-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfunction.c
924 lines (852 loc) · 35.4 KB
/
function.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
#include "function.h"
#define CALLING_CONVENTION_IMPLEMENTATION
#include "calling_convention.h"
static Storage
reserve_stack_storage(
Function_Builder *builder,
Bits bit_size
) {
s32 byte_size = u64_to_s32(bit_size.as_u64 / 8);
builder->stack_reserve = s32_align(builder->stack_reserve, byte_size);
builder->stack_reserve += byte_size;
// The value is negative here because the stack grows down
return storage_stack(-builder->stack_reserve, bit_size, Stack_Area_Local);
}
static const u64 registers_that_can_be_temp = (
// FIXME this should be all registers except for RSP
(1llu << Register_C) | (1llu << Register_B) | (1llu << Register_D) |
(1llu << Register_BP) | (1llu << Register_SI) | (1llu << Register_DI) |
(1llu << Register_R8) | (1llu << Register_R9) | (1llu << Register_R10) |
(1llu << Register_R11) | (1llu << Register_R12) | (1llu << Register_R13) |
(1llu << Register_R14) | (1llu << Register_R15)
);
static Register
register_find_available(
Function_Builder *builder,
u64 disallowed_bit_mask
) {
// Start with the registers that we can theoretically use for temp values
u64 available_bit_set = registers_that_can_be_temp;
// Narrow it down by the ones that are not in use
available_bit_set &= ~builder->register_occupied_bitset.bits;
// Apply any additional constraints from the user
available_bit_set &= ~disallowed_bit_mask;
u32 available_index = u64_count_trailing_zeros(available_bit_set);
if (available_index == 64) {
panic("TODO: Could not find an empty temp register");
}
return available_index;
}
static u64
register_bitset_from_storage(
const Storage *storage
) {
u64 result = 0;
switch(storage->tag) {
case Storage_Tag_Static:
case Storage_Tag_Immediate: {
// Nothing to do
break;
}
default:
case Storage_Tag_Eflags: {
panic("Internal Error: Unexpected storage type for a function argument");
break;
}
case Storage_Tag_Register:
case Storage_Tag_Xmm: {
Register reg_index = storage->Register.index;
register_bitset_set(&result, reg_index);
} break;
case Storage_Tag_Memory: {
if (storage->Memory.location.tag == Memory_Location_Tag_Indirect) {
Register reg_index = storage->Memory.location.Indirect.base_register;
register_bitset_set(&result, reg_index);
}
} break;
case Storage_Tag_Disjoint: {
for (u64 i = 0; i < dyn_array_length(storage->Disjoint.pieces); ++i) {
const Storage *piece = *dyn_array_get(storage->Disjoint.pieces, i);
result |= register_bitset_from_storage(piece);
}
} break;
}
return result;
}
static void
move_value(
Function_Builder *builder,
const Scope *scope,
const Source_Range *source_range,
const Storage *target,
const Storage *source
) {
if (target == source) return;
if (storage_equal(target, source)) return;
if (source->tag == Storage_Tag_Disjoint) {
if (source->Disjoint.packed) {
panic("TODO @DisjointPacked");
} else {
for (u64 i = 0; i < dyn_array_length(source->Disjoint.pieces); ++i) {
const Storage *source_piece = *dyn_array_get(source->Disjoint.pieces, i);
Storage target_piece = storage_with_offset_and_bit_size(
target, u64_to_s32(i * 8), source_piece->bit_size
);
move_value(builder, scope, source_range, &target_piece, source_piece);
}
return;
}
}
if (target->tag == Storage_Tag_Disjoint) {
if (target->Disjoint.packed) {
panic("TODO @DisjointPacked");
} else {
for (u64 i = 0; i < dyn_array_length(target->Disjoint.pieces); ++i) {
const Storage *target_piece = *dyn_array_get(target->Disjoint.pieces, i);
Storage source_piece = storage_with_offset_and_bit_size(
source, u64_to_s32(i * 8), target_piece->bit_size
);
move_value(builder, scope, source_range, target_piece, &source_piece);
}
return;
}
}
if (target->tag == Storage_Tag_Eflags) {
panic("Internal Error: Trying to move into Eflags");
}
if (source->tag == Storage_Tag_Static) {
assert(source->bit_size.as_u64 <= 64);
