forked from desi-ivanova/idad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
location_finding.py
511 lines (448 loc) · 18.3 KB
/
location_finding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import os
import pickle
import argparse
import math
import pandas as pd
import torch
import torch.nn as nn
import pyro
import pyro.distributions as dist
from tqdm import trange
import mlflow
import mlflow.pytorch
from neural.modules import Mlp, SelfAttention
from neural.aggregators import PermutationInvariantImplicitDAD, ConcatImplicitDAD
from neural.baselines import BatchDesignBaseline
from neural.critics import CriticDotProd, CriticBA
from oed.primitives import observation_sample, latent_sample, compute_design
from experiment_tools.pyro_tools import auto_seed
from oed.design import OED
from estimators.mi import PriorContrastiveEstimation
from estimators.bb_mi import InfoNCE, NWJ, BarberAgakov
mi_estimator_options = {
"sPCE": PriorContrastiveEstimation,
"NWJ": NWJ,
"InfoNCE": InfoNCE,
"BA": BarberAgakov,
}
class HiddenObjects(nn.Module):
"""Location finding example"""
def __init__(
self,
design_net,
base_signal=0.1, # G-map hyperparam
max_signal=1e-4, # G-map hyperparam
theta_loc=None, # prior on theta mean hyperparam
theta_covmat=None, # prior on theta covariance hyperparam
noise_scale=None, # this is the scale of the noise term
p=1, # physical dimension
K=1, # number of sources
T=2, # number of experiments
):
super().__init__()
self.design_net = design_net
self.base_signal = base_signal
self.max_signal = max_signal
# Set prior:
self.theta_loc = theta_loc if theta_loc is not None else torch.zeros((K, p))
self.theta_covmat = theta_covmat if theta_covmat is not None else torch.eye(p)
self.theta_prior = dist.MultivariateNormal(
self.theta_loc, self.theta_covmat
).to_event(1)
# Observations noise scale:
self.noise_scale = noise_scale if noise_scale is not None else torch.tensor(1.0)
self.n = 1 # samples per design=1
self.p = p # dimension of theta (location finding example will be 1, 2 or 3).
self.K = K # number of sources
self.T = T # number of experiments
def forward_map(self, xi, theta):
"""Defines the forward map for the hidden object example
y = G(xi, theta) + Noise.
"""
# two norm squared
sq_two_norm = (xi - theta).pow(2).sum(axis=-1)
# add a small number before taking inverse (determines max signal)
sq_two_norm_inverse = (self.max_signal + sq_two_norm).pow(-1)
# sum over the K sources, add base signal and take log.
mean_y = torch.log(self.base_signal + sq_two_norm_inverse.sum(-1, keepdim=True))
return mean_y
def model(self):
if hasattr(self.design_net, "parameters"):
#! this is required for the pyro optimizer
pyro.module("design_net", self.design_net)
########################################################################
# Sample latent variables theta
########################################################################
theta = latent_sample("theta", self.theta_prior)
y_outcomes = []
xi_designs = []
# T-steps experiment
for t in range(self.T):
####################################################################
# Get a design xi; shape is [batch size x self.n x self.p]
####################################################################
xi = compute_design(
f"xi{t + 1}", self.design_net.lazy(*zip(xi_designs, y_outcomes))
)
####################################################################
# Sample y at xi; shape is [batch size x 1]
####################################################################
mean = self.forward_map(xi, theta)
sd = self.noise_scale
y = observation_sample(f"y{t + 1}", dist.Normal(mean, sd).to_event(1))
####################################################################
# Update history
####################################################################
y_outcomes.append(y)
xi_designs.append(xi)
return theta, xi_designs, y_outcomes
def forward(self, theta):
"""Run the policy for a given theta"""
self.design_net.eval()
def conditioned_model():
with pyro.plate_stack("expand_theta_test", [theta.shape[0]]):
# condition on theta
return pyro.condition(self.model, data={"theta": theta})()
with torch.no_grad():
theta, designs, observations = conditioned_model()
self.design_net.train()
