-
Notifications
You must be signed in to change notification settings - Fork 26
/
GutenbergBooks.py
1010 lines (697 loc) · 56.4 KB
/
GutenbergBooks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file was generated from GutenbergBooks.ipynb with nbconvert
# Source: https://github.com/groda/big_data
#!/usr/bin/env python
# coding: utf-8
# <a href="https://colab.research.google.com/github/groda/big_data/blob/master/GutenbergBooks.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
# <a href="https://github.com/groda/big_data"><div><img src="https://github.com/groda/big_data/blob/master/logo_bdb.png?raw=true" align=right width="90" alt="Logo Big Data for Beginners"></div></a>
# # Explore and download books from the Gutenberg Books collection
#
# This Jupyter Notebook provides an interactive exploration and downloading interface for the Gutenberg Books Collection.
#
# Explore the vast collection of books, analyze metadata, and download selected texts based on various criteria. Dive into literary exploration and access timeless classics with ease
#
# **Note:** you can execute the whole "Preliminaries" section while it is collapsed by clicking on the "run" icon. Once all the cells in the "Preliminaries" section have been executed, all other cells can be executed independently of one another.
#
# ![preliminaries_collapse.png]()
# # Preliminaries
# ## Main class `GutenbergBooks`
# In[ ]:
import gzip
import urllib.request
import requests
import os
import io
import pandas as pd
GUTENBERG_URL = "https://www.gutenberg.org/cache/epub/feeds/pg_catalog.csv.gz"
GUTENBERG_CACHEDIR = "GutenbergBooks"
pd.options.mode.copy_on_write = True
class GutenbergBooks:
def __init__(self):
self.catalog_url = GUTENBERG_URL
self.catalog_file = self.catalog_url.rsplit('/', 1)[-1][:-3]
self.is_cached = os.path.isfile(self.catalog_file)
self.catalog = self.fetch_catalog()
self.all_subjects = self.get_subjects()
self.cachedir = GUTENBERG_CACHEDIR
if not os.path.exists(self.cachedir):
os.makedirs(self.cachedir)
def is_cached(self):
if os.path.isfile(self.catalog_file):
return True
return False
def cache_catalog(self):
self.catalog = self.fetch_catalog(use_cache=False)
self.catalog.to_csv(self.catalog_file)
self.is_cached = True
def is_book_downloaded(self, bookID):
book_file = f"pg{bookID}.txt"
if os.path.isfile(os.path.join(GUTENBERG_CACHEDIR, book_file)):
return True
return False
def fetch_catalog(self, use_cache=True):
url = self.catalog_url
filename = self.catalog_file
if self.is_cached and use_cache:
print(f"Retrieving {filename} from cache. To refresh cache use cache_catalog()")
dataframe = pd.read_csv(filename, quotechar = '"')
return dataframe
try:
# Retrieve the compressed file from the URL
print(f"Retrieving {filename} from {url}.")
response = urllib.request.urlopen(url)
compressed_data = response.read()
# Decompress the data
decompressed_data = gzip.decompress(compressed_data)
# Load decompressed data into pandas DataFrame
dataframe = pd.read_csv(io.StringIO(decompressed_data.decode('utf-8')), quotechar = '"')
dataframe.to_csv(self.catalog_file)
self.is_cached = True
return dataframe
except Exception as e:
print("An error occurred:", e)
return None
def get_subjects(self):
return self.catalog['Subjects'].str.split('; ').explode().unique().tolist()
def random_subjects(self, n, seed):
"""
This method returns n random subjects.
Parameters:
- n (int): number of subjects.
- seed (int): random seed for reproducibility.
Returns:
- list: Random sample of subjects from the Gutenberg Books catalog
following the subjects distribution.
