-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprimality.scm
55 lines (45 loc) · 1.25 KB
/
primality.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
;; The following program finds the smallest
;; integral divisor (greater than 1) of
;; a given number n
(define (smallest-divisor n)
(find-divisor n 2))
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n)
n)
((divides? test-divisor n)
test-divisor)
(else (find-divisor
n
(+ test-divisor 1)))))
(define (divides? a b)
(= (remainder b a) 0))
(define (prime? n)
(= n (smallest-divisor n)))
;; (smallest-divisor 199)
;; (smallest-divisor 1999)
;; (smallest-divisor 19999)
;; compute the exponential of a number
;; modulo another number
(define (expmod base power m)
(cond ((= power 0) 1)
((even? power)
(remainder
(square (expmod base (/ power 2) m))
m))
(else (remainder
(* base (expmod base (- power 1) m))
m))))
;; Fermat test
(define (fermat-test n)
(define (try-it a)
(= (expmod a n n) a))
(try-it (+ 1 (random (- n 1)))))
; (fermat-test 11)
;; The following procedure run `fermat-test`
;; a given times
(define (fast-prime? n times)
(cond ((= times 0) true)
((not (fermat-test n)) false)
(else (fast-prime? n (- times 1)))))
;; test
(fast-prime? 19999 10)