-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathApache_Sedona_with_PySpark.py
985 lines (529 loc) · 22.9 KB
/
Apache_Sedona_with_PySpark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
# This file was generated from Apache_Sedona_with_PySpark.ipynb with nbconvert
# Source: https://github.com/groda/big_data
#!/usr/bin/env python
# coding: utf-8
# <a href="https://colab.research.google.com/github/groda/big_data/blob/master/Apache_Sedona_with_PySpark.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
#
# <a href="https://github.com/groda/big_data"><div><img src="https://github.com/groda/big_data/blob/master/logo_bdb.png?raw=true" align=right width="90" alt="Logo Big Data for Beginners"></div></a>
# # Apache Sedona with PySpark
#
# Apache Sedona™ is a prime example of a distributed engine built on top of Spark, specifically designed for geographic data processing.
#
# The home page describes Apache Sedona ([https://sedona.apache.org/](https://sedona.apache.org/)) as:
#
# > *a cluster computing system for processing large-scale spatial data. Sedona extends existing cluster computing systems, such as Apache Spark, Apache Flink, and Snowflake, with a set of out-of-the-box distributed Spatial Datasets and Spatial SQL that efficiently load, process, and analyze large-scale spatial data across machines.*
#
# In this notebook we are going to execute a basic Sedona demonstration using PySpark. The Sedona notebook starts below at [Apache Sedona Core demo](#scrollTo=Apache_Sedona_Core_demo).
#
#
# ## Install Apache Sedona, PySpark, and required libraries
#
# To start with, we are going to install `apache-sedona` and PySpark making sure that we have the desired Spark version.
#
#
# The required packages are specified in this [Pipfile](https://github.com/apache/sedona/blob/master/python/Pipfile) under `[packages]`:
#
# ```
# [packages]
# pandas="<=1.5.3"
# geopandas="*"
# numpy="<2"
# shapely=">=1.7.0"
# pyspark=">=2.3.0"
# attrs="*"
# pyarrow="*"
# keplergl = "==0.3.2"
# pydeck = "===0.8.0"
# rasterio = ">=1.2.10"
# ```
# Install Apache Sedona without Spark. To install Spark as well you can use `pip install apache-sedona[spark]` but we chose to use the Spark engine that comes with PySpark.
# In[1]:
get_ipython().system('pip install apache-sedona')
# For the sake of this tutorial we are going to use the Spark engine that is included in the Pyspark distribution. Since Sedona needs Spark $3.4.0$ we need to make sure that we choose the correct PySpark version.
# In[2]:
get_ipython().system('pip install pyspark==3.4.0')
# Verify that PySpark is using Spark version $3.4.0$.
# In[3]:
get_ipython().system('pyspark --version')
# ### Install Geopandas
#
# The libraries `numpy`, `pandas`, `geopandas`, and `shapely` are available by default on Google Colab.
# In[4]:
get_ipython().system('pip install geopandas')
# In[5]:
get_ipython().system('pip install shapely')
# ## Download the data
#
# We are going to download the data from Sedona's GitHub repository.
# In[6]:
import json
import os
import urllib
import base64
def download_blob(url, path, localfile):
print(f"Downloading blob to localfile: {localfile} from {url}")
# Fetch the JSON data from the URL
with urllib.request.urlopen(url) as response:
json_data = response.read().decode('utf-8')
# Load the JSON data into a dictionary
data = json.loads(json_data)
# Extract the Base64 content
base64_content = data['content']
# Decode the Base64 content
decoded_content = base64.b64decode(base64_content)
try:
# Attempt to decode as UTF-8 text
decoded_text = decoded_content.decode('utf-8')
with open(localfile, 'w') as f:
f.write(decoded_text)
except UnicodeDecodeError:
# If text decoding fails, save as binary
with open(localfile, 'wb') as f:
f.write(decoded_content)
def download_gitpath(url, path, localpath):
"""
Recursively downloads a specific path (directory or file) from a GitHub repository using the GitHub API
and saves it to a specified local directory, preserving the repository's structure.
Args:
url (str):
The GitHub API URL that points to the tree structure of the repository.
