Skip to content

Latest commit

 

History

History

Teachable Machine Library - Image

Library for using image models created with Teachable Machine.

Model checkpoints

There is one link related to your model that will be provided by Teachable Machine

https://teachablemachine.withgoogle.com/models/MODEL_ID/

Which you can use to access:

  • The model topology: https://teachablemachine.withgoogle.com/models/MODEL_ID/model.json
  • The model metadata: https://teachablemachine.withgoogle.com/models/MODEL_ID/metadata.json

Usage

There are two ways to easily use the model provided by Teachable Machine in your Javascript project: by using this library via script tags or by installing this library from NPM (and using a build tool ike Parcel, WebPack, or Rollup)

via Script Tag

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.3.1/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@0.8.3/dist/teachablemachine-image.min.js"></script>

via NPM

NPM Package

npm i @tensorflow/tfjs
npm i @teachablemachine/image
import * as tf from '@tensorflow/tfjs';
import * as tmImage from '@teachablemachine/image';

Sample snippet

<div>Teachable Machine Image Model</div>
<button type='button' onclick='init()'>Start</button>
<div id='webcam-container'></div>
<div id='label-container'></div>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.3.1/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@0.8.3/dist/teachablemachine-image.min.js"></script>
<script type="text/javascript">
    // More API functions here:
    // https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image

    // the link to your model provided by Teachable Machine export panel
    const URL = '{{URL}}';

    let model, webcam, labelContainer, maxPredictions;

    let isIos = false; 
    // fix when running demo in ios, video will be frozen;
    if (window.navigator.userAgent.indexOf('iPhone') > -1 || window.navigator.userAgent.indexOf('iPad') > -1) {
      isIos = true;
    }
    // Load the image model and setup the webcam
    async function init() {
        const modelURL = URL + 'model.json';
        const metadataURL = URL + 'metadata.json';

        // load the model and metadata
        // Refer to tmImage.loadFromFiles() in the API to support files from a file picker
        // or files from your local hard drive
        model = await tmImage.load(modelURL, metadataURL);
        maxPredictions = model.getTotalClasses();

        // Convenience function to setup a webcam
        const flip = true; // whether to flip the webcam
        const width = 200;
        const height = 200;
        webcam = new tmImage.Webcam(width, height, flip);
        await webcam.setup(); // request access to the webcam

        if (isIos) {
            document.getElementById('webcam-container').appendChild(webcam.webcam); // webcam object needs to be added in any case to make this work on iOS
            // grab video-object in any way you want and set the attributes
            const webCamVideo = document.getElementsByTagName('video')[0];
            webCamVideo.setAttribute("playsinline", true); // written with "setAttribute" bc. iOS buggs otherwise
            webCamVideo.muted = "true";
            webCamVideo.style.width = width + 'px';
            webCamVideo.style.height = height + 'px';
        } else {
            document.getElementById("webcam-container").appendChild(webcam.canvas);
        }
        // append elements to the DOM
        labelContainer = document.getElementById('label-container');
        for (let i = 0; i < maxPredictions; i++) { // and class labels
            labelContainer.appendChild(document.createElement('div'));
        }
        webcam.play();
        window.requestAnimationFrame(loop);
    }

    async function loop() {
        webcam.update(); // update the webcam frame
        await predict();
        window.requestAnimationFrame(loop);
    }

    // run the webcam image through the image model
    async function predict() {
        // predict can take in an image, video or canvas html element
        let prediction;
        if (isIos) {
            prediction = await model.predict(webcam.webcam);
        } else {
            prediction = await model.predict(webcam.canvas);
        }
        for (let i = 0; i < maxPredictions; i++) {
            const classPrediction =
                prediction[i].className + ': ' + prediction[i].probability.toFixed(2);
            labelContainer.childNodes[i].innerHTML = classPrediction;
        }
    }
</script>

API

Loading the model - url checkpoints

tmImage is the module name, which is automatically included when you use the <script src> method. It gets added as an object to your window so you can access via window.tmImage or simply tmImage.

tmImage.load(
	checkpoint: string, 
	metadata?: string | Metadata
)

Args:

  • checkpoint: a URL to a json file that contains the model topology and a reference to a bin file (model weights)
  • metadata: a URL to a json file that contains the text labels of your model and additional information

Usage:

await tmImage.load(checkpointURL, metadataURL);

Loading the model - browser files

You can upload your model files from a local hard drive by using a file picker and the File interface.

tmImage.loadFromFiles(
	model: File, 
	weights: File, 
	metadata: File
) 

Args:

  • model: a File object that contains the model topology (.json)
  • weights: a File object with the model weights (.bin)
  • metadata: a File object that contains the text labels of your model and additional information (.json)

Usage:

// you need to create File objects, like with file input elements (<input type="file" ...>)
const uploadModel = document.getElementById('upload-model');
const uploadWeights = document.getElementById('upload-weights');
const uploadMetadata = document.getElementById('upload-metadata');
model = await tmImage.loadFromFiles(uploadModel.files[0], uploadWeights.files[0], uploadMetadata.files[0])

Model - get total classes

Once you have loaded a model, you can obtain the total number of classes in the model.

This method exists on the model that is loaded from tmImage.load.

model.getTotalClasses()

Returns a number representing the total number of classes

Model - get class labels

Once you have loaded a model, you can obtain the class labels (i.e. the name of each category the model was trained on).

This method exists on the model that is loaded from tmImage.getClassLabels.

model.getClassLabels()

Returns an array with class names as strings.

Model - predict

Once you have loaded a model, you can make a classificaiton with a couple of different input options.

This method exists on the model that is loaded from tmImage.load.

model.predict(
  image: HTMLImageElement | HTMLCanvasElement | HTMLVideoElement | ImageBitmap,
  flipped = false
)

Args:

  • image: an image, canvas, or video element to make a classification on
  • flipped: a boolean to trigger whether to flip on X or not the image input

Usage:

// predict can take in an image, video or canvas html element
// if using the webcam utility, we set flip to true since the webcam was only 
// flipped in CSS
const flip = true;
const allPredictions = await model.predict(webcamElement, flip);

Model - predictTopK

This is an alternative function to predict() which returns the probability for all classes.

This method exists on the model that is loaded from tmImage.load.

model.predictTopK(
  image: HTMLImageElement | HTMLCanvasElement | HTMLVideoElement | ImageBitmap,
  maxPredictions = 10,
  flipped = false
)

Args:

  • image: an image, canvas, or video element to make a classification on
  • flipped: a boolean to trigger whether to flip on X or not the image input
  • maxPredictions: total number of predictions to return

Usage:

// predictTopK can take in an image, video or canvas html element
// if using the webcam utility, we set flip to true since the webcam was only 
// flipped in CSS
const flip = true;
const maxPredictions = model.getTotalClasses();
const prediction = await model.predictTopK(webcamElement, maxPredictions, flip);

Webcam

You can optionally use a webcam class that comes with the library, or spin up your own webcam. This class exists on the tmImage module.

Please note that the default webcam used in Teachable Machine was flipped on X - so you should probably set flip = true if creating your own webcam unless you flipped it manually in Teachable Machine.

new tmImage.Webcam(
    width = 400,
    height = 400,
    flip = false,
)

Args:

  • width: width of the webcam. It should ideally be square since that's how the model was trained with Teachable Machine.
  • height: height of the webcam. It should ideally be square since that's how the model was trained with Teachable Machine.
  • flip: boolean to signal whether webcam should be flipped on X. Please note this is only flipping on CSS.

Usage:

// webcam has a square ratio and is flipped by default to match training
const webcam = new tmImage.Webcam(200, 200, true);
await webcam.setup();
webcam.play();
document.body.appendChild(webcam.canvas);

Webcam - setup

After creating a Webcam object you need to call setup just once to set it up.

webcam.setup(
	options: MediaTrackConstraints = {}
)

Args:

  • options: optional media track contraints for the webcam

Usage:

await webcam.setup();

Webcam - play, pause, stop

webcam.play();
webcam.pause();
webcam.stop();

Webcam play loads and starts playback of a media resource. Returns a promise.

Webcam - update

Call on update to update the webcam frame.

webcam.update();