"""
df = self.catalog['Subjects']
subject_counts = df.str.split('; ').explode() \
.groupby(df.str.split('; ').explode()).count() \
.reset_index(name='Count').sort_values(by='Count', ascending=False) \
.rename(columns={"Subjects": "Subject"}) \
.reset_index(drop=True)
return subject_counts.sample(n=n, replace=False, random_state=seed, weights=subject_counts['Count'])
def topn_subjects(self, n):
df = self.catalog['Subjects']
subject_counts = df.str.split('; ').explode() \
.groupby(df.str.split('; ').explode()).count() \
.reset_index(name='Count').sort_values(by='Count', ascending=False) \
.rename(columns={"Subjects": "Subject"})
return subject_counts.reset_index(drop=True).head(n)
def get_authors(self):
return self.catalog['Authors'].str.split('; ').explode().unique().tolist()
def random_authors(self, n, seed):
df = self.catalog['Authors']
author_counts = df.str.split('; ').explode() \
.groupby(df.str.split('; ').explode()).count() \
.reset_index(name='Count').sort_values(by='Count', ascending=False) \
.rename(columns={"Authors": "Author"}) \
.reset_index(drop=True)
return author_counts.sample(n=n, replace=False, random_state=seed, weights=author_counts['Count'])
def topn_authors(self, n):
df = self.catalog['Authors']
author_counts = df.str.split('; ').explode() \
.groupby(df.str.split('; ').explode()).count() \
.reset_index(name='Count').sort_values(by='Count', ascending=False) \
.rename(columns={"Authors": "Author"})
return author_counts.reset_index(drop=True).head(n)
def get_languages(self):
return self.catalog['Language'].str.split('; ').explode().unique().tolist()
def topn_languages(self, n):
df = self.catalog['Language']
language_counts = df.str.split('; ').explode() \
.groupby(df.str.split('; ').explode()).count() \
.reset_index(name='Count').sort_values(by='Count', ascending=False)
return language_counts.reset_index(drop=True).head(n)
def get_bookshelves(self):
return self.catalog['Bookshelves'].str.split('; ').explode().unique().tolist()
def topn_bookshelves(self, n):
df = self.catalog['Bookshelves']
bookshelf_counts = df.str.split('; ').explode() \
.groupby(df.str.split('; ').explode()).count() \
.reset_index(name='Count').sort_values(by='Count', ascending=False) \
.rename(columns={"Bookshelves": "Bookshelf"})
return bookshelf_counts.reset_index(drop=True).head(n)
def get_types(self):
return self.catalog['Type'].unique().tolist()
def get_books(self, lang, subject, title):
return self.catalog.sample(n=n, replace=False, random_state=seed)
def random_books(self, n, seed):
return self.catalog.sample(n=n, replace=False, random_state=seed)
def books_matching_subject(self, substr):
return self.catalog.query(f'Subjects.str.lower().str.contains("{substr.lower()}", na=False)')
def books_matching_author(self, substr):
return self.catalog.query(f'Author.str.lower().str.contains("{substr.lower()}", na=False)')
def books_matching_year(self, given_year):
"""
Find books from the catalog that match a given year within the birth-death intervals of authors.
Parameters:
- given_year (int): The year to match within the birth-death intervals of authors.
Returns:
- DataFrame: A DataFrame containing books from the catalog where the given year falls within
the birth-death intervals of authors.
This method extracts birth and death years from the 'Authors' column of the catalog and filters
rows where the given year is within any birth-death interval. It returns a DataFrame of matching books.
"""
catalog_copy = self.catalog.copy()
# Create a temporary DataFrame to hold split author-interval pairs
temp_df = catalog_copy['Authors'].str.extractall(r'((?:\w+\s+)?(?:\d{4})\s*-\s*(?:\d{4}))')
temp_df.reset_index(inplace=True)
temp_df.rename(columns={0: 'Author_Interval'}, inplace=True)
# Merge the original catalog with the temporary DataFrame
merged_df = pd.merge(catalog_copy, temp_df, left_index=True, right_on='level_0')
# Extract birth and death years from the author-interval pairs
merged_df['Birth_Year'] = merged_df['Author_Interval'].str.extract(r'(\d{4})')
merged_df['Death_Year'] = merged_df['Author_Interval'].str.extract(r'\d{4}\s*-\s*(\d{4})')
# Convert birth and death years to numeric
merged_df['Birth_Year'] = pd.to_numeric(merged_df['Birth_Year'], errors='coerce')
merged_df['Death_Year'] = pd.to_numeric(merged_df['Death_Year'], errors='coerce')
# Filter rows where the given year is within any birth-death interval
matching_books = merged_df[(merged_df['Birth_Year'] <= given_year) &
(merged_df['Death_Year'] >= given_year)]
# Drop unnecessary columns
matching_books.drop(columns=['Author_Interval', 'level_0'], inplace=True)
# Return matching books
return matching_books
def download_book(self, nr):
"""
Download one book from the Gutenberg collection identified by its id.