This URL should provide a JSON response containing the file and directory information for the tree.
path (str):
The path within the repository that you want to download.
This path is used to filter the relevant files and directories within the tree structure.
Example: "src/utils" would download everything under the `src/utils` directory in the repository.
localpath (str):
The local directory path where the downloaded files and directories will be saved.
If the directory does not exist, it will be created. The repository's structure will be mirrored in this location.
Returns:
None
Example:
tree_url = "https://api.github.com/repos/{owner}/{repo_name}/git/trees/master?recursive=true"
tree_url = "https://api.github.com/repos/apache/spark/git/trees/master?recursive=true"
repo_path = "data/mllib/images"
local_dir = "./downloaded_images"
download_gitpath(tree_url, repo_path, local_dir)
How it works:
1. The function fetches the tree of files and directories from the GitHub API using the provided URL.
2. It filters the tree data to only include items that fall under the specified `path`.
3. Files (blobs) are downloaded and saved locally.
4. Directories (trees) are handled recursively by creating local directories and downloading their contents.
Notes:
- Ensure that you have access to the repository's GitHub API, especially if it's private (you may need a token).
- This function will handle both text and binary files appropriately.
- Error handling for network and API issues is minimal and could be enhanced.
"""
#print(f"Processing path: {path} into local directory: {localpath}")
# Create the local directory if it doesn't exist
os.makedirs(localpath, exist_ok=True)
with urllib.request.urlopen(url) as response:
json_data = response.read().decode('utf-8')
# Load the JSON data into a dictionary
data = json.loads(json_data)['tree']
# Filter and map the paths to their URLs
items = {x['path']: (x['url'], x['type']) for x in data if x['path'].startswith(path)}
for item_path, (item_url, item_type) in items.items():
# Handle blobs (files)
if item_type == 'blob':
local_file_path = os.path.join(localpath, os.path.relpath(item_path, path))
download_blob(item_url, item_path, local_file_path)
# Handle trees (directories)
elif item_type == 'tree':
new_local_dir = os.path.join(localpath, os.path.relpath(item_path, path))
os.makedirs(new_local_dir, exist_ok=True)
download_gitpath(item_url, item_path, new_local_dir)
# In[7]:
url = 'https://api.github.com/repos/jiayuasu/sedona/git/trees/master?recursive=true'
path = 'docs/usecases/data/'
# download only if data folder does not exist
if not os.path.exists('./data'):
os.makedirs('./data')
download_gitpath(url, path, './data')
# Verify the presence of data in the designated `data` folder.
# In[8]:
get_ipython().system('ls -lR data')
# # Apache Sedona Core demo
#
# The notebook is available at the following link: https://github.com/apache/sedona/blob/master/docs/usecases/ApacheSedonaCore.ipynb.
#
# Refer to https://mvnrepository.com/artifact/org.apache.sedona/sedona-spark-3.4 for making sense of packages and versions.
#
#
#
# ```
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# ```
# In[9]:
from pyspark.sql import SparkSession
from pyspark import StorageLevel
import geopandas as gpd
import pandas as pd
from pyspark.sql.types import StructType
from pyspark.sql.types import StructField
from pyspark.sql.types import StringType
from pyspark.sql.types import LongType
from shapely.geometry import Point
from shapely.geometry import Polygon
from sedona.spark import *
from sedona.core.geom.envelope import Envelope
# Note: the next cell might take a while to execute. Stretch your legs and contemplate the mysteries of the universe in the meantime. Hang tight!
