-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflamelet_problem.py
177 lines (152 loc) · 5.71 KB
/
flamelet_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
import math
import matplotlib.pyplot as plt
import pacopy
import scipy.sparse as sp
from spitfire import Flamelet, FlameletSpec, ChemicalMechanismSpec
class FlameletProblem():
def __init__(self, lmbda0, npts, tf=372.,
mech='burke-hydrogen.yaml',
comp_f='H2:1', plot_verbose=False):
# Set plot verbosity
self.plot_verbose = plot_verbose
# Required to reinvoke Flamelet
self.lmbda0 = lmbda0
# Flow details
mech = ChemicalMechanismSpec(mech, 'gas')
air = mech.stream(stp_air=True)
fuel = mech.stream('TPX', (tf, air.P, comp_f))
# Create base flamelet and steady state
# Note that exp(lambda) = chi_st
self.flamelet0 = Flamelet(mech_spec=mech,
initial_condition='equilibrium',
oxy_stream=air,
fuel_stream=fuel,
grid_points=npts,
stoich_dissipation_rate=math.exp(lmbda0))
self.steady_lib = self.flamelet0.compute_steady_state()
print(f'Computed steady state for lambda0={lmbda0}')
# Variables used in other functions
self.num_equations = self.flamelet0._n_equations
self.u0 = self.flamelet0._current_state
self.chi_list = []
self.Tmax_list = []
self.grid = self.flamelet0.mixfrac_grid
self.fuel_y = fuel.Y
self.air_y = air.Y
self.air_T = air.T
self.fuel_T = fuel.T
def f(self, u, lmbda):
"""
Evaluate RHS for adiabatic flamelet
"""
flamelet = Flamelet(FlameletSpec(
library_slice=self.steady_lib, stoich_dissipation_rate=math.exp(lmbda)))
return flamelet._adiabatic_rhs(0., u)
def inner(self, a, b):
return np.dot(a, b)
def norm2_r(self, a):
return np.dot(a, a)
def DD(self, y):
"""
Second-derivative of y with respect to non-uniform grid
"""
dydx = np.gradient(y)/np.gradient(self.grid)
return np.gradient(dydx)/np.gradient(self.grid)
def df_dlmbda(self, u, lmbda):
"""
Note that $exp(\lambda) = \chi_{st}$
This implies $df/d\lambda = (df/d\chi_{st})*(d\chi_{st}/d\lambda)$
That simplifies to $(df/d\chi_{st})*exp(lambda)$
For $(df/d\chi_{st})$, refer to
https://cefrc.princeton.edu/sites/g/files/toruqf1071/files/Files/2010%20Lecture%20Notes/Norbert%20Peters/Lecture8.pdf
Pg. 8.-11
They trivially simplify to 0.5*T'' and (0.5/Z)*Y''
"""
neq = self.num_equations
# Get current temperature (by selecting every Nth element in u where N - number of species)
# Attach boundary values to the interior array
T_list = np.hstack((self.air_T, u[::neq], self.fuel_T))
# We care only about interior derivatives
Tpp = 0.5*self.DD(T_list)[1:-1]
# Only N-1 species are solved
Ypp = []
for i in range(0, neq-1):
species_list = np.hstack(
(self.air_y[i], u[i+1::neq], self.fuel_y[i]))
current_species_ypp = 0.5 * \
np.divide(self.DD(species_list)[1:], self.grid[1:])
Ypp.append(current_species_ypp[:-1])
Ypp = np.array(Ypp)
full_mat = np.vstack((Tpp, Ypp))
return math.exp(lmbda)*full_mat.flatten('F')
def jacobian_solver(self, u, lmbda, rhs):
"""
Sparse Jacobian is mandatory for solution within reasonable times
"""
flamelet = Flamelet(FlameletSpec(
library_slice=self.steady_lib, stoich_dissipation_rate=math.exp(lmbda)))
M = flamelet._adiabatic_jac_csc(u)
return sp.linalg.spsolve(M, rhs)
def callback(self, k, lmbda, sol):
"""
Callback to append current maximum temperature
"""
self.chi_list.append(math.exp(lmbda))
T_list = sol[::self.num_equations]
Tmax = T_list.max()
self.Tmax_list.append(Tmax)
# Print values
print(lmbda, Tmax)
print('-' * 27)
# Visualize current solution
if self.plot_verbose:
f = self.flamelet_from_state(sol)
plt.plot(f.mixfrac_grid, f.current_temperature)
plt.show()
def continuation(
self,
newton_tol=1.0e-6,
max_steps=float("inf"),
verbose=True,
max_newton_steps=20,
predictor_variant="tangent",
corrector_variant="tangent",
stepsize0=5.0e-1,
stepsize_max=float("inf"),
stepsize_aggressiveness=2,
cos_alpha_min=0.9,
theta0=1.0,
adaptive_theta=False,
):
"""
Pseudo-arclength continuation.
Uses euler_newton from pacopy
"""
pacopy.euler_newton(
self,
self.u0,
self.lmbda0,
self.callback,
newton_tol=newton_tol,
verbose=verbose,
max_steps=max_steps,
max_newton_steps=max_newton_steps,
predictor_variant=predictor_variant,
corrector_variant=corrector_variant,
stepsize0=stepsize0,
stepsize_max=stepsize_max,
stepsize_aggressiveness=stepsize_aggressiveness,
cos_alpha_min=cos_alpha_min,
theta0=theta0,
adaptive_theta=adaptive_theta,
)
def flamelet_from_state(self, u):
"""
Helper function to quickly isolate flamelet object from u vector
Used to plot
"""
flamelet = Flamelet(FlameletSpec(
library_slice=self.steady_lib, stoich_dissipation_rate=math.exp(self.lmbda0)))
flamelet._current_state = u
return flamelet