return designs, observations
def eval(self, n_trace=3, theta=None, verbose=True):
"""run the policy, print output and return it in a dataframe"""
self.design_net.eval()
if theta is None:
theta = self.theta_prior.sample(torch.Size([n_trace]))
else:
theta = theta.unsqueeze(0).expand(n_trace, *theta.shape)
# dims: [n_trace * number of thetas given, shape of theta]
theta = theta.reshape(-1, *theta.shape[2:])
designs, observations = self.forward(theta)
output = []
true_thetas = []
for i in range(n_trace):
if verbose:
print("\nExample run {}".format(i + 1))
print(f"*True Theta: {theta[i].cpu()}*")
run_xis = []
run_ys = []
# Print optimal designs, observations for given theta
for t in range(self.T):
xi = designs[t][i].detach().cpu().reshape(-1)
run_xis.append(xi)
y = observations[t][i].detach().cpu().item()
run_ys.append(y)
if verbose:
print(f"xi{t + 1}: {xi}, y{t + 1}: {y}")
run_df = pd.DataFrame(torch.stack(run_xis).numpy())
run_df.columns = [f"xi_{i}" for i in range(self.p)]
run_df["observations"] = run_ys
run_df["order"] = list(range(1, self.T + 1))
run_df["run_id"] = i + 1
output.append(run_df)
self.design_net.train()
return pd.concat(output), theta.cpu().numpy()
def single_run(
seed,
num_steps,
batch_size, # N to estimate outer E
num_negative_samples, # L in denom
lr, # learning rate of adam optim
gamma, # scheduler for adam optim
p, # number of physical dim
K, # number of sources
T, # number of experiments
noise_scale,
device,
hidden_dim,
encoding_dim,
mlflow_experiment_name,
design_arch, # "sum" or "attention" or "static"
reuse_history_encoder,
critic_arch,
mi_estimator,
):
pyro.clear_param_store()
seed = auto_seed(seed)
mlflow.set_experiment(mlflow_experiment_name)
### Set up model networks ###
n = 1 # batch dim
design_dim = (n, p)
latent_dim = (K, p)
observation_dim = n
# history encoder hidden dimensions: apply to both critic and design net
# each (xi, y) gets one encoding
hist_encoder_HD = [64, hidden_dim]
# design emitter hidden dimensions
des_emitter_HD = [hidden_dim // 2, encoding_dim]
# head layers for the CRITIC ONLY
hist_enc_critic_head_HD = [
hidden_dim * int(max(math.log(T), 1)),
hidden_dim * int(max(math.log(T), 1)) // 2,
hidden_dim,
]
# latent encoder hidden dimensions: for CRITIC ONLY
latent_encoder_HD = [16, 64, hidden_dim]
if mi_estimator == "sPCE":
latent_encoder_HD = []
hist_enc_critic_head_HD = []
critic_arch = None
if mi_estimator == "BA":
# BA bound doesn't have a latent encoder
latent_encoder_HD = []
if design_arch == "static":
des_emitter_HD = []
mlflow.log_param(
"design_arch_full", f"{hist_encoder_HD}, {design_arch}, {des_emitter_HD}"
)
# mlflow.log_param("HD_hist_encoder", str(hist_encoder_HD))
# mlflow.log_param("HD_des_emitter", str(des_emitter_HD))
mlflow.log_param("critic_latent_encoder", f"{latent_encoder_HD}")
mlflow.log_param(
"critic_history_encoder",
f"{hist_encoder_HD}, {critic_arch}, {hist_enc_critic_head_HD}",
)
if design_arch == "static":
# batch design baseline
design_net = BatchDesignBaseline(T=T, design_dim=design_dim,).to(device)
else:
history_encoder = Mlp(
input_dim=[*design_dim, observation_dim],
hidden_dim=hist_encoder_HD,
output_dim=encoding_dim,
name="policy_history_encoder",
)
design_emitter = Mlp(
input_dim=encoding_dim,
hidden_dim=des_emitter_HD,
output_dim=design_dim,
name="policy_design_emitter",
)
# Design net: takes pairs [design, observation] as input
design_net = PermutationInvariantImplicitDAD(
history_encoder,
design_emitter,
empty_value=torch.zeros(design_dim).to(device),
self_attention_layer=SelfAttention(encoding_dim, encoding_dim)
if design_arch == "attention"
else None,
).to(device)
if critic_arch is not None:
###### nets for the critic ######
critic_latent_encoder = Mlp(
input_dim=[*latent_dim, 0],
hidden_dim=latent_encoder_HD,
output_dim=encoding_dim,
name="critic_latent_encoder",
)
critic_design_outcome_encoder = (
history_encoder
if reuse_history_encoder
else Mlp(
input_dim=[*design_dim, observation_dim],
hidden_dim=hist_encoder_HD,
output_dim=encoding_dim,
name="critic_design_outcome_encoder",
)
)
critic_head = Mlp(
input_dim=encoding_dim * T if critic_arch == "cat" else encoding_dim,
hidden_dim=hist_enc_critic_head_HD,
output_dim=encoding_dim,
name="critic_head",