If the book already exists in the cache folder, it is not downloaded again.
Parameters:
- nr (int): id of the book in the Gutenberg books collection.
Returns:
- str: the path where the book was downloaded.
"""
b = str(nr)
book = f"pg{b}.txt"
url = f"https://www.gutenberg.org/cache/epub/{b}/{book}"
book_path = os.path.join(GUTENBERG_CACHEDIR, book)
if self.is_book_downloaded(b):
print(f"Book {nr} already exists in cache. Not downloading.")
else:
try:
# Retrieve the book from the URL
print(f"Retrieving {book} from {url}.")
with open(book_path, "w") as f:
f.write(requests.get(url).text)
except Exception as e:
print("An error occurred:", e)
return None
return book_path
def download_books(self, books):
"""
Download a list of books from the Gutenberg collection.
If a book already exists in the cache folder, it is not downloaded again.
Parameters:
- books (list): list of ids of books in the Gutenberg books collection.
Returns:
- str: the path where the book was downloaded.
"""
book_paths = []
for b in books:
path =self.download_book(b)
book_paths += [path]
return book_paths
def download_n_books(self, n, subject):
"""
Download a certain number of books from the Gutenberg collection based on the desired size and subject.
If a book already exists in the cache folder, it is not downloaded again.
Parameters:
- n (int): The number of books to download.
- subject (str): The subject to match when selecting books.
Returns:
- list: A list of paths where the downloaded books are saved.
"""
# Get books matching the subject
matching_books = self.books_matching_subject(subject)
# Limit the number of books to download
books_to_download = matching_books[:n]['Text#']
# Download books
book_paths = [self.download_book(b) for b in books_to_download]
return book_paths
def download_size_books(self, size_mb=128, subject=None):
"""
Download books from the Gutenberg collection based on the desired total size and subject.
If a book already exists in the cache folder, it is not downloaded again.
Parameters:
- size_mb (int): The desired total size of downloaded books in MB. Default is 128MB.
- subject (str, optional): The subject to match when selecting books. Default is None.
Returns:
- list: A list of paths where the downloaded books are saved.
"""
# Get books matching the subject if provided
if subject:
matching_books = self.books_matching_subject(subject)['Text#']
else:
matching_books = self.catalog['Text#']
# Initialize variables
total_size = 0
books_to_download = []
# Iterate through matching books until total size threshold is met
for b in matching_books:
if total_size >= size_mb * 1024 * 1024: # Convert MB to bytes
break
book_path = self.download_book(b)
file_size = os.path.getsize(book_path)
# Add file size to total size
total_size += file_size
# Add book to download list
books_to_download.append(b)
# Download books
book_paths = [self.download_book(b) for b in books_to_download]
print(f"Total size: {int(total_size/1024/1024)}MB")
if total_size <= size_mb * 1024 * 1024:
print(f"Download more books to get {size_mb}MB")
return book_paths
gb = GutenbergBooks()
