-
-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathhelpers.py
425 lines (380 loc) · 13.5 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import os
import json
import pandas as pd
import yaml
import numpy as np
import finnhub
import requests
import yfinance as yf
import mysql.connector
from datetime import date, datetime, timedelta
from sqlalchemy import create_engine
from django.http import HttpResponse
from finvizfinance.quote import finvizfinance
from json.decoder import JSONDecodeError
from nltk.sentiment.vader import SentimentIntensityAnalyzer
with open("config.yaml") as config_file:
config_keys = yaml.load(config_file, Loader=yaml.Loader)
BASE_URL = config_keys["STOCKSERA_BASE_URL"]
HEADERS = {f"Authorization": f"Api-Key {config_keys['STOCKSERA_API']}"}
analyzer = SentimentIntensityAnalyzer()
analyzer.lexicon.update(json.load(open("custom_extensions/custom_words.json")))
# https://finnhub.io/
finnhub_client = finnhub.Client(api_key=config_keys["FINNHUB_KEY1"])
header = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/"
"50.0.2661.75 Safari/537.36",
"X-Requested-With": "XMLHttpRequest",
}
engine = create_engine(
f'mysql://{config_keys["MYSQL_USER"]}:{config_keys["MYSQL_PASSWORD"]}@'
f'{config_keys["MYSQL_HOST"]}/{config_keys["MYSQL_DATABASE"]}'
)
cnx = mysql.connector.connect(
user=config_keys["MYSQL_USER"],
password=config_keys["MYSQL_PASSWORD"],
host=config_keys["MYSQL_HOST"],
database=config_keys["MYSQL_DATABASE"],
)
cnx.autocommit = True
cur = cnx.cursor()
def connect_mysql_database():
global engine
global cnx
global cur
if not cnx.is_connected():
engine = create_engine(
f'mysql://{config_keys["MYSQL_USER"]}:{config_keys["MYSQL_PASSWORD"]}@'
f'{config_keys["MYSQL_HOST"]}/{config_keys["MYSQL_DATABASE"]}'
)
cnx = mysql.connector.connect(
user=config_keys["MYSQL_USER"],
password=config_keys["MYSQL_PASSWORD"],
host=config_keys["MYSQL_HOST"],
database=config_keys["MYSQL_DATABASE"],
)
cnx.autocommit = True
cur = cnx.cursor()
return cnx, cur, engine
def get_stocksera_request(endpoint, optional=None):
data = requests.get(f"{BASE_URL}/{endpoint}", headers=HEADERS).json()
if optional:
df = pd.DataFrame(data[optional])
else:
df = pd.DataFrame(data)
return df
def get_ticker_list_stats(ticker_list):
r = requests.get(
f"https://financialmodelingprep.com/api/v3/quote/{','.join(ticker_list)}?"
f"apikey={config_keys['FMP_KEY']}"
).json()
df = pd.DataFrame(r)
return df
def default_ticker(request, ticker="AAPL"):
if request.GET.get("quote"):
ticker_selected = request.GET["quote"].upper().replace(" ", "")
else:
ticker_selected = ticker
return ticker_selected
def get_all_tickers():
"""
Get full ticker list for dropdown box
"""
all_ticker_list = pd.read_csv(r"database/all_tickers.csv")
symbol_list = all_ticker_list["SYMBOL"].to_list()
description = all_ticker_list["DESCRIPTION"].to_list()
return symbol_list, description
def check_json(r):
"""
Sometimes when updating json file, there would be an error raised. This function fix this problem
"""
try:
data = json.load(r)
except JSONDecodeError as e:
print(e)
data = {}
return data
def check_market_hours(ticker_selected):
"""
