forked from karpathy/nanoGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
112 lines (104 loc) · 3.95 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Sample from a trained model
"""
import os
import pickle
from contextlib import nullcontext
import torch
import tiktoken
from model import GPTConfig, GPT
# -----------------------------------------------------------------------------
init_from = (
"resume" # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
)
out_dir = "out" # ignored if init_from is not 'resume'
start = "\n" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt"
num_samples = 10 # number of samples to draw
max_new_tokens = 500 # number of tokens generated in each sample
temperature = (
0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
)
top_k = (
200 # retain only the top_k most likely tokens, clamp others to have 0 probability
)
seed = 1337
device = "cuda" # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
dtype = (
"bfloat16"
if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
else "float16"
) # 'float32' or 'bfloat16' or 'float16'
compile = False # use PyTorch 2.0 to compile the model to be faster
exec(open("configurator.py").read()) # overrides from command line or config file
# -----------------------------------------------------------------------------
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = "cuda" if "cuda" in device else "cpu" # for later use in torch.autocast
ptdtype = {
"float32": torch.float32,
"bfloat16": torch.bfloat16,
"float16": torch.float16,
}[dtype]
ctx = (
nullcontext()
if device_type == "cpu"
else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
)
# model
if init_from == "resume":
# init from a model saved in a specific directory
ckpt_path = os.path.join(out_dir, "ckpt.pt")
checkpoint = torch.load(ckpt_path, map_location=device)
gptconf = GPTConfig(**checkpoint["model_args"])
model = GPT(gptconf)
state_dict = checkpoint["model"]
unwanted_prefix = "_orig_mod."
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
model.load_state_dict(state_dict)
elif init_from.startswith("gpt2"):
# init from a given GPT-2 model
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
model.eval()
model.to(device)
if compile:
model = torch.compile(model) # requires PyTorch 2.0 (optional)
# look for the meta pickle in case it is available in the dataset folder
load_meta = False
if (
init_from == "resume"
and "config" in checkpoint
and "dataset" in checkpoint["config"]
): # older checkpoints might not have these...
meta_path = os.path.join("data", checkpoint["config"]["dataset"], "meta.pkl")
load_meta = os.path.exists(meta_path)
if load_meta:
print(f"Loading meta from {meta_path}...")
with open(meta_path, "rb") as f:
meta = pickle.load(f)
# TODO want to make this more general to arbitrary encoder/decoder schemes
stoi, itos = meta["stoi"], meta["itos"]
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: "".join([itos[i] for i in l])
else:
# ok let's assume gpt-2 encodings by default
print("No meta.pkl found, assuming GPT-2 encodings...")
enc = tiktoken.get_encoding("gpt2")
encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"})
decode = lambda l: enc.decode(l)
# encode the beginning of the prompt
if start.startswith("FILE:"):
with open(start[5:], "r", encoding="utf-8") as f:
start = f.read()
start_ids = encode(start)
x = torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]
# run generation
with torch.no_grad():
with ctx:
for k in range(num_samples):
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
print(decode(y[0].tolist()))
print("---------------")