-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation_metrics.py
204 lines (159 loc) · 7.63 KB
/
evaluation_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
import torch
import torch.nn.functional as F
from sklearn.svm import SVC
import utils
def entropy(p, dim=-1, keepdim=False):
return -torch.where(p > 0, p * p.log(), p.new([0.0])).sum(dim=dim, keepdim=keepdim)
def m_entropy(p, labels, dim=-1, keepdim=False):
log_prob = torch.where(
p > 0, p.log(), torch.tensor(1e-30).to(p.device).log())
reverse_prob = 1 - p
log_reverse_prob = torch.where(
p > 0, p.log(), torch.tensor(1e-30).to(p.device).log())
modified_probs = p.clone()
modified_probs[:, labels] = reverse_prob[:, labels]
modified_log_probs = log_reverse_prob.clone()
modified_log_probs[:, labels] = log_prob[:, labels]
return -torch.sum(modified_probs * modified_log_probs, dim=dim, keepdim=keepdim)
def get_x_y_from_data_dict(data, device):
x, y = data.values()
if isinstance(x, list):
x, y = x[0].to(device), y[0].to(device)
else:
x, y = x.to(device), y.to(device)
return x, y
def collect_prob(data_loader, model):
if data_loader is None:
return torch.zeros([0, 10]), torch.zeros([0])
prob = []
targets = []
model.eval()
with torch.no_grad():
for batch in data_loader:
try:
batch = [tensor.to(next(model.parameters()).device)
for tensor in batch]
data, target = batch
except:
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
data, target = get_x_y_from_data_dict(batch, device)
with torch.no_grad():
output = model(data)
prob.append(F.softmax(output, dim=-1).data)
targets.append(target)
return torch.cat(prob), torch.cat(targets)
def SVC_fit_predict(shadow_train, shadow_test, target_train, target_test):
n_shadow_train = shadow_train.shape[0]
n_shadow_test = shadow_test.shape[0]
n_target_train = target_train.shape[0]
n_target_test = target_test.shape[0]
X_shadow = torch.cat([shadow_train, shadow_test]).cpu(
).numpy().reshape(n_shadow_train + n_shadow_test, -1)
Y_shadow = np.concatenate(
[np.ones(n_shadow_train), np.zeros(n_shadow_test)])
clf = SVC(C=10, gamma='auto', kernel='rbf')
clf.fit(X_shadow, Y_shadow)
accs = []
if n_target_train > 0:
X_target_train = target_train.cpu().numpy().reshape(n_target_train, -1)
acc_train = clf.predict(X_target_train).mean()
accs.append(acc_train)
if n_target_test > 0:
X_target_test = target_test.cpu().numpy().reshape(n_target_test, -1)
acc_test = 1 - clf.predict(X_target_test).mean()
accs.append(acc_test)
return np.mean(accs)
def SVC_MIA(shadow_train, target_train, shadow_test, target_test, model):
shadow_train_prob, shadow_train_labels = collect_prob(shadow_train, model)
shadow_test_prob, shadow_test_labels = collect_prob(shadow_test, model)
target_train_prob, target_train_labels = collect_prob(target_train, model)
target_test_prob, target_test_labels = collect_prob(target_test, model)
shadow_train_corr = (torch.argmax(shadow_train_prob, axis=1)
== shadow_train_labels).int()
shadow_test_corr = (torch.argmax(shadow_test_prob, axis=1)
== shadow_test_labels).int()
target_train_corr = (torch.argmax(target_train_prob, axis=1)
== target_train_labels).int()
target_test_corr = (torch.argmax(target_test_prob, axis=1)
== target_test_labels).int()
shadow_train_conf = torch.gather(
shadow_train_prob, 1, shadow_train_labels[:, None].type(torch.int64))
shadow_test_conf = torch.gather(
shadow_test_prob, 1, shadow_test_labels[:, None].type(torch.int64))
target_train_conf = torch.gather(
