forked from dorajam/Convolutional-Network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
toy.py
433 lines (343 loc) · 17 KB
/
toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# This is the basic idea behind the architecture
import numpy as np
import random
import math
import time
import scipy
from scipy import ndimage, misc
import matplotlib.pyplot as plt
from backprop import *
''' RECEPTIVE FIELD - WEIGHTS aka FILTER ->
initialize filters in a way that corresponds to the depth of the image.
If the input image is of channel 3 (RGB) then each of your weight vector is n*n*3.
PARAMETERS you'll need: NUM_FILTERS (num of filters), STRIDE (slide filter by), ZERO-PADDING(to control the spatial size of the output volumes). Use (Inputs-FilterSize + 2*Padding)/Stride + 1 to calculate your output volume and to decide your hyperparameters'''
class ConvLayer(object):
def __init__(self, input_shape, filter_size, stride, num_filters, padding = 0):
self.depth, self.height_in, self.width_in = input_shape
self.filter_size = filter_size
self.stride = stride
self.padding = padding
self.num_filters = num_filters
self.weights = np.random.randn(self.num_filters, self.depth, self.filter_size, self.filter_size)
self.biases = np.random.rand(self.num_filters,1)
self.output_dim1 = (self.height_in - self.filter_size + 2*self.padding)/self.stride + 1 # num of rows
self.output_dim2 = (self.width_in - self.filter_size + 2*self.padding)/self.stride + 1 # num of cols
self.z_values = np.zeros((self.num_filters, self.output_dim1, self.output_dim2))
self.output = np.zeros((self.num_filters, self.output_dim1, self.output_dim2))
def convolve(self, input_neurons):
'''
Pass in the actual input data and do the convolution.
Returns: sigmoid activation matrix after convolution
'''
# roll out activations
self.z_values = self.z_values.reshape((self.num_filters, self.output_dim1 * self.output_dim2))
self.output = self.output.reshape((self.num_filters, self.output_dim1 * self.output_dim2))
act_length1d = self.output.shape[1]
for j in range(self.num_filters):
slide = 0
row = 0
for i in range(act_length1d): # loop til the output array is filled up -> one dimensional (600)
# ACTIVATIONS -> loop through each conv block horizontally
self.z_values[j][i] = np.sum(input_neurons[:,row:self.filter_size+row, slide:self.filter_size + slide] * self.weights[j]) + self.biases[j]
self.output[j][i] = sigmoid(self.z_values[j][i])
slide += self.stride
if (self.filter_size + slide)-self.stride >= self.width_in: # wrap indices at the end of each row
slide = 0
row += self.stride
self.z_values = self.output.reshape((self.num_filters, self.output_dim1, self.output_dim2))
self.output = self.output.reshape((self.num_filters, self.output_dim1, self.output_dim2))
class PoolingLayer(object):
def __init__(self, input_shape, poolsize = (2,2)):
'''
width_in and height_in are the dimensions of the input image
poolsize is treated as a tuple of filter and stride -> it should work with overlapping pooling
'''
self.depth, self.height_in, self.width_in = input_shape
self.poolsize = poolsize
self.height_out = (self.height_in - self.poolsize[0])/self.poolsize[1] + 1
self.width_out = (self.width_in - self.poolsize[0])/self.poolsize[1] + 1 # num of output neurons
self.output = np.empty((self.depth, self.height_out, self.width_out))
self.max_indices = np.empty((self.depth, self.height_out, self.width_out, 2))
def pool(self, input_image):
self.pool_length1d = self.height_out * self.width_out
self.output = self.output.reshape((self.depth, self.pool_length1d))
self.max_indices = self.max_indices.reshape((self.depth, self.pool_length1d, 2))
# for each filter map
for j in range(self.depth):
row = 0
slide = 0
for i in range(self.pool_length1d):
toPool = input_image[j][row:self.poolsize[0] + row, slide:self.poolsize[0] + slide]
self.output[j][i] = np.amax(toPool) # calculate the max activation
index = zip(*np.where(np.max(toPool) == toPool)) # save the index of the max
if len(index) > 1:
index = [index[0]]
index = index[0][0]+ row, index[0][1] + slide
self.max_indices[j][i] = index
slide += self.poolsize[1]