Storage immediate = imm64(0);
immediate.bit_size = source->bit_size;
const void *source_memory = get_static_storage_with_bit_size(source, source->bit_size);
memcpy(&immediate.Immediate.bits, source_memory, immediate.bit_size.as_u64 / 8);
move_value(builder, scope, source_range, target, &immediate);
return;
}
push_instruction(&builder->code_block, (Instruction) {
.tag = Instruction_Tag_Location,
.scope = scope,
.Location = { .source_range = *source_range },
});
u64 target_bit_size = target->bit_size.as_u64;
u64 source_bit_size = source->bit_size.as_u64;
if (target->tag == Storage_Tag_Xmm || source->tag == Storage_Tag_Xmm) {
assert(target_bit_size == source_bit_size);
if (target_bit_size == 32) {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_movss, {*target, *source}} );
} else if (target_bit_size == 64) {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_movsd, {*target, *source}} );
} else {
panic("Internal Error: XMM operand of unexpected size");
}
return;
}
if (source->tag == Storage_Tag_Eflags) {
assert(storage_is_register_or_memory(target));
Storage temp = *target;
if (source_bit_size != 8) {
temp = (Storage) {
.tag = Storage_Tag_Register,
.bit_size = {8},
.Register.index = register_acquire_temp(builder),
};
}
switch(source->Eflags.compare_type) {
case Compare_Type_Equal: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_sete, {temp}} );
break;
}
case Compare_Type_Not_Equal: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_setne, {temp}} );
break;
}
case Compare_Type_Unsigned_Below: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_setb, {temp}} );
break;
}
case Compare_Type_Unsigned_Below_Equal: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_setbe, {temp}} );
break;
}
case Compare_Type_Unsigned_Above: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_seta, {temp}} );
break;
}
case Compare_Type_Unsigned_Above_Equal: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_setae, {temp}} );
break;
}
case Compare_Type_Signed_Less: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_setl, {temp}} );
break;
}
case Compare_Type_Signed_Less_Equal: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_setle, {temp}} );
break;
}
case Compare_Type_Signed_Greater: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_setg, {temp}} );
break;
}
case Compare_Type_Signed_Greater_Equal: {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_setge, {temp}} );
break;
}
default: {
assert(!"Unsupported comparison");
}
}
if (!storage_equal(&temp, target)) {
assert(temp.tag == Storage_Tag_Register);
Storage resized_temp = temp;
resized_temp.bit_size = target->bit_size;
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_movsx, {resized_temp, temp}} );
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_mov, {*target, resized_temp}} );
register_release(builder, temp.Register.index);
}
return;
}
if (source->tag == Storage_Tag_Register && source->Register.offset_in_bits != 0) {
assert(source_bit_size <= 32);
assert(source->Register.offset_in_bits <= 64 - source_bit_size);
Storage temp_full_register = {
.tag = Storage_Tag_Register,
.bit_size = {64},
.Register.index = register_acquire_temp(builder),
};
Storage source_full_register = {
.tag = Storage_Tag_Register,
.bit_size = {64},
.Register.index = source->Register.index,
};
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_mov, {temp_full_register, source_full_register}}
);
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_shr, {temp_full_register, imm8((u8)source->Register.offset_in_bits)}}
);
Storage right_size_temp = temp_full_register;
right_size_temp.bit_size = source->bit_size;
move_value(builder, scope, source_range, target, &right_size_temp);
register_release(builder, temp_full_register.Register.index);
return;
}
if (target->tag == Storage_Tag_Register && target->Register.packed) {
assert(source_bit_size <= 32);