1. Cache ticker information into a json file to speed up rendering time.
2. Insert ticker symbol into Stocksera trending table in db
3. Find related tickers to ticker selected
Parameters
----------
ticker_selected: str
ticker symbol (e.g: AAPL)
"""
current_datetime = datetime.utcnow()
next_update_time = str(current_datetime + timedelta(seconds=600))
with open(r"database/yf_cached_api.json", "r+") as r:
data = check_json(r)
if (
ticker_selected in data
and str(current_datetime) < data[ticker_selected]["next_update"]
):
information = data[ticker_selected]
else:
information = yf.Ticker(ticker_selected).info
data.update({ticker_selected: information})
information = data[ticker_selected]
information["next_update"] = next_update_time
r.seek(0)
r.truncate()
json.dump(data, r, indent=4)
if "longName" in information and information["currentPrice"] != "N/A":
cur.execute("SELECT * FROM related_tickers WHERE ticker=%s", (ticker_selected,))
related_tickers = cur.fetchall()
if not related_tickers:
related_tickers = finnhub_client.company_peers(ticker_selected)
if ticker_selected in related_tickers:
related_tickers.remove(ticker_selected)
upload_to_db = related_tickers.copy()
while len(upload_to_db) <= 6:
upload_to_db += [""]
cur.execute(
"INSERT INTO related_tickers VALUES (%s, %s, %s, %s, %s, %s, %s)",
tuple([ticker_selected] + upload_to_db[:6]),
)
cnx.commit()
else:
related_tickers = list(related_tickers[0])[1:]
related_tickers = [i for i in related_tickers if i != ""]
if not related_tickers:
related_tickers = ["AAPL", "TSLA", "NVDA"]
else:
related_tickers = []
return information, related_tickers
def check_financial_data(ticker_selected, ticker, data, r):
"""
Get financial data of ticker selected and save to json file
"""
balance_sheet = ticker.quarterly_balance_sheet
balance_sheet = balance_sheet.replace(np.nan, 0)[balance_sheet.columns[::-1]]
date_list = balance_sheet.columns.astype("str").to_list()
balance_col_list = balance_sheet.index.tolist()
balance_list = []
for i in range(len(balance_sheet)):
values = balance_sheet.iloc[i].tolist()
balance_list.append(values)
data[ticker_selected] = {
"date_list": date_list,
"balance_list": balance_list,
"balance_col_list": balance_col_list,
"next_update": str(datetime.now().date() + timedelta(days=7)),
}
r.seek(0)
r.truncate()
json.dump(data, r, indent=4)
return date_list, balance_list, balance_col_list
def convert_date(date):
return date[0].split()[0]
def get_sec_fillings(ticker_selected):
current_date = datetime.utcnow().date()
sec_list = finnhub_client.filings(
symbol=ticker_selected,
_from=str(current_date - timedelta(days=365 * 3)),
to=str(current_date),
)[:100]
for filling in sec_list:
ticker = filling["symbol"]
fillings = filling["form"]
description = ""
filling_date = filling["filedDate"].split()[0]
report_url = filling["reportUrl"]
filing_url = filling["filingUrl"]
cur.execute(
"INSERT INTO sec_fillings VALUES (%s, %s, %s, %s, %s, %s)",
(ticker, fillings, description, filling_date, report_url, filing_url),
)
cnx.commit()
df = pd.DataFrame(sec_list)
df.rename(columns={"form": "Filling", "filedDate": "Filling Date"}, inplace=True)
df["Description"] = ""
df = df[["Filling", "Description", "Filling Date", "reportUrl", "filingUrl"]]
return df
def get_ticker_news(ticker_selected):
"""
Get news article of ticker selected and find the news sentiment of the news title
"""
try:
ticker_fin = finvizfinance(ticker_selected)
news_df = ticker_fin.ticker_news()
news_df = news_df.drop_duplicates(subset=["Title"])
news_df["Date"] = news_df["Date"].dt.date
news_df["Date"] = news_df["Date"].astype(str)
# Get sentiment of each news title and add it to a new column in news_df
sentiment_list = list()
for index, row in news_df.iterrows():
vs = analyzer.polarity_scores(row["Title"])
sentiment_score = vs["compound"]
if sentiment_score > 0.2:
sentiment = "Bullish"
elif sentiment_score < -0.2:
sentiment = "Bearish"
else:
sentiment = "Neutral"
sentiment_list.append(sentiment)
cur.execute(
"INSERT INTO daily_ticker_news VALUES (%s, %s, %s, %s, %s)",