# In[10]:
config = SedonaContext.builder() .\
config('spark.jars.packages',
'org.apache.sedona:sedona-spark-3.4_2.12:1.6.0,'
'org.datasyslab:geotools-wrapper:1.6.0-28.2,'
'uk.co.gresearch.spark:spark-extension_2.12:2.11.0-3.4'). \
getOrCreate()
sedona = SedonaContext.create(config)
# In[11]:
sc = sedona.sparkContext
sc
# `config` is the Spark session
# In[12]:
type(config)
# # Create SpatialRDD
# ## Reading to PointRDD from CSV file
# We now want load the CSV file into Apache Sedona PointRDD
# ```
# testattribute0,-88.331492,32.324142,testattribute1,testattribute2
# testattribute0,-88.175933,32.360763,testattribute1,testattribute2
# testattribute0,-88.388954,32.357073,testattribute1,testattribute2
# testattribute0,-88.221102,32.35078,testattribute1,testattribute2
# testattribute0,-88.323995,32.950671,testattribute1,testattribute2
# testattribute0,-88.231077,32.700812,testattribute1,testattribute2
# ```
# In[13]:
get_ipython().system('head data/arealm-small.csv')
# In[14]:
point_rdd = PointRDD(sc, "data/arealm-small.csv", 1, FileDataSplitter.CSV, True, 10)
# In[15]:
## Getting approximate total count
point_rdd.approximateTotalCount
# In[16]:
# getting boundary for PointRDD or any other SpatialRDD, it returns Enelope object which inherits from
# shapely.geometry.Polygon
point_rdd.boundary()
# In[17]:
# To run analyze please use function analyze
point_rdd.analyze()
# In[18]:
# Finding boundary envelope for PointRDD or any other SpatialRDD, it returns Enelope object which inherits from
# shapely.geometry.Polygon
point_rdd.boundaryEnvelope
# In[19]:
# Calculate number of records without duplicates
point_rdd.countWithoutDuplicates()
# In[20]:
# Getting source epsg code
point_rdd.getSourceEpsgCode()
# In[21]:
# Getting target epsg code
point_rdd.getTargetEpsgCode()
# In[22]:
# Spatial partitioning data
point_rdd.spatialPartitioning(GridType.KDBTREE)
# ## Operations on RawSpatialRDD
# rawSpatialRDD method returns RDD which consists of GeoData objects which has 2 attributes
# <li> geom: shapely.geometry.BaseGeometry </li>
# <li> userData: str </li>
#
# You can use any operations on those objects and spread across machines
# In[23]:
# take firs element
point_rdd.rawSpatialRDD.take(1)
# In[24]:
# collect to Python list
point_rdd.rawSpatialRDD.collect()[:5]
# In[25]:
# apply map functions, for example distance to Point(52 21)
point_rdd.rawSpatialRDD.map(lambda x: x.geom.distance(Point(21, 52))).take(5)
# ## Transforming to GeoPandas
# ## Loaded data can be transformed to GeoPandas DataFrame in a few ways
# ### Directly from RDD
# In[26]:
point_rdd_to_geo = point_rdd.rawSpatialRDD.map(lambda x: [x.geom, *x.getUserData().split(" ")])
# In[27]:
point_gdf = gpd.GeoDataFrame(
point_rdd_to_geo.collect(), columns=["geom", "attr1", "attr2", "attr3"], geometry="geom"
)
# In[28]:
point_gdf[:5]
# ### Using Adapter
# In[29]:
# Adapter allows you to convert geospatial data types introduced with sedona to other ones
# In[30]:
spatial_df = Adapter.\
toDf(point_rdd, ["attr1", "attr2", "attr3"], sedona).\
createOrReplaceTempView("spatial_df")
spatial_gdf = sedona.sql("Select attr1, attr2, attr3, geometry as geom from spatial_df")
# In[31]:
spatial_gdf.show(5, False)
# In[32]:
gpd.GeoDataFrame(spatial_gdf.toPandas(), geometry="geom")[:5]
# ### With DataFrame creation
# In[33]:
schema = StructType(
[
StructField("geometry", GeometryType(), False),
StructField("attr1", StringType(), False),
StructField("attr2", StringType(), False),
StructField("attr3", StringType(), False),
]
)
# In[34]:
geo_df = sedona.createDataFrame(point_rdd_to_geo, schema, verifySchema=False)
# In[35]:
gpd.GeoDataFrame(geo_df.toPandas(), geometry="geometry")[:5]
# # Load Typed SpatialRDDs
# Currently The library supports 5 typed SpatialRDDs:
# <li> RectangleRDD </li>
# <li> PointRDD </li>
# <li> PolygonRDD </li>
# <li> LineStringRDD </li>
# <li> CircleRDD </li>
# In[36]:
rectangle_rdd = RectangleRDD(sc, "data/zcta510-small.csv", FileDataSplitter.CSV, True, 11)
point_rdd = PointRDD(sc, "data/arealm-small.csv", 1, FileDataSplitter.CSV, False, 11)
polygon_rdd = PolygonRDD(sc, "data/primaryroads-polygon.csv", FileDataSplitter.CSV, True, 11)
linestring_rdd = LineStringRDD(sc, "data/primaryroads-linestring.csv", FileDataSplitter.CSV, True)
# In[37]:
rectangle_rdd.analyze()
point_rdd.analyze()
polygon_rdd.analyze()
linestring_rdd.analyze()
# # Spatial Partitioning
# Apache Sedona spatial partitioning method can significantly speed up the join query. Three spatial partitioning methods are available: KDB-Tree, Quad-Tree and R-Tree. Two SpatialRDD must be partitioned by the same way.