# ## Use `cache_catalog()` to create a cached copy of the catalog
# In[ ]:
# gb.cache_catalog()
# ## Interactive tables
#
# Library `data_table` from Google Colab adds interactivity to Pandas tables.
#
# https://colab.research.google.com/notebooks/data_table.ipynb
# In[ ]:
# true if running on Google Colab
import sys
IN_COLAB = 'google.colab' in sys.modules
if IN_COLAB:
from google.colab import data_table
from vega_datasets import data
data_table.enable_dataframe_formatter()
else:
get_ipython().system('pip install itables')
get_ipython().system('pip install bokeh')
get_ipython().system('pip install matplotlib')
from itables import init_notebook_mode
init_notebook_mode(all_interactive=True)
# ## Code for visualizations
#
# This is needed for plotting.
# In[ ]:
import matplotlib
colors = matplotlib.cm.tab20(range(20))
# source: https://matplotlib.org/stable/gallery/misc/packed_bubbles.html
import matplotlib.pyplot as plt
import numpy as np
class BubbleChart:
def __init__(self, area, bubble_spacing=0):
"""
Setup for bubble collapse.
Parameters
----------
area : array-like
Area of the bubbles.
bubble_spacing : float, default: 0
Minimal spacing between bubbles after collapsing.
Notes
-----
If "area" is sorted, the results might look weird.
"""
area = np.asarray(area)
r = np.sqrt(area / np.pi)
self.bubble_spacing = bubble_spacing
self.bubbles = np.ones((len(area), 4))
self.bubbles[:, 2] = r
self.bubbles[:, 3] = area
self.maxstep = 2 * self.bubbles[:, 2].max() + self.bubble_spacing
self.step_dist = self.maxstep / 2
# calculate initial grid layout for bubbles
length = np.ceil(np.sqrt(len(self.bubbles)))
grid = np.arange(length) * self.maxstep
gx, gy = np.meshgrid(grid, grid)
self.bubbles[:, 0] = gx.flatten()[:len(self.bubbles)]
self.bubbles[:, 1] = gy.flatten()[:len(self.bubbles)]
self.com = self.center_of_mass()
def center_of_mass(self):
return np.average(
self.bubbles[:, :2], axis=0, weights=self.bubbles[:, 3]
)
def center_distance(self, bubble, bubbles):
return np.hypot(bubble[0] - bubbles[:, 0],
bubble[1] - bubbles[:, 1])
def outline_distance(self, bubble, bubbles):
center_distance = self.center_distance(bubble, bubbles)
return center_distance - bubble[2] - \
bubbles[:, 2] - self.bubble_spacing
def check_collisions(self, bubble, bubbles):
distance = self.outline_distance(bubble, bubbles)
return len(distance[distance < 0])
def collides_with(self, bubble, bubbles):
distance = self.outline_distance(bubble, bubbles)
return np.argmin(distance, keepdims=True)
def collapse(self, n_iterations=50):
"""
Move bubbles to the center of mass.
Parameters
----------
n_iterations : int, default: 100
Number of moves to perform.
"""
for _i in range(n_iterations):
moves = 0
for i in range(len(self.bubbles)):
rest_bub = np.delete(self.bubbles, i, 0)
# try to move directly towards the center of mass
# direction vector from bubble to the center of mass
dir_vec = self.com - self.bubbles[i, :2]
# shorten direction vector to have length of 1
dir_vec = dir_vec / np.sqrt(dir_vec.dot(dir_vec))
# calculate new bubble position
new_point = self.bubbles[i, :2] + dir_vec * self.step_dist
new_bubble = np.append(new_point, self.bubbles[i, 2:4])
# check whether new bubble collides with other bubbles
if not self.check_collisions(new_bubble, rest_bub):
self.bubbles[i, :] = new_bubble
self.com = self.center_of_mass()
moves += 1
else:
# try to move around a bubble that you collide with
# find colliding bubble
for colliding in self.collides_with(new_bubble, rest_bub):
# calculate direction vector
dir_vec = rest_bub[colliding, :2] - self.bubbles[i, :2]
dir_vec = dir_vec / np.sqrt(dir_vec.dot(dir_vec))
# calculate orthogonal vector
orth = np.array([dir_vec[1], -dir_vec[0]])
# test which direction to go
new_point1 = (self.bubbles[i, :2] + orth *
self.step_dist)
new_point2 = (self.bubbles[i, :2] - orth *
self.step_dist)
dist1 = self.center_distance(
self.com, np.array([new_point1]))
dist2 = self.center_distance(
self.com, np.array([new_point2]))
new_point = new_point1 if dist1 < dist2 else new_point2
new_bubble = np.append(new_point, self.bubbles[i, 2:4])
if not self.check_collisions(new_bubble, rest_bub):
self.bubbles[i, :] = new_bubble
self.com = self.center_of_mass()
if moves / len(self.bubbles) < 0.1:
self.step_dist = self.step_dist / 2
def plot(self, ax, labels, colors):
"""
Draw the bubble plot.
