-
Notifications
You must be signed in to change notification settings - Fork 0
/
Explorer.props
190 lines (155 loc) · 6.35 KB
/
Explorer.props
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# This props file contains default values for the Weka Explorer.
#
# Notes:
# - backslashes within options, e.g., for the default "Classifier", need
# to be doubled (the backslashes get interpreted already when a property
# is read).
#
# Author FracPete (fracpete at waikato dot ac dot nz)
# Version $Revision: 7526 $
# if set to true the Capabilities filters in the GOE will be initialized
# based on the full dataset that has been loaded into the Explorer
# otherwise only the header (true|false)
# Note: The tabs in the Explorer have their own class combobox, which means
# that the data has to be inspected several times (changing the class
# combobox only leads to an inspection of the data in the current tab),
# which can be slow on big datasets.
InitGenericObjectEditorFilter=True
# The tabs to display apart from the PreprocessPanel.
#
# The classes listed here must import the weka.gui.explorer.Explorer.ExplorerPanel
# interface. Optionally, they can also import the
# weka.gui.explorer.Explorer.LogHandler interface if they want to use the logging
# functionality of the Explorer and the
# weka.gui.exporer.Explorer.CapabilitiesFilterChangeListener interface
# in case they need to know when the Capabilities have changed, e.g., when a
# new dataset has been loaded into the Explorer.
#
# Additional options follow the classname after a colon.
# Currently supported options are:
# standalone - the tab does not depend on the PreprocessPanel to load the data first
#
Tabs=weka.gui.explorer.ClassifierPanel,\
weka.gui.explorer.ClustererPanel,\
weka.gui.explorer.AssociationsPanel,\
weka.gui.explorer.AttributeSelectionPanel,\
weka.gui.explorer.VisualizePanel,\
weka.gui.explorer.AttrSelExp\
# the initial directory for opening datasets.
# the following placeholders are recognized
# %t - the temp directory
# %h - the user's home directory
# %c - the current directory
# %% - gets replaced by a single percentage sign
InitialDirectory=%
# whether to create undo points
enableUndo=true
# the directory in which to create undo files
# %t is a placeholder for the standard system temp directory
undoDirectory=%t
# the default filter, including options (can be left empty)
Filter=
# the default classifier in the classify tab, including options
# (default is ZeroR)
Classifier=weka.classifiers.rules.ZeroR
# the default test mode in the classify tab
# (according to "testMode" variable in startClassifier method)
# 1 - cross-validation
# 2 - percentage split
# 3 - use training set
# 4 - supplied test set
# (default is 1 - CV)
ClassifierTestMode=1
# the default number of folds for CV in the classify tab
# (default is 10)
ClassifierCrossvalidationFolds=10
# the default percentage split % in the classify tab (integer: 1-99)
# (default is 66)
ClassifierPercentageSplit=66
# whether the classifier model is output (true|false)
# (default is true)
ClassifierOutputModel=true
# whether additional per-class stats of the classifier model are
# output (true|false)
# (default is true)
ClassifierOutputPerClassStats=true
# whether the entropy based evaluation measures of the classifier model are
# output (true|false)
# (default is false)
ClassifierOutputEntropyEvalMeasures=false
# whether the confusion matrix is output for the classifier (true|false)
# (default is true)
ClassifierOutputConfusionMatrix=true
# whether the predictions of the classifier are stored for visulization
# purposes (true|false)
# (default is true)
ClassifierStorePredictionsForVis=true
# whether the predictions of the classifier output as well (true|false)
# (default is false)
ClassifierOutputPredictions=false
# lists the attributes indices to output in addition to the predictions
# (default is "")
ClassifierOutputAdditionalAttributes=
# whether the evaluation of the classifier is done cost-sensitively (true|false)
# (default is false)
# Note: a cost matrix still has to be provided!
ClassifierCostSensitiveEval=false
# the default random seed in the classify tab
# (default is 1)
ClassifierRandomSeed=1
# whether the order is preserved in case of percentage split in the classifier
# tab
# (default is false)
ClassifierPreserveOrder=false
# whether the source code of a Sourcable classifier is output as well in the
# classifier tab
# (default is false)
ClassifierOutputSourceCode=false
# the default classname of a Sourcable classifier in the classifier tab
# (default is Foobar)
ClassifierSourceCodeClass=WekaClassifier
# the class (incl. options) for collecting the predictions and turning them
# into plotable instances for displaying the classifier errors.
ClassifierErrorsPlotInstances=weka.gui.explorer.ClassifierErrorsPlotInstances
# The minimum plot size for numeric attributes (when visualizing classifier errors)
ClassifierErrorsMinimumPlotSizeNumeric=1
# The maximum plot size for numeric attributes (when visualizing classifier errors)
ClassifierErrorsMaximumPlotSizeNumeric=20
# the default clusterer, including options
# (default is EM)
Clusterer=weka.clusterers.EM
# the default test mode in the cluster tab
# (according to "testMode" variable in startClusterer method)
# 2 - percentage split
# 3 - use training set
# 4 - supplied test set
# 5 - classes to clusters evaluation
# (default is 3 - training set)
ClustererTestMode=3
# whether the clusters are stored for visualization purposes (true|false)
# (default is true)
ClustererStoreClustersForVis=true
# the class (incl. options) for collecting the predictions and turning them
# into plotable instances for displaying the cluster assignments.
ClustererAssignmentsPlotInstances=weka.gui.explorer.ClustererAssignmentsPlotInstances
# the default associator, including options
# (default is Apriori)
Associator=weka.associations.Apriori
# the default attribute evaluator, including options
# (default is CfsSubsetEval)
ASEvaluation=weka.attributeSelection.CfsSubsetEval
# the default attribute selection search scheme, including options
# (default is BestFirst)
ASSearch=weka.attributeSelection.BestFirst
# the default test mode in the attribute selection tab
# (according to "testMode" variable in startAttributeSelection method)
# 0 - use full training set
# 1 - cross-validation
# (default is 0 - full training set)
ASTestMode=0
# the default number of folds for CV in the attribute selection tab
# (default is 10)
ASCrossvalidationFolds=10
# the default random seed in the attribute selection tab
# (default is 1)
ASRandomSeed=1