assert(target->Register.offset_in_bits <= 64 - source_bit_size);
if (source->tag == Storage_Tag_Register && source->Register.offset_in_bits != 0) {
panic("Expected unpacking to be handled by the recursion above");
}
u64 clear_mask = ~(((UINT64_C(1) << source_bit_size) - 1) << target->Register.offset_in_bits);
Storage temp_full_register = {
.tag = Storage_Tag_Register,
.bit_size = {64},
.Register.index = register_acquire_temp(builder),
};
Storage target_full_register = {
.tag = Storage_Tag_Register,
.bit_size = {64},
.Register.index = target->Register.index,
};
// Clear bits from the target register
{
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_mov, {temp_full_register, imm64(clear_mask)}}
);
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_and, {target_full_register, temp_full_register}}
);
}
// Prepare new bits from the source register
{
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_xor, {temp_full_register, temp_full_register}}
);
Storage right_size_temp = temp_full_register;
right_size_temp.bit_size = source->bit_size;
move_value(builder, scope, source_range, &right_size_temp, source);
if (target->Register.offset_in_bits) {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_shl, {temp_full_register, imm8((u8)target->Register.offset_in_bits)}}
);
}
}
// Merge new bits into the target register
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_or, {target_full_register, temp_full_register}}
);
register_release(builder, temp_full_register.Register.index);
return;
}
if (source->tag == Storage_Tag_Immediate) {
assert(source->bit_size.as_u64 <= 64);
bool is_zero = memcmp(&source->Immediate.bits, &(u64){0}, source_bit_size / 8) == 0;
if (is_zero && target->tag == Storage_Tag_Register) {
// This messes up flags register so comparisons need to be aware of this optimization
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_xor, {*target, *target}} );
return;
}
Storage adjusted_source = *source;
adjusted_source.bit_size = target->bit_size;
// Because of 15 byte instruction limit on x86 there is no way to move 64bit immediate
// to a memory location. In which case we do a move through a temp register
bool is_64bit_immediate = adjusted_source.bit_size.as_u64 == 64;
if (is_64bit_immediate && target->tag != Storage_Tag_Register) {
Storage temp = storage_register_temp(builder, adjusted_source.bit_size);
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_mov, {temp, adjusted_source}} );
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_mov, {*target, temp}} );
register_release(builder, temp.Register.index);
} else {
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_mov, {*target, adjusted_source}} );
}
return;
}
assert(target_bit_size == source_bit_size);
if (target->tag == Storage_Tag_Memory && source->tag == Storage_Tag_Memory) {
Storage temp = {
.tag = Storage_Tag_Register,
.bit_size = target->bit_size,
.Register.index = register_acquire_temp(builder),
};
// TODO avoid and extra source range push for recursion
move_value(builder, scope, source_range, &temp, source);
move_value(builder, scope, source_range, target, &temp);
register_release(builder, temp.Register.index);
return;
}
push_eagerly_encoded_assembly_no_source_range(
&builder->code_block, scope, &(Instruction_Assembly){x64_mov, {*target, *source}} );
}
static void
mass_zero_storage(
Function_Builder *builder,
const Scope *scope,
const Storage *target,
const Source_Range *source_range
) {
static const Storage imm_zero_8 = {.tag = Storage_Tag_Immediate, .bit_size = {8}, .Immediate = { .bits = 0 } };
static const Storage imm_zero_16 = {.tag = Storage_Tag_Immediate, .bit_size = {16}, .Immediate = { .bits = 0 } };
static const Storage imm_zero_32 = {.tag = Storage_Tag_Immediate, .bit_size = {32}, .Immediate = { .bits = 0 } };
static const Storage imm_zero_64 = {.tag = Storage_Tag_Immediate, .bit_size = {64}, .Immediate = { .bits = 0 } };
