-
Notifications
You must be signed in to change notification settings - Fork 4k
/
Copy pathTextCNN.py
84 lines (69 loc) · 3.43 KB
/
TextCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# %%
# code by Tae Hwan Jung @graykode
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class TextCNN(nn.Module):
def __init__(self):
super(TextCNN, self).__init__()
self.num_filters_total = num_filters * len(filter_sizes)
self.W = nn.Embedding(vocab_size, embedding_size)
self.Weight = nn.Linear(self.num_filters_total, num_classes, bias=False)
self.Bias = nn.Parameter(torch.ones([num_classes]))
self.filter_list = nn.ModuleList([nn.Conv2d(1, num_filters, (size, embedding_size)) for size in filter_sizes])
def forward(self, X):
embedded_chars = self.W(X) # [batch_size, sequence_length, sequence_length]
embedded_chars = embedded_chars.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
pooled_outputs = []
for i, conv in enumerate(self.filter_list):
# conv : [input_channel(=1), output_channel(=3), (filter_height, filter_width), bias_option]
h = F.relu(conv(embedded_chars))
# mp : ((filter_height, filter_width))
mp = nn.MaxPool2d((sequence_length - filter_sizes[i] + 1, 1))
# pooled : [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3)]
pooled = mp(h).permute(0, 3, 2, 1)
pooled_outputs.append(pooled)
h_pool = torch.cat(pooled_outputs, len(filter_sizes)) # [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3) * 3]
h_pool_flat = torch.reshape(h_pool, [-1, self.num_filters_total]) # [batch_size(=6), output_height * output_width * (output_channel * 3)]
model = self.Weight(h_pool_flat) + self.Bias # [batch_size, num_classes]
return model
if __name__ == '__main__':
embedding_size = 2 # embedding size
sequence_length = 3 # sequence length
num_classes = 2 # number of classes
filter_sizes = [2, 2, 2] # n-gram windows
num_filters = 3 # number of filters
# 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0] # 1 is good, 0 is not good.
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
vocab_size = len(word_dict)
model = TextCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
inputs = torch.LongTensor([np.asarray([word_dict[n] for n in sen.split()]) for sen in sentences])
targets = torch.LongTensor([out for out in labels]) # To using Torch Softmax Loss function
# Training
for epoch in range(5000):
optimizer.zero_grad()
output = model(inputs)
# output : [batch_size, num_classes], target_batch : [batch_size] (LongTensor, not one-hot)
loss = criterion(output, targets)
if (epoch + 1) % 1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
loss.backward()
optimizer.step()
# Test
test_text = 'sorry hate you'
tests = [np.asarray([word_dict[n] for n in test_text.split()])]
test_batch = torch.LongTensor(tests)
# Predict
predict = model(test_batch).data.max(1, keepdim=True)[1]
if predict[0][0] == 0:
print(test_text,"is Bad Mean...")
else:
print(test_text,"is Good Mean!!")