target_train_prob, 1, target_train_labels[:, None].type(torch.int64))
target_test_conf = torch.gather(
target_test_prob, 1, target_test_labels[:, None].type(torch.int64))
shadow_train_entr = entropy(shadow_train_prob)
shadow_test_entr = entropy(shadow_test_prob)
target_train_entr = entropy(target_train_prob)
target_test_entr = entropy(target_test_prob)
acc_corr = SVC_fit_predict(
shadow_train_corr, shadow_test_corr, target_train_corr, target_test_corr)
acc_conf = SVC_fit_predict(
shadow_train_conf, shadow_test_conf, target_train_conf, target_test_conf)
acc_entr = SVC_fit_predict(
shadow_train_entr, shadow_test_entr, target_train_entr, target_test_entr)
# acc_m_entr = SVC_fit_predict(
# shadow_train_m_entr, shadow_test_m_entr, target_train_m_entr, target_test_m_entr)
acc_prob = SVC_fit_predict(
shadow_train_prob, shadow_test_prob, target_train_prob, target_test_prob)
m = {"correctness": acc_corr,
"confidence": acc_conf,
"entropy": acc_entr,
# "m_entropy": acc_m_entr,
"prob": acc_prob}
print(m)
return m
def MIA_Accuracy(model, forget_loader, retain_loader, test_loader, device, total_unlearn_time, args):
evaluation_result = {}
retain_dataset = retain_loader.dataset
for deprecated in ['MIA', 'SVC_MIA', 'SVC_MIA_forget']:
if deprecated in evaluation_result:
evaluation_result.pop(deprecated)
test_len = len(test_loader.dataset)
shadow_train = torch.utils.data.Subset(
retain_dataset, list(range(test_len)))
shadow_train_loader = torch.utils.data.DataLoader(
shadow_train, batch_size=args.batch_size, shuffle=False)
evaluation_result['SVC_MIA_forget_efficacy'] = SVC_MIA(
shadow_train=shadow_train_loader, target_train=None,
shadow_test=test_loader, target_test=forget_loader,
model=model.to(device))
test_len = len(test_loader.dataset)
retain_len = len(retain_dataset)
num = test_len // 2
utils.dataset_convert_to_test(retain_dataset, args)
utils.dataset_convert_to_test(forget_loader, args)
utils.dataset_convert_to_test(test_loader, args)
shadow_train = torch.utils.data.Subset(
retain_dataset, list(range(num)))
target_train = torch.utils.data.Subset(
retain_dataset, list(range(num, retain_len)))
shadow_test = torch.utils.data.Subset(
test_loader.dataset, list(range(num)))
target_test = torch.utils.data.Subset(
test_loader.dataset, list(range(num, test_len)))
shadow_train_loader = torch.utils.data.DataLoader(
shadow_train, batch_size=args.batch_size, shuffle=False)
shadow_test_loader = torch.utils.data.DataLoader(
shadow_test, batch_size=args.batch_size, shuffle=False)
target_train_loader = torch.utils.data.DataLoader(
target_train, batch_size=args.batch_size, shuffle=False)
target_test_loader = torch.utils.data.DataLoader(
target_test, batch_size=args.batch_size, shuffle=False)
evaluation_result['SVC_MIA_training_privacy'] = SVC_MIA(
shadow_train=shadow_train_loader, shadow_test=shadow_test_loader,
target_train=target_train_loader, target_test=target_test_loader,
model=model)
evaluation_result["accuracy"] = utils.evaluate_acc(model, test_loader, device)
evaluation_result["forget_accuracy"] = utils.evaluate_acc(model=model, data_loader=forget_loader, device=device)
evaluation_result["retain_accuracy"] = utils.evaluate_acc(model=model, data_loader=retain_loader, device=device)
evaluation_result["total_unlearn_time"] = total_unlearn_time
print("Done. Here is the new evaluation result")
print(evaluation_result, "\n\n")
retain_dataset.train = True
forget_loader.dataset.train = True
test_loader.dataset.train = True
return evaluation_result