u64 byte_size = target->bit_size.as_u64 / 8;
u64 offset = 0;
while (offset < byte_size) {
u64 remainder = byte_size - offset;
const Storage *zero;
if (remainder >= 8) {
zero = &imm_zero_64;
} else if (remainder >= 4) {
zero = &imm_zero_32;
} else if (remainder >= 2) {
zero = &imm_zero_16;
} else {
zero = &imm_zero_8;
}
Storage chunk = storage_with_offset_and_bit_size(target, u64_to_s32(offset), zero->bit_size);
move_value(builder, scope, source_range, &chunk, zero);
offset += zero->bit_size.as_u64 / 8;
}
}
static inline u32
make_trampoline(
Virtual_Memory_Buffer *buffer,
s64 address
) {
u32 result = u64_to_u32(buffer->occupied);
Storage rax = storage_register(Register_A, (Bits){64});
encode_and_write_assembly(buffer, &(Instruction_Assembly) {x64_mov, {rax, imm64(address)}});
encode_and_write_assembly(buffer, &(Instruction_Assembly) {x64_jmp, {rax}});
return result;
}
static void
fn_encode(
Program *program,
Virtual_Memory_Buffer *buffer,
const Function_Builder *builder,
Function_Layout *out_layout
) {
Label *label = builder->code_block.start_label;
assert(!label->resolved);
*out_layout = (Function_Layout) {
.stack_reserve = builder->stack_reserve,
};
s64 code_base_rva = label->section->base_rva;
out_layout->begin_rva = u64_to_u32(code_base_rva + buffer->occupied);
Storage stack_size_operand = imm_auto_8_or_32(out_layout->stack_reserve);
program_resolve_label(program, buffer, label);
// :RegisterPushPop
// :Win32UnwindCodes Must match what happens in the unwind code generation
// Push non-volatile registers (in reverse order)
u8 push_index = 0;
for (s32 reg_index = Register_R15; reg_index >= Register_A; --reg_index) {
if (register_bitset_get(builder->register_used_bitset.bits, reg_index)) {
if (!register_bitset_get(builder->register_volatile_bitset.bits, reg_index)) {
out_layout->volatile_register_push_offsets[push_index++] =
u64_to_u8(code_base_rva + buffer->occupied - out_layout->begin_rva);
Storage to_save = storage_register(reg_index, (Bits){64});
encode_and_write_assembly(buffer, &(Instruction_Assembly) {x64_push, {to_save}});
}
}
}
Storage rsp = storage_register(Register_SP, (Bits){64});
encode_and_write_assembly(buffer, &(Instruction_Assembly) {x64_sub, {rsp, stack_size_operand}});
out_layout->stack_allocation_offset_in_prolog =
u64_to_u8(code_base_rva + buffer->occupied -out_layout->begin_rva);
out_layout->size_of_prolog =
u64_to_u8(code_base_rva + buffer->occupied - out_layout->begin_rva);
for (Instruction_Bucket *bucket = builder->code_block.first_bucket; bucket; bucket = bucket->next) {
for (u64 i = 0; i < bucket->length; ++i) {
Instruction *instruction = &bucket->items[i];
encode_instruction(program, buffer, instruction);
}
}
encode_and_write_assembly(buffer, &(Instruction_Assembly) {x64_add, {rsp, stack_size_operand}});
// :RegisterPushPop
// Pop non-volatile registers (in original order)
for (Register reg_index = 0; reg_index <= Register_R15; ++reg_index) {
if (register_bitset_get(builder->register_used_bitset.bits, reg_index)) {
if (!register_bitset_get(builder->register_volatile_bitset.bits, reg_index)) {
Storage to_save = storage_register(reg_index, (Bits){64});
encode_and_write_assembly(buffer, &(Instruction_Assembly) {x64_pop, {to_save}});
}
}
}
encode_and_write_assembly(buffer, &(Instruction_Assembly) {x64_ret});
out_layout->end_rva = u64_to_u32(code_base_rva + buffer->occupied);
}
static void
encode_inverted_conditional_jump(
Function_Builder *builder,
Label *to_label,
const Scope *scope,
const Source_Range *source_range,
const Value *value
) {
assert(value->tag == Value_Tag_Forced);
const Storage *storage = &value->Forced.storage;
if (storage->tag == Storage_Tag_Immediate) {
u64 bit_size = storage->bit_size.as_u64;
assert(bit_size <= 64);
bool is_zero = memcmp(&storage->Immediate.bits, &(u64){0}, bit_size / 8) == 0;
if (is_zero) {
push_eagerly_encoded_assembly(
&builder->code_block, *source_range, scope,