Parameters
----------
ax : matplotlib.axes.Axes
labels : list
Labels of the bubbles.
colors : list
Colors of the bubbles.
"""
for i in range(len(self.bubbles)):
circ = plt.Circle(
self.bubbles[i, :2], self.bubbles[i, 2], color=colors[i])
ax.add_patch(circ)
ax.text(*self.bubbles[i, :2], labels[i],
horizontalalignment='center', verticalalignment='center')
# Attempt to set the font family
desired_font_family = 'DejaVu Serif'
try:
plt.rcParams['font.family'] = desired_font_family
print(f"Using '{desired_font_family}' font family.")
except:
print(f"Warning: Font family '{desired_font_family}' not found. Using fallback font.")
plt.rcParams['font.family'] = 'serif' # Fallback to a generic serif font
# # Explore
# ## Books
# ### All books
#
# The whole Gutenberg collection catalog is saved in the `catalog` of the `GutenbergBooks` object `gb`.
# In[ ]:
gb.catalog
# ### Count books in the collection
#
# There are currently $73109$ books in the collection.
# In[ ]:
len(gb.catalog)
# ### First five books in the catalog
# In[ ]:
gb.catalog.head(5)
# ### Five random books
#
# Looking only at the first lines of a DataFrame might provide an initial glimpse into the data, but it can be insufficient for gaining a comprehensive understanding of its characteristics, that's why sampling from the DataFrame is often more beneficial.
#
# So, let's break away from the norm of quickly scanning the first few lines of a file with the `head` command. Let us instead allocate a bit more computational power and extract a small yet representative sample of the data.
# In[ ]:
print("Five random books from catalog")
gb.random_books(n=5, seed=42)
# ## Subjects
# ### Count distinct subjects
#
# There are currently $39619$ distinct subjects.
# In[ ]:
len(gb.get_subjects())
# ### Top $n$ subjects
# In[ ]:
n = 10
gb.topn_subjects(n)
# ### 20K subjects
# In[ ]:
pd.DataFrame(gb.topn_subjects(20000))
# Limiting the number of rows to 20000 because this is the maximum number supported
# by Colab's `data_table`.
# ### Ten random subjects
# In[ ]:
gb.random_subjects(10, 42).sort_values(by='Count', ascending=False)
# ### List books matching a given subject
#
# Change the subject by setting the variable `my_subject` (search is case-insensitive).
# In[ ]:
substr = "description and travel"
gb.books_matching_subject(substr).head()
# ### Visualize most frequent subjects
# In[ ]:
n = 20
gutenberg_books_subjects = {
'subjects': gb.topn_subjects(n)['Subject'].replace({' -- ': '
'}, regex=True).to_list(),
'market_share': list(map(lambda x: x*n*3, gb.topn_subjects(n)['Count'].to_list())),
'color': colors[:n]
}
bubble_chart = BubbleChart(area=gutenberg_books_subjects['market_share'],
bubble_spacing=2*n)
bubble_chart.collapse()
fig, ax = plt.subplots(subplot_kw=dict(aspect="equal"), figsize=(10, 10))
bubble_chart.plot(
ax, gutenberg_books_subjects['subjects'], gutenberg_books_subjects['color'])
ax.axis("off")
ax.relim()
ax.autoscale_view()
ax.set_title(f'Gutenberg books top {n} subjects')
plt.show()
# ## Authors
# ### Count distinct authors
#
# There are currently $37392$ distinct authors.
# In[ ]:
len(gb.get_authors())
# ### All authors
# The `data_table` library can only deal with a maximum of $20000$ rows. If the number of rows exceeds this limit, the usual Pandas display is used (with no interactivity).