# modify this if stride != filter for poolsize
if slide >= self.width_in:
slide = 0
row += self.poolsize[1]
self.output = self.output.reshape((self.depth, self.height_out, self.width_out))
self.max_indices = self.max_indices.reshape((self.depth, self.height_out, self.width_out, 2))
class Layer(object):
def __init__(self, input_shape, num_output):
self.output = np.ones((num_output, 1))
self.z_values = np.ones((num_output, 1))
class FullyConnectedLayer(Layer):
'''
Calculates outputs on the fully connected layer then forwardpasses to the final output -> classes
'''
def __init__(self, input_shape, num_output):
super(FullyConnectedLayer, self).__init__(input_shape, num_output)
self.depth, self.height_in, self.width_in = input_shape
self.num_output = num_output
self.weights = np.random.randn(self.num_output, self.depth, self.height_in, self.width_in)
self.biases = np.random.randn(self.num_output,1)
def feedforward(self, a):
'''
forwardpropagates through the FC layer to the final output layer
'''
# roll out the dimensions
self.weights = self.weights.reshape((self.num_output, self.depth * self.height_in * self.width_in))
a = a.reshape((self.depth * self.height_in * self.width_in, 1))
# this is shape of (num_outputs, 1)
self.z_values = np.dot(self.weights, a) + self.biases
self.output = sigmoid(self.z_values)
self.weights = self.weights.reshape((self.num_output, self.depth, self.height_in, self.width_in))
class ClassifyLayer(Layer):
def __init__(self, num_inputs, num_classes):
super(ClassifyLayer, self).__init__(num_inputs, num_classes)
num_inputs, col = num_inputs
self.num_classes = num_classes
self.weights = np.random.randn(self.num_classes, num_inputs)
self.biases = np.random.randn(self.num_classes,1)
def classify(self, x):
self.z_values = np.dot(self.weights,x) + self.biases
self.output = sigmoid(self.z_values)
class Model(object):
layer_type_map = {
'fc_layer': FullyConnectedLayer,
'final_layer': ClassifyLayer,
'conv_layer': ConvLayer,
'pool_layer': PoolingLayer
}
def __init__(self, input_shape, layer_config):
'''
:param layer_config: list of dicts, outer key is
Valid Layer Types:
Convolutional Layer: shape of input, filter_size, stride, padding, num_filters
Pooling Layer: shape of input(depth, height_in, width_in), poolsize
Fully Connected Layer: shape_of_input, num_output, classify = True/False, num_classes (if classify True)
Gradient Descent: training data, batch_size, eta, num_epochs, lambda, test_data
'''
self.input_shape = input_shape
self._initialize_layers(layer_config)
self.layer_weight_shapes = [l.weights.shape for l in self.layers if not isinstance(l,PoolingLayer)]
self.layer_biases_shapes = [l.biases.shape for l in self.layers if not isinstance(l,PoolingLayer)]
def _initialize_layers(self, layer_config):
"""
Sets the net's <layer> attribute
to be a list of Layers (classes from layer_type_map)
"""
layers = []
input_shape = self.input_shape
for layer_spec in layer_config:
# handle the spec format: {'type': {kwargs}}
layer_class = self.layer_type_map[layer_spec.keys()[0]]
layer_kwargs = layer_spec.values()[0]
layer = layer_class(input_shape, **layer_kwargs)
input_shape = layer.output.shape
layers.append(layer)
self.layers = layers
def _get_layer_transition(self, inner_ix, outer_ix):
inner, outer = self.layers[inner_ix], self.layers[outer_ix]
# either input to FC or pool to FC -> going from 3d matrix to 1d
if (
(inner_ix < 0 or isinstance(inner, PoolingLayer)) and
isinstance(outer, FullyConnectedLayer)
):
return '3d_to_1d'
# going from 3d to 3d matrix -> either input to conv or conv to conv
if (
(inner_ix < 0 or isinstance(inner, ConvLayer)) and
isinstance(outer, ConvLayer)
):
return 'to_conv'
if (
isinstance(inner, FullyConnectedLayer) and
(isinstance(outer, ClassifyLayer) or isinstance(outer, FullyConnectedLayer))
):
return '1d_to_1d'
if (
isinstance(inner, ConvLayer) and
isinstance(outer, PoolingLayer)
):
return 'conv_to_pool'
raise NotImplementedError
def feedforward(self, image):
prev_activation = image
# forwardpass
for layer in self.layers:
input_to_feed = prev_activation
if isinstance(layer, FullyConnectedLayer):