&(Instruction_Assembly){x64_jmp, {code_label32(to_label)}}
);
} else {
// nothing to do, just fall through to the next code
}
return;
}
if (storage->tag == Storage_Tag_Eflags) {
const X64_Mnemonic *mnemonic = 0;
switch(storage->Eflags.compare_type) {
case Compare_Type_Equal: mnemonic = x64_jne; break;
case Compare_Type_Not_Equal: mnemonic = x64_je; break;
case Compare_Type_Unsigned_Below: mnemonic = x64_jae; break;
case Compare_Type_Unsigned_Below_Equal: mnemonic = x64_ja; break;
case Compare_Type_Unsigned_Above: mnemonic = x64_jbe; break;
case Compare_Type_Unsigned_Above_Equal: mnemonic = x64_jb; break;
case Compare_Type_Signed_Less: mnemonic = x64_jge; break;
case Compare_Type_Signed_Less_Equal: mnemonic = x64_jg; break;
case Compare_Type_Signed_Greater: mnemonic = x64_jle; break;
case Compare_Type_Signed_Greater_Equal: mnemonic = x64_jl; break;
default: assert(!"Unsupported comparison"); break;
}
push_eagerly_encoded_assembly(
&builder->code_block, *source_range, scope,
&(Instruction_Assembly){mnemonic, {code_label32(to_label)}}
);
} else {
if (storage->tag == Storage_Tag_Register) {
Storage test_storage = *storage;
bool is_packed = storage->Register.offset_in_bits != 0;
if (is_packed) {
test_storage = storage_register(register_acquire_temp(builder), value->descriptor->bit_size);
move_value(builder, scope, source_range, &test_storage, storage);
}
push_eagerly_encoded_assembly(
&builder->code_block, *source_range, scope,
&(Instruction_Assembly){x64_x64_test, {test_storage, test_storage}}
);
if (is_packed) register_release(builder, test_storage.Register.index);
} else {
u64 bit_size = value->descriptor->bit_size.as_u64;
if (bit_size == 32 || bit_size == 64) {
push_eagerly_encoded_assembly(
&builder->code_block, *source_range, scope,
&(Instruction_Assembly){x64_cmp, {*storage, imm32(0)}}
);
} else if (bit_size == 8) {
push_eagerly_encoded_assembly(
&builder->code_block, *source_range, scope,
&(Instruction_Assembly){x64_cmp, {*storage, imm8(0)}}
);
} else {
assert(!"Unsupported value inside `if`");
}
}
push_eagerly_encoded_assembly(
&builder->code_block, *source_range, scope,
&(Instruction_Assembly){x64_jz, {code_label32(to_label)}}
);
}
}
static inline Register
function_return_value_register_from_storage(
const Storage *storage
) {
switch(storage->tag) {
case Storage_Tag_Register: {
return storage->Register.index;
}
case Storage_Tag_Xmm: {
return storage->Xmm.index;
}
case Storage_Tag_Memory: {
switch(storage->Memory.location.tag) {
case Memory_Location_Tag_Stack:
case Memory_Location_Tag_Instruction_Pointer_Relative: {
break;
}
case Memory_Location_Tag_Indirect: {
return storage->Memory.location.Indirect.base_register;
}
}
break;
}
case Storage_Tag_Disjoint:
case Storage_Tag_Immediate:
case Storage_Tag_Static:
case Storage_Tag_Eflags: {
break;
}
}
panic("Unexpected storage for an indirect return value");
return 0;
}
static const Descriptor *
mass_infer_function_return_type(
Mass_Context *context,
const Function_Info *info,
const Scope *scope,
Value *body
) {
Scope *body_scope = scope_make_declarative(context->allocator, scope);
const Descriptor *return_descriptor = 0; // Inferred
Parser body_parser = {
.return_descriptor_pointer = &return_descriptor,
.flags = Parser_Flags_None,
.scope = body_scope,
.epoch = get_new_epoch(),
.module = 0, // FIXME provide module here
};
for (u64 i = 0; i < dyn_array_length(info->parameters); ++i) {
const Resolved_Function_Parameter *def_param = dyn_array_get(info->parameters, i);
assert(def_param->descriptor);
assert(def_param->symbol);
Value *arg_value = 0;
const Descriptor *descriptor = def_param->descriptor;
const Source_Range *source_range = &def_param->source_range;
switch(def_param->tag) {
case Resolved_Function_Parameter_Tag_Unknown: {
// We don't need payload or the proc, because in this pass we do not expect
// any of the values to be forced. In fact this will act as a free assertion.