# In[38]:
point_rdd.spatialPartitioning(GridType.KDBTREE)
# # Create Index
# Apache Sedona provides two types of spatial indexes, Quad-Tree and R-Tree. Once you specify an index type, Apache Sedona will build a local tree index on each of the SpatialRDD partition.
# In[39]:
point_rdd.buildIndex(IndexType.RTREE, True)
# # SpatialJoin
# Spatial join is operation which combines data based on spatial relations like:
# <li> intersects </li>
# <li> touches </li>
# <li> within </li>
# <li> etc </li>
#
# To Use Spatial Join in GeoPyspark library please use JoinQuery object, which has implemented below methods:
# ```python
# SpatialJoinQuery(spatialRDD: SpatialRDD, queryRDD: SpatialRDD, useIndex: bool, considerBoundaryIntersection: bool) -> RDD
#
# DistanceJoinQuery(spatialRDD: SpatialRDD, queryRDD: SpatialRDD, useIndex: bool, considerBoundaryIntersection: bool) -> RDD
#
# spatialJoin(queryWindowRDD: SpatialRDD, objectRDD: SpatialRDD, joinParams: JoinParams) -> RDD
#
# DistanceJoinQueryFlat(spatialRDD: SpatialRDD, queryRDD: SpatialRDD, useIndex: bool, considerBoundaryIntersection: bool) -> RDD
#
# SpatialJoinQueryFlat(spatialRDD: SpatialRDD, queryRDD: SpatialRDD, useIndex: bool, considerBoundaryIntersection: bool) -> RDD
#
# ```
# ## Example SpatialJoinQueryFlat PointRDD with RectangleRDD
# In[40]:
# partitioning the data
point_rdd.spatialPartitioning(GridType.KDBTREE)
rectangle_rdd.spatialPartitioning(point_rdd.getPartitioner())
# building an index
point_rdd.buildIndex(IndexType.RTREE, True)
# Perform Spatial Join Query
result = JoinQuery.SpatialJoinQueryFlat(point_rdd, rectangle_rdd, False, True)
# As result we will get RDD[GeoData, GeoData]
# It can be used like any other Python RDD. You can use map, take, collect and other functions
# In[41]:
result
# In[42]:
result.take(2)
# In[43]:
result.collect()[:3]
# In[44]:
# getting distance using SpatialObjects
result.map(lambda x: x[0].geom.distance(x[1].geom)).take(5)
# In[45]:
# getting area of polygon data
result.map(lambda x: x[0].geom.area).take(5)
# In[46]:
# Base on result you can create DataFrame object, using map function and build DataFrame from RDD
schema = StructType(
[
StructField("geom_left", GeometryType(), False),
StructField("geom_right", GeometryType(), False)
]
)
# In[47]:
# Set verifySchema to False
spatial_join_result = result.map(lambda x: [x[0].geom, x[1].geom])
sedona.createDataFrame(spatial_join_result, schema, verifySchema=False).show(5, True)
# In[48]:
# Above code produces DataFrame with geometry Data type
sedona.createDataFrame(spatial_join_result, schema, verifySchema=False).printSchema()
# We can create DataFrame object from Spatial Pair RDD using Adapter object as follows
# In[49]:
Adapter.toDf(result, ["attr1"], ["attr2"], sedona).show(5, True)
# This also produce DataFrame with geometry DataType
# In[50]:
Adapter.toDf(result, ["attr1"], ["attr2"], sedona).printSchema()
# We can create RDD which will be of type RDD[GeoData, List[GeoData]]
# We can for example calculate number of Points within some polygon data
# To do that we can use code specified below
# In[51]:
point_rdd.spatialPartitioning(GridType.KDBTREE)