#
# In[ ]:
pd.DataFrame(gb.get_authors())
# ### Top $n$ authors
# In[ ]:
n = 20000
gb.topn_authors(n)
# ### Ten random authors
# In[ ]:
gb.random_authors(10, 42).sort_values(by='Count', ascending=False)
# ### Visualize most frequent authors
# In[ ]:
n = 20
gutenberg_books_authors = {
'authors': gb.topn_authors(n)['Author'].replace({', ': '
', ' \[': '
['}, regex=True).to_list(),
'market_share': list(map(lambda x: x*n*3, gb.topn_authors(n)['Count'].to_list())),
'color': colors[:n]
}
bubble_chart = BubbleChart(area=gutenberg_books_authors['market_share'],
bubble_spacing=2*n)
bubble_chart.collapse()
fig, ax = plt.subplots(subplot_kw=dict(aspect="equal"),figsize=(10, 10))
bubble_chart.plot(
ax, gutenberg_books_authors['authors'], gutenberg_books_authors['color'])
ax.axis("off")
ax.relim()
ax.autoscale_view()
ax.set_title(f'Gutenberg books top {n} authors')
plt.show()
# ## Types
# ### All types
# In[ ]:
pd.DataFrame(gb.get_types(), columns=['Type'])
# ### Count books by types
# In[ ]:
grouped_counts = gb.catalog.groupby('Type').size().reset_index(name='Count')
grouped_counts
# ### Visualize types
# In[ ]:
grouped_data = gb.catalog.groupby('Type').size().reset_index(name='Count')
n = len(grouped_data)
# Extracting values of 'Type' and 'Count' columns as lists
type_list = grouped_data['Type'].tolist()
count_list = grouped_data['Count'].tolist()
gutenberg_books_types = {
'types': type_list,
# adapt the size of smaller items
'market_share': list(map(lambda x: x if x>1000 else x*n*10, count_list)),
'color': colors[:-n]
}
bubble_chart = BubbleChart(area=gutenberg_books_types['market_share'],
bubble_spacing=2*n)
bubble_chart.collapse()
fig, ax = plt.subplots(subplot_kw=dict(aspect="equal"),figsize=(10, 10))
bubble_chart.plot(
ax, gutenberg_books_types['types'], gutenberg_books_types['color'])
ax.axis("off")
ax.relim()
ax.autoscale_view()
ax.set_title(f'Gutenberg books top types')
subtitle = "(the depicted proportions have been altered and do not reflect the true distribution)"
# Set the subtitle below the main title
plt.text(0.5, 0.98, subtitle, fontsize=10, ha='center', transform=plt.gca().transAxes)
plt.show()
# I wasn't aware that the Gutenberg collection contained data other than text. I'll need to explore these additional data types at some point.
# ## Bookshelves
# ### Top $n$ bookshelves
# In[ ]:
n = 10
gb.topn_bookshelves(n)
# ### Visualize most frequent bookshelves
# In[ ]:
n = 20
gutenberg_books_bookshelves = {
'bookshelves': gb.topn_bookshelves(n)['Bookshelf'].replace({', ': '
'}, regex=True).to_list(),
'market_share': list(map(lambda x: x*n*3, gb.topn_bookshelves(n)['Count'].to_list())),
'color': colors[:n]
}
bubble_chart = BubbleChart(area=gutenberg_books_bookshelves['market_share'],
bubble_spacing=4*n)
bubble_chart.collapse()
fig, ax = plt.subplots(subplot_kw=dict(aspect="equal"), figsize=(10, 10))
bubble_chart.plot(
ax, gutenberg_books_bookshelves['bookshelves'], gutenberg_books_bookshelves['color'])
ax.axis("off")
ax.relim()
ax.autoscale_view()
ax.set_title(f'Gutenberg books top {n} bookshelves')
plt.show()
# ### Books without bookshelf
#
# Many books do not belong to any bookshelf
# In[ ]:
gb.catalog.count()
# ### Number of books without bookshelf
# In[ ]:
print(f"Number of books with no bookshelf: {gb.catalog[gb.catalog['Bookshelves'].isna()].shape[0]}")
# ### Five random books without bookshelf
# In[ ]:
gb.catalog[gb.catalog['Bookshelves'].isna()].sample(n=5, replace=False, random_state=42)