void *payload = 0;
Lazy_Value_Proc proc = 0;
arg_value = mass_make_lazy_value(context, &body_parser, *source_range, payload, descriptor, proc);
} break;
case Resolved_Function_Parameter_Tag_Known: {
// Exact static parameters are defined as static, since they might influence the inference
Storage storage = def_param->Known.storage;
arg_value = value_make(context, descriptor, storage, *source_range);
} break;
}
arg_value->flags |= Value_Flags_Constant;
scope_define_value(body_scope, body_parser.epoch, *source_range, def_param->symbol, arg_value);
}
assert(value_is_ast_block(body));
const Ast_Block *block = value_as_ast_block(body);
Value *lazy_value = token_parse_block(context, &body_parser, block, &body->source_range);
if (mass_has_error(context)) return 0;
if (lazy_value->descriptor->tag == Descriptor_Tag_Never) {
if (return_descriptor) {
return return_descriptor;
}
}
return lazy_value->descriptor;
}
static Value *
mass_function_literal_instance_for_info(
Mass_Context *context,
Function_Literal *literal,
const Function_Info *fn_info
) {
Program *program = context->program;
const Calling_Convention *calling_convention = program->default_calling_convention;
if (!dyn_array_is_initialized(literal->instances)) {
literal->instances = dyn_array_make(
Array_Value_Ptr,
.allocator = context->allocator,
.capacity = 4
);
}
for (u64 i = 0; i < dyn_array_length(literal->instances); ++i) {
Value *instance_value = *dyn_array_get(literal->instances, i);
assert(instance_value->descriptor->tag == Descriptor_Tag_Function_Instance);
const Descriptor_Function_Instance *instance = &instance_value->descriptor->Function_Instance;
assert(instance->info);
assert(instance->program);
assert(instance->call_setup.calling_convention);
if (instance->info != fn_info) continue;
if (instance->call_setup.calling_convention != calling_convention) continue;
if (instance->program != program) continue;
return instance_value;
}
if (mass_has_error(context)) return 0;
Function_Call_Setup call_setup = calling_convention->call_setup_proc(context->allocator, fn_info);
const Descriptor *instance_descriptor =
descriptor_function_instance(context->allocator, fn_info, call_setup, program);
if (value_is_external_symbol(literal->body)) {
const External_Symbol *symbol = value_as_external_symbol(literal->body);
Storage storage = import_symbol(context->allocator, program, symbol->library_name, symbol->symbol_name);
Value *cached_instance = value_init(
allocator_allocate(context->allocator, Value),
instance_descriptor, storage, literal->body->source_range
);
dyn_array_push(literal->instances, cached_instance);
return cached_instance;
}
Label *call_label = make_label(context->allocator, program, &program->memory.code, slice_literal(":start"));
// It is important to cache the label here for recursive calls
Value *cached_instance = value_make(
context, instance_descriptor, code_label32(call_label), literal->body->source_range
);
dyn_array_push(literal->instances, cached_instance);
const Descriptor *return_descriptor = fn_info->return_descriptor;
Scope *body_scope = scope_make_declarative(context->allocator, literal->own_scope);
Parser body_parser = {
.return_descriptor_pointer = &return_descriptor,
.flags = Parser_Flags_None,
.scope = body_scope,
.epoch = get_new_epoch(),
.module = 0, // FIXME provide module here
};
Slice end_label_name = slice_literal(":end");
Storage return_storage = instance_descriptor->Function_Instance.call_setup.callee_return;
Source_Range return_range = literal->header.returns.source_range;
Function_Builder *builder = &(Function_Builder){
.epoch = body_parser.epoch,
.function = fn_info,
.register_volatile_bitset = calling_convention->register_volatile_bitset,
.return_value = {0},
.code_block = {
.allocator = context->allocator,
.start_label = call_label,
.end_label = make_label(context->allocator, program, &program->memory.code, end_label_name),
},
};
value_init(&builder->return_value, return_descriptor, return_storage, return_range);
{
for (u64 i = 0; i < dyn_array_length(call_setup.parameters); ++i) {
const Function_Call_Parameter *call_param = dyn_array_get(call_setup.parameters, i);
Storage storage = call_param->storage;
if (call_param->flags & Function_Call_Parameter_Flags_Uninitialized) {
continue;
}
// :ParamStackAreaAdjust
if (
storage_is_stack(&storage) &&
storage.Memory.location.Stack.area == Stack_Area_Call_Target_Argument
) {
storage.Memory.location.Stack.area = Stack_Area_Received_Argument;
}
// :ParameterOriginalIndex
// `Exact_Static` parameters are not present in call params because they have no runtime storage.