(ticker_selected, row[0], row[1], row[2], sentiment),
)
cnx.commit()
news_df["Sentiment"] = sentiment_list
except:
news_df = pd.DataFrame(columns=["Date", "Title", "Link", "Sentiment"])
news_df.loc[0] = ["N/A", "N/A", "https://finance.yahoo.com/news/", "N/A"]
cur.execute(
"INSERT INTO daily_ticker_news VALUES (%s, %s, %s, %s, %s)",
(ticker_selected, "N/A", "N/A", "https://finance.yahoo.com/news/", "N/A"),
)
cnx.commit()
return news_df
def get_insider_trading(ticker_selected):
"""
Get insider trading of ticker selected
"""
try:
ticker_fin = finvizfinance(ticker_selected)
inside_trader_df = ticker_fin.ticker_inside_trader()
inside_trader_df["Insider Trading"] = inside_trader_df[
"Insider Trading"
].str.title()
inside_trader_df.rename(
columns={"Insider Trading": "Name", "SEC Form 4 Link": ""}, inplace=True
)
inside_trader_df["Date"] = inside_trader_df["Date"] + " {}".format(
str(date.today().year)
)
inside_trader_df["Date"] = pd.to_datetime(
inside_trader_df["Date"], format="%b %d %Y"
)
del inside_trader_df["Insider_id"]
del inside_trader_df["SEC Form 4"]
last_date = datetime.utcnow().date()
for index, row in inside_trader_df.iterrows():
if row[2] > last_date:
x = row[2] - timedelta(days=365)
else:
x = row[2]
date_to_insert = str(x).split()[0]
last_date = x
cur.execute(
"INSERT INTO insider_trading VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)",
(
ticker_selected,
row[0],
row[1],
date_to_insert,
row[3],
row[4],
row[5],
row[6],
row[7],
row[8],
),
)
cnx.commit()
except:
inside_trader_df = pd.DataFrame(
columns=[
"Name",
"Relationship",
"Date",
"Transaction",
"Cost",
"Shares",
"Value ($)",
"#Shares Total",
"",
]
)
inside_trader_df.loc[0] = [
"N/A",
"N/A",
"N/A",
"N/A",
"N/A",
"N/A",
"N/A",
"N/A",
"N/A",
]
return inside_trader_df
def government_daily_trades(df, date_selected, col_name):
if not date_selected:
date_selected = df["Disclosure Date"].iloc[0]
latest_df = df[df["Disclosure Date"] == date_selected]
group_by_govt_official = pd.DataFrame(
df.groupby([col_name]).agg(
{"Transaction Date": "count", "Disclosure Date": lambda x: x.iloc[0]}
)
)
group_by_govt_official.sort_values(
by=["Disclosure Date"], ascending=False, inplace=True
)
group_by_govt_official.rename(
columns={"Transaction Date": "Total", "Disclosure Date": "Last Disclosure"},
inplace=True,
)
group_by_govt_official.reset_index(inplace=True)
group_by_ticker = pd.DataFrame(df["Ticker"].value_counts())
group_by_ticker.reset_index(inplace=True)
group_by_ticker.columns = ["Ticker", "Count"]
group_by_ticker = group_by_ticker[group_by_ticker["Ticker"] != "Unknown"]
return date_selected, latest_df, group_by_govt_official, group_by_ticker
def long_number_format(num):
"""
Convert long number to short form (e.g: 1000000 to 1M)
"""
if isinstance(num, float):
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
num_str = int(num) if num.is_integer() else f"{num:.3f}"
return f"{num_str}{' KMBTP'[magnitude]}".strip()
if isinstance(num, int):
num = str(num)
if num is not None and num.lstrip("-").isdigit():
num = int(num)
num /= 1.0
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
num_str = int(num) if num.is_integer() else f"{num:.3f}"
return f"{num_str}{' KMBTP'[magnitude]}".strip()
return num
def download_file(df, file_name):
"""
Allow users to download data as CSV
"""
df.to_csv(file_name, index=False)
with open(file_name) as to_download:
response = HttpResponse(to_download, content_type="text/csv")
response["Content-Disposition"] = "attachment; filename={}".format(file_name)
if os.path.isfile(file_name):
os.remove(file_name)
return response
def linear_regression(x, y):
"""
Linear Regression model without sklearn library
Parameters
----------
x: list of x axis
y: list of y axis
"""
# calculate mean of x & y using an inbuilt numpy method mean()
mean_x = np.mean(x)
mean_y = np.mean(y)
m = len(y)
# using the formula to calculate m & c
numer = 0
denom = 0
for i in range(m):
numer += (x[i] - mean_x) * (y[i] - mean_y)
denom += (x[i] - mean_x) ** 2
if denom == 0:
denom = 1
m = numer / denom
return m