# ## Languages
# ### Count distinct languages
#
# The Gutenberg collection currently comprises 68 languages.
# In[ ]:
len(gb.get_languages())
# ### Top $n$ languages
# In[ ]:
gb.topn_languages(10)
# ### Visualize top $n$ languages
# In[ ]:
n = 20
gutenberg_books_languages = {
'languages': gb.topn_languages(n)['Language'].to_list(),
'market_share': list(map(lambda x: x*10, gb.topn_languages(n)['Count'].to_list())),
'color': colors
}
bubble_chart = BubbleChart(area=gutenberg_books_languages['market_share'],
bubble_spacing=15)
bubble_chart.collapse()
fig, ax = plt.subplots(subplot_kw=dict(aspect="equal"), figsize=(10, 10))
bubble_chart.plot(
ax, gutenberg_books_languages['languages'], gutenberg_books_languages['color'])
ax.axis("off")
ax.relim()
ax.autoscale_view()
ax.set_title(f'Gutenberg books top {n} languages')
plt.show()
# ## Match books using various criteria
# ### Match books by subject
# In[ ]:
substr = "description and travel"
gb.books_matching_subject(substr)
# ### Match books by year
# In[ ]:
gb.books_matching_year(1984)
# In[ ]:
help(GutenbergBooks.books_matching_year)
# # Downloading files from the Gutenberg collection
#
# ⚠️ Please read carefully this notice about the Gutenberg Project's policies on bulk downloading:
#
#
#
# > “ _The Project Gutenberg website is intended for human users only. Any perceived use of automated tools to access the Project Gutenberg website will result in a temporary or permanent block of your IP address._ ”
#
# See: https://www.gutenberg.org/policy/robot_access.html.
#
# ## The cache directory
#
# By default, `GutenbergBooks` is the directory where all downloaded books are stored. If a book is alredy in the `GutenbergBooks` directory it won't be downloaded again.
#
# ⚠️ The cache directory is empty when you start your Google Colab session! ⚠️
# ## Download one book
# In[ ]:
gb.download_book(5687)
# The same book won't be downloaded because it already exists in the cache directory `GutenbergBooks`.
# In[ ]:
gb.download_book(5687)
# In[ ]:
help(GutenbergBooks.download_book)
# ## Download multiple books
# In[ ]:
gb.download_books([5678, 5679, 5680])
# In[ ]:
help(GutenbergBooks.download_books)
# ## Download $n$ books by subject
# In[ ]:
gb.download_n_books(5, "\(South Africa\) -- Description and travel")
# ## Download a given amount of books by subject
#
# DOwnload books matching a certain subject. Stop when the threshold given by the `size_mb` (size in Megabytes) parameter is reached.
#
# If not specified, `size_mb` is $128$ (the default Hadoop block size).
# In[ ]:
gb.download_size_books(subject="\(South Africa\) -- Description and travel")
# In[ ]:
get_ipython().system('du -sh GutenbergBooks')
# In[ ]:
subject = "United States -- Description and travel"
gb.download_size_books(size_mb=90, subject=subject)
# In[ ]:
get_ipython().system('du -sh GutenbergBooks')
# It's not easy to get enough data!
# In[ ]:
subject = "California -- Description and travel"
gb.download_size_books(size_mb=50, subject=subject)
# In[ ]:
get_ipython().system('du -sh GutenbergBooks')
# # Acknowledgements and some thoughts on Artificial Intelligence
#
# For this tutorial I've made extensive use of the ChatGPT (version $3.5$) AI to:
# - improve my English