// This is great for performance, but can cause mismatches between the indexes the parameters
// defined in the `Function_Info` and ones in the call setup. To make sure parameters are
// mapped correctly, `Function_Call_Parameter` keeps track of the original index.
const Resolved_Function_Parameter *def_param = dyn_array_get(fn_info->parameters, call_param->original_index);
assert(def_param->tag == Resolved_Function_Parameter_Tag_Unknown);
Value *arg_value;
if (call_param->flags & Function_Call_Parameter_Flags_Implicit_Pointer) {
arg_value = 0;
switch(call_param->storage.tag) {
case Storage_Tag_Register: {
Register reg = call_param->storage.Register.index;
storage = storage_indirect(call_param->descriptor->bit_size, reg);
arg_value = value_make(context, call_param->descriptor, storage, def_param->source_range);
} break;
case Storage_Tag_Memory: {
if (storage_is_stack(&call_param->storage)) {
arg_value = mass_allocate(context, Value);
*arg_value = (Value) {
.tag = Value_Tag_Lazy,
.descriptor = call_param->descriptor,
.source_range = def_param->source_range,
.Lazy = {
.is_factory = true,
.scope = literal->own_scope,
.epoch = body_parser.epoch,
.proc = (Lazy_Value_Proc)mass_implicit_function_parameter_factory_proc,
.payload = call_param,
},
};
} else {
panic("UNEXPECTED implicit pointer arg storage");
}
} break;
case Storage_Tag_Eflags:
case Storage_Tag_Xmm:
case Storage_Tag_Immediate:
case Storage_Tag_Disjoint:
case Storage_Tag_Static: {
panic("UNEXPECTED implicit pointer arg storage");
} break;
}
} else {
arg_value = value_make(context, call_param->descriptor, storage, def_param->source_range);
}
arg_value->flags |= Value_Flags_Constant;
const Symbol *param_symbol = def_param->symbol;
if (param_symbol) {
scope_define_value(body_scope, body_parser.epoch, def_param->source_range, param_symbol, arg_value);
}
}
for (u64 i = 0; i < dyn_array_length(fn_info->parameters); ++i) {
const Resolved_Function_Parameter *param = dyn_array_get(fn_info->parameters, i);
if (param->tag != Resolved_Function_Parameter_Tag_Known) continue;
Value *arg_value = value_make(context, param->descriptor, param->Known.storage, param->source_range);
arg_value->flags |= Value_Flags_Constant;
scope_define_value(body_scope, VALUE_STATIC_EPOCH, param->source_range, param->symbol, arg_value);
}
}
register_acquire_bitset(builder, call_setup.parameter_registers_bitset.bits);
Value *parse_result = 0;
if (value_is_ast_block(literal->body)) {
const Ast_Block *block = value_as_ast_block(literal->body);
parse_result = token_parse_block(context, &body_parser, block, &literal->body->source_range);
} else if (literal->body->descriptor == &descriptor_value_view) {
const Value_View *view = value_as_value_view(literal->body);
parse_result = token_parse_expression(context, &body_parser, *view, &(u32){0}, 0);
} else if (literal->body->tag == Value_Tag_Lazy) {
parse_result = literal->body;
} else {
panic("Unexpected function body type");
}
if (mass_has_error(context)) return 0;
if (same_type(parse_result->descriptor, &descriptor_never)) {
// TODO probably should verify that there are explicit returns
// in the function, otherwise the return type of the function
// itself should be `never`
Expected_Result expected_result = expected_result_any(&descriptor_never);
(void)value_force(context, builder, body_scope, &expected_result, parse_result);
} else {
value_force_exact(context, builder, body_scope, &builder->return_value, parse_result);
}
if (mass_has_error(context)) return 0;
push_instruction(&builder->code_block, (Instruction) {
.tag = Instruction_Tag_Label,
.scope = body_scope,
