-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_utils.py
executable file
·282 lines (230 loc) · 11.4 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Copyright 2019 Gabriele Valvano
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
tf.random.set_random_seed(1234)
import numpy as np
np.random.seed(1234)
import random
random.seed(1234)
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import os
from idas.utils import safe_mkdir
import PIL.Image
from idas.tf_utils import from_one_hot_to_rgb
from medpy.metric.binary import hd
import config
from idas.utils import print_yellow_text
args = config.define_flags()
def hausdorff_distance(mask1, mask2):
"""Compute the average Hausdorff distance for the patient (in pixels), between mask1 and mask2."""
def _py_hd(m1, m2):
"""Python function to compute HD between the two n-dimensional masks"""
m1, m2 = np.array(m1), np.array(m2)
num_elems = len(m1)
assert len(m2) == num_elems
# remove last channel, if it is == 1:
if len(m1.shape) == 4 and m1.shape[-1] == 1:
m1, m2 = np.squeeze(m1, axis=-1), np.squeeze(m2, axis=-1)
try:
return hd(m1, m2)
except:
# maximum distance
return min([m1.shape[1], m1.shape[2]])
# map _py_hd(.) to every element on the batch axis:
tf_hd = tf.py_function(func=_py_hd, inp=[mask1, mask2],
Tout=[tf.float32], name='hausdorff_distance')
# return the average HD in the batch:
return tf.reduce_mean(tf_hd)
def dice_coe(output, target, axis=(1, 2, 3), smooth=1e-12):
"""Compute the average Dice score between output and target segmentation masks."""
intersection = tf.reduce_sum(output * target, axis=axis)
a = tf.reduce_sum(output, axis=axis)
b = tf.reduce_sum(target, axis=axis)
score = (2. * intersection + smooth) / (a + b + smooth)
score = tf.reduce_mean(score, name='dice_coe')
return score
def iou_coe(output, target, axis=(1, 2, 3), smooth=1e-12):
"""Compute the average IOU score between output and target segmentation masks."""
intersection = tf.reduce_sum(output * target, axis=axis)
a = tf.reduce_sum(output * output, axis=axis)
b = tf.reduce_sum(target * target, axis=axis)
union = a + b - intersection
score = (intersection + smooth) / (union + smooth)
score = tf.reduce_mean(score)
return score
def get_channel(incoming, idx):
return tf.expand_dims(incoming[..., idx], -1)
def test_model(sess, model, n_images=3):
""" Test the model once """
# -------------------------------------------------------------------------------------------
def _test_model(n_cls, n_img, pred, true):
# global and class-specific metrics:
dice_test_list = [dice_coe(output=pred[..., 1:], target=true[..., 1:])]
dice_test_list_cls = [dice_coe(output=get_channel(pred, i), target=get_channel(true, i)) for i in range(n_cls)]
iou_test_list = [iou_coe(output=pred[..., 1:], target=true[..., 1:])]
iou_test_list_cls = [iou_coe(output=get_channel(pred, i), target=get_channel(true, i)) for i in range(n_cls)]
hd_test_list_cls = [hausdorff_distance(pred[..., i], true[..., i]) for i in range(n_cls)]
# hd_test_list is average(hd_test_list_cls)
# global list of test to do:
test_list = []
test_list.extend(dice_test_list)
test_list.extend(dice_test_list_cls)
test_list.extend(iou_test_list)
test_list.extend(iou_test_list_cls)
test_list.extend(hd_test_list_cls)
# assign results to each value
if n_img > 0:
# add also images to the test list
image_list = [model.input, from_one_hot_to_rgb(pred, background='white'),
from_one_hot_to_rgb(true, background='white')]
test_list.extend(image_list)
# dc, dc_per_class, iu, iu_per_class, hd_per_class, img0, img1, img2 = \
# sess.run(test_list, feed_dict={model.is_training: False})
# imgs_tuple = [img0, img1, img2]
results = sess.run(test_list, feed_dict={model.is_training: False})
idx = 0
dc = results[idx]
dc_per_class = []
for c in range(n_cls):
idx += 1
dc_per_class.append(results[idx])
idx += 1
iu = results[idx]
iu_per_class = []
for c in range(n_cls):
idx += 1
iu_per_class.append(results[idx])
# this time start from 0 as we don't have hd inside results
hd_per_class = []
for c in range(n_cls):
idx += 1
hd_per_class.append(results[idx])
hd = np.mean(hd_per_class)
if n_img > 0:
idx += 1
imgs_tuple = results[idx:]
else:
imgs_tuple = None
return dc, dc_per_class, iu, iu_per_class, hd, hd_per_class, imgs_tuple
# -------------------------------------------------------------------------------------------
# Test
n_classes = model.n_classes
sess.run(model.test_init) # initialize data set iterator on test set:
y_pred = model.prediction # model prediction
y_true = model.ground_truth # ground truth segmentation
# initialize a dictionary with the metrics
metrics = {'dice': dict(), 'iou': dict(), 'hd': dict()}
metrics['dice']['global'] = list()
metrics['iou']['global'] = list()
metrics['hd']['global'] = list()
for ch in range(n_classes):
metrics['dice'][ch] = list()
metrics['iou'][ch] = list()
metrics['hd'][ch] = list()
n_batches = 0
img_list = []
