forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
apply_binary.py
57 lines (46 loc) · 1.56 KB
/
apply_binary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright 2019 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Applies a graph-based network to predict particle mobilities in glasses."""
import os
from absl import app
from absl import flags
from glassy_dynamics import train
FLAGS = flags.FLAGS
flags.DEFINE_string(
'data_directory',
'',
'Directory which contains the train or test datasets.')
flags.DEFINE_integer(
'time_index',
9,
'The time index of the target mobilities.')
flags.DEFINE_integer(
'max_files_to_load',
None,
'The maximum number of files to load.')
flags.DEFINE_string(
'checkpoint_path',
'checkpoints/t044_s09.ckpt',
'Path used to load the model.')
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
file_pattern = os.path.join(FLAGS.data_directory, 'aggregated*')
train.apply_model(
checkpoint_path=FLAGS.checkpoint_path,
file_pattern=file_pattern,
max_files_to_load=FLAGS.max_files_to_load,
time_index=FLAGS.time_index)
if __name__ == '__main__':
app.run(main)