.Label.pointer = builder->code_block.end_label,
});
if (!storage_equal(&call_setup.callee_return, &call_setup.caller_return)) {
Register caller_register = function_return_value_register_from_storage(&call_setup.caller_return);
Register callee_register = function_return_value_register_from_storage(&call_setup.callee_return);
Storage callee_register_storage = storage_register(callee_register, (Bits){64});
Storage caller_register_storage = storage_register(caller_register, (Bits){64});
push_eagerly_encoded_assembly(
&builder->code_block, return_range, body_scope,
&(Instruction_Assembly){x64_mov, {caller_register_storage, callee_register_storage}}
);
}
calling_convention_x86_64_common_end_proc(program, builder);
// Only push the builder at the end to avoid problems in nested JIT compiles
dyn_array_push(program->functions, *builder);
return cached_instance;
}
static Value *
ensure_function_instance(
Mass_Context *context,
Value *fn_value,
Array_Resolved_Function_Parameter source_parameters
) {
if (fn_value->descriptor->tag == Descriptor_Tag_Function_Instance) {
return fn_value;
}
Function_Literal *literal = value_as_function_literal(fn_value);
const Function_Info *fn_info =
function_literal_info_for_parameters(context, literal, source_parameters);
return mass_function_literal_instance_for_info(context, literal, fn_info);
}
static void
program_init_startup_code(
Mass_Context *context
) {
Program *program = context->program;
Function_Info *fn_info = allocator_allocate(context->allocator, Function_Info);
Source_Range source_range;
INIT_LITERAL_SOURCE_RANGE(&source_range, "__startup");
function_info_init(fn_info, &descriptor_void);
const Calling_Convention *calling_convention =
context->compilation->runtime_program->default_calling_convention;
Function_Call_Setup call_setup = calling_convention->call_setup_proc(context->allocator, fn_info);
Descriptor *descriptor = descriptor_function_instance(context->allocator, fn_info, call_setup, program);
Label *fn_label = make_label(
context->allocator, program, &program->memory.code, slice_literal("__startup:start")
);
Label *end_label =
make_label(context->allocator, program, &program->memory.code, slice_literal("__startup:end"));
Storage storage = code_label32(fn_label);
Value *function = value_make(context, descriptor, storage, source_range);
Function_Builder builder = (Function_Builder){
.epoch = get_new_epoch(),
.function = fn_info,
.code_block = {
.allocator = context->allocator,
.start_label = fn_label,
.end_label = end_label,
},
};
// Resolve relocations
Storage register_a = storage_register(Register_A, (Bits){64});
u64 relocation_count = dyn_array_length(program->relocations);
for (u64 i = 0; i < relocation_count; ++i) {
Relocation *relocation = dyn_array_get(program->relocations, i);
push_eagerly_encoded_assembly(
&builder.code_block, source_range, context->compilation->root_scope,
&(Instruction_Assembly){x64_lea, {register_a, relocation->address_of}}
);
push_eagerly_encoded_assembly(
&builder.code_block, source_range, context->compilation->root_scope,
&(Instruction_Assembly){x64_mov, {relocation->patch_at, register_a}}
);
}
Array_Resolved_Function_Parameter params = dyn_array_static_empty(Array_Resolved_Function_Parameter);
Value *entry_instance = ensure_function_instance(context, program->entry_point, params);
assert(entry_instance->tag == Value_Tag_Forced);
push_eagerly_encoded_assembly(
&builder.code_block, source_range, context->compilation->root_scope,
&(Instruction_Assembly){x64_jmp, {entry_instance->Forced.storage}}
);
program->entry_point = function;
dyn_array_push(program->functions, builder);
}