rectangle_rdd.spatialPartitioning(point_rdd.getPartitioner())
# In[52]:
spatial_join_result_non_flat = JoinQuery.SpatialJoinQuery(point_rdd, rectangle_rdd, False, True)
# In[53]:
# number of point for each polygon
number_of_points = spatial_join_result_non_flat.map(lambda x: [x[0].geom, x[1].__len__()])
# In[54]:
schema = StructType([
StructField("geometry", GeometryType(), False),
StructField("number_of_points", LongType(), False)
])
# In[55]:
sedona.createDataFrame(number_of_points, schema, verifySchema=False).show()
# # KNNQuery
# Spatial KNNQuery is operation which help us find answer which k number of geometries lays closest to other geometry.
#
# For Example:
# 5 closest Shops to your home. To use Spatial KNNQuery please use object
# <b> KNNQuery </b> which has one method:
# ```python
# SpatialKnnQuery(spatialRDD: SpatialRDD, originalQueryPoint: BaseGeometry, k: int, useIndex: bool)-> List[GeoData]
# ```
# ### Finds 5 closest points from PointRDD to given Point
# In[56]:
result = KNNQuery.SpatialKnnQuery(point_rdd, Point(-84.01, 34.01), 5, False)
# In[57]:
result
# As Reference geometry you can also use Polygon or LineString object
# In[58]:
polygon = Polygon(
[(-84.237756, 33.904859), (-84.237756, 34.090426),
(-83.833011, 34.090426), (-83.833011, 33.904859),
(-84.237756, 33.904859)
])
polygons_nearby = KNNQuery.SpatialKnnQuery(polygon_rdd, polygon, 5, False)
# In[59]:
polygons_nearby
# In[60]:
polygons_nearby[0].geom.wkt
# # RangeQuery
# A spatial range query takes as input a range query window and an SpatialRDD and returns all geometries that intersect / are fully covered by the query window.
# RangeQuery has one method:
#
# ```python
# SpatialRangeQuery(self, spatialRDD: SpatialRDD, rangeQueryWindow: BaseGeometry, considerBoundaryIntersection: bool, usingIndex: bool) -> RDD
# ```
# In[61]:
from sedona.core.geom.envelope import Envelope
# In[62]:
query_envelope = Envelope(-85.01, -60.01, 34.01, 50.01)
result_range_query = RangeQuery.SpatialRangeQuery(linestring_rdd, query_envelope, False, False)
# In[63]:
result_range_query
# In[64]:
result_range_query.take(6)
# In[65]:
# Creating DataFrame from result
# In[66]:
schema = StructType([StructField("geometry", GeometryType(), False)])
# In[67]:
sedona.createDataFrame(
result_range_query.map(lambda x: [x.geom]),
schema,
verifySchema=False
).show(5, True)
# # Load From other Formats
# GeoPyspark allows to load the data from other Data formats like:
# <li> GeoJSON </li>
# <li> Shapefile </li>
# <li> WKB </li>
# <li> WKT </li>
# ## ShapeFile - load to SpatialRDD
# In[68]:
shape_rdd = ShapefileReader.readToGeometryRDD(sc, "data/polygon")
# In[69]:
shape_rdd
# In[70]:
Adapter.toDf(shape_rdd, sedona).show(5, True)
