forked from desi-ivanova/idad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaselines_pharmaco_nontrainable.py
135 lines (118 loc) · 4.46 KB
/
baselines_pharmaco_nontrainable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import math
import argparse
from tqdm import tqdm
import pandas as pd
import torch
import torch.nn as nn
import pyro
import mlflow
from pharmacokinetic import Pharmacokinetic
from experiment_tools.pyro_tools import auto_seed
from experiment_tools.output_utils import get_mlflow_meta
from estimators.mi import PriorContrastiveEstimation, NestedMonteCarloEstimation
from neural.aggregators import ImplicitDeepAdaptiveDesign
from neural.baselines import RandomDesignBaseline, ConstantBatchBaseline
def evaluate_nontrainable_policy_pk(
mlflow_experiment_name,
num_experiments_to_perform,
policy, # random or equal_interval
device,
n_rollout=2048 * 2,
num_inner_samples=int(5e5),
seed=-1,
):
""" T designs at equal intervals """
pyro.clear_param_store()
seed = auto_seed(seed)
mlflow.set_experiment(mlflow_experiment_name)
mlflow.log_param("seed", seed)
mlflow.log_param("baseline_type", policy)
mlflow.log_param("n_rollout", n_rollout)
mlflow.log_param("num_inner_samples", num_inner_samples)
factor = 16
n_rollout = n_rollout // factor
n = 1
design_dim = (n, 1)
EIGs = pd.DataFrame(
columns=["mean_lower", "se_lower", "mean_upper", "se_upper"],
index=num_experiments_to_perform,
)
theta_prior_loc = torch.tensor([1, 0.1, 20], device=device).log()
# covariance of the prior
theta_prior_covmat = torch.eye(3, device=device) * 0.05
uniform_sampler = torch.distributions.Uniform(
torch.tensor(-5.0, device=device), torch.tensor(5.0, device=device)
)
for T in num_experiments_to_perform:
if policy == "equal_interval":
# ASSUMPTION: first design 5 min after administation
transformed_designs = (
torch.linspace(5.0 / 60, 23.9, T, dtype=torch.float32) / 24.0
)
equispaced_constant_policy = torch.log(
transformed_designs / (1 - transformed_designs)
).to(device)
design_net = ConstantBatchBaseline(
const_designs_list=equispaced_constant_policy.unsqueeze(1),
design_dim=design_dim,
)
elif policy == "random":
design_net = RandomDesignBaseline(
design_dim=design_dim, random_designs_dist=uniform_sampler
)
# Model and losses
pk_model = Pharmacokinetic(
design_net=design_net,
T=T,
theta_loc=theta_prior_loc,
theta_covmat=theta_prior_covmat,
)
pce_loss_lower = PriorContrastiveEstimation(
pk_model.model, factor, num_inner_samples
)
pce_loss_upper = NestedMonteCarloEstimation(
pk_model.model, factor, num_inner_samples
)
auto_seed(seed)
EIG_proxy_lower = torch.tensor(
[-pce_loss_lower.loss() for _ in range(n_rollout)]
)
auto_seed(seed)
EIG_proxy_upper = torch.tensor(
[-pce_loss_upper.loss() for _ in range(n_rollout)]
)
EIGs.loc[T, "mean_lower"] = EIG_proxy_lower.mean().item()
EIGs.loc[T, "se_lower"] = EIG_proxy_lower.std().item() / math.sqrt(n_rollout)
EIGs.loc[T, "mean_upper"] = EIG_proxy_upper.mean().item()
EIGs.loc[T, "se_upper"] = EIG_proxy_upper.std().item() / math.sqrt(n_rollout)
EIGs.to_csv(f"mlflow_outputs/eval.csv")
mlflow.log_artifact(f"mlflow_outputs/eval.csv", artifact_path="evaluation")
mlflow.log_param("status", "complete")
print(EIGs)
print("Done!")
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="iDAD: Pharmacokinetic model,nontrainable baselines."
)
parser.add_argument(
"--mlflow-experiment-name", default="pharmaco_baselines_nontrainable", type=str,
)
parser.add_argument("--seed", default=-1, type=int)
parser.add_argument(
"--policy", default="random", choices=["random", "equal_interval"], type=str
)
parser.add_argument("--num-experiments-to-perform", nargs="+", default=[5, 10])
parser.add_argument("--device", default="cuda", type=str)
args = parser.parse_args()
args.num_experiments_to_perform = [
int(x) if x else x for x in args.num_experiments_to_perform
]
evaluate_nontrainable_policy_pk(
mlflow_experiment_name=args.mlflow_experiment_name,
num_experiments_to_perform=args.num_experiments_to_perform,
device=args.device,
policy=args.policy,
seed=args.seed,
)