-
Notifications
You must be signed in to change notification settings - Fork 9
/
config.py
executable file
·84 lines (63 loc) · 3.57 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright 2019 Gabriele Valvano
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific langcduage governing permissions and
# limitations under the License.
import tensorflow as tf
def define_flags():
tf.flags.DEFINE_string('RUN_ID', None, "Unique identifier for the experiment")
tf.flags.mark_flag_as_required('RUN_ID')
# ____________________________________________________ #
# ====================== MODEL ======================= #
tf.flags.DEFINE_string('experiment', None, """ Experiment to run. """)
tf.flags.mark_flag_as_required('experiment')
# ____________________________________________________ #
# ========== ARCHITECTURE HYPER-PARAMETERS ========== #
# Learning rate:
tf.flags.DEFINE_float('lr', 1e-4, 'Learning rate')
# Batch size
tf.flags.DEFINE_integer('b_size', 12, "Batch size")
# Number of epochs
tf.flags.DEFINE_integer('n_epochs', None, "Number of training epochs")
# ____________________________________________________ #
# =============== TRAINING STRATEGY ================== #
tf.flags.DEFINE_bool('augment', True, "Perform data augmentation")
tf.flags.DEFINE_bool('standardize', False, "Perform data standardization (z-score)") # data already pre-processed
# (others, such as learning rate decay params...)
# ____________________________________________________________ #
# =============== LOGS AND REPORTS SETTINGS ================== #
# global
tf.flags.DEFINE_bool('verbose', True, "Verbosity, for print reports.")
# tensorboard
tf.flags.DEFINE_bool('tensorboard_on', True, "if True: save tensorboard logs")
tf.flags.DEFINE_integer('skip_step', 3000, "frequency of printing batch report")
tf.flags.DEFINE_integer('train_summaries_skip', 100, "number of skips before writing summaries for training steps "
"(used to reduce its verbosity; put 1 to avoid this)")
tf.flags.DEFINE_bool('tensorboard_verbose', True, "if True: save also layers weights every N epochs")
# ____________________________________________________ #
# ==================== HARDWARE ====================== #
# internal variables:
tf.flags.DEFINE_integer('num_threads', 20, "number of threads for loading data")
tf.flags.DEFINE_integer('CUDA_VISIBLE_DEVICE', 0, "visible gpu")
# ____________________________________________________ #
# ===================== DATA SET ====================== #
# path for the data set:
tf.flags.DEFINE_string('dataset_name', None, """ Dataset name. """)
tf.flags.DEFINE_string('data_path', None, """ Path of data files. """)
tf.flags.mark_flag_as_required('dataset_name')
tf.flags.mark_flag_as_required('data_path')
tf.flags.DEFINE_string('results_dir', '.', help="results directory")
# ids for the data
tf.flags.DEFINE_string('n_sup_vols', None, """ Number of labelled data to use as training volumes (e.g. 'perc25')""")
tf.flags.DEFINE_string('split_number', None, """ Split number for cross-validation (e.g. 'split0') """)
tf.flags.mark_flag_as_required('n_sup_vols')
tf.flags.mark_flag_as_required('split_number')
return