)
if critic_arch == "cat":
critic_history_encoder = ConcatImplicitDAD(
encoder_network=critic_design_outcome_encoder,
emission_network=critic_head,
empty_value=torch.zeros(design_dim).to(device),
T=T,
)
else:
critic_history_encoder = PermutationInvariantImplicitDAD(
encoder_network=critic_design_outcome_encoder,
# pass head layer as an emitter
emission_network=critic_head,
empty_value=torch.ones(design_dim).to(device),
self_attention_layer=SelfAttention(encoding_dim, encoding_dim)
if design_arch == "attention"
else None,
)
if mi_estimator == "BA":
critic_net = CriticBA(
history_encoder_network=critic_history_encoder, latent_dim=latent_dim
).to(device)
else:
critic_net = CriticDotProd(
history_encoder_network=critic_history_encoder,
latent_encoder_network=critic_latent_encoder,
).to(device)
else:
critic_net = None
### Set up Mlflow logging ### ------------------------------------------------------
## Reproducibility
mlflow.log_param("seed", seed)
## Model hyperparams
mlflow.log_param("noise_scale", noise_scale)
mlflow.log_param("num_experiments", T)
mlflow.log_param("num_sources", K)
mlflow.log_param("physical_dim", p)
## Design network hyperparams
mlflow.log_param("hidden_dim", hidden_dim)
mlflow.log_param("encoding_dim", encoding_dim)
mlflow.log_param("design_arch", design_arch)
mlflow.log_param("reuse_history_encoder", reuse_history_encoder)
mlflow.log_param("critic_arch", critic_arch)
mlflow.log_param("mi_estimator", mi_estimator)
## Optimiser hyperparams
mlflow.log_param("num_steps", num_steps)
mlflow.log_param("lr", lr)
mlflow.log_param("gamma", gamma)
# ----------------------------------------------------------------------------------
### Prior hyperparams ###
# The prior is K independent * p-variate Normals. For example, if there's 1 source
# (K=1) in 2D (p=2), then we have 1 bivariate Normal.
theta_prior_loc = torch.zeros((K, p), device=device) # mean of the prior
theta_prior_covmat = torch.eye(p, device=device) # covariance of the prior
# noise of the model: the sigma in N(G(theta, xi), sigma)
noise_scale_tensor = noise_scale * torch.tensor(
1.0, dtype=torch.float32, device=device
)
### Set-up optimiser ###
optimizer = torch.optim.Adam
patience = 5
epoch_size = 400
num_epochs = num_steps // epoch_size
design_net_init = design_net
def separate_learning_rate(module_name, param_name):
# option to define different learning rates for design and critic
if module_name == "critic_net":
return {"lr": lr}
elif module_name == "design_net":
return {"lr": lr}
else:
raise NotImplementedError()
scheduler = pyro.optim.ReduceLROnPlateau(
{
"optimizer": optimizer,
"optim_args": separate_learning_rate,
"factor": gamma,
"patience": patience,
"verbose": False,
}
)
mlflow.log_param("annealing_scheme", [epoch_size, patience, gamma])
ho_model = HiddenObjects(
design_net=design_net_init,
theta_loc=theta_prior_loc,
theta_covmat=theta_prior_covmat,
noise_scale=noise_scale_tensor,
p=p,
K=K,
T=T,
)
### Set-up loss ###
if mi_estimator == "sPCE":
mi_loss_instance = PriorContrastiveEstimation(
model=ho_model.model,
batch_size=batch_size,
num_negative_samples=num_negative_samples,
)
elif mi_estimator == "BA":
mi_loss_instance = BarberAgakov(
model=ho_model.model,
critic=critic_net,
batch_size=batch_size,
num_negative_samples=num_negative_samples,
prior_entropy=ho_model.theta_prior.entropy(),
)
else:
mi_loss_instance = mi_estimator_options[mi_estimator](
model=ho_model.model,
critic=critic_net,
batch_size=batch_size,
num_negative_samples=num_negative_samples,
)
mlflow.log_param("num_negative_samples", mi_loss_instance.num_negative_samples)
mlflow.log_param("num_batch_samples", mi_loss_instance.batch_size)
oed = OED(optim=scheduler, loss=mi_loss_instance)
### Optimise ###
loss_history = []
outputs_history = []
num_steps_range = trange(1, num_steps + 1, desc="Loss: 0.000 ")
with torch.no_grad():
test_theta = ho_model.theta_prior.sample(torch.Size([1]))
for i in num_steps_range:
ho_model.train()
loss = oed.step()
# Log every 200 losses -> too slow (and unnecessary) to log everything
if (i - 1) % 200 == 0:
num_steps_range.set_description("Loss: {:.3f} ".format(loss))
loss_eval = oed.evaluate_loss()
mlflow.log_metric("loss", loss_eval, step=i)