# z values are huge, while the fc_output is tiny! large negative vals get penalized to 0!
layer.feedforward(input_to_feed)
elif isinstance(layer, ConvLayer):
layer.convolve(input_to_feed)
for i in range(layer.output.shape[0]):
plt.imsave('images/cat_conv%d.jpg'%i, layer.output[i])
for i in range(layer.weights.shape[0]):
plt.imsave('images/filter_conv%s.jpg'%i, layer.weights[i].reshape((5,5)))
elif isinstance(layer, PoolingLayer):
layer.pool(input_to_feed)
for i in range(layer.output.shape[0]):
plt.imsave('images/pool_pic%s.jpg'%i, layer.output[i])
elif isinstance(layer, ClassifyLayer):
layer.classify(input_to_feed)
else:
raise NotImplementedError
prev_activation = layer.output
final_activation = prev_activation
return final_activation
def backprop(self, image, label):
nabla_w = [np.zeros(s) for s in self.layer_weight_shapes]
nabla_b = [np.zeros(s) for s in self.layer_biases_shapes]
# set first params on the final layer
final_output = self.layers[-1].output
last_delta = (final_output - label) * sigmoid_prime(self.layers[-1].z_values)
last_weights = None
final=True
num_layers = len(self.layers)
# import ipdb;ipdb.set_trace()
for l in range(num_layers - 1, -1, -1):
# the "outer" layer is closer to classification
# the "inner" layer is closer to input
inner_layer_ix = l - 1
if (l-1) <0:
inner_layer_ix = 0
outer_layer_ix = l
layer = self.layers[outer_layer_ix]
activation = self.layers[inner_layer_ix].output if inner_layer_ix >= 0 else image
transition = self._get_layer_transition(
inner_layer_ix, outer_layer_ix
)
# inputfc = poolfc
# fc to fc = fc to final
# conv to conv -> input to conv
# conv to pool -> unique
if transition == '1d_to_1d': # final to fc, fc to fc
db, dw, last_delta = backprop_1d_to_1d(
delta = last_delta,
prev_weights=last_weights,
prev_activations=activation,
z_vals=layer.z_values,
final=final)
final = False
elif transition == '3d_to_1d':
if l==0:
activation = image
# calc delta on the first final layer
db, dw, last_delta = backprop_1d_to_3d(
delta=last_delta,
prev_weights=last_weights, # shape (10,100) this is the weights from the next layer
prev_activations=activation, #(28,28)
z_vals=layer.z_values) # (100,1)
# layer.weights = layer.weights.reshape((layer.num_output, layer.depth, layer.height_in, layer.width_in))
# pool to conv layer
elif transition == 'conv_to_pool':
# no update for dw,db => only backprops the error
last_delta = backprop_pool_to_conv(
delta = last_delta,
prev_weights = last_weights,
input_from_conv = activation,
max_indices = layer.max_indices,
poolsize = layer.poolsize,
pool_output = layer.output)
# conv to conv layer
elif transition == 'to_conv':
# weights passed in are the ones between conv to conv
# update the weights and biases
activation = image
last_weights = layer.weights
db,dw = backprop_to_conv(
delta = last_delta,
weight_filters = last_weights,
stride = layer.stride,
input_to_conv = activation,
prev_z_vals = layer.z_values)
else:
pass
if transition != 'conv_to_pool':
# print 'nablasb, db,nabldw, dw, DELTA', nabla_b[inner_layer_ix].shape, db.shape, nabla_w[inner_layer_ix].shape, dw.shape, last_delta.shape
nabla_b[inner_layer_ix], nabla_w[inner_layer_ix] = db, dw
last_weights = layer.weights
return self.layers[-1].output, nabla_b, nabla_w
def gradient_descent(self, training_data, batch_size, eta, num_epochs, lmbda=None, test_data = None):
training_size = len(training_data)
if test_data: n_test = len(test_data)
mean_error = []
correct_res = []
for epoch in xrange(num_epochs):
print "Starting epochs"
start = time.time()
random.shuffle(training_data)
batches = [training_data[k:k + batch_size] for k in xrange(0, training_size, batch_size)]
losses = 0
for batch in batches:
loss = self.update_mini_batch(batch, eta)
losses+=loss
mean_error.append(round(losses/batch_size,2))
print mean_error
if test_data:
print "################## VALIDATE #################"
res = self.validate(test_data)
correct_res.append(res)
print "Epoch {0}: {1} / {2}".format(
epoch, self.validate(test_data), n_test)
print "Epoch {0} complete".format(epoch)
# time
timer = time.time() - start
print "Estimated time: ", timer
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(correct_res)
plt.show()
def update_mini_batch(self, batch, eta):
nabla_w = [np.zeros(s) for s in self.layer_weight_shapes]
nabla_b = [np.zeros(s) for s in self.layer_biases_shapes]
batch_size = len(batch)
for image, label in batch:
image = image.reshape((1,28,28))
_ = self.feedforward(image)
final_res, delta_b, delta_w = self.backprop(image, label)
nabla_b = [nb + db for nb, db in zip(nabla_b, delta_b)]
nabla_w = [nw + dw for nw, dw in zip(nabla_w, delta_w)]
################## print LOSS ############
error = loss(label, final_res)
num =0
weight_index = []
for layer in self.layers:
if not isinstance(layer,PoolingLayer):
weight_index.append(num)
num+=1
for ix, (layer_nabla_w, layer_nabla_b) in enumerate(zip(nabla_w, nabla_b)):
layer = self.layers[weight_index[ix]]
layer.weights -= eta * layer_nabla_w / batch_size
layer.biases -= eta * layer_nabla_b / batch_size
return error
def validate(self,data):
data = [(im.reshape((1,28,28)),y) for im,y in data]
test_results = [(np.argmax(self.feedforward(x)),y) for x, y in data]
return sum(int(x == y) for x, y in test_results)
# helper functions
###############################################################
def cross_entropy(batch_size, output, expected_output):
return (-1/batch_size) * np.sum(expected_output * np.log(output) + (1 - expected_output) * np.log(1-output))
def sigmoid(z):
return 1.0/(1.0 + np.exp(-z))
def sigmoid_prime(z):
return sigmoid(z) * (1-sigmoid(z))
def loss(desired,final):
return 0.5*np.sum(desired-final)**2