TokenType::NAME) {
parsed_constraint.name = consumed_name;
constraint = constraint_copy;
}
Fractional left_bound;
Fractional right_bound;
TokenType left_sign(TokenType::END);
TokenType right_sign(TokenType::END);
absl::flat_hash_set<std::string> used_variables;
// Get the left bound and the relation sign, if present.
TokenType token_type =
ConsumeToken(&constraint, &consumed_name, &consumed_coeff);
if (TokenIsBound(token_type)) {
left_bound = consumed_coeff;
left_sign = ConsumeToken(&constraint, &consumed_name, &consumed_coeff);
if (left_sign != TokenType::SIGN_LE && left_sign != TokenType::SIGN_EQ &&
left_sign != TokenType::SIGN_GE) {
return absl::InvalidArgumentError(
"Expected an equality/inequality sign for the left bound.");
}
token_type = ConsumeToken(&constraint, &consumed_name, &consumed_coeff);
}
// Get the addands, if present.
while (token_type == TokenType::ADDAND) {
if (used_variables.contains(consumed_name)) {
return absl::InvalidArgumentError(
absl::StrCat("Duplicate variable name: ", consumed_name));
}
used_variables.insert(consumed_name);
parsed_constraint.variable_names.push_back(consumed_name);
parsed_constraint.coefficients.push_back(consumed_coeff);
token_type = ConsumeToken(&constraint, &consumed_name, &consumed_coeff);
}
// If the left sign was EQ there can be no right side.
if (left_sign == TokenType::SIGN_EQ && token_type != TokenType::END) {
return absl::InvalidArgumentError(
"Equality constraints can have only one bound.");
}
// Get the right sign and the right bound, if present.
if (token_type != TokenType::END) {
right_sign = token_type;
if (right_sign != TokenType::SIGN_LE && right_sign != TokenType::SIGN_EQ &&
right_sign != TokenType::SIGN_GE) {
return absl::InvalidArgumentError(
"Expected an equality/inequality sign for the right bound.");
}
// If the right sign is EQ, there can be no left side.
if (left_sign != TokenType::END && right_sign == TokenType::SIGN_EQ) {
return absl::InvalidArgumentError(
"Equality constraints can have only one bound.");
}
if (!TokenIsBound(
ConsumeToken(&constraint, &consumed_name, &consumed_coeff))) {
return absl::InvalidArgumentError("Bound value was expected.");
}
right_bound = consumed_coeff;
if (ConsumeToken(&constraint, &consumed_name, &consumed_coeff) !=
TokenType::END) {
return absl::InvalidArgumentError(
absl::StrCat("End of input was expected, found: ", constraint));
}
}
// There was no constraint!
if (left_sign == TokenType::END && right_sign == TokenType::END) {
return absl::InvalidArgumentError("The input constraint was empty.");
}
// Calculate bounds to set.
parsed_constraint.lower_bound = -kInfinity;
parsed_constraint.upper_bound = kInfinity;
if (left_sign == TokenType::SIGN_LE || left_sign == TokenType::SIGN_EQ) {
parsed_constraint.lower_bound = left_bound;
}
if (left_sign == TokenType::SIGN_GE || left_sign == TokenType::SIGN_EQ) {
parsed_constraint.upper_bound = left_bound;
}
if (right_sign == TokenType::SIGN_LE || right_sign == TokenType::SIGN_EQ) {
parsed_constraint.upper_bound =
std::min(parsed_constraint.upper_bound, right_bound);
}
if (right_sign == TokenType::SIGN_GE || right_sign == TokenType::SIGN_EQ) {
parsed_constraint.lower_bound =
std::max(parsed_constraint.lower_bound, right_bound);
}
return parsed_constraint;
}
bool ParseLp(absl::string_view model, LinearProgram* lp) {
LPParser parser;
return parser.Parse(model, lp);
}
} // namespace glop
absl::StatusOr<MPModelProto> ModelProtoFromLpFormat(absl::string_view model) {
glop::LinearProgram lp;
if (!ParseLp(model, &lp)) {
return absl::InvalidArgumentError("Parsing error, see LOGs for details.");
}
MPModelProto model_proto;
LinearProgramToMPModelProto(lp, &model_proto);
return model_proto;
}
} // namespace operations_research
#endif // defined(USE_LP_PARSER)