# Check if lr should be decreased every <epoch_size> steps.
if i % epoch_size == 0:
scheduler.step(loss_eval)
# store design paths
df, latents = ho_model.eval(n_trace=3, theta=test_theta, verbose=False)
df["step"] = i
outputs_history.append(df)
if not os.path.exists("mlflow_outputs"):
os.makedirs("mlflow_outputs")
if len(outputs_history) > 0:
pd.concat(outputs_history).reset_index().to_csv(
f"mlflow_outputs/designs_hist.csv"
)
mlflow.log_artifact(f"mlflow_outputs/designs_hist.csv", artifact_path="designs")
ho_model.eval()
# Store model and critic as artifacts
print("Storing model to MlFlow... ", end="")
mlflow.pytorch.log_model(ho_model.cpu(), "model")
if critic_arch is not None:
print("Storing critic network to MlFlow... ", end="")
mlflow.pytorch.log_model(critic_net.cpu(), "critic")
ml_info = mlflow.active_run().info
model_loc = f"mlruns/{ml_info.experiment_id}/{ml_info.run_id}/artifacts"
print(f"Model and critic sotred in {model_loc}. Done.")
mlflow.log_param("status", "complete")
return ho_model
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="iDAD: Hidden Object Detection.")
parser.add_argument("--seed", default=-1, type=int)
parser.add_argument("--num-steps", default=100000, type=int)
parser.add_argument("--num-negative-samples", default=2047, type=int)
parser.add_argument("--num-batch-samples", default=2048, type=int)
parser.add_argument("--lr", default=0.0005, type=float)
parser.add_argument("--gamma", default=0.8, type=float)
parser.add_argument("--physical-dim", default=2, type=int)
parser.add_argument("--num-experiments", default=10, type=int) # == T
parser.add_argument("--num-sources", default=2, type=int) # == K
parser.add_argument("--noise-scale", default=0.5, type=float)
parser.add_argument("--device", default="cuda:0", type=str)
parser.add_argument("--hidden-dim", default=512, type=int)
parser.add_argument("--encoding-dim", default=64, type=int)
parser.add_argument("--design-arch", default="attention", type=str)
parser.add_argument("--reuse-history-encoder", default=False, action="store_true")
parser.add_argument("--critic-arch", default="attention", type=str)
parser.add_argument("--mi-estimator", default="InfoNCE", type=str)
parser.add_argument("--mlflow-experiment-name", default="locfin", type=str)
args = parser.parse_args()
single_run(
seed=args.seed,
num_steps=args.num_steps,
batch_size=args.num_batch_samples,
num_negative_samples=args.num_negative_samples,
lr=args.lr,
gamma=args.gamma,
device=args.device,
p=args.physical_dim,
K=args.num_sources,
T=args.num_experiments,
noise_scale=args.noise_scale,
hidden_dim=args.hidden_dim,
encoding_dim=args.encoding_dim,
mlflow_experiment_name=args.mlflow_experiment_name,
design_arch=args.design_arch,
reuse_history_encoder=args.reuse_history_encoder,
critic_arch=args.critic_arch,
mi_estimator=args.mi_estimator,
)