# ## GeoJSON - load to SpatialRDD
# ```
# { "type": "Feature", "properties": { "STATEFP": "01", "COUNTYFP": "077", "TRACTCE": "011501", "BLKGRPCE": "5", "AFFGEOID": "1500000US010770115015", "GEOID": "010770115015", "NAME": "5", "LSAD": "BG", "ALAND": 6844991, "AWATER": 32636 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ -87.621765, 34.873444 ], [ -87.617535, 34.873369 ], [ -87.6123, 34.873337 ], [ -87.604049, 34.873303 ], [ -87.604033, 34.872316 ], [ -87.60415, 34.867502 ], [ -87.604218, 34.865687 ], [ -87.604409, 34.858537 ], [ -87.604018, 34.851336 ], [ -87.603716, 34.844829 ], [ -87.603696, 34.844307 ], [ -87.603673, 34.841884 ], [ -87.60372, 34.841003 ], [ -87.603879, 34.838423 ], [ -87.603888, 34.837682 ], [ -87.603889, 34.83763 ], [ -87.613127, 34.833938 ], [ -87.616451, 34.832699 ], [ -87.621041, 34.831431 ], [ -87.621056, 34.831526 ], [ -87.62112, 34.831925 ], [ -87.621603, 34.8352 ], [ -87.62158, 34.836087 ], [ -87.621383, 34.84329 ], [ -87.621359, 34.844438 ], [ -87.62129, 34.846387 ], [ -87.62119, 34.85053 ], [ -87.62144, 34.865379 ], [ -87.621765, 34.873444 ] ] ] } },
# ```
# In[71]:
geo_json_rdd = GeoJsonReader.readToGeometryRDD(sc, "data/testPolygon.json")
# In[72]:
geo_json_rdd
# In[73]:
Adapter.toDf(geo_json_rdd, sedona).drop("AWATER").show(5, True)
# ## WKT - loading to SpatialRDD
# In[74]:
wkt_rdd = WktReader.readToGeometryRDD(sc, "data/county_small.tsv", 0, True, False)
# In[75]:
wkt_rdd
# In[76]:
Adapter.toDf(wkt_rdd, sedona).printSchema()
# In[77]:
Adapter.toDf(wkt_rdd, sedona).show(5, True)
# ## WKB - load to SpatialRDD
# In[78]:
wkb_rdd = WkbReader.readToGeometryRDD(sc, "data/county_small_wkb.tsv", 0, True, False)
# In[79]:
Adapter.toDf(wkb_rdd, sedona).show(5, True)
# ## Converting RDD Spatial join result to DF directly, avoiding jvm python serde
# In[80]:
point_rdd.spatialPartitioning(GridType.KDBTREE)
rectangle_rdd.spatialPartitioning(point_rdd.getPartitioner())
# building an index
point_rdd.buildIndex(IndexType.RTREE, True)
# Perform Spatial Join Query
result = JoinQueryRaw.SpatialJoinQueryFlat(point_rdd, rectangle_rdd, False, True)
# In[81]:
# without passing column names, the result will contain only two geometries columns
geometry_df = Adapter.toDf(result, sedona)
# In[82]:
geometry_df.printSchema()
# In[83]:
geometry_df.show(5)
# In[84]:
geometry_df.collect()[0]
# ## Passing column names
# In[85]:
geometry_df = Adapter.toDf(result, ["left_user_data"], ["right_user_data"], sedona)
# In[86]:
geometry_df.show(5)
# # Converting RDD Spatial join result to DF directly, avoiding jvm python serde
# In[87]:
query_envelope = Envelope(-85.01, -60.01, 34.01, 50.01)
result_range_query = RangeQueryRaw.SpatialRangeQuery(linestring_rdd, query_envelope, False, False)
# In[88]:
# converting to df
gdf = Adapter.toDf(result_range_query, sedona)
# In[89]:
gdf.show(5)
# In[90]:
gdf.printSchema()
# In[91]:
# Passing column names
# converting to df
gdf_with_columns = Adapter.toDf(result_range_query, sedona, ["_c1"])
# In[92]:
gdf_with_columns.show(5)
# In[93]:
gdf_with_columns.printSchema()
# # Summary
#
# We have shown how to install Sedona with Pyspark and run a basic example (source: https://github.com/apache/sedona/blob/master/docs/usecases/ApacheSedonaCore.ipynb) on Google Colab. This demo uses the Spark engine provided by PySpark.