try:
while True:
dice, dice_per_class, iou, iou_per_class, hdist, hdist_per_class, imgs = \
_test_model(n_classes, n_images, y_pred, y_true)
n_batches += 1
n_images -= 1
# save results
metrics['dice']['global'].append(dice)
metrics['iou']['global'].append(iou)
metrics['hd']['global'].append(hdist) # hd = hausdorff_distance
for ch in range(n_classes):
metrics['dice'][ch].append(dice_per_class[ch])
metrics['iou'][ch].append(iou_per_class[ch])
metrics['hd'][ch].append(hdist_per_class[ch])
if imgs is not None: img_list.append(imgs)
except tf.errors.OutOfRangeError:
# End of the test set. Compute statistics here:
avg_dice, std_dice = np.mean(metrics['dice']['global']), np.std(metrics['dice']['global'])
avg_dice_per_class = [np.mean(metrics['dice'][c]) for c in range(n_classes)]
std_dice_per_class = [np.mean(metrics['dice'][c]) for c in range(n_classes)]
avg_iou, std_iou = np.mean(metrics['iou']['global']), np.std(metrics['iou']['global'])
avg_iou_per_class = [np.mean(metrics['iou'][c]) for c in range(n_classes)]
std_iou_per_class = [np.mean(metrics['iou'][c]) for c in range(n_classes)]
avg_hd, std_hd = np.mean(metrics['hd']['global']), np.std(metrics['hd']['global'])
avg_hd_per_class = [np.mean(metrics['hd'][c]) for c in range(n_classes)]
std_hd_per_class = [np.mean(metrics['hd'][c]) for c in range(n_classes)]
dice_list_per_class = [metrics['dice'][ch] for ch in range(n_classes)]
iou_list_per_class = [metrics['iou'][ch] for ch in range(n_classes)]
hd_list_per_class = [metrics['hd'][ch] for ch in range(n_classes)]
return \
avg_dice, std_dice, [avg_dice_per_class, std_dice_per_class], metrics['dice']['global'], dice_list_per_class, \
avg_iou, std_iou, [avg_iou_per_class, std_iou_per_class], metrics['iou']['global'], iou_list_per_class, \
avg_hd, std_hd, [avg_hd_per_class, std_hd_per_class], metrics['hd']['global'], hd_list_per_class, img_list
def plot_batch(img_list, path_prefix):
"""Save batch of images tiled."""
def _postprocess_image(img):
""" from float range in about [-1, 1] to uint8 in [0, 255] """
# rescale:
img = img + abs(img.min())
img = img / img.max()
img = np.clip(255 * img, 0, 255)
img = img.astype(np.uint8)
return img
def _safe_rgb(img):
""" Converts grayscale image to rgb, if needed """
if img.shape[-1] == 1:
img = np.stack((np.squeeze(img, axis=-1),) * 3, axis=-1)
return img
def _tile(img_lst, n_rows):
"""Tile images for display."""
x, yp, yt = img_lst
n_cols = 3 # one for each: x, yp, yt
assert x.shape == yp.shape
assert x.shape == yt.shape
h, w = x.shape[1], x.shape[2]
# initialize and then fill empty array with input images:
tiled = np.zeros((n_rows * h, n_cols * w, 3), dtype=x.dtype)
for row_i in range(n_rows):
x_i, yp_i, yt_i = x[row_i], yp[row_i], yt[row_i]
tiled[row_i * h: (row_i + 1) * h, 0: w, :] = x_i
tiled[row_i * h: (row_i + 1) * h, w: 2 * w, :] = yp_i
tiled[row_i * h: (row_i + 1) * h, 2 * w:, :] = yt_i
return tiled
for i in range(len(img_list)):
x_in, y_pred, y_true = img_list[i]
x_in = _postprocess_image(x_in)
x_in = _safe_rgb(x_in)
rows = len(x_in)
canvas = _tile([x_in, y_pred, y_true], rows)
canvas = np.squeeze(canvas)
PIL.Image.fromarray(canvas).save(os.path.join(path_prefix, 'test_batch{0}.png'.format(i)))
# =====================================================================================================================
# =====================================================================================================================
# =====================================================================================================================
def test(model, sess):
print_yellow_text('Performing final test...')
epoch = sess.run(model.g_epoch)
# do a test:
avg_dice, std_dice, [avg_dice_per_class, std_dice_per_class], dice_list, dice_list_per_class, \
avg_iou, std_iou, [avg_iou_per_class, std_iou_per_class], iou_list, iou_list_per_class, \
avg_hd, std_hd, [avg_hd_per_class, std_hd_per_class], hd_list, hd_list_per_class, \
img_list = test_model(sess, model, n_images=6)
print(f'Dice average, standard deviation: \t {avg_dice} \t {std_dice}')
print(f'IoU average, standard deviation: \t {avg_iou} \t {std_iou}')
print(f'HD average, standard deviation: \t {avg_hd} \t {std_hd}')
# save the images:
results_dir = args.results_dir
dataset_name = args.dataset_name
safe_mkdir('{0}/results/{1}/{2}/images/'.format(results_dir, args.experiment_type, dataset_name))
safe_mkdir('{0}/results/{1}/{2}/images/{3}'.format(results_dir, args.experiment_type, dataset_name, args.n_sup_vols))
safe_mkdir('{0}/results/{1}/{2}/images/{3}/{4}'.format(results_dir, args.experiment_type, dataset_name, args.n_sup_vols, model.run_id))
image_dest_path = '{0}/results/{1}/{2}/images/{3}/{4}'.format(results_dir, args.experiment_type, dataset_name, args.n_sup_vols, model.run_id)
plot_batch(img_list, path_prefix=image_dest_path)
print(f'\nSaving test images under: {image_dest_path}')